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M. Emmanuel Trélat Examinateur
M. Enrique Zuazua Rapporteur



Amaury HAYAT :

CERMICS - Ecole des Ponts Paristech

Adresse électronique : amaury.hayat@enpc.fr

amaury.hayat@enpc.fr


Remerciements

Je remercie tout d’abord très chaleureusement Olivier Glass d’avoir accepté d’être le coordinateur de cette
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Eric Cancès et Tony Lelièvre, qui ont su m’aiguiller dès mon arrivée sur de nombreux sujets tant concernant
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lui et j’ai beaucoup appris, à la fois en mathématiques et sur le métier de chercheur. Son enthousiasme
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projet qui m’a tenu très à coeur pendant trois ans. J’en profite pour remercier à cette occasion Alexandre
Bayen ainsi que toute l’équipe de cette aventure incroyable qu’est CIRCLES et particulièrement Jonathan
Lee, Sean McQuade, Xiaoqian Gong, Maria Teresa Chiri, Ryan Delorenzo, Tinhinane Mezair, Alexander
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Bastin, et nos séances de travail à Paris, ainsi qu’à Peipei Shang, et sa bonne humeur contagieuse (même
quand j’ai un mois de retard sur un projet). J’aimerais remercier tout particulièrement Shengquan Xiang, un
mathématicien exceptionnel avec qui j’ai eu la chance de travailler sur des sujets extrêmement divers à Paris,
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à l’idée qu’un modèle d’intelligence artificielle puisse un jour faire des mathématiques. Aujourd’hui, j’ai le
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Chapter 1

Introduction

1.1 Presentation of the thesis

Control theory answers a simple question: “if we can act on a system, what can we make it do?” From a
mathematical point of view, we have a system of equations in which we can choose one or several parameters
(in a sense to be defined) and we wonder if we can choose these parameters so that the solutions of the
system have the behavior we want and, if so, how. These parameters, called controls, can be for example
a term of an equation, a coefficient, a boundary condition, etc. They can have constraints (or not) on the
regularity, the support, the domain and the image, the dimension etc. This theory is often divided into three
branches:

— Controllability: this consists in knowing if one can reach any final state from any initial condition, by
choosing well the controls. The classical example is the following: for a system of the form

ẋ(t) = f(x(t), u(t)), (1.1.1)

where u is a control parameter that we can choose, T is a given time, x0 and x1 are any initial and
final state, does there exist for a control u such that if x(0) = x0 then x(T ) = x1 ?

— Optimal control: we are looking for the best way to choose the controls to achieve an objective.
“Best” refers to some cost functional over which we are optimizing. For example for a system of the
form

ẋ(t) = f(x(t), u(t)), (1.1.2)

and a functional J(t, x, u) that we want to minimize, is there one or more optimal solutions u of this
minimization problem and, if so, how to find them?

— Stabilization: we want to know if a given trajectory is asymptotically stable, i.e. that whatever the
initial condition of the system, the solution(s) converge(s) to this given trajectory. This convergence
can be either only asymptotic, or exponential, or even in finite time. For example: consider the system

ẋ(t) = f(x(t), u(t)), (1.1.3)

is it possible to find u such that, whatever the initial condition x0, lim
t→+∞

x(t) = 0? This of course

depends on f and the constraints on u.

These control problems have many variations in many contexts, in finite or infinite dimensional spaces, for
ordinary or partial differential equations, on different types of domains, with or without constraints, etc.
The theory, already rich, is still far from being complete, in particular concerning the third category: stabi-
lization. We focus almost exclusively on this branch in this thesis.
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The main characteristic of stabilization –compared to controllability and optimal control– is that the control
has the form of a feedback. That is, it depends on the state of the system at each time t and not on the
initial condition, which is potentially unknown. Formally speaking this means 1

u(t) = F(t, y(t, ·)). (1.1.4)

From a practical point of view one can understand the interest: a control that depends on the initial con-
dition will be blind to possible disturbances along the trajectory. These disturbances will almost inevitably
occur since the model is not perfect, and will deviate the system from its ideal trajectory. On the other
hand, a control that depends on the state of the system at time t can react to these perturbations and thus
adapt. This is what automaticians call a closed loop system.

Before diving into the theory, we can see that control theory has a specificity that is relatively rare 2 within
mathematics. On the one hand, the use of a control depending itself on the state of the system and the
presence of partial differential equations makes the mathematical problem complicated, to the point of giving
rise to a very rich and yet still largely incomplete mathematical theory (in particular for non-linear systems
as well as rapid or finite time stabilization problems, see Part II). On the other hand, stabilization problems
have many direct applications, in industry, engineering, etc. Stabilization is a question that humans have
been trying to solve, with or without mathematical tools, since Antiquity 3 to the point that, even nowadays,
practice is sometimes ahead of mathematics: the proportional-integral (PI) control used in the regulation of
waterways was used in engineering applications years before having the mathematical analysis confirming
which control ensures the stability of the system in [21] then [136].

This makes stabilization an abstract and theoretical field, but with extremely practical direct applications.
If all mathematical fields have practical applications more or less distant (and sometimes even unsuspected),
this direct proximity is not that common. This leads to having very different communities, from mathemati-
cians to engineers, working on similar problems with quite different visions (and sometimes rigors). Although
this thesis belongs to the mathematical side, it will try to give a glimpse of this diversity. Parts I–II deal
with an abstract and purely mathematical problem, while Part III talks about a very practical problem of
road traffic control, yet sometimes just as theoretical, as we will see in Chapter 9.

In order to facilitate the reading, this thesis is divided into four largely independent parts. Each part is
summarized below in Section 1.3. In each of them, we first present some background information before
presenting some of our results, taken from the articles listed below (Section 1.2). Each part generally focus on
one or two articles, for which we will give brief ideas of proofs sufficiently detailed to (hopefully) understand
how they work, without giving the whole proof.

1. in some cases the control can also depend on the state of the system at previous times. To simplify, we just use this
expression here

2. in my opinion
3. One can note the example of the water clock of Ktésibios (also known as Ctesibius) [90], or much more recently the

fire pump of the Perier brothers whose integral regulation system is the ancestor of the PI controls which were theorized
mathematically rigorously only towards the beginning of the XXth century with, among others, the works of Minorski [189].
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1.2.2 Supervisions
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1.3 Summary of the thesis

1.3.1 Part 1

This part is in the direct continuity of my PhD work. The goal is to use a Lyapunov approach to determine
sufficient conditions of exponential stability. We are looking for conditions under which there exists, for a
given system, a basic quadratic Lyapunov function, i.e. a functional similar to an energy that decreases
exponentially along the trajectories. The systems we look at are one-dimensional and mostly nonlinear
hyperbolic systems where the control is located at the boundaries. These systems model many physical
phenomena and are found in many areas such as hydrodynamics, engineering, physics, but also biology or
economics [12, 19, 29, 67, 134, 185, 220]. They can be written as

∂tu +A(u, x)∂xu +B(u, x) = 0, x ∈ (0, L),(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
.

(1.3.1)

For such systems, these Lyapunov functions take the form

V (U) =

l∑
n=0

∥F (·)E(U, ·)DnU(·)∥Lp(0,L), ∀ U ∈W l,p(0, L), (1.3.2)

where W l,q is the Sobolev norm considered, F is a diagonal matrix of weight functions (fi)i∈{1,...,n} ∈
C1([0, L]; (R∗

+)n), E(U, x) is a matrix diagonalizing A(U, x), and Dn is a differential operator iteratively
defined by D0U = U and

Dn+1U = ∂U(Dn−1U)(−A(U, x)∂xU−B(U, x)). (1.3.3)

These functions are thus written as norms with weights and the question we ask is:

“Under what condition do weights (fi)i∈{1,...n} exist in C1([0, L]; (R∗
+)n) such that V is a Lyapunov function

for the system under consideration, i.e. decreases exponentially along the trajectories?”
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For example, a basic quadratic Lyapunov function (or energy-like Lyapunov function) for the L2 norm is
written ∫ L

0

uT (t, x)Q(x)u(t, x)dx, (1.3.4)

where Q = diag(f1, ...fn) is a diagonal matrix of weights. When such a Lyapunov function exists for a given
norm the system is exponentially stable for this norm. These Lyapunov functions are the key ingredient of
many works in a general framework [18, 19, 57, 132, 133, 207, 245] or in the framework of particular physical
systems (see for example [37, 59, 94, 95, 127, 128, 139]). The Lyapunov approach is a very general method
and in particular much more general than the 1D setting. It can work in a multidimensional setting and can
give rise to decay rate that are not exponential (see for instance [182, 183]). However, when the system is
multi-dimensional there is currently no known systematic way of deriving good Lyapunov functions. Some
results exists in particular cases by leveraging a natural energy of the system (see for instance [263]).

Before continuing, one might wonder why the matrix Q of (1.3.4) must be diagonal and not simply positive
definite. This is in fact a result shown in [18]: if V is a Lyapunov function for the norm L2 of the form
(1.3.4) then Q is necessarily diagonal. This comes from the fact that the eigenvalues of the system (1.3.1)
are distinct. When some eigenvalues are repeated it is possible to find block diagonal Lyapunov functions for
the linearized system but they do not necessarily guarantee the stability of the associated nonlinear system,
unlike diagonal Lyapunov functions.
The advantage of these simple Lyapunov functions is that they often lead to stability conditions with rela-
tively simple controls, and in addition this stability is often robust. To measure this robustness, we show in
Chapter 2 that the sufficient stability conditions that we find also allow us to obtain a more general property
than the exponential stability: the Input-to-State Stability (ISS).
Introduced in 1989 in [225] for finite dimensional systems, ISS consists in looking at the resilience of the
exponential stability when unknown and unmeasured perturbations occur. This notion was then extended
to delay systems (see [44] for a survey of known results) and then generalized to PDEs (see [151, Chapter 1]
for more details). Unknown perturbations can then occur in the dynamics or the boundary conditions. Most
of the time it is no longer possible to have an exponential stability 4 but it is sometimes possible to show that
the deviation from exponential stability is continuous with respect to these unknown perturbations. More
precisely we try to show an estimate of the form 5

∥u(t, ·)∥X ≤ C1e
−γt∥u0∥X + C2 (∥d1∥Xt×X + ∥d2∥Xt

) , (1.3.5)

where ∥ · ∥X is the norm considered (formally) in space, ∥ · ∥Xt
the norm considered in time and ∥ · ∥Xt×X

is the norm considered in time and space, γ > 0 is the exponential decay rate, d1 are perturbations on the
dynamics (which depend on time and space) and d2 are perturbations at the boundaries (and depend only on
time). We can notice that when there are no perturbations, i.e. d1 ≡ d2 ≡ 0, then we recover the definition
of exponential stability. This is why ISS is often referred to as a generalization of exponential stability, which
is of interest in practical applications where there are always disturbances, either from unknown external
elements or from deviations between reality and the chosen mathematical model. ISS for PDE systems is
still much less studied than the exponential stability and most of the results are recent. One can quote for
example [151, Part I-Part II], where the authors give ISS conditions for a semilinear parabolic or a linear
hyperbolic PDE for the norm Lp for any p ∈ N\{0}∪{+∞}. In particular, it was the most advanced results
for ISS of inhomogeneous hyperbolic systems in L∞ norm before [22]. In [81], the authors study Lyapunov
functions for ISS (see Section 2.2) and apply them to ISS of semilinear reaction-diffusion equations for Lp and
H1 norm. In [187], the authors study a linear parabolic system for L2 norm and in [208] the authors study
a non-autonomous linear hyperbolic system and perturbations in the dynamics for L2 norm. In [82], the
authors show an ISS property for semilinear wave equations in the sup norm, as well as a partial ISS property
for the L2 norm. In [232], the authors study linear homogeneous hyperbolic systems in the H1 norm and

4. exceptions exist, proportional integral controls -which we will not discuss in this thesis- allow to keep the exponential
stability even with constant unknown perturbations. The sliding mode generalizes this to time-dependent perturbations (see
for example [175])

5. In fact this estimate is even a little restrictive, it is what we call exponential ISS. Weaker estimates exist, see for example
[151].
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show an ISS estimate using a dynamical controller obtained as a solution of an ODE. Other relevant results
can be found in [3] where the authors relate ISS for a nonlinear system in the Hp-norm to the behavior of
a storage functional and in [190] where the authors reduce ISS problem in general to ISS with respect to
constant perturbations alone for monotone nonlinear systems. The case of an inhomogeneous linear system
in the L2 norm has been treated in [106] while the nonlinear case has been treated in [245] with the H2

norm.

We investigate the following problems

— In Chapter 2, we are interested in ISS of 1D hyperbolic systems in general, and we show that exponen-
tial stability conditions for the Cq norms ( q ≥ 1) obtained in [58, 132] also imply ISS. Interestingly,
the Lyapunov functions we obtain do not satisfy the differential estimate usually expected for Lya-
punov functions, but still allow us to obtain the ISS.

— In Chapter [135], we focus on the ISS of a semilinear Lipschitz system and we show that in this
framework, we can not only stabilize the system for the L2 norm but also find global ISS and global
exponential stability conditions.

1.3.2 Part 2

The second part focuses on a method called backstepping and its generalization. Originally, backstepping
is a method to stabilize finite dimensional systems, introduced in [42, 157, 234]. It takes advantage of the
triangular (or cascade) structure of a system. This method has been adapted to infinite dimensional systems
in [60] and then modified to be applied to partial differential equations (see for example [16, 30, 162] and
the Section 1.3.2).
The idea of backstepping is simple: find a transformation between the system of interest and a system that
is simple to stabilize (for example thanks to a basic quadratic Lyapunov function). If this transformation
is invertible, it is enough to find a stabilizing control for the simple system and then to apply the inverse
transformation in order to have a control for the original system. The problem is to prove the existence of
an invertible transformation between the original system and the simple system. For example if we want to
stabilize the following system

∂tz1 + ∂xz1 + z2 = 0,

∂tz2 − ∂xz2 + z1 = 0.
on [0, L], (1.3.6)

with boundary conditions

z1(t, 0) = z2(t, 0),

z2(t, L) = u(t),
(1.3.7)

where u(t) is the feedback control we aim to find, we may want to find T in L(L2, L2) such that y := Tz is
solution to the target system

∂ty1 + ∂xy1 = 0,

∂ty2 − ∂xy2 = 0.
on [0, L], (1.3.8)

with boundary conditions

y1(t, 0) = y2(t, 0),

y2(t, L) = v(t).
(1.3.9)

It can be shown that this target system is easy to stabilize and is exponentially stable 6 if one chooses
v(t) := e−λz1(t, L). Therefore, if T is an isomorphism, z converges exponentially to 0 whatever the initial

6. and with an arbitrary decay rate provided that λ can be chosen arbitrarily
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condition and the original system is thus exponentially stable.

If the principle of this method is simple, its practical implementation is much more complicated: a general
transformation between two systems belongs a priori to a very large space, potentially difficult to explore,
and ensuring invertibility is not always easy. It should also be noted that the control is also a parameter
that can be chosen and, in particular, it can be chosen such that the transformation exists. So, the problem
can be reformulated as follows: find a control and an invertible transformation such that the image of the
original system by the transformation is a stable system. However, this equivalent formulation is not easier
to implement. Moreover, we have to be careful that the transformation is done in the space of interest (L2

for example if we are looking for stability in L2 norm) and that the regularity of the obtained control is
compatible. Finally, since the final feedback control u is obtained by applying a potentially complicated
inverse transformation to the feedback control v of the target system, the final feedback control is also
potentially complicated. Unlike the controls obtained by the Lyapunov approach presented in Part I, these
controls often depend on the state of the system on the whole domain and not only on one point. Nevertheless,
this method allows to obtain very impressive stabilization results and to overcome the limits of pointwise
local controls. We are interested in two types of backstepping: Volterra backstepping and a more recent
approach of generalized backstepping.

Volterra Backstepping In order to simplify the problem, the transformation is often sought in the form
of a Volterra transformation of the second kind, that is

(T U)(x) := U(x) −
∫ x

0

K(x, y)U(y)dy, (1.3.10)

with K ∈ L2([0, L]× [0, L];Rn×n). These transformations have the nice advantage of being always invertible
(from L2 into L2). Moreover, they often allow to transform a complicated term in the dynamics into a bound-
ary term (see [142, 162] for instance). This type of backstepping, which we will call backstepping Volterra in
the following, was introduced in the early 2000s. First from a discretized approach [16, 30] then systematized
using a Volterra transformation for scalar parabolic linear systems [224] (see also the now-famous course [162]
for a in depth explanation). The hyperbolic linear systems with propagation velocities of the same sign were
then studied in [161], then with different signs in [91, 237]. Hyperbolic nonlinear systems in general were
then studied in [73, 143]. Many special cases have been studied such as the Korteweg de Vries equations, the
Saint-Venant Exner equations, or engineering systems such as the motion of a crane [80, 92, 250]. Volterra
backstepping has been a huge success and has resulted in more than a thousand articles 7 since the pioneering
work of Krstic et al.

In Chapter 4 we look at a parabolic cross-diffusion system where the control is located at the boundaries and
the size of the domain increases with time (in a way that depends a priori on the control at the boundaries).
This particularity induces several difficulties, for instance it imposes that the kernel K of T given in (1.3.10)
depends on time. Showing that T (t, ·) is invertible and continuous from L2 into L2 for each fixed time t is
then not sufficient to guarantee an exponential stability. Indeed the exponential stability estimate that we
can hope to obtain becomes formally 8

∥u(t, ·)∥L2(Ω(t) ≤ ∥T −1(t, ·)∥L(L2(Ω(t))∥T (0, ·)∥L(L2(Ω(0))e
−λt∥u0∥L2(Ω(0)), (1.3.11)

where Ω(t) is the domain considered at time t. Thus, the quantity ∥T −1(t, ·)∥L(L2(Ω(t)) depends on time
and we must guarantee a certain control on it so that it cannot destroy the exponential stability. The
asymptotic stabilization of a system where the domain grows with time has been studied in a simpler case
in [144, 145], thanks to the considered dynamics and without guaranteeing any bounds on the norm of the
transformation, which is one of the main difficulties in our case. We look at the linearized system and we
obtain a rapid stabilization result, i.e. exponential stabilization with an arbitrarily large decay rate, and a
finite time stabilization result using Volterra backstepping.

7. google scholar count
8. We use the notation L2(Ω(t)) by a slight abuse of language.
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Generalized backstepping For a large number of systems, however, this Volterra backstepping is limit-
ing and does not allow to conclude. This is often the case for systems with an internal control, i.e. when
the control is located in the dynamics. To overcome this obstruction, several people have been interested in
looking for a more general transformation, not limited to Volterra transformations. The goal is to obtain
more powerful results. Of course, this also means that we are again confronted with the difficulties inherent
to backstepping, in particular the question of invertibility that Volterra transforms allowed to avoid. A first
approach has been proposed by Coron and Lu in [68, 69] to obtain the fast stabilization of the Korteweg-
de-Vries equation and then of the Kuramoto-Sivashinsky equation in 2014 and has been adapted in many
cases: the Schroedinger equation, a degenerate parabolic equation, etc. A slightly different approach using
also a generalized backstepping has been introduced to deal with the case of autonomous or non-autonomous
balance laws in [65, 66] but in this case the control is located at the boundaries, which significantly changes
the approach.

In Chapter 5 we show how to adapt this backstepping to the heat equation on the torus with internal scalar
controls, as well as to the viscous Burgers equation, and we obtain sharp bounds on the considered spaces.
We show in particular that the same feedback operator can be used to stabilize the system rapidly in a
continuum of Hs spaces (see Remark 5.3.1). We empasize that the controls here are scalar, which means
that they cannot depend on the space variable x but only on the time variable t and this complicates the
problem.
This new backstepping method relies on several ingredients: the existence of an orthonormal eigenvector
basis for the considered differential operator; a condition on the transformation and on the control operator
allowing to have a relatively explicit form of the transformation (depending on the control operator) along
this basis; the equivalence for a linear operator between being invertible and mapping an orthonormal basis
into a Riesz basis; and a transformation which can be separated between a simple invertible part and a part
which reduces to a quadratic perturbation in the considered norm. This is called the “quadratically close”
behavior in the sense that the image family of the transformation is quadratically close to an orthonormal
family (see Definition 5.3.1).
This last point is both central and, unfortunately, limiting. Indeed, it only allows us to study differential
operators whose eigenvalues grow to infinity like nα with α > 3/2. This makes inaccessible some systems like
the water wave system [4, 5, 167, 168] which corresponds exactly to the critical case α = 3/2. The question
of the rapid stabilization of the linearized water-waves system using a backstepping method was an open
question for several years 9 and finally solved in [110], that we discuss below.

In Chapter 6 we present a way to change this method to avoid requiring the quadratically close behavior.
This new method of “compactness-duality” involves showing the compactness of some operators and using,
among other things, a duality between ω-independence in Hr and density in H−r to obtain a Riesz basis.
An iteration then allows to isolate the singular part of the control operator and to obtain enough regularity
so that the transformation exists and, later, is invertible in the desired space(s). This new method allows
not only to solve the open question of the linearized water waves system but also to make the method work
beyond the critical threshold α = 3/2 for any α > 1. Again the same feedback allows to obtain stability in a
continuum of norms Hs, and more precisely for any s ∈ (1 − α, α− 1). These bounds are sharp in the sense
that the closed-loop system is not even well posed for s = (1 − α).

Finally, there remains the case of the hyperbolic systems for which α = 1. In this case, the sharp bound
on (1 − α, α − 1) means that the previous method is doomed in the sense that the feedback obtained will
never work. However, in particular cases it is possible to do otherwise. Several works exist in the scalar case
with a linear transport equation [256–258], where a very explicit transformation can be found in the form
of a convolution, and which the author shows to be a solution to the problem. This is done, among other
things, thanks to the Dirichlet convergence theorem. Motivated by this example, we show in Chapter 7 how
it is possible to apply a generalized backstepping method for a more complicated hyperbolic system: the
Saint-Venant system which models a water-tank. The lack of quadratically close behavior or compactness is
compensated by a different target system which allows to show directly the basic properties of Riesz basis

9. The first mention of which I am aware is in this 2017 College de France lecture [56]
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without going through the perturbation of an orthonormal family; together with the generalization of an
equiconvergence result of Komornic [159, 160] which allows to find a solution to the condition on the control
operator. Whether it is possible to adapt this method to hyperbolic linear systems in general, and in par-
ticular the crucial step of the target system, is an open question.

It should be noted that there are still many open questions in this area, either for hyperbolic systems in
general, non-linear systems, finite time stabilization etc. We list some of these questions at the end of Part
II in Chapter 7.

1.3.3 Part 3

In this part, the focus is no longer on a specific mathematical structure but rather on an application: traffic
control. The goal is to use autonomous vehicles to influence the overall traffic flow and to remove, as much
as possible, traffic jams. This may seem far from the previous parts and the subject of this thesis, but
in fact traffic jams, and more precisely stop-and-go waves, have a deep mathematical cause: they are the
manifestations of a steady state which becomes unstable above a certain density of vehicles [76].

This problem can be seen at the microscopic scale, by modeling an N cars system by 2N ODEs repre-
senting the speeds and accelerations of the cars; or at the macroscopic scale by modeling the traffic with
hyperbolic partial differential equations. In this last case, traffic jams correspond to shock phenomena (see
[107, 213, 219]). It is therefore necessary to consider the non-regular solutions of these equations. The
solutions to be considered are typically BV functions, i.e. with bounded variations (see [78, Section 1.7] for
a precise definition). Studying non-regular solutions of nonlinear hyperbolic systems is something natural:
these systems are known to spontaneously create discontinuities in certain cases, even when the initial con-
dition is C∞. Therefore no regular solution is possible at long times. BV solutions have quickly become the
natural discontinuous solutions for these systems. The idea is to have a notion of function which is in some
way a generalized version of a piecewise C1 function interspersed with jumps. This leads to look at this class
of functions where discontinuities are rare (located on manifolds of co-dimension 1). Note that BV solutions
of hyperbolic systems are in general not unique. One therefore add an entropy condition [78, 170], which we
will talk about later, to find this uniqueness. Under this condition (and often a smallness assumption on the
total variation of the function) it is possible to show the existence and uniqueness of solutions in different
hyperbolic frameworks, in the scalar case [163]; in the case of a n×n homogeneous system [34] (preceded by
the work of [118] for the existence) for sufficiently small initial data in one space dimension; for a system on a
bounded domain [35]; the local existence and uniqueness in the case of a n×n system with a potentially large
initial condition [172], or in the case of some n×n systems in several space dimensions [8]. Systems modeling
road traffic are typical examples of hyperbolic systems whose solutions must be non-regular, and give rise to
many interesting questions from a mathematical point of view (see for instance [24, 49, 50, 120, 169]). For
more details on the non-regular solutions of hyperbolic systems one can refer to [33, 36, 78]. One can also
note results on control and stabilization of systems where the solutions are BV, for example [117] for the
controllability of the isentropic Euler equation, or [62] in the case of the stabilization of a 2× 2 system with
a control located at the boundaries, [198] in the case where there is both a control at the boundaries and a
control in the dynamics, and [23, 199] when the control is only at the boundaries for a scalar system. For an
overview of some control and stabilization problems for solutions of nonlinear hyperbolic systems one can
look at [26, 116].

In Chapter 8 we look at the microscopic scale and are interested in a circular road where N vehicles are
modeled by a system of 2N ODEs. These dynamics use the model called Bando-Follow-the-Leader [17, 113]
which is written:

ẋi = vi

v̇i = a(V (xi+1 − xi) − vi) + b
vi+1 − vi

(xi+1 − xi)
2 ,

(1.3.12)
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where i ∈ {1, ..., N − 1}. The control is an autonomous vehicle whose dynamics are given by

ẋN = vN

v̇N = u(t, xN , vN , xN+1, vN+1)
(1.3.13)

with the convention N + 1 = 1 and where u is a feedback control that depends only on the state of the
autonomous vehicle and, potentially, on the state of the vehicle right in front of it. We show that adding a
single autonomous vehicle makes the entire traffic locally exponentially stable, regardless of the number of
vehicles, despite the fact that the autonomous vehicle observes only itself and the vehicle in front of it. More
surprisingly, the decay rate also admits a lower bound independent of the number of vehicles.

In Chapter 9, we are interested in the interaction between road traffic and a vehicle that drives differently
from the rest of the traffic, for example an autonomous vehicle in a human traffic. The traffic is modeled
by the Generalized-Aw-Rascle-Zhang equations, which form a nonlinear hyperbolic system [103]. These
equations encompass several of the most common traffic models and have the particularity of having a
linearly degenerate propagation speed (see Section 9.2 or [78] for example for more details). It is expressed
as follows:

∂tρ+ ∂x (ρ V (ρ, w)) = 0,

∂t(ρw) + ∂x (ρw V (ρ, w)) = 0,
(1.3.14)

where ρ is the car density at a point in space, w is a driving behavior parameter that corresponds to the
driver’s speed on an empty road, and V is the speed of the cars in the traffic flow. The interaction with the
particular vehicle results in a condition on the flow, similar to those introduced in [9, 87, 88, 177].

ρ (t, y(t)) (V (ρ(t, y(t)), w(t, y(t))) − ẏ(t)) ≤ αF (ẏ), (1.3.15)

where α ∈ (0, 1) and F denotes

F (ẏ) = max
x∈[0,ρmax], w∈[wmin,wmax]

(ρ(V (x,w) − ẏ)) . (1.3.16)

Moreover, the dynamics of the autonomous vehicle are given by

ẏ(t) = min(V (ρ(t, y(t)+), w(t, y(t)+)), Vb). (1.3.17)

Note that the system (1.3.14) is a 2× 2 nonlinear hyperbolic system which is already well posed in the space
of entropic BV solutions 10 [36]. One may then ask why add a flow condition like (1.3.15). The reason is that,
as surprising as it may seem, entropic solutions are not the physical solutions for this system. To understand
this we need to look at what the notion of entropic solution means. An entropic solution is a solution
where the characteristics can disappear in a shock but not appear from a shock. In other words, an entropic
solution is a solution where a microscopic point cannot have a macroscopic influence on the system. This
is the problem for road traffic: if a particular vehicle drives differently from the general flow and decides to
brake suddenly on the highway, it will have a macroscopic influence on the highway 11. The physical solutions
can therefore produce non-classical shocks at the position of the particular vehicle. Hence, one must abandon
the framework of entropic solutions at the location of the particular vehicle. But, to guarantee the uniqueness
of the solutions it is necessary to introduce a new physical condition which replaces the entropy condition.
The condition (1.3.15), originally proposed by Delle-Monache and Goatin in [87, 88] in the framework of
the (scalar) Lighthill-Whitham-Richards system, meets this need. It represents the fact that the flow past
the particular vehicle is limited by steric hindrance, with the coefficient α representing this hindrance. In
Chapter 9 we study the existence of weak solutions to the system (1.3.14)–(1.3.15) and their regularity. We
show that for any initial condition (ρ0, ω0) ∈ BV (R) the system (1.3.14)–(1.3.15) admits a solution in the

10. an entropic solution here refers to a solution which verifies an entropy inequality such as Lax’s or Liu’s depending on the
case. Other notions of entropic solutions exist, we can refer for example to [78].
11. Intuitively the problem comes from the fact that a single vehicle can create a bottleneck because the width of the road

has a size of the same order of magnitude as the vehicles
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space of BV solutions (see Theorem 9.2.1 for more details). We use for that a wave-front tracking approach,
similar to [176, 177] which consists in constructing a solution by approximation, by looking at a sequence of
Riemann problems. We first approach the initial condition by a sequence of piecewise constant functions,
then we see each discontinuity as a Riemann problem for which we have an explicit solution and we build
the approximated solutions. Finally we show that they converge to a function which is a solution of the
problem 12.

1.3.4 Part 4

In this part we move away from classical mathematics to focus on the interactions between mathematics and
artificial intelligence (AI). From a mathematician point of view, it is common to see these interactions by
focusing on what mathematics can bring to AI. Here, we take the opposite view by asking how AI methods
can help mathematics. This manifests in two questions:

1. Is a trained neural network able to predict the solution of an advanced mathematical problem?

2. Is a trained neural network able to solve a mathematical problem and to provide a proof ?

Concerning the first question, we see in Chapter 10 and the Section 10.2 that the answer is yes for several
mathematical problems. The first works in this domain are very recent and, if several works have been
considering teaching arithmetics to neural networks 13 [150, 233, 255] few have studied solving a symbolic
maths problem. We can nevertheless mention works such as [7, 11, 255] which have in common the attempt
to learn mathematical representations. Trying to teach an AI to predict the solution of a mathematical
problem may seem a bit daring at first. The motivation comes from the fantastic performances of AI models
in translation, as for example [165] in which the authors obtain an AI able to translate words from one
language to another without ever having seen a rosetta stone. The idea is to see a mathematical problem as
a translation problem, where statements are translated into solutions 14.

In [164] the authors train a neural network to guess explicit solutions to differential equations. In [46] we study
more complicated problems from control theory and in [47] problems from computational biology. These
works are obtained by using Transformers, an architecture introduced in [236] which is characterized by its
attention mechanism and its efficiency for translation problems. The mathematical problems considered are
difficult to solve, in the sense that they cannot be solved simply by interpolation and therefore require a kind
of “understanding” of the problem. We try in particular to predict the answer to the following questions:

— Is a finite dimensional nonlinear system exponentially stable (or exponentially unstable) ? If so, what
is the speed of convergence (resp. divergence) ?

— For a given finite dimensional system, is the associated linearized system controllable ? If so, what
would be a stabilizing feedback ?

One can notice that these questions are sometimes qualitative (“yes” or “no”) and sometimes quantitative
with numerical answers (stabilizing feedback for a given system, convergence speed).
Note that the neural network has no mathematical knowledge prior to the training. The network sees
everything that is given to it as a sequence of characters: to the network f(x) or 1 + 1 are simply token
sequences like “f”, “(”, “x”, “)”, and “1”, “ + ”, “1” and it does not know any relation between them (not
even 1+1 = 2). As for its answer, it is also given in the form of a sequence of tokens: “0” or “1” for questions
whose answer is qualitative and a more developed sequence of tokens when the answer is numerical and/or
symbolic.
As we will see, after training the neural network can predict the answer to these problems with a very high
accuracy. We can notice several interesting things: the first one is that a neural network trained on systems
with between 2 and 5 variables still has a good accuracy when it tries to predict the result on a system with

12. this is the main difficulty here
13. and have shown that neural networks have difficulty with arithmetics.
14. obviously for many problems this translation is not bijective at all and therefore very asymmetric, unlike translations

between two languages.
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6 variables even though it has never seen a system with 6 variables and 6 equations before (in particular it
has never seen the variable x6). The second is that, for several of these questions, a mathematician would
start by looking at the linearized system, yet knowing the linearized system does not seem to help the neural
network [46].

The second question, “Is a trained neural network capable of solving a mathematical problem and providing
a proof?”, is by far the most difficult. In the Section 10.3 we see that the answer is yes, at least partially. We
see how a neural network is trained to prove statements, first in a purely supervised way (we give examples
of statements and associated proofs to the neural network during the training phase and then we evaluate
it on statements that it has never seen), then using an algorithm called HyperTree Proof Search that we
present in Section 10.3.1. The goal of this algorithm is to explore the set of possible proofs in an intelligent
way by combining at the same time an estimation of the best theorem to use (policy model), an evaluation
of the difficulty to prove a statement (critic model), and a procedure of expansion and back propagation of
the obtained scores in the graph. The two estimations, policy model and critic model, are themselves partly
or totally composed of neural networks that are trained in parallel by the data from the proof exploration.
The principle of this architecture is reminiscent of AlphaZero [222], a model trained to play chess widely
popularized in 2017, as well as some reinforcement learning architectures [193].
We also present a proof environment for equalities and inequalities that we have created in Python both to
be able to test and improve our system but also to be able to more easily generate synthetic data, i.e. to
generate theorems and proofs in an automated way. Indeed, the models underlying our procedure generally
need a lot of data to be trained, but the existing data of theorems and proofs are human tabulated and
therefore rare.
After training, the model is able to prove high school level exercises and sometimes more: it proves for exam-
ple two problems from the International Mathematical Olympiad. In the Section 10.3.2 we give examples of
proofs from the neural network. For example the proof that 7 never divides 2n + 1 whatever n ∈ N is. These
results have largely increased the state-of-the-art in automated proofs using AI and it is, at the moment, the
most performing model in the automated proof of theorems by Machine Learning techniques.
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Part I

Stability of quasilinear
inhomogeneous hyperbolic systems.
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Chapter 2

Stabilization and ISS of 1-D
hyperbolic systems

2.1 Introduction

In this chapter, we look at stability properties of generic 1-D hyperbolic systems defined on a bounded
domain. Such a hyperbolic system can be written as follows:

∂tY + F (Y)∂xY + S(Y, x) = 0, (2.1.1)

B(Y(t, ·),Y(t, L),Y(t, 0), t) = 0, (2.1.2)

where Y is the state of the system, F (Y) is a diagonalisable matrix with distinct and real eigenvalues,
S(Y, x) is the source term, and B represents some abstract boundary conditions which will be precised later
on. Let us consider a steady state Y∗. As F (Y∗) is diagonalizable one can define a matrix P such that

P (x)F (Y∗(x))P−1(x) = Λ(x), (2.1.3)

where Λ(x) is a diagonal matrix with coefficients (Λi(x))i∈{1,...n}. Let us remark that P and Λ both depend
on x if only if Y∗ does. Assuming that Y∗ is a regular steady-state, namely Y∗ ∈ C1([0, L]), and setting
u(t, x) = P (x)(Y(t, x) −Y∗(x)) the system (2.1.1) becomes

∂tu +A(u, x)∂xu +B(u, x) = 0, (2.1.4)

where

A(u, x) = P (x)F (Y)P−1(x) = P (x)F (P−1(x)u + Y∗(x))P−1(x),

B(u, x) = P (F (Y)(Y∗
x + (P−1)′u) + S(Y, x)),

(2.1.5)

and in particular A(0, x) = Λ(x), and B(0, x) = 0, since Y∗ is a steady-state. Obviously, the exponential
stability of Y∗ for the system (2.1.1) is equivalent to the exponential stability of u∗ = 0 for this new system
(2.1.4). Moreover, if B(u, x) ≡ 0 (or equivalently S(Y, x) ≡ 0, since in this case Y∗ is a constant and so is
P−1), the system is said to be homogeneous.

Without loss of generality we can assume that there exists m ∈ {0, ..., n} such that

Λi > 0 for any i ∈ {1, ...,m}, and Λi < 0 for any i ∈ {m+ 1, ..., n}. (2.1.6)

In order to be well-posed, this system requires to impose some boundary conditions at x = 0 and/or x = L.
A way to see this is that the incoming information entering the system at each time t should be prescribed in
order to have a well-posed system (see [173, 174] for more details). Let us look at our system to understand
what this incoming information is. By assumption F (Y∗) has non-zero and distinct eigenvalues for any x,
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and therefore so do Λ(x). From (2.1.5), as long as Y∗ and F are continuous, A is continuous with u. As
A(0, x) = Λ(x), if u is small enough, A(u, x) has also distinct and non-zero eigenvalues λi(u, x) which have
the same sign as Λi(x). This means that at x = 0 we have to impose the quantities that have a positive
propagation speed, and at x = L the quantities that have a negative propagation speed (i.e. λi(u, x) > 0).
This is translated as 

u1(0)
...

um(0)
um+1(L)

...
un(L)

 = U(t), (2.1.7)

where U(t) is either the control we impose or some boundary conditions given by the physics of the system.
Of course the ui are not exactly the quantities propagating with speed λi(u, x) given that A(u, x) is not
diagonal. But, assuming that we are close enough to the steady-state u∗ = 0, the perturbations are small,
and the ui are close to the eigenvectors of A(u, x). In this case, the boundary condition (2.1.7) still impose
the incoming information and allow the system to be well-posed (see [20, Chapter 6]). In the following
we will denote u+ = (u1, ..., um)T the vector of components associated to positive propagation speeds, and
u− = (um+1, ..., un)T the vector of components associated to negative propagation speeds. As a consequence
(2.1.7) can be written in the compact notation(

u+(t, 0)
u−(t, L)

)
= U(t), (2.1.8)

A usual example of boundary conditions is given by(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
, (2.1.9)

which expresses that the incoming information is a function of the output information (that is, the infor-
mation in x = L for quantities with positive propagation speeds and in x = 0 for quantities with negative
propagation speeds). Such boundary conditions are the most commonly used when looking at the expo-
nential stabilization of such systems (see for instance [19, 94, 130, 132, 173, 174]). There are the simplest
example of a feedback loop, they also require only little measurements of the system (no need to measure
inside the system, but only at the boundaries), and are simple to implement in practice.

Let us now recall the definition of exponential stability

Definition 2.1.1. Let X be a Banach space endowed with the norm ∥·∥X , that we refer to as the X norm in
the following. The steady-state u∗ = 0 of the system (2.1.4), (2.1.8) is exponentially stable for the X norm
if there exist γ > 0, η > 0, and C > 0 such that for every u0 ∈ X satisfying the compatibility conditions 1

and ∥u0∥X ≤ η, the Cauchy problem (2.1.4), (2.1.8), (u(0, x) = u0) has a unique solution in C0([0,+∞), X)
and

∥u(t, ·)∥X ≤ Ce−γt∥u0∥X , ∀t ∈ [0,+∞). (2.1.10)

Moreover, if η = +∞ the system is said globally exponentially stable.

We can make several remarks:
— One can note that specifying the norm ∥ · ∥X considered is needed. Indeed, the exponential stability

for different norms are not equivalent for infinite-dimensional systems [70].
— When nothing can be said about η, this definition is only a local exponential stability. The reason

to work with such a notion is that quasilinear hyperbolic systems are known for spontaneously gen-
erating shock waves even if the initial condition is very regular, which makes the global exponential
stabilization by boundary controls (and even the global well-posedness) impossible in general. How-
ever, we will see that when the system is semilinear we can obtain a global well-posedness provided

1. this very formal given that X is not precised. For the Hp or Cp norm, this correspond to the p order compatibility
condition given in [19, (4.136) (see also (4.137)-(4.142))]
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a Lipschitz condition on the source term. This is the object of Chapter 3 (see in particular Theorem
3.2.1 and 3.2.2).

When the system is linear, the exponential stability of such a system can be found using spectral mapping
theorems (see for instance [180, 194, 214]). Such theorems allow to link the eigenvalues of the differential
operator −A∂x−BId (defined on a domain taking into account the boundary conditions), to the stability of
the overall system. This reduces the question of stability to an eigenvalue problem. In particular this allows
to use many spectral tools. Unfortunately, for quasilinear systems this approach cannot work: in general
the exponential stability of the linearized system does not give any information on the exponential stability
–even local– of the quasilinear system (see [70] for a counter-example). Thus other tools are needed.

The study of the exponential stability of nonlinear hyperbolic systems of the form (2.1.4)–(2.1.9) goes back
to the pioneering work of [126] in 1984 where Li and Greenberg looked at the exponential stability of 2 × 2
homogenous systems in the C1 norm. Their method relies on a careful analysis of the solution along the char-
acteristics. This method was later generalized by Qin, Zhao, De Halleux et al. (among others, [84, 211, 260])
and allowed to study any quasilinear hyperbolic system of the form (2.1.4)–(2.1.9) in the C1 norm when the
system is homogeneous (and even Cp norm for p ≥ 1). An alternative proof using a so-called basic quadratic
Lyapunov function, or energy-like Lyapunov function, was shown in [58]. The case of inhomogeneous systems
was treated in [132], and was the first work of my PhD.

Other norms, often simpler to handle than sup-norms, have also been considered. In [18, 19] the authors
deal with the case of a generic system for the Hp norm, for p ≥ 2, again by using basic quadratic Lyapunov
functions. Using a time-delay approach the authors of [70] found a result for a generic homogeneous system in
theW 2,p norm. Numerous particular cases or specific examples have also been considered, for instance in fluid
mechanics [20, 37, 59, 94, 95, 127, 128], road traffic [24, 100, 235, 253, 254], manufacturing [48, 74, 93, 221].
In many of these works, the key tool is to show the existence of a well-chosen basic quadratic Lyapunov
function whose definition is given as follows:

Definition 2.1.2. For a system of the form (2.1.4)–(2.1.8) and a Sobolev space W l,p(0, L) where (l, p) ∈ N×
N\{0}∪{+∞}, we call basic quadratic Lyapunov function for the W l,p norm a function V ∈ C0(W l,p(0, L),R)
such that

1.

V (U) =

l∑
n=0

∥F (·)E(U, ·)DnU∥Lp(0,L), ∀ U ∈W l,p(0, L), (2.1.11)

where E(U, x) is a matrix diagonalizing A(U, x), F = diag(f1, ...fn) with fi positive C1 functions on
[0, L], Dn is the operator defined iteratively by D0U = U, and

Dn+1U = ∂U(Dn−1U)(−A(U, x)∂xU−B(U, x)). (2.1.12)

2. There exists δ > 0 and γ > 0 with which, for any T > 0 and along any regular solution u on [0, T ] of
(2.1.4)–(2.1.8) satisfying ∥u(t, ·)∥W l,p ≤ δ, one has in a distributional sense 2

dV (u(t, ·))
dt

≤ −γV (u(t, ·)), for all t ∈ [0, T ]. (2.1.13)

These Lyapunov functions can be also referred to as energy-like Lyapunov functions because, when looking
at the basic quadratic Lyapunov functions for the L2 or Hp norms, they look similar to physical energies
(see [85, 134, 146]). In particular several physical quantities, such as the mechanical energy, or the physical
entropies, have the form of a basic quadratic Lyapunov function (see for instance [61, 195]).

In practical applications, the system can sometimes be subject to unknown disturbances, which can be the
results of external events, errors of the model, etc. The system (2.1.4), (2.1.9) then becomes

∂tu +A(u, x)∂xu +B(u, x) + d1(t, x) = 0, (2.1.14)

2. see [121, Definition 3.2.10] for a definition of distributional inequalities
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(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
+ d2(t), (2.1.15)

where d1 are the internal disturbances and d2 the boundary disturbances. In this case, the previous steady-
state u∗ = 0 is not a solution of the system anymore and there is usually no hope of stabilizing it. However,
it could be interesting to see what is the error we make when trying. In other words, how robust the
exponential stability is with respect to d1 and d2. This leads to introducing a slightly more general notion
than the exponential stability: the Input-to-State Stability (or ISS). The notion of ISS was first introduced
by Sontag in 1989 [225] for finite dimensional systems. It was later extended to time delay systems, and then
generalized to PDEs (see [151, Chapter 1] for more details). The goal is to show an estimate of the form

∥u(t, ·)∥X ≤ C1e
−γt∥u0∥X + C2 (∥d1∥Xt×X + ∥d2∥Xt

) , (2.1.16)

where ∥ ·∥X is the (formal) norm considered in space, ∥ ·∥Xt
the norm considered in time and ∥ ·∥Xt×X is the

norm considered in time and space (again formally), and γ > 0. Note that when d1 ≡ d2 ≡ 0, that is to say
when there is no disturbance, we recover the exponential stability. In this sense, this ISS is a generalization
of the exponential stability. The estimate (2.1.16) would in fact guarantee the so-called exponential ISS,
which is a particular case of a less restrictive ISS notion requiring

∥u(t, ·)∥X ≤ σ(∥u0∥X , t) + ∥α(∥d1(s, ·)∥X + |d2(s)|)∥Xt
, (2.1.17)

where α belongs to K, the space of strictly increasing functions R+ → R+ such that α(0) = 0; σ is a function
such that for any t ∈ R+, x → σ(x, t) belongs to K and for any x ∈ R+, t → σ(x, t) is non-increasing and
satisfies limt→+∞ σ(x, t) = 0. A more detailed review about the genesis of ISS notions for PDEs and some
variations about these notions can be found in [151, Chapter 1]. In what follows, we will only consider the
exponential ISS and we will even consider a stricter notion that requires the influence of the past disturbances
to decrease exponentially with time. This is the so-called exponential ISS with fading memory defined as
follows for the Cp and Hp norms

Definition 2.1.3. A system of the form (2.1.14), (2.1.15) is exponentially ISS with fading memory for the
Cq norm (resp. Hp norm) if there exist positive constants C1 > 0, C2 > 0, γ > 0, and η > 0 such that, for
any T > 0, for any u0 ∈ Cq([0, L];Rn) (resp. u0 ∈ Hp((0, L);Rn)) satisfying the q-th order (resp. p − 1
order) compatibility conditions 3, with

∥u0∥Cq ≤η (resp. ∥u0∥Hp ≤ η)

∥d2∥Cq([0,T ]) + ∥d1∥Cq([0,T ]×[0,L]) ≤η, (resp. ∥d2∥Hp + ∥d1∥Hp([0,T ])×Hp([0,L])) ≤ η),
(2.1.18)

there exists a unique solution u ∈ C0([0, T ], Cq([0, L])), (resp. u ∈ C0([0, T ];Hp(0, L))) such that

∥u(t, ·)∥Cq ≤ C1e
−γt∥u0∥Cq + C2

(
q∑

k=0

sup
τ∈[0,t]

(
e−γ(t−τ)|d(k)

2 (τ)|
))

+ C3

(
sup

(τ,x)∈[0,t]×[0,L]

(
e−γ(t−τ)|∂qt d1(τ, x)|

)

+
∑

k1+k2≤q−1

sup
(τ,x)∈[0,t]×[0,L]

(
e−γ(t−τ)|∂k1

t ∂k2
x d1(τ, x)|

) ,

(
resp. ∥u(t, ·)∥Hp ≤ C1e

−γt∥u0∥Hp + C2

(
p∑

k=0

∥e−γ(t−τ)d
(k)
2 (τ)∥L2(0,t)

)
+ C3

(
∥e−γ(t−τ)∂pt d1(τ, x)∥L2((0,t)×(0,L))

+
∑

k1+k2≤p−1

∥e−γ(t−τ)∂k1
t ∂k2

x d1(τ, x)∥L2((0,t)×(0,L))

).

(2.1.19)

3. see [19, 4.5.2] for a definition of such compatiblity conditions

25



Moreover, if η = +∞ the system is said globally exponentially ISS with fading memory.

These estimates may seem complicated but each term is simple: the term proportional to C1 describe the
exponential stability of the system and the terms proportional to C2 and C3 describe the ISS behavior and
the influence of the disturbances. In each of these terms, the term e−γ(t−τ) ensures that the past disturbances
decay exponentially with time. We will refer to C2 and C3 as the ISS gains.

While exponential stability of nonlinear 1-D hyperbolic systems has been widely studied in the last 40 years 4,
ISS of these systems has only received some attention recently and relatively few results exist. One can look
at [22, 151] for an overview of ISS for these systems.
In Section 2.2 we present a study of the ISS of a general nonlinear hyperbolic systems in the Cp norms.
We show that the sufficient conditions of exponential stability found in [58, 84, 126, 211, 260] and [132] are
also sufficient conditions of ISS. But, surprisingly, we are unable to find an ISS Lyapunov function in the
sense of Definition 2.2.1 below, because the basic quadratic Lyapunov function we consider cannot satisfy
the differential inequality (2.2.2). We also show that these results are an improvement to the most up to date
ISS conditions for these systems (see [151]). Later, in Chapter 3 we present a study of a semilinear system
where the source term is potentially nonlocal but Lipschitz (in L2) and the boundary term is Lipschitz. We
show that it is possible to obtain an exponential stability result for the L2 norm, provided some conditions
on the source term and the boundary term (while this is impossible in general when the source term is not
Lipschitz). Moreover this exponential stability result is global. Finally, we show that this can be extended
to a global ISS result.

2.2 ISS of general hyperbolic system for the Cp norm

This section is based on the results of [22], a collaboration with Georges Bastin and Jean-Michel Coron. To
study the ISS of nonlinear systems, a practical approach is to use an ISS-Lyapunov function, in a way similar
to what is done for exponential stability. These ISS-Lyapunov functions are defined as follows.

Definition 2.2.1. Let p ≥ 0. The function V is called ISS-Lyapunov function for the Cp norm (resp. Hp

norm) of the system (2.1.14)–(2.1.15) if there exists positive constants C, c, η and γ such that for any T > 0,
any ∥d1∥Cp×Cp + ∥d2∥Cp ≤ η, and any solution u ∈ C1([0, T ], Cp([0, L])) of (2.1.14)–(2.1.15) satisfying
∥u(t, ·)∥Cp ≤ η we have

(i) Equivalence with the norm

c(∥u(t, ·)∥Cp +
∑

k1+k2≤p−1

∥∂k1
t ∂k2

x d2(t, ·)∥C0)

≤ V (u(t, ·)) ≤ C(∥u(t, ·)∥Cp +
∑

k1+k2≤p−1

∥∂k1
t ∂k2

x d2(t, ·)∥C0),
(2.2.1)

(ii) Lyapunov estimate

dV (u(t, ·))
dt

≤ −γV (u(t, ·))+C
( p∑

k=0

|d(k)
2 (t)| +

∑
k1+k2≤p−1

∥∂k1
t ∂k2

x d1(t, ·)∥C0([0,L])

+ ∥∂pt d1(t, ·)∥C0([0,L])

)
, ∀ t ∈ [0, T ].

(2.2.2)

Remark 2.2.1. A similar definition holds for the Hp norm by replacing Cp by Hp, and C0 by L2 in the
equivalence with the norm.

Of course, if there exists an ISS-Lyapunov function for the Cp norm (resp. Hp norm), the system is
exponentially ISS 5 for the Cp norm (resp. Hp norm). A natural question arises:

4. but with still many questions unanswered
5. and in fact even exponentially ISS with fading memory
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“Are the basic quadratic Lyapunov functions, given by (2.1.2), also ISS-Lyapunov functions?”

In which case all the exponential stability results obtained for these functions would automatically extend
to the ISS. Until recently this question was largely open. If this question arises, it is because very few results
exists for the ISS of hyperbolic systems. In fact the most advanced result until two years ago was the result
of [151] recalled below (see Theorem 2.2.4) which used a small gain analysis to obtain the ISS in sup norms
for linear 2 × 2 systems. Our hope was that the basic quadratic Lyapunov functions could be an additional
tool for ISS, potentially more powerful than the current existing methods. And they happened to be. An
answer to this question was given in [106] for the stabilization in L2 norm: this work shows that for linear
systems, the basic quadratic Lyapunov functions for the L2 norm are also basic ISS-Lyapunov functions (for
the L2 norm). This is also true for nonlinear systems considered in the H2 norm (see [245] and also [22])
and, in fact, in the Hp norm for any p ≥ 2. In sup norm, a more interesting phenomena appear: we showed
in [22] that we are unable to obtain the decrease (2.2.2) with basic C1 Lyapunov functions because basic C1

Lyapunov functions are not ISS-Lyapunov functions in the sense of Definition 2.2.1. Nevertheless, it is still
possible to show the exponential ISS for the C1 norm with these functions, and the sufficient conditions we
obtain on the system and the control are the same as the conditions obtained in [132] for the exponential
stability (and [58, 58, 84, 84, 126, 211, 260] in the homogeneous case). This comes from the fact that a basic
quadratic Lyapunov function V still satisfy an estimate of the form

V (u(t, ·), t) ≤ e−γ(t−s)V (s) + C2

(
p∑

k=0

sup
τ∈[s,t]

(
e−γ(t−τ)|d(k)

2 (τ)|
))

+ C3

(
sup

(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|∂pt d1(τ, x)|

)

+
∑

k1+k2≤p−1

sup
(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|∂k1

t ∂k2
x d1(τ, x)|

) ∀ s ∈ [0, T ],

(2.2.3)

despite not satisfying (2.2.2).

Let us get into more details. For k ∈ N \ {0} ∪ {+∞}, we define ρk as follows

ρk(M) = inf{∥∆M∆−1∥k | ∆ ∈ D+
n }. (2.2.4)

where D+
n is the space of diagonal matrix with positive entries and,

∥M∥k = sup
∥ξ∥k=1

(∥Mξ∥k), ∀M ∈Mn(R). (2.2.5)

where ∥ξ∥k is the usual k-norm for a vector of Rn and Mn(R) the space of square matrices of size n on R.
The first result we show in [22] is the following

Theorem 2.2.1. Let a homogeneous quasilinear hyperbolic system be of the form (2.1.14), (2.1.15), with A
and G of class Cp, with p ∈ N \ {0}. If

ρ∞(G′(0)) < 1, (2.2.6)

then the system is exponentially ISS with fading memory for the Cp norm.

One can remark that this holds irrespective of the system dynamics, and the condition (2.2.6) only depends
on the boundary conditions (or the boundary control). This condition is the same as the one found in
[58, 84, 211, 260] for the exponential stability in the C1 norm. When the system is inhomogeneous we show
the following:

Theorem 2.2.2. Let a quasilinear hyperbolic system be of the form (2.1.14)–(2.1.15) with A, B and G of
class Cp, with p ∈ N \ {0}. Let us denote M(x) = ∂uB(0, x). Let us assume that the system of differential
inequalities

Λi(x)f ′i(x) ≤ −2

−Mii(x)fi(x) +

n∑
k=1,k ̸=i

|Mik(x)| f
3/2
i (x)√
fk(x)

 , i ∈ {1, ..., n}, (2.2.7)

27



has a solution (f1, ..., fn) : [0, L] → Rn such that fi are positive functions on [0, L] for any i ∈ {1, ..., n} and
that there exists a diagonal matrix ∆ with positive coefficients such that

∥∆G′(0)∆−1∥∞ <
infi

(
fi(li)
∆2

i

)
supi

(
fi(L−li)

∆2
i

) , i ∈ {1, ..., n}, (2.2.8)

where li = L if Λi > 0 and li = 0 otherwise. Then the system (2.1.14)–(2.1.15) is exponentially ISS with
fading memory for the Cp norm.

This time, the conditions depend intrinsically on the system dynamics: there is a first condition (2.2.7) where
the control is not involved. Moreover, when this condition is satisfied, the solutions of (2.2.7) are used in the
boundary condition (2.2.8). Note that condition (2.2.7) is not always satisfied and relates the source term
and the length of the domain. Indeed, as the right-hand side is nonlinear with the fi, a solution could either
explode or reach 0 in finite length. Thus, this condition amounts to giving a bound on the length of the
domain or on the amplitude of the source term. This phenomena is frequent for inhomogeneous hyperbolic
systems and also appears in other norms (see for instance [18, 19, 58, 132, 133]). Finally, Conditions (2.2.7)–
(2.2.8) are also the same conditions as the ones found in [132] for the exponential stability. If the system is
semilinear, these theorems can be further extended:

Proposition 2.2.3 (Case of semilinear systems). If the system (2.1.14) is semilinear (i.e. A(u, x) = A(x)),
then Theorems 2.2.1 and 2.2.2 also hold true for p = 0.

Let us look now at the comparison between these conditions and the existing conditions found in [151] using
a small-gain analysis. To be in the same framework as [151], we consider a linear 2 × 2 system of the form

∂t

(
u1(t, x)
u2(t, x)

)
+

(
Λ1 0
0 Λ2

)
∂x

(
u1(t, x)
u2(t, x)

)
+

(
0 a(x)
b(x) 0

)(
u1(t, x)
u2(t, x)

)
= 0 (2.2.9)(

u1(t, 0)
u2(t, 1)

)
=

(
0 k1
k2 0

)(
u1(t, 1)
u2(t, 0)

)
+ d(t), (2.2.10)

where a(x) and b(x) are continuous functions in C0([0, L]), Λ1 > 0 and Λ2 < 0 are constant speed prop-
agations, k1 and k2 are constant parameters, and d ∈ L∞(R+) is the boundary disturbance. We assume
without loss of generality 6 that L = 1. What is showed in [151] is the following

Theorem 2.2.4 ([151]). Consider a system of the form (2.2.9)–(2.2.10), if there exists K > 0 such that

(|k1| + |k2|) exp(−K) < 1,(√
exp(2K) − expK

|Λ2|K
B +

√
|k2|
)√1 − exp(−K)

Λ1K
A+

√
|k1|

 < 1,

where A := max
0≤z≤1

|a(z) exp(2Kz)| and B := max
0≤z≤1

|b(z) exp(−2Kz)| ,

(2.2.11)

then the system (2.2.9)–(2.2.10) is ISS for the C0 norm.

In this framework Theorem 2.2.2 can be simplified as follows

6. Indeed, one can always rescale the system by setting y = x/L. This is not in contradiction with the fact that (2.2.7)
depends strongly on the length of the system, because the propagation speed would change accordingly, and the condition
(2.2.7) would remain the same overall.
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Corollary 1. For the system (2.2.9)–(2.2.10) with a and b constant, the conditions (2.2.7)–(2.2.8) of The-
orem 2.2.2 are respectively equivalent to

(interior condition)

(
π

2
−
√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
)

≥ 0,

(boundary conditions) |k1| <
√∣∣∣∣aΛ2

bΛ1

∣∣∣∣ tan

(
π

2
−
√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
)
,

|k2| <
∣∣∣∣ bΛ1

aΛ2

∣∣∣∣
(

tan

(
atan

(√∣∣∣∣ bΛ1

aΛ2

∣∣∣∣|k1|
)

+

√∣∣∣∣ ab

Λ1Λ2

∣∣∣∣
))−1

.

(2.2.12)

The first thing we can show is the following

Proposition 2.2.5. Consider the system (2.2.9)–(2.2.10) with a and b constant. Suppose there exists K > 0
such that (2.2.11) of Theorem 2.2.4 holds. Then the conditions (2.2.12) of Corollary 1, and consequently the
two conditions (2.2.7)–(2.2.8) of Theorem 2.2.2, are satisfied.

What is interesting is that this is a strict implication and the converse does not hold in general. In fact, the
converse only holds when a ≡ b ≡ 0, and in this case the conditions of Theorem 2.2.4 and of Corollary 1 are
both equivalent to |k1k2| < 1.

Another interesting way to consider these results is to look at the lower bound on the maximal length of ISS
they give. The maximal length of ISS describes how large the length of the domain can be for the ISS to
hold with a given dynamics, irrespectively of the boundary conditions (2.1.15). Formally it is defined as

Definition 2.2.2. Let a system be of the form (2.1.14). We call maximal length of ISS the largest length
Lmax ≥ 0 such that for any L ∈ [0, Lmax), there exists G such that the system (2.1.14), (2.1.15) defined on
[0, L] is ISS.

Looking at Theorem 2.2.2, one can see right away that Lmax is strictly positive (possibly infinite). In practice
Theorem 2.2.2, allows to have a numerical lower bound on Lmax as follows: for any C > 0 let L(C) ∈ (0,+∞]
be the largest length such that the maximal solution of

Λi(x)f ′i(x) = −2

−Mii(x)fi(x) +

n∑
k=1,k ̸=i

|Mik(x)| f
3/2
i (x)√
fk(x)

 , x ≥ 0,

fi(0) = C if 1 ≤ i ≤ m,

fi(0) = 0 if m+ 1 ≤ i ≤ n,

(2.2.13)

is defined and remains non-negative on [0, L(C)). Then L(C) is a nondecreasing function of C > 0 and, for
every C > 0, and L(C) ≤ Lmax ∈ (0,+∞]. Therefore a lower bound of Lmax can be estimated in practice
by choosing C > 0 large enough and by solving numerically system (2.2.13) in order to estimate L(C).

For a 2 × 2 system, (2.2.13) can be simplified into a linear system (see [133] for more details) and gives a
lower bound on Lmax that can be shown to be at least as good as the existing result of Theorem 2.2.4. This
is given by the following proposition, observing that, both in Theorem 2.2.4 and Corollary 1, the largest
length L permitted for a given system is achieved for k1 = k2 = 0.

Proposition 2.2.6. Let k1 = k2 = 0 and assume that the condition (2.2.11) of Theorem 2.2.4 holds. Then
the conditions (2.2.7)–(2.2.8) of Theorem 2.2.2 are satisfied.

We give some ideas of the proof of Theorem 2.2.1–2.2.2 and Proposition 2.2.5–2.2.6 in the following section.
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2.2.1 Ideas of the proof

2.2.1.1 ISS of a 1-D hyperbolic system

We start by the proof of Theorem 2.2.1–2.2.2 for which we only give the main ideas. To simplify, we only
consider the C1 norm, considering the Cq norm with q > 1 can be done similarly by a system augmentation
(see [132] or [22]). We have the following theorem (see [244]).

Theorem 2.2.7 (Well-posedness). For any T > 0 there exist C1(T ) > 0 and δ(T ) > 0 such that, for
every d1 ∈ C1([0, T ], C0([0, L]), d2 ∈ C1([0, T ]), u0 ∈ C1([0, L];Rn) satisfying the first order compatibility
conditions 7 and such that ∥u0∥C1 + ∥d∥C1 + ∥d∥C1 ≤ δ(T ), the system (2.1.14), (2.1.15), with A and B of
class C1, has a unique solution on [0, T ] × [0, L] with initial condition u0. Moreover one has:

∥u(t, ·)∥C1 ≤ C1(T )

(
∥u(0, ·)∥C1 + sup

τ∈[0,t]

(|d2(τ)|)

+ sup
τ∈[0,t]

(|d′
2(τ)|) + sup

(τ,x)∈[0,t]×[0,L]

(|d1(τ, x)|) + sup
(τ,x)∈[0,t]×[0,L]

(|∂td1(τ, x)|)
)
, ∀t ∈ [0, T ].

(2.2.14)

The method consists in finding a Lyapunov function for this system. For the exponential stability, the usual
basic quadratic Lyapunov function has the form

V (U, t) = ∥
n∑

i=1

√
fiUi(·)∥C0+∥

n∑
i=1

√
fi(E(U, ·)Θ(U), t)i∥C0 , ∀ U = (U1, ..., Un) ∈ C1([0, L];Rn), (2.2.15)

where fi are positive and C1 functions on [0, L], E(U, x) is a matrix diagonalizing A(U, x), and Θ(U, t) is
given by

Θ(U, t) = A(U, x)∂xU +B(U, x) + d1(t, x) (2.2.16)

such that for a solution u to the system (2.1.14)–(2.1.15), Θ(u, t) = ∂tu and

V (u, t) = ∥
n∑

i=1

√
fiui(t, ·)∥C0 + ∥

n∑
i=1

√
fi(E(u, ·)∂tu)i∥C0 . (2.2.17)

Unfortunately, because of the perturbations, V (u, t) is not equivalent anymore to the C1 norm of the solution
when d1 ̸= 0 (recall that we are talking of the C1 norm in x). To remedy this, we add a term to the basic
Lyapunov function and define

V (u, t) = ∥
n∑

i=1

√
fiUi(·)∥C0+∥

n∑
i=1

√
fi(E(U, ·)Θ(U), t)i∥C0+∥d1(t, ·)∥C0 , ∀ U = (U1, ..., Un) ∈ C1([0, L],Rn),

(2.2.18)
such that for any solution u to the system (2.1.14)–(2.1.15) and provided ∥u∥C1 and ∥d1∥C1 are sufficiently
small

c(∥u(t, ·)∥C1 + ∥d1(t, ·)∥C0) ≤ V (u(t, ·), t) ≤ C(∥u(t, ·)∥C1 + ∥d1(t, ·)∥C0). (2.2.19)

This is still not an equivalence with the norm of the perturbations only but with the sum of the norms of
the perturbations and the internal disturbances. However, this is enough to get the result and to conclude.
It suffices to show is that there exists an ISS estimate on V (u, t). Indeed, assume that

V (u(t, ·), t) ≤ e−γ(t−s)V (s) + C2

(
sup

τ∈[s,t]

(
e−γ(t−τ)|d2(τ)|

)
+ sup

τ∈[s,t]

(
e−γ(t−τ)|d′

2(τ)|
))

+ C3

(
sup

(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|∂td1(τ, x)|

)
+ sup

(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|d1(τ, x)|

))
, ∀ s ∈ [0, T ]

(2.2.20)

7. see [19, (4.137)–(4.132)] or [134, (2.8)] for a definition of compatibility conditions for a hyperbolic system.
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then

∥u(t, ·)∥C1 ≤ C

c
e−γ(t−s)∥u(s, ·)∥C1 +

C2

c

(
sup

τ∈[s,t]

(
e−γ(t−τ)|d2(τ)|

)
+ sup

τ∈[s,t]

(
e−γ(t−τ)|d′

2(τ)|
))

+
C3 + C

c

(
sup

(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|∂td1(τ, x)|

)
+ sup

(τ,x)∈[s,t]×[0,L]

(
e−γ(t−τ)|d1(τ, x)|

))
, ∀ s ∈ [0, T ].

(2.2.21)

In fact, it is enough to show this for any C2 solution of the system u such that supt∈[0,T ] ∥u(t, ·)∥C1 is small
enough, and then use Theorem 2.2.7 and a density argument.

As a function V (u, t) is not very convenient to differentiate, we start by approximating it as in [58, 132] by

Wp = W1,p +W2,p

W1,p =

(∫ L

0

n∑
i=0

fpi e
−2pµsixu2pi (t, x)dx

)1/2p

,

W2,p =

(∫ L

0

n∑
i=0

fpi e
−2pµsix(E(u, x)∂tu(t, x))2pi dx

)1/2p

,

(2.2.22)

where p ∈ N \ {0}. Obviously Wp → V (u) for any solution of the system. Differentiating W1,p with respect
to C2 solutions, integrating by parts and using a Taylor expansion of λ(u) and E(u, x) at the first order,
one eventually gets for p large enough and ∥u(t, ·)∥C1 sufficiently small

dW1,p

dt
≤ −I2 − I3 −

µα0

2
W1,p + CW1,p∥u∥C1 , (2.2.23)

where

I2 =
W 1−2p

1,p

2p

[
n∑

i=1

λi(u, x)fpi u
2p
i e

−2pµsix

]L
0

(2.2.24)

I3 =W 1−2p
1,p

∫ L

0

n∑
i=1

fpi (x)u2p−1
i

(
n∑

k=1

Mikuk

)
e−2µsixdx

−
W 1−2p

1,p

2

∫ L

0

n∑
i=1

λi(u, x)fp−1
i (x)f ′i(x)u2pi e

−2µsixdx.

(2.2.25)

I3 is relatively easy to deal with and setting Dp =
(∫ L

0
fpi (x)d2p1,i(t, x)dx

)2p
, we can show that, under the

assumptions of Theorem 2.2.2,

dW1,p

dt
≤ −I2 −

3µα0

8
W1,p + CW1,p∥u∥C1 +

(
8

µα0

)2p−1 W 1−2p
1,p

2p
D2p

p . (2.2.26)

We will not detail the proof of this estimate here but one can refer to [22, Section 5]. Let us now look at I2.
Let ∆ a matrix of D+

n such that (2.2.8) holds and set ξ = (ξ1, ..., ξn) defined by

ξi =

{
∆iui(t, L) for i ∈ [1,m],
∆iui(t, 0) for i ∈ [m+ 1, n],

(2.2.27)

and denote F (ξ) = (Fi)i∈{1,...,n} = G

(
u+(L)
u−(0)

)
. Using the boundary conditions (2.1.15) and the fact that
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λ(u, x) is C1 with u, we have

I2 ≥
W 1−2p

1,p

2p

[
m∑
i=1

(Λi(L) +O(ξ))
fpi (L)

∆2p
i

ξ2pi e−2pµL

+

n∑
i=m+1

(|Λi(0)| +O(ξ))
fpi (0)

∆2p
i

ξ2pi

−
m∑
i=1

(
Λi(0) +O

(
n∑

i=1

(|Fi(ξ)| + |di|)
))

fpi (0) (Fi(ξ) + di)
2p

−
n∑

i=m+1

(
|Λi(L)| +O(

n∑
i=1

(|Fi(ξ)| + |di|))
)
fpi (L)e2pµL (Fi(ξ) + di)

2p
,

]
(2.2.28)

where the O represents a continuous function independent of p such that O(x)/|x| is bounded when |x| tends
to 0. As we have a bound on u (hence on Fi(ξ)) and a bound on di, a natural idea would be to develop

(Fi(ξ) + di)
2p

and bound each of the terms that appear. However, this would pose a problem when making
p tends to +∞ as we would end up with an infinite number of small terms and their sum might not be small
anymore. Note that this problem does not occur if one want to transpose the same type of result for the Hq

norm, where p would be fixed to p = 1 and therefore the number of terms in the sum would remain finite.
In order to avoid this problem, we use that for any (a, d) ∈ R2, and any α > 0,

(a+ d)2p ≤ (1 + α)
2p
a2p +

(
1 +

1

α

)2p

d2p. (2.2.29)

This can be shown by checking the cases |a|α > |d| and |a|α ≤ |d|. For simplicity we denote dmax(t) =
supi |di(t)| and we recall the notation li defined in Theorem 8.2.2 by li := L if 1 ≤ i ≤ m and li := 0 if
m+ 1 ≤ i ≤ n. Using (2.2.29) in (2.2.28), we get

I2 ≥
W 1−2p

1,p

2p

[
m∑
i=1

(Λi(li) +O(ξ))
fpi (li)

∆2p
i

ξ2pi e−2pµL

+

n∑
i=m+1

(|Λi(li)| +O(ξ))
fpi (li)

∆2p
i

ξ2pi

−
n∑

i=1

(|Λi(L− li)| +O (|F (ξ)| + dmax)) fpi (L− li)e
2pµ(L−li) (1 + α)

2p
F 2p
i (ξ)

−
n∑

i=1

(|Λi(L− li)| +O (|F (ξ)| + dmax)) fpi (L− li)e
2pµ(L−li)

(
1 +

1

α

)2p

d2pmax

]
.

(2.2.30)

Then, proceeding similarly as in [132] we can show that the sum of the first four terms are positive under the
assumption of Theorem 2.2.2. Using (2.2.26), showing a similar estimate on W2,p, and choosing ∥u(t, ·)∥C1

and dmax smaller than µα0/4 we conclude that

dWp

dt
≤ −µα0

8
Wp +

W 1−2p
p

2p

((
8

µα0

)2p−1

D2p
p + CD2p

2,p

(
1 +

1

α

)2p

(d2pmax(t) + (d′max(t))2p)

)
, (2.2.31)

Where D2,p =

(
n∑

i=1

|Λi(L− li)|f2pi (L− li)e
2pµ(L−li)

)1/2p

. We see here that when there are no disturbances,

i.e. d1 ≡ d2 ≡ 0, we can let p→ +∞ and since Wp → V for any t ∈ [0, T ] we are able to get the differential
inequality

dV (u, t)

dt
≤ −µα0

8
V (u, t). (2.2.32)
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However, in our case we are unable to obtain the corresponding ISS inequality

dV (u, t)

dt
≤ −µα0

8
V (u, t) + C (dmax(t) + d′max(t)) . (2.2.33)

Nevertheless, multiplying (2.2.31) by 2pW 2p−1
p on both sides, we can use Gronwall Lemma and use to

concavity of x→ x1/2p to get, for any t, s ∈ [0, T ],

Wp(t) ≤ e−
µα0
8 (t−s)Wp(s) + C1/2p

(∫ t

s

e−2p
µα0
8 (t−v)D2p

2p

(
1 +

1

α

)2p

(d2pmax(v) + (d′max(v))2p)dv

)1/2p

+

(∫ t

s

e−2p
µα0
8 (t−v)D2p

p

(
8

µα0

)2p−1

dv

)1/2p

.

(2.2.34)

Letting p → +∞ and using the fact that for a continuous function a, (
∫ t

s

∑n
i=1 |ai|2p(v)dv)1/2p −−−−−→

p→+∞
maxi,x∈[s,t] |ai|, we obtain the desired estimate (2.2.20).

2.2.1.2 Comparison with existing results

We give here the main ideas of the proof of Proposition 2.2.5–2.2.6. The first thing to note is the following
proposition, shown in [133, Theorem 3.2] 8

Proposition 2.2.8. Let a system be of the form (2.2.9), (2.2.10), with a and b two continuous functions on

[0, 1] and denote M :=

(
0 a
b 0

)
and G(u) =

(
0 k1
k2 0

)
u. Then the two following are equivalent:

— Condition (2.2.7)–(2.2.8) are satisfied.
— There exists a solution η on [0, 1] to  η′ =

∣∣∣∣ aΛ1

∣∣∣∣+

∣∣∣∣ b

|Λ2|

∣∣∣∣ η2,
η(0) = |k1|

(2.2.35)

such that
η(1)<|k2|−1. (2.2.36)

When a and b are constant, η can be computed explicitly. Indeed, denoting c1 = |a|/Λ1 and c2 = |b|/|Λ2|,
we have

η(x) =

√
c1
c2

tan(atan(

√
c2
c1

|k1|) +
√
c1c2x), on [0, x1), (2.2.37)

where x1 is given by

x1 =

(
π/2 − atan(

√
c2
c1
|k1|)

)
√
c1c2

, (2.2.38)

and
lim

x→x1

η(x) = +∞. (2.2.39)

Hence, conditions (2.2.7), (2.2.8) of Theorem 2.2.2 are equivalent to

x1 =

(
π/2 − atan(

√
c2
c1
|k1|)

)
√
c1c2

> 1.

|k2| < η(1)−1 =

(√
c1
c2

tan(atan(

√
c2
c1

|k1|) +
√
c1c2)

)−1

.

(2.2.40)

8. The conditions stated in [133, Theorem 3.2] are in fact different than (2.2.7)–(2.2.8), but are shown to be equivalent in
the same paper (see [133, Section 4])
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Assume that there exists K > 0 and that (2.2.11) of Theorem 2.2.4 holds. Our goal is to show that (2.2.40)
holds as well.

— Showing that x1 > 1. From (2.2.11) we obtain√
|k1|
c1

<

(
1√
c1c2

− 1

)
, (2.2.41)

and thus

x1 >

π/2 − atan

((
1

(c1c2)1/4
− (c1c2)1/4

)2)
√
c1c2

. (2.2.42)

Note that
√
c1c2 < 1 from (2.2.41). We can divide the analysis in three cases:

√
c1c2 ∈ (1/2, 1),√

c1c2 ∈ (1/3, 1/2), and
√
c1c2 < 1/3. The two first do not bring any problem, and for the third one

we can conclude by using that for every x > 0,

π/2 − atan(x) = atan(1/x),

atan(x) ≥ x− x3/3.
(2.2.43)

and introducing the function y → 1/(1−y)2−y/(3(1−y)6) that is strictly increasing then decreasing
on [0, 1/3].

— Showing that |k2| < η(1)−1. This is the hardest part. To prove this, we introduce x2 such that
η(x2) = |k2|−1. Such an x2 exists given that η(0) = |k1| < |k2|−1 from (2.2.11) and given that
η → +∞ when x→ x1. In fact

x2 =
atan(

√
c1
c2
|k2|−1) − atan(

√
c2
c1
|k1|)

√
c1c2

. (2.2.44)

As η is strictly increasing, it suffices to show that x2 > 1 to prove the result. From (2.2.11) we show
that

x2 >

atan(
√

c2
c1
|k2|−1) − atan

( 1

(c2c1)1/4+
(

c1
c2

)1/4√
|k2|

− (c1c2)1/4

)2


√
c1c2

. (2.2.45)

which depends a priori of three parameters |k2|, c1 and c2 but can be simplified by setting X :=√
c1/c2|k2| and Y :=

√
c1c2, Z =

√
X +

√
Y , which gives

x2 >

atan
(

1
(Z−

√
Y )2

)
− atan

((
1
Z −

√
Y
)2)

Y

=

π
2 −

[
atan

(
(Z −

√
Y )2

)
+ atan

((
1
Z −

√
Y
)2)]

Y
,

(2.2.46)

and Z ∈
(√

Y , 1/
√
Y
)

. Then we can use that atan(a − x) ≤ atan(a) − x/(1 + a2) for any x ∈ [0, a]

and (2.2.43) to get

x2 >
2(Z + Z3)

1 + Z4

1√
Y

− 1. (2.2.47)

By showing that x→ x+ x3/(1 + x4) is increasing on [0, 1] and decreasing on [1,+∞), and recalling

that Z ∈
(√

Y , 1/
√
Y
)

we obtain that

x2 >
2(1 +

√
Y

2
)

1 +
√
Y

4 − 1 ≥ 1, (2.2.48)
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since
√
Y ≤ 1.

This ends the first statement of Proposition 2.2.5. Showing that the converse does not hold when a ̸= 0 or
b ̸= 0 is a consequence from taking k2 = η−1(1) − ε with ε sufficiently small and showing by contradiction
that (2.2.11) does not hold. This comes from the fact that x2 can be made as close to 1 as desired by selecting
ε sufficiently small, while, if (2.2.11) holds, there exists c > 0 independent of ε such that x2 − 1 > c. We do
not detail here the proof of Proposition 2.2.6, which relies on similar estimates as the proof of Proposition
2.2.5.
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Chapter 3

Global L2 exponential stability and
ISS of a semilinar system

3.1 Introduction

In this chapter, we present the work of [135], where we study the exponential stability and ISS of a Lipschitz
semilinear hyperbolic system in the L2 norm.

Let us first have a look at a general hyperbolic system without disturbances, namely

∂tu +A(u, x)∂xu +B(u, x) = 0,(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
.

(3.1.1)

Before [135], the only general result that existed for a general 1-D hyperbolic system for a Hp norm is the
following, showed in [19, Chapter 6] (see [18] for the 2 × 2 case in a linear framework).

Theorem 3.1.1 ([19]). Consider a system of the form (3.1.1) where A, B and G are of class Cp. If there
exists Q ∈ C1([0, L],D+

n (R)), where D+
n (R) is the space of definitive positive diagonal matrices, such that

— the matrix
− (QΛ)′(x) +Q(x)∂uB(0, x) + ∂uB(0, x)TQ(x)T (3.1.2)

is positive definite for any x ∈ [0, L],
— the matrix (

Λ+(L)Q+(L) 0
0 −Λ−(0)Q−(0)

)
−G′(0)T

(
Λ+(0)Q+(0) 0

0 −Λ−(L)Q−(L)

)
G′(0) (3.1.3)

is semi-definite positive.
then the system (3.1.1) is exponentially stable for the Hp norm for any p ∈ N \ {0, 1}.
When the system is semilinear, i.e. A(u, x) = A(0, x) = Λ(x), this result also holds for the H1 norm, but
cannot hold in general for the L2 norm. When, in addition, the system is linear then this result also holds
for the L2 norm. In [132] was shown a (local) exponential stability result for the C0 norm when the system
is semilinear, while [99] showed a (semi-global) exponential stability result for the same norm provided that
the transport term is constant and the source term is separable 1 and Lipschitz with some condition on its
Lispchitz bound. Thus, usually, getting an exponential stability result in the L2 norm is out of reach for
semilinear systems 2.

1. meaning that for any i ∈ {1, ..., N}, Bi(u, x) only depends on ui.
2. It is worth noting that [99] also showed a well-posedness result in the L2 norm in their framework, primarily to study the

effect of saturating boundary conditions. Besides, some result exists in particular cases, see for instance [264] for the semilinear
wave equations in a multidimensional framework where the stabilization is obtained in H1 norm for the solution y, hence for
the L2 norm for the total state u = (y, ∂xy).
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What we show in this chapter is that this stability can be recovered, when the source term is Lipschitz and
with some condition on the size of the source. In addition, the stabilization is global and holds even if B is
nonlocal, i.e. depends on u on the entire domain [0, L] and not only on u(x). Nonlocal source terms are not
only a mathematical curiosity but are also found in many important phenomena as population dynamics,
material sciences, flocking, traffic flow [25, 28, 230]. Finally, we consider the system with disturbances given
by (3.2.8)–(3.2.9) (which is similar to (2.1.14)–(2.1.15) in a semilinear nonlocal framework) and we show
that these results can be extended to the exponential ISS in the L2 norm.

In what follows, we look at the system (3.1.1) where A(u, x) = Λ(x) (i.e. the system is semilinear) and B is
not anymore a function from Rn × [0, L] but can be a non-local source term from L2((0, L);Rn) × [0, L] to
Rn, i.e. B(u, x) stands for B(u(t, ·), x). In the following we will assume that B is Lipschitz in the following
sense 3: for any u, v ∈ L2((0, L);Rn),

∥B(u, ·) −B(v, ·)∥L2 ≤ CB∥u− v∥L2 , (3.1.4)

where CB is a positive constant independent of u and v. Of course this assumption is satisfied if B is
local, i.e. takes argument in Rn × [0, L], and is Lipschitz with respect to its first argument, with a Lipschitz

constant C
(1)
B (x) that might depend on x but as a L2 function. We also assume that the boundary operator

G appearing in (3.1.1) is Lipschitz. The fact that G is Lipschitz implies that there exists a matrix K such
that 4 ∣∣∣∣Gi

(
u+(t, L)
u−(t, 0)

)∣∣∣∣ ≤ m∑
j=1

Kij |uj(t, L)| +

n∑
j=m+1

Kij |uj(t, 0)|. (3.1.5)

The matrix K = CGI, where I is the identity matrix and CG the Lipschitz constant of G would work.
However, there might be other matrices K satisfying (3.1.5) and some could lead to potentially better
conditions in our results (see Theorem 3.2.1). The first thing we can note is that this system is globally
well-posed:

Theorem 3.1.2. For any T > 0 and any u0 ∈ L2(0, L) the Cauchy problem (3.1.1) with A(u, x) = Λ,
B satisfying (3.1.4), G satisfying (3.1.5), and initial condition u(0, ·) = u0 has a unique solution u ∈
C0([0, T ], L2(0, L)). Moreover,

∥u(t, ·)∥L2 ≤ C(T )∥u0∥L2 , ∀ t ∈ [0, T ], (3.1.6)

where C(T ) is a constant depending only on T .

This theorem is showed by extending the result of [99, Theorem A.1] to the case where B is nonlocal,
Λ depends on x and the eigenvalues of Λ might have different sign. It allows to show the existence of a
ζ-dissipative nonlinear semigroup as defined in [191]. From the existence of this nonlinear semigroup we
deduce the existence of a unique integral solution (see [191] for a definition) to the Cauchy problem for any
initial condition u0 ∈ L2(0, L). Besides, when the initial condition belongs to H1(0, L) the integral solution
satisfies the boundary conditions and the estimate (3.1.6). Then using a density argument we show that this
unique integral solution is also the unique weak L2 solution in the following sense

Definition 3.1.1. Let u0 ∈ L2(0, L). We say that u ∈ C0([0,+∞);L2(0, L)) is an L2 solution of the Cauchy
problem (2.1.4), (2.1.9), u(0, ·) = u0, if for every T > 0 there exists a sequence of functions u0,n ∈ H1(0, L)
satisfying (2.1.9) and such that

u0,n → u0 in L2(0, L),

un → u in C0([0, T ], L2(0, L)),
(3.1.7)

3. Note that B can also be seen as a function from L2((0, L);Rn) to L2((0, L);Rn), hence (3.1.4) corresponds exactly to the
definition of a Lipschitz function from L2((0, L);Rn) to itself.

4. Recall that we denoted u+ = (ui)i∈{1,...,m} and u− = (ui)i∈{m+1,...,n} as in Section 2.1.
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where un ∈ C0([0, T ], H1(0, L)) is a weak solution of (2.1.4), (2.1.9) with initial condition u0,n, i.e. un

satisfies (2.1.9) and for any ϕ ∈ C1([0, T ];C1
c ((0, L);Rn)) we have∫ L

0

∫ T

0

∂tϕ
⊤un + ∂xϕ

⊤Λ(x)un + ϕ⊤(Λxun −B(un, x))dt dx

=

∫ L

0

[
ϕ(·, x)⊤un(·, x)

]T
0
dx.

(3.1.8)

Remark 3.1.1. As noted in [99], this definition is slightly different from the usual definition given in [19,
Definition A.3] when looking at linear systems. The usual definition given in [19, Definition A.3] consists in
finding a solution to the weak formulation with test functions satisfying particular boundary conditions which
corresponds to the adjoint of the boundary conditions of the system The reason for this difference comes from
the nonlinear boundary conditions which may prevent the existence of the adjoint boundary conditions. Of
course, in the linear case, a solution in the sense of [19, Definition A.3] is also a solution in the sense of
Definition 3.1.1.

3.2 Main results

Our main result is the following

Theorem 3.2.1. Let a semilinear system be of the form (3.1.1), where A(u, ·) = Λ ∈ C1([0, L]) and B is
Lipschitz with respect to u. If there exist K ∈Mn(R) satisfying (3.1.5), J ∈ C1([0, L];Mn(R)) where J(x) is
a diagonal matrix with positive coefficients, and M ∈ C0([0, L];Mn(R)), such that the following conditions
are satisfied

1. (Interior condition)
− (J2Λ)′ + J2M +M⊤J2 (3.2.1)

is positive definite and there exists D ∈ C1([0, L];Mn(R)) where D(x) is a diagonal matrix with
positive coefficients, such that

Cg <
λm

2 maxi,x(Di) maxi,x(DiJ2
i )
, (3.2.2)

where Cg is the Lipschitz constant of g :=B −M and λm denotes the smallest eigenvalue of

−D(J2Λ)′D +DJ2MD +DM⊤J2D, (3.2.3)

2. (Boundary condition) the matrix(
J2
+(L)Λ+(L) 0

0 J2
−(0)|Λ−(0)|

)
−K⊤

(
J2
+(0)Λ+(0) 0

0 J2
−(L)|Λ−(L)|

)
K

(3.2.4)

is positive semidefinite,

then the system is globally exponentially stable for the L2 norm.

Moreover the gain (or cost) of the estimate is ∥J−1∥L∞∥J∥L∞ and an admissible decay rate is µ :=
λm(2 maxi,x(DiJ

2
i ))−1 − Cg maxi,x(Di), namely the following estimate holds

∥u(t, ·)∥L2 ≤ ∥J−1∥L∞∥J∥L∞e−µt∥u0∥L2 . (3.2.5)
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We can observe that the conditions do not directly depend on the Lipschitz constant of B but rather on the
Lipschitz constant of g := B −M where M is a linear matrix that can be chosen, provided is satisfies the
conditions (3.2.2)–(3.2.4). This makes the formulation of Theorem 3.2.1 a little more complicated than the
same statement with M = 0 but it has a two advantages:

— Finding M ̸= 0 such that (3.2.1)–(3.2.3) hold allows to find a potentially less restrictive Lipschitz
bound on the size of the source term B.

— If B is a local linear operator we recover the existing result of Bastin and Coron [19, Chapter 6] by
taking M = B and g := 0.

Besides, note that λm can be easily numerically solved for practical applications. Finally, when B is local we
can define a space dependent Lipschitz constant CB(x) belonging to L2(0, L), and thus we can also define a
space dependent Lipschitz constant Cg(x) of g := B−M and the condition (3.2.2) can be slightly improved
as follows:

Cg(x) <
λm(x)

maxi(J2
i )(x)

or Cg(x) < µm(x)
maxi(Ji)(x)

infi(Ji)(x)
, (3.2.6)

where λm(x) and µm(x) are the smallest eigenvalues at a given x of the matrix given by (3.2.1) and (3.2.3)
respectively. The proof is based on the existence a basic quadratic Lyapunov function of the form∫ L

0

(J(x)u(t, x))T (J(x)u(t, x))dx, (3.2.7)

where J ∈ C1([0, L];D+
n ).

Theorem 3.2.1 can be extended to ISS. Consider now the system with internal and boundary disturbances,
as (2.1.14)–(2.1.15) in Chapter 2, but semilinear with B potentially nonlocal

∂tu + Λ(x)∂xu +B(u, x) + d1(t, x) = 0, (3.2.8)(
u+(t, 0)
u−(t, L)

)
= G

(
u+(t, L)
u−(t, 0)

)
+ d2(t). (3.2.9)

We have the following result.

Theorem 3.2.2. Let a system be of the form (3.2.8)–(3.2.9) where Λ ∈ C1([0, L]), d1 ∈ L2((0, T )× (0, L)),
d2 ∈ H1([0, T ]) and B is Lipschitz with respect to u. If the condition (3.2.2) is satisfied and the matrix
defined by (3.2.4) is positive definite, then the system is globally strongly ISS with fading memory for the L2

norm (see Definition 5 2.1.3).

Remark 3.2.1. As expected the conditions of this theorem are very similar to the conditions of Theorem
3.2.1. The only difference is that the matrix given in (3.2.4) has to be definite positive to handle the boundary
disturbances and not only semi-definite positive. Finally, in both Theorems 3.2.1 and 3.2.2 the gains (also
sometimes called costs) C (resp. C1, C2) defined in (2.1.10) (resp. (2.1.19)) can be computed explicitely as
a function of K, B and Λ.

3.3 Illustrations

We present here some numerical simulations to illustrate Theorem 3.2.1. We consider a system inspired from
[19, Section 5.6],

∂tu1 + ∂xu1 = cL−1 sin

(∫ L

0

u2(t, x)dx

)

∂tu2 − ∂xu2 = cL−1 sin

(∫ L

0

u1(t, x)dx

) (3.3.1)

5. which can be directly extended to this framework
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with the boundary conditions

u1(t, 0) − u2(t, 0) = 0

u1(t, L) − u2(t, L) = ku1(t, L)
(3.3.2)

Here, one boundary condition can be controlled through a parameter k to be chosen, while the other one
is imposed. This system is genuinely non-local. One can check that u∗ = 0 is a steady-state and that, for
any c ∈ R, the open-loop system (i.e. k = 0) is unstable. Indeed there is a continuum of non-zero travelling
wave solutions to (3.3.1)–(3.3.2) of the form

u1(t, x) = a sin

(
2π

L
(t− x)

)
u2(t, x) = a sin

(
2π

L
(t+ x)

) (3.3.3)

with a > 0. We can apply Theorem 3.2.1 and deduce that, as long as |c|L < 1/2, there exists a globally
stabilizing feedback given as follows:

k ∈
[
1 −

√
ε

ε+ 2L
, 1 +

√
ε

ε+ 2L

]
with ε =

3

4
(|c|−1 − 2L). (3.3.4)

This is obtained by setting M = 0, D = Id, J = (
√
L+ ε− x,

√
L+ ε+ x). Then −(J2Λ)′ = Id and

therefore is positive definite with smallest eigenvalue 1. We have maxi,x(J2
i ) = ε + 2L and observing that

the condition (3.2.2) becomes

|c| < 1

ε+ 2L
, (3.3.5)

which holds thanks to the choice of ε. Finally conditions (3.2.4) becomes

(1 − k)2 ≤ ε

ε+ 2L
, (3.3.6)

which holds from the definition of k given by (3.3.4). On Figure 3.1 we represent the L2 norm with respect
to time of a solution to system (3.3.1)–(3.3.2) for different values of k when c = 1/4 and L = 1. In blue we
represent the open loop situation k = 0, in green the closed-loop situation with k = 3/4, and in red with
k = 1/2, both satisfying (3.3.4).
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Figure 3.1 – Stability of the system (3.3.1)–(3.3.2) in open-loop (blue) and closed-loop with k = 3/4 (green)
and k = 1/2 (red). horizontal axis represents time, and vertical axis represents the L2 norm of the solution
with initial condition u1,0(x) =

√
2πx and u2,0(x) = e−2πx.
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Part II

Backstepping problems
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Chapter 4

Stabilization of a cross-diffusion
system by a backstepping method

In some cases, a direct use of basic quadratic Lyapunov functions is bound to fail. For example, if we consider
the following system:

∂tu1 + ∂xu1 + u2 = 0,

∂tu1 − ∂xu1 + u1 = 0.
on [0, L], (4.0.1)

with boundary conditions

u1(t, 0) = u2(t, 0),

u2(t, L) = ku1(t, L),
(4.0.2)

where L = 2π. In this case we can apply Theorem 1 of [18] which tells us that there exists a basic quadratic
Lyapunov function for the norm L2 if and only if the equation

η′ = 1 + η2,

η(0) = 0
(4.0.3)

has a solution on [0, L]. Clearly this equation has a simple maximal solution which is the tangent function
and which exists only on [0, π/2). With L = 2π this eliminates the possibility of having a basic quadratic
Lyapunov function, whatever the control at the boundaries. In fact for this example Bastin and Coron
have shown with a spectral approach that it is even useless to look for a local static control of the form
u2(t, L) = ku1(t, L) for this linear system when L > π [19, Section 5.6]. This motivates the search for more
efficient controls, even if they are potentially more complicated.

To do this, backstepping is a very efficient method. Its principle is simple: transform the original system
potentially hard to stabilize into a target system whose stabilization or stability is easy to show. The problem
is to prove the existence of an invertible transformation between the original system and this simpler target
system. Once this transformation is found, we just have to find a stabilizing control for the target system,
and then apply the inverse transformation to have a control for the original system. Obviously, since we have
applied a potentially complicated inverse transformation, the control of the original system is also potentially
complicated.

4.1 Rapid and finite-time stabilization of a cross-diffusion problem

In this section, we present the results of [43], written with Jean Cauvin-Vila and Virginie Ehrlacher.
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4.1.1 Backstepping: the Volterra approach

As we have seen, backstepping consists in finding two things:
— A target system, easy to stabilize
— An isomorphism mapping the original system into this target system.

The search for an isomorphism without any other condition is something complicated, because the space
of isomorphisms on the working space is very large. This is why the first approaches to infinite dimen-
sional backstepping were restricted to searching for the isomorphism in a very particular form: a Volterra
transformation of the second kind, i.e. a T transformation of the form

T : L2 → L2,

(TU)(x) = U(x) −
∫ x

0

K(x, y)U(y)dy, a.e. [0, L],
(4.1.1)

where K ∈ L2((0, L)2) is a kernel to be determined. The choice of this type of transformation is not a
coincidence: we find the same triangular structure as in the finite dimensional backstepping. Indeed, in
view of the form (4.1.1), at a given point x ∈ [0, L] the value TU(x) depends only on the values of u(t, ·)
before the point x. Moreover, in this form, the K-dependent term is a Hilbert-Schmidt operator and the
transformation T is therefore a compact perturbation of the identity. The transformation T is in fact
naturally an isomorphism, which is very convenient. The infinite dimensional backstepping method has thus
extensively (and almost exclusively) used this type of transformation and has known a great expansion in
the last fifteen years (see Section 1.3). The main difficulty is to identify a good target system 1, and to show
the existence of a solution K to a PDE system on a triangular domain 2.

4.1.2 A 1D cross-diffusion system

Cross-diffusion systems are widespread in real-life and appear in many fields: population dynamics, material
physics, evolution of biological tissues, chemistry etc. They represent for example the coupled diffusion
between several chemical species. A classical cross-diffusion system on a domain Ω and a time interval [0, T ]
can be written as

∂tu− div(A(u)∇u) = 0 on [0, T ] × Ω, (4.1.2)

where u ∈ Rn+1 is the vector representing the concentrations of each species which must therefore be positive
and verify the condition

∑n
i=0 ui = 1. A(u) is a matrix (n+ 1)× (n+ 1) called the cross-diffusion matrix (or

sometimes diffusion matrix). Since the concentration of the species u0 is completely imposed by the condition
u0 = 1−∑n

i=1 ui we can re-express the system as a system of the form (4.1.2) where u = (ui)i∈{1,...,n} ∈ Rn

(so without the 0 component) and A(u) is now an n× n matrix. In this framework, the solutions verify the
positivity condition ui > 0, as well as

∑n
i=0 ui < 1. These systems have been studied a lot, because of their

interest in modeling, and it appears that the physical examples often have an entropic structure [38, 147–149].
In this section we are interested in a system of the form

∂tu− ∂x(A(u)∂xu) = 0, for x ∈ (0, e(t)), t ∈ [0, T ]

(A(u)∂xu)(t, 0) = 0,

(A(u)∂xu)(t, e(t)) + e′(t)u(t, e(t)) = (φi(t))i∈{1,..,n},

u(0, x) = u0(x), x ∈ (0, e0),

e′(t) =

n∑
i=0

φi(t),

(4.1.3)

where A admits an entropic structure, that is to say if we define

D =

{
(u1, · · · , un) ∈ (R∗

+)n,

n∑
i=1

ui < 1

}
⊂ (0, 1)n,

1. note that it is not always possible to transform the system into a homogeneous system [19]
2. precisely due to the triangular structure of the transformation
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then

— there exists h ∈ C2(D̄), a bounded from below strictly convex function such that its derivative Dh is
invertible from D̄ to Rn;

— there exists α > 0, and 1 ≥ mi > 0 such that for all z = (z1, · · · , zn)T ∈ Rn and u = (u1, · · · , un)T ∈
D,

zTD2h(u)A(u)z ≥ α

n∑
i=1

u2mi−2
i z2i .

and we denote M(u) := A(u)(D2h(u))−1.

In the following we will assume additionally that M(u) is symmetrical. We notice that this system has an
additional complexity compared to (4.1.2): the domain depends on time and the dynamics of e(t) is coupled
to the state of the system u. This system models for example the Physical Vapor Deposition (PVD) process,
used in material physics and in industry. This process allows to create thin layers of materials on a conductive
substrate and has a large number of applications, from photovoltaic cells to the finishing of car shells or locks.
The chemical elements to be deposited are introduced in gaseous form and, as they are deposited, the size of
the layer increases. At the same time the temperature causes a diffusion in the layer between the different
species. The vector u represents the concentrations of the different components, A(u) their interactions,
while varphii represent the flows injected during the deposition process. This system was introduced in [15]
where the authors showed the global existence of weak solutions to the nonlinear system by exploiting the
entropic structure. They also showed that, when the fluxes are constant, the concentrations (normalized by
the size of the domain) converge in long time to a uniform stationary state. Nevertheless this convergence
is slow and in 1/

√
t. This can be understood intuitively: when the fluxes are constant the domain increases

with time and, the more time passes, the less the initial state influences the concentrations since one keeps
adding material which has the “good” concentrations. Thus, at long time the initial state, whatever it is, is
diluted in the new material added to the system. And at infinity the composition of the system is the same
as that of the flows. This convergence is therefore mainly a consequence of the growth of the domain, and
if one select a given piece of finite size in the layer, there is no guarantee that the concentrations on this
piece converge well. The goal of [43] is to find a feedback control for (φi)i∈[1,n] which allows to overcome
this problem by obtaining an exponential stabilization. Moreover, we would also like to stabilize the size
of the domain e(t) at the same time. We are therefore interested in the local stabilization of trajectories
corresponding to a uniform stationary state ū and a domain size ē(t). Note that if ū is a constant then
consequently ē(t) = a+ bt, where a and b are constants. In [43] we treat the case of the linear system, which
already presents several difficulties.

4.1.3 Main results

Let us start by introducing the linearized system corresponding to (4.1.3) around a target trajectory (ū, ē(t)).
By abuse of language we will call this trajectory (ū, ē(t)) a steady state even if e depends on time 3. We
denote V = ē′(t) =

∑n
i=0 φ̄i. The linearized system is then written

∂tv −A(ū)∂2xxv = 0, on (0, ē(t)),

A(ū)∂xv(t, ē(t)) + V v(t, ē(t)) = ψ(t),

A(ū)∂xv(t, 0) = 0,

v(0, x) = v0(x), for x ∈ (0, e0).

(4.1.4)

3. We use this name because it is the trajectory corresponding to a steady state for u. There is no steady state for (u, e)
because of the physical condition u > 0, φi ≥ 0.
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where v = u− ū et ψi = φi − φ̄i −
n∑

k=0

φ̄k for i ∈ {1, .., n}. Besides, denoting ê(t) = e(t) − ē(t), the equation

on e(t) becomes

ê′(t) =

n∑
i=0

φi − φ̄i =: θ(t). (4.1.5)

We will denote in the following

∥v∥L2(0,e(t)) =

(∫ e(t)

0

|v|2dx
)1/2

(4.1.6)

We will use several times the slight abuse of notation L2(0, ē(t)) or C0([0, T ];L2((0, ē(t)))) to refer to a
solution defined on ∪t≥0{t} × (0, ē(t)) (see [43] for more rigorous definitions). Since the size of the domain
depends on time and diverges at infinity, a question arises a priori concerning the stability: do we seek to
obtain

1

e(t)

∫ e(t)

0

|v(t, x)|2dx→ 0 (4.1.7)

or ∫ e(t)

0

|v(t, x)|2dx→ 0. (4.1.8)

Clearly, it is easier to obtain (4.1.7) than (4.1.8) and the results of [15] illustrate this difference: in [15]
the authors manage to obtain (4.1.7) but do not manage to obtain (4.1.8). In reality this question will not
arise in our case because we will be looking for exponential stability, or even finite time stability, for which
the stabilities of e(t)−1∥v∥L2(0,e(t)) and ∥v∥L2(0,e(t)) are equivalent as the growth of e(t) is slower than any
exponential growth.
The available controls for these systems are the n + 1 flows ϕi, i ∈ {0, ..., n} or equivalently ψ and θ.
Concerning θ we will look for it in the form of a feedback control depending on time t and ê(t). Concerning
ψ, we will look for the feedback control in the following form:

ψ(t) = Fl(t)v(t, ē(t)) + Fnl(t)v(t, ·), (4.1.9)

where Fl(t) ∈ Rn×n represents the local part of the feedback, similar to that studied in Chapters 2–3,
and Fnl(t) : L2((0, ē(t)) → Rn is a potentially non-local continuous operator (but more regular, since it is
applicable on functions that are only L2).
The exponential stabilization that we want to obtain is defined as follows:

Definition 4.1.1. Let λ > 0. A target state (ū, ē) of (4.1.3) is said to be exponentially stabilizable in L2

with decay rate λ if there exist constants Cū,λ, Cē,λ > 0 independent of time and operators Fl and Fnl such
that for any τ1, T > 0,

a) Fl ∈ L∞
loc(R∗

+;Rn×n) and Fnl ∈ L2((τ1, T );L(L2((0, ē(t))),Rn)), and the continuity constant of Fnl(t)
is uniformly bounded on t ∈ [τ1, T ], and for any vτ1 ∈ L2(0, e(τ1)), the linearized system (4.1.4) with
initial condition vτ1 and feedback control (4.1.9) has a unique weak solution v ∈ C0((τ1, T ), L2(0, ē(t)))
and

∥v(t)∥L2(0,ē(t)) ≤ Cū,λe
−λ(t−τ1)/2∥vτ1∥L2(0,e(τ1)), for all t ∈ [τ1, T ]. (4.1.10)

b) There exists a function Θ ∈ L1
loc

(
R∗

+; C0(R)
)

such that, for any êτ1 ∈ R, ê is well-defined by (4.1.5)
with θ(t) = Θ(t, ê(t)) and satisfies:

|ê(t)| ≤ Cē,λe
−λ(t−τ1)/2|êτ1 |, for all t ∈ [τ1, T ]. (4.1.11)

The main results we obtain are the following.

Theorem 4.1.1 (Rapid stabilization). Let λ > 0 and (ū, ē) a target state. If λ is large enough, then, (ū, ē) is
exponentially stabilizable in L2 with decay rate λ/2. Moreover, A is diagonalizable and the feedback controls
Fl, Fnl and Θ can be constructed as follows, for any τ1 > 0, T > 0:
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— for any t ≥ τ1 and ê ∈ R, Θ(t, ê) = −λê;

— for any t ≥ τ1, 1 ≤ i ≤ n,

Fl,λ(t) = Q(ū)−1diag (σik
σi

λ (ē(t), ē(t)))
i∈{1,...,n}Q(ū),

F i
nl,λ(t) : v 7→ Q(ū)−1

(∫ ē(t)

0

[σi∂xk
σi

λ (ē(t), y) + V kσi

λ (ē(t), y)]Q(ū)v(y)dy

)
i∈{1,...,n}

,

where (σi)i∈{1,...,n} are the eigenvalues of A(ū), Q(ū)−1 is a matrix diagonalising A(ū) such that
Q(ū)A(ū)Q(ū)−1 is diagonal and kσi

λ is the (unique) solution to the kernel equations
∂2xxk

σi

λ (x, y) − ∂2yyk
σi

λ (x, y) =
λ

σi
kσi

λ (x, y), (x, y) ∈
{

(x, y) ∈ (R+)
2
, 0 < y ≤ x

}
,

∂yk
σi

λ (x, 0) = 0 x ∈ (0,+∞),

kσi

λ (x, x) = − λ

2σi
x x ∈ (0,+∞),

(4.1.12)

This result shows that with a backstepping approach, it is possible to obtain a rapid stabilization, i.e.
exponential with a decay rate as large as desired. We can in fact go further and show that it is possible to
perfectly stabilize the system in finite time. The definition of stabilization in finite time is similar to the
Definition 4.1.1 by replacing the exponential stability estimate by a stability condition in the broad sense
and a convergence of v and ê to 0 in a finite time T (see [43]).

Theorem 4.1.2 (Finite-time stabilization). Let (ū, ē) be a target state. Then, the system is stabilizable in
L2 for any finite time T > 0.

This second result follows from the Theorem 4.1.1 and uses a technique already used for example in [71]
and [75, 251], which consists in increasing the decay rate on shorter and shorter time steps and whose sum
converges to a finite value, while the value of the decay rate converges to +∞. For this, we must have
a good estimate of the dependence of the pre-factor Cū,λ of (4.1.10) on λ and this dependence should be

sub-exponential 4. In our case we can show that Cū,λ = C ′eēτ1
√
λ, where C ′ is a constant independent of λ.

4.1.4 Ideas of proof

We would like to find a Volterra transformation T of the form

T (t)Z = Z(x) −
∫ x

0

Kλ(t, x, y)Z(x)dx, x ∈ (0, ē(t)) (4.1.13)

which goes from L2 to itself and which transforms the system (4.1.4) in
∂tv −A(ū)∂2xxv + λv = 0, on (0, ē(t)),

A(ū)∂xv(t, ē(t)) + V v(t, ē(t)) = 0,

A(ū)∂xv(t, 0) = 0,

v(0, x) = v0(x), for x ∈ (0, e0),

(4.1.14)

i.e. essentially the same system with homogeneous boundary conditions and an additional damping in λ
which will give the exponential decay. The main feature of our system is that it is non-autonomous and the
domain is time dependent. This means that the backstepping transformation T depends a priori on time,
and that its norm, as well as the norm of its inverse transformation too. We can classically show that this
inverse transformation has the form

(T −1(t)W )(x) = W (x) +

∫ x

0

Lλ(t, x, y)W (y)dy, (4.1.15)

4. or a minima less strong than the exponential decay of the estimate
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for x ∈ (0, ē(t)). Thus since the exponential stabilization estimate that we obtain with the backstepping
method depends on the norm of T and its inverse, it is necessary to check that they do not grow too fast
and that they do not compensate the exponential decrease.
The second difficulty comes from the determination of T . If we try to find a solution for T we will end up
with equations on K, called kernel equations. But here, the kernel equations are also time dependent and
involve derivatives in t, x, and y which makes them quite complicated. However, one can find an explicit
time dependence and show that the solutions of these equations can be written as the restriction to a moving
domain of a function independent of t. We then fall back on the kernel equations (4.1.12) which are more
classical (see [71, 162] for instance).
We can then give an estimate of the norm of the transformation and the norm of the inverse transformation,
by showing the following bounds on Kλ and Lλ

∥Kλ(t, ·, ·)∥2H1(Dt)
≤ C exp

c̃ē(t)√√√√ λ

inf
i∈{1,...,n}

|σi|

 , (4.1.16)

∥Lλ(t, ·, ·)∥2H1(Dt)
≤ C

 λ

inf
i∈{1,...,n}

|σi|

2

ec̃ē(t), (4.1.17)

where c̃ and C are constants independent of λ and t, and Dt is the moving triangular domain, i.e., Dt =
{(x, y) ∈ R2 : 0 < y ≤ x < ē(t)}. These bounds then allow us to conclude both on the exponential stability,
and finite time stability with an iteration procedure similar to [71, 205, 251].
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Chapter 5

A more general backstepping:
application to the heat equation

Backstepping using a Volterra transform is a very powerful tool. In several cases, however, it is not enough
to stabilize the system. Indeed, consider for instance the system{

∂tu− ∆u = v1(t)ϕ1 + v2(t)ϕ2, (t, x) ∈ (0,+∞) × T,
u|t=0 = u0(x), x ∈ T, (5.0.1)

where T is the one-dimensional torus, and v1, v2 are the (scalar) controls. In this case the backstepping
approach with a Volterra transform will not be truly helpful. This intuitively comes from the fact that
the Volterra transform is moving the difficulty to the boundaries and then the difficulty is tackled using the
boundary controls. When the control is internal, however, the interest of the Volterra transform is sometimes
limited. For this reason, we would like to investigate a more general backstepping that does not limit itself
to Volterra transforms. This has inherent difficulties: we cannot count anymore on the invertibility and the
cascade structure of the transformation. But, on the positive side, we may get stronger results.

In Section 5.2.1 we give a general overview of the method that we detail in Section 5.3 on the particular
example of the heat equation with internal scalar controls given in (5.0.1). Then in Chapter 6 we show
the limitations of this method and we present a compactness-duality method to overcome them. Finally,
in Chapter 7 we detail an example of hyperbolic systems on which we manage to apply the same approach
despite the fact that none of the methods presented in this chapter and Chapter 6 can be applied. This
example is the water-tank system, modelled by the Saint–Venant equations.

5.1 Finite-dimensional systems

Before diving into the generalized backstepping, we start by taking a step back to look at a finite-dimensional
system in order to get an intuition of the approach. A linear finite-dimensional system has the form

Ẋ = AX +Bu, (5.1.1)

where X ∈ Rn is the state, A ∈ Rn×n is the operator, B ∈ Rn×1 and u ∈ R1 is the scalar control. For
such systems, it is a known fact that the system is stabilisable if it is controlable [55, Corollary 10.12]. And,
thanks to the famous Kalman rank criterion, this system is controlable if and only if the pair (A,B) is
controlable, i.e.

Span{AiB|i ∈ {0, ..., n− 1}} = Rn. (5.1.2)

When this is satisfied, an explicit feedback u(t) = KX can be found using for instance the formula derived
from the Gramian (see [55, Chapter 10])

K = −BTC−1
T , (5.1.3)
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where

CT =

∫ T

0

e−tABBT e−tAT

dt. (5.1.4)

Then (A + BK) has eigenvalues with only strictly negative real part, hence the system with feedback
u(t) = KX is exponentially stable (see [184, Theorem 3.1], [155]). In fact, one can even go further and
show that for any polynomial P ∈ Rn[X] there exists K such that P is the characteristic polynomial of
(A + BK) [248]. Therefore for any λ > 0, one can find K such that (A + BK) has only eigenvalues with
real part lower than −λ and hence the system is exponentially stable with decay rate (at least) λ. This is
called pole-shifting.

In fact the pole shifting can be seen differently: we can see it as trying to transform the system (5.1.1) with
u = KX into the target system

Ẏ = (A− λ)Y, (5.1.5)

with an invertible transformation T . This amounts to set Y = TX and to show that it is possible to find T
and K such that Y is solution to (5.1.5). Using (5.1.1), this means that

Ẏ = T (A+BK)X = (A− λ)Y = (A− λ)TX. (5.1.6)

Setting Ã = A− λId, this amounts to showing that

T (A+BK) = ÃT. (5.1.7)

This equation is not well-posed in the sense that if there exists a solution (T,K), then there exists an infinite
number of solutions, for instance (aT,K) with a ∈ R. Thus, there is some room for maneuvers on T . On the
other hand, this equation is quadratic in (T,K) because of the term TBK that appears when developing the
left-hand side. This makes it more complicated to solve. As a consequence, it is very tempting to impose an
additional condition 1

TB = B. (5.1.8)

Then the system to solve becomes

TA+BK = ÃT,

TB = B,
(5.1.9)

and it can be shown that this system has a unique solution (T,K) (see for instance [64, Section 2.2]).
Overall, this illustrates that, in finite dimension, the generalized backstepping approach that we want to use
is simply another way to see the pole-placement theorem, which is directly linked to the controllability of
the system.

5.2 Infinite-dimensional systems

In infinite dimension, the linear systems of PDEs we are looking at can be formally reformulated as:

∂tf(t) = Af(t) +Bu(t), (5.2.1)

where A is a differential operator defined on some domain D(A), which contains the information about the
boundary conditions, B is an operator associated to the control and u is the scalar control. For instance the
following linear transport PDE

∂tf − ∂xf = ϕ(x)u1(t),

f(t, 0) = kf(t, 1),
(5.2.2)

1. In fact there is a deeper reason to consider this specific additional condition TB = B, other than making (5.1.7) linear.
This appears when considering (A,B) under canonical form and using that (Ã, B) is controllable. More details can be found in
[64, Section 2.2].
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with ϕ ∈ L2(0, 1) can be reformulated as (5.2.1) with A : f → ∂xf , defined on D(A) = {f ∈ H1(0, 1) :
f(0) = kf(1)} and B : m→ mϕ defined on R with value in L2(0, 1).

The target system can be reformulated similarly in

∂tg = Ãg, (5.2.3)

where Ã is defined on some D(Ã). Formally, the problem we would like to solve is finding an isomorphism
T and a feedback operator K such that, for a solution f to (5.2.1) with u(t) = Kf(t), Tf is a solution to
(5.2.3). This problem formulates very similarly to its the finite dimensional counterpart presented above
and, once again, the formal operator problem that we would like to solve is finding (T,K) such that

T (A +BK) = ÃT, (5.2.4)

in a sense to be defined. This problem is ill-posed again in the sense that there is no uniqueness 2. Thus the
finite dimensional approach suggests to add a condition TB = B (in a sense to be defined) to simplify the
problem and solve

TA +BK = ÃT (5.2.5)

instead of solving directly T (A+BK) = ÃT . As a final remark before diving into the method, we can note
that overall we are fundamentally trying to use the controllability of the system to show the existence of a
transformation which, as a consequence, shows that the system can be rapidly stabilized, with an explicit
feedback.

5.2.1 Overview of the method

The general spirit of the method is the following:
— First assume the feedback operator K is fixed and the condition TB = B holds, and find a candidate

transform T mapping the original system to the target one. This amounts to finding a solution T to
the operator equality (5.2.5) described above.

— Then show a condition on K such that T is an isomorphism.
— Show that there exists K such that TB = B holds and express it.

The first step is usually straightforward, while the second step is crucial. For the second step there is a
useful characterization when working on a Hilbert space

Lemma 5.2.1. Let T be a mapping from a Hilbert space X to itself. T is an isomorphism if and only if
there exists an orthonormal basis (fn)n∈Z of X such that its image by T , denoted (Tfn)n∈Z is a Riesz basis
of X.

This reduces the problem to studying the property of (Tfn)n∈Z for some orthonormal basis (fn)n∈Z. It
remains the problem of showing that (Tfn)n∈Z is a Riesz basis. In the original approach introduced in
[68, 69] (see also [63, 109, 111]) this was shown by using the following Lemma

Lemma 5.2.2. Let I ⊆ Z and (ξn)n∈I be quadratically close to an orthonormal basis (en)n∈I of X. Suppose
that (ξn)n∈I is either dense in X or ω-independent in X, then (ξn)n∈I is a Riesz basis of X.

The proper definitions of Riesz basis, dense, ω-independent, and quadratically close are given below in
Definition 5.3.1. The key point here is then to show that the family (Tfn)n∈Z is quadratically close to some
orthonormal basis, likely derived from (fn)n∈Z. This is what we discuss in more details in Section 5.3 for
the heat equation. As we will see it later on in Section 5.3 (see for instance (5.3.55)) the quadratically close
property relies a lot on the fact that the eigenvalues of the operator A are increasing quickly enough (so that
the gap between two eigenvalues increase quickly enough as well). In fact it amounts to showing that

∑
n∈N∗

∑
p ̸=n

(
1

λp + λ− λn

)2

< +∞, (5.2.6)

2. if (T,K) is solution, (aT,K) is again a solution for a ∈ R∗
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which holds as soon as
λn ∼ nα, with α > 3/2. (5.2.7)

However, this can be very limiting as it does not work for operators with a slower eigenvalue growth. Indeed
for α ≤ 3/2, (5.2.6) would fail. This excludes for instance hyperbolic systems where the growth of the
eigenvalues typically scales with n (hence α = 1), but also physical systems like the water-wave equations
which correspond to the critical case α = 3/2. This last problem is an open question mentionned in 2017 in
[56]. In these cases, proving that (Tfn)nZ is quadratically close to (fn)n∈Z is most likely vain and there is a
need for a new approach.

In Section 5.3 we present how this generalized approach can be adapted to the rapid stabilization of a
heat equation on a torus in a sharp functional framework. In Chapter 6 we give a new approach: the
compactness-duality method which relies on Fredholm’s alternative and allows to overcome the quadratically
close argument and to deal with the cases α ∈ (1, 3/2] for skew-adjoint operators. In particular, this allows
to answer the question of the water-waves equation. Finally in Chapter 7 we focus on hyperbolic systems
where α = 1 and we see how to deal with a particular 2 × 2 system studied in [53, 54, 72, 98, 200, 206]
consisting of Saint-Venant equations and modelling a water-tank.

5.3 Stabilization of a heat equation on a torus with two scalar
controls

This Section is taken from [109], a collaboration with Ludovick Gagnon, Shengquan Xiang and Christophe
Zhang. We consider the following heat equation on the torus

∂ty(t) − ∆y(t) = Φu(t), t ∈ (0,+∞),

y(0) = y0 ∈ Hs(T),
(5.3.1)

Where T = R/2πZ is the one-dimensional torus, s ∈ R+, u(t) ∈ Rd are real-valued scalar controls belonging
to L2((0,+∞);Rd), and Φ is a linear application on Rd which can be represented by the vector (ϕ1, ..., ϕd).

The first question that arises is: what is the smallest number d of controls such that the system is controllable?
We show the following in [109, Section 3]:

Theorem 5.3.1. If d = 1, then for any T > 0 the system (5.3.1) is not controllable.

Note here that the controls are scalar, which means that they do not depend on the space variable. When
the control also depends on x, it is then of infinite dimension and the room for maneuver is much larger (see
[108, 171], or for instance [102, 105]).
Theorem 5.3.1 means that d ≥ 2 is necessary. In fact, d ≥ 2 is also sufficient and, if d = 2 a necessary
condition on (ϕ1, ϕ2) is that(

⟨ϕ1, einx⟩ ⟨ϕ1, e−inx⟩
⟨ϕ2, einx⟩ ⟨ϕ2, e−inx⟩

)
is invertible, for any n ∈ N∗. (5.3.2)

A simple example for which this is satisfied is, for instance,

ϕ1 ∈ SpanR{sin(nx)}n∈N with ⟨ϕ1, sin(nx)⟩ ≠ 0, ∀n ∈ N∗

ϕ2 ∈ SpanR{cos(nx)}n∈N with ⟨ϕ2, cos(nx)⟩ ≠ 0, ∀n ∈ N.
(5.3.3)

In the following we will consider such (ϕ1, ϕ2), to simplify. We introduce the notation

Hs−(T) = ∪ε>0H
s−ε(T) (5.3.4)

and
Hs+(T)′ = ∪ε>0(Hs+ε(T))′, (5.3.5)

where (Hs(T))′ is the dual of Hs(T). We have the following [109]:
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Theorem 5.3.2 (Controllability). Assume that d = 2 and that there exist −∞ < α ≤ β < 1/2 and c, C > 0
such that

cnα ≤ |⟨ϕ1, sin(nx)⟩|, |⟨ϕ2, cos(nx)⟩| ≤ Cnβ ,∀n ∈ N∗, (5.3.6)

and ⟨ϕ2, 1⟩ ≠ 0, then the system (5.3.1) is exact null controllable in L2(T). If, in addition,

cn−s ≤ |⟨ϕ1, sin(nx)⟩|, |⟨ϕ2, cos(nx)⟩| ≤ Cn−s, ∀n ∈ N∗, (5.3.7)

and ⟨ϕ2, 1⟩ ≠ 0, then the system is exact null controllable in Hs+1/2−(T).

For d > 2 we can simply set all the other scalar controls to 0 and the system is again controllable under
these conditions. Thus, in the following we will only consider d = 2, without loss of generality. The system
reads {

∂ty(t) − ∆y(t) = u1(t)ϕ1 + u2(t)ϕ2, x ∈ T, t ∈ (0,+∞),

u(0) = u0, x ∈ T.
(5.3.8)

Our main results are the following:

Theorem 5.3.3 (Rapid stabilization). Let s ∈ R+ and ϕ1, ϕ2 ∈ Hs−1/2− such that (5.3.7) holds. For any
λ > 0, there exist K1 and K2 bounded feedback functionals on Hs+1/2+ such that for any y0 ∈ Hs+r with
r ∈ (−1/2, 1/2), the equation (5.3.8) with u1 = K1(y) and u2 = K2(y) has a unique solution satisfying

y ∈ C0([0,+∞);Hs+r(T)) ∩ L2
loc((0,+∞);Hs+r+1(T)) ∩H1

loc((0,+∞);Hs+r−1(T)). (5.3.9)

Moreover, we have the following exponential stability estimate,

∥y(t, ·)∥Hs+r ≤ Ce−λt∥y0∥Hs+r , ∀t ∈ [0,+∞), (5.3.10)

where C = Cr(λ, s) is a constant independent of y0.

We can make several interesting remarks

Remark 5.3.1 (Uniformity of the feedback with r). The feedback laws K1 and K2 do not depend on
r ∈ (−1/2, 1/2), which means that for a given s, the same feedback law can stabilize the system in any of the
Hs+r spaces with r ∈ (−1/2, 1/2).

Remark 5.3.2 (Case a0 = 0). The condition a0 ̸= 0 is necessary to have the controllability and stabilizability
of the system. Otherwise, one can see that

∫
T y(t, x)dx is conserved. However, if a0 = 0 a stabilization is still

possible in some sense, but, instead of converging to 0, the system will converge to the constant steady-state
y∗ ≡

∫
T y0(x)dx.

We can extend this results and show that the feedback obtained in Theorem 5.3.3 can also stabilize locally
nonlinear systems, such as the viscous Burgers’ equation.

Theorem 5.3.4 (Rapid stabilization). Let ϕ1, ϕ2 ∈ H−1/2−, such that (5.3.7) holds with s = 0. For any
λ > 0, there exists K1 and K2 bounded feedback functionals on H1/2+ such that, for any y0 ∈ L2, the
equation {

∂ty − ∆y + ∂x(y2/2) = K1(y)ϕ1 +K2(y)ϕ2,

y(0) = y0,
(5.3.11)

has a unique solution

y ∈ C0([0,+∞);L2(T)) ∩ L2
loc((0,+∞);H1(T)) ∩H1

loc((0,+∞);H−1(T)). (5.3.12)

Moreover, there exists δ > 0 such that for any ∥y0∥L2 < δ, we have the following exponential stability estimate

∥y(t, ·)∥L2 ≤ Ce−λt∥y0∥L2 , ∀t ∈ [0,+∞), (5.3.13)

where C = C(λ) is a constant independent of y0.

In the following, we give an idea of the proofs of Theorem 5.3.3 and 5.3.4. We start by introducing some
definitions.
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5.3.1 Functional setting and definitions

Functional setting Let us remark that (einx)n∈Z are eigenfunctions of the Laplacian on T associated to
the eigenvalues λn = λ−n = −n2. This degeneracy of the eigenvalues is the main reason why the system needs
at least two scalar controls to be controllable. This means that we can construct the following orthonormal
basis of real-valued eigenfunctions of the Laplacian

f1n :=
1√
π

sin(nx), f2n :=
1√
π

cos(nx), associated to λn := −n2, ∀n ∈ N∗,

f20 :=
1√
2π
, associated to λ0 := 0.

(5.3.14)

Also, on T there are no boundary thus Hs(T) coincides with the closure of Span{n−seinx}n∈Z =
Span{(n−s sin(nx), n−s cos(nx))}n∈N. This motivates the definition of the following spaces

L2(T) = L2
1 ⊕ L2

2, L2
1 := SpanR{sinnx}n∈N∗ , L2

2 := SpanR{cosnx}n∈N. (5.3.15)

Thus, L2
1 describes the odd functions, L2

2 describes the even functions and both subspaces of L2 are endowed
with the L2 norm. Similarly, we can define, for any s ∈ R+ and i ∈ {1, 2},

Hs
i = {a ∈ Hs(T) | a =

∑
n∈N

anf
i
n}, (5.3.16)

where we recall that, with such a basis (f1n, f
2
n)n∈N,

Hs(T) =

{
a =

∑
n∈N∗

a1nf
1
n +

∑
n∈N

a2nf
2
n

∣∣∣∣∣ ain ∈ R and
∑
n∈N∗

n2s
(
(a1n)2 + (a2n)2

)
< +∞

}
, ∀ s ∈ R+,

(5.3.17)
and

∥a∥Hm =

(
(a20)2 +

∑
n∈N

n2s((a1n)2 + (a2n)2)

)1/2

. (5.3.18)

We can define the inner product ⟨·, ·⟩Hs−m
i ,Hs+m

i
as follows

⟨f, g⟩Hs−m
1 ,Hs+m

1
=
∑
n∈N

(ns−m⟨f, f1n⟩)(ns+m⟨g, f1n⟩). (5.3.19)

where ⟨·, ·⟩ refers to the usual scalar product in L2. We also introduce the Schwartz space on the torus S(T)
and decompose it similarly in its odd and even part

S1 := {a ∈ S(T) : ⟨a, f2n⟩ = 0, ∀ n ∈ N},
S1 := {a ∈ S(T) : ⟨a, f1n⟩ = 0, ∀ n ∈ N∗}.

(5.3.20)

and we define

S ′
1 :=

{
a ∈ S ′ | ⟨a, f2n⟩ = 0, ∀n ∈ N

}
, (5.3.21)

S ′
2 :=

{
a ∈ S ′ | ⟨a, f1n⟩ = 0, ∀n ∈ N∗}, (5.3.22)

In the following we will refer to S′
1 and S′

2 as the dual of S1 and S2 respectively (even if, strictly speaking,
it is not the dual of Sk, but the quotient space S ′/S3−k). Finally, we say that L is a bounded linear map
from Hs+(T) to R if

For any ε > 0, L is a linear map from Hs+ε(T) to R. (5.3.23)

A similar definition holds for Hs+
i , with i = 1 or 2.
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Families of functions in a Hilbert space As mentioned in introduction of this section, to prove that
our candidate backstepping transform T is indeed an isomorphism, we will use Lemma 5.2.1 and show that
there exists an orthonormal basis (fn)n∈N such that (Tfn)n∈N is a Riesz basis. To do so, we will use Lemma
5.2.2. We recall here some definitions about families of functions in Hilbert spaces.

Definition 5.3.1. Let X be a Hilbert space. A family of vectors {ξn}n∈I , where I = Z, N, or N∗ is said to
be

(1) Minimal in X, if for every k ∈ I, ξk /∈ Span{ξi; i ∈ I − {k}}.
(2) Dense in X, if Span{ξi; i ∈ I} = X.
(3) ω-independent in X, if∑

k∈I
ckξk = 0 in X with {cn}n∈I ∈ ℓ2(I) =⇒ cn = 0, ∀n ∈ I. (5.3.24)

(4) Quadratically close to a family of vector {en}n∈I , if∑
k∈I

∥ξk − ek∥2X < +∞. (5.3.25)

(5) Riesz basis of X, if it is the image by an isomorphism (on X) of some orthonormal basis.
(5)’ Riesz basis of X (equivalent definition), if it is dense in X and if there exist C1, C2 > 0 such that

for any (an)n∈I ∈ ℓ2(I) we have

C1

∑
k∈I

|ak|2 ≤ ∥
∑
k∈I

akξk∥2X ≤ C2

∑
k∈I

|ak|2. (5.3.26)

5.3.2 Outline of the strategy

We give here the general idea of the proof. Given that ϕ1 ∈ H
s−1/2−
1 and ϕ2 ∈ H

s−1/2−
2 , the previous

definitions motivate us to divide the state of the system u in two components

y(t, ·) = y1(t, ·) + y2(t, ·), (5.3.27)

where y1 ∈ L1
2 and y2 ∈ L2

2. Then one can check that

∂tyi(t) − ∆yi(t) = ui(t)ϕi, ∀t ∈ (0,+∞), i ∈ {1, 2}, yi(0) = y0i , (5.3.28)

where y0 = y01 + y02 is the decomposition of the initial condition in odd and even functions. The logic is that
the odd part of the solution is then controlled by the odd part of the control u1ϕ1 and the even part of the
solution is controlled by the even part of the control u2ϕ2. This gives us two problems defined on Hs

i . What
we are showing in [109] is that each of these two systems can be stabilized rapidly using a feedback control,
and this gives the main result Theorem 5.3.3.

For this, we would like to map each of these systems to the target systems{
∂tzi(t) − ∆zi(t) − λzi = 0, ∀t ∈ (0,+∞), i ∈ {1, 2},
zi(0) = z0i ,

(5.3.29)

where λ > 0 is an arbitrary constant. Indeed, this would bring the result as one can easily check that any
Hm

i solution of (5.3.29) satisfies
∥zi∥Hm ≤ e−λt∥z0i ∥Hm

i
. (5.3.30)

Therefore, our goal will be to show that for any λ > 0 and any i ∈ {1, 2}, there exists an isomorphism
Ti(λ) : Hs

i → Hs
i as well as a feedback ui(t) := Ki(λ)yi(t, x) such that for any initial condition y0i ∈ Hs

i ,
there exists unique solution yi of (5.3.28) and Ti(λ)yi is a solution to (5.3.29). In fact, we would like more
that: for s and λ given, we would like the well-posedness of yi and the exponential stability result to hold in
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Hs+r
1 for any r ∈ (−1/2, 1/2), while Ki(λ) and Ti(λ) still only depend on s and λ. This requires in particular

Ki to be a functional on Hs+1/2+ and Ti(λ) to be an isomorphism on Hs+r for any r ∈ (−1/2, 1/2).

As mentioned in Section 5.2, what we are looking for, formally, is Ti(λ) and Ki(λ) such that (5.2.4) holds.
Denoting A = ∆, this is

TiA + TiϕiKi = A′Ti = (A− λId)Ti, (5.3.31)

Tiϕi = ϕi, (5.3.32)

in a sense to be defined (in particular (5.3.31) and (5.3.32) might not have a meaning in a strong sense).
The existence of Ti(λ), Ki(λ) such that this holds is given by the following proposition.

Proposition 5.3.5 (Main proposition). Let the countable set

N := {i2 − j2 : i, j ∈ N}, (5.3.33)

and denote a1n = ⟨ϕ1, sin(nx)⟩ for n ∈ N∗ and a2n = ⟨ϕ2, cos(nx)⟩ for n ∈ N. Let s ∈ R and i ∈ {1, 2} and
assume that

cn−s < |ain| < Cn−s, for i ∈ {1, 2}, for n ∈ N∗, (5.3.34)

a20 ̸= 0. (5.3.35)

Then for any λ /∈ N , there exists a sequence (Ki
n(λ))n satisfying

K2
0 (λ) ̸= 0,

cns < |Ki
n(λ)| < Cns, for i ∈ {1, 2}, for n ∈ N∗,

{(λ+ ainK
i
n(λ))nr}n ∈ ℓ2, ∀r ∈ [0, 1/2),

Ki(λ) is a bounded functional on H
s+1/2+
i ,

such that the linear operator Ti(λ) defined as follows

Ti(λ) : Si → S ′
i, (5.3.36)

f in 7→ −Ki
n(λ)

∑
p

apf
i
p

p2 + λ− n2
, (5.3.37)

f3−i
n 7→ 0, (5.3.38)

can be linearly extended to Hs−3/2+, and

Ti(λ) is an isomorphism on Hs+m
i for any m ∈ (−3/2, 3/2), (5.3.39)

Ti(λ)ϕi = ϕi in H
s−1/2−
i , (5.3.40)

and moreover, for any r ∈ (−1/2, 1/2), for any χ ∈ Hs+r+1
i we have

(Ti(λ)A+ Ti(λ)ϕiKi(λ))χ = (ATi(λ) − λTi(λ))χ in Hs+r−1
i . (5.3.41)

We remark several things about this proposition:

— First, λ cannot belong to R but only to R \ {N}, where N is a countable set. This, however, is not
limiting as λ can still be as large as desired.

— Second, we can note that the coefficients ain of ϕi have to satisfy an estimate (5.3.34), which corre-
sponds to the condition (5.3.7) we required to ensure the controllability in Hs+1/2−.

— Third, the operator equalities (5.3.32) only holds in Hs−1/2− while (5.3.31) only holds for functions

in Hs+r+1 for any r ∈ (−1/2, 1/2). In fact Tiϕi could not hold in Hs
i , given that ϕi ∈ H

s−1/2−
i , and

TiA + ϕiKi = A− λId could not hold when applied on less regular functions either, given that Ki is

only defined on H
s+1/2+
i .
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— Fourth, the bounds we get on m and r are optimal with respect to the method.

Thanks to the decomposition Hs = Hs
1 ⊕Hs

2 , Proposition 5.3.5 gives the following corollary

Corollary 2. Under the assumption of Proposition 5.3.5, the transformation T defined as

Tf = T1f1 + T2f2, for all f = f1 + f2 ∈ S1 ⊕ S2, (5.3.42)

can be linearly extended on Hs−3/2+. Moreover,

T is an isomorphism on Hs+m for any m ∈ (−3/2, 3/2),

and, for any r ∈ (−1/2, 1/2), for any χ ∈ Hs+r+1,

(TA+ TBK)χ = (AT − λT )χ in Hs+r−1, (5.3.43)

TB = B in Hs−1/2−. (5.3.44)

Once this corollary is proved, Theorem 5.3.3 follows provided that the system (5.3.8) is well-posed with the
feedback control we constructed. We will study the well-posedness later in Section 5.3.6.1.

5.3.3 Ideas of the proof

In this Section we give some ideas about how to prove Proposition 5.3.5. In the following, we deal with the
case i = 1 and we will drop the index i for clarity. Namely, we denote T1, K1, f1n, Hs

1 by T , K, fn and Hs.
We also denote the coefficients of ϕ by an, namely

an = ⟨ϕ, sin(nx)⟩, ∀ n ∈ N∗. (5.3.45)

5.3.3.1 Constructing a candidate transform T

Following the general summary of the method given in Section 5.2.1, we start by constructing a candidate
transform T by assuming that the following operator equality holds

TA + ϕK = (A− λId)T, (5.3.46)

for K to be defined. As K is a linear operator, it is entirely defined by the family (Kn)n∈N∗ := (Kfn)n∈N∗ ∈
RN∗

. Projecting (5.3.46) on the eigenfunctions (fn)n∈N∗ , this becomes

T (Afn) +Knϕ = A(Tfn) − λ(Tfn). (5.3.47)

As fn is an eigenvector of A = ∆, this gives

λn(Tfn) +Knϕ = A(Tfn) − λ(Tfn), (5.3.48)

which is a differential equation on hn := (Tfn). We can now project this equation on fp for 3 p ∈ N∗, which
gives, using the fact that A = ∆ is self adjoint.

λn⟨hn, fp⟩ +Kn⟨ϕ, fp⟩ = ⟨∆hn, fp⟩ − λ⟨hn, fp⟩,
= (λp − λ)⟨hn, fp⟩,

(5.3.49)

Hence, as long as λ ∈ R \ N , and using the fact that ⟨φ, fp⟩ = ap

⟨hn, fp⟩ =
−Knap

λn − λp + λ
. (5.3.50)

We have now characterized hn = Tfn. We remark that Tfn is imposed, up to the feedback operator K
which remains to be chosen. In order to show that this is an isomorphism we will show that (Tfn)n∈N∗ is
quadratically close to an orthonormal basis derived from fn, and this will give a condition on K. For this
we introduce the families (qn)n∈N∗ and (gn)n∈N∗ defined by:

qn :=
hn
Kn

=
∑
p∈N∗

−ap
λn − λp + λ

fp, gn :=
∑
p∈N∗

fp
λn − λp + λ

. (5.3.51)

3. In general, at this stage we would like to project on a family of eigenfunctions of Ã∗, the adjoint of the operator Ã of the
target system. However, here Ã = ∆− λId and is self-adjoint so the family of eigenfunctions is again (fn)n∈N∗
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5.3.4 Riesz basis property

Obviously there exists an isomorphism linking gn and qn (which is itself (Tfn/Kn)n∈N∗). The interest of
studying qn is that it does not depend on K, while qn does not depends on ϕ either. What we show is the
following

Lemma 5.3.1. Let s ≥ 0. Let an ̸= 0 such that cn−s < |an| < Cn−s. Let λ /∈ N . The following properties
hold:

(1) {gn}n∈N∗ is a Riesz basis of L2
1.

(2) Let m ∈ (−3/2, 3/2). Then {n−mgn}n∈N∗ is a Riesz basis of Hm
1 .

(3) Let m ∈ (−3/2, 3/2). Then {n−mqn}n∈N∗ is a Riesz basis of Hs+m
1 .

(4) Let m ∈ (−3/2, 3/2). If Kn := Kfn satisfies |Kn| < Cns, then the transformation T : Hs+m
1 →

Hs+m
1 is bounded. Moreover, if

cns < |Kn| < Cns, (5.3.52)

then the transformation T : Hs+m
1 → Hs+m

1 is an isomorphism.

Let us remark here that all the choices of s and m in the above are sharp.

Before giving some details about the proof of 5.3.1 we can make a few remarks:

— (1) and (2) are dealing with the fact that (gn)n∈N∗ is a Riesz basis. As (gn)n∈N∗ does not depend on
K or ϕ, this is really only a property of the operator A = ∆.

— The fact that (n−mqn)n∈N∗ is a Riesz basis of Hs+m
1 is a direct consequence from the fact that

(n−mgn)n∈N∗ is a Riesz basis of Hm
1 and the fact that there exists an isomorphism between gn and

qn defined by
τ : n−mfn → n−manfn (5.3.53)

which is also an isomorphism from Hm to Hs+m given that with cn−s < |ap| < Cn−s.

— Finally, as n−(s+m)fn is an orthonormal basis of Hs+m
1 , the point (4) can be reduced to looking at

where (T (n−(s+m)fn))n∈N∗ belongs and whether or not (T (n−(s+m)fn))n∈N∗ is a Riesz basis of Hs+m
1 .

Therefore, this is a consequence of the fact that (n−mqn)n∈N∗ is a Riesz basis of Hs+m
1 , the fact that

(Tfn) = Knqn, and the upper and lower bounds of Kn given by (5.3.52). In particular, assuming
that Kn/n

s is uniformly bounded by above and below then (Kn

ns (n−mqn)) is a Riesz basis of Hs+m
1

which means that (T (n−(s+m)fn))n∈N∗ is a Riesz basis of Hs+m
1 .

We give below some ideas about how to prove (1). As announced before, we are going to use Lemma 5.2.2
to show that (gn)n∈N∗ is a Riesz basis of L2

1. This requires two things: showing that this family is dense or
ω-independent, and showing that this family is quadratically close to an orthonormal basis of L2

1.

— quadratically close. We first show that (gn)n∈N∗ is quadratically close to (fn/λ)n∈N∗ , which is
(obviously) an orthonormal basis of L2

1. Given Definition 5.3.1 and the definition of (gn)n∈N∗ , this
amounts to showing that∑

p∈N∗

fp
λn − λp + λ


n∈N∗

is quadratically close to

(
fn
λ

)
n∈N∗

in L2
1. (5.3.54)

or that ∑
n∈N∗

∑
p ̸=n

(
1

λp + λ− λn

)2

=
∑
n∈N∗

∑
p ̸=n

(
1

p2 + λ− n2

)2

< +∞, (5.3.55)
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Once (5.3.55) is showed for λ ∈ N∗, it can then be extended to λ ∈ R \N . The fact that we deal with
λn = n2 and λp = p2 here is important, as this is what allows the sum in (5.3.55) to converge. Indeed,
one can check that if we had λn = n and λp = p in (5.3.55) instead, the sum would not converge.
This is where the main limitation of this method appears. We will come back to this point later in
Chapters 6 and 7.

— dense or ω-independent Showing that (gn)n∈N∗ is either dense in L2
1 or ω-independent can be done

by noticing first that

A−1gn = ∆−1gn = (n2 − λ)−1gn − (n2 − λ)−1A−1h, (5.3.56)

and assuming that (gn)n∈N∗ is not ω-independent (otherwise the proof is done). Then, we deduce the
existence of ∑

n∈N∗

cngn = 0, in L2
1. (5.3.57)

The preceding formula is well-defined since, thanks to the quadratically close property (5.3.54),∑
n∈N∗

cngn =
∑
n∈N∗

cn
fn
λ

+
∑
n∈N∗

cn

(
gn − fn

λ

)
(5.3.58)

converges in L2
1. Next, by applying A−1 to this equality we conclude∑

n∈N∗

cnkngn =
∑
n∈N∗

cnknA−1h, in L2
1, (5.3.59)

where we have used the fact
∑

n cnkn converges. We then iterate and show that

∑
n∈N∗

cnk
m
n gn =

m∑
i=1

Cm+1−iA−ih, (5.3.60)

with
Cl :=

∑
n∈N∗

cnk
l
n < +∞. (5.3.61)

From this point, there are only two possibilities: either there exists m ≥ 1 such that Cm ̸= 0 and we
can show that {gn}n∈N∗ is dense, or Cm = 0 for any m ∈ N∗ and we get contradiction using that the
complex function

G̃(z) =
∑
n∈N∗

cnkne
knz (5.3.62)

is holomorphic (and hence identically equal to 0 from (5.3.61)). In both cases we deduce that (gn)n∈N∗

is either dense in L2
1 or ω-independent.

5.3.5 Smoothing effect

Before going any further, recall that we want a result that ensures the stabilisation on a whole range of space
Hs+r

1 for any r ∈ (−1/2, 1/2), while T and K should only depend on λ and s. For this we need the following
smoothing effects:

Lemma 5.3.2. Let s ≥ 0. Let an ̸= 0 such that cn−s < |an| < Cn−s. Let λ /∈ N . The following properties
hold:

(1) Let r ∈ [0, 1/2). Then, qn has the following smoothing property,∑
n∈N∗

∥qn − anfn/λ∥2Hs+r
1

< +∞. (5.3.63)
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(2) Let r ∈ [0, 1/2). Similar smoothing effect also holds in the space H−1+s,∑
n∈N∗

∥n(qn − anfn/λ)∥2
H−1+s+r

1
< +∞. (5.3.64)

(3) Let s = 0 and r ∈ [0, 1/2). Then, ∑
n∈N∗

(
qn − anfn

λ

)
∈ Hr

1 . (5.3.65)

Remark 5.3.3 (Sharpness of the functional setting). The choice of the bounds for r in the above is sharp.

The point (1) and (2) follows from direct, although careful, estimations that will not be detailed here.
Concerning point (3), note that

∑
n∈N∗(qn − anfn

λ ) belongs to H−1 a priori, given that (nqn)n∈N∗ is a Riesz
basis of H−1 from Lemma 5.3.1. The goal is to show that it actually belongs to Hr for r ∈ [0, 1/2) even
though

∑
n∈N∗ qn does not belong to H−1/2 and

∑
n∈N∗

anfn
λ does not either. The smoothing comes from the

cancelation of the singular parts. In other words fn/λ contains the singular parts of qn. From the definition
of qn given in (5.3.51), this is equivalent to showing that∥∥∥∥∥∥

∑
n

∑
p ̸=n

apfp
p2 + λ− n2

∥∥∥∥∥∥
2

L2

< +∞. (5.3.66)

Note that this cannot be deduced from the quadratically close inequality (5.3.55) which would correspond
in this case to ∑

n

∥∥∥∥∥∥
∑
p ̸=n

apfp
p2 + λ− n2

∥∥∥∥∥∥
2

L2

< +∞. (5.3.67)

Therefore (5.3.66) needs a more careful estimate that we will not detail here but that can be found in [109,
Section 4].

5.3.6 Finding the feedback operator K

With Lemmas 5.3.1-5.3.2, we have a candidate transform T defined by its action on fn. And we have a
condition on K given by (5.3.52) under which our candidate T is an isomorphism. The next step is to find
K such that this candidate transform is suitable. In particular, to check that we can obtain Tϕ = ϕ, at least
weakly, provided some additional conditions on K.

Let assume to simplify that s = 0. It is clear that Tϕ = ϕ cannot hold in L2
1 given that ϕ only belongs

to H−1/2−, however it might be possible to find K such that it holds in H
−1/2−
1 (or at least Hσ for

σ ∈ (−3/2,−1/2) given that T is only defined for σ > 3/2). Let us start by showing this equality in H−1.
We know from Lemma 5.3.1 that T is defined on Hs

1 for any s ∈ (−3/2, 3/2), hence it is defined on H−1 and

Tϕ = −
∑
n∈N∗

anKnqn =
∑
n∈N∗

anKn

n
(nqn). (5.3.68)

From Lemma 5.3.1, (nqn)n∈N∗ is a Riesz basis of H−1, therefore there exists a unique family (cn)n∈N∗ ∈ ℓ2

such that
ϕ =

∑
n∈N∗

cn(nqn). (5.3.69)

This, together with (5.3.68), means that setting

Kn = −ncn
an

(5.3.70)
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gives
Tϕ = ϕ in H−1

1 . (5.3.71)

And, in fact, as ϕ is more regular than H−1 and belongs to H−1/2−, one can get for any σ ∈ (−3/2,−1/2)

(nσ+1cn)n∈N∗ ∈ ℓ2. (5.3.72)

So, with the same choice of Kn,

Tϕ = ϕ in Hσ
1 , for all σ ∈ (−3/2, 1/2). (5.3.73)

We just showed Tϕ = ϕ as intended and this sets Kn. However, recall that we need Kn to satisfy some
uniform upper and lower bounds to ensure that T is an isomorphism (see (5.3.52)). In the current case s = 0,
this means that we need to check that there exists C > 0 and c > 0 such that

c < |Kn| < C, ∀n ∈ N∗. (5.3.74)

To show the upper bound, the first thing we can note is that, for any ε > 0, n1/2−εcn ∈ ℓ2, an is uniformly
bounded by assumption and |n1/2−εcn| = n1/2−ε|anKn|/n. However, this is not enough to show directly
that Kn is uniformly bounded by above. Indeed, let us look for instance at bn := log n, we can easily observe
that (

n1/2−ε bn
n

)
n∈N∗

=

(
bn

n1/2+ε

)
n∈N∗

∈ ℓ2, ∀ε > 0. (5.3.75)

So, to show that Kn is uniformly bounded, we need to use more information. And in particular we use the
smoothing effect stated in Lemma 5.3.2. We first define

dn = −anKn − λ = ncn − λ. (5.3.76)

As Tϕ = ϕ in H−1
1 , we have ∑

n

(λ+ dn)qn =
∑
n

anfn in H−1
1 , (5.3.77)

thus using that λ
∑
n

1
n (nqn) ∈ H−1

1 ,

∑
n

dnqn =
∑
n

(anfn − λqn) in H−1
1 . (5.3.78)

But, in fact, thanks to the smoothing effect of Lemma 5.3.2 (3) with r = 0, we have∑
n

dnqn =
∑
n

(anfn − λqn) ∈ L2
1. (5.3.79)

As (qn)n∈N∗ is a Riesz basis of L2
1,

(dn)n∈N∗ ∈ ℓ2. (5.3.80)

From (5.3.76) and the fact that an is uniformly bounded, this implies that Kn is uniformly bounded.

From Lemma 5.3.1, this upper bound is enough to show that T is a well-defined and bounded linear operator
from Hm

1 to Hm
1 where m ∈ (−3/2, 3/2). However, without more information on Kn we do not know yet

that T is an isomorphism on these spaces. For this, we need a lower bound on Kn as in (5.3.74). Instead
of finding this lower bound now, we show first that T is an isomorphism on H−1

1 and then we find a lower
bound on Kn as a consequence. To show that T is an isomorphism on H−1

1 , we show that T is a Fredholm
operator (of index 0) from H−1

1 to itself, as stated in this Lemma

Lemma 5.3.3. Let r ∈ [0, 1/2). The operator

T̃ : = T − Id : L2
1 → Hr

1 ,

(resp. T̃ : = T − Id : H−1
1 → H−1+r

1 )
(5.3.81)
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is a continuous operator.

In particular, T̃ : L2
1 → L2

1 (resp. T : H−1
1 → H−1

1 ), is a compact operator and T is a Fredholm operator of
index 0 on L2

1 (resp. on H−1
1 ).

The second part of the Lemma is a direct consequence of the first one since Hr is compact in L2
1 (resp.

H−1+r
1 is compact in H−1

1 ). To show this Lemma, we proceed as follows: first we can check that T and K
thus defined are indeed a solution of the operator equalities (5.3.31)–(5.3.32). The Tϕ = ϕ equality (5.3.32)
holds in a weak sense and is given by (5.3.73). The operator equality (5.3.31) also holds in a weak sense:

Proposition 5.3.6. Let T constructed by Lemma 5.3.1 and (Kn)n∈N∗ be chosen as (5.3.70). For any
χ ∈ Hr+1

1 we have
(TA+ TϕK)χ = (AT − λT )χ in Hr−1

1 . (5.3.82)

In particular we can consider r = 0, then the equality holds in H−1
1 .

Then we show the following technical lemma, which comes from a direct estimation and the fact that (dn)n∈N∗

defined in (5.3.76) belongs to ℓ2.

Lemma 5.3.4. Let r ∈ [0, 1/2). There exists a constant C > 0 such that∥∥∥∥∥∑
n

bn(qn − anfn
λ

)

∥∥∥∥∥
2

Hr
1

≤ C
∑
n

b2n, ∀(bn) ∈ ℓ2(N). (5.3.83)

Lemma 5.3.3 can be showed from (5.3.73), Proposition 5.3.6 and Lemma 5.3.4.

Given Lemma 5.3.3, T is a Fredholm operator of index 0. Hence, it suffices to show that ker(T ∗) = {0} to
conclude that it is an isomorphism in H−1

1 . This is done in three steps:

1) Showing that there exists ρ ∈ C such that

A+ ϕK + λId+ ρId : H1
1 → H−1

1 , and A+ ρId : H1
1 → H−1

1

are invertible.

2) Showing that for such a complex number ρ, kerT ∗ is stable under (A + ρId)−1. As kerT ∗ is finite-
dimensional (recall that T is Fredholm), this means that either ker(T ∗) = {0} or (A+ ρId)−1 has an
eigenvector in kerT ∗, i.e. there exists h ∈ kerT ∗ and µ (µ ̸= 0 from the invertibility of A+ ρId) such
that

(A+ ρId)−1h = µh. (5.3.84)

This implies that h ∈ H1
1 and (A+ ρId)h = 1

µh and therefore that h is an eigenvector of A. Since the
eigenspaces of A have dimension 1, this means that h = fk for some k ∈ N∗.

3) By adapting the Tϕ1 = ϕ1 condition, we show that h = fk is not in kerT ∗, hence kerT ∗ = {0}.

Once this is done, we conclude that T is an isomorphism from H−1
1 to itself. This implies that Kn is

uniformly bounded by below, i.e. the lower bound of (5.3.74) holds. From this we deduce that T is in fact
an isomorphism from Hm

1 into itself for any m ∈ (−3/2, 3/2). And this conclude the proof of Proposition
5.3.5.

5.3.6.1 Well-posedness of the system

Once Proposition 5.3.5 and Corollary 2 are proven, it only remains to show the well-posedness of the system
(5.3.8) with the feedback control we defined. This is what we do in this section. More precisely, what we
show is the following
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Lemma 5.3.5. Let k ∈ {1, 2}. Let y0 ∈ L2
k, ϕ ∈ H−1

k , and Kk : H
3/4
k → R be bounded. The equation{

∂ty − ∆y = Kk(y)ϕk,

y(0) = y0,
(5.3.85)

has a unique solution satisfying the equation in L2
loc((0,+∞);H−1

k ), and

y(t) ∈ C0([0,+∞);L2
k) ∩ L2

loc((0,+∞);H1
k) ∩H1

loc((0,+∞);H−1
k ). (5.3.86)

from which we then deduce

Proposition 5.3.7. Let k ∈ {1, 2}, r ∈ (−1/2, 1/2), y0 ∈ Hr
k , ϕ ∈ H

−1/2−
k , and Kk : H

1/2+
k →

R be bounded. The equation (5.3.85) has a unique solution such that the equation is satisfied in
L2
loc((0,+∞);Hr−1

k ), and

y(t) ∈ C0([0,+∞);Hr
k) ∩ L2

loc((0,+∞);Hr+1
k ) ∩H1

loc((0,+∞);Hr−1
k ). (5.3.87)

Using the fact that Hm = Hm
1

⊕
Hs

m for any m ∈ R we deduce directly the well-posedness needed for
Theorem 5.3.3. Note also that we only need to prove the well-posedness for s = 0 and then use the
isomorphism Ds : Hs → L2 defined by

Ds : n−sfk → fk. (5.3.88)

Lemma 5.3.5 differs from the classical well-posedness of the heat equation because the operator K is non-
local. Nevertheless, it can be shown with a classical fixed point in the norm

∥z∥C0([0,T ];L2
1)

+ ∥z∥L2((0,T );H1
1 )
, (5.3.89)

and using the fact that Kk ∈ L(H
3/4
1 ,R) (rather than L(H

3/4
1 ,R)) so ∥Kz∥L2(0,T ) can be bounded by

∥z∥
L2((0,T );H

3/4
1 )

rather than ∥z∥L2((0,T );H1
1 )

. Then we conclude using the following Lemma

Lemma 5.3.6. The following estimate holds

∥z∥
L

8
3 (0,T ;H

3
4
1 )

≤ ∥z∥
1
4

L∞(0,T ;L2
1)
∥z∥

3
4

L2(0,T ;H1
1 )

≤ (∥z∥C0([0,T ];L2
1)

+ ∥z∥L2((0,T );H1
1 )

). (5.3.90)

This enables to obtain a contraction mapping, hence the existence of a solution for a small time horizon. We
extend it on a large time domain by showing that no blow-up happens.

Finally these proofs can be extended to the nonlinear viscous Burgers’ equation, by noting first that

⟨y, ∂x(y2)⟩ = 0, (5.3.91)

since we work on the torus. And by noting that,

∥∂x(y2)∥2L2(0,T ;H−1) ≤ ∥yy∥2L2(0,T ;L2),

≤
∫ T

0

∥y(t, ·)∥2L2∥y(t, ·)∥2L∞dt,

≤ C

∫ T

0

∥y(t, ·)∥2L2∥y(t, ·)∥2H1/2dt,

(5.3.92)

which, from Gagliardo-Nirenberg interpolation, gives

≤ C

∫ T

0

∥y(t, ·)∥3L2∥y(t, ·)∥H1dt,

≤ CT
1
2 ∥y∥3C0([0,T ];L2)∥y∥L2(0,T ;H1).

(5.3.93)

The rest of the proof is very similar to the proof of the linear case.
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Chapter 6

Compactness-duality method and
water-wave equations

This Chapter is taken from [110], a collaboration with Ludovick Gagnon, Shengquan Xiang and Christophe
Zhang.

6.1 Introduction

When dealing with the heat equation, our backstepping approach used the fact that the eigenvalues of the
evolution operator A are growing quickly enough. Indeed, we used that λn = n2 to ensure that∑

n∈N∗

∑
p ̸=n

(
1

λp + λ− λn

)2

< +∞ (6.1.1)

This was used to show eventually that (Tfn)n∈N is quadratically close to an orthonormal basis and finally
that it is a Riesz basis, using Lemma 5.2.2. Looking at (6.1.1), this is expected to work again as long as
λn ∼ nα with α > 3/2. However, when the eigenvalues λn are not growing fast enough with n, this inequality
fails. Indeed, one can check for instance that when λn = n3/2,∑

n∈N∗

∑
p ̸=n

(
1

λp + λ− λn

)2

= +∞ (6.1.2)

This means that (Tfn)n∈N is not anymore quadratically close to the orthonormal basis easily derived from
(fn)n∈N∗ and this is an incitation to use another approach.

Coincidentally, the critical case n = 3/2 corresponds to a well-known system: the linearized capillarity-
gravity water-wave equations which were studied and derived in [4, 5, 167, 168] and take the form

∂ty = Ay +Bu(t), on T,

A = −i
(
(g − ∂2x)|Dx|tanh(l|Dx|)

)1/2
,

(6.1.3)

where g is a constant of gravity, l is the height of the water, u = (u1, u2) is a two-dimensional control operator
and B = (B1, B2) are space dependent functions. Here they will be characterised by

B1 =
∑
n∈N∗

a1nf
1
n, B2 =

∑
n∈N

a2nf
2
n, (6.1.4)

where (f1n))n∈N∗ and (f2n)n∈N are given in (5.3.14). As in Chapter 5, a two-dimensional control is the
minimum needed for exact controllability and the system is exact controllable in L2 if there exists c1, c2 > 0
such that

a0 ̸= 0 and c1 < |ain| < c2, for i ∈ {1, 2}, n ∈ N∗. (6.1.5)
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Knowing whether System (6.1.3) can be rapidly stabilized using a backstepping approach was an open
question introduced in [56]. We introduce in the following an approach to solve this question.

6.2 Main result

In [110] we show that one can get rid of the quadratically close argument with a new method: the
compactness-duality method. With this method, one can show the following result

Theorem 6.2.1. Let α > 1. Let B ∈ (H−3/4)2 of the form (6.1.4) satisfying the controllability assumption
(6.1.5). Let h(s) a real valued-function satisfying

— |n1 − n2|nα−1
1 ≲ |h(n1) − h(n2)| for any (n1, n2) ∈ N∗.

— sα ≲ |h(s)| ≲ sα for any s ∈ [1,+∞).
Then, for any λ > 0, there exists a bounded linear operator K ∈ L(H3/4;C2) and an operator T such that,
for any r ∈ (1/2 − α, α− 1/2), T is an isomorphism from Hr(T) to itself and maps the system

∂tu = i h(|Dx|)u+BK(u), x ∈ T, (6.2.1)

to the system
∂tv = i h(|Dx|)v − λv, x ∈ T.

In particular the system (6.2.1) is exponentially stable in Hr(T) with decay rate λ, for any r ∈ (1/2−α, α−
1/2).

The rapid stabilization of the water waves system (6.1.3) is a direct application of this theorem with α = 3/2

and h(s) = −
(
(g − s2)s tanh(ls)

)1/2
.

Remark 6.2.1 (Regularity). The following points are worth noting.
— Similarly as for the heat equation, even if the regularity of B is fixed, the same feedback operator K

works for a continuum of spaces Hr(T).
— The bound on this continuum is sharp in the sense that for r = α − 1/2 the system does not even

generate a strongly continuous semigroup.

6.3 Strategy of the proof

Definitions and notations We keep the notations of Chapter 5 (see in particular Section 5.3.1). We look
for T of the form T = T1

⊕
T2 corresponding to the odd and even part of the transform. To simplify, we

again only look at the odd part, i.e. T1, B1, K1, f1n, and Hs
1 and we drop the i for clarity. As in Chapter 5,

the first step is to look for T satisfying the operator equalities

TA +BK = (A− λId)T,

TB = B,
(6.3.1)

potentially in a weak sense to be defined. The eigenvalues of A associated to the orthonormal family of
eigenvectors (fn)n∈N are denoted λn, and we observe that T is entirely defined by (hn)n∈N = (Tfn)n∈N
which necessarily satisfies

Tfn = (−K(fn))
∑
p∈N∗

apfp
λn − λp + λ

, (6.3.2)

just like in Chapter 5 (see (5.3.51)). Here again, we remark that once the feedback operator K is chosen, T
is completely determined. Finally we define the operator S as follows

Sfn =
∑
p∈N∗

fp
λn − λp + λ

, (6.3.3)

The interest behind defining such an operator is to decouple the intrinsic properties of the transform T with
the influence of the control K. The influence of the operator B is also removed in S, and deducing the
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invertibility of T from the invertibility of S can later be done simply, thanks to the controllability condition
(6.1.5). The strategy of the method is the following:

Step 1 Show that S is a Fredholm operator from Hr → Hr for any r ∈ (1/2 − α, α− 1/2).

Step 2 Show that (Sfn)n∈N∗ is a Riesz basis for L2 using a duality argument and the fact that S is Fredholm.

Step 3 Further show that (n−rSfn)n∈N∗ is a Riesz basis for Hr for any r ∈ (1/2 − α, α − 1/2) by showing
it is ω-independent using a duality argument between the density of (n−rqn)n∈N∗ in Hr and the
ω-independence of (nrqn)n∈N∗ in H−r.

Step 4 Provide an explicit candidate of (Kn)n∈N which satisfies TB = B inH−α/2 sense. Show that (|Kn|)n∈N
is bounded from above and that anKn = −(λ + kn) for any n ∈ N∗, where (knn

ε)n∈N∗ ∈ l∞ for any
ε ∈ [0, ε1(α)) where ε1(α) is a constant that can be computed.

Step 5 Show that T is bounded from Hr in itself for r ∈ (1/2−α, α− 1/2) and the first operator equality of
(6.3.1) holds in L(Hα/2;H−α/2).

Step 6 Show that T is a Fredholm operator from H−α/2 to H−α/2.

Step 7 Show that T is an isomorphism from H−α/2 to H−α/2 using a Fredholm argument and spectral ar-
guments in H−α/2.

Step 8 Show that T is an isomorphism from L2 to L2 and in fact an isomorphism from Hr to itself for any
r ∈ (1/2 − α, α− 1/2).

Let us briefly discuss step 6 to 8. At first sight, it seems odd to prove the invertibility in H−α/2 (step 6-7)
and not in L2 for instance. The main motivation is to avoid working in the space D(A+BK) := {f ∈ L2 :
(A+BK)f ∈ L2} before proving the invertibility of T . Indeed, D(A+BK) does not a priori have the nice
properties we can expect from Sobolev spaces, such as the density of C∞ functions. This comes from the
lack of regularity of B. This implies we are not able to conclude that fn ∈ D(A + BK) for any n ∈ N∗.
For this reason, it is easier to first prove the invertibility in a weaker space, namely H−α/2, but with nice
Sobolev spaces properties before deducing the invertibility in the required spaces. Once this is done, the
invertibility of T in Hr will allow to construct an equivalent norm to Hr, which will allow to prove that
D(A+BK) is a Hilbert space. This last observation would have been hard to show without the invertibility
of T . As a final comment, let us underline that, even though our setting is close to the linearized bilinear
Schrödinger equation, one cannot decouple the real and imaginary part of the solution to deal directly with
the space D(A+BK) as was done in [63] for the Schrödinger equation.

6.4 Ideas of the proof

We focus on the first four steps for which we give the key elements. The full proof can be found in [110]
where each step corresponds to a section for readability.

Step 1: the spirit of this step is simply to write S as S = Id/λ+ Sc where

Sc : n−rfn → n−r
∑

p∈N∗\{n}

fp
λn − λp + λ

, (6.4.1)

and to show that Sc is compact. This eventually amounts to showing the following estimate

66



Lemma 6.4.1. For any s < α− 1 we have∑
n∈N∗\{p}

ns

|λn − λp|
≲ p1−α+s log(p) + p−α, ∀p ∈ N∗. (6.4.2)

Step 2-3: the goal of these steps is to show that S is invertible in Hr(T). Since S is a Fredholm operator in
Hr(T), it is enough to show that ker(S∗) = {0}, where S∗ is the adjoint of S. However, since dim(coker(S)) =
dim(ker(S∗)) = dim(ker(S)) < +∞, it is enough to show that ker(S) = {0}. This is shown to be equivalent
to showing that (n−rSfn)n∈N is ω-independent in Hr. From that point, one has to separate the case r = 0
and r ̸= 0. For r = 0 we show the following Lemma.

Lemma 6.4.2. The families (Sfn)n∈N∗ and (Sfn)n∈N∗ satisfy the following:
(i) (Sfn)n∈N∗ is either ω-independent in L2 or L2-dense.
(ii) (Sfn)n∈N∗ is either ω-independent in L2 or L2-dense.
(iii) (Sfn)n∈N∗ is ω-independent in L2 ⇐⇒ (Sfn)n∈N∗ is ω-independent in L2.
(iv) (Sfn)n∈N∗ is L2-dense ⇐⇒ (Sfn)n∈N∗ is L2-dense.
(v) (Sfn)n∈N∗ is L2-dense ⇐⇒ (Sfn)n∈N∗ is ω-independent in L2.
(vi) (Sfn)n∈N∗ is L2-dense ⇐⇒ (Sfn)n∈N∗ is ω-independent in L2.

In particular (Sfn)n∈N∗ is both L2 dense and ω-independent.

For r ̸= 0 the situation is more delicate, and trying to show the result for one given r at the time would be
a mistake. In fact, the key step is to look at r and −r at the same time and to use the following duality
between ω-independence in H−r and density in Hr.

Lemma 6.4.3. For r > 0, if (n−rSfn)n∈N∗ in Hr(T), then (nrSfn)n∈N∗ is ω-independent in H−r(T).

Step 4: The spirit of this step is to solve the TB = B condition of (6.3.1) in some weak sense and to
see what regularity can be deduced on the Kn. The first thing to observe is that there exists a unique
sequence (Kn)n∈N∗ such that for any ε ∈ (0, 1/2) TB = B holds in a weak sense in H−1/2−ε and 1

(Knann
−1/2−ε)n∈N∗ ∈ l2. Then we can set kn = −(anKn + λ) and the goal is to show a better regu-

larity on (kn)n∈N∗ and deduce that (Kn)n∈N∗ is l∞ and that k : n−rfn → knτSn
−rfn is a compact operator

from Hr to itself. This would mean that −λ is the singular part of anKn. Note that if (kn)n∈N∗ is very
regular, l∞ is the best one can get for (Kn)n∈N∗ since it is the regularity of λ. To do so, the strategy is to
replace Kn in the weak TB = B by its expression with kn, simplify and observe that the resulting equation
has to hold in a more regular space. For α = 3/2 this is enough to conclude.

For α ∈ (1, 3/2) the situation is more delicate. In this case one has to give a better asymptotic estimate on
Kn and to decompose it as

−Kn = λ+ e(1)n + e(2)n + ...+ e(p)n + k(p)n , (6.4.3)

where p ∈ N. Then one can show by induction that (e
(p)
n )n∈N∗ ∈ l∞, that the regularity of (k

(p+1)
n )n∈N is

strictly better than the regularity of (k
(p)
n )n∈N, and that for a given α ∈ (1, 3/2) there exists a finite p ∈ N

such that k(p) : n−rfn → k
(p)
n τSn−rfn is a compact operator 2.

6.5 Well-posedness of the system

It remains to show that the closed loop-system (6.1.3) with u(t) = K(y) is well-posed in Hr(T). This is
less standard than for the heat equation. Let us assume to simplify that α = 3/2, the case α ̸= 3/2 can
be done similarly. The first thing to show is that D(A + BK) is a Hilbert space. For this we show that
D(A + BK) ⊂ H1−ε for any ε > 0, we extend the first operator equality of (6.3.1), and we show that

1. Recall that an = ⟨ϕ, fn⟩.
2. It can also be shown that p → +∞ when α → 1.
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D(A+BK) = T−1(H3/2). From this we deduce that it is a Hilbert space, dense in L2. Then one can show
that T is actually an isomorphism not only on Hr for r ∈ (−1, 1) but also from T−1(H3/2) to H3/2. We
will not detail it here. The rest of the proof for the well-posedness in L2 is more standard and relies on
Lumer-Philips theorem. For the well-posedness and exponential stability in Hr with r ∈ (−1, 1) one needs
to deal with two situations:

— (regular situation) when r ∈ (−1,−1/2) in which case Dr(A+BK) := {f ∈ Hr : (A+BK)f ∈ Hr}
is simply Hr+3/2 and can contain regular functions like the fn (recall that T−1(Hr+3/2) = Hr+3/2 in
this case since T is an isomorphism from Hs to itself for s ∈ (−1, 1)),

— (singular situation) when r ∈ [−1/2, 1) where Dr(A+BK) = T−1(Hr+3/2) and cannot contain regular
functions like the fn. This includes the case r = 0 and the proof of the well-posedness in L2 can be
adapted to this situation.
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Chapter 7

Stabilization of a hyperbolic system
with λn ∼ n: the water tank system

In this section, we study a case where the system is hyperbolic and λn ∼ n. In this case, none of the
two previous approaches of Chapter 5–6 can apply. This section is taken from [64], a collaboration with
Jean-Michel Coron, Shengquan Xiang and Christophe Zhang.

7.1 Formulation of the problem

We consider the homogeneous Saint-Venant equations in a water tank, subjected to an acceleration and
given by {

∂tH + ∂x(HV ) = 0,

∂tV + V ∂xV + g∂xH = −U(t).
(7.1.1)

where U(t) is the acceleration applied to the water-tank. Given that we consider a water tank, the boundary
conditions satisfy

V (t, 0) = V (t, L) = 0. (7.1.2)

This implies, in particular and together with (7.1.1), that
∫ L

0
H(t, x)dx is constant with time. This represents

the conservation of mass. Our goal is to study and stabilize the linearized equations around the steady-states
(H∗, V ∗) corresponding to a small acceleration U(t) = γ > 0. The motivation to consider γ ̸= 0 is that these
linearized equations are not controllable, hence not stabilizable, when γ = 0 (see [53, 54]), but they are when
γ > 0. These steady-states are given by V ∗ = 0 and H∗ = Hγ(x) with

Hγ(x) =1 − γ

(
x− L

2

)
, ∀x ∈ [0, L],∫ L

0

Hγ(x)dx = L.

(7.1.3)

Denoting h = (H −H∗), v = (V − V ∗) and u(t) = −(U(t) − γ), the linearized equations are

∂t

(
h
v

)
+

(
0 Hγ

1 0

)
∂x

(
h
v

)
+

(
0 −γ
0 0

)(
h
v

)
= u(t)

(
0
1

)
, (7.1.4)

with the boundary conditions
v(t, 0) = v(t, L) = 0. (7.1.5)

And the conservation of mass in the tank becomes

d

dt

∫ L

0

h(t, x)dx = 0. (7.1.6)

69



We will assume from now on that
∫ L

0
h(0, x)dx = 0, which means that the mass of the water in the initial

state is the same as the mass of the water at the steady-state. The reason behind is clear: if this condition is
not satisfied, there is no chance to show any convergence to the steady-state given that the mass of the water
remains constant in the system. So in the following we will consider the controllability and stabilizability of
the system only within states satisfying this condition.

Before stating our results, let us introduce the operator

L =

(
0 Hγ

1 0

)
∂x +

(
0 −γ
0 0

)
Id, (7.1.7)

associated to (7.1.4) and defined on the domain

D(L) :=

{(
h
v

)
∈ (H1([0, L],C)2 such that (7.1.5) holds

}
. (7.1.8)

We can show that there is a family of eigenvectors of L that form a Riesz basis of (L2(0, L;C))2. We denote
this family by (hγn, v

γ
n)n∈Z. We also denote by Dγ the space of finite linear combinations of (hγn, v

γ
n)n∈Z and

D′
γ its dual. What we show is the following rapid stabilization result

Theorem 7.1.1. For any µ > 0, there exists γ0 > 0 such that, for any γ ∈ (0, γ0), there exists a feedback
law u which stabilizes the system (7.1.4)–(7.1.5) with decay rate (at least) µ.

More precisely, let us define for ν > 0 the feedback operator F γ
1 belonging to D′

γ and given by

⟨(hγn, vγn)T , F γ
1 ⟩ = − tanh(4µL)

Hγ(0)

(hγn)2(0)∫ L

0
L

Lγ

√
1−γ(x−L

2 )
exp

(
−
∫ x

0
3γ

4(1−γ(x−L
2 ))
ds
)
vγn(x)dx

, ∀ n ∈ Z∗,

⟨(hγ0 , vγ0 )T , F γ
1 ⟩ = −2

tanh(4µL)

Hγ(0)

(hγ0)2(0)

ν
,

(7.1.9)

and the control feedback u2 defined by

u′2(t) =
νL

Lγ
⟨(hγ0 vγ0 )T , F γ

1 ⟩
(
u2(t) +

〈(
h
v

)
(t, ·), F γ

1

〉)
, (7.1.10)

with Lγ := 2
γ

(
1 −

√
1 − γ L

2

)
. There exists ν ̸= 0 such that the feedback law u defined by

u(t) :=

〈(
h
v

)
(t, ·), F γ

1

〉
+ u2(t), (7.1.11)

stabilizes the system (7.1.4)–(7.1.5) exponentially in H1 norm with decay rate µ.

Despite its complicated formulation, the method is constructive and the feedback law F is explicit 1. One
can remark also that this feedback has two parts: a proportional (given by the feedback operator F γ

1 ) and
an integral (given by the control u2, defined as the solution of a first-order ODE). This comes from the fact
that we will actually study a dynamic extension of the system. Before applying the backstepping approach,
we transform the system and show that, using a change of variables, this system is equivalent to

∂tζ + Λ∂xζ + δJζ = uγ(t) exp

(∫ x

0

δ(y)dy

)(
1
1

)
, (7.1.12){

ζ1(t, 0) = −ζ2(t, 0),

ζ2(t, L) = −ζ1(t, L),
(7.1.13)

1. Nevertheless, this result is not completely quantitative if we lack information on the Riesz basis.
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with

Λ =

(
1 0
0 −1

)
, J =

(
0 1

3
− 1

3 0

)
,

δ(x) = −3

4
γ
(

1 +
1

2
γ

(
L

2
+ x

)
+O(γ2)

)
,

(7.1.14)

and the conservation of mass becoming∫ L

0

(√
1 +

γL

2
− γ

2

Lγ

L
x

)1/2

(ζ1(x) − ζ2(x))
L

Lγ
dx = 0. (7.1.15)

In fact this system has a drawback: defining

I = exp

(∫ x

0

δ(y)dy

)(
1
1

)
, (7.1.16)

and setting f0 = (f0,1, f0,2)T as a non-zero solution of

Λ∂xf0 + δJf0 = 0,

f0,1(0) = −f0,2(0),
(7.1.17)

we can check that f0,1(x) = −f0,2(x) for any x ∈ [0, L]. This implies that

⟨I, f0⟩ = 0. (7.1.18)

This means that the control has no effect on the direction given by the vector f0. This is linked to the
conservation of mass and corresponds to the fact that the control cannot add or remove mass. To overcome
this issue we introduce the following virtual control operator

Iν = exp

(∫ x

0

δ(y)dy

)(
1
1

)
+ νf0, (7.1.19)

where f0 is the solution of 2 (7.1.17) with norm 1. And we introduce the corresponding dynamic extension
of our system 

∂tZ + Λ∂xZ + δ(x)JZ = uνγ(t)Iν ,
Z1(t, 0) = −Z2(t, 0), ∀t ≥ 0,

Z1(t, L) = −Z2(t, L), ∀t ≥ 0.

(7.1.20)

We will now try to find uνγ in the form of a feedback law uνγ = ⟨Z(t, ·), F ⟩ (where the sense and the spaces
involved in these brackets have to be defined). This will allow us to recover a feedback law for the original
system, of the form (7.1.11). Just like for the heat equation and the water-wave equations, we can write this
system in a more abstract way:

∂tZ = −AZ + ⟨Z(t, ·), F ⟩Iν , Z(t, ·) ∈ D(A), (7.1.21)

where A = Λ∂x + δ(x)J and D(A) is the domain of A defined by

D(A) :=
{

(f1, f2) ∈ (H1)2, f1(0) + f2(0) = 0, f1(L) + f2(L) = 0
}
. (7.1.22)

Let µ > 0, the target system will be

∂tz = −Ãz, z(t, ·) ∈ D(Ã), (7.1.23)

where Ã is still Λ∂x + δ(x)J but is defined on the domain

D(Ã) :=
{

(f1, f2) ∈ (H1)2, f1(0) + e−2µLf2(0) = 0, f1(L) + f2(L) = 0
}
. (7.1.24)

The boundary conditions induced by this new domain provide an exponential dissipation and one can show
that this system is exponentially stable at rate as close to µ as desired:

2. f0 is in fact the normal eigenfunction of the system associated with the eigenvalue 0, as we will see later on.
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Proposition 7.1.2. For any λ0 ∈ (0, µ), there exists γs(λ0) > 0 such that for any γ ∈ (0, γs) and λ ∈ [0, λ0],
the target system (7.1.23)–(7.1.24) is exponentially stable with decay rate λ (for the Hp norm, for any p ∈ N).
Moreover γs can be chosen continuous and decreasing with respect to λ0.

This can be shown, for instance, using basic quadratic Lyapunov functions.

7.2 Setting-up the backstepping: some functional properties and
Riesz basis

Let us now start the backstepping approach. We aim to map the original system to target system, in other
words, we want to find a transform T and a linear feedback operator F such that, formally,

T (−A + IνF ) = −ÃT (7.2.1)

TIν = Iν , (7.2.2)

which is equivalent with the current notations of (5.3.31)–(5.3.32) in Chapter 5 or (6.3.1) in Chapter 6.
Looking back at the general method in introduction of Section 5.2.1, the backstepping method starts by
considering an orthonormal basis of the considered functional space and then applying the operator equality
(7.2.1) on this orthonormal basis to find a candidate transform T . One of the key point here will be to use
an orthonormal basis (fn)n∈Z of L2(0, 1;C2) whose elements are eigenvectors of A (thus belonging to D(A))
rather than a fourier basis (einx)n∈Z (for the heat equation and the water-wave equations such a question
did not arise since (einx)n∈Z is also a basis of eigenvectors for the operator). Such a basis exists (see [216]
for instance, and observe that A is skew-adjoint) and we list here some of its properties.

Proposition 7.2.1. Denoting (fn)n∈Z an orthonormal basis of eigenvector of A and (µn)n∈Z the associated
eigenvalues, one has

(i) The eigenvalues are purely imaginary and

µn =
iπn

L
+O(1), ∀n ∈ Z, (7.2.3)

(ii)
µ−n = µn = −µn, ∀n ∈ Z. (7.2.4)

In particular, µ0 = 0.
(iii)

f−n = (f−n,1, f−n,2) = fn = (−fn,2(·),−fn,1(·)), ∀n ∈ Z. (7.2.5)

In particular, fn,1(0), fn,1(L) ∈ R, and

f0,1(x) + f0,2(x) = 0,∀x ∈ [0, L]. (7.2.6)

Still looking at the general method, after applying the operator equality to fn, we will want to project it
again on a basis of the considered Hilbert space (see for instance (5.3.49) for the heat equation). Since fn
are not eigenvectors of Ã because they do not belong to D(Ã), it would be interesting to see whether a
basis of eigenvectors of Ã exists. The answer is yes, but the situation is slightly more complicated: due
to the lack of symmetry in the boundary conditions induced by D(Ã) (see the definition of D(Ã) given by
(7.1.24)), we can only say that the eigenvectors f̃n of Ã form a Riesz basis of L2((0, 1);C2), and this basis
is not necessarily orthonormal. However, there still exists a biorthogonal family (ϕ̃n)n∈Z such that

f =
∑
n∈Z

⟨f, ϕ̃n⟩f̃n, for any f ∈ L2((0, 1),C2), (7.2.7)

and such that this biorthogonal family (ϕ̃n)n∈Z is a family of eigenvectors of the adjoint operator Ã∗. Also,
still using [216], we have again the following property

µ̃n = µ+
iπn

L
+O(1), (7.2.8)
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where µ̃n denotes the eigenvalue of Ã associated to f̃n. In [64] we show a proposition analogous to Proposition
7.2.1 for this eigensystem.

Proposition 7.2.2. (fn, ϕn, µn)n∈Z satisfies the following properties
(i)

µ̃−n = µ̃n, ∀n ∈ Z. (7.2.9)

(ii)

f̃−n = f̃n,

ϕ̃−n = ϕ̃n, ∀n ∈ Z.
(7.2.10)

We conclude this section by defining D(As) as follows

D(As) :=

{
α ∈ (L2)2,

∑
n∈Z

(1 + |µn|2s)|⟨α, fn⟩|2 <∞
}

⊂ (Hs)2, s ∈ [0,+∞), (7.2.11)

endowed with the following norm

∥α∥2D(As) =
∑
n∈Z

(1 + |µn|2s)|⟨α, fn⟩|2, ∀α ∈ D(As). (7.2.12)

Similarly we have

D(Ãs) :=
{
α ∈ (L2)2,

∑
(1 + |µ̃n|2s)|⟨α, ϕ̃n⟩|2 <∞

}
, s ∈ [0,+∞), (7.2.13)

endowed with the norm

∥α∥2
D(Ãs)

=
∑

(1 + |µ̃n|2s)|⟨α, ϕ̃n⟩|2, ∀α ∈ D(Ãs). (7.2.14)

7.3 Controllability

Before trying to stabilize the system, it is natural to wonder whether it is controllable. There is another
motivation to look at controllability: as we already mentioned, generalized backstepping is really about using
the controllability to construct an explicit feedback law. Thus, we expect the controllability estimates to play
an essential role at some point. In the example of the heat equation presented in Chapter 5 the condition
on the control operator we required for the controllability was a20 ̸= 0 with (ain)n∈N defined by (5.3.45) and
for any i ∈ {1, 2} and n ∈ N∗,

cn−s < |ain| < Cn−s, (7.3.1)

which was used to show the existence of a transform T and a feedback K later on. In Chapter 6 the condition
(6.1.5) was also used to derive the feedback operator K later on. In [64], we show the controllability of the
original (virtual) system (7.1.20), which is equivalent to showing the controllability of the system excluding
in the direction f0 describing the change of mass. We also show the controllability of the target system.
The controllability is shown using a moment method as well as an expansion in γ of the eigenvectors, Kato’s
method for asymptotic calculation (see [153, Chapter 2]), and the derivation of relatively long asymptotic
estimates. We will not detail here the long analysis leading to the controllability of both systems but, rather,
we will highlight the conditions and estimates it brings on the control operator. What can be highlighted,
among others, are the following estimates and expressions that we obtain:

— From the controllability of the original system, we get

m|µ−1
n | ≤ |⟨I, fn⟩| ≤M |µ−1

n |, ∀n ∈ Z∗, (7.3.2)

where m and M are positive constants independent of n. (7.3.2) describes the controllability of system
(7.1.12)–(7.1.13) without the direction f0 and implies that

m(1 + |µn|)−1 ≤ |⟨Iν , fn⟩| ≤M(1 + |µn|)−1, ∀n ∈ Z. (7.3.3)
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We have in fact a more precise expression

⟨Iν , fn⟩ =
2
(
fn,1(0) − e

∫ L
0

δfn,1(L)
)

µn
+

1

µn
⟨δ(x)JI, fn⟩, ∀n ∈ Z∗, (7.3.4)

and we also obtain
m ≤ |fn,1(0)| ≤M, ∀n ∈ Z. (7.3.5)

— From the controllability of the target system, we get

m(1 + |µ̃n|)−1 ≤ |⟨Iν , ϕ̃n⟩| ≤M(1 + |µ̃n|)−1, ∀n ∈ Z, (7.3.6)

and
m ≤

∣∣∣ϕ̃n,1(0)
∣∣∣ ≤M, ∀n ∈ Z. (7.3.7)

7.4 Finding a candidate T

We are now ready to start the backstepping method. As in Chapter 5–6, we start by finding a candidate
transform T by assuming that the operator equalities (7.2.1)–(7.2.2) hold and applying (7.2.1) on an or-
thonormal basis of eigenfunctions to see what condition it implies on T . We apply it to our basis (fn)n∈Z,
the family of eigenfunctions of A, and we obtain, assuming (7.2.2) holds,

− TAfn + Iν⟨fn, F ⟩ = −ÃTfn. (7.4.1)

As fn is an eigenvector of A this becomes

− µn(Tfn) + IνKn = −Ã(Tfn), (7.4.2)

where Kn = ⟨fn, F ⟩ are the coefficients of the feedback control on the basis (fn)n∈Z. We have now an
equation on (Tfn)n∈Z. However, this is still a differential equation because of the operator Ã in (7.4.2) and
we would like to simplify this again. Therefore, we project this equation again on an orthonormal basis and,
this time, we choose the basis (ϕ̃n)n∈Z of eigenvectors of Ã∗, the adjoint of Ã. We are motivated by the
fact that we would like to get rid of the differential operator Ã in (7.4.2) but this operator is applied on the
left so the projection will naturally make its adjoint Ã∗ appear (note that this question did not appear in
Chapter 5 and 7 since the operators where self or anti adjoint). We have

−µn⟨(Tfn), ϕ̃p⟩ + ⟨Iν , ϕ̃p⟩Kn = −⟨Ã(Tfn), ϕ̃p⟩,
= −⟨(Tfn), Ã∗ϕ̃p⟩,
= −⟨(Tfn), µ̃pϕ̃p⟩,
= −µ̃p⟨(Tfn), ϕ̃p⟩,

(7.4.3)

Hence we obtain the following characterisation of (Tfn)n∈Z

⟨(Tfn), ϕ̃p⟩ =
⟨Iν , ϕ̃p⟩Kn

µn − µ̃p
, ∀n ∈ Z, ∀ p ∈ Z. (7.4.4)

Observe that, as in the previous chapters, when the Kn are fixed, (7.4.4) defines entirely T as (ϕ̃p)p∈Z is
a biorthogonal family associated to a basis of L2 and fn is an orthonormal basis of L2. One can already
observe that this implies the following condition on K

Kn ̸= 0, (7.4.5)

the condition ⟨Iν , ϕ̃p⟩ ≠ 0 resulting from the controllability estimate (7.3.6) of the target system.
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The next step is to show that the candidate transform T is an isomorphism provided some condition on F .
Looking at Theorem 7.1.1 we would like T to be an isomorphism for solutions with H1 regularity, and to
map the original system to the target system. This means that we would like T to be an isomorphism from
D(A) to D(Ã). Let α ∈ D(A), one has

α =
∑
n∈Z

⟨α, fn⟩fn, (7.4.6)

and
Tα =

∑
n∈Z

⟨α, fn⟩(Tfn). (7.4.7)

Since α ∈ D(A), (1 + |n|)⟨α, fn⟩ ∈ ℓ2. So, looking at the expression (7.4.7), we want (1 + |n|)−1(Tfn) to be
a Riesz basis of D(Ã) in order to conclude that T is an isomorphism from D(A) to D(Ã). However, because
|λn| ∼ |n| we cannot hope to use a quadratically close property between (Tfn)n∈Z and an orthonormal basis
derived from fn or f̃n together with Lemma 5.2.2. Instead, we will show directly that (Tfn)n∈Z is a Riesz
basis by checking the definition given by Definition 5.3.1 (5)’ and that we recall here

Definition 7.4.1. A family (ξn)n∈Z is a Riesz basis of a Hilbert space X if and only if it is dense in X and
there exists C1, C2 > 0 such that for any (an)n∈Z ∈ ℓ2,

C1

∑
k∈Z

|ak|2 ≤ ∥
∑
k∈Z

akξk∥2X ≤ C2

∑
k∈Z

|ak|2. (7.4.8)

To show that (Tfn)n∈Z satisfies the assumptions of this definition, we introduce an auxiliary family kn
defined by

⟨kn, ϕ̃p⟩ :=
1

µ̃p − µn
. (7.4.9)

One can observe that kn does not depend on the feedback control F and the control operator Iν . This is
the analogous of qn and Sfn in Chapter 5–6. The key lemma is the following

Lemma 7.4.1. The family (kn)n∈Z is a Riesz basis of L2((0, 1);C2).

To prove this, note that, because fn are eigenfunctions of A

µn⟨fn, ϕ̃p⟩ =
〈
Afn, ϕ̃p

〉
. (7.4.10)

Here we can use an integration by parts (which amounts to taking the adjoint of A), but as ϕ̃p does not
belong to D(A∗), there will be non-zero boundary terms:〈

Afn, ϕ̃p
〉

=
〈
fn,A∗ϕ̃p

〉
+ fn,2(0)ϕ̃p,2(0) − fn,1(0)ϕ̃p,1(0). (7.4.11)

Using now that A and Ã are the same operators considered on different domain (hence A∗ and Ã∗ are as
well), and that ϕ̃p are eigenfunctions of Ã∗〈

Afn, ϕ̃p
〉

=
〈
fn, Ã∗ϕ̃p

〉
+ fn,2(0)ϕ̃p,2(0) − fn,1(0)ϕ̃p,1(0)

= µ̃p⟨fn, ϕ̃p⟩ − fn,1(0)ϕ̃p,1(0)
(
1 − e−2µL

)
.

(7.4.12)

From (7.4.10)–(7.4.12), the fact that fn are eigenvectors of A, and the fact that (ϕ̃n)n∈Z is the biorthonormal

family associated to (f̃n)n∈Z, we deduce that

fn =
∑
p∈Z

⟨fn, ϕ̃p⟩f̃p =
∑
p∈Z

fn,1(0)ϕ̃p,1(0)
(
1 − e−2µL

)
µ̃p − µn

f̃p ∀n ∈ Z. (7.4.13)

Introducing the operator τ defined by

τ f̃p := ϕ̃p,1(0)(1 − e−2µL)f̃p, ∀p ∈ Z, (7.4.14)
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we have finally
fn = fn,1(0)τkn, ∀n ∈ Z. (7.4.15)

Because µ > 0, and thanks to the controllability estimate (7.3.7) on the target system, τ is an isomorphism.
Thanks to the controllability estimate (7.3.5), fn,1(0) is uniformly bounded by above and below, which
means that (τ−1fn)n∈Z is a Riesz basis of L2((0, 1);C2) and so is

(
τ−1fn/fn,1(0)

)
n∈Z = (kn)n∈Z. Note that

this relies a lot on the fact that A and Ã are the same operators but defined on different domains with
one boundary condition that differs. Indeed, this is what allows fn to be expressed as the image of kn by a
simple isomorphism. This is the reason why we chose such a target system (7.1.23)–(7.1.24) with a boundary
damping instead of the usual target system, where one adds an internal damping to the original system.

From the Riesz basis property of (kn)n∈Z we can show the following proposition

Proposition 7.4.1. The family (
1

Kn
(Tfn)

)
n∈Z

(7.4.16)

is a Riesz basis of D(Ã).

Showing this can be done by checking directly Definition 7.4.1, and noting that, by density, the property
(7.4.8) only needs to be checked for any (an)n∈Z with finite support. Both assumptions of Definition 7.4.1
(density and estimate (7.4.8)) follow from the fact that they hold for (kn)n∈Z as it is a Riesz basis of
L2((0, 1);C2), together with the controllability estimate (7.3.6) of the target system which imposes that
there exists m,M > 0 such that

m ≤ (1 + |µ̃p|2)
∣∣∣〈Iν , ϕ̃p〉∣∣∣2 ≤M. (7.4.17)

From Proposition 7.4.1 we deduce directly that, if there exists c, C > 0 such that

c(1 + |n|) ≤ |Kn| ≤ C(1 + |n|), ∀n ∈ Z, (7.4.18)

then (1 + |n|)−1(Tfn) is a Riesz basis of D(Ã), which is what we want.

Hence, provided that condition (7.4.18) on the feedback control F holds, the transform T is an isomorphism

from D(A) to D(Ã). Besides, we can check that if F is real-valued, then T maps real-valued functions to
real-valued functions. The condition (7.4.18) can be interpreted as the growth needed on the feedback law so
that (Tfn) is not too regular (in which case T would not map the whole D(Ã) from D(A)) but still regular
enough (in which case the image of D(A) by T would not be in D(Ã)).

7.5 Applying the transform T

We now have a good candidate T for the backstepping transform, and a condition on the feedback F so that
it is an isomorphism. The next step is to show that T indeed satisfies the operator equalities (7.2.1)–(7.2.2),
possibility in a weak sense, and provided some addtionnal conditions on F (which have to be compatible
with the condition (7.4.18) we already have).

One can see right away that TIν = Iν cannot hold in a strong sense, simply because Iν is a (constant)
function that do not belong to D(A). Thus what we will want is a weak TIν = Iν equality defined as follows

⟨TIN
ν , ϕ̃m⟩ −−−−−→

N→+∞
⟨Iν , ϕ̃m⟩, ∀m ∈ Z, (7.5.1)

where IN
ν is the orthogonal projection of Iν on the 2N + 1 dimensional space Span{f−N , ..., fN} given by

IN
ν =

N∑
n=−N

⟨Iν , fn⟩fn. (7.5.2)
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Note that IN
ν belongs to D(A), given that it is a finite sum of elements of D(A), while IN

ν → Iν in
L2((0, 1);C2). As (ϕ̃m)m∈Z also form a basis of L2((0, 1);C2), the condition (7.5.1) is indeed a weak form of
the formal TIν = Iν .

Concerning the operator equality (7.2.1), it is clear that it cannot be applied a priori to any function of
L2((0, 1);C2) or even D(A), since T is only properly defined on D(A). Indeed for a function α ∈ D(A), Aα
belongs to L2 hence TAα is not properly defined. To find the right space in which considering the operator
equality, it is actually easier to use its original form before simplifying with TIν = Iν and look directly at

T (−A + IνF ) = −ÃT (7.5.3)

This suggest to look at the operator equality applied to functions α belonging to a domain DF defined as

DF = {α ∈ D(A), −Aα+ ⟨α, F ⟩Iν ∈ D(A)} . (7.5.4)

This way, both sides of (7.5.3) applied to α are well defined since Tα ∈ D(Ã) and (−A + IνF )α ∈ D(A).
This space DF might seem peculiar, but we will see, when looking at the well-posedness 3, that it is intrin-
sically the right space to consider (see Lemma 7.6.1).

Let α ∈ DF and α(N) its truncation on Span{f−N , ...fN} defined as in (7.5.2). We can observe that

⟨T (−Aα(N) + ⟨α, F ⟩I(N)
ν ), ϕ̃m⟩ = ⟨−Aα(N) + ⟨α, F ⟩I(N)

ν , T ∗ϕ̃m⟩D(A)×D(A)′

−−−−→
N→∞

⟨−Aα+ ⟨α, F ⟩Iν , T ∗ϕ̃m⟩D(A)×D(A)′

= ⟨T (−Aα+ ⟨α, F ⟩Iν), ϕ̃m⟩,

(7.5.5)

and −ÃTαN → −ÃTα in L2((0, 1),C2). So showing (7.5.3) on DF reduces to showing that

⟨T (−Aα(N) + ⟨α, F ⟩I(N)
ν ) + ÃTα(N), ϕ̃m⟩ → 0, ∀m ∈ Z, ∀α ∈ DF . (7.5.6)

As TAα(N) =
N∑

n=−N

µn⟨α, fn⟩(Tfn), observing from the definition of (Tfn) (see (7.4.4)) that

µn(Tfn) = Ã(Tfn) +KnIν , (7.5.7)

and recalling that Kn = ⟨fn, F ⟩, showing (7.5.6) reduces to showing that

⟨⟨α, F ⟩TI(N)
ν − ⟨α(N), F ⟩Iν , ϕ̃m⟩ → 0, ∀m ∈ Z, ∀α ∈ DF . (7.5.8)

Assuming that (7.5.1) holds, this amounts to showing that

⟨α(N), F ⟩ → ⟨α, F ⟩, ∀m ∈ Z, ∀α ∈ DF . (7.5.9)

We give some insight about how to prove (7.5.1) and (7.5.9) in the two following paragraphs.

Proof of the weak TIν = Iν Let us look at ⟨TIN
ν , ϕ̃m⟩. The first step is to express Tfn on the basis

(f̃p)n∈Z using the expression (7.4.4), then use the fact that ⟨f̃p, ϕ̃m⟩ = 0 for p ̸= m to make kn appear.
Finally we use the isomorphism linking kn to fn to get

⟨TIN
ν , ϕ̃m⟩ = − ⟨Iν , ϕ̃m⟩

ϕ̃m,1(0)(1 − e−2µL)

N∑
n=−N

⟨Iν , fn⟩
Kn

fn,1(0)

〈
fn, ϕ̃m

〉
. (7.5.10)

Taking a step back and looking at the general method, we expect that the “TB = B” condition (or here
TIν = Iν) would add enough condition on Kn = ⟨fn, F ⟩ to fully set F . This is reflected in (7.5.10) which

3. see in particular Proposition 7.6.1 below.
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depends on Kn and where we have to choose these coefficients in order to ensure ⟨TI(N)
ν , ϕ̃m⟩ → ⟨Iν , ϕ̃m⟩,

or, in other words,

−1

ϕ̃m,1(0)(1 − e−2µL)

N∑
n=−N

⟨Iν , fn⟩
Kn

fn,1(0)

〈
fn, ϕ̃m

〉
→ 1, (7.5.11)

when N → +∞. This requires a kind of equiconvergence result, similar to the Dirichlet sum for instance.
In [64] we show the following

Proposition 7.5.1. Let us denote

σµ(f, x) =
∑

|Im(µp)|<µ

⟨f, fp⟩fp(x) (7.5.12)

and
pµ(f, x) =

∑
|Im(µ

(0)
p )|<µ

⟨f,Ep⟩Ep(x) (7.5.13)

where µ
(0)
p are the eigenvalues of A when γ = 0 and

(Ep)p∈Z =
((
e

iπpx
L ,−e−iπpx

L

))
p∈Z

. (7.5.14)

One has for any compact Kc ⊂ [0, L)

lim
µ→+∞

sup
x∈Kc

|σµ(f, x) − pµ(f, x)| = 0. (7.5.15)

This is done by generalizing a powerful result by Komornic [159, 160]. Looking at (7.5.10), we want to use
the estimate (7.5.15) at x = 0. This incitate to choose Kn = C(fn,1(0))2/⟨Iν , fn⟩ where C is some constant.
In fact choosing

⟨fn, F ⟩ := −2 tanh(µL)
(fn,1(0))2

⟨Iν , fn⟩
, ∀n ∈ Z, (7.5.16)

gives the result. Note that thanks to the controllability estimates (7.3.3) and (7.3.5), the feedback F satisfies
the condition (7.4.18) so that T is an isomorphism.

Proof of ⟨αN , F ⟩ → ⟨α, F ⟩ to get the operator equality (7.5.3) We can note that this limit is not trivial,
because F lacks of continuity on D(A). More precisely, denoting E the space of finite linear combinaisons of
(fn)n∈Z and E ′ its dual, we show the following

Lemma 7.5.1. F ∈ E ′ defined by (7.5.16) defines a linear form on D(A2) which is continuous for ∥ · ∥D(A2)

but not for ∥ · ∥D(A).

Therefore, to obtain the limit ⟨αN , F ⟩ → ⟨α, F ⟩, we need to investigate more precisely the regularity of F .
This can now be done, since F is completely defined by (7.5.16). Let us define h by

⟨fn, h⟩ = − tanh(µL)

τIn
fn,1(0)µn, (7.5.17)

where

τIn =

(
e
∫ L
0

δ fn,1(L)

fn,1(0)
− 1

)
, ∀n ∈ Z. (7.5.18)

This choice of τIn comes from the expression of ⟨Iν , fn⟩ given by (7.3.4). What we show is the following

Proposition 7.5.2. Let Xs be defined as

{f ∈ (L2
(0))

2, (τI)−1(Λ∂xf + δ(x)Jf) ∈ (Hs−1)2}, ∀s ∈ [0,+∞). (7.5.19)
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The linear form h defined by (7.5.17) defines the following linear form on X2∩D(A), continuous for ∥ · ∥X2 :

⟨α, h⟩ = − tanh(µL)

(
A(τI)−1α

)
1

(0) −
(
A(τI)−1α

)
2

(0)

2
. (7.5.20)

Moreover, F̃ := F − h is continuous for ∥ · ∥D(A), so that F is actually defined on X2 ∩ D(A), and is
continuous for ∥ · ∥X2 , but not for ∥ · ∥D(A).

This means that h is the singular part of F , i.e. the part that limits its regularity 4. Hence, since F − h is
continuous on D(A) the problem is reduced to showing ⟨αN , h⟩ → ⟨α, h⟩.

For this, a first step is to show that ⟨α, h⟩ has a meaning for α ∈ DF , namely that DF ⊂ X2 ∩D(A). Then,
we use the fact that fn,1(0) = f−n,1(0) to express ⟨αN , h⟩ as

⟨αN , h⟩ = − tanh(µL)

2

N∑
n=−N

( ⟨α, fn⟩
τIn

µn +
⟨α, f−n⟩
τI−n

µ−n

)
fn,1(0). (7.5.21)

Defining τI : fn → τIn fn, which can be shown to be an isomorphism from D(A2) to itself, and σ by

⟨σ(β), fn⟩ = ⟨β, f−n⟩, ∀ β ∈ L2((0, 1);C2), (7.5.22)

we have
⟨α, fn⟩
τIn

µn +
⟨α, f−n⟩
τI−n

µ−n =
〈
A((τI)−1α− σ((τI)−1α)), fn

〉
. (7.5.23)

which means that

⟨αN , h⟩ = − tanh(µL)

2

N∑
n=−N

〈
A((τI)−1α− σ((τI)−1α)), fn

〉
fn,1(0). (7.5.24)

The last step is to show that for β ∈ (H2)2 ∩D(A), we have β − σ(β) ∈ D(A2). Once this is done, we show
that for α ∈ DF ⊂ X2∩D(A), we have (τ I)−1α ∈ (H2)2∩D(A), which means that (τI)−1α−σ((τI)−1α) ∈
D(A2), hence A((τI)−1α − σ((τI)−1α)) ∈ D(A). And, as consequence the sum of the right-hand side of
(7.5.24) converges absolutely when N → +∞ and ⟨αN , h⟩ → ⟨α, h⟩.

7.6 Well-posedness of the closed-loop system

Now that we have found an isomorphism T and a feedback control F that maps the original system to the
(exponentially stable) target system. The only thing that remains to be done is to show the well-posedness of
the closed loop system in some sense. Let us note first that the target system (7.1.23)–(7.1.24) is well-posed
in D(Ã) (see for instance [19, Appendix A]) and there exists a basic quadratic Lyapunov function to the
system (7.1.23)–(7.1.24), which has the form

V (Z) = ∥Θ(x)Z∥2L2(0,L) + ∥Θ(x)(ÃZ)∥2L2(0,L), ∀ Z ∈ Hp(0, L), (7.6.1)

where Θ is a positive C1 function on [0, L]. By the definition of a basic Lyapunov function, V is equivalent
to the square of the H1 norm, thus its square root is a norm itself on D(A). This implies that Ã generates
a contraction semigroup on D(Ã) for this norm (the domain of Ã as infinitesimal generator is then D(Ã2)).
Let us denote by (S̃(t))t≥0 the semigroup thus generated. Intuitively, to define a solution to our original
system and show the well-posedness, we would like to apply T to the initial condition, then find the solution

4. This situation is similar to what we have done with the heat equation in Lemma 5.3.2 where we isolate the singular part
of qn.

79



for the target system, and define the solution of the original system at time t as being T−1 applied to the
solution of the target system at time t. This leads to define the following semigroup

S : R+ → L(D(A))

t 7→ T−1S̃(t)T.
(7.6.2)

What we can show is that the closed-loop operator −A + IνF indeed generates this semigroup (S(t))t≥0,
and thus that the original closed-loop system is well-posed. More precisely we can show the following

Proposition 7.6.1. The mapping (S(t))t≥0 defines an exponentially stable C0-semigroup on D(A) with
decay rate µ/2, and its infinitesimal generator is the unbounded operator −A+ IνF defined on DF given by

DF =

{
α ∈ D(A)|α =

∑
n∈Z

αphp, (µ̃pαp)p∈Z ∈ ℓ2

}
. (7.6.3)

Moreover, this semigroup is real-valued on real-valued functions.

Showing that (S(t))t≥0 is a C0 semigroup follows directly from its definition (7.6.2), the continuity of T and

T−1, and the fact that (S̃(t))t≥0 is a C0 semigroup. By definition, its infinitesimal generator is the operator
L defined by

Lx = lim
t→0+

1

t
(S(t) − Id)x, (7.6.4)

on the domain DL such that this limit has a sense. The exponential stability is a direct consequence of the
fact that (S̃(t))t≥0 is not only a contraction semigroup but also an exponentially stable semigroup on D(Ã)
with decay rate (at least) µ/2, which results again from the existence of a basic Lyapunov function for the
H1 norm and the continuity of T . Indeed, one has for α ∈ D(A) and t ≥ 0,

∥S̃(t)α∥D(A) ≤ Ce−µt/2∥α∥D(A), (7.6.5)

where C is independent of α. Hence, from (7.6.2),

∥S(t)α∥D(A) ≤ Ce−µt/2∥T−1∥L(D(Ã),D(A))∥T∥L(D(A),D(Ã))∥α∥D(A), (7.6.6)

and S is exponentially stable. It remains to show that (L, DL) = (−A+IνF,DF ). For this we need to show
the following Lemma

Lemma 7.6.1. The domain DF satisfies the following equality:

DF = T−1D(Ã2). (7.6.7)

This lemma explains why DF appears: although the set DF might seem peculiar at first, it is really the
analogous of D(Ã2) for the original closed-loop system. It also explains why it was natural to show the
operator equality (7.5.3) for any α ∈ DF in the previous section. In order to show Lemma 7.6.1, we will
need an additional Lemma.

Lemma 7.6.2. The operator −A + IνF admits a Riesz basis of eigenvectors in D(A), given by

hp := T−1 f̃p
µ̃p
, ∀p ∈ Z, (7.6.8)

with corresponding eigenvalues (−µ̃p)p∈Z.

The fact that (hp)n∈Z is a Riesz basis ofD(A) is a direct consequence from the fact that T−1 is an isomorphism

from D(Ã) to D(A) and the fact that (f̃n/µ̃n)n∈Z is a Riesz basis of D(Ã). This last claim comes from the
fact that (f̃n)n∈Z is a basis of L2((0, 1);C2) of elements of D(Ã) and (|µ̃n|)−1 ∼ (1 + |n|)−1. The difficulty
is to show that hp ∈ DF . The functions hp are likely regular enough, but requiring that Ahp + ⟨hp, F ⟩Iν
belongs to D(A) implies that Ahp + ⟨hp, F ⟩Iν satisfies the correct boundary conditions imposed by D(A).
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This is not obvious as Iν does not satisfy them. This can nevertheless be shown by expressing f̃p as a
function of hp, and then decompose hp on fn to get

⟨hp, fn⟩ = an,p = − ϕ̃p,1(0)(1 − e−2µL)

µ̃p⟨Iν , ϕ̃p⟩
fn,1(0)

⟨fn, F ⟩
⟨f̃p, fn⟩. (7.6.9)

Using this and the equiconvergence given in Proposition 7.5.1, we can compute ⟨hp, F ⟩ and then the coeffi-

cients ⟨−Ahp + Iν⟨hp, F ⟩, fn⟩ as functions of ⟨f̃p, fn⟩. Using then the same trick as for (7.4.10)–(7.4.12) we
are eventually able to obtain that

⟨−Ahp + Iν⟨hp, F ⟩, fn⟩ = − f̃p,1(0)ϕ̃p,1(0)(1 − e4µL)

2⟨Iν , ϕ̃p⟩
⟨Iν , fn⟩
µ̃p − µn

, (7.6.10)

which means that

−Ahp + Iν⟨hp, F ⟩ =
∑
n∈Z

(
− f̃p,1(0)ϕ̃p,1(0)(1 − e4µL)

2⟨Iν , ϕ̃p⟩

)
⟨Iν , fn⟩

fn
µ̃p − µn

. (7.6.11)

Recall that |µn| ∼ (1 + |n|) and, from the controllability estimate (7.3.5), we have (⟨Iν , fn⟩)n∈Z ∈ ℓ2.

Therefore, as
(

fn
µ̃p−µn

)
n∈Z

is a Riesz basis of D(A), we have −Ahp + Iν⟨hp, F ⟩ ∈ D(A) and hp ∈ DF .

Lemma 7.6.1 then follows from the fact that

DF =

{
α ∈ D(A)|α =

∑
n∈Z

αphp, (µ̃pαp)p∈Z ∈ ℓ2

}
, (7.6.12)

and from the operator equality (7.5.3) applied to α ∈ DF .

From this, we can finish the proof of Proposition 7.6.1. Let α ∈ DF , then Tα ∈ D(Ã2) and, because −Ã is
the infinitesimal generator of (S̃(t))t≥0 with domain D(Ã2) we have, by definition,

S̃(t)Tα− Tα

t

D(Ã)−−−−→
t→0+

−ÃTα. (7.6.13)

Since α ∈ DF we can use the operator equality (7.5.3) and S̃(t) = TS(t)T−1 to get

TS(t)α− Tα

t

D(Ã)−−−−→
t→0+

T (−A + IνF )α (7.6.14)

Since T−1 is a continuous linear application from D(Ã) to D(A), we have

S(t)α− α

t

D(Ã)−−−−→
t→0+

(−A + IνF )α, (7.6.15)

and hence (−A + IνF ) is the infinitesimal generator of (S(t))t≥0. Finally, as (S̃(t))t≥0 is real valued on
real-valued function, and as T−1 and T map real valued function to real valued function, we deduce that
(S(t))t≥0 also maps real valued function to real valued function. This concludes the well-posedness in D(A)
of the original closed-loop system.

7.7 Open questions and perspectives

The generalized backstepping (or F -equivalence) approach is fairly new. Therefore there are many interest-
ing open-questions yet to be answered, and we give below just a few of them.
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— The compactness-duality approach presented in Chapter 6 works for anti-adjoint operators. Is it
possible to extend it to other operators, like self-adjoint operators, or more general operators? If not
is there a new method that could work?

— Is it possible to obtain a finite-time stabilization using the approaches of Chapters 5–7? This is known
to be true for a scalar hyperbolic system [256], but the question remains largely open in general. The
key step for this would be to obtain an explicit dependency on the lower bound of |Kn|, the coefficients
of the feedback operator. So far, the way this lower bound is obtained in Chapter 5–6 is very indirect:
we show that T is an isomorphism in a weak space and we deduce that there exists a bound on Kn.
Being able to have an explicit estimate with respect to λ would be very interesting.

— Is it possible to extend the results presented in 7 to quasilinear systems, at least locally? Even for
the transport equation this is an open question. This problem is harder as one may think given the
lack of robustness of spectral properties for hyperbolic systems (in particular the fact that in general
the exponential stability of the linear system does not give any information on the local exponential
stability of the associated nonlinear system [70]).

— Can the approach of Section 7 be generalized to all linear (controllable) hyperbolic systems?

— Is there a general abstract framework that could encompass all the cases α > 1 or even α ≥ 1 ?

— Is there a way to extend this approach in two space dimensions, namely x ∈ R2? At least for the
heat equation where the eigenvalues of the Laplacian are easily described. And, if so, it is possible to
extend it to x ∈ Rn for any n ∈ N∗?
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Part III

Control of traffic flow
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Chapter 8

Control of traffic flows: microscopic
approach

8.1 Introduction

This chapter starts with a less mathematical and more practical question: what happens when many cars
are placed on a road with the same speed and spacing? The empirical answer is known to everyone who has
ever driven a car during rush hour: a traffic jam forms. A stop-and-go wave phenomenon is formed, where
cars alternate between speeding up and slowing down, often keeping their speed low. This kind of traffic
jam is what is sometimes called a “ghost” traffic jam: it has no apparent cause, no accidents on the road,
no lane reductions, etc.

This traffic jam actually has a very mathematical underlying cause: as we will see later, above a certain
density of cars, the uniform steady state (i.e., the state of smooth traffic where all cars have the same speed)
is not a stable state. This chapter focuses on making this uniform steady state stable, using autonomous
vehicles that play the role of controls.

Being able to stabilize the traffic flow has attracted interest for decades. Many strategies have been considered
as using ramp metering or junctions as a boundary control of the traffic system [19, 101, 129, 158, 196, 228].
Another classical approach is to allow a variable speed limit and to use it as a controller (see for instance
[119, 140]). With the democratization of autonomous vehicles (briefly AVs) and means of communica-
tion, the idea of using AVs as a means of control to regulate traffic has gained momentum in recent years
[76, 231, 241, 242, 262] or [89, 223] for a more detailed review, and [27, 51, 79, 112, 178, 201, 210] for examples
of traffic control where the traffic is modelled by a hyperbolic PDE). Of course, designing theoretically a
control requires first to choose an accurate model 1 for the system and, first of all, a scale.

Mathematically, there are three possible points of view to study this problem:

— the microscopic approach, where each car is modeled separately by one or more differential equations.

— the mean field approach, which consists in passing the microscopic model to the higher scale. To do
this, we try to make the number of vehicles tend towards infinity and to define a limit solution to the
system in the form of a measure. This allows to capture the main characteristics of the microscopic
model while describing the traffic in an aggregated way as the solution of a partial differential equa-
tion.

1. There are also model-free initiatives to derive a controller using AI tools. In particular deep-reinforcement learning trained
on real trajectories with well defined reward functions and policies (see for instance [179, 238, 239]). Here, we let them aside
and only look at the mathematical approaches.
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— the macroscopic approach, where road traffic is represented by macroscopic quantities (e.g., density
and speeds) that are solutions of partial differential equations, while autonomous vehicles are repre-
sented by solutions of ordinary differential equations.

In this section we will focus on the first and third approaches. More details about the second approach can
be found for instance in [86, 122, 124, 141, 197, 209].

8.2 Microscopic approach

A first way to model traffic is to represent each vehicle separately. Physically, human drivers (and the
algorithms implemented in AVs) act through the command of the cars on the acceleration of the vehicle. It
is therefore natural to model the vehicles as follows

ẋ = v

v̇ = f(t, x, , xl, vl, v),
(8.2.1)

where x is the position of the given vehicle, v its velocity, and f corresponds to the action on the acceleration
which can depend on x, on v but also on the time t and external parameters, like the position and the velocity
of the vehicle in front of it, denoted respectively by xl and vl. The function f can therefore take into account
both the driver’s action and physical phenomena (such as friction). This function is called a car-following
model. Given the industrial stakes and the low mathematical entry cost of the microscopic approach, many
car-following models have been developed over the years, with the objective of fitting the reality as well as
possible, either in general or for a particular phenomena. In the following, we will focus on one model: the
Bando-Follow the Leader (Bando-FTL) model also sometimes called Optimal Velocity - Follow the Leader
[17, 113]. This model has the advantage of being able to represent the stop-and-go waves and the traffic
jam phenomena we are interested in in this chapter. Another model, the Intelligent Driver Model (IDM),
most used in engineering, can also represent these stop-and-go waves, but will not be studied here. It was
studied in [6] where we show that, surprisingly, this model as such is ill-posed. On the other hand, the
well-posedness of Bando-FTL has been studied in [123]. This section taken from [138], a collaboration with
Benedetto Piccoli and Sydney Truong.

8.2.1 The Bando-FTL model

As its name indicates, this model is in fact the sum of two parts, the Bando model (or Optimal velocity)
and the Follow-the Leader model. The Bando model, introduced in [17], is given by

v̇ = k(V (xl − x) − v), (8.2.2)

where k is a positive coefficient, V is a so-called optimal speed function, such that V (0) = 0, lim
h→+∞

V (h) ∈ R,

and xl is the position of the leading vehicle. V represents the driver’s preferred speed as a function of the
distance to the vehicle ahead. This speed is usually taken strictly increasing and equal to a hyperbolic
tangent ratio (see [17] or (8.2.38)). We will not use this assumption in the following and we will only assume
that V is strictly increasing and C2. The Follow-The-Leader model, introduced in [113], is given by

v̇ = k
vl − v

(xl − x)
2 (8.2.3)

where k is still a positive coefficient, xl is the position of the leading vehicle and vl its speed. This model
reflects the driver’s preference to have the same speed as the vehicle in front of him, and the closer this
vehicle is, the stronger this preference is. These two models have drawbacks when taken separately since
they account for different phenomena that both exist : the Follow-the-Leader model prevents collisions but
all distances between vehicles can give an equilibrium and it has no locally unstable equilibrium, so it is not
able to represent real traffic alone. The Bando model, on the other hand, has difficulty preventing collisions,
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which makes it rather unsuitable for use alone . This is why a commonly used version consists in considering
a linear combination of these two models, it is the Bando-FTL model. Each car is modeled as follows:

ẋ = v

v̇ = a(V (xl − x) − v) + b
vl − v

(xl − x)
2 ,

(8.2.4)

where a et b are two parameters that represent respectively the weight of the Bando part and the Follow-the
Leader part.

8.2.2 Steady-states and stabilisation

We now consider a circular road of length L > 0 with N ∈ N∗ vehicles represented by their positions and
speeds (xi, vi)i∈{1,...,N}. The system is then described by

ẋi = vi

v̇i = a(V (xi+1 − xi) − vi) + b
vi+1 − vi

(xi+1 − xi)
2 ,
i ∈ {1, ..., N}, (8.2.5)

with the convention xN+1 = x1 et vN+1 = v1 on a circular road with N cars. In reality, we are not interested
in stabilizing the positions and speeds of the vehicles but rather their spacings and speeds. We can therefore
reformulate the system (8.2.5) as follows by denoting hi = xi+1 − xi,

ḣi = vi+1 − vi

v̇i = a(V (hi) − vi) + b
vi+1 − vi

(hi)
2 ,

i ∈ {1, ..., N}. (8.2.6)

Given that we do not want any collision the state-space considered is (hi, vi)i∈{1,...,N} ∈ (0,+∞)N × RN
+

which corresponds in the original coordinates (x, v) to the following:

(xi(t))i∈{1,...,N} ∈ ON := {(zi)i∈{1,...,N} ∈ R/LZ | 0 ≤ z1 < z2 < ... < zn ≤ L},
(vi(t))i∈{1,...,N} ∈ RN

+ .
(8.2.7)

Clearly, there is only one possible steady state of this system in h and v, taking into account that the road
is circular hence xN+1 = x1 and

∑N
i=1 hi = L. This steady state is given by

v̄ = V (L/N), hi = L/N. (8.2.8)

Depending on the parameters a, b, and the function V , this system can have stable or unstable dynamics.
More precisely we have the following proposition:

Proposition 8.2.1 ([76]). Let d be the steady-state spacing, i.e. d = L/N . If

b

2
+ (

a

d2
) < V ′(d) (8.2.9)

then the system (8.2.6) is unstable.

This explains (qualitatively) the phenomenon we talked about in the introduction: the steady state becomes
unstable for some densities. This phenomenon has in fact been clearly measured experimentally [227] and
reproduced in the case of a circular road [76].

We now consider a control which consists of an autonomous vehicle. We represent this autonomous vehicle
by (xN+1, vN+1) (and we therefore abandon the convention xN+1 = x1 and vN+1 = v1 for xN+2 = x1 and
vN+2 = v1). Its dynamics is given by

ẋN+1 = vN+1

v̇N+1 = u(t),
(8.2.10)
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where u(t) is our control. We can note that the appearing of this new vehicle gives rise to new accessible
steady states, which form a continuum. Indeed, provided that u(t) can be chosen, for any (h̄, v̄) satisfying

h̄ <
L

N
, v̄ = V (h̄), (8.2.11)

the state

hi = h̄, ∀i ∈ {1, ..., N},
vi = v̄, ∀i ∈ {1, ..., N + 1} (8.2.12)

describes a steady-state 2. In the following we will aim to define a feedback control u which stabilizes such
a steady state of the system (8.2.6)–(8.2.10) that we will denote by (v̄, h̄). Ideally, we would like to have a
control as simple as possible, depending only on local measurements around the AV. We will therefore first
look for a feedback control of the form

u(t) = −k(vN+1 − v̄), (8.2.13)

where k is a control parameter. We denote h = (h1, ..., hN ), v = (v1, ..., vN+1) and we define the vectors
h̄ = (h̄, ..., h̄) ∈ Rn and v̄ = (v̄, ..., v̄) ∈ Rn+1. The main result of this section is the following

Theorem 8.2.2. Let (v̄, h̄) be a steady-state as described by (8.2.11) and such that Proposition 8.2.1 applies
(i.e. (8.2.9) holds and the corresponding open-loop system is unstable). If k > 0 then the system (8.2.6),
(8.2.10) with control feedback (8.2.13) is locally exponentially stable around (v̄, h̄).
Moreover, there exists a uniform decay rate γuniform independent of N , (v̄, h̄) and L that can be achieved,
and for any γ ∈ (0, γuniform), there exists a characteristic time τ > 0, independent of N , and ε > 0 such that
for any initial conditions (v0,h0) satisfying

∥(v0 − v̄,h0 − h̄)∥ ≤ ε, (8.2.14)

we have
∥h(t) − h̄,v(t) − v̄∥ ≤ eNτe−γt∥h0 − h̄,v0 − v̄∥. (8.2.15)

Finally, for a given steady-state (v̄, d), the supremum value of the achievable decay rate is

γmax = min

(
k,

1

2

(
a

d2
+ b− Re

(√( a
d2

+ b
)2

− 4bV ′(d)

)))
. (8.2.16)

We can make several remarks on this theorem:

Remark 8.2.1 (Uniformity in N). This result holds for any number of cars N while there is always a single
AV. Besides, note that one can achieve an exponential decay rate that is uniform both with respect to N and
L and the steady-state considered. And the control gain k can also be made independent of N , L and the
steady-state considered.

This uniformity in N may seem a bit strange, nevertheless it becomes more logical when we look at the lower
bound that we are able to obtain on the basin of attraction that strongly decreases with N (see Proposition
8.2.3 below).

Remark 8.2.2 (Relaxation time). The total relaxation time τR, which can be seen as a characteristic time
needed to stabilize the system, is defined as

τR := ln(Cinf), (8.2.17)

where Cinf is the infimum of the values of C for a given γ such that (8.2.15) holds. As it could be expected
this total relaxation time is not necessarily uniform in N . However, from (8.2.15), there exists τ independent
of N such that τR ≤ Nτ , and therefore τR is, at most, linear with N . This at-most-linear dependency seems
intuitively to be the best we could hope, given the finite speed of propagation of the information in the system.

2. Of course u(t) has to be compatible with this. Note that hN+1 is imposed from the fact that the road is circular, i.e.
N+1∑
i=0

hi = L
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The reason why γuniform may be different from γmax is that γmax depends on h̄ which implicitly depends on
N since h̄ ≤ L/N and could tend to 0 when N → +∞. Also, one can note that L could have any dependency
in N so far. The two following remarks address the case where h̄ can stay away from 0, either because L
scales with N or because we assume (or require) a minimal safety distance on the road, hence there exists
d1 > 0 such that h̄ ≥ d1 for any N considered.

Remark 8.2.3 (Case of a road length that depends on N). If L does not depend on N , then, as h̄ ≤ L/N ,
the value γmax might depend indirectly of N (while γuniform is still uniform in N). However, if we assume
that there exists α such that L ≥ αN , which is a physically reasonable assumption given that a road with a
fixed length cannot hold an infinite number of cars, then (v̄, h̄) can be chosen independently of N and γmax

is also uniform in N (but still depends on the steady-state chosen).

Remark 8.2.4 (Case of a safety distance dmin). Whether L depends or N or not, if we assume that the
desired steady-state satisfies h̄ ≥ dmin > 0 (which simply means that the steady-state headway has to be
larger than some safety distance), then there exists again an achievable decay rate independent of N , L,
(v̄, h̄) without restricting to the steady-states that are unstable in open-loop. This can be showed in the same
way as the existence of γuniform (see [138, (3.17)]).

Proposition 8.2.3. There exists a lower bound η on the basin of attraction which satisfies:

η < η0e
−αN , (8.2.18)

where η0 and α are constants independent of N (but may depend on h̄).

Before giving some ideas of proofs, we can note that the condition k > 0 is necessary:

Proposition 8.2.4. Let (v̄, h̄) be an admissible steady-state as in (8.2.11). If k ≤ 0, then the system (8.2.6),
(8.2.10) with control feedback (8.2.13) is not asymptotically stable around (v̄, h̄).

This proposition is immediately deduced from the form of the control (8.2.13).

8.2.2.1 Ideas for the proof of Theorem 8.2.2

Exponential stability and decay rate. First of all let us notice that we are trying to stabilize 2N+1
variables which are (h1, ..., hN ) and (v1, ..., vN+1). Indeed we do not need to try to stabilize the variable
hN+1 := x1 − xN+1 which will be anyway imposed by the fact that the road has a fixed length L, hence

N+1∑
i=1

hi = L. (8.2.19)

We set the following change of variables

y2p+1 = hp+1 − d, 0 ≤ p ≤ N − 1

y2p = vp+1 − vp, 1 ≤ p ≤ N

y2N+1 = v̄ − vN+1.

(8.2.20)

and the system (8.2.6), (8.2.10), (8.2.13), becomes

ẏ = f(y, k), (8.2.21)

where

f2p+1(y, k) = y2p+2, 0 ≤ p ≤ N − 1

f2p(y, k) = a

[
y2p+2

(d+ y2p+1)2
− y2p

(d+ y2p−1)2

]
+ b[V (d+ y2p+1) − V (d+ y2p−1) − (y2p)], 1 ≤ p ≤ N − 1,

f2N (y, k) = ky2N+1 − a

[
y2N

(d+ y2N−1)2

]
− b[V (d+ y2N−1) + y2N + y2N+1 − v̄]

f2N+1(y, k) = −ky2N+1.

(8.2.22)
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The exponential stability for k > 0 is then observed relatively easily. The key point being that the N + 1-th
vehicle breaks the natural (unstable) feedback loop of the uncontrolled system. The system is thus purely
cascaded: for any p ∈ {0, ..., N − 2}, the dynamics of (y2p+1, y2p+2) depends only on itself and the following
coordinates and more precisely only on (y2p+1, y2p+2, y2p+3, y2p+4). Similarly the dynamics of (y2N−1, y2N )
depend only on (y2N−1, y2N , y2N+1) and the dynamics of y2N+1 depends only on itself. This can be seen
very well if we look at the Jacobian matrix ∂yf(0, k) which is given by

∂yf(0, k) =



A B 0 ... 0
0 A B 0 ...
... ... ... ... ...
0 ... 0 A B 0

0 ... 0 0 A

(
0

k − b

)
0 ... 0 0 0 −k


, (8.2.23)

where A and B are the 2 × 2 blocks

A =

(
0 1

−bV ′(d) −( a
d2 + b)

)
,

B =

(
0 0

bV ′(d) a
d2

)
.

(8.2.24)

The exponential stability and the associated exponential decay rate γmax are direct consequences of the
Jordan-Chevalley decomposition, of the fact that A is trigonalizable with strictly negative eigenvalues, and
of the fact that k > 0. We are then able to find a uniform decay rate γuniform by showing that, if the target
steady state corresponds to an unstable state in open loop, then d admits a strictly positive lower bound
independent of N and L. The continuity of the decay rate obtained previously allows then to conclude.

Estimation of the relaxation time. Estimating the relaxation time requires a little more work. Let us
look at the linearized system first. A simple way is to trigonalize the system, possible since A is trigonalizable,
to get back to

ξ̇ =



Λ1 B2 0 ... 0
0 Λ1 B2 0 ...
... ... ... ... ...
0 ... 0 Λ1 B2 0

0 ... 0 0 Λ1

(
c1
c2

)
0 ... 0 0 0 −k


ξ, (8.2.25)

where Λ1 is upper triangular with negative eigenvalues λ1 < λ2. We then use the following ISS estimate: for
a 2×2 system with two external inputs of the form

d

dt

(
q1
q2

)
= Λ1

(
q1
q2

)
+B2

(
w1

w2

)
. (8.2.26)

we have, for any ε > 0,

|q(t)| ≤ |q(0)|M(ε)e−(Re(|λ2|−ε))t + 2M(ε)∥B2∥∞
∫ t

0

e−(|Re(λ2)|−ε)(t−s) |w(s)| ds, ∀ t ≥ 0, (8.2.27)

Setting γmax = min(k, |Re(λ2)|) (which is in fact exactly the γmax of Theorem 8.2.2), this gives

|q(s)|e(γmax−ε)t ≤M(ε)|q(0)| + 2M(ε)∥B2∥∞
∫ t

0

e(γmax−ε)s |w(s)| ds. (8.2.28)
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This estimate allows us to trace the cascade system in ξ, estimating first (ξ1, ξ2), then (ξ2, ξ3), etc. We finally
obtain an estimate of the form|ξ2N+1(t)| +

N−1∑
j=0

|(ξ2j+1(t), ξ2j+2(t))T |

 e(γmax−ε)t ≤
(
|ξ2N+1(0)| +

N∑
i=0

|(ξ2i+1(0), ξ2i+2(0))T |
)
M(ε)

×

 N∑
j=0

(M(ε) max(2∥B2∥∞, |c1|, |c2|)t)j
j!

 ,

(8.2.29)

For all γ ∈ (0, γmax), we can then conclude by setting ε = (γmax − γ)/2 and by showing that

sup
t∈[0,+∞)

∣∣∣∣∣∣e−εt
N∑
j=0

(2M(ε) max(∥B2∥∞, |c1|, |c2|)t)j
j!

∣∣∣∣∣∣ ≤ 1 + C0

N∑
j=1

1√
2πj

(
C1

ε

)j

≤ C0e
τN , (8.2.30)

where C0 is a numerical constant independent of N and

τ = ln(4M(ε) max(∥B2∥∞, |c1|, |c2|)/(γmax − γ)). (8.2.31)

A similar procedure can be done with the nonlinear system by treating the nonlinear terms as perturbations,
since we are looking at a local exponential stability. More details can be found in [138].

Estimation of the basin of attraction. The goal of this paragraph is to obtain a lower bound on the
basin of attraction of the form η = ηN0 with η0 an explicit constant (less than 1) and independent of N .
This lower bound decreases exponentially fast with N . The idea of the proof is first to show that for all
T > 0, there exists such a bound of the form η = ηN0 on the initial conditions such that the trajectories of
the nonlinear system exist and are regular on [0, T ]. Then, we obtain a bound (depending on T ) on the basin
of attraction and we end up choosing a T1 such that this bound also works on [0,+∞). For this, we select
T1 such that the state at T1 has a norm smaller than the bound required on the initial condition, thanks to
the exponential decay. These arguments are classical and we will not detail them here.

8.2.2.2 Numerical simulations and multilane experiments

Semi-global stabilization and multilane setting Theorem 8.2.2 is a local stabilization result. In
practice we would like to be able to have more than this: when the traffic is already congested, we often
have quite high speed variations compared to the steady state and the assumption of small perturbations
does not hold anymore. Moreover, we would also like to be able to stabilize real roads with several lanes.
We can model these roads in the following way: the system consists of J lanes each obeying a system of
the form (8.2.6) with Nj vehicles where j is the lane number, and a vehicle i passes from lane j to lane
j1 ∈ {j − 1, j + 1} when 3:

ãj1i > aji + ∆ (8.2.32)

ãj1i > −∆, ãj1fol(i) > −∆ (8.2.33)

where aji = v̇ji is the current acceleration in lane j of the i-th vehicle given by (8.2.6), while ãj1i is the

expected acceleration it would have in the new lane. That is, ãj1i is the acceleration that the i-th vehicle

would have if it were in lane j1 instead with its current speed and location. Finally ãj1fol(i) is the expected
acceleration of the follower of the i-th vehicle in lane j1, that is, the acceleration that would have the vehicle
right behind the i-th vehicle in the new lane if the lane switching occurs.

3. This model is inspired from [154], see also [124, 125, 152]
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The problem is then much more complicated because the system becomes hybrid: at fixed times a vehicle
changes lane with threshold effects. And not only do the numbers of vehicles Nj change discretely but the
acceleration of a vehicle behind a lane-changing vehicle is discontinuous at that time. The control can also be
more complex since we can choose times when the autonomous vehicle changes lane. Even if we are not (yet)
able to provide a mathematical answer to this problem, we can still try to modify our control heuristically
and observe the effects in numerical simulations.

Modification of the control The most problematic point with disturbances that are not small is that
there is nothing in this case that prevents the autonomous vehicle following the control law (8.2.13) from
colliding with the vehicle in front of it. To avoid this we make two modifications to the control

— Quasi-stationary target state. Instead of directly stabilizing the target state (v̄, h̄), we start by
stabilizing a slower steady state (d, v̄d) with d < h̄ (hence v̄d < v̄) and we slowly increase the target
velocity v̄d until reaching v̄. The control law becomes

u(t) = k(v̄d(t) − vN+1) + Z,

Ż = (v̄d(t) − vN+1),
(8.2.34)

where {
vd(t) =vmin + (v̄ − vmin)t/t̄, for t ∈ [0, t̄]

vd(t) =v̄, for t ≥ t̄.
(8.2.35)

— Safety mechanism. When the autonomous vehicle is too close to the vehicle in front of it, the control
law is changed to

u(t) = −k(vN+1 − min(vl, v̄d(t))). (8.2.36)

Other variations 4 of safety mechanisms have been used for example in [152], but we will not detail them here.
In order to take into account the different lanes, we also add a lateral control, which consists in making the
autonomous vehicle change lane according to the state of the system. This lateral control works as follows:
let ∆t1 and ∆t2 be time parameters to be chosen; xi,j and vi,j the position and speed of the i-th vehicle in
the j lane; j0 ∈ {1, ...J} the lane of the autonomous vehicle at time t−; i0 its number of vehicles and t0 the
last time it changed lane (0 if it never changed lane), the autonomous vehicle changes lane if and only if

— t > ∆t2 + t0

— t > ∆t1 and there exists j ∈ {1, ..., J} \ {j0} such that

∫ t

t−∆t1

1

Nj

Nj∑
i=1

v2i,j(s) −
1

N2
j

 Nj∑
i=1

vi,j(s)

2

ds

> c1 +

∫ t

t−∆t1

1

Nj0

Nj0∑
i=1

v2i,j0(s) − 1

N2
j0

Nj0∑
i=1

vi,j0(s)

2

ds;

(8.2.37)

If j > j0 then the target lane will be j1 = j + 1 and if j < j0 it will be j1 = j − 1.

— the condition (8.2.33) is satisfied with i = i0, j = j0 and j1 ∈ {j − 1, j + 1}.

In less mathematical terms, this means that the autonomous vehicle changes lane if and only if:

— The autonomous vehicle has not changed lanes in the last ∆t2 seconds.

4. sometimes more effective
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— The average speed variance in another lane is higher than the average speed variance in this lane by
some threshold c1/∆t1 (the average is performed on the vehicles and the last ∆t1 seconds).

— The safety conditions are satisfied.

Numerical simulations We consider a circular road with 1 to 3 lanes, and the inner most lane has length
260m, to correspond to the real experiment conducted in [226]. When there are three lanes, outermost lane
has length L1 = 298m. For the parameters of the model, we will consider the following values: a = 20 ,
b = 0.5 which were obtained in [202] from the calibration to real data. We consider the usual V function for
the Bando model [17]

V (h) = Vmax

tanh(h−lv
d0

− 2) + tanh(2)

1 + tanh(2)
, (8.2.38)

where h is the headway between two vehicles, lv is the length of a vehicle and d0 = 2.5 is a characteristic
length. For each lane j, the steady state we are trying to reach is h̄j = (Lj/N j), v̄ = V (Lj/N j), where Lj

is the length of lane j and N j is the total number of vehicule in the lane j.

On Figure 8.1 we show an example of numerical simulation. We represent the speed variance in each lane
and the number of vehicles as a function of time. The simulation starts with 25 vehicles in each lane and
lasts 1500s. At the beginning no vehicle is controlled, and at t = 750s one of the vehicles of the middle
lane becomes an autonomous vehicle and the control (8.2.34) with the lateral control described above is
activated. We see that with these simple modifications, the control seems to be able to stabilize the system:
shortly after 750s the variance of the speed of the three lanes decreases sharply, and the number of vehicles
stabilizes.

To confirm this experiment we performed 50 simulations with randomly perturbed initial conditions. The
averaged results are presented in Table 8.1. Additional numerical simulations can be found in [138, Section
5], where we can see for instance that the modified controller perfectly stabilize the system even for relatively
large initial perturbations. These results are encouraging regarding the ability of this control to ensure a
semi-global stabilization and to stabilize the hybrid multi-lane system.

Figure 8.1 – Left: Speed variance with respect to time in a three lanes ring-road. Right: Number of vehicles
per lane with respect to time. Control starts at t = 750s.
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Time 700s (before control) 1500s (after control)

Speed variance lane 1 (m2.s−2) 2.88 0.55
Speed variance lane 2 (m2.s−2) 3.27 0.03
Speed variance lane 3 (m2.s−2) 4.59 0.14

Total speed variance (m2.s−2) 3.58 0.24
Number of lane-change per minute 1.64 0.34

Table 8.1 – Speed variance, average speed, energy consumption per distance travelled and number of lane-
changes per minute before activation of the control (t = 700s) and after (t = 1500s). Control is activated at
t = 750s and all quantities are averaged on 50 simulations. At t = 0, each lane has 25 vehicles and the AV
is in the middle lane.

8.3 Open-questions

Many related problems remain open:

— Is is possible to show theoretically the effectiveness of the controller (8.2.34) in the multilanes frame-
work ? The difficulty is that the system is hybrid and even the notion of existence of solutions become
much more complicated a priori. However, in this case there is a cooling time ∆t before two lane
changes by the same vehicle. This means that there cannot be an accumulation point of switching
times and the solution can be seen as a piecewise continuous solution of a regular system. This is
likely to simplify greatly the analysis and gives a hope that some results could be shown.

— Is it possible to extend the theoretical result to a global stability, or at least a semi-global stability
(with a reasonable basin of attraction) ? In particular, can we show that the control described in
Section 8.2.2.2 achieves such a semi-global stability and, if so, with which bound on the basin of
attraction ?

— Related to this last question, does there exist a semi-global Lyapunov function for the (nonlinear)
Bando-Follow the leader system ? Since this system is in cascade, one could start by studying the
interaction between two cars only.
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Chapter 9

Control of traffic flow: macroscopic
approach

A second way to model traffic is to consider the traffic as a whole, represented at each point by a density ρ
and a velocity v. The traffic dynamics then takes the form of one or more partial differential equations on
ρ and v (or equivalent variables) and the resulting system is a hyperbolic nonlinear system of conservation
laws or balance laws.
Like many nonlinear hyperbolic systems, the traffic system has an interesting feature: it can naturally give
rise to discontinuous solutions, even when starting from a regular initial condition [78]. This phenomenon
can be observed very well on the Burgers equation [170], where there is no continuous solution at any time for
a certain initial condition, as well as on the LWR equation that we will see just after. These discontinuities,
called shocks, then propagate in the system. An important particular case is when the shock is associated
with a propagation velocity of the system that changes sign, going for example from positive to negative or
the opposite. This example will be found in Section 9.1.

Shocks make the analysis of hyperbolic systems complicated, that is why, when we talk about stabilization
of hyperbolic systems 1, it is common to consider only strong solutions without shock. To do this, we study a
problem where we start from a regular initial condition close to a regular steady state and where the control
ensures that the solution always remains regular and close to this steady state. This avoids difficulties due
to shocks in the analysis. For many hyperbolic systems this approach can be considered physically relevant.
However, for a traffic system, ignoring shocks means ignoring the traffic jams that form, i.e. ignoring the
essence of the problem. Therefore, it can rarely be ignored. The existence and characterization of non-regular
solutions of hyperbolic systems is something that has been studied a lot, in particular in the case of systems
of conservation equations. One can refer for that to the discussion in Section 1.3.3.

In our case we try to stabilize road traffic with some autonomous vehicles that constitute the control. The
question then arises as to how to model these autonomous vehicles and their interaction with the rest of the
traffic. We consider that the autonomous vehicles are discrete and have a dynamic given by an ODE that
depends on the traffic state where they are located. Their action on the rest of the traffic will be given by
a steric hindrance factor: if an autonomous vehicle is slower than the rest of the traffic, the number of cars
that can pass at this location is lower than if it was going at the same speed as the rest of the traffic. The
traffic flow is thus locally reduced. This leads to an interesting ODE/PDE system that couples two scales:
the macroscopic scale that models the traffic, and the microscopic scale that models the AVs.
Independently of its practical interest, this system has a large mathematical interest: surprisingly at first
sight, the entropic BV solutions, which usually represent the physical solutions of hyperbolic systems, are not
the physically relevant solutions of this system and there could be non-classical shocks appearing. This can
be understood heuristically: with entropic solutions, a point element cannot have a macroscopic influence
on the system, while in reality a vehicle that decides to brake suddenly on a road would have an influence

1. especially by the boundaries
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on a macroscopic scale. From an analysis point of view this means that most tools for studying BV entropic
solutions are no longer accessible, and this renders the analysis harder as we will see in Section 9.2. From a
control point of view, however, this is precisely the reason why our control approach might work: we want a
control that act at a microscopic scale to have a macroscopic impact on the system. And this would not be
possible if the relevant solutions were BV entropic. We will study the existence of solutions to this system
in Section 9.2.

9.1 The Lighthill-Whitham-Richard equation: a first model

First introduced in [181, 215] in 1955 and 1956, this equation describes the traffic by a density ρ and a
velocity v = V (ρ) taken as a function of ρ. The function ρ satisfies a conservation of mass, which gives the
LWR equation

∂tρ+ ∂x(ρV (ρ)) = 0. (9.1.1)

In this model, V is further assumed to be a C2 decreasing function of ρ. This seems reasonable and corre-
sponds to the intuitive impression that the more cars on the road, the lower the velocity of the overall traffic.
V is often assumed to satisfy 2V ′(ρ) + ρV ′′(ρ) ≤ 0 which implies that ρ → ρV (ρ) is concave. Besides it is
also often assumed the existence of ρmax > 0 such that V (ρmax) = 0 which means that the road is so packed
that the cars have to stop.

As mentioned previously, the solutions of (9.1.1) could present a discontinuity in finite-time even if the initial
condition is smooth. On the other hand, just like for Burger equation, it is a well-known fact that one cannot
ensure the well-posedness in L∞(R) or L1(R) either, because the uniqueness would fail [170]. To recover
the well-posedness one usually introduce the notion of entropic solutions [170, Section 3] (see also [78]) by
requiring additionnally an entropy condition, at a discontinuity located in xs(t)

f ′(x−s (t)) ≥ ẋs ≥ f ′(x+s (t)), (9.1.2)

where f is the flow of the equation, x+s (resp. x−s ) refers to the right (resp. left) limit in xs, and s = ẋs(t) is
the speed of the discontinuity. This simply means that the propagation speed of the wave at the left of the
discontinuity is faster than the speed of the discontinuity, which is itself faster than the propagation speed
of the wave at the right of the discontinuity. In other words, discontinuities can only merge together. This
ensures that information cannot spontaneously appear from a single point. In the case of System (9.1.1),
this entropy condition is simply

V (ρ(t, x−s )) + ρ(t, x−s )V ′(ρ(t, x−s )) ≥ ẋs ≥ V (ρ(t, x+s )) + ρ(t, x+s )V ′(ρ(t, x+s )) (9.1.3)

Besides, we can deduce the dynamics of a shock from the equation (9.1.1), this leads to the Rankine-Hugoniot
conditions which general form (for a scalar equation) is

ẋs =
f(ρ(t, x+s (t)) − f(ρ(t, x−s (t)))

ρ(t, x+s (t)) − ρ(t, x−s (t))
, (9.1.4)

where f is again the flow of the equation. Here, it becomes

ẋs =
ρ(t, x+s )V (ρ(t, x+s )) − ρ(t, x−s )V (ρ(t, x−s ))

ρ(t, x+s ) − ρ(t, x−s )
. (9.1.5)

Such a discontinuity curve xs is called a shock, and an entropic shock or classical shock when it also satisfies
the entropy condition (9.1.2). Analogous conditions exists when considering not only a single equation of
conservation but a system of conservation laws (see for instance [33, 78]).

As (9.1.1) is a scalar system there is only one quantity ρ propagating and the propagation speed is given by
λ(ρ) = ρV ′(ρ) + V (ρ). By the concavity assumption ρ → ρV ′(ρ) + V (ρ) is decreasing. Since V (ρmax) < 0
and V ′ < 0 we can deduce the existence of a critical density ρc ∈ (0, ρmax) such that

λ(ρc) = ρV ′(ρc) + V (ρc) = 0, (9.1.6)
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and for any ρ ∈ [0, ρc) the propagation speed is positive and the system is said to be in free-flow, while for
any ρ ∈ (ρc, ρmax] the propagation speed is negative and the system is said to be in congested regime.

Finally, let us remark that there can only be two types of steady-states to (9.1.1): constant steady states,
corresponding to a steady flow, or shock steady-states. Indeed, ∂x(ρV (ρ)) ≡ 0 implies that there exists a
constant C such that ρV (ρ) = C. Since V (ρ) + ρV ′(ρ) is positive for ρ = 0, and ρ → ρV (ρ) is concave
by assumption, this equation ρV (ρ) = C has only 0, 1 or 2 solutions for a given C. This implies that ρ
is either constant or switches discontinuously between two values. In this case, ρ is constant between two
discontinuity points and the discontinuity curves satisfy ẋs ≡ 0. Among the shock steady-states, those which
satisfy the entropy conditions corresponds to the transition between a free-flow traffic and a congested traffic
and, therefore, only have one shock.

9.2 Existence of solutions to the Generalized Aw-Rascle-Zhang
equations

This section present the results of [137], a work done with Thibault Liard, Francesca Marcellini and Benedetto
Piccoli.

In this Section we consider a second order model of traffic flow, namely the Generalized Aw-Rascle-Zhang
equations (GARZ) [103]

∂tρ+ ∂x (ρ V (ρ, w)) = 0,

∂t(ρw) + ∂x (ρw V (ρ, w)) = 0.
(9.2.1)

As their name indicates, these equations are a generalization of the ARZ model 2, introduced in [12, 259],
which gave a large impulse to second order models. Compared to the LWR equations, the velocity v = V (ρ, w)
is now a function of ρ and another parameter w defining a driving behaviour which correspond to the drivers’
velocity on an empty road. We assume the following

— The function (ρ, w) 7→ V (ρ, w) is C2 ([0, ρmax] × [wmin, wmax]).
— The vehicles never drive backwards on the road, namely V (ρ, w) ≥ 0 for any (ρ, w) ∈ [0, ρmax] ×

[wmin, wmax],
— V (0, w) = w for any w ∈ [wmin, wmax], i.e. w is each driver’s speed on an empty road.

— ∂2(ρV (ρ,w))
∂ρ2 < 0 for any (ρ, w) ∈ [0, ρmax] × [wmin, wmax] and ∂V

∂ρ (ρ, w) < 0.

— ∂V
∂w (ρ, w) > 0, for any (ρ, w) ∈ [0, ρmax]× [wmin, wmax] which simply means that if a driver goes faster
than another on an empty road this driver will also go faster than the other on a non-empty road.

— V (ρmax, w) = 0 for any w × [wmin, wmax], at maximal density ρmax, the speed of each driver is zero.
The density ρmax therefore corresponds to the density at which the traffic is completely packed.

This system (9.2.1) is hyperbolic and has two propagation speeds. Away from the vacuum (i.e. away from
ρ = 0), these propagation speeds are given by

λ1(ρ, w) = V (ρ, w) + ρ
∂V

∂ρ
(ρ, w)

λ2(ρ, w) = V (ρ, w)

(9.2.2)

and are associated to the eigenvectors r1 = (1, 0) and r2 = (−∂wV (ρ, w), ∂ρV (ρ, w)). One can check that
∇λ2(ρ, w).r2(ρ, w) = 0 which means that the second propagation speed is said to be linearly degenerate,
while the first one satisfies ∇λ1(ρ, w).r1(ρ, w) ̸= 0 and hence is said to be genuinely nonlinear.

We now couple this traffic system with an AV described by its location y(t), and the following dynamics

ẏ(t) = min(V (ρ(t, y(t)+), w(t, y(t)+)), Vb) (9.2.3)

2. see also the Collapsed-GARZ equations [104]
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where Vb is the control velocity that we assume constant in this section, while the min comes from the fact
that the AV cannot go faster than the traffic velocity at its location, otherwise it would crash in a leading
vehicle. In turns the AV has an effect on the traffic given by the following flow condition:

ρ (t, y(t)) (V (ρ(t, y(t)), w(t, y(t))) − ẏ(t)) ≤ αF (ẏ), (9.2.4)

where α ∈ (0, 1) and F denotes

F (ẏ) = max
x∈[0,ρmax],w∈[wmin,wmax]

(ρ(V (x,w) − ẏ)) , (9.2.5)

The condition (9.2.4) only applies when y(t) ̸= V (ρ(t, y(t)), w(t, y(t))) which means that the AV is slower
than the bulk traffic. It represents the fact that the AV is a local obstacle on the road when it is going slower
than the rest of the traffic and the associated steric hindrance is representend by the constant α < 1. The
smaller α, the higher the hindrance. The maximum flow that can pass locally at point y(t) is then what
would be the maximum possible flow on a road of width α rather than 1 and this is what the right-hand
side of (9.2.4) represents.

Overall, the total system is (9.2.1), (9.2.3)–(9.2.4). Let us pause a moment to note a potentially surprising
fact: it was shown that the equations (9.2.1) alone are well-posed in the framework of BV entropic solutions
(see [36] for instance), and (9.2.3) is well-posed on its own in the space of absolutely continuous solutions
as long as ρ, w are fixed and belong to L1

loc. So it would look like (9.2.1), (9.2.3) is well-posed which would
suggest that (9.2.4) is either redundant or make the system ill-posed. The answer to this paradox is that
(9.2.1), (9.2.3) is indeed well-posed for solutions (ρ, w) that are BV entropic, but those solutions are not the
relevant physical solutions (in particular the AV would not have any impact on the traffic). This means that
in this system the relevant solutions are not necessarily entropic, especially at the location of the AV. This
explains why we also have the condition (9.2.4): we expect it to replace in some sense the entropy condition
at the location of the AV.

In the following, we are going to show that for any initial condition (ρ0, w0, y
0) ∈ BV (R; [0, ρmax] ×

[wmin, wmax]) × R there exists a solution (ρ, w, y) ∈ L∞([0,+∞);BV (R; [0, ρmax] × [wmin, wmax])) ×
W 1,1

loc ([0,+∞);R) to the system (9.2.1), (9.2.3)–(9.2.4) that is entropic on (−∞, y(t)) and (y(t),+∞). The rig-
orous definition and statement are given below. Before this we introduce a last notation: since ∂ρV (ρ, w) < 0
on [0, ρmax] × [wmin, wmax], there exists a function R such that for any ρ ∈ [0, ρmax] and w ∈ [wmin, wmax],

ρ = R(V (ρ, w), w), (9.2.6)

which means that there exists a unique ρ ∈ [0, ρmax] associated to a speed v and a parameter w with v ∈ [0, w]
and w ∈ [wmin, wmax].

The definition of a weak solution of (ρ, w, y) to the system (9.2.1), (9.2.3)–(9.2.4), entropic on (−∞, y(t))
and (y(t),+∞) is given by

Definition 9.2.1. The couple

((ρ, w), y) ∈ C0
(
[0,+∞);L1

loc(R; [0, ρmax] × [wmin, wmax]
)
×W 1,1

loc ([0,+∞);R)

is a weak solution to the system (9.2.1), (9.2.3)–(9.2.4) if

1. the function (ρ, w) is a weak solution of (9.2.1), i.e for all φ ∈ C1
c (R2,R) ;∫

R+

∫
R
ρ [∂tφ+ V (ρ, w)∂xφ]

(
1
w

)
dx dt+

∫
R
ρ0

(
1
w0

)
φ(0, x) = 0 (9.2.7)

2. The function ρ is an entropy admissible solution of (9.2.1), i.e for every k ∈ [0, V (0, wmax)], for all
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φ ∈ C1
c (R2,R+), it holds∫

R+

∫
R
Ek(v(t, x), w(t, x))∂tφ+Qk(v(t, x), w(t, x))∂xφdx dt

+

∫
R
Ek(v0, w0)φ(0, x) dx

+

∫
R+

R(v(t, y(t)), w(t, y(t)))(v(t, y(t)) − ẏ)

[
k − ẏ

αF (ẏ))
− 1

R(k,w(t, y(t)))

]+
φ(t, y(t))dt ≥ 0,

(9.2.8)

where we denote (v, w) = (V (ρ, w), w), R is defined by (9.2.6) (extended by R(k,w) = 0 if k ≥ w),
and (Ek,Qk) is the entropy pair defined by

Ek(v, w) =

{
0 if v ≤ k

1 − R(v,w)
R(k,w) , if v > k,

(9.2.9)

Qk(v, w) =

{
0 if v ≤ k

k − R(v,w)v
R(k,w) , if v > k.

(9.2.10)

3. For every t ∈ R+,

y(t) = y0 +

∫ t

0

min
(
Vb, V (ρ(t, y(t)+), w(t, y(t)+))

)
ds . (9.2.11)

4. the constraint in (9.2.4) is satisfied, namely for a.e. t ∈ R+

lim
x→y(t)±

ρ (t, x) (V (ρ(t, x), w(t, x)) − ẏ(t)) − αF (ẏ) ≤ 0 ; (9.2.12)

Remark 9.2.1 (Entropy pairs and non-classical shock). The entropy pairs (Ek,Qk) are the same as in [9].
Here the term of the third line of (9.2.8) differs from the usual entropy condition to compensate for the
potential non-classical shocks that would occur at y(t). Note that all other non-classical shocks are prohibited
with this condition and therefore the solution is entropic in a classical sense on (−∞, y(t)) and (y(t),+∞).
Besides, one can show that the last integral term of (9.2.8) also ensures that any solution maximize the flux
when non-classical shock occurs, i.e. condition (9.2.12) becomes an equality. This is similar to the result of
[9, Section 3].

With this definition we can now state our main result

Theorem 9.2.1. Let (ρ0, w0, y0) ∈ BV (R; [0, ρmax] × [wmin, wmax]) × R, and assume that Vb < wmin. Then
the Cauchy problem (9.2.1), (9.2.3)–(9.2.4), (ρ(0, ·), w(0, ·), y(0)) = (ρ0, w0, y0) admits a solution (ρ, w, y) ∈
C0([0,+∞);BV (R; [0, ρmax] × [wmin, wmax])) ×W 1,1

loc ([0,+∞);R) in the sense of Definition 9.2.1.

To show this result, we are going to construct a sequence of approximate solutions (ρn, wn, yn) using a
wave front-tracking algorithm and show that this sequence of solution converges to a solution (ρ, w, y). We
describe briefly the waves induced by GARZ equations and the principle of the wave front tracking algorithm
in Section 9.2.1. Then in Section 9.2.2 we give an idea of the proof of Theorem 9.2.1.

9.2.1 Riemann problem and wave front tracking algorithm

Our goal is to create a solution to (9.2.1), (9.2.3)–(9.2.4) for an initial condition (ρ0, w0, y0) ∈
BV (R; [0, ρmax] × [wmin, wmax]) × R. As (ρ0, w0) is a BV function, it can be approximated by a sequence of
piecewise constant functions (ρn0 , w

n
0 ) which converges to (ρ0, w0) in L1

loc. The strategy is the following: we
would like to be able to

— create a solution (ρn, wn, yn) associated to the piecewise constant initial condition (ρn0 , w
n
0 , y0),

— then show that this solution converges in L1
loc(R+ ×R) to some (ρ, w, y) (up to a subsequence) when

n→ +∞, which belongs to C0([0,+∞);BV (R; [0, ρmax] × [wmin, wmax])) ×W 1,1
loc ([0,+∞);R).
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— and finally show that this limit satisfies the system (9.2.1), (9.2.3)–(9.2.4) in a weak sense (see Defi-
nition 9.2.1).

Constructing a solution (ρn, wn, yn) associated to a piecewise constant initial condition (ρn0 , w
n
0 , y0) requires

us to define and solve a so-called Riemann problem for the system (9.2.1), (9.2.3)–(9.2.4). This is the object
of the following subsection.

9.2.1.1 A constrained Riemann problem

Let us start by introducing what is usually called a Riemann problem with initial data for the equations
(9.2.1). The Riemann problem consists in solving the equation (9.2.1) for an initial data of the following
form

ρ(0, x) =

{
ρl if x < 0,
ρr if x > 0,

and w(0, x) =

{
wl if x < 0,
wr if x > 0,

(9.2.13)

for any states Ul := (ρl, wl) ∈ [0, ρmax] × [wmin, wmax] and Ur := (ρr, wr) ∈ [0, ρmax] × [wmin, wmax]. Observe
that the constant parts of the initial condition obviously satisfy the equations (9.2.1), so what matters is
how the discontinuity will evolve and propagate over time. From the Rankine-Hugoniot conditions (whose
scalar case is recalled in (9.1.4)), if there is a discontinuity located at x(t), then

ẋ(t) [ρ]
x(t)+

x(t)− − [ρV (ρ, w)]
x(t)+

x(t)− = 0,

ẋ(t) [ρw]
x(t)+

x(t)− − [ρV (ρ, w)w]
x(t)+

x(t)− = 0,
(9.2.14)

where we denoted [f ]x
+

x− = f(t, x+) − f(t, x−). In the following we will denote ρ(t, x(t)) = ρ(x(t)) and

w(t, x(t)) = w(x(t)) for clarity. Using the first equation in the second one, and the fact that [fg]x
+

x− =

[f ]x
+

x−g(a+) + f(a−)[g]x
+

x− , we deduce that (see [137, Appendix B])

either w(x(t)+) = w(x(t)−) or V (ρ(x(t)+), w(x(t)+)) = V (ρ(x(t)−), w(x(t)−)) or ρ(x(t)+) = ρ(x(t)−) = 0,
(9.2.15)

and in the second case ẋ(s) = V (ρ(x(t)), w(x(t))). This means that there are only a few possible waves:

— If w(x(t)−) = w(x(t)−), then the discontinuity travels at speed

ẋ(t) =
ρ(x(t)+)V (ρ(x(t)+), w(x(t)+) − ρ(x(t)−)V (ρ(x(t)−), w(x(t)−))

ρ(x(t)+) − ρ(x(t)−)
. (9.2.16)

Note that this is exactly the shocks of the scalar LWR equation (9.1.1) where the velocity V (ρ) is
replaced by V (ρ, w+) = V (ρ, w−). Therefore these shocks are called a 1-wave.

— If V (ρ(x(t)−), w(x(t)−) = V (ρ(x(t)+), w(x(t)+), then the discontinuity travels at speed

ẋ(t) = V (ρ(x(t)−), w(x(t)−). (9.2.17)

This is the type of discontinuities that do not exist in the scalar LWR system and really rely on the
fact that this is a second order system. Therefore these shocks are called 2-waves.

— If ρ(x(t)+) = ρ(x(t)−) = 0, the shock connects two state that have a zero density, therefore this is
called a V-wave (which stands for vacuum wave).

These waves will be the constitutive elements of the solution to the Riemann problem. This solution is given
as follows:

— If wl = wr and ρ+ > ρ− then the discontinuity corresponds to a classical shock and at anytime Ul is
connected to Ur by a so called 1-wave travelling at speed

σ(ρl, ρr) =
ρlV (ρl, wl) − ρrV (ρr, wr)

ρl − ρr
. (9.2.18)
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The solution is then simply

(ρ, w)(t, x) = (ρl, wl) if x < σ(ρl, ρr)t,

(ρ, w)(t, x) = (ρr, wr) if x > σ(ρl, ρr)t.
(9.2.19)

— If wl = wr =: w and ρ+ > ρ− then the discontinuity corresponds to a non-classical shock. This situa-
tion typically appears when the Riemann problem approximates a function that moves continuously
from ρ− to ρ+. In this case we would like to avoid having too large non-classical shocks so instead of
generating a single wave, we approximate this continuous behavior by generating a fan of k waves. We
define intermediate states Ui = (ρi, w) such that Ul is connected to U1 by a 1-wave, U2 is a connected
to U3 by a 1-wave and so on up to Uk−1 that is connected to Ur by a 1-wave. This leads to a fan of
1-wave emerging from the origin. The number of waves k and the intermediate states are chosen such
that the amplitude between two states are lower than a bound to be specified. The solution is then

(ρ, w)(t, x) = (ρl, wl) if x < σ(ρl, ρ1)t,

(ρ, w)(t, x) = (ρl, wl) if σ(ρi, ρi+1)t < x < σ(ρi+1, ρi+2)t,

(ρ, w)(t, x) = (ρl, wl) if σ(ρk−2, ρk−1)t < x < σ(ρk−1, ρr)t,

(ρ, w)(t, x) = (ρr, wr) if x > σ(ρk−1, ρr)t.

(9.2.20)

We call each of these k waves a rarefaction shock (often called rarefaction front) and the ensemble of
k waves is called a rarefaction fan.

— If V (ρl, wl) = V (ρr, wr) then at anytime Ul is connected to Ur by a so called 2-wave travelling at
speed V (ρl, wl). The solution is simply

(ρ, w)(t, x) = (ρl, wl) if x < V (ρl, wl)t,

(ρ, w)(t, x) = (ρr, wr) if x > V (ρl, wl)t.
(9.2.21)

— if ρl = ρr = 0 then Ul is connected to Ur by a so called V-wave (physically this is an empty wave
since the density is equal to 0). The speed of the V-wave satisfies s = wr. The solution is simply

(ρ, w)(t, x) = (0, wl) if x < st,

(ρ, w)(t, x) = (0, wr) if x > st.
(9.2.22)

— In other cases, Ul cannot be connected to Ur simply by a single wave. So at any time t > 0 there is
a least an intermediate state Um between Ul and Ur. There are two subcases:
— If wl > wr or ρr ≥ R(V (ρl, wl), wr), where R is defined in (9.2.6), then

Um = (R(V (ρr, wr), wl), wl), (9.2.23)

and R(V (ρr, wr) ∈ [0, ρmax]. Thus, Ul is connected to Um by a 1-wave and Um is connected to Ur

by a 2-wave.
— If wl < wr and ρr < R(V (ρl, wl), wr) it is not possible to have only a single intermediate

state between Ul and Ur and there are in fact two intermediate states Um,1 = (0, wl) and
Um,2 = (0, V (ρr, wr)) between Ul and Ur. Ul is connected to Um1

:= (0, wl) by a 1-wave, Um1
is

connected to Um2 by a V-wave and Um2 is connected to Ur by a 2-wave.

One can look at [33, 177] for more details. We denote RS(Ul, Ur) this solution to the Riemann problem asso-
ciated with initial state (Ul, Ur). We also denote RSρ and RSw its components, such that RS = (RSρ,RSw)

Now, we would like to solve the Riemann problem associated to the full problem (9.2.1), (9.2.3)–(9.2.4).
Outside of the location of the AV, this problem will be the same as the Riemann problem for GARZ equations
(9.2.1) that we just described. Thus we focus on the case where the AV is located at the discontinuity and we
consider an initial condition of the from (9.2.13) with y0 = 0. The goal is now to find a solution associated
to this initial condition that satisfies again (9.2.1) but also (9.2.3) and (9.2.4). This is called a constrained
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Riemann problem. We denote RSc(Ul, Ur) the solution of this constrained Riemann problem. We also denote
by f the function

f : (ρ, w) → ρV (ρ, w). (9.2.24)

Three cases are possible:

— If Vb ≥ V (RS(Ul, Ur)(t, y(t))). In this case the traffic is too slow compared to the desired speed Vb of
the AV. Hence, the AV has to adapt and drive at the same speed as the other cars in the flow. The
solution of the constrained Riemann problem at the AV’s location is given by

RSc(Ul, Ur)(t, x) = RS(Ul, Ur)(t, x)y(t) = V (RS(Ul, Ur)(Vb))t (9.2.25)

— If f(RS(Ul, Ur)(t, y(t))) ≤ αF (wl) + VbRSρ((Ul, Ur)(t, y(t))) and
Vb < V (RS(Ul, Ur)(t, y(t))). In this case the AV is going slower than the traffic but the traffic is not
too congested and therefore the AV can be passed with no difficulty and its presence has not effect
on the traffic. The solution of the constrained Riemann problem at the AV’s location is given by

RSc(Ul, Ur)(t, x) = RS(Ul, Ur)(t, x)y(t) = Vbt (9.2.26)

— If f(RS(Ul, Ur)(t, y(t))) > αF (wl) +VbRSρ((Ul, Ur)(t, y(t))). In this case the AV is limiting the flow
that can go through locally at its location y(t). This results in a non-classical shock at the location
of the AV given by

RSc(Ul, Ur)(t, x) =

{
RS (Ul, (ρ̂(wl), wl)) (t, x) if x < y(t)

RS ((ρ̌(wl), wl), Ur) (t, x) if x > y(t),

y(t) = Vbt.

(9.2.27)

where ρ̌(w) and ρ̂(w) are the two shock densities defined as the solutions of

αF (ẏ) + Vbρ = ρV (ρ, w), (9.2.28)

and such that ρ̂(w) > ρ̌(w). The fact that (9.2.28) has exactly two solutions comes from the concavity
of the function ρ→ ρV (ρ, w) which vanishes in ρ = 0 and ρ = ρmax.

These densities ρ̌(w) and ρ̂(w) also correspond to the nonclassical shock densities of the LWR model
when w is a constant equal to wl = wr [87, 88, 176, 177]. In this case, the left state Ul is connected
by a classical shock to a state with density ρ̂ which is connected by a nonclassical shock to a state
with density ρ̌ at the location of the AV, which is itself connected to the right state Ur by a classical
shock.

This constrained Riemann problem and its solution RSc(Ul, Ur) is the stepping stone for the wave-front
tracking algorithm that we now describe briefly.

9.2.1.2 Wave-front tracking algorithm

The wave-front tracking consists in constructing a solution to (9.2.1), (9.2.3)–(9.2.4) from the solution to
the constrained Riemann Problem. The algorithm presented here is based on an algorithm introduced in
[32] (see also [32, 33, 177], one can also look at the earlier algorithm proposed in [77] where both the initial
condition and the flux while we only discretize the initial condition). We only present its principle, the
rigorous formulation can be found in the previous references. We start by approximating (ρ0, w0) by a
sequence of piecewise constant functions (ρn0 , w

n
0 ) which converges to (ρ0, w0) in BV . To do so we choose an

approximation mesh that is roughly given 3 by (2−nN∩ [0, 1])ρmax for ρ and (2−nN∩ [0, 1])(wmax −wmin) +
wmin for w. As (ρn0 , w

n
0 ) has a finite number of discontinuities, we can denote its discontinuity points by

3. In fact one needs to change slightly the mesh and add potentially several points to take into account the non-classical
shocks, more details can be found for instance in [177, Section 2.2]
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(x0n,i)i∈{1,...,Nn}, where Nn ∈ N with x0n,1 < x0n,2 < .... < x0n,Nn
and where we also included y(0) in the

discontinuity points, even if the solution is continuous at y(0). This means that there exists i ∈ {1, ..., Nn}
such that y(0) = x0i,n. Since (ρn0 , w

n
0 ) is piecewise constant, constructing the solution only amounts to

seeing how the discontinuities propagate, at least for sufficiently small times. At each discontinuity we can
propagate a wave following the solution of the Riemann problem described in the previous section. It could
happen that the discontinuity corresponds to a non-classical shock, and this situation can occur even if (ρ, w)
has no non-classical shocks. This is because (ρn0 , w

n
0 ) is piecewise constant but the original function (ρ0, w0)

is not necessarily. This implies that the continuous changes of (ρ0, w0), like rarefaction waves, are translated
in discontinuities in (ρn0 , w

n
0 ) and these discontinuities are not necessarily entropic. In this case we propagate

a fan of k waves as described in the Riemann solver and we choose k such that the maximal amplitude of a
non-classical shock in the fan is the smallest possible given the mesh (in our case of the order of ρmax2−n).
This rarefaction fan is the way continuous changes are represented in the approximate solution.
As long as the discontinuities propagate without interacting, the solution is simply the sum of Nn Riemann
problems 4 and we can denote (xn,i(t))i∈{1,...,Nn} the location of the discontinuities describing the solution of
each Riemann problem and yn(t) associated. As Nn is finite and the propagation speed of each discontinuity
is also finite, there exists a time tn,1 ∈ R∗

+ ∪ {+∞} such that for any t ∈ [0, t1,n)

xn,1(t) < xn,2(t) < ... < xn,Nn
(t), (9.2.29)

and, if tn,1 < +∞, there exists i ∈ {1, ..., Nn} such that

xn,i(tn,1) = xn,i+1(tn,1) (9.2.30)

At this point we have ρ(xn,i(tn,1)−) = ρli and ρ(xn,i(tn,1)+) = ρri+1 so we have a new Riemann problem
starting at xn,i(tn,1) with left state ρli and right state ρri+1. This can be done for any i ∈ {1, ..., Nn} such that
(9.2.30) holds. We have again a piecewise constant function (ρn, wn) so we can perform the same algorithm
with initial condition (ρn(tn,1, ·), wn(tn,1, ·)) instead of (ρn0 , w

n
0 ). We denote again the (new) discontinuity

points by (x0n,i)i∈{1,...,Nn} and extend the solution (ρn, wn, yn) up to tn,2 where two discontinuities interact
again, and so on.

9.2.2 Ideas of the proof

In this section we give some ideas of the proof of Theorem 9.2.1. We start by showing the conver-
gence of (ρn, wn, yn) up to a subsequence when n → +∞ to a function (ρ, w, y) which belongs to
L∞([0,+∞);BV (R; [0, ρmax] × [wmin, wmax])) × W 1,1

loc ([0,+∞);R), when n → +∞. Then we talk about
how to show that this limit is a solution to (9.2.1), (9.2.3)–(9.2.4) in the sense of Definition 9.2.1, which is
the main difficulty.

9.2.2.1 Convergence of (ρn, wn, yn) to (ρ, w, y)

We first show the following Lemma

Lemma 9.2.1. Let (ρ0, w0, y0) ∈ BV (R; [0, ρmax] × [wmin, wmax]) × R and (ρn, wn, yn) be an approximate
solution of (9.2.1) constructed by the wave-front tracking method described in Section 9.2.1, with initial
conditions (ρ0, w0, y0). Then, there exists C > 0 such that, for any t ∈ R+,

TV (wn(t, ·)) + TV (V (ρn(t, ·), wn(t, ·)) ≤ C, (9.2.31)

where TV refers to the total variation.

4. More precisely Nn−1 Riemann problems and 1 constrained Riemann problem: even if y(0) is not located on a discontinuity
we included it in the x0

n,i and we consider it as the solution of a constrained Riemann problem with ρl = ρr and wl = wr. The

function yn(t) is simply affine in this case.
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This is proved by introducing and studying the following function Γ(t)

Γ(t) = TV (wn(t, ·)) + TV (V (ρn(t, ·);wn(t, ·))) + γ(t) + C1TV (wn(·, yn(·)), [t,+∞)), (9.2.32)

where γ is given by

γ(t) =


−2|v̂(wn(t, y(t)−)) − v̌(wn(t, y(t)))|, if

 wn(t, yn(t)−) = wn(t, yn(t)),
ρn(t, yn(t)−) = ρ̂(wn(t, y(t)−)),
ρn(t, yn(t)) = ρ̌(wn(t, y(t)−)),

0 otherwise.

(9.2.33)

and

C1 = 2

(
sup

w∈[wmin,wmax]

d

dw
V (ρ̌(w), w) + sup

w∈[wmin,wmax]

d

dw
V (ρ̂(w), w)

)
> 0, (9.2.34)

where we recall that ρ̌(w) and ˆρ(w) are the non-classical shock densities given by (9.2.28). The existence
of such a finite and positive constant comes from the fact that w → V (ρ̂(w), w) and w → V (ρ̌(w), w) are
C1 functions of w. This is a consequence of our assumptions given at the beginning of this section, between
(9.2.1) and (9.2.2). We have the following property of Γ (see [137, Appendix A] for a proof)

Γ(t) ≤ Γ(0), ∀ t ∈ R+. (9.2.35)

In addition, as wn does not change in a nonclassical shock, then we can also show the following:

t→ TV (wn(t, ·)) is a constant function on R+. (9.2.36)

This allows to prove Lemma 9.2.1. The convergence up to a subsequence then follows from Lemma 9.2.1,
the finite propagation speeds of the waves, Helly’s theorem, and Arzela - Ascoli’s theorem and we have:

Lemma 9.2.2. Let (ρn, wn, yn) be an approximate solution of (9.2.1) constructed by the wave-front tracking
method described in Section 9.2.1. Then, up to a subsequence, we have the following convergences

(ρn, wn) → (ρ, w), in L1
loc(R+ × R; [0, ρmax] × [wmin, wmax]), (9.2.37)

yn(·) → y(·), in L∞
loc(R+;R), (9.2.38)

ẏn(·) → ẏ(·), in L1
loc(R+;R), (9.2.39)

for some (ρ, w) ∈ C0(R+;L1(R; [0, ρmax] × [wmin, wmax])) and y ∈ W 1,1
loc (R+;R) with Lipschitz constant Vb.

Moreover, there exists C > 0 such that TV (ρ(t, ·)) < C and TV (w(t, ·)) < C for all t ≥ 0.

9.2.2.2 The limit (ρ, w, y) is a solution of the system

Thanks to Lemma 9.2.2, we have a candidate (ρ, w, y) for the solution. To show that (ρ, w, y) is indeed a
solution, we need to check that it satisfies Definition 9.2.1. Note that (ρn, wn) satisfies Definition 9.2.1 with
(2) being replaced by∫

R+

∫
R
Ek(v(t, x), w(t, x))∂tφ+Qk(v(t, x), w(t, x))∂xφdx dt

+

∫
R
Ek(v0, w0)φ(0, x) dx

+

∫
R+

R(v(t, y(t)), w(t, y(t)))(v(t, y(t)) − ẏ)

[
k − ẏ

αF (ẏ))
− 1

R(k,w(t, y(t)))

]+
φ(t, y(t))dt ≥ C TV ((ρn(t, ·), wn(t, ·)))2−n,

(9.2.40)
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where the term on the right-hand side corresponds to the fact that the approximated solution can have
rarefaction shocks, that are themselves non-classical shocks but with a small amplitude.
As (ρn, wn) → (ρ, w) in L1

loc(R+×R, [0, ρmax]× [wmin, wmax]) we can use the dominated convergence theorem
and pass to the limit in (9.2.7) to get that (ρ, w) satisfies (9.2.7) with initial condition (ρ0, w0). It remains
to show (9.2.8), (9.2.11) and (9.2.12).

Showing that (ρ, w, y) satisfies (9.2.8) and (9.2.12) uses the fact that (ρn, wn, yn) is a solution of the system
in the sense of Definition 9.2.1, together with choosing an appropriate test function and successive dominated
convergence theorem in the same fashion as in [9, 177]. More details can be found in [137].

Showing that (ρ, w, y) satisfies (9.2.11) is the main difficulty. If there were no AV and the solution were
entropic, this would not be such a problem. But the issue is that the existence of nonclassical shock makes
that the usual tools do not work here. Indeed, at first one could try to show that V (ρ(t, y(t)+), w(t, y(t)+))
is close to V (ρn(t, y(t)+), wn(t, y(t)+)) for n large enough. But this is, in fact, hopeless. What saves us is
the fact that what we really have to show is not this, but rather only that min(Vb, V (ρ(t, y(t)+), w(t, y(t)+)))
is close to min(Vb, V (ρn(t, y(t)+), wn(t, y(t)+))) for n large enough. In other words, it does not matter if
V (ρ(t, y(t)+), w(t, y(t)+)) is not close to V (ρn(t, y(t)+), wn(t, y(t)+)) for n large enough, as long as this only
happens when both V (ρ(t, y(t)+), w(t, y(t)+))) and V (ρn(t, y(t)+), wn(t, y(t)+)) are either larger or close
to Vb.

To show this, first note that there exists a negligible set N0 such that, for any t ∈ R+ \ N0,
— lim

n→+∞
(ρn(t, x), wn(t, x)) = (ρ(t, x), w(t, x)) for almost every x ∈ R.

— s→ y(s) is a differentiable function at time s = t,
— lim

n→+∞
yn(t) = y(t),

— ẏn(t) = min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) for any n ∈ N.
Therefore, it suffices to show that

lim
n→+∞

min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) = min(Vb, V (ρ(t, y(t)+), w(t, y(t)+))), (9.2.41)

and (9.2.11) will follow. To simplify the notations, let us define ρ± := limx→y(t)± ρ(t, x) and w± :=
limx→y(t)− w(t, x). Also, for w ∈ [wmin, wmax], we define ρ∗(w) as the (unique) density such that

Vb = V (ρ∗(w), w). (9.2.42)

A similar analysis for the LWR equations (9.1.1) was conducted in [177] where the authors divided the steps
in three cases:

1. (ρ+, ρ−) ∈ (ρ∗, ρmax], in this case no nonclassical shock can occur since ρ > ρ∗.

2. (ρ+, ρ−) ∈ [0, ρ∗], in this case V (ρ, w) ≥ Vb when ρ ≤ ρ∗ and thus the minimum of the right-hand
side of (9.2.41) is dominated by Vb.

3. ρ+ ≤ ρ∗ < ρ− or ρ− ≤ ρ∗ < ρ+, which are the remaining cases.

However, in our case it is impossible to proceed like this directly. Indeed, in the LWR model there is no w,
thus ρ∗ can be defined similarly as (9.2.42) but in this case ρ∗ is a constant as V does not depend on an w.
In our case ρ∗ depends on w which can be discontinuous as well and thus ρ∗(w+) may not necessarily have
the same value as ρ∗(w−). Besides, it could be that even if (ρn, wn) is close to (ρ, w) for some x, it could be
instantaneously be brought away by a 2-wave, which would not exist when looking at the LWR analogous.

Looking at (9.2.1) and following an argument very close to the one used to derive the Rankine-Hugoniot
conditions, we can show that there exists a negligible space N such that N0 ⊂ N and for any t ∈ R+ \ N ,

w+ = w− or V (ρ+, w+) = V (ρ−, w−) or ρ+ = ρ− = 0. (9.2.43)

In the vacuum case ρ+ = ρ− = 0 it is relatively easy to show that (9.2.41) holds, hence it can be discarded
in the following without loss of generality. From there we can show the following Lemma:
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Lemma 9.2.3. Let t ∈ R+ \ N and ε > 0. Let (ρ+, ρ−) ∈ ([0, ρmax])2 and (w+, w−) ∈ ([wmin, wmax])2.
There exists δ > 0 such that, for n ∈ N large enough, if x ∈ (min(yn, y)− δ,min(yn, y)) two cases can occur:

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ−, w−)),

or V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞) and V (ρ−, w−) ∈ [Vb − ε,+∞).
(9.2.44)

And, for n ∈ N large enough, if x ∈ (max(yn, y),max(yn, y) + δ),

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)),

or V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞) and V (ρ+, w+) ∈ [Vb − ε,+∞).
(9.2.45)

where Br(a) stands for the ball centered in a of radius ε.

This Lemma shows that in a short spatial area before min(y, yn) and after max(y, yn), either the velocity
V (ρn, wn) is very close to V (ρ, w) or both are above (or close) to Vb. This is precisely what we want. Note
that this is not obvious, as the L1

loc convergence of (ρn, wn) to (ρ, w) only gives information almost every-
where in x, and this is all our problem: we want a convergence at a precise location y(t). This lemma is
illustrated in Figure 9.1, which is taken from [137].

Among others, the proof of Lemma 9.2.3 relies on the fact that, when w is fixed, one cannot go instantly from
a density to another very different density using a rarefaction shock. In other words, as soon as there is a
rarefaction shock, there is an incompressible minimal distance to move from a density to another. This means
that the only arbitrarily large variations of density that can happen correspond to a shock and therefore
has to satisfy some entropy condition (unless in the special case where it is a non-classical shock due to the
interaction with the AV). This is expressed more rigorously by the following Lemma.

Lemma 9.2.4. Let t ∈ R+\{0} and (x1, x2) ∈ R2 with x1 < x2. Suppose that wn is constant between
(x1, x2) and there exists c > 0 (independent of n) such that ρn(x1) ≥ ρn(x2−) + c. Suppose in addition that
there is no non-classical shock occurring in (x1, x2). Then there exists β′ > 0 such that

|x2 − x1| > β′t|ρn(x1) − ρn(x2−)| (9.2.46)

where β′ is a constant independent of t, x1 and x2.

Given the definition of the mesh and the wave-front tracking algorithm described above in Section 9.2.1.2,
we can also estimate the maximal change of velocity that can happen in a rarefaction shock:

Lemma 9.2.5. Suppose that a rarefaction shocks occur in x1 ∈ R, then there exists a constant C0 indepen-
dent of x1, n, ρ

n, wn and depending only on V such that

V (ρn(x+1 ), wn(x+1 )) − V (ρn(x−1 ), wn(x−1 )) ≤ C0ρmax

2n
(9.2.47)

Schematically, the proof of Lemma 9.2.3 can be decomposed as follows:
— Given that (ρ, w) has bounded variation we can show that for every ϵ > 0 there exists δ0 > 0 such

that for any x ∈ (min(yn, y) − δ0,min(yn, y)),

(ρ(t, x), w(t, x)) ∈ Bε/2M (ρ−, w−), (9.2.48)

where M is the Lipschitz constant of V .
— We start by the case x < min(yn, y). If V (ρ−, w−) < Vb − ε we prove Lemma 9.2.3 by contradiction,

showing that, if it does not hold, then by a diagonal argument there exist three sequences (xn, z
1
n, z

2
n)

such that

lim
n→+∞

xn = lim
n→+∞

z1n = lim
n→+∞

z2n = y(t),

z1n < xn < z2n < min(yn, y), ∀ n ∈ N,
(9.2.49)
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V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ+, ω+)

V (ρ−, ω−)

V (ρ+, ω+) + ε

V (ρ+, ω+)− ε

V (ρ−, ω−) + ε

V (ρ−, ω−)− ε

Case 1: V (ρ−, w−) < Vb − ϵ and
V (ρ+, w+) < Vb − ϵ

V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ+, ω+)

V (ρ−, ω−)

V (ρ+, ω+) + ε

V (ρ+, ω+)− ε

V (ρ−, ω−) + ε

Vb

Vb − 2ε

Case 2: V (ρ−, w−) ≥ Vb − ϵ and
V (ρ+, w+) < Vb − ϵ

V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ−, ω−)

V (ρ+, ω+)

Vb − 2ε

Case 3: V (ρ−, w−) ≥ Vb − ϵ and
V (ρ+, w+) ≥ Vb − ϵ

Figure 9.1 – Illustration of Lemma 9.2.3; let t ∈ R+ \ N , ε > 0, (ρ+, ρ−) ∈ ([0, ρmax])2 and (w+, w−) ∈
([w−, w+])2 with yn(t) < y(t). The approximate speed V (ρn(t, ·), wn(t, ·)) over [yn(t)−δ, yn(t)]∪[y(t), y(t)+δ]
belongs to the area surrounded by the dotted lines (...) and ρ(t, ·) over [y(t) − δ0, y(t) + δ0] belongs to the
shaded zone.

and for all n ∈ N,

V (ρn(xn), wn(xn)) ∈ R \ Bε(V (ρ−, w−)),

(ρn, wn)(z1n+) ∈ B3ε/4M (ρ−, w−) and (ρn, wn)(z2n−) ∈ B3ε/4M (ρ−, w−)

V (ρn, wn)(z1n+) ∈ B3ε/4(V (ρ−, w−)) and V (ρn, wn)(z2n−) ∈ B3ε/4(V (ρ−, w−)).

(9.2.50)

This means that the velocity needs to change quickly from z1n to xn and from xn to z2n while all these
three points can be arbitrarily close.

— We study the change between z1n and xn. We show that the connection between the two points
cannot be the result of a V-wave, a 2-wave, or a non-classical shock. Once these cases are excluded
we conclude that there has to be a 1-wave changing rapidly the density between z1n and xn. However,
given (9.2.49) this has to be a 1-wave corresponding to a rarefaction wave. And, from Lemma 9.2.4,
this implies a minimal distance between z1n and xn, which gives a contradiction with the fact that
they can be arbitrarily close.

— If V (ρ−, w−) < Vb − ε we proceed similarly by contradiction. In this case non-classical shocks cannot
occur either since x < min(yn, y(t)).
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— The same holds with the case x > max(yn, y) by symmetry.
After proving Lemma 9.2.3, we study what happens between min(yn, y) and max(yn, y). For this, we sepa-
rate the cases w+ = w− and V (ρ+, w+) = V (ρ−, w−).

First case: V (ρ+, w+) = V (ρ−, w−). In this case, we have the following Lemma.

Lemma 9.2.6. Let t ∈ R+ \ N and ε > 0. Assume that V (ρ−, w−) = V (ρ+, w+), then for n ∈ N large
enough and x ∈ (min(yn(t), y(t)),max(yn(t), y(t))),

— if V (ρ+, w+) < Vb − ε/2, then

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)), (9.2.51)

— if V (ρ+, w+) ≥ Vb − ε/2, then

V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞). (9.2.52)

The proofs of Lemma 9.2.7 uses mostly the same tools as the proof of Lemma 9.2.3 and can be found in
[137]. This allows to prove the desired convergence (9.2.41). Indeed, let ε > 0, for n0 > 0 large enough we
have

— if V (ρ+, w+) < Vb − ε/2, for any x ∈ (min(yn, y) − δ,max(yn, y) + δ) \ {y(t), yn(t)} we have

V (ρn(x), wn(x)) ∈ Bε(V (ρ+, w+)). (9.2.53)

— If V (ρ+, w+) ≥ Vb − ε/2 then for any x ∈ (min(yn, y) − δ,max(yn, y) + δ) \ {y(t), yn(t)} we have

V (ρn(x), wn(x)) ≥ Vb − ε. (9.2.54)

Hence, in both cases

|min(V (ρn(yn(t)+), wn(yn(t)+)), Vb) − min(Vb, V (ρ+, w+))| ≤ ε, ∀ n ≥ n0. (9.2.55)

As ε was chosen arbitrarily (with n0 which potentially tend to +∞ when ε→ 0), this implies

lim
n→+∞

min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) = min(Vb, V (ρ(t, y(t)+), w(t, y(t)+))), (9.2.56)

which is the desired convergence.

Second case: w+ = w−. Recall that ρ∗ is defined by (9.2.42). As Vb < V (0, w) for any w ∈ [wmin, wmax]
by assumption, and as V is a decreasing function with V (ρmax, w) = 0 for any w ∈ [wmin, wmax], (9.2.42)
defines ρ∗(w) uniquely. It also implies that

Vb < V (ρ), ∀ ρ ∈ [0, ρ∗(w)),

Vb < V (ρ), ∀ ρ ∈ (ρ∗(w), ρmax].
(9.2.57)

We can now state the following lemma

Lemma 9.2.7. Let t ∈ R+ \ N and ε > 0. Assume that w− = w+, and let w denote this value. Then for
n ∈ N large enough : assume x ∈ (min(yn, y),max(yn, y)), we have the following cases

— if (ρ−, ρ+) ∈ [0, ρ∗(w)]2, then
V (ρn, wn) ∈ [Vb − ε,+∞), (9.2.58)

— if (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2, then

V (ρn, wn) ∈ [V (max(ρ−, ρ+), w) − ε, V (min(ρ−, ρ+), w) + ε], (9.2.59)
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— if ρ− ≥ ρ∗(w) > ρ+ or ρ+ ≥ ρ∗(w) > ρ−, then

V (ρn, wn) ∈ [V (max(ρ−, ρ+), w) − ε, V (min(ρ−, ρ+), w) + ε] ∪ [Vb − ε,+∞). (9.2.60)

With this and using Lemma 9.2.3, we can show the desired convergence (9.2.41) in each of the three
cases of Lemma 9.2.7. Showing the convergence in the first case is quick and will not be detailed here.
The difficult cases are the second and third one. Here we give an idea of the proof for the second case
(ρ−, ρ+) ∈ (ρ∗(w), ρmax]2. The tools used for the third case are similar.

Sketch of proof when (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2:

— First, we can show that the desired convergence (9.2.41) holds if yn ≥ y(t) for an infinite set of index,
so we can restrict ourselves to the case yn < y(t) except for a finite set of index.

— Then we can show by contradiction that V (ρ−, w) ≥ V (ρ+, w).

— Finally, we study the time-space area where the solution belongs to Bε(V (ρ+, w+)). We show that
there exists tn > t such that

V (ρn(s, yn(s)), wn(s, yn(s))) ∈ Bε(V (ρ+, w+)), for any s ≥ tn, . (9.2.61)

We also show that tn → t when n goes to +∞.

This is rigorously expressed as follows: define the triangle T0 by

T0 :=
{

(s, x) ∈ [t, tf ) ×
(
wmax(s− t) + yn(t) − δ, ∂ρf(ρmax, wmax)(s− t) + y(t) + δ

)}
, (9.2.62)

where tf is the closing point of the triangle defined by

tf =
y(t) − yn(t) + 2δ

wmax − ∂ρf(ρmax, wmax)
. (9.2.63)

Let us also define tyn > t the time at which yn(s) gets out of the triangle, i.e. the time tyn such that

(s, yn(s)) ∈ T0, ∀s ∈ [t, tyn),

(tyn , yn(tyn)) /∈ T0.
(9.2.64)

Obviously tyn ≤ tf since the triangle closes at tf . With these notations, we have the following lemma.

Lemma 9.2.8. Let t ∈ R+ \ N and ε > 0. Assume that (ρ−, ρ+) ∈ (ρ∗(w), ρmax] with ρ− ̸= ρ+.
Assume also that ε is small enough such that min(ρ−, ρ+) − ε > ρ∗(w), and that yn < y(t) for any
n ≥ n1. Let δ > 0 be given by Lemma 9.2.3. Then for any n ≥ n1, there exists tξn > t and a piecewise
linear function ξn such that

(s, ξn(s)) ∈ T0, ∀s ∈ [t, tξn), (9.2.65)

and for any (s, x) ∈ {[t, tξn) × R | x > ξn(s)} ∩ T0
V (ρn(s, x), wn(s, x)) ∈ Bε(V (ρ+, w+)). (9.2.66)

Besides, if we denote tyn the time at which yn(·) exits the triangle, there exists c > 0 independent of
n such that min(tyn , tξn) − t ≥ c and there exists tn > 0 such that ξn(tn) = yn(tn) and lim

n→+∞
tn = t.

As announced, this Lemma shows the existence of a time-space area {[t, tξn) × R | x > ξn(s)} ∩ T0
in which V (ρn(s, x), wn(s, x)) belongs to Bε(V (ρ+, w+)). What is shown in this Lemma is that
yn always enters this area before exiting the triangle which implies that after the time tn,
V (ρn(s, yn(s)), wn(s, yn(s))) belongs to Bε(V (ρ+, w+)). Moreover tn → t when n→ +∞.
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— Using Lemma 9.2.8 we deduce that there exists c independent of n such that for any s ∈ (t, t + c),
there exists n large enough such that

V (ρn(s, yn(s)), wn(s, yn(s))) ∈ Bε(V (ρ+, w+)). (9.2.67)

Thus, as (ρn, wn, yn) is a solution of the system and in particular of (9.2.3), we have for any s ∈ (t, t+c)

yn(s) − yn(t) =

∫ s

t

min(Vb, V (ρn(τ, yn(τ)), wn(τ, yn(τ))))dτ. (9.2.68)

Thus we deduce using this and (9.2.67) that∣∣∣∣yn(s) − yn(t)

s− t
− min(Vb, V (ρ+, w+))

∣∣∣∣ ≤ ε. (9.2.69)

and using the convergence of yn to y, and the continuity of V , we obtain for any s ∈ (t, t+ c)∣∣∣∣y(s) − y(t)

s− t
− min(Vb, V (ρ+, w+))

∣∣∣∣ ≤ ε. (9.2.70)

— We conclude by recalling that y is differentiable in t from the definition of N and that (9.2.69) holds
true for any ε > 0 as long as s is close enough to t. Hence

ẏ(t) = min(Vb, V (ρ+, w+)) = min(Vb, V (ρ(t, y(t)+), w(t, y(t)+))), (9.2.71)

which exactly (9.2.11) and ends the proof.

9.2.3 Open-questions

This analysis raises several open questions. In particular:

— Does the system (9.2.1), (9.2.3)–(9.2.4) present stop-and-go waves when there is no AV?

— Similar to the previous question, is it possible to find self-sustained travelling waves (so-called
jamitons) for a circular road modelled by GARZ equations, just like it is for other models (see
[107, 213, 219])?

— If so, is it possible to smooth these stop-and go waves using a feedback control?

These three questions are a current work in progress with Shengquan Xiang and Benedetto Piccoli. Going
further, other interesting questions could be raised:

— If a feedback can be derived from this system, can it be translated in the microscopic framework
and, if so, would it guarantee the stability of the traffic described by microscopic models such as the
Bando-FTL model studied in Section 8.2 ?

— The system (9.2.1), (9.2.3)–(9.2.4) is intrinsically multilane as the AV can be passed by other vehicles
from the bulk traffic. This multilane property lies in the coefficient α ∈ (0, 1) in (9.2.4), which
represents the proportion of space left on the road when the AV is blocking a lane. What happens in
the single lane limit, namely if α→ 0?
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Part IV

(Deep) Learning mathematics
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“Le cri du révolutionnaire Rabaut-Saint-Etienne est bien connu : ≪ Notre histoire n’est pas notre code ≫.
Toutefois, l’histoire des pages qui suivent est bien celle de notre code. ”

– Un économiste anonyme
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Chapter 10

Learning mathematics with AI

10.1 Introduction

Having intelligent computers able to solve complicated problems on their own has been a sci-fi fantasy for
almost as long as computers have existed. The progress of AI in the last 20 years has made this a reality
for a number of tasks and has revolutionized some areas such as vision [240, 243] or translation and natural
language processing [165, 236]. However, if it is usually conceivable that an AI could translate words, play
chess or process data as well or better than humans, it is often hard to believe that they could perform
abstract mathematics on their own 1. This is what we investigate in this chapter. We look at two aspects of
this question:

— Can an AI predict a solution to an abstract mathematical problem? This is the object of Section
10.2.

— Can an AI prove a theorem and give a proof? This is the object of Section 10.3.

As this chapter is not purely dealing with mathematics but rather with potential applications of AI to
mathematics, we will keep it relatively short and introductory.

10.2 Predicting solutions to abstract maths problems

10.2.1 Problems considered

This section is taken from [46], a collaboration with François Charton and Guillaume Lample. The moti-
vation behind this is the amazing ability of deep language models developed in the last ten years (and in
particular since 2014) to solve translation problems between languages [14, 165, 229] and even to learn 2

grammatical structures without any prior knowledge [212]. The idea is to look at mathematics as a transla-
tion problem: a statement in which one needs to understand the structure and the meaning, translated in
a solution. The first work of this kind by Charton and Lample in [164] showed that neural networks could
predict explicit solutions to ODE when they have one, with an accuracy comparable to computer algebras
like Mathematica. In other words, the pattern recognition allowed by these networks is so good that it can
somehow map the link between equations and solutions in most cases. It is also worth noting that, contrary
to Mathematica, the neural network has no a priori mathematical knowledge and no built-in rules. In [46] we
investigate more complex problems where solving through pattern recognition looks harder or less intuitive.
We look at the following problems

1. at least from a mathematician’s perspective
2. and somehow understand
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(P1) Given the nonlinear system
ẋ = f(x), (10.2.1)

where x ∈ Rn, f is C1 around a given x∗ ∈ Rn such that f(x∗) = 0, is x∗ an exponentially stable
equilibrium? If so, what is the decay rate?

(P2) Given the nonlinear control system
ẋ = f(x, u), (10.2.2)

where x ∈ Rn, u ∈ Rm, f is C1 around a given (x∗, u∗) ∈ Rn × Rm such that f(x∗, u∗) = 0, is the
linearized system locally controllable around (x∗, u∗) ?

(P3) Assume the same framework as (P2). If the linearized system is locally controllable around (x∗, u∗),
what would be a stabilizing feedback u(t) = u∗ + K(x(t) − x∗), where K ∈ Rm×n ? In other words,
can we give an example of K such that

ẋ = f(x,Kx) (10.2.3)

is locally exponentially stable around x∗ ?

Intuitively, it may be conceivable that a pattern recognition could allow good results when recognizing
explicit solutions to ODE or integrating functions with an explicit primitive. Being able to solve the three
control problems above through pattern recognition seems harder to believe 3. Indeed, these problems cannot
be solved by simple interpolation, and seem to require a deeper understanding of the maths behind. This
raises a more philosophical question: is it possible to learn maths from example? And, if so, is it possible in
these cases that a neural network can learn the theorems behind and grasp the mathematical structures?

10.2.2 Representations, encoding and automatic generation of training data

10.2.2.1 Representation and data generation

In order to train the neural network, one needs some data, and preferably a lot of them. Using humain
tabulated data would be definitely too limiting and for this reason we needed to find a way to automatically
generate a dataset of statement and solutions for these different problems. To do so, we represent mathe-
matical expressions as trees (see Fig. 10.1) where

— each leaf is a variable or a number (integer or float)

— each internal node is an operator that can be unary (typically for one-variable functions like exp,
ln, cos, but also for differentiation operators etc.) or binary (typically for addition, multiplication,
division, etc.)

In this work we only consider the usual trigonometric, exponential and algebraic functions as unary operators
but this could be extended to other special functions. This representation is also used in [164] and one
can find a related representation for instance in [11]. This representation allows to easily sample random
expressions by sampling randomly a tree-shape, and then filling the nodes and leaves uniformly at random.
Using this, a formal differentiation and Python libraries, we are able to automatically generate differential
systems with or without control and to compute the solutions of the different problems (P1)–(P3). The
details of the procedure are given in [46] and the Python environment can be found at in the associated
repository MathsFromExamples. This environment is very modular so that it can be relatively easily adapted
to other mathematical problems 4. This allows us to generate a dataset of over 100 millions examples of
systems and solutions to the different problems (P1)–(P3). This dataset is also available in the repository
MathsFromExamples. 100 millions of examples might seem a lot at first, but this is only a very tiny subset

3. at least from my point of view.
4. An interested reader can definitely clone the code and try.
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x2 + cos(y)

+

∧

x 2

cos

y

+,∧, x, INT,+, 2, cos, y

Figure 10.1 – Representation of mathematical expressions The mathematical expression x2 + cos(y)
(left) represented as a tree (center) and then encoded as a string of tokens in prefix order (right).

of all the possible systems. Formally, we are generating at random dynamics f that belongs to an infinite-
dimensional space 5. Given that the number of functions we use are finite and the resolution of the numbers
we take is finite as well, the space of possible functions we can generate with our procedure becomes finite,
but still with a very large cardinal (much larger than the number of atoms in the universe). Hence, the
100 million examples are a very tiny subpart. We can note that, during the random generation of these 100
million examples, we never encountered a single duplicate.

10.2.2.2 Encoding and architecture

We used a classical Transformer architecture [236] with dimensionality between 68 and 512 and 1 to 6 hidden
layers. The details can be found in [46]. The model takes a sequence of tokens in input, and outputs another
sequence of tokens. Therefore, the statements are encoded as follows from the mathematical representation:

— Mathematical expressions are seen as trees as described earlier, and each tree is then translated
into a string of tokens using a prefix enumeration (also called normal Polish notation). This consists
in enumerating the tree from the root node, and writing each node before its children, listed from left
to right. In this list, each operator or variable is represented by a token. For instance:

xy + z → ‘+’,‘×’, ‘x’, ‘y’,‘z’, (10.2.4)

— A matrix or a vector is decomposed in rows and columns which are placed end-to-end in a single
string and separated by special tokens.

— An integer or a float is represented by a special token, a sign and one or several digits

−4 → ‘INT,‘-’,‘4’

1.67 → ‘FLOAT,’+‘,’1’,‘.’,‘6’,‘7’.

For the solutions, if the answer is qualitative (yes or no), the encoding is simply 0 or 1. When the answer is
quantitative the encoding is the same as for the statements. This encoding is summarized on Fig. 10.1.

10.2.3 Results

During generation, the data are separated into a training and an evaluation dataset with (of course) no
overlap. The neural network learns on the training dataset and, after training, is evaluated on the evaluation
dataset to see its ability to generalize what it has learned on problems it has never seen before, i.e. whether
it has understood some maths or just learned by heart. We discuss here the results obtained for the different
problems.

5. which also means that the universal approximation theorem does not apply.
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Decay rate of the linearized system For the first task, the model was asked to predict if the system is
exponentially stable. For this task the evaluation dataset is selected using a rejection sampling in order to
have a balanced distribution of 50% exponentially stable systems and 50% of exponentially unstable systems
(other systems for instance with a polynomial decay or growth where the highest real part of the eigenvalues
of the linearized system is zero are discarded). The neural network shows an impressive accuracy of around
95% for systems with 3 to 5 equations. The results are summarized in Table 10.1.

Table 10.1 – Accuracy of predictions of stability (chance level: 50%)

Two equations Three equations Four equations Five equations Overall

Accuracy 98.2 97.3 95.9 94.1 96.4

Then, the neural network is asked to give an estimate of the decay rate. We consider this estimate to be
correct if it falls within a 10% tolerance of the actual value. The results are summarized in Table 10.2. As
one can see, the results deteriorate quickly with the number of equations, but remain pretty good when
considering that the neural network has a priori no knowledge of maths before training.

Table 10.2 – Prediction of local convergence speed (within 10%).

Two equations Three equations Four equations Five equations Six equations Overall

8 layers, dim 1024 96.3 90.4 86.2 82.7 77.3 86.6

Controllability In this second problem, the model is given nonlinear control systems with n equations and
m controls, n and m being chosen at random, and is asked to say whether the linearized system is controllable
or not. This would be typically done in mathematics by linearizing the system and using Kalman criterion.
The model is again evaluated on a dataset with 50% of system with a controllable linearized system and
50% of systems with a non-controllable linearized system. Once again the model manages to find the answer
with a striking accuracy above 97%.

Next, the model is asked to provide a stabilizing feedback matrix when the linearized system is controllable.
Namely, for a system of the form (10.2.1), the model is asked, if the system is controllable, to provide a
matrix K such that the control u(t) = u∗ +K(x(t)−x∗) makes the system exponentially stable. The results
are summarized in the second line of Table 10.3. In the first line of Table 10.3 we look at another criteria:
we check whether the matrix that the model outputs is within a 10% range (in l1 norm) of the classical
stabilizing matrix that would be constructed from the controllability Gramian matrix (see [184] or [55,
Theorem 10.16]). We do so since, in the training dataset, the feedback stabilizing matrices that are given as
examples are derived from the controllability Gramian matrices. Interestingly when the number of equations
increases the neural network hardly ever predict a feedback matrix close to the reference feedback matrix of
the training dataset, but still outputs a valid solution to the stabilization problem with a reasonably high
accuracy.

Table 10.3 – Prediction of feedback matrices - Approximation vs. correct mathematical feedback.
Three equations Four equations Five equations Six equations Overall

Prediction within 10% 50.0 9.3 2.1 0.4 15.8
Correct feedback matrix 87.5 77.4 58.0 41.5 66.5
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10.2.4 Discussion and open questions

Neural networks with a Transformer architecture seem to learn to predict solutions to some advanced maths
problems 6 with a high accuracy, even though these problems looked unlikely learnable by examples. Yet the
model achieves over 95% accuracy on qualitative tasks and between 50% and 85% accuracy on quantitative
tasks.
Several things can be noted: not only the model is able to generalize from the training dataset to the whole set
of possible functions, but in addition the model is able to generalize also pretty well to a biased distribution
of examples. Indeed, evaluating on systems that have larger expression, or have a biased distribution of
operators (for instance no trigonometric functions or on the contrary only trigonometric functions) still gives
very high results. More surprising: when trained on examples with 2 to 5 equations the model has a good
accuracy when evaluated on systems of 6 equations, even though it has never seen a system of 6 equations
before (and it has never seen the variable x6 before either). This suggests that the model indeed learns the
maths behind, at least in some sense.
A similar approach was used for other problems, such as some graph problems arising from computational
biology [47] or linear algebra [45].
Finally, an interesting open question would be to extend these results to problems that are hard to solve
with the current mathematical theories but where the candidate solution can be checked easily. One of such
problems is finding Lyapunov functions for a given system, for which no general method exists. This problem
may be NP-hard in general [2] which might be out of reach for the neural network [252]. But there could be
a large subset of dynamics that encompass many systems usually found in mathematical applications and
where this obstruction does not occur anymore.

10.3 Teaching AI to prove theorems

Having computers doing maths and proving theorems has been a longstanding dream, both in sci-fi and
academics. In 1976 a turn takes place with the computed-assisted proof of the four colors theorem [10]. Since
then, several theorems were proved using a computer-based proof in some sense. In the most recent examples,
one can cite Keller’s conjecture in dimension 7 where the computer assisted proof takes a monstruous size
(200 Gb) [31]. In many of these examples, the computer is used for its ability to explore large computations
or cases disjunctions that would be unfeasible by humans. However, this remained localized to specific
applications and still far from having an AI able to grasps mathematical rules in general and prove involved
theorems on its own.
In parallel, formal verification of proof and proof assistants have known a large interest since the 1960s (see
for instances [40, 114]). Many proving environments were build, such as the iconic Coq or Isabelle, but also
more recent environments like Lean. In these environments the proof is automatically checked and certified
correct by the computer. This has a large interest in a scientifical area like mathematics where “almost
correct” is incorrect and where the modern proofs tend to be increasingly large, complex, and harder to
check [39, 186]. Its adoption by mathematicians has been limited by the fact that the users’ proofs have to
obey a rigorous syntax, far from written mathematics as we know. This syntax remains relatively tedious,
despite efficient proof assistants and many improvements in the last decades. However, a large amount of
the classical mathematical theories and even significant aspects of very recent theories have been formalized
in the last few years by a small (but drastically increasing) community. In Lean one can look for instance
at [41, 52, 96, 97, 131, 246]). In [41], in particular the authors formalize the perfectoid spaces introduced by
Peter Scholze in [217] and an on-going work involving many researchers aims to formalize (and certify) the
proof one of Scholze’s theorems as part of the liquid tensor experiment [218] 7.
From an artificial intelligence perspective, being able to teach mathematical reasoning to a computer that
would automatically prove theorems has been a classical interest since the 1950s [83, 115]. However, the
interest for applying modern techniques of deep-learning to this goal has been very recent with many pro-
gresses in the last two years. One can cite for instance the efforts of [249], a first attempt of inequality
benchmark for theorem proving, [13] an attempt to guide proof in a classical automated prover thanks to

6. by “advanced”, we mean problems that would be typically taught in a master in mathematics or applied mathematics
7. this work has been announced to be finished on July 14th, 2022 here.
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a deep-learning approach, GPT-f [204] and following works [203] using a huge language model designed for
translation and trained on formal mathematical proofs. These are just a few of the numerous works that
have been done in the last two years. In this section, we present the work of [166], which currently holds
the state-of-the-art performances in deep-learning proving and in generation of synthetic theorems. This
is a collaboration with Guillaume Lample, Marie-Anne Lachaux, Thibault Lavril, Xavier Martinet, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix.

10.3.1 Environment and proof exploration

To obtain a neural network whose proofs are automatically checked, we work within a formal proving environ-
ment. We considered three of such environments: Metamath [188], Lean [192] and Equations, an environment
we built to deal with equations and inequations, and that can also generate synthetic theorems. In each
of them the prover works backward: we start with a statement to prove and a set of assumptions, and we
would like to apply theorems until there is nothing left to prove. An example is given in Fig. 10.2. Formally,
applying a theorem to a statement can either create new statements to prove or no statement at all, which
indicates that the proof of the original statement is finished. All three environments have their strength
and weaknesses: Metamath has only a single type of tactic 8: substitution. All theorems are an iteration of
substitutions, which makes it very simple to use but the proof sizes are quickly very large. Lean on the other
hand is more complex and much richer. It is based on type theory and allows, for instance, automatic infer-
ences by using metavariables. Its tactic are powerful but a prover in Lean is harder to implement. Finally,
Equations is very modular, embedded in Python which makes it flexible, and the theorems that can be used
in the proofs are user-specified and easy to design. It has two types of tactics: assertion, which assert that
a statement is correct if some assumptions are satisfied, and transformation which replace the expression by
an equivalent expression, potentially provided some assumptions. On the other hand, Equations is restricted
to equalities and inequalities with only a “for all” quantifier which limits it to relatively simple mathematics.

In classical proof theory, one can represent the set of possible proofs of this statement as a huge (infinite)
directed hypertree T where:

— the root node is the statement to prove,
— the edges starting from this node are all the possible tactics that can be applied to this node (i.e.

theorems, substitutions and where to apply them),
— the children nodes obtained from these edges are the statements that remain to be proved after ap-

plying this tactic. This can be either 0, one or several statements.

A branch stops if and only if it encounters an empty node, which means that the statement from which the
edge originate is proved. If one can find a subtree starting from the root node and ending on empty nodes
only in all the branches, then the initial statement is correct and this subtree is a proof. Therefore, formally,
proving a theorem is all about exploring correctly this huge hypertree.

Proof exploration: similarities and differences Exploring a graph in clever way is a problem that
can be found in many areas and many approaches exist for this, for instance [1, 156, 247]. A similar problem
occurs, for example, when playing chess: a chess game can be seen as one branch of a huge tree starting
from the initial position and representing all possible games. This motivates us to use an approach inspired
from AlphaZero’s Monte-Carlo Tree Search (MCTS) [222]. AlphaZero is the IA model that became famous
for playing chess much better than any human after only several days of training. However, there are several
differences in our framework that make the problem much harder than playing chess:

— When playing a move in chess, there is still only one chessboard and one position. While, when
applying a theorem to a goal statement, this might result in several statement that have to be proven.

8. a tactic here refers to a proof operation
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Figure 10.2 – An example of proof-tree for cos(x) + ex < 1+ 2ex in Equations. The arrows correspond to the
application of a theorem. norm num refers to a numerical evaluation.

— While in chess the number of possible moves is of the order of 100, the number of possible applications
of theorems on a mathematical statement is usually many order of magnitudes above (when finite).
This makes completely impossible to explore even all the possible next few steps when doing maths,
in contrast with chess. Also, an unsuccessful tactic gives much less information than a bad move in
chess.

— In chess, one does not need to play perfectly to win, it is just about playing better than the opponent.
Hence, a bad or sub-optimal move does not necessarily lead to losing the game. In maths, however,
the proof must be valid and it happens more often to be in a position that cannot succeed, because
we have an assumption to prove that happens to be wrong, leading to a branch that can never be
proved.

HyperTree Proof Search algorithm In [166] we introduce an algorithm called HyperTree Proof Search
(HTPS). This algorithm assumes that we have at our disposal two estimators: a tactic estimator, that
estimates the best theorems and substitutions to apply to a given statement, and a critic that estimates
the probability that the model eventually manages to find a proof of the statement. We present here an
introduction to this algorithm. More details, for instance concerning the training of the tactic estimator
and critic models, the architecture, and the evaluation of the overall algorithm can be found in [166]. Let
us introduce two quantities: N(t, g) the number of times a tactic t (i.e. a theorem and where to apply it)
has been applied to a goal g and a total value W (t, g) which we define later on but represents in some sense
the value attributed to a given tactic t for a given goal g during the entire search procedure. The algorithm
works in three steps:

— Selection: Using the policy, we select a tactic given the current statement and we apply it. The
policy depends on the tactic estimator, the visit count function N(·, g) and the total value function
W (·, g), where g denotes the original statement to prove. After applying the theorem there remains
to prove either no statement (the proof is finished), one or several statements, that we denote by
(g10 , ..., g

1
n1

). Then we can again select a tactic to apply to each of them, using the policy, and repeat
this a given number of times m. This leads to a number of statements (hopefully easier than the
original statement) to be proven (gm0 , ..., g

m
nm

).

— Expansion: We use again the policy to suggest several tactics that would help proving the goals
(gm0 , ..., g

m
nm

).
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— Back-propagation: We give a value to each goal gmi : if a tactic suggested proves it, we give to this
goal a value vgm

i
= 1; if there is no valid tactic suggested or the goal is obviously wrong we give it

the value 0; and in any other cases we give it a value estimated by the critic model. Then, we back-
propagate the value to the nodes of the previous steps gm−j

0 , ..., gm−j
nm−j

for j ∈ {1, ..., n} iteratively as

follows: for a node gji linked by the chosen tactic to the nodes (gj+1
i1

, ..., gj+1
i2

) with respective values

(v(gj+1
i1

), ..., v(gj+1
i2

)) we set

v(gji ) =

i2∏
k=i1

v(gj+1
k ). (10.3.1)

Finally, for each node gji where a tactic t has been applied, we update N(t, gji ) the number of times

this node appeared and t was applied and we add the value v(g) to the total value W (t, gji ). Then we

estimate value of the tactic for this node as the ratio Q(t, gji ) = W (gji , t)/N(gji , t).

The larger N(gji , t), the more weight is attributed in the policy to the estimated value of the tactic rather
than the value given from the tactic estimator model, and conversely. This is summarized in Fig. 10.3 that
is taken from [166] (and a more detailed description can be found in [166]).

Selection

N(g,t2)=0

W(g,t2)=0.1
N(g,t1) =1

W(g,t1) =0.5
N(g,t0)=1
W(g,t0)=0.3

g g
N(g,t1)=2

W(g,t1)=0.5+(1×0.1)×0.4

vT(g)=(1×0.1)×0.4

Back-propagationExpansion
gg g

vT(g1)=0.4

N(g1,t0)=1

W(g1,t0)=0.4
N(g0,t0)=1

W(g0,t0)=1x0.1

vT(g0)=1×0.1

N(g0,t0)=0
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Figure 10.3 – HyperTree Proof Search. We aim at finding a proof of g. Being able to prove either {g5}, {g0, g1},
or {g6, g7} would lead to a proof of g using respectively tactic t0, t1, or t2. Guided by the search policy, we first select
a hypertree whose leaves are unexpanded nodes. The selected nodes are then expanded, adding new tactics and nodes
to the hypergraph. Finally, during back-propagation we evaluate the node values of the hypertree, starting from the
leaves back to the root and update the quantities N and W .

Here, both the tactic estimator and the critic model are assumed to be fixed. However, they are both neural
network models themselves, that we can train as HTPS is applied. At first, the tactic estimator and critic
model are obtained from a supervised training on a dataset of existing proofs. Then, we improve them by
using the successful proof searches as training target for the tactic estimator model. For the critic, we select
hypertrees of proofs and we train the critic model to guess the value v(g) = 0 or v(g) = 1 respectively for the
statement that were shown to be invalid or on the contrary successfully proved, and the value v(g) computed
with (10.3.1) for internal nodes of the tree. This procedure is called online training.

Data generation and the Equations environment One of the main difficulties about teaching a deep-
learning model to prove a theorem is the lack of existing data. A deep language model, which is the basis of
our approach, generally requires a few hundred thousands or even a few millions examples. Here, even the
largest theorem database contains less than 100 000 theorems 9. This is already a lot from a mathematician

9. although this number is quickly increasing
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and a human point of view, but quite small from a machine learning standpoint. Being able to enrich this
dataset is an important problematic. One possible way is to be able to generate synthetic theorems, i.e.
computer-generated theorems, that could serve as additional datapoints. They could either be generated
with or without their proofs and both cases would be useful, either to train the proof search or the underlying
deep language model.

We created an environment called Equations as a simpler analogue to existing proving environments, han-
dling only equations and inequalities. The (human-made) theorems that can be used in the proof are
user-specified, as well as the number of variables, the functions allowed (e.g. exp, ln, cos), the length of the
expressions, the probability distribution, the type of variables and constants (integers, natural number or
real numbers), the sign of integers involved etc. Equations comes with a random theorem generator using
(human-made) theorems to build a proof, with mainly two modes: random walk and proof graph generation
([166] for more details). Its modularity allows it to be compatible with other existing proof environments
and it can be used to generate synthetic theorems in other languages, from instance in Lean. This works as
follows:

— We built a parser that reads Mathlib, the dataset of Lean’s theorems and extract all the (human-
made) theorems compatible with equations and inequalities. Then, these theorems are are converted
in Equations.

— Theorems are randomly generated with their proof in Equations.
— We built a translator from Equations to Lean both for the statements and the proofs, and the auto-

matically generated theorems are translated in Lean

The simplicity of Equations makes goals and tactics easy to understand, helping with interpretability and
debugging of the HTPS and the online training.

Let us also note that generating meaningful theorems is a complicated task, even only because defining what
it means for a theorem to be meaningful is already a hard task. More generally, defining a “good theorem”
is complicated: for sure, it is easy to identify behaviors we would not like to see in a theorem, but it is
complicated to define explicit criteria that could be automatically checked to identify such a good theorem
just from the statement and/or the proof. Another difficulty comes from the generation itself. We do not
necessarily need synthetic theorems to be as good as the human-made theorems. However, learning on these
synthetic theorems needs to be useful for proving the human-made theorem. This means, for instance, that
they need to include a certain diversity of human-made theorems in their proof. A naive random generation
where the (human-made) theorems used in the proof are simply sampled and applied when possible might
not be enough because it would result in always calling in the proof the same (human-made) theorems
with no assumptions. This because the likelihood of being able to spontaneously generate at random the
assumptions needed for a more complicated theorem is negligible.

10.3.2 Results

In order to evaluate the resulting neural network (referred to as Evariste), we use three different benchmarks.

For Metamath we look at all the theorems that were tabulated in the database, we isolate the set of theorems
that are not used by any other theorems and then we randomly select some of them to be an evaluation
dataset that the neural network will never see. After training, Evariste using manages to prove up to 82%
of the theorems.

For Lean we use a benchmark dataset called miniF2F, introduced in [261], that typically consists of high-
school olympiad problems. On this benchmark Evariste shows an accuracy above 40%, meaning that more
than 40% of these exercises were solved by the model, sometimes after several tries. One can look at [166]
for more results, and in particular for a description of how the results evolve with respect to the training
set and the training time (which can be consequent: the best version of Evariste was training during 1620

120



GPU hours). Among others exercises, Evariste manages to solve two exercises derived from the International
Mathematical Olympiads, an example of proof is given in Fig. 10.4 (taken from [166]).

On Equations we use as a benchmark a set of 144 classical identities, mostly coming from trigonometry,
exponential properties or algebra. One thing to note is that the model only has access to basic rules: for
instance, for the cosine function it only knows that cos(0) = 1, cos(π/2) = 0 and cos(a+ b) = cos(a) cos(b)−
sin(a) sin(b) for any (a, b) ∈ R2. Hence showing that cos2(x) + sin2(x) = 1 requires already a proof with
around 10 steps and something as simple as (x − y) − (x + y) + 2y would require around 20 steps. This
number might seem high but recall that for a formal environment, everything is a step and no step can be
skipped 10, for instance x + y = y + x is one step. After training, the model is able to prove more than
78% of the identities, some of them with above 100 proof steps. In Figure 10.3.2 we give some examples
of the identities proved as well as the number of steps required. One interesting thing to note is that, on
Equations, the model only learns to prove on synthetically generated theorems but is eventually able to prove
human-made theorems 11, suggesting that the synthetically generated theorems were rich enough.

1 theorem imo_1964_p1_2 (n : N) : ¬7|2n + 1 =

2 begin

3 rw nat.dvd_iff_mod_eq_zero,

4 rewrite [nat.add_mod, nat.mod_eq_of_lt],

5 obviously,

6 apply nat.strong_induction_on n,

7 induction n,

8 {

9 intros n IH,

10 cases n,

11 norm_num,

12 cases n,

13 norm_num,

14 rw [nat.succ_eq_add_one, pow_succ],

15 rw [nat.succ_eq_add_one, pow_succ],

16 induction n,

17 norm_num,

18 rw [nat.succ_eq_add_one, pow_succ],

19 norm_num [nat.mul_mod, ←mul_assoc],

20 contrapose! IH,

21 refine ⟨n_n, nat.lt_succ_iff.mpr _, IH⟩,
22 exact nat.le_succ_of_le (nat.le_succ _),

23 },

24 exact n_ih,

25 end

Figure 10.4 – A proof of a problem (taken from IMO 1964) found by the model. The model shows that
for any value of n ∈ N, 2n + 1 is not divisible by 7, by showing that 2n mod 7 + 1 ̸= 0, and 2n mod 7 + 1 < 7. The
second part of the proof uses strong induction and the fact that 2n ≡ 2n+3 mod 7. This proof was automatically
cleaned after generation.

10. Despite the appearance of tactics acting as shortcut (such as the tactics ring and linarith in Lean or ring simplify, auto,
etc. in Coq), this makes writing a proof in a formal environment pretty tedious, and this is, in my opinion, one of the main
reasons why formal proofs are so little used by mathematicians today.
11. This is often called out-of-domain generalization
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Proof size Proof depth
Identity First Minimal First Minimal

cos(x+ y) cos(x− y) = cos(x)2 − sin(y)2 117 64 117 64
sin(x+ y) sin(y − x) = cos(x)2 − cos(y)2 118 64 118 63

|sinh(x/2)| =
√

(cosh(x)− 1)/2 86 53 61 36
sin(x+ y) sin(x− y) = sin(x)2 − sin(y)2 183 66 183 65
cosh(x)2 = 1 + cosh(2x)/2 87 40 71 32
cosh(2x) = 2 cosh(x)2 − 1 78 42 62 33
cosh(2x) = cosh(x)2 + sinh(x)2 97 72 80 64
tanh(x)− tanh(y) = sinh(x− y)/(cosh(x) cosh(y)) 154 135 85 81
tanh(x) + tanh(y) = sinh(x+ y)/(cosh(x) cosh(y)) 162 144 95 91√

1 + sinh(x)2 = cosh(x) 82 70 76 62
sin(x)3 = (3 sin(x)− sin(3x))/4 72 58 63 49
sin(3x) = 3 sin(x)− 4 sin(x)3 80 56 71 47
cosh(3x) = 4 cosh(x)3 − 3 cosh(x) 204 105 176 79
cosh(x)3 = (3 cosh(x) + cosh(3x))/4 162 106 137 79
sin(4x) = cos(x)(4 sin(x)− 8 sin(x)3) 73 73 60 60
cos(π/3) = sin(π/6) 26 17 26 17

Table 10.4 – Examples of identities solved. Some of the 144 identities proved by the model. We indicate
the size and the depth of the first proof found by the model and the minimal proof found by the model
during online training.
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[60] Jean-Michel Coron and Brigitte d’Andréa Novel. Stabilization of a rotating body beam without damp-
ing. IEEE Trans. Automat. Control, 43(5):608–618, 1998.
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âge. In Autour des machines de Vitruve. L’ingénierie romaine: textes, archéologie et restitution., pages
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nique—Mathématiques, 9:1431–1472, 2022.

[137] Amaury Hayat, Thibault Liard, Francesca Marcellini, and Benedetto Piccoli. A multiscale second order
model for the interaction between AV and traffic flows: analysis and existence of solutions. working
paper or preprint, January 2021.

[138] Amaury Hayat, Benedetto Piccoli, and Sydney Truong. Dissipation of traffic jams using a single
autonomous vehicle on a ring road. SIAM Journal on Applied Mathematics, 2023.

[139] Amaury Hayat and Peipei Shang. A quadratic Lyapunov function for Saint-Venant equations with
arbitrary friction and space-varying slope. Automatica J. IFAC, 100:52–60, 2019.

[140] Andreas Hegyi, Bart De Schutter, and Johannes Hellendoorn. Optimal coordination of variable speed
limits to suppress shock waves. IEEE Transactions on intelligent transportation systems, 6(1):102–112,
2005.

[141] Michael Herty and Lorenzo Pareschi. Fokker-planck asymptotics for traffic flow models. Kinetic &
Related Models, 3(1):165, 2010.

[142] Long Hu, Florent Di Meglio, Rafael Vazquez, and Miroslav Krstic. Control of homodirectional and
general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans. Automat. Control, 61(11):3301–
3314, 2016.

130



[143] Long Hu, Rafael Vazquez, Florent Di Meglio, and Miroslav Krstic. Boundary exponential stabiliza-
tion of 1-dimensional inhomogeneous quasi-linear hyperbolic systems. SIAM Journal on Control and
Optimization, 57(2):963–998, 2019.

[144] Mojtaba Izadi, Javad Abdollahi, and Stevan S. Dubljevic. PDE backstepping control of one-dimensional
heat equation with time-varying domain. Automatica, 54:41–48, April 2015.

[145] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback control of moving boundary
parabolic pdes. European Journal of Control, 21:27–35, 2015.
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[179] Nathan Lichtlé, Eugene Vinitsky, George Gunter, Akash Velu, and Alexandre M Bayen. Fuel con-
sumption reduction of multi-lane road networks using decentralized mixed-autonomy control. In 2021
IEEE International Intelligent Transportation Systems Conference (ITSC), pages 2068–2073. IEEE,
2021.

132



[180] Mark Lichtner. Spectral mapping theorem for linear hyperbolic systems. Proc. Amer. Math. Soc.,
136(6):2091–2101, 2008.

[181] Michael James Lighthill and Gerald Beresford Whitham. On kinematic waves ii. a theory of traffic
flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences, 229(1178):317–345, 1955.

[182] Wei-Jiu Liu and Enrique Zuazua. Decay rates for dissipative wave equations. Ricerche di Matematica,
48(240):61–75, 1999.
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