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ABSTRACT

Cracking is the main failure mechanism of most rock-like materials. The principal
process contains the initiation and growth of micro-cracks and the onset of macroscopic
fractures due to the coalescence of micro-cracks. In this thesis, the phase-field method has
been employed to describe the transition from diffuse cracks (micro-cracks) to localized
fractures.

A basic phase-field model is first applied to modeling the onset and propagation
of cracks in rock-like materials with spatial variability of mechanical properties due
to micro-structural heterogeneity. A series of numerical specimens with different ran-
dom distributions of mineral inclusions are investigated. The numerical predicted overall
stress-strain responses are compared with experimental data.

Next, we shall develop a novel phase-field model considering coupling between dam-
age due to crack growth and frictional sliding along closed crack surfaces. It rigorously
takes into account the consequences of crack opening-closure unilateral effects. The con-
tinuity conditions are verified for all energy functions, stress-strain relations and conju-
gated thermodynamics forces. The performance of this model is assessed through several
numerical examples and by comparing the results with experimental observations.

Then, the time-dependent deformation and failure observed in most rocks are de-
scribed by a viscous phase-field model which is coupled with a viscoplastic constitutive
law. The crack field is driven by viscoplastic strain, while the threshold of viscoplastic
deformation is weakened by the growth of cracks. The comparison between numerical
predictions and experimental data in triaxial compression and creep tests verifies the effi-
ciency of this phase-field model.

Further, two phase-field variables are introduced to capture the tensile, shear and
mixed cracks in saturated and unsaturated porous rocks. To consider the influence of
frictional shear stress and normal stress on the evolution of shear cracks, a new hybrid
phase field model is proposed. The examples which can demonstrate the ability of this
model are presented including triaxial compression for dry material and desiccation tests.

Finally, the proposed phase-field models are applied to analyze some specific engi-
neering problems such as slope stability and landslide. The principal failure mechanisms
are identified and compared with field observations.

Keywords: Cracking, Phase-field method, Frictional microcracks, Hydromechanical
coupling, Viscoplastic deformation, Slope instability, Rainfall-induced landslide
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RÉSUMÉ

La fissuration est le principal mécanisme de rupture de la plupart des matériaux rocheux.
Le processus principal contient l’initiation et la croissance de micro-fissures et l’apparition
de fractures macroscopiques dues à la coalescence de micro-fissures. Dans cette thèse, la
méthode du champ de phase a été utilisée pour décrire la transition entre les fissures dif-
fuses (micro-fissures) et les fractures localisées.

Un modèle du champ de phase simple est d’abord appliqué à la modélisation de
l’apparition et de la propagation des fissures dans les matériaux rocheux avec une vari-
abilité spatiale des propriétés mécaniques liée à l’héterogeneité micro-structurale des
matériaux. Une série de spécimens numériques avec différentes distributions aléatoires
d’inclusions minérales sont étudiés. Les réponses globales en contrainte-déformation
prédites numériquement sont comparées aux données expérimentales.

Ensuite, nous développerons un nouveau modèle de champ de phase en considérant le
couplage entre les dommages dus à la croissance des fissures et le glissement par friction
le long des surfaces de fissures fermées. Il prend en compte les conséquences des effets
unilatéraux d’ouverture et de fermeture des fissures. Les conditions de continuité sont
vérifiées pour toutes les fonctions énergétiques, les relations contrainte-déformation et
les forces thermodynamiques conjuguées. La performance de ce modèle est évaluée à
travers plusieurs exemples numériques et en comparant les résultats numériques avec les
observations expérimentales.

Ensuite, la déformation et la rupture en fonction du temps qui se manifestent dans
la plupart des roches sont décrites par un modèle de champ de phase visqueux qui est
couplé à une loi de comportement viscoplastique. Le champ de fissures est influencé
par la déformation viscoplastique, tandis que le seuil de déformation viscoplastique est
affaibli par la croissance des fissures. La comparaison entre les prédictions numériques et
les données expérimentales dans des essais de compression triaxiale et de fluage vérifie
l’efficacité de ce modèle de champ de phase.

De plus, deux variables de champ de phase sont introduites pour capturer les fissures
de traction, de cisaillement et mixtes dans les roches poreuses saturées et non saturées.
Afin de considérer l’influence de la contrainte de cisaillement frictionnelle et de la con-
trainte normale sur l’évolution des fissures de cisaillement, un nouveau modèle de champ
de phase hybride est proposé. Les exemples qui peuvent démontrer la capacité de ce mod-
èle sont présentés, y compris la compression triaxiale pour les matériaux secs et les tests
de dessiccation.

Enfin, les modèles de champ de phase proposés sont appliqués pour analyser des prob-
lèmes d’ingénierie spécifiques tels que la stabilité des pentes et les glissements de terrain.
Les principaux mécanismes de défaillance sont identifiés et comparés aux observations
de terrain.

Mots clés: Fissuration, méthode des champs de phase, microfissures de frottement,
couplage hydromécanique, déformation viscoplastique, instabilité des pentes, glissement
de terrain induit par les pluies.
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GENERAL INTRODUCTION

Damage due to initiation and propagation of cracks is commonly observed in brittle

rocks. Macroscopic failure of these materials is generally driven by the transition from

micro-cracks to macro-cracks or fractures (Evans et al., 1990; Wong and Baud, 2012;

Cuomo et al., 2021).

Moreover, these materials usually experience complex loading paths including ten-

sile and compressive stresses, which could induce different types of cracks and opening-

closure transition of cracks. The consequences of cracks on mechanical behavior of such

materials are also dependent on crack conditions. For instance, the propagation of open

cracks could induces the progressive deterioration of both elastic bulk and shear modu-

lus, while the growth of closed smooth cracks generally affects the shear modulus only.

On the other hand, in rock and concrete like materials, crack surfaces are not smooth

but rough and characterized by a frictional coefficient. When such cracks are closed, no

elastic sliding occurs and the macroscopic elastic stiffness is then not affected by induced

cracks. The growth of closed rough cracks is driven by the frictional sliding along crack

surfaces, which can generate irreversible macroscopic strains, conventionally seen as plas-

tic strains. With the increase of loading, there is transition from diffuse micro-cracks to

localized macro-cracks.

Further, the so-called sub-critical slow propagation of micro-cracks and their coales-

cence (Atkinson, 1982; Meredith and Atkinson, 1985) can lead to time-dependent defor-

mation and failure. Different types of experimental studies have been reported. For in-

stance, in the framework of linear fracture mechanics, double torsion tests were performed

to identify the sub-critical growth kinetics of cracks in various rocks (Henry et al., 1977;

Atkinson, 1984; Nara and Kaneko, 2005, 2006). In rock-like materials, this phenomenon

has been recognized as viscoelastic and viscoplastic deformation (Fabre and Pellet, 2006;

Sterpi and Gioda, 2009; Yang et al., 2014; Zhou et al., 2015a; Liu and Shao, 2017). Ac-

cording to previous studies (Sterpi and Gioda, 2009; Zhao et al., 2017), the irrecoverable

viscoplastic deformation should be the main responsible for the time-dependent delayed

failure of rock engineering structures. Moreover, in many rocks, the viscoplastic defor-

mation is intimately coupled with the growth of cracks. The macroscopic plastic and vis-

coplastic deformation can be partially related to the frictional sliding along micro-crack

surfaces (Zhao et al., 2016; Shi et al., 2019; Hu et al., 2020). The viscoplastic deformation
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GENERAL INTRODUCTION

can be enhanced by the induced growth of cracks while the cracking process is affected

by the creep deformation of materials.

In addition, these materials usually contain the pores inside which are filled with water

and air. Due to desiccation or saturation, the pressure of fluids in pores can be changed.

Generally, this change of the pore pressure could induce the development of microcracks

of these porous media. In literature, the hydraulic cracks have been observed in various

experiment (Li et al., 2020a).

On the other hand, the damage localization makes the boundary values problems ill-

posed. Therefore, several critical issues should be handled in modeling of damage and

cracking of rock and concrete like materials, including the unilateral effects due to crack

opening-closure, the damage-friction coupling, the time-dependent irreversible deforma-

tion, the hydro-mechanical damage coupling, the transition from diffuse damage to local-

ized cracks and the regularization of damage localization problems.

During several decades, a large number of phenomenological damage models have

been proposed for different types of engineering materials including rocks and concrete.

Most of them were formulated in the framework of thermodynamics, by adopting a scalar

internal variable for isotropic damage (Jefferson and Mihai, 2015; Chen et al., 2015;

He et al., 2015) or tensorial variables for anisotropic damage (Voyiadjis et al., 2008;

Desmorat, 2016; Zafati and Richard, 2019). Different techniques, such as the spectral

decomposition of stress, strain or free energy function, have been introduced in order to

consider the dissymmetric behavior between tension and compression in rock like materi-

als. Unilateral effects have also been considered in many studies (Halm and Dragon, 1996;

He et al., 2015). The emphasis was the continuity of mechanical responses at the crack

opening-closure transition (Cormery and Welemane, 2002; Alliche, 2016). In some stud-

ies, the coupling between damage and frictional sliding was also taken into account (Halm

and Dragon, 1998). This is particularly important for unloading-reloading paths and

cyclic loading (Richard and Ragueneau, 2013; Vassaux et al., 2015; Zafati and Richard,

2019). In those phenomenological models, the links between macroscopic behavior and

microscopic evolution of cracks are not explicitly established. To complete and improve

the macroscopic approaches, a series of micro-mechanical models have been developed

by using different homogenization schemes. With these micro-mechanical approaches,

the unilateral effects can be easily taken into account, in particular for anisotropic dam-

age (Zhu et al., 2011). The coupling between crack evolution and frictional sliding is also
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GENERAL INTRODUCTION

more rigorously described (Gambarotta, 2004; Zhu and Shao, 2015; Zhu et al., 2016).

Despite of the significant advances, the description of transition from diffuse damage to

localized cracks remains an open challenge. In some micro-mechanical models, the au-

thors have tried to include localized cracks in the representative volume element (Zhao

et al., 2018a). However, the efficiency of such models for complex loading conditions

remains questionable.

Moreover, different types of numerical methods have been developed. It is not the

objective to give an exhaustive review of all those methods. In framework of continuum

mechanics, two principal categories of approaches are available. In the first one, cracks

are considered as strain or damage localization bands without explicitly considering dis-

placement discontinuities across cracks. The bifurcation theory is widely used as the

onset criterion of strain localization in plastic materials (Rudnicki and Rice, 1975). High

order strain gradient models (De Borst and Mühlhaus, 1992; Chambon et al., 2001) and

non-local damage models (Pijaudier-Cabot and Bažant, 1987; Jirásek and Patzák, 2002)

have been proposed to regularize the ill-posed boundary values problems in the post-

localization regime, respectively for plastic and brittle materials. In the second category,

displacement discontinuities across cracks are explicitly taken into account. Among dif-

ferent types of numerical methods, we mention here two widely used ones. The enriched

finite element method (EFEM) introduces specific shape functions being able to repre-

sent discontinuous displacement field at the elementary level (Oliver, 1996). On the other

hand, the extended finite element method (XFEM) employs nodal enrichment techniques

to incorporate displacement discontinuities (Moës et al., 1999). The extended finite el-

ement method has been extended to modeling hydraulic fracturing in saturated porous

rocks (Zeng et al., 2020). It has also coupled with the meshfree method in order to easily

consider fluid flow through opened cracks (Rabczuk et al., 2010). However, it is a general

weak point of continuum mechanics approaches to describe fluid flow through individual

cracks. In order to overcome this issue, different types of discrete approaches have been

proposed. As examples, we only mention here the cracking particle method (Rabczuk and

Belytschko, 2004) and the dual-horizon peridynamics model (Ren et al., 2016b; Rabczuk

and Ren, 2017). In case of multiple cracks in three-dimensional problems, a very impor-

tant computing effort is necessary.

In spite of these significant advances obtained, the transition from diffuse damage

(micro-cracks) to localized macroscopic cracks remains an open issue. In order to com-
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plete and improve the previous methods to deal with this critical issue, the so-called phase

field method has been proposed and it is more and more applied to various engineering

problems (Miehe et al., 2010a; Borden et al., 2012; Ambati et al., 2015). This method

was initially based on the revisited brittle fracture mechanics model proposed by Franc-

fort and Marigo (1998), which was numerically implemented by Bourdin et al. (2000).

This model was also inspired by the elliptic regularization method proposed by Ambrosio

and Tortorelli (1990) of the functional in image segmentation problems formulated by

Mumford and Shah (1989). With the help of an auxiliary damage variable, sharp cracks

surfaces are approximated by a volumetric crack surface density which is a function of

damage variable and its gradient. The main advantage of the phase field method is its abil-

ity to describe the continuous transition from diffuse damage to localized cracks. There

is no need to introduce a specific criterion to detect the onset of new cracks. It can also be

easily applied to multiple cracks in three-dimensional problems.

Some extensions of the phase field method have been proposed to modeling mixed

cracks in rock-like materials under compressive stresses (Amor et al., 2009; Zhou et al.,

2019b). In some works (Zhang et al., 2017), two energy functionals were used to respec-

tively control the evolution of tensile and shear cracks. A kinematic-consistent phase-field

model has been proposed for mixed-mode cracks in anisotropic rocks (Bryant and Sun,

2018). More recently, a number of phase-field models have incorporated the coupling

between plastic deformation and damage evolution (Miehe et al., 2015a; Borden et al.,

2016; Choo and Sun, 2018; Samaniego et al., 2021; Khalil et al., 2022). The specific is-

sues related to friction in geological materials have also been investigated (Fei and Choo,

2020a,b; Yu et al., 2021a). However, these models are usually devoted to a specific cate-

gory of cracks or loading conditions.

In view of the dynamic cracking analysis, explicit phase field models were also re-

ported (Ren et al., 2019). In addition, a deep neural network (DNN) based solution for

solving phase-field fracture was proposed by (Goswami et al., 2020), which totally avoids

a classical discretization to solve the underlying coupled partial differential equations.

Despite all these advances, only few studies have been devoted to time-dependent frac-

turing in viscoplastic rocks (Shen et al., 2019). However, as the main limitation of phase-

field method, the propagation of sharp cracks is approximated by the growth of damage

field and onset of localized damage bands. Consequently, the time-dependent cracking

process is described by the time-dependent evolution of damage field coupled with the
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viscoplastic flow.

Another advantage of the phase field method is its flexibility to deal with multi-

physical coupling problems. For example, it has been used for modeling hydraulic fractur-

ing (Bourdin et al., 2012; Wheeler et al., 2014). Some authors (Miehe and Mauthe, 2016)

have introduced a constitutive balance equation for a regularized crack surface and its

modular linkage to a Darcy-Biot-type bulk response of hydro-poro-elastic media. Some

recent works have been performed on hydraulic fracturing in saturated geological mate-

rials (Zhou et al., 2020; Zhuang et al., 2020). A few studies have also been devoted to

modeling of cracking processes in partially saturated porous media by considering capil-

lary forces (Cajuhi et al., 2018; Heider and Sun, 2020).

From the point of view of engineering application, the occurrence of landslides is

inherently related to material failure. According to the previous survey (Haque et al.,

2019), during two decades (1995-2014), 3876 landslides happened all over the world,

and caused 163658 deaths and 11689 injuries in total.

One important cause of landslides is rainfall, especially in tropical areas with hot and

humid climates (Tohari et al., 2007; Tsai et al., 2008; Frattini et al., 2009). Without giv-

ing an exhaustive review of the large number of previous studies devoted to landslides,

the emphasis is here put on the rainfall induced catastrophe (Chen et al., 2021; Shou and

Chen, 2021; Thirard et al., 2022). Based on the rainfall-induced landslides data, a variety

of empirical models have been proposed to predict the occurrence of such catastrophes

(McDonnell, 1990; Knighton, 1998). However, the hydromechanical coupling and the

progressive cracking process are generally not properly considered in those empirical

models (Zhang et al., 2005b; Kukemilks et al., 2018; Cho, 2020). Hence, in classical

methods, the consequence of rainfall is considered by taking into account the variation of

groundwater level. However, in most shallow failure cases, there is not much evidence of

the groundwater table change (Fourie et al., 1999). The failure process is mostly linked to

the propagation of a wetting front, resulting in the decrease of suction and shear strength

of partially saturated soils and rocks (Fredlund and Rahardjo, 1993; Rahardjo et al., 1995;

Fourie, 1996). Therefore, rainfall-induced failure processes should be studied by consid-

ering full hydro-mechanical coupling (Chang et al., 2021; Sun et al., 2021).

On the other hand, instability and failure of rock slope and natural systems can also

be caused by time-dependent crack growth and viscoplastic deformation. For instance,

many catastrophic landslides were induced by the accumulation of creep deformation and
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slow crack propagation and localization (Dramis et al., 2002; Morelli et al., 2018). Before

the final failure, a gradual increase of deformation over time was monitored in a number

of typical landslides (Tavenas and Leroueil, 1981; Intrieri et al., 2019). For instance,

landslide of a natural slope caused by tunnel excavation was reported in (Yashima, 2001).

In that accident, the slope failure occurred a few days after an arriving entrance of the

tunnel was cut through. Progressive failure was clearly observed while no evidence of

rainfall or underground water movement could be monitored (Zhang et al., 2005a). In

many cases, natural hazards should be analyzed as evolutionary processes by taking into

account time-dependent mechanical behavior of geological formations Eker and Aydın

(2021), in particular creep deformation and slow growth of cracks. The widely used

limit equilibrium methods mainly focused on ultimate instability mechanisms and do not

considered progressive failure processes involved.

In order to complete the limit analysis methods and provide a finer description of nat-

ural hazards, numerical modeling is now widely used for analyzing landslides and for de-

veloping suitable mitigation techniques (Rahimi et al., 2011; Ren et al., 2016a; Gao et al.,

2017). Compared with theoretical solutions and experimental investigations (Ling et al.,

2009; Wu, 2015; Irfan et al., 2017), numerical approaches are able incorporate complex

loading and environmental conditions (Wang et al., 2019a). However, the performance

of numerical modeling for landslides is dependent not only on the thorough examination

of geological conditions (Li et al., 2018), but also on the correct description of physical

behavior of soils and rocks (Zhang et al., 2015; Cheng et al., 2018; Lin et al., 2018).

Therefore, This thesis will be composed as following:

In Chapter 1, the state of the art in line with the purpose of this thesis is presented.

Firstly, a brief introduction to the background and motivations will be given. Then, dif-

ferent numerical methods in literature are reviewed regarding their abilities for simulating

fracture propagation and damaged materials. Finally, a review focuses on phase-field

method of fracture to provide the reader with the concepts at the base of the present work.

In Chapter 2, a phase-field method is applied to modeling damage and cracking in

rock-like materials by considering spatial variability of materials heterogeneities. The

formulation of phase-field method is first summarized for elastic brittle materials. The

effective elastic properties of rocks are determined as functions of mineral compositions

by using a linear homogenization method. The randomly distribution of mineral inclu-

sions is assumed to follow the Weibull distribution. A series of five numerical specimens
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are chosen to investigate the onset and propagation of localized cracks. Comparisons be-

tween numerical results and experimental data are also presented for overall stress-strain

responses.

In Chapter 3, we shall develop a novel phase-field model for modeling complex crack-

ing processes in rock like materials under various loading paths. Both smooth frictionless

and rough frictional cracks are investigated. For smooth cracks, an elastic-damage model

is formulated with the unilateral effect on elastic stiffness tensor at the crack opening-

closure transition. For rough cracks, an elastic-plastic damage model is developed, also

incorporating the unilateral effect. In particular, for closed rough cracks, the damage

evolution is explicitly coupled with the frictional sliding along cracks, which results in

the macroscopic plastic deformation. The continuity conditions are verified for all energy

functions, stress-strain relations and conjugated thermodynamics forces. By incorporating

the friction sliding mechanism, the proposed model is able to properly take into account

the dependency of mechanical behavior on confining stress of most geological materials

under compressive stresses. The efficiency of the novel model is assessed through various

cases, including comparisons between numerical results and experimental observations.

In Chapter 4, two main mechanisms are generally considered, the progressive growth

of cracks and viscoelastic and/or viscoplastic deformation. For this purpose, cracking

process is described by a viscous phase-field method which is coupled with a viscoplastic

model. The evolution of crack field is controlled by both elastic and viscoplastic tensile

volumetric and deviatoric strains. The threshold of viscoplastic deformation is weakened

by the growth of cracks. The efficiency of the proposed model is assessed by comparing

numerical predictions with experimental data in triaxial compression and creep tests.

In Chapter 5, we first present a new phase-field model for modeling the deforma-

tion and progressive failure in saturated and unsaturated porous rocks. Two independent

damage variables are used to conveniently capture tensile, shear and mixed cracks. The

influences of frictional shear stress and normal stress on the evolution of shear cracks

are taken into account. The phase-field model is extended to variably saturated porous

rocks by including the effect of pore water pressure. The proposed model is implemented

in the framework of finite element method for coupled hydro-mechanical and damage

problems. The phase field model is able to describe global stress-strain responses and

localized cracking patterns in brittle rocks at the laboratory scale. The onset of local-

ized cracks is directly linked to the non-uniform distribution of porosity. The proposed
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phase-field model is also applied to the analysis of drying-induced cracking.

In Chapter 6, the three new phase-field models are used to analyze the slope stability

and landslide under different conditions. First of all, the phase-field method consider-

ing the damage-friction coupling is employed to instability analysis of slope. Then, the

proposed phase-field model for partially saturated pores media is applied to the analysis

of rainfall-induced landslides. The numerical results of cracking scenarios are consistent

with the real field observations in the Mayanpo slope in China. The main physical mecha-

nisms involved in the rainfall induced instability of slopes are analyzed. Last but not least,

the model coupling with viscoplastic is applied to modeling time-dependent deformation

and failure process of a high slope section in the left bank of Jinping-I hydropower station

in China. Numerical predictions are compared with field measurements.

Finally, some conclusion remarks are drawn and the perspectives are presented.
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CHAPTER 1

State of the Art

1 Background and motivations

As the most common materials in civil engineering, rock-like materials (e.g. concrete

and rocks) play an important role in stability of civil engineering structures. Furthermore,

it has been observed both in laboratory tests and in situ monitoring of existing geotech-

nical and civil engineering structures that rock-like materials failure is mainly caused by

onset and propagation of fracture and cracks (seeing Figure 1.1). Consequently, the frac-

ture or cracking of rock-like materials has received lots of attention for a long time.

On the other hand, it is almost impossible to solve fracture mechanics problems using

analytical tools (Mandal, 2021). Accordingly, numerical modeling of the cracking process

in rock-like materials and civil engineering structure is of formidable interest, due to the

important development of computer technology. Moreover, it also requires insights into

understanding the underlying physical phenomena of fracture processes to enhance the

accuracy and the predictiveness of computational cracking models. In addition, failure of

rock-like materials in civil engineering structures may be caused not only by mechanical

loading, but also by hydraulic, thermal, chemical perturbations and even time-dependent

irreversible deformations. However, even though many theories and models have been

developed, predictive modeling of the crack initiation and propagation in materials and

structures remains one of the most significant challenges in solid mechanics.
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§1. Background and motivations CHAPTER 1

(a) Microcracks in SEM im-
age (Luo et al., 2015)

(b) Microcracks observed in
dying sample (Wong et al.,
2009)

(c) Cracks in rock-like disk
specimens (Cao et al., 2019)

(d) Cracks reconstruction after landslides (Fan et al., 2017)

Figure 1.1: Cracks in civil engineering problems at different scales

More recently, new numerical modeling of cracking process, named as phase-field

method, has attracted more and more interests (Bourdin et al., 2000; Miehe et al., 2010a;

Borden et al., 2012; Ambati et al., 2015). The main advantage of the phase field method

is its ability to describe the continuous transition from diffuse damage to localized cracks.

There is no need to introduce a specific criterion to detect the onset of new cracks. It can

also be easily applied to multiple cracks in three-dimensional problems.

In the above background, the motivations of this thesis are listed as follows:

• Introduce the basic formulation of phase-field method for simulating the onset and

propagation of cracks in elastic brittle materials and apply this method in consider-

ing spatial variability of materials heterogeneities;

• Develop a novel phase-field model for modeling complex cracking processes in

rock like materials for both smooth frictionless and rough frictional cracks based

on micro-mechanics;
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• Proposed a time-dependent phase-field model which can describe both the progres-

sive growth of cracks and viscoelastic and/or viscoplastic deformation;

• Establish the phase-field model for modeling the deformation and progressive fail-

ure in saturated and unsaturated porous rocks;

• Present the example for applications of the proposed phase-field models into stabil-

ity analysis of civil engineering structure, such as landslides.

2 Literature review on modeling of damage and cracks

One of powerful theories to model fracture is continuum damage mechanics (CDM)

(Kachanov, 1958). This approach looks at the overall response at the macro or structural

scale by using some internal variables to characterize damage, and thus can be termed as

“macro-damage mechanics”. During last decades, numerous phenomenological models

have been proposed based on continuum damage mechanics to take into account of the

initiate and propagation of fracture in rock-like materials. Despite the wealthy studies

about phenomenological damage models, this approach exhibits some theoretical short-

comings.

Micro-mechanics based models as the alternative approach have gained a strong im-

petus for the capability in relating the macroscopic behaviors of the material to its mi-

crostructure characteristics and local properties (Zhu and Shao, 2017). However, further

efforts for these micro-mechanics based models are still needed to describe the continuous

transition from diffuse damage (micro-cracks) to macro-cracks in the form of localized

damage bands.

On the other hand, many numerical simulation methods for crack propagation have

been developed in the recent decades, but each faces well-known issues and drawbacks,

as presented in the following.

2.1 Continuum damage models

The concept of damage mechanics was first proposed by Kachanov (1958). He intro-

duced the concept of continuity factor which he called damage index or integrity, defined

as the ratio of the differential intact area element to the original area element, and the con-
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cept of effective stress to describe low stress brittle creep damage in the study of metal

creep, and gave the evolution equation of integrity:

ψ̇ = B(
σ

ψ
)ν = Bσ̄ν (1.1)

where ψ denotes the continuity variable,B and ν are material parameters, σ represents the

Cauchy stress and σ̄ is the effective stress, which is the net stress acting on the undamaged

area.

Rabotnov et al. (1970) then defined the concept of damage factor D = 1−ψ and cou-

pled the damage variable with stress to form the Kachanov-Rabotnov constitutive equa-

tions:

˙εcr = A(
σ

1−D
)n (1.2)

Ḋ = B
σν

(1−D)µ
(1.3)

where εcr is creep strain, A and n are the Norton power law constants and µ is the tertiary

creep-damage constant.

Kachanov and Rabotnov’s works laid the basis of Damage Mechanics or Continuum

Damage Mechanics. Since then, these concepts have been further enriched by Lemaitre

(1985), Murakami (1988), Hult (1974), Hayhurst (1972) and other researchers (Chaboche,

1988; Chow and Wang, 1987; Ju, 1990; Gurson, 1977) by employing the method of con-

tinuum mechanics to further extend the damage as a field variable, and gradually been

formed into the discipline of Continuum Damage Mechanics (CDM). This theory has

been extended from the initial creep damage to the analysis of elastic, plastic, brittle, fa-

tigue and other damage phenomena, and its description of materials has been extended

from metals to rocks, ceramics, composites and other non-metallic materials.

The first application of CDM to rock-like materials can be found in Burt and Dougill

(1977). Then, Dragon and Mróz (1979) applied the damage concept to propose an elasto-

plastic constitutive equation for rocks and concrete that reflects strain softening; Krajci-

novic and Silva (1982) used thermodynamic theory to conduct a more comprehensive and

in-depth study of the constitutive equation for brittle rocks, achieving remarkable results;

Costin (1985) explored the damage characteristics of rocks and other materials after dam-

age and its mechanical description; Lemaitre (1986) proposed a stress-strain relationship

using the concept of equivalent strain. Many researchers have applied Continuum Damage
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Mechanics to rock-like materials from different viewpoints and developed corresponding

theories and models (Frantziskonis and Desai, 1987; Cai and Horii, 1993; Murakami,

1988; Chaboche, 1988; Ju and Chen, 1994; Homand-Etienne et al., 1998; Dragon et al.,

2000; Zhang and Cai, 2010), thus enriching and improving the research on Continuum

Damage Mechanics of rock-like materials.

The models commonly used in the brittle rock-like materials include those models

proposed by Løland (1980), Mazars (1986), Krajcinovic and Fonseka (1981), Murakami

and Kamiya (1997), etc. The main advantage of these models is that they provide clear and

intuitive macroscopic damage equations, which are easy to implement programmatically

and convenient to use in practical engineering. However, their disadvantages are also

obvious, as some of the concepts and parameters in the models do not have clear physical

meaning, lack of theoretical support, and cannot clarify the morphology and variation of

the damage from the microstructure level. Therefore, it is difficult to study the damage at

the microscopic level. At the same time, most of the macroscopic models are focused on

describing the damage caused by tensile stresses, and tests have shown that these models

cannot correctly describe the high pressure sensitivity of brittle materials such as rocks

(Lu and Shao, 2002).

2.2 Micro-mechanical damage models

On the other hand, Gurson (1977) developed the first micro-mechanical damage model

to describe the pores in materials . As the alternative approach, micro-mechanics based

models have gained a strong impetus for the capability in relating the macroscopic be-

haviors of the material to its microstructure characteristics and local properties (Paliwal

and Ramesh, 2008; Zhou et al., 2010; Xie et al., 2011; Zhu and Shao, 2017). The micro-

mechanics damage is a method to understand the essence and mechanism of material

damage by studying the physical process of the evolution of the microstructure and to

derive the macroscopic properties of materials with the help of certain homogenization

schemes. The commonly used schemes are sparse scheme (Kinoshita and Mura, 1971),

Mori-Tanaka scheme (Mori and Tanaka, 1973), self-consistent scheme (Budiansky and

O’connell, 1976; Horii and Nemat-Nasser, 1983) and differential scheme (Hashin, 1988;

Zimmerman, 1991), etc.

Compared with other damage mechanics models, the micro-mechanical damage mod-
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els have a clear physical significance of the damage variables, which can reveal the micro-

damage mechanism of rock-like materials more accurately and reflect the main macro-

mechanical deformation behavior of rock-like materials. As an example, Zhu et al. (2011)

have derived a micromechanics thermodynamic formulation involving microcrack open-

ing–closure transition based on Eshelby’s solution. Particularly, the constitutive formu-

lations (Zhu and Shao, 2015; Zhu et al., 2016) coupling the crack growth and frictional

sliding have been proposed in micro-mechanics based approaches. By taking into ac-

count the unilateral effect due to micro-cracks opening-closure and the damage evolution

driving by friction sliding, these micromechanical models established a more physically

relationship between microscopic structure and macroscopic mechanical responses. Shen

and Shao (2017) have developed a complete elastic-plastic model with the determination

of a particular plastic hardening law and plastic potential on the basis of the analytical

macroscopic yield criteria derived with a nonlinear homogenization approach (Shen et al.,

2015). In the framework of irreversible thermodynamics, (Hu et al., 2020) have proposed

an elastoplastic damage model based on micro-mechanics. Time-dependent deformation

of rock was also taken into consideration by taking into account the subcritical develop-

ment of microcracks. The developed model is then applied in the deformation analysis of

the Jinping I hydropower station’s left bank slope.

However, for the reason that highly concentrated strain bands or damage zones has

been used to represent the localized cracks with strong discontinuities (Zhao et al., 2018a),

further efforts are still needed to describe the continuous transition from diffuse damage

(micro-cracks) to macro-cracks in the form of localized damage bands. At the same

time, due to the complexity of micro-mechanical damage models, some of the model

parameters are difficult to determine through conventional experiments, and the numerical

computation is relatively cumbersome, its engineering application value still needs further

research.

2.3 Numerical modeling of damage and cracks

Due to the rapid advancement of computer technology, numerical simulations are now

routinely employed to solve complicated practical problems in engineering and research.

In the field of materials science, numerical simulation is an effective method for validat-

ing analytical models, explaining physical phenomena, and providing significant insights
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for experimental studies, where displacement discontinuities across cracks are explicitly

taken into account. Many powerful computational approaches for studying brittle frac-

ture have been developed in the last decades, each one has its advantages and drawbacks.

Without giving an exhaustive list of all those methods, we mention here several methods

that are widely used.

2.3.1 Extended Finite Element Method (XFEM)

The Extended Finite Element Method (XFEM) is a numerical computational method

based on the idea of partition unity-based method (PUFEM), which is an important im-

provement of the traditional finite element method (FEM). The basic idea of this method

is to represent the strong and weak discontinuities in the computational domain by the

expanded form function basis with discontinuity, which has been developed rapidly since

it was proposed by Professor Belytschko and his team at Northwestern University in 1999

(Belytschko and Black, 1999), and its most important feature is that the crack expansion

path is not affected by the finite element meshing, which means the crack expansion pro-

cess can be reproduced visually. XFEM inherits all the features and advantages of FEM,

while overcoming the difficulty of high-density meshing in the high stress and deforma-

tion concentration zone at the crack tip.

The fractures in the XFEM approach are characterized separately of the mesh by in-

serting discontinuous enrichment functions at nodes. Two types of enrichment functions

may be used in this method: one for nodes of cracked elements to create the strong dis-

continuity (K set in Figure 1.2), and another for nodes of elements containing a crack tip

to add singular terms (J set in Figure 1.2). At the same time, on the basis of Belytschko

and Black (1999), Moës et al. (1999) introduced the Heavside function to strengthen the

nodes at the crack surface, which is used to solve the problem of discontinuity of the dis-

placement field at the crack surface, the displacement function is approximated as follows

uh =
∑
i∈I

uiNi +
∑
j∈J

bjNjH(x) +
∑
k∈K

Nk(
n∑
l=1

clkFl(x)) (1.4)

where u is the displacement, I is the set of all nodes, N is the enrichment function, J is

the set of crack-enriched nodes, H(x) is the Heaviside function and K is the set of nodes

enriched by the crack tip functions Fl(x); b and c are vectors of additional degrees of
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freedom.

Figure 1.2: Enriched nodes in XFEM method for tracking crack

Among the numerous applications and enhancements of XFEM, expansions such as

non-planar 3D crack formation (Moës et al., 2002; Gravouil et al., 2002; Sukumar et al.,

2003), bi-materials (Liu et al., 2004), dynamic cracks and shear band propagation (Song

et al., 2006) can be highlighted. More recent works can be found in (Wang, 2015; Agathos

et al., 2019; Tan et al., 2021). XFEM is a good choice for fixed fracture and interface

problems, however, the use of XFEM to model problems with multiple cracks remains

limited due to its cumbersomeness to deal with high amount of discontinuity (Zi et al.,

2007).

2.3.2 Embedded Finite Element Method (EFEM)

As one of the important improved methods on the basis of the traditional finite el-

ement method, same with XFEM, EFEM allows arbitrary propagation and resolution of

discontinuities independently of the underlying spatial discretization. However, they have

completely different theoretical foundations and are generally considered to be two un-

related approaches (Jirásek and Belytschko, 2002; Borja, 2008; Oliver et al., 2006; Dias-

da-Costa et al., 2010). In EFEM, the enrichment parameters, which are normally thought

of as element-wise local variables, are eliminated at the element level via static condensa-

tion, whereas in XFEM they are associated with nodes in the global sense (see Figure 1.3).

The approximated displacement field for EFEM can be written as follows:

uh =
∑
i∈I

Ni(x)ui(t) +
∑
e∈Ec

[HS(x)− fh(x)]eqe(t) (1.5)

in which Ec is the set of cracked elements, qe(t) is the displacement jump within the

corresponding element, HS is the Heaviside function with respect to the discontinuity
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surface S, and the support domain for the terms in square brackets is the corresponding

element.

Figure 1.3: Representation of a element-based enrichment (left) and a nodal enrichment
(right) (Oliver et al., 2006)

The fundamental notion was inspired initially by Ortiz (1985) and Xu and Needleman

(1994), who enhanced the standard finite element by incorporating one weak disconti-

nuity. Then, Belytschko et al. (1988) proposed a model in which two weak discontinu-

ities form a softening band. Models with strong discontinuities were quickly proposed

(Dvorkin et al., 1990; Simo et al., 1993). In the early developments (Simo and Rifai,

1990; Oliver, 1996; Armero and Garikipati, 1996; Wells and Sluys, 2000; Borja, 2000;

Jirásek, 2000; Oliver et al., 2002), EFEM usually deals with with quasi-static problems.

Huespe et al. (2006) expanded EFEM with a cohesive model to simulate dynamic frac-

ture. Armero and Linder (2009) proposed a model with strong discontinuities and linear

interpolations of displacement jumps. Saksala et al. (2015) employed EFEM and the rate

dependency of tensile strength to characterize the rate-dependent behavior of materials.

By using the so-called static condensation procedure (Wilson, 1974), EFEM is partic-

ularly suitable for applications where multiple cracks occur. However, other drawbacks

of EFEM are the strong grid dependence due to the lack of continuity of the displacement

field between the two elements and the lack of convergence of the solution as the mesh

size varies, which leads to unexpected approximation errors (Oliver et al., 2006; Wu et al.,

2015).

2.3.3 Peridynamics (PD)

In 2000, Silling (2000) proposed a theory of Peridynamics (PD), which overcomes the

dependence of Classical Continuum Mechanics on computational meshes by describing
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the constitutive relations of materials through spatial integral equations. Its nonlocal core

concept can be considered as a continuum version of Molecular Dynamics and relates it

to Classical Continuum Mechanics (see Figure 1.4).

Figure 1.4: Relationship among local model, non-local model and molecular dynamics

In PD, the material model is discretized into material points, and the state of each

material point x is effected jointly by all material points within a region Hx of finite

radius δ, as shown in Figure 1.5(a). According to the Newton’s law, the PD equation of

motion at a material point x and the time t is given as (Silling and Askari, 2005):

ρ(x)ü(x, t) =

∫
Hx

f(x,x′,u(x, t),u(x′, t))dVx′ + b(x, t) (1.6)

where ρ is the density of material, u represents the displacement of material point, f is

the force density between two material points, V and b is the volume and body force

density of material point respectively.

(a) (b)

Figure 1.5: (a) Function of the force state in Peridynamics; (b) Crack initiation and
propagation
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PD enables the modeling of material damage through the irreversible breakage of

bonds between material points, which is determined by the extension of the bonds (see

Figure 1.5(b)). By treating material fracture as part of the PD constitutive equations,

cracks are allowed to initiate and propagate naturally as the simulated material moves

from continuity to discontinuity without the necessity of specifying crack propagation

paths and introducing external criteria.

With its distinctive advantages in solving discontinuity problems such as crack exten-

sion, material damage, and structural instability, PD is widely used in many fields, includ-

ing damage of macro-fine materials such as composites (Kilic et al., 2009), concrete (Ger-

stle et al., 2007), crystalline materials (Sun and Sundararaghavan, 2014), and ice (Wang

et al., 2018), physical processes such as heat conduction (Bobaru and Duangpanya, 2012)

and chemical corrosion (Rokkam et al., 2018), and multi-physical field coupled phenom-

ena such as thermo-mechanical coupling (Wang et al., 2019b) and chemical-mechanical

coupling (Rokkam et al., 2019). PD is also used extensively in rock-like materials. As an

example, Zhou et al. (2015b) investigated the brittle damage of rock-like materials using

the bond-based PD model, by simulating the notched semicircular bending test and the

tensile-shear damage mode of rock with multiple initial fractures, respectively, demon-

strated the applicability of PD in describing the failure process of rock-like materials.

Although PD theory has outstanding advantages in dealing with discontinuous prob-

lems and the simulation range from microscopic to macroscopic, its solution efficiency

is low due to the computational capacity of the computer, especially when it comes to

the actual engineering problem size. In dealing with continuity problems, its solution

efficiency is not as good as that of Finite Elements Method.

3 Review of variational phase-field methods

In spite of significant advances obtained, the transition from diffuse damage (micro-

cracks) to localized macroscopic cracks remains an open issue. In order to complete and

improve the previous methods to deal with this critical issue, the so-called phase field

method has been proposed. This method was initially based on the revisited brittle frac-

ture mechanics model proposed by Francfort and Marigo (1998), which was numerically

implemented by Bourdin et al. (2000). The name for this method, "phase-field", was

first coined in Proceedings in Applied Mathematics and Mechanics by Kuhn and Müller
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(2008) and their follow up journal paper (Kuhn and Müller, 2010). Over the last dozen

years, researchers made a huge effort to develop novel, efficient, and accurate phase-field

models and achieved enormous progress (Miehe et al., 2010a; Ambati et al., 2015; Heider,

2021; Diehl et al., 2022; Zhuang et al., 2022).

3.1 Regularization of sharp cracks

An important ingredient of phase-field method relies on a regularized description of

the discontinuities related to sharp cracks. From mathematical viewpoint, it is a challenge

to regularize the sharp cracks due to the lower-dimensional manifold of the cracks. In

order to overcome this difficulty, the regularization method in phase-field model was ini-

tially inspired by the elliptic regularization method proposed by Ambrosio and Tortorelli

(1990) of the functional in image segmentation problems formulated by Mumford and

Shah (1989).

As shown in Figure 1.6, the evolution of sharp crack surface area is approximated by

that of a regularized crack surface density function, which depends on an auxiliary phase-

field (d ∈ [0, 1]) variable and its gradient. One of the most important features of this

regularization process is the parameter ld which defines an internal length controlling the

transition zone. As the internal length parameter ld tending to 0, the phase-field should

convergence to a sharp interface of true discontinuities. Additionally, the dependence of

gradient-damage can result in the phase-field method providing a non-local approach to

describe the continuous transition from diffuse damage (micro-cracks) to macro-cracks in

the form of localized damage bands. In other words, it dose not require any prescription

about the shape geometry and allow crack nucleation and branching automatically.

Figure 1.6: Schematic presentation of regularized crack topology
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Various phase field models chose the regularized crack surface density function dif-

ferently. Without loss of generality, a generic form for the crack surface density function

has been proposed (Wu, 2017):

Γd(d,∇d) =
1

c0

[
1

ld
α(d) + ld|∇d|2

]
(1.7)

where α(d) describes the distribution of the smeared cracks, and α(d) ∈ [0, 1] for ∀d ∈
[0, 1]. While the scaling parameter c0 = 4

∫ 1

0
[α(d)]

1
2 dd is introduced such that the sharp

crack surface is recovered for a fully softened crack. For better understanding the phase-

field regularization of the sharp crack topology, the profile of the diffused damaged normal

to the crack in 1D is usually defined by (Hun, 2020):

d(x) = Argmin
(∫

Ω

Γd(d,∇d)dΩ
)

(1.8)

In Table 1.1, three commonly mathematical forms of geometric crack functions α(d)

and the corresponding crack profile d(x) are available. And these regularization cracks

are illustrated in Figure 1.7.

As Figure 1.7(a) shows, the quadratic geometric crack function α(d) = d2 (Bourdin

et al., 2000) and its linear counterpart α(d) = d (Pham et al., 2011) result in a localization

bandwidth of an infinite support and of a finite one 4l0, respectively. While the geometric

crack function α(d) = 2d − d2 used for PF-CZM (Wu, 2017) describes a sinusoidal

distribution of the crack profile with a finite bandwidth πl0. As a consequent, it is essential

to choose an appropriate parameter ld for a correct simulation of phase-field (Nguyen

et al., 2016).

From a numerical point of view, the case of α(d) = d2 renders the phase-field problem

satisfying the admissible range 0 ≤ d ≤ 1 intrinsically. In addition, only the case of

α(d) = d2 in Figure 1.7(b) ensure a local minimum at d = 0 which means that the

unbroken state of the materials without mechanical strains is a minimizer of the total

energy.
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Table 1.1
Three commonly used geometric crack functions

α(d) c0 d(x) Authors

d 8/3
(
1− |x|

2ld

)2 Pham et al. (2011)

d2 2.0 exp
(
− |x|

ld

)
Bourdin et al. (2000)

2d− d2 π 1− sin
( |x|
ld

)
Wu (2017)

Pham	et	al.		(2011)
Bourdin	et	al.	(2000)
Wu	(2017)

d(
x)

0

0.2

0.4
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0.8

1

x/ld
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(a) 1D crack profile

α(d)	=	d
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(b) crack geometric functions

Figure 1.7: Plots of different geometric functions and corresponding crack profile in 1D

3.2 Energy decomposition with unilateral effect

In standard phase-field method (Bourdin et al., 2000), the total undamaged free en-

ergy density function ψ0 has been degraded by a degradation functional g(d) which will

be discussed in Section 3.3. However, this method can not distinguish the asymmetric

tensile and compression behavior, which is not realistic for brittle and quasi-brittle frac-

ture (Wu et al., 2020b). In addition, it can not account for the unilateral effect induced

by microcracks opening-closure (Zhu et al., 2011; Zafati and Richard, 2019) during the

cycle loading. In view of these problems, several methods for special decomposition of

the bulk energy density have been proposed over last years.

22



CHAPTER 1 STATE OF THE ART

3.2.1 Model of Lancioni and Royer-Carfagni (2009)

Only the "deviatoric-type fracture" is taken into account in model of Lancioni and

Royer-Carfagni (2009). In view of this, the total undamaged free energy density has been

split into a deviatoric part and a volumetric part:
ψ0(ε, d) = g(d)w+(ε) + w−(ε)

w−(ε) =
1

2
κ0[tr(ε)]2

w+(ε) = µ0εdev : εdev

(1.9)

in which κ0 and µ0 represent the bulk and shear moduli of undamaged materials. More-

over, the elastic strain tensor is decomposed into a spherical part and a deviatoric part:εsph =
1

3
tr(ε)I

εdev = ε− εsph

(1.10)

Then, this model introduces damage for the positive part of energy density (the deviatoric

part) only, while the spherical one does not induce damage.

This model has been used to reproduce fracture paths similar to that observed in situ

of the French Panthéon (Lancioni and Royer-Carfagni, 2009), one of the most famous

historical monuments in Paris. However, this model prevent the onset and propagation

of tensile cracks completely, which is not realistic for rock-like materials under complex

loading conditions.

3.2.2 Model of Amor et al. (2009)

In order to overcome the disadvantage of model proposed by Lancioni and Royer-

Carfagni (2009), Amor et al. (2009) introduced a new decomposition based on the volumetric-

deviatoric split of the strain tensor. In this model, not only the deviatoric can induce the

initiate and propagation of cracks, but also the expansion part of the volumetric part. To

be specifically:
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ψ(ε, d) = w−(ε) + g(d)w+(ε)

w−(ε) = κ0
[⟨tr(ε)⟩−]2

2

w+(ε) = κ0
[⟨tr(ε)⟩+]2

2
+ µ0εdev : εdev

(1.11)

where the bracket ⟨x⟩± denote ⟨x⟩+ = (x+ |x|)/2 and ⟨x⟩− = (x− |x|)/2.

It could be noticed that this model introduces damage for the hydrostatic expansion

(the positive volume strain) and the deviatoric strain, while the hydrostatic compression

does not induce damage. Although it could distinguish the tensile cracks and compressive

shear cracks. It could not describe the dissymmetry in mechanical behavior between

tension and compression. More details about this model can be found in Chapter 2.

3.2.3 Model of Miehe et al. (2010a)

On the other hand, Miehe et al. (2010a) introduced another spectral decomposition of

the strain tensor in view of the problem for the unilateral constraint in material degrada-

tion. In this model, the strain tensor has been split into positive part and negative part as

following: 

ε = ε+ + ε−

ε+ =
D∑
i=1

⟨εi⟩+ni ⊗ ni

ε− =
D∑
i=1

⟨εi⟩−ni ⊗ ni

(1.12)

in which D = 2 or 3 is the dimension of the considering problem. εi and ni represent the

eigenvalues and the corresponding eigenvectors of the strain tensor ε, respectively. Note

that the positive and negative strain tensors are orthogonal in the Frobenius norm (Wu and

Cervera, 2018). To be specifically, it means ε+ : ε− = 0.

Accordingly, the energy decomposition can be expressed as follow:
ψ(ε, d) = w−(ε) + g(d)w+(ε)

w−(ε) =
1

2
λ0[tr(ε−)]2 + µ0ε− : ε−

w+(ε) =
1

2
λ0[tr(ε+)]2 + µ0ε+ : ε+

(1.13)
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As a result, this model prevent the compression cracks completely.

3.2.4 Model of Zhang et al. (2020)

Similar with the model proposed by Miehe et al. (2010a) where the positive/negative

projection (PNP) was employed on strain tensor, a new decomposition of strain energy

based on the PNP of stress tensor was introduced by Zhang et al. (2020). In this method,

the stress tensor of unbroken material is split into the positive (tensile) part and the nega-

tive (compression) part using its eigenvalues σi and the corresponding eigenvectors ni:

σ = σ+ + σ−

σ+ =
D∑
i=1

⟨σi⟩+ni ⊗ ni

σ− =
D∑
i=1

⟨σi⟩−ni ⊗ ni

(1.14)

Again, the decomposition of stress tensor can meet the orthogonal condition σ+ : σ− =

0.

Then, the decomposition of energy ensures that only tensile stress induces the damage

rather than the compression stress:
ψ(ε, d) = g(d)w+(ε) + w−(ε)

w+(ε) =
1

2
σ+ : ε

w−(ε) =
1

2
σ− : ε

(1.15)

Compared with the strain tensor decomposition as that used in Miehe et al. (2010a),

the stress decomposition avoids the implication of elastic parameters. Thus, one of the

advantages is that the stress decomposition is suitable to incorporate fluid pressure effect

on crack propagation in porous media. The details of this decomposition will be presented

in Chapter 5.
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3.3 Degradation functionals

The energy degradation functionals in phase-field method describe the smooth tran-

sition of materials from intact state to totally broken one. For this reason, it plays an

important role in governing the non-linear behavior in the post-peak stage. Therefore, the

degradation function used in phase-field method should not violate the following condi-

tions:

• g(0) = 1 to ensure the initial intact state of materials;

• g(1) = 0 to guarantee the totally damaged state of materials;

• g′(1) = 0 to prevent the infinite value of stress when completely broken occurs;

• g′(d) ≤ 0 (d ∈ [0, 1]) to promise the monotonous decrease from the intact state to

cracking one.

During the past decades, various energy degradation functions satisfying these con-

ditions have been introduced in literature (Bourdin et al., 2000; Pham et al., 2011; Kuhn

et al., 2015). By replacing an exhaustive list of available degradation functions, several

commonly used ones are presented in Table 1.2, and the corresponding curves are pre-

sented in Figure 1.8. The effects of different choice of these degradation functions have

been studied in Kuhn et al. (2015). It is found that they mainly control the localization

macroscopic cracks in the material response before the onset for a phase-field model.

Table 1.2
Commonly used energy degradation functions

g(d) Order Authors

(1− d)2 Quadratic Bourdin et al. (2000)

3(1− d)2 − 2(1− d)3 Cubic Kuhn et al. (2015)

4(1− d)3 − 3(1− d)4 Quartic Karma et al. (2001)
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Figure 1.8: Plots of different energy degradation functions

It should be noticed that the degradation functions above usually induce the ill-posed

boundary values problems in the post-localization regime during the numerical modeling.

Thus, it usually introduces a small positive parameter in the degradation function. For

example in Amor et al. (2009), a so-called residual stiffness kl ∼ 10−4 has been used

g(d) = (1− d)2 + kl. The similar solution can be found in many other literature (Borden

et al., 2016; Lorentz, 2017; Yu et al., 2021a) for this purpose.

3.4 Advantages of phase-field method

Comparing with some other numerical methods, the phase-field method as an inno-

vation technique to model transition of diffuse damage to localization cracks has several

crucial advantages as illustrated in following. These features are also the reason why we

choose the phase-field method in this thesis.

• The derivation of governing equations for phase-field method is only based on en-

ergy minimization. Therefore, the it serves as a non-local approach to model the

cracks nucleation, growth and coalescence automatically without any predefined

crack path;

• Due to its variational structure, the phase-field can incorporate multi-field physics

problems naturally, for example, coupling with hydro-mechanics;
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• The phase-field problem defined with the first-order damage gradient can be solved

with classical finite elements, without modifying existing codes;

• It also has been proved that the phase-field can deal with arbitrary geometrical con-

figurations of crack networks both in 2D (Nguyen et al., 2016) and 3D (Wu et al.,

2021).
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CHAPTER 2

Modeling of damage and cracking in heteroge-
neous rock-like materials by phase-field method

1 Introduction

In this chapter, the phase-field model based on the volumetric-deviatoric split of strain

tensor (Amor et al., 2009), which could distinguish the tensile cracks and compressive

shear cracks in rock-like materials very well, is first summarized. The implementation of

this elastic-brittle phase-field model in finite element method framework is also presented.

Then, in order to take into account of the material heterogeneity, the effective elastic

properties of the rock are first determined as functions of its mineral compositions by us-

ing a linear homogenization method. In the recent work (Hun et al., 2019), a stochastic

multi-scale modeling has been proposed for crack propagation in random heterogeneous

media. Inspired by that approach, the inclusion phase is assumed to be randomly dis-

tributed in the matrix phase. The onset and propagation of localized cracks are described

by using the phase-field method for elastic materials. Five different types of random dis-

tributions of inclusions are considered, and their effects on localized cracking patterns are

investigated and discussed.
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2 Summary of the phase field method

2.1 Regularized crack surface density function

We consider a solid material occupying the volumetric domain Ω ⊂ R, containing

a number of cracks. Instead of tracing those individual cracks, which is a difficult task,

a density function is introduced to represent the area of crack surfaces per unit volume

(Miehe et al., 2010a). For this purpose, an auxiliary variable, d(x) ∈ [0, 1], is used to

define the material state, such as d = 0 for the sound state and d = 1 for the fully cracked

state. The physical meaning of d is equivalent to that of the scalar damage variable of

the classical continuum damage mechanics. With this approach, discontinuous cracks are

approximated by highly concentrated damage zones where d is close to 1. The damage

localization leads to the ill-poseness of evolution problems and induces the suspicious

mesh dependency. In order to regularized the damage localization problem, a non local

formulation is adopted. The cracks surface density function is expressed as a function of

both the damage variable d and its gradient ∇d. Therefore, the total area of regularized

cracks in Ω is given by :

AΓd
=

∫
Ω

Γd(d,∇d)dV (2.1)

Γd(d,∇d) denotes the crack surface density function. Different mathematical forms of

Γd(d,∇d) are available (Bourdin et al., 2000; Pham et al., 2011; Wu, 2017). The follow-

ing widely used one in Bourdin et al. (2000) is adopted here:

Γd(d,∇d) =
d2

2ld
+
ld
2
|∇d|2 (2.2)

The parameter ld > 0 defines a length scale which controls the width of damage localiza-

tion bands seen as regularized cracks. In addition, without incorporating reactive healing

process, the damage is considered as a fully irreversible process such as ḋ ≥ 0. Hence,

the evolution rate of crack surface area is non-negative:

ȦΓd
=

d
dt

∫
Ω

Γd(d,∇d)dV =

∫
Ω

Γ̇ddV ≥ 0 (2.3)

with:

Γ̇d =
( d
ld

)
ḋ+ ld∇d · ∇ḋ ≥ 0 (2.4)
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2.2 Total energy functional

The emphasis of this chapter is put on elastic solid materials exhibiting progressive

cracking process. For this purpose, based on the variational principle for fracture mechan-

ics (Francfort and Marigo, 1998), the total energy functional is composed of two parts,

the stored (or locked) energy and that used for the propagation of cracks. Namely, the

following general form is adopted (Amor et al., 2009; Nguyen et al., 2015):

E(u, d) =

∫
Ω

ψ(ε(u), d)dΩ +

∫
Ω

gcΓd(d,∇d)dΩ (2.5)

ψ(ε(u), d) defines the stored energy density which is a function of the displacement field

u(x) and the damage field d(x). ε(u) denotes the linear strain tensor given by ε(u) =
1
2
[∇u + ∇Tu] under the assumption of small strains. The parameter gc is the critical

energy rate and defines the quantity of energy used for the creation of unit crack surface.

The mechanical properties of materials are generally affected by the induced cracks.

We consider first the case of an elastic material containing open cracks or frictionless

closed cracks in this chapter. Thus, the stored energy is fully represented by the elastic

strain energy of cracked material. As the elastic stiffness can be progressively affected by

the cracks, the elastic strain energy should also be a function of damage field. However,

the deterioration of elastic stiffness depends on the opening state of cracks. Limiting our

study to isotropic materials here, for open cracks, both the bulk and shear moduli are de-

graded by damage. For closed frictionless cracks, only the shear modulus is deteriorated

by damage while the bulk modulus remains intact. This unilateral contact condition is

taken into account in our phase field model. For this purpose, a simple crack closure cri-

terion is introduced and it is easy for numerical implementation. We assume that cracks

are open if the accumulated volumetric strain is positive (tensile); else cracks are seen as

closed. Based on these conditions and assumptions, the elastic strain energy density is

defined as follows: 
ψ(ε, d) = g(d)w+(ε) + w−(ε)

w−(ε) = κ0
[⟨tr(ε)⟩−]2

2

w+(ε) = κ0
[⟨tr(ε)⟩+]2

2
+ µ0εdev : εdev

(2.6)
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where κ0 is the bulk modulus and µ0 the shear modulus of undamaged materials. The

bracket ⟨x⟩± denote ⟨x⟩+ = (x+ |x|)/2 and ⟨x⟩− = (x−|x|)/2. εdev = ε− 1
3
tr(ε)I is the

deviatoric strain tensor, with I being the second rank unit tensor. The function g(d) defines

the degradation of elastic moduli by damage. Among different available expressions, a

widely used expression is here adopted such as g(d) = (1 − kl)(1 − d)2 + kl (Amor

et al., 2009; Yu et al., 2021a). The small positive value 0 < kl ≪ 1 is added to avoid

the full vanishing of elastic moduli when d tends to 1. This may cause some numerical

singularity. The advantage of this expression is to keep g′(d) = 2(1− kl)(1− d) = 0 for

d = 1 and g(d) = 1 for d = 0.

The stress-strain relations of cracked material can be easily obtained by the standard

differentiation of the stored energy. One gets:

σ =
∂ψ(ε, d)

∂ε
= κ0

[
⟨tr(ε)⟩−

]
I+ g(d)

[
κ0
[
⟨tr(ε)⟩+

]
I+ 2µ0εdev

]
(2.7)

σ denotes the Cauchy stress tensor.

2.3 Governing equations and evolution of damage field

We consider that the solid body Ω is subjected to the body force b(x) and to the

traction vector t(x) on its boundary ∂Ωt. The governing equations of the displacement

(strain) and damage evolution problems can be established by the following minimization

of the potential function (Francfort and Marigo, 1998; Alessi et al., 2015; Li et al., 2020b):

Π̇(u̇, ḋ) = Ė(u̇, ḋ)−
∫
Ω

b · u̇dΩ−
∫
∂Ωt

t · u̇dA = 0 (2.8)

By taking into account the expression of E(u, d) in Equations (2.5) and (2.6), the cracks

density function in Equation (2.4), the constitutive relations σ = ∂ψ
∂ε

, and the kinematic

relations ε(u) = 1
2
[∇u+∇Tu], the minimization of the potential energy function can be
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written the following general form respectively for frictionless cracks:

Π̇(u̇, ḋ) =

∫
Ω

−
[
div(σ) + b

]
· u̇dV +

∫
∂Ω

[
σ · n− t

]
· u̇dA

+

∫
Ω

[
− ∂ψ(ε, d)

∂d
+
gc
ld
d− gcld∆d

]
· ḋdV

+

∫
∂Ω

[
gcld∇d · n

]
· ḋdA = 0 , ∀Ω

(2.9)

The minimization condition should be verified for ∀u̇ and ∀ḋ, one gets the local balances

equations of the stress tensor:div(σ) + b = 0 in Ω

σ · n = t on ∂Ω
(2.10)

Similarly, the local governing equations of damage evolution are given by:
∂ψ(ε, d)

∂d
− gc
ld
d+ gclddiv(∇d) = 0 in Ω

∇d · n = 0 on ∂Ω

(2.11)

In addition, the damage evolution is here considered as a fully irreversible process with

ḋ ≥ 0. In order to ensure this irreversibility condition, the concept of energy history

function introduced in (Miehe et al., 2010a; Nguyen et al., 2015) is here adopted. Substi-

tuting the derivative of ψ(ε, d) given in Equation (2.6) for Equation (2.10), the governing

equation of d is modified to:

2(1− d)H− gc
[ d
ld

− lddiv(∇d)
]
= 0 (2.12)

The energy function H satisfies the following Karush-Kuhn-Tucker conditions for a gen-

eral loading path:

w+ −H ≤ 0, Ḣ ≥ 0, Ḣ[w+ −H] = 0 (2.13)

For the simplicity, the following form meet the above conditions is adopted:

H(t) = max
τ∈[0,t]

[w+(τ)] (2.14)
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3 Numerical implementation

The phase-field evolution is coupled with the displacement (stress) field solution. Both

problems are here solved by using the classical finite element method. The main steps of

numerical implementation are outlined in this section.

3.1 Weak form

By using the standard Galerkin procedure with the test functions δu for the displace-

ment field and δd for the damage field, the local governing equations are transformed into

the weak integral forms (Miehe et al., 2010b; Mandal et al., 2021):∫
Ω

σ : ∇(δu)dΩ =

∫
Ω

b · δudΩ +

∫
∂Ωt

t · δudS (2.15)

∫
Ω

[
(gc ld + 2H)δd · d+ gcld∇(δd) : ∇(d)

]
dΩ =

∫
Ω

δd · 2HdΩ (2.16)

3.2 Geometrical discretization

The computational structure domain Ω is divided into ne elements which are defined

by np nodes. The target here is to determine, at each loading step, the nodal values of

displacement components denoted by the vector U and those of phase-field variable by

d. Classically, the displacement and damage fields are approximated in terms of their

nodal values by using suitable shape functions. Their gradient functions are accordingly

calculated:
u(x) = Nu(x)U

e d(x) = N d(x)d
e

ε(x) = Bu(x)U
e ∇d(x) = Bd(x)d

e
(2.17)

where Nu(x), Bu(x) and N d(x), Bd(x) are the matrices of shape functions and their

derivatives for the displacement and damage fields, respectively. For the sake of simplic-

ity, the same shape functions are usually used for both fields and their test ones. More

details can be found in previous works (Miehe et al., 2010b; Nguyen et al., 2015; Mandal

et al., 2021). With the geometrical discretization and elementary approximation presented

above, the weak form integrals Equations (2.15) and (2.16) are transformed into two sys-
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tems of discrete equations: KuU = F ext
u

Kdd = F d

(2.18)

Ku and Kd are the global stiffness matrices, F ext
u , F d the global nodal forces vectors,

respectively for the displacement and damage fields:
Ku =

∫
Ω

[
BT
uC(d)Bu

]
dΩ

F ext
u =

∫
Ω

[
NT

u · b
]
dΩ +

∫
∂Ω

[
NT

u · t
]
dS

(2.19)

and 
Kd =

∫
Ω

[(
gc
ld

+ 2Hn+1

)
NT

dN d + gcldB
T
dBd

]
dV

F d =

∫
Ω

2Hn+1N
T
d dV

(2.20)

Here, C(d) denotes the elastic stiffness tensor of damaged material and it is given by:

C(d) = r−e k0I⊗ I+ g(d)[r+e k0I⊗ I+ 2µ0(I−
1

3
I⊗ I)] (2.21)

I is the fourth-order symmetric identity tensor. The coefficients r±e = 1
2
{sign[±tr(εe)]+1}

describe the fact that the bulk modulus k is affected by open cracks (r+e = 1 and r−e =0) but

not affected by closed shear cracks (r+e = 0 and r−e =1).

3.3 Staged coupling algorithm

It is worth noticing that the displacement (and stress) and cracking evolution prob-

lems are strongly coupled. Indeed, the displacement (stress) evolution is affected by the

damage process. For instance, the elastic stiffness tensor and viscoplastic threshold are

functions of damage variable. Inversely, the damage evolution is driven by the mechanical

field through the stored elastic and viscoplastic energy. Therefore, both problems should

be solved in a coupled way. However, it is demonstrated that the energy history functional

H(t) given in Equation (2.20) is non-convex with respect to the couple of unknowns (u,

d) (Bourdin et al., 2000, 2008). As a consequence, it is difficult to solve the systems of

coupled equations Equation (2.18) by using the conventional Newton-Raphson procedure.
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However, the functional H(t) is convex with respect to one of two unknowns (u or d),

if the other one is fixed. In general, the so-called alternating minimization (AM) solver

proposed in (Bourdin et al., 2000, 2008), which is the most robust solver among various

phase-field solutions (Zhuang et al., 2022), is widely used and adopted here. In the AM

solver, two solution steps are successively performed at the kth iteration of a specific load-

ing step n+ 1. This is summarized as shown in Algorithm 1. According to Ambati et al.

(2015), a convergence tolerance is taken as ϵ = 1× 10−5.

Algorithm 1: An alternating minimization solution for coupled displacement

damage problem

1 for each successive loading step n+ 1 do
2 Initialzation: u(0)

n+1 = un, d(0)
n+1 = dn, iter = 0, err = 1

3 while err > tol and iter < max_iter do // tol = 1× 10−5

4 iter = iter + 1 // iteration count

5

6 Compute displacement field u
(iter)
n+1 with fixed phase-field d

(iter−1)
n+1 :

7 Set: Ku =
∫
Ω

[
BT
uC(

(iter−1)
n+1 )Bu

]
dΩ

8 Solve: Kuu
(iter)
n+1 = F ext

u

9

10 Compute phase-field d
(iter)
n+1 with fixed displacement field u

(iter)
n+1 :

11 Set: Hn+1 = Hn+1(u
(iter)
n+1 )

12 Solve: Kdd
(iter)
n+1 = F d

13

14 err = ∥d(iter)
n+1 − d

(iter−1)
n+1 ∥

15 end
16 Update: un+1 = u

(iter)
n+1 , dn+1 = d

(iter)
n+1

17 end

4 Microstructure and properties of Beishan granite

Most rock-like materials contain different types of heterogeneities such as mineral

grains and pores at different scales. The initiation and propagation of cracks in these
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materials are inherently influenced by the presence of such heterogeneities. For instance,

cracks may easily initiate at interfaces between mineral grains and matrix or around void

surfaces. For this reason, the influence of spatial distribution of mineral grains and pores

on mechanical properties of rock-like materials is considered.

4.1 Microstructure of Beishan granite

We consider here a typical brittle rock, the granite from Beishan area (Gansu Province,

China) which is investigated in China as a potential host rock for geological disposal of

radioactive waste. The mineralogical compositions and basic mechanical behavior of this

rock have been reported in previous studies, for instance (Zhao et al., 2013, 2014; Chen

et al., 2015; Zhou et al., 2019a). In particular, some quantitative mineralogical compo-

sition analyses have been conducted using the X-ray diffraction method. As an average

estimation, the granite is mainly composed of 13.55 % alkali feldspar, 33.65% plagio-

clase, 31.10% quartz, 20.05% mica, and 1.65% clay minerals. At the microscopic level,

the phases of alkali feldspar, plagioclase and mica constitute a cemented matrix phase.

The quartz grains are scattered in that matrix. Therefore, as the first approximation, the

representative volume element (RVE) of the granite is seen as a matrix-inclusion sys-

tem. One denotes V , Vi and Vm respectively as the total volume of RVE, the volume of

inclusions and that of matrix. Thus, the volume fraction of inclusions f is calculated by:

f =
Vi
V

=
Vi

Vi + Vm
(2.22)

4.2 Effective elastic properties

The effective elastic properties of Beishan granite are determined by using a linear

homogenization method. Due to the matrix-inclusion morphology adopted, it is conve-

nient to apply the Mori-Tanaka scheme (Mori and Tanaka, 1973). With the assumption

isotropic materials, the homogenized effective bulk and shear moduli, denoted as khom

and µhom, are given by:

κhom =

1∑
r=0

fr
κr

3κr+4µ0

1∑
r=0

fr
3κr+4µ0

, µhom =

1∑
r=0

fr
µr

µ0(9κ0+8µ0)+6µr(κ0+2µ0)

1∑
r=0

fr
µ0(9κ0+8µ0)+6µr(κ0+2µ0)

(2.23)
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where fr is the volume fraction of the rth phase, and kr and µr being its bulk and shear

moduli. k0 and µ0 are the bulk and shear moduli of the matrix phase. In practice, the

elastic properties of different minerals involved in the granite can be found in the existing

literature, see for instance (Rumble, 2017).

4.3 Description of heterogeneity of the materials

As given above, the macroscopic elastic properties of granite are explicitly expressed

as functions of mineral compositions. As those mineral compositions may vary in space,

the elastic properties of granite can also vary in space inside a tested sample and a struc-

ture. The spatial variability of elastic properties will affect the onset and propagation of

localized cracks. In the recent work (Hun et al., 2019), random micro-structures were gen-

erated by Monte-Carlo realizations and the elastic properties fields at the mesoscopic scale

were determined by using a moving-window homogenization method. A non-Gaussian

distribution was proposed for the variability of elastic tensor. Inspired by that, in the

present study, we assume also a random distribution of the volumetric fraction f of in-

clusions, for instance quartz grains, by using the standard Weibull distribution function

(Tang et al., 2000):

Φ(f) =
mi

f̄

(f
f̄

)mi−1exp
[
−
(f
f̄

)mi
]

(2.24)

where f is the volume fraction of quartz grains; f̄ is the scale parameter of the distribution

which is usually estimated as the mean of the random variable; mi is the homogeneity in-

dex of the material. According to the definition, a larger value of mi implies a stronger

material homogeneity with respect to the considered parameter, for instance the volume

fraction of quartz grains. In Figure 2.1, some examples of probability density and cumu-

lative probability for different values of mi are illustrated. It is noticed that the critical

fracture energy gc should also depend on the randomness of micro-structural and exhibits

a spatial variability. But at the stage of the present study, for the sake of simplicity, only

the variability of elastic properties is considered, and that of gc will included in future

studies.
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Figure 2.1: Probability density and cumulative probability for the distribution of volume
fraction of quartz grains with different values of homogeneity index mi

5 Numerical assessment

In this section, five numerical specimens with different spatial distributions of quartz

grains volume fraction are considered, respectively obtained by using five values of het-

erogeneity indices (mi =1.1, 1.5, 2, 5, 10). The specimen geometry is 50× 100mm and

discretized into 100× 200 (20 000) elements for numerical study of mechanical behavior.

The input elastic parameters are as follows: Young’s moduli of quartz grains and matrix

Ei = 101GPa and Em = 18.4GPa and Poisson’s ratios νi = 0.06 and νm = 0.122.

The average volume fraction of quartz inclusion is f̄ = 31.1%. The length scale param-

eter of regularized cracks is taken as ld = 0.5mm. The critical fracture energy gc is a

key parameter in the phase-field modeling. According to extensive experimental results

(Evans et al., 1990; Wong and Baud, 2012), rock-like materials exhibit a transition from

brittle to ductile failure with the increase of confining stress. On the other hand, by de-

veloping a micro-mechanical modeling of rocks with a homogenization technique (Hu

et al., 2018; Zhao et al., 2018b), it was found that the brittle-ductile transition can be re-

lated to the increase of the local frictional coefficient of closed micro-crack surface with

confining stress. Inspired by these previous studies, in this study, the brittle-ductile tran-

sition is indirectly taken into account by considering that the value of gc increases with

confining stress. However, it is not easy to determine the variation of gc directly from ex-

perimental measurements. As an indirect method, the values of gc are fitted from the peak

differential stresses obtained in triaxial compression tests with the confining stress rang-
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ing from 5 to 30 MPa. It is found that the following empirical relation can be identified:

gc = gc0e
ς(σc/σr), with gc0 = 2.6 × 10−3kN/mm, ς = 0.0467; σc denotes the confining

stress while σr = 1MPa is a fixed normalizing coefficient. To avoid the singularity of

elastic stiffness tensor of damaged material when d → 1, the stability parameter is taken

as kl = 1× 10−5. In Figure 2.2, one shows the spatial distributions of the volume friction

of quartz inclusions and the corresponding macroscopic Young’s modulus obtained by

using the homogenization method Equation (2.23).

(a) distributions of the volume friction of quartz inclusions

(b) corresponding macroscopic elastic modulus

Figure 2.2: Spatial distributions of quartz volume fraction obtained by five values of
mi and corresponding macroscopic elastic modulus, with an average volume fraction of
quartz of β = 31.1%

5.1 Global stress-strain curves

With the numerical specimens (or realizations of micro-structure) generated above,

the mechanical behavior of Beishan granite is now investigated under conventional triaxial

compression tests with different confining stresses. We shall first investigate the influence

of confining stress. Therefore, we adopt a single realization of micro-structure with mi =

10. This one represents a quite uniform distribution of quartz inclusions as shown on the
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last column in Figure 2.2. Using this micro-structure, the global axial stress-strain curves

obtained by phase-field simulations are presented in Figure 2.3 for five different tests, and

compared with the experimental data reported in (Zhou et al., 2019a) (unfortunately, only

axial strains are available). It seems that the elastic phase-field model well describes the

basic mechanical response of granite in both the pre- and post-peak regimes. The effect

of confining pressure on the peak strength is also well captured.

On the other hand, in order to evaluate the influence of micro-structure randomness

on the global mechanical responses, numerical simulations are performed on five differ-

ent realizations shown in Figure 2.2 for the test with a confining stress of 5MPa. The

predicted axial stress-strain curves are given in Figure 2.3(b). It can be seen that the

global stress-strain responses are influenced by the type of microstructure. In particu-

lar, the peak strength is lower when the material heterogeneity is stronger (low value of

mi). This seems logic because the material heterogeneity should enhance the initiation of

micro-cracks.
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(a) Results for the specimen with mi = 10
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Figure 2.3: Axial stress-strain curves for different values of confining pressure and ma-
terial heterogeneity index: comparisons between numerical results and experimental data

5.2 Effects of heterogeneity on failure pattern

In Figure 2.4, one shows the patterns of localized cracks obtained in five numerical

samples with different distributions of quartz inclusions in triaxial compression test of

5MPa confining pressure. It is found that the cracking pattern is clearly influenced by the

material heterogeneity. However, it is not easy to provide a clear quantitative correlation

between the cracking pattern and material heterogeneity. According to the experimental

study reported in (Zhou et al., 2019a), the main fracture in the tested samples was oriented

at an angle of 80◦ with the horizontal axis. In the numerical results, the main crack in

different samples is rather inclined with an angle of 45◦. This result seems to suggest

that the failure of the numerical specimens is mainly caused by the shear strain energy

as defined in Equation (2.6). The use of another form of stored energy involved in the

evolution of phase-field variable should improve the orientation prediction of localized

cracks. Furthermore, it is worth noticing that in most previous studies, a weak element

was generally introduced in mesh in order to facilitate the onset of localized cracking.

In the present study, the onset of crack localization is naturally driven by the material

heterogeneity without needing to use any weak element.
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Figure 2.4: Cracking patterns obtained in five numerical specimens in triaxial compres-
sion test of 5MPa confining pressure

In order to investigate the progressive evolution of cracking process, the distributions

of phase-field variable (or crack surface density) are presented in Figure 2.5 at five se-

lected loading steps during a triaxial compression test with a confining pressure of 5MPa.

When the differential stress reaches the peak value, the crack density remains relatively

moderate and is clearly less than 1. The crack density increases and the cracking localiza-

tion accelerates very rapidly in the post-peak regime. An inclined single localized crack

is formed and crosses the whole sample in an orientation of 45◦.
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Figure 2.5: Crack density evolution and localized cracking pattern in the specimen with
mi =10 and in a triaxial compression test of 5MPa confining pressure

Furthermore, in order to better understand the energy origin of crack evolution, the

respective contributions of the expansion part κ0
[⟨tr(ε)⟩+]2

2
and the shear part µ0εdev : εdev

of the driving force given in Equation (2.6) are calculated at the loading steps (a) and

(b) as indicated in Figure 2.5. Their distributions along the localized crack length are

presented in Figure 2.6, together with the value of gc. It is seen that the shear strain energy

is the dominating part to drive the initiation and propagation of cracks. For instance,

at the loading step (a) corresponding to the peak point, the maximum value of shear

strain energy approaches to the critical fracture energy gc while the expansion energy

remains close to 0. Then at the loading (b), the shear strain energy along the whole

localized crack exceeds the critical fracture energy, whereas the expansion energy does

not evolve. Further, due to the material heterogeneity, the distribution of strain energy

along the localized crack is not uniform. Therefore, the onset of localized cracking is a

progressive process in the sample.
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Figure 2.6: Distribution of expansion and shear strain energy parts along localized crack

6 Conclusion

In this chapter, a phase-field method considering the unilateral effect on elastic stiff-

ness tensor at the smooth crack opening-closure transition has been summarized firstly.

Next, the implementation of this phase-field model in finite element framework has been

introduced. Then, it has been applied to modeling the transition from diffuse micro-cracks

to localized macroscopic cracks by taking into account material heterogeneities. By using

the standard Weibull distribution function, the spatial variation of mineral compositions

in a typical brittle rock has been taken into account. With the help of linear homogeniza-

tion method, the spatial variation of macroscopic elastic properties of the rock have been

described as functions of mineral compositions. A series of triaxial compression tests

have been investigated on heterogeneous numerical samples with different distributions

of elastic properties. It is found that in the brittle rock studied, the localization of cracking

starts around the peak strength state and accelerates in the post-peak regime. The pattern

of localized cracks is directly influenced by the spatial heterogeneity of elastic properties

of the rock. No artificial weak element is needed to capture the onset of crack localization.

Under conventional triaxial compression tests, the shear strain energy is the dominating

driving force of the evolution and propagation of cracks. The generation of a localized

crack is a progressive process.
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CHAPTER 3

A novel phase-field model for mixed cracks in
elastic-plastic materials incorporating unilateral
effect and friction sliding

1 Introduction

In this chapter, a novel phase field model is developed and it is devoted to a very wide

range of cracks and loading paths. Three critical issues are consistently addressed, includ-

ing smooth and rough cracks, the crack opening-closure unilateral effects, and the cou-

pling between crack growth and frictional sliding. The new model is formulated in a rig-

orous thermodynamics framework and inspired by some micro-mechanical results on the

frictional sliding mechanism (Peng and Johnson, 1972; Palmer et al., 1973; Gambarotta,

2004; Zhu et al., 2016). This chapter is organized as follows. The energy functionals for

cracked materials are first formulated for both smooth and rough cracks under open and

closed conditions. The related constitutive relations are also established. The evolutions

laws of damage and frictional sliding are then deduced from the minimization of potential

energy functions for the different crack situations. The proposed model is implemented

in a standard finite element method framework by adopting an efficient alternating min-

imization algorithm. The performance of the novel model is assessed through different

loading scenarios ranging from material point to structural scale.
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2 Phase-field Formulation of frictional cracks with uni-

lateral condition

2.1 Regularized crack surface description

Similar with Chapter 2, a solid material occupying the volumetric domain Ω ⊂ R,

containing a number of cracks, has been considered in this chapter again. Therefore, the

auxiliary variable, d(x) ∈ [0, 1], is used to regularize the damage localization problem

and the estimation of total area of regularized cracks in Ω by Equation (2.1) is adopted

here:

AΓd
=

∫
Ω

Γd(d,∇d)dV (3.1)

2.2 Energy functionals

Geological materials are often subjected to compressive stress. Thus most cracks are

closed. In addition, crack surfaces in such materials are not smooth but rough. Under

compressive non-hydrostatic stresses, there is a frictional sliding along rough crack sur-

faces. Due to the local friction, the sliding is not elastic reversible and only activated

when the applied shear stress reaches certain threshold. At the macroscopic scale, one

obtains irreversible strains, conventionally called as plastic strains. Therefore, from this

physical point of view, the frictional sliding along cracks is the microscopic mechanism

of macroscopic plastic deformation in rock and concrete like materials. At the same time,

when frictional cracks are closed, the elastic sliding is locked. As a consequence, the

macroscopic elastic shear modulus is no more affected by damage.

Based on the previous analysis, the macroscopic strain tensor ε is conveniently de-

composed into an elastic part εe and a plastic part εpl. And the classical additive form is

adopted, that is:

ε = εe + εpl (3.2)

Accordingly, the total stored energy ψ in Equation (2.5) should take the stored (or

locked) energy due to the frictional sliding into consideration, besides of the elastic strain

energy. Consequently, the following general form for the total energy functional E of
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solid in Ω is adopted:

E(u, d) =

∫
Ω

ψ(εe, εpl, d)dΩ +

∫
Ω

gcΓd(d,∇d)dΩ (3.3)

On the other hand, as the elastic moduli are not affected by damage for the closed

frictional cracks, the elastic strain energy is independent of damage variable d. The stored

energy is physically related to the plastic hardening process. For the sake of simplicity,

we assume that the locked plastic energy is a quadratic function of deviatoric plastic strain

only (Lanoye et al., 2013). Further, the kinetics of frictional sliding is coupled with the

damage evolution. Thus, for closed rough cracks, the total stored energy can be written

in the following form:

ψ(εe, εpl, d) = ψe(εe) + ψp(εpl, d),

ψe(εe) =
κ0
2
[tr(εe)]2 + µ0ε

e
dev : ε

e
dev,

ψp(εpl, d) = β(d)µ0ε
pl
dev : ε

pl
dev

(3.4)

εedev and εpldev are respectively the elastic and plastic deviatoric strain tensors. The scalar

values function β(d) is introduced to describe the coupling between damage evolution and

frictional sliding, as suggested by micro-mechanical considerations (Gambarotta, 2004;

Zhu et al., 2008).

Under general loading conditions, there is transition from open to closed cracks and

inversely. It is needed to define a general expression of total stored energy function for

both open and closed cracks. It is obviously that for open cracks, there is no frictional

sliding induced plastic deformation. Only the elastic strain energy is stored. For closed

frictional cracks, the stored energy is previously defined by the function Equation (3.4).

Moreover, with the help of the pure deviatoric plastic deformation (tr(εpl) = 0), it is

convenient to take the same opening-closure criterion as that for frictionless cracks, that

is tr(εpl) = 0. Therefore, one obtains the following expression of total stored energy
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density function for frictional rough cracks:

ψ(εe, εpl, d) =


g(d)

[
κ0

[tr(ε)]2

2
+ µ0εdev : εdev

]
, if tr(ε) > 0

κ0
2

[
tr(ε)− tr(εpl)

]2
+ µ0(εdev − εpldev) : (εdev − εpldev)

+ β(d)µ0ε
pl
dev : ε

pl
dev, if tr(ε) ≤ 0

(3.5)

Here, the degradation function g(d) = (1− kl)(1− d)2 + kl used in Chapter 2 is adopted.

The stress-strain relations of cracked material derived from the stored energy function

as follows:

σ =
∂ψ(εe, εpl, d)

∂ε

=


g(d)

[
κ0tr(ε)I+ 2µ0εdev

]
if tr(ε) > 0

κ0

[
tr(ε)− tr(εpl)

]
I+ 2µ0

(
εdev − εpldev

)
if tr(ε) ≤ 0

(3.6)

As for the frictionless cracks, the crucial issue here is to insure the full continuity of

energy, stresses and strains at the crack opening-closure transition point. It is obviously

the stress in Equation (3.6) is continuous for all set (ε, εpl, d) with tr(ε) ̸= 0. It is then

needed to ensure the continuity of stress in Equation (3.6) for those set (ε, εpl, d) at the

crack opening-closure transition point with tr(ε) = 0. For this purpose, the following

condition has to be met: tr(εpl) = 0

εpldev =
[
1− g(d)

]
εdev

(3.7)

Likewise, the continuity of the total stored energy function in Equation (3.5) has also to be

verified for all cases with d ̸= 0. This requires the following special form of the coupled

coefficient β(d):

β(d) =
g(d)

1− g(d)
(3.8)

It is interesting to notice that with the degradation function adopted g(d) = (1− kl)(1−
d)2 + kl, the coupling coefficient β(d) is a decreasing function of the damage variable

d. This means that the coupling between damage evolution and frictional sliding is very

strongly at the earlier stage of damage. But closing to fully cracked state, the coupling
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effect progressively vanishes. It is worth noticing that as g(d = 0) = 1, the value of β(d)

is infinite if d = 0. This causes a numerical singularity. In general, this is avoided if the

damage process is activated before the frictional sliding. If this is not the case, a small

initial value of damage can be assigned.

2.3 Governing equations and evolution laws

By taking in account the body force b(x) and the traction vector t(x) on the boundary

∂Ωt of the solid body Ω, the problems can be solved (Francfort and Marigo, 1998; Alessi

et al., 2015; Li et al., 2020b) by minimizing the following potential function:

Π̇(u̇, ḋ) = Ė(u̇, ḋ)−
∫
Ω

b · u̇dΩ−
∫
∂Ωt

t · u̇dA = 0 (3.9)

By taking into account the expression of E(u, d) in Equations (3.3) and (3.5), the cracks

density function in Equation (2.4), the constitutive relations σ = ∂ψ
∂ε

, and the kinematic

relations ε(u) = 1
2
[∇u+∇Tu], the minimization of the potential energy function can be

written the following general form for frictional rough cracks:

Π̇(u̇, ḋ) =

∫
Ω

−
[
div(σ) + b

]
· u̇dV +

∫
∂Ω

[
σ · n− t

]
· u̇dA+

∫
Ω

−Fpl · ε̇pldV

+

∫
Ω

[
−Fd +

gc
ld
d− gcld∆d

]
· ḋdV +

∫
∂Ω

[
gcld∇d · n

]
· ḋdA , ∀Ω

(3.10)

Fd is the thermodynamic force conjugated with the damage variable d and defined as

Fd := −∂ψ
∂d

. And Fpl denotes the thermodynamics force conjugated with the plastic

deformation due to frictional sliding. It is defined as Fpl := − ∂ψ
∂εpl

.

The minimization condition should be verified for ∀ḋ, one gets the local balances

equations of the stress tensor:div(σ) + b = 0 in Ω

σ · n = t on ∂Ω
(3.11)
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Similarly, the local governing equations of damage evolution are given by:Fd − gc
ld
d+ gclddiv(∇d) = 0 in Ω

∇d · n = 0 on ∂Ω
(3.12)

2.3.1 Damage evolution laws for rough cracks

By considering the stored energy density given in Equation (3.5), one obtains the

driving force for damage evolution of frictional rough cracks:

Fd = −∂ψ(ε, ε
pl, d)

∂d
=

− g′(d)wt+(ε) if tr(ε) > 0

− β′(d)ws+(ε
pl) if tr(ε) ≤ 0

(3.13)

The driving energy per unit volume of sound material is given by:w
t
+(ε) = κ0

[tr(ε)]2

2
+ µ0εdev : εdev if tr(ε) > 0

ws+(ε
pl) = µ0ε

pl
dev : ε

pl
dev if tr(ε) ≤ 0

(3.14)

It is important to point out that due to continuity condition involved in the stored energy ψ

in Equation (3.5), the thermodynamics force Fd in Equation (3.13) is also fully continuous

at the crack opening-closure transition tr(ε) = 0.

Differently to frictionless cracks, two energy history functionals (Miehe et al., 2010a;

Nguyen et al., 2015) are here defined respectively for open and closed cracks:

Ht(t) = max
τ∈[0,t]

[wt+(τ)] and Hs(t) = max
τ∈[0,t]

[ws+(τ)] (3.15)

Accordingly, the governing equation for damage evolution of frictional rough cracks with

unilateral effect can be written as:

Fd
H − gc

[ d
ld

− ld∆d
]
= 0 (3.16)

Fd
H represents the damage driving force by considering the history functionals in Equa-
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tion (3.15):

Fd
H =


2(1− d)Ht if tr(ε) > 0

2(1− d)[
1− g(d)

]2Hs if tr(ε) ≤ 0
(3.17)

2.3.2 Frictional sliding evolution laws for rough cracks

On the other hand, the thermodynamic force conjugated with the frictional sliding is

expressed as:

Fpl =− ∂ψ(εe, εpl, d)

∂εpl

=


0 if tr(ε) > 0

κ0

[
tr(ε)− tr(εpl)

]
I+ 2µ0

(
εdev − εpldev

)
− 2β(d)µ0ε

pl
dev if tr(ε) ≤ 0

(3.18)

Again, due to the continuity conditions Equations (3.7) and (3.8), the driving force of

frictional sliding Fpl is also fully continuous at the crack opening-closure transition state

tr(ε) = 0.

The frictional sliding occurs when the driving force Fpl reaches certain threshold. It

is needed to define a suitable friction criterion as a function of Fpl to describe the evo-

lution of plastic strain εpl. Inspired by the classical Drucker-Prager criterion for pressure

sensitive materials, the following linear function is adopted:

Fp(Fpl) =∥ Fpl
dev ∥ +ηpltr(Fpl) ≤ 0 (3.19)

The variable ∥ Fpl
dev ∥=

√
Fpl
dev : F

pl
dev denotes the generalized deviatoric sliding force,

with Fpl
dev = Fpl − 1

3
tr(Fpl)I. The parameter ηpl is the frictional coefficient of rough

cracks.

Substituting Equation (3.6) for Equation (3.18), the frictional sliding criterion can be

conveniently rewritten in terms of stress tensor:

Fp(σ, ε
pl, d) =∥ σdev − 2β(d)µ0ε

pl
dev ∥ +ηpltr(σ) ≤ 0 (3.20)

The other term 2β(d)µ0ε
pl
dev describes the influence of damage on the frictional sliding.
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It plays the role of a kinematic hardening. The last term allows considering the effect of

mean stress on frictional sliding, widely observed in rock and concrete like materials.

The evolution rate of the plastic strain εpl is determined by introducing a plastic flow

rule. It is reminded that the continuity conditions between open and closed cracks given

in Equation (3.7) requires tr(εpl) = 0. Consequently, a non-associated pure deviatoric

plastic flow rule is adopted:

ε̇pl = λ̇plGp = λ̇pl
εpldev
∥εpldev∥

= λ̇pl
εpldev√

εpldev : ε
pl
dev

(3.21)

The plastic multiplier λ̇pl is determined by the following consistency condition:

λ̇pl ≥ 0 , Fp(σ, ε
pl, d) ≤ 0 , λ̇plFp(σ, ε

pl, d) = 0 (3.22)

3 Numerical implementation

The new phase field model is also implemented in the framework of finite element

method (FEM). In order to avoid redundancy, the following discrete nodal residuals can

be derived by using the standard Galerkin procedure and geometrical discretization used

in Chapter 2:

Ru =

∫
Ω

NT
ubdΩ +

∫
∂Ωt

NT
u tdS −

∫
Ω

BT
uσdΩ = 0 (3.23)

Rd =

∫
Ω

NT
d

[
Fd

H − gc
ld
d
]
dΩ−

∫
Ω

BT
d

[
gcld∇d

]
dΩ = 0 (3.24)

3.1 Return-mapping algorithm for plastic deformation

In order to determine the displacement field at each loading step, it is necessary to

calculate the stress tensor σ at every quadrature point for evaluating the nodal force resid-

ual Ru in Equation (3.23) with a fixed value of d. According to the constitutive relations

Equation (3.6), there is a linear relation between the strain and stress tensors for the case

of open cracks (tr(ε) > 0). However, for closed cracks, the problem becomes strongly

nonlinear due to the existence of plastic strain εpl.
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As for classical plastic problems with a pressure sensitive yield criterion (Sysala et al.,

2016), an implicit return-mapping algorithm is employed and briefly presented here. The

first step is to make an elastic prediction. A trial stress state is determined by assuming

a full elastic behavior of material. The trial stress is then checked to see whether it is

admissible or not for the plastic yield condition. If the yield function Fp(σtr, εpl, d) is

found to be non-positive, the trial stress becomes the true one. Otherwise, the plastic

correction of the trial stress is operated with the return mapping algorithm. The main

steps can be found in Algorithm 2. C0 denotes the fourth order elastic stiffness tensor of

sound material.
Algorithm 2: An implicit return-mapping algorithm for plastic correction

Input: εn+1, dn+1, εpln
Output: σn+1, εpln+1

1 Elastic prediction: σtr = C0 :
(
εn+1 − εpln

)
2 Check yield criterion: F tr

p = Fp(σ
tr, εpln , dn+1)

3 if F tr
p ≤ 0 then // Elastic loading

4 σn+1 = σtr

5 εpln+1 = εpln

6 else // plastic loading

7 Find ∆λpl ≥ 0:

8 ∥ σtr
dev − 2β(d)µ0ε

pl
n,dev − 2[β(d) + 1]µ0∆λ

plGp ∥ +ηpltr(σtr) = 0

9 Set: // plastic correction

10 σn+1 = σtr − C0 : ∆λplGp

11 εpln+1 = εpln +∆λplGp

12 end

3.2 Staggered algorithm for coupled damage-sliding problem

It is clear that both displacement and damage evolution problems are strongly coupled

and highly non-linear, especially for the energy history functionals which are non-convex

with respect to the couple of unknowns (u, d) (Bourdin et al., 2000, 2008). It is difficult to

solve the coupled systems given in Equations (3.23) and (3.24) by using the conventional

Newton-Raphson procedure. For this reason, we adopt here the so-called alternating min-

imization (AM) solution strategy (Bourdin et al., 2008; Miehe et al., 2010a; Mandal et al.,
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2021). It consists of alternatively solving the displacement problem for a fixed damage

state and inversely. The main lines are presented in Algorithm 3.

At the same time, due to the plastic frictional sliding and the nonlinear damage-friction

coupling function β(d), it is no more possible to transform Equations (3.23) and (3.24)

into linear systems as in many previous studies (Nguyen et al., 2015; Yu et al., 2021b).

However, the standard Newton-Raphson iteration method can be used to solve each of

two unknown fields. Accordingly, a linearized system of equations for the ith iteration at

the loading step n + 1 is obtained by differentiating the residual of each problem Equa-

tions (3.23) and (3.24): Ki
uδu = Ri

u =⇒ ui+1 = ui + δu

Ki
dδd = Ri

d =⇒ di+1 = di + δd
(3.25)

The Jacobian matrices Ku and Kd are calculated by:

Ku = −∂Ru

∂u
=


∫
Ω

BT
u

[
g(d)C0

]
BudΩ if tr(ε) > 0∫

Ω

BT
u

[
Cep

]
BudΩ if tr(ε) ≤ 0

(3.26)

and

Kd = −∂Rd

∂d
=


∫
Ω

NT
u

[
2 +

gc
ld

]
NudΩ +

∫
Ω

BT
u

[
gcld

]
BudΩ if tr(ε) > 0∫

Ω

NT
d

[
β′′(d) +

gc
ld

]
N ddΩ +

∫
Ω

BT
d

[
gcld

]
BddΩ if tr(ε) ≤ 0

(3.27)

with

β′′(d) =
2[1− g(d)] + 8(1− d)2

[1− g(d)]3

It is useful to mention that in practice, numerical integration calculations are conducted

over all elements by using Gauss method. The crack opening-closure criterion is checked

at each Gauss point.
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Algorithm 3: An alternating minimization solution for coupled displacement

friction-damage problem

1 for each successive loading step n+ 1 do
2 Initialzation: u(0)

n+1 = un, d(0)
n+1 = dn, iter = 0, err = 1

3 while err > tol and iter < max_iter do // tol = 1× 10−4

4 iter = iter + 1 // iteration count

5 Compute displacement field u
(iter)
n+1 with fixed phase-field d

(iter−1)
n+1 :

6 Set: u(iter),0
n+1 = u

(iter−1)
n+1 , i = 0

7 repeat // Newton iteration

8 stress update: σi = σ(ε(u
(iter),i
n+1 ), d

(iter−1)
n+1 ) // Algorithm 2

9 Ri
u =

∫
Ω
NT

ubdΩ +
∫
∂Ωt

NT
u tdS −

∫
Ω
BT
uσ

idΩ

10 δu = [Ki
u]

−1Ri
u

11 u
(iter),i+1
n+1 = u

(iter),i
n+1 + δu

12 i = i+ 1

13 until ∥δu∥ ≤ 1× 10−8

14 Compute phase-field d
(iter)
n+1 with fixed displacement field u

(iter)
n+1 :

15 Set: d(iter),0
n+1 = d

(iter−1)
n+1 , i = 0

16 repeat // Newton iteration

17 Ri
d =

∫
Ω
NT

d

[
Fd

H − gc
ld
d
]
dΩ−

∫
Ω
BT
d

[
gcld∇d

]
dΩ

18 δd = [Ki
d]

−1Ri
d

19 d
(iter),i+1
n+1 = d

(iter),i
n+1 + δu

20 i = i+ 1

21 until ∥δd∥ ≤ 1× 10−8

22 err = ∥d(iter)
n+1 − d

(iter−1)
n+1 ∥

23 end
24 Update: un+1 = u

(iter)
n+1 , dn+1 = d

(iter)
n+1

25 end

4 Application examples

In this section, various examples of particular interest are presented to showcase the

capabilities of the new phase-field model. In particular, we shall investigate the unilat-
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eral effect due to crack opening-closure transition and the coupling mechanism between

damage evolution and frictional sliding.

4.1 Uniaxial test with tension-compression loading

The purpose of this example is to show the efficiency of the model in predicting the

unilateral behavior of cracked materials. A single cubic element of the unity (mm) size is

considered. The material element is subjected to uniaxial tension and compression load-

ing and unloading paths. Two-dimensional plane strain calculation is performed. The

geometry and prescribed axial displacement path are presented in Figure 3.1. The me-

chanical properties of material are taken from the previous study (Lanoye et al., 2013):

Young’s modulus E0 = 32000MPa, Poisson’s ratio µ0 = 0.2, and internal friction coef-

ficient ηpl = 0.6. As the objective here is not to capture damage localization, the length

scale parameter is set to the size of element ld = 1mm. The related critical energy is then

determined from the uniaxial tensile strength and one gets gc = 2.7 × 10−3 N/mm. The

equivalent deviatoric plastic strain εpleq =
√
εpldev : ε

pl
dev is used to represent the evolution

of plastic deformation.
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Figure 3.1: Single element geometry and prescribed axial displacement paths

The axial stress-strain curves during the whole loading history are presented in Fig-

ure 3.2. We compare the results respectively obtained by using the coupled damage-

friction model (left sub-figure) and the frictionless damage model in Chapter 2 (right

sub-figure). The mechanical responses are identical for both models during the tensile

loading and unloading steps. A clearly non-linear response is obtained at the tensile load-

ing step (O→A→B) due to the evolution of tensile damage (see Figure 3.3). Then the
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mechanical behavior is fully linear elastic during the unloading step (B→O). There is no

evolution of damage during this step. After the complete unloading of tensile stress, there

is no residual strain observed. However, the elastic modulus of material is clearly dete-

riorated by the induced damage. During the tensile stage, only open cracks are created.

The frictional sliding does not occur. Therefore, it is logic that the two models provide

the identical results.

The loading is continued by applying a compressive axial strain. The material re-

sponses are significantly different between the two models. For the frictionless crack

model, one obtains a linear elastic phase with any evolution of damage (O→C). The point

C represents the elastic limit in uniaxial compression from which the damage evolves

again to reach the peak uniaxial compression strength (point D). During the unloading-

reloading step (D→E→D), one gets a pure linear elastic behavior, with a clear degrada-

tion of elastic modulus. With this model, one indeed observes a dissymmetric behavior

between the tension and compression phases. The damage evolution under compressive

loading (tr(ε) ≤ 0) is slower than that in tension (tr(ε) > 0), due to the consideration of

unilateral condition in the damage driving force defined in Equation (2.6). But the dis-

symmetry remains relatively small and does not reflect the experimental data observed in

rock and concrete like materials.

Comparing with the frictionless model in Chapter 2, with the coupled damage-friction

model, several significant improvements are obtained. The compressive damage threshold

(point C in the left sub-figure) is much higher than the tensile one. Indeed, according to the

damage criterion proposed in Equation (3.14), the damage evolution of closed frictional

cracks is fully driven by the plastic strains. For this purpose, the evolution of equivalent

plastic strain is presented in Figure 3.4. As no cohesion is considered in this model, the

frictional sliding starts at the beginning of uniaxial compression (point O). But the damage

threshold is not reached until the point C. Thus there is no damage evolution during the

step O→C. During the step C→D, the evolution of damage is activated. At the same

time, the plastic deformation is also accelerated. It is obvious that the frictional sliding

is strongly coupled with the damage evolution. At the point D, a unloading-reloading

cycle is performed and the stress-strain path is presented by the loop D→E→F→G→D

in Figure 3.2(a). Several interesting features are observed in Figure 3.3(a) and Figure 3.4.

During the step D→E, there is no evolution of damage and plastic strain; it is a pure elastic

unloading phase. For the step E→F, due to the action of kinematic hardening involved in
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Equation (3.20), the frictional sliding is again activated but along the opposite direction.

As the accumulated equivalent plastic strain (algebraic value) is decreased, there is no

damage evolution. This step is followed by an elastic reloading phase (F→G). Finally,

with the help of kinematic hardening term, we obtain a new plastic sliding phase G→D.

But the damage evolution is still locked as the value of accumulated plastic strain is lower

than its initial value at the point D before the unloading. After the point D, both the

plastic strain and damage evolve quickly, inducing a rapid material softening during the

post-peak region. It is clear that the proposed friction-damage model is able to predict

complex features of mechanical behavior of rock-like material under compressive stress.
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(a) Coupled friction-damage unilateral model
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(b) Frictionless damage unilateral model

Figure 3.2: Stress–strain curves for a single element under uniaxial tension and compres-
sion: comparison between the coupled friction-damage unilateral model and frictionless
unilateral model

(a) Coupled friction-damage unilateral model (b) Frictionless damage unilateral model

Figure 3.3: Evolution of damage during different loading steps of uniaxial tension and
compression: comparison between the coupled friction-damage unilateral model and fric-
tionless unilateral mode
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Figure 3.4: Evolution of equivalent plastic strain during the different loading steps of
uniaxial tension and compression on a single material element

4.2 Propagation of an inclined frictional crack

Due to the obvious advantages of the coupled friction-damage model demonstrated

above, this one is now applied to investigating the propagation of cracks in different cases.

In this example, we consider the propagation of an inclined initial crack in a rectangular

plate, as shown in Figure 3.5(a). The size of plate is 2m× 4m, the initial crack is inclined

at 45◦ to the horizontal orientation. The bottom boundary is blocked for vertical displace-

ment but free for horizontal one. A constant vertical displacement rate of 1× 10−4 m per

step is prescribed on the top boundary without any horizontal restrain. Two dimensional

plane strain calculations are performed.

The elastic parameters taken from the previous study (Fei and Choo, 2020a), such

as: Young’s modulus E = 10000MPa and Poisson’s ratio µ = 0.3. The length scale

ld is a key parameter in the phase-field modeling which defines the width of localized

cracks. Its value should be chosen in relation with the element size h. To get a good

balance between the accuracy and calculation efficiency, we take here ld = 0.02 m and

ld/h = 4. The critical energy release rate gc is chosen as 35 × 10−6 N/mm for this case.

To investigate the influence of friction on crack propagation, three different values of the

friction coefficient are used such as ηpl = 0.01, 0.10, 0.20. Further, comparisons between

the coupled friction-damage model and frictionless damage model are again presented.

Moreover, the initial crack is considered as an initially fully damaged zone. In general,

the value of d = 1 is assigned to the cracked zone. However, such a trivial solution can

lead to numerical instability. We adopt here an alternative solution by assigning an initial
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value H0 to two energy history functionals such that:
H t

0(x) =
gc
2ld

d0
1− d0

(
1− 2L(x)

ld

)
if L(x) ≤ ld

2
, H t

0(x) = 0 otherwise

Hs
0(x) =

gc
2ld

d0[1− g(d0)]
2

1− d0

(
1− 2L(x)

ld

)
if L(x) ≤ ld

2
, Hs

0(x) = 0 otherwise

(3.28)

L(x) represents the shortest distance from an arbitrary point x to the initial crack (Borden

et al., 2012). With the above distribution of energy history functionals, the corresponding

initial damage distribution can be calculated and it is shown in Figure 3.5(b).

(a) Geometry and initial crack
configuration

(b) Initial distribution of
damage

Figure 3.5: Setup for the problem of an inclined crack in a rectangular plate

In Figure 3.6, the overall load-displacement curves for the three different values of

friction coefficient of rough crack are presented and compared with that of smooth cracks.

It is seen that both the peak load and displacement increase with the friction coefficient.

This seems to be logic as a larger shear force is needed to create plastic sliding when the

crack surface friction is higher. For the same reason, the residual strength also increases

with the rise of frictional coefficient. For the case of smooth cracks, the small residual

strength obtained in the numerical results is due to the small residual elastic stiffness used

to ensure the stability of calculation.
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Figure 3.6: Overall load–displacement curves for different values of frictional coefficient
(ηpl = 0 for smooth crack)

In Figure 3.7, the distributions of damage at the fully cracked states, as indicated in

Figure 3.6, are presented for four different cases. It is obvious that the crack propaga-

tion pattern is significantly affected by the friction coefficient. In the case of frictionless

cracks, there is no plastic deformation. The crack propagation is driven by the strain en-

ergy w+(ε) defined in Equation (2.6). As most cracks are closed, the crack propagation is

mainly controlled by the deviatoric strain tensor. Therefore, one gets a quasi pure shear-

ing mechanism. As a consequence, the initial crack propagates nearly along its initial

direction.

For the frictional cracks, the crack propagation is affected by the plastic sliding in-

duced deformation, as defined in Equation (3.14). Differently with smooth cracks, the

propagation of closed cracks is fully driven by the plastic deviatoric strain tensor as the

elastic deformation is locked by the friction. Therefore, the crack propagation pattern is

influenced by the frictional coefficient. More precisely, the crack propagation orientation

progressively deviates from its initial direction. The deviation angle is more and more

large when the frictional coefficient is higher.

In Figure 3.8, the distribution of the accumulated equivalent plastic strain has been

investigated when those initially cracked plate with different frictional coefficient were

fully broken. An obviously accumulation of the inelastic deformation can be seen along

the pre-existing crack for all three cases with different frictional coefficient of cracks.

However, differently with the continuous distribution of accumulated equivalent plastic

strain along the crack propagation path in case with ηpl = 0.01, a discontinuous segment
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can be found in the crack propagation path for higher frictional coefficients such as ηpl =

0.1 and 0.2.

In order to further explain how the frictional slide of initial crack affects on the crack

propagation, the distribution of driving history energy (H t andHs) around the initial crack

tip has been investigated. Meanwhile, a simplified opening-closure criterion (⟨tr(ε)⟩+
and ⟨tr(ε)⟩−) is here adopted. For a consequence, one can distinguish the opening-

closure state and propagation path of cracks based on the distribution of H t⟨tr(ε)⟩+ and

Hs⟨tr(ε)⟩−. Firstly, the crack opening-closure state and propagation direction have been

compared for cases with η = 0.01 and ηpl = 0.2 at the beginning of crack propaga-

tion. For ηpl = 0.01 in Figure 3.9(a), the deformation mainly induces the increasment

of Hs⟨tr(ε)⟩− around the crack tip while the H t⟨tr(ε)⟩+ remains 0. It means that the

closed crack could appear firstly along the distribution of Hs⟨tr(ε)⟩−. While, the case

η = 0.2 shows a different behavior. As illustrated in Figure 3.9(b), the deformation in-

duced cracking driving energy areH t⟨tr(ε)⟩+, which means the propagation crack is open

crack due to tensile deformation. It also can be found that the deviation angle of open-

ing propagation crack is larger than the closed propagation crack. Then, the propagation

crack opening-closure state for ηpl = 0.01 and ηpl = 0.2 when they are fully broken are

presented in Figures 3.9(c) and 3.9(d). In case of ηpl = 0.01, the propagation crack is

all consisted of closed crack. However, a segment of open propagation crack can be seen

from the initial crack tip and a segment of closed crack at the end of propagation in case

of ηpl = 0.2.

(a) Frictionless (b) ηpl = 0.01 (c) ηpl = 0.1 (d) ηpl = 0.2

Figure 3.7: Cracking patterns of initially cracked plate at fully broken state with different
values of frictional coefficient
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(a) η = 0.01 (b) η = 0.1 (c) η = 0.2

Figure 3.8: Equivalent plastic strain distribution of initially cracked plate at fully broken
state with different values of frictional coefficient
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Figure 3.9: Comparing of driving history energy considering with the cracks opening-
closure state for different values of frictional coefficient at different loading steps

4.3 Crack bridging of two pre-existing flaws

In this example, the coupled damage-friction phase-field model is used to investigate

crack bridging between two pre-existing flaws in a plate under uniaxial compressive. This

case is based on the experimental tests conducted by Yang et al. (2008). The geometry

of plate and the configuration initial flaws are presented in Figure 3.10(a). The size of

rectangular plate is 50mm×100mm. Two different types of configurations of pre-existing

flaws are considered, type B and type C. The geometrical parameters for pre-existing flaws
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are given in Table 3.1. According to the experimental observations, a tensile failure mode

was observed in specimens with the type-B initial flaws while a shear failure mode in

specimens with the type-C initial flaws.

Similarly to the previous example, an initial distribution of energy history functionals

are affected to the pre-existing flaws by using Equation (3.28). The corresponding initial

distributions of damage are presented in Figure 3.10(b) and Figure 3.10(c) for the two

types of configurations. The plate is subjected to a prescribed axial displacement incre-

ment of 0.002 mm per loading step on the top surface of the plate. The elastic parameters

are determined from the experimental data reported in (Yang et al., 2008): Young’s mod-

ulus E = 18.54GPa and Poisson’s ratio µ = 0.25. For localized cracking modeling, the

length scale is ld = 0.4mm and the ratio between length scale and element is ld/h = 4.

Finally, the critical energy release rate and frictional coefficient are calibrated from the

peak strength of triaxial compression tests reported in (Yang et al., 2008), and one gets

gc = 0.010N/mm and ηpl = 0.36.

(a) Geometry parameters (b) Type-B (c) Type-C

Figure 3.10: Geometrical parameters of plate with two pre-cracking flaws and initial
distributions of damage
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Table 3.1
Geometrical parameters for two pre-flaws

Flaw geometry
Flaw angle

[α/◦]

Ligament angle

[β/◦]

Flaw length

[2a/mm]

Ligament

length [2b/mm]

Type-B 30 38 24 33

Type-C 45 61 24 33

The average axial stress-strain curves predicted by the friction-damage model are pre-

sented and compared with the experimental data (Yang et al., 2008) in Figure 3.11 for

the two types of pre-existing flaws. It can be seen that in both the pre- and post-peak

regimes, the proposed phase-field model describes well the mechanical responses of the

two cracked plates. Moreover, the overall mechanical behavior of plate is affected by the

configuration of two pre-existing flaws.

Experimental result
Numerical result
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(b) Type-C

Figure 3.11: Average axial stress–strain curves of plates with two different types of pre-
existing flaws: comparison between numerical results and experimental data

The failure patterns of two pre-existing flaws configurations are also investigated. For

the type B configuration, a typical tensile failure mode was observed in the laboratory

test (Yang et al., 2008), as shown in Figure 3.12. Starting from the inner ends of existing
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flaws, two main wing cracks propagate in the quasi vertical direction, respectively to-

wards the top and bottom surfaces of the sample. Due to the boundary condition effects,

secondly cracks are also created in the top and bottom regions. These ones are finally co-

alesced with the main wing cracks, leading to a dramatic stress drop. It is found that the

proposed friction-damage phase field model is able to correctly describe the experimental

observations.

(a) Experiment (b) ∆u =
0.162mm

(c) ∆u =
0.266mm

(d) ∆u =
0.276mm

(e) ∆u =
0.292mm

Figure 3.12: Crack initiation and propagation patterns in the specimen with type B pre-
existing flaws

Differently with the type B configuration, the failure pattern is significantly different

for the type C pre-existing flaws. As shown in Figure 3.13, a shear-dominating failure

mode is obtained. After the new cracks occur at the inner ends of pre-existing flaws,

they propagate toward each to other along the initial orientation of pre-existing flaws, to

progressively form a connected crack bridge. Again, this complex failure pattern is well

captured by the proposed phase-field model.
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(a) Experiment (b) ∆u =
0.102mm

(c) ∆u =
0.114mm

(d) ∆u =
0.116mm

(e) ∆u =
0.122mm

Figure 3.13: Crack initiation and propagation pattern in specimen with type C pre-
existing flaws

4.4 Influence of confining stress

It is known that the mechanical behavior of rock and concrete like materials is strongly

dependent on the confining stress. The underlying physics is related to the internal friction

of this type of materials. In order to consider this effect by using phase field method,

some empirical relations have been proposed in previous studies to describe the variation

of critical energy release rate gc as a function of confining stress (Wang et al., 2021; Yu

et al., 2021b). But the physical background of such empirical relations is not clearly

explained. In our new coupled friction-damage model, the frictional sliding in closed

cracks is explicitly taken into account. In order to assess its efficiency, based on the

experimental data reported in Yang et al. (2012), triaxial compression tests on sandstone

with different confining stresses are considered.

On the other hand, the transition from diffuse damage to localized cracks is another

key issue. In many previous studies, a weak element was artificially introduced to enhance

the apparition of localized cracks. But in real materials, the strain and damage localiza-

tion is inherently related to the material heterogeneity. Consider the case of sandstone,

according to X-ray diffraction analysis presented in (Yang et al., 2012), the sandstone is

mainly composed of feldspar (45%), quartz (13.5%), debris (31.5%), agglutinate (10%)

and inter-particular pores. The solid particles are cemented to constitute an equivalent

matrix phase. The pores are randomly embedded inside the solid matrix. The macro-

scopic elastic properties can be estimated by using a suitable homogenization method.
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In the case of sandstone, it seems that the widely used Mori-Tanaka scheme (Mori and

Tanaka, 1973) is a good choice. Thus, the macroscopic elastic bulk modulus κhom and

shear modulus µhom are given by:

κhom =
4(1− ϕ)κsµs
4µs + 3ϕκs

; µhom =
(1− ϕ)µs

1 + 6ϕ κs+2µs
9κs+8µs

(3.29)

where κs and µs are the bulk and shear moduli of the equivalent solid matrix, and ϕ is

the porosity. Knowing the average of porosity ϕ = 8.8% and the macroscopic Young’s

modulus and Poisson’s ratio presented (Yang et al., 2012), it is possible to calculate the

values of κs and µs by inverting the relations Equation (3.29). One gets κs = 51.2GPa

and µs = 17.8GPa.

In order to represent the material heterogeneity, it is assumed that the porosity is not

uniform inside the sample but exhibits a spatial variation (Wang et al., 2022). The widely

used Weibull distribution Equation (2.24) is adopted to generate a random distribution of

the porosity ϕ:

Φ(ϕ) =
mi

ϕ̄

(
ϕ

ϕ̄

)mi−1

exp
[
−

(
ϕ

ϕ̄

)mi
]

(3.30)

where ϕ̄ denotes the average value of porosity and mi is the homogeneity index.

Based on the distribution of porosity and by using the values of κs and µs, one can

calculate the macroscopic elastic properties κhom and µhom by using Equation (3.29),

and then the macroscopic Young’s modulus and Poisson’s ratio. As an example, the

spatial distributions of macroscopic Young’s modulus with the homogeneity index n = 10

is presented in Figure 3.14(a). For a quantitative illustration, the variations of Young’s

modulus along two selected sections are presented in Figure 3.14(b).

The size of sample is 50× 100mm. A uniform mesh is adopted. The length scale for

phase field modeling is ld = 0.4mm with a ratio between length scale and element size of

ld/h = 4. The critical energy release rate and internal friction coefficient are determined

from the peak strength and the following values are obtained: gc = 0.208N/mm and

ηpl = 0.29.
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(a) Geometry of samples in triaxial
compression tests
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(b) Spatial distributions of Young’s modulus

Figure 3.14: Illustration of specimen geometry, boundary conditions and spatial distribu-
tion of macroscopic Young’s modulus

Three conventional triaxial compressive tests with different confining stresses (σc =

20, 35, 50MPa) are here considered. In Figure 3.15, the axial stress-strain curves predicted

by the coupled friction-damage model are presented and compared with the experimental

data (Yang et al., 2012). There is a good agreement in both pre- and post regions. In par-

ticular, the influence of confining stress on the peak and residual strength is well captured

by the proposed model. Due to technical issues, some oscillations are observed in the

post-peak region of experimental data.

71



§4. Application examples CHAPTER 3
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Figure 3.15: Axial stress-strain curves in three triaxial compression tests on sandstone:
comparison between numerical results and experimental data

Moreover, the distributions of damage and equivalent plastic strain at four different

loading steps are presented in Figure 3.16 for the test with a confining stress of 20 MPa.

These results illustrate the gradual evolution of strain localization and localized cracking

process during the loading history. One can see that at εa = 0.516%, both the distri-

butions of damage and plastic strain are almost uniform in the sample. Starting from

εa = 0.572%, the plastic strain and damage are progressively localized into a number of

narrow bands to form major cracks. It is needed to point out that the localization pattern

is inherently related to the heterogeneous distribution of porosity. At εa = 0.604%, which

is close to the peak strength, one inclined major crack is obtained and accompanied by

several secondary cracks. It seems that two quasi orthogonal crack networks are observed.

This type of failure pattern is very consistent with the experimental observations (Yang

et al., 2012).
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(a) εa = 0.516% (b) εa = 0.572% (c) εa = 0.584% (d) εa = 0.604%

Figure 3.16: Evolution of damage and equivalent plastic strain at four different loading
levels for the triaxial compression tests with a confining stress of 20 MPa

5 Conclusions

In this chapter, we have proposed a novel phase field model for modeling mixed crack-

ing process in rock and concrete like materials under complex loading paths. Several new

features are incorporated, in particular the unilateral contact condition and the coupling

between damage and frictional sliding. The proposed model is able to describe open and

closed cracks, smooth and frictional crack surfaces. The general continuity conditions at

the crack opening- closure transition point are fully verified for the energy functions, the

stress-strain relations, and the driving forces for crack propagation. The evolution criteria

are formulated in a rigorous thermodynamics framework.

The proposed model is applied to investigate cracking processes in different loading

scenarios, on both single material element and structural scales. A number of interesting

results are obtained. It is found that under compressive stresses, the frictional sliding

plays a crucial role on the deformation and cracking of rock and concrete like materials.
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The evolution of closed rough cracks is driven by the frictional sliding induced plastic

deformation; and the evolution of plastic sliding is affected by the damage state. With

the help of the friction effect, the proposed model is able to physically take into account

the influence of confining stress on the mechanical behavior of materials. Moreover, a

kinematic hardening rule is incorporated in the frictional sliding law. This allows us to

correctly describe the unloading-reloading hysteresis loop.

The proposed model is able to describe tensile, shear and mixed modes of cracking.

The numerical predictions of failure patterns are very consistent with most experimental

observations such as crack propagation deviation and crack bridging.
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CHAPTER 4

Numerical study of time-dependent deformation
and cracking in brittle rocks with a novel phase-
field model

1 Introduction

In this chapter, we shall develop an efficient numerical modeling method of progres-

sive cracking process in rocks exhibiting an elastic-viscoplastic behavior. The initiation

and propagation of cracks is described by a time-dependent phase field method while the

creep deformation of rocks by a viscoplastic model. The growth of phase field is af-

fected by the viscoplastic deformation and inversely the threshold of viscoplastic flow is

degraded by the induced cracks. The proposed numerical method is implemented in a

standard finite element framework. Its efficiency is assessed through comparisons with

both laboratory tests and field observations.

2 Time-dependent phase-field model for viscoplastic rocks

In this work, we consider Ω ⊂ R to be a volumetric domain of solid material with an

external boundary ∂Ω, which contains a number of cracks Γi, i = 1, ..N . The approxima-
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tion of the total area of sharp crack surfaces AΓ in Chapter 2 is adopted here again:

AΓ =
N∑
i=1

AΓi
∼= AΓd

=

∫
Ω

Γd(d,∇d)dV (4.1)

Similarly, the crack density functions in Equations (2.2) and (2.4) are used in this chapter.

2.1 Energy functional

In this study, we consider an isotropic rock material exhibiting an elastic-viscoplastic

behavior and the transition from diffuse damage to localized cracking which is described

by the phase-field method. With the assumption of small strains, the total strain tensor

ε is conventionally divided into an elastic part εe and a viscoplastic part εvp such as

ε = εe+εvp. The total energy functional can be expressed in the following general form:

E(εe, εvp, d) =

∫
Ω

[we(εe, d) + wvp(εvp, d)] dv + Ecrack (4.2)

we is the elastic strain energy density per initial unit volume of damaged material. wvp

denotes the viscoplastic strain energy density (dissipated and stored). The third term

Ecrack represents the energy needed to create cracks in Ω.

2.1.1 Elastic strain energy

The elastic strain energy of material is affected by cracking process and it is a function

of the damage variable d. Inversely, the damage evolution is driven by the growth of

elastic strain energy. In this work, it is assumed that the damage evolution is motivated

only the tensile (positive) volumetric strain and deviatoric (or shear) strains. For this

purpose, the elastic strain energy of undamaged material is conveniently decomposed as

the one in Chapter 2:
we0(ε

e) = we0−(ε
e) + we0+(ε

e)

we0− =
k0
2
[⟨tr(εe)⟩−]2

we0+ =
k0
2
[⟨tr(εe)⟩+]2 + µ0ε

e
dev : ε

e
dev

, εedev = εe − tr(εe)
3

I (4.3)
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Accordingly, the elastic strain density function of damaged material is written as:

we(εe, d) = we0−(ε
e) + g(d)we0+(ε

e, d) (4.4)

The elastic stress-strain relations of damaged material are obtained from the standard

derivation of we:

σ =
∂we

∂εe
= C(d) : εe (4.5)

σ is Cauchy stress tensor. C(d) denotes the elastic stiffness tensor of damaged material

and it is here given by:

C(d) = r−e k0I ⊗ I + g(d)[r+e k0I ⊗ I + 2µ0(I−
1

3
I ⊗ I)] (4.6)

I is the fourth-order symmetric identity tensor. The coefficients r±e = 1
2
{sign[±tr(εe)]+1}

describe the fact that the bulk modulus k is affected by open cracks (r+e = 1 and r−e =0) but

not affected by closed shear cracks (r+e = 0 and r−e =1).

It is noticed that the choice of g(d) leads to different types of elastic properties degra-

dation. Among various forms of g(d) proposed in previous studies (Miehe et al., 2010a;

Choo and Sun, 2018; Zhou et al., 2020), the form in Chapter 2 which is the most widely

used one is g(d) = (1− kl)(1− d)2 + kl by satisfying the condition g′(d = 1) = 0. It is

adopted in this chapter.

2.1.2 Viscoplastic strain energy

Furthermore, since the concept of elasto-viscoplasticity was firstly introduced by Perzyna

(1966), the elasto-viscoplastic behavior of rocks has been widely discussed and some sig-

nificant progresses have been reported in Debernardi and Barla (2009) and Yang et al.

(2014). Moreover, An elasto-viscoplastic model based on Perzyna’s general theory was

proved to be in good agreement with both laboratory and in situ data by Bonini et al.

(2007). Consequently, the classical Perzyna’s formulation (Perzyna, 1966; Cristescu

et al., 1994) will be coupled with the phase-field method to describe the time-dependent

behavior of brittle rocks in this paper.

Time-dependent deformation of rocks can be related to various mechanisms such as

viscoplastic flow, sub-critical growth of micro-cracks etc. In this work, for the sake of

simplicity, it is assumed that the time-dependent deformation and cracking is mainly
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driven by the viscoplastic flow. Further, by putting the emphasis on cracking modeling by

the phase-field method, the viscoplastic deformation is described by using the classical

Perzyna’s formulation (Perzyna, 1966; Cristescu et al., 1994) and a simple constitutive

model.

The accumulated viscoplastic strain εvp is calculated by time integration of its flow

rate ε̇vp:

εvp(t) =

∫ t

0

ε̇vp(τ)dτ (4.7)

The viscoplastic strain rate is defined by the following widely used exponential form:

ε̇vp = ηvp⟨f vp(σ)⟩n+λ̇vp
∂Gvp

∂σ
(4.8)

ηvp is a viscosity parameter controlling the initial rate of viscoplastic flow. ⟨⟩+ are the

Macaulay brackets. f vp represents the viscoplastic loading function. Similarly to some

previous studies (Borden et al., 2016), it is assumed that the viscoplastic flow of rocks can

be enhanced by the induced damage. Therefore, the following damage-coupled form is

adopted (Mánica et al., 2017):

f vp(σ) =
q − gvp(d)σs

pr
(4.9)

q =
√
3s : s/2 is the conventional generalized deviatoric stress, with s = σ− tr(σ)

3
I being

the deviatoric stress tensor. The parameter σs denotes the initial threshold for viscoplastic

flow and pr =1 MPa is a fixed normalizing stress. gvp(d) is the degradation function

for viscoplastic flow. The use of product form in gvp(d)σs means that the viscoplastic

threshold is progressively reduced by the growth of damage. For the sake of simplicity,

the same form as the elastic degradation function is here used: gvp(d) = g(d).

The coefficient λ̇vp defines the current amplitude of the viscoplastic strain rate, which

is a function of the accumulated viscoplastic strain:

λ̇vp = (1− εeqvp)
m , with εeqvp =

∫ t

0

√
2

3
ε̇vpdev(τ) : ε̇

vp
dev(τ)dτ (4.10)

in which ε̇vpdev = ε̇vp− tr(ε̇vp)
3

I is the viscoplastic deviatoric strain tensor. n and m are two

material parameters.
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In the viscoplastic flow rule Equation (4.8), the scalar-valued function Gvp is a poten-

tial which defines the components of viscoplastic strain rate. Different forms are available

in literature. For hard rocks, it was widely assumed that the viscoplastic flow produced the

time-dependent deviatoric strains only. Therefore, a very simply viscoplastic flow poten-

tial Gvp = q was used in some previous studies (Su, 2003; Mánica et al., 2017). However,

according to laboratory creep tests on Jinping marble diabase (Liu and Shao, 2017), large

volumetric creep strain was also obtained. For this reason, the following viscoplastic flow

potential is proposed in this work:

Gvp = q + cvp (4.11)

where p = tr(σ)/3 is the mean stress. The parameter cv defines the volumetric viscoplas-

tic strain rate.

In consistency with the elastic strain energy decomposition Equation (4.3), the vis-

coplastic strain energy of undamaged material is also decomposed into two parts: re-

spectively coupled and not with the induced damage d. Therefore, the viscoplastic strain

energy of damaged materials is given by:

wvp(εvp, d) = wvp0−(ε
vp) + g(d)wvp0+(ε

vp)

wvp0− =

∫ t

0

σ(τ) : ε̇vpsph−(τ)dτ

wvp0+ =

∫ t

0

σ(τ) : [ε̇vpsph+(τ) + ε̇vpdev(τ)]dτ

,


ε̇vpsph− =

⟨tr(ε̇vp)⟩−
3

I

ε̇vpsph+ =
⟨tr(ε̇vp)⟩+

3
I

ε̇vpdev = ε̇vp − tr(ε̇vp)
3

I

(4.12)

2.1.3 Crack growth related energy

In the variational framework for fracture mechanics, the crack growth or the evolution

of damage variable is seen as an energy minimization problem (Francfort and Marigo,

1998; Bourdin et al., 2008). As in previous studies (Miehe et al., 2010b; Choo and Sun,

2018), the energy related to fracture growth is here assumed to be fully dissipated. More-

over, the classical Griffith-type critical energy release rate is here adopted to quantify

the work needed for an instantaneous crack surface creation (Griffith, 1921). Therefore,

using the crack surface density defined in Equation (2.4), the total energy dissipated in
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instantaneous crack creation can be expressed as follows:

Ecrack−ins =

∫
Ω

gcΓddV (4.13)

The parameter gc denotes the energy needed for the creation of unit crack surface in unit

initial volume (N/m). By assuming that the value of gc is time-independent, the crack

energy dissipation rate can be calculated as:

Ėcrack−ins =

∫
Ω

gcΓ̇ddV =

∫
Ω

gc
[( d
ld

)
ḋ+ ld∇d · ∇ḋ

]
dV (4.14)

In some situations, it is important to take into account a time-dependent or rate-dependent

growth of cracks. Therefore, we shall also quantify the energy needed for such a crack

growth process. Based on previous studies (Hofacker and Miehe, 2013; Loew et al.,

2019), the following specific form is adopted:

Ėcrack−vis =

∫
Ω

ηdḋ
2dV (4.15)

in which ηd ≥ 0 (N.s/m2) is a viscosity parameter. Accordingly, the total dissipation rate

crack growth is given by:

Ė = Ėcrack−ins + Ėcrack−vis (4.16)

2.2 Governing equations

The mechanical boundary values problem with crack growth (or phase-field evolution)

can be solved by the minimization of the following potential function:

Π̇(u̇, ḋ) = Ė(u̇, ḋ)− Ṗ (u̇) = 0 (4.17)

By using the elastic strain energy, viscoplastic strain energy and crack growth energy

defined above, the rate of the total energy functional Ė is given by:

Ė(ε̇e, ε̇vp, ḋ) =

∫
Ω

ẇe + ẇvp dV =

∫
Ω

[∂(we + wvp)

∂d
ḋ+ σ : (ε̇e + ε̇vp)

]
dV

+

∫
Ω

{gc
[( d
ld

)
ḋ+ ld∇d · ∇ḋ

]
+ ηdḋ

2}dV
(4.18)
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As the evolution of phase-field variable d is driven by elastic and viscoplastic strains (or

equivalently by dis displacement field u) (Miehe et al., 2010a; Nguyen et al., 2015), the

external applied work rate is simply expressed as:

Ṗ =

∫
Ω

b · u̇dV +

∫
∂Ωt

t · u̇dA (4.19)

where b is a given body force field per unit volume (N/m3) and t a prescribed surface

traction (N/m2) on the external boundary ∂Ωt.

The energy balance condition Π̇ = 0 leads to the following integral equation:∫
Ω

−
[
div(σ) + b

]
· u̇dV +

∫
∂Ω

[
σ · n− t

]
· u̇dA

+

∫
Ω

[∂(we + wvp)

∂d
+
gc
ld
d− gcld∆d+ ηdḋ

]
· ḋdV +

∫
∂Ω

[
gcld∇d · n

]
· ḋdA = 0, ∀Ω

(4.20)

in which ∆d = div(∇d). Accordingly, one gets easily the following local governing

equations for the mechanical (or displacement) problem:

div(σ(t)) + b = 0 , with σ(t) = C(d) :
[
ε− εvp(t)

]
(4.21)

It is worth noticing that as the viscoplastic strains evolve with time, the current stress

tensor is also a function of time. However, for the sake of simplicity, it is assumed that the

time-dependent progressive deformation and cracking in rock structures can be seen as a

quasi-static process. Therefore, the inertia terms are not taken into account in the balance

equations. The governing equation for the phase-field evolution is given by:

ηdḋ = 2(1− d)(we0+ + wvp0+)− gc
[ d
ld

− ld∆d
]

(4.22)

In order to verify the irreversible condition of crack growth Γ̇d ≥ 0 and ḋ ≥ 0, the

concept of energy history functional introduced in Miehe et al. (2010a) is here adopted

and expressed by:

H(t) = max
τ∈[0,t]

[we0+(τ) + wvp0+(τ)] (4.23)

Consequently, the governing equation of phase-field evolution problem is rewritten as
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follows:

ηdḋ = 2(1− d)H− gc
[ d
ld

− ld∆d
]

(4.24)

3 Numerical implementation

The time-dependent phase-field evolution is coupled with the displacement (stress)

field solution. Both problems are here solved by using the classical finite element method.

Like the previous chapters, the weak forms can be derived by using using the standard

Galerkin procedure with the test functions δu and δd respectively:∫
Ω

σ : ∇(δu)dV =

∫
Ω

b · δudV +

∫
∂Ω

t · δudS (4.25)

∫
Ω

[
(2H +

gc
ld
)d+ ηdḋ

]
δddV +

∫
Ω

gcld∇d · ∇(δd)dV =

∫
Ω

2HδddV (4.26)

3.1 Time and geometrical discretization

The total loading history (designed by the time T ) is divided into a number of incre-

mental steps such as t = 0, t1, t2, ..., tn, tn+1, ..., T . For the current loading step n+1, the

time increment is denoted as ∆t = tn+1 − tn. For the sake of simplicity, the evolution

rate of d is assumed to be constant in the time increment under consideration, and it is

calculated by:

ḋ =
dn+1 − dn

∆t
(4.27)

where dn and dn+1 represent the damage values at the loading steps tn and tn+1, respec-

tively.

Further, starting from the initial state, the value at the end of previous step tn is known,

the current viscoplastic strain is calculated by:

εvpn+1 = εvpn +

∫ tn+1

tn

ε̇vp(τ)dτ (4.28)

where εvpn and εvpn+1 are the accumulated viscoplastic strains at the time steps tn and tn+1

respectively. Again for the simplicity, the viscoplastic strain rate is considered to be

constant and determined by the state at the loading step tn with Equation Equation (4.8).
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Thus, the accumulated viscoplastic strain for the current step is given by:

εvpn+1 = εvpn +∆tε̇vp(tn) (4.29)

It iw worth noticing that due to the simplified explicit time integration scheme adopted

here, a small time increment should be chosen for a stable numerical solution. In general,

preliminary calculations are performed in order to choose a suitable time increment.

With the time discretization scheme presented above, the weak form integrals for the

current loading step tn+1 are rewritten as:∫
Ω

{
C(dn+1) :

[
εn+1 − εvpn+1

]}
: ∇(δu)dV =

∫
Ω

b · δudV +

∫
∂Ω

t · δudS (4.30)

and∫
Ω

[
(2Hn+1+

gc
ld
)dn+1+ηd

dn+1 − dn
∆t

]
δddV +

∫
Ω

gcld∇dn+1·∇(δd)dV =

∫
Ω

2Hn+1δddV

(4.31)

It is noticed that Hn+1 is calculated from the values of εn+1 and εvpn+1.

On the other hand, the computational structure domain Ω is divided into ne elements

which are defined by np nodes. Accordingly, it is easily to transform the weak forms into

the following systems of discrete equations similar with Chapter 2:KuUn+1 = F ext
u,n+1 + F vp

n+1

Kddn+1 = F d,n+1

(4.32)

Ku and Kd are the global stiffness matrices, F ext
u,n+1, F d,n+1 the global nodal forces

vectors, respectively for the displacement and damage fields, and F vp
n+1 the global nodal

force vector related to viscoplastic flow:

Ku =

∫
Ω

[
BT
uC(dn+1)Bu

]
dV

F ext
u,n+1 =

∫
Ω

[
NT

u · b
]
dV +

∫
∂Ω

[
NT

u · t
]
dS

F vp
n+1 =

∫
Ω

[
BT
uC(dn+1) : ε

vp
n+1

]
dV

(4.33)
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and 
Kd =

∫
Ω

[
(
gc
ld

+ 2Hn+1 +
ηd
∆t

)NT
dN d + gcldB

T
dBd

]
dV

F d,n+1 =

∫
Ω

(2Hn+1 +
ηd
∆t
dn)N

T
d dV

(4.34)

3.2 Staged coupling algorithm

It is worth noticing that the displacement (and stress) and cracking evolution prob-

lems are strongly coupled. Indeed, the displacement (stress) evolution is affected by the

damage process. For instance, the elastic stiffness tensor and viscoplastic threshold are

functions of damage variable. Inversely, the damage evolution is driven by the mechanical

field through the stored elastic and viscoplastic energy. Therefore, both problems should

be solved in a coupled way. However, it is demonstrated that the energy history functional

H(t) given in Equation (4.34) is non-convex with respect to the couple of unknowns (u,

d) (Bourdin et al., 2000, 2008). As a consequence, it is difficult to solve the systems of

coupled equations Equation (4.32) by using the conventional Newton-Raphson procedure.

However, the functional H(t) is convex with respect to one of two unknowns (u or d), if

the other one is fixed. In general, the so-called alternating minimization (AM) solver pro-

posed in (Bourdin et al., 2000, 2008) is widely used and adopted here. In the AM solver,

two solution stages are successively performed at the kth iteration of a specific loading

step n+ 1. This is summarized as follows:

I) Solving the displacement problem with the damage field fixed at dk−1
n+1 obtained

from the last iteration:

U k
n+1 = [Kk−1

u (C)]−1 ·
[
F ext
u,n+1 + F vp

n+1

]
, with C = C(dk−1

n+1)

II) Solving the phase-field problem using the updated displacement field and history
energy functional:

dkn+1 = [Kk
d]

−1 · F k
d,n+1(H) , with Hk

n+1 = H(U k
n+1)

These two stages are repeated until the convergence criterion ∥dkn+1 − dk−1
n+1∥ ≤ ϵ

is verified. According to (Ambati et al., 2015), a convergence tolerance is taken as ϵ =

1× 10−5.
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4 Simulation of laboratory tests on Jinping marble

In view of assessing the efficiency of time-dependent phase-field model, representa-

tive laboratory tests are investigated in this section. It is worth noticing that the emphasis

of phase-field model is to capture the progressive damage toward cracking process. For

the sake of simplicity, instantaneous plastic deformation is not taken into account. Inelas-

tic strains, failure and post-failure softening are entirely attributed to damage evolution

and localization as well as viscoplastic flow. Therefore, the proposed phase-field model

is mainly suitable for brittle rocks under low confining pressure. For this reason, a typical

brittle rock, Jinping marble, is here selected. This rock has been widely investigated in

the context of stability analysis of high slopes around the Jinping I hydraulic power plant.

Short term triaxial compression tests and long term creep tests are considered. Rep-

resentative experimental data are selected from previous studies (Zhou et al., 2015a; Liu

and Shao, 2017). The laboratory tests were performed on cylindrical samples of 50mm in

diameter and 100 mm in height. For the sake of simplicity, two-dimensional plane strain

simulations are performed. The specimen geometrical domain is divided into 200 × 400

(80 000) elements. According to experimental observations (Zhou et al., 2015a; Liu and

Shao, 2017), failure patterns of samples are mainly characterized by localized fractures

even if the samples are subjected to uniform macroscopic stresses and displacements.

The onset of localized fractures or non-uniform stress and strain fields is generally related

to material heterogeneity. Without detailed descriptions of such heterogeneity of tested

samples and in order to enhance the onset of localized fractures, a small weak region (one

element) is placed at the sample center where the value of gc is reduced by 1%. The

boundary conditions are composed of a uniform normal stress on the lateral surfaces (de-

noted as σ3) and a uniform vertical displacement on the upper boundary surface, which

is used to calculate the average axial strain ε1. As output results, one obtains the average

lateral strain ε3 and axial stress σ1.

4.1 Short term triaxial tests

For modeling of short term mechanical behavior, two elastic parameters and the crit-

ical energy release rate gc should be identified. The elastic parameters of Jinping marble

are directly taken from the previous experimental studies (Zhou et al., 2015a) and the fol-
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lowing values are used: Young’s modulusE = 45000MPa and Poisson’s ratio ν = 0.15.

The critical fracture energy (or energy release rate) gc is a key parameter in the phase-

field model. Its value is generally identified form uniaxial tension or bending tests, which

are not available for the studied rock. Further, it is found that the value of gc identified

from tensile test could not be suitable for cracking under compressive stresses (Yu et al.,

2021b,a). However, the value of gc can be indirectly estimated from the peak values of

deviatoric stress obtained in triaxial compression tests. Moreover, it is found that for most

rocks, the values of gc can vary with confining stress. Inspired by the previous studies (Yu

et al., 2021b,a), the following empirical relation is here adopted: gc = gc0e
ς(σc/σr), with

σc being the confining stress and σr = 1MPa the reference normalizing pressure. gc0 de-

notes the value of gc for uniaxial compression with σc = 0 and the parameter ς controls its

variation with confining stress. For the case of Jinping marble studied here, by using the

peak deviatoric stresses obtained in three triaxial compression tests respectively with 0,

10 and 20 MPa confining stress, we have obtained gc0 = 2.0937N/mm and ς = 0.0466.

Finally, the length scale parameter ld is generally taken as 1 to 3 times of the smallest

element size. It is set here to 0.25 mm.

Comparisons between experimental data and simulation results are presented in Fig-

ure 4.1 for three values of confining pressure. The main features of mechanical behavior

of Jinping marble are correctly reproduced by the relatively simple phase-field model. The

values of peak deviatoric stress are well predicted. For low confining pressures (0 and 10

MPa), the post-peak brittle failure process is also properly described. For the test with a

high confining pressure (20 MPa), it seems that the marble exhibits a brittle-ductile transi-

tion. Quite large plastic strains, in particular in the radial direction, are observed. There is

a residual strength in the post-peak regime due to the frictional effect along closed cracks.

All these features are not properly captured by the simple elastic-brittle model as it is not

the emphasis of the present work. However, these features can be improved by incorpo-

rating an instantaneous plastic deformation mechanism in the phase-field model or/and

taking into account the friction effect along localized cracks. This will be performed in

our future studies.
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Figure 4.1: Axial and radial strains versus deviatoric stress of Jinping marble in triaxial
compression tests with different pressures: comparisons between numerical results and
experimental data (Zhou et al., 2015a)

4.2 Uniaxial and triaxial creep tests

At first, an uniaxial compression creep test reported in Zhou et al. (2015a) is consid-

ered. Five additional parameters involved in the viscoplastic model should be identified,

say ηvp, σs, cv, n and m. These parameters cannot be directly calculated from experi-

mental measurements and they are generally calibrated from the optimal numerical fitting

of creep tests. Basically, the parameter σs defines the threshold of viscoplastic flow and

can be determined at the end of elastic stage in a triaxial creep test. ηvp mainly controls

the initial creep rate during the primary creep stage while n affects the creep rate evo-

lution. m describe the viscoplastic hardening effect on the transition from the primary

to secondly creep stages. The viscoplastic potential parameter cv controls the volumetric

viscoplastic strain and can be identified from the lateral creep strain curve. For the mar-

ble samples tested in Zhou et al. (2015a), the following values of viscoplastic parameters

are obtained: ηvp = 1 × 10−7s−1, σs = 100 MPa, cv = 0.01, n = 3.2 and m = 7980.

In Figure 4.2, we show the axial and radial strains as functions of time under an axial

stress of 113 MPa. The evolution of damage is also reported. It is found that the numer-

ical predictions obtained using the elastic-viscoplastic and phase-field model are in good

agreement with the experimental data. The main features of creep deformation behavior

of Jinping marble are well described by the proposed model. In particular, typical three
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stages of creep deformation are found in this test, namely an increasing primary creep

stage, an quasi-stationary stage and an accelerating one leading to the sample failure. It

is further to observe the creep deformation rate is clearly linked to the damage evolution

which also exhibits three distinct stages. During the first stage, the damage increases

quickly due to the applied axial stress. Then it evolves slowly with the viscoplastic strain.

Finally, the maximum value in the sample increases very rapidly and reaches 1 causing

the macroscopic failure of sample.
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Figure 4.2: Evolution of axial and lateral strains as well as damage variable with time
in an uniaxial compression creep test under an axial stress of 113 MPa: comparisons
between numerical results and experimental data Zhou et al. (2015a)

In Figure 4.3, we show the damage variable distributions inside the sample obtained

at different instances during the uniaxial compression creep test. Due to the presence

of weak element, the damage localization starts from the center of sample. Two quasi

symmetric localized damage bands are obtained. This configuration is close to fracture

modes widely observed in rock samples (Zhou et al., 2015a). It is worth noticing that the

use of a weak element is an artificial technique to facilitate the onset of damage localiza-

tion. In future studies, this point can be addressed by considering the spatial variability of

micro-structure of rocks such as porosity and mineral composition.
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Figure 4.3: Evolution of damage distribution of uniaxial compression creep test

Moreover, two triaxial compression creep tests under a confining pressure of 30MPa,

also performed on Jinping marble respectively with a single and multiple deviatoric stress

steps, are investigated. The experimental data are taken from Liu and Shao (2017). The

samples used in these tests and those used in Zhou et al. (2015a) were drilled at dif-

ferent zones. Therefore, there are some quantitative differences on mechanical param-

eters. For instance, the elastic properties measured in triaxial compression tests (Liu

and Shao, 2017) are as follow: Young’s modulus E = 30000 MPa and Poisson’s ratio

ν = 0.15. The critical fracture energy gc is again fitted from the peak deviatoric stress

and one gets gc = 1.2775 N/mm. The parameters for viscoplastic flow are as follows:

ηd = 1 × 10−10Ns/mm2, ηvp = 1 × 10−7s−1, σs = 70MPa, cv = 0.26, n = 2.4 and

m = 1080. However, the same finite element mesh and the same value of length scale ld
as those in the uniaxial creep test are used.
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Table 4.1
Reference set of model’s parameters for rock samples investigated in (Liu and Shao, 2017)

Elastic and phase-field

parameters

E ν gc pc ld

(MPa) (-) (N/mm) (MPa) (mm)

Values 30000 0.15 1.2775 30 0.25

Viscoplastic

parameters

ηvp σs n m cv

(s−1) (MPa) (-) (-) (-)

Values 1× 10−7 70 2.4 1080 0.26

The creep test with a single loading step was performed under a deviatoric stress of

143 MPa. Numerical predictions are compared with experimental data in Figure 4.4(a),

together with the damage variable evolution. A good concordance is obtained. In this test,

one obtains mainly a primary creep phase. Both axial and radial strains evolve towards

stationary values and creep strain rates decrease with time. Another important feature

is that the radial creep strain is clearly larger than the axial one. This means that the

viscoplastic deformation induces an important volumetric dilatance. In the second test,

four loading steps were realized with increasing values of deviatoric stress from 65 MPa

to 130 MPa. Comparisons between numerical results and experimental data of axial and

radial strains are shown in Figure 4.4(b). It is interesting to observe that the creep strain

rate increases with the rise of deviatoric stress. When this one is high, a small increment of

deviatoric stress can generate large creep strains, for instance during the last loading step

with an increment of 10 MPa. The damage variable evolution trend is fully consistent with

that of strains. Again, the radial creep strain is clearly larger than the axial one. There

is a good agreement between numerical and experimental results for the axial strain as

well as for the radial one when the deviatoric stress is low (the first two loading steps).

But more and more scatters are observed when the deviatoric stress is high (the last two

steps). This indicates that the volumetric dilation is enhanced during creep process by

material damage. As a possible improvement of the viscoplastic model, the volumetric

dilation parameter cv should evolve with damage.
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(a) creep test with a single loading step (q = 143MPa)
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(b) creep test with multiple loading steps

Figure 4.4: Variations of axial and lateral strains in triaxial compression creep tests under
a confining pressure of 30 MPa respectively with a single and multiple loading steps,
together with damage variable evolution

4.3 Sensitive analysis

Some comparative calculations are presented here in order to investigate effects of

some key parameters on short and long-term mechanical responses of rocks.

Firstly, the influences of geometry discretization as well as the characteristic length

are studied. For this purpose, six cases with different minimum element size h and length
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scale ld are considered and detailed in Table 4.2. These case are chosen for the following

strategy. In the cases 1 to 4, the characteristic length is equal to or higher than the min-

imum element size, ld ≥ h, while in the cases 5 and 6, it is smaller than the minimum

element size ld < h. Moreover, in order to facilitate the comparison and interpretation,

the value of gc is accordingly reset with that of the length scale ld. The objective is to

obtain a very close value of uniaxial compression strength for all the cases considered to

that reported in Zhou et al. (2015a).

Table 4.2
Different sets of considered parameters for sensitivity study of uniaxial compression test
reported in Zhou et al. (2015a)

Case

No.

ld h gc Case

No.

ld h gc

(mm) (mm) (N/mm) (mm) (mm) (N/mm)

1 1.0 1.0 2.08 4 1.0 0.5 2.08

2 0.5 0.5 1.04 5 0.5 1.0 1.04

3 0.25 0.25 0.52 6 0.25 0.5 0.52

In Figure 4.5, we first show the overall strain-stress curves of uniaxial compression

test for six cases considered in Table 4.2. It is confirmed that all six cases give a quasi

identical uniaxial compression strength. However, the responses are slightly different in

the post-peak regime. For those cases where ld ≥ h (cases 1-4), the mechanical behavior

is almost the same while the curves of the cases where ld < h (cases 5, 6) are lower than

the other cases. However, significant differences are observed in the uniaxial creep test

as shown in the same figure. Although the similar primary creep stages are obtained, the

period of quasi constant creep rate for the cases with ld < h (cases 5, 6) is clearly shorter

than those with ld ≥ h (cases 1-4). In other words, the accelerated creep stage occurs

earlier. According these results, it is recommended to ensure the condition of ld ≥ h in

order to obtain the stable numerical results in both pre- and post-peak regimes.
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Figure 4.5: Influence of characteristic length and mesh size on overall strain-stress curve
in uniaxial compression test (left) and on strain evolution in uniaxial compression creep
test (right)

On the other hand, the influence of length scale parameter ld and mesh size on cracking

pattern is also investigated and presented in Figure 4.6. One can clearly see that it is the

length parameter ld that controls the width of localized cracks (damaged zones) rather

than the mesh size h. For instance, both the cases 1 and 4 show a very similar distribution

of damage variable though they have different element size. At the same time, with the

decrease of ld, the width of localized cracked zones becomes finer from the case 1 to 3.

Figure 4.6: Distribution of damage in uniaxial compression creep test in different cases
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The coupling effect of viscoplastic flow and damage evolution is considered. Indeed,

in the proposed viscoplastic model, the viscoplastic threshold is weakened by the damage

growth though the degradation function gvp(d) introduced in the loading function f vp

Equation (4.9). Two calculations are performed on the uniaxial creep test by respectively

considering that the viscoplastic threshold is affected gvp(d) = (1 − d)2 or not affected

gvp(d) = 1 by the damage evolution. Comparisons between two cases are presented in

Figure 4.7. One can see that in the case without degradation, an primary creep is obtained.

However, due to the degradation of viscoplastic threshold by damage, three creep stages

are observed. The creep strains during the primary stage are much larger than those in the

case without degradation. After a period of quasi constant creep rate, an accelerated creep

stage occurs and leads to a rapid failure. These results show that the damage degradation

effect can play an essential role in time-dependent deformation of rocks.
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Figure 4.7: Influence of damage degradation effect on viscoplastic flow in uniaxial creep
test

In the second example, the influence of critical fracture energy gc on creep deforma-

tion is studied. For this purpose, three different values of gc (1.225N/mm, 1.2375N/mm,

1.2775N/mm) are used in simulations of the triaxial creep test with one-step axial load-

ing. Comparisons between three calculations are presented in Figure 4.8 in terms of

variations of strains and damage variable. It is obvious that the damage evolution rate is

higher when the value of gc is lower. Accordingly, the rate of creep strains is also en-
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hanced by the decrease of critical fracture energy. In the case with gc = 1.2375N/mm,

it seems that the damage variable evolves towards a stationary value. In the case with

gc = 1.225N/mm, the damage evolution rate evolves to a constant value. Finally, In the

case of gc = 1.2775N/mm, the damage evolution rate is accelerated after a period of

time and evolves towards to unit, producing an accelerated creep phase. There is a close

connection between time-dependent deformation and damage evolution.
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Figure 4.8: Influences of critical fracture energy gc on time-dependent strains and damage
evolution in a triaxial compression creep test with a confining pressure of 30 MPa

Moreover, as a time-dependent viscoplastic phase-field model is used in this study,

the time-discretization scheme can affect the obtained numerical results. For this purpose,

the sensitivity of creep deformation to the time increment size is here investigated. Four

different values of ∆t are chosen and compared. The obtained results are presented in

Figure 4.9(a). It can be seen that the creep strain curves become almost unchanged when

the time increment is less than 1.0s. As a consequent, the this value of ∆t = 1.0s is

chosen in all calculations of this section. In addition, the influences of two viscoplastic

parameters ηvp and n on creep strain are also studied. It is shown that ηvp mainly controls

the initial creep rate during the primary stage. As presented in Figure 4.9(b), higher the

value of parameter ηvp is, bigger the slope of primary creep curve is. The parameter n
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affects the creep rate evolution. On other word, the creep rate reduces quickly when a

small value of n is used, as shown in Figure 4.9(c).
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Figure 4.9: Sensitive analysis of time increment and two viscoplastic parameters in a
triaxial compression creep test with a confining pressure of 30 MPa

5 Conclusions

In this paper, we have proposed a new phase-field model for modeling the time-

dependent cracking process of rocks. The viscoplastic deformation is coupled with the

evolution of cracks. More precisely, the viscoplastic flow rate is enhanced by the induced

damage through the weakening of creep threshold while the viscoplastic strain energy

contributes to the damage evolution. The proposed model has been applied to describe

the short and long term mechanical behavior of marble from the left bank of Jinping

hydropower station. Numerical results were compared with experimental data from lab-
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oratory tests. It was found that the main features of marble mechanical responses were

correctly described by the proposed model. The phase-field based model provides an

efficient tool for modeling the transition from diffuse damage to localized cracks.

From the results obtained from the present study, it can be concluded that the induced

damage is one of the keys mechanisms of brittle rocks such as marble. The macroscopic

failure of those rocks is mainly due to the coalescence of micro-cracks leading to macro-

scopic fractures. The time-dependent evolution of damage or growth of micro-cracks is

a key parameter controlling the long-term stability of structures in such rocks. Moreover,

there is a strong interaction between viscoplastic deformation and damage evolution.
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CHAPTER 5

Phase-field modeling of cracking process in par-
tially saturated porous media

1 Introduction

The main objective of this chapter is to describe the progressive failure of saturated

and unsaturated porous media. The whole process starting from diffuse damage to local-

ized macroscopic cracks is described. Therefore, the phase field method seems to be a

good choice. As new contributions, we shall propose an improved phase-field model for

modeling cracking process in both saturated and unsaturated porous media. Two indepen-

dent damage variables are used to better describe tensile, shear and mixed cracks. A new

evolution criterion is proposed for each damage mechanism by considering the effect of

water pore pressure and saturation degree. In particular, the evolution criterion of shear

crack is based on an effective stress concept which is continuously valid for both saturated

and unsaturated cases. The effect of effective mean stress on rock shear strength is also

taken into account. Moreover, the role of material micro-structural heterogeneity on the

damage localization process is also incorporated in the new model. The new phase-field

model is implemented in a finite element framework for coupled hydro-mechanical and

cracking problems.

Throughout the chapter, the following assumptions and simplifications are adopted.

We consider here a quasi-static and isothermal hydro-mechanical coupling problem by

neglecting the acceleration terms. The fluid flow through a porous continuum is described

by the linear Darcy conduction law and mass balance condition. The effect of induced

99



§2. Formulation of new phase-field . . . CHAPTER 5

cracks on the fluid flow is taken into account through the variation of permeability only.

It is not envisaged to consider the fluid flow inside individual cracks. The assumption of

small strains is adopted. Only two-dimensional plane deformation problems are consid-

ered in this paper.

2 Formulation of new phase-field method for dry media

2.1 Regularized cracks surface description by two phase fields

We consider here a solid material occupying the domain Ω and damaged by a set of

sharp cracks Γ. In order to conveniently describe tensile and shear cracks in geological

materials, inspired by some previous studies (Fei and Choo, 2021; Yu et al., 2021a,b),

two independent phase-field (damage) variables dt and ds are here adopted. Therefore,

the approximated crack surface area for each family of cracks is given by:

AΓα =

∫
Γα

dA ∼=
∫
Ω

γα(dα,∇dα)dΩ, with α ∈ {t, s} (5.1)

Two scalar-valued functions γα(α ∈ {t, s}) denote the tensile and shear crack density.

Among various available forms for crack density of phase-field method (Bourdin et al.,

2000; Pham et al., 2011; Wu, 2017), the following commonly used one (Bourdin et al.,

2000) is here adopted two crack density functions:

γα(dα,∇dα) = (dα)2

2ld
+
ld
2
|∇dα|2, with α ∈ {t, s} (5.2)

ld > 0 denotes a length scale parameter which is in relation with the width of smeared

cracks (or localized damage bands). The crack density functions γα(α ∈ {t, s}) are de-

pendent on both damage variables dα and their gradients ∇dα. This non-local formulation

allows the regularization of damage localization problems. Numerically, it is possible to

avoid the suspicious mesh dependency of numerical solutions. Moreover, the crack prop-

agation (or damage evolution) is assumed as an irreversible process, ḋα ≥ 0. This leads

to the non-negative evolution rate of crack surface density functions defined as:

γ̇α =

(
dα

ld

)
ḋα + ld∇dα · ∇ḋα ≥ 0, with α ∈ {t, s} (5.3)
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2.2 Total energy functional

The emphasis of this study is put on elastic solid materials exhibiting progressive

cracking process. The assumption of small strains is throughout assumed. Consequently,

one can write the total energy functional E of solid in Ω as the following general form:

E(ε, dt, ds) =

∫
Ω

ψ(ε, dt, ds)dV +Dcrack (5.4)

ψ is the stored elastic strain energy density per unit volume. The term Dcrack represents

the energy needed to create new crack surfaces.

The mechanical properties of materials are generally affected by the induced cracks.

In the case of elasticity, suitable degradation functions are usually introduced to determine

the elastic stiffness tensor and strain energy of cracked materials. At the same time,

tensile and shear cracks can affect differently the elastic properties of materials. In order

to conveniently describe the deterioration of elastic properties, the elastic strain energy

is commonly decomposed into several additive parts (Amor et al., 2009; Choo and Sun,

2018; Zhou et al., 2020). Similarly, different decomposition methods are also proposed

for stress and strain tensors (Miehe et al., 2010a). In the present work, the elastic strain

energy of cracked materials w(ε) is decomposed into a tensile part and a compressive

part. It is also assumed that the tensile damage affects the tensile energy part and the

shear damage affects the compressive energy part. Therefore, the elastic strain energy of

cracked materials is written as:
ψ(ε, dt, ds) = g(dt)w+(ε) + g(ds)w−(ε)

w+(ε) =
1

2
σ0

+ : ε

w−(ε) =
1

2
σ0

− : ε

(5.5)

σ0
+ and σ0

− denote the positive and negative cones of the stress tensor σ0 acting on the

undamaged material. They are classically calculated with the spectral decomposition

operators P±
σ widely used in previous researches (Zhang et al., 2020; Yu et al., 2021a):σ0

+ = P+
σ : σ0

σ0
− = P−

σ : σ0
(5.6)
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The stress tensor σ0 of the corresponding undamaged material is given by σ0 = Cb0 : ε,

with Cb0 being the elastic stiffness tensor of undamaged bulk material. It is noticed that

the decomposition operators verify the condition P+
σ + P−

σ = I, with I being the fourth

order unit tensor. The stress-strain relations of damaged material are then deduced from

the elastic strain energy:

σ =
∂ψ

∂ε
= g(dt)σ0

+ + g(ds)σ0
− = Cb(dt, ds) : ε (5.7)

The fourth order tensor Cb(dt, ds) defines the elastic stiffness of damaged bulk material,

which is given by:

Cb(dt, ds) =

[
g(dt)P+

σ + g(ds)P−
σ

]
: Cb0 (5.8)

It is noticed that the stress decomposition method is adopted in this study instead of the

strain decomposition one commonly used in previous studies (Miehe et al., 2010a). One

of the advantages is that the stress decomposition is suitable to incorporate fluid pressure

effect on crack propagation in porous media as shown below. Concerning the damage ef-

fects on elastic properties, the most common form of degradation function is here adopted:

g(dα) =
(
1− dα

)2, with α ∈ {t, s} (5.9)

Based on the Griffith theory (Griffith, 1921; Thomas, 1994), the energy needed for the

propagation of cracks is directly related to the crack surface area created, and it is fully

dissipated. Therefore, according to the crack surface density given in Equation (5.2), the

dissipated energy during cracks growth reads:

Dcrack =

∫
Ω

[
gtcγ

t(dt,∇dt) + gscγ
s(ds,∇ds)

]
dV (5.10)

The parameters gtc and gsc denote the material toughness for the tensile and shear crack

respectively.

2.3 Evolution of damage fields

In this work, for the sake of convenience, we assume that each damage mechanism

(tensile and shear) is an independent dissipation process. Further, the description of evo-
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lution of each damage process is based on the variational approach proposed by Francfort

and Marigo (1998), by considering brittle fracture as an energy minimization problem.

Similarly, the evolution of each damage field can be determined by minimizing the total

energy functional E(ε, dt, ds), with respect to each damage variable. By applying the

unilateral stationary condition for the total energy functional with respect to each damage

variable, i.e. δE = 0 for δdα > 0 and δE > 0 for δdα = 0 (α = t, s) and by calculating

the first order variations of E, one obtains the following evolution equations for the two

damage fields: 
− 2(1− dt)w+(ε) +

gtc
ld
dt − gtclddiv(∇dt) = 0

− 2(1− ds)w−(ε) +
gsc
ld
ds − gsc lddiv(∇ds) = 0

(5.11)

It is seen that the evolution of shear damage should be controlled by the stored strain

energy due to compressive stressw−(ε). However, it is well known that the shear cracking

in rock-like materials is rather induced by the maximum shear stress and influenced by

the mean stress (confining pressure in triaxial compression condition). In order to take

into account these physical features, a stress-based driving force is here introduced for

the evolution of shear damage instead of using w−(ε). To this end, the widely used

Mohr–Coulomb failure criterion is adapted to define such a shear damage driving force.

Inspired by previous works (Li et al., 2017; Zhou et al., 2019b; Yu et al., 2021a), the

following expression is proposed:

w−(ε) ⇒ ws− =
1

2µ

〈
⟨σ3⟩− − ⟨σ1⟩−

2cosφ
+

⟨σ3⟩− + ⟨σ1⟩−
2

tanφ− c

〉2

+

(5.12)

σ1 and σ3 represent the major and minor principal stresses respectively. c and φ are the

cohesion and frictional angle of material. ⟨x⟩+ = x if x > 0 and ⟨x⟩+ = 0 if x ≤ 0,

inversely for ⟨x⟩−.

On the other hand, to ensure irreversible evolution condition of damage field γ̇α ≥ 0

and ḋα ≥ 0 (α ∈ {t, s}), the historical driving energy function proposed by Miehe et al.

(2010a) is here adopted:

Ht(t) = max
τ∈[0,t]

[w+(τ)] and Hs(t) = max
τ∈[0,t]

[ws−(τ)] (5.13)
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Consequently, the governing equations of two damage fields are expressed as:

2(1− dα)Hα − gαc

[
dα

ld
− lddiv(∇dα)

]
= 0, with α ∈ {t, s} (5.14)

3 Extension to partially saturated porous media

3.1 Total energy function for damaged variably saturated porous me-
dia

In this section, the phase-field method introduced above is extended to partially sat-

urated porous media. In general case, pores are filled with at least two fluid phases such

as liquid (water) and gas (dry air). In the context of landslides, the gas phase is general

in contact with the atmosphere and the consequence of gas pressure change is much less

important than that of water. Therefore, it is usual to neglect the air pressure change.

The water pressure can be positive in saturated condition or negative in unsaturated one.

In this case, the capillary pressure becomes pc = −pw. With this assumption in hand,

the poroelastic constitutive model for the undamaged material can be written as follows

(Coussy, 2010): 
dσ0 = Cb0 : dε− bSwdpwI

dpw =Mww

[
− bSwdεv +

(
dm
ρ

)
w

] (5.15)

pw denotes water pressure. mw and ρw represent the water mass change per unit volume

and volumetric mass. b and Mww are Biot’s coefficient and modulus. εv = ε : I denotes

the volume strain. Sw is water saturation degree. From the first relation of Equation (5.15),

it is possible to obtain an effective stress which is the thermodynamic force conjugate to

the strain tensor. It is conventionally called the Bishop’s effective stress (Bishop, 1959)

and here defined in the following incremental form:

dσb0 = dσ0 + bSwdpwI = Cb0 : dε (5.16)

The accumulated value of σb0 is calculated incrementally as the value of Sw evolve with

time. Moreover, the water saturation Sw can be related to the capillary pressure pc through

the water retention curve. Among various forms available, the widely used form initially
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proposed by van Genuchten (1980) is here adopted:

Sw = Sr + Se(1− Sr), Se =

[
1 +

(
pc
pcr

)n]−m
, pc ≥ 0 (5.17)

where Sr is the residual degree of saturation, pcr is a critical reference pressure, n and

m(= 1− 1/n) are model’s parameters.

Due to the presence of fluid, the stored energy ψ can be conveniently seen as the

sum of elastic strain energy of porous medium and that related to fluid mass change.

Accordingly, the total energy functional E is rewritten in the following general form:

E(ε,mw,mnw, d
t, ds) =

∫
Ω

[
ψpm(ε, dt, ds) + ψfl(ε,mw, d

t, ds)
]
dV +Dcrack (5.18)

The stored elastic energy of porous medium ψpm can be expressed as a function of the

Bishop effective stress. As for dry medium, this part of energy is affected by the two

damage variables dt and ds, one gets:
ψpm(ε, dt, ds) = g(dt)wb0+ (ε) + g(ds)wb0− (ε)

wb0+ (ε) =
1

2
σb0

+ : ε

wb0− (ε) =
1

2
σb0

− : ε

(5.19)

The positive and negative cones of the Bishop’s effective stress are calculated by using

the same projection operators as those given in Equation (5.6), say σb0
+ = P+

σ : σb0 and

σb0
− = P−

σ : σb0. The total stress tensor increment of damaged porous media is finally

given by:

dσ = Cb(dt, ds) : dε− bSwdpwI (5.20)

In general case, the energy due to fluid mass change ψfl(ε,mw, d
t, ds) is also affected

by two damage processes. However, this will induce a high complexity in damage evo-

lution equations (Heider and Markert, 2017; Heider and Sun, 2020). In many previous

studies (Miehe et al., 2015b; Miehe and Mauthe, 2016; Aldakheel et al., 2021), it was

found that the role of fluid free energy in the cracking process was quite limited. In the

case of partially saturated media, according to preliminary results, the damage evolution

processes are mainly controlled by stress (strain) state and water pressure. Therefore, the
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contribution of the fluid energy to the damage evolution can be neglected. Thus, one has:

ψfl(ε,mw, d
t, ds) ≡ ψfl(ε,mw) =

1

2
Mww

[
bSwεv −

(
m

ρ

)
w

]2
(5.21)

The energy dissipated during crack creationDcrack remains unchanged with respect to the

dry medium.

On the other hand, the physically based driving energy for the shear damage evolution

ws− given in Equation (5.12) for dry materials is also extended to partially saturated media

by taking into account the effect of water pressure. Indeed, the Bishop effective stresses

are now used. One obtains:

wbs− =
1

2µ

〈
⟨σb3⟩− − ⟨σb1⟩−

2cosφ
+

⟨σb3⟩− + ⟨σb1⟩−
2

tanφ− c

〉2

+

(5.22)

σb1 and σb3 are the Bishop effective major and minor principal stresses. Accordingly, the

energy history functionals for two damage mechanisms of partially saturated media be-

come:

Ht(t) = max
τ∈[0,t]

[wbs+ (τ)] and Hs(t) = max
τ∈[0,t]

[wbs− (τ)] (5.23)

These new expressions of energy history functionals are used in the governing equations

of two damage fields given in Equation (5.14) for partially saturated media.

3.2 Governing equations for hydro-mechanical fields

Based on the assumptions mentioned above, the mechanical problem is governed by

the static balance equations:

div(σ) + f⃗b = 0 (5.24)

f⃗b denotes mechanical body force.

By considering Darcy’s conduction law, the fluid mass balance equation and the con-

stitutive relations given in Equation (5.15), the fluid diffusivity equation is expressed as:

krkp
µw

div
(
∇pw − ρwg⃗

)
=

1

Mww

dpw
dt

+ bSw
dεv
dt

(5.25)

where kp denotes the saturated permeability, µw represents the dynamic water viscosity,
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and g⃗ the gravitational acceleration. The relative permeability of partially saturated media,

kr, is proportional to the saturation degree Sw. The specific form of such a relation should

be identified form experimental data. In this study, the following widely used relation is

adopted:

kr =
√
Sw

[
1−

(
1− S1/m

w

)m]2 (5.26)

The Biot’s modulus of pore water is given by:

1

Mww

=
S2
w(b− ϕ)

κs
+
Swϕ

κw
− ϕ

∂Sw
∂pc

(5.27)

in which ϕ is the porosity.And κs and κw represent the bulk moduli of solid skeleton and

water respectively.

3.3 Influence of cracking on fluid flow

It is known that the presence of open cracks enhances the permeability of porous

media. However, in the framework of phase-field method, sharp cracks are approximated

by localized damaged zones. Though some approximate methods have been suggested to

estimate the opening of crack from damage field (Lee et al., 2017; Yoshioka et al., 2020),

they are not easy to implement and usually dependent on mesh configuration. As an

alternative approach, the permeability in damaged zones can be expressed as a function

of damage variable (Heider and Markert, 2017; Yu et al., 2021a). As the permeability

change is mainly controlled by open cracks, it is assumed that it depends on the tensile

damage dt only. Further, inside the fully cracked zones with dt ⇒ 1, the porosity should

also tend towards the unity ϕ ⇒ 1. Then, the porosity inside the damaged zones is also

a function of tensile damage. Moreover, when a tensile crack is closed, the value of dt

remains stationary. But its effect on permeability and porosity vanishes. This unilateral

effect is also taken into account. A simplified opening-closure criterion is here adopted.

When the volumetric strain is positive, the crack is considered as open. Otherwise, the

crack is closed. Therefore, the following empirical relations are proposed to describe the
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changes of permeability and porosity:
kp(d

t) = k0pexp
(〈

εv
|εv|

〉
βdt

)
ϕ(dt) = ϕ0 +

〈
εv
|εv|

〉
(1− ϕ0)dt

(5.28)

where k0p and ϕ0 are the initial values of permeability and porosity. The parameter β

controls the evolution of permeability. The operator ⟨x⟩ denotes ⟨x⟩ = x if x ≥ 0,

otherwise ⟨x⟩ = 0.

4 Numerical implementation in finite element method

The numerical implementation procedure for solving the coupled hydro-mechanical

and damage problem with the proposed phase field model is summarized in this section.

4.1 Weak form

In this work, the classical finite element method is employed to solve the coupled

hydro-mechanical and damage problem. By using the standard Galerkin procedure with

the test functions δu, δpw and δdα respectively, one can transform the governing functions

Equations (5.14), (5.24) and (5.25) to the weak forms for the hydro-mechanical coupling

problem:

∫
Ω

[
∇(δu) :

[
C(dt, ds) : ∇u− SwbpwI

]]
dΩ =

∫
∂Ω

δu : T⃗dS +

∫
Ω

δu : f⃗bdΩ∫
Ω

[
∇(δpw) :

krkp(d
t)

µw
:
(
∇pw − ρwg⃗

)]
dΩ +

∫
Ω

δpw · 1

Mww

ṗwdΩ

+

∫
Ω

δpw · SwbI : ∇u̇dΩ =

∫
sω

δpw · −ω⃗ · n⃗dS

(5.29)

and for two damage evolution problems:
∫
Ω

[
(gtc ld + 2Ht)δdt · dt + gtcld∇(δdt) : ∇(dt)

]
dΩ =

∫
Ω

δdt · 2HtdΩ∫
Ω

[(gsc ld + 2Hs)δds · ds + gsc ld∇(δds) : ∇(ds)] dΩ =

∫
Ω

δds · 2HsdΩ
(5.30)
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4.2 Geometrical discretization

The studied structure domain Ω is divided into a finite number of elements based

on the standard Bubnov-Galerkin approach. The solution target is here transformed to

determine the set of nodal values of displacement components (denoted by the vector U),

pore water pressure (denoted by the vector P) and those of damage variables (denoted by

the vector dα, α = t, s). The distributions of these unknowns inside each element are then

approximated in terms of their nodal values by using suitable shape functions, namely as:

u(x) = Nu(x)U
e pw(x) = Np(x)P

e d(x) = Nd(x)d
e

ε(x) = Bu(x)U
e ∇pw(x) = Bp(x)P

e ∇d(x) = Bd(x)d
e

(5.31)

where Nu(x), Bu(x) , Np(x), Bp(x) and Nd(x), Bd(x) are the matrices of shape func-

tions and their derivatives for the displacement field, water pressure and damage fields,

respectively. It should be noticed that the choice of shape functions Nu(x) and Np(x) has

a significant effect on the stability of solution procedure (Cajuhi et al., 2018; Gavagnin

et al., 2020). Inspired by previous studies (Zienkiewicz, 2001) and in order to satisfy the

so-called Ladyzhenskaya–Babuška–Brezzi condition, quadratic shape functions for the

displacement and linear shape functions for the pore pressure and two damage variables

(Taylor-Hood pair P2-P1) are here adopted.

With the geometrical discretization, the integral weak forms of the hydro-mechanical

coupling problem can be rewritten as:Ruu Cup

0 Rpp

U
P

+

0 0

Cpu Mpp

U̇
Ṗ

 =

Fu

Fω

 (5.32)

in which: 

Ruu =
∫
Ω
(BT

u )C(dt, ds)BudΩ

Cup =
∫
Ω
(BT

u )(−SwbI)NpdΩ

Fu =
∫
∂Ω
(NT

u )T⃗dS +
∫
Ω
(NT

u )f⃗bdΩ

Rpp =
∫
Ω
(BT

p )(krkp(d
t)/µw)BpdV

Mpp =
∫
Ω
(NT

p )(
1

Mww
)NpdV

Cpu =
∫
Ω
(Np)(SwbI)(B

T
u )dΩ

Fω =
∫
Ω
(BT

p )
[krkp(dt)

µw
ρwg⃗

]
dΩ−

∫
sω
(NT

p )ω⃗n+1.ndS
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Similarly, one gets the linear system of equations for the tensile damage field:
Kdtd

t = Fdt

Kdt =
∫
Ω

[
(gtc ld + 2Ht)NT

dNd + gtcldB
T
dBd

]
dΩ

Fdt =
∫
Ω
2HtNT

d dΩ

(5.33)

and for the shear damage field:
Kdsd

s = Fds

Kds =
∫
Ω

[
(gsc ld + 2Hs)NT

dNd + gsc ldB
T
dBd

]
dΩ

Fds =
∫
Ω
2HsNT

d dΩ

(5.34)

4.3 Time discretization

The total loading history (designed by the total time T ) is divided into a number of

incremental steps such as t = 0, t1, ..., tn, tn+1, ..., T . For the current loading step n + 1,

the time increment is denoted as ∆t = tn+1 − tn. The time discretization of unknowns is

carried out by the generalized trapezoidal method (Lewis et al., 1998), which transforms

the systems of Equations (5.32) to (5.34) into the following forms:

[
χRuu χCup

Cpu ∆tχRpp +Mpp

][
U

P

]n+1

=

[
(χ− 1)Ruu (χ− 1)Cup

Cpu Mpp − (1− χ)∆tRpp

][
U

P

]n
+

[
Fu

∆tFω

] (5.35)

and, Kdtd
t
n+1 = Fdt

Kdsd
s
n+1 = Fdt

(5.36)

The coefficient 0 ≤ χ ≤ 1 is used to adopt a suitable time integration scheme. In order to

better describe the transition from unsaturated to saturated state due to rainfall, an implicit

integration with χ = 1 is here adopted.
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4.4 Staged coupling algorithm

The hydro-mechanical solutions (displacement, water pressure, strains and stresses)

are strongly coupled with the damage evolution. According to many previous studies, it is

generally hard to solve these problems in a fully coupled way. Different types of numer-

ical algorithms have been proposed to efficiently solve such coupled problems (Bourdin

et al., 2008; Gerasimov and De Lorenzis, 2016; Wu et al., 2020a; Mandal et al., 2021).

Among those, a staggered scheme (named as Alternate Minimization method) (Bourdin

et al., 2000, 2008) has shown its robustness and it is widely used in phase field problems.

More precisely, two solution steps are successively performed at the kth iteration of a

specific loading step n+ 1. This is summarized as follows:

I) Solving the coupled displacement-pressure problems Uk
n+1 and Pk

n+1 with the con-
stant damage values dα,k−1

n+1 obtained from the last iteration;

II) Solving the damage problems dα,kn+1 using the updated energy history functions with
the displacement field Uk

n+1 and water pressure field P k
n+1;

These two steps are repeated until the convergence criterion ∥dα,kn+1 − dα,k−1
n+1 ∥ ≤ ϵ

is verified. According to (Ambati et al., 2015), a convergence tolerance is taken as ϵ =

1× 10−5.

5 Analysis of triaxial compression test

In this section, we shall verify the ability of the proposed model to describe the basic

mechanical behavior of brittle rocks under compressive stress, in particular the process

of initiation and localization of cracks. For this purpose, the experimental data from

conventional triaxial compression tests on sandstone reported in (Jia et al., 2020) are

selected. The effect of heterogeneous distribution of porosity on the onset and propagation

of cracks is also investigated. However, it is worth noticing that the simulations presented

here do not constitute a real validation of the proposed model. Indeed, the numerical

results are not only related to the model used but also to the set of input parameters

(Babuska and Oden, 2004). In general, the set of experimental data for the identification

of parameters and for the validation of the model should be different and independent. If

possible, some comparisons with analytical solutions are also needed. Unfortunately, the

data set is quite limited for the studied material for a full validation of the model. At the
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same time, due to the progressive localization of damage fields, it appears very hard to

get analytical solutions. New experimental data should be collected in our future work.

5.1 Description of numerical model

The tested sandstone was collected from the dam site of a hydropower plant in South-

west China. The mineralogical compositions were determined with the X-ray diffraction

method in the previous studies (Yu et al., 2019; Jia et al., 2020). This rock is mainly com-

posed of quartz (55%), feldspar (25%), sandy and clay detritus (20%). The solid grains

constitute a quasi continuous matrix phase and the majority of pores are embedded in such

a matrix phase. As a first approximation, the sandstone can be seen as a porous medium

constituted of an equivalent solid matrix and embedded pores. The classical Mori-Tanaka

scheme (Mori and Tanaka, 1973) seems to be suitable to estimate the effective elastic

properties of such a porous medium. The macroscopic bulk κhom and shear µhom mod-

uli are given by Equation (3.29). The values for the studied sandstone are presented in

Table 5.1.

As the porosity has a direct influence on the macroscopic elastic behavior of sand-

stone, it is used as the micro-structural parameter to represent the material heterogeneity.

For this purpose, the standard Weibull distribution Equation (3.30) is adopted to describe

the random distribution of porosity ϕ.

In this study, five numerical specimens with different values of heterogeneity index

(mi = 1.1, 1.5, 2, 5, 10) are selected in this study. The size of samples is 50× 100mm.

The corresponding spatial distributions of porosity and related Young’s modulus are pre-

sented in Figure 5.1.
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Figure 5.1: Spatial distributions of porosity and corresponding macroscopic elastic mod-
ulus for five values of mi

In the present phase field model, four other parameters controlling two damage pro-

cesses should also be determined. The values of tensile crack toughness gtc is generally

estimated from the macroscopic uniaxial tensile strength while that of gsc from the uni-

axial compression strength. The values of cohesion and friction parameter c and φ can

be evaluated from the macroscopic compression strength envelop for different values of

confining stresses. The reference values of these parameters are given in Table 5.1.
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Table 5.1
Input parameters for sandstone

Parameters Unit Value Parameters Unit Value

Matrix bulk

modulus κs
GPa 3.125

Matrix shear

modulus µs
GPa 6.25

Average porosity

ϕ̄
% 8.43

Smeared crack

length ld
mm 0.5

Tensile crack

energy gtc/ld
N/m2 1.4× 103

Shear crack

energy gsc/ld
N/m2 2.4× 103

Cohesion c MPa 0.38
Frictional angle

φ
◦ 49.44

5.2 Stress-strain curves and failure pattern

A series of numerical calculations are performed on selected heterogeneous samples.It

is worth noticing that conventional triaxial compression tests are performed on cylindrical

samples. The geometry and applied stresses verify the axisymmetric conditions. But due

to the localization of strains and damage, the obtained crack patterns are almost never

axisymmetric. In the ideal situation, full three-dimensional calculations should be per-

formed. However, for the sake of simplicity, two-dimensional plane strain calculations

are widely conducted for modeling triaxial tests. Two types of comparisons are consid-

ered: a quantitative comparison of overall stress-strain curves, and a rather qualitative

comparison of crack patterns. In our study, two-dimensional plane strain calculations are

also performed, as for many previous studies. Each sample is divided into 40000 trian-

gular elements. The reference value of material length scale parameter is selected as ld =

0.5 mm.

Among five samples shown in Figure 5.1, the sample with mi = 10 has the smallest

heterogeneity of porosity. It is first used to present the studied sandstone. In Figure 5.2,
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one shows the comparisons of global stress-strain curves between the phase-field model

and the experimental data for two values of confining stress (Jia et al., 2020). The basic

mechanical behavior of sandstone is well reproduced by the proposed model both in the

pre- and post-peak regimes. The influence of confining stress on the mechanical strength

is also well captured.

In order to follow the progressive cracking process, four representative points are

selected on the stress-strain curves in Figure 5.2 (a, b, c and d). The distributions of

two damage variables at these loading points for a confining stress of 5MPa are shown in

Figure 5.3. At the loading step (a), although the differential stress is at the peak value,

the damage values are moderate and clearly less than 1. But there is a rapid increase

of damage state during the subsequent three loading steps. Moreover, localized cracks

(damage concentration bands) appear more and more clearly. Finally, one obtains two

major macroscopic cracks. The apparition of these cracks leads to a fast decrease of

differential stress and material softening. It is worth noticing that in many previous studies

on cracking modeling with phase field method, in order to facilitate the onset of damage or

strain localization, an artificial weak zone was introduced (Fei and Choo, 2020b; Yu et al.,

2021b). In our study, the macroscopic elastic properties are not uniform in the sample

due to the spatial variability of porosity. There is no need to introduce such an artificial

weak zone. The onset and propagation of localized cracks are physically affected by the

material heterogeneity. It is also interesting to notice that although compressive stresses

are applied, both tensile and shear cracks are observed. Indeed, due to the non-uniform

distribution of porosity and strains, the stress field is also non-uniform and local tensile

zones can be obtained.
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Figure 5.2: Axial strain versus differential stress curves for the specimen with mi = 10
under two values of confining stress: comparisons between numerical results and experi-
mental data (Jia et al., 2020)

Figure 5.3: Distributions of tensile and shear damage in the specimen with mi = 10 at
four different loading steps (see Figure 5.2) during a triaxial compression test with 5 MPa
confining stress
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5.3 Sensitivity analysis

Comparative calculations are presented here in order to investigate the effects of some

key parameters on the mechanical responses of rock, in particular, the heterogeneity in-

dex, mesh size and scale length parameter.

The influence of material heterogeneity mi on the mechanical behavior of sandstone

is investigated by comparing the numerical results obtained with five different samples

presented in Figure 5.1. The predicted axial strain versus differential stress curves are

presented in Figure 5.4 for a triaxial compression test under a confining stress of 5 MPa.

It is shown that the macroscopic mechanical responses can be influenced by the material

heterogeneity. The peak differential stress is lower when the material heterogeneity is

stronger (lower value of mi). This indicates that the non-uniform distribution of porosity

can enhance the growth of micro-cracks. In Figure 5.5, the corresponding distributions of

damage fields in five numerical specimens are presented at the state of peak differential

stress. The cracking pattern is also affected by the material heterogeneity. But for all the

cases, the macroscopic failure is always driven by the formation of some major localized

cracks.
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Figure 5.4: Axial strain versus differential stress curves for five samples with different
values of heterogeneity indexmi in a triaxial compression test with 5 MPa confining stress
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Figure 5.5: Distributions of tensile and shear damages in five heterogeneous samples in
a triaxial compression test with 5MPa confining stress

The influences of mesh size and scale length are also studied. Five cases with different

values of minimum element size he and scale length ld are considered and presented in

Table 5.2. In many previous studies (Miehe et al., 2010b; Wang et al., 2022), the ratio

he/ld is usually higher than 1. Therefore, by setting the ratio to he/ld = 1, the influence

of ld is here studied in the cases 1 to 3. According to the results shown in Figure 5.6, it

is found that the width of localized cracks becomes larger with the increase of ld. In the

case 4 and case 5, the characteristic length is fixed to ld = 0.5mm while two different

values of minimum element size are considered. One can see that the width of localized

cracks is not affected by the mesh size. The distribution of localized cracks is affected by

the material heterogeneity. Comparing with the cases 1 to 3, it is clear that the width of

localized cracks is controlled by ld and quasi independent on mesh size.
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Table 5.2
Different sets of parameters for sensitivity study of mesh size and scale length parameter
in triaxial compression test

Case

No.

ld he Case

No.

ld he

(mm) (mm) (mm) (mm)

1 1.0 1.0 4 0.5 1.0

2 0.5 0.5 5 0.5 0.25

3 0.25 0.25

Figure 5.6: Distributions of shear damage in a triaxial compression test with 5MPa con-
fining stress for five cases

6 Desaturation of a sand column

In this section, we aimed to validate the hydro-mechanical coupling procedure by

comparing the numerical simulation of drainage test on a sand column with the experi-

ment conducted by Liakopoulos (1964). In the preliminary phase of the original experi-

mental test (t < 0), a column of perspex was filled with Del Monte sand in height of 1.0

m and constrained the lateral sides by rigid and impervious wall. This sand column was

saturated by adding water from the top and allowed to drain freely at the bottom until the

uniform wero water pressure was observed throughout the sand column (t = 0). Then,

the experiment concerned outflow of water from the bottom of this sand column due to

the gravity and measured the water pressures at different height along the sand column.
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In order to reproduce the condition of the experiment, the geometry and mechani-

cal boundary conditions are presented in Figure 5.7. The column is discretized in 320

structured triangular elements. To modeling the initial hydraulic experimental conditions

(t < 0), a homogeneous water pressure field pw = 0 is specified before the desaturation.

The lateral sides are set to be impervious. Due to the gravity, the water outflows at the

bottom. For this reason, the water pressure on pervious bottom is fixed to 0 during the

whole simulation time (t ≥ 0).

(a) t < 0 (b) t ≥ 0

Figure 5.7: Geometry and boundary conditions for the sand column

As suggested by previous study (Callari and Abati, 2009), the following relations for

water saturation degree and relative permeability are adopted here:Sw = 1− 1.9722× 10−11p2.4279c

kr = 1− 2.207(1− Sw)
0.9529

The mechanical and hydraulic parameters are listed in Table 5.3. It is necessary to mention

that the damage critical energy gtc and gsc have been set to be 1 × 1016 for the reason that

no damage is considered in this example.

120



CHAPTER 5 PHASE-FIELD MODELING OF CRACKING PROCESS . . .

Table 5.3
Input parameters for Del Monte sand

Parameters Unit Value Parameters Unit Value

Drained Young

modulus E
MPa 1.3

Drained Poisson

coefficient ν
- 0.4

Initial porosity

ϕ
% 29.75

Saturated

permeability kp
m2 4.5× 10−13

Biot coefficient

b
- 1.0

Solid bulk

modulus κs
GPa 1000

In Figure 5.8, the numerical prediction of pore water pressures at different times along

the sand column were compared with those of the experiment in Liakopoulos (1964).

Although the pore air pressure has been assumed to be zero for the simplicity, it can

be seen that a good agreement with available experimental data in terms of pore water

pressure distribution along the sand column.

As shown in Figure 5.8, the water loss from the bottom induces capillary pressure

development along the column starting from the top. Consequently, the settlement at top

of sand column induced by suction and gravity for different time steps were presented

in Figure 5.9. Due to the lack of experiment data, the numerical predicted results were

compared with a previous study (Callari and Abati, 2009) where this problem was studied

by FEM. Again, it can find that the vertical displacement predicted by this study has a

good agreement with the data from Callari and Abati (2009).
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Experiments
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Figure 5.8: Distribution of numerical predicted pore water pressure for different times
and the comparison with experimental data (Liakopoulos, 1964).
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Figure 5.9: Distribution of numerical predicted vertical displacement for different times
and the comparison with previous study (Callari and Abati, 2009).

7 Constrained desiccation test

In this section, a constrained desiccation test is performed in order to show the capabil-

ity of the model to describe the onset and propagation of cracks for the hydro-mechanical

coupling problems. For this purpose, the experimental data from Peron et al. (2009) and
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Stirling et al. (2017) are employed as qualitative reference to the numerical prediction in

our study.

7.1 Description of numerical model

The clayey soil were used in both Peron et al. (2009) and Stirling et al. (2017). How-

ever, Peron et al. (2009) conducted the test on a rectangular specimen which was re-

strained at the bottom of the mould. Differently, Stirling et al. (2017) put the specimen

into a semi-cylindrical mould. In this work, we establish a 2D numerical model represent-

ing the longitudinal cross-section as shown in Figure 5.10 based on the real geometry of

the two experiments and some other numerical model (Cajuhi et al., 2018; Heider and Sun,

2020). Half of the specimen is studied here which is in dimension of 285mm × 51mm.

The symmetry boundary condition has been applied on the right boundary. According to

previous study (Stirling et al., 2017; Heider and Sun, 2020), most of cracks in domain are

induced by tensile stress. In order to generate sufficient tensile stressed, the bottom of nu-

merical model has been considered to be fixed. On the other hand, several flaws are placed

on the top surface of the geometry representing the imperfections (such as micro-cracks)

of the surface in experiments.

The drying condition is simulated by a constant flux ω = 6 × 10−7m/s applied on

the discharge boundary (Stirling et al., 2017; Cajuhi et al., 2018; Heider and Sun, 2020).

The mechanical and hydraulic parameters used in this numerical test are summarized in

Table 5.4. It should be noticed that the Young’s modulus is assumed to be influenced by

the water content w = Sw
ϕρw

(1−ϕ)ρs .

This test is not aiming at quantitatively reproducing the experimental results but just

at verifying if a qualitative agreement can be obtained. Thus, the parameters for phase-

field formulations gtc = gsc = 1.21 × 10−3N/mm are adopted. On the other hand, the

length scale parameter ld is chosen as 2.0mm. Accordingly, the analysis geometry has

been divided into 37584 triangle elements with the size he around 1.0mm.
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Figure 5.10: Illustration of the geometry and boundary conditions of the 2D symmetric
desiccation model

Table 5.4
Reference set of mechanical and hydraulic parameters

Parameters Symbol Value Unit

Young’s modulus E 1770e−0.297w MPa

Poisson’s ratio ν 0.3 -

Initial Porosity ϕ 41 %

Saturated permeability kp 1× 10−15 m2

Residual water saturation Sr 15 %

critical reference pressure pr 357.14 kPa

Van Genuchten model parameter n 1.3 -

7.2 Numerical prediction of drying-induced fracture

During constrained desiccation test, the authors (Peron et al., 2009) observed several

cracks starting at the upper drying surface and propagating to the bottom of the specimen.

Furthermore, cracking starting at the lower corners of the sample was observed, leading to

partial detachment of the bottom surface. A schematic representation of these desiccation

cracks is shown in Figure 5.11.
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Figure 5.11: Schematic representation of desiccation cracks inspired by the experimental
results in Peron et al. (2009).

The distributions of pore water pressure and displacement for early stage (t = 300s

which is before localization cracks occur) of desiccation are presented in Figure 5.12. As

we can see that the suction develops first on the free surface of the specimen when the dry-

ing process starts. The left upper corner suffers the largest negative pore water pressure.

It also induces that the vertical shrinkage larger than the lateral shrinkage. In Figure 5.12,

one can find that the vertical displacement on upper and bottom of left boundary are neg-

ative and positive respectively, while the horizontal displacement is uniform along the

upper drying surface of the specimen. For this reason, the tensile crack on the left bottom

is observed first as shown in Figure 5.13(a). This behavior has been observed in diverse

experiments related to desiccation cracks in soils and also plain cement.

With further drying, the capillary pressure increase at the upper region and drive the

localization of tensile cracks on upper surface as shown in Figure 5.13, without shear

cracks. Then, the tensile cracks propagates inside of the specimen due to the increase of

lateral shrinkage. At the same time, the crack at the corner propagates along the bottom

and induce the detachment with the mould further as observed in experiment. Then, one

of the vertical cracks reaches the bottom and enhance the detachment. After the enough

detachment chich would lead to the release of the constraints, no further cracking would

be observed even with further desiccation occuring in free boundaries. As can be seen in

Figure 5.13, no shear cracks is observed.
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(a) Pore water pressure

(b) Lateral displacement (c) Vertical displacement

Figure 5.12: Distribution of pore water pressure and displacement after 300s for desic-
cation

(a) t = 650s (tensile damage) (b) t = 650s (shear damage)

(c) t = 2440s (tensile damage) (d) t = 2440s (shear damage)

(e) t = 3410s (tensile damage) (f) t = 3410s (shear damage)

(g) t = 7200s (tensile damage) (h) t = 7200s (shear damage)

Figure 5.13: Distribution of phase-field variables at different time of desiccation

8 Conclusion

In this work, an extended phase-field model is proposed to describe the onset and

propagation of cracks in saturated and unsaturated rock-like porous materials. Two phase-
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field variables are introduced to conveniently capture the tensile, shear and mixed cracks.

The effects of pore water pressure on the evolution of two damage fields are taken into

account for both saturated and unsaturated conditions. In particular, the evolution of shear

cracks is driven by the frictional shear force and influenced by the effective normal stress.

Further, the material spatial heterogeneity is also considered for a better description of the

crack initiation.

The proposed model is first applied to describe the deformation and progressive fail-

ure process of brittle rocks in the laboratory scale. The main features of mechanical

behavior of sandstone are well captured by the phase field model, including the overall

stress-strain curves and localized crack patterns. It is found that at this scale and under

uniform macroscopic stresses, the non-uniform distribution of porosity plays a crucial role

on the localization of damage and the occurrence of macroscopic cracks. Furthermore,

even all applied stresses are compressive, tensile cracks can still appear due to the strong

heterogeneity of local stresses and strains.

The hydro-mechanical solution has been validated by comparing the stimulation re-

sults of desaturation of a sand column with experimental data of that one. On the other

hand, the simulation of a constrained desiccation test is used to verify the hydro-mechanical

damage coupling procedure. The numerical results indicate that the proposed model can

reproduce a qualitative agreement with the observation in experiment.
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CHAPTER 6

Application of proposed phase-field models to anal-
ysis of landslides

1 Introduction

In this chapter, we shall apply the phase-field models proposed in previous chapters

into the failure analysis of landslides. Firstly, the slope instability has been studied by

the phase-field model considering the frictional-damage coupling in Chapter 3. Next, the

hydro-mechanical coupling phase-filed model in Chapter 5 will be employed to analyze

the rainfall-induced landslides both for a simplified slope and a real engineering case. In

addition, the time-dependent phase-field method coupling with the viscoplastic model in

Chapter 4 is applied to modeling time-dependent deformation and failure process of a

high slope section in the left bank of Jinping-I hydropower station in China. Numerical

predictions are compared with field measurements.

2 Application to slope failure analysis with frictional slid-

ing

Landslide is one of the most frequent natural hazards causing heavy economical and

human looses. The progressive cracking is at the origin of slope instability. The frictional

sliding is the main mechanism of cracking and instability of many slopes. In this section,

the proposed coupled damage-friction phase field model is employed to instability anal-
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ysis of slope. Based on the previous study (Fei and Choo, 2020b), a simplified slope is

considered as shown in Figure 6.1. The slope surface has an inclination angle of 45◦ to

the horizontal axis and a height of 10m. The bottom boundary of slope is assumed to fixed

on a rigid ground. The right boundary is free of vertical displacement but constrained of

horizontal motion. A rigid foundation is located at the slope crest on the center of which

a vertical displacement increment of ∆u = −1 × 10−3m is prescribed at each loading

step. As the proposed model takes the effect of confining stress into account, the initial

stresses due to the gravity are considered herein. The basic parameters of slope are taken

from the previous work (Fei and Choo, 2020b): Young’s modulus E = 10MPa, Poisson’s

ratio µ = 0.4 and mass density ρ = 2040kg/m3. The length parameter for phase field

modeling is set to ld = 0.05m. The mesh in the potential sliding region is locally refined

to ld/h = 4, while in the other region ld/h = 1. As a result, 292700 triangle elements are

used. Finally, the critical energy release rate and internal frictional coefficient are chosen

as gc = 0.25N/mm and ηpl = 0.1.

Figure 6.1: Geometry and boundary conditions of a simplified slope

The evolution of damage distribution at successive loading levels is presented in Fig-

ure 6.2. It is found that the cracking process starts from the right foot of rigid foundation

and then propagates toward the left free surface until the slope is crossed by a major

cracked band, whose width progressively becomes larger in the region closer to the left

free surface. It should be reminded that as the mean stress increases with the depth due

to the gravity, the frictional sliding threshold of material is also increasing with the depth.

For this reason, the predicted slip surface has a quasi circle shape and its position is con-

trolled by the local maximum shear stress. The distribution of displacement vector at
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∆u = 0.105mm is given in Figure 6.3. It is clear that the slip motion is strongly piloted

by the frictional sliding process. The maximum displacement is found along the cracked

surface. This result seems to be very consistent with many field observations and to the

classical instability study by using limit analysis methods.

(a) ∆u = 0.03m (b) ∆u = 0.042m (c) ∆u = 0.054m

(d) ∆u = 0.066m (e) ∆u = 0.078m (f) ∆u = 0.090m

(g) ∆u = 0.099mm (h) ∆u = 0.105mm

Figure 6.2: Distribution of induced damage and failure pattern of slope

Figure 6.3: Distribution of displacement vector at ∆u = 0.105mm

As mentioned above, our new model explicitly incorporates the friction-damage cou-
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pling in closed cracks under compressive stresses. The frictional coefficient ηpl is a key

parameter. Its influence on the slope failure pattern is here studied. For this purpose, two

values of ηpl are used: ηpl = 0.10 and ηpl = 0.17. The corresponding damage distribu-

tions at the slope failure state are presented in Figure 6.4. It is shown that the parameter

ηpl has a significant influence on the slip surface pattern. A bigger value of ηpl leads to

a larger radius of the predicted slip surface. This is due to the fact that the maximum

shear stress distribution is affected by the local frictional coefficient. This result seems to

indicate that for a high value of ηpl, the sliding surface may not fully cross the slope and

reach the left free surface. The catastrophic landslide ricks may be reduced by reinforcing

the friction coefficient of rock and soil.

(a) ηpl = 0.10 (b) ηpl = 0.17

Figure 6.4: Influence of frictional coefficient ηpl on cracking process of slope

3 Application to analysis of rainfall induced landslide

In this section, we shall apply the extended phase-field model for variably saturated

porous media to analyzing rainfall-induced deformation and cracking process of slopes.

Two cases are considered, a simplified case and a real engineering case.

3.1 Study of a simplified case

In this example, a simplified slope, which has an inclination angle of 40◦ to the horizon

with a height of 20m as shown in Figure 6.5(a) (Kim et al., 2012), is considered. The

material constituting the slope is assumed to be a rock J1−2Z . Thus, the failure mechanism

of this slope due to a constant rainfall 1.8× 10−6m/s (which is equal to the permeability

of the material) is analyzed. The slope section is divided into 73794 triangular elements,
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as shown in Figure 6.5(b). The minimum size of elements is about 0.15 m. Thus, the

length scale parameter is chosen as ld = 0.15m.

(a) Geometrical and boundary conditions (b) finite element mesh generation

Figure 6.5: Geometrical domain of a simplified slope section and finite element mesh

One objective here is to study the influence of material homogeneity on cracking pro-

cess and failure pattern of the slope. For this purpose, the heterogeneity index mi = 1.1

is adopted here. The corresponding non-uniform distribution of Young’s Modulus due to

heterogeneous porosity is shown in Figure 6.6 according to Weibull distribution in Equa-

tion (3.30). The set of parameters used in numerical calculation are given in Table 6.1.

(a) Porosity (b) Macroscopic Young’s modulus

Figure 6.6: Spatial distributions of porosity and corresponding macroscopic elastic mod-
ulus
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Table 6.1
Input parameters for failure analysis of a simplified slope

Parameters Unit Value Parameters Unit Value

Matrix bulk

modulus κs
GPa 1.135

Matrix shear

modulus µs
GPa 0.725

Average porosity

ϕ̄
% 28.57

Heterogeneity

index h
- 1.1

Residual

saturation Sr
% 8

Critical pressure

pcr
kPa 17.5

Water retention

parameter n
- 3.9

Material scale

length ld
mm 0.25

Tensile crack

energy gtc/ld
N/m2 1.49× 102

Shear crack

energy gsc/ld
N/m2 2.17× 102

Cohesion c kPa 87.5
Frictional angle

φ
◦ 29.2

The distributions of both tensile and shear damage are shown in Figure 6.7 for the

different levels of rainfall. It is shown that the shear damage occurs earlier and propagates

faster than the tensile one. It seems that the shear damage (cracking) is the dominating

mechanism in the slope failure. Despite of the spatial heterogeneity of elastic modulus,

the cracking process starts from the slope toe zone and then propagates toward the top

surface. The width of cracked zone becomes progressively larger in the region closer to

the top surface. In Figure 6.8, the distribution of water pressure and the displacement

vector at the rainfall level of 1230.5 mm are presented. One can observe that upper region

of the slope still remains unsaturated (negative water pressure) while the lower one is

progressively saturated by the rainfall infiltration. The displacement vector indicates that

the the failure pattern is mainly piloted by the sliding along the inclined slope surface.

From the results obtained in this example, one can see that compared with the material

heterogeneity and with the absence of initial macroscopic fractures, the cracking process
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is mainly driven by the mechanical loading (slope weight) and water infiltration.

(a) Rainfall = 1166.47mm(Tensile damage) (b) Rainfall = 1166.47mm (Shear damage)

(c) Rainfall = 1185.84mm (Tensile damage) (d) Rainfall = 1185.84mm (Shear damage)

(e) Rainfall = 1205.28mm (Tensile damage) (f) Rainfall = 1205.28mm (Shear damage)

(g) Rainfall = 1230.5mm (Tensile damage) (h) Rainfall = 1230.5mm (Shear damage)

Figure 6.7: Distribution evolution of rainfall-induced tensile and shear cracks
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(a) Water pressure (b) Displacement vector

Figure 6.8: Distribution of pore water pressure and displacement vector

3.2 Study of a real case

In this sub-section, the phase-field method for partially saturated porous media is ap-

plied to a typical engineering case, the Mayanpo slope in China.

3.2.1 Engineering geological conditions

The Mayanpo slope is situated in the right bank of Xiangjiaba Hydropower station,

which lies on thedownstream of the Jinsha River in Shuifu County, Yunnan Province,

China (Zhang et al., 2018).

According to the morphological investigation, the elevation of Mayanpo slope ranges

from 300m to 624m in the east-west axial. And a gully, named as Mayan gully, cuts

through the slope from north to south with the elevation ranging between 350m and 500m.

Though the Manyanpo slope has an average slope gradient of 12◦ - 20◦, the slope gradient

varies spatially due to the existence of the Mayan gully and Jinsha River. Specifically,

the closer near the gully or the river, the steeper the slope is, vice versa. The drilling

exploration gave the information of stratum in Mayanpo slope. The selected section in

this work is shown in Figure 6.9. The slope can be divided into two layers. The rock in

the upper layer is composed of fine-grained sandstone mixed with siltstone (recognized

as J1−2Z), and the bedrock is a clayey rock (recognized as T 3
4 ).

On the other hand, based on the field investigation, a series of thin-layered rock strata,

which are considered as weak inter-layers, are found within the layer of sandstone in the

upper part. According to previous studies (Tang et al., 2009; Jiang et al., 2012; Zhang

et al., 2018), these weak inter-layers have a significant effect on the deformation and
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stability of the slope due to their pool mechanical properties. Furthermore, the field mon-

itoring data (Jiang et al., 2012; Zhang et al., 2018) indicated that the most sliding zone in

the Mayanpo slope area was controlled by a most developed thin weak layer, named as

JC-1. For this reason, the cross section after the first excavation with the weak layers is

selected as a typical profile, as shown in Figure 6.9, for purpose of studying the failure

process of rainfall-induced landslide.
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Figure 6.9: Geometrical parameters of selected slope section

3.2.2 Setting of numerical model

According to previous studies (Jiang et al., 2012; Zhang et al., 2018), the mechanical

properties of the thin weak (cracked) layer JC − 1 are significantly deteriorated with

respect to those of the surrounding sandstone layer. In order to take into account this

initial weak zone with the framework of phase-field method, it is convenient to set a large

initial value of damage variables (approaching to 1). However, this solution with an initial

damage field generally leads to some numerical issues (Borden et al., 2012; Klinsmann

et al., 2015; Strobl and Seelig, 2016). An alternative method is here preferred. An initial

value of energy history functional is attributed in the weak zone around the cracked layer

JC− 1 for each damage field (tensile and shear) with the following distribution function:

H
t/s
0 (x) =


g
t/s
c

2ld

d

1− d

(
1− 2L(x)

ld

)
L(x) ≤ ld

2

0 otherwise

(6.1)
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in which L(x) represents the shortest distance from an arbitrary point x to the initial

cracked layer center JC − 1. The critical value d = 0.999 is set in all following calcula-

tions.

The selected slope section is divided into 134592 triangular elements, as shown in

Figure 6.10. The size of element in the first layer is smaller (about 0.5 m) than that in the

bedrock as it is expected that the induced damage should be larger there.

Figure 6.10: Finite element mesh used for numerical modeling of selected slope section

Most of the input parameters used here are collected from the previous studies, for

instance (Tang et al., 2009; Jiang et al., 2012, 2013; Zhang et al., 2018). First of all,

similarly with the simulation of triaxial compression tests, the sandstone J1−2Z in the

first layer is considered as a heterogeneity material with a random distribution of porosity

and its macroscopic elastic properties are estimated by using the homogenization rela-

tions Equation (3.29). According to those previous studies, the porosity of sandstone

considered here is quite uniform. Therefore, a weak heterogeneity index of mi = 10 is

adopted. The average porosity is ϕ̄ = 28.57%. The elastic properties of solid matrix are

evaluated as κs = 1.135GPa and µs = 0.725GPa respectively. However, the bedrock

layer T 3
4 is considered as a homogeneous material with Young’s modulus of E = 19GPa

and Poisson’s ratio of ν = 0.15 and its average porosity is about 11.36%. The values

of intrinsic permeability are 1.8 × 10−13m2 for the layer J1−2Z and 1 × 10−15m2 for the

bedrock T 3
4 . The parameters of water retention curve for the first layer are: Sr = 0.08,

pcr = 17.5kPa and n = 3.9. In the opposite, during the whole analysis, the bedrock is

fully saturated. Therefore, it is not useful to define the water retention properties for this

layer. The length scale parameter for phase field analysis is chosen as ld = 0.5m for both

two layers. It is estimated that the critical energy values are gtc/ld = 1.49 × 102N/m2

and gsc/ld = 2.17 × 102N/m2 for the first layer and gtc/ld = 4.06 × 103N/m2 and
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gsc/ld = 5.36 × 103N/m2 for the bedrock one. The cohesion and frictional angle are

c = 87.5kPa and φ = 29.2◦ for the sandstone in the first layer J1−2Z and c = 380kPa

and φ = 49.44◦ in the bedrock. The set of parameters involved in the simulation is

summarized in Table 6.2.

Table 6.2
Input parameters for cracking analysis of Mayanpo slope

Material Parameters Symbol Unit Value

Rock J1−2Z

Matrix bulk modulus κs GPa 1.135

Matrix shear modulus µs GPa 0.725

Average porosity ϕ̄ % 28.57

Heterogeneity index mi - 10

Residual saturation Sr % 8

Critical pressure pcr kPa 17.5

Water retention parameter n - 3.9

Tensile crack energy gtc/ld N/m2 1.49× 102

Shear crack energy gsc/ld N/m2 2.17× 102

Smeared crack energy ld m 0.5

Cohesion c kPa 87.5

Frictional angle φ ◦ 29.20

Rock T 3
4

Young’s modulus E GPa 19

Poisson’s ration ν - 0.15

Porosity ϕ % 11.36

Tensile crack energy gtc/ld N/m2 4.06× 103

Shear crack energy gsc/ld N/m2 5.36× 103

Smeared crack energy ld m 0.5

Cohesion c kPa 380

Frictional angle φ ◦ 49.44

On the other hand, the rainfall infiltration is a complex problem. According to (Mein

and Larson, 1973), there are two distinct stages during the process of infiltration. At the
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first stage, the rainfall intensity is below the infiltration capacity of the ground, and all

the rainfall can infiltrate into the ground. At the second stage, when the rainfall intensity

is above the infiltration capacity, the surface ponding occurs and a variety of water flux

disappears as runoff. In the present work, the rainfall is assumed to be a water flux applied

to the surface of slope. To simplify the problem, a rainfall intensity of 6.48 mm/h, which

is equivalent to the permeability of slope surface (= 1.8 × 10−6m/s), is chosen. Hence,

it is reasonable to assume that all the rainfall infiltrates into the slope without significant

surface ponding.

3.2.3 Failure mechanism analysis

According to the field investigations (Tang et al., 2009; Jiang et al., 2012, 2013; Zhang

et al., 2018), many cracks and fractures were found in the slope, as shown in Figure 6.11.

They can be divided into two groups. One is recognized as tensile cracks, which are

intensively distributed on the top part of slope and at the south side of pool. The maxi-

mum value of the tensile crack width reaches up to 80cm, and the depth more than 10m.

The other one contains tensile - shear mixed cracks. They are found around the toe and

excavated zones of slope with the width ranging between 1 to 10cm.

Figure 6.11: Field investigation of cracks and fractures characteristic distribution in
Mayanpo slope (Zhang et al., 2018)
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(a) Rainfall = 568.9mm (Tensile damage) (b) Rainfall = 568.9mm (Shear damage)

(c) Rainfall = 598.7mm (Tensile damage) (d) Rainfall = 598.7mm (Shear damage)

(e) Rainfall = 645.5mm (Tensile damage) (f) Rainfall = 645.5mm (Shear damage)

(g) Rainfall = 651.3mm (Tensile damage) (h) Rainfall = 651.3mm (Shear damage)

Figure 6.12: Progressive evolution of rainfall-induced tensile and shear cracks

In Figure 6.12, the evolutions of both tensile and shear cracks are presented for differ-

ent rainfall infiltration levels. Qualitatively, the numerical distributions of cracks are con-

sistent with the field observation. More precisely, the tensile cracks firstly appear on the

top zone when the cumulative rainfall reaches 568.9mm, as shown in Figure 6.12(a). The

tensile cracks propagate vertically with the rainfall infiltration to reach the initial cracked

layer. At the same time, the growth of shear cracks is more moderate than the tensile

one. When the rainfall infiltration level reaches 645.5mm, as shown in Figures 6.12(e)

and 6.12(f), both tensile and shear cracks appear around the excavated zone of the lower

part of slope. With the continuation of rainfall infiltration, the tensile cracks in the top

part of slope and the tensile - shear cracks in the excavated zone are connected to the
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initial cracked layer (see Figures 6.12(g) and 6.12(h)). At this stage, there is clearly an

occurrence risk of landslide.

In Figure 6.13, we show the pore water pressure distributions at the initial state before

rainfall and at the rainfall infiltration of 651.3mm when the macroscopic fractures appear.

At the initial state, the upper zone of slope is unsaturated where the water pressure is less

than zero. With the rainfall, this zone is progressively saturated leading to the decrease

of capillary pressure and effective stress. This is the physical cause of cracks growth.

It is interesting to notice that the pore water pressures inside the highly damaged zones

are clearly higher than that in the surrounding ones. This is due to the high permeability

in those damaged zones. Therefore, it is clear that the occurrence of cracking process

is inherently correlated with the resaturation of ground and the increase of pore water

pressure. Mutually, the water infiltration is enhanced by the propagation of cracks.

(a) Initial state (b) Rainfall = 651.3mm

Figure 6.13: Distribution of pore water pressure at two selected states

The distribution of displacement vector at the rainfall state of 651.3mm is shown in

Figure 6.14. One can see that the motion of landslide is mainly driven by the sliding along

the right-down direction due to the gravity effect of ground. Further, the displacement

of slope is concentrated alongside the existing weak zone and fully consistent with the

evolution of cracked zones. The displacements inside the undamaged regions are very

small.

Figure 6.14: Distribution of displacement vector at rainfall = 651.3mm
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For a better understanding of the failure process in rainfall induced landslide, the

displacement profiles along the selected section A-A’ in Figure 6.9 are presented in Fig-

ure 6.15 for different infiltration instances. It can be seen that the displacement inside the

region above the pre-cracked layer JC − 1 is much larger than that of the zone below

JC − 1. The difference becomes more and more significant with the rise of rainfall infil-

tration level. There is a strong displacement discontinuity across the initial cracked layer.

At the same time, the displacement inside the region below the pre-cracked layer remains

very small and does not evolve significantly with the rainfall time. Therefore, it seems

that the sliding along the weak layer has a key role in the failure process of slope caused

by the rainfall infiltration and seepage.
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Figure 6.15: Displacement profiles along a selected section A-A’ with different rainfall
infiltration levels

4 Time-dependent behavior of left bank high slope of Jin-

ping I hydropower station

As an example of engineering application, time-dependent mechanical responses of

the left bank high slope of Jinping I hydropower plant are investigated by using the pro-
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posed time-dependent phase-field model.

4.1 Summary of engineering geological conditions

The Jinping I hydropower station, one of the highest and largest ones all over the

world, is built at the Pusiluogou in the west of Great River Bend of Yalong River which

is adjacent to Muli and Yanyuan counties in Liangshan Yi Autonomous Region. It is

near Xichang (27◦32′-28◦10′N, 101◦46′-102◦25′E), about 500 km southwest of Chengdu,

Sichuan Province, PR China. The double-curvature arch dam, of 305 m in height with a

crest at 1885 m above the sea level (asl), is constructed in a typical V-shaped valley (Qi

et al., 2010). Due to the height of the dam, the retained reservoir level will reach 1880m

asl, with a total reservoir capacity 7.76 billion m3 and the regulated storage 4.91 billion

m3.

The valley is cut through the Triassic Zagunao Formation which consists of sandstone,

slate and marble. In view of its location between the Tibetan Plateau and Sichuan Basin,

the area is characterized by complex geological conditions (Huang et al., 2010), espe-

cially on the left bank of the valley. A typical geological profile (L9-L9) of the left bank

was reported in Hu et al. (2020). Accordingly the slope rises at an angle between 70◦-

80◦ below 1900 m asl and 40◦-50◦ above. In addition, the bedrock of slope is composed

of metamorphic rocks belonging to the Zagunao group of the middle and upper Triassic

(T2-3Z) which can be divided into three members Zhou et al. (2016): a green schist mem-

ber (T1
2-3Z), a marble member (T2

2-3Z) and a slate and low-grade metamorphic sandstone

member (T3
2-3Z). Moreover, a large number of faults and fractures are observed in this area

Zhou et al. (2016), for instance, the fault referred as f2 is shown in Figure 6.16(a). To

sum up, the geological conditions at the dam site are extremely complex and request an

in-depth investigation of stability conditions of the left abutment slope. In this context,

the present study shall provide a numerical analysis of time-dependent deformation and

damage by using an efficient phase-field method.

4.2 Description of numerical model

Here we consider the typical two-dimensional section L9-L9 of the left bank high

slope of Jinping I hydro-power station. In Figure 6.16(a), the geometrical domain and

main geological layers of the section are presented. The studied domain is of 370 m in
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width and of 450m in height. The slope section composition is simplified to be composed

of three principal rock layers respectively referred to as II, III and IV, and a major fault

zone named as f2. Based on the studies related to the laboratory tests presented above and

field investigations (Huang et al., 2010; Hu et al., 2020), the basic model’s parameters of

each layers are given in Table 6.3. As the fault zone f2 is mainly constituted with filled

materials, it is here considered as a thin layer with a small critical fracture energy gc.

In Figure 6.16(b), one also shows the finite element mesh adopted in this study. It is

composed of 12523 elements and 12729 nodes in total. The length scale parameter for

the regularized crack description is taken as ld = 0.25m, which is equal to the minimum

size of element.
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(a) composition of L9-L9 slope section (b) finite element mesh generation

Figure 6.16: Geometrical domain of a selected slope section and finite element mesh
generation

145



§4. Time-dependent behavior of left . . . CHAPTER 6

Table 6.3
Reference set of physical, elastic and phase-field parameters of different rock layers

Rock layers

Layer II Layer III Layer IV Fault f2

Density ρ (kg/m3) 2800 2700 2700 2600

Young’s modulus E (MPa) 25000 8500 2500 3000

Poisson’s ratio ν 0.23 0.26 0.3 0.28

Critical energy gc (N/mm) 900 104 28.3 1.08

Table 6.4
Reference set of viscoplastic parameters

Parameters
ηvp σs n m cv

(s−1) (MPa) (-) (-) (-)

Values 1× 10−9 5.8 2.8 1030 0.24

4.3 Main results of reference case

Main results obtained from a reference calculation using the parameters given in Ta-

bles 6.3 and 6.4 are first presented and discussed.

First of all, in Figure 6.17, the distributions of instantaneous displacement and damage

induced by self gravity of slope are given. One can see that the maximum instantaneous

displacement is obtained in the top zone of the slope. The fault layer is highly damaged.

A small but not negligible damage distribution is also found inside the weak zone IV as
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shown in the Figure 6.17(b).

(a) Instantaneous displacement (b) Gravity induced damage

Figure 6.17: Instantaneous displacement and damage distributions induced by gravity
effect inside the slope

The time-dependent behavior of the slope is then studied by taking the instantaneous

results presented in Figure 6.17 as the initial conditions. As the gravity effect is already

taken into account and there is no other applied loads, the long-term stability of the slope

is entirely controlled by the time-dependent mechanical behavior of rock layers. Based on

the in− situ measured data reported in Hu et al. (2020), the time-dependent deformation

of the slope during a forty month period (from 1st January 2010 to 15th April 2013)) is

investigated in this work. Indeed, for the purpose of monitoring the deformation evolution

of the left bank slope with the time, some monitoring points have been set, for instance

the points PD14 and PD28 in the section L9 − L9 as shown in Figure 6.16(a). The

comparison between the measured displacement and numerical prediction is presented in

Figure 6.18. It seems that the numerical predicted evolution of displacement at the two

monitoring points is in good agreement with the measured data.
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(a) monitoring point PD14
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(b) monitoring point PD28

Figure 6.18: Comparisons of displacement evolution between measured and calculated
values at two monitoring points (From 1st January 2010 to 15th April 2013)

The distribution of displacement and damage increments with respect to the instanta-

neous values at the end of calculation period (1200 days) are shown in Figure 6.19. Differ-

ently with the instantaneous results shown in Figure 6.17, the maximum time-dependent

displacement increase is obtained inside the weak layer IV and around the fault layer
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f2. At the same time, the damage distribution inside the weak layer IV exhibits a time-

dependent growth. In order to show some quantitative examples, the variations of damage

variable along two selected cut lines A−A′ and B−B′ defined in Figure 6.16(a) are also

presented for three representative instances. One can see that the maximum damage value

increases from 0.161 to 0.307 on the line A − A′ and 0.156 to 0.295 on B − B′. This

clearly shows that the time-dependent damage evolution related to micro-crack growth is

the main mechanism driving the time-dependent deformation of the slope.

(a) Displacement increment (b) Damage increment
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Figure 6.19: Distributions of displacement and damage increments with respect to the
instantaneous values at the end of calculation period (1200 days), and variation of damage
along the two cut lines defined in Figure 6.16(a) at three different instances

4.4 Sensitivity analysis of water weakening effect

Most slopes are subjected to water saturation change due to raining and reservoir level

variation. It is also known that the mechanical properties of most rocks are sensitive to
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water content. In particular, a number of previous studies have shown that the critical

fracture energy or stress intensity factor of rocks could be significantly reduced by an

increase of water saturation degree (Henry et al., 1977; Waza et al., 1980; Nara et al.,

2012). In the case of the Jinping left bank slope, according to the experimental study

reported in Huining et al. (2013), the failure strength of all rock layers considered here

can be reduced by 10% due to water saturation. Therefore, it is crucial to investigate the

consequence of such water weakening effect of the long-term deformation and stability

of slopes.

However, as a first approximation, a simplified approach is adopted in this work. We

shall not perform fully coupled hydromechanical calculations. The water weakening ef-

fect is taken into account simply by considering that the critical fracture energy gc for

each rock layer is reduced by different ratios. The predicted displacement evolution with

time at the two monitoring points are presented in Figures 6.20 and 6.21 for two ratios of

reduction. It is clear that the displacement is enhanced by the reduction of gc. The ampli-

fication of displacement is quite small for a reduction of 5%. However, with a reduction

of gc by 10%, the displacements at two monitoring points are significantly amplified and

exhibit an accelerating phase leading to sliding of slope. This seems to indicate that if the

critical fracture energy parameter gc is reduced by water saturation to some critical value,

it is possible to generate the instability of slope.
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Figure 6.20: Consequences of critical energy parameter gc reduction on displacement
evolution at two monitoring points

In order to better investigate the instability mechanism induced by the weakening of

rock fracture resistance, in Figure 6.21, we show the damage variable distribution at six

different time stages. One can see that at the first stage, the damage is mainly concentrated

in the fault layer f2 and the other zones are weakly affected by cracking process, as

shown in Figure 6.21(a). Then, the damage zone propagates into the layer IV due to

the increase of creep strains (see Figure 6.21(b)). There is further the coalescence of

damage between these two layers causing macroscopic cracking (d close to 1) around the

toe zone of the slope, as illustrated in Figure 6.21(c). From the stage d, the damaged

zones propagate towards to the top region of the slope (see Figures 6.21(d) and 6.21(e)).

Finally, in Figure 6.21(f), a large cracked band is formed and it leads to the instability of

the slope.
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(a) t = 0 day (b) t = 1059 day

(c) t = 1066 day (d) t = 1069 day

(e) t = 1070 day (f) t = 1071 day

Figure 6.21: Evolution of damage distribution at six different time stages
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5 Conclusion

In this chapter, the new phase-field model with damage-frictional coupling is firstly

employed to predict the progressive failure of slope instability. The predicted slip surface

has a quasi circle shape which seems to be very consistent with many field observation

and to the classical instability study based on limit analysis methods.

Next, the proposed phase-field model for partially saturated media is applied to the

analysis of rainfall induced deformation and failure of slopes. A simplified case and a

real slope are investigated. The cracks patterns obtained from numerical modeling are

qualitatively consistent with the field observations. The proposed model is able to capture

the main physical mechanisms involved in the rainfall induced landslides. The pore water

pressure rise due to rainfall modifies the distribution of effective stress in the slope and

then the initial equilibrium condition. Tensile cracks can be directly induced by the pore

water pressure rise. The diminution of effective normal stress facilitates the occurrence

of shear cracks which are driven by the excessive shear stress. The growth of damage

enhances the water infiltration kinetics in the cracked zones. At the scale of slopes, due to

the existence of initial weak layers, the role of material heterogeneity becomes negligible.

Then, the short and long term deformation and cracking process of the left bank of

Jinping hydropower station have been studied by applying the proposed phase-field model

for modeling the time-dependent cracking process of rock-like materials. It can be found

that the time-dependent evolution of damage or growth of micro-cracks is a key parameter

controlling the long-term stability of structures. Moreover, there is a strong interaction

between viscoplastic deformation and damage evolution. It is crucial to take into account

this type of interaction in long-term stability analysis of slopes.

153





CONCLUSIONS AND PERSPECTIVES

1 Conclusions

This thesis has contributed to developing the phase-field method more suitable in mod-

eling the onset and propagation of cracks in rock-like materials under different conditions.

Accordingly, several novel phase-field models have been proposed in previous chapters

to deal with the problems of fractures and cracks induced by different reasons. To be

specifically, the contributions of new phase-field models are summarized as following.

First of all, the variational structure of a classical phase-field method with volumetric-

deviatoric split of strain tensor has been presented. Besides, the implementation of this

model in framework of finite element method has also been illustrated in detail. The

material heterogeneity has been considered as the random distribution of inclusions in

rock-like materials. According to the investigation of numerical triaxial tests with dif-

ferent inclusions distribution, it is found that the pattern of localized cracks is directly

influenced by the spatial heterogeneity of elastic properties of the rock. The proposed

method could capture the onset of crack localization automatically without artificial weak

element.

Next, we proposed a new phase-field model formulated in a rigorous thermodynam-

ics framework, which is able to describe open and closed cracks, smooth and frictional

crack surfaces. The general continuity conditions at the crack opening- closure transition

point are fully verified for the energy functions, the stress-strain relations, and the driving

forces for crack propagation. The plastic sliding between closed fracture lips has also

been considered in this model. The numerical assessments indicated that this model is

able to physically take into account the influence of confining stress on the mechanical

behavior of materials. Moreover, it also can describe the unloading-reloading hysteresis

loop correctly. The ability to describe tensile, shear and mixed modes of cracking has

been verified either. Further, the numerical predictions of failure patterns are very consis-

tent with most experimental observations such as crack propagation deviation and crack

bridging.

Then, a viscous phase-field method coupling with a viscoplastic model has been in-

troduced to take the progressive growth of cracks and viscoelastic and/or viscoplastic

155



CONCLUSIONS AND PERSPECTIVES

deformation into account. In this model, the progressive growth of cracks is driven by the

viscoplastic deformation and the induced phase field affects the degradation of the thresh-

old of viscoplastic flow. Its efficiency is assessed through comparisons with laboratory

tests both of the short and long term mechanical behavior. The results in this thesis shows

that the time-dependent evolution of damage or growth of micro-cracks is a key parameter

controlling the long-term stability of those materials with viscoplastic. Moreover, there is

a strong interaction between viscoplastic deformation and damage evolution.

In addition, the onset and propagation of cracks in saturated and unsaturated rock-like

porous materials is numerical modeled by an extended phase-field method. The tensile,

shear, and mixed cracks are represented by two independent phase-field variables in this

model. The coupling between the pore pressure and evolution of fractures is also consid-

ered for both saturated and unsaturated conditions. The proposed model is then applied to

describe the deformation and progressive failure process of brittle rocks in the laboratory

scale. It is proved that the mechanical driving cracks and drying induced cracks are well

reproduced by the proposed phase-field model.

All these new phase-field models are applied to analyze the stability of slopes with

different engineering conditions. The first application is modeling the failure surface in

a slope with vertical displacement loading at the slope crest. The frictional slip has been

considered. It successfully reproduced a similar slip surface with one indicated by tradi-

tional limit analysis methods. Second, the rainfall-induced landslides have been studied

by the phase-field model for saturated and unsaturated rock-like porous materials. The nu-

merical results of cracking scenarios are consistent with the real field observations. Then,

the model coupling with viscoplastic is applied to modeling time-dependent deformation

and failure process of a high slope section. The efficiency of this model is verified by

comparing the numerical results with field measurements.

In summary, this thesis provides several new phase-field methods to numerical mod-

eling the onset and propagation of cracks in rock-like materials with complex conditions.

The potential of these models are also been demonstrated.

2 Perspectives

There are still several extensions of the present works in modeling the initiation and

growth of cracks in rock-like materials and geological engineering structures.
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In present study, all the system has been assumed to be a static or quasi-static pro-

cess. However, the geological engineering problems usually involve significant dynamic

effects. For instance, the flow of fluids in porous materials has been treated as a dynamic

problem in our works. Therefore, establishing the dynamic formulations for both dis-

placement field and phase field is a valuable research topic for more accurate simulation

of landslides.

In practice, the models proposed in this thesis are valid in three-dimensional condi-

tions. While all the examples in our works are in two-dimensions. Thus, the numerical

example in three-dimensional should be carried out in a near future.

Alternatively, most geomechanical and geological engineering problems contain a

high degree of uncertainty on input data. It is crucial and desirable to perform a com-

prehensive uncertainty analysis in order to identify the key parameters controlling the

rainfall-induced or time-dependent landslides. Furthermore, the weakening effect of wa-

ter saturation on the fracture toughness of rocks is another key factor to be taken into

account. This constitutes an interesting challenge in our future work.

On the other hand, it is very important for analysis of landslides to know the situation

after broken. However, the present phase-field models are implemented in framework

of finite element method (FEM) which could cause the difficulties in calculation with

large deformation. Consequently, implementing the phase-field model in other numerical

method such as material point method (MPM) (de Vaucorbeil et al., 2020) which could

address the issues of large deformation for FEM.
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