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performance on ImageNet-1K (seen concepts) and the downstream tasks.

Lastly, in the third part, inspired by the recent surge in text-to-image generative models producing high-quality realistic images, we study whether such synthetic images allow training supervised models that can be utilized as effectively as models trained on real images. To investigate this, we generate synthetic clones of ImageNet-1K using Stable Diffusion and then train supervised models on these synthetic clones. Upon evaluating the resulting models on datasets comprising real images, we observe that training models on synthetic data leads to more transferable representations.

i Abstract A primary goal of computer vision is to equip machines with the ability to extract information from visual data, such as images or videos, and thereby enable them to perform tasks defined on such data. While the specifics of the information to be extracted from data hinges on the task at hand, solving many complex tasks simultaneously necessitates a mechanism capable of extracting a comprehensive set of information from data. Therefore, substantial effort has been dedicated to the development of deep learning models capable of encoding such information into robust visual representations.

A prominent strategy in this context involves initially training a model on a large-scale dataset, such as ImageNet-1K, and subsequently employing this model for the task at hand (e.g., image classification or object detection as downstream tasks on other datasets). In order to ensure that the model can successfully handle a variety of downstream tasks with minimal effort, the focus in this preliminary training phase is on learning image representations that can exhibit cross-task applicability, i.e., transfer from the initial task to downstream tasks. This thesis delves into learning transferable image representations by deep neural networks from three aspects. In the first part, we focus on evaluating the transferability of representations from the perspective of concept generalization, wherein the aim is to accurately recognize unseen concepts, i.e., concepts not encountered during the model's training phase. We do this by proposing ImageNet-CoG, a benchmark including downstream tasks specifically designed for measuring concept generalization, and conducting an exhaustive evaluation of different representation learning methods on this benchmark. Our findings reveal that selfsupervised methods are more resilient to concept generalization, i.e., they learn more transferable representations for semantically less similar unseen concepts. Whereas, supervised methods tend to overfit more to the concepts seen during training, achieving better performance on seen concepts while learning less transferable representations for unseen ones.

Drawing from these observations, in the second part, we combine the strengths of supervised and self-supervised methods to maintain high performance on both seen concepts and downstream tasks. By adapting supervised methods with the techniques derived from the recent self-supervised methods, such as SimCLR and SwAV, we devise an improved training setup for supervised learning on ImageNet-1K. Models trained with our improved setup learn more transferable representations than the most recent self-supervised methods, when evaluated on a large collection of downstream image classification tasks. By further enhancing this setup with a prototype-based classification model, we achieve state-of-the-art

Résumé

Un des objectifs principaux de la vision par ordinateur est de doter les machines de la capacité d'extraire des informations à partir de données visuelles, telles que les images ou les vidéos, leur permettant ainsi d'effectuer des tâches définies sur ces données. Bien que les informations à extraire de ces données dépendent fortement de la tâche à accomplir, la résolution simultanée de plusieurs tâches complexes nécessite un mécanisme capable d'extraire un ensemble complet d'informations à partir de ces données. Par conséquent, des efforts substantiels ont été consacrés au développement de modèles d'apprentissage profond capables d'encoder ces informations dans des représentations visuelles robustes.

Une stratégie de premier plan dans ce contexte consiste à entrainer un modèle initial sur un ensemble de données à grande échelle, tel que la base d'images ImageNet-1K, puis à utiliser ce modèle pour la tâche à accomplir (par exemple, la classification d'images ou la détection d'objets sur une autre base d'images). Afin de s'assurer de la capacité du modèle à gérer une variété de tâches cibles avec un minimum d'effort, l'accent est mis dans cette phase de pré-entrainement sur l'apprentissage de représentations d'images qui généralisent entre les tâches, c'est-à-dire qu'elles se transfèrent de la tâche initiale vers les tâches cibles.

Cette thèse se penche sur l'apprentissage de représentations d'images transférables par des réseaux de neurones profonds, et considère trois aspects. Dans une première partie, nous nous intéressons à l'évaluation de la transférabilité des représentations sous l'angle de la généralisation à de nouveaux concepts. L'objectif est de reconnaître des concepts non rencontrés lors de la phase d'apprentissage du modèle. Pour ce faire, nous proposons ImageNet-CoG, un 'benchmark' comprenant des tâches cibles spécifiquement conçues pour mesurer la généralisation d'un modèle à de nouveaux concepts. Nous procédons à une évaluation minutieuse de différentes méthodes d'apprentissage de représentations visuelle sur ce benchmark. Nos résultats révèlent que les méthodes auto-supervisées sont plus résiliantes à la généralisation à de nouveaux concepts, c'est-à-dire qu'elles apprennent des représentations plus transférables à des concepts non-observés au préalable et sémantiquement moins similaires. A l'inverse, les méthodes supervisées ont tendance à davantage sur-apprendre les concepts vus pendant l'entrainement, obtenant de meilleures résultats sur ceux-ci, mais apprenant des représentations moins transférables à de concepts nouveaux.

Partant de ce constat, dans une deuxième partie, nous combinons les atouts des apprentissages supervisé et auto-supervisé afin d'obtenir de bonnes performances à la fois sur les concepts de la tâche d'apprentissage mais aussi sur les tâches de transfert. En adaptant les méthodes supervisées afin qu'elles utilisent des techniques empruntées aux méthodes auto-supervisées récentes, telles que SimCLR et SwAV, nous proposons une amélioration de l'apprentissage supervisé sur ImageNet-1K. Les modèles entrainés avec cette configuration améliorée apprennent des représentations plus transférables que les méthodes autosupervisées les plus récentes, lorsqu'ils sont évalués sur une large collection de tâches cibles de classification d'images. En améliorant encore cette configuration avec un modèle de classification basé sur des prototypes, nous obtenons des performances état de l'art sur ImageNet-1K (concepts observés pendant l'apprentissage) ainsi que sur les tâches cibles.

Enfin, dans la troisième partie, inspirés par l'essor récent des modèles génératifs texteimage produisant des images réalistes de grande qualité, nous étudions si de telles images de synthèse permettent d'entraîner des modèles supervisés pouvant être utilisés à la place de modèles entraînés sur des images réelles. Pour étudier cela, nous générons des clones synthétiques d'ImageNet-1K à l'aide de l'outil Stable Diffusion, puis entrainons des modèles supervisés sur ces clones synthétiques. Lors de l'évaluation des modèles obtenus de cette façon sur des ensembles de données composés d'images réelles, nous observons que l'apprentissage de modèles à partir de données synthétiques produit des représentations plus transférables. Given input images composed of pixels, lowlevel representations (e.g., edges) are encoded first, which are combined to form higher-level representations (e.g., object parts) that can be used to solve the task at hand, e.g., image classification. Figure adapted from [START_REF] Goodfellow | Deep learning[END_REF]. The image on the left courtesy of Merve Sariyildiz. . . . . . 2 1.2 Five hundred images randomly sampled from ImageNet-1K [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF][START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. In this thesis, we mainly consider models trained on this dataset. Then, we evaluate the quality of their representations by transfering them to a variety of other datasets, including the ImageNet-CoG dataset that we propose in Chapter 3. . . . . . . . . . . . . . . . . . All panda images are from [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], except the sketch image of a panda in (a), which is from [START_REF] Wang | Learning robust global representations by penalizing local predictive power[END_REF]. . . . . . . . . . .

Mots clés

3.1

An overview of our Concept Generalization (CoG) benchmark. (a) An example of five concepts from the ImageNet-21K dataset [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]] (IN-21K), ranked by increasing semantic distance (decreasing Lin similarity [START_REF] Lin | An information-theoretic definition of similarity[END_REF]]) to the ImageNet-1K (IN-1K) dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] concept "Tiger cat". (b) We rank the 21K concepts of IN-21K according to their semantic distance to the 1000 concepts of IN-1K and split the ranked list to extract 5 groups of 1000 concepts. We refer to the five IN-1K-sized datasets of increasing semantic distance from IN-1K as concept generalization levels, denoted as L 1/2/3/4/5 . (c) The proposed ImageNet-CoG benchmark uses a model trained on IN-1K as a feature extractor and evaluates its concept generalization capabilities by learning linear classifiers for each level of more and more challenging unseen concepts. . . . . . . . 3.2 Concept generalization levels. We rank all the 5146 eligible IN-21K unseen concepts with respect to their similarity to IN-1K using Equation (3.2) and split the ranked list into 5 groups of 1000 concepts each. Each group defines a concept generalization level, each denoted by L 1/2/3/4/5 . Gray-shaded areas correspond to concepts that are ignored. . . . . . . . . . . . . . . . . 3.3 The number of images per concept for IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and each of the concept generalization levels obtained by Lin similarity. We end up with 1.17M, 1.17M, 1.15M, 1.16M, 1.14M images in total for levels L 1/2/3/4/5 respectively. Note that IN-1K has 1.33M images in total. . . . . 3.4 Linear classification on ImageNet-CoG. Top-1 accuracies for all the 31 models listed in Table 3. relative to the accuracy of the fine-tuned models. . . . . . . . . . . . . . . 3.7 Semantic similarities of the concepts captured by (i) Lin similarity [START_REF] Lin | An information-theoretic definition of similarity[END_REF]] on WordNet graph [START_REF] Miller | WordNet: A lexical database for English[END_REF]] and (ii) cosine similarity of word2vec embeddings [START_REF] Yamada | Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[END_REF] extracted from textual descriptions of concepts, vs. visual similarities encoded by ResNet50, on IN-1K and generalization levels L 1/2/3/4/5 of ImageNet-CoG. We report the performance of linear logistic regression classifiers trained on features extracted from the global average pooling layer of ResNet50. The orange line shows results obtained on 1000 random unseen concepts (line represents the mean accuracy obtained over 15 random splits). . . . . . . . . . . . . . . . . . . . . . . . 3.8 Illustration of the label noise in ImageNet-CoG. . . . . . . . . . . . . . 4.1 Our proposed supervised learning setup borrows multi-crop [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] and projectors [Chen et al. 2020a] from SSL to train on . The projector g is discarded after training, and the ResNet backbone f is used as a feature extractor in combination with a linear classifier trained for each task, e.g. for texture classification on DTD [START_REF] Cimpoi | Describing textures in the wild[END_REF]] (bottom). . 4.2 Architecture of the projector g f . . . . . . . . . . . . . . . . . . . . . . . .

4.3

The supervised models we train using our proposed setup. We report IN-1K (Top-1 accuracy) and transfer performance (log odds) averaged over 13 datasets Aircraft,Cars196,DTD,EuroSAT,Flowers,Pets,Food101 and SUN397) for a large number of our models trained with the supervised training setup presented in Section 4.3. Models on the convex hull are denoted by stars. We compare to the following state-of-the-art (SotA) models: Supervised: RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF], SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF]], SL-MLP [Wang et al. 2022a] and LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] with multi-crop; self-supervised: DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]; semi-supervised: PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF]]. . . . . . . . . . . . . transfer datasets (from Table 5.3) when training on ImageNet-100 using (1/10)-th to 50⇥ images (relative to the real dataset size). . . . . . . . . . 5.5 Impact of the guidance scale parameter and number of diffusion steps.

Top-1 accuracy on ImageNet-100 and averaged over 10 transfer datasets (from Table 5.3) for p c = "c, d c ". In the left plot, steps are set to 50, in the right plot guidance scale is 7.5. . . . . . . . . . . . . . . . . . . . . . . xv 5.6 Feature analyses for models. We perform these analyses on top of features extracted from pretrained encoders f trained on either real or synthetic data for ImageNet-100 (training data is specified in the legends of the subfigures).

For the purpose of this study, we use synthetic data generated with guidance scale equal to 7.5. Sparsity is measured by the percentage of dimensions close to zero [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]]. Intra-class `2-distance is the average pairwise `2-distance between samples from the same class. These two metrics are computed on `2-normalized features. Feature redundancy [Wang et al. 2022b] is obtained by R = 1 d 2  i  j |r(X :,i , X :, j )|, where X 2 R N⇥d is a feature matrix containing N samples, each encoded into a d-dimensional representation (2048 in our case) and r(X :,i , X :, j ) is the Pearson correlation between a pair of feature dimensions i and j. Coding length [START_REF] Yu | Learning diverse and discriminative representations via the principle of maximal coding rate reduction[END_REF] is measured by R(X, e) = 1 2 log det(I d + d Ne 2 X > X), where I d is a dby-d identity matrix, e 2 is the precision parameter set to 0.5. . . . . . . . . 95

A.1 Linear classification on ImageNet-CoG using blurred images for IN-1K.

Top-1 accuracies for all the 31 models listed in Table 3. et al. 2015]), IN-v2 [Recht et al. 2019], IN-Sketch [START_REF] Wang | Learning robust global representations by penalizing local predictive power[END_REF], IN-R [Hendrycks et al. 2021a] and IN-A [Hendrycks et al. 2021b]. In all cases, testing is done on real images. For the prompts, h c (d c ) refers to the hypernym (definition) of class c provided by WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF], while b to scene classes from Places 365 [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF]]. ⇤ IN-R and IN-A only cover a subset of the ImageNet-100 classes and we compute the reported metrics only on the common classes. Brick-colored scores denote performance higher than the models trained on real images. Italics denote results from models trained using real images. . . . . . . . . . . . . . . . . . . . 5.3 Top-1 accuracy on ten transfer learning datasets for encoders trained on real and synthetic images. We treat encoders as feature extractors and train linear classifiers on top for each dataset. Brick-colored scores denote performance higher than the models trained on real images. We make the remarkable observation that representations from models trained on synthetic data can match the generalization performance of representations from models trained on millions of real images. Italics denote results from models trained using real images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Top-1 accuracy on the ImageNet-CoG benchmark [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF].

We report performance for the best ImageNet-1K-SD model from Table 5.3 (with guidance scale equal to 2), and compare it to the state-of-the-art supervised and self-supervised models trained on the real images of ImageNet-1K, RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF] and DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF], respectively.

A. In computer vision, many tasks require a semantic understanding of an image, for instance, classification, retrieval, detection, segmentation, captioning, or visual question answering. Models that tackle any of these tasks often consist of two main components: a primary mechanism to extract information from images and a secondary mechanism to perform the task based on the provided information. This notion of information extracted from an image (or any type of data, in general) is called the feature or representation of the image. Finding "good" image representations is an important concern in computer vision which ultimately impacts the performance of models [START_REF] Goodfellow | Deep learning[END_REF].

Before deep learning research became mainstream, researchers have extensively studied this problem of finding a good image representation via handcrafted approaches [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF][START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF], where representations are designed by humans based on cues such as edges or corners in an image that are obtained by low-level image statistics like pixel gradients. With the advances in deep learning, we have seen a paradigm shift, from manually designing representations to designing neural networks to automatically learning them [START_REF] Bengio | Deep learning of representations for unsupervised and transfer learning[END_REF]]. Deep neural networks can build a hierarchy of representations for their input, ranging from low-level features such as edges and corners to high-level concepts such as object parts, as illustrated in Fig. 1.1. Thanks to this ability of deep networks, for a given task to solve, it is possible to learn representations specific for this task from data. Moreover, such representations can be used across different tasks, which allows transfer of knowledge acquired by solving one task to other related tasks [START_REF] Sharif Razavian | CNN features off-the-shelf: An astounding baseline for recognition[END_REF]. This is a lucrative property, as it allows for solving a wide range of tasks with a single representation [START_REF] Bommasani | On the opportunities and risks of foundation models[END_REF].

In this thesis, we study image representations learned by neural networks from three aspects. First, the modeling aspect: we aim to develop models that learn image representations suitable for solving not only the task which produces representations (the training task), but also other tasks we might be interested in solving with the learned representations afterwards (often called downstream or transfer tasks). Second, the data aspect: we investigate the role of training data in learning such all-purpose representations. Third, the evaluation aspect: we focus on selecting the right transfer tasks to use, i.e., to test the learned representations on, for reliably evaluating the quality of learned representations. In the remainder of this chapter, we discuss some of the challenges in these three axes (Sec. 1.1), then we pose a research question and present our contribution for each of them (Sec. 1.2). The list of papers published as part of this thesis is given at the end of this chapter (Sec. 1.3).

Let us first set the context for the specific problems we tackle in this thesis.

Challenges

Image representation learning by neural networks is a longstanding problem [START_REF] Goodfellow | Deep learning[END_REF]]. Yet, research in this field has flourished especially after the introduction of AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]], a deep neural network that won the ImageNet Large-Scale Visual Recognition Challenge (a task of classifying images belonging to one thousand fine-grained object categories) in 2012. The dataset used in this challenge, also called ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]], has become one of the most established datasets in computer vision, and is used broadly by the community for large-scale evaluations in many fields including, but not limited to, learning image representations [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF][START_REF] Huh | What makes ImageNet good for transfer learning?[END_REF], developing generative models [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF], designing network architectures [START_REF] Elsken | Neural architecture search: A survey[END_REF] Soon after AlexNet's success, researchers have started to investigate the properties of the representations learned by deep neural networks on ImageNet-1K, and it turned out that these representations are not only useful for solving the original classification task, but also for other related tasks [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Sharif Razavian | CNN features off-the-shelf: An astounding baseline for recognition[END_REF]. This ability of transferring representations across tasks (i.e., transfer learning) opens the door to a much more ambitious goal of learning "all-purpose" [START_REF] Oquab | DINOv2: Learning robust visual features without supervision[END_REF], Radford et al. 2021a, Yuan et al. 2021b] representations, i.e., representations which are generic enough to be used for many (if not all) computer vision tasks. Although arguable, it is a reasonable goal from the cognitive science perspective. For instance, we, as humans, can handle a wide range of visual tasks. Moreover, for the tasks we are not familiar with, we can learn to perform them rather quickly by relying on our past experience. Similarly, achieving this goal in the context of neural networks would have positive implications, such as learning new tasks more efficiently (in terms of data or compute costs) and more accurately (with potentially improved performance on the whole repertoire of tasks).

Both ImageNet-1K and transfer learning are central components of this thesis. We specifically target the following three challenges in evaluating the transferability of representations learned on ImageNet-1K (the first) and learning better representations on ImageNet-1K that transfer to other tasks (the second and the third):

1. Measuring concept generalization in visual representation learning, 2. Improving the generalization of supervised learning models and

Learning transferable representations from synthetic ImageNet clones

Measuring concept generalization in visual representation learning

Given a model trained on ImageNet-1K, how can we assess whether its learned representations are suitable for solving other tasks? In other words, how can we evaluate the learned representations in terms of their generalization (transfer) capability to other tasks? The answer depends on which particular aspects of generalization we are interested in measuring, such as generalization to different input domains [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]] (e.g., from natural images to sketches), different tasks [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF]] (e.g., from image classification to image segmentation), and different concepts [START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF]] (e.g., from classifying cats vs. cars to classifying dogs vs. trucks). Measuring each of them has its own challenges.

In Chapter 3, we focus on generalization across concepts, where the goal is to transfer knowledge acquired on a set of seen concepts to newly encountered unseen concepts as effectively as possible. More precisely, we are interested in understanding what the challenges are and what kind of models or model architectures are better at this particular generalization aspect. Conventional wisdom attributes the main difficulty of concept generalization to the fact that semantic relationships between seen and unseen concepts impact the affordance of knowledge transfer between them, when the other aspects of generalization are fixed, e.g., using images from the same input domain (e.g., natural images) and performing the same task (e.g., image classification). This is usually based on a chain of thought following two observations. First, visual similarity of concepts is correlated with their semantic similarity [START_REF] Deselaers | Visual and semantic similarity in ImageNet[END_REF], that is, if two concepts are semantically similar, they are visually similar as well (e.g., cats and dogs). Second, it is easier to transfer knowledge across visually more similar concepts [START_REF] Huh | What makes ImageNet good for transfer learning?[END_REF]. For instance, it is reasonable to expect representations learned from classifying cats to be more useful for classifying dogs than for classifying, e.g., foods.

To validate this chain of thought, and more generally, to evaluate the concept generalization capability of representations learned on ImageNet-1K, one key prospect is to understand whether models simply memorize the training data of ImageNet-1K or learn representations that can indeed transfer to unseen concepts. For this, it is important to consider carefully designed experimental protocols where training vs. evaluation tasks allow measuring the transferability of representations reliably. Therefore, a principled approach should satisfy the following requirements:

• A set of unseen concepts to evaluate the transferability of representations. Unseen concepts should come from the same concept ontology of the 1000 concepts of ImageNet-1K (which are already regarded as seen concepts), but should be disjoint from them.

• A semantic similarity measure defined between any two concepts. This can be based on, for instance, manually-defined relationship graphs by experts [START_REF] Miller | WordNet: A lexical database for English[END_REF]] or language models representing concepts in a semantic latent space based on textual description of concepts [Mikolov et al. 2013a,b].

• A structured concept space, where the semantic similarity between the seen and unseen concepts are known, for instance, based on the metric defined previously. This would allow examining how the semantic relationships between concepts affect the transfer performance across them.

To our knowledge, there is no benchmark that fulfills all these requirements, and we aim to fill this gap in Chapter 3.

Improving the generalization of supervised learning models

Whether or not image labels are exploited while training models on ImageNet-1K impacts the utility of representations learned by neural networks. They determine to what extent learned representations will be useful for ImageNet-1K or transferable to other tasks.

In the spectrum of utilizing annotations, there are two extremes for ImageNet-1K training. On one hand, there are supervised learning models, which are trained by predicting the image labels annotated by humans. As the task is to distinguish images of the concepts that exist in the training data, learned representations become tailored for those concepts, which are not necessarily useful for images of other (possibly unseen) concepts [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]. Prior work considered improving the transferability of representations learned by "vanilla" supervised models, which are trained naively by predicting the labels of images with standard architectures, by using alternative loss formulations or modifying the model architecture. For instance, contrastive learning has been used to minimize inter-class similarity of representations while maximizing their intra-class similarity computer either over a large set of samples [START_REF] Khosla | Supervised contrastive learning[END_REF] or small local neighborhoods [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]].

Orthogonal to the loss formulations, the model architecture has been modified to reduce the overfitting of representations to seen concepts [Wang et al. 2022b]. Although better transfer learning performance has been reported in these works, the resulting models fall behind the state-of-the-art supervised models [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] in terms of their classification accuracy on ImageNet-1K.

On the other hand, there are self-supervised learning models, a branch of unsupervised methods, which learn representations by solving proxy tasks depending solely on the images. The idea is to capture visual priors from images that are potentially useful for a wide range of downstream tasks. For this reason, significant research efforts have been devoted to designing proxy tasks that would produce such representations, with the main focus on discriminative tasks [START_REF] Zhou | iBOT: Image BERT pre-training with online tokenizer[END_REF]] rather than generative ones [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]. Early works in this direction relied more on low-level tasks such as predicting the orientation of an image [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF] or the color of a gray-scale pixel [START_REF] Zhang | Colorful image colorization[END_REF]]. More prominent progress has been made with higher-level tasks based on clustering [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF] or instance discrimination [START_REF] Dosovitskiy | Discriminative unsupervised feature learning with exemplar convolutional neural networks[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]]. As a result, recent self-supervised approaches have reported better transfer learning performance than their supervised counterparts on various downstream tasks [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]]. Yet, these models are inferior to the state of the art for ImageNet-1K classification.

As discussed, excelling at both training and transfer tasks is an open challenge, and we rather see a trade-off between these two goals. In Chapter 4, we investigate this trade-off by comparing the performance of models on ImageNet-1K and a number of transfer datasets.

Learning transferable representations from synthetic ImageNet clones

Another important factor that has a crucial impact on the utility of learned representations is training data [START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF], Radford et al. 2021a]. More precisely, the quantity and diversity of images or whether they are curated or not (i.e., inspected by humans to meet certain quality requirements) determine the performance of models. For instance, being a large-scale curated dataset with a fine-grained set of concepts is one of the reasons that makes ImageNet-1K a popular dataset for training models.

More training data generally helps achieving better performance, but it is proportionally more expensive to collect, filter and annotate new data, especially for a dataset like ImageNet-1K [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]. How can we expand the training data for ImageNet-1K without going through the trouble of manually collecting new images?

Generating synthetic images to be used as training data is a promising approach in this regard [START_REF] Besnier | This dataset does not exist: training models from generated images[END_REF]. We can train an image generative model, and task it to produce synthetic images for the 1000 classes of ImageNet-1K. Then, these synthetic images can be used to learn representations. But this approach comes with its own challenges. To start with, how to train the generative model (i.e., by using which data, algorithm or network architecture) is a concern. Synthetic images produced by the generative model should be as realistic as possible, so that the learned representations are useful for the real images of ImageNet-1K. Otherwise, representations would suffer from a potential domain gap between real and synthetic images [Sankaranarayanan et al. 2018, Yang and[START_REF] Yang | FDA: Fourier domain adaptation for semantic segmentation[END_REF]. Training class-conditional generative models is an option in this regard [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]], but, the quality of synthetic images is often not perfect, with a number of "issues". First of all, the visual fidelity of generated images is often not perfect, e.g., it is quite common to see artifacts in synthetic images such as an image of a duck with no head, or a bird with no wings [START_REF] Esser | Taming transformers for high-resolution image synthesis[END_REF]. Moreover, the diversity of generated images, one of the key properties of "good" synthetic images [START_REF] Manel | Learning to see by looking at noise[END_REF], is often limited, e.g., multiple random images generated for the same concept may appear in similar pose, background or lighting conditions [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF]]. All these issues may limit the generalization capabilities of the representations learned by synthetic images.

In Chapter 5, we investigate ways to produce synthetic ImageNet-1K clones for the purpose of learning transferable image representations.

Contributions

In this thesis, we tackle the following three research questions to tackle the challenges discussed above:

1. Given a model trained on ImageNet-1K, how can we reliably evaluate its concept generalization capability?

2. How can we learn robust image representations from ImageNet-1K that are not only useful for ImageNet-1K, but also generalize to a wide-range of tasks? This manuscript presents three contributions, one for each research question. Fig. 1.3 gives an illustration of these contributions to aid the reader in positioning them in the context of image representation learning with specific focus on transfer learning.

1. Measuring concept generalization in visual representation learning (Chapter 3) At the beginning of this PhD program, we observed the remarkable effectiveness of self-supervised models such as MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] and SimCLR [Chen et al. 2020a] for visual representation learning. Their representations learned on ImageNet-1K could be transferred to downstream image classification, object detection or semantic segmentation tasks on other datasets including Pascal-VOC [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF], MS-COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF], SUN [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF], Aircraft [START_REF] Maji | Finegrained visual classification of aircraft[END_REF] and others. We sought to determine if the enhanced performance of these models was due to their superior ability to learn representations for the concepts in ImageNet-1K or their increased capacity to generalize effectively to previously unseen concepts. To test this hypothesis, we wanted to understand how much ImageNet-1K "overlaps" with the datasets commonly used for downstream tasks. More specifically, we wanted to check if the concepts in downstream datasets were already seen during training on ImageNet-1K, and if not, how similar they are to the ones in ImageNet-1K in terms of their semantic similarity. It was not straightforward to quantify the overlap between the concepts in ImageNet-1K and those in downstream datasets. This was mainly due to the mismatch between the concept ontologies of all datasets, which were not necessarily aligned. To address this issue, we develop the ImageNet-CoG benchmark tailored for measuring the concept generalization capability of visual representations learned on ImageNet-1K. In this benchmark, there are five sets of truly unseen concepts (called CoG "levels", i.e., L 1 , L 2 , . . ., L 5 ), which are sampled from the full Ima-geNet dataset. Moreover, from the first to the last level, each level contains concepts that are semantically less and less similar to the concepts in ImageNet-1K. We evaluate 31 recent representation learning models including self-supervised models, supervised regularization techniques, model architectures, and make several interesting observations regarding these models. 2. Improving the generalization of supervised learning models (Chapter 4) Our evaluations on ImageNet-CoG reveal that self-supervised models (e.g., DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]) are more resilient to concept shift compared to the supervised models which are trained with label-based regularization techniques (e.g., MixUp [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] or CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF]) to achieve better performance on ImageNet-1K. A similar trade-off between the ImageNet-1K and transfer performance for supervised models is observed by [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF], who show that the best transfer performance is achieved by models which lead to the worst ImageNet-1K performance. These observations indicate that utilizing labels during training a model actually hurts its generalization performance. We argue that this is counter-intuitive and that labels should only help for learning better representations. With this motivation, we tackle the trade-off between ImageNet-1K and transfer performance for the sake of supervised learning to improve their generalization capability while retaining their superior performance on ImageNet-1K. To this end, we design an improved training setup for supervised learning, which includes training components from the best self-supervised models. By training supervised models with our setup, we achieve better transfer performance on 15 image classification tasks (including both large-scale and fine-grained categorization) compared to the state-of-the-art self-and semi-supervised models, DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] and PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF], respectively. Among the hundreds of models we trained with our setup, we single out two of them: t-ReX and t-ReX* which are the ResNet50 models with the best transfer and ImageNet-1K performance, respectively.

• The work presented in this chapter was accepted to International Conference on Learning Representations (ICLR) in 2023 [Sariyildiz et al. 2023b].

3. Learning transferable representations from synthetic ImageNet clones (Chapter 5) During 2022, many text-to-image generative models were proposed, with incredible image generation capabilities. We investigated whether these models could be used for generating images for a dataset like ImageNet-1K to overcome the limited data issue. The main challenge here is that ImageNet-1K is a particular dataset with a large number of fine-grained classes, e.g., many dog breeds, mushrooms types, etc., while these text-to-image models are trained on (image, text) pairs gathered arbitrarily from the internet [START_REF] Schuhmann | LAION-5B: An open large-scale dataset for training next generation image-text models[END_REF]. To this end, we use Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF] to generate synthetic images for the concepts in ImageNet-1K, and train supervised models on the generated images. To generate images for each class, we need a textual prompt for it, to be given as input to Stable Diffusion. We first examine prompts as simple as only the class name. Upon manual inspection, we encounter a number of issues with such prompts, including images with incorrect semantics or domain, or limited diversity. To address these issues, we considered other class-agnostic prompt alternatives by: a) appending the name of the parent class or the description of the class to the class name, b) devising prompts where a class is places in one of the backgrounds from the Places365 dataset [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF]], c) reducing the reliance on the textual prompt for Stable Diffusion. These alternative prompts are able to mitigate the issues with simple prompts. We test the performance of the models trained on the generated images produced with each variant of the prompts we investigate, on 5 ImageNet datasets and 15 transfer datasets. We observe that although we obtain lower performance on the ImageNet datasets compared to the baseline models trained on real images, the models trained on the generated images achieve much higher transfer performance.

• The work presented in this chapter was accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR) in 2023 [Sariyildiz et al. 2023a]. In this chapter, we present previous works related to the research questions presented in Sec. 1.2. We start Sec. 2.1 with a discussion on visual representations, and methods which obtain them using hand-crafted techniques or neural networks. Then, we briefly present different families of approaches to learn "good" visual representations. These include models trained with different forms of supervision (Sec. 2.2), models trained with synthetic data (Sec. 2.3). In Sec. 2.4, we look at ways to evaluate how good visual representations are for different computer vision problems, with emphasis on concept generalization. Finally, we position the contributions presented in the next chapters with respect to these related works in Sec. 2.5.

Publications

Image representations

Extracting image representations (also known as features) is one of the fundamental tasks in computer vision [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. As image representations facilitate the model designed for the task we want to solve, the "quality" of representations directly affects the performance of the model. Early works relied on human-designed techniques for extracting image features. In the past decade, with deep learning models becoming more and more successful, the field has shifted to learning image representations from data tailored for the task itself. This thesis focuses on the latter, i.e., learning image representations by neural networks. Yet, in order to present a complete picture, we briefly discuss the most relevant works in both these paradigms, in the following.

Hand-crafted representations

This refers to features extracted by human-designed rules which exploit low-level image properties, such as pixel colors or gradients. They were primarily used in early 2000s, but then they became gradually obsolete as the community started using neural networks more (which accelerated after the introduction of AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]). Here, we present an oversimplified pipeline of extracting such hand-crafted features using a popular method called bag of visual words. More comprehensive discussions, including other feature extraction techniques such as Fisher vectors [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF], can be found in Cinbis [2014], [START_REF] Mensink | Learning image classification and retrieval models[END_REF].

Bag of visual words (BoV) is one of the classical approaches for extracting image features for vision tasks, including e.g., image retrieval [START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF] or classification [START_REF] Csurka | Visual categorization with bags of keypoints[END_REF]]. As nicely stated in [Cinbis 2014] "the main idea is to obtain visual words by quantizing local descriptors of image patches (i.e., image regions) with respect to a visual vocabulary", and the whole process involves several important steps outlined as follows:

• Sampling image patches. These patches can be representative image regions (also called as interest points) detected based on low-level cues such as edge, corners or blobs [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]]. Examples of such detectors include SIFT detector [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF] or Harris-affine detector [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF]. Alternatively, patches can also be sampled densely on a regular grid at multiple scales [START_REF] Chatfield | The devil is in the details: an evaluation of recent feature encoding methods[END_REF][START_REF] Nowak | Sampling strategies for bag-of-features image classification[END_REF], which is shown to be better for recognition tasks [START_REF] Nowak | Sampling strategies for bag-of-features image classification[END_REF]].

• Extracting descriptors (features) from patches. Once we sample image patches, we extract descriptors from them. The most frequently used descriptors are usually based on gradient orientation histograms such as SIFT [Lowe 2004], SURF [START_REF] Bay | Speeded-up robust features (SURF)[END_REF] or DAISY [START_REF] Winder | Picking the best daisy[END_REF]] descriptors, or color statistics [Perronnin et al. 2010, Van De Weijer andSchmid 2006]. Illustration of the SIFT descriptor is shown in Fig. 2.1a.

• Creating a visual codebook and encoding local descriptors via the codebook. A codebook is often constructed by clustering a large set of local descriptors extracted from patches using a clustering algorithm such k-Means. Then each local descriptor is encoded via the codebook, usually by hard or soft cluster assignment.

• Aggregating codes. After encoding each local descriptor by the codebook, a histogram of codes is computed using descriptors for the same image, and they are aggregated by, e.g., average or max pooling.

The BoV approach has limitations. For instance, modeling spatial relationships across patches might be needed for tasks where global layout of objects is important. In those cases, BoV can be modified to incorporate spatial information [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF], or global image descriptors, such as GIST [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF] or HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]] can be extracted. More importantly, as codebook construction and encoding of descriptors are not trivial [START_REF] Van Gemert | Comparing compact codebooks for visual categorization[END_REF]], a number of issues arise, ranging from the loss of information due to quantization or ambiguity due to clustering, which has been partially addressed by, e.g., [START_REF] Avrithis | Approximate Gaussian mixtures for large scale vocabularies[END_REF][START_REF] Boiman | In defense of nearest-neighbor based image classification[END_REF][START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF][START_REF] Jurie | Creating efficient codebooks for visual recognition[END_REF][START_REF] Philbin | Lost in quantization: Improving particular object retrieval in large scale image databases[END_REF][START_REF] Tuytelaars | Vector quantizing feature space with a regular lattice[END_REF][START_REF] Van Gemert | Visual word ambiguity[END_REF]]. On the other hand, neural networks provide an alternative data-driven pipeline for extracting features learned specifically for the task.

Representations learned with neural networks

Brief history of neural networks. The idea behind artificial neural networks dates back to mid 1900s, e.g., [START_REF] Warren | A logical calculus of the ideas immanent in nervous activity[END_REF], [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF], and research in this field has undergone periods of advancement and setback until early 2000s [START_REF] Goodfellow | Deep learning[END_REF]]. Some notable works in this period include the perceptron model of [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF], its extension to multiple layers (i.e., multi-layer perceptrons, MLPs) by [START_REF] Grigorevich | Polynomial theory of complex systems[END_REF], using backpropagation [START_REF] David E Rumelhart | Learning representations by back-propagating errors[END_REF][START_REF] Werbos | Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science[END_REF] for training of neural networks with multiple hidden units, and the introduction of convolutional neural networks (CNN) [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[END_REF][START_REF] Lecun | Handwritten digit recognition with a back-propagation network[END_REF], 1998] to improve the generalization of networks by exploiting certain data biases such as local structures in images, and invariance to translation. (See [START_REF] Goodfellow | Deep learning[END_REF] for a more detailed discussion.)

Meanwhile, there had also been important developments from the hardware and data perspectives as well. Graphical processing units had been repurposed from gaming to generic massively parallel processing units for neural networks. Large-scale datasets, such as Ima-geNet [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF], had been collected for training and evaluating computer vision methods. This led to the pivotal moment of AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF] winning the ImageNet Large Scale Visual Recognition Challenge (also known as the ImageNet-1K dataset) [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] in 2012, which accelerated the adoption of neural networks for large-scale end-to-end learning. Subsequently, a multitude of network architectures have been introduced with the aim of enhancing either the computational efficiency or the performance of AlexNet, including ZFNet [START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] Inception [START_REF] Szegedy | Going deeper with convolutions[END_REF]] ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], ResNeXt [START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF], SENet [START_REF] Hu | Squeeze-and-excitation networks[END_REF], DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF], EfficientNet [START_REF] Tan | EfficientNet: Rethinking model scaling for convolutional neural networks[END_REF] ConvNeXt [START_REF] Liu | A convnet for the 2020s[END_REF]. Lately, equipped with a self-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF], Vision Transformers (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]] have gained popularity [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF]].

An [START_REF] Krogh | A simple weight decay can improve generalization[END_REF] added to the loss function), or d) re-parameterizing the weights (e.g., via weight normalization [START_REF] Salimans | Weight normalization: A simple reparameterization to accelerate training of deep neural networks[END_REF]).

• Using advanced optimization techniques (e.g., stochastic gradient descent with Adam optimizer [Kingma andBa 2014, Loshchilov andHutter 2019] or dynamically adjusting optimizer parameters with schedules [START_REF] Goyal | Accurate, large minibatch SGD: Training ImageNet in 1 hour[END_REF][START_REF] Loshchilov | Sgdr: Stochastic gradient descent with warm restarts[END_REF][START_REF] Samuel | Don't decay the learning rate, increase the batch size[END_REF]).

• Artificially increasing the amount of effective training data through the use of random image transformations, which is known as data augmentation [START_REF] Andrew | Some improvements on deep convolutional neural network based image classification[END_REF][START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], Szegedy et al. 2015, Wightman et al. 2021].

The idea of data augmentation is that given an image, several views of the image are generated by random data augmentation operations, and the network's output should be similar for these views belonging to the same image. This way, the network learns robust representations invariant to augmentations (similar to the notion of learning view-invariant representations by brains [START_REF] Hanneke | How prediction errors shape perception, attention, and motivation[END_REF][START_REF] Mnih | Learning word embeddings efficiently with noisecontrastive estimation[END_REF][START_REF] Smith | The development of embodied cognition: Six lessons from babies[END_REF]), assuming that learning those invariances are helpful for the task [START_REF] Xiao | What should not be contrastive in contrastive learning[END_REF]].

We organize the most commonly used augmentation operations into two groups:

• Label-preserving transformations. These include a) altering brightness, contrast, saturation and hue values of an image [Howard 2013], b) transforming the color space of an image from RGB to gray-scale or Lab [Tian et al. 2020a], or dropping its color channels [Chen et al. 2020a], c) applying filters, e.g., Gaussian Blur or noise, or Sobel filters [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF], d) removing a part of an image, e.g., CutOut [DeVries and Taylor 2017], e) spatial and geometric transformations such as horizontal flipping [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF]], random cropping [START_REF] Szegedy | Going deeper with convolutions[END_REF]], translation, rotation, sheering or perspective transform. There are several software packages supporting exhaustive lists of such augmentations, e.g., Albumentations [START_REF] Buslaev | Albumentations: Fast and flexible image augmentations[END_REF]].

• Semantic transformations which change the semantic content on the augmented image, hence its label. Examples include Mix-Up [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] and CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF]. Although initially designed for image classification, these augmentations can also be adapted for other tasks such as metric learning [START_REF] Venkataramanan | It takes two to tango: Mixup for deep metric learning[END_REF]] or self-supervised learning [START_REF] Shen | Un-mix: Rethinking image mixtures for unsupervised visual representation learning[END_REF]. Moreover, such semantic transformations can be applied in the space of learned representations [START_REF] Kalantidis | Hard negative mixing for contrastive learning[END_REF][START_REF] Venkataramanan | Alignmixup: Improving representations by interpolating aligned features[END_REF][START_REF] Verma | Manifold mixup: Better representations by interpolating hidden states[END_REF], rather than input images.
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An illustration of some of those data augmentation operations is shown in Fig. 2.2.

Transferring representations to other tasks. Researchers found that robust representations learned on one task can also generalize to, i.e., transfer to, other related vision tasks [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Sharif Razavian | CNN features off-the-shelf: An astounding baseline for recognition[END_REF][START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. This means, for instance, a network can be pretrained for image classification on ImageNet-1K, and representations learned by this network can be re-used on another task, e.g., semantic segmentation or object detection on the MS-COCO dataset [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF]]. This paradigm of transferring representations from one task (i.e., training task) to another one (i.e., transfer task) is often denoted as transfer learning [START_REF] Bozinovski | Reminder of the first paper on transfer learning in neural networks[END_REF][START_REF] Bozinovski | The influence of pattern similarity and transfer learning upon training of a base perceptron b2[END_REF], and constitutes the main focus of this thesis.

As there are many hidden layers in a deep network, the choice of which layer to extract representations from is not straightforward. Using features from intermediate layers of networks has been considered before, e.g. for training object detectors [START_REF] Lin | Feature pyramid networks for object detection[END_REF]] and image classification models [START_REF] Lee | Deeplysupervised nets[END_REF], or evaluating the transferability of individual layers [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF], Zhang et al. 2016] or groups of layers [START_REF] Evci | Head2toe: Utilizing intermediate representations for better transfer learning[END_REF]]. However, selecting optimal layers for each problem is infeasible due to the computational nature of this selection. Therefore, recent approaches measuring transferability of representations [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF], Chen et al. 2020a, He et al. 2020] often extract features from a single layer, which is the penultimate layer of the network. More concretely, consider a model to be composed of an encoder f q and a task head g f , parameterized by q and f , respectively, i.e., model outputs o = g f ( f q (I)):

• f q : I ! x 2 R d is an encoder (also known as "backbone") mapping images I to ddimensional representations x. These are the representations transferred to other tasks or datasets. For instance, a common practice is to train a linear classifier, e.g., support vector machines (SVM) classifier [START_REF] Vapnik | The nature of statistical learning theory[END_REF]], on top of representations x extracted for the transfer task. We discuss this in more detail in Sec. 2.4.

• g f : x ! o 2 R |O| is a module mapping representations x to outputs of the model, i.e., predictions according to the task being considered.

For instance, in the case of training an image classification model, f q could be any recent deep network mentioned earlier and g f could be class weights W 2 R |C|⇥d mapping representations to class prediction scores o = W x, where |C| is the number of classes.

In the next section, we look at some of the prominent ways of pretraining neural networks to learn robust representations that can transfer.

Forms of supervision to learn representations

Previous section discussed two distinct mechanisms for representing images, i.e., handcrafted features vs. features learned by neural networks. This thesis focuses on the latter, and in particular, on the way neural networks are trained to learn representations. In fact, depending on the constraints of the problem at hand, there are several ways to learn visual representations. For instance, on one hand, supervised learning is applicable when humanprovided annotations are given for images [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]]. On the other hand, unsupervised or self-supervised learning [START_REF] Caron | Self-supervised learning of deep visual representations[END_REF]] is an alternative paradigm to learn strong visual priors when no annotation is available. As we move along the annotation spectrum in between those two paradigms, there are also semi-supervised [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF][START_REF] Siméoni | Rethinking deep active learning: Using unlabeled data at model training[END_REF]] and weakly-supervised [START_REF] Desai | Virtex: Learning visual representations from textual annotations[END_REF][START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF], Radford et al. 2021a, Sariyildiz et al. 2020b] approaches. There are other paradigms such as knowledge distillation [START_REF] Buciluǎ | Model compression[END_REF], Hinton et al. 2014], which provides tools to transfer knowledge from one model (teacher) to another one (student) [START_REF] Budnik | Asymmetric metric learning for knowledge transfer[END_REF]].

In the remainder of this section, we will briefly discuss related works in supervised (Sec. 2.2.1) and self-supervised (Sec. 2.2.2) learning. Each methodology has its own advantages and disadvantages. For instance, supervised learning is the de facto approach to learn the most useful representations for a given task, e.g., image classification. Yet, the transferability of learned representations is largely affected by the level of regularization applied during training [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF][START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]. Self-supervised learning, on the other hand, has been shown to learn more transferable representations than supervised learning [START_REF] Caron | Self-supervised learning of deep visual representations[END_REF]].

Supervised learning

In this setting, given an image I, a model is trained by predicting ground-truth annotations y of the image. Throughout this thesis, we focus on the case where such annotations are in the form of image labels, i.e., the category label of an object in an image denoted by y 2 {0, 1} |C| , a |C|-dimensional one-hot label vector, where |C| is the number of classes. Following the notation we introduced earlier, we define the components of an image classification model g f as follows:

• f q : I ! x 2 R d is an encoder producing representations x of an image I.

• g f : x ! o 2 R |C| is a module for predicting class labels. For simplicity, we assume that

g f (x) = W x + b, where W = {w c 2 R d } C
c=1 and b 2 R C are class weights and bias terms, respectively. They can be both trainable or non-trainable, i.e., not updated after initialization in the latter case [START_REF] Hoffer | Fix your classifier: The marginal value of training the last weight layer[END_REF], Sariyildiz et al. 2020a].

Several loss functions have been used to train the parameters of this image classification model (i.e., q , W and b).

Multi-class cross-entropy (MCCE) (also known as softmax cross-entropy) is a standard loss function used for multi-class classification problems. When training models with this function, we compute class scores by multiplying image representations x = f q (I) with class weights W and adding bias terms b. Then, these class scores are turned into class probabilities using softmax, to finally compute log loss:

L MCCE (x, y) = C Â c=1 y [c] log exp(x > w c + b c ) Â C k=1 exp(x > w k + b k ) . (2.1)
Binary cross-entropy (BCE) is mainly used for binary classification problems. Yet, by following a one-versus-rest strategy, it can used in multi-class classification problems as well [START_REF] Beyer | Are we done with ImageNet?[END_REF], Wightman et al. 2021]:

L BCE (x, y) = C Â c=1 " y [c] log exp(x > w c + b c ) exp(x > w c + b c ) + 1 ! + (1 y [c] ) log 1 exp(x > w c + b c ) exp(x > w c + b c ) + 1 !# , (2.2)
Different from MCCE, prediction probability for class c i does not affect that of class c j for i 6 = j, as we only use w c to make a prediction for the class c.

Cosine-softmax cross-entropy (CSCE) [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]] is a variant of MCCE where both representations x and class weights w c (for all c), are `2-normalized:

L CSCE (x, y) = C Â c=1 y [c] log exp(x > wc /t + b c ) Â C k=1 exp(x > wk /t + b c ) , (2.3)
where x = x kxk , wc = w c kw c k and t is a temperature parameter controlling the smoothness of the probability distribution.

In the cross-entropy variants discussed above, bias terms b can often be discarded when training models on datasets with balanced data, i.e., datasets where the number of images per class is roughly the same, such as ImageNet-1K. This is especially the case for the CSCE variant, as bias terms can artificially alter the effect of the temperature parameter t, which is an important hyper-parameter to be carefully set.

Nearest class mean classifier (NCM) [START_REF] Mensink | Distance-based image classification: Generalizing to new classes at near-zero cost[END_REF]] modifies the cross-entropy formulation above by replacing class weights W by

class prototypes U = {u c 2 R d } C c=1 , where u c = 1 |X c | Â x2X c
is the prototype of class c obtained by averaging features of the images that belong to class c (denoted by X c ), and |.| denotes the cardinality of a set. Then, an image is assigned to the class with the closest mean according to a distance measure, which can simply be Euclidean distance d(x, u) = k(x u)k or a learned Mahalanobis distance d(x, u) = (x u) > M(x u) with parameters M. In this formulation, computing prototypes requires processing all the images in the dataset, which is not feasible for large datasets. But this is not a problem if image features are static, e.g., obtained by the techniques discussed above in Sec. 2.1.1, as prototypes can be computed once in the beginning of training. However, adapting this formulation in the context of deep learning, where representations are updated after each training iteration, is not trivial, i.e., as with representations, class prototypes must also be updated. [START_REF] Guerriero | DeepNCM: Deep nearest class mean classifiers[END_REF] proposed to approximate class prototypes by updating them in an online manner, using samples in the batch at each step of training. This approximation circumvents the need of processing all the images in the dataset at each training step, but it is not as accurate as the original NCM formulation.

Supervised contrastive learning (SCL), proposed in SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF], is different from the other loss functions mentioned above in a way that it does not utilize class weights or prototypes to predict the label of an image. Instead, it is a contrastive learning approach (adapted from a self-supervised model SimCLR [Chen et al. 2020a]), where representations of images from the same class are enforced to be close to each other, while representations from different classes are pushed apart. In their work, [START_REF] Khosla | Supervised contrastive learning[END_REF] discuss two ways to extend SimCLR for supervised learning, which are reminiscent of neighborhood component analysis (NCA) of [START_REF] Goldberger | Neighbourhood components analysis[END_REF]. One of them leads to substantially better results than the other (denoted as L sup out in [START_REF] Khosla | Supervised contrastive learning[END_REF]), and it is formulated as follows:

L SupCon (x, y) = 1 |P(x, y)| Â x + 2P(x,y) log exp(x > x+ /t) Â x 2N(x,y) exp(x > x /t) , (2.4) 
where P(x, y) and N(x, y) denote the set of positive and negative pairs for the representation

x corresponding to an image with label y. As it is often beneficial to have a large pool of negative pairs in contrastive learning, SupCon circumvents the need for large batches by adding a momentum and a memory bank similar to another self-supervised model MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]].

Following the line of SupCon, there are also other works which have taken inspiration from self-supervised learning. Supervised-MoCo [Zhao et al. 2021b] filters out false negatives in the memory bank of MoCo using image labels, while LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] modifies the NCA objective to only consider the closest neighbors of each query image.

So far, we assumed g f to be a simple linear layer producing model outputs. However, following the recent practice in self-supervised learning, g f can include a multi-layer perceptron with several hidden layers. This practice is shown to increase the generalization capability of encoders f q [Wang et al. 2022b].

Although the loss functions mentioned above effectively exploit image annotations to learn representations, collecting them is an expensive and error-prone process, especially for finegrained categorization. Moreover, it imposes certain labeling biases, limiting what can be predicted in natural images, which can possibly contain tens of objects interacting with each other in one way or another [START_REF] Caron | Self-supervised learning of deep visual representations[END_REF]]. The following section discusses methods for visual representation learning in an annotation-free manner.

Self-supervised learning

Self-supervised learning (SSL), a type of unsupervised learning, is a methodology for training models without requiring annotations. In this setting, a training task is still needed to learn representations, but it does not depend on annotations (e.g., image labels provided by humans as in supervised learning we mentioned above). Such training tasks are treated as a proxy to learn visual representations, hence, they are often called proxy tasks.

There are different families of SSL approaches to learn representations, including

• image generating models, which reconstruct pixels from representations of individual images, such as Autoencoders (either image-level [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]] or patch-level [START_REF] He | Masked autoencoders are scalable vision learners[END_REF][START_REF] Kakogeorgiou | What to hide from your students: Attentionguided masked image modeling[END_REF]), GANs [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF] or autoregressive models [START_REF] Van Den Oord | Conditional image generation with PixelCNN decoders[END_REF]],

• view-invariant learning approaches [Chen et al. 2020a, Dosovitskiy et al. 2016[START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF][START_REF] Hadsell | Dimensionality reduction by learning an invariant mapping[END_REF][START_REF] Misra | Self-supervised learning of pretext-invariant representations[END_REF], Tian et al. 2020a[START_REF] Zbontar | Barlow Twins: Selfsupervised learning via redundancy reduction[END_REF], which take into account pairwise relations formed by data augmentation,

• clustering approaches, which build on the idea that clusters should be formed in representation spaces, and they can be a) predicted by their assignment scores [START_REF] Markus Asano | Self-labelling via simultaneous clustering and representation learning[END_REF][START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF], 2020], b) locally approximated based on pairwise similarity of samples [START_REF] Soroush | Mean shift for self-supervised learning[END_REF]] or c) modeled by a probabilistic approach [Li et al. 2021b],

• other pretext tasks from data such as colorization [START_REF] Zhang | Colorful image colorization[END_REF], patch prediction [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF], frame sequence prediction [START_REF] Misra | Unsupervised learning using sequential verification for action recognition[END_REF], rotation prediction [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF] or prediction of bag-of-words [START_REF] Gidaris | Online bag-of-visual-words generation for unsupervised representation learning[END_REF] or HOG [START_REF] Wei | Masked feature prediction for self-supervised visual pre-training[END_REF] features.

We refer the reader to [START_REF] Asano | Learning deep neural networks: Necessity and scope of prior knowledge, raw data, and labels[END_REF], [START_REF] Caron | Self-supervised learning of deep visual representations[END_REF] for a detailed history on self-supervised learning.

Recent SSL models are shown to learn more transferable representations than their supervised counterparts [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF]]. Thanks to this ability, they can also be used to pretrain representations which are then fine-tuned with supervised learning objectives [Bourcier et al. 2022b]. This practice is especially useful in the case of limited labeled data [Bourcier et al. 2022a]. It is worth noting some of the key components of the recent successful SSL approaches:

• Heavy data augmentation pipelines [Chen et al. 2020a], including e.g., creating multiple augmented views of images in the same batch, also known as multi-crop augmentation [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF][START_REF] Hoffer | Augment your batch: Improving generalization through instance repetition[END_REF]]. Multi-crop, creates crops with different scales and resolutions, producing challenging views of an image for which the model is encouraged to learn consistent representations [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF], Caron et al. 2021].

• Keeping a large pool of consistent negatives for better performance in contrastive learning, using, for instance, a large batch size [Chen et al. 2020a] or memory bank [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]].

• Including a number of non-linear hidden layers in the task head g f , also known as projector head [Chen et al. 2020a]. The size of projector heads is set carefully depending on the task. In some cases, they can be much bigger than encoders f q [START_REF] Zbontar | Barlow Twins: Selfsupervised learning via redundancy reduction[END_REF]].

• Long training schedules, e.g., up to 1600 epochs Chen et al. [2020c], [START_REF] He | Masked autoencoders are scalable vision learners[END_REF], which usually improves performance.

Learning representations from synthetic data

Until now, we focused on learning visual representations from real images. Recently, following the advances in generative models (see, e.g., [START_REF] Lucas | Deep generative models : over-generalisation and mode-dropping[END_REF]), training models with synthetic data has gained popularity. As more and diverse data usually improves performance [START_REF] Hestness | Deep learning scaling is predictable, empirically[END_REF], the image generation process of generative models can be controlled by side information, such as class labels or textual prompts (e.g., see Fig. 2.3), in order to synthesize images for a particular task for training better models. In this section, we look at such recent approaches that train models on synthetic data.

Learning with synthetic data has been considered as a way to create large amounts of labeled data for annotation heavy tasks, such as understanding human motion or their 3D shapes [START_REF] Guo | Learning video representations of human motion from synthetic data[END_REF][START_REF] Mahmood | Amass: Archive of motion capture as surface shapes[END_REF][START_REF] Pumarola | 3dpeople: Modeling the geometry of dressed humans[END_REF][START_REF] Varol | Learning from synthetic humans[END_REF]], semantic segmentation [Chen et al. 2019b, Li et al. 2021a[START_REF] Isola | When faking your data actually helps -Learning vision from GANs, NeRFs, and noise[END_REF][START_REF] Swami Sankaranarayanan | Learning from synthetic data: Addressing domain shift for semantic segmentation[END_REF][START_REF] Tritrong | Repurposing GANs for one-shot semantic part segmentation[END_REF], optical flow estimation [START_REF] Dosovitskiy | FlowNet: Learning optical flow with convolutional networks[END_REF][START_REF] Mayer | A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[END_REF][START_REF] Yo Whan Kim | How transferable are video representations based on synthetic data? In NeurIPS Datasets and Benchmarks Track[END_REF] or dense visual alignment [START_REF] Peebles | GAN-supervised dense visual alignment[END_REF]]. In most cases, this synthetic data requires access to 3D models and renderers [START_REF] Mahmood | Amass: Archive of motion capture as surface shapes[END_REF][START_REF] Zheng | Structured3d: A large photo-realistic dataset for structured 3d modeling[END_REF] or to a simulator [START_REF] Amini | Learning robust control policies for end-to-end autonomous driving from data-driven simulation[END_REF][START_REF] Celso M De Melo | Next-generation deep learning based on simulators and synthetic data[END_REF][START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF][START_REF] Stephan R Richter | Playing for data: Ground truth from computer games[END_REF]] with a physically plausible 3D graphics engine. [START_REF] Kataoka | Pre-training without natural images[END_REF] recently proposed pretraining on a database of synthetic fractal images before fine-tuning the model using real images on a downstream task. [START_REF] Jith | Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma[END_REF] generates synthetic OCT images to train a glaucoma detection model to be applied to real images. Data sampled from generative models [START_REF] Goodfellow | Generative adversarial networks[END_REF], Ho et al. 2020, Nichol et al. 2021, Ramesh et al. 2021[START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF][START_REF] Saharia | Photorealistic text-to-image diffusion models with deep language understanding[END_REF]] can be seen as data with added functionalities or "data++" [START_REF] Isola | When faking your data actually helps -Learning vision from GANs, NeRFs, and noise[END_REF]]. Such data can be manipulated, interpolated or composed [Chai et al. 2021a,b, Goetschalckx et al. 2019[START_REF] Jahanian | On the "steerability" of generative adversarial networks[END_REF][START_REF] Isola | When faking your data actually helps -Learning vision from GANs, NeRFs, and noise[END_REF] with dedicated operators in their latent space, and further used for counterfactual reasoning [START_REF] Liu | Generative counterfactual introspection for explainable deep learning[END_REF][START_REF] Mao | Generative interventions for causal learning[END_REF][START_REF] Oktay | Counterfactual image networks[END_REF][START_REF] Sauer | Counterfactual generative networks[END_REF].

Synthetic ImageNet clones. Synthetic images for ImageNet classes appear in a number of related works [START_REF] Besnier | This dataset does not exist: training models from generated images[END_REF], Li et al. 2022[START_REF] Ravuri | Classification accuracy score for conditional generative models[END_REF]] using class conditional Generative Adversarial Networks (GANs), such as BigGAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]]. [START_REF] Besnier | This dataset does not exist: training models from generated images[END_REF] generate images for ten ImageNet classes and propose techniques to reduce the gap between models trained on generated images and real ones. [START_REF] Li | BigDatasetGAN: Synthesizing ImageNet with pixel-wise annotations[END_REF] synthesize five images for each ImageNet-1K class, together with their semantic segmentation annotations to automatically generate pixel-level labels at scale.

Evaluating the generalization of representations

In the previous two section, we discussed works on learning visual representations, i.e., the model training aspect. Yet, it is equally important to comprehend the strengths and limitations of these models, such as whether they merely overfit to the task they train on or demonstrate reliable generalization to unseen data. This section reviews works on this evaluation aspect.

Generalization. Models are usually evaluated by measuring their generalization capability to unseen data, i.e., how well they perform on unseen data. From machine learning point of view, generalization has been studied under different perspectives such as

• regularizing models by imposing architectural constraints [START_REF] Larsson | FractalNet: Ultra-deep neural networks without residuals[END_REF][START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] or using data augmentation to artificially increase the amount of data (as discussed earlier),

• finding links to human cognition [START_REF] Geirhos | Generalisation in humans and deep neural networks[END_REF], or

• developing quantitative metrics to better understand it, e.g., through loss functions [START_REF] Li | Visualizing the loss landscape of neural nets[END_REF] or complexity measures [START_REF] Behnam Neyshabur | Exploring generalization in deep learning[END_REF]].

Several dimensions of generalization have also been explored in the context of computer vision, for instance, i) generalization to different visual distributions of the same concepts (domain adaptation) [START_REF] Csurka | Domain Adaptation in Computer Vision Applications[END_REF]], ii) generalization across semantic concepts, which is a crucial part of zero-shot [START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF][START_REF] Socher | Zero-shot learning through cross-modal transfer[END_REF]] and few-shot [START_REF] Vinyals | Matching networks for one shot learning[END_REF]] learning, or iii) generalization across tasks [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF]]. An illustration highlighting these three aspects is provided in Fig. 2.4. In many of these scenarios, ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] has played a key role, i.e., models pretrained on ImageNet-1K have usually been better starting points for tackling these problems [START_REF] Huh | What makes ImageNet good for transfer learning?[END_REF]].

In the following, we look at common practices for measuring generalization across vision tasks. Then we discuss works on concept generalization.

Evaluations through transfer learning. As we mentioned in Sec. 2.1.2, transferring representations from one task to another one is often denoted as transfer learning [START_REF] Bozinovski | The influence of pattern similarity and transfer learning upon training of a base perceptron b2[END_REF]. In this context, there are several works studying transfer learning from a theoretical stand point [START_REF] Baxter | A model of inductive bias learning[END_REF][START_REF] Tripuraneni | On the theory of transfer learning: The importance of task diversity[END_REF]. A more common approach is to evaluate representations on a wide-range of downstream tasks benchmarking models from different aspects of generalization [START_REF] Islam | A broad study on the transferability of visual representations with contrastive learning[END_REF], Kolesnikov et al. 2020]. As performing downstream tasks can be a cumbersome endeavor, recent works also compute proxy metrics on representations which are expected to account for the transferability of representations without performing downstream tasks.

Downstream tasks. When it comes to evaluating the quality of visual representations, the gold standard is to benchmark models by solving diverse tasks such as classification, detection, segmentation and retrieval on many datasets [START_REF] Caron | Unsupervised Pre-Training of Image Features on Non-Curated Data[END_REF], Chen et al. 2020a[START_REF] Ericsson | How well do self-supervised models transfer?[END_REF][START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF], He et al. 2020[START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF], Zhai et al. 2019b]. Several benchmarks have been proposed as evaluation suites [START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF], Zhai et al. 2019b]. Besides the training task of ImageNet-1K, the most commonly used datasets include Places [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF]], Pascal-VOC [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF]], MS-COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF]]. When benchmarking models, they can either be fine-tuned or used as a feature extractor. In the former, their parameters are updated for the downstream task, whereas in the latter, their parameters are frozen and only the additional parameters introduced for the downstream task are trained. Therefore, fine-tuning models is often computationally more expensive than using them as feature extractors. On the other hand, an important point when using models as feature extractors is to decide on which layer to extract representations from, which might affect performance [START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF]]. As mentioned earlier (in Sec. 2.1), the selection of the optimal layer, or even, combination of layers is infeasible in practice. To work around this problem one can use an expendable projector head [Chen et al. 2020a] to obtain representations with desired transferability characteristics.

Transferability scores. Performing downstream tasks is a reliable way of measuring transferability of representations, but this process can be computationally demanding, e.g., when fine-tuning models on large-scale downstream datasets. There have been efforts to sidestep downstream evaluations by computing certain metrics on top of representations, which are easier to obtain compared to performing downstream tasks, with the assumption that such metrics are expected to correlate well with downstream task performance. For instance, instead of, e.g., training an image classifier on a downstream dataset, [START_REF] Bao | An information-theoretic approach to transferability in task transfer learning[END_REF] measure inter-class variance and feature redundancy of representations extracted for images of the downstream dataset or [START_REF] Pándy | Transferability estimation using Bhattacharyya class separability[END_REF] measures the statistical overlap between the classes in a downstream dataset (measured by Gaussian Bhattacharyya coefficient) using their representations. See [START_REF] Agostinelli | Transferability metrics for selecting source model ensembles[END_REF] for a recent study on the popular transferability metrics.

Positioning the contributions

We position the contributions of this thesis (presented in Chapters 3 to 5) with respect to the related works discussed in this chapter. Recall that our contributions tackle three research questions (listed in Sec. 1.2 and repeated here for convenience):

1. Given a model trained on ImageNet-1K, how can we reliably evaluate its concept generalization capability?

2. How can we learn robust image representations from ImageNet-1K that are not only useful for ImageNet-1K, but also generalize to a wide-range of tasks?

3. Can we learn such robust image representations from synthetic images generated for the concepts in ImageNet-1K?

A benchmark for measuring concept generalization (Chapter 3). As we noted in Sec. 2.4, the quality of the learned visual representations is usually determined based on downstream tasks covering multiple generalization facets, such as domain adaptation, task transfer or concept generalization. Existing benchmarks [START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF], Guo et al. 2020] focus more on the first two facets and a more principled analysis is needed for the last one, i.e., the impact of the semantic relationship between the concepts seen during training and those seen during evaluation (seen and unseen concepts, respectively) has been overlooked in evaluating the quality of visual representations. To close this gap, we present a controlled benchmark, named ImageNet-CoG, that factors in such relations, while keeping all the other generalization facets fixed. Our benchmark is built on the full ImageNet dataset [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]]: Seen concepts are the 1000 concepts from the ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] dataset (a subset of the full ImageNet) and we select 5000 unseen concepts from the remaining of ImageNet. This way, we make sure that seen and unseen concepts are disjoint. Moreover, those unseen concepts are split into 5 groups (which we call levels) such that from the first to last level, each level contains semantically less and less similar concepts with respect to the seen ones. This allows us to evaluate the impact of the semantic relationship between seen and unseen concepts to transferability across them.

Improving the generalization of supervised models (Chapter 4). We mentioned in Sec. 2.2.2 that recent self-supervised learning (SSL) approaches learn more transferable representations than their supervised counterparts. In fact, we verify this observation for concept generalization using our ImageNet-CoG benchmark (see Sec. 3.4). To understand this phenomenon, we train supervised models equipped with some of the key components of the successful SSL approaches (listed in Sec. 2.2.2) using the cosine-softmax cross-entropy (CSCE) loss (Equation (2.3)). We observe that multi-crop augmentation and expendable projector heads boost the generalization performance of supervised models, i.e., prevent their encoders f q from overfitting too much to the training task and allow them to learn more transferable representations. Moreover, we replaced class weights in CSCE with class prototypes as in the NCM approach of [START_REF] Mensink | Distance-based image classification: Generalizing to new classes at near-zero cost[END_REF]] (classifier described in Sec. 2.2.1). Different from NCM and DeepNCM [START_REF] Guerriero | DeepNCM: Deep nearest class mean classifiers[END_REF], we compute class prototypes using representations stored in an online memory bank [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]].

Learning transferable representations using synthetic images (Chapter 5). We mentioned that ImageNet-1K is one of the most frequently used dataset to learn visual representations (Secs. 2.1.2 and 2.4), and that several previous works generated synthetic ImageNet-1K clones using conditional generative models (Sec. 2.3). Such ImageNet-1K clones have mostly been produced by label-conditioned Generative Adversarial Networks [START_REF] Goodfellow | Generative adversarial nets[END_REF]] trained on ImageNet-1K itself. Yet, recent text-to-image synthesis models are more generic thanks to the large-scale image-text data [START_REF] Schuhmann | LAION-5B: An open large-scale dataset for training next generation image-text models[END_REF]] they trained on, and they produce more realistic images thanks to the advances in image-generative modeling [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]. We revisit training models on synthetic ImageNet-1K clones by creating them using Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]]. Moreover, we evaluate the quality of representations learned from these synthetic images not only for ImageNet datasets, but also for transfer datasets, and the latter leads to interesting observations. Here, our focus is on the evaluation aspect of visual representations, i.e., measuring how "useful" visual representations are for transfer tasks. More specifically, we look at this evaluation aspect from the concept generalization perspective for models pretrained on ImageNet-1K.

As we have discussed in Chapter 2, measuring concept generalization, i.e., the extent to which models trained on a set of (seen) visual concepts can be leveraged to recognize a new set of (unseen) concepts, is an important aspect of evaluating visual representations. Nonetheless, the choice of unseen concepts for such an evaluation is usually made arbitrarily, and independently from the seen concepts used to train representations, thus ignoring any semantic relationships between the two.

To address this problem, we propose ImageNet-CoG,1 a novel benchmark on the ImageNet-21K (IN-21K) dataset that enables measuring concept generalization in a principled way.

Utilizing our benchmark, we show that the semantic relationships between seen and unseen concepts indeed affect generalization performance.

Our benchmark leverages expert knowledge that comes from WordNet in order to define a sequence of unseen IN-21K concept sets that are semantically more and more distant from the ImageNet-1K (IN-1K) subset, a ubiquitous training set. This allows us to benchmark visual representations learned on IN-1K out-of-the box. We conduct a large-scale study encompassing 31 convolution and transformer-based models and show how different architectures, levels of supervision, regularization techniques and use of web data impact the concept generalization performance.

Introduction

There has been an increasing effort to tackle the need for manually-annotated large-scale data in deep models via transfer learning, i.e., by transferring representations learned on resourceful datasets and tasks to problems where annotations are scarce. Prior work has achieved this in various ways, such as, imitating knowledge transfer in low-data regimes [START_REF] Vinyals | Matching networks for one shot learning[END_REF], exploiting unlabeled data in a self- [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]] or weakly- [START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF] supervised manner.

The quality of the learned visual representations for transfer learning is usually determined by checking whether they are useful for, i.e., generalize to, a wide range of downstream vision tasks. Thus, it is imperative to quantify this generalization, which has several facets, such as generalization to different input distributions (e.g., from synthetic images to natural ones), to new tasks (e.g., from image classification to object detection), or to different semantic concepts (e.g., across different object categories or scene labels). Although the first two facets have received much attention recently [START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF], Guo et al. 2020], we observe that a more principled analysis is needed for the last one.

As also noted by [START_REF] Deselaers | Visual and semantic similarity in ImageNet[END_REF], [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], the effectiveness of knowledge transfer between two tasks is closely related to the semantic similarity between the concepts considered in each task. However, assessing this relatedness is not straightforward, as the semantic extent of a concept may depend on the task itself. In practice, models consider an exhaustive list of downstream tasks that cover a wide range of concepts [Chen et al. 2020a[START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF]] in order to test their transfer learning capabilities. Previous attempts discussing this issue have been limited to intuition [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], Zhao et al. 2021b]. We still know little about the impact of the semantic relationship between the concepts seen during training visual representations and those seen during their evaluation (seen and unseen concepts, respectively).

In this chapter, we study the generalization capabilities of visual representations across concepts that exist in a large, popular, and broad ontology, the subset of WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF]] used to build ImageNet-21K [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]] (IN-21K), while keeping all the other generalization facets fixed. Starting from a set of seen concepts, the concepts from the popular ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] (IN-1K) dataset, we leverage semantic similarity metrics based on this ontology crafted by experts to measure the semantic distance between IN-1K and every unseen concept (i.e., any concept from IN-21K that is not in IN-1K). We rank unseen concepts with respect to their distance to IN-1K and define a sequence of five, IN-1K-sized concept generalization levels, each consisting of a distinct set of unseen concepts with increasing semantic distance to the seen ones. This results in a large-scale benchmark that consists of five thousand concepts, that we refer to as the ImageNet Concept Generalization benchmark, or ImageNet-CoG in short. The benchmark construction process is illustrated in Fig. 3.1.

Given a model trained on IN-1K, the evaluation protocol for ImageNet-CoG consists of two phases: it first extracts features for images of IN-1K and of the five concept generalization levels, and then learns individual classifiers, for each level, using a varying amount of samples per concept. By defining the set of seen concepts for our benchmark to be IN-1K classes, we are able to evaluate models trained on IN-1K out-of-the box. We therefore use publicly available pretrained models and analyse a large number of popular models under the prism of concept generalization.

Our contributions in this chapter are as follows:

• We propose a systematic way to study concept generalization, by defining a set of seen concepts along with sets of unseen concepts that are semantically more and more distant from the seen ones.

• We design ImageNet-CoG, a large-scale benchmark, which embodies this systematic way. It is designed to evaluate models pretrained on IN-1K out-of-the-box and draws unseen concepts from the rest of the IN-21K dataset. We measure concept generalization performance on five, IN-1K-sized levels, by learning classifiers with a few or all the training images from the unseen concepts. • We conduct a large-scale study benchmarking 31 state-of-the-art visual representation learning approaches on ImageNet-CoG and analyse how different architectures, levels of supervision, regularization techniques and additional web data impact the concept generalization performance, uncovering several interesting insights.

Related work

Generalization has been studied under different perspectives such as regularization [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] and augmentation [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF] techniques, links to human cognition [START_REF] Geirhos | Generalisation in humans and deep neural networks[END_REF], or developing quantitative metrics to better understand it, e.g., through loss functions [START_REF] Li | Visualizing the loss landscape of neural nets[END_REF]] or complexity measures [START_REF] Behnam Neyshabur | Exploring generalization in deep learning[END_REF]]. Several dimensions of generalization have also been explored in the context of computer vision, for instance, generalization to different visual distributions of the same concepts (domain adaptation) [START_REF] Csurka | Domain Adaptation in Computer Vision Applications[END_REF]], or generalization across tasks [START_REF] Zamir | Taskonomy: Disentangling task transfer learning[END_REF]. Generalization across concepts is a crucial part of zero-shot [START_REF] Socher | Zero-shot learning through cross-modal transfer[END_REF]] and few-shot [START_REF] Vinyals | Matching networks for one shot learning[END_REF] learning. We study this particular dimension, concept generalization, whose goal is to transfer knowledge acquired on a set of seen concepts, to newly encountered unseen concepts as effectively as possible. Different from existing work, we take a systematic approach by considering the semantic similarity between seen and unseen concepts when measuring concept generalization.

Towards a structure of the concept space. One of the first requirements for rigorously evaluating concept generalization is structuring the concept space, in order to analyze the impact of concepts present during pretraining and transfer stages. However, previous work rarely discusses the particular choices of splits (seen vs. unseen) of their data, and random sampling of concepts remains the most common approach [START_REF] Hariharan | Low-shot visual recognition by shrinking and hallucinating features[END_REF][START_REF] Jayaraman | Zero-shot recognition with unreliable attributes[END_REF][START_REF] Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF], Xian et al. 2018a]. A handful of methods leverage relations designed by experts. The WordNet graph [START_REF] Miller | WordNet: A lexical database for English[END_REF]] for instance helps build dataset splits in [START_REF] Frome | Devise: A deep visual-semantic embedding model[END_REF], [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF] and a domain-specific ontology is used to test cross-domain generalization [Guo et al. 2020, Wallace and[START_REF] Wallace | Extending and analyzing self-supervised learning across domains[END_REF]. These splits are however based on heuristics, instead of principled mechanisms built on semantic relationship between concepts as we do in this work.

Transfer learning evaluations. When it comes to evaluating the quality of visual representations, the gold standard is to benchmark models by solving diverse tasks such as classification, detection, segmentation and retrieval on many datasets [START_REF] Caron | Unsupervised Pre-Training of Image Features on Non-Curated Data[END_REF], Chen et al. 2020a[START_REF] Ericsson | How well do self-supervised models transfer?[END_REF][START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF], He et al. 2020[START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF], Zhai et al. 2019b]. The most commonly used datasets are IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF],

Places [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF], SUN [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF]], Pascal-VOC [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF]], MS-COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF]. Such choices, however, are often made independently from the dataset used to train the visual representations, ignoring their semantic relationship.

In summary, semantic relations between pretraining and transfer tasks have been overlooked in evaluating the quality of visual representations. To address this issue, we present a controlled evaluation protocol that factors in such relations.

The ImageNet-CoG benchmark

Transfer learning performance is highly sensitive to the semantic similarity between concepts in the pretraining and the target datasets [START_REF] Deselaers | Visual and semantic similarity in ImageNet[END_REF]Ferrari 2011, Yosinski et al. 2014]. Studying this relationship requires carefully constructed evaluation protocols: i) controlling which concepts a model has been exposed to during training (seen concepts), and ii) the semantic distance between these seen concepts and those considered for the transfer task (unseen concepts). As discussed earlier, current evaluation protocols severely fall short on handling these aspects. To fill this gap, we propose ImageNet Concept Generalization (CoG)-a benchmark composed of multiple image sets, one for pretraining and several others for transfer, curated in a controlled manner in order to measure the transfer learning performance of visual representations to sets of unseen concepts with increasingly distant semantics from the ones seen during training.

While designing this benchmark, we considered several important points. First, in order to exclusively focus on concept generalization, we need a controlled setup tailored for this specific aspect of generalization. In other words, we need to make sure that the only change between the pretraining and the transfer datasets is the set of concepts. In particular, we need the input image distribution (natural images) and the annotation process (which may determine the statistics of images [START_REF] Torralba | Unbiased look at dataset bias[END_REF]) to remain constant.

Second, to determine the semantic similarity between two concepts, we need an auxiliary knowledge base that can provide a notion of semantic relatedness between visual concepts. It can be manually defined with expert knowledge, e.g., WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF]], or automatically constructed, for instance by a language model, e.g., word2vec [Mikolov et al. 2013b].

Third, the choice of the pretraining and target datasets is crucial. We need these datasets to have diverse object-level images [START_REF] Berg | Finding iconic images[END_REF] and to be as less biased as possible, e.g., towards canonical views [START_REF] Mezuman | Learning about canonical views from internet image collections[END_REF].

Conveniently, the IN-21K dataset fulfills all these requirements. We therefore choose it as the source of images and concepts for our benchmark. 197,122 curated images covering 21,841 concepts, all of which are further mapped into synsets from the WordNet ontology, which we use to measure semantic similarity.

In the rest of this section, we first define the disjoint sets of seen and unseen concepts, then present our methodology to build different levels for evaluating concept generalization, and describe the evaluation protocol.

Seen concepts

We make a natural choice and use the 1000 classes from the ubiquitous Choosing IN-1K as the seen classes further offers several advantages. Future contributions, following standard practice, could train their models on IN-1K, and then simply evaluate generalization on our benchmark with their pretrained models. It also enables us to benchmark visual representations learned on IN-1K out-of-the box, using publicly available models (as shown in Sec. 3.4).

Selecting eligible unseen concepts

Prior to creating the concept generalization levels, we determine a set of eligible unseen concepts from IN-21K implementing the following steps.

• We start with the whole set of IN-21K concepts (21,841) of the Fall 2011 release2 and exclude the ones from IN-1K, as they are the seen concepts and we are interested in concepts that are not seen during training.

• We remove all the concepts that are ancestors of these 1000 seen concepts in the Word-Net [START_REF] Miller | WordNet: A lexical database for English[END_REF]] hierarchy3 . For instance, the concept "cat" is discarded since its child concept "tiger cat" is in IN-1K.
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Table 3.1: WordNet IDs of the 70 concepts considered problematic, therefore removed from the eligible list of unseen concepts.

• It was shown that some of the concepts under the "person" sub-tree in IN-21K can be offensive or visually inappropriate, which may lead to undesirable behavior in downstream applications [Yang et al. 2020]. We thus exclude the entire "person" sub-tree.

• We discard concepts that are not leaf nodes in the WordNet subgraph defined by all so-far-eligible concepts. Formally, for any c 1 and c 2 in the set of unseen concepts, we discard c 1 if c 1 is a parent of c 2 .

• In order to create levels whose size is comparable to IN-1K, following the design choices made for IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], we removed concepts with fewer than 782 images (note that any concept in IN-1K contains at least 782 images and 50 of those are used within the test set).

• Finally, we manually inspected the remaining unseen concepts and found 70 potentially problematic concepts, which may be considered to be offensive, or too ambiguous to distinguish. Examples of such concepts include the very generic "People" (any group of human beings, men or women or children, collectively) or "Orphan" (a young animal without a mother) concepts. The list of such manually discarded concepts is given in Tab. 3.1.

These requirements reduce the set of eligible unseen IN-21K concepts to 5146 categories.

Concept generalization levels

Our next step is defining a sequence of unseen concept sets, each with decreasing semantic similarity to the seen concepts in IN-1K. We refer to each one of these as a concept generalization level. They allow us to measure concept generalization in a controlled setting, i.e., to consider increasingly difficult transfer learning scenarios.

Recall that IN-21K is built on top of the word ontology WordNet, where distinct concepts or synsets are linked according to their semantic relationships drafted by linguists. This enables the use of existing semantic similarity measures [START_REF] Budanitsky | Evaluating WordNet-based measures of lexical semantic relatedness[END_REF]] that exploit the graph structure of WordNet to capture the semantic relatedness of pairs of concepts. Following prior work [Deselaers and Ferrari 2011, Rohrbach et 1998] to define a concept-to-concept similarity. The Lin similarity between two concepts c 1 and c 2 is given by:

sim Lin (c 1 , c 2 ) = 2 ⇥ IC(LCS(c 1 , c 2 )) IC(c 1 ) + IC(c 2 ) , (3.1) 
where LCS denotes the lowest common subsumer of two concepts in the WordNet graph, and IC(c) = log p(c) is the information content of a concept with probability p(c) of encountering an instance of concept c in a specific corpus (in our case the subgraph of WordNet including all IN-21K concepts and their parents till the root node of WordNet: 'entity'). Following [START_REF] Resnik | Using information content to evaluate semantic similarity in a taxonomy[END_REF], [START_REF] Rohrbach | Evaluating knowledge transfer and zero-shot learning in a large-scale setting[END_REF], we define p(c) as the number of concepts that exist under c divided by the total number of concepts in the corpus. Probability of a concept ranges between [0,1] such that if c 2 is a parent of c 1 then p(c 1 ) < p(c 2 ), and the probability of "Entity" becomes 1. An example of five concepts from IN-21K ranked by decreasing Lin similarity to the IN-1K concept "Tiger cat" is shown in Fig. 3.1(a).

We extend the above formulation to define the asymmetric similarity between the set of seen concepts from IN-1K, C IN-1K , and any unseen concept c as the maximum similarity between any concept from IN-1K and c:

sim IN-1K (c) = max c 2 C IN-1K (sim Lin (c, c)). (3.2)
While designing our benchmark, we considered different semantic similarity measures before choosing Lin similarity. We explored other measures defined on the WordNet graph [START_REF] Meng | A review of semantic similarity measures in WordNet[END_REF], such as the path-based Wu-Palmer [START_REF] Wu | Verb semantics and lexical selection[END_REF]] and the information content-based Jiang-Conrath [START_REF] Jiang | Semantic similarity based on corpus statistics and lexical taxonomy[END_REF]. We also considered semantic similarities based on Word2Vec representations [Mikolov et al. 2013b] of the titles and textual descriptions of the concepts. Our experiments with these alternative measures led to observations similar to the ones presented in Sec. 3.4 for Lin similarity. We refer the curious reader to the supplementary material for additional results with some of these measures.

With the similarity measure defined, our goal now is to group all eligible unseen concepts into multiple evaluation sets, which are increasingly challenging in terms of generalization.

To ensure this, we would like the concepts contained in each consecutive set to be of decreasing semantic similarity to any concept from IN-1K. We achieve this by first ranking all unseen concepts with respect to their similarity to IN-1K using Equation (3.2). Then, we split the ranked list into groups of consecutive concepts as shown in Sec. 3.3.3; each group corresponds to a concept generalization level.

We design our levels to be comparable to IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], and therefore choose 1000 concepts per level. With 5146 eligible unseen concepts, we populate five sets.

For increased diversity, we utilize the full span of the ranked list and end up with small gaps between levels (see supplementary material for more details). We denote the five concept generalization levels as L 1/2/3/4/5 .

After selecting 1000 concepts for each level, we ensured that the image statistics are similar to those of IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], i.e., we cap the number of images for each concept to a maximum of 1350 (1300 training + 50 testing). Note that we kept the same set of selected images per concept for all the experiments we performed in this work. We provide the complete list of image filenames in our code repository for reproducibility. In Fig. 3.3, we plot the number of images per concept for each of the five levels and for IN-1K. We note a minor class imbalance in all the generalization levels from these plots. To investigate if this imbalance had any effect on the observations of our benchmark, we further evaluated a subset of the models analyzed in Sec. 3.4 on a variant of the benchmark, where we randomly subsampled images from all the selected concepts to result in the same number of 732 training images, i.e., on class-balanced levels. Apart from the overall reduced accuracy as a result of smaller datasets, this experiment produced similar results to the ones shown in Sec. 3.4, and all our observations continue to hold. We attribute this to the fact that imbalance is minimal.

Evaluation protocol

We now present the protocol for ImageNet-CoG, and summarize the metrics for the different experiments presented in Sec. 3.4. The benchmark consists of two phases. First, a feature extraction phase, where the model trained on IN-1K is used to extract features, followed

The ImageNet-CoG benchmark in a nutshell

Prerequisites:

A model pretrained on IN-1K Sets of unseen concepts organized in levels L 1/2/3/4/5

Phase 1: Feature extraction Use the model to extract image features for all image sets.

Phase 2: Evaluation For the seen concepts (IN-1K) and for each level of unseen concepts (L 1/2/3/4/5 ), separately:

• Learn a linear classifier using all the training data < How resilient is my model to the semantic distance between seen and unseen concepts?>

• Learn a linear classifier using N 2 {1, 2, 4, . . . , 128} samples per concept. < How fast can my model adapt to new concepts?> by the evaluation phase that is conducted on each level independently. An overview of the benchmark is presented in the gray box.

Phase 1: Feature extraction

We base our protocol on the assumption that good visual representations should generalize to new tasks with minimal effort, i.e., without fine-tuning the backbones. Therefore, our benchmark only uses the pretrained backbones as feature extractors and decouples representation from evaluation. Concretely, we assume a model learned on the training set of IN-1K. We use this model as an encoder to extract features for images of IN-1K and of all the five levels L 1/2/3/4/5 .

We extract features from the layer right before the classifiers from the respective models, following recent findings [START_REF] Kolesnikov | Revisiting self-supervised visual representation learning[END_REF]] that suggest that residual connections prevent backbones from overfitting to pretraining tasks. We `2-normalize the features and extract them offline: no data augmentation is applied when learning the subsequent classifiers.

Phase 2: Evaluation

We learn linear logistic regression classifiers for each level using all available training images. Since each level is by design a dataset approximately as big as IN-1K, we also learn linear classifiers on IN-1K with the same protocol; this allows us to compare performance across seen and unseen concepts. We also evaluate how efficiently models adapt when learning unseen concepts, i.e. how many samples they need to do so, by performing few-shot concept classification.

Metrics and implementation details

We report Top-1 accuracy for all the experiments. Absolute accuracy numbers are comparable across IN-1K and each level by construction, since all the levels share the same number of concepts and have training sets of approximately the same size. However, we mostly plot accuracy relative to a baseline model, for two reasons: (i) it makes the plots clearer and the differences easier to grasp, (ii) the performance range at each level is slightly different so it helps visualizing the trends better.

We perform SGD to train classifiers, with momentum=0.9 updates, using batches of size 1024, and apply weight decay regularization to parameters. To create the train/test split, we randomly select 50 samples as the test set for each concept and use the remaining ones (at least 732, at most 1300) as a training set. We use part of the training data for each level to optimize the hyper-parameters of the logistic regression (i.e., learning rate and weight decay parameters).

We use Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF] to optimize the learning rate and weight decay hyperparameters for every model and every level; we use 20% of the training sets as a validation set to find the best configuration and then re-train using the complete training set. We report results only on the test sets. We repeat the hyper-parameter selection 5 times with different seeds, and report the mean of the final scores. This means that, in each repetition, we take a different random subset of the training set as a validation set and start hyper-parameter tuning with different random pairs of hyper-parameters. Despite this stochasticity, the overall pipeline is quite robust, with standard deviation in most cases less than 0.2, therefore, not clearly visible in figures.

Evaluating models on ImageNet-CoG

We now present our large-scale experimental study which analyzes how different CNN-based and transformer-based visual representation models behave on our benchmark, following the evaluation protocol defined in the previous section. For clarity, we only highlight a subset of our experiments and provide additional results in the Appendix B.

Models

We choose 31 models to benchmark and present the complete list in Tab. 3.2. To ease comparisons and discussions, we split the models into the following four categories. We use publicly available models provided by the corresponding authors for all these approaches. All the models, with the exception of those in the use-of-web-data category, are only pretrained on IN-1K. We also use the best ResNet-50 backbones released by the authors for all the ResNet-based models. We use the vanilla ResNet50 (the version available in the torchvision package) as a reference point, which makes cross-category comparisons easier.

Architecture

We prefix models' names with the category identifiers for clarity.

When extracting features from these models, we first resize an image such that its shortest side becomes S pixels, then take a center crop of size S ⇥ S pixels. To comply with the testing schemes of the models, for all the backbones we set S = 224, except a-Inception-v3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] We also adapt their normalization schemes to be compatible with the data augmentation pipeline of the pretrained models. Concretely, we normalize each image by first dividing Tab. 3.3 lists the set of unique backbone architectures considered in our study, and the dimensionality of the produced feature representations. For all the architectures trained in a supervised way, we extract features from the penultimate layers, i.e., before the last fullyconnected layers making class predictions. For self-supervised learning methods, we follow the respective papers and extract features from the layer learned for transfer learning.

Results

We measure image classification performance on IN-1K and each of the concept generalization levels L 1/2/3/4/5 of ImageNet-CoG for the 31 models presented above, using a varying number of images per concept. These experiments allow us to study (i) how classification performance changes as we semantically move away from the seen concepts (Sec. 3.4.2.1), and (ii) how fast models can adapt to unseen concepts (Sec. 3.4.2.2). We refer the reader to Sec. 3.3.4 for the justification of our protocol and the choice of metrics.

Generalization to unseen concepts

We report the performance of linear classifiers learnt with all the training data in Fig. 3.4. In Fig. 3.4(a) we report Top-1 accuracy for all models and levels, while * It is harder to generalize to semantically distant concepts. The absolute performance of all models monotonically decreases as we move away semantically from IN-1K. This implies that transfer learning becomes more and more challenging on levels from L 1 to L 5 , i.e., as we try to distinguish concepts that are further from the training ones.

⌅ s-DINO F s-SimCLR-v2 ⌅ d-Semi-Sup ⌅ r-ReLabel H r-Adv-Robust N s-SwAV : s-MoCo-v2 N d-Semi-Weakly-Sup N r-CutMix F r-MEAL-v2 I s-BarlowTwins 6 s-MoCHi I d-MoPro I r-MixUp J s-OBoW u s-CompReSS J d-CLIP J r-Manifold-MixUp H s-BYOL ⌥ s-InfoMin
* Self-supervised models excel at concept generalization. Many recent self-supervised models (s-DINO, s-SwAV, s-BYOL, s-OBoW and s-SimCLR-v2) outperform ResNet50 on all levels. In general, we see that the performance gaps between ResNet50 and selfsupervised models progressively shift in favor of the latter (Fig. 3.4(b)). Surprisingly, from Fig. 3.4(a) we also see that a ResNet50 trained with s-DINO competes with the top-performing models on L 5 across all categories and model sizes. This shows that augmentation invariances learned by the model transfer well to images of unseen concepts.

* Visual transformers overfit more to seen concepts (for models with as many parameters as ResNet50). The top-performing model of the study overall is a-DeiT-B-distilled, a large visual transformer. However, for the same number of parameters as ResNet50, we see that the large gains that visual transformers like a-DeiT-S and a-T2T-ViT-t-14 exhibit on IN-1K are practically lost for unseen concepts (red lines in Fig. 3.4(e)). In fact, both end up performing slightly worse than ResNet50 on L 5 .

* Using noisy web data highly improves concept generalization. Weakly-supervised models d-Semi-Sup, d-Semi-Weakly-Sup and d-CLIP pretrained with roughly 100x, 1000x, and 400x more data than IN-1K exhibit improved performance over ResNet50 on all levels (Fig. 3.4(d)). It is worth re-stating, however, that since their datasets are web-based and much larger than IN-1K, we cannot confidently claim that concepts in our levels are indeed unseen during training. Results on this model category should therefore be taken with a pinch of salt.

* Model distillation generally improves concept generalization performance. We see that distilled supervised models r-MEAL-v2 and a-DeiT-S-distilled consistently improve over their undistilled counterparts on all levels (Fig. 3.4(c) and (e)). However, these gains decrease progressively, and for L 5 performance gains over the baseline are small. It is also worth noting that adversarial training (r-Adv-Robust) does not seem to hurt concept generalization.

* Neural architecture search (NAS) models seem promising for concept generalization.

All NAS models we evaluate (a-EfficientNet-B1, a-EfficientNet-B4 and a-NAT-M4) exhibit stable gains over the baseline ResNet50 on all levels (Fig. 3.4(e)), showing good concept generalization capabilities. Among them, a-NAT-M4, a NAS model tailored for transfer learning with only 7.6M parameters achieves particularly impressive performance over all levels including IN-1K. * What are the top-performing models overall for concept generalization? From Fig. 3.4(a) we see that better and larger architectures and models using additional data are on top for L 3 -L 5 . However, it is impressive how s-DINO, a contrastive self-supervised model, is among the top methods, outperforming the vast majority of models at the most challenging levels.

How fast can models adapt to unseen concepts?

We now study few-shot classification, i.e., training linear classifiers with N = {2, 4, 8, 16, 32, 64, 128} samples per concept. For clarity, we selected a subset of the models and in Fig. 3.5 we present their performance on L 1 , L 3 and L 5 . The complete set of results for all models and levels is given in Appendix B. We discuss the most interesting observations from Fig. 3.5 below. * Transformer-based models are strong few-shot learners. Transformer-based models exhibit consistent gains over ResNet50 on all levels when N  128. Despite the fact that performance gains from transformers diminish when using all available images on L 5 , they exhibit a consistent 3-4% accuracy gain over ResNet50 for N  128 (Fig. 3.5(f)).

* Model Distillation and Neural Architecture Search (NAS) exhibit consistent gains also in low-data regimes. The NAS-based a-EfficientNet-B4 model exhibits consistently higher performance than ResNet50 on all levels for all N. The same stands for the distilled r-MEAL-v2 and a-DeiT-S-distilled that are also consistently better than their undistilled counterparts for all N and all levels.

* Bigger models and additional web data help at few-shot learning. This is an observation from the extended set of figures (see Appendix B). Bigger models have consistent gains in low-data regimes. The same stands for models with additional web data. Moreover, as we go towards semantically dissimilar concepts, a-NAT-M4 outperforms all other methods and it even challenges the much bigger a-DeiT-B-distilled model.

Further analysis on ImageNet-CoG

In this section, we investigate some of the properties and design choices of ImageNet-CoG. More specifically, in Sec. 3.5.1 we compare linear evaluation to fine-tuning models on the ImageNet-CoG levels. Then, in Sec. 3.5.2 we re-group the 5000 unseen concepts in ImageNet-CoG by using another semantic similarity measure based on pure textual information about concepts, i.e., word2vec similarity. Finally, in Sec. 3.5.3, we briefly discuss the potential noise from missing labels in ImageNet-CoG.

What if we fine-tuned the backbones?

Our benchmark and evaluation protocol are based on the assumption that good visual representations should generalize to different tasks with minimal effort. In fact, we explicitly choose to decouple representation learning from training classifiers and consider frozen/pretrained backbones as feature extractors. We then evaluate how well pretrained representations transfer to concepts unseen during representation learning. Fine-tuning the models would therefore go against the main premise of our benchmark: After fine-tuning all concepts are "seen" during representation learning, i.e., the feature spaces can now be adapted. It would then be unclear: Are we measuring the generalization capabilities of the pretraining strategy or of the fine-tuning process? How much does the latter affect generalization? We consider such questions out of the scope of our study. In fact, learning linear classifiers on top of pre-extracted features additionally allows us to exhaustively optimize hyper-parameters for all the methods and levels, making sure that comparisons are fair across all models.
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Measuring performance relative to fine-tuning, would however verify that the observed performance drops are due to increasing semantic distance and not variabilities across the levels. To this end, we fine-tune ResNet50 (pretrained on IN-1K) on IN-1K and on levels L 1/2/3/4/5 separately. Then we compare their performance with the protocol we choose for our benchmark, i.e. the case where we learn linear classifiers on top of pre-extracted features. In Fig. 3.6, we show the relative scores of the linear classifiers on top of pre-extracted (labeled as "Pre-extracted") against fine-tuned ResNet50s (labeled as "Fine-tuned").

We observe that pre-extracted features become less and less informative for unseen concepts as we move from IN-1K to L 5 , supporting our main assumption that semantically less similar concepts are harder to classify.

word2vec as an alternative semantic similarity

One of the requirements for studying concept generalization in a controlled manner is a knowledge base that provides the semantic relatedness of any two concepts. As IN-21K is built on the concept ontology of WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF]], in Sec. 3.3.3 we leverage its graph structure, and propose a benchmark where semantic relationships are computed with the Lin measure [START_REF] Lin | An information-theoretic definition of similarity[END_REF]].

As mentioned in Sec. 3.3, the WordNet ontology is hand-crafted, requiring expert knowledge. Therefore similarity measures that exploit this ontology (such as Lin) are arguably reliable in capturing the semantic similarity of concepts. However, it could also be desirable to learn semantic similarities automatically, for instance, using other knowledge bases available online such as Wikipedia. In this section, we look at if such knowledge bases could be used in building our ImageNet-CoG.

With this motivation, we turn our attention to semantic similarity measures that can be learned over textual data describing the IN-21K concepts. Note that each IN-21K concept is provided with a name4 and a short description 5 . The idea is to use this information to determine the semantic relatedness of any two concepts.

To this end, we leverage language models to map the textual description of any concept into an embedding vector, such that the semantic similarity between two concepts can be measured as the similarity between their representations in that embedding space. We achieve this through the skip-gram language model [Mikolov et al. 2013b], which has been extensively used in many natural language processing tasks, to extract "word2vec" representations of all concepts. However, we note that the name of many IN-21K concepts are named entities composed of multiple words, yet the vanilla skip-gram model tokenizes a textual sequence into words. We address this issue following [START_REF] Yamada | Joint learning of the embedding of words and entities for named entity disambiguation[END_REF] that learns a skip-gram model by taking into account such named entities. Specifically, we use the skip-gram model trained on Wikipedia6 by the Wikipedia2Vec software [START_REF] Yamada | Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[END_REF]].

We compute the word2vec embeddings of IN-21K concepts as follows. Firstly, we combine the names and descriptions of all concepts and learn tf-idf weights for each unique word. Secondly, for each concept, we compute two word2vec representations: one for the concept name, and one for the concept description, by averaging the word2vec representations of the words that compose them. These two average vectors are added and used as the final word2vec representation of the concept. Finally, as the semantic similarity measure, we simply use the cosine similarity between the word2vec representations of two concepts:

sim w2v (c 1 , c 2 ) = w c 1 >w c 2 kw c 1 k • kw c 2 k , (3.3)
where w c denotes the word2vec representation of concept c.

Recall that in Sec. 3.3.3, first we rank the 5146 eligible unseen concepts in IN-21K (which remain after our filtering), w.r.t. their Lin similarity to the concepts in IN-1K. Then, we subsample 5000 concepts to construct concept generalization levels. To create another benchmark based on the textual information of the concepts as described above, we could repeat this procedure by replacing Lin similarity with the cosine similarity we defined in Equation (3.3). However, this could select a different sub-set of 5000 concepts, which, in turn, would produce two benchmarks with different sets of unseen concepts. To prevent this, we re-rank the 5000 concepts selected by the Lin similarity, based on their text-based cosine similarity to IN-1K concepts. Then we simply divide the re-ordered concepts into 5 disjoint sequential sets. 7We compare the two benchmarks constructed with different knowledge bases (i.e., using the WordNet graph vs. textual descriptions) for our baseline model ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF]] that is pretrained on the seen concepts (IN-1K) for image classification, following our standard protocol. Concretely, first, we extract image features from the penultimate layer of the ResNet50, then we train linear classifiers on each concept domain separately.

IN-1K L 1 L 2 L 3 L 4 L 5 55 
We report results in Fig. 3.7 for the two benchmarks as well as randomly selected subsets of 1000 concept each. We see that the benchmark constructed using the WordNet ontology [START_REF] Miller | WordNet: A lexical database for English[END_REF]] and the Lin similarity [START_REF] Lin | An information-theoretic definition of similarity[END_REF]] yield much more challenging concept generalization levels than the one obtained using textual data and a skip-gram language model [START_REF] Yamada | Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[END_REF]] pretrained on Wikipedia. This is especially visible when comparing classification performance on the levels L 3/4/5 produced by each technique. We argue that this could be due to the fact that WordNet is an ontology hand-crafted by experts and is able to better approximate the semantic similarity of two concepts compared to the learned skip-gram model. We see that, for a given level L i , WordNet combined with Lin similarity manages to gather concepts that are harder to discriminate and that the resulting classification performance is lower. This experiment, however, shows that it is possible to create a similar benchmark using automatically produced semantic similarity scores, the main alternative in the absence of any reliable hand-crafted ontology.

Potential label noise in ImageNet-CoG

It has been shown recently [START_REF] Yun | Re-labeling ImageNet: From single to multi-labels, from global to localized labels[END_REF]] that IN-1K has missing-label noise. We can assume this extends to ImageNet-21K (IN-21K). Unfortunately, this type of noise is really difficult to correct and beyond the scope of our benchmark. However, we devise an experiment to get a sense of how much this noise could be.

Concretely, we take ResNet-50 classifiers trained for L 5 and apply them to all the images of the IN-1K val set and vice versa (i.e., apply IN-1K classifiers on L 5 val). After inspecting samples that are predicted with very high confidence (> 0.99, about 2.7% of the images), we observe several cases where an unseen concept has (arguably) been seen during training without its label. Some examples are shown in Fig. 3.8. Given the low percentage of very confident matches and the fact that [START_REF] Yun | Re-labeling ImageNet: From single to multi-labels, from global to localized labels[END_REF] does not show a big change in performance after re-training with the noise corrected, we believe that this type of labeling noise does not significantly affect our findings.

Conclusion

In this work, we studied concept generalization through the lens of our new ImageNet-CoG benchmark. It is designed to be used out-of-the-box with IN-1K pretrained models. We evaluated a diverse set of 31 methods representative of the recent advances in visual representation learning.

Our extensive analyses show that self-supervised learning produces representations that generalize surprisingly better than any supervised model with the same number of parameters. We see that the current transformer-based models appear to overfit to seen concepts, unlike neural architecture-search-based models. The latter outperform several other supervised learning models with far less parameters.

We also studied how fast models can adapt to unseen concepts by learning classifiers with only a few images per class. In this setting, we verify that visual transformers are strong few-shot learners, and show how distillation and neural architecture search methods achieve consistent gains even in low-data regimes.

We envision ImageNet-CoG to be an easy-to-use evaluation suite to study one of the most important aspects of generalization in a controlled and principled way.

Chapter 4

Improving the generalization of supervised learning models More specifically, we consider the problem of training a deep neural network on a given classification task, e.g., ImageNet-1K (IN-1K), so that it excels at both the training task as well as at other (future) transfer tasks. These two seemingly contradictory properties impose a trade-off between improving the model's generalization and maintaining its performance on the original task. Models trained with self-supervised learning tend to generalize better than their supervised counterparts for transfer learning; yet, they still lag behind supervised models on IN-1K. In this work, we propose a supervised learning setup that leverages the best of both worlds. We extensively analyze supervised training using multi-scale crops for data augmentation and an expendable projector head, and reveal that the design of the projector allows us to control the trade-off between performance on the training task and transferability. We further replace the last layer of class weights with class prototypes computed on the fly using a memory bank and derive two models: t-ReX that achieves a new state of the art for transfer learning and outperforms top methods such as DINO and PAWS on IN-1K, and t-ReX* that matches the highly optimized RSB-A1 model on IN-1K while performing better on transfer tasks.

Introduction

Deep convolutional neural networks trained on large annotated image sets like ImageNet-1K (IN-1K) [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] have shown strong generalization properties. This motivated their application to a broad range of transfer tasks including the recognition of concepts that are not encountered during training [START_REF] Donahue | Decaf: A deep convolutional activation feature for generic visual recognition[END_REF][START_REF] Sharif Razavian | CNN features off-the-shelf: An astounding baseline for recognition[END_REF].

Recently, models trained in a self-supervised learning (SSL) framework have become popular due to their ability to learn without manual annotations, as well as their capacity to surpass supervised models in the context of transferable visual representations. SSL models like MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF], SwAV [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], BYOL [START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] or DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]] exhibit stronger transfer learning performance than models [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] trained on the same data with annotations [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]].

This achievement is on the one hand exciting, as SSL approaches do not require an expensive and error-prone annotation process, but also seemingly counter-intuitive [Wang et al. 2022b] as it suggests that access to additional information, i.e., image labels, actually hinders the generalization properties of a model. Models learned via SSL are however not able to match their supervised counterparts on IN-1K classification, i.e., on the concepts seen during training. Top-performing SSL and semi-supervised methods like DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] or PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF]] still result in 3-5% lower Top-1 accuracy compared to optimized supervised models such as RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF].

In this work, we argue that access to more information (in the form of manual annotations) should not hurt generalization, and we seek to improve the transferability of encoders learned in a supervised manner, while retaining their state-of-the-art performance on the supervised training task. The mismatch observed between IN-1K and transfer performance suggests that this goal is not trivial. It has been shown, for example, that popular regularization techniques such as Label Smoothing [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF], Dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] or CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF], which improve IN-1K performance, actually lead to less transferable representations [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF], and that representations learned on top of models underfitting their original task transfer better [START_REF] Zhang | Rich feature construction for the optimization-generalization dilemma[END_REF]].

We identify two key training components from the most successful SSL approaches that may lead to more transferable representations: multi-crop data augmentation [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] and the use of an expendable projector head, i.e., an auxiliary module added after the encoder during training and discarded at test time [Chen et al. 2020a]. We study the impact of these two components on the transfer performance together with the performance on the training task, and present novel insights on the role of the projector design in this context. Furthermore, inspired by recent work on supervised learning [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF][START_REF] Khosla | Supervised contrastive learning[END_REF], we introduce Online Class Means, a memory-efficient variant of the Nearest Class Means classifier [START_REF] Mensink | Metric learning for large scale image classification: Generalizing to new classes at near-zero cost[END_REF]] that computes class prototypes in an "online" manner with the help of a memory queue. This further increases performance. We perform an extensive analysis on how each component affects the learned representations, and look at feature sparsity and redundancy as well as intra-class distance. We also study the training dynamics and show that class prototypes and classifier weights change in different ways across iterations.

We single out the two ResNet50 instantiations that perform best at one of the two dimensions (transfer learning and IN-1K), denoted as t-ReX and t-ReX*. t-ReX exceeds the state-ofthe-art transfer learning performance of DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] or PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF]] and still performs much better than these two on IN-1K classification. t-ReX* outperforms the state-of-the-art results of RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] on IN-1K while generalizing better to transfer tasks. We visualize the performance of these two selected models, together with those of other top-performing configurations from our setup in Sec. 4.4, and compare it to state-of-the-art supervised, semi-supervised and self-supervised learning methods, across two dimensions: IN-1K accuracy and mean transfer accuracy across 13 transfer tasks. This intuitively conveys how the proposed training setup pushes the envelope of the training-versus-transfer performance trade-off (from the "Previous SotA" region, to the "New SotA" one in Fig. 4.7) and offers strong pretrained visual encoders that future approaches could build on.

Contributions. We propose a supervised training setup that incorporates multi-crop data augmentation and an expendable projector and can produce models with favorable performance both on the training task of IN-1K and on diverse transfer tasks. We thoroughly ablate this setup and reveal that the design of the projector allows to control the performance trade-off between these two dimensions, while a number of analyses of the features and class weights give insights on how each component of our setup affects the training and learned representations. We also introduce Online Class Means, a prototype-based training objective that increases performance even further and gives state-of-the-art models for transfer learning (t-ReX) and IN-1K (t-ReX*).

Related work

Visual representations learned by deep networks for IN-1K classification can transfer to other tasks and datasets [START_REF] Donahue | Decaf: A deep convolutional activation feature for generic visual recognition[END_REF][START_REF] Sharif Razavian | CNN features off-the-shelf: An astounding baseline for recognition[END_REF]. This generalization capability of networks has motivated researchers to propose practical approaches for measuring transfer learning [START_REF] Goyal | Scaling and benchmarking self-supervised visual representation learning[END_REF][START_REF] Pándy | Transferability estimation using Bhattacharyya class separability[END_REF], Zhai et al. 2019a] or contribute to a formal understanding of generalization properties [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF][START_REF] Tripuraneni | On the theory of transfer learning: The importance of task diversity[END_REF][START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. Recent work in this context [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF] shows that the best representations for IN-1K are not necessarily the ones transferring best. For instance, some regularization techniques or loss functions improving IN-1K classification lead to underwhelming transfer results. A parallel line of work based on selfsupervised learning [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], Chen et al. 2020a[START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF] focuses on training models without manual labels, and demonstrates their strong generalization capabilities to many transfer datasets, clearly surpassing their supervised counterparts [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]]. Yet, as expected, SSL models are no match to the supervised models on the IN-1K classification task itself.

A few approaches tackle the task of training supervised models that also transfer well and share motivation with our work. SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF] extends SimCLR [Chen et al. 2020a] using image labels to build positive pairs. As such, its formulation is close to neighborhood component analysis (NCA) [START_REF] Goldberger | Neighbourhood components analysis[END_REF]]. It circumvents the need for large batches by adding a momentum and a memory similar to MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]]. Supervised-MoCo [Zhao et al. 2021b] filters out false negatives in the memory bank of MoCo using image labels, while LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] modifies the NCA objective to only consider the closest neighbors of each query image. We experimentally observe that our model design leads to better transfer than all these works.

In this work, we propose an effective training setup, which leverages multi-crop augmentation [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF]] and an expendable projector head [Chen et al. 2020a], two key components in many successful SSL approaches. Creating multiple augmented versions (a.k.a. crops) of images in a batch was first proposed by [START_REF] Hoffer | Augment your batch: Improving generalization through instance repetition[END_REF]. [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] further consider crops with different scales and resolutions in a self-supervised learning setting, creating challenging views of an image for which the model is encouraged to learn consistent representations [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF], Caron et al. 2021]. Recent work argues that multi-crop increases representation variance, is useful for online self-distillation [Wang et al. 2022a], and improves vision and language pretraining [START_REF] Ko | Large-scale bilingual language-image contrastive learning[END_REF]. We show that multi-crop over different resolutions works out-of-the-box also for supervised training on IN-1K.

Using features from intermediate layers of networks has been considered before, e.g., for training object detectors [START_REF] Lin | Feature pyramid networks for object detection[END_REF]] and image classification models [START_REF] Lee | Deeplysupervised nets[END_REF], or evaluating the transferability of individual layers [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF], Zhang et al. 2016] or groups of layers [START_REF] Evci | Head2toe: Utilizing intermediate representations for better transfer learning[END_REF]]. However, selecting optimal layers for each problem is infeasible due to the computational nature of this selection. SimCLR [Chen et al. 2020a] proposed instead to rely on an expendable projector, a design that is now common practice in SSL [START_REF] Zbontar | Barlow Twins: Selfsupervised learning via redundancy reduction[END_REF][START_REF] Zhou | iBOT: Image BERT pre-training with online tokenizer[END_REF], and is starting to be adopted by supervised approaches like SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF] and LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]]. The impact of these projectors on the representation quality has only seldomly been studied. Wang et al. [2022b] have looked at the impact of projectors, but only for transfer and in isolation. Our work goes one step further and studies how projectors affect performance both on the training task and for transfer. We ablate many projector designs and study them jointly with multi-crop. Through our study, we uncover how useful projectors are at navigating the trade-off between training and transfer performance, leading to state-of-the-art results on both dimensions.

An improved training setup for supervised learning

We now present an improved training setup for learning supervised models that achieve high performance on both IN-1K classification and a diverse set of transfer tasks.

Our setup trains a model (or encoder) f q , parameterized by q . This model encodes an image I into a transferable representation x 2 R d . We follow the common protocol [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF][START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]] and train all variants of our model on IN-1K using a ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF] encoder. This choice of encoder is influenced by recent observations [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] that carefully optimized ResNet50 models perform on par with the best Vision Transformers (ViTs [START_REF] Beyer | Better plain ViT baselines for ImageNet-1k[END_REF]) of comparable size on IN-1K. After training our models, we perform transfer learning. We freeze the model's parameters so they are only used to produce transferable representations (x), to be appended with a linear classifier for each transfer task (e.g., IN-1K or any other dataset, see Fig. 4.1b).

Our improved training setup enriches the standard supervised learning paradigm with multicrop augmentation and an expendable projector head (see Fig. 4.1a). We train our models with one of the two following training objectives: the standard softmax cross entropy loss that learns class weights, or an online variant of nearest class means that is based on class prototypes computed on-the-fly from a memory bank (illustrated in Fig. 4.3). We detail all the proposed improvements below.

Multi-crop data augmentation. [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF] leveraged many image crops of multiple scales and different resolutions when learning invariance to data augmentation in the context of SSL. Their data augmentation pipeline, termed multi-crop, is defined over two sets of global and local crops that respectively retain larger and smaller portions of an image. These crops are processed at different resolutions. We adapt this component to our supervised setup. Given an input image I, we define two scale parameters, for global and local crops, which determine the size ratio between random crops and the image I. We follow [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] and resize global and local crops to 224 ⇥ 224 and 96 ⇥ 96, respectively. We extract multiple global and local crops, respectively M g and M l . Fig. 4.1a illustrates one global M g = 1 and four local M l = 4 crops. In Sec. 4.4, we explore the use of multi-crop for supervised learning, and study the effect of different hyper-parameters under that setting.

Expendable projector head. To countervail the lack of annotations, SSL approaches tackle proxy tasks, such as learning augmentation invariance. In order to prevent the encoder from learning representations that overfit to a potentially unimportant pretext task, SSL architectures often introduce an expendable projector between the encoder and the loss function. On the contrary, for supervised learning, performance on the training task is a major goal in its own right. Here, we aim to learn supervised models that perform well on the training and on transfer tasks. These two requirements are not aligned and it is necessary to find a trade-off [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]. We argue that one can control this trade-off using an additional projector in the context of supervised learning. Similar to SSL methods [Chen et al. 2020a[START_REF] Chen | Exploring simple siamese representation learning[END_REF], Chen et al. 2020c] and to the recent SL-MLP [Wang et al. 2022b] we introduce a Multi Layer Perceptron (MLP) projector as part of our supervised training pipeline. Let g f : R d ! R d b denote this projector, parameterized by f . g f is composed of an MLP with L hidden layers of d h dimensions followed by a linear projection to a bottleneck of d b dimensions. Each hidden layer is composed of a sequence of a linear fully-connected layer, batch-normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]] and a GeLU [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF] non-linearity. We further apply `2-normalization to the output of g f and optionally also to the input. We illustrate this architecture in Fig. 4.2. Note that SL-MLP [Wang et al. 2022b] uses a similar head but with only one hidden layer and no input or output `2-normalization, so SL-MLP can be seen as a special case of our projector architecture. We compare to their design in Sec. 4.4 and investigate how the number and dimension of hidden layers among other design choices affect the transfer performance of the learned models, verifying and extending the findings of Wang et al. [2022b]. On top of this, we study transfer performance in juxtaposition to performance on the training task, and derive the novel insight that projector design allows to control the trade-off between performance on the training task and transferability.

Cosine softmax cross-entropy loss. Incorporating both the components described above in a standard supervised learning paradigm, we can train with the standard softmax cross entropy loss using class labels. The training pipeline is illustrated in Fig. 4.1a. It uses multi-crop data augmentation on each input image I to produce M = M g + M l crops I j , j = 1, . . . , M. Each crop is individually input to the network composed of the encoder followed by the projector, and produces an embedding z j = g f ( f q (I j )). To predict class labels, we multiply embeddings with trainable class weights

W = {w c 2 R d b } C c=1
, where C is the number of classes. We train the whole pipeline using the cosine softmax loss as it was shown to improve IN-1K performance [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]]:

L CE = 1 M M Â j=1 C Â c=1 y [c] log exp(z > j wc /t) Â C k=1 exp(z > j wk /t) , (4.1)
where y 2 {0, 1} C is the C-dim one-hot label vector corresponding to image I, t is a temperature hyper-parameter and wc = w c /kw c k. Note that projector outputs z are already `2normalized.

Online Class Means. Motivated by the recent success of momentum encoders as a way of maintaining online memory banks for large-scale training [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF], we revisit the prototype-based Nearest Class Means (NCM) approach of [START_REF] Mensink | Metric learning for large scale image classification: Generalizing to new classes at near-zero cost[END_REF] and introduce a memory-efficient variant that computes class prototypes in an "online" manner with the help of a memory queue.

Concretely, following [START_REF] Mensink | Metric learning for large scale image classification: Generalizing to new classes at near-zero cost[END_REF], we define u c to be the class prototype or class mean for class c, i.e., the mean of all embeddings from that class, and define U = {u c } C c=1 . Given that we jointly learn class means and the embeddings, computing the exact mean at each iteration is computationally prohibitive. Instead, we formulate an online version of NCM that uses a memory bank Q which stores `2-normalized embeddings z output by the projector, similar to the memory bank from MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]. Given the memory Q, we do not learn class weights, but instead compute a prototype for each class, on-the-fly, as the average of the embeddings in the memory which belong to that class. Formally, if Q c denotes samples in memory that belong to class c, and N c = |Q c |, the loss function becomes:

L OCM = 1 M M Â j=1 C Â c=1 y [c] log exp(z > j ūc /t) Â C k=1 exp(z > j ūk /t) , (4.2)
with ūc = u c ku c k and u c = 1 N c  z2Q c z.

We refer to the above training objective as Online Class Means or OCM. To make sure the embeddings stored in the memory remain relevant as the encoder is updated during training, we follow MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]] and store in memory embeddings from an exponential moving average (EMA) model trailing f q and g f . As we show in our analysis in Sec. 4.4.2, estimating class prototypes using only the relatively small subset of samples in the memory bank leads to class prototypes that drift more across iterations compared to SGD-optimized class weights that converge faster.

An illustration of the model diagrams for Equation (4.1) and Equation (4.2) is given in Fig. 4.3.

Experiments

In this section, we exhaustively evaluate our proposed training setup on IN-1K and a variety of transfer learning datasets. In Sec. 4.4.1, we study the design of the main components of our setup, i.e., multi-crop augmentation, projectors, and OCM. This leads to a summary of g., the projector g f , the class weights W ), and use the encoder f q as a feature extractor, similar to [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]. For each dataset we evaluate on, we learn a linear logistic regression classifier with the pre-extracted features and independently optimize each classifier's hyper-parameters for every model and every evaluation dataset.

In all cases, we first extract and store a (single) feature vector for each image and then learn the LogRegclassifiers on top of those features. Our classifiers are therefore trained without data augmentation, and this is why we report lower performance for the RSB model than the one presented by [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]. We extract image representations from the encoders f q by resizing an image with bicubic interpolation such that its shortest side is 224 pixels and then taking a central crop of size 224 ⇥ 224 pixels. When evaluating on large-scale datasets, such as IN-1K or ImageNet-CoG levels [Sariyildiz et al. 2021], we apply `2-normalization to the pre-extracted features, and train LogRegclassifiers using SGD with momentum = 0.9 and batch size = 1024 for 100 epochs over a single GPU. When evaluating on smaller-scale datasets (mentioned below) following [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF], we train LogRegclassifiers using L-BFGS [START_REF] Dong | On the limited memory BFGS method for large scale optimization[END_REF]. To this end, we use the implementation in Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. In both cases, to treat each model as fairly as possible, we set the learning rate and weight decay hyper-parameters for SGD (resp. the inverse regularization coefficient for L-BFGS) using train/val splits (val splits are randomly sampled using 20% of the original train splits) and Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF] with at least 25 trials. For each dataset, we repeat this process 5 times with different random seeds and report the average accuracy (variance is negligible). Note that the feature extractor is never fine-tuned, and, because we start from pre-extracted features, no additional data augmentation is used when learning the linear classifiers.2 This protocol is illustrated in Fig. 4.1b.

Evaluation datasets and measures. We measure performance on the training task by evaluating classification accuracy on the IN-1K validation set. To evaluate transfer learning, we measure classification performance on 13 datasets: the 5 ImageNet-CoG datasets [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]] that measure concept generalization, and 8 commonly used smaller-scale datasets: Aircraft [START_REF] Maji | Finegrained visual classification of aircraft[END_REF], Cars196 [START_REF] Krause | Collecting a large-scale dataset of fine-grained cars[END_REF], DTD [START_REF] Cimpoi | Describing textures in the wild[END_REF],

EuroSAT [START_REF] Helber | EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[END_REF], Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF], Pets [START_REF] Omkar | Cats and dogs[END_REF], Food101 [START_REF] Bossard | Food-101 -Mining discriminative components with random forests[END_REF] and SUN397 [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF]. We report two metrics: Top-1 accuracy on IN-1K and transfer accuracy via log-odds [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF]] averaged over the 13 transfer datasets. Denoting n correct and n incorrect as the number of correct and incorrect predictions for a dataset, we compute the accuracy p and log odds score as follows: Implementation details. f q is a ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF]] encoder, trained for 100 epochs with mixed precision in PyTorch [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF]] using 4 GPUs where batch norm layers are synchronized. We use an SGD optimizer with 0.9 momentum, a batch size of 256, 1e-4 weight decay and a learning rate of 0.1 ⇥ batch size /256, which is linearly increased during the first 10 epochs and then decayed with a cosine schedule. We set t = 0.1 and, unless otherwise stated, we use the data augmentation pipeline from DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]] with 1 global and 8 local crops (M g = 1 and M l = 8). Training one of our models takes up to 3 days with 4 V100 GPUs depending on its projector configuration.

p = n correct n correct + n incorrect , log odds = log p 1 p . ( 4 

Analysis of component design and hyper-parameters

Multi-crop data augmentation. We first study the effect of the number of local crops on IN-1K and transfer performance. We train supervised models using Equation of local crops generally helps, performance saturates with 8 local crops. We set M g = 1 and M l = 8 for all subsequent evaluations.

Note that using local crops increases the effective batch size, which, in turn, increases training time. We therefore conduct two experiments to see if a longer training or a larger batch size would lead to similar gains. We train two models using a single crop sampled from a wide scale range (i.e., able to focus on both large and small image regions), one with 9⇥larger batch size, the other for 800 epochs. Unlike multi-crop, these models bring no significant gain.

Expendable projector head. We study the impact of different architectural choices and hyper-parameters for the projector. We vary the number of hidden layers (L), the dimension of the hidden (d h ) and bottleneck (d b ) layers, and whether or not to `2-normalize the projector input (`2). We start from a default configuration: L = 1, d h = 2048, d b = 256 and with `2-normalized inputs. We ablate each parameter separately by training models optimizing Equation (4.1), i.e., without the OCM component. We use multi-crop in all cases.

The most interesting results from this analysis are presented in Tab. 4.1. We see that the number of hidden layers (L) is an important hyper-parameter that controls the trade-off between IN-1K and transfer performance. Adding a projector head with a single hidden layer not only improves the already strong IN-1K performance of multi-crop (Base+Mc in Tab. 4.1), but also significantly boosts its average transfer performance. More hidden layers seem to increase transfer performance, at the cost of a decrease in IN-1K accuracy. The same can be said about the dimension of the hidden layer, yet we further see that a larger d h significantly increases transfer performance, and moderately decreases IN-1K accuracy. On the contrary, we observe that the bottleneck dimension d b and input `2-normalization only have a small influence on IN-1K and transfer performance. Overall, our observations verify and significantly extend the ones recently presented by Wang et al. [2022b]. We not only study the design of projectors jointly with multi-crop, but also analyse transfer performance jointly with performance on IN-1K, revealing a trade-off between the two, that is fully controlled through the design of the project head.

Online class means. There are two main hyper-parameters in OCM: the size of the memory bank and the momentum of the EMA models that populate the memory bank and provide the embeddings for class prototypes. We explored momentum values 0 and 0.999 (in the former, we directly use f q and g f to compute prototypes) and see that trailing EMA is essential for maintaining high performance, i.e., momentum = 0 performs poorly, aligning with the observations for MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF]]. However, unlike MoCo or other recent methods such as LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]], OCM does not require a large memory bank to achieve the highest performance. We experimented with memory sizes between 2048 and 65546, and found that 8192 works best.

Analysis of learned features, class weights and prototypes

We now investigate how different components of our setup affect training or the learned representations. We analyse the features produced, class weights and prototypes from the following models: a) Base: a model trained using cosine softmax loss without multi-crop and projector, b) Base (BS=2K): Base but with 9⇥larger batch size, c) Base+Mc: Base with multi-crop, d) Base+Pr: Base with a projector, e) Base+Mc+Pr, and f) OCM: a model trained using Equation (4.2).

Intra-class distance. We start by analysing the `2-normalized features for the four models, Base, Base+Mc, Base+Pr and Base+Mc+Pr, by computing the average `2-distance between samples from the same class (i.e., intra-class distance). We see in Fig. 4.5 (left) that multicrop reduces intra-class distance on IN-1K, while projectors increase it. Not surprisingly, this correlates with training task performance, i.e., lower intra-class distance translates to better performance on IN-1K. On the transfer datasets, however, we found no strong correlation between the two, i.e., transfer performance does not necessarily depend on intra-class distance.

Sparsity. In Fig. 4.5 (right) we report feature sparsity ratio, i.e., the percentage of feature dimensions close to zero for `2-normalized features from the four models. We see that: a) the average sparsity ratio on the transfer datasets is inversely correlated with performance, i.e., linear classifiers trained on less sparse features achieve better transfer performance, and b) projectors dramatically reduce sparsity. We find this last observation intuitive: features from the layer right before the cross-entropy loss are encouraged to be as close to a one-hot vector as possible and therefore sparse. Introducing projectors in between allows the encoder to output less sparse features, which improves transfer.

Coding length. To further investigate our observations on sparsity, we follow [START_REF] Yu | Learning diverse and discriminative representations via the principle of maximal coding rate reduction[END_REF] and compute the average coding length per sample on the transfer datasets (see Fig. 4.6 (a)). We see that projectors largely increase the "information content" of representations. This was also verified by analysing singular values per dimension for models with and without We compare to the following state-of-the-art (SotA) models: Supervised: RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF], SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF], SL-MLP [Wang et al. 2022a] and LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] with multi-crop; self-supervised: DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]; semi-supervised: PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF].

projectors (Base+Pr and Base+Mc). For each model, we compute singular values on each transfer dataset which are normalized by their sum so that they sum to 1. We then sort these normalized singular values by decreasing order, and average them over transfer datasets. As can be seen in Fig. 4.6 (b), feature variance is more uniformly distributed over dimensions when a projector is used. These observations might explain why projectors reduce overfitting to IN-1K concepts.

Gradient similarity. To understand why using multi-crop increases performance for the same batch size, we examine the gradients of class weights -W L CE for two models that have the same effective batch size, with and without multi-crop. At each training iteration, we compute the average cosine similarity between individual gradients of every pair of class weights -W c i L CE and -W c j L CE for any c i 6 = c j . As we see from Fig. 4.6 (c), cosine similarity increases substantially with multi-crop. In other words, on average, classifier gradients (and therefore the class weights themselves) are more entangled. We attribute this to the fact that some of the local crops (e.g., the ones that mostly cover background and hence are not really discriminative for the class at hand) are harder to classify.

Change in class weights and prototypes. To understand the differences between the training objectives in Equation (4.1) and Equation (4.2), we measure how much class weights W and prototypes U change during the training phase. In Fig. 4.6 (d), we plot the average change over all classes by computing the Frobenius norm between before and after each iteration, i.e., DW = k W t W t 1 k 2 and DU = k Ūt Ūt 1 k 2 , where t is the training iteration, and W and Ū are the class weight w c and prototype u c `2-normalized per class and concatenated, respectively. Interestingly, we observe that prototypes U change orders of magnitude more than class weights W throughout training. We believe this is because we compute class prototypes using only the small subset of images from our memory bank. The average number of samples per class on IN-1K is 1281, whereas, on average we have only 8 per class in the memory bank. We argue that this prevents OCM from overfitting, leading to higher IN-1K performance, as we show next.

Pushing the envelope of training-versus-transfer performance

In this section we report and analyse results from more than 100 different models trained on IN-1K, all different instantiations of the proposed training setup. We varied hyper-parameters such as the number of hidden layers in the expandable projector head or the training objective. The most important results are depicted in Fig. 4.7.

Previous state of the art. RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] is a highly optimized supervised ResNet50 model with top performance on IN-1K. The self-supervised DINO model [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]] has shown top transfer learning performance, while also performing well on IN-1K. The semi-supervised PAWS [START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF]] model matches DINO in transfer performance, with improved IN-1K accuracy. To our knowledge, RSB-A1 and DINO/PAWS are the current state-of-the-art ResNet50 models for IN-1K classification and transfer learning respectively. We also compare to three recent supervised models: SupCon [START_REF] Khosla | Supervised contrastive learning[END_REF], LOOK [START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] and SL-MLP [Wang et al. 2022a]. For all models except LOOK and SL-MLP, we evaluate the models provided by the authors. Due to the absence of official code we reproduced LOOK and SL-MLP ourselves, enhancing them with multi-crop.

Our reproductions achieve higher performance than the one reported in the original papers.

In both cases, we use a projector with 1 hidden layer.

Notations. Models trained with the basic version of the proposed training setup, i.e., using multi-crop, a projector with L hidden layers and a cosine softmax cross-entropy loss are reported as t-ReX L . For models using the OCM training objective we append -OCM. Models on the "envelope" (i.e., the convex hull) of Fig. 4.7 are highlighted with a star (exact configurations are in the Appendix: Tabs. C.1 and D.1).

Main results. Our main observations from results presented in Fig. 4.7 can be summarized as follows.

• Pushing the envelope. Many variants from our supervised training setup "push" the envelope beyond the previous state of the art, across both axes. Several of these models improve over the state of the art on one or the other axis, but no single model outperforms all the others on both dimensions. As the number of hidden layers of the projector increases, models gradually move from the lower right to the upper left corner of the plane. This shows again that increasing the projector complexity improves transfer performance at the cost of IN-1K (training task) performance.

• No reason for no supervision. A large number of supervised variants outperform the DINO method with respect to transfer learning, while also being significantly better on IN-1K. We therefore show that training with label supervision does not necessarily require to sacrifice transfer learning performance and one should use label information if available.

• State-of-the-art IN-1K performance with three simple modifications. A number of t-ReX 1 models outperform the highly optimized RSB-A1 on IN-1K, essentially by using only three components over the "vanilla" supervised learning process that is considered standard practice: a) cosine softmax with temperature, b) multi-crop data augmentation, and c) an expendable projector.

• Training with class prototypes brings further gain. Given the same projector configuration, training models with the OCM objective (Equation (4.2)) has a small advantage over training with cosine softmax (Equation (4.1)). We see that 4 of the 6 points on the convex hull in Fig. 4.7 are t-ReX-OCM models. This suggests that using class prototypes is a viable alternative to learning class weights end-to-end.

• Introducing t-ReX and t-ReX*. We single out the two instantiations that respectively excel on the transfer learning and IN-1K axes, i.e., t-ReX 3 -OCM and t-ReX 1 -OCM.

We rename them t-ReX and t-ReX*, respectively. We envision these two transferable ResNet50 models and their corresponding training setups to serve as strong supervised baselines for future research on transfer learning and IN-1K. All the hyper-parameters for these two models are in Tab. C.1 in the Appendix.

Evaluations on the additional transfer datasets

In our experiments so far, we have measured transferability of representations on 13 datasets (5 ImageNet-CoG levels and 8 other smaller-scale transfer datasets). Here we extend our transfer evaluations to 6 more datasets, i.e., 4 ImageNet and 2 long-tail datasets.

ImageNet datasets. We compare t-ReX and t-ReX* to the previous state of the art on the four ImageNet datasets, namely IN-1K-sketch [START_REF] Wang | Learning robust global representations by penalizing local predictive power[END_REF]], IN-1K-v2 [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet?[END_REF], IN-1K-R [Hendrycks et al. 2021a] and IN-1K-A [Hendrycks et al. 2021b]. As before, for each model, we use the trained encoder as a feature extractor. We reuse the linear classifier trained on IN-1K and apply it directly to the test images of these four ImageNet datasets. Note that there are 3 test sets for IN-1K-v2, and we evaluate over all of them and report their average. Tab. 4.2 presents our results. Looking at the mean Top-1 accuracy over the three test sets of IN-1K-v2, we observe that t-ReX* also matches the performance of RSB-A1, outperforming all others. On the other hand, SupCon performs the best on IN-1K-Sketch, where t-ReX* is the second best. We think that the contrastive loss used in SupCon might have improved its out-of-distribution robustness for the training concepts. On IN-1K-R and IN-1K-A, t-ReX* is superior than all the other models. Overall, we see that t-ReX* shows strong generalization capabilities to all four ImageNet datasets.

Long tail datasets. We evaluate the long-tail transfer classification performance of DINO, PAWS, RSB-A1, t-ReX and t-ReX* on two class-imbalanced datasets, iNaturalist 2018 

Conclusion

We present a supervised training setup that leverages components from self-supervised learning, and improves generalization without conceding on the performance of the original task,

i.e. IN-1K classification. We also show that substituting class weights with prototypes used an online class mean classifier over a small memory bank boosts performance even further.

We extensively analyze the design choices and parameters of those models, and show that many variants push the envelope on the IN-1K-transfer performance plane. This validates our intuition that image-level supervision, if available, can be beneficial to both IN-1K classification and transfer tasks.

The previous chapter focused on the model aspect of learning visual representations, and presented a supervised learning model that learns transferable representations from the ImageNet-1K dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]]. This chapter shifts its focus to the data aspect, and explores whether synthetic images (more specifically, synthetic ImageNet-1K clones) can be used to learn transferable representations. The work presented in this chapter1 is accepted at The main motivation behind this chapter is the observation that recent image generation models such as Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] exhibits an impressive ability to generate fairly realistic images starting from a simple text prompt. Then we ask: Could such models render real images obsolete for training image prediction models? We answer part of this provocative question by investigating the need for real images when training models for ImageNet classification. Provided only with the class names that have been used to build the dataset, we explore the ability of Stable Diffusion to generate synthetic clones of ImageNet and measure how useful these are for training classification models from scratch. We show that with minimal and class-agnostic prompt engineering, ImageNet clones are able to close a large part of the gap between models produced by synthetic images and models trained with real images, for the several standard classification benchmarks that we consider in this study. More importantly, we show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer.

Introduction

The rise of (shallow) machine learning [START_REF] Chen | One-class SVM for learning in image retrieval[END_REF][START_REF] Vedaldi | Multiple kernels for object detection[END_REF]] and later deep learning [START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], Szegedy et al. 2015] has entirely changed the landscape of computer vision research over the past few decades, shifting some of the focus from methods to the training data itself. Datasets, initially of hundreds of images and dozens of classes [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF][START_REF] Fei-Fei | Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF], have grown in size and complexity, and started becoming contributions in their own right. They have been fueling the progress of computer vision as much as, if not more than, the methods themselves.

ImageNet [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF], and mainly its ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] subset of about 1 million annotated images, has impacted the field in an unprecedented way. Yet, curating and annotating such a dataset comes at a high money and labor cost.

The last couple of years have seen the rise of large and generic models, trained on data which is less curated but orders of magnitude larger. Those proved to be easily applicable, either directly, or combined with a tailored model, to a wide range of computer vision transfer tasks [Ilharco et al. 2021, Jia et al. 2021, Radford et al. 2021b]. They have also been used beyond prediction tasks, e.g., for text-conditioned image generation. Models such as DALL-E [START_REF] Ramesh | Zero-shot text-to-image generation[END_REF] or Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] have demonstrated impressive image generation ability. They produce fairly realistic synthetic images and exhibit a high degree of compositionality.

Such generative models are trained on billion-scale datasets [START_REF] Schuhmann | LAION-5B: An open large-scale dataset for training next generation image-text models[END_REF]] composed of noisy image-text pairs scraped from the internet. Although training such models is out of reach for most institutions, a few of them have been made available to the community.

Given the remarkable ability of these generative models, it is only natural to ask provocative questions such as: Is there still a need for real images when training image prediction models?

In this chapter, we explore this question through one of the most iconic computer vision datasets, ImageNet [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]]. We study to which extent this dataset can be entirely replaced by synthetic images when learning deep models. For this, we assume that we are provided with a set of classes, and the Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] model a generator that can produce realistic images from a textual prompt.

Our task is to learn an image classification model from scratch using a dataset composed only of synthetic images. We then evaluate the performance of this model on several datasets. (These two phases are illustrated in Fig. 5.1a and still for the ImageNet training classes. Finally, we consider several transfer learning scenarios where we measure the generalization performance of our models to novel classes. Fig. 5.2 summarizes the main results by comparing models trained on two equally sized set of images from the same set of classes, one real and one synthetic, on a number of these tasks. The gap is surprisingly narrow, especially for some of these scenarios.

To summarize, our contributions in this chapter are threefold:

• First, we leverage Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] and generate synthetic Ima-geNet clones, i.e., datasets with synthetic images for the ImageNet classes, using class names as prompts. We analyse the generated images, highlight important issues, and propose class-agnostic alterations to the basic prompt that reduce semantic issues and increase diversity.

• Second, we train classification models using different ImageNet clones and show that they can achieve 91.7% and 70.3% Top-5 accuracy on ImageNet-100 and ImageNet-1K respectively.

• Finally, we evaluate the generalization capacity of our models. We show that their performance gap with models trained on real images is reduced when testing for resilience to domain shifts or adversarial examples. Moreover, we show that our models perform on par with models trained conventionally when testing on 15 transfer datasets.

Related work

Learning with synthetic data

Learning with synthetic data has become a standard way to create large amounts of labeled data for annotation heavy tasks, such as human understanding [START_REF] Pumarola | 3dpeople: Modeling the geometry of dressed humans[END_REF][START_REF] Varol | Learning from synthetic humans[END_REF], semantic segmentation [Chen et al. 2019b[START_REF] Swami Sankaranarayanan | Learning from synthetic data: Addressing domain shift for semantic segmentation[END_REF], optical flow estimation [START_REF] Dosovitskiy | FlowNet: Learning optical flow with convolutional networks[END_REF][START_REF] Yo Whan Kim | How transferable are video representations based on synthetic data? In NeurIPS Datasets and Benchmarks Track[END_REF] or dense visual alignment [START_REF] Peebles | GAN-supervised dense visual alignment[END_REF]]. In most cases, this synthetic data requires access to 3D models and renderers [START_REF] Mahmood | Amass: Archive of motion capture as surface shapes[END_REF], or to a simulator [START_REF] Stephan R Richter | Playing for data: Ground truth from computer games[END_REF]] with a physically plausible engine. Recent works propose pretraining on a database of synthetic fractal [START_REF] Kataoka | Pre-training without natural images[END_REF] or sinusoidal wave [START_REF] Takashima | Visual atoms: Pre-training vision transformers with sinusoidal waves[END_REF]] images before finetuning the model using real images on a downstream task. In this study we use synthetic data to learn encoders and classifiers that can be used out-of-the-box, without the need for a subsequent fine-tuning step. Closest to our work, [START_REF] Jith | Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma[END_REF] generate synthetic OCT images to train a glaucoma detection model to be applied to real images. Here, we target synthetic clones of complex natural image datasets, i.e., ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]], and we use a general-purpose text-to-image generation model.

Synthetic ImageNet clones. Synthetic images for ImageNet classes have been used recently in a number of related works [START_REF] Besnier | This dataset does not exist: training models from generated images[END_REF], Li et al. 2022[START_REF] Ravuri | Classification accuracy score for conditional generative models[END_REF] based on class conditional Generative Adversarial Networks (GANs), such as Big-GAN [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]]. [START_REF] Besnier | This dataset does not exist: training models from generated images[END_REF] generate images for ten ImageNet classes and propose techniques to reduce the gap between models trained on generated images and real ones. [START_REF] Li | BigDatasetGAN: Synthesizing ImageNet with pixel-wise annotations[END_REF] synthesize five images for each ImageNet-1K class, together with their semantic segmentation annotations to automatically generate pixel-level labels at scale. Our work focuses on image-level classification, and uses a general-purpose text-conditioned generative model instead of ImageNet-1K class-conditioned GANs. It further offers a larger scale study with promising results on the full ImageNet-1K benchmark when training from 1.28 million synthetic images. Concurrent work [START_REF] He | Is synthetic data from generative models ready for image recognition?[END_REF]] also synthesizes data for ImageNet-1K, but focuses on improvements on top of the CLIP [Radford et al. 2021b] model or after fine-tuning.

Synthetic images as data++. Data sampled from generative models [START_REF] Goodfellow | Generative adversarial networks[END_REF], Ho et al. 2020, Ramesh et al. 2021[START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] can be seen as data with added functionalities or "data++" [START_REF] Isola | When faking your data actually helps -Learning vision from GANs, NeRFs, and noise[END_REF]]. Such data can be manipulated, interpolated or composed [Chai et al. 2021a,b, Jahanian et al. 2020[START_REF] Isola | When faking your data actually helps -Learning vision from GANs, NeRFs, and noise[END_REF] with dedicated operators in their latent space, and further used for counterfactual reasoning [START_REF] Liu | Generative counterfactual introspection for explainable deep learning[END_REF][START_REF] Mao | Generative interventions for causal learning[END_REF][START_REF] Oktay | Counterfactual image networks[END_REF]. In this work, we do not exploit these added functionalities. Our prompts consider a class at a time and do not leverage any interpolation nor the composition properties of synthetic data. Instead, we chose our complete pipeline, including the set of data augmentations, to be identical to the one we use for real images, to allow for a fair comparison.

Zero-shot learning and test-time view synthesis. Generative models have been used to extend models to new classes, or to create novel views at test time. Chai et al. [2021b] synthesize novel views for test-time ensembling by perturbing the latent code of a test image. Aiming at zero-shot recognition [Xian et al. 2018b], [START_REF] Elhoseiny | Write a classifier: Zero-shot learning using purely textual descriptions[END_REF] synthesize a classifier for any novel class given its semantic description (e.g., textual or attribute-based), whereas others synthesize images [START_REF] Dunlap | Using language to extend to unseen domains[END_REF], Gu et al. 2022], or image features [Lazarou et al. 2022, Sariyildiz and[START_REF] Bulent | Gradient matching generative networks for zero-shot learning[END_REF] using such descriptions. Here we aim to learn encoders from scratch, and do not rely on models previously trained on real data.

Distillation of datasets and models

Knowledge distillation [START_REF] Buciluǎ | Model compression[END_REF], Hinton et al. 2014] is a mechanism to transfer knowledge from a pretrained "teacher" model into a "student" one, and it usually requires images. Our approach can be seen as performing image-free distillation from a generic textto-image generation model into a specific classification model. We assume no access to images to distill from and, instead of distilling the visual encoder of the image generation model, inspired by recent works in NLP [START_REF] Ma | Prompting to distill: Boosting data-free knowledge distillation via reinforced prompt[END_REF], we prompt a generation model to produce synthetic images and train a classifier with them.

Dataset distillation [START_REF] Cazenavette | Dataset distillation by matching training trajectories[END_REF], Zhao et al. 2021a], on the other hand, is a way of compressing a training set of real images into a smaller set of synthetic images such that after training a model on those, it performs as well as if it had been trained on the original set. However, one needs to tailor the generation process to a specific task, whereas in our case, we sample images from a task-agnostic generator.

Reconstructing images from model activations can be considered as another form of distillation. Earlier works reconstruct images from gradient-based features [START_REF] Vondrick | Hoggles: Visualizing object detection features[END_REF][START_REF] Weinzaepfel | Reconstructing an image from its local descriptors[END_REF] or CNN activations [START_REF] Mahendran | Understanding deep image representations by inverting them[END_REF]]. Since then many methods have tried to uncover the training data distribution as it is stored in the weights of a model [Chen et al. 2019a[START_REF] Hongxu Yin | Dreaming to distill: Data-free knowledge transfer via deepinversion[END_REF]. Instead of trying to recover the training distribution of the teacher image generation model, we use prompting to distill its knowledge for a specific image classification task.

Preliminaries

In this section, we first define the task we solve, i. We follow the common supervised learning setting [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF][START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] and, unless otherwise stated, learn the encoder parameters q together with the classifier parameters W for the task. This model (encoder and classifier) is evaluated on the initial classification task, by applying it to real images (Sec. 5.5.1 and Sec. 5.5.2). We also evaluate the visual encoder in the context of several transfer learning tasks (Sec. 5.5.3).

Text-to-image with Stable Diffusion. We use the recent Stable Diffusion model [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] (SD) as text-to-image generator G. SD is a denoising diffusion model [START_REF] Ho | Denoising diffusion probabilistic models[END_REF] built around the idea of latent diffusion. The diffusion process is run on a compressed latent space for efficiency. An image encoder/decoder is used to interface the latent diffusion model with the pixel space. The generation process can be conditioned in many ways, e.g., with text for text-to-image generation, or an image latent vector for image manipulation.

The text-to-image SD model consists of three main components: a) an autoencoder whose visual encoder outputs a structured latent representation that is fed as input to the forward diffusion process and whose decoder is then used to convert the latent vectors back to pixels, b) a denoising U-Net that runs the diffusion process, and c) a text encoder, i.e., similar to the one used by CLIP [Radford et al. 2021b].

The text-to-image generation process takes a textual prompt p as input and generates an image I 2 R w⇥h⇥3 . Let g(p) denote the generation function of model G. Image I is then given by I = g(p). In practice, the prompt p is first encoded via the text encoder and the text embedding is used as a conditioning vector for the latent diffusion process that runs for a number of steps. The latent representation is then provided to the decoder, which outputs the image I.

There are two important parameters that control the quality and speed of text-conditioned diffusion; the number of diffusion steps and the coefficient that weights the textual conditioning vector. The former is linearly related to extraction time, while the latter provides an excellent way of controlling the visual diversity of generated images. The default values are 50 steps and guidance scale equal to 7.5.

Link to distillation. Since the generator is a model that internally encodes visual information, the image classification model we learn is essentially derived from G. Under this formulation, and as discussed in Sec. 5.2, one can also see this task as text-guided, image-free knowledge distillation. Here we distill knowledge from a model of a very different nature,

i.e., a text-to-image generation model, to a purely visual encoder, for solving a specific task.

Generating synthetic ImageNet clones

For our study, we create clones of the ImageNet [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]] dataset by synthesizing images depicting the classes it contains. We refer to all synthetic datasets of ImageNet classes that are created using Stable Diffusion as ImageNet-SD. Sec. 5.4.1 describes different ways of creating ImageNet-SD datasets starting from simply using the class name as the prompt. We then present generic, class-agnostic ways for tackling issues that arise with respect to semantics and diversity in Secs. 5.4.2 and 5.4.3, respectively. We present a few sample qualitative results in Fig. 5.3, with a more extensive set in Appendix E.

Generating datasets using class names

In the absence of a training set of real images, we use the generator G presented in the previous section to synthesize images for each class in the set C. To do so, we need to provide the generator with at least one prompt per class. When used as an input, this class-conditioned prompt p c triggers the generation of a synthetic image I c = g(p c ) from class c. The simplest prompt one could think of is the class name i.e., p c = "c". Although CLIP [Radford et al. 2021b] uses p c = "a photo of a c" for their zero-shot experiments, using only the class name gives better results in our case.

Each class in ImageNet is associated with one or more synsets, i.e., entities, in the Word-Net [START_REF] Miller | WordNet: A lexical database for English[END_REF] graph. We use the synset lemmas corresponding to each class as classname prompt "c", comma-separated if more than one. generator to create photo-realistic images given only a class name. In Sec. 5.5, we show that one can already obtain surprisingly good image classification results by simply training a model with this synthetic dataset.

Upon close inspection of the generated images, however, some issues become apparent: a) semantic errors: images generated for some classes may capture the wrong semantics (e.g., see the "papillon" class in Fig. 5.3b), b) lack of diversity: generated images tend to look alike (an issue more apparent in Appendix E, and c) visual domain issues: some classes tend to shift away from natural images towards sketches or art (e.g., the "pirate ship" class in Fig. 5.3b). We discuss and address these issues in the following.

Addressing issues with semantics and domain

As mentioned earlier, by comparing the (real) images from ImageNet with the synthetic ones generated using only synset names as prompts, we observe that for some classes their semantics do not match. This is due to polysemy, i.e., multiple semantic meanings or physical instantiations of the class names we used as prompt. We show one such case in the left-most column of Fig. 5.3b: the "papillon" images correspond to butterfly for our generated dataset, while the ImageNet synset contains images of the dog breed of the same name (see Fig. 5.3a).

To reduce this semantic ambiguity, we leverage once again the fact that class names correspond to WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF] synsets. We augment the prompt for class name c with two additional elements provided by WordNet: a) The hypernyms h c of the synset as defined by the WordNet graph, i.e., the class name(s) of the parent node(s) of this class in the graph; and b) the definition d c of the synset, i.e., a sentence-length description of the semantics of each synset. In both cases, we append this information to the prompt, which becomes p c = "c, h c " and p c = "c, d c " for hypernyms and definition, respectively.

Qualitatively, we observed that issues regarding the semantics of the most problematic classes are fixed, and so are, to some extent, issues related to visual domain mismatch. These are also visible in Figs. 5.3c and 5.3d: appending the hypernym (h c = "toy spaniel") or the description (d c = "small slender toy spaniel with erect ears and a black-spotted brown to white coat") of the class "papillon" in the prompt produces images with the dog breed as the main subject. Appending the hypernym (h c = "ship") or the description (d c = "a ship that is manned by pirates") of the class "pirate ship" results in more natural-looking images rather than illustrations, reducing the domain shift.

Increasing the diversity of generated images

Generating images using more expressive prompts, e.g., by appending class hypernym or definition, not only reduces semantic errors, but also increases the visual diversity of the output images. This is visible, for example, in the "lorikeet" and "pirate ship" classes in Figs. 5.3c and 5.3d when compared to Fig. 5.3b: the pose and viewpoints are slighly more diverse. However, images still tend to display the class instance centered and in a prominent position.

The real ImageNet images feature significantly more diversity, several different settings and backgrounds, and, in several cases, multiple instances of the same class (e.g., see Fig. 5.3a).

Although class-specific prompt engineering is an appealing option, in this study we chose to remain generic, and to increase diversity in class-agnostic ways.

Diversifying the background. We assume that class c can be seen "inside" a scene or background. To remain class-agnostic, we use all the scene classes from the Places dataset [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF] as background for every class. We generate images for every possible combination of a class c and a scene b 2 B from the set B of 365 scenes in Places. We found that "c inside b" generally produces the best-looking results among a few prepositions we tried. However, we found that semantic and domain errors that arise from generating only using class name remained after specifying a background. We therefore build on top of the second simplest, but more semantically correct prompt variant, and use p c = "c, h c inside b" to generate images in diverse scenes and backgrounds (see examples in Fig. 5.3e). Although we do not consider this in our study, selecting backgrounds tailored for each class, e.g., by matching class names to scenes using features from a text encoder, seems like a promising future direction.

Reducing reliance on the textual prompt. The text-conditioned generation process of Stable Diffusion uses classifier-free diffusion guidance [START_REF] Ho | Classifier-free diffusion guidance[END_REF] which jointly trains both the conditional and unconditional diffusion models, and combines their estimates, resulting in a trade-off between sample quality and diversity. This trade-off is controlled by the guidance scale parameter, that has in practice been shown to produce high-quality images in the range of 6-9 (the default value is 7.5). Although visually detailed (see Figs. 5.3b to 5.3d), the resulting images lack diversity. We therefore experiment with reducing the guidance scale. Despite a small degradation in the visual quality of the generated images, setting the scale to 2 results in more diverse sets of images as shown in Fig. 5.3f.

Label noise and visual realism. Quite a few generated images, especially those with low guidance scale parameters or with random backgrounds (e.g., see Figs. 5.3e and 5.3f) are not realistic, for example, the right-most image in the first column of Fig. 5.3f. Also, when the prompt mentions a background, some images miss the foreground object completely (e.g., see the bottom row in the middle column of Fig. 5.3e) or contain impossible combinations of objects and scenes. Yet, we see such noisy or unrealistic synthetic images as a way of adding stochasticity during the training process, similar to what strong non-realistic data augmentation achieves [START_REF] Geiping | How much data are augmentations worth? An investigation into scaling laws, invariance, and implicit regularization[END_REF][START_REF] Xu | Robust and generalizable visual representation learning via random convolutions[END_REF]. In fact, it was recently shown [START_REF] Geiping | How much data are augmentations worth? An investigation into scaling laws, invariance, and implicit regularization[END_REF]] that diverse data augmentations, even when inconsistent with the data distribution, can be valuable (even more than additional training data) for out-ofdistribution scenarios. Our experimental validation corroborates this claim.

Experiments

In this section we analyze the performance of image classification models learned using the different synthetic datasets constructed as described in Sec. 5.4. Due to the size of ImageNet-1K (roughly 1.3 million images), we perform most of our study on the smaller ImageNet-100 [Tian et al. 2020a] dataset. This allows us to run multiple flavours of each synthetic dataset and to measure the impact of several design choices. Because ImageNet-100 is a randomly chosen subset of ImageNet-1K, spanning over 100 classes and 126,689 images, it preserves some important characteristics of ImageNet-1K such as its fine-grained nature.

We denote synthetic datasets for the two ImageNet subsets as ImageNet-100-SD (IN-100-SD) and ImageNet-1K-SD (IN-1K-SD), respectively.

Experimental protocol. We follow the protocol illustrated in Fig. 5.1. The generator G is the Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]] v1.4 model,2 trained on the LAION2B-en dataset [START_REF] Schuhmann | LAION-5B: An open large-scale dataset for training next generation image-text models[END_REF]] and fine-tuned on a smaller subset filtered by an aesthetics classifier. During training, the generator is used to synthesize images for each class, which are then used for training the parameters of the encoder and the classifier. Unless otherwise stated, we create datasets of the exact same size as their real-image counterparts, i.e., we generate the exact same number of images for every class as in the corresponding real dataset, maintaining any class imbalance.

We evaluate all the models on real images. When evaluating their performance over the ImageNet classes, we use both the encoder and the classifier learned during training to predict labels of real images for the 5 ImageNet datasets (Secs. 5.5.1 and 5.5.2). For transfer learning (Sec. 5.5.3), we use the pretrained encoder as a feature extractor, and learn a separate linear classifier on each of the 15 transfer datasets.

Implementation details. In all experiments, the encoder f q is a ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF],

trained for 100 epochs (unless otherwise stated) with mixed precision in PyTorch [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF]] using 4 GPUs where batch norm layers are synchronized. We use an SGD optimizer with 0.9 momentum, a batch size of 256 and a learning rate linearly increased during the first 10% of the iterations and then decayed with a cosine schedule. Unless otherwise stated, we use the data augmentation pipeline from DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] Performance is measured on the validation set of ImageNet-100, i.e., on real images.

Impact of data augmentation. We conducted some basic experiments to evaluate the impact of different data augmentation strategies when learning from synthetic datasets. In Tab. 5.1, we report the performance of models trained on the simplest variant of ImageNet-100-SD, i.e., using the class name as the prompt, utilizing either PyTorch [START_REF] Marcel | Torchvision the machine-vision package of torch[END_REF]Rodriguez 2010, Paszke et al. 2019] or DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] augmentations. Although the gains for the real images are relatively small (less than one percent), the gains for ImageNet-100-SD are over 14%. We believe this shows two things: a) Synthetic images can benefit from the same augmentations as real images, and b) these transformations are good for domain generalization. Indeed, strong transformations have been shown to improve domain generalization [START_REF] Volpi | Continual adaptation of visual representations via domain randomization and meta-learning[END_REF], and consequently can reduce the sim-to-real gap.

Results on ImageNet datasets

Evaluating different prompts on ImageNet-100. Tab. 5.2 compares the performance of models trained using variants of ImageNet-100-SD created with the different prompts presented in Sec. 5.4, for two different guidance scale values: 7.5 and 2. From the results for ImageNet-val and ImageNet-v2 (four left-most columns), we make the following observations: a) Simply using the class name as a prompt and the default guidance scale (row 2), one can synthesize images and learn a visual encoder from scratch that already achieves more than 70% Top-5 accuracy (43% Top-1 accuracy) on ImageNet-100, a challenging 100-way classification task with many fine-grained classes. b) Adding the hypernym or the definition from WordNet as part of the prompt (rows 3, 4) addresses some of the semantic and domain issues and translates into performance gains. c) Generating objects on diverse backgrounds (row 5), even in a simple and class-agnostic way, gives the best results for the default guidance scale, reaching over 50% Top-1 and 76% Top-5 accuracy on ImageNet-100. d) Using a lower guidance scale value (2) leads to more diverse image sets (as discussed in Sec. 5.4.3) and translates into the best overall performance on ImageNet-100. e) The exact formulation of the prompt has less impact when lowering the guidance scale; all the four prompt variants lead to similar performance as we see from rows 6-9.

Scaling the number of synthetic images. Unlike real datasets that are capped in the number of images they contain, ImageNet-SD has theoretically no size upper bound as one can Table 5.3: Top-1 accuracy on ten transfer learning datasets for encoders trained on real and synthetic images. We treat encoders as feature extractors and train linear classifiers on top for each dataset. Brick-colored scores denote performance higher than the models trained on real images. We make the remarkable observation that representations from models trained on synthetic data can match the generalization performance of representations from models trained on millions of real images. Italics denote results from models trained using real images.

that the synthetic dataset is able to at least partially capture the subtle clues needed to differentiate fine-grained classes. Similar observations can be made on ImageNet-v2 [START_REF] Recht | Do ImageNet classifiers generalize to ImageNet?[END_REF]] (IN-v2).

Resilience to domain shifts

We investigate the performance of our models on three challenging evaluation sets for ImageNet-1K classes: ImageNet-Sketch [START_REF] Wang | Learning robust global representations by penalizing local predictive power[END_REF] When it comes to a much harder classification task like the 1000 classes of ImageNet-1K, we see from the lower part of Tab. 5.2 that the same trend does not really hold. The ImageNet-1K-SD model trained on synthetic data lags behind in all cases when compared to the two models [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF], Wightman et al. 2021] that are trained on the ImageNet-1K training set.

Transfer learning

In previous evaluations, we used pretrained models as a whole, i.e., encoders together with classifiers, all trained on synthetic ImageNet datasets, and we directly applied those to predict the label of the (real) test images on the training classes. Here, we use a slightly different protocol. We evaluate the quality of the representations learned by our encoders alone, by using them as feature extractors and training linear logistic regression classifiers from scratch on top as done in transfer learning [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]].

We report results on 15 transfer datasets: a) eight common small-scale datasets (Aircraft [START_REF] Maji | Finegrained visual classification of aircraft[END_REF], Cars196 [START_REF] Krause | Collecting a large-scale dataset of fine-grained cars[END_REF], DTD [START_REF] Cimpoi | Describing textures in the wild[END_REF], EuroSAT [START_REF] Helber | EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification[END_REF], Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF], Pets [START_REF] Omkar | Cats and dogs[END_REF], Food101 [START_REF] Bossard | Food-101 -Mining discriminative components with random forests[END_REF], SUN397 [START_REF] Xiao | SUN database: Large-scale scene recognition from abbey to zoo[END_REF]), b) two long-tail datasets (iNat2018 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]] and iNat2019 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]), and c) the five datasets ("levels") of the CoG benchmark [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]. For each of the transfer datasets, we first extract features from the pretrained encoders and then train linear logistic regression classifiers using these features. For the larger transfer datasets, i.e., iNaturalist 2018 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]] and iNaturalist 2019 [START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]] datasets and the CoG levels, we train linear classifiers in PyTorch [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF]] using SGD, following [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]]. For the remaining 8 smaller transfer datasets, we follow [START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF]] and train classifiers using L-BFGS implemented in Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]]. In all cases, we resize the images with bicubic interpolation so that their shortest side is 224 pixels, and then take a central crop of 224 ⇥ 224 pixels. We tune hyper-parameters (learning rate and weight decay for the SGD optimizer, and regularization coefficient for the L-BFGS optimizer) using Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF]] over at least 25 trials. Code for evaluations can be found here3 .

We report Top-1 accuracy on the (real) test set of the small-scale and long-tail datasets (10 datasets in total) in Tab. 5.3. We compare ImageNet-100-SD and ImageNet-1K-SD visual encoders obtained with some of our best prompts to baselines trained on ImageNet-100 and ImageNet-1K. What we observe is quite striking: On average, representations learned on purely synthetic images exhibit generalization performance comparable to representations trained on thousands or millions of real images. This suggests that synthetic images can be used to pretrain strong general-purpose visual encoders.

We also evaluate our best ImageNet-SD model on the ImageNet-CoG benchmark introduced in [START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF] to measure concept generalization and report Top-1 accuracy obtained on the test sets of these datasets in Tab. 5.4. We compare the performance of the best ImageNet-1K-SD model (from Tab. 5.3) to strong baselines trained on ImageNet-1K like the supervised RSB-A1 [START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF]] and self-supervised DINO [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] models. We observe that on L 5 , which is the most challenging level, the performance of the representations learned on synthetic images is comparable to that of learned on real images by supervised models (i.e., PyTorch and RSB-A1). As we move towards L 1 , we see that the gap between these two models increases in favor of RSB-A1. Finally, after training classifiers (only) using the real images of IN-1K, our model reaches 70.4% accuracy, significantly closing the gap to even the most optimized models trained on real data like RSB-A1. This protocol differs from the one presented in Sec. 5.5.1 as it uses real images to train a linear classifier on top of the feature extractor trained only on synthetic images, hence the IN-1K results are not comparable with Tab. 5.2.

Scaling the number of synthetic images for transfer. Fig. 5.4 reports transfer learning performance on the 10 datasets of Tab. 5.3, when varying the size of the training set. We see that generating 10⇥ more images allows the ImageNet-100-SD model to outperform the model trained on real images, and the gains increase as we generate up to 50⇥ more. Top-1 accuracy on ImageNet-100 and averaged over 10 transfer datasets (from Tab. 5.3) for p c = "c, d c ". In the left plot, steps are set to 50, in the right plot guidance scale is 7.5.

Impact of guidance scale and diffusion steps

In Fig. 5.5 we analyse the impact of the guidance scale and diffusion step hyper-parameters of Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]]. As we discussed earlier, a lower guidance scale leads to more visual diversity and that is reflected of performance. Values of 1 to 3 all seem like a good choice. When it comes to the number of diffusion steps, values like 25 and (the default) 50 seem like a safe choice, with 25 being slightly worse, but requiring half the time to extract. Interestingly, using more steps seems to slightly hurt performance on the training classes. It is worth noting that transfer learning performance is surprisingly and consistently high for even 5 diffusion steps. This corroborates recent finding that training on complex but possibly semantically meaningless images like fractals [START_REF] Kataoka | Pre-training without natural images[END_REF] or sinusoidal waves [START_REF] Takashima | Visual atoms: Pre-training vision transformers with sinusoidal waves[END_REF]] can provide a strong starting point for visual representations that generalize well.

Analysis of the learned features

In this section, we analyze and contrast the representations obtained with models we trained using synthetic images to representations from models trained on real images. For this analysis, we used ImageNet-SD models for images that were generated using the default prompt guidance scale of Stable Diffusion, i.e., 7.5. We perform our analysis for ImageNet-100 and using four metrics: a) sparsity, b) intra-class distance, c) feature redundancy and d) coding length.

We compare four different models trained on either real or synthetic data for the 100 classes of ImageNet-100: One model trained on real images, ImageNet-100-Real, two models trained on synthetic image sets of the same size obtained by using two different prompts: p c = "c" .6: Feature analyses for models. We perform these analyses on top of features extracted from pretrained encoders f trained on either real or synthetic data for ImageNet-100 (training data is specified in the legends of the subfigures). For the purpose of this study, we use synthetic data generated with guidance scale equal to 7.5. Sparsity is measured by the percentage of dimensions close to zero [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF]]. Intra-class `2-distance is the average pairwise `2-distance between samples from the same class. These two metrics are computed on `2-normalized features. Feature redundancy [Wang et al. 2022b] is obtained by R = 1 d 2  i  j |r(X :,i , X :, j )|, where X 2 R N⇥d is a feature matrix containing N samples, each encoded into a d-dimensional representation (2048 in our case) and r(X :,i , X :, j ) is the Pearson correlation between a pair of feature dimensions i and j. Coding length [START_REF] Yu | Learning diverse and discriminative representations via the principle of maximal coding rate reduction[END_REF] is measured by R(X, e) = 1 2 log det(I d + d Ne 2 X > X), where I d is a d-by-d identity matrix, e 2 is the precision parameter set to 0.5. and p c = "c, h c inside b", and the ImageNet-100-SD-10x model, trained using ten times more images.

We perform these analyses on all the datasets considered in this work, except for the 5 ImageNet-CoG levels. For the sake of this study, we split them into three groups: a) ImageNet-100-Val/v2, b) ImageNet-100-Sketch/A/R and c) the 10 transfer datasets (longtail and small-scale). For each pretrained model and dataset, we extract features for either only the images in the test set (for the ImageNet test sets), or for all images (for the small transfer datasets). We then compute each of the four metrics separately on each dataset, and average them over all datasets in the same group. Before computing metrics, we `2-normalize features.

Results of the analyses for each of the four metrics are as follows.

Sparsity. Inspired by [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF], we compute feature sparsity ratio, i.e., the percentage of feature dimensions close to zero with a threshold of 10 5 . We report sparsity ratios in Fig. 5.6a. We see that the sparsity ratio for the models trained on synthetic images increases as the "diversity" of a synthetic dataset increases, i.e., we see gradual increase in sparsity scores from p c = "c" and p c = "c, h c inside b" to ImageNet-100-SD-10x. This observation aligns with their performance as well, i.e., in Tab. 5.2 we show that ImageNet-100-SD-10x performs best in general (among the 3 variants considered in this analysis) while p c = "c" performs worst. More interestingly, we see that ImageNet-100-Real, the model trained on real images, learns the most sparse representations.

Intra-class distance. In Sec. 5.4, we present simple ways to increase the diversity of synthetic images. Now we check if these efforts increase the variance of samples in the representation space. To do that, we compute the average `2-distance between samples from the same class (i.e., intra-class distance). We see in Fig. 5.6b that models trained with more diverse images indeed learn representations with higher intra-class variance.

Feature redundancy. Following Wang et al. [2022b], we compute feature redundancy, i.e., average pairwise Pearson correlation among dimensions. From Fig. 5.6c we see that the redundancy of features learned on real images increase more rapidly than the ones learned on synthetic images, as we move from ImageNet-100-Val/v2 towards out-of-domain or transfer datasets.

Coding length. To further investigate our observation on feature redundancy, we follow [START_REF] Yu | Learning diverse and discriminative representations via the principle of maximal coding rate reduction[END_REF] and compute the average coding length per sample on each dataset (see Fig. 5.6d). We see that models trained on ImageNet-100-Real and ImageNet-100-SD-10x are comparable.

Discussion

This section takes a step back and considers some of the implications from the analysis proposed in this chapter.

Applicability beyond ImageNet. The process we followed to create ImageNet-SD requires minimal assumptions and can be applied to a wider set of classes. To disambiguate semantics, we only assume access to a short textual description of the class. This is generally easy to acquire even at a larger scale, e.g., in semi-automatic ways from Wikipedia.

Scaling laws for synthetic data. Conceptually, there is no reason to restrict our approach to a finite dataset of synthetic images. We could devise a training process which sees each image only once [START_REF] German I Parisi | Continual lifelong learning with neural networks: A review[END_REF]].

Yet, despite this scaling potential, the quality of the resulting classifier is bounded by the expressivity of the generator and the concepts it can reliably reproduce. No matter how intriguing the promise of an "infinite dataset" via data generation might be, practical applications are bound by costs linked to computation and storage, as well as the moderation of the content fueling this generator. The latter has strong implications we discuss next.

Data and model bias. Because of its pioneering role as a source of images to train generic models, and all it has done to advance the computer vision field, ImageNet and some of its bias has been under heavy scrutiny [Denton et al. 2021, Luccioni and[START_REF] Sasha | Bugs in the data: How ImageNet misrepresents biodiversity[END_REF]. Its synthetic counterparts have no reason to be immune to bias.

The main advantage of training with synthetic dataset is also its biggest flaw. Instead of manually curating and annotating a dataset, this process is outsourced to a text-to-image generator, whose training data is not always known. Our study is based on the text-to-image generator of Stable Diffusion (SD). SD is trained on LAION-2B [START_REF] Schuhmann | LAION-5B: An open large-scale dataset for training next generation image-text models[END_REF]], a dataset scraped from the internet and filtered in an automatic way using CLIP [Radford et al. 2021b]. LAION has been shown to contain problematic content [START_REF] Birhane | Multimodal datasets: Misogyny, pornography, and malignant stereotypes[END_REF] and SD models to memorize at least part of the training set [START_REF] Carlini | Extracting training data from diffusion models[END_REF][START_REF] Somepalli | Diffusion art or digital forgery? Investigating data replication in diffusion models[END_REF]]. Algorithmic bias is not only due to bias in the data [START_REF] Hooker | Moving beyond "algorithmic bias is a data problem[END_REF]], yet biased datasets lead to biased models and predictions [START_REF] Osman Aka | Measuring model biases in the absence of ground truth[END_REF][START_REF] Hadi Salman | When does bias transfer in transfer learning?[END_REF][START_REF] Steed | Image representations learned with unsupervised pretraining contain human-like biases[END_REF]. Frameworks such as [START_REF] Hutchinson | Towards accountability for machine learning datasets: Practices from software engineering and infrastructure[END_REF]] could be considered to increase transparency and accountability.

On top of the bias in the data, the architecture itself constraints the generated images, and as such, propagates and potentially amplifies [START_REF] Bianchi | Easily accessible text-to-image generation amplifies demographic stereotypes at large scale[END_REF]] existing bias. A major one that we have discussed earlier is the lack of diversity. An obvious corollary is the fact that stereotypes are reinforced. The options we have explored mitigate this issue to some limited extent, in that it improves classification results, but this issue is far from being solved. Finally, there are many societal implications of using such models to generate synthetic datasets for training computer vision models, and a more thorough and multi-disciplinary discussion is required.

Conclusions

In this chapter, we study to which extent ImageNet, arguably the most popular computer vision dataset, can be replaced by a dataset synthesized by a text-to-image generator. Through an extensive study, we find that one can learn models that exhibit surprisingly good performance on fine-grained classification tasks like ImageNet-100 and ImageNet-1K without any class-specific prompting. However, the most important result of this study is the finding that models trained on synthetic data exhibit exceptional generalization capability that rivals with models learned with real images. We see this study as merely a first glimpse of what is now possible with the latest large models in terms of visual representation learning. We envision that similar approaches could be used to fine-tune or adapt models, using those synthetic datasets side-by-side with real ones. As concluding remarks, we summarize our contributions (in Sec. 6.1) and present perspectives for future research (in Sec. 6.2).

Summary of contributions

In this thesis, we have studied image representation learning, and made three contributions on evaluating the transferability of representations learned on ImageNet-1K (the first) and learning more transferable representations on ImageNet-1K (the second and the third):

1. Measuring concept generalization in visual representation learning, 2. Improving the generalization of supervised learning models and

Learning transferable representations from synthetic ImageNet clones

We summarize these works and our main conclusions in the following.

Measuring concept generalization in visual representation learning

In Chapter 3, we investigated the problem of evaluating the concept generalization performance of representations learned on ImageNet-1K, when controlling other generalization facets (i.e., domain or task generalization). We identified the need for a benchmark, and introduced ImageNet-CoG. In ImageNet-CoG, the seen concepts are from ImageNet-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], and there are five disjoint sets of unseen concepts (which we call "CoG levels", i.e., L 1 , L 2 , L 3 , L 4 , L 5 ) sampled from the remainder of the full ImageNet dataset [START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]]. Moreover, our ImageNet-CoG benchmark has the following unique properties: a) both the seen and unseen concept sets are part of the full ImageNet dataset, hence, the same concept ontology, i.e., WordNet [START_REF] Miller | WordNet: A lexical database for English[END_REF]], b) semantic similarity between each seen and unseen concept is measured by Lin similarity defined on the WordNet ontology, and c) from the first to the last level, each level contains unseen concepts that are semantically less and less similar to the seen ones in ImageNet-1K. As our benchmark is conveniently applicable to any model trained on ImageNet-1K, we evaluated 31 popular representation learning models, including self-supervised learning models, supervised learning models trained with different architectures or regularization techniques and weakly-supervised models, which were first pretrained on less-curated web-data. Our most interesting observations are as follows:

• It is harder for models to generalize to semantically distant concepts and our CoG levels are increasingly challenging transfer datasets, i.e., the performance of all the models decreases as we evaluate them on L 1 through L 5 .

• Self-supervised models excel at concept generalization. They are more resilient than supervised models to the semantic concept shift.

• Label-associated augmentation techniques deteriorate concept generalization performance, although they improve the performance on the seen concepts.

• Transformer-based models appear to overfit to seen concepts, unlike neural architecturesearch-based models, which seem promising for concept generalization.

Improving the generalization of supervised learning models

In Chapter 4, we proposed a new training setup for supervised learning of visual representations on ImageNet-1K. Our setup was inspired mainly by the recent findings of [START_REF] Kornblith | Why do better loss functions lead to less transferable features?[END_REF] and some of our observations from the ImageNet-CoG benchmark evaluation listed above, i.e., stronger supervised models on ImageNet-1K learn less transferable representations to other concepts. By reinforcing supervised learning with advances in selfsupervised learning, more specifically, with multi-crop augmentation [START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], expendable projector head [Chen et al. 2020a] and momentum encoders [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF], we improved the generalization performance of supervised models on more than 15 transfer datasets, including our CoG levels. Moreover, by substituting trainable class weights in our models with prototypes obtained over a memory bank of representations we boosted performance even further. Our main observations are as follows:

• The trade-off between training (ImageNet-1K classification) and transfer performance can be controlled by the size of projectors, i.e., the bigger the projectors, the better the transfer performance.

• Image labels (if available) can be used to improve the utility of models for transfer tasks, i.e., our best models outperform state-of-the-art self-supervised models on transfer tasks while still being significantly better than them on ImageNet-1K.

• Our simple training setup also achieves state-of-the-art performance on the ImageNet-1K classification task.

• The models leading on each end of the trade-off between training and transfer performance learn complementary representations that can be combined, e.g., via feature concatenation, or prediction averaging.

Learning transferable representations from synthetic ImageNet clones

In Chapter 5, we investigated the extent to which synthetic images could help learning useful visual representations. To this end, we generated synthetic ImageNet-1K clones (which we called ImageNet-1K-SD) via Stable Diffusion [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]], a recent text-toimage generative model. Then we trained supervised models on these synthetic clones. To generate synthetic images for each of the 1000 classes in ImageNet-1K, we used simple textual prompts with class information, such as the name or description of a class. After training our models on ImageNet-1K-SD, we evaluated them on real images of 5 ImageNet datasets from different domains and 15 transfer datasets, and observed the following:

• Our models trained on synthetic ImageNet-1K-SD demonstrate overall decent performance when tested on the real ImageNet datasets, but fall behind the baseline model trained on the real images of ImageNet-1K. We still find these results promising, as they are obtained with synthetic images that are generated via a all-purpose generative model (without fine-tuning on ImageNet-1K) and without any extensive prompt engineering.

• More interestingly, representations learned by our models exhibit notable generalization capability when tested on the 15 transfer datasets, i.e., their performance is comparable to (and in some cases, better than) the baseline models learned with real images.

Perspectives for future work

We conclude the thesis with a discussion on the limitations of our contributions and possible directions for future work.

Going beyond ImageNet-1K training

In all the three contributions presented in this thesis, we either trained models on ImageNet-1K (in Chapters 4 and 5) or evaluated models that are pretrained on ImageNet-1K (in Chapter 3). We primarily used ImageNet-1K, because it is a well-established dataset for largescale representation learning. However, it is important to note that ImageNet-1K has its own biases. It is an iconic [START_REF] Zhang | What makes an image iconic? A fine-grained case study[END_REF]] and object-centric [START_REF] Torralba | Unbiased look at dataset bias[END_REF] dataset, where each image usually contains a canonical view of a single object of interest. Additionally, it is curated and balanced, i.e., images are manually annotated and the number of images for each of the 1000 classes is similar.

While these properties make ImageNet-1K a good choice for studying representation learning, they also limit its suitability for computer vision tasks in other domains where these assumptions are not always valid. For instance, in robotics, autonomous driving or satellite imagery [Bourcier et al. 2022b] problems, images are often scene-centric [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF] and the frequency of objects present in scenes might follow a long-tail distribution. As a result, benchmarks initially designed for evaluating ImageNet-1K training or models developed for learning representations on ImageNet-1K might not be directly applicable to these scenarios. In this regard, we believe that extending our contributions to such scenarios would be an interesting direction for future work. In the following, we discuss a few starting points.

• Studying concept generalization on scene-centric datasets, such as Places [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF], would be not only interesting, but also more challenging. For instance, seen and unseen scene splits could be defined in two ways. First, by considering the objects present in the scene, i.e., a scene is considered seen if it contains at least one object that is present in the training split of the dataset, and unseen otherwise. In this case, as a scene can contain multiple objects, one needs to make sure to annotate all possible objects in the scene. Second, by considering the scenes themselves, i.e., treating each scene as a concept and partitioning the set of all scenes into disjoint seen and unseen scenes. This way, it could be possible to measure generalization to unseen objects or scenes, separately. As for the semantic similarity measure, in addition to computing the `2 distance between language model embeddings of objects or scenes (similar to what we presented in Chapter 3), one can also consider exploiting the scene graph information [START_REF] Krishna | Visual Genome: Connecting language and vision using crowdsourced dense image annotations[END_REF]] or using simpler features, like co-occurrence of objects in a scene.

• Multi-crop augmentation, which is one of the components of our improved training setup for supervised models, suits well to object-centric images, i.e., it is reasonable to assume that taking small random crops from the image will contain a part of the object of interest. But this assumption does not hold for scene-centric images, i.e., small random crops taken from a scene-centric image might contain different objects. On one hand, representations might be biased to individual objects instead of the scene as a whole, and the model might struggle to differentiate between scenes which contain similar sets of objects. On the other hand, due to multi-crop, the model might better learn the context of objects in a scene, improving its overall performance on scene understanding tasks. Future research can explore the trade-offs and potential best practices for multi-crop augmentation in scene-centric images.

• While generating synthetic ImageNet clones, we prepared textual prompts (to be given as input to Stable Diffusion) tailored for only one concept of ImageNet-1K. An alternative approach could be to consider prompts mentioning multiple different concepts at the same time and generate synthetic images for a scene. This would serve as an additional data augmentation operation to increase the diversity of synthetic images, acting in a similar manner to Mix-Up [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] or CutMix [START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF]]. But coherently generating images for multiple concepts at the same time would be a more challenging task. First, the group of concepts that make up a scene must be selected carefully, as the model might have biases towards certain co-occurrences of concepts (hence, producing low-quality images for combinations of concepts not known to the model). Moreover, as the prompts mentioning multiple concepts would be longer and more complex, the generative model should be capable of generating images that are consistent with such prompts. Both concerns might impact the visual fidelity of synthetic images, and hence, the quality of the learned representations. Another use case for synthetic images could be to overcome the data imbalance problem by generating images for the concepts not well represented in the training set, which shares similar motivations with, for example, zero-shot learning models [START_REF] Bulent | Gradient matching generative networks for zero-shot learning[END_REF] Going beyond image classification as a training or transfer task

In our contributions, we considered exclusively the image-level classification tasks, for both training our models and evaluating their learned representations. However, other pixel-level tasks can also benefit from all-purpose visual representations, such as object detection or segmentation [START_REF] Kirillov | Segment anything[END_REF]]. In the following, we envision a few directions to explore tasks beyond image classification, specifically object detection or segmentation which necessitate that models to not only recognize the object of interest in the image, but also localize or segment it.

• It would be interesting to investigate the concept generalization capabilities of representations for these tasks, i.e., how well a model can localize or segment a concept it has never seen before. If, for instance, a model exhibits good localization or segmentation performance for unseen concepts, albeit its poor recognition accuracy, it would be a strong indication that recognition as a task could be disentangled from localization or segmentation, and this might inspire further research on developing meta-detection or segmentation models. To study this, though, one needs to gather appropriate annotations (bounding boxes for detection and segmentation masks) for images of both seen and unseen concepts (for the 1000 ImageNet-1K and 5000 ImageNet-CoG concepts in our case), which can be a laborious task. One potential solution is to use crowdsourcing platforms, such as Amazon Mechanical Turk, to gather these annotations.

• Investigating the impact of multi-crop augmentation or expendable projectors on the generalization performance for object detection or segmentation is another interesting direction. First, training on small crops which contain only a part of the object of interest might enforce representations to capture the details of the object as a whole rather than focusing only on the most discriminative part of the object. This, in turn, would allow the model to better distinguish objects from each other and from background. Second, expendable projectors would prevent the model from overfitting to localizing or segmenting seen concepts, and hence, improve its generalization performance on unseen ones.

• Generating synthetic images for object detection or segmentation is another potentially interesting direction. Recent image generative models (including Stable Diffusion) can condition the image generation process on diverse forms of side information, such as segmentation masks or scene layouts [START_REF] Rombach | High-resolution image synthesis with latent diffusion models[END_REF]. By leveraging this capability, one can generate synthetic object detection or segmentation datasets for, e.g., the concepts in the MS-COCO dataset [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF]. Then the real images of MS-COCO can be used to evaluate the generalization capability of learned representations.

In summary, this thesis explored various aspects of visual representation learning, with a focus on evaluating concept generalization, improving the generalization of supervised models, and using synthetic images for training models. While our contributions provide valuable insights, there are still several avenues for future research as discussed earlier. 
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 11 Figure 1.1: Illustration on the ability of deep neural networks to learn hierarchical representations of images. Given input images composed of pixels, low-level representations (e.g., edges) are encoded first, which are combined to form higher-level representations (e.g., object parts) that can be used to solve the task at hand, e.g., image classification. Figure adapted from Goodfellow et al. [2016]. The image on the left courtesy of Merve Sariyildiz.

  or their training strategies [Cubuk et al. 2019]. A few randomly sampled images from ImageNet-1K are shown in Fig. 1.2.
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 12 Figure 1.2: Five hundred images randomly sampled from ImageNet-1K [Deng et al. 2009, Russakovsky et al. 2015]. In this thesis, we mainly consider models trained on this dataset. Then, we evaluate the quality of their representations by transfering them to a variety of other datasets, including the ImageNet-CoG dataset that we propose in Chapter 3.

( a )

 a Illustration of pixel gradients (left) and SIFT keypoint descriptor based on the histogram of gradients (right). Figure taken from [Lowe 2004]. Visualization of hierarchical image features learned by a Convolutional Neural Network. Figure taken from [Zeiler and Fergus 2014].
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 21 Figure 2.1: Illustration of image features extracted by (a) handcrafted techniques and (b) deep neural networks.
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 22 Figure 2.2: Illustrations of the various data augmentation operations. Given an example image in (a), the label-preserving augmentations from (b) to (j) are: (b) Crop + resize, (c) Crop + resize + flip, (d) Color distortion (channel drop), (e) Color distortion (jitter), (f) Rotation, (g) Cutout, (h) Gaussian noise, (i) Gaussian blur and (j) Sobel filtering. Provided another image in (k), semantic transformations of (a) and (k) are (l) MixUp and (m) CutMix. Each augmentation operation has one or more parameters determining the output image. The images in (a) to (j) are taken from [Chen et al. 2020a], and the image in (k) is from ImageNet [Russakovsky et al. 2015].

  (a) A cute corgi lives in a house made out of sushi. (b) A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk. (c) A high contrast portrait of a very happy fuzzy panda dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.
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 23 Figure 2.3: Synthetic images generated by Imagen for the given textual prompts. Figure taken from Saharia et al. [2022].

  Domain generalization from natural to sketch images of a panda.Panda Corgi(b) Concept generalization from the "panda" category to the "corgi" category.Image Classification Object detection(c) Task generalization from image classification to object detection.
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 24 Figure 2.4: Illustration on the several aspects of generalization in computer vision. All panda images are from Russakovsky et al. [2015], except the sketch image of a panda in (a), which is from Wang et al. [2019].
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 31 Figure 3.1: An overview of our Concept Generalization (CoG) benchmark. (a) An example of five concepts from the ImageNet-21K dataset [Deng et al. 2009] (IN-21K), ranked by increasing semantic distance (decreasing Lin similarity [Lin 1998]) to the ImageNet-1K (IN-1K) dataset [Russakovsky et al. 2015] concept "Tiger cat". (b) We rank the 21K concepts of IN-21K according to their semantic distance to the 1000 concepts of IN-1K and split the ranked list to extract 5 groups of 1000 concepts. We refer to the five IN-1K-sized datasets of increasing semantic distance from IN-1K as concept generalization levels, denoted as L 1/2/3/4/5 . (c) The proposed ImageNet-CoG benchmark uses a model trained on IN-1K as a feature extractor and evaluates its concept generalization capabilities by learning linear classifiers for each level of more and more challenging unseen concepts.

  Figure 3.2: Concept generalization levels. We rank all the 5146 eligible IN-21K unseen concepts with respect to their similarity to IN-1K using Equation (3.2) and split the ranked list into 5 groups of 1000 concepts each. Each group defines a concept generalization level, each denoted by L 1/2/3/4/5 . Gray-shaded areas correspond to concepts that are ignored.

.

  We consider several architectures including CNN-based (a-VGG19[Simonyan and Zisserman 2015], a-Inception-v3[START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]], ResNet50, a-ResNet152 [He Model Notes (optionally # param. / amount of extra data) Reference model: ResNet50 ResNet50 Baseline model from the torchvision package (23.5M) Architecture: Models with different backbone a-T2T-ViT-t-14 Visual transformer (21.1M) a-DeiT-S Visual transformer (21.7M) a-DeiT-S-distilled Distilled a-DeiT-S (21.7M) a-Inception-v3 CNN with inception modules (25.1M) a-NAT-M4 Neural architecture search model (7.6M) a-EfficientNet-B1 Neural architecture search model (6.5M) a-EfficientNet-B4 Neural architecture search model (17.5M) a-DeiT-B-distilled Bigger version of a-DeiT-S-distilled (86.1M) a-ResNet152 Bigger version of ResNet50 (58.1M) a-VGG19 Simple CNN architecture (139.6M) Self-supervision: ResNet50 models trained in this framework s-SimCLR-v2 Online instance discrimination (ID) s-MoCo-v2 ID with momentum encoder and memory bank s-BYOL Negative-free ID with momentum encoder s-MoCHi ID with negative pair mining s-InfoMin ID with careful positive pair selection s-OBoW Online bag-of-visual-words prediction s-SwAV Online clustering s-DINO Online clustering s-BarlowTwinsFeature de-correlation using positive pairs s-CompReSS Distilled from SimCLR-v1 (with ResNet50x4) Regularization: ResNet50 models with additional regularization r-MixUp Label-associated data augmentation r-Manifold-MixUp Label-associated data augmentation r-CutMix Label-associated data augmentation r-ReLabel Trained on a "multi-label" version of IN-1K r-Adv-Robust Adversarially robust model r-MEAL-v2 Distilled ResNet50 Use of web data: ResNet50 models using additional data d-MoPro Trained on WebVision-V1 (⇠ 2⇥) d-Semi-Sup Pretrained on YFCC-100M (⇠ 100⇥), fine-tuned on IN-1K d-Semi-Weakly-Sup Pretrained on IG-1B (⇠ 1000⇥), fine-tuned on IN-1K d-CLIP Trained on WebImageText (⇠ 400⇥)

  et al. 2016]), transformer-based (a-DeiT-S[START_REF] Touvron | Training data-efficient image transformers & distillation through attention[END_REF]], a-DeiT-S-distilled, a-DeiT-B-distilled, a-T2T-ViT-t-14[Yuan et al. 2021a]) and neural architecture search (a-NAT-M4[START_REF] Yuan | Florence: A new foundation model for computer vision[END_REF]], a-EfficientNet-B1 [Tan and Le 2019], a-EfficientNet-B4 [Tan and Le 2019]) backbones with varying complexities. We color-code the models in this category into two groups, depending on whether their number of parameters are comparable to ResNet50 (red) or not (orange); If they do, they are also directly comparable to all models from the following categories.Self-supervision. ResNet50-sized self-supervised models (in blue) include contrastive (s-SimCLR-v2[Chen et al. 2020a,b], s-MoCo-v2[Chen et al. 2020c, He et al. 2020], s-InfoMin [Tian et al. 2020b], s-MoCHi [Kalantidis et al. 2020], s-BYOL [Grill et al. 2020]), clustering-based (s-SwAV [Caron et al. 2020], s-OBoW [Gidaris et al. 2021], s-DINO [Caron et al. 2021]), feature de-correlation (s-BarlowTwins [Zbontar et al. 2021]), and distilled (s-CompReSS [Koohpayegani et al. 2020]) models. Regularization. ResNet50-sized models with label regularization techniques (in purple) applied during the training phase include distillation (r-MEAL-v2 [Shen and Savvides 2020]), label augmentation (r-MixUp [Zhang et al. 2018], r-Manifold-MixUp [Verma et al. 2019], r-CutMix [Yun et al. 2019] and r-ReLabel [Yun et al. 2021]) and adversarial robustness (r-Adv-Robust [Salman et al. 2020]) models.Use of web data. Models pretrained using additional web data with noisy labels are colorcoded in green. This includes student-teacher models d-Semi-Sup[START_REF] Yalniz | Billion-scale semi-supervised learning for image classification[END_REF]] and d-Semi-Weakly-Sup[START_REF] Yalniz | Billion-scale semi-supervised learning for image classification[END_REF], which are first pretrained on YFCC-100M[START_REF] Thomee | YFCC100M: The new data in multimedia research[END_REF]] (100x the size of IN-1K) and IG-1B[START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF]] (1000x) and then finetuned on IN-1K. We also consider cross-modal d-CLIP[Radford et al. 2021a] pretrained on WebImageText (400x) with textual annotations, and noise tolerant tag prediction model d-MoPro pretrained on WebVision-V1[START_REF] Li | Webvision database: Visual learning and understanding from web data[END_REF]] (2x). As it is not clear if YFCC-100M, IG-1B, WebImageText or WebVision-V1 contain images of the unseen concepts we selected in the levels, models in this category are not directly comparable.

  ] (S = 299), a-DeiT-B-distilled [Touvron et al. 2021] (S = 384), a-EfficientNet-B1 [Tan and Le 2019] (S = 240) and a-EfficientNet-B4 [Tan and Le 2019] (S = 380).

  Fig. 3.4(b)-(e) present performance relative to the baseline ResNet50 across the 4 model categories. Our main observations are as follows.

Figure 3 . 4 :

 34 Figure 3.4: Linear classification on ImageNet-CoG. Top-1 accuracies for all the 31 models listed in Tab. 3.2 after training logistic regression classifiers on IN-1K and each level L 1/2/3/4/5 . (a) Absolute Top-1 accuracy on all levels. (b)-(e) accuracy relative to the baseline ResNet50 for all the models, split across the four model categories presented in Sec. 3.4.1.

TopFigure 3 . 5 :

 35 Figure 3.5: Few-shot linear classification on ImageNet-CoG. Top-1 accuracies for a subset of the models listed in Tab. 3.2 after training logistic regression classifiers on L 1 , L 3 , L 5 using N = {2, 4, 8, 16, 32, 64, 128} training samples per concept. Performance when using all the samples is also shown for reference. (a)-(c): Absolute Top-1 accuracy. (d)-(f) accuracy relative to the baseline ResNet50. The complete set of results for all the 31 models and levels is in the supplementary material.

Figure 3 . 6 :

 36 Figure 3.6: Comparison of training linear classifiers on pre-extracted features vs. finetuning backbones on each level. Y-axis shows the Top-1 accuracies obtained relative to the accuracy of the fine-tuned models.

Figure 3 . 7 :

 37 Figure3.7: Semantic similarities of the concepts captured by (i) Lin similarity[START_REF] Lin | An information-theoretic definition of similarity[END_REF]] on WordNet graph[START_REF] Miller | WordNet: A lexical database for English[END_REF]] and (ii) cosine similarity of word2vec embeddings[START_REF] Yamada | Wikipedia2vec: An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[END_REF] extracted from textual descriptions of concepts, vs. visual similarities encoded by ResNet50, on IN-1K and generalization levels L 1/2/3/4/5 of ImageNet-CoG. We report the performance of linear logistic regression classifiers trained on features extracted from the global average pooling layer of ResNet50. The orange line shows results obtained on 1000 random unseen concepts (line represents the mean accuracy obtained over 15 random splits).

  Figure 3.8: Illustration of the label noise in ImageNet-CoG.

  Supervised learning using multi-crop and a projector. Transfer learning with a frozen model.

Figure 4 . 1 :

 41 Figure 4.1: Our proposed supervised learning setup borrows multi-crop [Caron et al. 2020] and projectors [Chen et al. 2020a] from SSL to train on IN-1K (top). The projector g is discarded after training, and the ResNet backbone f is used as a feature extractor in combination with a linear classifier trained for each task, e.g. for texture classification on DTD [Cimpoi et al. 2014] (bottom).

  Figure 4.2: Architecture of the projector g f .

  Figure 4.3: The supervised models we train using our proposed setup. I g and I g,l represent only global crops or both global and local crops.

. 3 )

 3 Note that we provide per dataset results in Tab. D.1 of the Appendix. Sec. 4.4.4 present additional evaluations on IN-1K-Sketch[START_REF] Wang | Learning robust global representations by penalizing local predictive power[END_REF]], IN-1K-v2[START_REF] Recht | Do ImageNet classifiers generalize to ImageNet?[END_REF] IN-1K-R[Hendrycks et al. 2021a], IN-1K-A[Hendrycks et al. 2021b] and two long-tail datasets: i-Naturalist 2018 and 2019[START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]].

Figure 4 . 4 :

 44 Figure 4.4: Impact of the number of local crops (M l ) on the performance on IN-1K (left) and transfer datasets (right) when varying the number of hidden layers (L) in the projector. The number of global crops (M g ) is 1 in all cases.

Figure 4 . 5 :

 45 Figure 4.5: Average intra-class `2-distance between samples from the same class (top) and sparsity as the percentage of feature dimensions close to zero (bottom), on IN-1K and averaged over transfer datasets. Gray and Orange arrows denote changes due to adding multicrop and projectors, respectively. Best viewed in color.

Figure 4

 4 Figure 4.6: (a) Average coding length per sample [Yu et al. 2020] over all transfer datasets. (b) Singular values across dimensions, averaged over the transfer datasets. We show the first 1000 dimensions (of 2048) for clarity. (c) Average similarity between class weight gradients w c L CE during training. (d) Change in class weights W and prototypes U at every iteration across all classes (see text for details) for models trained using Equation (4.1) and Equation (4.2), respectively. Best viewed in color.

Figure 4 . 7 :

 47 Figure 4.7: Comparison on the training task vs transfer task performance for ResNet50. We report IN-1K (Top-1 accuracy) and transfer performance (log odds) averaged over 13 datasets (5ImageNet-CoG levels, Aircraft, Cars196, DTD, EuroSAT, Flowers, Pets, Food101 and SUN397) for a large number of our models trained with the supervised training setup presented in Sec. 4.3. Models on the convex hull are denoted by stars. We compare to the following state-of-the-art (SotA) models: Supervised: RSB-A1[START_REF] Wightman | ResNet strikes back: An improved training procedure in timm[END_REF], SupCon[START_REF] Khosla | Supervised contrastive learning[END_REF], SL-MLP[Wang et al. 2022a] and LOOK[START_REF] Feng | Rethinking supervised pre-training for better downstream transferring[END_REF]] with multi-crop; self-supervised: DINO[START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF]; semi-supervised: PAWS[START_REF] Assran | Semi-supervised learning of visual features by nonparametrically predicting view assignments with support samples[END_REF]].

( a )

 a Training a model on synthetic images. (b) Testing the frozen model on real images.

Figure 5 . 1 :

 51 Figure 5.1: Overview of our experimental protocol. During training, the model has access to synthetic images generated by the Stable Diffusion model, provided with a set of prompts per class. During evaluation, real images are classified by the frozen model.

Fig. 5 .Figure 5

 55 Figure 5.2: ImageNet-1K vs ImageNet-1K-SD. The blue polygon shows the performance of a model trained on ImageNet-1K. The red polygon depicts the performance of one trained on ImageNet-1K-SD, i.e., only on synthetic data generated with Stable Diffusion [Rombach et al. 2022] using the class names of ImageNet-1K. We report Top-5 accuracy for ImageNet test sets, and average Top-1 for transfer tasks.

  e., learning an image classification model when the training set of real images is replaced by an image generator, and training proceeds using only synthetically generated images. We then briefly describe Stable Diffusion [Rombach et al. 2022], i.e., the text-to-image generation model we use in this work. Task formulation. Our goal is to learn an image classification model given a set of class names C and a text-to-image generator G. This task is a variant of image classification where the fixed-size image training set is replaced by an image generator. The model we aim to learn consists of an encoder x = f q (I) that maps an image I into a vector representation x 2 R d , and a classifier o = W x that outputs a class prediction distribution o 2 R |C| over |C| classes c i 2 C, where W 2 R |C|⇥d , i = {1, .., |C|} and |.| denotes the cardinality of a set.

Fig. 5 . 0 Figure 5 . 3 :

 5053 Figure 5.3: Qualitative results. (A) Real ImageNet images. (B)-(G) Synthetic ImageNet-SD images generated with different prompts. Despite high photo-realistic quality, some issues are noticeable for (B) such as semantic errors e.g., for the class "papillon", lack of diversity, and distribution shifts e.g., towards cartoons for the "pirate" class. Such issues are addressed with more expressive prompts in (C)-(D).

Figure 5 . 4 :

 54 Figure 5.4: Scaling the number of training images. Average Top-1 accuracy on 10 transfer datasets (from Tab. 5.3) when training on ImageNet-100 using (1/10)-th to 50⇥ images (relative to the real dataset size).

Figure 5 . 5 :

 55 Figure 5.5: Impact of the guidance scale parameter and number of diffusion steps.

  Figure 5.6: Feature analyses for models. We perform these analyses on top of features ex-
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  Figure E.2: Qualitative results for class "Shih-Tzu" to illustrate domain and diversity issues. Guidance scale is equal to 7.5.

( a )

 a Figure E.4: Qualitative results for classes "Rock crab" (left) and "Fiddler crab" (right), to illustrate issues around fine-grained and domain specific semantics. Guidance scale is equal to 7.5.

  Figure E.8: (cont.) Visualization of the 100 ImageNet-100 classes for the three different datasets: ImageNet-100-Val (real) and two ImageNet-100-SD datasets created with prompts p c = "c" and p c = "c, h c inside b".
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  IN-1K dataset [Russakovsky et al. 2015] as the set of our seen concepts. IN-1K is a subset of the IN-21K[START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]]. It consists of 1.28M images and has been used as the standard benchmark for evaluating novel computer vision architectures[START_REF] He | Deep residual learning for image recognition[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF], Touvron et al. 2021], regularization techniques[START_REF] Shen | MEAL V2: Boosting vanilla ResNet-50 to 80%+ top-1 accuracy on ImageNet without tricks[END_REF][START_REF] Verma | Manifold mixup: Better representations by interpolating hidden states[END_REF][START_REF] Yun | CutMix: Regularization strategy to train strong classifiers with localizable features[END_REF][START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF] as well as self-and semi-supervised models[START_REF] Caron | Unsupervised learning of visual features by contrasting cluster assignments[END_REF], Chen et al. 2020b[START_REF] Grill | Bootstrap your own latent: A new approach to self-supervised learning[END_REF], He et al. 2020[START_REF] Yalniz | Billion-scale semi-supervised learning for image classification[END_REF]].

Table 3 .

 3 2: List of models evaluated on ImageNet-CoG.

Table 3 .

 3 3: Unique architectures used by the models we evaluate on ImageNet-CoG, and the dimensionality of the feature vectors we extract from these architectures.them by 255 (so that each pixel value is in[0, 1]), then applying mean and standard deviation normalization to the pixels, i.e., subtracting[0.485, 0.456, 0.406] from the RGB channels and diving them by[0.229, 0.224, 0.225], respectively. Note that for d-CLIP[Radford et al. 2021a] we use mean[0.481, 0.457, 0.408] and std[0.268, 0.261, 0.275], and do not apply normalization for s-SimCLR-v2[Chen et al. 2020b].
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Having discussed the evaluation aspect of visual representation learning in the previous chapter, we now turn our attention to the modeling aspect, and focus on developing models to learn representations "useful" for transfer tasks. Building on some of the observations made in the previous chapter, we propose an improved setup for training supervised models that learn transferable representations on ImageNet-1K. The work presented in this chapter 1 was accepted at the International Conference on Learning Representations (ICLR) in 2023

[Sariyildiz et al. 2023b

].

Table 4 .

 4 1: Impact of the projector size on performance, via the number of hidden layers L (left) and hidden units d h (right). The default configuration: L=1, d h =2048, d b =256 and with`2-normalization of the input (highlighted rows). We use M g = 1 and M l = 8 ("Base+Mc").

		IN1K Transfer	d h	IN1K Transfer
	Base	76.6	0.10	512 80.0	0.82
	Base+Mc 79.7	0.25	1024 80.0	1.06
	L = 1	79.8	1.15	2048 79.8	1.15
	L = 2	78.6	1.31	4096 79.8	1.20
	L = 3	77.5	1.33	8192 79.4	1.22

Table 4 .

 4 2: Results on IN-1K concepts. For each model, we report results on the IN-1K "Val" set (the x-axis of Fig. 4.7), as well as on the test sets of IN-1K-v2 [Recht et al. 2019], IN-1K-sketch [Wang et al. 2019], IN-1K-R [Hendrycks et al. 2021a] and IN-1K-A [Hendrycks et al. 2021b], using in all cases the encoder and the linear classifier trained on the original IN-1K training set. IN-1K-v2 numbers are averaged over the three test sets (matched-frequency, threshold-0.7 and top-images).

	Model	Val	v2 Sketch	R	A
	DINO	74.8 69.9	19.8	31.9 4.9
	PAWS	76.4 71.6	24.2	37.1 5.2
	SupCon 78.8 74.3	30.9	41.3 9.7
	RSB-A1 79.8 75.4	27.9	38.9 7.9
	t-ReX	78.0 73.6	26.8	39.1 7.0
	t-ReX* 80.2 76.2	29.1	41.8 11.7

Table 4 .

 4 3: Transfer results on long-tail classification. For each model, we train linear classifiers on the iNaturalist 2018 and iNaturalist 2019 datasets[START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]] with class-imbalanced data, following the LogReg protocol from ImageNet-CoG.[START_REF] Van Horn | The iNaturalist species classification and detection dataset[END_REF]. For these evaluations, we follow the LogReg protocol from the ImageNet-CoG benchmark[START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF]. Results are reported in Tab. 4.3. We see that our t-ReX and t-ReX* models still outperform RSB-A1 and DINO respectively, despite a challenging long-tail class distribution.

	Model	iNaturalist 2018 iNaturalist 2019
	DINO	41.9	51.4
	PAWS	40.8	49.8
	RSB-A1	34.9	43.2
	t-ReX	45.8	54.2
	t-ReX*	36.0	44.2
	and iNaturalist 2019 [		

Table 5 .

 5 1: Impact of data-augmentation for models trained on real and synthetic datasets.

Table 5 .

 5 IN-R and IN-A only covera subset of the ImageNet-100 classes and we compute the reported metrics only on the common classes. Brick-colored scores denote performance higher than the models trained on real images. Italics denote results from models trained using real images. generate images on demand. We therefore generated datasets which are 10⇥, 20⇥ and 50⇥ larger than ImageNet-100, using prompt p c = "c, d c " (the best variant in Tab. 5.2, row 8) for the classes of ImageNet-100. From the last three rows of the top section in Tab. 5.2, we see that this brings gains of up to 8.5% in Top-1 accuracy on ImageNet-100, with our best model reaching 73.3% Top-1 (and 91.7% Top-5) accuracy. The gains are even more prominent for transfer learning, as we discuss in Sec.5.5.3. 

	Results on ImageNet-1K. In the bottom part of Tab. 5.2 we report results on the very
	challenging 1000-way classification task of ImageNet-1K (IN-Val) that contains many fine-
	grained categories of mushrooms, birds and dogs [Huh et al. 2016]. We see that the model
	trained on our synthetic ImageNet-1K-SD dataset using the prompt composed of the class
	name and description (p c = "c, d c ") and using guidance scale 2 reaches 42.9% Top-1 and
	70.3% Top-5 accuracy on the ImageNet-1K validation set. Although significantly lower than
	the results achieved by a model trained on the 1.3 million real images of ImageNet, we see

2: Results on ImageNet datasets. Top-1 and Top-5 accuracy on several ImageNet datasets, namely IN-Val (the ILSVRC-2012 validation set [Russakovsky et al. 2015]), IN-v2 [Recht et al. 2019], IN-Sketch [Wang et al. 2019], IN-R [Hendrycks et al. 2021a] and IN-A [Hendrycks et al. 2021b]. In all cases, testing is done on real images. For the prompts, h c (d c ) refers to the hypernym (definition) of class c provided by WordNet [Miller 1995], while b to scene classes from Places 365 [Zhou et al. 2017]. ⇤

  These datasets contain out-of-distribution images and their goal is to test resilience to domain shifts and adversarial images. Results are reported in the right-most columns of Tab. 5.2.For ImageNet-100, we see from the top part of the table that a number of ImageNet-100-SD models outperform the model trained on real images for ImageNet-Sketch and ImageNet-R. The best Imagenet-100-SD model, i.e. the one trained with 50⇥ images, further rivals the baseline on ImageNet-A.

] (IN-Sketch), ImageNet-R [Hendrycks et al. 2021a] (IN-R) and ImageNet-A [Hendrycks et al. 2021b] (IN-A).

Table 5 .

 5 4: Top-1 accuracy on the ImageNet-CoG benchmark [Sariyildiz et al. 2021].

	We report performance for the best ImageNet-1K-SD model from Tab. 5.3 (with guid-
	ance scale equal to 2), and compare it to the state-of-the-art supervised and self-supervised
	models trained on the real images of ImageNet-1K, RSB-A1 [Wightman et al. 2021] and
	DINO [Caron et al. 2021], respectively.	
	Top-1 Accuracy	55 60			Real images
					Synthetic images
		50	0.1⇥	1⇥	10⇥ 20⇥ 50⇥
				Number of Images

Table B .

 B 5: Top-1 accuracies obtained by linear classifiers on L 4 .

  Table view corresponding to the 5 th row in Fig. B.1. Output Resolution. The resolution that was used during training of the Stable Diffusion models was (512 ⇥ 512).2 We notice that if one deviates from this training resolution, generated results get worse. We chose to simply switch the aspect ratio to the one for the average ImageNet image and keep the long dimension to 512.

https://europe.naverlabs.com/cog-benchmark

Note that the recently released Winter 2021 ImageNet version shares the same set of images for all the unseen concepts selected in our benchmark with the Fall 2011 one. We refer the reader to Appendix A for further discussion on both the recent Winter 2021 release as well as a newer, blurred version of 

In order to get superior-subordinate relationships between the concepts, we use WordNet-3.0 (the version ImageNet[START_REF] Deng | ImageNet: A largescale hierarchical image database[END_REF]] is built on) implementation in the NLTK library[START_REF] Bird | Natural language processing with Python[END_REF]].

http://www.image-net.org/archive/words.txt

http://www.image-net.org/archive/gloss.txt

April 2018 version of the English Wikipedia dump.

Note that, given that the percentage of discarded concepts is very small (less than 3%, as 146 concepts are discarded from the 5146 eligible ones), this choice has minimal impact anyway.

https://europe.naverlabs.com/trex

Although in their evaluation[START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF],Zhai et al. [2019a] train linear classifiers with data augmentation or fine-tune the encoder while training classifiers, we found that such protocols make a proper hyperparameter validation computationally prohibitive. We instead follow the linear evaluation protocol from[START_REF] Kornblith | Do better ImageNet models transfer better?[END_REF][START_REF] Bulent Sariyildiz | Concept generalization in visual representation learning[END_REF].

Project page: https://europe.naverlabs.com/imagenet-sd

https://huggingface.co/CompVis/stable-diffusion-v1-4

https://github.com/naver/trex/tree/master/transfer

https://image-net.org/update-mar-11-2021.php

https://image-net.org/download-images.php

https://github.com/CompVis/stable-diffusion

Acknowledgments

Appendix A

ImageNet-CoG with the ImageNet 2021 release

The ImageNet team recently released a new version of IN-21K as well as the ILSVRC-2012 dataset (IN-1K) 1 . Both datasets are available for download directly from the official website 2 .

Dataset Split # Images IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]] train 1281167 IN-1K [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] val 50000 IN-1K-blurred [START_REF] Yang | A study of face obfuscation in ImageNet[END_REF] train 1281066 IN-1K-blurred [START_REF] Yang | A study of face obfuscation in ImageNet[END_REF] val 49997 This follows recent studies from the ImageNet team, which identify potentially problematic concepts [Yang et al. 2020]. Such concepts were removed from the latest ImageNet version, including all the concepts under the "Person" sub-tree in WordNet.

With this modified version we successfully verified that: i) all the concepts of ImageNet-CoG are available in the new release, and ii) the images for all the 5000 concepts of ImageNet-CoG are identical in both releases. Consequently, all the results in our work can also be reproduced using the Winter 2021 version of IN-21K.

Blurred version of IN-1K.

To protect the privacy of people present in some of the IN-1K images, the ImageNet team released a new version of this dataset, which we refer to as IN-1K-blurred [START_REF] Yang | A study of face obfuscation in ImageNet[END_REF]. In this version, the faces of people are blurred in the images. The statistics of these two versions are compared in Tab. A.1 in Appendix.
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Web data Regularization We observe that the scores drop on average 0.91%, which is comparable to the 0.68% drop observed on popular models [START_REF] Yang | A study of face obfuscation in ImageNet[END_REF]].

Appendix B

ImageNet-CoG extended results

In Sec. 

.1: Few-shot linear classification on ImageNet-CoG. Top-1 accuracy for each method using logistic regression classifiers. We train them on pre-extracted features for the concepts in IN-1K and our generalization levels (L 1/2/3/4/5 ), with a few training samples per concept, i.e., N = {1, 2, 4, 8, 16, 32, 64, 128}. "All", the performance when all the samples are used, is also shown for reference.

Top-1 accuracy relative to ResNet50 

Extended qualitative results for synthetic ImageNet clones

In this section, we provide additional qualitative results for the synthetic ImageNet clones generated in Chapter 5. First we show random images for all ImageNet-100 classes from three datasets: ImageNet-100-Val (real images) and two ImageNet-100-SD datasets generated by the prompts p c = "c" and p c = "c, h c inside b". Then we discuss in more detail several types of issues that we observed in these synthetic images. Unless otherwise stated, the guidance scale used is 7.5.

Qualitative results for all ImageNet-100 classes. In Fig. E.5, we show a few random images from each of the 100 classes in ImageNet-100, for three datasets: i) The real images from ImageNet-100, ii) synthetic images generated by a simple prompt, which is only composed of the name of the class, and iii) synthetic images generated with guidance scale equal to 2.0 and a prompt that enforces thoses classes to appear in diverse backgrounds to improve the diversity of generated images. From this exhaustive list, even with a few images per class, one can observe a number of issues around the semantics, diversity and domain of those images.

Showcasing domain and diversity issues. We also show extended results for three classes in order to illustrate issues related to the domain and diversity. 

E.1 Semantic errors

From closely inspecting the generated images we can see that there exists two classes for which the prompt p c = "c" produces images of the wrong semantics: For the classes "papillon" and "wing", we see the generated images in the middle column of Fig. E.5 to be wrong due to polysemy associated with the class names. What is more, although not fully visible from the small set of images we show here, we saw that semantics are partially wrong for at least the classes "green mamba", "walking stick" and "iron". For "green mamba", although the synset refers to the snake species, there is a car model of the same name appearing in some of the generated images instead. For "walking stick", the synset refers to the insect, while a subset of the generated images also contained walking sticks that are not insects.

As we discuss in the Chapter 5, appending the hypernym or definition of each synset seems to fix polysemy issues in many cases, including the ones mentioned above. However, we can see at least two cases where adding the hypernym in the prompt leads to worse results.

According to WordNet Miller [1995], the hypernym for "shih-tzu" is "toy dog" something that results in dog-shaped toys in many of the generated images (see also Fig. E.3). Another example is the class "boathouse", where appending the parent class "shed" leads to sheds that are not inside a body of water.

E.2 NSFW content

Another issue that was not very prominent, but still visible, even in the case of generic animal and object categories present in ImageNet-100, was the fact that some of the generated images contained NSFW (Not Suitable For Work) content in the form of nudity. The opensource code for Stable Diffusion comes with a highly selective safety module, that discards generated images that might contain NSFW content. 1 We disabled this module when generating images for the ImageNet synsets as we wanted to study the model as-is first, and to understand the problem.

We thoroughly inspected all classes of ImageNet-100 and observed minor NSFW issues with two of the classes: 1) The basic prompt for the class "sarong" led to a few images that had partial nudity. This effect was exaggerated when adding the description of the concept that reads "a loose skirt consisting of brightly colored fabric wrapped around the body; worn by both women and men in the South Pacific". It seems that words like "body" biases the image generation process towards more NSFW content. 2) Prompts for the class "ski mask" in combination with certain backgrounds from the Places dataset [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF] also resulted in nudity. Overall, we want to emphasize that the Stable Diffusion models we tested were all highly susceptible to generate such content.

E.3 Misrepresentation of biodiversity

The degree of misrepresentation of biodiversity in the images generated from Stable Diffusion is very high. We partially showcase the issue in Fig. E.4 where we show many generated images for two fine-grained classes, i.e., "rock crab" and "fiddler crab".

1 https://huggingface.co/CompVis/stable-diffusion-v1-4?text=Safety E.4. Semantic issues arising with backgrounds 123 "Rock crab" is defined in WordNet as "crab of eastern coast of North America", while the "fiddler crab" as a "burrowing crab of American coastal regions having one claw much enlarged in the male". The fact that the male fiddler crab has one claw much larger is a prominent theme when it comes to the real ImageNet-100 images shown on the right side of Fig. E.4a.

It does not take an expert ecologist to see that, although most of the generated images capture the coarser class "crab", the visual differences between the two sets of images, e.g., in Fig. E.4b, are not focusing on the single enlarged claw for the fiddler crab case. What is more, the exhibited intra-class visual diversity, i.e., crabs of different shapes and colors, seems to exceed a single species of crab. This is just a single example, but from our inspection of many other fine-grained animal and fungi classes, we could see that this is not an isolated issue. On the contrary, it seems prominent across many fine-grained domains. One exception for the subset of ImageNet classes we delved into is dog breeds, possibly due to the sheer volume of dog images on the internet. It is however fair to say that the generated images highly misrepresent biodiversity.

It is worth noting that, as Luccioni and Rolnick discuss in their recent work [START_REF] Sasha | Bugs in the data: How ImageNet misrepresents biodiversity[END_REF], the ImageNet dataset itself contains a number of issues when it comes to the annotations of fine-grained classes of wild animals. They found that "many of the classes are ill-defined or overlapping, and that 12% of the images are incorrectly labeled, with some classes having > 90% of images incorrect". Although we did not conduct a similar experiment using experts, we expect similar statistics to be much higher for the images generated by Stable Diffusion.

E.4 Semantic issues arising with backgrounds

A common issue we observe when adding diverse backgrounds to class images is that a subset of the generated images do not really contain the object, and merely reflect the background scene. See for example the images in the first and last row, on the last column of What is really interesting is that in some cases the resulting images, although not containing an instance from the class, retains some of the object's shape or texture in the background.

See for example a pedestal-looking table in Fig. E.4c for class "pedestal", a pirate themed bedroom for class "pirate", green shirts for "green mamba", or the red-ish produce stand for "red fox".

E.5 Issues with diversity

We observe issues with diversity for most of the classes when only the class name is used as the prompt, e.g., in the middle set of results in Fig 

E.6 Non-natural images

Even from the very small random sample of generated images shown in the figures of this work, we see that there is a non-negligible percentage of the generated images that are nonnatural. They can be illustrations, graphics images or even paintings. This is not necessarily undesirable and it can lead to models with higher robustness to related domain changes.

E.7 Varying the stable diffusion parameters

We identify two important parameters for Stable Diffusion, which affect the visual quality of generated images: The guidance scale and the number of diffusion steps. In Fig.