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Abstract:  
Mycetoma is a chronic, neglected infectious disease endemic in tropical and subtropical areas that may lead to severe 
disability. By considering the causative agents, mycetoma is classified into eumycetoma (fungus) and actinomycetoma 
(bacteria). The diagnosis strategy relies on the clinical presentation and the identification of mycetoma causative agents. 
Accurate identification of the causative agents is a priority for mycetoma diagnosis.  
The current identification tools include molecular techniques, cytology, histology and grain culturing which is the gold standard 
tool. Molecular techniques are the most reliable tool, but it is expensive to be used in endemic areas, while culture is time-
consuming, difficult and requires expert personnel. Cytology and histology are simple, rapid, and cheap tools. However, 
cytology is far from being satisfactory in terms of performance because it tends to give false positive results. Although 
histopathology is considered to be the optimal tool to be used in endemic areas, it requires expert pathologists for conclusive 
identification, which are lacking in endemic rural areas.  
With the advent of digital pathology, automated image analysis algorithms can be used to solve this issue. The main aim of 
this thesis is to develop a novel computational diagnostic method for mycetoma diagnostic using histopathological 
microscopic images. Firstly, we create the first database for mycetoma microscopic images. This issue arises from the need 
for a dataset to develop a computation model. Then, we present a novel computation method to semi-automatically 
discriminate the mycetoma causative agents. The method is based on the radiomics analysis of manually segmented 
mycetoma grains and Partial Least Square-Discrimination Analysis (PLS-DA). The presented model can play a fundamental 
role in the non-specialised clinical centres because it reaches an accuracy comparable to expert pathologists. Lastly, we 
introduce an automated segmentation method for mycetoma grains. The segmentation method is Convolution Neural 
Network (CNN) model based on U-net architecture. It allows the full automation of the discrimination approach. In conclusion, 
this thesis presents both automated diagnostic methods for mycetoma histopathological microscopic images and semi-
automated differentiate methods for mycetoma grains.   
 
Keywords: Mycetoma diagnosis, Digital Histopathology, Microscopic Images, Image Analysis, Artificial Intelligence and 
Radiomics. 
 

Résumé 
Le mycétome est une maladie infectieuse chronique négligée dans les régions tropicales et subtropicales qui peut entraîner 
une invalidité grave. En considérant les agents responsables, le mycétome est classé en eumycétome (champignon) et 
actinomycétome (bactérie). La stratégie diagnostique repose sur la présentation clinique et l'identification des agents 
responsables du mycétome. L'identification précise des agents responsables est une priorité pour le diagnostic du mycétome. 
Les outils d'identification actuels comprennent les techniques moléculaires, la cytologie, l'histologie et la culture des grains 
qui est l'outil de référence. Les techniques moléculaires sont l'outil le plus fiable, mais il est coûteux et donc peu utilisé dans 
les zones endémiques, tandis que la culture est longue, difficile et nécessite un personnel expert. La cytologie et l'histologie 
sont des outils simples, rapides et bon marché. Cependant, la cytologie est loin d'être satisfaisante en termes de 
performances car elle a tendance à donner des résultats faussement positifs. Bien que l'histopathologie soit considérée 
comme l'outil optimal à utiliser dans les zones endémiques, elle nécessite un pathologiste expert pour une identification 
concluante qui fait défaut dans les zones rurales endémiques. 
Avec l'avènement des approches numériques, des algorithmes automatisés d'analyse d'images peuvent être utilisés comme 
solution à ce problème. L'objectif principal de cette thèse est de développer une nouvelle méthode diagnostique de calcul 
pour le diagnostic du mycétome à l'aide d'images microscopiques histopathologiques. Premièrement, nous créons la 
première base de données d'images microscopiques de mycétomes. Cette contribution découle de la nécessité d'un 
ensemble de données pour le développement de modèles de calcul. Ensuite, nous présentons une nouvelle méthode de 
calcul pour discriminer semi-automatiquement les agents responsables du mycétome. La méthode est basée sur l'analyse 
radiomique de grains de mycétomes segmentés manuellement et l'analyse de discrimination des moindres carrés partiels 
(PLS-DA). Le modèle présenté peut jouer un rôle fondamental dans un centre clinique non spécialisé car il atteint une 
précision comparable à celle des pathologistes experts. Enfin, nous introduisons une méthode de segmentation automatisée 
pour les grains de mycétome. La méthode de segmentation est un modèle de type Convolution Neural Network (CNN) basé 
sur l'architecture U-net. Il permet l'automatisation et la rapidité des méthodes de discrimination. En conclusion, cette thèse 
présente à la fois une méthode automatisée de diagnostic des images microscopiques histopathologiques du mycétome et 
une méthode semi-automatisée de différenciation des grains de mycétome. 
 
Mots-clés: Diagnostic du mycétome, Histopathologie numérique, Images microscopiques, Analyse d'images, Intelligence 
artificielle et Radiomique. 
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Résumé Substantiel 

Le mycétome est une maladie tropicale négligée reconnue par l'OMS. Il s'agit d'un 

problème majeur de santé publique qui affecte fréquemment les jeunes adultes et les 

enfants des zones rurales reculées, provoquant des malformations, des handicaps et 

parfois la mort. Le mycétome est causé par certains types de bactéries ou de 

champignons, et est donc classé respectivement en actinomycétome et en 

eumycétome. L'identification de l'agent pathogène est un élément fondamental du 

diagnostic pour adapter le traitement. 

La recherche sur le mycétome s'est principalement concentrée sur les aspects 

cliniques et de laboratoire de la maladie. Bien que l'identification moléculaire de l'agent 

causal du mycétome soit la plus précise, les méthodes de culture restent les 

techniques de référence dans le diagnostic en laboratoire du mycétome. La plupart 

des études diagnostiques ont été menées pour proposer de nouvelles techniques, 

alors que peu ont été menées pour améliorer les techniques existantes. Avec toutes 

les études, l'analyse informatisée des méthodes de diagnostic utilisées a pris du retard. 

Cela pourrait s'expliquer par le fait que le mycétome est une maladie négligée, sa 

prévalence est concentrée dans les régions peu développées et chez les personnes à 

faible statut socio-économique. En outre, la progression indolore et lente et la nature 

non contagieuse de cette maladie pourraient être une cause supplémentaire pour 

laquelle le mycétome ne reçoit pas beaucoup d'attention en termes de recherche sur 

le diagnostic assisté par ordinateur (CAD). 

Pour suivre l'ère moderne de la CAD et, en même temps, faciliter le processus de 

diagnostic tout en conservant la technique la plus simple pouvant être utilisée dans les 

zones rurales endémiques, nous avons étudié la possibilité de proposer un modèle de 

diagnostic automatisé pour le mycétome. Étant donné que les techniques d'imagerie 

arrivent à la deuxième étape du diagnostic, nous explorons les techniques de 

laboratoire avec leurs avantages et leurs inconvénients et dans quelle mesure elles 

sont précieuses et utiles ou précises dans le diagnostic. 

Cette thèse a porté sur l'analyse d'images microscopiques histopathologiques. Bien 

que l'histologie ne soit pas la m’ethode de référence pour le diagnostic, elle reste un 

outil optimal dans les environnements à ressources limitées et/ou les zones rurales. 
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L'automatisation de l'analyse histopathologique du mycétome pourrait affecter de 

manière significative le temps, le coût et la qualité du diagnostic. 

Jusqu'en 2013, le mycétome avait été négligé pendant des années avant d'être inclus 

dans la liste des maladies tropicales négligées de l'OMS. Bien que cela attire l'attention 

des médias et des communautés scientifiques, cette reconnaissance est 

principalement limitée aux zones endémiques et au personnel intéressé par la 

médecine tropicale. C'est la raison pour laquelle Chapitre 2 fournit un manuel 

d'informations générales et essentielles sur le mycétome, son diagnostic et sa prise 

en charge. En outre, il dresse l'état de l'art pour la recherche sur le mycétome et les 

lacunes dans les connaissances et la motivation pour proposer la méthode de calcul 

pour le diagnostic du mycétome. 

Puisque nous sommes les pionniers d'une méthode automatisée pour le diagnostic du 

mycétome, dans Chapitre 3, nous avons passé en revue les études CAD d'images 

histopathologiques. Les études examinées se concentrent sur les principales étapes 

impliquées dans le développement de méthodes d'histologie du mycétome, à savoir 

l'amélioration de l'image, la segmentation, les caractéristiques et la reconnaissance 

des formes. La partie la plus difficile consistait à étudier le choix d'une catégorie de 

caractéristiques appropriée qui pourrait être discriminante pour les images de tissus 

de mycétome. Les fonctionnalités de Radiomics semblent prometteuses car elles 

combinent plusieurs catégories dans trois grandes classes de fonctionnalités. Nous 

explorons également de manière approfondie les méthodes d'apprentissage 

automatique et de réseaux de neurones artificiels. 

La création de la base de données sur les mycétomes était l' objectif principal du 

Chapitre 4. Le chapitre a présenté la création de la première base de données 

d'images microscopiques histopathologiques de mycétomes, appelée MyData. Il a 

également fourni des informations détaillées sur les échantillons utilisés pour créer 

cette base de données. MyData constitue la première étape vers la proposition de 

méthodes de diagnostic automatisées utilisant certaines des méthodes et techniques 

passées en revue dans le chapitre précédent. En outre, cela pourrait être très 

bénéfique pour de nombreux chercheurs intéressés par l'étude de cette maladie 

négligée et l'amélioration des soins de santé. La base de données est collectée, 

préparée, analysée et étiquetée selon un protocole précis et adapté. Les échantillons 

de tissus ont été prélevés sur des patients confirmés atteints de mycétome vus et pris 
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en charge au Centre de recherche sur le mycétome (MRC), un centre collaborateur de 

l'OMS pour la recherche sur le mycétome. Les blocs de paraffine ont été préparés et 

envoyés à l'hôpital Bretonneau en France. Après une coupe uniforme et une procédure 

de coloration H&E, nous avons préparé les lames histopathologiques pour 142 

patients. Plusieurs lames histopathologiques contenant des grains différents ont été 

préparées pour chaque patient, avec une moyenne de six grains par patient. Parce 

que les grains sont la caractéristique unique de l'infection par le mycétome, il était 

nécessaire de segmenter manuellement les grains (ROI) pour chaque lame 

histopathologique. 

La base de données était composée de 864 images microscopiques de grains de 

mycétomes avec leur grain segmenté (vérité terrain). Il comprend 80 échantillons 

d'eumycétomes et 62 d'actinomycétomes et couvre quatre des cinq espèces de 

mycétomes les plus courantes signalées dans le monde. MyData est acquis avec un 

protocole d'acquisition reproductible homogène et unique. Pour cette raison, nous 

pensons que cette base de données est la première étape vers la création d'une base 

de données de plus en plus large avec diverses espèces du monde entier, d'autant 

plus qu'un protocole de préparation et d'acquisition spécifique est fourni. 

Bien que la base de données comprenne 142 patients de la MRC avec les deux types 

de mycétomes, elle ne comprend pas toutes les espèces de mycétomes. 

Actuellement, il existe plus de 80 espèces causales différentes avec une répartition 

géographique inégale. Les patients du CRM sont soit soudanais, soit originaires des 

pays voisins où Madurella mycetomatis, Actinomadura madurae, Streptomyces 

somaliensis et Actinomadura pelletieril sont les espèces les plus courantes. Par 

conséquent, notre base de données s'est concentrée sur ces espèces pour les 

actinomycétomes ainsi que sur le genre Madurella en général et Madurella 

mycetomatis en particulier. pour eumycétome. 

Selon les agents responsables du mycétome, quelle que soit l'espèce, le traitement 

nécessite l'administration prolongée d'antifongiques ou d'antibiotiques. Cette phase de 

traitement reste éprouvante, difficile et décevante. Par conséquent, l'identification des 

agents responsables du mycétome joue un rôle important dans le processus de 

traitement. Une identification incorrecte peut sérieusement affecter les patients ainsi 

que le pronostic et l'issue de la maladie. En conséquence, Chapitre 5 est 

principalement concentré sur la proposition d'un modèle de classification des 
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eumycétomes et des actinomycétomes correctement appelés cétome m AI . Nous 

avons cherché à diminuer ou à éliminer toutes les sources qui pourraient affecter la 

précision. Comme nous ne savions pas comment l'auto-segmentation ou la variation 

dans la préparation des échantillons pouvait avoir un impact sur le modèle, nous avons 

introduit un modèle qui a été formé et validé à l'aide de la base de données de 

mycétomes avec les grains segmentés manuellement. Le modèle formé a obtenu des 

résultats prometteurs avec une précision de 91,89 %, ce qui est comparable au résultat 

des pathologistes experts (92,8 %) lors de l'utilisation d'une analyse manuelle. 

Même si le modèle de classification a montré des performances significatives, ces 

performances sont probablement limitées par les espèces de mycétomes qui étaient 

représentées dans la base de données et utilisées pour la formation du modèle. Pour 

cette raison, notre modèle identifiera probablement à tort toute autre espèce. Et il 

devrait mieux performer en Europe et en Afrique qu'en Amérique du Sud et en Asie. 

Ainsi, cette limitation devrait être étudiée avec soin dans les études futures compte 

tenu de la répartition géographique des autres espèces. 

L'un des objectifs de ce travail était de fournir un ensemble de caractéristiques 

quantitatives décrivant les deux types de mycétomes et d'essayer de les corréler avec 

les caractéristiques qualitatives utilisées par les pathologistes. Nous explorons les trois 

principaux groupes de caractéristiques utilisées par les pathologistes pour 

diagnostiquer le mycétome : la forme, la couleur et la texture des grains. Par 

conséquent, 102 caractéristiques radiomiques ont été étudiées et examinées pour leur 

capacité de discrimination dans la classification de type mycétome. Cela a montré que 

les caractéristiques de forme n'étaient pas pertinentes pour les tâches de 

discrimination, tandis que les caractéristiques de texture étaient importantes. 

Les résultats prometteurs du modèle de classification ainsi que le fait que la 

segmentation manuelle des grains de mycétome nécessitait du temps et de 

l'expérience, nous ont incités à proposer une méthode pautomatique our segmenter 

les grains à partir de coupes de tissus et à la combiner avec notre modèle de 

classification. Chapitre 6 présenté un réseau CNN inspiré de l'architecture Unet pour 

automatiser la segmentation des grains. Selon nos expériences et nos résultats, le 

cadre proposé, GrUnet, démontre des performances significatives sur les images 

microscopiques d'histopathologie du mycétome, conduisant à une précision de 93,8 % 

sur la tâche de segmentation et un coefficient de Dice de 0,7843. 
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Nous avons intégré les modèles de classification et de segmentation pour automatiser 

entièrement le processus de diagnostic de manière à ce que l'utilisateur n'ait qu'à 

fournir l'image sans effectuer la segmentation manuelle. La précision de la 

classification était de 88 % et de 90,8 % pour l'identification automatisée et manuelle 

des grains. Avec les grains segmentés automatisés, les performances du modèle ont 

légèrement diminué mais restent proches de celles avec les grains segmentés 

manuellement. Nous pensons que cela se produit parce que le modèle de 

segmentation détecte de faux grains et les attribue au modèle de classification pour la 

différenciation. 

Nous avons développé un outil qui offre une méthode de diagnostic différentiel semi-

automatisé pour le mycétome. Il peut être utilisé à la fois pour la segmentation 

manuelle et la classification. Nous pensons que cet outil est plus fiable pour une 

version que les modèles combinés. En effet, ce modèle combiné peut faussement 

segmenter d'autres composants en tant que grains conduisant à un diagnostic 

incorrect, tandis que l'outil guide le diagnostic différentiel des cas confirmés de 

mycétome. 

Perspective future 

1. Base de données sur les mycétomes 

Cette thèse vise à proposer une méthode de diagnostic automatisé du mycétome 

utilisable à l'échelle mondiale (car le fardeau global est inconnu) et en particulier dans 

les zones d'endémie. Cependant, la base de données construite dans ce travail est 

attribuée aux espèces de mycétomes du Soudan et d'autres régions géographiques 

avec une distribution similaire. Comme mentionné, ce problème pourrait affecter la 

précision de nos modèles, de sorte que l'exposition du modèle à certaines espèces, 

qui n'étaient pas incluses dans l'ensemble de données, ne pourrait pas être 

correctement classée. Par conséquent, plus d'échantillons doivent être collectés pour 

élargir la base de données existante avec de nouvelles espèces et plus d'échantillons 

des espèces existantes. L'échantillon doit être prélevé dans différents pays et 

continents car la répartition géographique des espèces varie considérablement. 

De plus, les images de vérité au sol des grains segmentés manuellement devaient être 

mises à jour et inclure tous les grains dans chaque image. Ensuite, la base de données 
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doit être modifiée en conséquence. Nous avons observé la nécessité de cette 

modification lors de l'évaluation du modèle de segmentation car l'inclusion de tous les 

grains dans la vérité terrain donne des résultats différents par rapport au grain unique. 

2. Le modèle de segmentation 

Le GrUnet a été formé à l'aide de la base de données sur les mycétomes avec un seul 

grain par image comme vérité terrain. Comme mentionné ci-dessus, l'évaluation a 

démontré des performances différentes sur les différents ensembles de données. Pour 

cette raison, nous pensons que le ré-entrainement du modèle avec la base de données 

mise à jour pourrait améliorer la capacité du modèle à segmenter les grains de 

mycétome. Une autre possibilité est de ré-entrainer le modèle avec les grains de 

mycétome prédits. 

Pour développer davantage la méthode de diagnostic automatisé, le modèle de 

segmentation présenté doit être couplé à une technique de détection. En effet, nous 

avons observé une dégradation de la précision des modèles combinés qui est 

principalement attribuée à la détection et à la segmentation de faux grains. Ce 

problème est considéré comme une limitation de notre modèle de diagnostic 

automatisé. Pour surmonter cela, nous devons proposer un modèle de détection à 

utiliser pour la détection des grains de mycétome. Le modèle devrait être la première 

étape dans le pipeline de la méthode de diagnostic automatisé. À cette fin, un 

ensemble de données de faux grains est nécessaire pour développer et entrainer le 

modèle. 

3. Le modèle de classification 

La classification du genre et/ou de l'espèce des agents responsables peut être 

explorée. Actuellement, tous les patients atteints de mycétome reçoivent le même 

schéma thérapeutique antifongique ou antibactérien, quelle que soit l'espèce. 

Cependant, il existe une corrélation entre les résultats du traitement et l'identification 

des espèces. Pour cette raison, la classification au niveau de l'espèce pourrait aider 

au suivi et au pronostic. 

Cette classification a été examinée dans le cadre du modèle radiomique proposé. 

Cependant, nous pensons que le nombre limité d'images pour ces classes affecte 

fortement les performances du modèle étendu. En conséquence, nous suggérons 
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d'augmenter le nombre d'images des différentes classes pour le modèle étendu dans 

les travaux à venir. En outre, une autre perspective est le développement d'un modèle 

de classement qui examine l'espèce d'agent causal. 

De plus, une attention particulière doit être portée à la classification négative de 

Madurella mycetomatis et Madurella mycetomatis . Cette classe de classification 

présente un intérêt particulier car Madurella mycetomatis est l'organisme causal le plus 

courant dans le monde et son traitement est difficile et problématique. En outre, la 

plupart des patients touchés ne répondent pas au traitement médical seul et 

nécessitent une intervention chirurgicale. Il est intéressant de savoir que 

l'histopathologie seule ne peut pas faire cette classification et n'est possible que par 

des techniques moléculaires. Nous avons testé notre modèle de classification à cette 

fin, mais les performances n'étaient pas satisfaisantes. Par conséquent, nous 

examinons les transformées de diffusion en ondelettes. Le modèle a atteint une 

précision de classification de 71 %. Des échantillons supplémentaires pour Madurella 

mycetomatis négatif sont nécessaires pour conclure que cette précision est fiable. 

Nous pensons que notre échantillon négatif de Madurella mycetomatis pourrait 

contenir peu d'espèces d'eumycétomes par rapport aux 40 espèces réellement 

signalées. Par conséquent, davantage d'échantillons négatifs de Madurella 

mycetomatis doivent être collectés compte tenu de leur espèce. 

Enfin, un modèle d'apprentissage profond devrait être envisagé après avoir élargi et 

modifié la base de données. Le modèle pourrait être capable d'effectuer toutes les 

tâches de segmentation et de classification des grains de mycétome à la fois. 
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Abstract 

Mycetoma is a chronic, neglected infectious disease endemic in tropical and 

subtropical areas that may lead to severe disability. By considering the causative 

agents, mycetoma is classified into eumycetoma (fungus) and actinomycetoma 

(bacteria). The diagnosis strategy relies on the clinical presentation and the 

identification of mycetoma causative agents. Accurate identification of the causative 

agents is a priority for mycetoma diagnosis.  

The current identification tools include molecular techniques, cytology, histology and 

grain culturing which is the gold standard tool. Molecular techniques are the most 

reliable tool, but it is expensive to be used in endemic areas, while culture is time-

consuming, difficult and requires expert personnel. Cytology and histology are simple, 

rapid, and cheap tools. However, cytology is far from being satisfactory in terms of 

performance because it tends to give false positive results. Although histopathology is 

considered to be the optimal tool to be used in endemic areas, it requires expert 

pathologists for conclusive identification, which are lacking in endemic rural areas.  

With the advent of digital pathology, automated image analysis algorithms can be used 

to solve this issue. The main aim of this thesis is to develop a novel computational 

diagnostic method for mycetoma diagnostic using histopathological microscopic 

images. Firstly, we create the first database for mycetoma microscopic images. This 

issue arises from the need for a dataset to develop a computation model. Then, we 

present a novel computation method to semi-automatically discriminate the mycetoma 

causative agents. The method is based on the radiomics analysis of manually 

segmented mycetoma grains and Partial Least Square-Discrimination Analysis (PLS-

DA). The presented model can play a fundamental role in the non-specialised clinical 

centres because it reaches an accuracy comparable to expert pathologists. Lastly, we 

introduce an automated segmentation method for mycetoma grains. The segmentation 

method is Convolution Neural Network (CNN) model based on U-net architecture. It 

allows the full automation of the discrimination approach. In conclusion, this thesis 

presents both automated diagnostic methods for mycetoma histopathological 

microscopic images and semi-automated differentiate methods for mycetoma grains.   
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Keywords: Mycetoma diagnosis, Digital Histopathology, Microscopic Images, Image 

Analysis, Artificial Intelligence and Radiomics. 

 

Résumé 

Le mycétome est une maladie infectieuse chronique négligée dans les régions 

tropicales et subtropicales qui peut entraîner une invalidité grave. En considérant les 

agents responsables, le mycétome est classé en eumycétome (champignon) et 

actinomycétome (bactérie). La stratégie diagnostique repose sur la présentation 

clinique et l'identification des agents responsables du mycétome. L'identification 

précise des agents responsables est une priorité pour le diagnostic du mycétome. 

Les outils d'identification actuels comprennent les techniques moléculaires, la 

cytologie, l'histologie et la culture des grains qui est l'outil de référence. Les techniques 

moléculaires sont l'outil le plus fiable, mais il est coûteux et donc peu utilisé dans les 

zones endémiques, tandis que la culture est longue, difficile et nécessite un personnel 

expert. La cytologie et l'histologie sont des outils simples, rapides et bon marché. 

Cependant, la cytologie est loin d'être satisfaisante en termes de performances car 

elle a tendance à donner des résultats faussement positifs. Bien que l'histopathologie 

soit considérée comme l'outil optimal à utiliser dans les zones endémiques, elle 

nécessite un pathologiste expert pour une identification concluante qui fait défaut dans 

les zones rurales endémiques. 

Avec l'avènement des approches numériques, des algorithmes automatisés d'analyse 

d'images peuvent être utilisés comme solution à ce problème. L'objectif principal de 

cette thèse est de développer une nouvelle méthode diagnostique de calcul pour le 

diagnostic du mycétome à l'aide d'images microscopiques histopathologiques. 

Premièrement, nous créons la première base de données d'images microscopiques 

de mycétomes. Cette contribution découle de la nécessité d'un ensemble de données 

pour le développement de modèles de calcul. Ensuite, nous présentons une nouvelle 

méthode de calcul pour discriminer semi-automatiquement les agents responsables 

du mycétome. La méthode est basée sur l'analyse radiomique de grains de 

mycétomes segmentés manuellement et l'analyse de discrimination des moindres 

carrés partiels (PLS-DA). Le modèle présenté peut jouer un rôle fondamental dans un 
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centre clinique non spécialisé car il atteint une précision comparable à celle des 

pathologistes experts. Enfin, nous introduisons une méthode de segmentation 

automatisée pour les grains de mycétome. La méthode de segmentation est un 

modèle de type Convolution Neural Network (CNN) basé sur l'architecture U-net. Il 

permet l'automatisation et la rapidité des méthodes de discrimination. En conclusion, 

cette thèse présente à la fois une méthode automatisée de diagnostic des images 

microscopiques histopathologiques du mycétome et une méthode semi-automatisée 

de différenciation des grains de mycétome. 

Mots-clés: Diagnostic du mycétome, Histopathologie numérique, Images 

microscopiques, Analyse d'images, Intelligence artificielle et Radiomique. 
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Chapter 1: Introduction 
 

The Mycetoma Research Centre (MRC) was established in 1991 at the University of 

Khartoum, Soba University Hospital, Sudan. It is recognised as a world-leading centre 

in various aspects of mycetoma that aims to promote research and management and 

provide medical care for patients. MRC is a WHO (World Health Organisation) 

Collaborating Centre on Mycetoma. 

Mycetoma is a WHO-recognised neglected tropical disease [1]. It is a destructive and 

devastating infection disease of two types, either bacterial (actinomycetoma) or fungus 

(eumycetoma) type [1–3] . Mycetoma mostly affects the poorest of the poor young 

adults in rural areas. The painless nature of mycetoma, as well as diagnostic 

challenges often leads to late diagnosis with severe infection. Therefore, the correct 

diagnosis of the causative agents’ level is important as the treatment varies for 

eumycetoma and actinomycetoma [1, 3, 4].  

MRC's visions revolved around changing the life quality of mycetoma patients through 

the continuous development of scientific knowledge and research as well as clinical 

skills. One of these visions focuses on the diagnostic aspects of mycetoma. MRC is 

heavily involved in innovating and developing new techniques and tools for effective 

diagnosis and better management outcomes. In this thesis this was achieved by 

creating a multi-disciplinary taskforce from various domains in the field. Hence, the 

presented work was carried out in a collaboration between four institutions: 

• The laboratory iBrain, INSERM, University of Tours, Tours, France. 

• Institute Denis Poisson (IDP), University of Orleans, Orleans, France. 

• Department of Mycology and Tropical Medicine, Bretonneau Hospital, Tours, 

France. 

To achieve one of the MRC’s visions, the main objective of this work is to develop an 

automated diagnostic model for mycetoma from histopathological microscopic images. 

The histopathological technique is the most used diagnostic tool, and it requires well-
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trained pathologists, and that lacks in most rural areas where mycetoma is endemic. 

This is why this technique was the main focus of the study.  

One way to tackle this issue is to consider investigating a computational diagnostic 

model for mycetoma. However, mycetoma has been neglected for decades by public 

health authorities, professionals, and the scientific community. Hence, it has not 

received any attention regarding computational analysis and Computer Aided 

Diagnosis (CAD) techniques.  

In this thesis, we developed a CAD system for mycetoma histopathological diagnosis. 

The expertise domains of each of the partners involved in this work contributes 

differently towards fulfilling the main objective of the thesis. MRC leads the work on the 

pathology of mycetoma and sample collection, while iBrain and IDP guide the 

computation components. The tropical medicine department was in charge of sample 

preparation. The area of expertise of iBrain is in medical imaging and developing new 

techniques for diagnosing various diseases. IDP research is mostly dedicated to 

mathematics, modelling and simulations.  

 

1.1 Context and Challenges 

Mycetoma had been neglected for years before being included in the WHO Neglected 

Tropical Diseases List in 2016. Since then, most studies have been conducted to 

propose new laboratory diagnostics techniques, while few have been undertaken to 

improve the existing techniques. With all these studies, computerised analysis of 

diagnostic methods has lagged. 

Therefore, there are no methods for CAD in mycetoma, and this study will be the first 

of its kind. Pioneering such methods faced several obstacles and challenges. 

Firstly, there is no available database of mycetoma microscopic images which can be 

utilized to develop and train CAD models. This was the most significant challenge 

encountered. For this reason, we considered creating a database from scratch, starting 

from collecting tissue biopsies until obtaining the tissue images. Mycetoma histological 

microscopic image is a photograph of mycetoma-infected tissue that contain grains 
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(the unique characteristic of mycetoma infection). As depicted in Figure 1.1, the ROIs 

of mycetoma histology images are the grains. The ground-truth manual segmentation 

of ROIs was another challenge of our work. Handling this task was rigorous and time-

consuming and required expertise. 

 

 

 

 

 

 

 

 

Another challenge is the classification of mycetoma grains into either of 

actinomycetoma or eumycetoma origin because the determination of the mycetoma 

type is crucial for treatment and prognosis. The classification is carried out by 

pathologists using a set of qualitative characteristics of the visual appearance of 

mycetoma grains. These characteristics have many overlapping, and the 

discrimination relies on the knowledge of expert pathologists. 

A further challenge is locating mycetoma grains in the tissue sections since the 

infection can not be confirmed without their presence. Addressing this issue will not 

only guides the conclusive diagnosis but also further the automation of the diagnosis. 

In conclusion, this work aims to introduce a computational model for mycetoma 

diagnosis from histopathological images. The proposed model is learned and trained 

on a set of grains images and their ground-truth annotation (manual or automatic 

segmentation). This set of images is acquired specifically for this study which suggests 

another objective to create a database of mycetoma microscopic images. 

 

Figure 1.1: Mycetoma Tissue Image showing 

mycetoma grains rounded by a red circle. 
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1.2 Contributions 

Our contribution to this thesis was mostly oriented toward answering the questions 

asked by pathologists in analysing mycetoma histology slides. We start by screening 

for mycetoma grains in tissue slides and then investigate the qualitative features of the 

grains (if any). Finally, these features are used to classify mycetoma types. We 

summarize our contribution as follows: 

• We built a database for mycetoma histopathological microscopic images. This 

database was obtained from patients with various mycetoma types, duration 

and clinical presentations. A primary dataset was handled with a unique 

reproducible acquisition protocol that eliminates any source of variability 

resulting from technical or laboratory problems. 

• We provided the ground-truth segmentation for the announced database. Single 

grain was considered for segmentation in each field. As a result of this, we 

present a database of 864 tissue images along with their ROIs. 

• An image-based computation approach based on radiomics and Partial Least 

Squares Discrimination Analysis (PLS-DA) to semi-automatically discriminate 

the causative agents of mycetoma was adopted. This approach reached an 

accuracy rate comparable to expert pathologists at the MRC. 

• A broad set of quantitative features for mycetoma grains was introduced. Three 

groups of features namely, shape, intensity, and texture, were computed and 

investigated for their contribution to the classification task. This illustrates the 

importance of each feature as descriptive information for mycetoma grains. 

• An exploratory analysis was proposed to assess the classification model against 

the segmentation errors. 

• A new model for the automatic segmentation of grains in tissue images using a 

deep learning model that is based on the U-Net architecture. It can be easily 

integrated with the radiomics model without increasing computation 

requirements as it is trained and tested without GPU. 
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1.3 Thesis Outlines 

The rest of this thesis is organized as follows: 

Chapter 2:  provides a general introduction to mycetoma as a medical and public health 

dilemma. We discuss the knowledge gaps of mycetoma and the challenges of 

diagnosis. The motivation for conducting this study is also explained.  

Chapter 3: reviews CAD models and the design of automated diagnostic models. Since 

there is no related work to mycetoma regarding the computation models, we review 

state-of-art studies in microscopic image analysis. 

Chapter 4: creates the mycetoma microscopic images database. We first draw up a 

general view of histopathological technique and fundamental steps to obtain the 

microscopic images, the main elements to create the database. Then, we present the 

original data set for mycetoma microscopic images. A comprehensive detail regarding 

the sample collection, selection criteria, preparation, and image acquisition protocol is 

given.  

Chapter 5:  presents the proposed radiomics model to discriminate between 

eumycetoma and actinomycetoma. Using the created database, we explain the PLS-

DA model and the training process. Also, we discuss the role of the three main groups 

of radiomics features in mycetoma-type discrimination. Furthermore, experimental 

analysis on the precision of manual segmentation and accuracy of classification is 

provided. 

Chapter 6:  introduces our proposed neural network for mycetoma grains 

segmentation, to develop a fully automated diagnosis tool. The chapter begins by 

providing a review of segmentation methods using Convolution Neural Networks 

(CNNs) with particular details about Unet architecture as it is the base of the proposed 

network. We describe the architecture of our proposed model and the network training 

process based on manual segmentation annotation of tissue images.  Also, we 

compare the performance of the radiomics model on both manually and automated 

segmented grains. 
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Chapter 7: concludes the thesis with a discussion of the proposed approaches, some 

of their limitations and suggestions as future work to further improve research on 

mycetoma image analysis and mycetoma diagnosis. We also outline some of the 

experiments that were conducted but needed more datasets and/or further 

experiments. 
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Chapter 2: Mycetoma 

 

2.1 Introduction 

2.1.1 Historical Background 

In 1842, the missionary John Gill reported the first clinical case of mycetoma in an 

Indian city named "Madurai" [5]. Vandyke Carter first described the fungus form of 

mycetoma in 1860; thus, he proposed the name "mycetoma", which is driven from the 

Greek terms "mykes" and "oma", which means fungus and tumour, respectively [6]. 

Mycetoma is also known as "Madura Foot", referring to the first reported case. 

Chalmers and Archibald from Sudan formally classified mycetoma into two main 

groups, fungal and bacterial mycetoma [7], after a suggestion made in 1913 to classify 

mycetoma cases by considering causative organisms [8].  

Mycetoma was one of the most neglected tropical diseases until 2013 when global 

mycetoma experts and the Drugs Neglected Diseases Initiative (DNDi) established the 

Mycetoma Consortium [2, 3]. They made huge efforts to address mycetoma research 

priorities. The Ministry of Health, Sudan, then submitted a proposal to the WHO 

Executive Board to include mycetoma to the list of "top 17" WHO Neglected Tropical 

Diseases (NTDs). On 28th May 2016, WHO included mycetoma in the NTDs list [9], 

[10]. This global recognition attracts media attention and raises funding opportunities. 

The Mycetoma Research Centre (MRC) in Khartoum, Sudan, is recognised as a world 

leader in mycetoma management and research. It has contributed massively to the 

Summary  

This chapter introduces the historical and medical issues involved in mycetoma. 

Section 2.1, begins with a brief description of the mycetoma journey until it was 

listed as a WHO NTD, followed by clinical and epidemiological background. A 

detailed overview of mycetoma diagnosis is given in Section 2.2. Mycetoma 

management is discussed in Section 2.3. Finally, we state our motivation for 

conducting this work in Section 2.4 and conclude in the last section. 
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international recognition of mycetoma. Currently, MRC is a WHO collaborating centre 

on Mycetoma. 

2.1.2 Overview 

Mycetoma is a badly neglected tropical disease. It is a chronic subcutaneous 

granulomatous and disabling inflammatory disease. It is classified into 

actinomycetoma and eumycetoma depending on the causative organisms, either 

bacteria or fungus, respectively. Madurella mycetomatis (M.mycetomatis) is the most 

common species causing eumycetoma, while Streptomyces somaliensis (S. 

somaliensis), Actinomadura madurae (A. madurae), Actinomadura pelletieri (A. 

pelletieri), and Nocardia brasiliensis (N. brasiliensis) are the common species for 

actinomycetoma [2]. 

While mycetoma transmission mode is still unknown [10], the literature suggests that 

causative organisms are present in the soil, thorns, or animal dunk and can enter the 

subcutaneous tissue through minor trauma such as stepping on a thorn, sharp objects 

or open wound [3]. No person-to-person transmission is reported; however, other 

transmission modes are not exempted [11, 12]. After trauma, mycetoma infection starts 

with a formation of grains within multiple cavities presented clinically as nodules. The 

size of these nodules increases gradually, and they spread into the skin, deep tissues, 

and bone. Discharge of seropurulent, purulent, blood, and grains of different sizes, 

colours, and textures through the sinus is frequent. The mycetoma lesions usually 

discharge grains, which can be black, yellow, white, or red, and they are of different 

sizes and consistency. It has slow progress and course and can extend to different 

tissue planes leading to massive deformity and disability, Figure 2.1.  

Mycetoma can spread through the lymphatic system and infrequently through the 

bloodstream. Thus, secondary satellite lesions are usually seen. This is more often 

linked to actinomycetoma as bacteria spread faster than fungus, and the lesion is not 

well encapsulated [12, 13]. More tissue will be damaged as the disease progresses, 

and massive mutilating surgical excisions or amputation of the affected part may be 

the only available treatment. 
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Figure 2.1: Disease Progression and clinical appearance over time. 

 

In summary, clinically, mycetoma is characterised by a triad of painless subcutaneous 

mass, multiple sinuses formation, and discharge grains containing colonies of the 

causative organism, as shown in Figure 2.2. The clinical presentation and symptoms 

for both types of mycetoma (fungus or bacterial) are similar [10, 14–16], although there 

are more than 70 microorganisms responsible for mycetoma infection [2, 13]. However, 

mycetoma clinical presentation and treatment outcome might vary depending on 

disease duration, infection site, causative organisms, and the host immune system 

[17]. 

 

Figure 2.2: Mycetoma lesions showing mass, discharging sinuses and grains. (A): 

Eumycetoma. (B): Actinomycetoma. 
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Mycetoma has a worldwide distribution, although the global burden of the disease is 

still unknown. The infection is endemic in tropical and subtropical areas. These regions 

are characterised by a short rainy season and a long dry season [13]. The majority of 

mycetoma cases appear in the "Mycetoma belt" (Figure 2.3Error! Reference source 

not found.), stretching between the latitudes of 150 South and 300 North. The belt 

countries are Sudan, Somalia, Senegal, India, Yemen, Mexico, Venezuela, Colombia, 

Argentina and others [1, 14]. The highest prevalence was reported in Sudan, India, 

and Mexico. Sudan is the epicentre of mycetoma infection, with 355 new mycetoma 

cases/per year seen in the Mycetoma Research Centre (MRC), University of 

Khartoum, WHO Collaborating Centre on Mycetoma [13, 18, 19]. This number of cases 

is way less than the actual cases as it only counts the patients who managed to seek 

medical care at the MRC. Mycetoma was reported in temperate countries such as; the 

USA, Germany, Turkey, Philippines, Japan, Netherlands, and France [10, 12, 15, 20]. 

These cases are seen more often in immigrants who probably got infected in their 

homelands [12, 19]. This belief is guided by the fact that the actual incubation period 

is unknown, and it mostly takes from a few months up to 60 years for patients to seek 

medical consultation [12, 13, 18, 19].  

 

 

 

 

 

 

 

The most susceptible group to mycetoma infection is young adults, particularly males 

aged between 20 and 40 years in remote rural areas. Mycetoma largely affects field 

labourers, agriculturalists, and herdsmen [1, 8, 18]. The lower extremity and hands are 

the most frequently infected sites compared to the other body sites [2, 8, 14]. Women 

are less likely to be infected than men with a 1:3 ratio, and the explanation is not clear 

Figure 2.3: Prevalence of Mycetoma [2]. 
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[14, 18]. Genetic, immunological, and environmental factors might increase infection 

susceptibility [13, 15, 18]. The majority of mycetoma patients are of low-socioeconomic 

status with a scarcity of health education and facilities at their localities. So, they 

usually seek medical advice late when the disease is advanced and harder to treat. 

Besides the painless nature of the disease, these factors might lead to chronic 

deformity. 

2.2 Mycetoma Diagnosis 

An initial diagnosis of mycetoma in endemic areas is often made clinically through 

physical examinations [13, 15, 21]. Advanced cases of infection with the classical 

clinical triad can be easily diagnosed as mycetoma. However, an earlier disease stage 

with small lesions may be difficult to be distinguished from soft tissue tumours and 

other infectious diseases that mimic mycetoma because of the triad absence [3]. 

Confirmation of the infection as mycetoma alone is insufficient, and further 

investigations must be done to identify the causative agents and detect the spread of 

infection. These investigations are essential to plan the appropriate treatment strategy. 

Imaging and laboratory-based diagnostic tools are used to identify causative 

organisms and determine the extent of lesions, respectively. Usually, a combination of 

these tools is used to establish an accurate diagnosis. 

The physicians approach the mycetoma diagnosis by examining a history of trauma 

located in an endemic area, the presence and number of sinuses, and the colour of 

grains if any. These findings hint to the clinician the infection type, whether it is fungus 

or bacterial. Depending on the laboratory test requested, a sample is collected from 

the suspected tissue for further analysis. Table 2.1 summarises the major differences 

between eumycetoma and actinomycetoma [2, 22].  

Table 2.1: Comparison of eumycetoma and actinomycetoma clinical presentation. 

Feature Eumycetoma Actinomycetoma 

Grain color Black, pale, white, yellow Yellow, red, pink, and white. 
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Grain size Larger (0.5–2) 𝜇m Smaller (20–100) 𝜇m 

Grain texture Coarse Fine 

Sinus (number; morphology) Few sinuses; prominent Many sinuses; flat 

Progression Slow Fast 

Geographic prevalence Africa and India South America and Asia 

 

2.2.1 Imaging techniques 

The disease extension into the different tissue planes and bones can be determined 

with imaging techniques. Furthermore, treatment and follow-up can be planned, and 

disease prognosis can be predicted [13, 15, 16, 21]. Several radiological imaging 

techniques are used for mycetoma diagnosis and including conventional X-ray, 

ultrasound, Computed Tomography (CT scan), and Magnetic Resonance Imaging 

(MRI) [14, 15, 21–25], Figure 2.4.  

Currently, the lesion ultrasound examination is the first option in the imaging diagnosis. 

It is accurate, non-invasive, rapid and can differentiate the two types of mycetoma and 

the mycetoma lesion from the non-mycetoma ones; however, it is operator dependent. 

CT scan can determine the bone affection accurately but not the soft tissue 

involvement. MRI is the technique of choice to determine the disease spread along the 

body planes, the treatment plans and the tissue outcome. MRI and CT are good 

techniques, but they are expensive and unavailable in low-resource settings.  
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Figure 2.4: Some of mycetoma imaging techniques. (A): X-Ray of the leg shows a 

massive eumycetoma cavity. (B): MRI showing massive actinomycetoma affected soft 

tissues and bones. 

 

2.2.2 Identification of causative organisms' techniques 

Grains and tissue must be examined to determine the causative organisms. Grains are 

obtained either directly from the opened sinus by fine-needle aspiration technique or 

surgically by tru-cut needle biopsy or deep-seated biopsies (Figure 2.5). Surgical 

biopsies are mostly used as grains obtained from the opened sinuses are frequently 

contaminated and dead [13, 16, 21, 22]. 

 

Figure 2.5: Grains collection techniques [22]. (A): FNA Cytology. (B): Surgical Biopsy. 
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• Grain culture and direct microscopy 

First, the grains are examined macroscopically for their size, colour, and consistency 

[13, 19, 22]. This can give a clue on the diagnosis but is not accurate, deceiving and 

indefinite [13, 14, 18, 21, 22]. Grains are crushed and mounted under a glass slide for 

direct microscopy examination. To provide a clear background, potassium hydroxide 

(10% KOH) is used; after then, grains are examined under a light microscope [21, 22]. 

The technique may differentiate between actinomycetes and fungi by their 

morphological characteristics, filament size, and pigment formation [5]. However, this 

method is not exclusive, and the use of an additional method is mandatory for 

conclusive diagnosis [16, 22]. 

In many centres, grains culture is a gold standard tool for identifying causative 

organisms. The mycetoma grains are washed several times with normal saline before 

plating them into the appropriate culture media in a sterilised environment. Antibiotic-

free culture media are used for actinomycetes identification, while eumycetes are 

inoculated into media with antibiotics. The culture containers are incubated at 37◦C for 

three weeks on average, Figure 2.6. Causative agents and their species can be 

identified by the culture's microscopic appearance and morphology properties [22, 26, 

27]. In many instances, misdiagnosis and difficulty in distinguishing the different 

microorganisms based on morphological features are frequent [21, 22, 27, 28]. In 

conclusion, grain culture is the core tool for organism identification, but it is time-

consuming and requires expert microbiologists to obtain accurate results. Also, this 

method is vulnerable to false-positive results because of contamination. 

 

 

 

 

 

 
Figure 2.6: Culture of M. mycetomatis after 3 weeks 
of incubation. 
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• Molecular techniques 

The use of molecular techniques allows the accurate identification of mycetoma 

causative agents at the species level. DNA analysis is the key to this technique [3]. 

Most commonly, the amplification of genes or gene fragments followed by sequencing 

is used for mycetoma molecular diagnosis [29]. Molecular techniques have become 

increasingly attractive as they provide rapid and reliable results to improve treatment 

outcomes [12, 21, 22]. 

• Histopathological Examination 

The histopathological examination of the surgical biopsies is useful for confirming the 

clinical diagnosis, but it remains ineffective for definitive species identification, 

particularly for eumycetoma species [12, 13, 21, 28]. Primarily Haematoxylin and Eosin 

(H&E) stain is used for the mycetoma diagnosis based on histology, while special 

stains are crucial for species differentiation and inconclusive identification of grains by 

H&E staining [13, 21, 22, 30]. The special staining includes Gram, Periodic acid–Schiff 

(PAS) stains and others. 

Deep surgical or tru-cut biopsies are needed for the histopathological examination. 

They must contain grains to establish the diagnosis [22, 28]. Biopsies are fixed in a 

formalin solution and embedded in paraffin to prepare tissue blocks and histological 

sections. The process is described in more detail in Chapter 4. 

In mycetoma histopathological sections, the host tissue reactions and grains' 

morphological appearance are commonly seen [14, 16]. Each causative agent has a 

distinct histological appearance [8, 19]. The host tissue reactions against both the 

fungal and bacterial mycetoma are the same. These are three tissue reaction types 

[31]. In Type I: The neutrophils are closely attached to the surface of grains resulting 

in grain disintegration. In Type II: the macrophages and multi-nucleated giant cells 

replace dead neutrophils. The fragmented grains are mostly seen within multi-

nucleated giant cells. Type III is characterised by the formation of well-organised 

epithelioid granulomas with Langhans's giant cells.  In general, in the histological 

sections, the host tissue reaction types I and II are more frequently seen, while type III 

is the least seen.  
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Histological appearance of grains in H&E stain guides mycetoma differential diagnosis 

[21, 22, 28, 30, 32, 33], Figure 2.7. M. mycetomatis grains are usually large (> 0.5mm) 

and coloured brownish. They appear rounded, oval, or trilobed with irregular outlines 

and grains fracture. On the other hand, most of the actinomycetoma species grains 

are homogeneous with round and oval shapes. S. somaliensis grains range from 0.5 

to 2 mm. They show longitudinal cracks and transverse fracture lines. A cottony shape 

characterises A. madurae grains, and their outlier appears opaque with deep purple 

colour and a less dense stain in the centre. A. pelletieri grains are compact and dyed 

dark violet. 

 

 

 

 

 

 

 

 

 

 

Sometimes, grains are absent in histopathological sections; consequently, a 

conclusive diagnosis cannot be established. To avoid this, the surgical biopsy should 

always contain a good number of grains. Various cuts in the tissue block depth should 

be sectioned during the preparation of the histopathological sections [28]. Frequently 

pathologists report a background of grains taking into account inflammation and 

necrosis as well as grains absence which might be dropped out during the preparation 

of the sections. These reports are not conclusive for mycetoma diagnosis and 

necessitate repetition of the surgical biopsy.   

Figure 2.7:  Histopathological appearance of 
mycetoma grains in H&E stain, magnified X10. 
(A): M.mycetomatis. (B): S.somaliensis. (C): A. 
madurae. (D): A. pelletieri. 
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• Cytological Examination  

Fine-needle aspiration for cytology (FNAC) is a simple technique to obtain cells and 

grains for cytological examination. This technique is quite similar to histopathological 

one in many aspects. First, grains must be present in the collected aspirates to 

establish the diagnosis. Moreover, cell blocks instead of tissue blocks are obtained 

from the collected sample and stained before examining smears or sections 

microscopically. A fine needle attached to a syringe is used to collect cytological 

samples. It is inserted into the suspected mycetoma lesion and applies negative 

pressure while moving in at least three different directions, as illustrated in Figure 2.5A. 

In practice, it can differentiate mycetoma from other subcutaneous lesions 

pathologists. In smears (Figure 2.8), we look for certain cytological properties such as; 

smears cellularity, inflammatory tissue reactions, and, obviously, the presence of 

causative organisms' grains [22, 28]. Cytology techniques do not need surgical 

intervention to be collected and hence, can be used in the field and epidemiological 

surveys [15, 21, 22, 28]. 

• Serology 

Considering the long incubation time to determine causative organisms by culture and 

invasive surgical procedures to obtain grains in histology, efforts have been made to 

develop different serology assays [10, 21, 22]. Furthermore, serological methods are 

considered the most practical tests in developing countries because of their cost and 

quickness [3, 15, 21], yet there are no reliable serological tests for mycetoma diagnosis 

[8, 13, 15, 21]. A common challenge with proposing such tests is the lack of 

standardised antigens and antigens' long and tedious preparation process [3, 12, 21, 

22]. Few studies have explored the use of certain serological tests to measure 

treatment response and early detection [8, 13, 15]. 

 

 

Figure 2.8: FNA of some mycetoma causative agents stained with H&E. 
(A): M. mycetomatis. (B): A. pelletieri. (C): S. somaliensis. 
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In conclusion, both imaging tools and organism identification techniques are 

complementary. Nowadays, molecular techniques are considered the test of choice in 

many centres. They can provide authenticated results; it is expensive and cannot be 

afforded by the majority of patients and centres. They require well-equipped 

infrastructure, which is unavailable in the endemic area [22, 29]. On the other hand, 

cytological and histological techniques are simple, rapid, cost-effective methods 

commonly used in rural areas where most affected populations are located [14, 22, 

29]. However, false-negative results are common in the cytological examination as the 

FNA is blindly performed, and it is possible to miss grains pockets. A recent 

comprehensive study conducted at the MRC showed that histology is more accurate 

than cytology in organism identification [28]. Furthermore, ultrasound-guided aspiration 

cytology improved the test yield. In general, the minimum tools required to report the 

diagnosis are cytological and ultrasound examinations [13]. The recommended 

protocol for organism identification is shown in Figure 2.9 [22].  

 

 

Figure 2.9: Mycetoma Diagnosis Flowchart.  
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2.3 Mycetoma Treatment and Management: 

Although mycetoma was reported almost 200 years ago, no guidelines or protocols 

are approved by WHO for mycetoma treatment and management [15, 34]. Thus, any 

therapeutic and control programs are based on expert opinion and published case 

reports. The MRC developed various guidelines to assist health practitioners dealing 

with mycetoma based on its management experience with more than 10,000 patients. 

The proper mycetoma treatment is highly dependent on the accurate identification of 

causative agents, as the two types are treated differently [12, 14, 22]. In general, 

mycetoma treatment is challenging, and the outcome is disappointing. The available 

medicines are not very effective, have many side effects, expensive, and are not 

accessible or available in many endemic mycetoma regions [15, 34]. Furthermore, it 

requires prolonged administration duration and thus leads to the patients' low 

compliance rate and high dropout rate. Many patients present late with advanced 

disease; the only treatment option is massive surgical excisions with enormous 

deformities or amputations. Early cases without deep structure involvement are 

curable [12, 13]. 

Although actinomycetoma is more aggressive than eumycetoma, with rapid 

progression and more rapid bone involvement, yet, it responds better to a combination 

of antibiotics with a cure rate of 70-90% [9, 12, 14, 15, 35]. In contrast, eumycetoma is 

difficult to cure; a combination of medical treatment with antifungals and surgical 

excisions is the recommended treatment regime [4, 19]. In some rare cases, both types 

of infection occur, complicating treatment.  

The surgical treatment of mycetoma ranges from wide local excision, and repetitive 

surgical debridement for better response to medical treatment, to amputation of the 

affected limb [4, 32, 34]. These aggressive surgical procedures are associated with 

higher morbidity, deformities, and disabilities [12, 16]. 

Recurrence is high in eumycetoma patients. This is often due to the wide local disease 

spread along the tissue planes, disease biology, poor patient treatment compliance, 

late presentation, and poor surgical techniques [4, 12, 13].   



 

41 
 

The treatment outcome depends on the mycetoma type, site, size and tissue spread. 

Secondary bacterial infections are a common feature of mycetoma and frequently 

affect medical treatment [9].  

Since treatment is prolonged, patients require long-term follow-up to monitor recovery, 

recurrence, and drug side effects [34]. This is often associated with a high patient 

dropout rate and irregular follow-up [14]. The MRC, the referral centre in Sudan, 

schedules regular follow-ups every six weeks until the endpoint of treatment. The cure 

is defined as [12, 13, 32, 33]: (i) Sinuses closure, (ii) Lesions disappearing or massively 

decreasing in size, (iii) Skin returns to normal, (iv) Improved disability, (v) No grains 

are seen on cytological or histopathological examination, and (vi) the disappearance 

of masses and grains on ultrasound examination. 

To improve treatment response to eumycetoma, in particular, Madurella mycetomatis 

species, the most common type, DNDi and MRC launched the world's first mycetoma 

clinical trial for a potential new drug for eumycetoma in 2017 [9, 10]. 

Presently there is no control or prevention programme for mycetoma due to the 

knowledge gaps in its epidemiological characteristics. Hence, early detection and 

treatment have proved to be effective tools for reducing the disease burden [12, 15, 

34]. A survey conducted in one of the endemic villages in Sudan [36] showed that 

barely half of the surveyed villagers used the acceptable practice in mycetoma 

management, and only 4% possess a good knowledge of mycetoma. Therefore, MRC 

practices of health education and advocacy and encouraging reporting of suspected 

cases will improve prognosis and lower the severity of infection [18]. 

2.3.1 Why is mycetoma a public health dilemma and a unique 

neglected tropical disease? 

Mycetoma is a destructive and devastating infection that comes in either bacterial or 

fungus form. It mostly affects the poorest of the poor young adult in rural areas. 

Mycetoma is a common medical and health problem that might cause permanent 

deformity. The painless nature of mycetoma often leads to late diagnosis with severe 

infection. Consequently, the disease might develop secondary bacterial infection 

leading to massive disability and occasionally septicaemia [8, 9, 32].  
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Therefore, the correct diagnosis to the causative agents’ level is important as the 

treatment varies for eumycetoma and actinomycetoma. However, the disease has 

been neglected by public health authorities, professionals, and the scientific 

community. Hence, early diagnosis is quite difficult, and treatment is challenging and 

sometimes ineffective. 

The mechanism of mycetoma transmission is still ambiguous, furthermore, high-risk 

regions mapping is not yet accomplished, which restricts the designing of effective 

prevention and control programmes [3]. Presently, the active prevention mechanism 

considers lifting the awareness of the disease and the necessity of protecting exposed 

body parts in endemic areas, specifically feet and hands [15, 19, 32]. Also, promoting 

the importance of early reporting of suspected cases in primary care centres to be 

referred to specialist centres [15, 16]. 

Mainly, the feet are the most affected site, followed by the legs [2]. Leading to chronic 

morbidity and loss of function [37]. With advanced disease or when treatment fails, 

amputation is very likely. This has major social and economic consequences [9, 12, 

14, 37]. There is a high probability of school/training dropouts for mycetoma patients, 

affecting their ability to secure a job, and making them economically dependent. 

Psychologically, patients are also affected because of inadequate health centres in 

endemic areas and poor treatment response and the social stigma of being physically 

disabled. Given this, mycetoma seriously impacts the patients, their families, and the 

communities [34, 37]. In general, mycetoma patients live with the disease for quite a 

time and are rarely cured.  

The mycetoma burden is concentrated in the "mycetoma belt", but the global burden 

is uncertain. The number of infected people worldwide and which countries are most 

infected are unknown [10]. Africa seems to be the most highly endemic continent    [12], 

where health services and education are in crisis with limited staff and resources. The 

number of mycetoma estimated cases is comparable to Buruli ulcer and African human 

trypanosomiasis (NTDs), although both data were from surveillance data [2, 3]. Hence, 

the approximated numbers of mycetoma cases are underestimated, but they give a 

general overview of prevalence and incidence. Unless surveillance data are gained for 

mycetoma, global burden and epidemiology would be missing [2]. 
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Mycetoma has gone through a long journey to be globally recognised. This recognition 

attracts media attention and raises funding opportunities. WHO, Aljazeera, GHIT 

(Global Health Innovative Technology Fund), BBC, and many other governmental and 

non-governmental organisations produced documentaries about mycetoma [10]. Also, 

the PLoS Neglected Tropical Diseases journal accepted and published many papers. 

Despite this, numerous knowledge gaps still need to be investigated, particularly in 

epidemiology, transmission mode, diagnosis, and treatment [3, 9–11, 13, 15, 18]. 

2.4 Motivation 

In 2017, the estimated number of mycetoma cases was 17607 [38]. A total of 5158 

cases were seen in 2012 at the MRC alone [2]. This estimation is way less than the 

actual number as it only considers the published studies. Mycetoma has ranked as the 

third cause of amputation among individuals who presented at the Sudanese National 

Centre for Prosthetics and Orthotics [39]. 

Besides amputation, mycetoma can have other serious consequences on the patient 

and disease prognosis and outcome, such as; disability, depression, and recurrence 

[3]. Accurate identification of the mycetoma causative agent is a prerequisite for the 

treatment and limiting various consequences. Despite this fact, there is no simple and 

accurate diagnostic method available for this disease in endemic areas. Various 

diagnostic tools are used for mycetoma diagnosis. Histopathology is considered to be 

an efficient, cost-effective and time-effective tool for mycetoma diagnosis in endemic 

areas. 

The histopathological examination method can only differentiate between mycetoma 

fungal and bacterial types conditionally by the availability of grains in tissue sections 

[22]; this is because the tissue reactions are similar in both types of mycetoma and to 

other non-specific chronic granuloma diseases [33]. This discrimination mainly relies 

on pathologists' knowledge and experience of the microscopic appearance of the 

organism [10, 15, 28, 30, 33]. Due to the neglect of mycetoma and its high prevalence 

in tropical regions, especially rural areas, it is rare to find well-trained pathologists with 

adequate experience in mycetoma diagnosis. To tackle this and to remove subjectivity 

from the diagnostic process, the presented work was conducted to provide a 

computerised analysis of digitised mycetoma histological images. 
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Digital pathology brings objectivity and enables reproducibility of the diagnostic 

process by using image analysis techniques. Also, it can improve diagnosis by 

decreasing human errors and enabling pathologists to make a diagnosis based on a 

larger set of diagnostic variables that might be overlooked during a visual examination.  

 

2.5 Conclusion 

Mycetoma is a WHO badly neglected tropical disease. It is caused by certain types of 

bacteria or fungi. The identification of the pathogen is the backbone of treatment, 

however, there is no simple and accurate diagnostic tool that could be used in endemic 

areas for this purpose. This chapter gives an overview of mycetoma and discusses the 

mycetoma knowledge gaps in epidemiology, diagnosis, and treatment. Also, it 

illustrates the motivation for conducting this work, which is proposing a computerised 

analysis of mycetoma histopathological images. The next chapter will review the basic 

processes for developing an automated diagnostic tool.  
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Chapter 3: Microscopic Image Analysis and 

Related Work 

 

 

3.1 Computer-Aided Diagnostics Models 

CAD uses the computer to aid the diagnosis process by providing an interpretation of 

medical images. CAD of histopathological images uses approaches of artificial 

intelligence, image processing, and pathology to support diagnostic procedures of 

tissue samples. The typical CAD system, Figure 3.1, involves image acquisition, 

enhancement, segmentation, feature extraction, feature reduction and pattern 

recognition [40, 41].  

Depending on the application type, some CAD models might include their steps or skip 

others. Eventually, these models produce a new image or set of characteristics that 

describe the image. In the next sections, we addressed the items of the CAD 

Summary  

This chapter reviews the main concepts of Computer Aided Diagnosis (CAD), 

machine learning and Artificial Neural Networks (ANN) models. It provides the basis 

for understanding these concepts. In the first section, an overview of the CAD 

development process is given. The map of this thesis was drawn upon this strategy, 

starting from image acquisition and ending up with the final prediction. Sections 3.2-

3.5, introduced the basic components for building a CAD model and provide the state-

of-the-art for each component. Section 3.6 states the basic elements of machine 

learning models. We used this model to deal with the problem of mycetoma grains 

classification (Chapter 5). Then, some key details about Artificial Neural Networks 

(ANN) are described in Section 3.7 to later develop an ANN model in Chapter 6 for 

mycetoma grain segmentation. Finally, we ended the chapter with a conclusion. 
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development process used to construct our automated mycetoma histopathological 

diagnosis. 

 

 

3.2 Microscopic Image enhancement 

The digital microscopic image (sometimes it is called photomicrograph) is acquired 

from the tissue slide sample using a proper scanning machine (microscope, camera or 

slide scanner). Sometimes distortions might appear on the photomicrograph due to 

technical problems in the preparation of the histopathological slide. Carefully following 

the histopathological practice given in Section 4.4.1 can still result in many artefacts 

that are traced back to the quality of tissue sections. Some of these problems are 

related to human skills in fixation, microtome sectioning, and the placement of the 

sections on the slide. Differences in the laboratory staining and cover-slipping 

protocols can also affect image quality by introducing changes in the staining intensity. 

During image enhancement, the quality of the image is improved by reducing the effect 

of noise and any sort of artefacts on the image. Image enhancement methods can be 

grouped into:  

• Histogram-based techniques: image histogram shows image brightness, 

contrast, and quality. Therefore, these techniques are used to enhance contrast 

Figure 3.1: CAD System of histopathological images. Continuous line represents CAD 
component while dot line represents the used algorithms. 
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and fix the colour variation that results from staining and illumination conditions 

[42–48]. 

• Filtering techniques: filtering aims to enhance or modify an image by removing 

unwanted components. While different types of filters are used in the literature 

[42, 49], Gaussian and median filters are the most commonly used filters utilized 

to smooth images and eliminate the noise of the staining process [50–53].   

• Mathematical morphology techniques: these techniques process images based 

on shapes by considering images pixels as elements of a set. Morphological 

operations apply a structuring element to images. Mathematical morphology 

reduces the noise in the images based on the shape characteristics of the input 

image, which are characterized by the structuring element [54–57]. Erosion and 

dilation are the two basic morphological operators. 

• Colour-based techniques: they are applied to the images to handle the 

difference in preparation, staining, lighting and imaging techniques. These 

techniques are divided into colour conversion [45, 54, 57–64] and colour 

normalisation [44, 65–69]. Normalisation modifies colour values such that the 

colour distribution of the source image matches a predefined reference image. 

On the other hand, colour conversion converts the RGB colour space of the 

image into a different colour space which is uniform perceptually [70]. A colour 

space is uniform perceptually if the change in the amount of one colour channel 

would be perceived by a human with the same amount of change. Conversion 

from RGB to grey colour space is mainly computed using the: 

1. The average method simply takes the average value of the three colour 

channels (R, G, and B) to obtain a grey value, Equation 3.1. This method 

considers the contribution of three colours in image formation to be 

equally weighted, but this is not valid in reality. Colours have different 

wavelengths.  
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𝐺 =  
𝑅 + 𝐺 + 𝐵

3
 Equation 3.1 

 

2. The Weighted or luminosity method considers the colours' weight in 

image formation, hence it provides a set of weights for three colours, as 

given in Equation 3.2. Weighted colour conversion assigns the greatest 

amount of contribution with 0.59% to the green colour compared to the 

three colours. This is because human eyes perceive green colour the 

most, while it is less sensitive to red, and the least sensitive to blue 

colour. 

G = 0.299R + 0.587G + 0.114B Equation 3.2 

    

3.3 Segmentation 

Image segmentation is the partitioning of the image into distinct and non-overlapping 

regions of interest (ROIs). It is a primary and crucial step for the majority of CAD 

models. All the subsequent processes of CAD models solely depend on the quality and 

robustness of the segmentation.  

The ROIs in histopathological images are the tissue components such as inflammatory 

cells and glands. Identification of these ROIs is a prerequisite for the recognition of 

certain diseases. In some cases, this identification is performed globally by segmenting 

all the tissue components or locally for specific components [71]. Generally, 

segmentation techniques can be divided into two classes: 

1. Region-based segmentation: creates sets or regions using the properties of 

pixels or neighbouring pixels such as location, intensity, or texture. The 

threshold is the simplest method that uses a value (threshold) based on the 

intensity of pixels to segment the image into background and foreground [42, 

44, 52, 58, 60–62, 66]. Depending on the prior knowledge of ROIs in images, 

such as the availability of labelled data and the number of clusters, clustering 
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techniques (unsupervised learning) can also be used in this class.  Clustering 

groups the pixels in an image into clusters based on the similarity of the pixels 

concerning a certain property. K-means is the most commonly used method 

[47–50, 57, 63, 64, 72–74]. In contrast to unsupervised learning, segmentation 

can be carried out using a classifier that is trained on labelled images [58, 75]. 

The pixels of labelled classes are pre-segmented by an expert. Various 

supervised methods can be trained as a pixel classifier, such as a support vector 

machine (SVM), a k-nearest neighbour (KNN), decision trees, and boosting 

approaches. The Watershed technique is also considered for image 

segmentation [50, 55, 56, 72, 73]. It represents the images as a topological 

surface with its intensity values as the height and is usually applied on gradient 

images where the object is corresponds to the catchment basins while the 

boundary to the watershed. Other techniques for image segmentation are 

region growing and region split/merge approaches [52, 75]. Region growing 

algorithm defines a seed and grows the seed into regions based on a similarity 

property and terminates the growing process when no additional pixels can be 

added to the regions. On the other hand, the split/merge approach splits the 

image into non-overlapping regions then a merging technique is utilised. 

2. Boundary-based segmentation: looks for discontinuity in the image using edges 

or boundary techniques [61, 76]. Edge-based techniques [43, 54, 58, 77]   

assume that the pixels in the boundary between the background and foreground 

have distinct intensity values or there are discontinuous in images’ pixels. These 

pixels are considered edges and detected by first or second-order derivative 

methods such as gradient or Laplacian derivative. Active contour or snake is 

the most popular boundary technique [43, 78]. This method defines an objective 

function and seeks to find the minimum value of this function by deforming 

continuously the contour until the image is properly segmented.  

Region-based methods are more suitable when pixels of ROIs have similar values, 

while boundary-based methods are most appropriate when the values of neighbouring 

pixels of different ROIs are similar. These classes mostly consider the edge 

information, texture or intensity features. Hence, their performance on complex ROIs 

is unsatisfactory and more reasonable and highly accurate segmentation methods 

were proposed. Many advanced methods were developed based on learning 
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algorithms and deep learning techniques. Using deep learning models, especially 

Convolution Neural Networks (CNNs), have shown state-of-the-art performance for 

image segmentation [79–84]. CNN model called Unet was designed especially for 

biomedical image segmentation and proved to be very successful for many kinds of 

images [85]. 

3.4 Microscopic Image Features 

A feature is a quantitative measurement defined for the image. Depending on the 

application domain, these features vary in terms of extraction method, the form of 

information they provide, and the methods of representing compact sets of features. 

The studies in histology might be conducted on the cellular or tissue level; that is either 

focus on computing properties of individual cells or investigating their spatial properties 

across the tissue. So, feature extraction and segmentation depend on the type of study. 

3.4.1 Features Extraction and Categories: 

Several ways can be used to classify features and the information they offer. Different 

studies propose size and shape, intensity, texture, and structure as feature classes. 

To have a deep insight look into feature categories, the feature extraction process 

should be defined. First, ROI must be identified. ROI might be the whole region or part 

of it (and this is what is meant by segmentation). Then, applying some transformation 

operations (if needed) provides a single scalar value measurement. 

Features can be extracted from the intensity and/or spatial relationship between pixels. 

Few studies benefit from spatial information, on the other hand, the intensity 

information is vulnerable to noise and stain artefacts [86]. 

The most common features classes are: 

1. Morphological Features [45, 47, 49, 52, 54–58, 60, 72, 73, 76, 86–89]:  It studies 

the size and shape of cells. These features can be generated from a variety of 

methods or geometrical concepts. Employing Cartesian coordinates to find size 

and shape is the trivial or obvious method, however, it depends on the direction 

and position of cells. Hence, this method is rarely used unless the goal is to 

study tissue architecture. Similarly, geometric moments are considered useful 
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shape descriptors, but they are vulnerable to the orientation of ROI. Therefore, 

geometric features are the ideal morphological descriptors in terms of 

orientation dependency. They include but are not limited to area, perimeter, 

inscribe circle, compactness and smoothness. Also, morphological features can 

be studied through the contour method by studying curvature, convex hull and 

convex deficiency of cells. 

2. Textural Features [43–45, 47, 51, 53, 54, 56, 57, 59, 61, 62, 72, 73, 76, 86, 87, 

89, 90]: It describes the variation of the spatial distribution of pixels’ intensity 

values. Various transformations are used to extract textural features. The most 

common and widely transformations in used are co-occurrence and run-length 

matrices. Another popular transformation is the gradient transformation which 

measures the velocity of change in the grey-level value of pixels and produces 

a gradient image. Although Laplace transformation is well known used for 

segmentation purposes, it is also used to measure the velocity of gradient 

change on the transformed version of the image (gradient image). On the other 

hand, flat texture transformation uses a combination of the original image and 

median filter images to reveal holes or peels of the object. To study the 

topological gradient of the object (extremely small change on the surface of the 

object), the rice field feature was introduced. They quantify the change of grey 

level value in a neighbourhood defined by a particular topology. Moreover, 

fractal dimension studies the complexity and irregularity of shape.  

3. Intensity Features [43, 45, 47, 48, 56, 66, 86, 89–91]: These features aim to 

study the distribution of pixels’ intensity values (coloured or grey images). An 

image histogram is used to define the intensity features. It counts the frequency 

of each intensity value without including the spatial position of the pixels. 

Sometimes, the histogram can give a clue about the dominant intensity values. 

Hence, pixels’ spatial connectivity could be inferred. The features could be 

extracted from grey or coloured histograms, the latter might utilise a single 

colour channel or a combination of them. From the histogram, various features 

can be extracted such as mean, variance, skewness, and kurtosis. 

4. Structural Features [48, 54, 57, 63, 64, 66, 74, 77, 86, 88]: these features 

provide information about the structure of tissue and the spatial distribution of 
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cells. They describe the relationship between cells and provide structural 

information. Usually, these features are known as topological features or 

spatial-relation features. Commonly these types of features are used with 

histology images. The location of the cells is used to generate graphs, and then, 

analyse spatial dependency in the graph and extract features. Different types of 

graphs were studied in the literature, such as Voronoi diagrams and their 

Delaunay triangulations, the nearest neighbourhood graph, the minimum 

spanning tree, and the cell graph. For example, studying the Voronoi diagram 

constitutes convex polygons for each cell, and the area and shape of these 

polygons can be extracted.  

3.4.1.1 Radiomics Features 

Radiomics emerged in 2012 by Lambin and others [92, 93], as a new application of 

established techniques of CAD. A rapid increment in the number of radiomics-related 

applications has been noticed during the last decade [30]. Radiomics aims to extract a 

large number (up to thousands) of quantitative features from medical images. These 

features vary from trivial ones, such as first-order statistical features, to advance 

features involving texture and spatial characteristics of ROI. The extracted features 

can be used to build predictive and descriptive models for a wide range of medical 

applications. It is classified into three broad categories [92, 94–96]:  

1. Shape features compute the geometric properties of ROI, such as perimeter, 

sphericity, elongation, and axis length. 

2. First-ordered (global statistics) features quantify the intensity distribution of 

pixels within ROI through intensity histogram analysis (e.g., mean, standard 

deviation, energy, entropy, skewness, kurtosis). 

3. Textural (second-ordered) features consider the spatial intensity distribution of 

pixels (i.e., the intensity pattern within the image) and describe the 

heterogeneity of ROI. Five main classes define the textural features: 

Let 𝛿 be a neighbourhood of the pixel a, 𝜃 be an angle, 𝑖, 𝑗 are intensity values. 

a) Gray Level Co-occurrence Matrix (GLCM): In 𝛿, GLCM is the number of 

times a combination between 𝑖 and 𝑗 occurs in 𝜃 direction. 
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b) Gray Level Run Length Matrix (GLRLM): in a predefined direction 𝜃, we 

define run length as the number of adjacent pixels that share the same 

intensity. 

c) Gray Level Size Zone (GLSZM): Zone is defined as the number of 

connected regions with an equal intensity value. In contrast to GLRLM, 

the GLSZM is rotation independent.  

d) Gray Level Dependence Matrix (GLDM): a neighbouring pixel with grey 

level 𝑗 is considered dependent on a centre pixel with grey level 𝑖 if ∣ 𝑖 −

𝑗 ∣< 𝛼. GLDM defines the number of connected regions in 𝛿 that are 

dependent on a centre pixel. 

e) Neighbouring Gray Tone Difference Matrix (NGTDM): For each pixel 𝑎 in 

𝛿, we define NGTDM as the absolute difference between 𝑎 and the 

average of all the pixels in 𝛿. 

For further details, see the documentation of radiomics [97]. 

3.4.2 Feature Reduction: 

Several classes of features could be extracted from the microscopic images, however, 

not all the extracted features are useful for prediction purposes. Therefore, feature 

reduction methods are necessary to determine the most significant, irrelevant and/or 

redundant features. Feature reduction is an important aspect of model building as it 

reduces the model complexity and allows for better generalization (Section 3.6.1) [98, 

99].  

Intuitively, some features can be selected, but this is unconvinced, especially with 

large-scale applications. Hence, two main techniques are utilized for feature reduction 

[78, 99–101]: 

1. Feature Selection:  this method is meant to identify of the most relevant 

features. This method seeks to maximize some objective function by selecting 

the “best” subset of features. There are three types of feature selection 

methods: 
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1. Filter: It uses the variable ranking technique, assigning a score to each 

feature and then selecting a subset of them. This selection is performed 

before the classification step and it can be done either by selecting 𝑚 

from 𝑛 features, features that score a certain threshold or evaluating the 

performance of the highest-scored features based on cross-validation. 

2. Wrapper: It is oriented by the learning algorithm such that it uses the 

performance of a particular learning algorithm to select the features. 

Wrapper searches for a subset of features and then measures its 

performance of it. Distinct searching algorithms might be used, such as; 

sequential searching, genetic search, and simulated annealing [102]. 

3. Embedded: It was introduced to overcome the computation time 

consumed to train the learning algorithm for every new subset in the 

wrapper method. Therefore, the embedded method is presented in a way 

such that the selection of features is integrated with the learning process. 

Hence, this method usually works with certain learning algorithms. 

Another feature selection technique uses ensemble methods of the three methods 

and aggregates the selected features from several random runs as the voted 

features. This method yields more stable features [78, 101]. 

2. Feature Transformation: the feature selection methods are considered to be 

inefficient, especially with a great number of features where the whole set 

should be scanned without any prior knowledge about its relevance to the 

prediction capability.  Also, some features might not be picked by the selection 

method because they are independent of the rest of the features in the set, 

hence they have a low score and this result in ignoring them by the method. 

Therefore, feature transformation uses the whole set to reduce dimension 

based on specific criteria. It transforms the actual features set into an 

alternative, new and more compact feature space that encapsulates many 

features in a single feature. Features can be transformed linearly or non-linearly 

depending on whether the Euclidean distance between features is assumed or 

not. Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) are commonly used in literature. 
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3.5 Pattern Recognition 

Patterns are either seen as physical entities or observed as mathematical values. 

Pattern recognition is the process of recognizing patterns from data, and then making 

predictions and decisions through these patterns by using machine learning 

algorithms. Hence, pattern recognition defines labels to unknown data by extracting 

statistical information from patterns.  

In our scenario of CAD modelling, patterns are defined by the extracted features. For 

a given histological image, pattern recognition is essentially an image classification or 

clustering to show what disease it represents after extracting an appropriate set of 

features. Furthermore, it is possible to perform grading for the disease.  

Classification methods are utilised more frequently for recognition tasks in 

histopathological images. Classification can be defined as a function that maps data 

features into a set of predefined classes to which the data belongs. It is very important 

to choose the appropriate classifier that deals with large and dense datasets. Many 

machine learning algorithms are used for image recognition, among those algorithms 

are logistic regression, support vector machine, linear discrimination, decision trees, 

and Artificial Neural Networks (ANNs). A list of the most popular algorithms is given in 

Section 3.6.3.  

Recently, Convolutional Neural Networks (CNN) have achieved state-of-the-art 

performance in the task of image classification and detection. It is a kind of ANN which 

are suited to image-processing tasks. The CNN popularity is traced back to the work 

presented on ImageNet classification using a network named AlexNet, which won the 

competition of ILSVRC-2012 [103]. In early 1995, CNN was used within the scope of 

medical imaging to detect nodes in lung radiological image data [104]. Since then, CNN 

has replaced the classical CAD methods in several medical image diagnosis contests 

[79–81, 105–107].  

The most common CNN models include Alexnet [103], ResNet [104] which is a large 

variant of CNN that uses short skip connections to train CNN, VGG16 [108] which won 

the ImageNet localisation challenge in 2014, Inception of CNNs [109] which allow the 

use of different filter sizes instead of the single filter size, Densenet which use dense 
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connections between layers [110], and lastly the Unet architecture [85] which won the 

ISBI cell tracking challenge 2015 by a network that passes the low-level features to 

high-level during the up-sampled/downsampling process and utilizes the skip 

connection between corresponding layers. Generally, the CNN model has several 

challenges in determining the architecture, size of the network, and type and number 

of layers.  The choice of the model affects the way how to tackle the problem under 

investigation. 

A summary of studies conducted on tissue image analysis is shown in Table 3.1. It can 

be noted that the majority of the work utilises Kmeans for segmentation because mostly 

the number of clusters is known in advance. Also, colour-based techniques are 

dominantly used for image enhancement.  

Table 3.1: Brief review of related work on microscopic tissue images. 

Organ Enhancement Segmentation Features Recognition 

Cancerous tissue 
[47]  Threshold Clustering (Kmeans) 

morphology, 
intensity, and texture 

KNN 

Lymph [57] 

colour 
conversion, and 

mathematical 
morphology 

Clustering (Kmeans) 
morphology, 

structural, texture 
Bayesian classifier 

Lymph [63] colour 
conversion 

Clustering (Kmeans) structural 
SVM, Bayesian, 

and KNN 

Brain [74] - Clustering (Kmeans) structural ANN 

Brain [64] colour 
conversion 

Clustering (Kmeans) structural Bayesian and ANN 

Breast [48] threshold Clustering (Kmeans) 
Intensity and 

structural 
SVM 

Bone [77] - Edges technique structural SVM 
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Lung [87] - Clustering 
morphology and 

texture 

ANNs, SVM, and 
an ensemble of 

them 

Skin [90]  manually intensity, and texture Linear discriminant 

Breast [88] colour 
conversion 

Region growing 
morphology and 

structural 
SVM 

Urine bladder [89] colour 
conversion 

Active contour 
morphology, 

intensity, and texture 
Bayesian classifier 

Prostate  [72] - 
Clustering (Kmeans) 

and watershed 
Texture and 
morphology 

SVM 

Prostate [76] - 
boundary (Graph 

cut) 
Texture and 
morphology 

boosted decision 
trees (Modest 

AdaBoost) 

Breast and 
prostate [111] filter  

Apply filter on image 
to get shape 

features 

CNN trained on 
shape and original 

Breast [58] colour 
conversion 

Edge and threshold morphology 
- mainly applied for 

segmentation 

Brain biopsy [59] colour 
conversion 

morphological 

gradient 

 

texture Bayesian classifier 

Colon gland [75]  Region growing  SVM 

Breast tissue [73] Colour 
normalization 

Kmeans and 
watershed 

morphology and 
texture 

Naïve Bayes, 
SVM, Adaptive 

Boosting, Random 
Forest, and ANN 

Neuroblastoma 
verve [42] 

Histogram and 
filter 

threshold   
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Lymph [43] histogram Boundary and edge 
Intensity and 

Texture 
KNN 

Prostate [45] 
Colour 

conversion and 
threshold 

- 
Intensity, 

morphology and 
Texture 

Gaussian, KNN, 
and SVM 

Cervical [44] Colour 
normalization 

threshold Texture SVM 

Kidney [50] Gaussian filter 
Kmeans and 
watershed 

texture Bayesian 

Kidney [51] Gaussian filter threshold texture - 

Oral cavity [52] median filter 
Threshold and 

Region Growing 
morphology - 

Skin [53] median filter manual intensity Fuzzy C-means 

Prostate [49] filter Kmeans morphology 
unsupervised 

manifold 

Breast [54] 

colour 
conversion and 
mathematical 
morphology 

edge-based 
textural, structural, 
and morphology 

SVM 

Liver [55] mathematical 
morphology 

watershed morphology KNN and SVM 

Liver [56] mathematical 
morphology 

watershed 
morphology, 
intensity, and 

textural 
SVM 

Cancerous tissue 
[91] 

Colour 
normalization 

manually intensity 
linear discriminant 

classifier (LDA) 

Cancerous tissue 
[66] 

colour 
normalization 

threshold 
intensity and 

structural 
KNN 
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Rectal [67] colour 
normalization 

NA - CNN 

Breast [68] colour 
normalization 

- - - 

Cancerous tissue 
[69] 

colour 
normalization 

- - - 

Prostate [60] colour 
conversion 

threshold morphology KNN 

Breast [61] colour 
conversion 

threshold and 
morphology 

textural 
discrimination and 

decision tree 

Lymphoma [62] colour 
conversion 

threshold textural 
quadratic 

discriminant 

     

The traditional procedures for CAD development require a manual extraction and 

identification of “handcrafted” features. On the other hand, ANNs provide an 

unsupervised method for extracting features by making use of data and multi-layered 

architecture. Therefore, they address the development of the CAD model by combining 

both feature extraction and pattern recognition [67, 73, 111].  

 

3.6 Machine Learning 

Machine learning is a subfield of artificial intelligence that aims at training computer 

systems to perform some specific tasks. It mimics human behaviours and gives 

computers the ability to learn, therefore it gained its name. Formally, machine learning 

can be defined as learning computer from experience 𝐸 in the form of data items to 

solve a given task 𝑇 with respect to the performance measure 𝑃. Hence, it said that 

the computer is learning the task 𝑇 if its performance 𝑃 improves and produces the 

correct prediction for the given data items [112].  
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The basic concepts presented in this section and the next one are reviewed from [112–

115]. 

3.6.1 Learning Strategies 

The data items of a given experiment 𝐸 can are defined as a finite data set 𝐷 =  {𝑥𝑖}  

or 𝐷 =  {𝑥𝑖, 𝑦𝑖  =  𝑓(𝑥𝑖)}, where 𝑥 represents input data, and 𝑦 is the label of data. 

According to the type of data items, machine learning models can be grouped into 

three main broad categories: 

• Supervised Learning: For this type of learning, the model deals with the labelled 

data and estimates the function 𝑓 that maps the input 𝑥 to the output label 𝑦 

based on the rule that defines each pair (𝑥𝑖, 𝑦𝑖 ) in the dataset. An example of 

this learning is classifying of images into a set of predefined classes. 

• Unsupervised Learning: This type of learning draws inferences from unlabelled 

data and discovers hidden patterns. The clustering of data into non-overlapping 

clusters with similar patterns is the most common illustration of unsupervised 

learning. 

• Reinforcement Learning: It interacts with dynamic data and reacts accordingly 

by performing certain actions.  Reinforcement learning provides feedback in 

terms of rewards by trying these rewards and without learning which action to 

take. 

In practice, the data 𝐷 is divided into three groups: training, validation, and testing. 

During the learning process, the training data set is used to train the model, while the 

validation data set is responsible for tuning the parameters and examining 

generalization to provide the correct prediction of unseen data. Finally, the model’s 

performance is evaluated through the test data set. 

The generalization of the machine learning model is a major challenge in model 

training. Generalisation means that the model would perform well on the learning data 

but fail on other data sets. To monitor the model generalization, training errors and the 

difference between training and validation errors are explored. For a good 
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generalization, both values of errors should be small. In general, there are three cases 

of generalization (Figure 3.2): 

• Under-fitting: It occurs when the model is simple and does not capture the 

pattern of the data.  Also, the limited data points that are relevant to the given 

task and the model performance does not improve even with increasing the data 

points and retraining the model. Under-fitting is explained by not small training 

error.   

• Over-fitting: It is caused by a complex model that fit the data point in the training 

dataset perfectly and shows very poor fitting on the unseen dataset. Hence, the 

difference between the training and validation errors would be quite large. 

• Correct-fitting: this fitting provides adequate performance on both data sets of 

training and validation with an acceptable complexity model and sufficient data 

points related to the training process. 

 

 

 

 

 

 

 

 

3.6.2 Hyperparameters tuning 

During the training process, some parameters cannot be learnt directly, and they are 

called hyper-parameters. These parameters are fixed before the beginning of the 

learning process and define the properties of the model, such as the complexity and 

speed of the model. Hyperparameter tuning is the process of choosing the ideal set of 

Figure 3.2: Binary classification model example of the 
different types of generalization. The figure is adapated 
from https://www.geeksforgeeks.org/underfitting-and-
overfitting-in-machine-learning/ 
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hyperparameters for learning the model. It is a crucial step to train a model as it controls 

the overall performance of the model. 

Looking for the optimal set of hyperparameters can be treated as a searching algorithm 

which can be tedious and computationally expensive. Grid search and random search 

are commonly used for tuning the model. The grid search algorithm chooses a grid of 

hyper-parameter values and searches for the best set of values in the grid by 

evaluating all of them. This algorithm is computationally expensive as it scans all the 

combinations for evaluation. This limitation is addressed by the random search 

algorithm because it goes through random values within the grid to define the best 

hyper-parameters. 

3.6.3 Popular machine-learning models 

We attempted to list the most popular machine learning algorithms. However, there are 

dozens of these algorithms, therefore it was more convenient to categorize them by 

considering their similarities in the learning strategies. Here is a list of some of these 

groups is given: 

• Clustering Algorithms: they are concerned with organising the data into groups 

or categories while minimising the similarity between these groups. Clustering 

algorithms use the patterns of the data for this organisation. The most popular 

clustering algorithms are Kmeans and Hierarchical Clustering. 

• Decision Tree Algorithms: they are tree-like models built from the values of data 

features. The prediction is made by traversing the tree based on the conditions 

given in the tree nodes until reaching the leaf which represents the decisions. 

Decision tree algorithms work for both classification and regression tasks. The 

most popular decision tree algorithms are Classification and Regression Trees 

(CART) and Conditional Decision Trees. 

• Bayesian Algorithms: these models employ Bayes theorem for the prediction of 

regression and classification tasks. The most popular Bayesian algorithms are 

Naive Bayes, and Gaussian Naive Bayes. 
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• Regression Algorithms: these algorithms use a performance measure iteratively 

to refine the modelling of the relationship between data features. Regression 

algorithms are suitable for learning unlabelled data. Some examples of popular 

regression algorithms are Ordinary Least Squares Regression (OLSR), linear 

regression and logistic regression. We will use an algorithm from this group in 

Chapter 5. 

• Artificial Neural Networks (ANNs) Algorithms: they are inspired by the structure 

of human biological neural networks. The more classical methods are 

Perceptron and Multilayer Perceptron (MLP). We will discuss these algorithms 

in detail in the next section as they will be used later in Chapter 6. 

• Dimensional Reduction Algorithms: these types of algorithms are similar to 

clustering algorithms; the main difference is that dimensional reduction 

algorithms use unsupervised methods to find hidden data patterns and 

summarize them with less information. The main goal of these algorithms is to 

visualize high-dimensional data or compact the dimension of data to be used in 

the supervised learning method. Some of the most relevant methods are 

Principal Component Analysis (PCA) and Principal Component Regression 

(PCR). 

• Ensemble Algorithms: this group of algorithms are very powerful and popular 

because it combines the predictions of multiple weaker models that are 

independently trained. The final prediction is concluded by merging those 

predictions in some way. Some examples of ensemble methods are Boosting, 

Bootstrapped Aggregation (Bagging), AdaBoost, Gradient Boosting and 

Random Forest. 

 

3.7 Artificial Neural Network 

Artificial Neural Networks (ANNs), often called Neural Networks, is a machine learning 

model inspired by the biological neural network and mimics the human brain to perform 

tasks based on external information and then decides which action to take based on 

specific rules. ANNs hierarchically process the input through a set of layers. Each layer 
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extracts more abstract features compared to the previous layer, these features are 

utilized to decide the ANN outcomes. 

In 1958, Frank Rosenblatt introduced the artificial neuron model called perceptron 

[116], Figure 3.3. This model receives the inputs 𝑋. Then, it calculates the weighted 

sum ∑  by considering the input with their associated weights 𝑊 and an extra input 

called bias 𝑏. The activation function 𝜎 performs a non-linear transformation on the 

weighted sum to obtain the final output 𝑧 = 𝜎(𝑋. 𝑊 + 𝑏). The neuron model is believed 

to be the base of ANNs since the latter can be defined by a set of connected neurons 

that are arranged in layers. 

 

 

 

 

 

 

 

Figure 3.3: Signal Neuron (Perceptron) Model. 

 

ANNs, often called Deep Neural Networks (DNN), refer to the case where the network 

has at least three layers. Figure 3.4 illustrates the first DNNs proposed in 1969, called 

Multilayer Perceptron (MLP). There is the input layer, one or more layers of feature 

extraction called hidden layers, and the output layer where the outcome is generated. 
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Next, we will explain the process of how a combination of neurons is activated for 

different outcomes and final decisions. That is, training the ANN to strengthen the 

weights of the inputs that carry meaningful information and correct prediction. 

3.7.1 Feed Forward Network  

Feed-forward network (FNN) 𝑓(𝑥; 𝜃) is a mathematical function that is parametrized by 

𝜃 which represents the model parameters (W, b). FNN applies a series of 

transformations to an input 𝑥 to produce an output 𝑦 = 𝑓(𝑥, 𝜃). The function 𝑓 can be 

defined as: 

𝑓(𝑥) = (𝑓𝑛  ∘  ⋯ ∘ 𝑓1)(𝑥) 

The 𝑓𝑖 ’s are of the form 𝑓𝑖 (𝑥𝑖; 𝜃𝑖) = 𝜎𝑖(𝑊𝑖𝑓(𝑖−1) + 𝑏𝑖) which is a non-linear function (𝜎) 

of the weighted sum of all the outputs from the neurons of the previous layer. The 

output of this non-linear operation is called the activation layer. 

Activation Function: 

Throughout the network, each activation layer is passed to the next layer and 

calculated using the activation function until the network reaches the final output layer. 

The activation functions are used to get the final output of each layer and map the 

resulting value into a specific range depending on the function used. They allow the 

learning of complex structures and features by adding a non-linearity property to the 

network. The most common activation functions are: 

• The sigmoid 𝜎(𝑥) = 1 (𝑒𝑥𝑝(−𝑥) + 1)⁄  

Figure 3.4: Multiple Neurons (MLP) Model 
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• The hyperbolic tangent 𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥𝑝(2𝑥) − 1) (𝑒𝑥𝑝(2𝑥) + 1)⁄  

• The Rectified Linear Unit 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). 

Both sigmoid and tanh transform values are between [0,1] and [-1,1], respectively. On 

the other hand, ReLU sets negative values to zero, which allow the deactivation of 

neuron with a linear combination less than zero. This is why it converges faster 

compared to the sigmoid and tanh functions. Therefore, ReLU is the most commonly 

used function [117]. Figure 3.5, shows the plot of these activation functions. 

 

 

 

 

 

 

3.7.2 Training Feed Forward Network  

In the previous section, we review the basic structure for building the ANN and the 

definition of FNN. Now, we will describe how to learn FNN from the data to obtain the 

value of 𝜃. 

Gradient Descent 

Mathematically, gradient descent (steepest descent) is an optimisation algorithm for 

finding the local minimum point for a differential function. The optimisation algorithm 

investigates the problem of minimizing or maximizing a function 𝑦 = 𝑓(𝑥). The 

derivative 𝑓′, 𝜕 𝑦 𝜕⁄ 𝑥, or ∇𝑓 defines the direction of the change in the value of 𝑥 that 

decreases the value of 𝑦. This help in the problem of minimizing the function. 

Therefore, gradient descent explores the value of change in the negative direction, that 

is −𝑓′. 

Figure 3.5: Activation Functions. 
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Let 𝛾 be a real small value representing the distance in the negative direction of 

function change and 𝑥0 a starting point, then 𝑥1 = 𝑥0 − 𝛾∇𝑓(𝑥0) for 𝑥1 is the improved 

local minimum point. More generally, gradient descent starts with an initial point 𝑥0 and 

keeps improving until it obtains a local minimum point using the iteration: 

𝑥(𝑛+1) = 𝑥𝑛 − 𝛾∇𝑓(𝑥𝑛) 

In terms of ANNs, a function 𝑦 = 𝑙(𝜃) is defined to measure the difference between 

estimated and actual values for a data point. This function is called the loss function or 

error function. Using 𝛾 which is called the learning rate, gradient descent aims to find 

the global minimum point of the loss function, but this is not always possible [113]. This 

is one of the limitations of the gradient descent, and there is no way to distinguish a 

local from a global minimum point. Another factor that affects finding the minimum point 

is the size of the learning rate, that is because the value of 𝛾 will affect the convergence 

to the point and if it is too large the point might be overshot.  

Back-propagation 

Backpropagation sometimes called” backward propagation of errors”, aims to improve 

the weights of neurons by calculating the gradient of the error function considering the 

weight of the neurons. Thus, it is used to train FNN. Figure 3.6 illustrates the 

backpropagation compared to the forward-propagation. The weights of each layer are 

updated with respect to the gradient of the previous layer. This is why we reduce errors 

by updating the weights of all layers. 

 

 

 

 

 

 

Figure 3.6: back-propagation vs forward--propagation. 
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Typically, the whole training dataset is fed to the FNN to compute the gradient. This 

technique is called Batch Gradient Descent. It is time-consuming and computationally 

expensive. Another way to handle this is to use Stochastic Gradient Descent (SDG) 

which updates the weights after every single sample in the training dataset. However, 

SDG is considered to have a weak estimation of the gradient, and it can easily escape 

shallow local minima points. An alternative is mini-batch Stochastic Gradient Descent 

(mini-SDG) which uses randomly selected batches of the training dataset. The 

experiment showed that using mini SDG is more efficient compared to batch gradient 

descent and SDG [118]. 

3.7.3 Convolution Neural Networks 

Convolution Neural Network (CNN) is a class of FNN that considers the structure of 

inputs in the training process. It can study high-dimensional inputs such as 2D and 3D 

images. CNN was introduced in 1989 [119]. It has many applications in natural 

language processing and computer vision. 

CNN architecture is defined from three main layers:  

• Convolution layer: It is the basic building block used in CNN that performs a 

mathematical operation called convolution. Convolution is defined as a linear 

operation between two matrices. In this domain, convolution involves the 

multiplication of input 𝐼 and a set of weights 𝑊. The matrix 𝑊 represents the 

convolution matrix which is a set of learnable kernels (filters) that captures the 

spatial features from an image. Spatial features refer to the arrangement of 

pixels and the relationship between them in an image. They help us to identify 

the object accurately, the location of an object, as well as its relationship with 

other objects in an image. Given a 2D input image 𝐼 ∈ ℝ𝑟,𝑐, the size of the 

convolved output 𝑂 ∈ ℝ𝑟′,𝑐′
 is governed by the padding and stride sizes. 

Padding (𝑝) is the number of pixels added around the input matrix to preserve 

the size of the input image. This is because, after multiple convolution 

operations, the size of the input decreases as it is processed by the kernel 𝑊 ∈

ℝ𝑘,𝑘. Stride (𝑠) is defined by the number of pixels that shifts over the input 

matrix. Hence, the size of the output is 𝑟′ × 𝑐′ where 𝑟′ =
𝑟+2𝑝−𝑘

2
+ 1 and 𝑐′ =



 

69 
 

𝑐+2𝑝−𝑘

2
+ 1. The convolution operation with an illustration of padding and stride 

is given in Figure 3.7.  

 

 

Figure 3.7: Convolution operation. (A): Padding an image convolved with a 2*2 kernel. 

(B): From left to right: stride of size 0, 1, and 2. The figures are adapted from 

https://medium.com/analytics-vidhya/convolution-padding-stride-and-pooling-in-cnn-

13dc1f3ada26. 

 

• Activation layer: It consists of a nonlinear activation function that is applied on 

the feature maps which results from the convolution operation and generates 

the activation map as an output. The activation layer allows the network to learn 

more complex functions. 

• Pooling layer: this layer has no learnable parameters and operates on each 

feature map independently. It aims to merge similar semantic features into one 

by reducing the spatial size of the feature map progressively, hence sometimes, 

it is called a down-sampling layer. Since semantically similar features can be in 

different locations in the previous feature map, it is necessary to reduce the 

image size successively to obtain a global vision of the previous feature maps. 

Down-sampling can be performed by computing the maximum or average value 

of the nearby units, which is called max pooling or average pooling, respectively. 

Another way of performing the down-sampling is to use a stridden convolution 

with a size bigger than 1. The pooling layer reduces the number of features and 

the network computation. 
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3.8 Conclusion 

Over the years, mycetoma does not receive any attention in terms of computation 

diagnostic methods. Developing such methods requires the essential knowledge of 

CAD and machine learning models. For this reason, this chapter reviews the 

fundamental concepts of these models. We described the main components of the 

CAD model and the quantitative features used for computation diagnostic computation 

models. Also, we provided an insight into machine learning algorithms learning 

strategies and their most common types.  

After reviewing the available literature, three key issues are identified and guide the 

work presented in this thesis. Firstly, colour-based techniques are dominantly used for 

the enhancement of histopathological images. While clustering techniques especially, 

Kmeans are used for the segmentation task, these techniques might not apply to 

mycetoma tissue images because, with the variability in mycetoma grains, it is difficult 

to determine the number of clusters or to correctly segment without supervision. 

Secondly, the extraction of the handcrafted features is influenced by the type of study 

and the features that describe the ROIs. Thirdly, there is no standard method for 

choosing of the pattern recognition model classifier. Also, CNN is becoming the most 

popular tool for most medical imaging-related tasks.  

The next chapter will introduce the first mycetoma database of histopathological 

microscopic images. This database constitutes the first step towards proposing 

automated diagnostic methods that make use of some of the methods and techniques 

reviewed in this chapter. 
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Chapter 4: Database of Mycetoma Tissue 

Microscopic images - MyData 

 

 

4.1 Rational behind the creation of the mycetoma database 

Image analysis models have emerged in the last three decades as a key approach in 

the medical domain, even more recently with numerous developments in deep learning 

models. These models aim to provide methods for improving patient care. Some of the 

tasks for medical image models are the exploration of images, segmentation, and 

classification. For example, these models could be used to predict and treat diseases, 

discover new drugs, and develop diagnostic approaches.  

However, no approach was ever developed to address the diagnosis of mycetoma. 

This can probably be related to the neglect of mycetoma, not only concerning the 

health aspects but also the computation aspects. To allow the development of a 

mycetoma image analysis model, a mycetoma database is required. For this reason, 

Summary  

This chapter describes the creation of the first database of microscopic images of 

mycetoma tissue. It details the pipeline of its construction from the mycetoma species 

distribution and the patient sampling to the acquisition protocol through the 

histological procedures. The first section of the chapter states the motive for the need 

for the creation of this database. Section 4.2 presents the epidemiological distribution 

of mycetoma causative agents which reflect the sample presented in the database. 

Then, a detailed description of the study population is given in Section 4.3 including 

sample selection and diagnosis. Section 4.4 review the pipeline of the histopathology 

process. This is followed by the preparation of the microscopic images. Finally, a 

comprehensive elaboration of proposing the mycetoma database is introduced along 

with the summary of the data and labels. The last section provides the conclusion of 

the chapter. 
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we got the motive to create the first database for mycetoma histopathological 

microscopic images, called MyData, with specific and homogeneous standards. This 

database could be used by the scientific communities for the modelling and analysis 

of mycetoma histology analysis. Also, it can give more insights into producing to 

produce more effective diagnostic parameters and strategies using histopathology. 

Data is the most important aspect of medical image analysis models, and without it, 

any model cannot be trained to perform its intended purposes. In practice, there is an 

abundance of places where datasets for machine learning models can be found. These 

datasets can be well-suited for the development of CAD approach for various diseases. 

With the gathered clinical data, the database created in this thesis will be released as 

the first specialized database for mycetoma grains in tissue images. This database will 

enable researchers to combine image analysis models and biology to make mycetoma 

diagnostics more efficient and cost-effective. 

As was discussed in Chapter 2, mycetoma is a unique neglected tropical disease in 

terms of health, economic and social impacts on patients and communities. 

Furthermore, many knowledge gaps remain challenging to resolve because they are 

closely related to each other.  Initially, the reason for creating the mycetoma database 

was driven by the need for a microscopic image dataset to develop and train the 

diagnostic machine-learning models. The availability of such accurate and affordable 

models in rural areas could also assist in the confinement of more mycetoma cases 

within their environments and entourage which can indirectly contribute to the 

epidemiology of mycetoma. Therefore, we believe the benefits of this database might 

extend the intended purpose of advancing the diagnostic knowledge gaps.  

4.2 The distribution of Mycetoma Causative Agents and 

Organisms 

To introduce the mycetoma database, it is essential to define the epidemiological 

distribution of mycetoma causative agents. This is because the database must be 

representative of mycetoma cases worldwide.  

Globally, almost 40% of mycetoma cases are caused by eumycetoma [2, 120]. 

However, eumycetoma is more dominant in some regions, such as central African 
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countries, whereas actinomycetoma is common in the Americas and the Middle and 

Far East [121]. Furthermore, within the same region and between the neighbouring 

countries, there is an uneven or mixed distribution of eumycetoma and 

actinomycetoma [2, 121], Figure 4.1. This epidemiological distribution of mycetoma 

causative agents shows that the majority of countries report mixed cases of 

eumycetoma and actinomycetoma, while few countries have a high proportion for 

either of them. For example, eumycetoma is more frequently seen in Sudan with 73% 

and this percentage decrease to 42% in India, in contrast, Mexico reports only 3% of 

eumycetoma cases [121]. 

 

 

While the pathogens causing mycetoma are either fungal or bacterial, overall 

mycetoma can be caused by up to 70 different causative organisms [1]. Worldwide, 

the prevalence of mycetoma agents has been reported in [2] and recently in [121]. 

Considering the geographical regions, the authors of [121] found predomination for two 

species namely Madurella mycetomatis (MM) and Nocardia spps. This could be 

explained by the fact that their study focused on qualitative data rather than 

quantitative. As a result of this and the fact that even within the country, there are 

unbalanced mycetoma types, the mapping performed in [2] stands out for the 

Figure 4.1: Prevalence of eumycetoma and actinomycetoma [121]. 
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distribution of mycetoma causative organisms. Consequently, the most common 

causative organisms are Madurella mycetomatis (MM), Actinomadura madurae 

(AMM), Streptomyces somaliensis (SS), Actinomadura pelletieril (AMP), Nocardia 

brasiliensis and Nocardia asteroids. However, Nocardia prevalence is dominant in 

South America and Asia, and less frequent in Europe and Africa.  

The sample of MyData database was collected at the MRC. Hence, the representation 

of the mycetoma types reflects the geographical distribution of mycetoma in Sudan 

where eumycetoma is more dominant. In addition, the organism MM, AMM, SS, and 

AMP are included in the database because Nocardia spps are commonly unseen in 

Sudan. 

We considered the inclusion of the mycetoma organism in our database, although 

specifying them does not affect the treatment choices but the prognosis of the disease. 

Knowing this information could be suitable in cases where the created database is 

investigated for different purposes besides developing machine learning models for 

causative agent identification. 

 

4.3 MyData Population 

4.3.1 Sample collection and Selection criteria 

Initially, MyData database included 180 patients with confirmed mycetoma infection 

who were seen at the MRC or from the field surveys in Sudan. Surgical biopsies were 

obtained from patients with various mycetoma types, duration and clinical 

presentations. Thirty-eight patients who had biopsies devoid of any grains and were 

excluded from the study. This is attributed to the fact that grains are the basis of 

diagnosis, and the conclusive diagnosis is not possible without their presence, even if 

the clinical symptoms are consistent with mycetoma infection.   

Therefore, MyData database included samples from 142 patients with mycetoma 

infection. The patients were randomly selected among patients seen during the last 

five years to ensure homogeneity and accuracy of the diagnosis, regardless of age, 

sex, or race. 
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The ethical committee of Soba University Hospital, Sudan approved the study after 

collecting written informed consent from patients. A summary of MyData database 

population is given in Table 4.1. 

Table 4.1: The demographic of the studied population. 

Age in years 10 -70  

Sex 

Male 89 

Female 53 

Type 

Eumycetoma 80 

Actinomycetoma 62 

Site of infection 

Hands 40 

Feet 68 

Others 34 

Duration in years 

<1 18 

>1-5 69 

>5-10 46 

>10 9 

Lesion size 

Small (< 5 cm in diameter) 35 

Moderate (5–10 cm) 59 

Massive (> 10 cm in 

diameter) 
48 

The samples collected in this study originate mainly from Sudan, which impacts the 

distribution of mycetoma causative agents in our data. While we selected the samples 
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to balance the eumycetoma and actinomycetoma classes, we did not consider the 

genus and species for the selection step.  

4.3.2 Sample diagnosis 

Culture diagnosis of mycetoma cases has been performed by specialized 

microbiologists from the MRC to identify the causative agents. We review all the 

histology tissue blocks with the corresponding culture diagnosis and checked for 

misdiagnosis and/or incorrect identification of causative agents. In case of any conflict, 

the sample is excluded from the database.  

In the second step, we explored all our data on the genus and species that caused the 

mycetoma. The identification of fungus species using culture is usually misidentified 

[2]. Therefore, in this study culture technique was used to identify actinomycetoma at 

the species level and eumycetoma at the genus level. For some of the eumycetoma 

samples, a molecular technique was used to assess them at the species level.  

All the actinomycetoma samples in our database were identified as either AMM, SS or 

AMP, assessed using both grain culture and histopathology. Regarding our 

eumycetoma data, for 32 patients, we used both grain culture and histopathology to 

assess them as Madurella spp. (Mspp), Aspergillus spp. (Aspp) or Fusarium spp. 

(Fspp), and for 48 patients, we used a molecular technique to assess them as MM 

(MM+) or not MM (MM-). This data is summarized in Table 4.2. 

Table 4.2: The distribution of study samples. 

Causative agent Species No. Patients 

Eumycetoma 

Madurella spp. (Mspp) 22 

MM+ 29 

MM- 19 

Aspergillus spp. (Aspp) 8 
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Fusarium spp. (Fspp) 2 

Actinomycetoma 

Actinomadura pelletieril (AMP) 9 

Actinomadura madurae (AMM) 9 

Streptomyces somaliensis (SS) 44 

 

4.4 Histopathology and Slides Preparation 

This section describes the fundamental steps of the histology process to prepare the 

tissue slides. These slides are imaged using an appropriate device to obtain the 

microscopic tissue images. 

Histopathology studies the microscopic anatomy of biological tissue and examines any 

irregularity in manifestations in tissue to decide whether it is healthy or not [122, 123]. 

The name Histopathology is proposed by combining the Greek terms "Histos" which 

means tissue, "Pathos" which means disease, and "Logos" for study [124]. Generally, 

histology involves many processes from sample fixation to diagnosis. Figure 4.2 yields 

a comprehensive view of this process.  
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4.4.1 Sample Preparation and Processing 

Tissue collected from sight is under investigation for further examination through 

surgery or biopsies. Starting from collection until the yield of final remarks or diagnosis, 

three main steps are described and used in the standard histological practice. These 

fundamental steps and processes of histology slide preparation are reported 

extensively [123, 124]. These include:  

• Collection and fixation:  

The histology process starts when a physician obtains good-quality tissue for 

examination. Tissue can be collected through fine needle aspiration, tru-cut needle 

biopsy, or surgical biopsy. Larger biopsies allow for several slides and hence further 

examination and investigation. The collected biopsies are dipped into a fixative solution 

to prevent tissue from breaking down and microorganism growth. The fixation should 

be done immediately after collecting tissue from patients. Most commonly, 

Formaldehyde (formalin) is used for fixation. This process slightly reduces the size of 

the tissue before embedding. 

 

Figure 4.2: Histopathology Process. 
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• Embedding and Sectioning:  

Embedding is performed to solidify the tissue to allow the production of thin tissue 

sections. The fixative tissue is embedded in supporting material, mostly paraffin wax, 

and produces tissue blocks. A microtome is used to cut tissue sections from tissue 

blocks. Usually, sections are cut with (3-5) 𝜇m thickness. After cutting, the sections are 

exposed to a heated water bath to melt paraffin and get rid of any wrinkles. Eventually, 

these sections are mounted on microscope glass slides to preserve them from damage 

and enhance visual quality for further analysis.  

• Staining: 

At this point, the glass slides are barely visible under the light microscope. So, the 

tissue sections need to be stained to add contrast that assists in identifying or 

distinguishing ROIs. Different stain types can be used, although Haematoxylin and 

Eosin (H&E) stain is the most commonly used stain in histopathology.  Furthermore, 

many pathologists argued that H&E would continue leading for the next 50 years [125]. 

The staining process can be performed manually, semi-automated, or automated. The 

outcome, a stained histology slide, would be ready for screening and examination by 

the pathologist. For certain applications, this step is not applicable, and the result of 

sectioning is visualized for diagnosis.  

The same process mentioned above is applied for mycetoma tissue slide preparation. 

H&E stain is the main focus of this work. It is considered a primary tissue stain as it is 

an easy, quick, well-established method, and allows visualization of all the tissue 

components and grains. All the slides' sections were stained with H&E according to 

standard routine laboratory procedures at Bretonneau Hospital, Tours, France. H&E is 

usually performed to distinguish between different tissue components. It stains nuclei 

with blue colour and gives the connective tissue a pink colour. Stained sections show 

mycetoma grains morphology as well as the tissue reaction and components. 

4.4.2 Tissue Slides Visualization   

The tissue slides cannot be seen with the naked eye, rather they have to be visualized 

under microscopy for appropriate diagnosis. The microscope is a device used to 

enlarge small objects without changing their actual physical size [126]. This 
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enlargement is known as magnification, and it is expressed in the form (n ×) to denote 

the number of times the object is being enlarged. Depending on the type of sample 

and investigation to be conducted, various types of microscopes can be employed 

such as optical or light, electron, and fluorescence microscopes. The optical light 

microscope, Figure 4.3, is the oldest design of the microscope and yet the most popular 

one. It uses a system of lenses and visible light for object magnification.  For mycetoma 

histopathological slide visualization, an optical light microscope is utilised.  

 

 

 

 

 

 

 

 

 

4.5 Preparation of Microscopic Images in MyData 

This section describes the need for digital pathology and its advantages. Also, it 

provides the main steps of the acquisition of microscopic images from tissue slides to 

introduce the database.  

Generally, in the diagnostic process, pathologists investigate for particular features 

within tissue slides, such as cell morphology and tissue structure and components. 

This investigation is mostly influenced by pathologists' experiences. The manual 

analysis of histology slides is very challenging since each section can contain many 

structures with uneven distribution of cells across the tissue, which might be 

surrounded by different tissue types. Furthermore, the reliability of the analysis is 

Figure 4.3: Optical Light Microscope. 
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closely related to the pathologist's experience. This is why working with histology slides 

manually is time-consuming and requires an experienced and skilled pathologist. 

Digital pathology emerged as a sub-field of pathology that focuses on the acquisition, 

management, and interpretation of information from digital images [126, 127]. These 

images are often called photomicrographs. Digital pathology uses a computer 

algorithm to analyse images of tissue slides and report some clinical outcomes. With 

the growing trend of digital pathology, slide digitalization has been appended to the 

standard histopathological processes. This has several advantages, such as: i) It 

enables comparative analysis and links the screening process with different diagnostic 

tools. ii) Digital images can be shared with diverse physical locations, which could be 

useful for diagnostic consultation with specialized centres or pathologists and enhance 

teaching experiences. iii) Storing digital slides is more practical than glass slides which 

can be damaged, faded, or lost. Also, glass slides need more space to be kept. 

Until the early 90s, the digital microscope, Figure 4.4, was the most dominant method 

for slide digitalization [126]. It was invented as a modification to the optical microscope 

by mounting a digital camera on the optical microscope. Besides direct viewing of 

slides under the microscope, the camera can capture slide images or display them on 

a computer monitor if it is available. The computer software allows displaying different 

variants of the object and its magnified copies, filming the slide, and image archive. A 

new era of digital pathology began with the novel invention of the Whole slide imaging 

technique (WSI) often referred to it as "virtual microscopic". WSI employs whole slide 

scanners to capture the whole slide in a single shoot so-called digital slide. It is known 

to produce faster and more high-quality microscopic images. However, when adopting 

WSI for slide digitisation, the setup and maintenance cost is a major limitation [127].  
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4.5.1 Mycetoma Tissue Images Acquisition 

As mentioned in Section 4.3.1, the database included tissue blocks of 142 patients. 

The tissue slides of these patients were handled with a unique reproducible acquisition 

protocol to ensure a uniform database.  

Microscopic images were captured in RGB colour space with Nikon Eclipse 80i digital 

microscope (Figure 4.4) under the conditions given in Table 4.3. We used the digital 

microscope instead of WSI because it is commonly available in endemic areas 

laboratories, especially rural areas. Furthermore, the digital microscope is easy to use 

and set up. 

 

 

Figure 4.4: Digital Light Microscope. 
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Table 4.3: Microscopic Acquisition Conditions. 

Parameter Value 

Brightness control 

Knob 5/10 

ND8 On 

ND32 On 

Field diaphragm Highest level 

Highest level 10× 

Dimension and Quality 800 × 600 

Colour Enhance and white auto 

Field diaphragm knob Highest level 

Filter 6 

NCB11 Filter Off 

 

The database contained a total of 864 microscopic tissue images from 142 patients. It 

is composed of 471 eumycetoma and 393 actinomycetoma images. For each patient, 

different grains were considered, with an average of six grains per patient. Table 4.4 

gives the summary of database images. Although the screening of tissue slides 

focuses on capturing a single grain in each field (Figure 4.5A) some slides have 

contiguous grains, which led to the appearance of many grains in one image (Figure 
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4.5B). In the latter case, we consider one grain per image to be included in the 

database.  

Table 4.4: Summary of images in MyData considering the mycetoma organisms. 

Causative agent No. Images Species No. Images 

Eumycetoma 471 

Madurella spp. (Mspp) 149 

MM+ 167 

MM- 110 

Aspergillus spp. (Aspp) 36 

Fusarium spp. (Fspp) 9 

Actinomycetoma 393 

Actinomadura pelletieril (AMP) 57 

Actinomadura madurae (AMM) 62 

Streptomyces somaliensis (SS) 274 

 

 

Figure 4.5: Mycetoma Microscopic Images. (A): Single grain. (B): Multiple grains. 
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4.5.2 Ground-truth Segmentation of Mycetoma Grains 

To establish the histology diagnosis, in the beginning, the grain(s) must be located 

within the tissue to determine the causative agents for the appropriate treatment. 

Hence, mycetoma grains are the ROIs of the tissue image. Consequently, performing 

manual grain segmentation was necessary to produce a complete and proper 

database of mycetoma tissue grains and their associated grains annotation. In this 

way, this database could be used for any computational tasks related to histology 

tissue diagnosis. 

From microscopic images of mycetoma-infected tissues, grains were manually 

segmented using ImageJ software. We generate an annotation of each image in the 

data set by assigning a label for each pixel in the image as ROI or background. These 

labels are set as 1 for ROI and 0 for background. Then, the original images and their 

annotations can be used for machine learning model training and validation. 

The accuracy of any machine learning model will depend on the accuracy of our 

manual segmentation. Therefore, this segmentation is carried out in a way that 

constricts the border of the grain and avoids the inclusion of any other tissue 

components or inflammatory cells unless they are inside the grain itself. Also, the 

annotated grains should contain all the grain’s area even if there is a slide background 

within the grain and/or fracture in the grain appearance. Figure 4.6 shows illustrative 

microscopic images along with the ground-truth grains.  
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Figure 4.6: Mycetoma Microscopic Images and its annotated grain. (A): Eumycetoma 

with fractured grain. (B): Actinomycetoma grain. 

 

4.6 MyData: Mycetoma Histology Microscopic Images 

Database 

During the last decades and with the increment of computational power and high-

quality digital microscopes, many histopathological image databases have been 

introduced. However, mycetoma has not gained any benefit in this revolution. Hence 

in this section, we construct the first database of mycetoma histopathological 

microscopic images. This database will be used throughout this thesis to build two 

computational models which turn into an automated diagnostic model based on 

microscopic tissue images of mycetoma. 
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4.6.1 Images conditions 

4.6.1.1 Technical and human errors:  

The tissue samples used for preparing the MyData database were collected, labelled, 

prepared and diagnosed by a group of laboratory technicians and pathologists. After 

collection, the labelled samples are sent for processing and diagnosis using 

histopathological and culture techniques. Once the results of both investigations are 

available, we compare them to ensure they are identical, otherwise, the sample is 

removed from the database. Also, double-check the labels of the samples and the 

result is made. Hereby, we eliminate any source of errors in the diagnosis process.   

One of mycetoma histology diagnostic obstacles is the complete or partial vanishing of 

grains in tissue slides though they exist in the tissue blocks. Mostly, this is caused by 

the sectioning or mounting of the section on the slides. Mycetoma grains sometimes 

have a solid or rigid texture which results in improper sectioning because of the fine 

thickness of slides. We prepared two slides for each patient sample to ensure that the 

tissue slides of all the samples contained grains. 

The folding of sections in the slides and their dissociation is a common issue in 

classical histology tissue processing. Therefore, we considered this issue to be a 

normal condition in mycetoma tissue processing. Slides with folds are handled as 

regular slides and maintained within the database. In addition, among the two prepared 

slides, we utilised the slide that contains the grain and, at the same time, has a better 

appearance in terms of folding and tissue separation.  

4.6.1.2 Adequateness of samples for publishing database: 

MyData database was initially collected and prepared for the purpose of developing a 

diagnostic model for mycetoma. Later, the possibility of publishing this database to the 

scientific communities was considered. The collected samples reflect the 

epidemiological distribution of mycetoma in Sudan, the epicentre of mycetoma. In 

Sudan, 73% of the recorded case are eumycetoma while MM, SS, AMM, and AMP are 

reported as the common mycetoma organism.  
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Consequently, we believe MyData database is adequate for publishing because 

mycetoma is a neglected disease hence the size of the database is acceptable and 

comparable to the total infected population. Also, the causative organism contained in 

this database covers the most common organisms reported in Europe and Africa and 

is less frequent in South America and Asia. In light of this, the MyData database is a 

good start for the first mycetoma histopathological microscopic database and could be 

expanded in the future. 

4.6.2 Exclusion and inclusion criteria of samples in MyData 

Considering the aforementioned conditions, we defined the following criteria for the 

inclusion and exclusion of images from the presented database: 

• For each patient, all the grains in the tissue slide are included regardless of their 

size and shape. 

• Sometimes the grain could be bigger than the image size, although it fits the 

field size, in this case, the part of the grain which is visible within the image size 

is included in the database, Figure 4.7A. 

• Sections which show partially folded grains (Figure 4.7B) are included, while 

completely folded grains are removed from the database. 

• Two reasons caused the dissociation of mycetoma tissue sections either tissue 

reaction or tissue processing, Figure 4.7C. Both cases of dissociation are 

included. 

 

Figure 4.7: Example of the images included in the database. (A): Large grain. (B): 

Folded grain. (C): Dissociation grain. 



 

89 
 

4.6.3 Labelling 

Image labelling identifies the image's content by assigning informative tags to the 

images in the database. Labels provide a context to the images such that the machine 

learning model could learn from them and make the correct task. 

Labelled was defined with consideration for the patient ID to avoid statistical bias. We 

use the notation FM and BM for eumycetoma (fungus) and actinomycetoma (bacterial), 

respectively. The naming format is main-type_subclass-number_patient-ID_grain-

number. For example, BMC1_3_4 means it is the first subclass of actinomycetoma 

sample from patient 3 for grain 4. A suffix is appended to the name of the image to 

indicate whether it is the original image or the ground-truth segmented grain of the 

same image. 

In some cases, the collected tissue is quite big for embedding in one block therefore, 

it is possible to have a duplication of tissue blocks for the same patient. One label is 

given for these blocks, just different numbers of grains. 

4.6.4 Secondary dataset 

In the secondary dataset, the H&E staining process was performed manually with the 

local procedure, and no specific instructions were given for image acquisition. An 

Olympus 1.3MP integrated digital microscope was used for image capturing with 10× 

magnification, while lighting and tuning conditions were not unified. Therefore, this 

dataset covered several sources of technical variability that can limit the performance 

of predictive models [128].  

The secondary dataset consisted of 12 actinomycetoma and 14 eumycetoma tissue 

images. It was collected from 26 mycetoma patients, with one tissue image per patient. 

Table 4.5 gives the distribution of the secondary data set.   
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Table 4.5: Distribution of the Secondary dataset. 

Causative agent Patients Samples Genus Patients Samples 

EM 14 14 

Madurella spp. 11 11 

Aspergillus spp. 3 3 

AM 12 12 

AMP 2 2 

SS 8 8 

AMM 2 2 

 

4.7 Conclusion 

This chapter presented the creation of the first database of mycetoma histopathological 

microscopic images, called MyData. It also provided detailed information on the 

samples used to create this database. This database is appropriately collected, 

prepared, analysed, and labelled. MyData database contains 864 microscopic tissue 

images along with the segmented ground-truth grains images from 142 patients. It 

includes 80 eumycetoma and 62 actinomycetoma samples and covers four of the five 

most common mycetoma species reported globally. Because of this, we believe this 

database is the first step towards creating a broader and larger database with various 

species from all over the globe, especially since a specific preparation and acquisition 

protocol is provided. MyData opens the space for recruiting more laboratories around 

the globe for the collection of new samples. It also encourages creating databases for 

different types of mycetoma images such as X-rays and ultrasound images. 

In addition, we provided a guideline and optimized protocol for the preparation and 

acquisition of the image. Using this guideline for image production has many benefits 

such as: maintaining consistency and improving quality assurance, reducing errors and 

enhancing productivity, and avoiding the loss of the information presented in the data.  
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Because the MyData database will be used to develop machine learning models for 

mycetoma based on histopathological images, we intended to cover the factors that 

impact the success of such models. One of these factors is the quality and variability 

of the histopathological image acquisition. In the domain of histopathological image 

analysis, the quality is defined by the preparation of tissue slides and image acquisition 

protocol. Heterogeneous dataset from different laboratories is a concern making it 

difficult to deploy machine learning model to all the datasets at once.  Yet this 

heterogeneity is necessary for the model to operate efficiently at different sites with 

different inputs. We incorporated a relatively small dataset with heterogeneous 

preparation and acquisition with MyData, which has a homogeneous standard. 

The next chapter will propose a machine-learning model that differentiates between 

mycetoma types using the MyData database.    
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Chapter 5: Mycetoma Causative Agent 

Classification Model - mAIcetoma 

 

 

5.1 mAIcetoma: The Proposed Framework 

5.1.1 Overview of the proposed model.  

The traditional mycetoma histopathological differential diagnosis used by pathologists 

is illustrated in Figure 5.1A. The pathologist examines the H&E tissue slide to 

determine the causative agents and hence the mycetoma type. Optical light 

microscopes are used to visualize these slides. Commonly, a digital camera is 

Summary  

In the previous chapter, we detailed the creation of the first database of mycetoma 

histopathological microscopic images to be used for the development of machine-

learning models for diagnostics purposes. In this chapter, this database was used 

to develop a model that addresses the problem of identifying mycetoma type in a 

tissue image. Identifying mycetoma type is an essential step in mycetoma 

management since it greatly affects treatment choices. Incorrect differential 

diagnosis of mycetoma can have serious consequences on the patient and the 

disease prognosis and outcome. Throughout this work, the classification of 

mycetoma refers to differentiating between eumycetoma and actinomycetoma from 

grains features in histopathological microscopic images.  Hence, this chapter 

describes our proposed model for mycetoma classification. We introduced a   

computational method based on radiomics and Partial Least Squares 

Discrimination Analysis (PLS-DA). The chapter is organized as follows; Section 5.1 

presents the methods used in our experiments. Section 5.2 elaborates on the 

proposed classification model and presents the experimental results in Section 5.3. 

We summarize the chapter with the main findings and discussion in Section 5.4. A 

conclusion of the work is finally given. 
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mounted on these microscopes to capture the microscopic images. Another alternative 

for this system is the digital microscope. Both systems can capture the images of the 

H&E stained tissue slide and transform them into a coloured image for agent 

identification. 

 

 

The presented mAIcetoma model is based on the analysis of H&E histopathological 

microscopic images from tissue biopsies obtained from mycetoma patients. Therefore, 

the model aims to identify the causative agents of a given mycetoma biopsy. Our 

proposed model is introduced as a complementary assistant tool to the routine 

histopathological pipeline, as depicted in Figure 5.1B. It is comprising of three main 

components: pre-processing, feature extractions, and classification. 

5.1.2 Samples and Images Acquisition.  

Two sets of data were utilised for this part of the study, namely the primary dataset and 

the secondary dataset which are described in Chapter 4. 

 

Figure 5.1: Histology diagnosis system. (A): Classical clinical setting, (B): 
Proposed radiomics model. 
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The primary set was acquired following a unique protocol and used to train and validate 

the model. While the secondary dataset was used to evaluate the robustness of the 

model for the technical variability.  

5.1.3 Pre-processing and Features Extraction. 

Pre-processing should be performed before applying any classification method to 

improve the quality of the input images. When dealing with microscopic images, pre-

processing step aims mainly at normalizing different colour variations. These variations 

include staining conditions, tissue section thickness, and microscopes models. Various 

methods have been proposed to address problems that are related to staining (Section 

3.2). The weighted grey version of the original RGB images is considered throughout 

our experiment.  

Figure 5.2 shows illustrative eumycetoma and actinomycetoma microscopic images in 

the first and second columns, respectively, along with the segmented grains.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Sample grains of Eumycetoma (left) and 
Actinomycetoma (right). (A, B): tissue sections stained 
with H&E; (C, D): manual segmentation of the grains. 
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Grains in microscopic images are characterized through Radiomics features (Section 

3.4.1). These features were composed of 102 variables divided into nine shape 

descriptors, 18 first-order statistics, and 75 texture features. Shape features were 

extracted from the grains labelled masks, while all other features were based on grey 

intensity values at the pixel level in microscopic image classes. Labelled masks are 

ground-truth grain images where background and grains pixels are set to zero and one, 

respectively. PyRadiomics package version 2.2.0 was used for feature extractions [97].  

The extracted features might have a different scale and range of real-valued variables, 

which can put more weight on a variable with a large range. Therefore, a fundamental 

step of feature pre-processing is applied to ensure that features are on the same scale 

and equally important. Standardization (z-transformation) is a feature scaling 

technique which results in a zero mean and unit variance of features, that is, each 

feature (𝑋) is re-scaled to ensure the mean (𝜇) of 0 and the standard deviation (𝜎) 1.  

Radiomics features are standardized by auto-scaling and used as an input to build the 

predictive model using Equation 5.1, where 𝑥𝑖 is a real value of the sample 𝑖 for a 

feature z and where 𝑚 is the number of samples.  Auto-scaling uses standard deviation 

as a scaling factor and converts features into differences that are relative to their 

standard deviation, hence the features are analysed based on correlation [129].  

𝑥𝑖−𝑠𝑐𝑎𝑙𝑒𝑑 =
x𝑖 − 𝜇𝑥𝑖

𝜎𝑥_𝑖
 

 

𝜇𝑥 = ∑
𝑥𝑗

𝑚

𝑚

𝑗=1

 

Equation 5.1 

 

𝜎𝑥 = ∑
(𝑥𝑗 − 𝜇𝑥)

2

𝑚 − 1

𝑚

𝑗=1

  

 

5.2 Modelling and Analysis  

A Partial Least Square-Discrimination Analysis (PLS-DA) model was adopted for 

mycetoma grains classification. PLS-DA is a supervised classification method that 
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combines the properties of the Partial Least Square (PLS) regression model with a 

classification technique. For PLS-DA modelling, the features set 𝑋 of the image is 

analysed. 𝑋 is a 𝑚 × 𝑛 matrix, and each row represents the different extracted features 

of one individual sample, where 𝑚 indicates the number of samples and 𝑛 is the 

number of features. The class membership is translated into a dummy column vector 

Y by values of ”1” and “−1” that indicate if a sample is a eumycetoma (EM) and 

actinomycetoma (AM).  

The procedure of the PLS-DA model is given in Pseudocode  5.1 [130–132]. The 

source of variability was modelled by Latent Variables (LVs), which are linear 

combinations of the extracted features in 𝑋. The maximum variation of 𝑋 is determined 

by the weight vector 𝑊 ∈ ℝ𝑚,1. The whole set of features 𝑋 was used for grains 

classification due to the ability of the PLS-DA model to reduce the impact of the 

irrelevant features. Hence, the loading vectors (𝑃 ∈ ℝ𝑛,1) and (𝑄 ∈ ℝ1,1) are the 

coefficients assigned to features in their linear combination with various magnitudes 

based on the importance of features, so loading vectors indicate the influence of each 

feature on each LV. Similarly, X-Score (𝑇 ∈ ℝ𝑚,1) represents the coordinates of 

samples in the LVs projection. Each LV generates a variation which sums up the total 

variation contributed by the other LVs. The residual variation not estimated by the 

current LV is updated as a new feature set. In practice, the number of LVs is chosen 

to achieve the lowest error, and it is important to note that a sufficient number of LVs 

could produce perfect performance.  

 

Pseudocode  5.1: PLS-DA Model Construction. 

Input: Features Set (𝑋 ∈ ℝ𝑚,𝑛), dummy variable (𝑌 ∈ ℝ𝑚,1), and the number of LVs (𝐴) 

Output: Regression Matrix (𝐵) 

for 𝑖 in 𝐴 do 

Weight Vector: 𝑤 = 𝑋𝑌 

X-Score: 𝑡 =
𝑋𝑤

√∑𝑤2
  



 

97 
 

 

Eventually, matrix 𝐵 provides the regression coefficients which describe the 

relationship between mycetoma grains features 𝑋 and mycetoma classes 𝑌.  

For the prediction purpose, the model uses the regression coefficients 𝐵 and features 

set 𝑋 of unknown samples to predict whether they are FM or BM as follows:  

𝑌𝑝𝑟𝑒𝑑 = 𝑋𝐵 

Since the PLS-DA model is inherited from the PLS model, the estimated 𝑌𝑝𝑟𝑒𝑑 is never 

an integer with an exact membership (i.e 1 or −1). Several decision rules can be used 

to convert the predicted values into their essential classes [130]. In this study, rather 

than using the default zero value as a classification threshold. We proposed to estimate 

it based on Bayes's theory to optimise the class membership. The Bayesian threshold 

calculation assumes the predicted values of both classes fit into a Gaussian 

distribution. This gives the probability of any sample belonging to class EM/AM from 

its predicted value 𝑌𝑝𝑟𝑒𝑑. The estimated threshold value is selected at the point where 

the number of false positives and false negatives is minimised on the training data set 

[133–136].  

The images of the different patients from the primary dataset were randomly split into 

training/validation with 70%/30% proportions. A summary of the data set is presented 

X-Loading: 𝑝 =
𝑡′𝑋

√∑𝑡2
 

Y-Loading: 𝑞 =
𝑌′𝑡

√∑𝑡2
 

Regression Coefficient : 𝑏𝑖 = 𝑤(𝑝𝑤)−1𝑞. 

Residual of X: 𝑟𝑒𝑠𝑥 = 𝑋 − 𝑡𝑝 

Residual of Y: 𝑟𝑒𝑠𝑦 = 𝑌 − 𝑡𝑞  

𝑋 = 𝑟𝑒𝑠𝑥 

𝑌 = 𝑟𝑒𝑠𝑦 

end for 

Regression Matrix: 𝐵 = {𝑏1, 𝑏2, ⋯ , 𝑏𝐴}. 
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in Table 5.1. Each patient's data were forced to be either in training or validation set 

and not spread between both to avoid statistical bias.  

 

Table 5.1: The Split of the mycetoma database into training and validation datasets 

with a 70%/30% proportion. 

Causative agent Species Training Validation 

EM 

Madurella spp. (Mspp) 99 50 

MM+ 120 47 

MM- 71 39 

Aspergillus spp. (Aspp) 26 10 

Fusarium spp. (Fspp) 6 3 

AM 

AMP 41 16 

AMM 50 12 

SS 192 82 

 Total: 605 259 

 

All the PLS-DA analysis was performed using MATLAB software version R2017b, 

libPLS library [137] and homemade MATLAB routines.  
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5.2.1 Quantitative evaluation. 

According to recommended practices discussed in [130, 138], the PLS-DA model can 

be validated by three different strategies; internal, external, and optional methods. 

Generally, optional methods such as bootstrapping and permutation tests are rarely 

used, and the data size governs the choice of using internal and external strategies. 

Internal methods such as cross-validation are used with a small dataset (N<1000). The 

proposed model was assessed using two different ways, internal validation and 

bootstrap as an optional validation method. 

First, we performed Cross-Validation (CV) as an internal validation method to assess 

the complexity of the model by determining the optimum number of LVs. This allows 

us to evaluate the complexity of the model considering the predictive ability of the 

model itself [130, 134]. The proposed model was trained with Venetian blinds 10 folds-

Cross-Validation (10 CV), and the minimum CV classification error was considered to 

select the LVs number [134, 139–141]. In our experiments, the smallest error was 

associated with 16 LVs, Figure 5.3. However, using a high number of latent variables 

can often be associated with overfitting. This means that the model would perform well 

on the learning dataset but fail on other data sets. To prevent overfitting and have a 

stronger generalisation capacity, we opted for fewer variables and considered seven 

latent variables. The difference in CV error between using 16 LVs (0.0656) and 7 LVs 

(0.07281) was small in the training data, and the model behaved better on testing data.  

 

 

 

 

 

 

 

Figure 5.3: Classification Error of the PLSDA model. 
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Secondly, we employed a bootstrap test for further assessment of the model’s 

robustness and estimates of the uncertainty of the prediction. In the bootstrap 

technique, new datasets were generated by applying sampling with replacement 

techniques of the original dataset [141]. In the beginning, we compute the residue of 

our model 𝐹 ≈ 𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑. Then, bootstrap the newly generated samples and 

estimate the residuals bootstrap  𝐹̂. Finally, the confidence interval for each sample in 

the model is evaluated using the quantiles. We define upper and lower limits of 

intervals such that they are asymmetric and specific through the percentile method 

setting the number of bootstraps 𝛽 and 𝛼 is the degree of confidence:  

𝐹̂𝛽 (
𝛼

2
) ≤ 𝑦 ≤ 𝐹̂𝛽 (1 −

𝛼

2
) 

Furthermore, the Variable Importance in Projection (VIP) score was analysed to 

understand the importance of each feature in the PLS-DA model and how strongly they 

contribute to the classification. For the features set 𝑋, VIP measures the weight of each 

feature in 𝑋 using the explained variance of each LV (Equation 5.2) and accumulates 

the weights that were produced from each LV to reflect the importance of the feature 

[142].  Usually, it is considered that VIP scores have a threshold value of 1, meaning 

that the features which score greater than 1 in the model are significant for the 

prediction ability [143].  

𝑉𝐼𝑃 =
√

𝐴 ∑ 𝑄𝑇
𝑊

𝑛𝑜𝑟𝑚(𝑊)2

∑ 𝑄𝑇
 

Equation 5.2 

 

where 𝑄, 𝑇, and 𝑊 represent Y loading, X-score, and weight matrices, respectively.  

Finally, the performance of the model was evaluated through diagnosis accuracy, 

Matthew’s Correlation Coefficient (MCC) [144], F1 score [145], sensitivity and 

specificity.  Equation 5.3 gives the formulas for these measurements where TP and TN 

are the numbers of true positive and negative cases, and FP and FN are the numbers 

of false positive and negative cases. To evaluate the robustness of the model, the area 

under the curve (AUC) was also computed by aggregating the model's performance 

across different thresholds. 
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𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

𝑆𝑒𝑛𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation 5.3 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
  

𝐹1 =
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑁 + 𝐹𝑃)
  

 

5.3 Experimental Results 

5.3.1 Causative agents’ classification 

The projection of the primary validation data set is shown in Figure 5.4A. It depicts the 

scores plot and projection of samples concerning the first three LVs generated by our 

prediction model. LVs represent the combinations of the grain features that best 

discriminate between eumycetoma and actinomycetoma. The plot demonstrates a 

separation for the discriminated classes in the estimated feature space, where two 

loose clusters can be identified for the mycetoma classes.  

The class prediction for the validation dataset is given in Figure 5.4B. The threshold of 

0.0635, obtained from Bayes’ theorem, is shown as the horizontal red dashed line and 

applies to sample classification. A sample is labelled as AM if it scores a value greater 

than 0.0635 and EM otherwise. With this prediction, many EM samples were 

misclassified compared to AM. It might indicate that while most eumycetoma samples 

were correctly classified, a few samples presented similar actinomycetoma radiomics 

features.  

To assess the model on external data set, the secondary dataset was used to evaluate 

the robustness of the model with images from new patients with distinct acquisition 
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parameters and slide preparation techniques. Figure 5.4C shows the classification of 

the secondary dataset. The proposed model achieves 96.15% accuracy confirming the 

robustness of our approach compared to the results obtained in the validation dataset.  

 

 

On the primary dataset, our model reached an accuracy of 92.2% on the training set 

and 91.89% on the validation set, with respective sensitivity of 93.5% and 94.5% and 

specificity of 90.9% and 90.3%. Matthew’s correlation was 0.844 and 0.838 for 

respectively the training and validation sets. On the secondary dataset, the model 

reached an accuracy of 96.15%, with a sensitivity of 100% and a specificity of 91.67%, 

with Matthew’s correlation of 0.925. The AUC was respectively 0.9531 and 0.8958 for 

the primary and secondary validation datasets. These results are summarized in Table 

5.2. Based on our experiments, the model is reliable and robust with similar results 

obtained between training and validation. The value of sensitivity and specificity are 

good estimates of the model, and they are compatible with the prediction in Figure 

5.4B.  

Table 5.2: Estimated metrics for the model. 

 Primary dataset Secondary dataset 

 Training Validation Validation 

Accuracy 92.2% 91.89% 96.15% 

Figure 5.4: (A): 3D projection of mycetoma validation data on the first three latent variables. 
(B): Class predictions on a primary validation set. (C): Class predictions on the secondary 
dataset. 
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Matthew’s correlation 0.844 0.838 0.9250 

F1-score 0.9578 0.9273 0.9655 

Precision 0.9578 0.9571 0.9333 

Sensitivity 0.935 0.945 1.0 

Specificity 0.909 0.903 0.9167 

AUC 0.9741 0.9531 0.8958 

 

The Bayesian threshold estimation for class discrimination is illustrated in Figure 5.5 

where the ROC curve (Figure 5.5A) and Sensitivity/Specificity for each threshold 

(Figure 5.5B) are presented. An AUC of 0.9531 was achieved on our data.  

 

 

 

 

 

 

 

Recognizing the uncertainty of mycetoma prediction can provide better insight into the 

classification. To do this, we employ the residual bootstrap. Due to the random nature 

that results from replacement, the bootstrap method can result in different outcomes 

when applied to the same dataset. To overcome this and maintain the reliability of the 

bootstrap, the number of bootstraps was optimized to obtain the lowest standard 

Figure 5.5: Receiver Operating Characteristic curves (ROC) and 

threshold plots. 
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deviations. Thus, we repeat the calculations 100 times for a different number of 

generated datasets (1000, 2000, and 3000 samples) and observe the standard 

deviation of the residuals. Consequently, we obtain the lowest standard deviation with 

2000 resampling. We computed the confidence intervals at 95% and registered the 

lower and upper limits ranging from -0.4 to 0.5 for our prediction. These values produce 

the error bars of our dataset and provide a better understanding of the prediction 

uncertainty, Figure 5.6. This plot brings our attention to the fact that some samples 

score values near the threshold value, which suggest the features of these samples 

class have a great amount of similarity to other class. This cannot be observed using 

the metric in Table 5.3, hence the confidence intervals show the importance of 

analysing the uncertainty of the prediction.  

 

5.3.1.1 Causative organisms’ classification 

Although mycetoma management is mainly guided by the correct identification of the 

causative agents, there is a correlation between prognosis and species identification. 

Therefore, it was interesting to inspect the ability of our proposed model on the 

classification of genus/species besides causative agents. As given in Table 5.1, the 

training and validation data set is composed of the same proportion of each species to 

ensure the balance distribution of species.  

Table 5.3 shows the performance of our model across different species. We computed 

the model's accuracy for mycetoma species during the training and validation process 

Figure 5.6: Samples predictions and confidence intervals on the validation dataset. 
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to assess whether the obtained accuracy demonstrate overfitting. Clearly, two species 

of eumycetoma (Aspergillus and Fusarium) show poor performance compared to the 

other species because there are few samples for the model to train. The species 

classification for the validation dataset is given in Figure 5.7. 

 

Table 5.3: Accuracy obtained for all genes/species on the validation dataset. 

Species 
No. 

Images 

Training 

accuracy 
No. Images 

Validation 

accuracy 

AM - SS 192 94.79% 82 93.9% 

AM - AMM 50 93.18% 12 91.6% 

AM - AMP 41 100% 16 100% 

EM - Madurella spp. 99 97.98% 50 94.0% 

EM - Aspergillus spp. 26 88.89% 10 60.0% 

EM -Fusarium spp. 6 100% 3 0% 

EM - MM+ 120 90.02% 47 91.4% 

EM - MM- 71 95.83% 39 92.3% 

 

We should emphasise that the same model of eumycetoma and actinomycetoma 

classification was used to measure the performance of the species classification. Our 

proposed model is trained for a binary classification task and therefore it is not suitable 

for predicting the species. 
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5.3.2 Radiomics features importance.  

The VIP scores obtained on the primary dataset for the radiomics features of the 

grains are presented in  

 

 

 

 

 

 

 

 

 

Figure 5.7: Genus’s classification on the validation dataset. 
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Figure 5.8. Analysing VIPs score of grain features with a threshold value equal to 1 

qualified more than 40% of the features to be significant for differential diagnosis. 

Therefore, a threshold of 1.2 was considered to highlight the most important features.  
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Figure 5.8: VIP of grains features: Variable importance scores of the PLS-DA model 

for discriminating mycetoma. Black bars represent texture features, blue is the first-

order features, and yellow is the shape features. 
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In our experiments, we found that the role of shape features was trivial, while texture 

features were dominant for classification. We observed that most of the significant 

features were related to grains' variance, entropy or complexity. The top VIP score was 

reached by the joint distribution of low grey values and spatial connectivity between a 

pixel and its neighbours. This feature is an indicator of the homogeneity of textures and 

the tendency for closer blocks to have similar spatial variation. The data shown in 

Figure 5.9 illustrates the great heterogeneity in shapes that can be found in 

histopathological data. These shape features, which obtained a very low VIP, were not 

important to achieve a good classification. On the contrary, Figure 5.10 represents 

samples of grains that score the lowest and highest VIPs for some of the top 

classification features.  Among them Grey Level Variance which measures the 

variance in grey-level intensity of the consecutive and adjacent blocks within the grains. 

In contrast, difference variance indicates the heterogeneity of texture inside the grains.  

 

 

 

 

 

 

 

 
Figure 5.9: Diameter of the grains. The first and the 

second rows represent the grains that have the shortest 

and longest diameters, respectively. (A, C): 

actinomycetoma, and (B, D): eumycetoma. 
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5.3.3 Robustness to segmentation errors.  

Since that not all users of our approach will be experts in mycetoma grains 

segmentation (they probably will not master selecting only the grain without any other 

tissue components or background), we assessed and optimized the proposed 

approach against segmentation errors. To do so, we automatically created a set of 26 

different segmentation of the grains. They were obtained by eroding and dilating the 

ground truth (GT) of each grain with different sizes of the morphological structuring 

element.  

Dilation is defined as the process of expanding the actual boundaries of an image, 

while erosion shrinks these boundaries [86]. Both processes are generated by 

calculating some binary operator of the image and a structuring element (SE). SE is a 

small binary image constitutes of zeros or ones pixels, and its size specifies the size 

Figure 5.10: Grains which score greatest and smallest score for selected VIPs. 

Actinomycetoma grains (lowest score) are depicted in the top row and 

eumycetoma in the bottom row (highest score). (A, D): Difference variance, (B, 

E): Small dependence low-grey-level emphasis (peak feature), and (C, F): Grey-

level variance. 
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of SE. The arrangements of the pixels define the shape of the SE, for example, it can 

be a line, ring, square, etc.  

Since mycetoma grains tend to be oval-shaped, disks were used as structuring 

elements with a radius range [1,10] for erosion (E) and [1,15] for dilation (D). Figure 

5.11 shows an example of a GT mask and four generated masks with 5 and 10 erosion 

and dilation, which is expanding and shrinking the GT by 5 and 10. We separately 

trained the model 26 times, using each segmentation set, and for each trained model 

we predicted the causative agents using the 26 segmentation sets to assess the 

performance of the model considering all the training and validation possibilities 

amongst these segmentations. We also considered the training using the union of the 

26 segmentation sets (U). The accuracies obtained for all the configurations are 

presented in Figure 5.12. We observed the relative robustness of the method to 

segmentation errors both in training and validation. As expected, it appeared that the 

tendency to segment inside or outside the actual contour of the grain should be 

coherent between the training and usage of the proposed method. Based on these 

results, we decided to train the model with the GT segmentation set and we 

recommend for the users that manual segmentation should be preferably slightly 

inward rather than outward of the actual border of the grain.  

 

Figure 5.11: An example of the generated masks using erosion and dilation. 
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5.3.4 Model Implementation and working with GUI  

Aiming to facilitate the use of our model, we developed a graphical user interface (GUI) 

using MATLAB app designer in MATLAB 2021b. The GUI implementation can be used 

for both manual segmentation and classification. To illustrate the use of GUI, we will 

use a eumycetoma image. After launching the tool, the main window appears with two 

panels for images and results and a button for the analysis. Firstly, the user should 

upload a tissue image and then either upload ROI or draw it. Loading the images 

correctly activates the analysis button allowing the tool to analyse images by 

calculating the radiomics features and the prediction of mycetoma type. Lastly, the 

prediction results are given with an option of saving the computed radiomics features. 

Figure 5.13 depicts the main window and predication steps.  

Figure 5.12: Effect of segmentation accuracy on classification performance. 
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Figure 5.13: Mycetoma classification tool. 

 

5.4 Discussion 

Proper mycetoma management and treatment require accurate identification of 

mycetoma causative agents [3, 30]. Currently, histopathological technique seem to be 

the optimal method for the identification of mycetoma causative agents in terms of 

performance, cost and time [22, 28, 33]. However, the ability of pathologists to 

discriminate between eumycetoma and actinomycetoma is restricted by their 

knowledge of the microscopic appearance of the causative agents. Furthermore, some 

agents look very similar to each other [10, 30, 33]. Hence, the judgment is vulnerable 

to false results. Therefore, in this chapter, we pioneered a computational method to 

differentiate between eumycetoma and actinomycetoma from grains' quantitative 

features in histopathological microscopic images.  
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The performance of our method was evaluated in terms of sensitivity, specificity, 

accuracy, AUC, MCC and F1 score. On our data, the proposed model achieved an 

accuracy of 91.89%, a sensitivity of 0.945, and a specificity of 0.903. The obtained 

results were in line with the reported results from trained expert pathologists from the 

MRC [28]. The 92% accuracy of expert pathologists indicates that our proposed model 

has the potential to be as efficient as an expert. The model scored an MCC metric of 

0.838, which indicates solid statistical accuracy taking into account the different sizes 

of classes. An AUC of 0.9531 on the primary validation set indicated that the proposed 

model has discrimination ability. AUC and MCC values were homogeneous, which 

again supported the model's power to separate the classes. This was further assessed 

and supported by the bootstrap evaluation, which expresses the range where the 

prediction is more likely to be true. Based on the results of our dataset, the proposed 

approach had discriminative, objective and reproducible qualities that are promising to 

reduce the need for highly specialised pathologists for diagnosis in endemic areas.  

In this study, we mainly considered H& E staining for causative agents’ identification, 

whereas special stains such as gram, Zeilh Neelsen, and Periodic acid-Schiff (PAS) 

stains are known to be effective for identifying organisms [22, 30]. Our rationale is to 

propose a method that can be used in the most rural clinical centre where H& E 

histology is used in routine examination of mycetoma cases. It aims to improve 

mycetoma diagnosis while maintaining simplicity and cost to the minimum level. The 

same logic was applied to the acquisition protocol of histopathology microscopic 

images. The employed image acquisition and sample preparation methods are feasible 

in many clinical centres with histopathology departments.  

The results of this work were drawn from both a primary set of images using uniform 

image acquisition parameters and a secondary data set with distinct acquisition 

parameters and slide preparation techniques to evaluate the robustness of the model. 

We observed a good classification on both datasets, with a slightly increased one on 

the secondary dataset. Considering the small size of the secondary dataset, the 

variability can affect the performance of the model, and the results should be 

considered more cautiously in the secondary dataset. Nevertheless, the results on this 

secondary dataset were very good, which is a positive sign for the robustness of the 

model to the variability in acquisition parameters.  
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Regarding the most important features used for the classification, it is interesting to 

note that the ones promoted by our model differ from some usually found in the 

literature where several studies proposed size, mostly diameter, and the border of the 

grains as characteristic features of the mycetoma grains [8, 22, 33, 146]. Eumycetoma 

is supposed to have the largest grains, while actinomycetoma grains are supposed to 

vary from small to medium. Based on our results, textural features are the most 

dominant and powerful features for differential diagnosis. The top textural features 

were difference variance, small dependence low-grey-level emphasis, grey-level 

variance, and complexity. These features illustrate that eumycetoma tends to have a 

non-uniform and complex pattern within grains, and it is usually composed of 

connected blocks that are less homogeneous. On the other hand, actinomycetoma 

grains are compact with a simple or regular pattern. These results are of particular 

interest due to the reported fact, that eumycetoma grains are known to be harder with 

a coarse texture and tend to be fractured  [15, 22, 30, 33]. Hence, we believe that our 

proposed model provides quantitative features that are quite similar to the qualitative 

features used by expert pathologists. In light of the aforementioned results, we can 

conclude that the discriminating features of mycetoma types depend on the variation 

in texture for the adjacent regions within grains. In other words, the homogeneity of 

textures and the tendency for closer blocks to have similar spatial variation.  

An inherent limitation of this first study on a lightly supervised image analysis approach 

for diagnosis of mycetoma causative agent is consecutive to the local recruitment in 

Sudan. Our datasets naturally reflect the local distribution of mycetoma causative 

agents and organisms. As described in Chapter 4, our datasets include three genera 

of AM (AMP, AMM, SS) with a higher prevalence of SS and five different 

subclassifications of EM (Mspp, MM+, MM-, Aspp, Fspp) with a higher prevalence of 

MM+. This is coherent with the worldwide distribution of mycetoma [2], where MM+ 

and SS are reported as the most prevalent forms of mycetoma in Sudan. We had a 

few cases of Aspp and Fspp, which is reflected in our results as the accuracy obtained 

for these classes was not as good as for the most frequent ones in Table 5.3. It is also 

known that Nocardia is rarely observed in Sudan and indeed none of our patients was 

affected by this type of mycetoma. Consequently, our model was not trained equally 

on all types of mycetoma grains and not trained at all for some. Therefore, the 

proposed approach should currently only be considered for patients from regions of 
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the world where the distribution of the most common causative agents is similar to 

Sudan. Further studies are needed for regions that present Nocardia or another genus 

of mycetoma that were not observed in our dataset. Currently, we believe that our 

model would perform best in Africa except for Uganda, where Nocardia is prevalent. 

The results we obtained on our dataset are encouraging to appeal for larger studies 

that would include patients worldwide, to develop a method that could be used in all 

endemic areas.  

 

5.5 Conclusion 

We proposed the mycetoma classification model from manually segmented grains in 

this chapter. The proposed method uses radiomics in conjunction with PLS-DA to 

effectively discriminate between actinomycetoma and eumycetoma with 91.8% 

accuracy and robustness to sample preparation techniques. Our model has a 

performance comparable to expert mycetoma pathologists [28]. The model takes into 

account the uncertainty of classification, hence providing a range of prediction 

confidence. Furthermore, the manual segmentation precision was investigated to 

assess its accuracy in model performance. This shows that including other tissue 

components reduces model accuracy. The obtained results show model's potential and 

suggest it might reduce the need for expert pathologists in non-specialized clinical 

centres to perform histological-based diagnosis of mycetoma causative agents. 

Therefore, the proposed model could be integrated into routine histopathological 

mycetoma diagnosis procedures. Although a larger and more diverse dataset is 

needed to introduce an application that can be used on all continents, we deploy an 

application that could be carefully used in regions with a causative agent distribution 

similar to Sudan. In the next chapter, we will introduce a CNN model for grain 

segmentation to further automate of the proposed radiomics model.  
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Chapter 6: Mycetoma Grain Automatic 

Segmentation Model - GrUnet 

 

 

6.1 Image segmentation with CNN state-of-the-art 

In this section, we review some of the most used CNN architecture in image 

segmentation with Unet. Image segmentation can be considered a classification task 

where the aim is to label each pixel of the image. Recall CNN definition (Section 3.7.3), 

it is applying sequences of operators on input to obtain abstract features which are fed 

into a predictor (classifier). Hence, CNN has been heavily used for image segmentation 

problems. 

 

Summary  

In the previous chapter, we presented a classification model for mycetoma types 

from manually segmented grains. While we showed that the proposed classification 

model was robust to the segmentation errors, we expect that many users of the 

model will have limited grain segmentation experience. To increase the automation 

and reproducibility of our model, we intended to propose an automated 

segmentation method. This chapter aims at proposing a segmentation model and 

integrating it with our classification model to make a fully automated approach. The 

proposed model is a CNN network that segments mycetoma grains from tissue 

images. It is a modified version of Unet architecture with a small number of weights 

in each layer. The chapter is divided into four sections. Firstly, CNN architectures 

for image segmentation are decried. In Section 6.2, we start with a brief description 

of the data set and pre-processing, and the proposed architecture and the training 

procedures are described. Then the experimental results are given in Section 6.3 

followed by a discussion in Section 6.4. We conclude the contribution of this 

chapter in the last section.  
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One of the first CNN models to segment images considered the image as a set of 

patches, which is a small window inside the image, as an input and predicts the label 

of its centre pixel. This model is time-consuming and does not look at the structural 

relation between the neighbouring pixels. Long and others [147] proposed a new 

architecture that segments an entire image in only one forward pass through the 

network. They proposed a novel concept named “skip connection” to overcome the 

problem of ignoring the global structural relation between pixels. Skip connection 

combines structural and local information by gathering feature maps channel-wise for 

a given layer with previous layers. In their network, skip-connection was performed 

between intermediate up-sampled layers and lower layers and summing both feature 

maps. Also, the features are up-sampled in the last convolution layer to reach the 

spatial size of the input image.  

Rather than performing the up-sampling in the last convolution layer, another network 

called SegNet was proposed [148] and gradually execute the up-sampling, Figure 6.1. 

The network consists of two symmetrical parts, an encoder and a decoder. The 

encoder is similar to the classical CNN structure, while the decoder uses convolutional 

layers, and a newly introduced layer called the up-sampling layer. Up-sampling layer 

increases feature maps' size as a reverse layer to the pooling layer in the classical 

CNN structure. Therefore, the decoder increases the feature map size until the original 

image size is reached. 

         

 

 

 

 

 

 

Figure 6.1: SegNet Architecture 
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Some studies suggested using CNN models fused with other techniques or models for 

segmenting cells (nuclei). The work presented in [82] merged the information of the 

cell bounding boxes extracted using a Fully Convolutional Neural network (FCN) with 

the CNN model to segment the cell in each bounding box. Song and others [83] 

presented a CNN model with shape-prior information for segmenting the cervical cells. 

The model incorporated high-level prior information to reconstruct the border of the 

overlapped cell and integrate it with the information from multi-scale CNN that increase 

the contrast among the cell components and remove image noise. Another work [84] 

utilized the probability map generated with CNN to initialize the shape, and then the 

final segmentation would be completed by a deformable model and a sparse shape 

model. 

In 2015, Ronneberger and colleagues [85] proposed Unet architecture which is the 

state-of-the-art network for image segmentation. It is a U-shaped segmentation 

network with two symmetrical paths, namely contracting and expansive, Figure 6.2. 

The network down-sample image by max pooling and up-sample it through transposed 

convolutions. Each down-sample step doubles the number of feature channels while 

the up-sample reduces it to half. Also, it uses a skip connection between down-

Figure 6.2: U-Net architecture [85]. 
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sampling and up-sampling. Unet architecture is the most popular and successful 

network for medical image segmentation. Hence, our proposed network (presented in 

the next section) is a modified version of Unet specially targeted for grain segmentation 

in histopathological tissue images.  

U-net has adapted in many of the recent works in histopathology image segmentation. 

It was used for the multi-organ nuclei segmentation model [149] using adversarial 

learning. Another U-net model was proposed for the segmentation of the skin biopsies, 

and it proved to be robust against the variations in staining and tissue thickness [150]. 

Attention-Guided deep Atrous-Residual U-Net [151]  was introduced as a modified 

version of Unet for gland segmentation. It is comprised of Atrous-Residual units for 

encoder-decoder modules, which allow for the extraction of more gland-specific 

detailed features, this results in competitive results over existing state-of-art methods. 

Other Unet versions were proposed by modifying the encoder and decoder blocks for 

prostate image segmentation, residual and multi-resolution Inception-based blocks 

were used in [152],  while residual blocks only were used in [153].  SU-net is a CNN 

model that fused two variants of Unet architecture (Shallow U-net (SU-net) and Deep 

U-net (Dunet)) for automatic cancer detection and segmentation in whole-slide 

histopathology images [154]. This setting of multiple networks fusion exhibits the 

capability of the model in capturing the various morphological features. The work 

presented in [155] firstly trains Unet on the perineural invasion dataset to define the 

boundary of the ROI, then improve the segmentation performance by using a boundary 

dilation method and a loss combination technique. The U-net like model has been 

adapted for prostate segmentation [156].  

Furthermore, Unet has also been extended to histopathological image analysis. It was 

used to normalise the stain colour of the microscopic images using an adversarial 

training approach [157]. Also, different topologies of Unet were used to remove noise 

from the images [158]. Unet architecture also demonstrated its effectiveness in non-

medical imaging and unsupervised segmentation. W-net [159] uses the encoder-

decoder structure where both the encoder and decoder were a separate U-net model. 

It achieves significant results as a powerful feature extractor even without the use of 

labels. 
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6.2 GrUnet: The Proposed Framework 

6.2.1 Dataset and pre-processing 

The Mycetoma data set is composed of 864 tissue microscopic images from 142 

patients. The images were captured in RGB colour space with size 600 X 800 and 10X 

magnification. A comprehensive data description was given in Section 4.5.1.  

Ground-truth annotations were performed manually. Figure 6.3 shows an example of 

a grain image with its corresponding ground truth. It should be noted that the ground-

truth segmentation is defined for one grain, even if the image has more than a grain. 

 

All the images were converted into greyscale images and resized to 800 × 800. The 

colour conversion was computed using weighted conversion (Section 3.2). 

6.2.2 The Proposed Network Architecture 

Our proposed network architecture, called GrUnet is illustrated in Figure 6.4. It is a 

modified variant of the Unet architecture described in the previous section.  

As mentioned in Chapter 3: Chapter 3, in the case of the implementation of the CNN 

model, several parameters must be optimized and considered to perform a specific 

task correctly. One of these parameters is the size of the database to train and validate 

the model. It is well known that developing a CNN model requires quite a big database 

Figure 6.3: The tissue image and grain ground-truth annotation. 
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depending on the complexity of the model and the problem. However, we assumed the 

size of our database could be insufficient for the training of the classical Unet 

architecture. For this reason, we decided to start our experiments by exploring a 

modified variant of the Unet architecture.  

To build GrUnet, we introduced some changes to the classical U-net architecture. We 

kept the filter size to be small with 64 maxima. Also, we replaced pooling layers with 

strides convolution layers. This is based on the studies that show this strategy 

simplifies the network architecture without reducing the performance [160]. GrUnet is 

constructed with encoder blocks, decoder blocks, a bridge that connects the encoder 

with the decoder, and a skip connection to provide the decoder block with additional 

features for better segmentation. 

Each encoder block is composed of (3 X 3) convolution layers followed by the RELU 

activation layer. We used convolutions with a stride equal to 2 for down-sampling while 

maintaining the same number of filters and features in the two levels. The bridge is 

built of four convolution layers and closed by (3 X 3) deconvolution layer with stride 2.  

The decoder path consists in two blocks, both of which begin with concatenation (skip 

connection) of convolution and deconvolution layers and sum up the features 

channels. This allows the combination of local and spatial information. The first block 

is composed of three convolution layers followed by the RELU activation layer and 

deconvolution with stride 2, while the deconvolution layer is replaced by convolution 

with a sigmoid activation layer for the second block. Contrary to the classical Unet, our 

network does not change the number of feature channels through down-sampling or 

up-sampling, it is rather changed by controlling the stride size of the last convolution 

layer in each encoder block or first convolution layer in each decoder block.  
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6.2.3 Training 

The GrUet was trained and evaluated on the mycetoma dataset. The dataset is divided 

into training, validation and testing sets with a proportion of 65%, 20% and 15% 

respectively. Division of the dataset is a common practice to avoid overfitting. There is 

no overlapping between the three sets to control the training and monitor the model's 

performance. The training set is employed to adjust the network parameters and 

evaluate the network using the validation dataset. The final evaluation of the network 

to check for the generalization of the result is carried out through a test set. 

The network was trained with a 0.1 learning rate (LR) and Stochastic Gradient Descent, 

meaning that the network weights are updated after every single sample in the training 

dataset (batch size 1). The training occurs for 100 epochs which is the number of times 

the network passes through the entire training data set. It starts at the defined LR and 

reduces it with a factor of 0.5 for every ten epochs in case no improvement is obtained 

for the loss score of the validation dataset.   

Figure 6.4: Proposed GrUnet Architecture. 
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For the training, we used the AdaDelta optimizer [161] and binary cross-entropy loss 

function  [113]. AdaDelta is an extension of the gradient descent that speeds up the 

training process in many ways such as scaling the learning rate based on the 

accumulated gradient over a time window. Binary cross-entropy (BE) is used in binary 

classification tasks by comparing the predicted values (𝑃) and actual values (𝑌), which 

can be either 0 or 1, Equation 6.1.  

𝐵𝐸(𝑌, 𝑃) = −𝑌𝑙𝑜𝑔(𝑃) − (1 − 𝑌)𝑙𝑜𝑔(1 − 𝑃) Equation 6.1 

 

To avoid overfitting, we used a stopping criterion for the training process called Early 

stopping [113]. Early stopping stops the learning earlier by examining the validation 

performance when it starts either decreasing while the training performance is 

improving or at convergence. Investigating these criteria improves the generalization 

of the model. In our implementation, the training stops, and the evaluation metrics are 

reported after 10 epochs if no improvement is recorded for the loss score of the 

validation dataset.  

In addition, data augmentation was considered to increase the data set and avoid 

overfitting. It boosts and enlarges the training data set by creating new data by 

manipulating the original dataset. We added rotated, shifted, and flipped variants of 

the images to the training dataset. 

Figure 6.5 illustrates the training curves of our proposed network. The earlier stopping 

criterion takes place after 56 epochs; hence the training stopped and reached the best 

performance in the validation dataset. 
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The experiment was computed on iMac Retina 4,2 GHz Quad-Core Intel Core i7, 16GB 

RAM and Radeon 4 GB graphic. The network was built with Keras [162] and 

TensorFlow [163] python packages. 

Evaluation metrics: 

We assess the performance of GrUnet using the most common segmentation metrics 

namely:  Accuracy, Area Under Curve (AUC), Sensitivity, Specificity, Dice coefficient, 

and Jaccard coefficient after applying a 0.37 threshold on predication. In addition, Dice 

and Jaccard coefficients [81] measure the similarity between the predication (𝑃) and 

the ground-truth (𝑌), Equation 6.2. These coefficients range in the interval [0, 1] with 

higher values denoting more precise segmentation results. A score of 1 indicates a 

perfect similarity between the prediction and ground truth. 

𝐷𝑖𝑐𝑒(𝑌, 𝑃) =
2|𝑃 ∩ 𝑌|

|𝑃| + |𝑌|
  

𝐽𝑎𝑐(𝑌, 𝑃) =
|𝑃 ∩ 𝑌|

|𝑃 ∪ 𝑌|
 Equation 6.2 

 

 

Figure 6.5: Training curves of GrUnet on mycetoma database. 
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Also, we measure the proportion of the true prediction (true positive TP and true 

negative TN) to the total prediction, whether they are positive or negative by computing 

the accuracy using Equation 6.3. Although accuracy is considered a poor 

measurement for imbalanced classes, still it is broadly used in segmentation tasks as 

it is easily calculated and interpreted. Specificity and sensitivity calculate the accuracy 

of segmenting the background and grains (Equation 6.3), respectively. Furthermore, 

AUC provides a measurement for the performance across different thresholds. 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Equation 6.3 

𝑆𝑒𝑛𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

 

6.3 Experimental Results 

6.3.1 Performance evaluation of GrUnet 

The prediction of the grains segmentation for some examples using GrUnet is given in 

Figure 6.6. Evaluation of the model on the test dataset, we obtained dice, accuracy, 

specificity and sensitivity of 0.5707, 92.03%, 0.9688 and 0.5293 respectively. These 

metrics are inconsistent with the qualitative results obtained in comparing the actual 

grains in the tissue images and predicted grains (Figure 6.6A). We believe this 

outcome occurred because many grains were not labelled as ground truth although 

they are part of it and the model predicted them successfully. Besides this, the training 

curves in Figure 6.5 has a reasonably stable fitting and it does not demonstrate any 

overfitting.  
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Figure 6.6: GrUnet Prediction. Images from left to right represent the tissue image, 

prediction, and ground truth. 

 

For this reason and to explore how ground-truth inclusion can affect metrics, we 

updated the ground-truth segmentation of the test dataset only to include all the grains 

in the image rather than a single grain. After this, the metrics on the updated test 

dataset were computed. They achieve dice, accuracy, specificity and sensitivity of 

0.7843, 93.8%, 0.9706 and 0.5803, respectively. An example from the test dataset is 

given in Figure 6.6B.    

6.3.2 Comparing GrUnet with other architectures 

Even though we made a hypothesis that the small size of the database might limit the 

performance of the classical Unet, an experiment was conducted to segment the grains 

using Unet architecture. The model was trained using data augmentation with 563 

images and validated with 171 images. The Unet architecture achieved relatively good 

performance in terms of fitting and similarity between ground truth and prediction, as 

given in  Table 6.1 and Figure 6.7: Classical Unet training curve with mycetoma database. 

 

Figure 6.8: Prediction of gaps inside the grains.  From left to the right columns represent tissue image, 

prediction, and ground truth.Figure 6.9.  Hence and because of the popularity of Unet in 
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medical image segmentation, we attempted many Unet versions with various blocks, 

filters and kernel size, optimizers, and loss functions, still the performance improved 

slightly.  

 

We consider another model with a different architecture to segment mycetoma grains. 

The choice of architecture was based on the idea of finding a model that shows a good 

performance on segmenting tissue components with a visual appearance similar to 

mycetoma grains. This is because mycetoma grains have a unique structure and 

morphology, and their segmentation from tissue images has not been investigated 

before. An assumption of similarity between mycetoma grains and glands was made. 

Consequently, we explored the recent models used for histopathological tissue gland 

segmentation presented in [81]. CUMedVision [164] was retained as it achieved the 

best performance for segmenting the glands by incorporating multi-level feature 

representations with fully convolutional networks (FCN) with Deep Contour-Aware 

Figure 6.7: Classical Unet training curve with mycetoma database. 

 

Figure 6.8: Prediction of gaps inside the grains.  From left to the right columns 
represent tissue image, prediction, and ground truth.Figure 6.9: Classical Unet 

training curve with mycetoma database. 



 

129 
 

Network (DCAN). The result obtained with CUMedVision for grain segmentation is 

presented in Table 6.1. 

 

Table 6.1: Comparing different models conducted on the test dataset. 

Experiment AUC Spec Sens Accuracy Dice JAC 

GrUnet 0.9383 0.9688 0.5293 92.03% 0.5707 0.4503 

Unet 0.9331 0.9426 0.5935 90.63% 0.5364 0.4320 

CUMedVision 0.7502 0.5233 0.2710 75.38% 0.3068 0.2871 

 

The three models were compared considering their performance in segmenting 

mycetoma grains. The result of Unet indicates that the network might be simple for the 

grains’ segmentation task as it shows under-fitting. Furthermore, CUMedVision 

demonstrates weak performance in comparison to the Unet model. This encourages 

us to present GrUnet for mycetoma grains segmentation as it proves to have significant 

achievements. 

6.3.3 Models Integration 

The GrUnet segmentation model was proposed to automate the diagnostic process; 

hence it is necessary to merge GrUnet with the classification model introduced in the 

previous chapter.  

The GrUnet model was utilised to predict the mycetoma grains in the tissue images of 

the test dataset and the secondary dataset (described in Section 4.6.4). These 

predicted grains were examined for their performance as inputs to the classification 

model. It should be noted that the test dataset is different from the dataset used for the 

evaluation in Chapter 5.  
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First, radiomics features were calculated for the predicted grains images in both of the 

datasets. Then, these features are provided as input to our PLS-DA model for 

classification. In Table 6.2, we compare the accuracy of mAIcetoma with the manually 

segmented grains and the combination of mAIcetoma and GrUnet.  

Table 6.2: Integrated Models. Results on the test and secondary datasets. 

Dataset Dice coefficient 

Accuracy of 

integrated models 

Accuracy of 

mAIcetoma 

Test 0.5707 88% 90.8% 

Secondary 0.3750 50% 96.15% 

 

6.4 Discussion 

Mycetoma treatment depends on correctly identifying causative agents, whether 

fungus or bacterial, as they are treated differently. This identification can be carried out 

using different laboratory tools. Histopathology is the most commonly used tool. For 

establishing the histopathological diagnosis, in the beginning, we must locate the 

grain(s) within the tissue and then determine the causative agents of the grains.  

Initially, a classification model was proposed to determine the causative agents from 

the grains assuming that the stakeholder can locate the grains, perform a manual 

segmentation and feed it to the classification model. While this strategy demonstrates 

a significant performance, it lacked automation. For this reason, it was important to 

present an automated segmentation method. 

This chapter introduced a CNN model for grain segmentation from tissue images. The 

model is a modified version of Unet architecture with a small number of weights in each 

layer. As an opposite of classical Unet architecture, it consists of only two layers of 

encoder and decoder blocks linked with the bridge. Also, a maximum of 128 features 
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map is computed, and only a couple of down-sampling is performed using stride rather 

than pooling which reduces the complexity of network architecture while maintaining 

the efficiency of the network. This qualifies our proposed network to be a lightweight 

version of Unet architecture. The training was performed without a GPU, and it takes 

8 hours on a Quad-Core Intel Core i7 CPU. In the same way, the prediction of 

mycetoma grains for a single tissue image usually takes less than two seconds.  

The network was trained, evaluated and tested on the mycetoma dataset. As 

mentioned in Chapter 4, a tissue image could have more than a grain, but we 

considered only one grain per tissue image. Consequently, we should emphasize the 

fact that only one grain for each image is used during the training process, although it 

is possible for an image to contain multiple grains. The qualitative outcomes of the 

testing data set show that our network outperforms the grains used as ground truth by 

predicting all the grains in the image. For this reason and the purpose of inspection of 

the obtained quantitative metrics, the ground-truth grains for the testing data set were 

renewed and all the grains were labelled accordingly. And the evaluation metrics were 

computed for both versions of the test data set. 

Our results demonstrated that there is a 78% similarity between the network 

predictions and ground-truth annotations (renewed dataset). When analysing the 

quantitative metrics obtained in comparison to the visual appearance, we recognized 

that the network does not label any existing holes or gaps inside the grain to be part of 

it while these parts are considered as grains in the ground truth (Figure 6.10: Prediction 

of gaps inside the grains.  From left to the right columns represent tissue image, prediction, and ground 

truth. 

 

Figure 6.11: Prediction of small remnants grains.  From left to the right columns represent tissue image, 

prediction, and ground truth.Figure 6.12). These gaps occur either as a result of slide 

preparation or the nature of the grains. From this observation, it is clear that the dice 

metric is affected by this condition as it is presented in many images within the test 

dataset.  
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Analysing the true positive and true negative prediction carried out through accuracy, 

sensitivity and specificity of the network. The network score accuracy of 93.8% displays 

the percentage of correctly classified pixels regardless of whether they are grains or 

backgrounds. But this metric is inappropriate for imbalanced classes because it does 

not consider the proportion of grains and background pixels in the image. Therefore, it 

is worth examining the sensitivity and specificity, which provides a measure of correctly 

classified pixels for grains and background classes, respectively. A low specificity 

corresponds to a small number of correctly classified background pixels, while low 

sensitivity corresponds to a low accuracy of correctly classified grain pixels. We 

obtained a specificity of 0.9701 and a sensitivity of 0.7659. Meaning that the model 

has a tendency of classifying the pixels as background and this is consistent with the 

fact that the proportion of background to grains is higher in tissue images. In addition, 

the sensitivity metric is in line with the dice metric indicating the consistency of the 

results concerning the overlapping between actual and predicted grains. 

It is interesting to note that the presented model outperforms the ground truth that was 

used to train the network. The model can predict all the grains in the images, even the 

smallest remnants, Figure 6.13: Prediction of small remnants grains.  From left to the right 

columns represent tissue image, prediction, and ground truth. 

 

Figure 6.10: Prediction of gaps inside the grains.  From left to the right 

columns represent tissue image, prediction, and ground truth. 

 

Figure 6.11: Prediction of small remnants grains.  From left to the right 
columns represent tissue image, prediction, and ground truth.Figure 6.12: 
Prediction of gaps inside the grains.  From left to the right columns represent 
tissue image, prediction, and ground truth. 
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Figure 6.14: Prediction of false positive grains.  From left to the right columns represent tissue image, 

prediction, and ground truth.Figure 6.15. Even though, sometimes the network predicts false 

positive grains, as given in Figure 6.16: Prediction of false positive grains.  From left to the right 

columns represent tissue image, prediction, and ground truth. 

 

Figure 6.17, which limits the performance of the proposed study towards making a 

conclusive diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

Furthermore, we assessed the quality of segmentation on its ability to correctly classify 

the mycetoma causative agents by using our radiomic model. The model was 

developed to classify eumycetoma and actinomycetoma from a manually segmented 

grain. The test datasets of both actual ground truth and predicated grains are examined 

with the classification model. The accuracy was 88% and 90.8% for predicated and 

actual grains, respectively. These metrics are consistent with the segmentation errors 

Figure 6.13: Prediction of small remnants grains.  From left to the right 
columns represent tissue image, prediction, and ground truth. 

 

Figure 6.14: Prediction of false positive grains.  From left to the right columns 
represent tissue image, prediction, and ground truth.Figure 6.15: Prediction 
of small remnants grains.  From left to the right columns represent tissue 
image, prediction, and ground truth. 

Figure 6.16: Prediction of false positive grains.  From left to the right columns 
represent tissue image, prediction, and ground truth. 

 

Figure 6.17: Prediction of false positive grains.  From left to the right columns 
represent tissue image, prediction, and ground truth. 
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of eroding the ground-truth grains described in the previous chapter. Therefore, the 

performance of our predicated grains on the radiomics model is comparable to the 

manual segmentation. The mAIcetoma model was investigated for its efficacy against 

manual segmentation errors. The difference in accuracy between actual and 

predicated grains is similar to the accuracy obtained when the manual segmentation 

is conducted inside the actual borders of the grains. On the other hand, examining the 

secondary dataset shows a big difference in the accuracy of the two frameworks.  One 

way to interpret this result is that GrUnet could have a modest performance when it is 

exposed to a dataset with a specification different from the training dataset. Hence, 

this could directly affect the classification accuracy in the combined models. This 

drawback could be addressed by retraining the GrUnet model with several datasets 

that do not have the same acquisition protocol. 

 

6.5 Conclusion 

The presence of mycetoma grains in the tissue sections is crucial for establishing the 

diagnosis, hence detecting the grains constitutes a core step. This chapter introduces 

a method to segment the grains from tissue images and integrates it with our 

classification model, which uses the manually segmented grains. The manual 

segmentation of mycetoma grains required time and experience. Also, the automated 

grain segmentation furthers the introduction of the fully automated diagnostic method. 

The proposed approach is based on CNN segmentation models in medical images, 

particularly because it is a modified variant of Unet architecture. According to our 

experiments, the proposed framework demonstrates significant performance on 

mycetoma histopathology microscopic images that leads to 93.8% segmentation 

accuracy and 0.7843 dice coefficient. Furthermore, this study showed that our 

presented segmentation model coupled with the previously proposed classification 

method reached comparable results with those obtained using manual segmentation. 

In the following chapter, we will draw the conclusions and perspectives of our work in 

this thesis. 
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Chapter 7: Conclusion and Future Work  

 

7.1 Conclusion and Limitations  

Mycetoma is a WHO-recognised neglected tropical disease. It is a major public health 

problem that frequently affects young adults and children in remote rural areas, causing 

deformities, disabilities and sometimes death. Mycetoma research has mostly focused 

on the disease's clinical and laboratory aspects. Although molecular identification of 

mycetoma causative agent is the most accurate, culture methods are still the gold 

standard techniques in mycetoma laboratory diagnosis. Most of the diagnostic studies 

were conducted to propose new techniques, while few were conducted to improve the 

existing techniques. With all the studies, computerised analysis of used diagnostic 

methods has lagged behind. This could be explained by the fact that mycetoma is a 

neglected disease, its prevalence is concentrated in poorly developed regions and 

among people with low socioeconomic status. Also, the painless, slow progression and 

non-contagious nature of this disease might be an extra cause that mycetoma does 

not receive much attention in terms of Computer Aided Diagnosis (CAD) research.     

To keep up with the modern era of CAD and, at the same time, facilitate the diagnostic 

process while maintaining the simplest technique that could be used in endemic rural 

areas, we investigated the possibility of proposing an automated diagnostic model for 

mycetoma. Since the imagining techniques come at the second stage of diagnosis, we 

explore the laboratory techniques with their pros and cons and to which extent they 

are valuable and useful or accurate in the diagnosis. 

This thesis focused on the analysis of histopathological microscopic images. Although 

histology is not the gold standard or the most accurate, it is still an optimal tool within 

limited resource environments and/or rural areas. Automating mycetoma 

histopathological analysis could significantly affect time, cost and quality of diagnosis. 

Until 2013, mycetoma had been neglected for years before being included in the WHO 

neglected tropical diseases list. Although this draws the attention of media and 

scientific communities, this recognition is mostly limited to endemic areas and 

personnel interested in tropical medicine. This was the reason for outlining Chapter 2 



 

136 
 

to provide a handbook for general and essential information regarding mycetoma, its 

diagnosis and management. Also, it draws the state-of-art for mycetoma research and 

knowledge gaps and the motivation for proposing the computational method for 

mycetoma diagnosis.  

Since we are pioneering an automated method for mycetoma diagnosis, in Chapter 3, 

we reviewed the CAD studies of histopathological images. The reviewed studies focus 

on the main steps involved in developing mycetoma histology methods, namely image 

enhancement, segmentation, features, and pattern recognition. The most challenging 

part was investigating the choice of an appropriate features category that could be 

descriptive for mycetoma tissue images. Radiomics features sound promising as they 

combine several categories in three broad feature classes. We also extensively 

explore machine learning and artificial neural network methods.   

Creating the mycetoma database was the main focus of Chapter 4. The tissue samples 

were collected from mycetoma-confirmed patients seen and managed at the MRC. 

The paraffin blocks were prepared and sent to the Bretonneau Hospital in France. 

Following a uniform sectioning and H&E staining procedure, we prepared the 

histopathological slides for 142 patients. Several histopathological slides containing 

different grains were prepared for each patient, with an average of six grains per 

patient. Because grains are the unique characteristic of mycetoma infection, it was 

necessary to manually segment grains (ROIs) for each histopathological slide. The 

database consisted of 864 mycetoma grain microscopic images with their ground-truth 

segmented grain. It is acquired with a homogeneous and unique reproducible 

acquisition protocol. The work done in this chapter resulted in the first database of 

mycetoma microscopic images. This database could be of great benefit to many 

researchers who are interested to study this neglected disease and improving 

healthcare.  

Although the database included 142 patients from the MRC with the two types of 

mycetoma, it does not comprise all the mycetoma species. Currently, there are more 

than 80 different causative species with uneven geographical distribution. The MRC’s 

patients are either Sudanese or from neighbouring countries where Madurella 

mycetomatis, Actinomadura madurae, Streptomyces somaliensis, and Actinomadura 

pelletieril are the most common species. Therefore, our database focused on these 
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species for actinomycetoma as well as the Madurella genus in general and especially 

Madurella mycetomatis for eumycetoma. 

Depending on the mycetoma causative agents, regardless of species, the treatment 

requires prolonged administration of antifungal or antibiotics drugs. This identification 

remains challenging, difficult and disappointing. Hence, identifying mycetoma 

causative agents plays a significant role in the treatment process. The incorrect 

identification can seriously affect the patients and the disease prognosis and outcome. 

As a result, Chapter 5 mainly concentrated on proposing a model to classify 

eumycetoma and actinomycetoma correctly. We aimed to decrease or eliminate all the 

sources that could affect the accuracy. As we were unaware of how the auto-

segmentation or the variation in the preparation of samples might impact the model, 

we introduced a model that was trained and validated using the mycetoma database 

with the manually segmented grains. The trained model achieved promising results 

with an accuracy of 91.89%, which is comparable to the result of expert pathologists 

(92.8%) while using manual analysis. 

Even though the classification model showed significant performance, this 

performance is likely limited by the mycetoma species that were represented in the 

database and used for the training of the model. Because of this, our model will likely 

misidentify any other species. And it is expected to perform better in Europe and Africa 

compared to South America and Asia. So, this limitation should be investigated 

carefully in future studies considering the geographical distribution of the other species. 

One of the aims of this work was to provide a set of quantitative features that describe 

the two mycetoma types and try to correlate them with qualitative features in use by 

pathologists. We explore the three main groups of features used by pathologists to 

diagnose mycetoma: the grains' shape, colour, and texture. Hence, 102 radiomics 

features were investigated and examined for their discrimination ability in mycetoma-

type classification. This showed that the shape features were not relevant to any 

discrimination tasks, while texture features were important. 

The promising results of the classification model as well as the fact that the manual 

segmentation of mycetoma grains required time and experience, encouraged us to 

propose a method to segment the grains from tissue sections and combine it with our 

classification model. Chapter 6 introduced a CNN network that was inspired by Unet 
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architecture to automate grains' segmentation. According to our experiments and 

results, the proposed framework demonstrates significant performance on mycetoma 

histopathology microscopic images, leading to 93.8% accuracy on the segmentation 

task and 0.7843 dice coefficient.  

We integrated both the classification and segmentation models to fully automate the 

diagnosis process in a way that the user will need only to provide the image without 

performing the manual segmentation. The accuracy of the classification was 88% and 

90.8% for automated and manual grain identification. With the automated segmented 

grains, the model performance slightly decreased but remains close to manually 

segmented grains. We believe this occurs because the segmentation model segment 

the false positive grains and assigns them to the classification model for differentiation.  

We developed a tool that offers a semi-automated differential diagnostic method for 

mycetoma. It can be used for both manual segmentation and classification. We believe 

this tool is more reliable for a release than the combined models. This is because that 

combined model can falsely segment other components as grains leading to an 

incorrect diagnosis, while the tool guides the differential diagnosis of confirmed 

mycetoma cases. 

 

7.2 Future perspective 

7.2.1 Mycetoma Database 

This thesis aims to propose an automated diagnostic method for mycetoma that can 

be utilised globally (because the global burden is unknown) and in endemic areas 

especially. However, the database built in this work is attributed to mycetoma species 

from Sudan and other geographical regions with a similar distribution. As mentioned, 

this matter might affect the accuracy of our models such that exposing the model to 

certain species, which were not included in the dataset, could not be correctly 

classified. Therefore, more samples must be collected to enlarge the existing database 

with new species and more samples from the existing species. The sample should be 

collected from different countries and continents as the species' geographic 

distributions vary widely.  
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In addition, the ground-truth images of the manually segmented grains required to be 

updated and include all the grains in each image. Then, the database should be 

modified accordingly. We observed the necessity of this modification during the 

evaluation of the segmentation model because the inclusion of all the grains in the 

ground truth gives different results compared to the single grain.  

7.2.2 The Segmentation Model 

The GrUnet was trained using the mycetoma database with a single grain per image 

as a ground truth. As mentioned above, the evaluation demonstrated different 

performances on the different datasets. For this reason, we believe retraining the 

model with the updated database could improve the model's capability to segment 

mycetoma grains. Another possibility is to retrain the model with the predicted 

mycetoma grains.  

To further develop the automated diagnostic method, the presented segmentation 

model needs to be coupled with a detection technique. This is because we observed 

a degradation in the accuracy of the combined models which is mostly attributed to the 

detection and segmentation of false positive grains. This issue is considered a 

limitation of our proposed automated diagnostic model. To overcome this, we need to 

propose a detection model to be used for mycetoma grain detection. The model should 

be the first step in the pipeline of the automated diagnostic method. For this purpose, 

a dataset of false positive grains is required to develop and train the model.     

7.2.3 The Classification Model 

The classification of the causative agents' genus and/or species can be explored. 

Currently, all mycetoma patients are given the same treatment regimen of antifungal 

or antibacterial regardless of the species. However, there is a correlation between 

treatment outcomes and species identification. For this reason, classification into 

species level could help in the follow-up and prognosis.  

This classification was examined within the proposed radiomics model. However, we 

believe that the limited number of images for these classes strongly affects the 

performance of the extended model. Accordingly, we suggest increasing the number 

of images of the different classes for the extended model in upcoming works. Also, 
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another perspective is the development of a grading model that examines the 

causative agent species. 

In addition, particular attention should be given to Madurella mycetomatis and 

Madurella mycetomatis negative classification. This classification class is of special 

interest since Madurella mycetomatis is the most common causative organism 

worldwide, and its treatment is challenging and problematic. Also, most of the affected 

patients do not respond to medical therapy alone and require surgical intervention. It 

is interesting to know that histopathology alone cannot make this classification and is 

only possible through molecular techniques. We tested our radiomics model for this 

purpose, but the performance was unsatisfactory. Hence, we examine wavelet scatter 

transforms [165]. The model achieved a classification accuracy of 71%. Extra samples 

for Madurella mycetomatis negative are needed to conclude that this accuracy is 

reliable. We believe that our Madurella mycetomatis negative sample might contain 

few eumycetoma species compared to the actual 40 reported species [166]. Therefore, 

more Madurella mycetomatis negative samples must be collected considering their 

species. 

Finally, a deep learning model should be considered after enlarging and modifying the 

database. The model could be able to perform all the tasks of the segmentation and 

classification of mycetoma grains at once. 
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Abstract:  
Mycetoma is a chronic, neglected infectious disease endemic in tropical and subtropical areas that may lead to severe 
disability. By considering the causative agents, mycetoma is classified into eumycetoma (fungus) and actinomycetoma 
(bacteria). The diagnosis strategy relies on the clinical presentation and the identification of mycetoma causative agents. 
Accurate identification of the causative agents is a priority for mycetoma diagnosis.  
The current identification tools include molecular techniques, cytology, histology and grain culturing which is the gold standard 
tool. Molecular techniques are the most reliable tool, but it is expensive to be used in endemic areas, while culture is time-
consuming, difficult and requires expert personnel. Cytology and histology are simple, rapid, and cheap tools. However, 
cytology is far from being satisfactory in terms of performance because it tends to give false positive results. Although 
histopathology is considered to be the optimal tool to be used in endemic areas, it requires expert pathologists for conclusive 
identification, which are lacking in endemic rural areas.  
With the advent of digital pathology, automated image analysis algorithms can be used to solve this issue. The main aim of 
this thesis is to develop a novel computational diagnostic method for mycetoma diagnostic using histopathological 
microscopic images. Firstly, we create the first database for mycetoma microscopic images. This issue arises from the need 
for a dataset to develop a computation model. Then, we present a novel computation method to semi-automatically 
discriminate the mycetoma causative agents. The method is based on the radiomics analysis of manually segmented 
mycetoma grains and Partial Least Square-Discrimination Analysis (PLS-DA). The presented model can play a fundamental 
role in the non-specialised clinical centres because it reaches an accuracy comparable to expert pathologists. Lastly, we 
introduce an automated segmentation method for mycetoma grains. The segmentation method is Convolution Neural 
Network (CNN) model based on U-net architecture. It allows the full automation of the discrimination approach. In conclusion, 
this thesis presents both automated diagnostic methods for mycetoma histopathological microscopic images and semi-
automated differentiate methods for mycetoma grains.   
 
Keywords: Mycetoma diagnosis, Digital Histopathology, Microscopic Images, Image Analysis, Artificial Intelligence and 
Radiomics. 
 

Résumé 
Le mycétome est une maladie infectieuse chronique négligée dans les régions tropicales et subtropicales qui peut entraîner 
une invalidité grave. En considérant les agents responsables, le mycétome est classé en eumycétome (champignon) et 
actinomycétome (bactérie). La stratégie diagnostique repose sur la présentation clinique et l'identification des agents 
responsables du mycétome. L'identification précise des agents responsables est une priorité pour le diagnostic du mycétome. 
Les outils d'identification actuels comprennent les techniques moléculaires, la cytologie, l'histologie et la culture des grains 
qui est l'outil de référence. Les techniques moléculaires sont l'outil le plus fiable, mais il est coûteux et donc peu utilisé dans 
les zones endémiques, tandis que la culture est longue, difficile et nécessite un personnel expert. La cytologie et l'histologie 
sont des outils simples, rapides et bon marché. Cependant, la cytologie est loin d'être satisfaisante en termes de 
performances car elle a tendance à donner des résultats faussement positifs. Bien que l'histopathologie soit considérée 
comme l'outil optimal à utiliser dans les zones endémiques, elle nécessite un pathologiste expert pour une identification 
concluante qui fait défaut dans les zones rurales endémiques. 
Avec l'avènement des approches numériques, des algorithmes automatisés d'analyse d'images peuvent être utilisés comme 
solution à ce problème. L'objectif principal de cette thèse est de développer une nouvelle méthode diagnostique de calcul 
pour le diagnostic du mycétome à l'aide d'images microscopiques histopathologiques. Premièrement, nous créons la 
première base de données d'images microscopiques de mycétomes. Cette contribution découle de la nécessité d'un 
ensemble de données pour le développement de modèles de calcul. Ensuite, nous présentons une nouvelle méthode de 
calcul pour discriminer semi-automatiquement les agents responsables du mycétome. La méthode est basée sur l'analyse 
radiomique de grains de mycétomes segmentés manuellement et l'analyse de discrimination des moindres carrés partiels 
(PLS-DA). Le modèle présenté peut jouer un rôle fondamental dans un centre clinique non spécialisé car il atteint une 
précision comparable à celle des pathologistes experts. Enfin, nous introduisons une méthode de segmentation automatisée 
pour les grains de mycétome. La méthode de segmentation est un modèle de type Convolution Neural Network (CNN) basé 
sur l'architecture U-net. Il permet l'automatisation et la rapidité des méthodes de discrimination. En conclusion, cette thèse 
présente à la fois une méthode automatisée de diagnostic des images microscopiques histopathologiques du mycétome et 
une méthode semi-automatisée de différenciation des grains de mycétome. 
 
Mots-clés: Diagnostic du mycétome, Histopathologie numérique, Images microscopiques, Analyse d'images, Intelligence 
artificielle et Radiomique. 
 


