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: β = 0.12, steady. . Nature exhibits a wide variety of swimming patterns at the micro-scale. The interactions between self-propelled micro-organisms, also called micro-swimmers, and the surrounding fluid are complex. This complexity is well illustrated by the diversity of intricate phenomena. Some micro-swimmers stir the surrounding fluid in a non-intuitive way [START_REF] Purcell | Life at low Reynolds number[END_REF]), others swim against the flow in the presence of boundaries [START_REF] Roberts | Motion of spermatozoa in fluid streams[END_REF]). On larger scales, suspensions of bacteria or sperm cells organize into large coherent structures whose sizes and dynamics exceed the characteristic magnitude for one individual. This coherent motion is called "collective motion". What makes these phenomena even more complex is the coupling between length scales. What happens on large scales depends on sophisticated mechanisms occurring two or three orders of magnitude below. Understanding these phenomena and the underlying physics is of fundamental importance, not only for the sake of knowledge, but also for a wide variety of applications, among which, nano-technologies, health issues, medicine, fertility, ecology, fishing industry or biofuel productions.

To address this complexity, scientists combine experiments with theoretical approaches. Researchers and engineers perform experimental studies on swimming mechanisms and active suspensions to evidence new phenomena and design bioinspired self-propelled microand nano-devices, which hold promising applications for nano-technologies and medicine.

These important advances need to be assisted by theoretical and numerical studies. Theory allows to isolate mechanisms and go beyond experimental capacities. The scientific discipline which studies the relative motion between living micro-organisms and fluids is called Biofluidmechanics [START_REF] Bibliography Lighthill | Flagellar hydrodynamics: the John von Neumann lecture[END_REF]). The fluid mechanics of locomotion at small scales has been investigated mathematically for more than 60 years. The pioneering models of [START_REF] Taylor | Analysis of the swimming of microscopic organisms[END_REF][START_REF] Taylor | Analysis of the swimming of microscopic organisms[END_REF]), on flagellar beating, and [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF][START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF]), on ciliary propulsion, are still actively used nowadays. Collective motion has been investigated for approximately 30 years. In the early 80's, Stephen Childress [START_REF] Childress | Mechanics of swimming and flying[END_REF]) and John [START_REF] Kessler | Gyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures[END_REF]) investigated the mechanisms responsible for the formation of bioconvection patterns in cultures of algae. Continuum models, based on kinetic theory for dilute suspensions, appeared in the late 80's [START_REF] Kessler | Individual and collective fluid dynamics of swimming cells[END_REF]; [START_REF] Pedley | The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms[END_REF]) with the same purpose: model bioconvection to understand the origin of flow instabilities. Since the late 90's, theoretical and numerical works tried to provide a better description of the phenomena involved in active suspensions by combining length scales in particle-based simulations. The length scales involved in active suspensions span several orders of magnitudes: the smallest micro-swimmers, swimming appendages and tracer particles used in experiments are typically micron-sized (10 -6 m), collective motion and/or mixing occur at larger scales (10 -5 -10 -4 m), while typical sample sizes or interrogation windows at the lab/in situ scale can reach several millimeters (10 -3 m). Modeling such systems thus requires addressing both the physics at the small scales, where Brownian motion plays an important role, and at the large scales, where several thousands (10 3 -10 5 and more) individuals are involved.

To introduce the pathway we will follow along this thesis, we quote Eric Lauga and Thomas Powers in their exhaustive review [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]): "A further challenge will be to integrate the understanding of basic mechanisms across multiple scales, from the levels of molecular motors to individual cells to large populations of cells."

Not many numerical methods can afford to take this challenge yet. The goal of this Ph.D is thus to provide a contribution in this direction. Along the thesis we try to develop a modeling approach that accounts for the swimming mechanisms at the scale of the micro-organism in order to shed light on the phenomena occurring at the lab/in situ scale.

Introduction focuses on ovine sperm fertility. Ovine sperm is an example of dense suspensions which exhibit collective motion. When looking at a drop of ram sperm in a phase contrast microscope, one observes large coherent structures which contain thousands of sperm cells. In the artificial insemination industry, the motion of these structures is called Massal Motility. It has been shown that Massal Motility is positively correlated to fertility. It is thus used to score ejaculates. However, the scoring is done by one observer, based on his subjective evaluation criteria. In order to make this procedure more rigorous, efficient and reproducible, the MOTIMO project aims at developing a tool which systematizes the evaluation of the motility of an ovine sperm sample within an operational time frame. The MOTIMO project gathers several structures, the Institut de Mécanique des Fluides de Toulouse (IMFT) and the Institut de Mathématiques de Toulouse (IMT) in Toulouse, the Institut National de la Recherche Agronomique de Tours (INRA Tours), the Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) in Nice, the Department of Mathematics at Imperial College in London and a transnational company, IMV-Technologies, the world leader in the reproduction biotechnologies. The whole project, which should lead to an industrialized process, is supervised by IMV-Technologies. The Laboratoire de Physiologie de la Reproduction et du Comportement of INRA-Tours is in charge of the microscope measurements and of the process validation through the realization of an artificial insemination campaign with scored samples. The IMFT performs complementary experiments, and is in charge of the processing of the collected images, through the dual use of Particle Imaging Velocimetry (PIV) and Optical Flow Reconstruction (OFR) techniques. The I3S of Sophia-Antipolis is in charge of the learning-scoring step, which, from the reconstructed flows, should provide an automatic score of the considered sample. The IMT and Imperial College take care of the continuum modeling issues, which should lead to a detailed understanding and a better flow reconstruction.

My Ph.D aims at providing a broader fluid mechanics picture to the modeling part of this project. The particle-based models developed in this thesis address both the modeling of swimming mechanisms and collective motion in dense active suspensions. The preliminary study on continuum models carried out during this Ph.D. is also part of the mathematical modeling section of the MOTIMO project.

The motion of active particles in flows

Consider N p swimmers with mass m p and moment of inertia I p suspended in a fluid. The dynamics of each swimmer n follows Newton's second law

m p dV n dt = F n h + F n ext , (1) 
I p dΩ n dt = τ n h + τ n ext .
(2)

V n and Ω n correspond to the translational and rotational particle velocities. F n h and τ n h are the hydrodynamic force and torque acting on particle n. F n ext and τ n ext correspond to the sum of external forces and torques applied on particle n. They may correspond to contact forces, magnetic fields, Brownian collisions or bottom-heavy torques among others. Note that if Brownian forces and torques are included in F n ext and τ n ext , Eq. ( 1) -( 2) are called "stochastic Langevin equations". Indeed, the Brownian forcing is stochastic due to the random collisions of solvent molecules.

Newton's second law Eq. ( 1) -( 2) cannot be solved without the help of fluid mechanics to compute the hydrodynamic forces and torques.

Fluid mechanics: hydrodynamic forces and torques

Most of the swimming micro-organisms live in an aqueous medium which contains polymers, proteins and many other molecules. Non-Newtonian fluid mechanics are often necessary to model the complex interplay between the swimmers and these surrounding media. This area has increasingly been investigated over the last ten years, theoretically [START_REF] Lauga | Floppy swimming: Viscous locomotion of actuated elastica[END_REF]; [START_REF] Teran | Viscoelastic fluid response can increase the speed and efficiency of a free swimmer[END_REF]; Li et al. (2014) among others) and experimentally [START_REF] Shen | Undulatory swimming in viscoelastic fluids[END_REF]; [START_REF] Liu | Force-free swimming of a model helical flagellum in viscoelastic fluids[END_REF]; [START_REF] Espinosa-Garcia | Fluid elasticity increases the locomotion of flexible swimmers[END_REF]; [START_REF] Godínez | Complex fluids affect low-reynolds number locomotion in a kinematic-dependent manner[END_REF]). An exhaustive review is provided in [START_REF] Elfring | Theory of locomotion through complex fluids[END_REF].

For the sake of simplicity, the framework of this Ph.D thesis is based on Newtonian fluids.

The motion of the fluid surrounding the micro-swimmers is given by the incompressible Navier-Stokes equations for a Newtonian fluid:

ρ f ∂u ∂t + (u • ∇)u = ∇p -η∇ 2 u ∇ • u = 0. ( 3 
)
subject to no-slip boundary conditions on the surface S n of each particle n

u(x) = V n + Ω n × (x -Y n ) + u n S (x), x ∈ S n , (4) 
where ρ f is the volumetric mass density of the fluid and Y n is the position of the center of mass of particle n. u n S is a prescribed swimming gait at the surface of swimmer n, which correspond to surface distortions or appendage actuation.

Introduction

Here, we consider a quiescent fluid in an unbounded domain. Therefore, the fluid velocity must vanish at infinity 1 u(x) → 0, when x → ∞.

(5)

The fluid stress tensor is

σ = -pI + η ∇u + (∇u) T , (6) 
and is used to compute the hydrodynamic force acting on each particle

F n h = Ŝn σ • ndS, ( 7 
)
where n is the unit vector normal to S n . The hydrodynamic torque is similarly given by

τ n h = Ŝn (x -Y n ) × σ • ndS. ( 8 
)
The realm of zero Reynolds number

We can nondimensionalize the Navier-Stokes equations for the fluid phase

Re ∂u ∂t + (u • ∇)u = ∇p -η∇ 2 u ∇ • u = 0. (9) 
The Reynolds number, Re = ρ f U L η , compares the contribution of the fluid inertia with the viscous dissipation. At low Re, velocity disturbances diffuse more rapidly than the rate at which fluid particles are transported by the flow. The characteristic length of swimming micro-organisms is L ≈ 1 -100µm. Their swimming speed is U ≈ 10 -10 3 µm • s -1 .

In water (ρ f ≈ 10 3 kg • m -3 , η = 10 -3 P a • s), the typical Reynolds number associated to a micro-swimmer is Re ≈ 10 -5 -0.1. The limit Re = 0 is therefore a reasonable approximation. In such case, the Navier-Stokes equations simplify to the Stokes equations

∇p -η∇ 2 u = 0 ∇ • u = 0. ( 10 
)
The Stokes number, St, compares the particle relaxation time τ p with the particle advection time scale St = τ p /(L/U ). τ p = m p /ζ, where ζ is the friction coefficient due to the effect of viscous stresses acting on the particle. ζ is proportional to the viscosity: ζ ∼ ηL. The particle relaxation time scale thus follows τ p ∼ m/ηL. The mass of the aforementioned micro-organisms is typically m p ≈ 10 -16 -10 -13 kg and L/U ≈ 1. The resulting Stokes number is very small St ≈ 10 -7 -10 -4 . Therefore, we can eliminate the inertial terms in Newton's second law

F n h + F n ext = 0, (11) τ n h + τ n ext = 0. ( 12 
)
Eq. ( 11) states that micro-swimmers are force-and torque-free.

1 Unless the suspensions fills the entire space.
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Solving the complex swimming problem with hydrodynamic interactions: a modeling and computational challenge

Eq. ( 10) subject to boundary conditions Eqs. ( 4)-( 5), together with Eqs. ( 11)-( 12) and Eq. ( 7) -( 8) form a set of coupled equations where the unknowns are the swimmers' velocities U n and rotations Ω n . Solving the full set for large collections of active particles is difficult and very costly. Depending on the scale considered, several reasonable approximations can help simplifying the problem.

In this thesis we address various levels of complexity. Our goal is to find the strategy which provides the optimal balance between accuracy, flexibility and computational efficiency to investigate the intricate dynamics of active suspensions.

Outline

The manuscript is organized into three parts, each divided into four chapters.

Part I is devoted to the study of self-propulsion at the scale of the micro-swimmer. The problem of locomotion at small scales has been extensively addressed both theoretically and experimentally over the last decades. In Chapter 1, we briefly present the standard mechanisms of swimming motility and explain how Nature has been a great source of inspiration for the design of artificial micro-swimmers. Recent modeling efforts result in accurate methods that provide a good insight on the mechanisms of motility. Among them, the bead model and blob-like approaches provide a flexible, yet efficient, tool to address complex shapes and their mechanical properties. In Chapter 2, we propose an improvement of the bead model. We develop a flexible and versatile framework to enforce constraints to connect beads together. The resulting method is generic, easy to implement, numerically stable and compares well with the literature. In Chapter 3, we switch to the mesoscopic scale by coarse-graining the representation of the swimming micro-organisms. We show that the well-known squirmer model adapts very well to breaststroke swimming by making its singularity time-dependent and by tuning their magnitude with experimental data. The proposed technique offers an interesting framework to combine experiments, theory and numerical simulations for the study of swimming mechanisms, and extends efficiently to large scale simulations of active suspensions. Chapter 4 proposes future directions and list ongoing works for the models developed in Part I.

Part II focuses on the numerical tools developed to address the multiscale physics of active suspensions. Coupling different scales spanning over several order of magnitudes is not an easy task. In Chapter 5 we present the state-of-the-art methods to simulate active suspensions and to incorporate Brownian motion. The main difficulties encountered by the community lie in the computational cost to compute hydrodynamic interactions, the accurate description Introduction of the disturbances generated by the micro-swimmers, and the time-integration of the overdamped stochastic equations arising from random Brownian motion. Chapter 6 proposes a methodology, built on the force-coupling method (FCM) framework, to extend the mesoscopic model derived in Chapter 3 to large deterministic simulations of active suspensions in the context of High Performance Computing. The very good agreement with the literature and the good scaling of the code prove the robustness of the method to accurately handle large collections of swimmers. The incorporation of Brownian motion is addressed in Chapter 7. Using the framework of fluctuating FCM, we derive a new time-integration scheme, the Drifter-Corrector, to efficiently handle the drift term arising in the overdamped limit of Langevin equations for particle motion. We show that our scheme reduces the computational cost by, at least, a factor two compared to the state-of-the-art integration schemes for such systems. We illustrate its efficiency with large scale simulation of gelation and aggregation processes in colloidal suspensions. Chapter 8 explains how to combine these tools to simulate active Brownian suspensions. More details are provided in Appendix E.

The physics of active suspensions is investigated in Part III. In Chapter 9 we explicit the ubiquitous nature of active matter and provide a short overview on the physical phenomena involved in active suspensions, to discuss their potential applications and consequences on ecology, medicine, reproduction and nanotechnologies among others. Chapter 10 investigates the dynamics of the strong orientational correlations observed in numerical simulations of interacting squirmers and in suspensions of synthetic selfpropelled droplets. Using the full capacity afforded by the method developed in Chapter 6, we perform large scale simulations involving tens of thousands of micro-swimmers. We reveal that the polar ordering is purely due to pairwise interactions that generate alignment in the near field. We also provide a thorough characterization of the polar order instability. These results highlight the effectiveness of our approach to achieve near continuum-level results, allowing for better comparison with experimental measurements while complementing and informing continuum models. We simulate suspensions of spheroidal swimmers and demonstrate the new implementation of time-dependent swimming gaits developed in Chapter 3. We also present preliminary results showing the effect of time-dependence on suspension properties. In Chapter 11 we incorporate the method developed in Chapter 7 for Brownian motion to address the complex problem of enhanced tracer diffusion in dilute and concentrated active suspensions. We find a quantitative agreement with the experiments of [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] and confirm various results from the literature dealing with dilute suspensions. Simulations for higher volume fractions provide promising results on the nonlinear response of enhanced particle diffusivity in concentrated active suspensions. Such achievement is new in the literature and comparisons with experiments [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]) are close at hand. Chapter 12 summarizes the results of Part III and introduces recent attempts to investigate the polar order instability with continuum models. Detailed calculations are provided Introduction in Appendix G.

The last part summarizes the results obtained over the course of the thesis and suggest future directions to adapt the multiscale modeling of active suspensions to more realistic configurations.
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4. [START_REF] Delmotte | Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method[END_REF]. Swimming mechanisms in the realm of Stokes flows are impressively diverse. Microorganisms or manufactured artificial micro-swimmers use a wide variety of non-reciprocal swimming gaits for their locomotion. Section 1.1 offers a glimpse of the mechanisms of swimming motility in nature. We then explain in Section 1.2 why these mechanisms draw the attention of different communities, ranging from medicine and biology to fluid mechanics, robotics and engineering. Finally, we briefly summarize the modeling efforts in this area and raise the questions that will be addressed in Chapter 2 and Chapter 3.

Short overview of swimming mechanisms

Many specific mechanisms of swimming motility were reported [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]). For the sake of conciseness, we will only focus on two main categories of swimming patterns: ciliary and flagellar beating.

Ciliary beating is an asymmetric beating pattern of an actuated filament that decomposes into two phases. During the first phase, called the power stroke, the swimmer bends the appendage at the base and sweep it back to pull the fluid behind it. In the second phase, the recovery stroke, the appendage folds to reduce the drag and goes back Recent experiments also showed that corals use such arrays to generate feeding currents [START_REF] Shapiro | Vortical ciliary flows actively enhance mass transport in reef corals[END_REF]).

Flagellar beating consists in the propagation of bending waves along one or several flagella to push the fluid away from the rear of the body (those organisms are called pushers). Sperm cells use internal motors distributed regularly along their flexible flagellum to perform a whip-like motion. Their beating can either be planar or helical, depending on the confinement and the nature of the surrounding fluid [START_REF] Gaffney | Mammalian Sperm Motility: Observation and Theory[END_REF]). Figure 1.3 shows the planar beating of a human sperm in a highly viscous liquid. When exposed to bright light C. reinhardtii adopts a similar pattern by propagating bending waves away from the cell body [START_REF] Mitchell | Chlamydomonas flagella[END_REF]).

Bacteria such as E. coli propels by helical actuation of a stiff appendage with a motor at the cell wall. B. subtilis swims by using flagella, which are situated around their oblong bodies. Other micro-swimmers proved that swimming does not necessarily needs Chapter 1 : Introduction: understanding locomotion at microscales and its consequences appendages. Spiroplasma [START_REF] Shaevitz | Spiroplasma swim by a processive change in body helicity[END_REF]) as well as nematodes [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]) use planar or helical deformation of their body to self-propel.

1.2 Why swimming mechanisms are interesting to study?

Design and optimization of micro-robots

Understanding the mechanisms responsible for locomotion at low Reynolds number is useful for the optimization and design of micro-robots [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF]; Montenegro-Johnson andLauga (2014, 2015)). The main objective in this research area is to develop minimally invasive medicine, which confers a number of advantages to the patient, including reduced recovery time, infection risks and drug side-effects. The synthetic microand nano-devices designed nowadays are expected to perform drug delivery and cargo transport, advanced telemetry or bloodless surgery in the near future [START_REF] Fischer | Magnetically actuated propulsion at low reynolds numbers: towards nanoscale control[END_REF]; [START_REF] Xi | Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery[END_REF]). Many bioinspired micro-devices have been manufactured over the last decade. Most of them are actuated by an external oscillatory magnetic field.

More recently, autophoretic particles, involving chemical reactions with the solvent, have been increasingly investigated.

Artificial micro-swimmers made of magnetic beads articulated with elastic bonds mimic flagellar beating to perform cargo transport [START_REF] Dreyfus | Microscopic artificial swimmers[END_REF]). Magnetic helical rigid devices (Figure 1.4a) use the anisotropic coupling between rotation and translation to perform similar tasks [START_REF] Zhang | Characterizing the swimming properties of artificial bacterial flagella[END_REF]; [START_REF] Ghosh | Controlled propulsion of artificial magnetic nanostructured propellers[END_REF]; [START_REF] Tottori | Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[END_REF]). Carpets of magnetic micro-rods are used to investigate the efficiency and the transport properties of beating arrays of cilia [START_REF] Vilfan | Self-assembled artificial cilia[END_REF]; [START_REF] Coq | Collective Beating of Artificial Microcilia[END_REF].

Self propulsion can also be performed with chemical reactions. Suspended colloidal particles interacting chemically with a solute are able to self-propel by autophoretic motion (Michelin et al. (2013)). The resulting osmotic flow generates a slip velocity on their surface that can be thought as the "artificial equivalent" of the tangential velocity generated by ciliated micro-organisms (Michelin and Lauga (2013)). Figure 1.4b shows an example of autophoretic particle [START_REF] Palacci | Living crystals of light-activated colloidal surfers[END_REF]). Self-propelled liquid microdroplets use chemical reaction to induce Marangoni stresses [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF][START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF]). As shown on Figure 1.4c, the flow field they generate is similar to the one of ciliated micro-swimmers or autophoretic particles. It is worth mentioning that the self-propelled droplets of [START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF] are able to carry external bodies such as large colloids, salt crystals, and even cells. This is a real breakthrough because these droplets are fully biocompatible and constitute the simplest realization of spontaneous motion in a system of isotropic particles. 

Biology and ecology

Biologists and ecologists try to get a comprehensive view on how micro-swimmers interact with their environment [START_REF] Gaffney | Mammalian Sperm Motility: Observation and Theory[END_REF][START_REF] Guasto | Fluid Mechanics of Planktonic Microorganisms[END_REF]). The hydrodynamic disturbances induced by a micro-organism on the surrounding fluid, either by swimming or generating feeding currents, can affect, not only its locomotion, but also its exposure to predators which are equipped with mechanical sensors [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]). Experimental works evidenced the anomalous diffusion and fluid mixing hydrodynamically induced by micro-swimmers [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]; [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] 1 .

Vice-versa, the properties of the surrounding medium also influence the motility. At the level of individual micro-swimmers, the ocean or human body are seas of gradients [START_REF] Stocker | Marine microbes see a sea of gradients[END_REF]). Environmental stimuli such as chemical gradients (chemotaxis), temperature gradients (thermotaxis), light gradients (phototaxis) or flow gradients (gyrotaxis and rheotaxis) can shape their trajectory and affect their motility. Rheotaxis of undulatory swimmers has sparked much interest over the last few years [START_REF] Fu | Bacterial rheotaxis[END_REF]; [START_REF] Kantsler | Rheotaxis facilitates upstream navigation of mammalian sperm cells[END_REF]; [START_REF] Tung | Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model[END_REF]; [START_REF] Ishimoto | Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis[END_REF]; Tung et al. (2015a); [START_REF] Yuan | Propensity of undulatory swimmers, such as worms, to go against the flow[END_REF]). Recent experimental work [START_REF] Bibliography Palacci | Rheotaxis of spherical active particles near a planar wall[END_REF], echoed by numerical studies [START_REF] Uspal | Rheotaxis of spherical active particles near a planar wall[END_REF]), showed that autophoretic particles also exhibit a positive rheotactic behavior: when exposed to velocity gradients in a bounded flow, they tend to swim upstream, mostly along the boundaries. The role of rheotaxis vs. peristalsis on sperm migration in the female track is still an open question [START_REF] Roberts | Motion of spermatozoa in fluid streams[END_REF]). A very nice recent experimental work [START_REF] Tung | Microgrooves and fluid flows provide preferential passageways for sperm over pathogen tritrichomonas foetus[END_REF]) proved that the flow in the female track facilitates the sperm migration towards the site of fertilization while sweeping pathogens downstream.

Chapter 1 : Introduction: understanding locomotion at microscales and its consequences

The rheology of the fluid is also known to affect the locomotion of swimming microorganisms. However, non-Newtonian fluids are not in the scope of this thesis. We refer the reader to the recent review by [START_REF] Elfring | Theory of locomotion through complex fluids[END_REF]).

While experimental studies bring out new phenomena and, sometimes, provide physical explanations, modeling remains essential to explore and control the parameter space, suggesting new experiments and assisting the design of new devices.

How to model these mechanisms ?

Even in the "simple" Newtonian case, solving the complex problem of fluid-structure interactions is not an easy task. One has to include the internal mechanics, i.e. the elastic response to deformation and active bending, but also hydrodynamic interactions. Many different methods have been proposed to tackle this problem. The choice of the appropriate method depends on

• the geometry of the objects considered,

• their number,

• the level of accuracy required for elastic coupling and hydrodynamic interactions.

If the kinematics of an isolated swimmer is prescribed, its velocity and rotation can be obtained exactly with the reciprocal theorem [START_REF] Stone | Propulsion of microorganisms by surface distortions[END_REF]). Elongated swimmers (e.g. sperm cells, spirochetes,...) can be modeled with techniques commonly used for immersed fiber in viscous flows: resistive force theory [START_REF] Hancock | The self-propulsion of microscopic organisms through liquids[END_REF]; [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF]; [START_REF] Bibliography Lighthill | Flagellar hydrodynamics: the John von Neumann lecture[END_REF]) and slender body theory [START_REF] Hancock | The self-propulsion of microscopic organisms through liquids[END_REF]; [START_REF] Bibliography Lighthill | Flagellar hydrodynamics: the John von Neumann lecture[END_REF]; [START_REF] Johnson | Flagellar hydrodynamics. a comparison between resistive-force theory and slender-body theory[END_REF]). Non-slender shapes require more sophisticated approaches such as boundary element methods [START_REF] Pozrikidis | Boundary Integral and Singularity Methods for Linearized Viscous Flow[END_REF]). Both cases can be handled with the bead model [START_REF] Rouse | A theory of the linear viscoelastic properties of dilute solutions of coiling polymers[END_REF]) and multi-blob approaches (immersed boundaries [START_REF] Peskin | The immersed boundary method[END_REF]), force-coupling method [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]), regularized stokeslets [START_REF] Cortez | The method of regularized stokeslets[END_REF])). By assembling collections of spheres (or blobs) with constraint and elastic forces, these methods provide a flexible framework to approximate the shape and the mechanical properties of complex objects. However, handling constraint forces in flexible bead (or blob) assemblies requires special care and may be challenging from a computational point of view.

In Chapter 2, we list and discuss these methods, and propose a simple formulation of the bead model which is generalized to rigid and flexible bodies either active or passive. We provide a generic formulation based on non-holonomic constraints and propose a contact model to handle flexible bead assemblies. The versatility of the method allows to simulate objects of complex shapes subject to different types of actuation mechanisms. Unlike slender body theory, there is neither limitations on the object's aspect ratio nor need to solve the complex nonlinear equations coupling elastic and fluid stresses. When comparing bead model predictions in various configurations, we find good agreement with 1.3 How to model these mechanisms ? experimental and numerical results in the literature. Going further, we have shown in a recent study [START_REF] Thiam | Parameter calibration for microswimmers[END_REF]) that the linearity of the model provides an exact inverse modeling method for the calibration of constitutive parameters of passive or active flexible objects.

Even though the bead model and equivalent approaches accurately reproduce the detailed features of swimming micro-organisms, including them in simulations containing thousands of individuals is too costly. Modeling arrays of beating cilia is also very complex. Some successful efforts have been made in this direction using the bead model on flat surfaces [START_REF] Osterman | Finding the ciliary beating pattern with optimal efficiency[END_REF]), but they cannot be used to model several interacting individuals. Instead, one can use a coarse-grained representation of the swimmer. The simplest approach is to model it as a force dipole without considering the actual boundary conditions at its surface nor its shape. Other models, more sophisticated, approximate the swimming gait with appropriate singularities which can be tuned with experimental measurements. This is the goal of a simplified mesoscopic model which has been proposed for ciliary propulsion: the squirmer model [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF]; [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]; [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]). A squirmer is a swimmer that prescribes constant tangential and radial velocities on its surface. Surface velocities are written in terms of infinite series of Legendre polynomials whose magnitude correspond to squirming modes. The resulting flow corresponds to the time-averaged disturbances created by ciliary beating over one period. With minor modifications, the mesoscopic squirmer model is also able to reproduce the slip velocity on the surface of autophoretic particles [START_REF] Nishiguchi | Mesoscopic turbulence and local order in janus particles self-propelling under an ac electric field[END_REF]) or self-propelled droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF]). The squirmer model has been widely used to investigate the behavior of an isolated or a pair of steady (i.e. period-averaged) swimmers [START_REF] Doostmohammadi | Low-reynoldsnumber swimming at pycnoclines[END_REF]; [START_REF] Wang | Flipping, scooping, and spinning: Drift of rigid curved nonchiral fibers in simple shear flow[END_REF]; Michelin and Lauga (2013); [START_REF] Zhu | Low-reynolds-number swimming in a capillary tube[END_REF]). Recent experiments [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]; [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]; [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF], and viewpoints [START_REF] Saintillan | A quantitative look into microorganism hydrodynamics[END_REF]), suggest that modeling the flow generated by timedependent swimming gait might be more realistic and should be included in mathematical models and computer simulations.

In Chapter 3 we show that the mesoscopic squirmer model can be used to model effective swimming gaits of real micro-swimmers as well as the hydrodynamic disturbances they generate along their beating pattern. The surface modes of the squirmer model are matched with a regularized singularity distribution, using a blob approach called the forcecoupling method (FCM). Using experimental micro-PIV measurements, an automated algorithm is proposed to calibrate the squirming modes to make them time-dependent and thus reproduce the oscillatory flow around breaststroke swimmers. The proposed technique offers an interesting framework to combine experiments, theory and numerical simulations for the study of swimming mechanisms, and extends efficiently to large scale simulations of active suspensions. Remark: this chapter is directly extracted from the eponymous paper. Several modifications have been made to incorporate it in the manuscript. We propose a general framework using Lagrange multipliers for the simulation of fiber dynamics at low Reynolds number based on bead models (BM). This formalism provides an efficient method to account for kinematic constraints. We illustrate, with several examples, to which extent the proposed formulation offers a flexible and versatile framework for the quantitative modeling of flexible fibers deformation and rotation in shear flow, the dynamics of actuated filaments and the propulsion of active swimmers. Furthermore, a new contact model called gears model is proposed and successfully tested. It avoids the use of numerical artifices such as repulsive forces between adjacent beads, a source of numerical difficulties in the temporal integration of previous bead models.

Introduction

The dynamics of solid-liquid suspensions is a longstanding topic of research while it combines difficulties arising from the coupling of multi-body interactions in a viscous fluid with possible deformations of flexible objects such as fibers [START_REF] Lindner | Elastic fibers in flows. Fluid-Structure Interactions at Low Reynolds Numbers[END_REF]). A vast literature exists on the response of suspensions of solid spherical or non-spherical particles due to its ubiquitous interest in natural and industrial processes. When the objects have the ability to deform many complications arise. The coupling between suspended particles will depend on the positions (possibly orientations) but also on the shape of individuals, introducing intricate effects of the history of the suspension.

When the aspect ratio of deformable objects is large, those are generally designated as fibers. Many previous investigations of fiber dynamics, have focused on the dynamics of rigid fibers or rods [START_REF] Cox | The motion of long slender bodies in a viscous fluid. Part 2. Shear flow[END_REF]; [START_REF] Meunier | Friction coefficient of rod-like chains of spheres at very low Reynolds numbers. II. Numerical simulations[END_REF]). Compared to the very large number of references related to particle suspensions, lower attention has been paid to the more complicated system of flexible fibers in a fluid.

Suspension of flexible fibers are encountered in the study of polymer dynamics (Yamakawa (1970); [START_REF] Yamanoi | Analysis of rheological properties of fibre suspensions in a Newtonian fluid by direct fibre simulation. Part 2: Flexible fibre suspensions[END_REF]) whose rheology depends on the formation of networks and the occurrence of entanglement. The motion of fibers in a viscous fluid has a strong effect on its bulk viscosity, micro-structure, drainage rate, filtration ability, and flocculation properties. The dynamic response of such complex solutions is still an open issue while time-dependent structural changes of the dispersed fibers can dramatically modify the overall process (such as operation units in wood pulp and paper industry, flow molding techniques of composites, water purification). Biological fibers such as DNA or actin filaments have also attracted many researches to understand the relation between flexibility and physiological properties [START_REF] Jian | A combined Wormlike-Chain and Bead Model for dynamic simulations of long linear DNA[END_REF]).

Flexible fibers do not only passively respond to carrying flow gradients but can also be dynamically activated. Many micro-organisms that self-propel in a fluid utilize a long flagellum connected to the cell body. Spermatozoa (and more generally one-armed swimmers) swim by propagating bending waves along their flagellum tail to generate a net translation using cyclic non-reciprocal strategy at low Reynolds number [START_REF] Purcell | Life at low Reynolds number[END_REF]). These natural swimmers have been modeled by artificial swimmers (joint micro-beads) 2.1 Introduction actuated by an oscillating ambient electric or magnetic field which opens breakthrough technologies for drug on-demand delivery in the human body [START_REF] Dreyfus | Microscopic artificial swimmers[END_REF]).

Many numerical methods have been proposed to tackle the elasto-hydrodynamic coupling between a fluid flow and deformable objects, i.e. the balance between viscous drag and elastic stresses. Among those, "mesh-oriented" approaches have the ambition of solving a complete continuum mechanics description of the fluid/solid interaction, even though some approximations are mandatory to describe those at the fluid/solid interface. Without being all-comprehensive, one can cite immerse boundary methods [START_REF] Fogelson | A fast numerical method for solving the threedimensional stokes' equations in the presence of suspended particles[END_REF]; [START_REF] Stockie | Simulating the motion of flexible pulp fibres using the immersed boundary method[END_REF]; Zhu andPeskin (2002, 2007)), extended finite elements [START_REF] Wagner | The extended finite element method for rigid particles in stokes flow[END_REF]), penalty methods [START_REF] Glowinski | Distributed lagrange multiplier methods for incompressible viscous flow around moving rigid bodies[END_REF]; [START_REF] Decoene | Microscopic modelling of active bacterial suspensions[END_REF]), force-coupling Method (FCM) [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]). The method of regularized stokeslets has also been successfully adapted to locomotion problems (O'Malley and [START_REF] O'malley | The orientation of swimming biflagellates in shear flows[END_REF]; [START_REF] Rodenborn | Propulsion of microorganisms by a helical flagellum[END_REF]) and fluid-structure interactions [START_REF] Olson | Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation[END_REF]; [START_REF] Simons | The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility[END_REF]).

In the specific context of low Reynolds number elastohydrodynamics (Wiggins and Goldstein (1998)), difficulties arise when numerically solving the dynamics of rigid objects since the time scale associated with elastic waves propagation within the solid can be similar to the viscous dissipation time-scale. In the context of self-propelled objects the ratio of these time scales is called "Sperm number". When the Sperm number is smaller or equal to one, the object temporal response is stiff, and requires small time steps to capture fast deformation modes. In this regime, fluid/structure interaction effects are difficult to capture. One possible way to circumvent such difficulties is to use the knowledge of hydrodynamic interactions of simple objects in Stokes flow.

This strategy is the one pursued by the bead model (BM) whose aim is to describe a complex deformable object by the flexible assembly of simple rigid ones. Such flexible assemblies are generally composed of beads (spheres or ellipsoids) interacting by some elastic and repulsive forces, as well as with the surrounding fluid. For long elongated structures, alternative approaches to BM are indeed possible such as slender body theory [START_REF] Tornberg | Simulating the dynamics and interactions of flexible fibers in Stokes flows[END_REF]) or resistive force theory [START_REF] Lauga | Floppy swimming: Viscous locomotion of actuated elastica[END_REF]; [START_REF] Coq | Helical beating of an actuated elastic filament[END_REF]; [START_REF] Gadêlha | Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?[END_REF]).

One important advantage of BM which might explain their use among various communities (polymer physics [START_REF] Gao | Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid[END_REF]; [START_REF] Jendrejack | Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions[END_REF]; [START_REF] Montesi | Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[END_REF]; Yamanoi and Maia ( 2011)), micro-swimmer modeling in Biofluidmechanics [START_REF] Swan | Modeling hydrodynamic selfpropulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim[END_REF]; [START_REF] Bilbao | Nematode locomotion in unconfined and confined fluids[END_REF]; [START_REF] Gauger | Numerical study of a microscopic artificial swimmer[END_REF]; [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]), flexible fiber in chemical engineering [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF]; [START_REF] Ross | Dynamic simulation of flexible fibers composed of linked rigid bodies[END_REF]; [START_REF] Slowicka | Dynamics of fibers in a wide microchannel[END_REF]; [START_REF] Wang | Flipping, scooping, and spinning: Drift of rigid curved nonchiral fibers in simple shear flow[END_REF]), relies on their parametric versatility, their ubiquitous character and their relative easy implementation. Another major strength of BM is that it can model non-linear elastic regimes for a reduced cost and no additional complexity, whereas methods like resistive force theory and slender body theory require solving nonlinear stiff equations with special care. We provide a deeper, comparative and critical discussion about BM in Section 2.2. However, we would like to stress that the presented model is clearly oriented toward micro-swimmer modeling rather than polymer dynamics.

One should also add that BM can be coupled to mesh-oriented approaches in order Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number.

to provide accurate description of hydrodynamic interactions among large collection of deformable objects at moderate numerical cost [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]). Many authors only consider free drain, i.e. no hydrodynamic interactions (no HI), [START_REF] Yamamoto | A method for dynamic simulation of rigid and flexible fibers in a flow field[END_REF]; [START_REF] Skjetne | Simulation of single fiber dynamics[END_REF]; [START_REF] Ross | Dynamic simulation of flexible fibers composed of linked rigid bodies[END_REF]; [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF]) or far field interactions associated with the Rotne-Prager-Yamakawa tensor [START_REF] Gauger | Numerical study of a microscopic artificial swimmer[END_REF]; [START_REF] Manghi | Propulsion with a rotating elastic nanorod[END_REF]; [START_REF] Wada | Non-equilibrium hydrodynamics of a rotating filament[END_REF]; [START_REF] Wajnryb | Generalization of the RotnePragerYamakawa mobility and shear disturbance tensors[END_REF]). This is supported by the fact that far-field hydrodynamic interactions already provide accurate predictions for the dynamics of a single flexible fiber when compared to experimental observations or numerical results. In order to illustrate our method, we use, for convenience, the Rotne-Prager-Yamakawa tensor to model hydrodynamic interactions. We wish to stress here that this is not a limitation of the presented method, since our formulation holds for any mobility matrix. However, it turns out that for each configuration we tested, our model gave very good comparisons with other predictions, including those providing more accurate description of the hydrodynamic interactions.

The chapter is organized as follows. First, we give a detailed presentation of the bead model for the simulation of flexible fibers. In this section, we propose a general formulation of kinematic constraints using the framework of Lagrange multipliers. This general formulation is used to present a new bead model, namely the gears model which surpasses existing models on numerical aspects. The second part of the chapter is devoted to comparisons and validations of bead models for different configurations of flexible fibers (experiencing a flow or actuated filaments).

Finally, we conclude the chapter by summarizing the achievements we obtain with our model and open new perspectives to this work.

The bead model

Detailed review of previous bead models

The bead model (BM) aims at discretizing any flexible object with interacting beads. Interactions between beads break down into three categories: hydrodynamic interactions, elastic and kinematic constraint forces. Hydrodynamics of the whole object result from multibody hydrodynamic interactions between beads. In the context of low Reynolds number, the relationship between stresses and velocities is linear. Thus, the velocity of the assembly depends linearly on the forces and torques applied on each of its elements. Elastic forces and torques are prescribed according to classical elasticity theory [START_REF] Landau | Theory of elasticity, 3rd Edition[END_REF]) of flexible matter. Constraint forces ensure that the beads obey any imposed kinematic constraint, e.g. fixed distance between adjacent particles. All of these interactions can be treated separately as long as they are addressed in a consistent order. The latter is the cornerstone which differentiates previous works in the literature from ours. Numerous strategies have been employed to handle kinematic constraints. [START_REF] Schlagberger | Orientation of elastic rods in homogeneous Stokes flow[END_REF]; [START_REF] Gauger | Numerical study of a microscopic artificial swimmer[END_REF]; [START_REF] Wada | Non-equilibrium hydrodynamics of a rotating filament[END_REF]; Yamanoi and Maia (2011)) and [START_REF] Slowicka | Dynamics of fibers in a wide microchannel[END_REF] used a linear spring to model the resistance to stretching and compression without any constraint on the bead rotational 22 2.2 The bead model motion (Fig. 2.1). The resulting stretching force reads:

F s = -k s (r n,n+1 -r 0 n,n+1 ) (2.1)
where

• k s is the spring stiffness,

• r n,n+1 = Y n+1 -Y n is the distance vector between two adjacent beads (for simplicity, equations and figures will be presented for beads 1 and 2 and can easily be generalized to beads n and n + 1),

• Y n is the position of the center of mass of bead n,

• r 0 1,2 is the vector corresponding to equilibrium. However, regarding the connectivity constraint, the spring model is somehow approximate. A linear spring is prone to uncontrolled oscillations and the problem may become unstable. Many other authors, among which [START_REF] Jendrejack | Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations[END_REF][START_REF] Jendrejack | Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions[END_REF]; [START_REF] Schroeder | Effect of Hydrodynamic Interactions on DNA Dynamics in Extensional Flow: Simulation and Single Molecule Experiment[END_REF], thus use non-linear spring models for a better description of polymer physics. Nevertheless, the repulsive force stiffness has an important numerical cost in time-stepping as will be discussed in section 2.2.6. Furthermore, unconstrained bead rotational motion leads to spurious hydrodynamic interactions and thus limits the range of applications for these BM.

Alternatively, [START_REF] Skjetne | Simulation of single fiber dynamics[END_REF]; [START_REF] Ross | Dynamic simulation of flexible fibers composed of linked rigid bodies[END_REF]; [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF]; [START_REF] Qi | Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows[END_REF] and [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF] constrained the motion of the beads such that the contact point for each pair c n remains the same. While more representative of a flexible object, this approach exhibits two main drawbacks:

1. a gap between beads is necessary to allow the object to bend (see Fig. 2.2), 2. it requires an additional center to center repulsive force, and thus more tuning numerical parameters to prevent overlapping between adjacent beads.

Consider two adjacent beads, with radius a, linked by a hinge c 1 (typically called ball and socket joint). The gap ε g defines the distance between the sphere surfaces and the joint (see Fig. 2.3). Denote p n the vector attached to bead n pointing towards the next joint, i.e. the contact point c n .

The connectivity between two contiguous bodies writes:

Y 1 + (a + ε g )p 1 -Y 2 -(a + ε g )p 2 = 0 (2.2)
and its time derivative

V 1 -(a + ε g )p 1 × Ω 1 -V 2 + (a + ε g )p 2 × Ω 2 = 0.
(2.3)

V n and Ω n are the translational and rotational velocities of bead n. The constraint forces and torques associated to Eq. (2.3) are obtained either by solving a linear system Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. Figure 2.2: joint model: if there is no gap between adjacent beads, particles overlap when beding occurs. c 1 is the contact point between bead 1 and 2.

The bead model

Figure 2.3: joint model: the contact point c 1 is separated by a gap ε g from the bead surfaces to prevent overlapping in case of bending.

of equations involving beads velocities [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF]), or by inserting Eq. ( 2.3) into the equations of motion when neglecting hydrodynamic interactions [START_REF] Skjetne | Simulation of single fiber dynamics[END_REF]; [START_REF] Ross | Dynamic simulation of flexible fibers composed of linked rigid bodies[END_REF]).

The gap width 2ε g controls the maximum curvature κ J max allowed without overlapping. From the sine rule, one can derive the simple equation relating ε g and κ J max

κ J max = 1 - a a+εg 2 a
(2.4)

Once aware of these limitations, the gap ε g , range and strength of the repulsive force should be prescribed depending on the problem to be addressed. Keaveny and Maxey (2008c) and [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF] proposed a more sophisticated joint model than those hitherto cited, using a full description of the links dynamics along the curvilinear abscissa. They derived a subtle constraint formulation which ensures that the tangent vector to the centerline is continuous and that the length of links remains constant. These two works are worth mentioning since they avoid an empirical tuning of repulsive forces. Yet, Keaveny and Maxey (2008c) computed the constraint forces and torques with an iterative penalty scheme instead of using an explicit formulation.

Finally, it is worth mentioning that the bead model proposed in [START_REF] Montesi | Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[END_REF] circumvents the inextensibility difficulty by imposing constraints on the relative velocities of each successive segments, so that their relative distance is kept constant. Using bending potential, [START_REF] Montesi | Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[END_REF] permit overlap between beads with restoring torque (cf. Fig. 2.2). A Lagrangian multiplier formulation of tensile forces is also used in [START_REF] Doyle | Dynamic simulation of freely draining flexible polymers in steady linear flows[END_REF], which is equivalent to a prescribed equal distance between successive beads. Again, inextensibility condition does not prevent bead overlapping due to bending in this formulation. The computation of contact forces which is proposed in the following section 2.2.2 generalizes the Lagrangian multiplier formulation of [START_REF] Montesi | Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction[END_REF] Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number.

to generalized forces. Using more complex constraints involving both translational and angular velocities, we show that it is possible to accommodate both non-overlapping and inextensibility conditions without additional repulsive forces (using the rolling no-slip contact with the gears model detailed in 2.2.3). This proposed general formulation is also well suited for any type of kinematic boundary conditions as illustrated in Section 2.3.4.

Generalized forces, virtual work principle and Lagrange multipliers

The model and formalism proposed in this chapter rely on earlier work in Analytical Mechanics and Robotics [START_REF] Nikravesh | An overview of several formulations for multibody dynamics[END_REF]; [START_REF] Joshi | Design and analysis of a spherical mobile robot[END_REF]). The concept of generalized coordinates and constraints which has proven to be very useful in these contexts is described here. Generalized coordinates refer to a set of parameters which uniquely describes the configuration of the system relative to some reference parameters (positions, angles,...). For describing objects of complex shape, let us consider the position Y n of each bead n ∈ {1, N p } with associated orientation vector p n which is defined by three Euler angles (θ, φ, ψ). In the following, any collection of vector population (Y 1 , ..Y n , ..Y Np ) ≡ Y will be capitalized, so that Y is a vector in R 3Np . Hence the collection of orientation vectors p n will be denoted P, which is a vector of length 3N p , the collection of velocities V n , will be denoted V, the collection of angular velocity Ω n will be W, the collection of forces F n , F, the collection of torques τ n , T . All V, W, F and T are vectors in R 3Np . Let us then define some generalized coordinate q n for each bead, which is defined by q n ≡ (Y n , p n ) so that the collection of generalized positions (q 1 , ..q n , ..q Np ) ≡ Q is a vector in R 6Np . Generalized velocities are then defined by vectors qn ≡ (V n , Ω n ) with associated generalized collection of velocities Q.

Articulated systems are generically submitted to constraints which are either holonomic, non-holonomic or both [START_REF] Bailey | Efficient constraint dynamics using MILC SHAKE[END_REF]). Holonomic constraints do not depend on any kinematic parameter (i.e any translational or angular velocity) whereas non-holonomic constraints do.

In the following we consider non-holonomic linear kinematic constraints associated with generalized velocities of the form [START_REF] Greenwood | Classical Dynamics[END_REF])

J Q + B = 0, (2.5)
such that J is a N c × 6N p matrix and B is a vector of N c components. N c is the number of constraints acting on the N p beads. B and J might depend (even non-linearly) on time t and generalized positions Q, but do not depend on any velocity of vector Q, so that relation (2.5) is linear in Q. In subsequent sections, we provide specific examples for which this class of constraints are useful. Here we describe, following [START_REF] Greenwood | Classical Dynamics[END_REF]; [START_REF] Nikravesh | An overview of several formulations for multibody dynamics[END_REF], how such constraints can be handled thanks to some generalized force that can be defined from Lagrange multipliers. The idea formulated to include constraints in the dynamics of articulated systems is to search additional forces which could permit to satisfy these constraints. First, one must rely on generalized forces f n ≡ (F n , τ n ) which include forces and torques acting on each bead, whose collection (f 1 , f n , ..f Np ) is denoted F. Generalized forces are defined such that the total work variation δW is the scalar product between them and the generalized coordinates variations δQ

δW = F • δQ = F • δY + T • δP, (2.6)
so that, on the right hand side of (2.6) one also gets the translational and the rotational components of the work. Then, the idea of virtual work principle is to search some virtual displacement δQ that will generate no work, so that

F • δQ = 0. (2.7)
At the same time, by rewriting Eq. (2.5) in differential form

J dQ + Bdt = 0, (2.8)
admissible virtual displacements, i.e. those satisfying constraints (2.8), should satisfy

J δQ = 0.
(2.9)

Combining the N c constraints (2.9) with (2.7) is possible using any linear combination of these constraints. Such linear combination involves N c parameters, the so-called Lagrange multipliers which are the components of a vector λ in R Nc . Then from the difference between (2.7) and the N c linear combination of (2.9) one gets

(F -λJ ) • δQ = 0.
(2.10)

Prescribing an adequate constraint force (2.11) permits to satisfy the required equality for any virtual displacement. Hence, the constraints can be handled by forcing the dynamics with additional forces, the amplitude of which are given by Lagrange multipliers, yet to be found. Note also, that this first result implies that both forces and torques associated with the N c constraints are both associated with the same Lagrange multipliers.

F c = λJ ,
This formalism is particularly suitable for low Reynolds number flows for which translational and angular velocities are linearly related to forces and torques acting on beads by the mobility matrix

M V W = M F T + V ∞ W ∞ .
(2.12)

V ∞ = V 1 ∞ , ..., V Np ∞ and W ∞ = Ω 1 ∞ , ..., Ω Np ∞
correspond to the ambient flow evaluated at the centers of mass Y. Matrix M can also be re-organized into a generalized mobility matrix M * in order to define the linear relation between the previously defined generalized velocity and generalized force

Q = M * F + V * ∞ , (2.13) 
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where

V * ∞ = V 1 ∞ , Ω 1 ∞ , ..., V Np ∞ , Ω Np ∞ .
The explicit correspondence between the classical matrix M and the hereby proposed generalized coordinate formulation M * is given in the Addendum 2.5. Hence, as opposed to the Euler-Lagrange formalism of classical mechanics, the dynamics of low Reynolds number flows does not involve any inertial contribution, and provide a simple linear relationship between forces and motion. In this framework, it is then easy to handle constraints with generalized forces, because the total external force will be the sum of the known elastic forces F e , inner forces associated to active fibers F a and the hereby discussed and yet unknown contact forces F c to verify kinematic constraints

F = F + F c , with (2.14) F = F e + F a .
(2.15)

Hence, if one is able to compute the Lagrange multipliers λ, the contact forces will provide the total force by linear superposition (2.14), which gives the generalized velocities with (2.13). Now, let us show how to compute the Lagrange multiplier vector. Since the generalized force is decomposed into known forces F and unknown contact forces F c = λJ , relations (2.14) and (2.13) can be pooled together yielding

M * F c = M * λJ = Q -M * F -V * ∞ .
(2.16) So that, using (2.5),

J M * J T λ = -B -J (M * F + V * ∞ ) ,
(2.17) one gets a simple linear system to solve for finding λ, where J T stands for the transposition of matrix J .

The gears model

The Euler-Lagrange formalism can be readily applied to any type of non-holonomic constraint such as Eq. (2.3). In the following, we propose an alternative model based on no-slip condition between the beads: the gears model. This constraint, first introduced in a bead model (BM) by [START_REF] Yamamoto | A method for dynamic simulation of rigid and flexible fibers in a flow field[END_REF], conveniently avoid numerical tricks such as artificial gaps and repulsive forces. However, [START_REF] Yamamoto | A method for dynamic simulation of rigid and flexible fibers in a flow field[END_REF] and [START_REF] Yamamoto | Dynamic simulation of fiber suspensions in shear flow[END_REF] relied on to an iterative procedure to meet requirements. Here, we use the Euler-Lagrange formalism to handle the kinematic constraints associated to the gears model.

Considering two adjacent beads, denoted "1" and "2", (Fig. 2.4), the velocity v c 1 at the contact point must be the same for each sphere:

v 1 c 1 -v 2 c 1 = 0. (2.18)
2.2 The bead model Figure 2.4: gears model: the velocity at the contact point c 1 must be the same for each bead (Eq. (2.18)).

v 1 c 1 and v 2 c 1 are respectively the rigid body velocity at the contact point between bead 1 and bead 2.

Denote σ 1 the vectorial no-slip constraint. Eq. (2.18) becomes

σ 1 V 1 , Ω 1 , V 2 , Ω 2 = 0, (2.19) 
i.e.

V 1 -ae 12 × Ω 1 -V 2 -ae 21 × Ω 2 = 0, (2.20)
where e 12 is the unit vector connecting the center of bead 1, located at Y 1 , to the center of bead 2, located at Y 2 (e 12 = r 12 / r 12 ). The orientation vector p n attached to bead n, is not necessary to describe the system. Hence, from (2.20) one realizes that σ 1 is linear in translational and rotational velocities. Therefore Eq. (2.19) can be reformulated as

σ 1 Q = J 1 Q = 0. (2.21)
where, Q is the collection vector of generalized velocities of the two-bead assembly

Q = V 1 , Ω 1 , V 2 , Ω 2 T , (2.22)
J 1 is the Jacobian matrix of σ 1 :

J 1 kl = ∂σ 1 k ∂ Ql , k = 1, ..., 3, l = 1, ..., 12,
(2.23) (2.25)

J 1 = J 1 1 J 1 2 = I 3 -ae × 12 -I 3 ae × 21 , ( 
For an assembly of N p beads, N p -1 no-slip vectorial constraints must be satisfied. The total Jacobian matrix J GM of the gears model (GM) is block bi-diagonal and reads

J GM =      J 1 1 J 1 2 J 2 2 J 2 3 . . . . . . J Np-1 Np-1 J Np-1 Np      (2.26)
where J α β is the 3 × 6 Jacobian matrix of the vectorial constraint α for the bead β. The kinematic constraints for the whole assembly then read

J GM Q = 0.
(2.27)

The associated generalized forces F c are obtained following Section 2.2.2.

Elastic forces and torques

We are considering elastohydrodynamics of homogeneous flexible and inextensible fibers. These objects experience bending torques and elastic forces to recover their equilibrium shape. Bending moments derivation and discretization are provided.

Bending moments

The bending moment of an elastic beam is provided by the constitutive law [START_REF] Landau | Theory of elasticity, 3rd Edition[END_REF]; [START_REF] Bishop | Investigation of bend and shear waves in a geometrically exact elastic rod model[END_REF])

m(s) = K b t × dt ds , (2.28) 
where K b (s) is the bending rigidity, t is the tangent vector along the beam centerline and s is the curvilinear abscissa. 

m(s) = K b (κ -κ eq ) b.
(2.31)

Figure 2.5: Beam discretization and bending torques computation of beads 1, 3 and 5.

Remaining torques are accordingly obtained:

τ 2 b = m (s 3 ) and τ 4 b = -m (s 3 ).
Here, the beam is discretized into N p -1 rigid rods of length l = 2a (cf. Fig. 2.5). Inextensible rods are made up of two bonded beads and are linked together by a flexible joint with bending rigidity K b . Bending moments are evaluated at joint locations s n = (n -1)l for n = 2, ..., N p -1, where s n correspond to the curvilinear abscissa of the center of mass center bead n.

The bending torque on bead n is then given by

τ n b = m (s n+1 ) -m (s n-1 ) , (2.32) with m (s n ) = K b κ (s n ) b (s n ).
See Fig. 2.5 for the torque computation on a beam discretized with four rods.

The local curvature κ (s n ) is approximated using the sine rule [START_REF] Lowe | Dynamics of filaments: modelling the dynamics of driven microfilaments[END_REF]) (2.33) where e n-1,n is the unit vector connecting the center of mass of bead n -1 to the center of mass of bead n. This elementary geometric law provides the radius of curvature R(s n ) = 1/κ(s n ) of the circle circumscribing neighboring bead centers Y n-1 , Y n and Y n+1 .

κ(s n ) = 1 a 1 + e n-1,n .e n,n+1 2 
A more general version of the discrete curvature proposed in [START_REF] Fauci | A computational model of aquatic animal locomotion[END_REF] can also be used in the case of three dimensional motion. In that case, the curvature of Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number.

the fiber is discretized as in [START_REF] Fauci | A computational model of aquatic animal locomotion[END_REF] κ (2.34) where, again, e n-1,n is the unit vector connecting the center of mass of bead n -1 to the center of mass of bead n. The bending moment reads

(s n ) = e n-1,n × e n,n+1 2a , 
m (s n ) = K b κ (s n ) . (2.35)
To include the effect of torsional twisting about the axis of the fiber, one would have to compute the relative orientation between the frames of reference attached to the beads using Euler angles (Keaveny and Maxey (2008c)) (see Section 2.2.2) or unit quaternions as in [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF]. This would provide the rate of change of the twist angle along the fiber centerline and thus the twisting torque acting on each bead. In the following, only bending effects are considered.

Hydrodynamic coupling

Moving objects (rigid or flexible fibers) in a viscous fluid experience hydrodynamic forcing.

The interactions are mediated by the fluid flow perturbations which can alter the motion and the deformation of the fibers in a moderately concentrated suspension. The existence of hydrodynamic interactions has also an effect on a single fiber dynamics while different parts of the fiber can respond to the ambient flow but also to local flow perturbations related to the fiber deformation. Resistive force theory (RFT) can be used to estimate the fiber response to a given flow assuming that the fiber is modeled by a large series of slender objects [START_REF] Coq | Three-dimensional beating of magnetic microrods[END_REF]; [START_REF] Lauga | Floppy swimming: Viscous locomotion of actuated elastica[END_REF]). Slender body theory (SBT) has also been used [START_REF] Tornberg | Simulating the dynamics and interactions of flexible fibers in Stokes flows[END_REF]; [START_REF] Li | The sedimentation of flexible filaments[END_REF]) to relate local balance of drag forces with the filament forces upon the fluid resulting in a dynamical system to model the deformation of the fiber centerline. This model accounts for hydrodynamic interactions and provides interesting results on the stretch-coil transition of fibers in vortical flows [START_REF] Young | Stretch-coil transition and transport of fibers in cellular flows[END_REF]).

In our beads model, the fiber is composed of spherical particles to account for the finite width of its cross-section. The hydrodynamic interactions are provided through the solution of the mobility problem which relates forces, torques to the translational and rotational velocities of the beads. This many-body problem is non-linear in the instantaneous positions of all particles of the system. Approximate solutions of this complex mathematical problem can be achieved by limiting the mobility matrices to their leading order. The simplest model is called free drain as the mobility matrix is assumed to be diagonal neglecting the HI with neighboring spheres. Pairwise interactions are required to account for anisotropic drag effects within the beads composing the fiber. The Rotne-Prager-Yamakawa (RPY) approximation is one of the most commonly used methods of including hydrodynamic interactions. This widely used approach has been recently updated by [START_REF] Wajnryb | Generalization of the RotnePragerYamakawa mobility and shear disturbance tensors[END_REF]) for the RPY translational and rotational degrees of freedom.

Numerical implementation Integration scheme and algorithm

The kinematics of the constrained system results from the superposition of individual bead motions. Positions are obtained from the temporal integration of the equation of motion with a third order Adams-Bashforth scheme (2.36) where Y n , V n are the position and translational velocity of bead n.

dY n dt = V n ,
The time step ∆t used to integrate Eq. (2.36) is fixed by the characteristic bending time [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF])

∆t < η(2a) 4 K b . (2.37)
where η is the suspending fluid viscosity. The evaluation of bead interactions must follow a specific order. Elastic and active forces can be computed in any order. Constraint forces and torques must be estimated afterwards as they depend on F . Then velocities and rotations are obtained from the mobility relation. And finally, bead positions are updated. 

[V n -(a + ε g )p n × Ω n ] -V n+1 + (a + ε g )p n+1 × Ω n+1 = 0. (2.38)
Using the Euler-Lagrange formalism, Eq. (2.38) is reformulated with the joint model (JM) Jacobian matrix

J JM Q = 0,
(2.39)

where J JM has the same structure as in Eq. (2.26) and

J n = J n 1 J n 2 = I 3 -(a + ε g )p n × -I 3 -(a + ε g )p n+1 × .
(2.40)

Accordingly, the corresponding set of forces and torques F c are obtained from Section 2.2.2. As mentioned in Section 2.2.1, such formulation does not prevent beads from overlapping when bending occurs. A repulsive force F r is added according to Lindström and Uesaka (2007) (the force profile proposed by [START_REF] Skjetne | Simulation of single fiber dynamics[END_REF] is very stiff, thus very constraining for the time step):

F nm r =            -F 0 exp - d nm + δ D d 0 e nm , d nm ≤ -δ D , -F 0 1 2 - d nm 2δ D e nm , -δ D < d nm ≤ δ D , 0, r nm > δ D .
(2.41) δ D is an artificial surface roughness, d nm is the surface to surface distance. d nm < 0 indicates overlapping between beads n and m. d 0 is a numerical damping distance which has to be tuned to prevent overlapping. F 0 is the repulsive force scale chosen in order to avoid numerical instabilities. To deal with this issue, [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF] proposed to evaluate F 0 from bending and viscous stresses. A slight modification of their formula for inertialess particles yields

F 0 = C 1 6πηL V ∞ -V + C 2 K b E b L 3 .
(2.42)

The bar denotes the average over the constitutive beads or joints and C 1 and C 2 are adjustable constants. E b is the bending energy

E b = Np-1 n=1 K b (κ(s n ) -κ eq (s n )) 2 , (2.43)

The bead model

Bending moments are evaluated at the joint locations s J n = (a + ε g ) + (n -1) × 2(a + ε g ), n = 1, ..., N p -1. joint curvature is given by

κ(s J n ) = 2 a + ε g 1 + p n .p n+1 2 , (2.44)
Similarly to Eq. (2.32), the bending torque on bead n is

τ n b = m s J n -m s J n-1 .
(2.45) bead orientation p n is integrated with a third order Adams-Bashforth scheme

dp n dt = Ω n × p n . (2.46)
The procedure is similar to the gears model. p n are initialized together with the positions. The repulsive force F r is added to F and can be computed between step 1 and 5 of the aforementioned algorithm. Time integration of Eq. (2.46) is performed at step 8.

Constraints and numerical stability

At each time step, the error on kinematic constraints is evaluated, after application of the mobility relation (Eq. (2.13)), between step 7 and step 8:

GM (t) = J GM Q 2 = Np-1 n=1 v n cn -v n+1 cn 2 1/2
(2.47)

for the gears model, and

JM (t) = J JM Q 2 (2.48)
for the joint model.

To verify the robustness of both models and Lagrange formulation, a numerical study is carried out on a stiff configuration. A fiber of aspect ratio r p = 10 with bending ratio BR = 0.01 (see Section 2.3.2 for the definition) is initially aligned with a shear flow of magnitude γ = 5s -1 . For this aspect ratio, N p = 10 beads are used to model the fiber with the gears model.

The joint model involves additional items to be fixed. N p = 9 spheres are separated by a gap width 2ε g = 0.25a. The repulsive force is activated when the surface to surface distance d nm reaches the artificial surface roughness δ D = 2(a + ε g )/10. The remaining coefficients are set to reduce numerical instabilities without affecting the physics of the Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. system: d 0 = (a + ε g )/4, C 1 = 5 and C 2 = 0.5. Fig. 2.6 shows the evolution of the maximal mean deviation from the no-slip/joint constraint ¯ M = max t (t)/(N p -1) normalized with the maximal shear velocity γL depending on the dimensionless time step γ∆t. First, one can observe that for both the joint and gears models, ¯ M / γL weakly depends on γ∆t and the resulting motion of the beads complies very precisely with the set of constraints, within a tolerance close to unit roundoff (< 2.10 -16 ). Secondly, the joint model is unstable for time steps 100 times smaller than the gears model. The onset for numerical instability indicates that the repulsive force stiffness dominates over bending, thus dictating and restricting the time step. As a comparison, [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF] matched connectivity constraints within 1% error for each fiber segment. To do so, they had to use an iterative scheme reducing the time step by 1/3 each iteration to meet requirements and limit overlapping between adjacent segments. For similar results, a stiff configuration, such as the sheared fiber, is therefore more efficiently simulated with the gears model. Thirdly, inset of Fig. 2.6 shows that, for a given time step, the gears model constraints ¯ M / γL are satisfied whatever the shear magnitude. Hence, Eq. (2.37) ensures unconditionally numerical stability as bending is the only limiting effect for the gears model.

Hence, the robustness of the Euler-Lagrange formalism and the numerical integration we chose provide a strong support to the gears model over the joint model.

As a final remark to this section, it is important to mention that the numerical cost 2.3 Validations of the proposed method strongly depends on the choice for the mobility matrix computation, as usual for bead models. If the mobility matrix is computed taking into account hydrodynamic interactions with Stokesian Dynamics, most of the numerical cost will come from its evaluation in this case. This limitation could be overcome using more sophisticated methods such as Accelerated Stokesian Dynamics (Sierou and [START_REF] Bibliography Sierou | Accelerated Stokesian Dynamics simulations[END_REF]) or the force-coupling method [START_REF] Yeo | Simulation of concentrated suspensions using the force-coupling method[END_REF]). When considering the Rotne-Prager-Yamakawa mobility matrix, its evaluation only requires the computation of O ((6N p ) 2 ) terms. Furthermore, the main algorithmic complexity of bead models does not come from the time integration of the bead positions which only requires a matrix-vector multiplication (Eq. (2.13)) at an O ((6N p ) 2 ) cost. Fast-multipole formulation of a Rotne-Prager-Yamakawa matrix can even provide an O (6N p ) cost for such matrix-vector multiplication [START_REF] Liang | A fast multipole method for the rotne-prager-yamakawa tensor and its applications[END_REF].

The main numerical cost indeed comes from the inversion of the contact forces problem (Eq. (2.17)). It is worth noting that this linear problem is N c × N c which is slightly different from N p × N p , but of the same order. Furthermore, Eq. (2.17) gives a direct, single step procedure to compute the contact forces, as opposed to previous other attempts [START_REF] Yamamoto | A method for dynamic simulation of rigid and flexible fibers in a flow field[END_REF]; [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF]; Keaveny and Maxey (2008c)) which required iterative procedures to meet forces requirements, involving the mobility matrix inversion at each iteration. The cost for the inversion of Eq. (2.17) lies in-between O(N 2 c ) and O(N 3 c ) depending on the inversion method.

Validations

Jeffery orbits of rigid fibers

Much of our current understanding of the behavior of fibers experiencing a shear flow has come from the work of Jeffery [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF]) who derived the equation for the motion of an ellipsoidal particle in Stokes flow. The same equation can be used for the motion of an axisymmetric particle by using an equivalent ellipsoidal aspect ratio. Rigid fibers can be approximated by elongated prolate ellipsoids. An isolated fiber in simple shear flow rotates in a periodic orbit while the center of mass simply translates in the flow (no migration across streamlines). The period T (Eq. (2.49)) is a function of the aspect ratio of the fiber and the flow shear rate while the orbit depends on the initial orientation of the object relative to the shear plane T = 2π(r e + 1/r e ) γ .

(2.49) γ is the shear rate of the carrying flow. r e is the equivalent ellipsoidal aspect ratio which is related to the fiber aspect ratio r p (length of the fiber over diameter of the crosssection which turns out to r p = N p with N p beads). The fiber is initially placed in the plane of shear and is composed on N p beads. No gaps between beads is required in the joint model because the fiber is rigid and flexibility deformations are negligible. We have Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. and [START_REF] Larson | The structure and rheology of complex fluids[END_REF])

r e = 0.7r p .

(2.51)

This classic and simple test case has been successfully validated in [START_REF] Yamamoto | A method for dynamic simulation of rigid and flexible fibers in a flow field[END_REF]; [START_REF] Skjetne | Simulation of single fiber dynamics[END_REF]; [START_REF] Yamanoi | Stokesian dynamics simulation of the role of hydrodynamic interactions on the behavior of a single particle suspending in a Newtonian fluid. Part 1. 1D flexible and rigid fibers[END_REF]. Both the joint and gears models give a correct prediction of the period of Jeffery orbits (Fig. 2.7). The scaled period γT of simulations remains within the two evolutions based on Eq. (2.50) and Eq. (2.51). We have tried to compare it with the linear spring model proposed by [START_REF] Gauger | Numerical study of a microscopic artificial swimmer[END_REF]) (and used by Slowicka et al. [START_REF] Slowicka | Dynamics of fibers in a wide microchannel[END_REF]) with a more detailed formulation of hydrodynamic interactions). In this latter model, there is no constraint on the rotation of beads and the simulations failed to reproduce Jeffery orbits (the fiber does not flip over the axis parallel to the flow).

Flexible fiber in a shear flow

The motion of flexible fibers in a shear flow is essential in paper making or composite processing. Prediction and control of fiber orientations and positions are of particular interest in the study of flocks disintegration. Many models have been designed to predict 2.3 Validations fiber dynamics and much experimental work has been conducted. The wide variety of fiber behaviors depends on the ratio of bending stresses over shear stress, which is quantified by a dimensionless number, the bending ratio BR (Forgacs and Mason (1959a); [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF])

BR = E(ln 2r e -1.5) η γ2r 4 p (2.52)
E is the material Young's Modulus and η is the suspending fluid viscosity. In the following, we investigate the response of the gears model with known results on flexible fiber dynamics.

Effect of permanent deformation Forgacs and Mason (1959a,b) analyzed the motion of flexible threadlike particles in a shear flow depending on BR. They observed important drifts from the Jeffery orbits and classified them into categories. Yet, the goal of this section is not to carry out an indepth study on these phenomena. Instead, the objective is to show that our model can reproduce basic features characteristic of sheared flexible filaments. We analyze first the influence of intrinsic deformation on the motion. If a fiber is straight at rest, it will symmetrically deform in a shear flow. When aligned with the compressive axes of the ambient rate of strain E ∞ , the fiber adopts the "S-shape" observed in Fig. 2.8a. When aligned with the extensional axes, tensile forces turn the rod back to its equilibrium shape. This symmetry is broken when the filament is initially slightly deformed or has a permanent deformation at rest, i.e. a nonzero equilibrium curvature κ eq > 0 . An initial small perturbation of the shape of a straight filament aligned with flow can induce large deformations during the orbit. This phenomenon is known as the buckling instability whose onset and growth are quantified with BR [START_REF] Becker | Instability of elastic filaments in shear flow yields first-normal-stress differences[END_REF]; [START_REF] Guglielmini | Buckling transitions of an elastic filament in a viscous stagnation point flow[END_REF]). Fig. 2.8b illustrates the evolution of a flexible sheared filament with BR = 0.04 and a very small intrinsic deformation κ eq = 1/(100L). The equilibrium dimensionless radius of curvature is 2R eq /L = 200. During the tumbling motion it decreases to a minimal value of 2R min /L = 0.26. Buckling thus increases by 770 times the maximal fiber curvature.

Maximal fiber curvature

Salinas and Pittman (1981) measured the radius of curvature R of sheared fiber for aspect ratios r p ranging from 283 to 680. They reported on the evolution of the minimal value R min , i.e. the maximal curvature κ max , with BR. [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] used the joint model with prolate spheroids but no hydrodynamic interactions and compared their results with [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF]. Both experimental results from [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF] and simulations from [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] are accurately reproduced by the gears model.

Hydrodynamic interactions between fiber elements play an important role in the bending of flexible filaments [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF]; [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF]; Slowicka et al. ( 2012)). As mentioned in Section 2.2.5 the use of spheres to build any arbitrary Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. object is well suited to compute these hydrodynamic interactions. However, modeling rigid slender bodies in a strong shear flow becomes costly when increasing the fiber aspect ratio. First, the aspect ratio of a fiber made up of N p spheres is r p = N p . Each time iteration requires the computation of M * and the inversion of a linear system (Eq. (2.17)) corresponding to N c relations of constraints with N c ≥ 3 (N p -1). Secondly, for a given shear rate γ and bending ratio BR, Young's modulus increases as r 4 p . According to Eq. (2.37), the time step becomes very small for large Young's modulus E. [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] partially avoided this issue by neglecting pairwise hydrodynamic interactions (M * is diagonal), and by assembling prolate spheroids of aspect ratios r e ∼ 10. Yet, it is shown in Fig. 2.9a that for a fixed BR, 2R min /L converges asymptotically to a constant value with r p . An asymptotic regime (relative variation less than 2%) is reached for r p ≥ 25. Choosing r p = 35 thus enables a valid comparison with previous results.

Our simulation results compare well with the literature data (Fig. 2.9b) and better match with to experiments than [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF]. When BR ≥ 0.04, the gears model clearly underestimates measurements for κ eq = 1/(10L) and overestimates them for κ eq = 0 . However, Salinas and Pittman [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF]) indicated that the error quantification on parameters and measurements is difficult to estimate as the fibers were hand-drawn. Notably, drawing accuracy decreases for large radii of curvature, which leads to the conclusion that the hereby observed discrepancy might not be critical. They did not report the value of permanent deformation κ eq for the fibers they designed, whereas, as evidenced by Forgacs and Mason (1959b), it has a strong impact on R min . A numerical study of this dependence should be conducted to compare with : BR = 0.01, • : BR = 0.03, : BR = 0.04 , : BR = 0.07. (b) Minimal radius of curvature along BR. • : current simulations with aspect ratio r p = 35 and intrinsic curvature κ eq = 0 ; • : current simulations with aspect ratio r p = 35 and intrinsic curvature κ eq = 1/(10L) ; simulation results from [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] with κ eq = 1/(10L): ( ♦ : r p = 50, : r p = 100, : r p = 150, : r p = 280) ; + : experimental measurements from [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF], r p = 283. Mason (1959b), Fig. 7. [START_REF] Lindström | Simulation of the motion of flexible fibers in viscous fluid flow[END_REF] used the same approach as [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] with hydrodynamic interactions to repeat numerically the experiments from [START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF] ; but their results, though reliable, were displayed such that direct comparison with previous work is not possible. To conclude, it should be noted that, in [START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF], the aspect ratio does not affect 2R min /L for a fixed BR, confirming the asymptotic behavior observed in Fig. 2.9a.

Settling fiber

Consider a fiber settling under constant gravity force F ⊥ = F ⊥ e ⊥ acting perpendicularly to its major axis. The dynamics of the system depends on three competing effects: the elastic stresses which tend to return the object to its equilibrium shape, the gravitational acceleration which uniformly translates the object and the hydrodynamic interactions which creates local drag along the filament. After a transient regime, the filament reaches steady state and settles at a constant velocity with a fixed shape (see Figs. 2.10a and 2.10b). This steady state depends on the elasto-gravitational number

B = F ⊥ L/K b .
(2.53) filaments at low Reynolds number.

Cosentino [START_REF] Cosentino Lagomarsino | Hydrodynamic induced deformation and orientation of a microscopic elastic filament[END_REF]; [START_REF] Keaveny | Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers[END_REF] and [START_REF] Li | The sedimentation of flexible filaments[END_REF] examined the contribution of each competing effect by measuring the normal deflection A, i.e. the distance between the uppermost and the lowermost point of the filament along the direction of the applied force (Fig. 2.10b) ; and the normal friction coefficient γ ⊥ /γ 0 ⊥ as a function of B. γ 0 ⊥ is the normal friction coefficient of a rigid rod. To compute hydrodynamic interactions Cosentino [START_REF] Cosentino Lagomarsino | Hydrodynamic induced deformation and orientation of a microscopic elastic filament[END_REF] used Stokeslet ; [START_REF] Keaveny | Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers[END_REF], the Force Coupling Method (FCM); [START_REF] Li | The sedimentation of flexible filaments[END_REF], Slender Body Theory.

Similar simulations were carried out with both the joint model described in Section 2.2.6 and the gears model. Fiber of length L = 68a is made out of N p = 31 beads with gap width 2ε g = 0.2a for the joint model and N p = 34 for the gears model. To avoid both overlapping and numerical instabilities with the joint model, the following repulsive force coefficients were selected: .11 shows that our simulations agree remarkably well with previous results except slight differences with [START_REF] Li | The sedimentation of flexible filaments[END_REF] in the linear regime B < 100. Using Slender Body Theory, [START_REF] Li | The sedimentation of flexible filaments[END_REF] made the assumption of a spheroidal filament instead of a cylindrical one, with aspect ratio r p = 100, i.e. three times larger than other simulations, whence such discrepancies. The normal friction coefficient (Fig. 2.11b ), resulting from hydrodynamic interactions, perfectly matches the value obtained by [START_REF] Keaveny | Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers[END_REF] with the Force Coupling Method. The FCM is known to better describe multibody hydrodynamic interactions. Such a result thus supports the use of the simple Rotne-Prager-Yamakawa tensor for this hydrodynamic system.

d 0 = (a + ε g )/4, δ D = (a + ε g )/5, C 1 = 0.
The differences between the gears (GM) and joint model (JM) implemented here are quantified by measuring the relative discrepancies on the vertical deflection

A A = A GM -A JM A GM , (2.54)
and on the normal friction coefficient

γ ⊥ /γ 0 ⊥ γ ⊥ = γ ⊥ /γ ⊥ 0 GM -γ ⊥ /γ ⊥ 0 JM γ ⊥ /γ ⊥ 0 GM . (2.55)
Discrepancies between joint and gears models remain below 5% except at the threshold of the non-linear regime (B ≈ 100) where A reaches 15% and γ ⊥ ≈ 7.5%.

In accordance with Cosentino Lagomarsino et al. ( 2005), a metastable "W" shape is reached for B > 3000 (Fig. 2.10a) until it converges to the stable "horseshoe" state (Fig.

2.10b).

Actuated filament

The goal of the following sections is to show that the model we proposed is not only valid for passive objects but also for active ones. Elastohydrodynamics also concern swimming
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Figure 2.10: Shape of settling fiber for B = 10000 in the frame moving with the center of mass (x c , z c ). (a) Metastable "W" shape, t = 12L/V s . (b) Steady "horseshoe" shape at t = 53L/V s . V s is the terminal settling velocity once steady state is reached. at low Reynolds number [START_REF] Purcell | Life at low Reynolds number[END_REF]). Many type of micro-swimmers have been studied both from the experimental and theoretical point of view. Within that scope, the propagation of bending wave along passive elastic filament has been investigated by Wiggins et al. (1998), [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF] and [START_REF] Coq | Rotational dynamics of a soft filament: Wrapping transition and propulsive forces[END_REF][START_REF] Coq | Helical beating of an actuated elastic filament[END_REF].

The experiment of [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF] consists in a flexible filament tethered and actuated at its base. The base angle was oscillated sinusoidally in a plane with an amplitude α 0 = 0.435rad and frequency ζ. Deformations along the tail result from the competing effects of bending and drag forces acting on it. A dimensionless quantity called the Sperm number compares the contribution of viscous stresses to elastic response (Wiggins and Goldstein (1998))

Sp = L ζ γ ⊥ /L K b 1/4 = L l ζ . (2.56)
γ ⊥ is the normal friction coefficient. When using resistive force theory, γ ⊥ /L is changed into a drag per unit length coefficient ξ ⊥ . l ζ can be seen as the length scale at which bending occurs. Sp 1 corresponds to a regime at which bending dominates over viscous friction: the whole filament oscillates rigidly in a reversible and symmetrical way. Sp 1 corresponds to a regime at which bending waves are immediately damped and the free end is motionless (Wiggins and Goldstein (1998)).

The experiment of [START_REF] Coq | Rotational dynamics of a soft filament: Wrapping transition and propulsive forces[END_REF] is similar to [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF] except for that the actuation at the base is rotational. Here, the filament was rotated at a frequency ζ Chapter 2 : A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. forming a base angle α 0 = 0.262rad with the rotation axis.

In both contributions, the resulting fiber deformations were measured and compared to Resistive Force Theory for several values of Sp. Simulations of such experiments [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF]; [START_REF] Coq | Rotational dynamics of a soft filament: Wrapping transition and propulsive forces[END_REF]) were performed with the gears model.

Numerical setup and boundary conditions at the tethered base element

Corresponding kinematic boundary conditions for BM are prescribed with the constraint formulation of the Euler-Lagrange formalism.

Planar actuation. In the case of planar actuation [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF]), we consider that the tethered, i.e. the first, bead is placed at the origin and has no degree of freedom

V 1 = 0, Ω 2 = 0.
(2.57) Denote α 0 the angle formed between x and e 1,2 . The trajectory of bead 2 must follow

Y 2 (t) =   2a cos (α 0 sin (ζt)) 0 2a sin (α 0 sin (ζt))   .
(2.58)

The constrained translational velocity of the second bead V 2 (t) is thus obtained by taking the time derivative of Eq. (2.58)

V 2 (t) =   -2aα 0 ζ cos (ζt) sin (α 0 sin (ζt)) 0 2aα 0 ζ cos (ζt) cos (α 0 sin (ζt))   .
(2.59)

The rotational velocity Ω 2 is constrained by the no-slip condition of the gears model.

Helical actuation. In the case of helical beating [START_REF] Coq | Rotational dynamics of a soft filament: Wrapping transition and propulsive forces[END_REF][START_REF] Coq | Helical beating of an actuated elastic filament[END_REF]), the anchor point of the filament is slightly off-centered with respect to the rotation axis x [START_REF] Coq | Helical beating of an actuated elastic filament[END_REF]: r(0) = δ 0 (cf. Fig. 2.13, left inset). [START_REF] Coq | Helical beating of an actuated elastic filament[END_REF] measured a value δ 0 = 2mm with a filament length varying from L = 2cm to 10cm. Here we take δ 0 = δ0 sin α 0 with δ0 = 2.7a and vary the filament length by changing the number of beads N p to match the experimental range δ 0 /L = 0.1 → 0.02. The position of bead 1 must then follow

Y 1 (t) =   δ0 cos (α 0 sin (ζt)) cos (α 0 cos (ζt)) δ0 cos (α 0 sin (ζt)) sin (α 0 cos (ζt)) δ0 sin (α 0 sin (ζt))   .
(2.60) filaments at low Reynolds number.

The constrained translational velocity of the first bead V 1 (t) is thus obtained by taking the time derivative of Eq. (2.60)

V 1 (t) =       δ0 α 0 ζ [-cos (ζt) sin (α 0 sin (ζt)) cos (α 0 cos (ζt)) + sin (ζt) sin (α 0 cos (ζt)) cos (α 0 sin (ζt))] δ0 α 0 ζ [-cos (ζt) sin (α 0 sin (ζt)) sin (α 0 cos(ζt)) -sin (ζt) cos (α 0 cos (ζt)) cos (α 0 sin (ζt))] δ0 α 0 ζ cos (ζt) cos (α 0 sin (ζt))       . (2.61)
And the rotational velocity is set to zero Ω 1 = 0.

The velocity of the second bead V 2 (t) is prescribed in synchrony with bead 1:

V 2 (t) =       ( δ0 + 2a)α 0 ζ [-cos (ζt) sin (α 0 sin (ζt)) cos (α 0 cos (ζt)) + sin (ζt) sin (α 0 cos (ζt)) cos (α 0 sin (ζt))] ( δ0 + 2a)α 0 ζ [-cos (ζt) sin (α 0 sin (ζt)) sin (α 0 cos (ζt)) -sin (ζt) cos (α 0 cos (ζt)) cos (α 0 sin (ζt))] ( δ0 + 2a)α 0 ζ cos (ζt) cos (α 0 sin (ζt))       .
(2.62)

The rotational velocity Ω 2 is constrained by the no-slip condition. The three-dimensional curvature κ is discretized with Eq. (2.34).

In both cases, imposing actuation at the base of the filament therefore requires the addition of three vectorial kinematic constraints, Eq. (2.57) and Eq. (2.59), to the no-slip conditions: N c = 3(N p -1) + 3 × 3. The additional Jacobian matrix J act writes

J act =   I 3 0 3 0 3 0 3 • • • 0 3 0 3 0 3 I 3 0 3 0 3 • • • 0 3 0 3 0 3 0 3 I 3 0 3 • • • 0 3 0 3   .
(2.63)

The corresponding right-hand side B act contains the imposed velocities

B act =   0 0 -V 2   (2.64)
for planar beating, and

B act =   -V 1 0 -V 2   (2.65)
for helical beating. J act and B act are simply appended to J and B respectively. The corresponding forces and torques F c are computed as explained in Section 2.2.2.

Validations

Comparison with experiments and theory

The dynamics of the system can be described by balancing elastic stresses (flexion and tension) with viscous drag. Subsequent coupled non-linear equations can be linearized with the approximation of small deflections or solved with an adaptive integration scheme [START_REF] Camalet | Generic aspects of axonemal beating[END_REF]; [START_REF] Lauga | Floppy swimming: Viscous locomotion of actuated elastica[END_REF]; [START_REF] Gadêlha | Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?[END_REF]).

Planar actuation. [START_REF] Yu | Experimental investigations of elastic tail propulsion at low Reynolds number[END_REF] considered both linear and non-linear theories and included the effect of a sidewall by using the corrected RFT coefficients of [START_REF] Mestre | Low-Reynolds-number translation of a slender cylinder near a plane wall[END_REF]. Simulations are in good agreement with experiments, linear and non-linear theories for Sp = 1.73, 2.2, and 3.11 (Fig. 2.12). Even though sidewall effects were neglected here, the gears model provides a good description of non-linear dynamics of an actuated filament in Stokes flow.

Helical actuation. Once steady state was reached, [START_REF] Coq | Rotational dynamics of a soft filament: Wrapping transition and propulsive forces[END_REF] measured the distance of the tip of the rotated filament to the rotation axis d = r(L) (cf. Fig. 2.13, left inset). Figure 2.13 compares their measures with our numerical results. Insets show the evolution of the filament shape with Sp. The agreement is quite good. Numerical simulations slightly overestimate d for 30 < Sp 4 < 90. This may be due to the lack of information to reproduce experimental conditions and/or to measurement errors. As stated in [START_REF] Coq | Helical beating of an actuated elastic filament[END_REF], taking the anchoring distance δ 0 into account is important to match the low Sperm number configurations where δ 0 /L is non-negligible and the filament is stiff. If the anchoring point was aligned with the rotation axis (δ 0 = 0), the distance to the axis of the rod free end would be d/L = sin α 0 = 0.259 for small Sp, as shown on Fig. 2.13.

Planar swimming nematode

Locomotion of the nematode Caenorhabditis Elegans is addressed here as its dynamics and modeling are well documented [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]; [START_REF] Bilbao | Nematode locomotion in unconfined and confined fluids[END_REF]). C. Elegans swims by propagating a contraction wave along its body length, from the fore to the aft (Fig. 2.14a). modeling such an active filament in the framework of BM just requires the addition of an oscillating driving torque τ D (s, t) to mimic the internal muscular contractions. To do so, [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF] used the preferred curvature model. In this model, the driving torque results from a deviation in the centerline curvature from

κ D (s, t) = -κ D 0 (s) sin (ks -2πf t) , (2.66)
where κ D 0 (s) is prescribed to reproduce higher curvature near the head: (2009). filaments at low Reynolds number.

κ D 0 (s) = K 0 , s ≤ 0.5L 2K 0 (L -s) /L, s > 0.5L. ( 2 
The amplitude K 0 , wave number k and the associated Sperm number

Sp = L (f η/K b ) 1/4
(2.68)

were tuned to reproduce the measured curvature wave of the free-swimming nematode. They obtained the following set of numerical values: K 0 = 8.25/L, k = 1.5π/L and Sp * = 22.6 1/4 . The quantity of interest to compare with experiments is the distance the nematode travels per stroke V /(f L). K b is assumed to be constant along s and is deduced from the other parameters. As for Eq. (2.32), the torque applied on bead n results from the difference in active bending moments across neighboring links

τ n D (t) = m D (s n+1 , t) -m D (s n-1 , t) , (2.69) with m D (s n , t) = K b κ D (s n , t)b(s n ). τ D is added to F a at step 3 of the algorithm in Section 2.2.6.
To match the aspect ratio of C. Elegans, r p = 16, [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF] put N p = 15 beads together separated by gaps of width 2 g = 0.2a. Here we assemble N p = 16 beads, avoiding the use of gaps, and employ the same target-curvature wave and numerical coefficient values.

The net translational velocity V * = V /(f L) = 0.0662 obtained with our model matches remarkably well with the numerical results V /(f L) = 0.0664 [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]) and experimental measurements V /(f L) ≈ 0.07 [START_REF] Bilbao | Nematode locomotion in unconfined and confined fluids[END_REF]).

Cooperative swimming

One of the configurations explored in [START_REF] Llopis | Cooperative motion of intrinsic and actuated semiflexible swimmers[END_REF] has been chosen as a test case for the interactions between in-phase or out-of phase swimmers. Two identical, coplanar C. Elegans swim in the same direction with a phase difference ∆φ which is introduced in the target curvature, and thus in the driving torque, of the second swimmer

κ D,2 (s, t) = -κ D 0 (s) sin (ks -2πf t + ∆φ) .
(2.70)

The initial shape of the swimmers is taken from their steady state. We define d as the distance between their center of mass at initial time (see inset of 2013) is strikingly good. Numerical work by [START_REF] Fauci | Interaction of oscillating filaments: a computational study[END_REF] also revealed that the average swimming speed of infinite sheets in finite Reynolds number flow is maximized when they beat in opposite phase. The conclusion that closer swimmers do not necessarily swim faster than individual ones has also been reported in [START_REF] Immler | By hook or by crook? Morphometry, competition and cooperation in rodent sperm[END_REF]. They measured a decrease in the swimming speed of 25% for synchronized groups of house mouse sperm, as obtained on Fig. 2.14b for d/L = 0.2. 

Spiral swimming

Many of the flagellate micro-organisms such as spermatozoa, bacteria or artificial microdevices use spiral swimming to propel through viscous fluid. Propulsion with rotating rigid or flexible filaments has been thoroughly investigated in the past years [START_REF] Cortez | The method of regularized stokeslets in three dimensions: analysis, validation, and application to helical swimming[END_REF]; [START_REF] Manghi | Propulsion with a rotating elastic nanorod[END_REF][START_REF] Bibliography Qian | Shape transition and propulsive force of an elastic rod rotating in a viscous fluid[END_REF]; Keaveny and Maxey (2008c); [START_REF] Coq | Helical beating of an actuated elastic filament[END_REF]; [START_REF] Hsu | A 3d motile rod-shaped monotrichous bacterial model[END_REF]; [START_REF] Keaveny | Optimization of chiral structures for microscale propulsion[END_REF]). In this section we illustrate the versatility of the proposed model by investigating the effect of the Sperm number and the eccentricity of the swimming gait on the swimming speed of C. Elegans.

Numerical configuration

The target curvature of C. Elegans κ D remains unchanged except for that it is now directed along two components which are orthogonal to the helix axis. A phase difference ∆φ = π/2 is introduced between these two components. The resulting driving moment writes:

m D (s n , t) = A 1 K b κ D (s n , t)e ⊥ + A 2 K b κ D (s n , t, ∆φ = π/2)e b .
(2.71)

{e , e ⊥ , e b } are body fixed orthonormal vectors. e is directed along the axis of the helix, e ⊥ is a perpendicular vector and e b is the binormal vector completing the basis (Fig. 2.15 inset). The magnitude of the curvature wave along e ⊥ (resp. e b ) is weighted by a coefficient A 1 (resp. A 2 ). The trajectory of a body element in the plane {e ⊥ , e b } describes an ellipse whose eccentricity depends on the value of the ratio A 2 /A 1 . When A 2 /A 1 = 0 the driving torque is two-dimensional and identical to the one used in Section 2.3.5. When A 2 /A 1 = 1 the magnitude of the driving torque is equal in both direction, the swimming gait describes a circle in the plane {e ⊥ , e b } (see Fig. 2.15 inset). For the sake of simplicity, here we take {e , e ⊥ , e b } = { x, ŷ, ẑ}. As in 2.3.4, the curvature is evaluated with Eq.

(2.34). In the following, A 1 = 1 and only A 2 is varied in the range [0; 1].

Results

Figure 2.15 compares the planar swimming speed of C. Elegans V * , with its "helical" version V , depending on the Sperm number defined in Section 2.3.5 Eq. (2.66) and on the ratio A 2 /A 1 . The Sperm number Sp lies in the range [17 1/4 ; 1000

1/4 ] = [2.03; 5.62].
The lower bound is dictated by the stability of the helical swimming. When Sp < 2.03, the imposed curvature reaches a value such that the swimmer experiences a change in shape which is not helical. This sudden change in shape breaks any periodical motion and makes irrelevant the measurement of a net translational motion. Such limitation is only linked to the choice of the numerical coefficients of the target curvature model. For the characteristic value Sp * = 22.6 1/4 chosen by [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF], the purely helical motion provides a swimming speed four times faster than planar beating. Even though the model swimmer is different here, this result qualitatively agrees with those of Keaveny and Maxey (2008c) for which spiral swimming was faster than planar beating. Beyond a critical value Sp ≈ 2.6, planar beating is faster. For A 2 /A 1 = 0.5 the swimming speed is always smaller than for planar beating except when Sp < 2.15. This :

A 2 /A 1 = 1, : A 2 /A 1 = 0.5, : A 2 /A 1 = 0 (planar motion), filaments at low Reynolds number.
last observation is not intuitive. A more extensive study on the effect of the eccentricity of the swimming gait on the swimming speed would be of interest.

Conclusions

We have provided a simple theoretical framework for kinematic constraints to be used in three-dimensional bead models (BM). This framework permits to handle versatile and complex kinematic constraints between flexible assembly of spheres, and/or more complex objects at low Reynolds numbers. Using Stokes linearity, this formulation requires, at each time step, the inversion of an O(N c × N c ) linear system for an assembly having N c constraints. Constraints are exactly matched (up to machine precision) and their evaluation is insensitive to the time-step. Furthermore, since the formulation explicitly handles mobility matrices, it can be used with any approximation for hydrodynamics interactions, from free drain (no HI) to Stokesian Dynamics. The proposed framework also implicitly incorporates the generic influence of external flows on kinematic constraints, as opposed to previous BM formulation which necessitates some adjustments to the ambient flow in most cases.

We also proposed a simple gears model to describe flexible objects, and we showed that such model successfully predicts the fiber dynamics in an external flow, its response to an external mechanical forcing and the motion of internally driven swimmers. Quantitative agreement with previous works is obtained for both slender objects (fibers, actuated filaments) and non-slender swimmers (C. Elegans), allowing its use in a wide variety of contexts. The gears model is easy to implement and it fulfills several important improvements over previous BM :

• There is no limitation on the fiber curvature, since the gears model does not need any repulsive force nor gap width to be defined.

• The gears model is more generic than previous ones, since there is no need for numerical parameter to be tuned.

• When compared with the joint model, the gears model is also much more stable by two orders of magnitude in time-step, a drastic improvement which offers nice prospects for the modeling of complex flexible assemblies.

Finally it should be noted that even if we only consider simple collections of spheres, any complex assembly can be easily treated within a similar framework, which provide interesting prospects in the future modeling of complex micro-organims, membranes or cytoskeleton micro-mechanics.

Addendum: correspondence between M and M *

The matrix M * defined in Eq. (2.13) results from the rearrangement of the well-known mobility matrix M. This operation is necessary in order to combine the constraints (Eq. 2.5 Addendum: correspondence between M and M * (2.5)) and the mobility relation (Eq. (2.12)) to obtain the constraint forces F c .

Matrix M relates the collection of velocities

V = V 1 , ..., V Np and rotations W = Ω 1 , ..., Ω Np to the collection of forces F = F 1 , ..., F Np and torques T = τ 1 , ..., τ Np V W = M VF M VT M WF M WT F T , (2.72)
where M VF is the 3N p × 3N p matrix relating all the bead velocities to the forces applied to their center of mass

M VF =    M V F ;11 . . . M V F ;1Np . . . . . . . . . M V F ;Np1 . . . M V F ;NpNp    .
(2.73)

Eq. (2.72) is not consistent with the structure of the generalized velocities Q =

V 1 , Ω 1 , ..., V Np , Ω Np and forces F = F 1 , τ 1 , ..., F Np , τ Np vectors. Thus we rearrange M into M * such that M nm; * =   M V F ;nm M V T ;nm M ΩF ;nm M ΩT ;nm   , (2.74) 
to obtain a mobility equation suited for the Euler-Lagrange formalism

   q1 . . . qNp    =    M 11; * . . . M 1Np; * . . . . . . . . . M Np1; * . . . M NpNp; *       f 1 . . . f Np    . (2.75)
Which, in compact form, and in the absence of external flow, provides

Q = M * F. (2.76)
Eq. (2.76) is strictly equivalent to Eq. (2.13).

Chapter 3

Biologically-relevant mesoscopic models. In this chapter, we introduce an extension of the force-coupling method (FCM) [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]), an approach for the large-scale simulation of passive particles, to reproduce the disturbances generated by active particles. FCM relies on a regularized, rather than a singular, multipole expansion to account for the hydrodynamic interactions between the particles. We extend FCM to active particles by introducing the regularized singularities in the FCM multipole expansion that have a direct correspondence to the surface velocity modes of the squirmer model [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]). We explore in detail how to incorporate biologically-relevant, time-dependent swimming gaits by tuning our model to the recent measurements of the oscillatory flow around Chlamydomonas reinhardtii [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]) and around a copepod at its naupliar stage [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]). These experiments suggest that considering time-averaged flows for such micro-organisms may oversimplify the hydrodynamic interactions between neighbors. Time-dependency is also closely associated with the way zooplankton feed, mix the surrounding fluid, and interact with each other [START_REF] Croze | Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors[END_REF]; [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]). As stated in [START_REF] Saintillan | A quantitative look into microorganism hydrodynamics[END_REF], modeling micro-swimmers with a time-dependent swimming gait might be more realistic and should be included in mathematical models and computer simulations.

Squirmers using the force-coupling method

The force-coupling method (FCM) developed by Maxey and collaborators [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]) is an effective approach for the large-scale simulation of particulate suspensions, especially for moderately concentrated suspensions at low Reynolds number. In this context, it has been used to address a variety of problems in micro-fluidics [START_REF] Climent | Dynamics of self-assembled chaining in magnetorheological fluids[END_REF]), biofluid dynamics [START_REF] Pivkin | Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi[END_REF]), and micron-scale locomotion (Keaveny and Maxey (2008c,a); [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]). FCM has also been extended to incorporate finite Reynolds number effects [START_REF] Xu | Numerical simulation of turbulent drag reduction using micro-bubbles[END_REF]), thermal fluctuations [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]), near contact lubrication hydrodynamics [START_REF] Dance | Incorporation of lubrication effects into the forcecoupling method for particulate two-phase flow[END_REF]; Yeo and Maxey (2010b)), and ellipsoidal particle shapes [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]). With these additional features, FCM has been used to address questions in fundamental fluid dynamics in regimes where inertial effects are important and/or there is a high volume fraction of particles (Yeo and Maxey (2010b,a)). At the same time, FCM has been used to address problems of technological importance, such as micro-bubble drag reduction [START_REF] Xu | Numerical simulation of turbulent drag reduction using micro-bubbles[END_REF]) and the dynamics of colloidal particles [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). In this section, we expand on [START_REF] Keaveny | Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers[END_REF] and develop the theoretical underpinnings of FCM's further extension to active particle suspensions using the squirmer model proposed by [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF]), advanced by Blake [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]), and employed by [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. To begin this presentation, we give an overview of FCM for an isolated particle, establishing also the notation that will be used later on.

FCM for an isolated passive particle

Consider a rigid spherical particle, having radius a, in unbounded fluid at rest at infinity. The particle is centered at Y and subject to force F and torque τ . To determine its motion through the surrounding fluid, we first represent it by a low order, finite-force multipole expansion in the Stokes equations

∇p -η∇ 2 u = F∆(x) + 1 2 τ × ∇Θ(x) ∇ • u = 0. (3.1)
In Eq. (3.1) are the two Gaussian envelopes,

∆(x) = (2πσ 2 ∆ ) -3/2 e -|x-Y| 2 /2σ 2 ∆ Θ(x) = (2πσ 2 Θ ) -3/2 e -|x-Y| 2 /2σ 2 Θ , (3.2)
used to project the particle force and torque onto the fluid. The flow solution of Eq. (3.1) is

u F CM = N (x, σ ∆ ) • F + T (x, σ Θ ) • τ , (3.3)
where N and T are second rank tensors, i.e. FCM's Green's functions, given by [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]) 58 3.1 Squirmers using the force-coupling method

N ij (x, σ) = 1 8πηr δ ij + x i x j r 2 erf r σ √ 2 + 1 8πη δ ij r 3 -3 x i x j r 5 σ 2 erf r σ √ 2 - σ 2 2η(2πσ 2 ) 3/2 δ ij -3 x i x j r 2 σ 2 r 2 exp - r 2 2σ 2 , (3.4)
and,

T ij (x, σ) = - 1 8πηr 3 erf r σ √ 2 - r σ 2 π 1/2 exp - r 2 2σ 2 ε ikj x k . (3.5)
After solving Eq. (3.1), the velocity, V, angular velocity, Ω of the particle is found by volume averaging of the resulting fluid flow (Eq. 3.3),

V = ˆu∆(x)d 3 x (3.6) Ω = 1 2 ˆ[∇ × u] Θ(x)d 3 x, (3.7)
where the integration is performed over R 3 . In order for Eqs. (3.6) -(3.7) to recover the correct mobility relations for a single, isolated sphere, namely that V = F/(6πaη) and Ω = τ /(8πa 3 η), the envelope length scales need to be σ

∆ = a/ √ π and σ Θ = a/ (6 √ π) 1/3 .

Squirmer model

In addition to undergoing rigid body motion in the absence of applied forces or torques, active and self-propelled particles are also characterized by the flows they generate. To model such particles, we will need to incorporate these flows into FCM. We accomplish this by adapting the squirmer model [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF]; [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]; [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]) to the FCM framework.

The squirmer model consists of a spherically shaped, self-propelled particle that utilizes axisymmetric surface distortions to move through fluid with speed U in the direction p. If the amplitude of the distortions is small compared to the radius, a, of the squirmer, their effect can be represented by the surface velocity, v(r = a) = v r r + v θ θ where

v r = U cos θ + ∞ n=0 A n (t)P n (cos θ), (3.8) v θ = -U sin θ - ∞ n=1 B n (t)V n (cos θ).
(3.9)

Here, P n (x) are the Legendre polynomials,

V n (cos θ) = 2 n(n + 1)
sin θP n (cos θ), (3.10) the angle θ is measured with respect to the swimming direction p, and P n (x) = dP n /dx.

In order for the squirmer to be force-free, we have

U = 1 3 (2B 1 -A 1 ). (3.11)
Following [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF], we consider a reduced squirmer model where A n = 0 for all n and B n = 0 for all n > 2. We therefore only have the first two terms of the series. For this case, the resulting flow field in the frame moving with the swimmer is given by

u r (r, θ) = 2 3 B 1 a 3 r 3 P 1 (cos θ) + a 4 r 4 - a 2 r 2 B 2 P 2 (cos θ) (3.12) u θ (r, θ) = 1 3 B 1 a 3 r 3 V 1 (cos θ) + a 4 r 4 B 2 V 2 (cos θ) (3.13)
where we have used U = 2B 1 /3 from Eq. (3.11). In terms of p, x, and r, this becomes -

u(x) = - B 1 3 a 3 r 3 I -3 xx T r 2 p + a 4 r 4 - a 2 r 2 B 2 P 2 p • x r x r -3 a 4 r 4 B 2 p • x r I - xx T r 2 p. (3.14) = u B 1 + u B 2
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.1: Decomposition of squirmer velocity field for β = 1.

While we have already seen that B 1 is related to the swimming speed, it can be shown [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]) that B 2 is directly related to the stresslet

G = 4 3 πηa 2 (3pp -I) B 2 (3.15)
generated by the surface distortions. This term sets the leading-order flow field that decays like r -2 . We can introduce the parameter β = B 2 /B 1 which describes the relative stresslet strength. In addition, if β > 0, the squirmer behaves like a 'puller,' bringing 3.1 Squirmers using the force-coupling method fluid in along p and expelling it laterally, whereas if β < 0, the squirmer is a 'pusher', expelling fluid along p and bringing it in laterally.

To adapt this model to the FCM framework, we first recognize that the flow given by Eq. (3.14) can be represented by the following singularity system in the Stokes equations

∇p -η∇ 2 u = G • ∇ δ(x) + a 2 6 ∇ 2 δ(x) + H∇ 2 δ(x) (3.16) ∇ • u = 0 (3.17)
where the degenerate quadrupole is related to B 1 through

H = - 4 3 πηa 3 B 1 p. (3.18)
and the stresslet G is given by Eq. (3.15). We can draw a parallel between these singularities and the regularized singularities used with FCM. The stresslet term in Eq. (3.16) is the gradient of the singularity system for a single sphere subject to an applied force. Accordingly, the corresponding regularized singularity in FCM is ∇∆(x), where ∆(x) is given by Eq. (6.2). It is important to note that even though we replace two singular force distributions with the one regularized FCM distribution, the particular choice of ∆(x) will yield flows that are asymptotic to both singular flow fields [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]). For the degenerate quadrupole, however, there is not a corresponding natural choice for the regularized distribution. Following Keaveny and Maxey (2008b), we choose a Gaussian envelope with a length-scale small enough to yield an accurate representation of the singular flow, but not so small as to significantly increase the resolution needed in a numerical simulation (see Section 3.1.3). We therefore employ the FCM envelope for the force dipole and replace the singular distribution by ∇ 2 Θ(x). Thus, for a single squirmer the Stokes equations with the FCM squirmer force distribution are

∇p -η∇ 2 u = G • ∇∆(x) + H∇ 2 Θ(x) ∇ • u = 0. (3.19)
With FCM, additional effects can readily be incorporated into the squirmer model and in our subsequent simulations, we consider several of them to demonstrate the versatility of our approach. In the case of an isolated swimmer, gravitational forces and external torques experienced by heavy, magnetotactic or gyrotactic organisms can be considered by including them in F and τ .

Adding such features to Eq. (3.19), one obtains

∇p -η∇ 2 u = F∆(x) + 1 2 τ × ∇Θ(x) + G • ∇∆(x) + H∇ 2 Θ(x) (3.20) ∇ • u = 0.
(3.21)

The resulting velocity field generated by an isolated squirmer subject to external forces and torques is then given by

u F CM = N (x, σ ∆ ) • F + T (x, σ Θ ) • τ + A (x, σ Θ ) • H + R (x, σ ∆ ) : G. (3.22)
A is a second rank tensors given by [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF])

A ij (x, σ) = 1 4πηr 3 δ ij - 3x i x j r 2 erf r σ √ 2 - 1 η(2πσ 2 ) 3/2 δ ij - x i x j r 2 + δ ij - 3x i x j r 2 σ r 2 exp -x 2 /2σ 2 .
(3.23)

The expression for the third rank tensor R is [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF])

R ijk (x, σ) = - 3 8πηr 5 x i x j x k erf r σ √ 2 + 3σ 2 8πηr 7 erf r σ √ 2 5x i x j x k -2r 2 δ ij x k + 1 8πηr 4 σ 1 √ 2π exp - r 2 2σ 2 4 r 2 δ ij x k -x i x j x k - 6σ 2 r 2 5x i x j x k -2r 2 δ ij x k (3.24)
It is important to remind that the flow generated by a squirmer results from a real boundary condition associated the swimming gait. This model is thus more realistic than the far-field dipolar approximation resulting from the force-and torque-free requirements at zero Reynolds number. with two different values for the degenerate quadrupole Gaussian envelope size, σ Θ and σ Θ /2, that appears in the tensor A. The streamlines are identical, except for a near-field recirculating region that appears when the width of the degenerate quadrupole envelope is σ Θ (Fig. 3.2b). In this region, however, the magnitude of the velocity is small compared to the swimming speed. This region should not significantly impact the squirmer-squirmer hydrodynamic interactions that we are aiming to resolve.

Comparison with Blake's solution

A quantitative comparison of the velocity field is provided in Fig. 3.3. The agreement with Blake's solution is very good for r/a > 1.25 when using σ Θ for the width of the degenerate quadrupole envelope. As shown in Fig. 3.3b, the smaller envelope size (σ Θ /2) matches Blake's solution more closely for r/a < 1.2, with clear improvement at the front and rear of the squirmer. For this envelope size, the velocity field induced by the degenerate quadrupole u F CM B 1 matches exactly the analytical solution u B 1 in Eq. (3.14) (not shown here). Below this width no quantitative improvement is observed as the remaining error comes from the dipolar contribution, u B 2 . 62 3.1 Squirmers using the force-coupling method (a) Normalized difference, u Blakeu FCM /U , between FCM and Blake's solution for a puller squirmer (β = 1). The half-width for the degenerate quadrupole envelope is σ Θ .

: 10% iso-value. (b) Velocity profile along the swimmer axis for Blake's solution and the FCM approximation for the two different degenerate quadrupole envelope sizes.

While this quantitative comparison provides a nice way to choose the degenerate quadrupole envelope size, we must also keep in mind the computational cost associated with decreasing this length scale. As we will show in Section 6.1.1, even though it would yield a flow field slightly more in register with Blake's solution, resolving the length scale σ Θ /2 in a 3D simulation would require a grid with 8 times as many points as that needed for σ Θ , the smallest length-scale already in FCM. This would increase computation times by at least an order of magnitude. In addition, the FCM volume averaging detailed in Section 6.1.1 to determine the squirmer translational and angular velocities will reduce the contribution of the localized velocity field discrepancies to the squirmer-squirmer interactions. In our subsequent simulations, we therefore utilize σ Θ for the degenerate quadrupole envelope size since reducing this length-scale would significantly increase the computational cost, but only provide a minimal improvement.

A time-dependent squirmer model based on experimental data

Here, we show how to incorporate time-dependence into our model. Using the procedure outlined in [START_REF] Ghose | Irreducible representations of oscillatory and swirling flows in active soft matter[END_REF], we determine the time-dependent multipole coefficients B 1 (t) and B 2 (t) from the experimental data provided in [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF] for Chlamydomonas reinhardtii. By allowing these parameters to be functions of time, the FCM squirmer model can be used to explore how the swimmers' strokes disturb the surrounding fluid and affect the overall suspension dynamics. In Section 3.2.2, we perform a preliminary investigation to check whether the model proposed here is applicable to larger micro-swimmers such as the Arcatia tonsa copepod.

Time-dependent model for Chlamydomonas reinhardtii

Recent experiments [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]) quantified the periodic swimming gait and resulting flow field of the algae cell Chlamydomonas reinhardtii. They extracted the swimming speed, the induced velocity field, and the power dissipation, showing also that all can be represented as periodic functions of time. A recent theoretical investigation (Ghose and Adhikari ( 2014)) showed that these quantities could be reproduced using a multipole-based model. In their study, they consider three time-dependent multipoles: a stresslet, a degenerate quadrupole (or potential dipole) and a "septlet." The stresslet decays as r -2 whereas the degenerate quadrupole and the "septlet" decay as r -3 . Here, we utilize only the stresslet and degenerate quadrupole terms and find that they are sufficient to reproduce Guasto et al. ( 2010)'s measurements.

The measured swimming speed from [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF], U (t), can be represented using the truncated Fourier series in time (see [START_REF] Ghose | Irreducible representations of oscillatory and swirling flows in active soft matter[END_REF]):

U (t) = a 0 + a 1 cos (ωt) + a 2 cos (2ωt) + b 1 sin (ωt) + b 2 sin (2ωt) (3.25)
where ω is the frequency of the swimming gait. The mean swimming speed over one beat period, T = 2π/ω, is given by a 0 = 49.54a.s -1 , where a = 2.5µm is the radius 3.2 A time-dependent squirmer model based on experimental data of the micro-organism. The values for the remaining coefficients are provided in the supplementary information of [START_REF] Ghose | Irreducible representations of oscillatory and swirling flows in active soft matter[END_REF]. From Eq. (3.11), we can immediately determine the time-dependent degenerate quadrupole strength

B 1 (t) = 3 2 U (t) (3.26)
in order to preserve the instantaneous force-free condition. Unlike this term, there is more than one way to calibrate the stresslet strength, B 2 (t). For example, one could determine B 2 (t) using the power dissipation measurements from [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF] and Eq. (3.11) from Blake (1972)

Π d (t) = 2 3 πηa 8B 1 (t) 2 + 4B 2 (t) 2 . (3.27)
for the power dissipated by a squirmer. Using this approach, we found that our resulting flow field did not match the experimental results of [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]. We instead determine B 2 (t) directly from the experimental flow field by fitting to the location of the moving stagnation point. Ghose and Adhikari (2014) adopted the same approach. We utilize three Fourier modes to describe the time evolution of B 2

B 2 (t) = c 0 + c 1 cos (ωt + ϕ c1 ) + c 2 cos (2ωt + ϕ c2 ) + c 3 cos (3ωt + ϕ c3 ) +s 1 sin (ωt + ϕ s1 ) + s 2 sin (2ωt + ϕ s2 ) + s 3 sin (3ωt + ϕ s3 ) , (3.28) 
where the amplitudes c 0 , c 1 , s 1 , ... and phases ϕ c1 , ϕ s1 , ... are manually fitted. Tables 3 The phase diagram in Fig. 3.4a shows the value of B 1 versus B 2 and it is similar to that found by [START_REF] Ghose | Irreducible representations of oscillatory and swirling flows in active soft matter[END_REF]. We extract the average value of

β(t) = B 2 (t)/B 1 (t) over one beat cycle β = 1 T T 0 B 2 (t)/B 1 (t)dt = 0.1 (3.29)
Chapter 3 : Biologically-relevant mesoscopic models. which corresponds to a puller squirmer with a relatively small stresslet magnitude. Fig. 3.4b shows the resulting power dissipation as determined from Eq. (3.27). It reaches a peak value at t/T ≈ 0.3, which coincides with the time at which the swimming speed reaches its maximum value. We note that unlike [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF] our swimmers generate axisymmetric flow fields and we are considering a 3D periodic domain. Despite this, we achieve a qualitatively similar power dissipation profile with slightly greater values during the first half of the beat cycle. Fig. 3.5 shows the flow field around our model of C. reinhardtii at six different times during its beat cycle. These time points are chosen to correspond to those in Fig. 3 of [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]. We achieve very similar streamlines and, by construction, the position of the stagnation point matches very well the experimental data. We also note that our flow field is similar to that given by the multipole model found in Ghose and Adhikari (2014) even though we do not include the rapidly decaying "septlet" term in our model. These results illustrate that our properly tuned, time-dependent squirmer model can yield flow fields very similar to those of real organisms.

Time-dependent model for the copepod Arcatia tonsa: preliminary investigations

The modeling approach used for the algae C. reinhardtii can be readily extended to other micro-organisms. To test this idea, Navish Wadhwa, from the Centre for Ocean Life at the Technical University of Denmark, and I, started a preliminary study in February 2015. His joint work with Pr. Thomas Kiørboe and Pr. Anders Peter Andersen focuses on the disturbances generated by the swimming and feeding of plankton [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]; [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]). Together with Jeff Guasto's coworkers, they belong to the very few teams who performed micro-PIV measurements of the flow field around swimming micro-organisms along their beat cycle. In this section, we focus on the swimming of the copepod Arcatia tonsa at its naupliar stage, i.e. at its early development.

The copepod Arcatia tonsa

Copepods are millimeter-sized crustaceans that are omnipresent in both marine and freshwater aquatic systems. Being prey and predator at the same time, they form a vital part of the oceanic food web. During their naupliar stage, copepods move with a breast-stroke swimming gait. Contrarily to C. reinhardtii, its beating cycle is not permanent and periodic. Instead, the nauplius alternates successive "jumps", composed of a quick power stroke, a slow recovery stroke, and motionless stages. Figure 3.6 shows the time series of the flow around a swimming nauplius.

Their typical body length is L = 0.22mm and their mean swimming speed is U = 37.4mm.s -1 [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]). Arcatia tonsa are slightly heavier than the surrounding water ρ/ρ f ≈ 1070/1000. They evolve in the realm of intermediate Reynolds number, with an average value of Re = 7.9. In this regime the mutipole expansion derived above for low Reynolds number flows, may not be appropriate to reproduce the swimming hydrodynamic disturbances. However, [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF] and [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] showed that the averaged flow decays as r -2 , in a stresslet-like fashion. This preliminary study thus aims at identifying the range of validity of our generic approach.

Procedure

To reproduce the flow field around Arcatia tonsa we designed an optimization routine whose criterion for the calibration of the stresslet coefficient B 2 (t) is the L 2 -norm between the measured and the modeled velocity field. The body of the copepod is approximated with a sphere of radius equal to its body half-length a = L = 0.22mm. The monopole corresponding to the buoyancy force is

F = - 4 3 πa 3 (ρ -ρ f )gẑ, (3.30)
where g = 9.81m.s -2 is the gravitational acceleration and ẑ is the direction of gravity. We compute the velocity disturbances generated by the model Arcatia tonsa with the FCM framework for isolated particles (Eq. 3.22).

PIV data was post-processed using a routine from Navish Wadhwa that I adapted for the purpose of parameter calibration. The automated program to find the optimal B 2 (t) has been implemented in Matlab T M . 68 3.2 A time-dependent squirmer model based on experimental data Conclusions: Model vs. reality Figure 3.7 compares the model to the PIV data at different stages in the beat of the nauplius. The model is able to reproduce qualitatively, sometimes quantitatively, the flow field around Arcatia tonsa. However, the fluid inertia is such that the flow field around the copepod always depends on the previous states. As an illustration, the flow dragged behind the swimmer during the power stroke never really disappears during the recovery stroke. As illustrated on Figure 3.7b, the squirmer model for Stokes flow is not appropriate to take into account the fluid memory. Many different tricks could be used to overcome this problem. For instance, one could apply a delay operator or a convolution product integrated over a time interval of the order of the viscous dissipation time. But such artifices are not rigorous and their choice is somehow arbitrary.

The best way to reproduce correctly the disturbances around such micro-organisms would be to include fluid inertia. Indeed it would be interesting, and feasible, to use our time dependent model in a Navier-Stokes solver. 

Chapter 4

Conclusions: towards large multiscale simulations of active suspensions.

In the first part of this thesis we addressed the modeling of swimming mechanisms and the hydrodynamic disturbances they generates at the scale of the micro-swimmers.

In Chapter 2 we proposed an improvement of the bead model to solve the complex underlying fluid-structure interactions problem and proved its ability to satisfactorily reproduce experimental and numerical results on passive and active objects. We have provided a simple general theoretical framework for kinematic constraints to be used in three-dimensional bead models. This framework permits to handle versatile and complex kinematic constraints between flexible assembly of spheres at low Reynolds numbers. Planar and helical beating of flexible fibers have been successfully addressed, and more complex assembly can be easily treated within a similar framework. We have also introduced a contact model, the gears model (GM), which presents several numerical advantages over previous contact models: stability, generic nature and simplicity. In a recent work [START_REF] Thiam | Parameter calibration for microswimmers[END_REF]) we have shown how the linearity of the proposed formulation can be exploited to calibrate constitutive parameters of flexible objects with experimental data. Extensions of the model to passive and active flexible objects in cellular and turbulent flows have been implemented (Figure 4.1) and comparisons with experimental and numerical studies [START_REF] Brouzet | Flexible fiber in a turbulent flow: A macroscopic polymer[END_REF]; [START_REF] Young | Stretch-coil transition and transport of fibers in cellular flows[END_REF]; [START_REF] Quennouz | Transport and buckling dynamics of an elastic fibre in a viscous cellular flow[END_REF]) are in progress.

The approach presented in Chapter 3 builds from the spherical squirmer model developed by [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF], by including the regularized singularities which correspond to the surface squirming modes in the force-coupling method (FCM). We demonstrated the accuracy of our model by comparing velocity fields with Blake's analytic solution. We have shown that the time-dependency of the swimming gaits can be readily included in our model by tuning it to available experimental data [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]; [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]). Even though the squirmer model was originally derived for ciliated micro-organisms, such as Volvox, the agreement obtained with experimental measurement around the breast-stroke swimmer C. reinhardtii is strikingly good and thus promising. However, the steady Stokes flow assumption is not valid for the zooplankton studied in Section 3.2.2. In future work, we will solve the unsteady Stokes equation forced with the same time-dependent singularities to improve the agreement with experimental measurements. Having a good model for plankton swimming and hydrodynamic disturbances would provide an interesting tool to study and comprehend prey-predator systems [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]). Letting our imagination drift a bit from reality, having the design and optimization of artificial micro-robots in mind, we could also invent new swimming gaits and evaluate their efficiency [START_REF] Felderhof | Stokesian spherical swimmers and active particles[END_REF]). Figure 4.2 shows examples of "exotic" swimming gaits in the phase space (B 1 (t), B 2 (t)) that could be analyzed in future work, and may correspond to real micro-organisms. It would also be interesting to tune our model to similar experimental data, but for a wider zoology of micro-organisms [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]). We could therefore assess the possible differences in collective dynamics exhibited by different species, or even look into how one species might interact with another.

Finally, it is worth mentioning the very recent work of [START_REF] Brotto | Spontaneous flows in suspensions of active cyclic swimmers[END_REF] on continuum and particle-based models for active cyclic swimmers. Even though their model is more phenomenological than our approach based on experimental data, they provide an interesting framework to include time-dependent singularities in continuum models.

The squirmer model and its time-dependent variants were developed in Chapter 3 with the extension to large multiscale simulations in mind. However, including hydrodynamic interactions and Brownian motion for large collections of micro-swimmers and Brownian particles in suspensions, while preserving a good and quantifiable level of accuracy, is a modeling and numerical challenge that few methods can take. In the next part (Part II), we provide a numerical framework based on the force-coupling method and fluctuating hydrodynamics to further address these questions in the context of High Performance Computing (HPC).

Part II

From Small to Large Scales: A Modeling Challenge

Chapter 5

Introduction: models for the multiscale physics of active suspensions. The length scales involved in active suspensions span several orders of magnitudes: the smallest micro-swimmers, appendages and tracer particles used in experiments are typically micron-sized (10 -6 m), collective motion and/or mixing occur at much larger scales (10 -5 -10 -4 m), while typical sample sizes or interrogation windows at the lab/ in situ scale can reach several millimeters (10 -3 m). Modeling such systems thus requires addressing both the physics at the small scales, where thermal fluctuations play an important role, and at the large scales, where several thousands (10 3 -10 5 and more) individuals are involved. In the first section of this chapter, we briefly review the literature on the modeling of "deterministic" active suspensions. In the second section we summarize the situations in which thermal agitation plays a significant role and expose the issues that motivate the derivation of new integration schemes for particle Brownian motion.

How to model active suspension ?

The mathematical modeling of active suspensions entails describing how individual swimmers move and interact in response to the flow fields that they generate (O'Malley and Bees (2012); [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]). It is particularly important for these models to be able to handle a large collection of swimmers in order to obtain suspension properties at the lab/in situ scale. The modeling of the collective behavior of active matter has been a vibrant area of research during the last decade [START_REF] Ramaswamy | The Mechanics and Statistics of Active Matter[END_REF]; [START_REF] Koch | Collective Hydrodynamics of Swimming Microorganisms: Living Fluids[END_REF]; [START_REF] Saintillan | Active suspensions and their nonlinear models[END_REF]; [START_REF] Marchetti | Hydrodynamics of soft active matter[END_REF]; [START_REF] Saintillan | Theory of active suspensions[END_REF]), to cite only a few recent reviews. Generally speaking, the modelling approaches can be sorted into two categories: continuum theories and particle-based simulations. Most of the continuum models are generally valid for dilute suspensions where the hydrodynamic disturbances are given by a mean-field description of far-field hydrodynamic interactions [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF]; [START_REF] Baskaran | Statistical mechanics and hydrodynamics of bacterial suspensions[END_REF]; [START_REF] Koch | Collective Hydrodynamics of Swimming Microorganisms: Living Fluids[END_REF]). Recent advances towards more concentrated suspensions include steric interactions [START_REF] Ezhilan | Instabilities and nonlinear dynamics of concentrated active suspensions[END_REF]), but the inclusion of high-order singularities due to particle size remains outstanding. Despite this, these models are very attractive as they naturally provide a description of the dynamics at the population level and the resulting equations can be analyzed using a wide range of analytical and numerical techniques.

Particle-based simulations resolve the dynamics of each individual swimmer and from their positions and orientations, construct a picture of the dynamics of the suspension as a whole. As discussed in [START_REF] Koch | Collective Hydrodynamics of Swimming Microorganisms: Living Fluids[END_REF], particle-based models provide opportunities to (i) test continuum theories, (ii) analyze finite-size effects resulting from a discrete number of swimmers, (iii) explore more complex interactions between swimmers and/or boundaries, and in some cases, (iv) reveal the effects of short-range hydrodynamic interactions and/or steric repulsion. Various models have been proposed in this context, each using different approximations to address the difficult problems of resolving the hydrodynamic interactions and incorporating the geometry of the swimmers. Some of the first such models used point force distributions to create dumbbell-shaped swimmers [START_REF] Hernandez-Ortiz | Transport and collective dynamics in suspensions of confined swimming particles[END_REF], 2007)), slender-body theory to model a slip velocity along the surfaces of rod-like swimmers (Saintillan andShelley (2007, 2012)), or the squirmer model [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers[END_REF]; [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]) to examine the interactions between spherical swimmers [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]). These initial studies provided important fundamental results connecting the properties of the individual swimmers to the emergence of collective dynamics. Based on their success, these models have been more recently incorporated into a number of numerical approaches for suspension and fluid-structure interaction simulations including Stokesian dynamics [START_REF] Ishikawa | The rheology of a semi-dilute suspension of swimming model micro-organisms[END_REF]; [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]; [START_REF] Mehandia | The collective dynamics of self-propelled particles[END_REF]), the immersed boundary method [START_REF] Lushi | Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers[END_REF]; [START_REF] Lambert | Active suspensions in thin films: nutrient uptake and swimmer motion[END_REF]), Lattice Boltzmann methods [START_REF] Alarcón | Spontaneous aggregation and global polar ordering in squirmer suspensions[END_REF]; [START_REF] Pagonabarraga | The structure and rheology of sheared model swimmer suspensions[END_REF]), distributed Lagrange-multiplier-based finite-volume methods (Li and Ardekani (2014)) and hybrid finite element/penalization schemes (Decoene et al. ( 2011)). This has allowed for both increased swimmer numbers as well as the incorporation of other effects such as steric interactions, external boundaries, and aligning torques.

In Chapter 6, we propose a methodology built on the FCM framework, and the squirmer model derived in Chapter 3, to simulate large active suspensions. We compare squirmer dynamics and kinematics with Boundary Element results. The very good agreement with the literature and the linear scaling of the code highlight the robustness of the method to accurately handle large collections of swimmers.

Brownian motion in particulate suspensions.

Brownian motion is the random motion exhibited by micron and sub-micron particles immersed in liquid. It is a fundamental mechanism for material and chemical transport in micron-scale physical and biological systems [START_REF] Grima | Crowding-induced anisotropic transport modulates reaction kinetics in nanoscale porous media[END_REF]), and can play a key role in determining the mechanical response of colloidal suspensions to applied stresses [START_REF] Batchelor | The effect of Brownian motion on the bulk stress in a suspension of spherical particles[END_REF]; [START_REF] Bossis | The rheology of brownian suspensions[END_REF]; [START_REF] Foss | Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation[END_REF]; [START_REF] Banchio | Accelerated stokesian dynamics: Brownian motion[END_REF]). Brownian motion is also known to affect the aggregation and self-assembly of interacting particles [START_REF] Anderson | Insights into phase transition kinetics from colloid science[END_REF]; [START_REF] Zaccarelli | Colloidal gels: Equilibrium and non-equilibrium routes[END_REF]; [START_REF] Lu | Gelation of particles with short-range attraction[END_REF]), a fundamental process important in many engineering applications that utilize colloidal particles to tune rheological properties of fluids [START_REF] Bibliography Mabille | Rheological and shearing conditions for the preparation of monodisperse emulsions[END_REF]; ten Brinke et al. ( 2007)) and construct new materials and devices [START_REF] Whitesides | Beyond molecules: Self-assembly of mesoscopic and macroscopic components[END_REF]; [START_REF] Glotzer | Self-assembly: From nanoscale to microscale colloids[END_REF]; [START_REF] Promislow | Aggregation kinetics of paramagnetic colloidal particles[END_REF]). The rotational diffusivity, and therefore the motility, of micron-sized bacteria is strongly influenced by thermal agitation [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF]). Brownian motion also plays an important role in the transport and mixing properties of active systems [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]; [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]; [START_REF] Miño | Induced diffusion of tracers in a bacterial suspension: theory and experiments[END_REF]). The diffusion of a colloid or a molecule in an active suspension depends on the intricate coupling between its Brownian diffusivity and the suspension dynamics [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]).

To address the issue of enhanced Brownian particle diffusion in active suspensions one needs to include Brownian motion. More importantly, in the semi-dilute and concentrated regimes, the effect of hydrodynamic interactions is significant and particle rigidity constraints (i.e. stresslets) must be enforced. Therefore we need a tool which efficiently couples thermal fluctuations with an accurate description of hydrodynamic interactions within the same framework.

In Chapter 7 we detail all the technical difficulties arising when incorporating Brownian motion in particulate suspension and develop a new scheme, the Drifter-Corrector, which efficiently address these issues in the framework of the fluctuating force-coupling method [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]).

Chapter 6

Modeling active suspensions with the force-coupling method. This chapter presents a development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model described in Chapter 3, which we adapt to the FCM framework in the context of High Performance Computing. First, we detail the parallel implementation of the method. Then the scalability of the code is evaluated and results for pairwise interactions are compared with the literature.

Solving hydrodynamic interactions with the forcecoupling method

The FCM framework for particle suspensions is a straightforward extension of the isolated case presented in Section 3.1.1.

FCM for passive suspensions

Consider a suspension of N p rigid spherical particles, each having radius a. Each particle n, (n = 1, . . . , N p ), is centered at Y n and subject to force F n and torque τ n . To determine their motion through the surrounding fluid, we first represent each particle by a low order, finite-force multipole expansion in the Stokes equations

∇p -η∇ 2 u = n F n ∆ n (x) + 1 2 τ n × ∇Θ n (x) + S n • ∇Θ n (x) ∇ • u = 0. (6.1)
In Eq. ( 6.1), S n are the particle stresslets determined through a constraint on the local rate-of-strain as described below. Also in Eq. ( 6.1) are the two Gaussian envelopes,

∆ n (x) = (2πσ 2 ∆ ) -3/2 e -|x-Y n | 2 /2σ 2 ∆ Θ n (x) = (2πσ 2 Θ ) -3/2 e -|x-Y n | 2 /2σ 2 Θ , (6.2) 
used to project the particle forces onto the fluid.

Contrary to the isolated case, no analytical solution can be derived for the fluid flow u. A numerical solver is thus necessary. It could be of any type. In Section 6.2.1 we provide more details about the fluid solver we use throughout the thesis.

After solving Eq. (6.1), the velocity, V n , angular velocity, Ω n , and local rate-of-strain, E n , of each particle n are found by volume averaging of the resulting fluid flow,

V n = ˆu∆ n (x)d 3 x (6.3) Ω n = 1 2 ˆ[∇ × u] Θ n (x)d 3 x, (6.4) E n = 1 2 ˆ ∇u + (∇u) T Θ n (x)d 3 x, (6.5)
where the integration is performed over R 3 . In order for Eqs. (6.3) -(6.5) to recover the correct mobility relations for a single, isolated sphere, namely that V = F/(6πaη) and Ω = τ /(8πa 3 η), the envelope length scales need to be σ ∆ = a/ √ π and σ Θ = a/ (6 √ π) 1/3 .

As the particles are rigid, the stresslets are found by enforcing the constraint that E n = 0 for each particle n [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]).

6.1 Solving hydrodynamic interactions with the force-coupling method

Squirmer interactions and motion

Using FCM, the task of computing the interactions between squirmers is relatively straightforward. We now consider N p independent squirmers with positions Y n and orientations p n . Each squirmer has swimming dipole (6.6) and degenerate quadrupole

G n = 4 3 πηa 2 (3p n p n -I) B 2 ,
H n = - 4 3 πηa 3 B 1 p n . (6.7)
The squirmers may also be subject to external forces F n and torques τ n . Using the linearity of the Stokes equations we obtain

∇p -η∇ 2 u = n F n ∆ n (x) + 1 2 τ n × ∇Θ n (x) + S n • ∇Θ n (x) +G n • ∇∆ n (x) + H n ∇ 2 Θ n (x) (6.8) ∇ • u = 0 (6.9)
for the flow field generated by the suspension.

After finding the flow field, we determine the motion of the squirmers using Eqs. (6.3) -(6.5) with two modifications. First, we need to add the swimming velocity, U p n , to Eq. ( 6.3). Second, we must subtract the artificial, self-induced velocity and the local rate-of-strain due to the squirming modes. The self-induced velocity is given by

W n = ˆA • H n ∆(x)d 3 x (6.10)
where the tensor A is given in Eq. (3.23).

The self-induced rate-of-strain is given by

K n = ˆ1 2 ∇R • G n + (∇R • G n ) T Θ(x)d 3 x (6.11)
where the expression for the third rank tensor R can be found in Eq. (3.24). Taking these self-induced effects into account, the motion of a squirmer n is given by

V n = U p n -W n + ˆu∆ n (x)d 3 x (6.12
)

Ω n = 1 2 ˆ[∇ × u] Θ n (x)d 3 x (6.13) E n = -K n + 1 2 ˆ ∇u + (∇u) T Θ n (x)d 3 x. (6.14)
As for passive particles, the stresslets S n due to squirmer rigidity are obtained from the usual constraint on the local rate-of-strain, namely E n = 0 for all n. Squirmer positions Y n and orientations p n are then updated with the Lagrangian equations

dY n dt = V n , (6.15) dp n dt = Ω n × p n . (6.16)
In Section 6.3, we show through a comparison with the boundary element simulations from [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF] that our FCM squirmer model recovers the velocities, angular velocities, stresslets (S n ) and trajectories for two interacting squirmers for a wide range of separations.

Notations

In the following, we denote Y, P, V and W the 3N p vectors containing the particle positions, orientations, translational and rotational velocities. E and S are 6N p and contain the particle rate-of-strains and stresslets respectively. F, T are the 3N p forces and torques. H is a 3N p vector containing the degenerate quadrupoles and G is 6N p vector containing the swimming stresslets. Here, we use a Fourier spectral method with Fast Fourier Transforms (FFTs) to solve the Stokes equations, Eqs. (6.8) -(6.9), for the fluid flow in a three-dimensional periodic domain. The FFTs are parallelized with the MPI library P3DFFT. This library uses 2D decomposition of the 3D domain, introducing a better scalabilty than FFT libraries that implement a 1D decomposition. This decomposition has shown good scalability up to N c = 32, 768 cores in Direct Numerical Simulation (DNS) of turbulence [START_REF] Pekurovsky | P3dfft: A framework for parallel computations of fourier transforms in three dimensions[END_REF]).

Computational work

As explained in [START_REF] Yeo | Simulation of concentrated suspensions using the force-coupling method[END_REF], the number of floating point operations for FCM scales linearly with the number of particles, N p . We find the same scaling for our implementation of FCM. Figure 6.1 shows the computational time per times-step for N p up to 75, 000 particles with 384 3 ∼ 6 • 10 7 grid points and N c = 256 cores.

Note that the slope is less than one even in the concentrated regime (φ v > 0.1). Figure 6.2 provide a visualization of a concentrated suspension (φ v = 0.2) containing 75, 000 swimmers. 

Steric interactions

Including steric repulsion is straightforward with FCM. These forces are introduced to both prevent particles from overlapping during the finite time-step and to account for contact forces. For spherical particles, we use the steric barrier described in [START_REF] Dance | Collision barrier effects on the bulk flow in a random suspension[END_REF]. For particles n and m, let r nm = Y m -Y n and r nm = r nm . The repulsive force experienced by n due to steric interactions is

F n b =      - F ref 2a R 2 ref -r 2 nm R 2 ref -4a 2 2γ r nm , for r nm < R ref , 0, otherwise. 
(6.17)

where F ref is the magnitude of the force, the cut-off distance R ref sets the distance over which the force acts, and the exponent γ can be adjusted to control the stiffness of the force. Unless specified, all the simulations are run with

F ref /6πηaU = 4, R ref = 2.2a and γ = 2. From Newton's third law, we obtain F m b = -F n b .
For spheroidal particles, steric forces and torques can be introduced by using a similar soft repulsive potential with the surface-to-surface distance approximated by the Berne-Pechukas range parameter [START_REF] Allen | Expressions for forces and torques in molecular simulations using rigid bodies[END_REF]).

Using a direct pairwise calculation, the evaluation of steric interactions between all particle pairs at each time step would require O(N 2 p /(2N c )) computations per core. This cost is much greater than the O(N p ) cost of the hydrodynamic aspects of FCM. Therefore, instead of a direct calculation, we use the linked-list algorithm described in [START_REF] Allen | Computer simulation of liquids[END_REF]. This method divides the computational domain into smaller sub-domains into Figure 6.2: Snapshot of a concentrated suspension (φ v = 0.2) containing N p = 75, 000 squirmers. Micro-swimmers are colored with the norm of their velocity V n , n = 1, N p , normalized by the intrinsic swimming speed U .

6.2 Numerical tools for High Performance Computing which the particles are sorted. The edge-length of each sub-domain is slightly larger than R ref . These sub-domains are distributed over the cores where the steric interactions are evaluated. For a homogeneous suspension, this results in a per core cost for steric interactions that is O 14N 2 p /(2N c N s ) , where N s is the total number of sub-domains. Since for large system sizes, we have N s ≈ L 3 /R 3 ref 14 and N c 1, the linked-list algorithm for steric interactions is much more efficient than the direct computation.

Alternatively, collisions can be handled kinematically. [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF] developed an efficient method to prevent particle overlapping without having to resort to contact forces. This method has been used for the modeling of crowd motion [START_REF] Maury | A discrete contact model for crowd motion[END_REF]; [START_REF] Maury | Non smooth evolution models in crowd dynamics: mathematical and numerical issues[END_REF]), granular media [START_REF] Faure | Dynamic numerical investigation of random packing for spherical and nonconvex particles[END_REF]), passive and active suspensions [START_REF] Lefebvre | Numerical simulation of gluey particles[END_REF]; [START_REF] Decoene | Microscopic modelling of active bacterial suspensions[END_REF]). Its parallel implementation in the code SCoPI1 , provides a good framework for the simulation of large collections of objects. I performed a numerical study to evaluate the pros and cons in using this method in our simulations. Appendix B contains the details and suggests further improvements.

Algorithm

We summarize the overall procedure to simulate large populations of microswimmers in Stokes flow with the FCM:

• Initialize particle positions Y 0 and orientations P 0 ,

• Time loop on index k 1. Compute Gaussians ∆ k n (x) and Θ k n (x), Eq. (6.2), 2. Update swimming multipoles G k , Eq. (3.15), and H k , Eq. (3.18), which both depend on P k , 3. Compute steric interactions, Eq. (6.17), with the linked-list algorithm, 4. Add additional forcing if any (gyrotactic torques, magnetic dipoles,...), 5. Project the Gaussian distributions onto the grid (RHS of Eq. (6.9)),

6. Solve Stokes equations, Eqs. (6.8) -(6.9), to obtain the fluid velocity field u k (x), 7. Compute particle rate of strains E k , Eq. (6.14), 8. If E k > ε, compute stresslets S k following Yeo and Maxey (2010b), (a) Project all the multipoles onto the grid (RHS of Eq. (6.9)), (b) Solve for Stokes equations, Eqs. (6.8) -(6.9), to obtain the fluid velocity field u k (x), 9. Compute particle velocities V k , Eq. (6.12), and rotations W k , Eq. (6.13), 10. Integrate Eqs. (6.15) and (6.16) using the fourth-order Adams-Bashforth scheme to obtain Y k+1 and P k+1 .

Including additional features

With FCM, additional effects can readily be incorporated into the squirmer model and in our subsequent simulations, we consider several of them to demonstrate the versatility of our approach. We can extend the FCM squirmer model to ellipsoidal shapes by using the ellipsoidal FCM Gaussian distributions. Such a model can be carefully tuned by comparing with results from [START_REF] Kanevsky | Modeling simple locomotors in stokes flow[END_REF] and [START_REF] Leshansky | A frictionless microswimmer[END_REF]. The effects of particle aspect ratio on suspension properties can then be explored systematically while still accounting for particle size effects such as Jeffery orbits.

As shown in Chapter 3, we are not limited to constant values for B 1 and B 2 . By allowing these parameters to be functions of time, the FCM squirmer model can be used to explore how the swimmers' strokes affect overall suspension dynamics. These extensions to active suspensions are addressed in Section 10.2.

Validations

In [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF], the authors performed a variety of simulations using the Boundary Element Method (BEM) to compute to high accuracy the pairwise interactions between a squirmer and an inert sphere, and between two squirmers. Here, we consider the same scenarios as those authors and compare results from our FCM simulations with their BEM results.

Interactions between a squirmer and an inert sphere

We first consider the interactions between an inert sphere (labelled "2") located at a point r from the center of a puller squirmer (labelled "1") with β = 5. The direction r/r forms the angle θ with the swimming direction p of the squirmer. The problem setup is depicted in Figure 6.3. Figure 6.4 compares the velocity of the sphere obtained using FCM simulations with the BEM results and far-field analytical solutions from [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. As FCM also resolves the mutually induced particle stresslets, it provides a more accurate estimation than far-field approximation of [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. As a result, we see that the FCM results very closely match BEM, even in the range where r/a < 3. Similar trends are observed for the angular velocity of the inert sphere (Figure 6.4b) and the stresslet components (Figure 6.4c, 6.4d). These comparisons illustrate the accuracy of the results that can be obtained using FCM, which closely matches BEM but incurs a fraction of the computational cost.

Trajectories of two interacting squirmers

We compute the trajectories of two puller squirmers (β = 5) and compare the results with the BEM simulations of [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. One squirmer initially swims in the x-direction, p 1 = e x , and the other one in the opposite direction, p 2 = -e x . They are placed with initial separation distance δy = 1a, ..., 10a in the transverse direction and 6.3 Validations Figure 6.3: Sketch showing the set-up of our computations of the interactions between squirmer "1" and inert sphere "2".

R ref /a F ref /6πηaU Exponent γ 2.2 4 2 2.4 6 1 3 3 5 2.04 5 5
Table 6.1: Parameters for the contact forces on Figure 6.7b δx = 10a in the x-direction. The problem set-up is depicted in Figure 6.5. Since the squirmers may collide, we also include steric interactions provided by the force barrier (6.17).

As shown in Figure 6.6, the trajectories match very well with the BEM results for δy ≥ 2a. When δy = 1a, the collision barrier and near-field hydrodynamic interactions play an important role in determining the overall squirmer trajectories. Figure 6.7 shows the effect of the steric repulsion parameters F ref and R ref on the squirmer trajectories. The specific values of these parameters are provided in Table 6.1. We see that by varying the barrier parameters one can obtain trajectories that closely match the results of [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. Remark: The content of this chapter is directly extracted from an eponymous paper written with Pr. Eric Keaveny. Fluctuating hydrodynamics has been successfully combined with several computational methods to rapidly compute the correlated random velocities of Brownian particles. In the overdamped limit where both particle and fluid inertia are ignored, one must also account for a Brownian drift term in order to successfully update the particle positions. In this paper, we introduce and study a midpoint time integration scheme we refer to as the drifter-corrector (DC) that resolves the drift term for fluctuating hydrodynamics-based Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics methods even when constraints are imposed on the fluid flow to obtain higher-order corrections to the particle hydrodynamic interactions. We explore this scheme in the context of the fluctuating force-coupling method (FCM) where the constraint is imposed on the rateof-strain averaged over the volume occupied by the particle. For the DC, the constraint need only be imposed once per time step, leading to a significant reduction in computational cost with respect to other schemes. In fact, for fluctuating FCM, the DC reduces the total additional cost of including Brownian motion to just a single flow solve per timestep. By performing a series of simulations, we show that the DC is effective in both reproducing the equilibrium distribution and the evolution of particulate suspensions. In addition, we demonstrate that fluctuating FCM coupled with the DC provides an efficient and accurate method for large-scale dynamic simulation of colloidal dispersions and the study of processes such as colloidal gelation.

Introduction

While Brownian motion is clearly important in many situations, the careful study and quantification of its role using simulation remains a computational challenge due to the intimate link between the random motion of the particles and their many-body hydrodynamic interactions.

In order to achieve the correct equilibrium distribution, the statistics of the random particle motion must satisfy the fluctuation-dissipation theorem [START_REF] Kubo | The fluctuation-dissipation theorem[END_REF]) which states that the random particle velocity correlations must be proportional to the hydrodynamic mobility matrix. In simulation, this would require the square root of the mobility matrix to be found at each time step to compute the correct particle velocities. As a result, the inclusion of Brownian motion has often limited simulations to having very small particle numbers, or ignoring completely hydrodynamic interactions between the particles. Though several methods have been introduced to accelerate the matrix square root computation [START_REF] Fixman | Construction of Langevin forces in the simulation of hydrodynamic interaction[END_REF]; [START_REF] Ando | Krylov subspace methods for computing hydrodynamic interactions in brownian dynamics simulations[END_REF][START_REF] Ando | Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations[END_REF]), recent studies have shown this computation can be avoided altogether using fluctuating hydrodynamics.

Fluctuating hydrodynamics involves generating random fluid flows by including a white-noise fluctuating stress in the equations of fluid motion. Introduced in the first edition of Landau and Lifshitz [START_REF] Landau | Fluid Mechanics[END_REF]), its effectiveness for yielding the correct random motion of particles was demonstrated in a number of theoretical studies in the 1960s and 1970s [START_REF] Fox | Contributions to non-equilibrium thermodynamics: 1. theory of hydrodynamical fluctuations[END_REF]; ?). As a result of this fundamental work, fluctuating hydrodynamics has found success in numerical simulations of micron-scale fluid-structure interactions in methods such as Lattice-Boltzmann [START_REF] Ladd | Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation[END_REF](Ladd ( , 1994b,a),a)), hybrid Eulerian-Lagrangian approaches for point particles (Usabiaga et al. (2013); Usabiaga and Delgado-Buscalioni (2013)), distributed Lagrange-multiplier method [START_REF] Sharma | Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations[END_REF]), finite-element simulation [START_REF] Plunkett | Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries[END_REF]), the stochastic and fluctuating immersed-boundary methods (IBM) [START_REF] Atzberger | A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales[END_REF]; Atzberger (2011); [START_REF] Usabiaga | Inertial coupling method for particles in an incompressible fluctuating fluid[END_REF]; [START_REF] Delong | Brownian dynamics without green's functions[END_REF]), and the fluctuating force-coupling method (FCM) [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). IBM and FCM are similar in that they both use projection and volume averaging operations to first transfer the forces experienced by the particles to the fluid, and subsequently, extract the motion of the particle phase from the motion of the fluid. To resolve Brownian motion, the volume averaging operators can be used to obtain the random motion of the particles from the fluctuating flow field. As the fluctuating stress is based on spatially uncorrelated white-noise, the matrix square root computation does not have to be performed. For the stochastic and fluctuating IBMs and fluctuating FCM, it has been shown [START_REF] Atzberger | A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales[END_REF]; [START_REF] Atzberger | Stochastic eulerian lagrangian methods for fluidstructure interactions with thermal fluctuations[END_REF]; [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]; [START_REF] Delong | Brownian dynamics without green's functions[END_REF]) explicitly that the resulting particle velocity correlations satisfy the fluctuation-dissipation theorem.

While the usage of fluctuating hydrodynamics has accelerated the computation of the random particle velocities, in the overdamped, or Brownian dynamics limit where one can ignore both fluid and particle inertia, a seemingly-problematic Brownian drift term proportional to the divergence of the particle mobility matrix also needs to be accounted for. [START_REF] Fixman | Simulation of polymer dynamics. I. General theory[END_REF]; [START_REF] Grassia | Computer simulations of Brownian motion of complex systems[END_REF]) showed that the effects of the drift term can be recovered without a direct computation by using a specific mid-point time integration scheme. This approach, however, relies on the usage of random forces and torques, rather than random velocities and angular velocities, making its implementation with the stochastic and fluctuating IBMs and fluctuating FCM rather cumbersome and computationally expensive [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). To overcome this difficulty, [START_REF] Delong | Brownian dynamics without green's functions[END_REF] proposed an integration scheme using what they termed as random finite differencing (RFD). By randomly displacing and forcing the particles in a particular way, the divergence of the mobility matrix is recovered without ever needing to perform the onerous computations involved with Fixman's method.

The purpose of our study is to further accelerate time integration for fluctuating hydrodynamics-based simulations of Brownian particles. We give particular interest to the case where these computations involve constraining the flow to generate higher-order corrections to the particle hydrodynamic interactions, for which RFD still incurs a significant computational cost. To this end, we develop a midpoint time integration scheme that we refer to as the drifter-corrector (DC) that requires the constraints be applied only once per timestep, leading to the desired reduction in computational cost. In fact, we show that when the DC is used in conjunction with fluctuating FCM, a Brownian simulation requires just a single additional Stokes solve per timestep as compared to a deterministic FCM simulation of the same system. We provide an extensive validation of the DC by performing fluctuating FCM simulations of a single particle between two slip surfaces. We show how to impose these boundary conditions with fluctuating hydrodynamics by modifying the spatial correlations of the fluctuating stress, rather than imposing it directly through the Stokes solver. This validation confirms our theoretical analysis of the scheme and shows that the DC is able to yield both the correct equilibrium distribution and the correct distribution dynamics described by the Smoluchowski equation. We consider the canonical problem of a collapsing cluster of interacting colloidal particles, allowing for comparison with results given by other methodologies and the demonstration that the higher-order stresslet corrections resolved in fluctuating FCM yield quantitative differences in the results. We show that, by avoiding two additional stresslet iteration, the DC yields a computational cost three times smaller than central RFD. Finally, using the DC with fluctuation FCM, we also perform simulations of suspensions of interacting Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics

Brownian particles to explore colloidal gelation and percolated network formation. We show that in addition to reproducing the results of other simulation techniques such as Stokesian dynamics, fluctuating FCM with the DC allows for larger scale simulation of hydrodynamically interacting Brownian particles at a lower computational cost.

Equations of motion

In this study, we will be considering a suspension of N p spherical Brownian particles, each having radius a. The position of particle n is denoted by Y n . Each particle may also be subject to non-hydrodynamic forces, F n , and torques, τ n . In the overdamped or Brownian dynamics limit, where both fluid and particle inertia are negligible [START_REF] Ermak | Brownian dynamics with hydrodynamic interactions[END_REF]; [START_REF] Brady | Stokesian dynamics[END_REF]), the dynamics of the particles is described by the system of stochastic differential equations

dY = M VF F + M VT T dt +k B T ∇ Y • M VF dt + d Ṽ (7.1)
where Y is the 3N p × 1 vector that contains the position information for all particles, F is the 3N p × 1 vector of forces on all of the particles, and T is the similar vector for the torques. The vector d Ṽ is the incremental random velocity which, along with the incremental angular velocity, d W, is related to the incremental 6N p × 1 Wiener process, dB, through

d Ṽ d W = 2k B T M 1/2 dB (7.2)
where k B is Boltzmann's constant and T is the temperature. Appearing also in Eqs. (7.1) and (7.2) is the 6N p × 6N p hydrodynamic mobility matrix

M = M VF M VT M WF M WT , (7.3) 
as well as its submatrices M VF and M VT . The mobility matrix, which in general depends on the particle positions, provides the linear relationship between the forces and torques on the particles and their resulting velocities and angular velocities. All the information about how the particles interact through the fluid is contained in the mobility matrix.

The mobility matrix is determined by solving the Stokes equations,

∇p -η∇ 2 u = 0 ∇ • u = 0 (7.4)
that govern the flow induced in the surrounding fluid as the particles move through it. For methods such as Brownian or Stokesian dynamics, the mobility matrix is constructed using the flow generated by a force multipole expansion in the Stokes equations and Faxén laws [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]; [START_REF] Kim | Microhydrodynamics: principles and selected applications[END_REF]) to extract the particle motion from the fluid velocity. In this paper, we adopt an alternative, but parallel approach known as the force-coupling method [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]) (FCM) that utilizes regularized, rather than singular, force distributions in the Stokes equations and replaces the Faxén laws by volume averaging operators. As noted by [START_REF] Delong | Brownian dynamics without green's functions[END_REF], this approach and the immersed boundary method share similar features and have distinct advantages over methods based on singular force distributions, particularly when Brownian motion is included in the simulation.

In the absence of Brownian motion, only the first term in Eq. (7.1), the mobility matrix multiplied by the forces and torques, will be non-zero. The inclusion of Brownian motion gives rise to the two additional terms -the incremental random velocity, d Ṽ, as well as an additional drift known as Brownian drift. To satisfy the fluctuation-dissipation theorem, d Ṽ depends on the square root of the mobility matrix through Eq. (7.2). This links the random motion of the particles with how they interact through the fluid. As we discuss in the next section, we can compute this term rather efficiently by volume averaging and constraining the fluid flow generated by a white-noise fluctuating stress. The Brownian drift term has a more subtle origin. It arises as a result of taking the overdamped limit of the Langevin dynamics where particle inertia is present [START_REF] Ermak | Brownian dynamics with hydrodynamic interactions[END_REF]; [START_REF] Atzberger | Stochastic eulerian lagrangian methods for fluidstructure interactions with thermal fluctuations[END_REF]). In order to successfully ignore the suspension dynamics during the short inertial relaxation timescale, one must include the Brownian drift term to obtain an SDE that is consistent with Smoluchowski's equation [START_REF] Ermak | Brownian dynamics with hydrodynamic interactions[END_REF]). The purpose of this work is to introduce new and study existing [START_REF] Fixman | Simulation of polymer dynamics. I. General theory[END_REF]; [START_REF] Grassia | Computer simulations of Brownian motion of complex systems[END_REF]; [START_REF] Delong | Brownian dynamics without green's functions[END_REF]) time integration schemes that automatically account for Brownian drift. We pay particular attention to the case where the higher-order correction to the particle mobility matrix is obtained by imposing a local rate-of-strain constraint on the flow. We show that for methods employing fluctuating hydrodynamics, the Brownian drift can be accounted for at the cost of a single additional Stokes solve per timestep by using an appropriately designed time integration scheme.

Fluctuating FCM

To compute the terms in Eq. ( 7.1) that depend on the mobility matrix, we utilize fluctuating FCM that is described and analyzed in detail in our previous work [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). Fluctuating FCM combines FCM [START_REF] Maxey | Localized force representations for particles sedimenting in Stokes flow[END_REF]; [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF]) with fluctuating hydrodynamics resulting in an efficient methodology to determine particle hydrodynamic interactions while simultaneously yielding the correct random particle velocities that satisfy the fluctuation-dissipation theorem. In fluctuating FCM, the fluid velocity is given by the Stokes equations driven by a white-noise fluctuating stress, and a low-order, regularized multipole expansion representing the force the particles exert on the fluid. The motion of the particles is then found by taking volume averages of the fluid velocity. This process is similar to that of the stochastic and fluctuating IBMs, and as we demonstrate below, fluctuating FCM can be expressed in terms of projection, or spreading, operators and volume averaging, or interpolation, operators commonly used to describe IBM. We present fluctuating FCM using this framework to emphasize the Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics connection between the methodologies, indicating that the time integration schemes that we explore using fluctuating FCM in subsequent sections could also be used more widely.

For fluctuating FCM, the fluid velocity is given by the following Stokes flow

∇p -η∇ 2 u = ∇ • P + J † [F] + N † [T ] + K † [S] ∇ • u = 0, (7.5) K[u] = 0, (7.6)
where the fluctuating stress, P, has the following statistics

P ij (x) = 0 (7.7) P ij (x)P kl (y) = 2k B T (δ ik δ jl + δ il δ jk )δ(x -y) (7.8)
with • denoting the ensemble average of a quantity. The non-hydrodynamic forces, F, and torques, T , on the particles, as well as the particle stresslets, S, the symmetric force-moment on each particle, are projected onto the fluid using the linear operators J † , N † , and K † which are given by

J † [F] = n F n ∆ n (x) (7.9) N † [T ] = - 1 2 n τ n × ∇Θ n (x) (7.10) K † [S] = 1 2 n S n • ∇Θ n (x) + (∇Θ n (x)) T .
(7.11)

Appearing in these expressions are the two Gaussian envelopes, or spreading functions,

∆ n (x) = (2πσ 2 ∆ ) -3/2 e -|x-Y n | 2 /2σ 2 ∆ (7.12) Θ n (x) = (2πσ 2 Θ ) -3/2 e -|x-Y n | 2 /2σ 2 Θ (7.13)
where σ ∆ and σ Θ are related to the radius of the particles through σ ∆ = a/ √ π and σ Θ = a/ (6 √ π) 1/3 . Unlike the forces and torques which are typically set by external or inter-particle potentials, the stresslets arise as a result of the constraint on the flow given by Eq. (7.6) and, consequently, need to be solved for as part of the general flow problem.

The projection operators are the adjoints of the volume averaging operators J , N , and K that are used to extract the particle velocities, V, angular velocities, W, and local rates-of-strain, E, from the fluid velocity and its derivatives,

V = J [u] (7.14) W = N [u] (7.15) E = -K[u].
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The expressions for these operators are most clearly expressed when they are restricted to particle n,

V n = (J [u]) n = ˆu∆ n (x)d 3 x (7.17
)

Ω n = (N [u]) n = 1 2 ˆu × ∇Θ n (x)d 3 x (7.18) E n = -(K[u]) n = - 1 2 ˆ u (∇Θ n (x)) T + ∇Θ n (x)u T d 3 x (7.19)
If periodic or no-slip conditions are imposed on the bounding surfaces, integration by parts of Eqs. (7.18) and (7.19) reveals that the particle angular velocities and local rates-ofstrain are the local volume averages of the fluid vorticity and rate-of-strain, respectively. With this in mind, the constraint Eq. (7.6) insists the local rate-of-strain must be zero as is the case for a rigid particle, and the stresslets can be viewed as the Lagrange multipliers included to enforce this constraint.

At this stage, it is useful to again note that the fluctuating and stochastic IBM share this framework with fluctuating FCM. The main differences between IBM and FCM are the choice of spreading function, and the only operators typically used with IBM are J and its adjoint. The higher-order correction to the hydrodynamic interactions due to torques or stresslets resolved in FCM are not typically included with IBM. For FCM, the stresslets can be obtained using the conjugate gradient procedure describe by Yeo and MaxeyYeo and Maxey (2010b), and once found, the solution to Eq. (G.4) that satisfies Eq. (7.6) is determined. For the simulations performed in the proceeding sections, approximately 10 conjugate gradient iterations, each of which requires one Stokes solve, are required to reach a residual of E = 10 -4 , where

E = max n∈[1,Np] E n 2 . (7.20)
In designing, exploring, and constructing the time integration scheme that provides the Brownian drift term, we are particularly mindful of the computational cost associated with the stresslet computation, and in fact, seek to limit this computation to once per timestep.

Mobility matrices and the fluctuation dissipation theorem

Fluctuating FCM yields the deterministic and random velocities, corresponding to the first and third terms in Eqs (7.1) without ever directly computing the mobility matrix.

Although they are never computed explicitly, expressions for the mobility matrices can be determined [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). For FCM, the mobility matrices provide the linear relationship between the deterministic particle velocities, angular velocities, and local
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  V W E   =   M VF F CM M VT F CM M VS F CM M WF F CM M WT F CM M WS F CM M EF F CM M ET F CM M ES F CM     F T S   . (7.21)
As shown in our previous work [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]), the submatrices can be expressed using the Gaussian spreading functions, Eqs. (7.12) and (7.13) and the Green's function G(x, y) for the Stokes equations. For example, the entries of the matrix M VF F CM linking particles n and m are given by

M VF ;nm F CM = ˆˆ∆ n (x)G(x, y)∆ m (y)d 3 xd 3 y. (7.22)
Similar expressions can be found for the other matrices in the appendix of our previous work [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). As described by [START_REF] Delong | Brownian dynamics without green's functions[END_REF], these matrices can also be expressed using the projection, volume averaging, and Stokes operators. For M VF F CM , the expression is

M VF F CM = J [L -1 [J † [•]]] (7.23)
where L -1 represents the inverse Stokes operator.

In the absence of the stresslets, the mobility matrix for FCM reduces to

M F CM = M VF F CM M VT F CM M WF F CM M WT F CM F T . (7.24)
If the stresslets are included, they can be found using Eq. (7.21). Since for rigid particles the local rates-of-strain are zero, we have E = 0 and, in terms of the forces and torques, the stresslets will be given by

S = -R ES F CM M EF F CM F + M ET F CM T . (7.25)
where we have written R ES F CM = (M ES F CM ) -1 . From this expression for S, we find the stresslet-corrected mobility matrix is

M F CM -S = M VF F CM -S M VT F CM -S M WF F CM -S M WT F CM -S (7.26)
where

M VF F CM -S = M VF F CM -M VS F CM R ES F CM M EF F CM , M VT F CM -S = M VT F CM -M VS F CM R ES F CM M ET F CM , M WF F CM -S = M WF F CM -M WS F CM R ES F CM M EF F CM , M WT F CM -S = M WT F CM -M WS F CM R ES F CM M ET F CM
. Again, while these matrices are never computed explicitly, we know that they exist. This allows us to draw a parallel between fluctuating FCM and traditional methods for suspended particles such as Brownian dynamics [START_REF] Ermak | Brownian dynamics with hydrodynamic interactions[END_REF]) and Stokesian dynamics [START_REF] Brady | Stokesian dynamics[END_REF]). In addition, the expressions for the mobility matrices will prove useful in the analysis that demonstrates the time-integration scheme we propose in this study yields the correct first and second moments of the incremental change in the particle positions to first order in time.

The expressions for the mobility matrices can also be used to demonstrate that the random motion of the particles obtained using fluctuating FCM complies with the fluctuationdissipation theorem [START_REF] Kubo | The fluctuation-dissipation theorem[END_REF]). If we consider the flow, Thus, by simply applying the volume averaging operators to the fluid flow induced by the white-noise fluctuating stress, we can obtain random particle velocities consistent with the noise terms in the stochastic equations of motion. This is done without ever needing to explicitly form and decompose the mobility matrix, leading to a great reduction in the computational effort needed to compute these terms.

∇p -η∇ 2 ũ = ∇ • P ∇ • ũ = 0 (7.27) K[ũ] = 0, ( 7 

Time integration

While fluctuating FCM provides the deterministic and random particle velocities corresponding to the first and last terms in the equations of motion Eq. (7.1), the Brownian drift, k B T ∇ Y • M VF F CM -S , would also need to be accounted for to advance the particle positions in time. Therefore, simply applying the Euler-Maruyama scheme [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF])

∇p k -η∇ 2 u k = (∆t) -1 2 ∇ • P k + J †;k [F k ] + N †;k [T k ] + K †;k [S k ] ∇ • u k = 0, K k [u k ] = 0, (7.32) Y k+1 = Y k + ∆tJ k [u k ],
(7.33) hydrodynamics which does not account for k B T ∇ Y •M VF F CM -S , will not provide the correct suspension dynamics. Rather than resorting to computing the drift term explicitly, however, its effects can be successfully incorporated into a simulation by using an appropriately designed time integration scheme [START_REF] Fixman | Simulation of polymer dynamics. I. General theory[END_REF]; [START_REF] Grassia | Computer simulations of Brownian motion of complex systems[END_REF]; [START_REF] Delong | Brownian dynamics without green's functions[END_REF]). In this section, we discuss these schemes, and building from the ideas used in their construction, we introduce a new scheme called the drifter-corrector (DC). The DC has the particular advantage that when constraints are imposed on the flow to recover higher-order corrections for the particle interactions, they need only to be imposed once per time-step. This leads to a non-negligible reduction in computational cost with respect to other schemes. For the DC, the total additional computational cost per timestep for fluctuating FCM with respect to its deterministic counterpart is a single Stokes solve per timestep.

Fixman's method

In the late 1970's, Fixman [START_REF] Fixman | Simulation of polymer dynamics. I. General theory[END_REF]; [START_REF] Grassia | Computer simulations of Brownian motion of complex systems[END_REF]) developed a midpoint integration scheme to account for the drift term. The key to recovering the drift is that the scheme employs the same random forces at time levels t k and t k+1/2 while using updated values for the particle positions at level t k+1/2 . Applying Fixman's method to fluctuating FCM yields the following scheme

∇p k -η∇ 2 u k = J †;k [F k + Fk ] + N †;k [T k + T k ] + K †;k [S k ] ∇ • u k = 0, K k [u k ] = 0, (7.34) Y k+1/2 = Y k + ∆t 2 J k [u k ] (7.35) ∇p k+1/2 -η∇ 2 u k+1/2 = J †;k+1/2 [F k + Fk ] + N †;k+1/2 [T k + T k ] + K †;k+1/2 [S k+1/2 ] ∇ • u k+1/2 = 0, K k+1/2 [u k+1/2 ] = 0, (7.36) Y k+1 = Y k + ∆tJ k+1/2 [u k+1/2 ].
(7.37)

The subscripts k and k +1/2 indicate whether the operators are evaluated at the positions Y k , or Y k+1/2 . This scheme provides the first and second moments of the increment up to first order in ∆t. While this scheme does avoid a direct calculation of the Brownian drift term, it requires the usage of random forces Fk and torques T k . For fluctuating FCM and other fluctuating hydrodynamics-based approaches that naturally yield velocities and angular velocities, this can be quite inconvenient. For example, for fluctuating FCM, to find the random forces and torques one must solve the linear system (7.38) where Ṽk

  Ṽk Wk -Ẽk   = M SP D;k F CM   Fk T k Sk   ,
= J k [ũ k ], Wk = N k [ũ k ], Ẽk = K k [ũ k ],
and

∇p k -η∇ 2 ũk = (∆t) -1 2 ∇ • P k ∇ • ũk = 0.
(7.39)

The matrix M SP D;k F CM is the grand FCM mobility matrix at step k where the sign of the last row has been changed to make it symmetric positive definite (SPD) [START_REF] Yeo | Simulation of concentrated suspensions using the force-coupling method[END_REF]),

M SP D;k F CM =   M VF ;k F CM M VT ;k F CM M VS;k F CM M WF ;k F CM M WT ;k F CM M WS;k F CM -M EF;k F CM -M ET ;k F CM -M ES;k F CM   .
(7.40)

While this system can be solved using conjugate gradient methods, each iteration requires solving the Stokes equations. Simulations with N = 183 particles corresponding to a volume fraction of φ v = 0.1 required approximately 25 iterations to find the random forces and torques [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). This computation, along with having to compute the stresslets twice per timestep, severely limit the scale at which Brownian simulations could be performed using the fluctuating FCM, as well as other fluctuating hydrodynamicsbased methods.

Random Finite Differencing

To help overcome this challenge, [START_REF] Delong | Brownian dynamics without green's functions[END_REF] introduced the random finite difference (RFD). RFD takes advantage of the fact that the random forces and torques and the resulting displacements used in Fixman's method are in fact one of many possible choices that could be used to account for Brownian drift. Specifically, they show that using random displacements δ∆Y, as well as randomly particle forcing ∆F/δ, the divergence of a mobility matrix, M, can be approximated from

1 δ M (Y + δ∆Y) ∆F -M(Y)∆F = ∇ Y • M + O(δ) (7.41)
provided that ∆Y∆F = I. Therefore, one can simply choose ∆Y = ∆F = ξ, where ξ is a 3N p × 1 vector of independent Gaussian random variables with zero mean and unit variance. This eliminates the need to solve any linear system. The concept of random finite differencing can also be extended to higher-order accuracy. For example, the central random finite difference

1 δ M(Y + δξ/2)ξ -M(Y -δξ/2)ξ = ∇ Y • M + O(δ 2 ) (7.42)
Thus, in general, a weakly first-order accurate scheme that accounts for the Brownian drift term can be constructed by adding an RFD to the Euler-Maruyama scheme. Applying
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∇p k -η∇ 2 u k = (∆t) -1 2 ∇ • P k + J †;k [F k -ξ/δ] + N †;k [T k ] + K †;k [S k ] ∇ • u k = 0, K k [u k ] = 0, (7.43) ∇p k+δ -η∇ 2 u k+δ = J †;k+δ [ξ/δ] + K †;k+δ [S k+δ ] ∇ • u k+δ = 0, K k+δ [u k+δ ] = 0, (7.44) Y k+1 = Y k + ∆tJ k [u k ] + ∆tJ k+δ [u k+δ ].
(7.45)

A similar scheme can be constructed using central RFD to account for the Brownian drift.

Comparing the resulting scheme with Fixman's method, we immediately see that using RFD eliminates the need to compute any random forces or torques, making this approach much more suited for fluctuating FCM.

Drifter-Corrector

While the usage of RFD provides a clear advantage over Fixman's method for fluctuating hydrodynamics-based methods, we see that it does require that the stresslets be determined twice per timestep (three times per timestep if using central RFD). The cost of performing a Brownian simulation is then at least double that of a deterministic simulation of the same system. For fluctuating FCM where the conjugate gradient method is used to find the stresslets, the additional cost of including Brownian motion would then be approximately 10 Stokes solves per timestep.

In an effort to mitigate this computational cost as much as possible, we build on the ideas introduced by [START_REF] Fixman | Simulation of polymer dynamics. I. General theory[END_REF]; [START_REF] Grassia | Computer simulations of Brownian motion of complex systems[END_REF]) and [START_REF] Delong | Brownian dynamics without green's functions[END_REF] and construct a mid-point scheme that accounts for Brownian drift at the cost of one Stokes solve per time-step. We will refer to this scheme as the drifter-corrector (DC). Specifically, the DC is

∇p k -η∇ 2 ũk = (∆t) -1 2 ∇ • P k ∇ • ũk = 0, (7.46) Y k+1/2 = Y k + ∆t 2 J k [ũ k ] (7.47) ∇p k+1/2 -η∇ 2 u k+1/2 = (∆t) -1 2 ∇ • P k + J †;k+1/2 [F k+1/2 ] +N †;k+1/2 [T k+1/2 ] + K †;k+1/2 [S k+1/2 ] ∇ • u k+1/2 = 0, K k+1/2 [u k+1/2 ] = 0, (7.48) Y k+1 = Y k + ∆t(1 + v k )J k+1/2 [u k+1/2 ].
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The scalar factor, v k , is computed from

v k = n i Ũk Y n;k + ∆t 2 ê(i) -Ũk (Y n;k ) • ê(i) (7.50)
where Ũk (Y n;k ) = (J k [ũ k ]) n . This factor is determined by displacing the individual particle positions in the basis directions ê(i) , obtaining the particle velocities at these positions from the unconstrained fluctuating flow field, and finally, performing a finite difference of the particle velocities. We show explicitly in Appendix D that the expansions of the DC for the first and second moments of the increment

∆Y k = Y k+1 -Y k are ∆Y k = ∆tM VF ;k F CM -S F k + M VT ;k F CM -S T k + ∆tk B T ∇ Y • M VF ;k F CM -S + O(∆t 2 ), (7.51) and ∆Y k (∆Y k ) T = 2k B T ∆tM VF ;k F CM -S + O(∆t 2 ), (7.52)
respectively.

If we have periodic boundary conditions, or if u • n = 0 pointwise on the boundary, where n is the unit normal to the boundary, then the correct first and second moments can be achieved with v k = 0. For this case, the DC simplifies to become

∇p k -η∇ 2 ũk = (∆t) -1 2 ∇ • P k ∇ • ũk = 0, (7.53) Y k+1/2 = Y k + ∆t 2 J k [ũ k ] (7.54) ∇p k+1/2 -η∇ 2 u k+1/2 = (∆t) -1 2 ∇ • P k + J †;k+1/2 [F k+1/2 ] +N †;k+1/2 [T k+1/2 ] + K †;k+1/2 [S k+1/2 ] ∇ • u k+1/2 = 0, K k+1/2 [u k+1/2 ] = 0, (7.55) Y k+1 = Y k + ∆tJ k+1/2 [u k+1/2 ].
(7.56)

The DC, therefore, first moves the particles a half timestep using the particle velocities obtained from the unconstrained fluctuating flow field. Then, using the updated positions, but the same realization of the fluctuating stress, the particle forces and torques are projected onto the fluid, and the local rate-of-strain constraint is imposed. The particle positions are then updated using the resulting particle velocities. Thus, for the DC, the stresslets need to be computed only once per timestep, and the only additional cost is the single Stokes solve to determine the unconstrained fluctuating flow field. We note that a second-order approximation of the deterministic terms may be achieved by also including particle forcing (torques, forces, and stresslets) in Eq. (7.53), but this would come at the cost of an additional stresslet iteration per timestep. We note that similar ideas were employed by [START_REF] Delong | Brownian dynamics without green's functions[END_REF] to construct a midpoint scheme using RFD. In their Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics construction, however, they relied on a specific decomposition of the mobility matrix that is not applicable in the case where the local rate-of-strain constraint is enforced. Nevertheless, our analysis reveals that this similar technique extends to the case where the stresslets are accounted for, and further, our analysis reveals the RFD of the spreading operator included in their midpoint scheme may be excluded if u • n = 0 on the boundary.

Numerical studies

To demonstrate the performance of the DC with fluctuating FCM, we perform simulations of particulate suspensions under both dynamic and equilibrium conditions. These simulations confirm the results of our theoretical analysis of the DC, and show, in practice, that it is able to produce the correct dynamics and final equilibrium states for distributions of particles. Our results also show that with the DC, fluctuating FCM can be used for large-scale simulation of Brownian suspensions even when higher order corrections to the hydrodynamic interactions are included.

Spatial discretization

In our simulations, we mainly consider periodic boundary conditions and use a Fourier spectral method with fast Fourier transforms to solve the Stokes equations, taking advantage of the highly scalable MPI library P3DFFT (Pekurovsky ( 2012)). We give here a summary of the main steps of the discretization scheme as a detailed description is provided in our previous work [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]).

For the case where each side of the domain has length L, we use M grid points in each direction. The total number of grid points is then N g = M 3 and the grid spacing is given by ∆x = L/M . The position of a grid point in a given direction is then x α = α∆x for α = 0, . . . , M -1 and the corresponding wave numbers are

k α = 2πα/L, 0 ≤ α ≤ M/2 2π(α -M )/L, M/2 + 1 ≤ α ≤ M -1.
(7.57)

At each grid point, the entries of the fluctuating stress are independent Gaussian random variables that obey the following statistics

P ij (x α , x β , x γ ) = 0 (7.58)
and

P ij (x α , x β , x γ )P pq (x α , x β , x γ ) = 2k B T η (∆x) 3 (δ ip δ jq + δ iq δ jp ) . (7.59)
To this, we add the FCM force distribution, 

f F CM (x) = J † [F](x) + Q † [T ](x) + K † [S](x) (7.
(k α , k β , k γ ) = 1 η|k| 2 I - kk |k| 2 ik • (∆t) -1/2 P(k α , k β , k γ ) + fFCM (k α , k β , k γ ) , (7.61) 
where

k = [ k α k β k γ ] T . We set û(k) = 0 if |k| = 0 or if k • ê(i) = M π/L for i = 1
, 2, or 3. After taking the inverse DFT to obtain the fluid velocity at the grid points, the velocity, angular velocity, and local rate-of-strain for each particle is computed by applying the spectrally accurate trapezoidal rule to equations Eqs. (7.17 -7.19), where we again set ∆ n (x) = 0 and Θ n (x) = 0 for |x -Y n | > 3a.

For the case where the stresslets are ignored, we have S = 0 and the Stokes equations need only to be solved once per time-step to obtain the particle velocities. If the stresslets are included, however, they must be solved for, and to do this, we employ the iterative conjugate gradient approach described in Yeo and Maxey (2010b).

Brownian dynamics between two slip surfaces

As an initial test of the scheme, we examine the Brownian dynamics of a spherical particle between two slip surfaces at z = 0 and z = L/2. On these surfaces, the boundary conditions for the flow are given by u • ẑ = 0 and (I -ẑẑ T )∇u = 0. The inclusion of these conditions ensures that the drift term proportional to the divergence of the mobility matrix is non-zero.

Image system and fluctuating stress for slip surfaces

Rather than enforcing these boundary conditions directly through the numerical solver, we can create the slip surfaces by introducing the appropriate image system for both the FCM particle force distribution, f F CM , and the fluctuating stress, P. The flow due to the force distribution and its image can then be found using the Fourier spectral method described in Section 7.5.1.

In our simulations, the fluid domain is given by Ω = [0, L] 2 ×[0, L z ]. We impose the slip conditions at z = 0 and z = L z and periodic boundary conditions on the other boundaries such that u(0, y, z) = u(L, y, z) and u(x, 0, z) = u(x, L, z). The force distribution due to particle forces is given by Eq. (7.62). To enforce the slip conditions at z = 0 and z = L z , we first extend the fluid domain to Ω = [0, L] 2 × [0, 2L z ] and utilize the modified FCM force distribution and its image,

f F CM (x) = J † [F](x) + Q † [T ](x) + K † [S](x) , x ∈ [0, L] 2 × [0, L z ] 0 , x ∈ [0, L] 2 ×]L z , 2L z [ (7.62) f F CM,im (x) = 0 , x ∈ [0, L] 2 ×]0, L z [ I -2ẑ ẑT f F CM (X) , x ∈ [0, L] 2 × [L z , 2L z ] . (7.63) hydrodynamics where X = x -2(x • ẑ -L z )ẑ.
The total forcing term that will now appear in the right hand side of Eq. (7.61) is given by the summation f F CM + f F CM,im . The flow is then determined over the domain Ω with the periodic boundary conditions in all directions. The combined effects of the image system and periodicity in the z-direction yields the desired slip conditions at z = 0 and z = L z . Once the fluid flow is determined, the particle velocities, angular velocities, and local rates-of-strain are computed using the resulting flow restricted to the domain Ω.

In introducing the slip surfaces, one must make a choice as how to modify the Gaussian functions when the particles get close to the boundaries. In this work, we simply truncate any part of the Gaussian functions that extends beyond the domain Ω. This is already reflected in our definition of the force distribution, Eq. ( 7.62) and its image, Eq. (7.63). We use the same truncated Gaussians to compute the particle velocities, angular velocities, and local rates-of-strain, thereby preserving the adjoint properties of the operators. For particles in contact with the boundary, the truncated volume in Eq. (7.17) is approximately 3.8% of the total and for Eq. ( 7.19) it is only 1.4%. We note, that more sophisticated ways to modify the Gaussian envelopes have been explored and are implemented in FCM elsewhere (Yeo and Maxey (2010a)).

Along with the FCM particle force distributions, the fluctuating stress must also have the appropriate symmetries to satisfy the fluctuation-dissipation theorem when the slip boundaries are present. In Appendix C, we show explicitly that this is achieved by having

P ij (x) = 0 (7.64) P ij (x)P kl (y) = 2k B T ∆ ijkl δ(x -y) + 2k B T Γ ijkl δ(x -Y) (7.65)
for x, y ∈ Ω where ∆ ijkl = δ ik δ jl + δ il δ jk (7.66) Γ ijkl = γ ik γ jl + γ il γ jk , (7.67)

with γ jk = δ jk -2δ 3j δ 3k , and

Y = y -2(y • ẑ -L z )ẑ. (7.68)
The symmetrized fluctuating stress Eq. (7.64)-(7.65) is discretized at each grid point with independent Gaussian random variables whose statistics are

P ij (x α , x β , x γ ) = 0 (7.69) P ij (x α , x β , x γ )P kl (x α , x β , x κ ) = 2k B T (∆x) 3 ∆ ijkl δ γκ + 2k B T (∆x) 3 Γ ijkl δ γκ im (7.70)
where the index κ im = mod (M -κ, M ). We remind the reader that the indices α, β, γ, κ go from 0 to M -1, where M is the number of discretization points in a given direction.

Single particle mobility

With the slip boundaries present, the mobility matrix for a single particle has the form

M = µ ⊥ (z)ẑẑ T + µ (z)(I -ẑẑ T ) (7.71)
where the mobility coefficients µ (z) and µ ⊥ (z) depend on the distance from the slip surfaces. We determine the coefficient µ ⊥ (z) for FCM by applying a unit force F = ẑ on an isolated sphere and measuring the resulting velocity V z (z) at 400 equi-spaced values of z between z = a and z = L z -a. We perform these simulation both with and without the particle stresslets to obtain µ F CM -S ⊥ (z) and µ F CM ⊥ (z), respectively. The values of 2k b T µ F CM -S ⊥ (z) and 2k b T µ F CM ⊥ (z) are provided in Figure 7.1. We see that both with and without the stresslets, the value of this mobility coefficient decreases as the particle approaches the slip surface. The addition of the stresslet results in the mobility coefficient depending more strongly on z and further reduces the mobility coefficient by approximately 30% near the boundaries. We have performed similar computations for µ (z) by taking F = x, but have not included this data for brevity. We also note that given the symmetries associated with a single slip surface, the exact Stokes flow for a rigid sphere near a slip surface is equivalent to an appropriate two-sphere problem. A comparison of FCM with these two-sphere problems has been addressed by [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF], showing that FCM provides accurate results for a wide range of separations.

To ensure that the fluctuation-dissipation theorem for the particles is satisfied when the statistics for the fluctuating stress are given by Eq. (7.64)-(7.65), we compute the component of the random particle velocity Ṽ⊥ (z) normal to the slip surface. We then can check that its correlations satisfy

Ṽ 2 ⊥ (z) = 2k B T µ ⊥ (z) ∆t . (7.72)
To efficiently compile a large number of samples to accurately determine Ṽ 2 ⊥ (z), we divide the domain in the z-direction into 200 equispaced parallel planes. Over each plane, we distribute 50 particles that do not interact with one another. For the stresslet case, particular care is taken to ensure that any interactions are removed. For 10000 realizations of the fluctuating stress, we compute Ṽ⊥ (z) for each of the particles. For each fixed value of z, we compute Ṽ 2 ⊥ (z) by averaging over the realizations and the 50 particles at that particular value of z. Figure 7.1 shows the correlations of the particle normal velocity, ∆t Ṽ 2 ⊥ (z), and the normal mobility coefficient in the channel, 2k B T µ ⊥ (z). We see that for both cases, with and without the stresslets, the fluctuation-dissipation relation for the particles, Eq. (7.72), is satisfied. Though not shown, we have also performed the same check for the parallel random velocities and a similar strong agreement was found.

Equilibrium distribution between two slip surfaces

To demonstrate their RFD approach, [START_REF] Delong | Brownian dynamics without green's functions[END_REF] 

: 2k B T µ F CM ⊥ , : ∆t Ṽ F CM ⊥ 2 , : 2k B T µ F CM -S ⊥ , + : ∆t Ṽ F CM -S ⊥ 2 .
the potential

U (z) =                  k 2 (z -R ref ) 2 , z < R ref , k 2 (z -(L z -R ref )) 2 , z > L z -R ref , 0 , otherwise. 
(7.73)

When the particle comes within a distance R ref from the wall, it experiences linear, repulsive force whose strength is governed by k. If the time integration scheme correctly accounts for the Brownian drift term, the equilibrium distribution of the particles will be given by the Boltzmann distribution,

P (z) = Z -1 exp - U (z) k B T (7.74) where Z = ˆLz 0 exp - U (z) k B T dz.
We consider a similar problem here, now simulating the dynamics of a spherical particle between two slip surfaces, but still subject to the potential U (z). A sketch of this simulation is provided in Figure 7.2. Even though we have slip boundary conditions on the
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Figure 7.2: Sketch showing a particle (and its image) in the slip channel. The black dashed line represents the periodic boundaries conditions. The index γ runs over the z-coordinate of the grid. The potential U (z) provides the interaction between the particle with the slip surfaces and is given by Eq. (7.73). The force on the particle is F U (z) = -∂U/∂z.

walls, the distribution of particles should still be described by Eq. (7.74). We perform these simulations both with and without the stresslets and using both central RFD and the DC. We also integrate the equations using the Euler-Maruyama scheme, Eq. (7.33), which should instead yield the biased distribution [START_REF] Delong | Brownian dynamics without green's functions[END_REF]),

P B (z) = Z -1 B exp - U (z) + k B T ln(µ ⊥ (z)) k B T (7.75)
In our simulations, we have set L z = 9.7a,

L x = L y = 2L z , R ref = 1.4a and k = 24k B T /(∆x) 2 .
For the RFD simulations we set δ = 10 -6 ∆x. To obtain the equilibrium distribution, each simulations is performed with N p = 500 non-interacting particles and run to time t/t Da = 391.60, where t Da = a 2 k B T μ⊥ is the average time required for the particle to diffuse one radius along the z-direction based on the averaged mobility coefficient

μ⊥ = 1 L z -2a ˆLz-a a µ ⊥ (z)dz.
(7.76)

To determine P (z) from the simulations, a histogram of the particle positions in the zdirection is compiled during the time window t/t Da = 6.526-391.60. The results from the simulations without the stresslets are shown in Figure 7.3a, while those with the stresslets are given in Figure 7.3b. In both figures, we see that central RFD and the DC recover the correct Boltzmann distribution, Eq. (7.74). The Euler-Maruyama scheme, however, yields the biased distribution, Eq. (7.75), as the Brownian drift, k B T dµ ⊥ /dz, is non-zero.

We see also that compared to the stresslet-free case, when the stresslets are included the biased distribution exhibits higher peaks close to the boundaries. This is a direct result of the greater reduction in mobility near the boundaries when the stresslets are included, see Figure 7.1. One can then expect that using the correct integration scheme becomes even more important in simulations where the singular lubrication interactions with the boundaries are resolved.

Distribution dynamics

Along with characterizing the equilibrium distribution, we perform simulations to confirm that fluctuating FCM with the DC also yields the correct distribution dynamics. For noninteracting particles, the dynamics of the distribution is described by the Smoluchowski equation

∂P ∂t = - ∂ ∂z µ ⊥ F U P -k B T µ ⊥ (z) ∂P ∂z , (7.77)
for the distribution P (z, t) subject to no flux conditions

µ ⊥ F U P -k B T µ ⊥ ∂P ∂z z=0,Lz = 0 (7.78)
at the slip surfaces (z = 0, z = L z ). The advective flux term is proportional to the force F U = -∂U/∂z associated with the potential U . We solve Eq. (7.77) using a first-order finite volume solver where the advective fluxes are calculated using an upwinding scheme and the diffusive terms with a central scheme. We have validated the solver against analytical solutions of the heat and transport equations. The mobility coefficient µ ⊥ (z) is determined by interpolating the values from our FCM simulations, see Figure 7.1, to the finite volume grid points. We obtain the distribution dynamics from stresslet-corrected fluctuating FCM simulations by averaging the histogram time dynamics over 20 independent simulations each with 500 non-interacting particles. For these simulations, the initial particle positions are generated by distributing their positions uniformly in the center of the domain in the region z ∈ [3L z /8; 5L z /8]. We compare these results with our numerical solution of Eq. (7.77) using the distribution obtained from the fluctuating FCM simulations at t = 0 for the initial condition. Figure 7.4 shows the dynamics of the distribution obtained from the fluctuating FCM simulations with the DC time integration, as well as the finite volume solution of Eq. (7.77). We see that the distributions given by both methods match as they evolve from the initial to the equilibrium state reached at time t/t Da = 6.4. This confirms further that the DC recovers the dynamics described by the Smoluchowski equation, Eq. (7.77), as desired. Figure 7.4: The evolution of the particle distribution during the time interval t/t Da = 0 -6.8037. The results from the particle simulations are achieved by averaging over 20 simulations, each with 500 non-interacting particles. The stresslet corrections are included in these simulations.

: fluctuating FCM with the DC, : solution to the Smoluchowski equation (7.77) -(7.78).

Colloidal gelation and percolation

An important application of the methodology presented in this paper is the large-scale simulation of interacting colloidal particles. Depending on the interactions between these particles, colloidal suspensions can take on both solid-and fluid-like properties [START_REF] Segre | Glasslike kinetic arrest at the colloidal-gelation transition[END_REF]; [START_REF] Anderson | Insights into phase transition kinetics from colloid science[END_REF]). When the particles interact via an attractive potential, the suspension can transition from a fluid-like state to that of a solid through the process of gelation [START_REF] Lu | Gelation of particles with short-range attraction[END_REF]). This transition depends not only on the potential, but also on the volume fraction occupied by the particles. Recent numerical studies have shown that the dynamics of this aggregation process will also depend on the hydrodynamic interactions between the particles [START_REF] Yamamoto | On the role of hydrodynamic interactions in colloidal gelation[END_REF]; [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]; Whitmer and Luijten (2011); [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]). In this section, we use fluctuating FCM with the DC to simulate of the aggregation and gelation of interacting particles, focusing particularly on the role of hydrodynamic interactions on the resulting structures. We compare our results with previous studies [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]; [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]; [START_REF] Delong | Brownian dynamics without green's functions[END_REF]), demonstrating that fluctuating FCM with the DC provides an effective and computationally efficient approach for studying Brownian suspensions.

Collapsing icosahedron

A simple example that highlights the role of hydrodynamic interactions on colloidal aggregation is the collapse of a small cluster of Brownian spherical particles as originally studied by [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]. Specifically, they considered N p = 13 Brownian particles initially at the vertices of a regular icosahedron with edge length 8.08∆x. The particles interact via a modified Asakura-Oosawa potential

U AO (r) =      c (D 2 2 -D 2 1 ) r , r < D c (D 2 2 -1/3r 2 ) r , D 1 ≤ r < D 2 0 , r ≥ D 2 , (7.79)
where r is the center-center distance between two particles, as well as a soft-core repulsive potential, U SC = SC (2a/r) 24 . The values of the parameters in these potentials are set to D 1 = 2.245a, D 2 = 2.694a, c = 58.5/a 3 , and SC = 10.0. As the cluster evolved, they monitored the evolution of the radius of gyration

R g (t) = 1 N p Np n=1 (Y n -Y c ) 2 1/2 , (7.80)
where Y c is the position of the center of mass. Their results revealed that the hydrodynamic interactions slow the time of cluster collapse and lead to a final state in which the particles rearrange themselves within the cluster. [START_REF] Delong | Brownian dynamics without green's functions[END_REF] used this test case to validate the treatment of hydrodynamic interactions in fluctuating IBM, showing that they matched Brownian Dynamics simulations with hydrodynamics given by the Rotne-Prager-Yamakawa tensor.
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Table 7.1: Parameter values for the icosahedron collapse simulations. : FCM without stresslets, Euler-Maruyama scheme; : FCM-S, central RFD;

: FCM-S, DC.

We perform similar simulations of cluster collapse to both show that fluctuating FCM recovers previous results, but also to quantify the effects of the stresslet included in fluctuating FCM. The simulations are performed using periodic boundary conditions, applying directly the spatial discretization scheme described in Section 7.5.1. In our simulations, we set the magnitude of the repulsive potential to SC = 18.0, a slightly higher value than the one used by [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]. The values of the other parameters used in our simulations are provided in Table 7.1. We also note that the inclusion of the particle stresslets necessitates a numerical scheme that accounts for Brownian drift such as the DC or RFD. If the stresslets were not included, the equations of motion could be integrated using the Euler-Maruyama scheme as the Brownian drift term is zero [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]) in an unbounded or periodic domain.

Figure 7.5 shows the time evolution of the average radius of gyration given by fluctuating FCM with and without the particle stresslets. We also show data from simulations using the same interparticle potentials, but with hydrodynamic interactions ignored completely. For each case, the averages are obtained from 150 independent simulations. In addition, when the stresslets are present, we integrate the equations of motion using both central RFD and the DC. As in [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF] and [START_REF] Delong | Brownian dynamics without green's functions[END_REF], we see from Figure 7.5 that the hydrodynamic interactions impact both the evolution and final value of R g by slowing down the collapse of the cluster. Here, we see also that the inclusion of the stresslets leads to a higher value of R g during the collapse. The value of R g with the particle stresslets given by central RFD and the DC are nearly identical. We note that for each timestep, the central RFD scheme requires the stresslets to be solved for three times. One central RFD timestep therefore requires approximately 30 Stokes solves. While providing similar results as the central RFD approach, the DC requires just one iterative solve per time step (∼10 Stokes solves). This is confirmed from our simulations which show that the average simulation time with the DC is more than three times less

T RF D sim T DC sim = 3.29 ± 0.25
than that for central RFD. Again, we note that compared to a completely deterministic simulation, the additional cost per time-step of including Brownian motion for FCM with the DC is just the distribution of the random stresses on the grid, an O(N g ) computation, and one additional Stokes solve, which for our FFT-based solver incurs an O(N g log N g ) cost.

Aggregation and percolation in colloidal suspensions

As a final test and demonstration of the DC, we perform a series of fluctuating FCM simulations to examine colloidal gelation of a suspension of Brownian particles. We compare our results with those given by accelerated Stokesian Dynamics (ASD) in [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]. While we do not incorporate near-field lubrication hydrodynamics as is the case with ASD, we find the fluctuating FCM provides a very similar characterization of the gelation process, and with the DC we find the computations take a fraction of time of the ASD simulations. As in [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF], we employ an interparticle potential that is a combination of a (36 -18) Lennard-Jones-like potential and a repulsive long-range Yukawa potential,

U (r) k B T = A 2a r 36 - 2a r 18 + B exp [-κ (r -2a)] r . (7.81)
Along with the other parameter values, the exact values of A, B, and κ used in our simulations are provided in Table 7.2. These parameter values match exactly those used by [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF], including the very small time-step that must be taken due to the stiffness of the Lennard-Jones-like potential. To increase the volume fraction, φ v , we increase linearly the number of particles, N p while keeping the computational domain over which we solve the Stokes equations a fixed size such that φ v = N p 4πa 3 /(3L 3 ). This is different from [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF] where the number of particles was kept fixed as the volume fraction was varied.

As each simulation progresses, we monitor the number of bonds per particle, N b /N p . We use the criterion that a bond between two particles is formed when their center-tocenter distance is less than or equal to 2.21a [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]). Figure 7.6a shows the Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics

A/k B T B/k B T κ ∆t/t Da η a φ v N p L 60 20a
4/a 10 -4 1 3.29∆x 0.04 -0.12 558 -1674 128∆x time evolution of N b /N p for different values of φ v . We observe for a fixed time, the number of bonds per particle increases as φ v increases. We do see, however that as time increases, all simulations approach the same asymptotic value of N b /N p ≈ 3.47. These observations consistent with the ASD results obtained by [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF].
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The aggregation dynamics can also be quantified by the time evolution of the number, N c , of particle clusters. We determine N c (t) by first compiling a list of bonded particle pairs at time t and then processing the list using the k-clique percolation algorithm implemented in Python by [START_REF] Reid | Percolation computation in complex networks[END_REF]. Figure 7.6b shows N c as a function of time. We see that for each value of φ v , the number of clusters decreases with time. We also find that for a fixed time, the number of clusters decreases as φ v increases. The final structures we observe at t/t Da = 300 for different values of φ v are shown in Table 7.3. For all values of φ v except φ v = 0.04, we find that the particles aggregate to form a single structure that spans the entire domain. For φ v = 0.04, which is the most dilute case we considered, the final state consists of 2 clusters that are not long enough to connect the opposite sides of the domain. The tendency to form a single cluster was also noted by [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF] and [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]. They also showed that for low volume fractions, hydrodynamic interactions between the particles are needed in order to capture the formation of a single percolated structure.

In addition to achieving very similar results as ASD, fluctuating FCM with the DC 120 integration scheme provides these results at a relatively low computational cost. The average computational time needed for fluctuating FCM with the stresslets and the DC to reach t/t Da = 100 (10 6 timesteps) with N p = 1674 was 2.5 days. The ASD simulations [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]) required approximately 10 days to reach t/t Da = 100 (10 6 timesteps) for half as many particles (N p = 874). Our approach is 8 times faster when run on 64 Intel(r) Ivybridge 2.8 Ghz cores. To further test the scalability of fluctuating FCM with DC, we simulated a suspension of N p = 3766 particles at a volume fraction of φ v = 0.08 using 64 Intel(r) Ivybridge 2.8 Ghz cores. Snapshots from the simulation at different time are provided in Figure 7.7. This simulation required 8 days to reach t/t Da = 145 (1.45 × 10 6 time steps). For this larger system size, we again find that the particles do eventually aggregate to form a single structure that percolates the entire domain. 

Conclusions

In this study, we presented a mid-point time integration scheme we refer to as the driftercorrector (DC) to efficiently integrate the overdamped equations of motion for hydrodynamically interacting particles when their Brownian motion is computed using fluctuating hydrodynamics. Methods based on fluctuating hydrodynamics such as the stochastic and fluctuating IBMs and the fluctuating FCM have been shown to drastically reduce the cost of including Brownian motion in simulation by simultaneously computing the deterministic and random particle velocities at each timestep. Like Fixman's method and RFD-based schemes, our DC scheme allows for the effects of the Brownian drift term to be included without ever having to compute it directly. The DC, however, was designed especially for the case where imposed constraints on the rate-of-strain are used to provide a more accurate approximation to the particle hydrodynamic interactions, as is the case with fluctuating FCM. Imposing these constraints incurs an additional cost for existing schemes. Using these schemes with fluctuating FCM, we showed that this constraint would at the very least double the cost per timestep, which in practice meant an additional 10 Stokes solves per timestep. We show that by using the DC with fluctuating FCM, this additional cost can be reduced to a single Stokes solve per time step. Though we have developed the DC for and tested the scheme with fluctuating FCM, FCM's similarity with other methods, such as the stochastic and fluctuating IBMs, suggests that the DC could be an effective scheme to integrate particle positions for these methods as well. Using the DC with fluctuating FCM, we have provided an extensive validation of the scheme, showing that it reproduces the correct equilibrium particle distribution, as well as provides the distribution dynamics in accordance with the Smoluchowski equation. We have also demonstrated the effectiveness of fluctuating FCM with the DC for colloidal suspension simulations, examining the collapse of a small cluster of particles, as well as the gelation process of a suspension. In doing so, we were able to both quantify the effect of including higher-order corrections to the hydrodynamic interactions, as well as demonstrate the ability to accurately simulate colloidal suspensions at large-scale. Indeed, in Chapter 11 we apply this approach with active particle models [START_REF] Delmotte | Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method[END_REF] and Chapter 10) to understand recent experimental results [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]; [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]) on the dynamics of passive Brownian tracers in active particle suspensions.

The methods described in this work may also be modified and extended to simulate particles with more complicated shapes [START_REF] Cichocki | Brownian motion of a particle with arbitrary shape[END_REF]). While one approach is to construct rigid [START_REF] Vázquez-Quesada | A multiblob approach to colloidal hydrodynamics with inherent lubrication[END_REF]; [START_REF] Delong | Brownian dynamics of confined rigid bodies[END_REF]), or flexible [START_REF] Majmudar | Experiments and theory of undulatory locomotion in a simple structured medium[END_REF]) particles from assemblies of spherical particles, another approach is to modify the shape of the kernel in the projection and volume averaging operators to reflect the shape of the particle itself. This has been done with FCM for ellipsoidal particles [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]) and, as the underlying framework of the method remains unchanged, fluctuating FCM with the redefined operators should yield particle velocities that satisfy the fluctuation-dissipation theorem. A current challenge is to adapt the DC to these particle shapes as the Brownian drift term will also depend on the orientation of the particle. It would be of interest to compare fluctuating FCM results with the 123 Chapter 7 : Time integration for particle Brownian motion determined through fluctuating hydrodynamics experimental measurements of [START_REF] Han | Brownian motion of an ellipsoid[END_REF] and the recent simulations of De Corato et al. (2015). We are currently pursuing this line of research to provide a similar set of efficient and accurate simulation techniques to understand the dynamics of suspensions of ellipsoidal Brownian particles.

Chapter 8 : Conclusions: combining fluctuating FCM with active FCM.

2. when considering non axisymmetric bodies, two orthogonal unit vectors attached to each body must be tracked 1 . Using a unit quaternion with four components instead is less costly.

These points are extensively discussed in Appendix F.

1 Their cross product correspond to the third unit vector constituting the body frame.

Chapter 9

Introduction: the rich dynamics of active suspensions. Active suspensions are out-of-equilibrium systems which have increasingly arisen the interest of physicists over the last decade. They can be found anywhere on Earth, from soils to oceans, in our bodies or in high-tech laboratories. In this introduction, we provide a short overview on the physical phenomena involved in active suspensions, to discuss their potential applications and consequences on ecology, medicine, reproduction and nanotechnologies among others. We enumerate some of the open questions which remain to be answered both on the experimental and theoretical sides. Finally, we introduce the challenging physical problems we want to address in Chapter 10 and Chapter 11.

Where do we find active suspensions ?

Suspensions of active, small, self-propelled particles arise in both biological systems, such as populations of micro-organisms and synthetic, colloidal systems. Suspensions of self-propelled micro-organisms are ubiquitous in nature. Biofilms and semen are straightforward examples of active suspensions living in our bodies. Biofilms of motile and non-motile bacteria can be found on any moist surfaces on Earth [START_REF] Hall-Stoodley | Bacterial biofilms: from the natural environment to infectious diseases[END_REF]). In the oceans, thin layers of phytoplankton (often composed of motile cells), called blooms, spread over several kilometers (Figure 9.1b).

Systems of interacting synthetic self-propelled micro-and nano-devices have been designed over the last few years to mimic active media or for local surgery or drug delivery in micro-systems. Suspensions of autophoretic particles [START_REF] Palacci | Living crystals of light-activated colloidal surfers[END_REF]), droplets propelled with Marangoni stresses [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF][START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF]) or microand nano-jet engines [START_REF] Solovev | Collective behaviour of selfpropelled catalytic micromotors[END_REF]), share common features with living systems, but also exhibit behaviors not occurring in nature.

Why do we study active suspensions ?

Active suspensions can exhibit the formation of coherent structures or complex flow patterns which may lead to enhanced mixing of chemicals in the surrounding fluid, the alteration of suspension rheology, or, in the biological case, increased nutrient uptake by a population of micro-organisms. In the following, we enumerate a few interesting phenomena occurring at the scale of the suspension and their potential applications/consequences.

Ecology at large scales

Bioconvection is a well-known phenomenon resulting from an instability arising from the fragile balance between the competing effects of gyrotaxis and buoyancy due to density gradients. Bioconvection patterns, usually observed in the laboratory in shallow suspensions of swimming micro-organisms which are a little denser than water (Figure 9.1a), can also been found in situ in micro-patches of zooplankton [START_REF] Pedley | Hydrodynamic phenomena in suspensions of swimming microorganisms[END_REF]; [START_REF] Hill | Bioconvection[END_REF]). Characterizing the dynamics found in these suspensions holds promising applications, such as the production of algae biofuels [START_REF] Croze | Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors[END_REF]; [START_REF] Bees | Mathematics for streamlined biofuel production from unicellular algae[END_REF]), and is of fundamental importance to understanding plankton dynamics [START_REF] Guasto | Fluid Mechanics of Planktonic Microorganisms[END_REF]; [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]).

Plankton dynamics is also characterized by prey-predator systems [START_REF] Kiørboe | How zooplankton feed: mechanisms, traits and trade-offs[END_REF]; Harvey and Menden-Deuer ( 2012)). The appearance and persistence of algal blooms (Figure 9.1b) can be decisive for the survival of species [START_REF] Platt | Marine ecology: spring algal bloom and larval fish survival[END_REF]), but also for their death. Harmful algal blooms (HAB), composed of toxic motile phytoplankton, pose a risk to humans, marine organisms, fishing industry and thus regional economies (Bushaw-Newton and Sellner (1999)).

Characterization, interpretation and prediction of collective motion

Collective motion is often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. It results from the combination of hydrodynamic 2013)) converge on this conclusion. Nonetheless, a recent study by [START_REF] Rabani | Collective motion of spherical bacteria[END_REF] showed that coherent dynamic clusters could also arise in dense monolayers of spherical bacteria S. Marcescens, due to the presence of some secreted molecule that possibly modify the properties of the fluid. Chemical processes thus seem to be involved as well. The so-called swarming flows observed in dense suspensions are known to display turbulent-like properties [START_REF] Dombrowski | Self-concentration and large-scale coherence in bacterial dynamics[END_REF]; [START_REF] Wensink | Meso-scale turbulence in living fluids[END_REF]; [START_REF] Dunkel | Fluid dynamics of bacterial turbulence[END_REF] and Figure 9.2a). As shown on Figure 9.2b a similar behavior was found in dense ovine and bovine sperm suspensions [START_REF] Creppy | Collective motility of sperm in confined cells[END_REF]), where large flowing structures composed of thousands of sperm cells interact and mix the fluid. The ovine and bovine breeding industry demonstrated that the intensity of this sperm "turbulence" could be positively correlated to mammal fertility [START_REF] David | Environmental and genetic variation factors of artificial insemination success in french dairy sheep[END_REF]).

Biofilms

Biofilms of motile and non-motile bacteria are everywhere on any moist surfaces. Their presence in medical apparatuses must be avoided in order to prevent severe infectious diseases. [START_REF] Drescher | Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems[END_REF], among others, revealed that biofilms could also develop in the flow and bridge gaps between obstacles in non-uniform media. These structures, called biofilm streamers, grow much faster than on surfaces, and rapidly "cause disruption of flow with consequences for environmental and medical systems" (see Figure 9.3). The formation of biofilm streamers result from the interplay between surface geometry, fluid flow and to the quorum-sensing behavior, which itself depends on the emission rate, the transport, the diffusion and the reception of chemical substances within the biofilm [START_REF] Kim | Filaments in curved streamlines: rapid formation of staphylococcus aureus biofilm streamers[END_REF]). Designing a system to prevent the formation and the growth of biofilm streamers, either by inhibiting the quorum-sensing receptors on bacteria (O'Loughlin et al. ( 2013)) or by limiting the transport of quorum-sensing molecules, is of fundamental importance for medical purposes.

Mixing, transport and diffusion at the cellular scale

Micro-organisms living in the realm of Stokes flows produce long-range velocity disturbances which stir the surrounding fluid. Fluid mixing at the cellular scale is of fundamental importance for feeding and nutrient uptake. In the oceans, zooplankton generates feeding currents to capture preys [START_REF] Kiørboe | How zooplankton feed: mechanisms, traits and trade-offs[END_REF]). The motion of bacteria in biofilms increases their activity by mixing oxygen [START_REF] Tuval | Bacterial swimming and oxygen transport near contact lines[END_REF]) or nutrients [START_REF] Lambert | Active suspensions in thin films: nutrient uptake and swimmer motion[END_REF]).

As mentioned above, the transport of chemical signals in active suspensions is also important for the quorum-sensing behavior, which plays a significant role in the localized growth and motility of bacterial populations [START_REF] Redfield | Is quorum sensing a side effect of diffusion sensing?[END_REF]; [START_REF] Shrout | The impact of quorum sensing and swarming motility on pseudomonas aeruginosa biofilm formation is nutritionally conditional[END_REF]). Cell cultures can also be exploited to control material transport in micro-fluidic devices (Kim andBreuer (2007, 2008)) or rotate microscopic gear wheels [START_REF] Sokolov | Swimming bacteria power microscopic gears[END_REF]). Systems of synthetic micro-swimmers also display intricate dynamics. The living crystals of light-activated particles [START_REF] Palacci | Living crystals of light-activated colloidal surfers[END_REF]) do not find equivalents in nature, while the enhanced diffusion in microrod suspensions mimic the effect of elongated bacteria [START_REF] Miño | Enhanced diffusion due to active swimmers at a solid surface[END_REF]). Both suspensions of sedimenting active colloids [START_REF] Palacci | Sedimentation and effective temperature of active colloidal suspensions[END_REF]; [START_REF] Enculescu | Active colloidal suspensions exhibit polar order under gravity[END_REF]) and self-propelled droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF] and Figure 9.5b) exhibit strong orientational correlations that could be useful for the transport of external bodies [START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF]). The advantage of synthetic systems is that experimental conditions are better controlled and can be tuned to perform specific tasks or isolate mechanisms. The complexity of living media is avoided.

The role of numerical and theoretical models

The multitude of continuum and particle-based models derived in the literature aim at complementing experiments to provide insights on the mechanisms involved in active suspensions.

The FCM squirmer model developed in Section 3.1 is appropriate to investigate part of the phenomena listed above. We have shown in Section 3.2 that its time-dependent version reproduces the oscillatory flow around C. reinhardtii. In Chapter 10, we use the framework developed in Chapter 6 to characterize the wellknown polar order instability observed in squirmer suspensions, [START_REF] Palacci | Sedimentation and effective temperature of active colloidal suspensions[END_REF]; [START_REF] Enculescu | Active colloidal suspensions exhibit polar order under gravity[END_REF][START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF][START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF]; Alarcón andPagonabarraga (2013, 2015)). This proof-of-concept validates our method for large active suspensions. For the first time, we investigate the dynamical evolution of the polar order instability and provide physical explanations for the orientational correlations observed in suspensions of self-propelled micro-droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF]). Our results suggest direct connections with continuum models. We demonstrate the ability of the method to handle spheroidal swimmers and obtain the dynamics predicted and observed for elongated bodies. Finally, we include the time-dependent squirmer model and explore the effect of the phase-shift between the beating cycles on the polar ordering.

The factors for nonlinear enhanced diffusion in concentrated active suspensions are still unclear. The experimental study by [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] the literature [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF]). Unfortunately, it does not provide any direct link to experimental studies and suffers severe limitations due to high computational cost.

There is a clear need for a numerical investigation with an appropriate method which handles larger populations of swimmers and tracers, includes Brownian motion and can be validated with experimental data. This is what we propose in Chapter 11.

Chapter 10

Orientational correlations in active suspensions: a parametric study at large scales. In this chapter, we show that by using the full capacity afforded by FCM, we are able to accurately simulate active particle suspensions in the semi-dilute limit with O(10 4 -10 5 ) swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains, both the steady-state polar order parameter and the growth rate of the instability are independent of system size. We show that the polar order instability is purely due to pairwise interactions that generate alignment in the near field. These results highlight the effectiveness of our approach to achieve near continuum-level results, allowing for better comparison with experimental measurements while complementing and informing continuum models. Extensions of FCM Chapter 10 : Orientational correlations in active suspensions: a parametric study at large scales.

to more complex scenarios are then introduced in Section 10.2. We simulate suspensions of spheroidal swimmers and give examples of the new implementation of time-dependent swimming gaits. Here, we also present preliminary results showing the effect of timedependence on suspension macroscopic properties.

10.1 Simulation Results on Polar Ordering in Suspensions of Squirmers 10.1.1 Large suspensions of swimming micro-organisms at fixed volume fraction

The squirmer model has been widely used to investigate both the behavior of single swimmers [START_REF] Doostmohammadi | Low-reynoldsnumber swimming at pycnoclines[END_REF]; [START_REF] Wang | Flipping, scooping, and spinning: Drift of rigid curved nonchiral fibers in simple shear flow[END_REF]; Michelin and Lauga (2013); [START_REF] Zhu | Low-reynolds-number swimming in a capillary tube[END_REF]), as well as their collective dynamics and interactions [START_REF] Ishikawa | The rheology of a semi-dilute suspension of swimming model micro-organisms[END_REF]; [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]; [START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF]; [START_REF] Alarcón | Spontaneous aggregation and global polar ordering in squirmer suspensions[END_REF]; [START_REF] Lambert | Active suspensions in thin films: nutrient uptake and swimmer motion[END_REF]; [START_REF] Alarcón | Macroscopic structures generated by microorganisms swimming in a fluid[END_REF]). Simulations of suspensions revealed that the overall population dynamics depend strongly on the squirming parameter β. In particular, when |β| is small, the isotropic state for a suspension in a periodic domain has been shown to be unstable, and the suspension evolves to a steady polar ordered state with a non-zero value of the polar order parameter

P (t) = 1 N p Np n=1
p n (t) . 

Polar order parameter

Using our FCM model, we study this instability and the resulting polar order of a squirmer suspension. In particular, we examine how the domain size affects both the growth rate of the instability and the final steady-state. The influence of domain size has not been addressed previously for squirmer suspensions though box size dependence has been observed in simulations of rod-like swimmers [START_REF] Saintillan | Emergence of coherent structures and large-scale flows in motile suspensions[END_REF]). We perform simulations of semi-dilute suspensions (φ v = 0.1) of puller squirmers (β = 1) in triplyperiodic cubic domains with edge lengths ranging from L/a = 14 to L/a = 116. As the volume fraction φ v is fixed, varying L/a increases of the number of swimmers from N p = 64 (similar to [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]; [START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF] to N p = 37, 659. We initialize a homogeneous, isotropic suspension by distributing the swimmer positions uniformly in the domain and the swimming directions uniformly over the unit sphere. Depending on domain size, the simulations are carried out to final time t f = 1000-1500a/U with a time 10.1 Simulation Results on Polar Ordering in Suspensions of Squirmers step ∆t = 0.005a/U . Thus, each simulation requires between 2 × 10 5 -3 × 10 5 time-steps. The typical computational time for N g = 256 3 grid points and 3 × 10 5 time-steps on 128 Intel(r) Ivybridge 2.8 Ghz cores is 3 days. Figure 10.1a shows P (t), Eq. ( 10.1), for the simulations with different domain sizes. For each domain size, we see that the suspension evolves from the initial isotropic state to one that has polar order. We observe, however, that the statistical steady-state value, P ∞ , of the polar order parameter depends on the domain size. We find that it decreases as L/a (and N p ) increases. The data also shows that as L/a → ∞, P ∞ decays like (L/a) -3/2 (or N -1/2 p ) and reaches an asymptotic value of P ∞ → 0.452. These results would indicate that polar order should also arise in an unbounded suspension.

Figure 10.2 illustrates the transition to the polar ordered state with L/a = 116, N p = 37, 659. The polar order is quantified with the degree of alignment of each swimmer n with the mean steady-state orientation p p = lim (10.2) p lies on the unit sphere S 2 . Initially, at t = 0, there is no clear mean orientation inside the suspension, while at t = 1000a/U , a significant proportion of particles are aligned with the mean direction p .

From our simulations, we may also analyze how L/a affects the transient evolution of the instability. In Figure 10.1a, we clearly see that the time it takes to reach the final polar state increases with domain size. We analyze this data in more detail in Figure 10.3, now plotting it over semilogarithmic scale. For each case, we find that after an initial transient regime, the instability grows exponentially with a growth rate that is independent of the system size (see inset figure). It would certainly be interesting to investigate if this result could be predicted by a linear stability analysis of a continuum model for a squirmer suspension (see preliminary investigations in Appendix G).

Orientational distribution

Figure 10.2 provides a good visualization of the polar ordered state in the suspension. In this section, we examine the polar order in more details by computing the orientational distribution Ψ(θ, φ, t) defined over the unit sphere (Saintillan (2010a)). Here, θ = cos -1 (p z ) corresponds to the elevation angle while φ = tan -1 (p y /p x ) gives the azimuthal angle. Figure 10.4 shows Ψ(θ, φ, t) normalized by the isotropic distribution Ψ 0 = 1/(4π) at times before and after the transition to polar order for the case where N p = 11, 158 and L = 78a. As expected, before the transition, the distribution is nearly uniform over the surface of the sphere. When the polar state is reached, we see that Ψ(θ, φ) is narrowly distributed around the mean steady-state direction p defined in Eq. (10.2). We note that the mean direction depends on the random initial seeding of swimmers rather than the dynamics of the model or the boundary conditions. Figure 10.5 shows the steady-state averaged distribution Ψ(θ, φ)| p in the relative frame where the mean direction is given by θ = 0 and φ = 0. We see that the resulting distribution is axisymmetric (it does not depend on φ).
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 This is expected as the flow field induced by a squirmer is axisymmetric. Orientational distributions could also be obtained from continuum models, as was done for swimmers in ambient flow fields (Saintillan (2010a)). However, to the best of our knowledge, the continuum models that are currently available in the literature predict a stable isotropic state for suspensions of spherical dipoles (cf. Appendix G). Hence the need to include the degenerate quadrupole in the continuum framework.

Spatial distribution

Along with the orientational distribution, we also examine the spatial distribution of squirmers by computing the Voronoi tesselation of the set of points corresponding to the squirmers' centers. We have used the C++ library Voro++ [START_REF] Rycroft | Voro++: A three-dimensional voronoi cell library in c++[END_REF]) to perform the computation and determine the volume, V V , of each Voronoi cell. Figure 10.6 shows the evolution of the standard deviation, σ V , of the V V distribution for the case where N p = 11, 158 and L = 78a. We see sudden increase in σ V as the suspension evolves to polar order, corresponding to a widening of the distribution. The inset in Figure 10.6 shows the time-averaged PDF of the normalized cell size before and after the transition. The mean value is V V = L 3 /N p = 42a 3 . The PDF for a regular lattice would be a delta function δ( V V -V V ). Before polar ordering occurs, the mode of the distribution is approximately 34a 3 = 0.8 V V , which is the expected value for a Poisson distribution [START_REF] Ferenc | On the size distribution of poisson voronoi cells[END_REF]). However, our PDF does not exactly match the PDF expected for point particles [START_REF] Ferenc | On the size distribution of poisson voronoi cells[END_REF]) because of excluded volumes. During the polar steady-state, we find that the mode decreases to approximately 30a 3 = 0.71 V V , which is indicative of a slight clustering of the particles. Figure 10.7 illustrates the clustering effect in a section of the computational domain.

To further examine the spatial distribution, we compute the steady-state pair distribu-10.1 Simulation Results on Polar Ordering in Suspensions of Squirmers : uniform distribution Ψ 0 (θ) = 1/π; : distribution of azimuthal angle φ averaged over elevation angle θ;

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 Ψ(θ, φ)| p /Ψ 0 0 1 2 3 (a) 0 0.5 1 1.5 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 θ/π, φ/π Ψ(θ)| p Ψ0(θ)| p = 1/π Ψ(φ)| p Ψ0(φ)| p = 1/(2π) (b) 
: uniform distribution Ψ 0 (φ) = 1/(2π). tion function g(r, θ) which gives the probability of finding a squirmer at a distance r = |r| and with elevation angle θ = cos -1 (r • p/r) from another squirmer that has swimming direction p. Figure 10.8a shows g(r, θ) for the case where N p = 11, 158 and L = 78a. We see clearly that g(r, θ) depends not only on r, but on θ as well. At steady-state, for a given squirmer there is a significantly higher probability of finding another squirmer in front of it (θ = 0) rather than behind it. If we integrate g(r, θ) over θ, we obtain the radial distribution function shown in Figure 10.8b. We find that g(r) exhibits a peak at two radii from the swimmer surface. This peak suggests the existence of particle clusters whose sizes are greater than two individuals.

Orientational correlations

The hydrodynamic and steric interactions between the squirmers also lead to correlations in their orientations. We compute the steady-state orientational correlation function [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF])

I p (r) = p(x) • p(x + r) , (10.3) 
where the brackets • denote the ensemble average that we compute by averaging over both time and squirmer pairs. Figure 10.9a shows the correlations in the frame of a squirmer located at the origin and with p = x and the definitions of r and θ are identical to those in Section 10.1.1. We find that the highest correlations occur near contact (r ≈ 2) at the angles θ ≈ π/3 and θ ≈ 3π/4. Despite the overall polar order, we can identify two distinct regions around θ = 0 and θ = π where the orientations are uncorrelated. We do, however, find a positive value for the correlations, even far away from the origin. This is most evident in the θ-averaged correlation, I p (r), shown in Figure 10.9b which scales. approaches a finite value I p = 0.22 as r increases. This is consistent with the observed long-range polar order of the suspension. We also find that I p (r) > 0 for all r. This again may be a result of the strong polar ordering of the suspension.

Dependence of polar order on volume fraction

The frequency of interactions between micro-swimmers increases with the volume fraction of the suspension φ v . How many collisions needs a swimmer to align with the group ?

To answer this question we investigate the effect of the volume fraction φ v on the growth of the polar order instability. Similarly to Section 10.1.1 we measure P (t) along time. The box size is fixed (L/a = 77) and the squirming parameter is set to unity (β = 1). Figure 10.10 shows P (t) along time in semilogarithmic scale for a volume fraction ranging over two order of magnitudes φ v = 0.005 -0.15, i.e. N p = 579 -16137.

Again, the red slopes represent the exponential fit of the growth regime. The inset shows the inverse of the non-dimensional characteristic growth time τ -1 with φ v . τ -1 (φ v ) is well approximated with a linear fit τ -1 (φ v ) = 0.0635φ v . To associate this characteristic growth time with a collision frequency, we use the characteristic collisional time [START_REF] Chapman | The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity[END_REF])

τ c = a √ π 12φ v g 0 √ T , (10.4) 
where g 0 is the peak value of the radial pair distribution function at contact in a suspension of hard spheres. Several formulations have been proposed for g 0 in random suspensions. : exponential fits to obtain the growth rate τ -1 . (Inset): Growth rate of the instability τ -1 for various swimmer volume fractions φ v .

: linear fit.

Most of them are equivalent in the dilute and semi-dilute regimes φ v ≤ 0.15. Here we use the expression derived by [START_REF] Lun | The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials[END_REF] 

g 0 = (1 -φ v /φ max v ) -2.5φ max v , (10.5) 
where φ max v = 0.64 is the maximum volume fraction for close packing of monodisperse spheres. The level of particle agitation T is estimated as the square of the swimming speed T = U 2 . When comparing the growth time τ with the collisional time τ c (Figure 10.11), we obtain a ratio whose standard deviation (∼ 23% of the mean) is small compared to the ratio of the biggest to the smallest volume fraction 0.15/0.005 = 30. Thus, we can consider the ratio to be constant for all volume fractions.

The mean value of this ratio is 131.331, meaning that the characteristic growth time of the instability corresponds roughly to 130 collision times, whichever the volume fraction. This results suggests that, in the dilute and semi-dilute regimes, the polar order arises only because of successive pairwise interactions.

The next question to answer is then: what causes alignment during pairwise interactions ?

Chapter 10 : Orientational correlations in active suspensions: a parametric study at large scales. Varying the squirming parameter β directly affects the hydrodynamic interactions between micro-swimmers. In this section we set β = 0, i.e. no swimming stresslet (B 2 = 0) but only the degenerate quadrupole B 1 = 3U/2. As we will see later, this asymptotic limit is closer to real swimmers than β ≥ 1. As in Section 10.1.1, the volume fraction is fixed (φ v = 0.1) and the domain size L/a, or equivalently the number of swimmers N p , is varied. The polar order parameter is computed along time for several box sizes and the instability is characterized with its growth rate. As shown on Figure 10.12, the polar order parameter is close to unity in the steady-state. This result is not surprising since it was already observed in the literature. Likewise, the growth rate, which has never been characterized before for this instability, reaches a constant value for large populations. The time to reach the steady-state P ∞ ≈ 1 is longer than for β = 1, in which case the steady-state value is P ∞ ≈ 0.46. The growth rate is also three times smaller τ -1 ≈ 0.002 than for β = 1 ( τ -1 ≈ 0.006). The characteristic growth time corresponds to τ /τ c = 355 collision times.

It is clear that hydrodynamic interactions resulting from the degenerate quadrupole align particles together. A closer look at the streamlines around a squirmer with β = 0 supports this idea (see right panel in Figure 3.1). The fast decay of the associated velocity field (∼ 1/r 3 ) explains why alignment arises from pairwise and short range interactions. Similar conclusions, supported by statistics of alignment near contact, were drawn by [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]. The physical mechanism for alignment in suspensions of selfpropelled micro-droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF]) is now clear: as shown on : exponential fits to obtain the growth rate τ -1 . (Inset): Growth rate of the instability for different N p (and L/a). scales. long range orientational correlations. The swimming stresslet B 2 can thus be considered as a parameter that acts against B 1 . Nonetheless, it is known in the literature [START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF]) that pullers (B 2 > 0) are more stable in the ordered state than pushers (B 2 < 0). However, having a smaller growth rate for β = 0 than for β = 1 is counterintuitive, because we demonstrated that the degenerate quadrupole is responsible for the alignment in pairwise interactions whereas the stresslet is supposed to act against it, and thus slow it. Again, it can be argued that pullers (B 2 > 0) destabilize head-to-head configurations and thus promote alignment [START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF]).

Propagation of polar order within the suspension

The conclusions obtained above do not provide any information about the spatial propagation of alignment within the suspension. Does it result from the interaction and competition of localized aligned clusters or does a mean direction arise homogeneously in the domain ? To test these ideas, we simulate a large semidilute suspension (N p = 11158, φ v = 0.1) with β = 0 and compute the polar order parameter P in 125 = 5 × 5 × 5 identical subdivisions of the computational domain along time. Each of the 125 curves in Figure 10.13 corresponds to the evolution of P inside each subdomain. Local values of P evolve similarly, regardless of their spatial location. The polar order instability thus grows uniformly in the domain.

10.2 Extensions to ellipsoidal swimmers and time-dependent swimming gaits 10.2 Extensions to ellipsoidal swimmers and timedependent swimming gaits

In this section, we exhibit the extension of our approach to both spheroidal swimmer shapes and time-dependent swimming gaits. This illustrates the versatility of FCM while preserving good computational scalability and accurate resolution of hydrodynamic interactions.

FCM for ellipsoidal particles

To extend FCM to passive ellipsoidal particles, one simply modifies the shape of the Gaussian envelopes in Eq. (6.2) [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]). For example, taking the orthonormal vectors ên 1 , ên 2 , and ên 3 to be aligned with the ellipsoid semi-axes having lengths a 1 , a 2 , and a 3 respectively, the Gaussian envelope corresponding to ∆ n (x) is

∆ ell n (x) = (2π) -3/2 (σ ∆;1 σ ∆;2 σ ∆;3 ) -1 exp - 1 2 (x -Y n ) T Q T Σ ∆ Q(x -Y n ) (10.6) where σ ∆;i = a i / √ π for i = 1, 2, 3, Q = (ê n 1 ên 2 ên
3 ) T , and

Σ ∆ =   σ -2 ∆;1 0 0 0 σ -2 ∆;2 0 0 0 σ -2 ∆;3   .
(10.7)

A similar expression is used for Θ ell n (x) with σ Θ;i = a i / (6 √ π) 1/3 . Beyond this, the underlying algorithm of projecting the particle forces onto the fluid and volume averaging the resulting fluid flow remains unchanged. The constraint that E n = 0 for each n is still used to find the stresslets. Thus, using FCM to compute the motion and interactions of ellipsoids does not require any additional steps in the algorithm described in Section 6.2.4. An extensive validation of FCM for ellipsoidal particles is presented in [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF] where many of the classical results for ellipsoidal particles in Stokes flow, e.g. Jeffery's orbits, are shown to be recovered exactly with FCM.

Extending FCM to active ellipsoidal particles requires to add the stresslet related to swimming and possible potential dipole terms to the multipole expansion. As for spherical particles (see Section 6.1.2 Eq. (6.10) and (6.11)), these additional multipoles will lead to artificial, self-induced velocities and local rates-of-strain. These effects must be subtracted away using the formula derived in Appendix A. It is worth reminding that these are the only steps that need to be added to the FCM algorithm of passive particles to simulate active suspensions.
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Spheroidal swimmer simulations

Previous particle-based simulations [START_REF] Saintillan | Emergence of coherent structures and large-scale flows in motile suspensions[END_REF]; [START_REF] Lushi | Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers[END_REF]) and continuum theory results [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF]; [START_REF] Baskaran | Statistical mechanics and hydrodynamics of bacterial suspensions[END_REF]; [START_REF] Ezhilan | Instabilities and nonlinear dynamics of concentrated active suspensions[END_REF]) predict an unstable isotropic state for suspensions of prolate spheroidal pushers. Using FCM, we simulate a dilute suspension, φ v = 0.05, of N p = 1500 spheroidal pushers with aspect ratio a 1 a 2 = a 1 a 3 = 3. For these simulations, the stresslet parameter is B 2 = -1.5 and the degenerate quadrupole is set to zero, B 1 = 0. Figure 10.14a shows a snapshot of the suspension where clusters of swimmers have velocities nearly 1.6 times larger than the swimming speed of an isolated swimmer. As in [START_REF] Saintillan | Emergence of coherent structures and large-scale flows in motile suspensions[END_REF]; [START_REF] Lushi | Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers[END_REF], we see that the isotropic state is not stable and the polar order parameter increases with time (Figure 10.14b). We do not see as large increase of P (t) as [START_REF] Saintillan | Emergence of coherent structures and large-scale flows in motile suspensions[END_REF] or [START_REF] Lushi | Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers[END_REF], due to the relatively low aspect ratio of our swimmers. The tumbling effect due to Jeffery orbits and the steric torques that tend to align adjacent swimmers are much lower than they are for rod-like swimmers.

Suspension dynamics of time-dependent swimmers

We then perform suspension simulations that show time-dependence at the level of individual swimmers can affect the overall suspension properties.

Interactions between two C. reinhardtii

We first consider pairwise interactions between two C. reinhardtii modeled with FCM (cf. Chapter 3) for two initial configurations, δy = 1a and 2a (cf. Section 6.3.2). We introduce a phase shift, ∆ϕ, between their swimming cycles. When ∆ϕ = 0, the swimmers are synchronized, whereas for ∆ϕ = π they are completely out of phase. Figure 10.15 shows the effect of this phase shift on the trajectories. For each case, we show only the trajectory of the swimmer labeled "2" in Figure 6.5. We also provide the trajectories of steady swimmers with β = 0 and β = 0.1 for comparison. Recall that β = 0.1 corresponds to the average value of B 2 (t)/B 1 (t) in our model in Section 3.2. We see that the trajectories, including the final positions and orientations, do depend on ∆ϕ. We find, however, that these variations are small compared to the swimmer separation distance (see the inset of Figure 10.15 for the relative trajectories in the frame of one swimmer). The trajectories are also close to those for steady squirmers with β = 0 -0.1.

Collective dynamics of time-dependent swimmers

In this section, we present results from suspension simulations using our unsteady model for C. reinhardtii. To the best of our knowledge, similar results have not yet appeared in the literature. We aim to show in this preliminary study that time-dependence of individual swimmers can affect their overall distribution. Specifically, we show that the distribution of beat phases affects the steady-state polar order of the suspension. : isotropic value of the polar order parameter 1/ N p = 0.026. We consider a suspension of N p = 1395 time-dependent swimmers distributed uniformly in a triply periodic domain. The volume fraction is φ v = 0.1. We take the initial swimming directions to be distributed uniformly over the unit-sphere. For swimmer n, its gait is characterized by B 1 (t + ∆ϕ n ) and B 2 (t + ∆ϕ n ), where ∆ϕ n is the value of its beat phase. We consider two different distributions of the beat phases. The phases are either uniformly distributed with ∆ϕ n ∈ [0; 2π], or ∆ϕ n = 0 for all n such that all swimmers are synchronized. Phase synchronization of close swimmers [START_REF] Fürthauer | Phase-synchronized state of oriented active fluids[END_REF]) is not accounted for. We run the simulations for 3700 dimensionless time units, corresponding to 4000 beat cycles. As mentioned in Section 3.2.1, the mean velocity of C. reinhardtii is U = 49.54a.s -1 . Since we take the time-step ∆t = 0.0025a/U , the total time for our simulations correspond to 1.5 × 10 6 time iterations.

Figure 10.16a shows the evolution of the polar order parameter for these two distributions of beat phase. Also shown is the polar order parameter for suspensions of steady swimmers with swimming speeds equal to the mean swimming speed for the timedependent case and either β = 0 or β = 0.1. We find that when there is a random uniform distribution of the beat phase, we achieve results that match the steady case with β = 0.1. On the other hand, if the swimmers are synchronized, we find that the polar order parameter matches that for the steady case with β = 0. Figure 10.16b shows the steady-state orientational distributions Ψ(θ)| p about the mean direction. Again, we see that the distribution for case of a uniform distribution of beat phases matches that for the steady case with β = 0.1, while the synchronized suspension has the same distribution as the β = 0 case. These new results show that the distribution of beat phases can strongly affect the orientational order of the suspension.

Chapter 10 : Orientational correlations in active suspensions: a parametric study at large scales. 

Conclusions

In this chapter, we presented an extension of FCM to compute the hydrodynamic interactions between a large number (10 4 -10 5 ) of active self-propelled particles in semi-dilute suspensions. Our model handles spheroidal swimmer shapes, and can also account for effects such as steric repulsion. In our squirmer suspension simulations, we recovered the polar order found in other studies, but also quantified the effects of domain size on the final steady-state. Specifically, we showed that for puller suspensions with β = 1, the final value of the polar order parameter decreases and the time needed to reach steady-state increases as the system gets larger. We did, however, find that these quantities appeared to converge to an asymptotic value and that polar order should be present even for an infinitely large domain. The scale of our simulations allowed us to compile robust statistics and examine in detail the orientational distribution and local micro-structure of the suspension.

We have performed a robust characterization of the polar order instability in the dilute and semi-dilute regimes (φ v = 0.005 -0.15). This instability arises uniformly in the domain due to the short range pairwise interactions that align squirmers together. It results in a narrow axysimmetric orientation distribution on the unit sphere. The origin of alignment is the hydrodynamic interaction due to the rapidly decaying (r -3 ) disturbances generated by the degenerate quadrupole B 1 = 3U/2. This explains why [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF] observed alignment of close micro-droplets which results in strong orientational correlations in the suspension. For a fixed value of β, the instability grows exponentially, with a rate that depends linearly on the volume fraction. The characteristic growth time corresponds to a fixed number of collision times (∼ 130 for β = 1) that does not depend on the concentration.

A more extensive parametric study should be performed to fully characterize the dependence of the growth rate on β. Simulating even larger suspensions could evidence other non-trivial effects, as suggested by [START_REF] Alarcón | Macroscopic structures generated by microorganisms swimming in a fluid[END_REF]. It would be interesting to compare our results with a stability analysis on a continuum model which includes the degenerate quadrupole (cf. Appendix G).

By extending the model to time-dependent swimming gaits, we also illustrated for the first time, to best of our knowledge, that time-dependence at the level of individual swimmers can affect the final steady-state distribution of the suspension.

We see that the squirmer model within the FCM framework provides an effective computational approach to simulate active suspensions, allowing for particle numbers that begin to approach continuum levels. As a result, we feel that our computational model can both be used to complement experimental research, as well as inform the development of continuum models. In addition, our model could be an effective approach to address questions regarding the mixing of background scalar fields [START_REF] Lambert | Active suspensions in thin films: nutrient uptake and swimmer motion[END_REF]) or passive tracers dynamics [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]; [START_REF] Lin | Stirring by squirmers[END_REF]) in active, time-dependent suspensions. As will be shown in Chapter 11, the diffusion of tracer Brownian motion can be included with the squirmer model and the competition between tracer diffusion and advection due to the flows produced by the swimmers can be assessed.

Chapter 11

Enhanced diffusion in dilute and concentrated active suspensions. Enhanced transport in dilute active suspensions is well understood. In the dilute regime, the relation between tracer diffusivity and swimmer concentration is linear. This result has been confirmed by experiments and numerical studies. In more concentrated regimes one cannot separate and add up effects so easily. Deciphering the coupling between various mechanisms is more challenging. Tracers interact with several swimmers simultaneously, hydrodynamic interactions between swimmers and excluded volumes play a significant role. The dependence of the effective diffusivity on the volume fraction thus becomes nonlinear. The goal of this chapter is to combine the numerical tools developed in Part II to address the issue of stirring in concentrated suspensions, which has never been investigated in previous numerical nor theoretical studies, except for Ishikawa et al. ( 2010) that we will discuss extensively. In the concentrated regime, hydrodynamic interactions are significant and particle rigidity constraints (i.e. stresslets) must be enforced.

To accurately include hydrodynamic interactions with thermal fluctuations, we use the frameworks developed in Chapter 7. In the following we first validate our approach by comparing our results for dilute suspensions with the theoretical and experimental literature. Then we show preliminary simulations for more concentrated regimes and outline the promising future directions that our results suggest.

Introduction: theory for enhanced transport in dilute suspensions

In active suspensions, the motion of a target particle results from the interplay between Brownian diffusion due to thermal fluctuations and advection of the flow field induced by the swimmers. The relative effects of advection and diffusion on a target particle are quantified by the Péclet number

Pe = V L D 0 . (11.1)
V is a characteristic velocity, L a characteristic length and D 0 is the Stokes-Einstein diffusivity

D 0 = k B T ζ , (11.2) 
where ζ is the friction coefficient of the object and k B T the thermal energy. For a spherical passive tracer with radius a at position x, the Péclet number reads Pe = u(x)6πηa 2 k B T .

(11.

3)

The characteristic velocity u(x) corresponds to the disturbances generated by a collection of micro-swimmers in the vicinity of the tracer. u(x) highly depends on the magnitude and the spatial rate of decay of these disturbances, but also on the position relative to the swimmers, which is related to the swimmer concentration φ v .

In the dilute regime (φ v 1%), the underlying mechanisms are well understood and u(x) can be reasonably estimated with the flow generated by one swimmer. [START_REF] Miño | Enhanced diffusion due to active swimmers at a solid surface[END_REF] proposed a simple formulation which relates the tracer effective diffusivity to the "active flux" of micro-swimmers J = nU (11.4) where D 0 is the Brownian diffusivity given by Stokes-Einstein formula Eq. (11.2), n = N p /L 3 is the number density of active swimmers in a system of size L, U is their swimming speed, and Λ scales like the fourth power of their size based on dimensional considerations. This scaling has been verified both theoretically and experimentally in the literature on 11.1 Introduction: theory for enhanced transport in dilute suspensions dilute suspensions [START_REF] Lin | Stirring by squirmers[END_REF]; [START_REF] Jepson | Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria[END_REF]; [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]). Computing Λ requires averaging the tracer's displacement due to successive interactions, or kicks, with one swimmer. Consider a swimmer with characteristic size a sw . Define λ, the persistence length corresponding to the average length of the straight line segments the swimmer describes before changing its swimming direction. In the limit of large persistence length compared to the swimmer size (a sw /λ → 0), Λ can be computed analytically. Theoretical approaches [START_REF] Lin | Stirring by squirmers[END_REF]; [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]) obtain quantitative agreement for the value of Λ. Measurements in suspensions of E. coli from various experiments [START_REF] Jepson | Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria[END_REF]; [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]) result in similar estimations (Λ = 7.1µm 4 and Λ = 4.81µm 4 respectively).

D ef f = D 0 + ΛnU,
Recent contributions intend to identify the mechanisms lumped into this Λ coefficient. Pushkin and Yeomans (2013) proposed to approximate the effective diffusion coefficient in the dilute regime as the sum of three distinct terms

D ef f ≈ D rr + D ent + D 0 , (11.5) 
where D rr is the diffusion due to random reorientation of the swimmers, D ent is the diffusion due to the fluid entrained by a swimmer moving along an infinitely straight segment. Λ encompasses both terms

Λ = D rr + D ent nU . (11.6) 
The goal pursued by theoretical studies in the dilute limit is to quantify the contribution of each term depending on the characteristics of the active suspensions. D rr depends on the reorientation time of the swimmer or, more generally, on the curvature of its trajectory. In the dilute limit, Pushkin and Yeomans (2013) derived an exact expression of D rr for point-like swimmers

D rr = nU a 2m sw B 2 m λ d-2m+1 I d,m
a sw λ .

(11.7) n = N p /L 3 is the number density of swimmers in a system of size L. d is spatial dimensionality of the problem. B m is the magnitude of the leading singularity of order m that creates swimming disturbances decaying as r -m . I d,m a sw λ is a dimensionless integral over all the possible relative positions between a tracer and a swimmer. In the limit of large displacements, a sw /λ → 0, but smaller than the systems size, λ L, the diffusion due to random reorientations in a 3D suspension (d = 3) of dipolar swimmers (m = 2) is independent of the persistence length λ because I 3,2 (x) → const. as x → 0. This result is counter-intuitive and paradoxical. To address this paradox, [START_REF] Pushkin | Stirring by swimmers in confined microenvironments[END_REF] simulated a dilute suspension (φ v ≤ 10 -5 ) of squirmers with β = 2 in which the periodic system size is similar to the straight line swimming length λ ≈ L. In this case, they showed numerically that the diffusion due to random reorientations is of the form (11.8) where g (x) → 1 for x → 0 and g (x) → 0 for x → ∞. In a more general picture, Pushkin and Yeomans (2013) showed that the relation between D rr and λ, in the limit a sw /λ → 0, λ L, depends on a critical ratio between the dimensionality of the problem d and the order of the leading singularity m

D rr = 4π 3 B 2 U 2 nU g λ L ,
D rr ∼ nU a 2 sw B 2 m ×      a m sw λ d-2m+1 , d > 2(m -1), a d sw λ -1 log(λ/a sw ) , d = 2(m -1), a d sw λ -1 , d < 2(m -1).
(11.9)

It follows from Eq. (11.9) that the diffusion due to reorientations in a dilute suspension of dipolar swimmers (m = 2) confined in a two-dimensional film (d = 2) [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]) should exhibit the following scaling

D Dip,2D rr ∼ nU B 2 2 a 4 sw λ -1 log(λ/a sw ). (11.10)
Random reorientations in a dilute 3D suspension (d = 3) of quadrupolar swimmers (m = 3) with magnitude B 1 should diffuse passive tracers as follow (11.11) When tracers are not too far from swimmers, the effect of fluid entrainment, also called drift, can be predominant. Pushkin et al. (2013) calculated the volume of fluid entrained by a swimmer swimming along an infinite straight segment v ent , analytically and numerically, for different swimming gaits. Following, [START_REF] Thiffeault | Stirring by swimming bodies[END_REF], they deduced the diffusion coefficient due to entrainment

D Quad,3D rr ∼ nU B 2 1 a 5 sw λ -1 log(λ/a sw ).
D ent = 1 6 nU λv ent .
(11.12)

Here λ ≈ a sw is the entrainment length. Eq. (11.12) can be reformulated by introducing the swimmer volume v s ∼ a 3 sw (11.13) Comparing the relative magnitude of D rr and D ent is not an easy task. The numerical attempts of [START_REF] Pushkin | Stirring by swimmers in confined microenvironments[END_REF] did not succeed. We did not find anyone else trying.

D ent = 1 6 U a sw v ent v s φ v .
In [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF], the diffusion coefficient of tracers in 3D dilute suspensions of C. Rheinardtii was computed over 2s, while the reorientation time of C. Rheinardtii due to phase slips between flagella is approximately 10s [START_REF] Goldstein | Noise and synchronization in pairs of beating eukaryotic flagella[END_REF]). Reorientations cannot significantly affect the tracer diffusion. We can discard thus the effect of D rr . The effective diffusion coefficient is therefore estimated with the entrainment only The linear evolution in Eq. (11.4) breaks down for more concentrated regimes. [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] observed the dynamics of tracers in a two-dimensional film of C. Rheinardtii and obtained a power-law for the effective diffusivity D ef f /D 0 ∼ φ 3/2 v . The measures of [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] in the bulk of 3D suspensions of E. coli also deviate from the linear regime as the bacterial concentration increases.

D ef f -D 0 ≈ 1 6 U a sw v ent v s φ v (11.
As stated by [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF], the reason for the deviations from linearity is still unclear, and "one possibility is the occurrence of multi-bacterial effects on the tracer diffusivity". Therefore, having a robust numerical method which is able to accurately simulate concentrated suspensions, including tracers, would provide more insight on enhanced diffusion mechanisms when swimmer-swimmer interactions and near field hydrodynamic or steric effects become important. What is the critical volume fraction above which the theory and simulations for dilute systems break down ?

Enhanced tracer diffusion in dilute suspensions of micro-swimmers

This section is based on the experimental study of [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] on the enhanced diffusion of tracers in three-dimensional dilute suspensions of C. Rheindardtii. In the dilute case, the swimming details close to the swimmers are quite important and the contribution of fluid entrainment is predominant. In his theoretical study, [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF] showed that a squirmer model with β = 0.5 closely reproduces the statistics on tracer displacements. It is worth mentioning the phenomenological fits of [START_REF] Eckhardt | Non-normal tracer diffusion from stirring by swimming microorganisms[END_REF] to reproduce the PDF for tracer displacements of [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] based on random walks. Even though their fit is in very good agreement with experiments, fitting parameters have to be adapted to each swimmer concentration and do not provide any physical insights on the underlying mechanisms. As a first validation step, we simulate squirmer suspensions with the squirming parameter chosen by [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF]: β = 0.5.

Numerical setup

In their experiments, [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] used micron-sized tracers with radius a = 1µm. C. Rheindardtii can be approximated as a sphere with a radius a sw = 5µm. In our simulations, we prescribe the same aspect ratio between the beads and the swimmers a sw /a = 5 and impose the same swimming speed U = 100µms -1 = 20a sw s -1 . Hydrodynamics interactions are solved with the FCM framework outlined in Chapter 6. Thermal fluctuations are included with the fluctuating FCM framework developed in Chapter 7. No major modification is required to handle polydispersity with FCM. The width of the Gaussian envelope for each class of particle is set according to their radius: σ ∆ = a/ √ π and σ ∆,sw = a sw / (6 √ π) 1/3 . The goal is to recover the correct Stokes drag and hydrodynamic interactions for tracers, but stresslets are only activated for swimmers. For this preliminary study, the box size is fixed to L = 116a = 23a sw , which correspond to N g = 192 3 grid points. The total number of tracers is set to 1255 so that they do not occupy more than 0.34% of the domain. Henceforth, φ v will only refer to the swimmer volume fraction and N p to their number. For φ v = 0.4 -15% , the corresponding number of swimmers N p ranges from 12 to 451. These values for N p are small but large enough to carry out a preliminary study with reliable statistics on tracer dynamics as intended in this chapter. Trajectories and swimmer orientations are integrated with the Drifter-Corrector scheme developed in Chapter 7. The thermal energy k B T is prescribed to match the Stokes-Einstein diffusivity measured in the experiments while accounting for the effect of periodicity on Stokes drag [START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]). It is worth mentioning an incoherence on this point in [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. According to the authors, the Brownian diffusivity of the tracers is D 0 = 0.28µm 2 s -1 , which, as shown on Figure 11.2a, is consistent with Stokes-Einstein relation for a room temperature of T ≈ 28 • C. However, Figure 11.2b shows that their Gaussian fit with standard deviation √ D 0 ∆t does not match the measured tracer displacements at ∆t = 0.12s, in contradiction with their Figure 2a. Instead when we fit D 0 to match their data, we obtain D 0 = 0.34µm 2 s -1 , which corresponds to a temperature of 38 • C. Equivalently, if we fix D 0 = 0.28µm 2 s -1 and fit ∆t, we get ∆t = 0.15s. Based on these remarks, we decided to stick to the observation times given by [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] and use D 0 = 0.34µm 2 s -1 . Such choice is questionable but does not have a significant impact on the results. Nonetheless having the statement of [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] in mind, we will discuss the effect of Brownian diffusivity on the effective diffusivity later on.

Probability distribution functions for tracer displacements.

In their experiments, [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] measured the time-dependent probability distribution function for tracer displacements P (∆x, ∆t) for various swimmers volume fractions φ v = 0 -2.2% over a time window corresponding to 15 breast stroke cycles: ∆t = 0 -0.3s = 0 -15T , where T = 0.02s is the beating period. The observation time is much smaller than the typical reorientation time: ∆t = 0.3s 10s. Therefore, one can consider straight trajectories. Henceforward, we nondimensionalize the tracer displacement by their radius (∆x/a) for direct comparisons with experiments.

In contradiction with the notion of "effective temperature" of bacterial bath [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF]), where the diffusion process should be Gaussian, [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] observed clearly non-Gaussian tails in the tracer displacements distributions. In this time frame, events of large tracer displacements are due to entrainment close to the swimmer surface, where the fluid velocity fluctuations due to breaststroke are large. The tails of the PDF for short-time tracer displacements depends on the details of the flow structure near the swimming micro-organisms. As shown in Figure 11.3a, our simulated tracer displacements with D 0 = 0.34µm 2 s -1 match experimental data. Similarly to [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF], we slightly underestimate large displacement events, because the squirmer model does not reproduce the exact flow around C. Rheinardtii. Figure 11.3b show that the PDF is self-similar with respect to the diffusive scaling ∆x/(2D ef f ∆t) 1/2 ). The collapse is as good as in [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. Such quantitative agreements reveal that the squirmer model is well adapted for the modeling of breast-stroke swimmers.

If we look more carefully at the tails on Figure 11.4, we observe that the simulations follow a x -4 power-law, while the data from [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] behave as x -3 . [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] fitted their non-Gaussian tails with exponentials. The x -4 decay was predicted by [START_REF] Pushkin | Stirring by swimmers in confined microenvironments[END_REF] for suspensions of dipole swimmmers with random orientations. [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] observed the same power-law for dilute regimes. However, scaling the tails with power-laws over less than one decade is not rigorous. [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF] and [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF] argued that the non-Gaussian tails were observed due to the small times considered. In the long time limit ∆t 0.3s, they predicted a distribution similar to a Gaussian (but not Gaussian according to [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF]). To verify their assertion, we compute the PDF for tracer displacements over longer times ∆t = 0 -2s. Figure 11.5a shows the evolution of P (∆x/a, ∆t) for φ v = 2.2%. As ∆t increases, the Gaussian core of the distributions broadens. Note the small shift of the mean at long time due to statistical effects. The rescaling on Figure 11.5b shows that the distributions' tails narrow with increasing ∆t, and eventually converge to a Gaussian distribution. The convergence of P (∆x/a, ∆t) to a Gaussian at long times is observed 166 11.2 Enhanced tracer diffusion in dilute suspensions of micro-swimmers
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(a) PDF for tracer displacements at time ∆t = 0.12s for various swimmer volume fractions φ v = 0 -2.2%. Symbols represent the data from [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. Solid lines correspond to the simulations. x -3 [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. Solid lines correspond to the simulations. : x -4 . : x -3 . Displacements are averaged over the three spatial directions.
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for any volume fraction φ v = 0 -2.2%. As shown on Figure 11.5c, the convergence speed increases with the volume fraction. At ∆ = 2s, we can still see non-Gaussian tails which fade away as φ v increases. In their experimental study on 2D suspensions, [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] measured the excess kurtosis, γ 2 (if γ 2 = 0 the distribution is a Gaussian), for various volume fractions (φ v = 0 -7%) along time (∆t = 0 -1s) and obtained similar results on the convergence towards Gaussianity. The convergence to Gaussianity needs to be discussed. According to the theoretical work of [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF] on dilute suspensions, Gaussianity should only arise when the swimmer singularities decay as r -n with n = 1. If n ≥ 2 the fluid velocity distribution, and thus tracer displacements, should deviate from Gaussianity, even at long times. In the dilute case, their results are confirmed by the work of [START_REF] Rushkin | Fluid Velocity Fluctuations in a Suspension of Swimming Protists[END_REF] on dilute suspensions of Volvox (φ v ≤ 1.5%). Their study shows that, when considering only settling forces (n = 1), the fluid velocity fluctuations follow a normal distribution. When accounting for the degenerate quadrupole due to ciliary beating (n = 3), the fluid velocity fluctuations exhibit strong deviations from Gaussianity, as confirmed by experimental data. These studies thus seem to contradict the results that we and Thiffeault (2014) obtain at long times. In his theoretical work, Thiffeault (2014) derived a criterion to achieve Gaussianity. He showed that for spherical squirmers with β = 0.5 (n = 2), the time to reach Gaussianity is ∆t = 3.57, 1.74, 0.8, 0.5s for φ v = 0.4, 0.8, 1.6, 2.2% respectively. These results corroborate our findings on Figure 11.5. A more quantitative study should be performed to clarify the issue of the convergence to Gaussianity with respect to time, swimmer concentration and swimming disturbances.

The effect of volume fraction on tracer displacements will be discussed in Section 11.3. [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] measured the mean squared displacement of tracers along time. They observed that, whichever the volume fraction, the motion of tracers is diffusive: ∆x 2 = 2D ef f t. Figure 11.6 shows that it is not always the case in our simulations. When φ v increases, the diffusive regime is delayed by anomalous transport at short times ∆x 2 ∼ t Θ , 1 < Θ < 2. [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF] and [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] observed similar behavior. Nonetheless our values for the mean squared displacement at ∆t = 2s are very close to the one measured by [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. To evaluate the effective diffusion coefficient, we fit the mean squared displacement to the solution of the Langevin equation derived in [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF] 1 

Mean squared displacement and effective diffusion

∆x 2 = 2D ef f ∆t [1 -exp(-t/τ )] (11.15)
where τ is a characteristic time fitted to obtain a ballistic motion at short times : ∆x 2 ∼ 2 D ef f τ t 2 for t τ , and diffusive behavior at for t τ : ∆x 2 ∼ 2D ef f t. Figure 11.7 compares the effective diffusion coefficient from our simulations with the results of [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] for two different values of D 0 . The one used to match tracers displacements for φ v = 0% is D 0 = 0.34µm 2 s -1 and the one evaluated by [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF] is D 0 = 0.28µm 2 s -1 . We can see that in both cases the simulated values 11.2 Enhanced tracer diffusion in dilute suspensions of micro-swimmers (a) PDF for tracer displacements at times ∆t = 0.06 -2s for φ v = 2.2%. After some time the distributions become Gaussian. ∆x/a PDF match the experimental ones within statistical errors. However, the slope obtained with D 0 = 0.28µm 2 s -1 (D ef f /φ v = 70µm 2 s -1 ) is closer to their measurements (D ef f /φ v = 81.3µm 2 s -1 ) . This result confirms those of [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] which show that, in the dilute regime, the larger the Brownian diffusivity D 0 , the smaller the effective diffusivity D ef f .
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Effect of squirming parameter on tracer dynamics

The value of the squirming parameter β = 0.5 has been chosen for comparisons with [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF] which matched remarkably well the experimental of [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF].

In order to evaluate the effect of long-range swimming disturbances, we set the dipole coefficient to zero (B 2 = 0) to only keep the degenerate quadrupole (also called sourcelet by [START_REF] Rushkin | Fluid Velocity Fluctuations in a Suspension of Swimming Protists[END_REF]). The resulting squirming parameter is β = 0. Here the Brownian diffusivity is set to D 0 = 0.28µm 2 s -1 . As shown on Figure 11.8, the statistics on tracer motion are not too far from those corresponding to β = 0.5. With pure quadrupolar disturbances, the tails of the PDF for tracer displacements are clearly underestimated and the Gaussian core is also more narrow (cf. Figure 11.8a). The tails do not follow a clear power-law decay as for β = 0.5 (not shown here). We conclude that the dipoles act both to broaden the Gaussian core and increase large displacement events. The mean squared displacement shown on Figures 11.8b and 11.8c exhibits a clear diffusive behavior. Though lower than for β = 0.5, the effective diffusion coefficient D ef f is in agreement with 11.2 Enhanced tracer diffusion in dilute suspensions of micro-swimmers
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/s] All previous studies on enhanced tracer diffusion in active suspensions focused on dipolar disturbances. Here we show that, even though underestimated, the statistics on tracer displacements follow the same trend with pure quadrupolar disturbances. Non-Gaussian tails are still present and the effective diffusion coefficient is in the range of experimental data. Again, such agreement can be explained by entrainment. In their study, Pushkin et al. (2013) showed that the volume of entrainment, also called Darwin drift, is constant for |β| ≤ 1 and equal to half of the swimmer volume v ent = 0.5v s . As postulated in Pushkin and Yeomans (2013), entrainment plays a predominant role in the enhanced diffusion of tracer at times shorter than the characteristic reorientation time. As shown in Section 9.3, β = 0 is also relevant for self-propelled micro-droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF][START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF] and autophoretic particles (Michelin et al. (2013)).

Effect of time-dependence of the swimming gait on tracer displacements

Given the low volumetric fraction of the suspension it is probable that the time-dependent model for C. Rheinardtii, developed in Chapter 3, provides similar results to the steady stroke-averaged case. In their theoretical study, [START_REF] Dunkel | Swimmer-tracer scattering at low reynolds number[END_REF] showed that in the dilute regime, time-dependent and stroke-averaged swimming disturbances provide similar tracer scattering. To test this assumption, we simulate the time-dependent squirmer model for two different values of the stroke-averaged squirming parameter: β = 0.12, corresponding to the fitted value for the two-dimensional data of [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF] in Section 3.2.1, and β = 0.5, corresponding to the value that best matches the results of (a) PDF for tracer displacements for ∆t = 0.12s. Symbols: data from [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. Lines: simulations.
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(c) Log-log plot of the mean squared displacement over time.
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: β = 0.5, steady. : β = 0.12, time-dependent. : β = 0.12, steady. [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. We remind the definition of the time-dependent squirming parameter:

β(t) = B 2 (t)/B 1 (t)
, where B 1 (t) = 3U (t)/2 is the magnitude of the degenerate quadrupole and B 2 (t) the swimming stresslet magnitude. Changing β corresponds to multiplying the stresslet magnitude B 2 (t) by a constant, because the swimming speed U is fixed on average. Figure 11.9 shows the PDF for tracer displacements for both cases and compares with simulations of steady squirmers with β = 0.12 and β = 0.5. When β increases, the PDF slightly broadens as expected. The steady and the time-dependent cases match well for β = 0.12. However the PDF for β = 0.5 exhibits a more narrow core than for the steady case β = 0.5. This small discrepancy needs further investigations to be explained. We conclude that stroke-averaged singularities are well suited to the dilute regime. As shown in Section 10.2, the time-dependence seems to affect the dynamics of the suspension only for φ v larger than φ v = 10%. It will thus be interesting to study the effect of time-dependence on enhanced transport in concentrated suspensions in future works.

Nonlinear evolution of diffusion at higher volume fractions: a preliminary study for an open problem

The range of validity for the linear relationship Eq. (11.4) between the effective diffusivity D ef f and active fluxes nU is difficult to determine. While [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF] showed that the linear scaling holds up to φ v = 10% in two-dimensional films of E. coli, [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] showed that, in a three-dimensional bath containing the same species, the linear trend breaks down for φ v ≥ 2.5%. The two-dimensional films of C. reinhardtii analyzed in [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] exhibit a power-law scaling

D ef f ∼ φ 3/2 v
for a wide range of volume fractions φ v = 0.3 -7%. Suspensions of E. coli are known to display collective dynamics characterized by swirls and jets that enhance the effective diffusivity [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF]; [START_REF] Dombrowski | Self-concentration and large-scale coherence in bacterial dynamics[END_REF]). However, [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] showed that, for similar volume fractions, suspensions of C. reinhardtii, that do not exhibit collective motion, enhance the tracer diffusivity by the same amount. According to the conditional sampling performed by [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF], such nonlinear behavior is due to tracer particle interactions with multiple swimmers. They showed, by measuring an increase of the curvature of the cell trajectories with concentration, that swimmer interactions also have an impact on tracer diffusion. Experimental studies thus reveal that the origins for enhanced diffusion and nonlinearities in concentrated active suspensions are still unclear. To what extent swimmer interactions affect the effective diffusivity of tracers is still unknown experimentally.

Numerical simulations can be of great help to shed light on these questions. The numerical literature on enhanced tracer diffusion in concentrated active suspensions is surprisingly lacking. The only relevant reference is [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF]. In this work, they analyzed the effect of swimmer concentration, swimming gait and tracer size on the effective diffusivity of tracers and swimmers. Their methodology combines Stokesian Dynamics with the Boundary Element Method. Squirmer-squirmer interactions are solved with the Stokesian Dynamics framework developed in [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]. Fluid particle motion is predicted with the Boundary Element Method. To do so, they assume that a fluid particle (tracer) has, at most, two squirmers in the near field. This assumption, though simplistic, reduces the cost of the boundary element calculation which is performed with Ewald summation for periodic systems. However the cost of their method is such that their simulations contain at most 40 squirmers and 60 point-like fluid particles. They did not include thermal fluctuations of point-like fluid particles.. Among the outcomes of their paper, we retain the linear scaling between D ef f and φ v for φ v = 0.5 -15% and β = ±1, ±5. Such results are in contradiction with the aforementioned experiments. Besides, such values for the squirming parameter β are too high compared to real microorganisms. They also showed that the squirmers effective diffusivity decreases as φ -1 v . To address the issue of the tracer size and emulate dead cells, they placed 5 inert spheres of radius a sw among 59 swimmers and revealed that the diffusion coefficient for inert spheres was less than one tenth smaller of that for fluid particles. This result contrasts with the 11.3 Nonlinear evolution of diffusion at higher volume fractions: a preliminary study for an open problem theory of Brownian motion for which the Brownian diffusivity is inversely proportional to the particle radius. They revealed that pullers (β > 0) enhance the tracer effective diffusivity by a factor two compared to pushers (β < 0). Such conclusion cannot be obtained when considering linear superposition of flow fields for dilute suspensions, because the effect of the asymmetry between pushers and pullers on tracer diffusivity only arises from swimmer interactions [START_REF] Lin | Stirring by squirmers[END_REF]; Pushkin et al. (2013); Pushkin and Yeomans (2013); [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF]).

The study of [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF] can be considered as a pioneering work on enhanced diffusion in concentrated active suspensions, and it contains interesting data. However, it suffers severe limitations due to computational cost. The lack of thermal fluctuations may bias their results [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]) and they do not provide comparison with experiments.

The validation with experimental data for dilute suspensions (cf. Section 11.2) and the ability to handle large collection of Brownian objects in a concentrated regime (cf. Chapter 7) suggest that our approach appears as a reliable alternative to shed light on the mechanisms responsible for enhanced diffusion in concentrated active suspensions.

In this section, we use the same value for the squirming parameter β = 0.5 to perform preliminary simulations on concentrated suspensions.

Figure 11.10 shows the time-dependent PDF for tracer displacements P (∆x/a, ∆t) at two different times ∆t = 0.3s and ∆t = 2s for various volume fractions φ v = 0 -15%. Again, we can see that the distributions become Gaussian at long times. The shift of the mean at long times for high volume fraction comes from the onset of polar ordering in the suspension. This effect will be discussed elsewhere. We note that Gaussianity also increases with volume fraction even at short times. This result agrees with Thiffeault (2014) but contradicts [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF] who state that, for φ v < 25%, the distribution due to disturbances of order n ≥ 2 is not Gaussian. [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] also observed an increase of Gaussianity with the concentration at short times. To explain this behavior they remind that the stresslet disturbances decay as r -1 in 2D and use the argument of [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF] which states that, if n = 1, then the distribution should be Gaussian. However, as shown in Section 3.2.1, C. reinhartdii also generate quadrupolar disturbances which decay as r -2 in 2D. According to [START_REF] Rushkin | Fluid Velocity Fluctuations in a Suspension of Swimming Protists[END_REF] and [START_REF] Zaid | Lévy fluctuations and mixing in dilute suspensions of algae and bacteria[END_REF],the distribution should deviate from Gaussianity. Therefore, the origin for Gaussianity in the experiments of [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] is still unclear.

As shown on Figure 11.11a, the linear scaling (D ef f -D 0 )/φ v = const. breaks down for φ v > 2.2%. This result is consistent with the experiments of [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] and [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]. However, we do not observed a clear power-law as in [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]. This can be explained by the fact that our simulations are three-dimensional, while their experiments are carried out in a two-dimensional film with a thickness of the order of the cells' diameter (H ≈ 15 ± 5µm), leading to strong long range disturbances. In 3D, the enhancement is less important than in 2D. For φ v = 5 -10% we have D ef f /D 0 = 11 -22, while [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] measured D ef f /D 0 ≈ 900 for φ v = 7%. Similarly to [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF], we study the effect of swimmer concentration on the ∆x/a swimmers' motion. Figure 11.11b reveals that the mean squared displacement of the swimmers is ballistic for all concentrations. The slope slightly decreases as φ v increases, which means that the swimmer motion becomes diffusive. In this case we believe that longer simulation times are required to reach a diffusive regime to determine their effective diffusivity D ef f,sw . As attempted by [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF], it would be interesting to correlate swimmer motion with tracer diffusion. The conditional sampling performed by [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] could be applied to our numerical data to gain further insight on the effect of simultaneous tracer-swimmer interactions on enhanced diffusion. Figure 11.12 shows the squirmer-tracer pair distribution g(r, θ) for φ v = 2.2 -15%. g(r, θ) corresponds to the likelihood, relative to the uniform distribution, of finding a tracer at radial position r from the swimmer center of mass and forming an angle θ with the swimmer orientation. When the concentration increases, collisions on the head are more frequent and the volume carved out at rear of the swimmer is drastically reduced. In terms of nutriment uptake, the concentrated regime is thus clearly more advantageous.

φ v =0.0% φ v =0.8% φ v =2.2% φ v =5.0% φ v =10.0% φ v =15.0% ( 
PDF φ v =0.0% φ v =0.8% φ v =2.2% φ v =5.0% φ v =10.0% φ v =15.0% ( 
11.3 Nonlinear evolution of diffusion at higher volume fractions: a preliminary study for an open problem

φ v [%] D eff [a 2
/s] 

φ v =0.4% φ v =0.8% φ v =1.6% φ v =2.2% φ v =5.0% φ v =10.0% φ v =15.0% 1 

Conclusions

Our preliminary simulations of tracer diffusion in dilute and concentrated active suspensions are conclusive. We compared our results with experimental [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]) and theoretical studies [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF]) on dilute suspensions. The agreement on the PDF for tracer displacements and effective diffusion coefficients is quantitative. We confirmed the predominant role of entrainment on enhanced diffusion in dilute suspensions (Pushkin and Yeomans (2013)). We showed that the non-Gaussian tails disappear with time. When the number of kicks due to tracer-swimmer interactions increases, the Central Limit Theorem applies and tracer displacements follow a Normal distribution.

For the first time it is possible, thanks to our numerical method, to address the complex problem of nonlinear enhancement of diffusion in concentrated suspensions. To the best of our knowledge, no other theoretical and numerical study report similar results. We showed that the Gaussianity of the PDF for tracer displacement increases with swimmer concentration. We recover the nonlinear dependence of the effective diffusion coefficient with respect to φ v , which was highlighted by experimental studies [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]; [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]). Interestingly, [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] attribute the nonlinear behavior at high concentration (1.6 × 10 10 cells per milliliter) to the onset of collective motion, which contrasts with [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF], who studied E. coli as well, and observed a linear dependence for concentrations more than three times higher (up to 5.4 × 10 10 cells per milliliter) in two-dimensional films.

In the near future, we expect to perform simulations of concentrated suspensions which correspond to a real-world problem. Reproducing the experimental setup of [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] should not require significant efforts. We have shown in Chapter 7 that we can reproduce the slip boundary conditions that apply on liquid films and, as shown in Section 11.2, our squirmer model is well fitted to C. reinhardtii. We will include the timedependent model developed in Chapter 3. Its singularities were fitted on micro-swimmers in a similar environment [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]. By doing so, we hope to evaluate the influence of the time-dependence on tracer statistics. Such simulations, together with appropriate statistics, should be helpful to identify the sources for enhanced transport and nonlinearities in concentrated active suspensions, which is still an open question.

Chapter 12

Conclusions: a closer step towards experiments and continuum models.

Part III has shown that the framework developed along this Ph.D thesis is able to address the multiscale physics of active suspensions.

Conclusions and future directions

In Chapter 10 we performed large-scale simulations of squirmer suspensions. The instability arising for elongated swimmers is numerically reproduced and the effect of timedependent singularities on the orientational order investigated. For the first time, the dynamics of the polar ordering instability have been characterized. Results for β = 0 reveal that the short range disturbances due to the degenerate quadrupole are responsible for alignment during pairwise interactions, in agreement with [START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF]. We showed in Section 9.3 that the disturbances around a self-propelled micro-droplet correspond to those of a degenerate quadrupole. Our study thus provides a robust physical explanation for the strong orientational correlations observed in suspensions of self-propelled micro-droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF]). Using orientational correlations could be useful for the controlled transport of molecules and colloids in micro-fluidic systems [START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF]). Indeed, clusters of co-oriented droplets can carry much more than an isolated one.

In Chapter 11 we combine the tools elaborated in Chapter 6 with the fluctuating FCM framework developed in Chapter 7 to address the issue of enhanced diffusion in active suspensions. We simulated the real-world problem of tracer diffusion in dilute suspensions of C. reinhardtii and obtained quantitative agreement with experiments [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]) and theory [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF]). We recovered the linear dependence between diffusion and swimmer concentration and confirmed the predominance of entrainment. Preliminary simulations of more concentrated suspensions provide promising results with the hope to unveil the mechanisms at play in the nonlinear diffusive regime of tracers. Our goal is to reproduce the experiments of [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] to explain the power-law observed between tracer diffusion and swimmer concentration. [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF] revealed that the effective diffusion of tracers depends on their Brownian diffusivity. They showed that bacteria induced mixing is in general smaller for smaller tracers with relatively large Brownian diffusivity. They conclude that bacteria induced mixing is irrelevant for small molecules. [START_REF] Miño | Enhanced diffusion due to active swimmers at a solid surface[END_REF] observed a scaling similar to Brownian diffusion for 1µm and 2µm beads D ef f (d = 2µm) = 0.5D ef f (d = 1µm). [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF] obtained a different behavior when comparing the diffusion of tracers and inert swimmers. [START_REF] Jepson | Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria[END_REF] analyzed the motion of non-motile cells in active suspensions. According to these studies, the diffusivity of passive particles seems to follow various behaviors which depend on their size. The influence of particle size must be investigated both in the dilute and concentrated regimes. It is also worth examining the impact of the swimming gait on tracer diffusion. According to [START_REF] Ishikawa | Fluid particle diffusion in a semidilute suspension of model micro-organisms[END_REF], pullers enhance tracer diffusion twice more than pushers, which contradicts the comparisons between [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] and [START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF]. Numerical methods accounting for hydrodynamic interactions can differentiate the pusher and puller cases, whereas the models of Pushkin andYeomans (2013, 2014) or [START_REF] Thiffeault | Short-time distribution of particle displacements due to swimming microorganisms[END_REF], which only superimpose velocity fields, cannot.

A continuum model for squirmer suspensions ?

To our knowledge, the squirmer model is absent in the literature of continuum models. The information provided in our large scale simulations of squirmer suspensions, in Section 10.1, could be used to inform such continuum model and compare the dynamics of the polar order instability. It is thus tempting to develop a continuum model for squirmer suspensions. The following discussion provides a few prospects in that direction. Detailed calculations are provided in Appendix G.

Steady state orientation distribution: a Von-Mises-Fischer distribution

As shown in Section 10.1, the polar ordered state is characterized by an axisymmetric orientation distribution Ψ(θ)| p around a mean direction p on the unit sphere. As shown on Figure 12.1, Ψ(θ)| p is well fitted by a Von-Mises-Fischer (VMF) distribution, which corresponds to a periodic Gaussian distribution on the unit sphere. The VMF distribution writes

M p (p) = 1 Z α exp(αp • p ), (12.1)
where Z α is a normalization constant that does not depend on p :

Z α = p ∈S 2 exp(αp • p )dp, (12.2)
where α is related to its width. If α is large, M p (p) is extremely peaked in the direction p = p , while if α is small, M p (p) is almost isotropic.

12.2 A continuum model for squirmer suspensions ? (12.

3)

The function f relating the width of the orientation distribution to the squirming parameter β could either be determined empirically from many numerical simulations or an algebraic expression could be derived with the help of kinetic theory. It would be also interesting to analyze the stability of the steady state VMF orientation distribution. If the continuum model is correct, the stability of the VMF distribution should depend on β for a given α or vice versa.

Steady state polar order parameter P ∞ arises naturally in the VMF distribution

This section shows that the steady state polar order parameter P ∞ measured in our simulations arises naturally as the first moment of the VMF distribution [START_REF] Degond | A hierarchy of heuristic-based models of crowd dynamics[END_REF]). We define

p ∈S 2 M p (p)pdp = m 1 p , (12.4) 
where

m 1 (α) = 1 Z α p ∈S 2 exp(αp • p )(p • p )dp. (12.5)
The quantity m 1 (α) does not depend on p and satisfies 0 ≤ m 1 (α) ≤ 1. Small values of m 1 (α → 0) correspond to VMF distributions close to the isotropic distribution, while values of m 1 close to 1 (α → ∞) correspond to VMF distributions close to Dirac delta functions. Therefore, the parameter m 1 measures the degree of alignment of an ensemble of particles whose orientation p is statistically defined by M p . m 1 exactly corresponds to the polar order parameter P ∞ that we measured in our simulations. An algebraic expression for m 1 (α) is derived in Appendix G.

Including time-dependent swimming in continuum models

Conclusions and future directions.

Summary of results

Over the course of this thesis we have developed a tool which performs large scale simulations to address the multiscale physics of active suspensions. We have also investigated the dynamic response of a population of squirmers and its ability to stir fluid and enhance the diffusion of passive Brownian particles.

In Part I, we started at the microscale of an individual swimmer. First, we investigated the bead model with the aim of modeling the swimming mechanisms of individual motility. In Chapter 2 we proposed several improvements for the bead model to simulate active and passive objects subject to various actuation mechanisms within a unified and versatile framework. We validated our approach with theoretical and experimental results of the literature on passive and active particles and showed that it can achieve a better numerical stability than many other methods. Quantitative agreement with previous works is obtained for both slender objects (fibers, actuated filaments) and non-slender swimmers (C. Elegans), allowing its use in a wide variety of contexts. When compared with other formulations of the bead model, our gears model is also more stable by two orders of magnitude in time-step, a drastic improvement which offers nice prospects for the modeling of complex flexible assemblies. Even though the bead model and equivalent approaches accurately reproduce the detailed features of swimming micro-organisms (modeling of complex micro-organisms, membranes or cytoskeleton micro-mechanics), including them in simulations containing thousands of individuals is too costly. In Chapter 3 we developed an extension of the force-coupling method to use the squirmer model, originally a mesoscopic model for ciliary propulsion. We made its singularities time-dependent in order to reproduce the oscillatory flow around breaststroke swimmers. We developed an automated framework to tune their magnitude along time using direct flow field measurements around real micro-organisms [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]; [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]). The agreement with the oscillatory flow around the algae C. reinhardtii [START_REF] Guasto | Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions[END_REF]) is very good.

Part II aimed at extending the mesoscopic models developed in Part I to large scale simulations, while preserving the same level of accuracy at the scale of the swimmers. The goal was also to account for Brownian motion which plays a significant role for the motility of small micro-swimmers and for the transport of small suspended particles like molecules or colloids. In Chapter 6 we set up a tool which uses the capability afforded by the force-coupling method to simulate large collections of squirmers in the framework of High Performance Computing. The efficient parallelization of contact forces combined with a highly scalable fluid solver permit to handle O(10 4 -10 5 ) interacting squirmers. The major strength of the code is that it provides accurate results which compare well with the more sophisticated Boundary Element Method while scaling linearly with the number of swimmers in terms of computational cost. In order to incorporate Brownian motion in our simulations with a minimal additional cost, we used the framework of fluctuating FCM for colloidal suspensions to propose a new integration scheme: the Drifter-Corrector (Chapter 7). This scheme accounts for the drift terms arising in the overdamped limit of Langevin equations for particle motion with only one additional Stokes solve per time-step compared to deterministic simulations. We validated our approach with the literature and showed the ability of the method to simulate colloidal gelation and aggregation at scales, which, to our knowledge, had never been reached before for such systems.

Finally, we used our tool to investigate the dynamics of active matter in Part III. In Chapter 10 we focused on collective motion in active suspensions. We showed the capability of the method to simulate ellipsoidal bodies and to recover the well-known instability of the isotropic state for elongated swimmers. We also characterized the polar order instability observed in squirmer suspensions and between interacting micro-droplets [START_REF] Thutupalli | Swarming behavior of simple model squirmers[END_REF]). We showed that this instability increases exponentially along time and that its growth rate corresponds to O(10 2 ) pairwise interaction times. We also detailed the physical phenomena which trigger the evolution of strong orientational correlations observed in these suspensions: polar order arises uniformly in the suspension because of successive pairwise short range interactions which align particle together due to the rapidly decaying disturbances of the degenerate quadrupole. Understanding and predicting these orientational correlations is important for the transport of particles in such systems [START_REF] Izri | Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion[END_REF]). We also gave examples of the new implementation of time-dependent swimming gaits developed in Chapter 3. Preliminary results from large scale simulations with our time-dependent model revealed that the phase shift between micro-organisms has an influence on the orientational correlations. In Chapter 11, we combined the numerical tools developed in Part II to investigate the transport and mixing properties of active suspensions. We validated our model with experimental measurements of tracer displacements and effective diffusivity in the dilute regime, φ v = 0.4 -2.2% [START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]). Our results also confirmed the theory for dilute suspensions. Preliminary simulations for more concentrated regimes, φ v = 5 -15%, recover the nonlinear response of the tracer effective diffusivity observed in experiments [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF]; [START_REF] Kasyap | Hydrodynamic tracer diffusion in suspensions of swimming bacteria[END_REF]). The origin for such behavior is still unclear. The literature clearly lacks evidences to shed light on the mechanisms at play and to quantify their relative contribution. We strongly believe that our tool is perfectly suited for such study as it has extensively been validated and combines all the ingredients necessary to model and understand these complex phenomena.

Future directions

In the following we list the few ideas disseminated along this thesis and propose future directions.

• Extensions of the mesoscopic time-dependent squirmer model. The model developed in Chapter 3 could be extended to ellipsoidal particles by using the ellipsoidal FCM Gaussian distributions [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF] and Section 10.2.2). Such a model can be carefully tuned by comparing with results from [START_REF] Kanevsky | Modeling simple locomotors in stokes flow[END_REF] and [START_REF] Leshansky | A frictionless microswimmer[END_REF]. The effects of particle aspect ratio on suspension properties can then be explored systematically while still accounting for particle size effects such as Jeffery's orbits. It would also be interesting to explore the singularity parameter space (B 1 (t), B 2 (t)) to invent new swimming gaits and evaluate their efficiency [START_REF] Felderhof | Stokesian spherical swimmers and active particles[END_REF]). By tuning our model to experimental data for a wide zoology of microorganisms (Kiørboe et al. ( 2014)), we could assess the possible differences in collective dynamics exhibited by different species, or even look into how one species might interact with another. Adding phase interactions in the spirit of [START_REF] Fürthauer | Phase-synchronized state of oriented active fluids[END_REF] would better reflect the interactions between swimming appendages. Prey-predator systems or suspensions including various swimming species could therefore be studied. During my Ph.D I have been interacting with Dr. Navish Wadhwa and Pr. Thomas Kiørboe (both at DTU), who investigate the dynamics of such systems in marine environments. Their experimental works could provide good data for comparisons and their expertise in the field would be valuable as well.

• Bead Model for active and passive flexible objects in turbulent flows. As mentioned in Chapter 4, our work on the motion of flexible fibers in cellular and turbulent flows started recently. Comparisons with the literature on cellular flows [START_REF] Young | Stretch-coil transition and transport of fibers in cellular flows[END_REF]; [START_REF] Quennouz | Transport and buckling dynamics of an elastic fibre in a viscous cellular flow[END_REF]) provided conclusive results. We are currently working on the bending dynamics of long fibers in a homogeneous isotropic turbulence to investigate the effect of eddy size on fiber conformation. Preliminary results provide encouraging perspectives for direct comparisons with the experimental measurements of [START_REF] Brouzet | Flexible fiber in a turbulent flow: A macroscopic polymer[END_REF]. In their paper, they draw an analogy between the Brownian effect of the solvent on polymers and the random forcing of homogeneous isotropic turbulence on flexible fibers. Such comparison makes a direct connection with our work on Brownian motion. It would also be interesting to investigate the dynamics of active filaments, or more complex shapes, in turbulence. The competition between the turbulent forcing at various scales, the body elasticity and the swimming gait could result in unexpected and original behaviors. For instance, the work of [START_REF] Durham | Turbulence drives microscale patches of motile phytoplankton[END_REF] suggests that the coupling between motility and shear generates patchiness of phytoplankton. Our simulations could shed light on the mechanisms at play in such phenomena and show how micro-swimmers modulate their swimming speed or flagellar stroke to control their

Conclusions and Future Directions aggregation rate in turbulent flows.

• Colloidal science in general. It is important to stress that the framework developed over the course of this thesis does not only apply to active suspensions but also to polydisperse colloidal suspensions in general. For instance, the role of hydrodynamic interactions in aggregation and gelation processes is still controversial [START_REF] Yamamoto | On the role of hydrodynamic interactions in colloidal gelation[END_REF]; [START_REF] Furukawa | Key role of hydrodynamic interactions in colloidal gelation[END_REF]; Whitmer and Luijten (2011); [START_REF] Cao | Hydrodynamic and interparticle potential effects on aggregation of colloidal particles[END_REF]). It would therefore be interesting to continue on the simulations performed in Chapter 7 to evidence the effect of hydrodynamic interactions on the dynamics of these processes. We have shown in Chapter 7 that adding the stresslets slows down the aggregation of particles interacting with depletion forces.

Investigating the influence of interaction potentials would also reflect the wide variety of materials and solvents involved in experiments. At larger scales, it would be interesting to study the effect of the computational domain size on the final number of clusters in the suspension. Last but not least, we have the ability to simulate a whole gel made of many large clusters. Adding active particles in such intricate structures could help understanding the issue of swimming motility in complex media such as biofilms. To conclude on this topic, our tool can handle polydisperse suspensions of colloidal particles subject to Brownian motion at large scales. Therefore, many issues related to colloidal science could be efficiently addressed with our method.

• Brownian ellipsoids. The Brownian motion of anisotropic objects has recently drawn the attention of the scientific community [START_REF] Han | Brownian motion of an ellipsoid[END_REF]; [START_REF] Delong | Brownian dynamics of confined rigid bodies[END_REF][START_REF] De Corato | Hydrodynamics and brownian motions of a spheroid near a rigid wall[END_REF]; [START_REF] Cichocki | Brownian motion of a particle with arbitrary shape[END_REF]). A preliminary work with Pr. Keaveny on the adaptation of the Drifter-Corrector to Brownian ellipsoids has proved the feasibility of the method. However, our scheme still needs additional tests. In Chapter 10 we have proved the ability of the FCM to handle suspensions containing O(10 3 ) spheroidal swimmers. Adding thermal agitation in suspensions of passive and/or active ellipsoids could be done within the same framework. For instance, the aggregation in suspensions of Brownian ellipsoids would exhibit preferential configuration and such suspensions would yield anisotropic responses.

• Speed-up FCM simulations for polydisperse suspensions. In FCM simulations, the size of the smallest particles is limited by the grid cell size (5 to 6 grid points are required for adequate resolution). Therefore, when simulating polydisperse suspensions with the force-coupling method, the force distributions of the largest particles are overresolved. Adaptive mesh refinement (AMR) would be the best solution but unfortunately this technique is not compatible with our fast spectral solver. If FCM was plugged in a code using AMR, coupled, for instance, to a finite-volume solver, simulations of polydisperse systems, such as tracer/swimmers suspensions, would be faster. The Immersed-Boundary-AMR (IBAMR) code devel-oped at Courant Institute, which also handles fluctuating hydrodynamics, could be a good alternative.

• Run-and-tumble vs. trajectory curvature vs. rotary diffusion vs. Brownian diffusion. These terms refer to intrinsic swimming properties of microorganisms. They frequently appear in the literature of active suspensions. However, they are usually added up or inserted in a phenomenological diffusion coefficient. Therefore the effect of each of these term on the dynamics of active suspensions is still unclear. For instance, the algae C. reinhardtii is known to follow curved helical trajectories, due to an "intrinsic torque" (Bearon ( 2013)). But after some time (approximately 10s), the phase slip between its flagella creates a random reorientation which can be associated to a run-and-tumble behavior at long times. The term of rotary diffusion refers to the noise in the swimming pattern that creates random reorientations, which, for the same time scales, should be equivalent to the runand-tumble behavior. What makes the coupling between these terms even harder to decipher is the Brownian diffusivity, which, for small swimmers such as E. coli plays a significant role in random reorientations [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF]). Our tool includes all the features necessary to investigate the relative effect of each term on the dynamics of active suspensions.

• Investigate the nonlinear response of enhanced tracer diffusion in active suspensions. As mentioned in the conclusions of Chapter 11, our tool can simulate the experiments of [START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] with no additional efforts. We should therefore be able to shed light on the mechanisms at play in the power-law observed between tracer diffusion and swimmer concentration. Whether this nonlinear response comes from the long-range nature of hydrodynamic interactions in thin films or from near field events has to be determined. Similar configurations should be simulated with our ellipsoidal swimmers in order to study the transport properties in suspensions of elongated micro-organisms such as E. coli or sperm cells. 9.410 0.999 Table A.2: ROS and velocity of a tilted passive/active spheroid in a shear flow u ∞ = γz x with γ = 5. β is the squirming parameter, θ = cos -1 (p • x) and U = 1. where Y n;k is the position of particle n at time t k = k∆t. Vn;k is its a priori velocity, i.e. before the projection step. To avoid particle overlapping, the particle velocities are projected onto the set

β θ max (|E|) max (|E -K|) max (|E * |) (V -W -γz x) • p/U Passive π
K lin (Y k ) = V ∈ R 3Np , d nm (Y k ) + ∆tG nm (Y k ) • V ≥ 0, ∀n < m . (B.2) d nm (Y k ) = Y k n -Y k m -2a
, is the surface-surface distance between particle n and m at time t k , and a their radius1 .

G nm (Y k ) = ∇d nm (Y k ) = (• • • , 0, -e nm , 0, • • • , 0, e nm , 0 • • • ) , e nm = Y m;k -Y n;k Y m;k -Y n;k (B.3)
is the gradient of the distance. K lin (Y k ) results from the linearisation of

K(Y k ) = V ∈ R 3N , d k nm (Y k + ∆tV) ≥ 0, ∀n < m . (B.4) According to Maury (2006), K lin (Y k ) ⊂ K(Y k ), which means that K lin (Y k ) is more "constraining" than K(Y k
), and thus ensures that particles with admissible velocities at time t k do not overlap at time t k+1 .

Constraining the particle velocities results in solving a saddle-point problem, by using the introduction of Lagrange multipliers

Find V k , Λ k ∈ R 3Np × R Np(Np-1)/2 + , J V k , λ ≤ J V k , Λ k ≤ J V, Λ k , ∀ (V, λ) ∈ R 3Np × R Np(Np-1)/2 + , (B.5)
with the following functional

J (V, λ) = 1 2 V -Vk 2 - 1≤n≤m≤Np λ nm d nm (Y k ) + ∆tG nm (Y k ) • V . (B.6)
The number of Lagrange multipliers corresponds to the number of contacts. If there is no contact between particles n and m, then Λ nm = 0 and the Lagrange multiplier is not activated. Conversely, if there is a contact between the two spheres, then Λ nm is positive and the corresponding auxiliary field allows the velocity field to satisfy the non-overlapping constraint.

The problem (B.5) is solved with an Uzawa algorithm.

B.1 Formulation and algorithm

B.1.2 Algorithm

The set of admissible velocities, K lin , can be rewritten in matrix form [START_REF] Lefebvre-Lepot | Modélisation numérique découlements fluide/particules[END_REF])

K lin (Y k ) = V ∈ R 3Np , ∆tB k V -D k ≤ 0 (B.7)
where

B k =    . . . -G nm (Y k ) . . .    ∈ R 3Np×Np(Np-1)/2 , (B.8)
and

D k =    . . . -d nm (Y k ) . . .    ∈ R Np(Np-1)/2 . (B.9)
The corresponding Uzawa algorithm at time k is [START_REF] Benzi | Numerical solution of saddle point problems[END_REF]):

Algorithm 1 Given Vk , D k and B k , 1. λ 0 ∈ R Np(Np-1)/2 , W 0 = Vk 2. While D k -∆tB k W l < -ε uza (a) W l+1 = Vk -∆t(B k ) T λ l (b) λ l+1 = Π R Np(Np-1)/2 + λ l -ρ uza D k -∆tB k W l+1 (c) l = l + 1 3. V k = W l+1
ρ uza is a parameter empirically tuned. It can be optimized to increase the convergence speed of the algorithm while preserving numerical stability. Its value depends monotonically on the time step ∆t. ε uza is the tolerance of the non-overlapping constraint. Π R Np(Np-1)/2 + is a projection operator which sets the negative components of the projected vector to zero.

There are different ways to optimize and parallelize the algorithm described above (cf. [START_REF] Lefebvre-Lepot | Modélisation numérique découlements fluide/particules[END_REF]). But the goal of this appendix is to provide a short proof of concept to discuss the pros and cons of this method. a V /a L/a N p φ a ∆tV /a ρ uza ε uza 1 1 20 80 0.63 0.1 35 10 -6 , 10 -3 , 10 -2 Each particle n move in straight line along a director p n , which never changes along time, with a velocity V n = V p n . We set V = 1a.s -1 for simplicity. The computational domain is periodic box of size L.

Only contact will make particle change their otherwise straight trajectory.

For the sake of conciseness, only a two-dimensional case is presented here. Denote φ a the area fraction

φ a = N p πa 2 L 2 , (B.10)
where N p is the number of particles and a their radius. To illustrate the ability of the method to handle numerous simultaneous contacts, we set a high area fraction φ a = 0.63. Table B.1 summarizes the parameters used for the simulation. The time-step is chosen very large to illustrate the robustness of the method to prevent overlapping between particles even for such high area fraction.

Figure B.1 shows the simulated system at four different times t = 10, 20, 30, 40s, for ε uza = 10 -6 . One can see that particles, even though densely packed, do not seem to overlap.

We quantify the robustness of the algorithm by measuring the minimal surface-surface distance min d nm at each time step. As shown on Figure B.2, this quantity is dictated by the tolerance on the overlapping constraint ε uza .

For a given, supposedly optimal, ρ uza , diminishing ε uza increases the number of Uzawa iterations per time step (cf. Figure B.3).

One of the major strength of this method is the absence of limitation on the time step due to numerical stability. If one had used a short range stiff repulsive force to prevent overlapping with the same time step ∆tV /a = 0.1, the simulation would have failed after a few iterations.

B.2.2 Initializing Dense Random Suspensions

One can also use this method to initialize a random suspension of spherical object.

The procedure is simple: The cost of the procedure, a few Uzawa iterations (cf. Figure B.5), is much smaller than the usual random seeding of particles, which requires a tremendous amount of random number generator calls, and whose rate of success diminishes with increasing packing fraction. This problem is recurrent in the simulations of highly concentrated suspensions (e.g. Vázquez-Quesada et al. ( 2014)) and could be fixed with the algorithm proposed by [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF].

To impose the slip condition, we would like then for the fluid flow resulting from the fluctuating stress to have the following statistics ũ(x) = 0 (C.6) ũ(x)ũ T (y) = 2k B T L(x, y).

(C.7)

We show here that this is achieved by having

P ij (x) = 0 (C.8) P ij (x)P kl (y) = 2k B T ∆ ijkl δ(x -y) + 2k B T Γ ijkl δ(x -Y).
(C.9)

where

∆ ijkl = δ ik δ jl + δ il δ jk (C.10) Γ ijkl = γ ik γ jl + γ il γ jk . (C.11)
We notice that the fluctuating stress is L-periodic in each of the three dimensions. We can therefore use Fourier series to obtain the flow resulting from the fluctuating stress.

We define the Fourier transform as

g(x) = k ĝ(k)e ik•x (C.12)
and, consequently,

ĝ(k) = L -3 ˆΩ ĝ(x)e -ik•x d 3 x. (C.13)
The flow in Fourier space is given by ûi

= 1 ηk 2 δ ij - k i k j k 2 ik l Pjl . (C.14) and, therefore, ûi (k)û n (q) = -k l q r η 2 k 2 q 2 δ ij - k i k j k 2 δ np - q n q p q 2 Pjl (k) Ppr (q) . (C.15)
From the definition of the Fourier transform and Eq. (C.9), we find that

Pij (k) Pkl (q) = 2k B T L -3 ∆ ijkl δ q,-k + 2k B T L -3 Γ ijkl δ q,K , (C.16)
where K = -γk. Using this expression in (C.15) and the fact that

K 2 = k 2 , we find ûi (k)û n (q) = 2k B T ηL 3 k 2 δ in - k i k n k 2 δ q,-k + 2k B T ηL 3 k 2 γ in + k i K n k 2 δ q,K .
(C.17)

In real space, the flow correlations are then

u i (x)u n (y) = k =0 q =0 2k B T ηL 3 k 2 δ in - k i k n k 2 δ q,-k e ik•x e iq•y + k =0 q =0 2k B T ηL 3 k 2 γ in + k i K n k 2 δ q,K e ik•x e iq•y . (C.18)
Performing the sum over q for each term, we have

u i (x)u n (y) = k =0 2k B T ηL 3 k 2 δ in - k i k n k 2 e ik•(x-y ) + k =0 2k B T ηL 3 k 2 γ in + k i K n k 2 e ik•x e iK•y . (C.19) As K • y = -k • Y, we then have u i (x)u n (y) = k =0 2k B T ηL 3 k 2 δ in - k i k n k 2 e ik•(x-y) + k =0 2k B T ηL 3 k 2 δ in + k i k n k 2 γ jn e ik•(x-Y) .
(C.20)

Writing this expression slightly differently as,

u i (x)u n (y) = 2k B T L 3 k =0 1 ηk 2 δ il - k i k l k 2 δ lj e -ik•y + γ lj e -ik•Y e ik•x , (C.21)
we immediately see that

u i (x)u n (y) = 2k B T L in (x, y) (C.22)
as desired.

Chapter D : Error expansion for the Drifter-Corrector

Ũk+1/2 α = Ũk α + ∆t 2 ∂ Ũk α ∂Y β Ũk β + ∆t 2 8 ∂ 2 Ũk α ∂Y γ ∂Y β Ũk β Ũk γ + O(∆t) (D.9) Ṽk+1/2 α = Ṽk α + ∆t 2 ∂ Ṽk α ∂Y β Ũk β + ∆t 2 8 ∂ 2 Ṽk α ∂Y γ ∂Y β Ũk β Ũk γ + O(∆t) (D.10) F k+1/2 α = F k α + ∆t 2 ∂F k α ∂Y β Ũk β + ∆t 2 8 ∂ 2 F k α ∂Y γ ∂Y β Ũk β Ũk γ + O(∆t 3/2 ) (D.11) M VF ;k+1/2 αβ = M VF ;k αβ + ∆t 2 ∂M VF ;k αβ ∂Y γ Ũk γ + ∆t 2 8 ∂ 2 M VF ;k αβ ∂Y γ ∂Y δ Ũk δ Ũk γ + O(∆t 3/2
). (D.12)

where we have used Greek letters to index the vectors and mobility matrices and the convention that their repetition implies summation. The expansions for T k+1/2 and M VT ;k+1/2 F CM -S are identical to those for F k+1/2 and M VF ;k+1/2 F CM -S , respectively. For clarity, we have dropped the label "F CM -S" for the mobility matrices involved in the expansion. We also have that showing that the second moment is also recovered to first order in time.

D.0.1 Simplified scheme for periodic, no-slip, and no flux boundary conditions

From the analysis above, we see that the inclusion of v k is needed to generate a first-order approximation of ∇ Y • Ũ in order for the scheme to account for the divergence of the mobility matrix. If, however, we have that ∇ Y • Ũ = 0, then we may set v k = 0. We show here that this is the case when periodic, no-slip, or no flux boundary conditions are imposed at the fluid boundary. We begin by noticing that the contribution to ∇ Y • Ũ from particle n is

∂ Ũ n i ∂Y n i = ˆũ i ∂∆(x -Y n ) ∂Y n i d 3 x = -ˆũ i ∂∆(x -Y n ) ∂x i d 3 x = - ˆ∂ ∂x i (ũ i ∆(x -Y n )) d 3 x + ˆ∂ ũi ∂x i ∆(x -Y n )d 3 x. (D.25)
the collection of deterministic (resp. random) rotational velocities The second terms on the right hand side of Eq. (E.1) and Eq. (E.2) contain the translational (resp. rotational) drift terms. Based on the spherical shape of the swimmers, Eq. (E.1)-(E.2) can be further simplified.

E.2 Langevin equation for the rotational motion of spherical swimmers

Due to the sphericity of the swimmers the torque-velocity and the torque-rotation mobility matrices do not depend on particles' orientation: The equation for translational motion, Eq. (E.5), is integrated with the Drifter-Corrector developed in Chapter 7. Here we focus on the integration of Eq. (E.6).

P
Consider two swimmers m and n. One easily verifies that ∂P n ∂p m = 0 if m = n. Therefore the second drift term on the right hand side of Eq. (E.6) can be computed separately for each body n = 1, .., N p as if it was isolated. Indeed where µ r = (8πηa 3 ) -1 is the rotational self-mobility coefficient for a spherical particle of radius a. For the sake of simplicity we drop the particle superscript n in the following equation. In this context, we can develop this drift term: 

E.3 Integration scheme for swimmer orientation

In the following we show that the Euler-Maruyama scheme, combined with a projection step on the unit sphere at each time-step, automatically recovers the Langevin equation Eq. (E.6). In order to combine the scheme for rotation with the scheme for translation, we compute the particle rotations at the midstep (k + 1/2) of the Drifter-Corrector:

P k+1 * α = P k α + ∆tP k αβ W k+1/2 β + Wk+1/2 β (E.10)
where the deterministic angular velocities are given by W k+1/2 = M WF ;k+1/2 F k+1/2 +M WT ;k+1/2 T k+1/2 +M WG;k+1/2 G k+1/2 +M WH;k+1/2 H k+1/2 (E.11)

where F k+1/2 , T k+1/2 , G k+1/2 and H k+1/2 are the collections of force, torque, swimming stresslet and degenerate quadrupole of the active particles at the midstep k + 1/2. The random part reads In the following we only account for the random rotations Wk+1/2 because the deterministic ones W k+1/2 do not contribute to the drift term to first order. First we Taylor expand Eq. (E.15) to first order about t k (we discard terms of order ∆t 3/2 as they vanish when taking the expectation). For the sake of simplicity, we omit the particle index n A fourth parameter is defined as

q 0 = cos φ 2 . (F.2)
From these four quantities (q 0 , q 1 , q 2 , q 3 ), called Euler parameters, we define the unit quaternion q: q = q 0 + e = q 0 e =    

q 0 q 1 q 2 q 3     (F.3)
The euclidean norm of q is constant and obeys the unity constraint:

q 2 = sin φ 2 2 u 2 + cos φ 2 2 = sin φ 2 2 × 1 + cos φ 2 2 = 1 (F.4)

F.2 Application to rotation

Consider a vector v ∈ R 3 . The rotation of this vector can be performed with a unit quaternion q v = q 0 v q * (F.5)

where the quaternion product has been used

q n q m = (q n 0 + e n )(q m 0 + e m ) = q n 0 q m 0 -e n • e m + q n 0 e m + q m 0 e n + e n × e m , (F.6)

In most cases it is more profitable to use unit quaternions instead of three orientation vectors to track orientations.

However, this choice highly depends on the problem one needs to solve. The following numerical study shows that, for some specific cases, unit vectors are better suited.

F.3.1 Numerical schemes for time-integration of unit quaternion

Usually, orientations are integrated with explicit Euler or multistep schemes. These methods rely on Taylor expansions, such that they do not preserve the norm of unit vectors (p T p = 1) or quaternions (q T q = 1). They resort a re-normalization step which may introduce additional numerical errors.

Two main norm-preserving integration schemes for unit quaternions are used in the literature:

1. the scalar factor method (SF), 2. the direct multiplication method (DM).

The goal here is not to provide a detailed derivation of these schemes with their theoretical underpinnings (see. [START_REF] Zhao | A novel quaternion integration approach for describing the behaviour of non-spherical particles[END_REF] for more details).

Both schemes are first order in time. [START_REF] Zhao | A novel quaternion integration approach for describing the behaviour of non-spherical particles[END_REF] proposed a secondorder extension of DM that will not be presented here.

Of course, one could also use linear multistep methods with re-normalizations for unit quaternions. But the goal here is to explore the norm-preserving schemes.

Scalar factor (SF) method

In the scalar factor method, the quaternion at the next time step k + 1 is given by q k+1 = q k + tan δq k δq k δq k cos δq k , (F.14)

where

δq k = ∆t 2 0 Ω k q k . (F.15)
Because the tan function is discontinuous, this method becomes unstable when δq k = π/2. However, in a numerical framework, δq k is not likely to match π/2 exactly, due to numerical round-off errors.

F.3 Tracking orientation: a comparative study

Direct multiplication (DM) method

In the direct multiplication method, the unit quaternion at time level k + 1 is expressed as

q k+1 =     cos Ω k ∆t 2 cos Ω k ∆t 2 Ω k Ω k     q k ,
(F.16)

F.3.2 Comparison with multistep unit vector integration

This section compares the integration schemes listed above with the classic multistep methods used to integrate Eq. (F.10)-(F.12). Two test cases are presented:

1. an oscillating object, with the intent to mimic an object in a oscillating flow (e.g. swimmers in active suspensions), 2. a spheroid undergoing Jeffery's orbit.

Oscillating flow

Consider an object rotating with a prescribed angular velocity

Ω(t) =   0 0 Ω max cos(2πf t).   (F.17)
Ω max is the amplitude and f is the frequency. A unit vector p lying in the x -y plane, is attached to the object. d p is initially aligned with x. In terms of unit quaternion, the initial condition reads

q(t = 0) =     1 0 0 0     . (F.18)
The time step ∆t is chosen so that the object does not rotate more 0.125rad between two time levels: We integrate Eq. (F.10) with multistep methods of increasing order of accuracy: from Explicit Euler (EE) to fourth order Adams-Bashforth (AB4); and re-normalize p at each time step. As mentioned previously, Eq. (F.13) is integrated with DM and SF. Given that both methods produce the same results (not shown here), only the results for DM will be presented. : analytical solution, : p with EE, : q with DM. When using first order integration schemes, both methods produce the same result (Fig. F.2a). Given the time step ∆t, the integration of the unit vector p with AB4 is much more precise (Fig. F.2b), even though the re-normalization procedure does not ensure a O(∆t 4 ) accuracy. Therefore, in the case of an object subject to a rapidly oscillating flow, such as a swimmer among others in a quiescent fluid, it would be preferable to use unit vectors. However, linear multistep schemes are subject to error accumulation, whereas DM and SF are not. This is not visible in this special case because the changes in sign of the prescribed angular velocity are periodically and equally distributed.

Jeffery's orbits are thus a good test to quantify the effect of error accumulation on the solution.

Jeffery's orbit

Consider a spheroid of aspect ratio r in a shear flow u x = γy, where γ is the shear rate.

As shown on Figure F.3, φ is the angle between the principal axis of spheroid and the x-axis.

The time evolution of φ is given by the well-known Jeffery equation [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF]) : analytical solution, : p with AB4, : q with DM.

φ(t) = tan

F.4 How to chose ?

Norm-preserving schemes for quaternion are elegant. They are well suited for situation in which positions are also integrated with first-order schemes. For instance, simulations of oriented objects subject to brownian motion and hydrodynamic interactions provide a perfect configuration for the use of such schemes. 2 In the scope of my Ph.D, unit quaternions could be useful for the simulations of swimmers with fluctuating hydrodynamics, where orientation must be integrated with first order schemes. For the simulations of squirmers in a deterministic flow, the error accumulation with the multistep integration scheme (AB4) is so small that unit vectors seem to be better suited. monokinetic and the Von-Mises-Fischer closures.

the VMF distribution successfully fits to our particle-based simulation results. This closure offers the possibility to study the stability of various base states characterized by their degree of alignment m 1 within a unified framework. We show that the isotropic state is stable for the dipole and that the growth rate of the instability increases with m 1 . The quadrupole do not destabilize the suspension whichever value m 1 takes. We propose future directions to study suspensions of elongated swimmers.

G.1 Basic equations

As a first step we do not consider rotational nor translational diffusion (D r = D t = 0). Denote Ψ (x, p, t) the distribution function of particle position x and orientation p at time t.

The evolution of the distribution is described by a conservation equation

∂ t Ψ + ∇ x • ( ẋΨ) + ∇ p • ( ṗΨ) = 0, (G.1)
where ∇ p = (I -pp) ∂ p denotes the gradient operator on the unit sphere.

For a spherical swimming micro-organism, with speed U p relative to a background flow, the translational velocity is given by ẋ = U p + u, (G.2)

Because the swimmers are spherical, the strain rate E = 1/2 ∇ x u + ∇ x u T do not produce rotation and the time evolution of the orientation reduces to ṗ = Ω • p, (G.3) where u(x, t) is the disturbed velocity field and Ω the antisymmetric part of ∇ x u.

To close the set of equations, the fluid velocity u(x, t) is determined by solving Stokes equations

-µ∇ 2 x u + ∇ x q = ∇ x • Σ, ∇ x • u = 0, (G.4)
where Σ is the stress contribution associated to the micro-swimmers.

Here, we will not consider finite size effects nor steric interaction. We only account for the active stresses arising from the swimming singularities.

When considering squirmers, the swimming stresses arise from two contributions:

• the dipole 

Σ dip = 4 3 πµa 2 B 2 ˆ(

G.2 System entropy

As in [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF], we compute the entropy produced by the swimmers. The total entropy of the system writes S = ¨Ψ Ψ 0 ln Ψ Ψ 0 dpdx, (G.8)

where Ψ 0 = 1 4π is the homogeneous isotropic equilibrium distribution (S = 0 for Ψ = Ψ 0 ), i.e. the simplest solution of Eq. (G.1).

The time evolution of the entropy is given by

Ṡ = d dt ¨Ψ Ψ 0 ln Ψ Ψ 0 dpdx = ¨∂ ∂t Ψ Ψ 0 ln Ψ Ψ 0 dpdx = 1 Ψ 0 ¨ ln Ψ Ψ 0 + 1 ∂ t Ψdpdx (G.9)
Denote Θ = (x, p). Using Eq. (G.1) we obtain

Ṡ = 1 Ψ 0 ˆ ln Ψ Ψ 0 + 1 ∇ Θ • ΘΨ dΘ = 1 Ψ 0 ˆ ln Ψ Ψ 0 + 1 Ψ∇ Θ • Θ + Θ • ∇ Θ Ψ dΘ = 1 Ψ 0 ˆΨ ln Ψ Ψ 0 + 1 ∇ Θ • Θ + ∇ Θ • ΘΨ ln Ψ Ψ 0 -Ψ ln Ψ Ψ 0 ∇ Θ • ΘdΘ = 1 Ψ 0 ˆΨ∇ Θ • Θ + ∇ Θ • ΘΨ ln Ψ Ψ 0 dΘ (G.10)
The second term in the integral integrates to zero. Thus the entropy evolution reads The growth rate of the perturbation is defined as Re(σ) = Re(λ). If Re(σ) > 0 the perturbation grows exponentially in time and the aligned state is thus unstable. If Re(σ) < 0 the perturbation decays exponentially in time and the aligned state is stable.

Ṡ = 1 Ψ 0 ˆΨ∇ Θ • ΘdΘ = 1 Ψ 0 ¨Ψ (∇ x • ẋ + ∇ p • ṗ) dpdx.
To validate our stability result for the dipole, we compare Eq. (G.46) with [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF] Eq. (37). To do so, we need to set their geometric factor to γ = 0 and match their dipole strength α. Figure G.1 shows a perfect match with [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF]. The aligned state is always unstable: Re(σ) > 0, ∀k, θ.

G.4.2 Some algebra

It is possible to derive an algebraic expression for the quantities described above. We develop the results below. We see that m 1 is a monotonically increasing function of α ∈ [0, ∞) onto [0, 1). Therefore there exists a unique solution α such that Eq. (G.62) holds. Since Z α depends on α through Eq. (G.61) and α on m 1 through Eq. (G.62), we will now assume α = α(m 1 ) and Z α = Z(m 1 ). Chapter G : Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures.

G.4.3 Derivation of the reduced equations

Active stress tensors

We first derive the dipolar forcing term 

Σ dip = b 2 c 2 (I -nn) + 1/3 cπ Z α (3nn -I) Z α 2π 1 - 2 α m 1 (α) -b 2 cI = cb 2 1 - 3m 1 (α) α (nn -1/3I) = cb 2 1 - 3m 1 (α) α (nn -1/3I) . (G.67)
The stress tensor arising from the degenerate quadrupole is given by G.4.4 Linear stability analysis

Disturbances

We consider a nearly uniform suspension in which the particles follow a VMF distribution around a direction n = ẑ with a degree of alignment 0 ≤ m 0 < 1. The disturbed quantities read n (x, t) = ẑ + n (x, t), where ẑ • n = 0, m 1 = m 0 + m , c (x, t) = 1 + c (x, t) , u(x, t) = u (x, t), q(x, t) = q (x, t).

(G.72)

We thus have where h 0 = h(m 0 ) and H 0 = dh dm 1 m 1 =m 0 .

v = v 0 + v (G.73) = m 0 ẑ + (m ẑ + m 0 n ) (G.
dh dm 1 = dm 1 dm 1 1 α + m 1 d(1/α) dm 1 = 1 α - m 1 α 2 dα dm 1 = 1 α - m 1 α 2 dm 1 dα -1 = 1 α - m 1 α 2 sinh(α) 2 -α 2 α 2 sinh(α) 2 -1 = 1 α -m 1 sinh(α) 2 sinh(α) 2 -α 2 .
(G.78)

Which yields H 0 = 1 α -m 0 sinh(α) 2 sinh(α) 2 -α 2 .

Similarly we project Eq. (G.89) along ñ/ñ σ ( mẑ j + m 0 ñj + cm 0 ẑj ) ñj /ñ = -ik l g 0 (ẑ l ñj + ñl ẑj ) + (g + g 0 c) ẑl ẑj + h + h 0 c δ lj ñj /ñ In Fourier space, the velocity disturbances arising from Σdip are given by ũi = i b 2 k 2 δ ij - (G.99) where V j = b -1 2 Σ dip jl k l . For any wave vector k normal to the plane ( ẑ, ñ/ñ), we have ũi = 0. Therefore, we only consider wave vectors in the plane k = k (cos θẑ + sin θñ/ñ). There is no contribution along ẑ. We project Eq. (G.100) along ñ/ñ: (G.108)

+ i 2 b 1 m 0 (V j k l -k j V l )
k i k j k 2 V j ,
m 0 Ωij ẑj ñi /ñ = m 0 i 2ñ (ũ i ñi k cos θ -ñk sin θũ j ẑj ) = m 0 i 2ñ i b 2 k 2 V i - k i k j k 2 V j ñi k cos θ -ñk sin θi b 2 k 2 V j - k j k l k 2 V l ẑj = -m 0 b 2 2k 2 ñ [V i ñi k cos θ -V j k j ñ
Again, due to a lack of time, the eigenvalues are computed numerically. Figure G.4 shows the growth rate over θ and k for α = 10 -5 -200 and b 2 = -1, 0, +1. First, we note that the isotropic state (m 1 = 3 • 10 -6 ≈ 0) is always stable, ∀θ, k. This result is coherent with the numerical simulations of [START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF] and [START_REF] Alarcón | Spontaneous aggregation and global polar ordering in squirmer suspensions[END_REF], who showed that for large squirming parameters |β|, and thus for predominant dipoles |B 2 |, the polar order parameter converges to its isotropic value. Second, the growth rate increases with the degree of alignment m 1 . This is also coherent with the literature and our simulation results: when |b 2 |, and thus |β|, increases the steady state polar order parameter P ∞ decreases. Third, the growth rate is linear with b 2 . Inverting the sign of b 2 just inverts the sign of Re(σ) and, as shown on Figure G.4b, Re(σ) = 0 for b 2 = 0. Fourth, we see that the growth rate matches Eq. (G.46) for the aligned case (m 1 = 0.995 ≈ 1). Even though the VMF closure includes an additional degree of freedom, the degree of alignment m 1 , we obtain the same behavior as the monokinetic closure in the limit m 1 → 1.

If we look more closely at the long-wave limit (k = 0), we observe a cosine function whose amplitude seems to depend only on m 1 . Based on the equation for monokinetic closure Eq. (G.47), and on our intuition, we propose the following scaling : proposed scaling Eq. (G.109).

G.5 Conclusions

We have derived the reduced equations for a continuum model which includes the squirmer singularities: the dipole and the degenerate quadrupole. Whichever the closure, we obtained that any degree of alignment is stable with the degenerate quadrupole. Such results are not really satisfactory since we expect to observe unstable non-aligned state due to the aligning properties of the degenerate quadrupole. We suggest that the alignment arises from nonlinear interactions. Further investigations are needed to provide a physical explanation to the instabilities observed for negative values of the degenerate quadrupole.

We have shown that the instability due to the dipole increases with the degree of alignment m 1 , which is consistent with simulations of spherical swimming dipoles. We validated our approach by matching the results of the monokinetic aligned state with the asymptotic limit m 1 → 1. More importantly we have shown that the VMF closure, by including an additional degree of freedom, provides a unified framework to address the stability of various degrees of alignment in active suspensions. Previous works had to resort to different techniques to study either the stability of the aligned state or the isotropic state [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF]), while the VMF closure allows to address both and any intermediary states with the same equations. More work is required to complete this study on the VMF closure. First, we will compute the eigenvalues analytically to provide more insights on the role of each parameter. Second, we will include Jeffery's equations for elongated swimmers in our stability analyses.
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 1 Figure 1: Pathway of the thesis: we first focus on the details of swimming mechanisms, then change scale with mesoscopic models that we incorporate in large scale simulations to address the physics of active suspensions at the lab scale.

Chapter 1 :

 1 Figure 1.1: (a) Ciliary beating pattern decomposed into a power stroke and a recovery stroke. (b) Chlamydomonas reinhardtii uses ciliary beating to perform breaststroke swimming with its anterior appendages. Figure extracted from Leptos et al. (2013).
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 1 Short overview of swimming mechanisms (a) Photograph of Volvox Carteri. The inset shows one pair of cilia in a somatic cell (green dots on the main figure). Figure extracted from Drescher et al. (2010). (b) Mesodinium rubrum with equatorial "belt" of cilia. Figure extracted from Kiørboe et al. (2014).
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 12 Figure 1.2: Examples of micro-swimmers using ciliary propulsion on their surface.
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 13 Figure 1.3: Propagation of bending waves along the flagellum of human sperm in a highly viscous liquid. Figure extracted from Smith et al. (2009)
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 2 Why swimming mechanisms are interesting to study? (a) Magnetic helical swimmer designed by Ghosh and Fischer (2009). (b) Photograph of the lightactivated autophoretic swimmer designed by Palacci et al. (2013). This swimmer is rheotactic (Palacci et al. (2015)). (c) Flow field around a selfpropelled droplet (Thutupalli et al. (2011)).
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 1 Figure 1.4: Examples of artificial micro-swimmers.
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 21 Figure 2.1: The spring model uses a linear spring with stifness k s to keep constant the inter-particle distance.

  2.24) filaments at low Reynolds number.

Figure 2

 2 Figure 2.6: Dependence of the constraints ¯ M / γL on the time step γ∆t, + : gears model, : joint model. Inset: ¯ M / γL with the gears model for a fixed time step given by Eq. (2.37) for different values of γ.

Figure 2

 2 Figure 2.8: Orbit of a flexible filament in a shear flow with BR = 0.04. Temporal evolution is shown in the plane of shear flow. (a) Symmetric "S-shape" of a straight filament, κ eq = 0. (b) Buckling of a permanently deformed rod with an intrinsic curvature κ eq = 1/(100L).
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 2 Figure2.9: (a) Minimal radius of curvature depending on fiber length for several bending ratios.: BR = 0.01, • : BR = 0.03, : BR = 0.04 , : BR = 0.07. (b) Minimal radius of curvature along BR. • : current simulations with aspect ratio r p = 35 and intrinsic curvature κ eq = 0 ; • : current simulations with aspect ratio r p = 35 and intrinsic curvature κ eq = 1/(10L) ; simulation results from[START_REF] Schmid | Simulations of fiber flocculation: Effects of fiber properties and interfiber friction[END_REF] with κ eq = 1/(10L): ( ♦ : r p = 50, : r p = 100, : r p = 150, : r p = 280) ; + : experimental measurements from[START_REF] Salinas | Bending and breaking fibers in sheared suspensions[END_REF], r p = 283.

  01 and C 2 = 0.01. No adjustable parameters are required for gears model.

Fig. 2

 2 Fig.2.11 shows that our simulations agree remarkably well with previous results except slight differences with[START_REF] Li | The sedimentation of flexible filaments[END_REF] in the linear regime B < 100. Using Slender Body Theory,[START_REF] Li | The sedimentation of flexible filaments[END_REF] made the assumption of a spheroidal filament instead of a cylindrical one, with aspect ratio r p = 100, i.e. three times larger than other simulations, whence such discrepancies. The normal friction coefficient (Fig.2.11b ), resulting from hydrodynamic interactions, perfectly matches the value obtained by[START_REF] Keaveny | Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers[END_REF] with the Force Coupling Method. The FCM is known to better describe multibody hydrodynamic interactions. Such a result thus supports the use of the simple Rotne-Prager-Yamakawa tensor for this hydrodynamic system.

Figure 2

 2 Figure 2.11: (a) Scaled vertical deflection A/L depending on the elasto-gravitational number B. • : gears model, ♦ : joint model, : FCM results from Keaveny (2008), : Stokeslets results from Cosentino Lagomarsino et al. (2005), : Slender body theory results from Li et al. (2013). (b) Normal friction coefficient vs. B. • : gears model, ♦ : joint model, : FCM results from Keaveny (2008), : Stokeslets results from Cosentino Lagomarsino et al. (2005).

Figure 2

 2 Figure 2.12: Comparison with experiments and numerical results from Yu et al. (2006). gears model results are superimposed on the original Fig. 3 of Yu et al. (2006). Snapshots are shown for four equally spaced intervals during the cycle for one tail with α 0 = 0.435rad. • : experiment, : linear theory, : non-linear theory, : gears model, a) ζ = 0.5 rad.s -1 , Sp= 1.73. b) ζ = 1.31 rad.s -1 , Sp= 2.2. c) ζ = 5.24 rad.s -1 , Sp= 3.11.

Figure 2

 2 Figure 2.13: Comparison with experiments from Coq et al. (2008). (Insets) Evolution of the filament shape with Sp 4 . Snapshots are shown for twenty equally spaced intervals during one period at steady state. Gray level fades as time progresses. Left inset: δ 0 /L is the distance of the tethered bead to the rotation axis, d/L is the distance of the free end to the rotation axis. (Main figure) Distance of the rod free end to the rotation axis normalized by the filament length d/L. ♦ : experiment, • : gears model with no anchoring distance δ 0 /L = 0, : gears model with δ 0 /L = 0.1 → 0.02 as in Coq et al. (2009).

  Fig. 2.14b). Similarly toLlopis et al. (2013) Fig. 3, our results (Fig. 2.14b) show that antiphase beating enhance the propulsion, whereas in-phase swimming slows the system as swimmers get closer. Even though the model swimmer here is different, the quantitative agreement withLlopis et al. (

Figure 2

 2 Figure 2.14: (a) Simulated wave motion of a swimming model C. Elegans. The nematode swims leftward and gray level fades as time progresses. Motion is shown in a frame moving with the micro-swimmer center of mass. (b) Inset: two C. Elegans beating in the same plane at a distance d in opposite phase (∆φ = π). Nematodes swim leftward and gray level fades as time progresses. Main figure: Swimming speed of the center of mass of the system V normalized by the isolated swimming speed of C. Elegans V * . • : in-phase motion (∆φ = 0) ; : antiphase motion (∆φ = π).

Figure 2

 2 Figure 2.15: Helical swimming of C. Elegans. (Inset) Snapshot for Sp * = 22.6 1/4 and A 2 /A 1 = 1. • : trajectory of the center of mass. (Main figure) Swimming speed of the center of mass V normalized by the planar swimming speed of C. Elegans V * .:A 2 /A 1 = 1, : A 2 /A 1 = 0.5, : A 2 /A 1 = 0 (planar motion),
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Fig. 3 .

 3 Fig. 3.1 shows an example of a flow field given by Eq. (3.14), as well as the flows u B 1 and u B 2 related to the B 1 and B 2 contributions.

Fig. 3

 3 Fig.3.2 shows, Blake's solution Eq. (3.14), and the velocity field provided by Eq. (3.22) with two different values for the degenerate quadrupole Gaussian envelope size, σ Θ and σ Θ /2, that appears in the tensor A. The streamlines are identical, except for a near-field recirculating region that appears when the width of the degenerate quadrupole envelope is σ Θ (Fig.3.2b). In this region, however, the magnitude of the velocity is small compared to the swimming speed. This region should not significantly impact the squirmer-squirmer hydrodynamic interactions that we are aiming to resolve.A quantitative comparison of the velocity field is provided in Fig.3.3. The agreement with Blake's solution is very good for r/a > 1.25 when using σ Θ for the width of the degenerate quadrupole envelope. As shown in Fig.3.3b, the smaller envelope size (σ Θ /2) matches Blake's solution more closely for r/a < 1.2, with clear improvement at the front and rear of the squirmer. For this envelope size, the velocity field induced by the degenerate quadrupole u F CM

Figure 3 Figure 3

 33 Figure 3.2: Velocity field u/U around a puller squirmer (β = 1) swimming to the right. (a) Blake's solution; (b) FCM solution with σ Θ for the degenerate quadrupole envelope. (c) FCM solution with σ Θ /2 for the degenerate quadrupole envelope.

Figure 3

 3 Figure 3.4: a) (B 1 (t), B 2 (t)) phase diagram for one beat cycle. b) Power dissipation Π d (t) over one beat cycle. : FCM, : results from Guasto et al. (2010).

Figure 3

 3 Figure 3.5: Snapshots of the time-dependent flow field around a model Chlamydomonas. Background grey levels represent the natural logarithm of the norm of the velocity field in radii.s -1 . : position of the stagnation point given by the FCM model. : position of the stagnation point measured by Guasto et al. (2010). (Insets) Swimming speed along the beat cycle.

Figure 3

 3 Figure 3.6: Snapshots of the time-dependent (A-F) flow field around a copepod Arcatia tonsa at its naupliar stage. This figure is taken from Wadhwa et al. (2014).

Figure 3

 3 Figure 3.7: Flow field around Arcatia tonsa at different times along the breaststroke. Vector scale is 1/100. The contours represent the norm of the velocity field u /(L/2) Left: experimental data. Right: model.

  -3 -2.5 -2 -1.5 -1 -0.5 Flexible fiber in a cellular flow of Taylor-Green vortices.(b) Flexible fibers in periodic homogeneous isotropic turbulence.

Figure 4

 4 Figure 4.1: Current extensions of the Gears Model (in progress).

Figure 4

 4 Figure 4.2: "Exotic" swimming gaits in the phase space (B 1 (t), B 2 (t)).
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 2 Numerical tools for High Performance Computing6.2.1 Fluid solverThe smoothness of the Gaussian force distributions allows FCM to be used with a variety of numerical methods to discretize the Stokes equations. It has been implemented with spectral and spectral element methods[START_REF] Pivkin | Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi[END_REF];[START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF];[START_REF] Yeo | Simulation of concentrated suspensions using the force-coupling method[END_REF]) and finite volume methods[START_REF] Loisel | The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime[END_REF];[START_REF] Agbangla | Collective dynamics of flowing colloids during pore clogging[END_REF]) in both simple and complex domain geometries.

∼

  Figure 6.1: Scaling of the FCM with the number of squirmers N p . Computational time per time-step versus N p , or equivalently, versus volumetric fraction φ v . N c = 256 cores work in parallel for a cubic domain with 384 3 grid points.

Figure 6

 6 Figure 6.4: The (a) Radial velocity |U r,2 |, (b) Angular velocity |Ω z,2 |, (c) Stresslet component |S xx,2 |, and (d) Stresslet component |S xy,2 | for the inert sphere "2" at a distance r from a puller squirmer (β = 5).

Figure 6 . 6 :Figure 6

 666 Figure 6.6: Trajectories of two squirmers swimming in opposite directions with transverse initial distance δy = 1a, ..., 10a. Lines: data from Ishikawa et al. (2006). Symbols: FCM results.

  .28) the resulting particle velocities are then Ṽ = J [ũ]. (7.29)By examining the velocity corrections explicitly, one can show[START_REF] Keaveny | Fluctuating force-coupling method for simulations of colloidal suspensions[END_REF]) that the particle velocities given by Eq. (7.29) satisfy the fluctuation-dissipation theorem[START_REF] Kubo | The fluctuation-dissipation theorem[END_REF]). For fluctuating FCM, we have that Ṽ ṼT = 2k B T M VT Eq. (7.28) is enforced. A similar result has been shown in the context of the stochastic and fluctuating IBMs[START_REF] Atzberger | A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales[END_REF];[START_REF] Delong | Brownian dynamics without green's functions[END_REF]).

  60) evaluated at the grid points, x = [ x α x β x γ ] T , taking also ∆ n (x) = 0 and Θ n (x) = 0 for |x -Y n | > 3a. To ensure sufficient resolution of f F CM , we take σ Θ /∆x = 1.5 and 108 7.5 Numerical studies σ ∆ /∆x = 1.86. After taking the discrete Fourier transform (DFT) of the total force distribution, we compute the fluid velocity in Fourier space û

Figure 7

 7 Figure 7.1: A comparison between the wall-normal mobility coefficient and the autocorrelation of the wall-normal particle velocity. : 2k B T µ F CM

Figure 7

 7 Figure 7.3: The equilibrium distribution for a Brownian particle subject to the potential U (z). The distribution from simulations is obtained by averaging 10 simulations of 500 non-interacting particles over the time interval t/t Da = 6.526 -391.60. : DC, ♦ : Central RFD with δ = 10 -6 ∆x, • : Gibbs-Boltzmann distribution Eq. (7.74), : Euler-Maruyama Scheme, : Biased Gibbs-Boltzmann ditribution Eq. (7.75). (a) Without stresslets, (b) With stresslet corrections.

Figure 7 . 5 :

 75 Figure 7.5: The radius of gyration R g (t) (in units of ∆x) during the time interval t/t Da = 0 -150. The results are obtained by averaging over 150 independent simulations. : no hydrodynamic interactions; : FCM without stresslets, Euler-Maruyama scheme; : FCM-S, central RFD; : FCM-S, DC.

  Number of bonds per particle N b /N p as a function of t for different values of φ v . Number of clusters in the domain N c as a function of t for different values of φ v .

Figure 7 . 6 :

 76 Figure 7.6: Time evolution of the aggregation process for φ v = 0.04 -0.12 and κ = 4/a.

  State of the suspension at t/t Da = 300 for different values of φ v . The numbers in parentheses correspond to the number of particles in the domain N p . The label "P" indicates that the particles aggregated to form a percolated network, while "NP" indicates that they have not. The snapshots show the suspensions at the final time and N c is the number of clusters in the images (accounting for periodicity).

  (a) t/t Da = 0. (b) t/t Da = 8. (c) t/t Da = 145.

Figure 7

 7 Figure 7.7: Snapshots of the aggregation process for φ v = 0.08 and N p = 3766.

  (a) Bioconvection in suspensions of gyrotactic swimming green algae Chlamydomonas augustae (A,C,D,E) and Dunaliella salina (B).Figure extracted from Bees and Croze (2014). (b) 50 miles long algae bloom off the southern coast of Devon and Cornwall in England. Landsat image from 24th July 1999. This photograph is courtesy of Steve Groom, Plymouth Marine Laboratory.
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 91 Figure 9.1: Bioconvection and gyrotaxis (left) can play a role in the formation of large blooms (Durham and Stocker (2012)) (right).

  Figure 9.2: Meso-scale turbulence in living fluids. Left: bacteria. Right: ram sperm.

Figure 9

 9 Figure 9.3: Sudden clogging due to the exponential growth of biofilm streamers (green fluo) in a microfluidic channel. Figure extracted from Drescher et al. (2013).

Figure 9

 9 Figure 9.4: Experimental observations of stirring in active suspensions.

  Figure 9.5a compares the streamlines generated by a squirmer with β = 0 to those measured by Thutupalli et al. (2011) around a self-propelled droplet. The agreement is very good. Furthermore, the 134 9.3 The role of numerical and theoretical models (a) White streamlines induced by the FCM squirmer model (β = 0) superimposed on the yellow streamlines of the droplet of Thutupalli et al. (2011). The squirmer is aligned with the droplet. (b) Polar ordering in suspensions of self-propelled droplets (Thutupalli et al. (2011)).

Figure 9 . 5 :

 95 Figure 9.5: Active droplets are potential swimmers (a) that exhibit polar ordering (b).

Figure 9

 9 Figure 9.6: (a) Flow field around Volvox. The lower panel compares the experimental flow field with a fit based on a point stresslet, a point source doublet (degenerate quadrupole) and a monopole due to buoyancy forces. Figure extracted from Drescher et al. (2010). (b) Cluster of Volvox moving collectively. Figure extracted from Drescher et al. (2009).

  been studied numerically by[START_REF] Ishikawa | Development of coherent structures in concentrated suspensions of swimming model micro-organisms[END_REF] and[START_REF] Evans | Orientational order in concentrated suspensions of spherical microswimmers[END_REF] using Stokesian dynamics with N p = 64 swimmers for volume fractions φ v = 0.01 → 0.5. Using the Lattice-Boltzmann method,[START_REF] Alarcón | Spontaneous aggregation and global polar ordering in squirmer suspensions[END_REF] observed the same behavior for N p = 2000 and φ v = 0.1.

  t)/P (t).

Figure 10 . 1 :

 101 Figure 10.1: Polar order P (t) in a semi-dilute suspension (φ v = 0.1) of squirmer pullers (β = 1). a) Time evolution of polar order depending on the number of swimmers. : L/a = 14, N p = 64; : L/a = 19, N p = 174; : L/a = 38, N p = 1, 395; : L/a = 58, N p = 4, 707; * : L/a = 77, N p = 11, 158; + : L/a = 116, N p = 37, 659. b) steady-state value P ∞ depending on N p ∼ (L/a) 3 . : fit linear with 1/ N p . (Inset): Dependence of P ∞ with 1/ N p .

Figure 10 Figure 10

 1010 Figure10.2: Snapshots of the orientational state in a semi-dilute suspension (φ v = 0.1) containing N p = 37, 659 swimmers with β = 1. p is the mean steady-state orientation vector on the unit sphere defined in Eq. (10.2). p n • p thus represents the degree of alignment along the mean direction p of swimmer n, n = 1, .., N p .

Figure 10

 10 Figure 10.4: Orientational distribution on the unit sphere Ψ(φ, θ). (a) Distribution before the transition to polar order: t = 90a/U . (b) Distribution once the polar ordered state is reached: t = 1110a/U .

Figure 10

 10 Figure 10.5: Time-averaged steady-state orientational distribution in the frame of the mean unit orientation vector Ψ(θ, φ)| p . (a) Distribution over the unit sphere. (b) : distribution of elevation angle θ averaged over azimuthal angle φ;: uniform distribution Ψ 0 (θ) = 1/π; : distribution of azimuthal angle φ averaged over elevation angle θ;: uniform distribution Ψ 0 (φ) = 1/(2π).

Figure 10 Figure 10

 1010 Figure 10.6: Distribution of Voronoi cell volumes. (Main figure): Time dependence of the standard deviation, σ V , of the Voronoi volume distribution normalized by the mean value V V . (Inset): PDF of normalized cell sizes V V / V V , time-averaged before () and after () the polar order transition.

Figure 10

 10 Figure 10.9: Correlations in squirmer orientation at steady-state. (a) I p (r, θ). (b) I p (r)

10. 1 Figure 10

 110 Figure 10.10: Growth of the polar order parameter P (t) for φ v = 0.005 -0.15 and β = 1. (Main figure): Time evolution of polar order in semilogarithmic scale suggests an exponential growth of the instability.: exponential fits to obtain the growth rate τ -1 . (Inset): Growth rate of the instability τ -1 for various swimmer volume fractions φ v .: linear fit.

Figure 10

 10 Figure 10.11: Comparison between the characteristic growth rate τ -1 of the polar order instability and the collisional time τ c for various values of the volume fraction φ v . : mean value 131.331

Figure 10

 10 Figure 10.12: Polar order P (t) in a semi-dilute suspension (φ v = 0.1) of squirmer with β = 0. (a) Time evolution of polar order depending on the number of swimmers. : L/a = 14, N p = 64; : L/a = 19, N p = 174; : L/a = 38, N p = 1, 395; : L/a = 58, N p = 4, 707; * : L/a = 77, N p = 11, 158. (b) Same as a) but with a semilog scale.: exponential fits to obtain the growth rate τ -1 . (Inset): Growth rate of the instability for different N p (and L/a).

Figure 10

 10 Figure10.13: Polar order P (t) in a semi-dilute suspension (φ v = 0.1) of squirmer with β = 0. Each one of the 125 curves represents the evolution of P (t) computed in one of the 125 subdomains.
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 210 Figure 10.14: Simulation of a dilute suspensions, φ v = 0.05, of prolate spheroidal pushers, B 2 = -1.5, B 1 = 0, with aspect ratio a 1 a 2 = a 1 a 3 = 3. (a) Snapshot at t = 30U/a 1 . Colors indicate the velocity magnitude normalized by the individual swimming speed. (b) Time evolution of polar order P (t).: isotropic value of the polar order parameter 1/ N p = 0.026.

Figure 10

 10 Figure 10.15: Relative trajectories of two C. reinhardtii swimming in opposite directions with stroke phase shift ∆ϕ and initial transverse distance δy = 1a and 2a. The grey levels lighten as ∆ϕ increases from ∆ϕ = 0 → ∆ϕ = 7π/4. : trajectory of two steady squirmers with β = 0. : trajectory of two steady squirmers with β = 0.1. (Top) δy = 1a. (Bottom) δy = 2a

Figure 10

 10 Figure 10.16: Polar order parameter and orientational distribution for suspensions of steady and time-dependent swimmers. : time-dependent swimmers with random phase (∆ϕ n ∈ [0; 2π]); : synchronized time-dependent swimmers (∆ϕ n = 0, ∀n); : steady swimmers with β = 0; : steady swimmers with β = 0.1. (a) Time evolution of polar order. (b) steady-state orientation distribution around the mean director Ψ(θ)| p .: uniform distribution Ψ 0 (θ) = 1/π;
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Figure 11

 11 Figure 11.1: Snapshot of the simulation domain containing N p = 301 swimmers and 1255 tracers, with a sw /a = 5. The volume fraction is φ v = 10% . The large grey spheres are the squirmers and the small black dots correspond to the tracers. Vectors represent the swimmers' orientations p n , n = 1, .., N p . Slices represent the norm of the fluid velocity field normalized by the intrinsic swimming speed u /U . One can observe the fluid velocity fluctuations due to Brownian agitation.

Figure 11

 11 Figure 11.2: Discrepancy between the experimental data and the Gaussian fit of Leptos et al. (2009).

  2D eff ∆t) 1/2 ∆t =0.06s ∆t =0.12s ∆t =0.18s ∆t =0.24s ∆t =0.30s(b) Diffusive scaling of the PDF for tracer displacements for φ v = 2.2%. Simulations only.

Figure 11 . 3 :

 113 Figure 11.3: Tracer displacements in dilute suspensions of squirmers with β = 0.5. Displacements are averaged over the three spatial directions.

Figure 11 . 4 :

 114 Figure 11.4: Log-log plot representation of Figure 11.3a. Symbols represent the data from[START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]. Solid lines correspond to the simulations.: x -4 . : x -3 . Displacements are averaged over the three spatial directions.

  Diffusive scaling of the PDF for tracer displacements for φ v = 2.2%.

  c) PDF for tracer displacements at time ∆t = 2s for various swimmer volume fractions φ v = 0-2.2%. When the concentration increases the distributions become Gaussian.

Figure 11 . 5 :

 115 Figure 11.5: Tracer displacements for the squirmer model at long times. Displacements are averaged over the three spatial directions.

  a) Mean squared displacement over time.

  b) Mean squared displacement over time in log-log scale.

Figure 11 . 6 :

 116 Figure 11.6: Mean squared displacement of tracers at various cell concentrations for the squirmer model with β = 0.5. Displacements are averaged over the three spatial directions.

  Figure 11.7: Effective diffusion coefficient of tracers for the squirmer model with β = 0.5. : simulations. : data from Leptos et al. (2009).

  b) Mean squared displacement over time (averaged over the three spatial directions).
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 118 Figure 11.8: Statistics on tracer displacements for the squirmer model with β = 0.

  Figure 11.10: PDF for tracer displacements at times ∆t = 0.3s (a), and ∆t = 2s (b), for φ v = 0 -15%.

  Mean squared displacement of swimmers. Inset: zoom at long times to show the decrease of the slope with the concentration.

Figure 11 .

 11 Figure 11.11: Effective diffusion coefficient of tracers (a) and mean squared displacement of swimmers (b) with φ v = 0 -15%.

Figure 11

 11 Figure11.12: Squirmer-tracer pair distribution function g(r, θ) for β = 0.5. The white solid line represent the swimmer's radius. The white dashed line corresponds to the excluded volume region. The white arrow is the swimming direction.

Figure 12

 12 Figure 12.1: Steady state orientation distribution around the mean unit director p for β = 0 and β = 1. : simulation with β = 0. : VMF fit with α = 68.7. : simulation with β = 1.: VMF fit with α = 1.55.

Fig. 12 .

 12 Fig. 12.1 compares the steady state orientation distribution Ψ(θ)| p with VMF fits for two squirming parameters β = 0 and β = 1. The agreement is quite convincing. The width of the VMF distribution α clearly depends on β: α = f (β).(12.3)

1.Figure B. 1 :

 1 Figure B.1: System of N p particles interacting via non-overlapping constraints along time. Periodic images are shown for convenience.

Figure B. 4 :

 4 Figure B.4: Initialization of a dense (φ a = 0.63) random suspension from an arbitrary seeding of particles.

Figure B. 4

 4 Figure B.4 shows the initialization of a dense (φ a = 0.63) random suspension from an arbitrary seeding of particles.The cost of the procedure, a few Uzawa iterations (cf. Figure B.5), is much smaller than the usual random seeding of particles, which requires a tremendous amount of random number generator calls, and whose rate of success diminishes with increasing packing fraction. This problem is recurrent in the simulations of highly concentrated suspensions (e.g.[START_REF] Vázquez-Quesada | A multiblob approach to colloidal hydrodynamics with inherent lubrication[END_REF]) and could be fixed with the algorithm proposed by[START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF].
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  drift term. For spherical particles, we haveM WT ;nn jl = µ r δ jl (E.7)
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  B T P kl ∂P ij ∂p k µ r δ jl = k B T klm p m ∂ ijq p q ∂p k µ r δ jl = k B T klm p m ijq δ kq µ r δ jl = k B T klm ijk p m µ r δ jl = k B T (δ li δ mj -δ lj δ mi ) p m µ r δ jl = k B T µ r δ ij p j -µ r δ ll p i = -2k B T µ r p i . (E.8) E.3 Integration scheme for swimmer orientationThe drift term is therefore directed alongp n , n = 1, ..., N p k B T P γ ∂P αβ ∂P M WT βγ = -2k B T µ r P α . (E.9)His role is to preserve the unit norm constraint p n = 1[START_REF] De Corato | Hydrodynamics and brownian motions of a spheroid near a rigid wall[END_REF]).

Wk+1

  Ẽk+1/2 = -K k+1/2 [ũ k ]. N and K are the volume averaging operator for particle angular velocities and rate of strains defined in Eq. (7.18) and Eq. (7.19) respectively.The projection step enforces the unit norm constraint for each particle n = 1, ..., N p p k+1;n = p k+1 * ;n p k+1 * ;n . diagonal 3N p × 3N p matrix where the block corresponding to particle n is given byC k+1 * ;nn ij = p k+1 * ;n -1 δ ij (E.15)One can prove that the scheme Eq. (E.10)-(E.14) recovers the first moment of Langevin equation Eq. (E.6) to first order in expectation.

  Figure F.1: Angular rotation of the (x, y, z) coordinate system about the axis u with an angle φ results in (x , y , z ).

Figure F. 2 :

 2 Figure F.2: Angular integration of an oscillating object. φ is the angle formed between the object and x: φ = cos -1 (p • x) = 2 cos -1 q 0 .

Figure F. 2

 2 Figure F.2 compares the time evolution of the angle φ = cos -1(p • x) = 2 cos -1 q 0 (remind that φ(t = 0) = 0).When using first order integration schemes, both methods produce the same result (Fig. F.2a). Given the time step ∆t, the integration of the unit vector p with AB4 is much more precise (Fig. F.2b), even though the re-normalization procedure does not ensure a O(∆t 4 ) accuracy. Therefore, in the case of an object subject to a rapidly oscillating flow, such as a swimmer among others in a quiescent fluid, it would be preferable to use unit vectors. However, linear multistep schemes are subject to error accumulation, whereas DM and SF are not. This is not visible in this special case because the changes in sign of the prescribed angular velocity are periodically and equally distributed.

  Figure F.4: Angular integration of Jeffery orbits. φ is the angle between the principal axis of the spheroid and the x-axis.: analytical solution, : p with EE, : q with DM.

Figure

  Figure F.5: t/T = 92 -100.: analytical solution, : p with AB4, : q with DM.

  where B 1 = 3U/2 and B 2 are the magnitude of the squirming modes defined in Section 3.1. These two contributions add up to define the active stress tensor:Σ = Σ dip + Σ quad .

  and fluid incompressibility, we get∇ x • ẋ = U ∇ x • ṗ + 0 = 0.(G.12)Using Eq. (G.3) we obtain∇ p • ṗ = [(I -pp) • ∂ p ] • Ω • p, (G.13)Similarly, Σ dip is given byΣ dip = b 2 c (x, t) (nn -I/3) , = b 2 (1 + c (x, t)) [(ẑ + n (x, t)) (ẑ + n (x, t)) -I/3] .Again, keeping only O ( ) terms leads toΣ dip = b 2 [ ẑn (x, t) + n (x, t) ẑ + c (x, t) ( ẑ ẑ -I/3)] . (G.33)In their paper,[START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF] dropped the isotropic term c (x, t) I/3 because it cancels in the calculations. Therefore, we drop it too.Stokes equations for the disturbed state read   -µ∇ 2 x u + ∇ x q = ∇ x • {b 2 [ ẑn (x, t) + n (x, t) ẑ + c (x, t) ẑ ẑ] -b 1 [ ẑ∇ x c (x, t) + ∇ x n (x, t)]} , ∇ x • u = 0. (G.34)We seek solutions of the form u (x, t) = ũ(k) exp (ik • x + σt), with similar expression for other variables, where k is the wave vector and σ ∈ C.In this framework, the solution of Eq. (G.34) isũ = i k 2 Ikk k 2 • [b 2 ( ẑ ñ + ñ ẑ + c ẑ ẑ) -ib 1 ( ẑkc + kñ)] • k. (G.35)Using the linearity of Stokes equations, we separate the solutions due to the swimming dipoles u dip and the ones due to the degenerate quadrupole u quad .Contribution from the dipole Σdip .The velocity disturbances due to the dipole areũdip = i k 2 Ikk k 2 • [b 2 ( ẑ ñ + ñ ẑ + c ẑ ẑ)] • k. (G.36)For any wave vector k normal to the plane ( ẑ, ñ/ñ), ñ = |ñ|, the velocity disturbance Eq. (G.36) is zero. It is thus relevant to keep the wave vectors lying in the plane ( ẑ, ñ/ñ) k = k (cos θ ẑ + sin θñ/ñ) . ) = sin θ ib 2 k cos θ and g(θ) = -Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures. solve the set of equations Eq. (G.30) and Eq. (G.31)σc + ẑ.ikc + ik • ñ = 0, (G.41) σ ñ + iẑ • kñ = Ω • ẑ. (G.42)Which results in the following system   λc = -ik sin θñ λñ = -ik 2 (f (θ)c + g(θ)ñ) (G.43)where λ = σ + ik cos θ. Eq. (G.43) corresponds to an eigenvalue problem -wave limit k → 0 the two eigenvalues become λ + = 0, λ -= -

  Figure G.2 shows the dependence of m 1 on α. We see that m 1 is a monotonically increasing function of α ∈ [0, ∞) onto [0, 1). Therefore there exists a unique solution α such that Eq. (G.62) holds. Since Z α depends on α through Eq. (G.61) and α on m 1 through Eq. (G.62), we will now assume α = α(m 1 ) and Z α = Z(m 1 ).

Figure

  Figure G.2: First moment m 1 (α) of the VMF distributions. α = 68.7 corresponds to the value fitted to match the orientational distribution for β = 0 in Section 12.2. m 1 (68.7) = 0.985 match very well the steady state polar order parameter in our simulations P ∞ = 0.98.
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  Figure G.5 compares the scaling Eq. (G.109) with the numerical result. The proposed expression matches the numerical solution as m 1 increases, but differs for intermediate values. An analytical expression for the eigenvalues would be more helpful to understand the effects of each parameter on the instability.

Figure G. 4 :Figure

 4 Figure G.4: Growth rate Re(σ) along θ and k = 0, 2, 4 for m 1 = 3 • 10 -6 -0.995. The colorbar represents the rate of alignment m 1 . The black curves ( ) correspond to Eq. (G.46) for the monokinetic closure. Results are shown for (a) b 2 = -1, (b) b 2 = 0, (c) b 2 = 1.
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  sketches some potential mechanisms but further investigations are required. Numerical studies could be very helpful to investigate this open problem. Surprisingly, only one pioneering work exists in

  Enhanced tracer diffusion in dilute suspensions of micro-swimmers FollowingPushkin et al. (2013), if one assumes v ent /v s ≈ 1, a sw = 5µm, U = 100µms -1 , we obtain (D ef f -D 0 )/φ v ≈ 83µm 2 s -1 , which is surprisingly close to the experimental value (D ef f -D 0 )/φ v ≈ 81.3µm 2 s -1 measured by[START_REF] Leptos | Dynamics of Enhanced Tracer Diffusion in Suspensions of Swimming Eukaryotic Microorganisms[END_REF]! Pushkin and Yeomans (2013) also matched the value measured and calculated in Jepson et al. (2013) with entrainment exclusively.
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Table B

 B 

	.1: Simulation parameters.
	B.2 Numerical tests
	B.2.1 Collision Handling
	I implemented the Algorithm 1 in a simple Matlab T M code of spherical identical particles
	interacting only through non-overlapping constraints.

  P αβ W β + Wβ + k B T P αβ ∂M WF

	γβ	∂M VT αβ ∂P γ	= P γβ	∂M WT αβ ∂P γ	= 0.		(E.4)
	The resulting Langevin equations therefore simplify to
	dY α dt	= V α + Ṽα + k B T	∂M VF αβ ∂Y β	,	(E.5)
	dP α dt	= βγ ∂Y γ	+ P γ	∂P αβ ∂P	M WT βγ	.	(E.6)

See Part III for a numerical investigation of enhanced tracer diffusion in active suspensions.

http://www.cmap.polytechnique.fr/ ~lefebvre/SCoPI.htm

the formulation of[START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF] contains typos

The recent work of[START_REF] Brotto | Spontaneous flows in suspensions of active cyclic swimmers[END_REF] provides an interesting framework to include timedependent singularities in continuum models. Even though their "cyclic swimmers" are phenomenological, their idea heads in our direction. It would be interesting to extend the model of[START_REF] Brotto | Spontaneous flows in suspensions of active cyclic swimmers[END_REF] to the continuum modeling of squirmers in order to include our time-dependent description which corresponds to an actual swimmer.

Polydispersed suspensions with different radii a m = a n could be handled with no additional complexity.

Including W k in the Taylor expansions, as in Appendix D, would have led to the same result to first order.

Note that second order could be reached with the method proposed by[START_REF] Zhao | A novel quaternion integration approach for describing the behaviour of non-spherical particles[END_REF].

This vector is defined as p in Section 12.2, but to make the writing less tedious, we adopt this new notation.
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Chapter 8

Conclusions: combining fluctuating FCM with active FCM.

The tool developed in Chapter 6 effectively combines our extension of the force-coupling method for active particles to a highly scalable fluid solver and an efficient parallelization of pairwise short-range interactions. Our code scales linearly with the particle number, even for high volume fractions. We showed in the validations (Section 6.3) that our method provides an accurate description of hydrodynamic interactions which compares very well with the more costly boundary element method.

The time-integration scheme developed in Chapter 7, called Drifter-Corrector, accounts for the drift terms arising in the overdamped limit of Langevin equations for particle motion with only one additional Stokes solve per time-step compared to deterministic simulations. The validations with analytical and numerical results from the literature prove the robustness of our approach. The efficiency of the method allowed the simulation of colloidal gelation and aggregation processes at large scales.

Both tools are implemented in the same code so that combining the active part with the fluctuating FCM does not require much efforts. Swimmers' orientations are integrated with the Euler-Maruyama scheme starting at the midstep of the Drifter-Corrector. They are then projected onto the unit sphere at every time step. Appendix E provides more details and shows how this time integration recovers the correct Langevin equations for the rotational motion of spherical particles.

In the literature, objects' orientations are sometimes represented with unit quaternions. The interest of working with unit quaternions instead of unit vectors to track orientation is twofold:

1. time-integration schemes for quaternions are based on rotation operations, whereas schemes for vectors are based on Taylor expansions. Rotations inherently maintain the norm of the quaternion while additions arising in Taylor expansions result in the accumulation of numerical errors [START_REF] Zhao | A novel quaternion integration approach for describing the behaviour of non-spherical particles[END_REF]).

Part III

The Physics of Active Suspensions

Chapter 10 : Orientational correlations in active suspensions: a parametric study at large scales. Appendix A

Self-induced effects for spheroidal swimmers

In this appendix, we show how to compute the artificial self-induced effects due to the squirming modes (see Section 6.1.2) for the case of spheroidal swimmers described in Section 10.2.1.

In the following calculations, we consider an ellipsoidal squirmer located at the origin Y = 0 with swimming direction p = ê1 .

A.1 Self-induced velocity W due to the degenerate quadrupole H

Using the FCM envelopes for ellipsoidal particles, the force-distribution corresponding to the degenerate quadrupole generated by the squirmer will be given by

where we also have σ Θ = (σ Θ;1 , σ Θ;2 , σ Θ;3 ), the width of the Gaussian envelope Θ ell (x) for each of the semi-axes. The resulting fluid flow can be obtained in Fourier space as

The self-induced velocity, W, will be given by volume averaging this fluid velocity against the monopole Gaussian envelope ∆ ell (x) for ellipsoidal particles. Accordingly, the expression for W is

where we write the width of the Gaussian envelope ∆ ell (x) for each semi-axes as σ ∆ = (σ ∆;1 , σ ∆;2 , σ ∆;3 ). This expression can be viewed as

is the FCM self-mobility matrix that relates the particle velocity to the degenerate quadrupole coefficient. For a spheroidal particle (σ ∆;2 = σ ∆;3 and σ Θ;2 = σ Θ;3 ) and H in the direction ê1 , we need only to consider M HU 11 to obtain the self-induced effects. This mobility matrix entry can be written as
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A.2 Self-induced rate of strain K due to the squirming dipole G (A.7)

After integration by parts with respect to r, we have

and eventually

From the integrals in the Appendix in [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF], this maybe be expressed compactly as .10) where

and I 0 and I 1 are coefficients whose expressions are provided in the Appendix of [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF].

The self-induced velocity W is then simply .11) and its artificial effect can be subtracted away from the total volume average velocity as done in Eq. (6.12).

A.2 Self-induced rate of strain K due to the squirming dipole G

In the frame of the swimmer, the non-zero entries of the self-induced rate of strain K are given by

(A.12)

is the symmetric fourth-order FCM mobility tensor relating the particle rate-ofstrain E to the swimming dipole coefficient G [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]). Its components read

where C is given above and I 2 is a coefficient whose expression is detailed in the Appendix of [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]. To obtain the self-induced rate of strain in the lab frame, K, one just needs to apply a rotation operator onto K : (A.13) where Q = ê1 ê2 ê3 T is the rotation matrix of the swimmer.

A.3 Test case 1: torque against strain

This part validates the algebraic expression derived with simple numerical tests. Following [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF], we place a spheroid aligned with x in a shear flow u ∞ = γz x. Two contributions will make the spheroid rotate:

1. the alignment with the strain tensor E ∞ xz = E ∞ zx = γ/2, whose principal axis make an angle of 45 • with x, due to the elongated shape of the particle [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] 2. the rotational part of the velocity gradient [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF] showed that the FCM exactly matches the resistance functions derived analytically in Kim and Karrila (1991a). More specifically, if one applies a torque τ given by

τ resists and cancel the alignment with the axes of the strain tensor E. b 3 , b 4 and b 6 are coefficient which depend only on the spheroid aspect ratio. Their expression can be found in the Appendix of [START_REF] Liu | Force-coupling method for flows with ellipsoidal particles[END_REF]. Therefore, if one applies a torque given by Eq. (A.14), the particle will only rotate due to vorticity

Numerically, this is verified only if the stresslet of the spheroid S is correctly evaluated.

As an example, we place a spheroid of aspect ratio AR = 3 in a shear flow with intensity γ = 1 and apply a torque τ y as prescribed in (A.14).

We do the same for a spheroidal squirmer with the same aspect ratio and with a squirming parameter β (cf. Section 3.1). If the self-induced rate of strain (ROS) due to the swimming stresslet is correctly subtracted, the rotation of the squirmer should also match Eq. (A.15). A.4 Test case 2: ROS and velocity of a tilted passive/active spheroid in a shear flow

We place a tilted spheroidal squirmer in a shear flow u ∞ = γz x. Denote θ the angle between its orientation p and x. The velocity gradient is prescribed: γ = 5, and the intrinsic swimming speed is set to unity:

When subtracting the self-induced ROS K due to the swimming dipole G, the particle ROS should match the ambient strain rate E 13 -K 13 = E 31 -K SI 31 = γ/2 = 2.5. After computing the stresslet, the final particle ROS E * should be close to the tolerance chosen prescribed in the conjugate gradient algorithm (Section 6.2.4): E * ≈ ε.

When removing the self induced velocity W due to the degenerate quadrupole Q, the velocity in the frame of the squirmer should match its swimming speed V -W -γz = U.

Table A.2 compares the particle ROS and velocities for two tilt angles in the passive and active case. We see, that for every configurations the final particle ROS is close to zero and the velocity matches the swimming speed. The self-induced effects are correctly evaluated and subtracted.

The parameter space to explore is wide but these few results already provide a good basis to validate the numerical computations and the analytical calculations carried out above. This appendix presents the implementation of an original algorithm for dealing with contact between colliding particles. It follows the work of [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF]. The idea is simple: instead of using a repulsive contact force as a numerical artifice to prevent particles from overlapping, one can project their velocity in the space of admissible velocities, i.e. such that particles will not overlap at the next time step. This approach has been used by Maury's coworkers in the contexts of dry and wet granular media [START_REF] Faure | Dynamic numerical investigation of random packing for spherical and nonconvex particles[END_REF]; [START_REF] Lefebvre | Numerical simulation of gluey particles[END_REF]), active suspensions [START_REF] Decoene | Microscopic modelling of active bacterial suspensions[END_REF]) and crowd motion [START_REF] Maury | A discrete contact model for crowd motion[END_REF]; [START_REF] Maury | Non smooth evolution models in crowd dynamics: mathematical and numerical issues[END_REF]).

Appendix B Handling collisions with kinematic constraints

B.1 Formulation and algorithm B.1.1 Formulation

This section outlines the method proposed by [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF]. One prerequisite for the use of this technique is that particle trajectories are integrated with a first order Explicit Euler scheme: 

B.3 Conclusions

The technique proposed by [START_REF] Maury | A time-stepping scheme for inelastic collisions[END_REF] is original and elegant. The Algorithm 1 is not "intrusive" in the sense that it can be implemented in any numerical code for particulate media, regardless of the way particle velocities are computed. It offers some possibilities that repulsive forces cannot afford. First, it allows the initialization of random dense suspensions with a reduced cost. And, more importantly, it avoids numerical stability issues due to the stiffness of repulsive forces.

Nonetheless, this technique is currently exclusively suited for the Explicit Euler time integration scheme, which is only first-order accurate. Consequently, the gain in stability is lost in accuracy. Maury's method would be profitable only if the time step restriction due to stiff repulsive forces was smaller than the one necessary to obtain a similar accuracy with the Explicit Euler scheme.

Because my Ph.D concerned semi-dilute suspensions in which repulsive forces were not too restrictive for the time step, we discarded this technique.

However, extending Maury's work to a more accurate time integration scheme would provide a promising tool for contact handling.

Appendix C

Stress-free boundary conditions with fluctuating hydrodynamics

We have seen in Chapter 7 that the slip boundary conditions can be imposed by requiring that the fluctuating stress satisfy certain symmetry conditions. In this appendix, we show analytically that the fluctuating stress with modified statistics yields flow correlations proportional to the appropriate Green's function.

For the case where the fluid is in the positive half-space, i.e. z > 0, with the conditions that u z = 0 and ∂u x /∂z = ∂u y /∂z = 0 at z = 0, the Green's function for this Stokes flow is

where

Thus, if there is a point force, F = (F x , F y , F z ), located at the point y in the flow domain, the boundary conditions can be satisfied by introducing an image point force F im = (F x , F y , -F z ) below the slip surface at Y. This image system approach to obtain the Green's function readily extends to the case where there are two parallel no flux, slip surfaces at z = 0 and z = L z , and periodic boundary conditions at x = 0 and x = L x and y = 0 and y = L y . For our discussion, we consider the specific case where L z = L x /2 = L y /2 = L/2, but it can be easily generalized to different domain sizes. For the case where the fluid domain is given by z ∈ [0, L/2), x ∈ [0, L), and y ∈ [0, L), the Green's function can be expressed as

Error expansion for the Drifter-Corrector

In this appendix, we present the error analysis showing that the Drifter-Corrector developed in Chapter 7 is weakly accurate to first-order in time. To simplify the analysis and make the presentation more compact, we write the scheme using the mobility matrices as

and ũk satisfies Eq. (7.27) for the realization of the fluctuating stress at time t k . We note that Ũk (Y n;k ) are the components of Ũ pertaining to particle n, i.e. Ũ(

We now expand the quantities on the right-hand side of Eq. (D.2) about t = t k , and using Eq. (D.1) we obtain where repeated Latin indices imply summation. The second integral on the right hand side of Eq. (D.25) is zero since ∇ • ũ = 0. After applying the divergence theorem to the first integral on the right-hand side, we have

where n i is the normal pointing out of the domain. Thus, if ũi n i = 0 pointwise, which is the case for no-slip and no-flux boundaries, or if periodic boundary conditions are imposed, then this integral is also zero. As this will be the case for all particles, we then have that

Thus, as a result, we may set v k = 0 and the DC scheme will still account for the Brownian drift.

Appendix E Coupling active FCM with fluctuating FCM

This appendix explains how to combine the integration for siwmmer orientation with the Drifter-Corrector. In the following, Greek indices run all over the components while, unless otherwise indicated, latin indices sum over the three cartesian directions. As in Appendix D, we have dropped the label "FCM-S" for the stresslet corrected mobility matrices.

E.1 Langevin equation for the rotational motion of uniaxial objects

The Langevin equations for the translational and rotational motion of a collection of oriented uniaxial objects are [START_REF] Dickinson | Brownian dynamics with rotation-translation coupling[END_REF]; [START_REF] Dhont | An introduction to dynamics of colloids[END_REF]; [START_REF] Delong | Brownian dynamics of confined rigid bodies[END_REF]), in indicial notations,

P is a block diagonal 3N p × 3N p matrix where the entry corresponding to particle n reads Now we add the deterministic angular velocities W k which contribute to first order in the time increment 1 . As a result, we obtain the correct first moment up to first order in time

(E.31)

E.4 Conclusions

To conclude, we have shown that including spherical active particles in the fluctuating FCM can be easily done by integrating squirmer orientations with the Euler-Maruyama scheme at the midstep of the Drifter-Corrector and with a systematic re-normalization step. The additional cost is negligible compared to the Drifter-Corrector.

Appendix F

Unit quaternions vs. orientation vectors: a note on angular integration Unit quaternions are mathematical objects which are widely used in robotics, solid mechanics or molecular dynamics, i.e. where the relative orientation between complex objects is necessary. In this appendix we present the formalism of unit quaternions. We outline the latest methods to integrate particle orientation with unit vectors or unit quaternions. We test these methods for two numerical examples and discuss their pros and cons depending on the numerical problem one needs to address.

F.1 Description and formalism

From Euler's theorem, when two coordinate systems (x , y , z ) and (x, y, z) have coincident origins, the transformation between these two systems can be accomplished by a single rotation about a unique axis referred to as the orientational axis of rotation [START_REF] Nikravesh | Euler parameters in computational kinematics and dynamics. Part 1[END_REF]). Define an axis of rotation specified by a unit vector u and the angle of rotation about this axis φ, as shown on Figure F.1.

Denote e = [q 1 , q 2 , q 3 ] T a vector defined as

where m and n denote two different quaternions. The conjugate of a quaternion is given by q * = q 0 -e.

(F.7)

The rotation defined in Eq. (F.5) is equivalent to the classic rotation matrix-vector product.

where

q 1 q 2 -q 0 q 3 q 1 q 3 + q 0 q 2 q 1 q 2 + q 0 q 3 q 2 0 + q 2 2 -1 2 q 2 q 3 -q 0 q 1 q 1 q 3 -q 0 q 2 q 2 q 3 + q 0 q 1 q 2 0 + q 2 3 -

The rows of the rotation matrix R correspond to the unit vectors orienting the object. As an example, the spheroidal swimmers simulated in Section 10.2.1, carry a rotation matrix denoted as Q, whose rows correspond to the semi-axes of the spheroid.

F.3 Tracking orientation: a comparative study

Tracking the orientation of a non-axisymmetric object n with a set of three orthonormal vectors along its axes (p n 1 , p n 2 , p n 3 ), requires to solve the following 9 ODE's 1 dp n

Whereas, when using unit quaternions, only 4 ODE's must be solved (F.13):

1 In fact only 2 unit vectors are necessary, the third one is obtained with a cross product.

The simulation time is long enough to measure the effect of error accumulation on the solution t/T = 0 -100.

Figure F.4 compares the solution obtained with EE and DM. DM produces a solution with a O(∆t) error, but exhibits no error accumulation. This is the main advantage of norm-preserving schemes. On Figure F.4a, we see that a drift progressively appears when using EE. Figure F.4b reveals that at long times, t/T = 92 -100 the effect of error accumulation is dramatic and the resulting p is out of phase compared to Eq. (F.20).

However, AB4 reduces drastically the accumulation, and the resulting solution matches the analytical orbit even at long times (Figure F.5).

Appendix G

Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures. [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF] to derive the mean field equations and study the system entropy of a suspension of spherical squirmers. First, we study the stability of the aligned state based on the monokinetic closure. We show that the dipole destabilizes the aligned state, in exact agreement with [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF], whereas the degenerate quadrupole has no effect. In a second part, we introduce the Von-Mises-Fischer (VMF) closure. The VMF distribution includes an additional degree of freedom, the degree of alignment m 1 , which corresponds to the steady-state polar order parameter P ∞ in our simulations (Section 10.1, Eq. (10.1)). As shown in Section 12.2, Chapter G : Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures.

This appendix follows the methodology of

which in indicial notation gives

because Ω is antisymmetric.

As a consequence, we conclude that, given the current level of approximation, the spherical squirmers do not change the entropy of the system:

In [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF] the changes in entropy arise from Jeffery's equation, i.e. when the strain rate E affects the evolution of the orientation p. Which is not the case for spherical particles.

G.3 Monokinetic closure G.3.1 Reduced equations for the locally aligned state

To compute the reduced equations, we take the first two moments of Ψ with respect to p.

We define the local concentration field c (x, t) = ˆΨdp, (G.16)

and the local director

(G.17)

The equation for c is obtained by averaging Eq. (G.1) over the solid angle:

the last term on the left hand side integrates to zero. Using Eq. (G.2), one obtains

Consider a distribution function for locally aligned state in the form

In this case, the swimming stress tensors read

and

The equation for n is obtained by multiplying Eq. (G.1) by p and integrating over the solid angle which yields

From [START_REF] Saintillan | Instabilities, pattern formation, and mixing in active suspensions[END_REF], we have

By combining Eq. (G.24) and Eq. (G.19), Eq. (G.23) becomes

which leads to

for the evolution of n.

To sum up we have a closed system of equations for the locally aligned state

(G.27)

Chapter G : Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures.

G.3.2 Nondimensionalization

Eq. (G.27) is nondimensionalized with the characteristic velocity, length and time scales

Eq. (G.27) becomes

b 1 is the nondimensionalized value of B 1 and b 2 the nondimenzionalized value of B 2 . A linear stability analysis in Fourier space can then be performed.

G.3.3 Linear stability analysis

The classical procedure to study the linear stability of a given state is to introduce a disturbance which is O ( ) where 1. We consider a nearly uniform suspension in which the particles are all nearly aligned along the ẑ-direction.

The disturbed quantities read

The equations for the disturbed local states to order are given by

Swimming stresses now read:

Keeping only O ( ) terms leads to Contribution from the degenerate quadrupole Σquad .

First we only consider wave vectors lying in the plane ( ẑ, ñ/ñ).

The contribution from the degenerate quadrupole is

The resulting vorticity is

The equation for c, Eq. (G.30), remains unchanged. The equation for ñ, Eq. (G.31), reads

Chapter G : Continuum models for squirmers: preliminary investigations with the monokinetic and the Von-Mises-Fischer closures.

Note that Eq. (G.50) has no component along ẑ.

The component along ñ/ñ reads σñ + ik cos θñ = ikb 1 2 (cos θñ -sin θc) .

(G.51)

The resulting matrix for the eigenvalue problem M is

If one consider a positive value of the swimming speed U > 0, we have b 1 > 0 and the resulting eigenvalues are imaginary

Similarly, for k normal to the plane ( ẑ, ñ/ñ), we have

Therefore the growth rate is always equal to zero Re(σ) = Re(λ ± ) = 0, ∀θ, k.

(G.55)

We conclude that the degenerate quadrupole do not disturb the aligned state. This result is in agreement with our simulations for pure degenerate quadrupoles, where the squirming parameter is β = 0. As shown in Section 10.1.3, when β = 0 the steady state polar order parameter is very close to one P ∞ = 0.98 ≈ 1, which means that all the swimmers are aligned together.

However, the stability analysis for the aligned state does not tell us if less aligned states, 0 ≤ P ∞ < 1, as the ones observed in our simulations for β > 0, would be unstable. As suggested in Section 12.2, it would be interesting to perform a stability analysis with a closure which better reflects the various degrees of alignment P ∞ observed for different values of the squirming parameter β.

Remark on time-dependent swimming gaits: in the case of time-dependent swimming gaits, as in Chapter 3, the swimming speed can reach negative values during the recovery stroke U < 0 and consequently b 1 < 0. In such case the real part of the growth rate would be positive depending on the value of θ, leading to an unstable aligned state due to the degenerate quadrupole.

G.4 Von-Mises-Fisher (VMF) closure G.4.1 Short description

This section does not include many details. A better description is provided in [START_REF] Degond | A hierarchy of heuristic-based models of crowd dynamics[END_REF] and the motivations for the use of the VMF closure are listed in Section 12.2.

The VMF closure assumes a distribution Ψ given by Ψ(x, p, t) = c(x, t)M n(x,t) (p), (G.56) where M n(x,t) (p) is the VMF distribution

Z α is a normalization constant that does not depend on n

The element n is called the direction of the VMF distribution 1 . It corresponds to the mean orientation vector of the suspension. α is called the concentration parameter.

We also note that

where

The quantity m 1 (α) does not depend on n and satisfies 0 ≤ m 1 (α) < 1. m 1 (α) is equivalent to the steady state polar order parameter P ∞ measured in our simulations in Section 10.1. Small values of m 1 (α → 0) correspond to VMF distributions close to the isotropic distribution, while values of m 1 close to 1 (α → ∞) correspond to VMF distributions close to Dirac delta functions.

Reduced equations

To obtain the conservation equation for the concentration c, we integrate (G.19) over S 2 and we obtain

A second equation is obtained by multiplying (G.19) by p and integrating over S

Summary of nondimensionalized equations

Henceforth we will denote v = m 1 (α)n, with m 1 = v . The set of coupled equations we will analyze is

where g 0 = g(m 0 ) and

The equations for the O( ) disturbances read

where the isotropic part of Σ dip has been dropped as it does not affect the stability of the disturbed state.

Solutions in Fourier space

The corresponding equations in Fourier space write (G.86) where V i = mẑ i + m 0 ñi + cm 0 ẑi . For any wave vector k normal to the plane ( ẑ, ñ/ñ), ñ = |ñ| , the velocity reads ũi = b 1 V i .

(G.87) b 1 V i already appears in Eq. (G.86). Therefore we will only consider k in the plane ( ẑ, ñ/ñ). Based on Eq. (G.86), the vorticity writes

By using the incompressibility of the fluid ik j ũj = 0, the second equation of the system Eq. (G.84) reads σ ( mẑ j + m 0 ñj + cm 0 ẑj ) = -ik l g 0 (ẑ l ñj + ñl ẑj ) + (g + g 0 c) ẑl ẑj + h + h 0 c δ lj

We project Eq. (G.89) along ẑ σ ( mẑ j + m 0 ñj + cm 0 ẑj ) ẑj = -ik l g 0 (ẑ l ñj + ñl ẑj ) + (g + g 0 c) ẑl ẑj + h + h 0 c δ lj ẑj Due to a lack of time, the eigenvalues λ 1 , λ 2 , λ 3 of M are computed numerically. Given the structure of the matrix, all the eigenvalues are linear with k. Therefore, we fix k = 1 to reduce the parameter space. On Figure G.3 we show the growth rate Re(σ i ), i = 1, 2, 3, over θ with b 1 = ±1. The degree of alignment m 1 , or polar order parameter, is varied from the nearly isotropic state m 1 = 3 • 10 -6 ≈ 0 (α = 3 • 10 -5 ) to the aligned state m 1 = 0.995 ≈ 1 (α = 200).

Similarly to the monokinetic closure, we see that when b 1 ≥ 0, any alignment rate m 1 is stable and when b 1 < 0 the suspensions is unstable for m 1 > m * 1 , where m * 1 is a threshold value which depends on |b 1 |. For b 1 = -1, we have m * 1 ≈ 0.56. Deriving the analytical expressions for the eigenvalues would be helpful to better understand the influence of each parameter. It is hard to find a physical explanation for the instability when b 1 < 0. We refer the reader to the remark about time-dependent swimming gaits at the end of Section G.3.3.

Contribution from the dipole Σdip .

Before going through the calculations, it is worth reminding that, due to fluid incompressibility, only the vorticity term Ω • v 0 will change in the second equation of system (G.84). All the rest in system (G.84) remains unchanged.