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Un résumé des résultats obtenus dans cette thèse est présenté dans le chapitre , où nous discutons également de quelques pistes possibles pour poursuivre et approfondir davantage la recherche abordée dans ce travail.

Titre : Sonder la nouvelle physique au-delà du modèle standard : axions, saveur et neutrinos Mots clés : axions, saveur, neutrinos, au-delà du modèle standard Résumé :Dans cette thèse de doctorat, plusieurs aspects phénoménologiques liés à l'origine des masses des neutrinos, à la physique des saveurs, ainsi qu'au problème de la violation de la symétrie CP par l'interaction forte, ont été étudiés.

Dans le chapitre , après une introduction au Modèle Standard (MS), nous développons plus en détail les observations expérimentales et les questions théoriques présentes exigeant la présence d'une physique au-delà du Modèle Standard de la physique des particules.

Le chapitre se concentre sur l'origine des masses des neutrinos et leur mélange en considérant l'hypothèse de l'existence de leptons neutres lourds (HNLs). Une attention particulière est accordée aux recherches expérimentales des HNLs, notamment aux contraintes sur leurs masses et leurs couplages déduites des collisions proton-proton étudiées au LHC. Plus précisément, à travers plusieurs processus recherchés au LHC (ATLAS, CMS et LHCb), nous soulignons que les bornes provenant des recherches au collisionneur sont souvent basées sur des hypothèses trop simplistes. Dans cette partie de la thèse, nous montrons comment reformuler ces contraintes a n de couvrir des modèles réalistes avec plusieurs HNLs et des couplages plus généraux au secteur actif.

Le chapitre est consacré à la physique de la saveur comme moyen d'explorer la physique au-delà du Modèle Standard par des expériences à basse énergie. En particulier les désintégrations rares du meson B, notamment B ! K (⇤) ⌫⌫, sont étudiées et analysées en détail. Pour ces canaux nous apportons des prédictions théoriques les plus abouties et que nous avons enrichi par une analyse générique de l'impact de la nouvelle physique sur les largeurs des désintégrations. Le point problématique de cette analyse reste le traitement des incertitudes liées à la chromodynamique quantique non-perturbative. Pour les prendre en compte, nous montrons qu'une mesure des largeurs partielles permettraient de tester la dépendance fonctionnelle des facteurs de forme en énergie de transfert (q 2 ).

Dans le chapitre , les conséquences phénoménologiques de la solution au problème de brisure de la symétrie CP par l'interaction forte sont étudiées en termes de particules appelées axions. Un accent particulier est mis sur l'hypothèse selon laquelle les axions pourraient être les particules (candidats) de la matière noire chaude (HDM). Une nouvelle détermination phénoménologique de la section e cace de di usion axion-pion dans l'Univers jeune est fournie dans cette thèse. Cette détermination utilise les données de di usion ⇡⇡ ! ⇡⇡ et les amplitudes calculées dans la théorie des perturbations chirales, dont l'applicabilité est étendue dans la région des résonances par une méthode d'unitarisation. Le résultat ainsi obtenu permet d'obtenir une borne sur la masse de l'axion, également connue sous le nom de borne HDM. son B, notably B ! K (⇤) ⌫⌫, are studied and analyzed in detail. For these channels we provide the most updated theoretical predictions, which we have enriched with an analysis of the impact of new physics on the decay widths. The problematic point of this analysis remains the treatment of uncertainties related to nonperturbative QCD. We show that a measure of the partial widths would make it possible to test the functional dependence of the form factors on the momentum transfer, q 2 . In chapter , some phenomenological consequences of the solution to the strong CP problem are studied in terms of particles called axions. Particular emphasis is placed on the hypothesis that axions could form a population of hot dark matter (HDM). A new phenomenological determination of the axion-pion scattering rate in the early Universe is provided in this thesis. This determination uses the ⇡⇡ ! ⇡⇡ scattering data and the amplitudes calculated in chiral perturbation theory, the applicability of which is extended in the resonance region by a unitarization method named inverse amplitude method. The result thus obtained makes it possible to obtain a bound on the mass of the axion, also known as the HDM bound.

A summary of the results obtained in this thesis is presented in chapter , where we also discuss some possible avenues to continue and further deepen the research addressed in this work.
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i Chapter 1

Introduction

The Standard Model (SM) of particle physics is a renormalizable field theory that has been remarkably successful in describing the behavior of elementary particles and their interactions, down to distances of at least 10 ≠16 cm. Its framework has been validated by numerous experimental observations, and the consistency between the theory and experiments has indirectly confirmed the ideas of renormalization and radiative corrections, leading to predictions that have been confirmed over time, e.g., the existence of the charm and the top quarks, the Higgs boson, etc. However, despite its successes, the SM is widely acknowledged to be an E ective Field Theory (EFT), representing a lowenergy limit of a more fundamental theory that operates at higher energy scales yet to be explored. This is motivated, on the one hand, by the fact that several observations cannot be accommodated by the SM. These include (i) the observed baryon asymmetry in the Universe (n B ∫ n B ), requiring specific conditions [START_REF] Sakharov | Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe[END_REF] that cannot be met in the SM [START_REF] Gavela | Standard model CP violation and baryon asymmetry[END_REF][START_REF] Gavela | Standard model CP violation and baryon asymmetry. Part 2: Finite temperature[END_REF][START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF][START_REF] Rummukainen | The Universality class of the electroweak theory[END_REF], (ii) the presence of Dark Matter (DM) [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF][START_REF] Bartelmann | Weak gravitational lensing[END_REF][START_REF] Mateo | Dwarf galaxies of the Local Group[END_REF], demanding for some form of weakly interacting matter most likely associated with new elementary particles, and, remarkably, (iii) the mechanism to generate the observed small neutrino masses [START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF][START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF], the latter being a smoking gun for the presence of physics beyond the Standard Model (BSM). On the other hand, the SM faces some theoretical puzzles, related to our understanding of the relative sizes of some parameters. For instance, the masses of fermions in the SM Lagrangian cannot be predicted by the theory, and their values are obtained from the comparison of theoretical expressions with the experimentally measured observables. They appear in a hierarchical pattern, covering more than 12 orders of magnitude if we include the neutrino masses. It is one of the central goals of modern physics to understand the dynamics behind such flavor structure. Furthermore, the mass of the Higgs boson is quadratically sensitive to ≠in principle large≠ New Physics (NP) scale through loop diagrams, so that a fine-tuned cancellation between the bare value and the correction is needed in order to obtain the physical Higgs mass. This issue is known as the hierarchy problem. In addition, the strong interactions allow for an O(1) CP violating coupling, ◊QCD , which instead is found from experimental data to be extremely small or even zero, giving rise to the strong CP problem.

Although these puzzles do not represent an inconsistency of the SM per se, they point towards a non-trivial UV completion of the SM at a higher-energy scale. Various theoretical frameworks have been proposed to address these challenges, separately or simultaneously, o ering predictions that involve the existence of new particles and interactions, some of which can be probed experimentally.

In this thesis, we assume a bottom-up approach and tackle the phenomenological aspects related to some of the aforementioned problems.

In Chapter 2, we briefly introduce the SM and elaborate more on a few unsolved problems that will be addressed in the main part of the thesis, namely, the neutrino masses, the flavor puzzle, and the strong-CP problem.

We then investigate the origin of neutrino masses and examine their mixing by invoking the hypothesis of the existence of heavy neutral leptons (HNL). Experimental searches of HNLs depend on their masses and mixings with the active neutrinos. Exclusion regions in the plane of mass and mixings are derived relying mostly on two simplifying assumptions: (i) the existence of only one HNL, which (ii) mixes dominantly with only one lepton flavor. In Chapter 3, we discuss how to reinterpret the limits from collider searches relaxing these assumptions, and provide a simple recipe to recast such bounds to more realistic models with at least two HNLs (as required by neutrino oscillation data), that couple in the most general way to the active sector.

In Chapter 4, we focus on flavor physics as a window to physics BSM via low-energy experiments. Specifically, we study the rare B-meson decays B ae K (ú) ‹‹. We calculate the updated branching ratios for these decay modes and provide predictions for future measurements. Additionally, we analyze the constraints on NP that can be inferred from the measurement of B(B ae K (ú) ‹‹). One of the main challenges in this analysis is dealing with uncertainties associated with hadronic e ects. Consequently, we also investigate the potential of these measurements to probe the dependence of the relevant form factors on the momentum transfer, q 2 . Lastly, we delve into the nature of axions as potential hot dark matter (HDM) candidates. In addition to their role in solving the strong CP problem, axions with masses m a & 0.1 eV remain in thermal equilibrium with the QCD thermal bath until temperatures below the QCD crossover. Their interactions with pions generate a thermal population of relativistic axions behaving as HDM. In Chapter 5, we present a phenomenological determination of the axion-pion scattering rate, utilizing the available fifi scattering data. Furthermore, we derive an upper bound on the axion mass based on cosmological observations, known as the HDM bound.

A summary of the results obtained in this thesis is presented in Chapter 6, where we also discuss some possible avenues to continue and further deepen the research addressed in this work.

Chapter 2

The Standard Model

Known knowns

Based on the formalism of Quantum Field Theory (QFT), the Standard Model (SM) describes the elementary particles and their interactions based on the principle of local gauge symmetry, with the following symmetry group1 

G SM = SU(3) c ◊ SU(2) L ◊ U (1) Y , ( 2.1) 
where SU [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF] c is the gauge group of Quantum Chromodynamics (QCD), SU [START_REF] Abada | Collider searches for heavy neutral leptons: beyond simplified scenarios[END_REF] L is associated to the weak interactions, and U (1) Y to the hypercharge. This specifies the gauge (bosonic) sector of the SM. Matter particles are introduced as chiral fermions, quarks and leptons, as

Q i L (3, 2, 1/6) = Q a u i L d i L R b , u i R (3, 1, 2/3), d i R (3, 1, ≠1/3), L i L (1, 2, ≠1/2) = Q a ‹ i L e i L R
b , e i R (1, 1, ≠1) , (2.2) where i = 1, 2, 3 enumerates three families, while the quantum numbers refer to each subgroup of G SM defined in Eq. (2.1). The Higgs boson, transforming as H(1, 2, 1/2), is the only scalar in the theory. Notice that in the SM there are no right-handed neutrinos, ‹ i R (1, 1, 0), that would be singlets under G SM . The full SM Lagrangian, L SM , can be expressed in terms of its key ingredients as:

L SM = L gauge + L fermion + L Higgs + L Yukawa .
(2.

3)

The gauge part comes with its three Yang-Mills pieces,

L gauge = ≠ 1 4 G a µ‹ G aµ‹ ≠ 1 4 W a µ‹ W aµ‹ ≠ 1 4 B µ‹ B µ‹ , ( 2.4) 
where G a µ‹ (x) © G a µ‹ (a = 1, . . . , 8), W a µ‹ (x) © W a µ‹ (a = 1, 2, 3), and B µ‹ are the field strength tensors associated to SU(3) c , SU(2) L , and U (1) Y , respectively. They read

G a µ‹ = ˆµG a ‹ ≠ ˆ‹G a µ + g s f abc G b µ G c ‹ , (2.5 
)

W a µ‹ = ˆµW a ‹ ≠ ˆ‹W a µ + g' abc W b µ W c ‹ , (2.6 
)

B µ‹ = ˆµB ‹ ≠ ˆ‹B µ , ( 2.7) 
where g s and g are the strong and weak couplings, while f abc and ' abc are the structure constants of the SU(3) c and SU(2) L groups.

The fermionic part of the Lagrangian, L fermion , accounts for the fermion kinetic terms and gauge interactions, namely,

L fermion = 3 ÿ i=1 1 Qi L i" µ D µ Q i L + ūi R i" µ D µ u i R + di R i" µ D µ d i R + Li L i" µ D µ L i L + ēi R i" µ D µ e i R 2 , ( 2.8) 
where the covariant derivative is

D µ = ˆµ ≠ ig s G a µ T a ≠ igW a µ • a ≠ ig Y B µ Y , (2.9) 
g s , g, and g Y are the three gauge couplings, while T a = ⁄ a /2 are the Gellmann matrices, • a = ‡ a /2 are the Pauli matrices, and Y is the hypercharge. Gauge symmetry forbids fermionic mass terms, neither the Dirac m D ÂL Â R nor the Majorana one m M Âc L Â L , since they would break SU(2) L gauge invariance.

The Yukawa Lagrangian, L Yukawa , describes the gauge invariant interactions between the fermions and the Higgs field

L Yukawa = ≠ 3 ÿ i=1 1 Y ij u Qi L Ê H † u j R + Y ij d Qi L Hd j R + Y ij e Li L He j R + h.c. 2 , ( 2.10) 
where, besides the Higgs doublet H, one conveniently introduces Ê H = i ‡ 2 H † . The Y f Yukawa couplings are general 3 ◊ 3 matrices. They are parameters of the SM, leading to fermion masses after the spontaneous symmetry breaking of the SM gauge group. They also bring the CP-violation as they are complex in general, and, finally, they are responsible for flavor mixing in an otherwise flavor-blind Lagrangian. In the absence of such couplings, the SM Lagrangian would in fact be diagonal in the flavor of each fermion, Q i L , u i R , d i R , L i L , e i R , i = 1, 2, 3, featuring a large global symmetry U (3) 5 . The generators of such a global group, that is broken by L Yukawa , act non-trivially on the Yukawa matrices and can thus be used to remove unphysical parameters. Without loss of generality, we can use bi-unitary transformations as follows,

Y f ae Ŷ f = V f L Y f (V f R ) † , f = u, d, e , (2.11) 
to fix the basis where Ŷ f = diag(y f 1 , y f 2 , y f 3 ) is real and diagonal for all fermion species f = u, d, e. In total, the number of initial parameters minus the number of broken generators gives the number of physical parameters. For quarks, the global symmetry U (3) 3 is broken to baryon number B, U (3

) Q L ◊ U (3) u R ◊ U (3) d R ae U (1)
B , and out of the 36 initial Yukawa parameters we are left with 10 parameters, 6 of which are the quark masses. A simultaneous diagonalization of the up and down Yukawas rotates the fields into the mass basis, which di ers from the interaction basis if V u L " = V d L , as it is the case. Since weak interactions couple up and down left quarks, in the mass basis the charged current interactions will take the form

L W = ≠ g Ô 2 ÿ i,j 1 ūi L " µ V ij CKM d j L W + µ + h.c. 2 , ( 2.12) 
with

W + µ = 1 Ô 2 1 W 1 µ ≠ iW 2 µ 2
, and

V CKM = V u L V d †
L is the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix, which is unitary V CKM V † CKM = 1, and can be parametrized in terms of 4 real parameters: 3 mixing angles and 1 CP-violating phase.

In the lepton sector, the fact that there are no right-handed neutrinos allows one to redefine the upper and lower component of L with the same unitary matrix. As a result, the leptonic weak interactions of the SM are flavor diagonal, and the flavor of each generation is individually conserved, U (3) L L ◊ U (3) e R ae U (1) e ◊ U (1) µ ◊ U (1) • . Therefore, from the initial 18 parameters, we are left with 3 physical charged lepton masses.

The Lagrangian L Higgs contains the kinetic term of the Higgs and the scalar potential,

L Higgs = (D µ H) † (D µ H) + µ 2 |H| 2 ≠ ⁄|H| 4 , ( 2.13) 
with µ 2 and ⁄ free parameters. The quartic coupling must be positive for the scalar potential to be bounded from below. In order to implement the Brout-Englert-Higgs mechanism [START_REF] Higgs | Broken symmetries, massless particles and gauge fields[END_REF][START_REF] Englert | Broken symmetry and the mass of gauge vector mesons[END_REF][START_REF] Higgs | Spontaneous symmetry breakdown without massless bosons[END_REF][START_REF] Higgs | Broken symmetries and the masses of gauge bosons[END_REF], we must assume µ 2 > 0, so that the minimum of the potential is found at

ÈH † HÍ = v 2 2 , ( 2.14) 
with v = µ/ Ô ⁄ being the vacuum expectation value (vev) of the Higgs field. We can then write

H = 1 Ô 2 Q a 0 h + v R b ae ÈHÍ = 1 Ô 2 Q a 0 v R b , ( 2.15) 
which will give rise to the spontaneous symmetry breaking (SSB) pattern SU(2) L ◊ U (1) Y ae U (1) EM . The unbroken generator, namely the generator of the subgroup leaving the vacuum state invariant, is Q = • 3 + Y , and it is identified with the electric charge. Since we are dealing with local symmetries, the three would-be Goldstone bosons related to the SSB become the helicity zero component of the massless spin-1 gauge bosons associated with the broken symmetries, which therefore get a mass. Inserting the vev in the kinetic term of Eq. (2.13), we identify the gauge bosons mass eigenstates

W + µ = 1 Ô 2 1 W 1 µ ≠ iW 2 µ 2 , ( 2.16 
)

Z µ = W 3 µ cos ◊ W ≠ B µ sin ◊ W , ( 2.17) 
with masses, respectively,

m W = gv 2 , m Z = Ò g 2 + g 2 Y v 2 = gv 2 cos ◊ W .
(2.18)

The mixing angle ◊ W , named Weinberg angle [START_REF] Weinberg | Mixing angle in renormalizable theories of weak and electromagnetic interactions[END_REF], is defined as tan ◊ W = g Y /g. The orthogonal combination to the Z µ field is the photon, the massless gauge boson associated with U (1) EM

A µ = W 3 µ sin ◊ W + B µ cos ◊ W , ( 2.19) 
whose coupling, the electric charge, reads e = g sin ◊ W = g Y cos ◊ W . After the SSB, the same Higgs vev will provide the fermion masses in the Yukawa Lagrangian. In the basis of mass eigenstates of Eq. (2.11), we have

m f = y f v Ô 2 .
(2.20)

Finally, the electroweak vev has been measured via the muon lifetime, which is proportional to the Fermi constant [START_REF] Workman | Review of Particle Physics[END_REF] 

G F = 1 Ô 2v 2 = Ô 2 8 g 2 m 2 W = 1.1663788(6) ◊ 10 ≠5 GeV ≠2 , ( 2.21) 
leading to v ƒ 246 GeV. The physical Higgs boson mass m h = Ô 2µ 2 = 125.25 [START_REF] Higgs | Broken symmetries, massless particles and gauge fields[END_REF] GeV [START_REF] Workman | Review of Particle Physics[END_REF] fixes the quartic coupling ⁄ = µ 2 /v 2 ƒ 0.13, while the gauge bosons masses are found to be m W = 80.377 [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF] GeV and m Z = 91.1876 [START_REF] Weinberg | Mixing angle in renormalizable theories of weak and electromagnetic interactions[END_REF] GeV [START_REF] Workman | Review of Particle Physics[END_REF]. The predictions of the SM have undergone extensive verification through various experimental facilities, such as LEP, Tevatron, and the LHC, a rming its remarkable phenomenological success (see e.g. [START_REF] Workman | Review of Particle Physics[END_REF][START_REF] Erler | Electroweak Precision Tests of the Standard Model after the Discovery of the Higgs Boson[END_REF] for recent reviews).

Known unknowns

Even though the SM has been experimentally tested to a great precision, many pieces of the puzzle are still missing and waiting to be uncovered. The current and upcoming generation of experiments will hopefully make the leap toward the very high energy scales. As mentioned in the introduction, in this thesis we will focus on phenomenological aspects related to some of the most compelling problems that attract the e orts of both the theory and experimental communities, namely, the neutrino masses, the flavor structure of the SM, and the strong CP problem. In the following sections we will briefly introduce the main motivations behind these topics.

Neutrino Masses

In the SM, it is now well established, especially after the breakthrough discovery of the Higgs boson in 2012 [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF] Chatrchyan | Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC[END_REF], that the mass spectrum of the fermions, vector bosons, and the scalar Higgs boson is generated by the spontaneous electroweak symmetry breaking, that triggers the mass generation via the Higgs mechanism described in Sect. 2.1. However, and unlike the other SM fermions, the lack of right-handed neutrino fields in the SM prevents them from interacting with the Higgs field (at the renormalzable level) and, therefore, from obtaining mass via the Higgs mechanism, which requires fermions of both chiralities. On the other hand, neutrinos are known to undergo flavor oscillations, in which a neutrino of one flavor (‹ e , ‹ µ , or ‹ • ) can change into a neutrino of another flavor as it travels through space. At present, neutrino oscillations have been observed in solar [START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF][START_REF] Cleveland | Measurement of the solar electron neutrino flux with the Homestake chlorine detector[END_REF][START_REF] Abdurashitov | Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle[END_REF][START_REF] Hampel | GALLEX solar neutrino observations: Results for GALLEX IV[END_REF][START_REF] Altmann | Complete results for five years of GNO solar neutrino observations[END_REF][START_REF] Hirata | Observation of a small atmospheric muon-neutrino / electron-neutrino ratio in Kamiokande[END_REF][START_REF] Fukuda | Solar neutrino data covering solar cycle 22[END_REF][START_REF] Fukuda | Measurement of the solar neutrino energy spectrum using neutrino electron scattering[END_REF][START_REF] Aharmim | Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory[END_REF][START_REF] Gando | 7 Be Solar Neutrino Measurement with KamLAND[END_REF][START_REF] Agostini | Improved measurement of 8 B solar neutrinos with 1.5kt y of Borexino exposure[END_REF], atmospheric [START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF][START_REF] Hirata | Experimental Study of the Atmospheric Neutrino Flux[END_REF][START_REF] Li | Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande[END_REF][START_REF] Lisi | Probing possible decoherence e ects in atmospheric neutrino oscillations[END_REF][START_REF] Aartsen | Measurement of Atmospheric Tau Neutrino Appearance with IceCube DeepCore[END_REF][START_REF] Albert | Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data[END_REF], reactor and accelerator experiments [START_REF] Adamson | First measurement of electron neutrino appearance in NOvA[END_REF][START_REF] Adamson | Constraints on Oscillation Parameters from ‹ e Appearance and ‹ µ Disappearance in NOvA[END_REF][START_REF] Acero | First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA[END_REF][START_REF] Abe | Observation of Electron Neutrino Appearance in a Muon Neutrino Beam[END_REF][START_REF] Abe | Improved constraints on neutrino mixing from the T2K experiment with 3.13 ◊ 10 21 protons on target[END_REF][START_REF] Agafonova | Final Results of the OPERA Experiment on ‹ • Appearance in the CNGS Neutrino Beam[END_REF][START_REF] Aguilar | Evidence for neutrino oscillations from the observation of ‹e appearance in a ‹µ beam[END_REF][START_REF] Aguilar-Arevalo | Updated MiniBooNE neutrino oscillation results with increased data and new background studies[END_REF]. In these experiments, the aim is to measure the appearance/disappearance probability taking place over a given distance L between the source and detector, for neutrinos of specific energy E. The transition probability has a typical oscillation length given by

L osc ij = 4fiE | m 2 ij | , ( 2.22) 
with m 2 ij = m 2 i ≠ m 2 j the squared mass di erences of di erent mass eigenstates. The observation of oscillations in both solar and atmospheric experiments implies that at least two active neutrinos are massive. Each category of experiment exploits di erent neutrino sources and baselines. This has allowed, so far, to scrutinize the parameter space from

| m 2 ij | ƒ O(10 ≠10 ) eV 2 in solar experiments (very long baseline) to | m 2 ij | ƒ O(1)
eV 2 in reactor experiments (short baseline). The general picture is consistent with mass-induced oscillations among three distinct flavors. The minimal scenario can thus be parametrized by a 3 ◊ 3 lepton mixing matrix, going under the name Pontecorvo ≠ Maki ≠ Nakagawa ≠ Sakata (PMNS) matrix, analogous to the CKM for the quarks but with two extra phases due to the possible Majorana nature of neutrinos [START_REF] Pontecorvo | Mesonium and anti-mesonium[END_REF][START_REF] Maki | Remarks on the unified model of elementary particles[END_REF]:

U PMNS = R 23 (◊ 23 ) • R 13 (◊ 13 , ") • R 12 (◊ 12 ) • P = Q c c c a 1 0 0 0 c 23 s 23 0 ≠s 23 c 23 R d d d b Q c c c a c 13 0 s 13 e ≠i" 0 1 0 ≠s 13 e i" 0 c 13 R d d d b Q c c c a c 12 s 12 0 ≠s 12 c 12 0 0 0 1 R d d d b Q c c c a e i-1 0 0 0 e i-2 0 0 0 1 R d d d b , ( 2.23) 
where R ij (◊ ij ) represents the rotation matrix for the i, j flavors with an angle ◊ ij , c ij = cos(◊ ij ),

s ij = sin(◊ ij )
, " is the Dirac CP-violating phase, and P is the phase matrix containing the Majorana CP-violating phases -1 and -2 . Notice that this parametrization assumes that only 3 neutrinos undergo mixing and oscillations. However, this is not compatible with the hypothesis of the existence of sterile neutrinos, that can mix with the active ones. Nevertheless, given the strong bounds at the per mille level on non-unitarity of the U matrix [START_REF] Antusch | Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities[END_REF][START_REF] Escrihuela | On the description of nonunitary neutrino mixing[END_REF], the 3 ◊ 3 paradigm is still robust. In the normal ordering case, m 1 < m 2 < m 3 , the measured mixing angles are [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF] ◊ 12 = (33.4 

m 2 sol = m 2 2 ≠ m 2 1 = (7.42 +0.21 ≠0.20 ) ◊ 10 ≠5 eV 2 , m 2 atm = |m 2 3 ≠ m 2 1 | = (2.514 +0.028 ≠0.027 ) ◊ 10 ≠3 eV 2 , (2.25)
while the CP phase is " ƒ (195 +51 ≠25 ) ¶ [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF]. Notice that the experiments LSND [START_REF] Aguilar | Evidence for neutrino oscillations from the observation of ‹e appearance in a ‹µ beam[END_REF], MiniBooNE [START_REF] Aguilar-Arevalo | Updated MiniBooNE neutrino oscillation results with increased data and new background studies[END_REF], and Gallium [START_REF] Hampel | GALLEX solar neutrino observations: Results for GALLEX IV[END_REF][START_REF] Altmann | Complete results for five years of GNO solar neutrino observations[END_REF] have reported evidence pointing toward the existence of additional neutrino states with masses at the eV scale.

Since oscillations experiments are only sensitive to squared mass di erences and mixing angles, the exact value of neutrino masses and their hierarchies are still unknown. The only modelindependent information on the neutrino masses can be extracted from the spectrum of beta decays, as suggested by Fermi in 1933 [START_REF] Fermi | An attempt of a theory of beta radiation. 1[END_REF]. So far, the upper limit has been set to m ‹e < 0.8 eV (90% C.L.) [START_REF] Aker | Direct neutrino-mass measurement with sub-electronvolt sensitivity[END_REF]. Overall, experiments and cosmological observations have revealed not only that some neutrino masses are nonzero, but also that neutrino masses are tiny, suggesting that the mechanism of ‹ mass generation could be di erent from the other SM fermions. This general picture indicates that the SM requires modifications, and many explanations have been proposed.

The absence of direct evidence for such NP can be circumvented by adopting an EFT approach to study the e ects of the unknown UV completion on low-energy observables. Remarkably, considering the tower of e ective non-renormalizable operators that can be built out of the SM fields, at dimension d = 5 there exists a unique Lorentz and gauge-invariant operator, the Weinberg operator [START_REF] Weinberg | Baryon-and lepton-nonconserving processes[END_REF],

L 5 = C ij 2 (L c i Ê H ú )( Ê H † L j ) + h.c. , (2.26)
with the UV scale and C ij the Wilson coe cient associated to the flavors i, j = {e, µ, • }. This operator violates lepton number by two units, and after the SSB it generates a Majorana mass term for left-handed neutrinos In all NP scenarios that explain Majorana neutrino masses, once the heavy degrees of freedom are integrated out, the first operator in the 1/ expansion is the same Weinberg operator in Eq. (2.27). The Weinberg operator can be generated in the UV theory by the tree-level exchange of heavy fields, as shown in Fig. 2.1. The propagating particles can either be fermion singlets (see-saw type-I) [START_REF] Minkowski | µ ae e" at a Rate of One Out of 10 9 Muon Decays?[END_REF][START_REF] Yanagida | Horizontal gauge symmetry and masses of neutrinos[END_REF][START_REF] Glashow | The Future of Elementary Particle Physics[END_REF][START_REF] Gell-Mann | Complex Spinors and Unified Theories[END_REF][START_REF] Mohapatra | Neutrino Mass and Spontaneous Parity Nonconservation[END_REF][START_REF] Gell-Mann | Complex Spinors and Unified Theories[END_REF][START_REF] Schechter | Neutrino Masses in SU(2) x U(1) Theories[END_REF][START_REF] Schechter | Neutrino Decay and Spontaneous Violation of Lepton Number[END_REF], scalar triplets (see-saw type-II) [START_REF] Schechter | Neutrino Masses in SU(2) x U(1) Theories[END_REF][START_REF] Barbieri | Neutrino Masses in Grand Unified Theories[END_REF][START_REF] Cheng | Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions[END_REF][START_REF] Magg | Neutrino Mass Problem and Gauge Hierarchy[END_REF][START_REF] Lazarides | Proton Lifetime and Fermion Masses in an SO(10) Model[END_REF][START_REF] Mohapatra | Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation[END_REF] or fermion triplets (see-saw type-III) [START_REF] Ma | Pathways to naturally small neutrino masses[END_REF][START_REF] Foot | Seesaw Neutrino Masses Induced by a Triplet of Leptons[END_REF], and the mass generation mechanism takes the name of see-saw, since the light neutrino masses are inversely proportional to the masses of the heavy fields. In particular, for type-I and III models, the masses of the active neutrinos scale as

L M = C ij v 2 2 ‹ c L i ‹ L j + h.c. . (2.27) ⌫ h ⌫ h N R Y † N Y N (a) ⌫ h ⌫ h ⌃ R Y † ⌃ Y ⌃ (b) h h ⌫ ⌫ (c)
m ‹ ≥ v 2 Y 2 F M F , ( 2.28) 
Y F being the Yukawa couplings to the Higgs field and M F the heavy fermion masses, F = N R , R (see Fig. 2.1). In order to accommodate sub-eV neutrino masses [START_REF] Aker | First direct neutrino-mass measurement with sub-eV sensitivity[END_REF], Eq. (D.14) requires either a high lepton number violating (LNV) scale

M F ƒ O(10 14 ) GeV with Y F ƒ O(1), or tiny Yukawa couplings Y F ƒ O(10 ≠6 ) if realized at low scale M F ƒ O(1)
TeV. Either way, the phenomenology of this model is extremely suppressed, which makes it di cult to probe experimentally. An alternative to have a low-scale realization with large Yukawa couplings is to consider additional sterile fermions and an approximate symmetry. This is the case of the inverse see-saw (ISS) [START_REF] Wyler | Massless Neutrinos in Left-Right Symmetric Models[END_REF][START_REF] Mohapatra | Neutrino Mass and Baryon Number Nonconservation in Superstring Models[END_REF][START_REF] Gonzalez-Garcia | Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models[END_REF] or the linear see-saw (LSS) [START_REF] Barr | A Di erent seesaw formula for neutrino masses[END_REF][START_REF] Malinsky | Novel supersymmetric SO(10) seesaw mechanism[END_REF] realizations, where the B ≠ L global symmetry2 is used to protect active neutrino masses, linking their smallness to small parameters that quantify the breaking of the B ≠ L symmetry. Another option is radiative models [START_REF] Zee | A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation[END_REF][START_REF] Zee | Quantum Numbers of Majorana Neutrino Masses[END_REF][START_REF] Babu | Model of 'Calculable' Majorana Neutrino Masses[END_REF][START_REF] Perez | On the Origin of Neutrino Masses[END_REF], in which neutrinos are massless at the tree level, and their masses are dynamically generated via loops. This provides a natural explanation for the smallness of the observed active neutrino masses, and, in the scotogenic scenarios, viable candidates for particle dark matter [START_REF] Ma | Verifiable radiative seesaw mechanism of neutrino mass and dark matter[END_REF]. The suppression coming from the loop factors allows NP to be at the TeV scale, rendering such scenarios testable at future colliders. 3Sterile neutrinos will be the topic of Chapter 3, where we will discuss the main bounds on their masses and mixings coming from collider searches in the mass range from a few to hundreds of GeV. We will show how to recast such bounds in realistic setups with more than one HNL, and with general mixings patterns to the active flavors. In doing so, we will remain agnostic about the mechanism of neutrino mass generation, considering the most generic case with masses and mixings as free parameters.

Flavor structure

As we have seen in the previous sections, the number of SM parameters in the Yukawa sector amounts to 22 in the case of Majorana neutrinos and to 20 in the Dirac case. Regarding the leptonic sector, by now, the main unknowns remain the scale of neutrino masses and their ordering, and the two possible leptonic Majorana phases. Given the large number of parameters in the flavor sector, the explanation of their values and hierarchies represents an interesting and puzzling question that can shed light on the fundamental theory from which these parameters originate.

The general picture in the quark mixings shows a strongly hierarchical structure:

|V ud | ¥ 1 |V us | ¥ ⁄ |V cb | ¥ ⁄ 2 |V ub | ¥ ⁄ 3 , ( 2.29) 
with ⁄ = 0.225(1) the sine of the Cabibbo angle [START_REF] Cabibbo | Unitary symmetry and leptonic decays[END_REF]. This is reflected in the Wolfenstein parametrization [START_REF] Wolfenstein | Parametrization of the kobayashi-maskawa matrix[END_REF] of the CKM matrix

V CKM = Q c c c a 1 ≠ ⁄ 2 2 ⁄ A⁄ 3 (fl ≠ i÷) ≠⁄ 1 ≠ ⁄ 2 2 A⁄ 2 A⁄ 3 (1 ≠ fl ≠ i÷) ≠A⁄ 2 1 R d d d b + O(⁄ 4 ) , (2.30)
in which ⁄ is the expansion parameter. From the fit of a wealth of experimental data we have: A = 0.826 ± 0.012, fl = 0.152 ± 0.014, and ÷ = 0.357 ± 0.010 [START_REF] Bona | The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Delta m(s) and BR(B -> tau nu(tau))[END_REF].

In the leptonic sector, the mixings show a nonhierarchical structure and rather large angles, ◊ 12 ƒ 33.4 ¶ , ◊ 23 ƒ 49.1 ¶ , ◊ 13 ƒ 8.5 ¶ [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF] in contrast to the largest CKM angle, the Cabibbo angle, ◊ CKM 12 ƒ 13 ¶ . Quark and lepton masses are shown in Fig. 2.2, along with the possible normal (m 1 < m 2 < m 3 ) or inverted (m 3 < m 1 < m 2 ) ordering scenarios in the neutrino sector. The lack of explanation for this apparently complicated pattern is referred to as the flavor problem, and it may find its origin in an underlying mechanism responsible for the flavor breaking mechanism BSM. Moreover, this NP may also be linked to the extra sources of CP violation, besides the CKM and PMNS phases, required to explain the baryon asymmetry of the Universe.

•• • • • • • • • • • • 10 -9 10 -6 0.001 1 1000 10 6
Figure 2.2: Masses of the SM fermions, including the neutrino mass ranges for the normal (NO) and inverted (IO) ordering [START_REF] Workman | Review of Particle Physics[END_REF]. Light quark masses are evaluated at the scale µ = 2 GeV in the MS scheme.

The flavor problem could also ultimately be linked to the hierarchy problem, arising from the fact that the square mass parameter of the Higgs receives corrections proportional to the square of the NP scale. To avoid fine-tuning between the bare Higgs mass and its counter term, such NP scale must be reasonably low. However, strong bounds (see e.g. [START_REF]Cms summary plot[END_REF]) on flavor universal NP push the related scale above 10 TeV, worsening the hierarchy problem. A possible way out is the so-called Minimal Flavor Violation (MFV) paradigm [START_REF] D'ambrosio | Minimal flavor violation: An E ective field theory approach[END_REF][START_REF] Isidori | Minimal Flavour Violation and Beyond[END_REF], where SM Yukawa couplings are the only source of flavor violation beyond the SM. In this way, the SM flavor structure is reproduced in the UV completion, allowing to lower the NP scale and stabilizing the Higgs sector. At the same time, this corresponds to neglecting the flavor problem and pushing its origin to higher scales.

Another possibility, tackling at the same time both the hierarchy and the flavor problems [START_REF] Dvali | Families as neighbors in extra dimension[END_REF][START_REF] Panico | Flavor hierarchies from dynamical scales[END_REF][START_REF] Bordone | A three-site gauge model for flavor hierarchies and flavor anomalies[END_REF][START_REF] Allwicher | Stability of the Higgs Sector in a Flavor-Inspired Multi-Scale Model[END_REF][START_REF] Davighi | Non-universal gauge interactions addressing the inescapable link between Higgs and Flavour[END_REF], is to allow for multiple UV completions at several scales with flavor non-universal interactions, in order to obtain a TeV scale NP mostly coupled to third-generation fermions for which the bounds are weaker, and heavier NP mostly coupled to first and second-generation fermions.

Ultimately, the solutions to the hierarchy and flavor problems remain an open question. In this context, experimental indications obtained from indirect and/or direct searches play a crucial role in guiding the theoretical endeavors.

In Chapter 4, we will study a powerful indirect probe of flavor violating NP, the process b ae s‹‹. On the light of the recent lattice determinations of the B ae K form-factor by the HPQCD collaboration [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF], and the upcoming measurement at Belle-II, we will revisit the SM prediction of the branching ratios Br(B ae K (ú) ‹‹), and explore the opportunities to test SM and BSM physics.

Strong CP puzzle

Before the rise of the SM, parity was believed to be a conserved symmetry of any interactions. However, the well-known ◊ ≠ • puzzle (charged Kaons decaying in two/three pions) pushed Lee and Yang [96] (1956) to analyze the role of discrete symmetries on the weak interactions, concluding that "parity conservation is so far only an extrapolated hypothesis unsupported by experimental evidence". This suggestion was taken up by Wu, that observed one year later a large asymmetry in the emission direction of electrons coming from Co 60 --decay [START_REF] Wu | Experimental Test of Parity Conservation in Beta Decay[END_REF], providing, therefore, clear evidence of parity violation in the weak interactions. At present, we know that electromagnetic interactions are the only one in which C, P, and T are individually conserved, while the weak interactions violate individually C, P, T and therefore CP, PT, and CT. As shown in Appendix C, CP-Violation is allowed in strong interactions via the term

L ◊ QCD = ◊ g 2 s 32fi 2 G a µ‹  G µ‹ a , ( 2.31) 
where  G a µ‹ = 1/2' µ‹fl ‡ G µ‹ a and ◊ is a free parameter. Borrowing Gell-Mann's version of the Totalitarian Principle 4 , we would naively expect a non-zero measurement of a CP-Violating process mediated by such Lagrangian term. However, the bounds on the neutron electric dipole moment (nEDM) [START_REF] Abel | Measurement of the permanent electric dipole moment of the neutron[END_REF] have shown that CP is conserved to a remarkable degree of accuracy by the strong interaction, giving birth to the strong CP puzzle.

Di erent solutions have been proposed. The simplest one is related to the quark masses. The physical e ect of the ◊ parameter vanishes if any of the light quark is massless (see Appendix C.3). This indeed provides a new chiral symmetry, which allows to make the CP violating term unphysical. However, this possibility has been ruled out by the results of lattice QCD [START_REF] Tanabashi | Review of Particle Physics[END_REF], which give m MS u (2 GeV) = 2.32 [START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF] MeV, thus clearly di erent from zero. Another option is to assume that P [START_REF] Beg | Strong P, T Noninvariances in a Superweak Theory[END_REF][START_REF] Mohapatra | Natural Suppression of Strong p and t Noninvariance[END_REF] or CP [START_REF] Georgi | A Model of Soft CP Violation[END_REF][START_REF] Nelson | Naturally Weak CP Violation[END_REF][START_REF] Barr | Solving the Strong CP Problem Without the Peccei-Quinn Symmetry[END_REF] are symmetries of the UV theory, thus setting ◊ = 0. However, since weak interactions exhibit both P and CP violation, those symmetries must be spontaneously broken. This generates a finite and calculable weak contribution to ◊. The main issue of those models (see e.g. [START_REF] Dine | Challenges for the Nelson-Barr Mechanism[END_REF][START_REF] Vecchi | Spontaneous CP violation and the strong CP problem[END_REF] for reviews in the case of CP) is to generate the observed CP violation in the weak sector, and to keep at the same time the induced ◊ below the experimental bound "◊ . 10 ≠10 .

Finally, one could also deny the existence of a problem, claiming that the strong CP problem is actually an artifact derived from an incorrect treatment of the boundary conditions leading to the appearance of the parameter ◊. Proposed solutions involve a change in the topology of spacetime [START_REF] Khlebnikov | Brane-worlds and theta-vacua[END_REF][START_REF] Chaichian | Extra dimensions and the strong CP problem[END_REF], but leave however no solution for the U (1) A problem, described in Appendix C.2.

The most appealing solution to the Strong CP problem is the Peccei-Quinn (PQ) mechanism [START_REF] Peccei | Constraints Imposed by CP Conservation in the Presence of Instantons[END_REF][START_REF] Peccei | CP Conservation in the Presence of Instantons[END_REF], which besides being crucially di erent from the solutions outlined above, leaves behind a whole new branch of interesting phenomenological consequences.

The PQ mechanism dynamically washes out CP violation from strong interactions and delivers a low-energy remnant in the form of a pseudo-Goldstone boson, known as the axion [START_REF] Weinberg | A New Light Boson?[END_REF][START_REF] Wilczek | Problem of Strong P and T Invariance in the Presence of Instantons[END_REF]. It was soon realized that for a certain range of axion masses in the sub-eV range, a non-thermal population of super-weakly coupled axions also provides an excellent Dark Matter candidate [START_REF] Preskill | Cosmology of the Invisible Axion[END_REF][START_REF] Dine | The Not So Harmless Axion[END_REF][START_REF] Abbott | A Cosmological Bound on the Invisible Axion[END_REF]. Additionally, a thermal population of relativistic axions [START_REF] Turner | Thermal Production of Not SO Invisible Axions in the Early Universe[END_REF], behaving as dark radiation or hot dark matter, might further contribute to the energy density of the universe.

It is the purpose of Chapter 5 to revisit the bounds on the axion mass based on such thermal population, the so called hot dark matter bound.

Chapter 3

The quest for heavy neutral leptons

As mentioned earlier in Sect. 2.2.1, the existence of new neutral leptons is a key aspect in various extensions of the Standard Model, aimed at accommodating the observed neutrino data. For instance, at least two ‹ R are required to accommodate light neutrino masses via the type-I seesaw mechanism [START_REF] Minkowski | µ ae e" at a Rate of One Out of 10 9 Muon Decays?[END_REF][START_REF] Yanagida | Horizontal gauge symmetry and masses of neutrinos[END_REF][START_REF] Glashow | The Future of Elementary Particle Physics[END_REF][START_REF] Gell-Mann | Complex Spinors and Unified Theories[END_REF][START_REF] Mohapatra | Neutrino Mass and Spontaneous Parity Nonconservation[END_REF]. Moreover, in several variants of the type-I seesaw realized at low scale, other sterile fermions ‹ S are considered, as in the case for the Inverse [START_REF] Schechter | Neutrino Masses in SU(2) x U(1) Theories[END_REF][START_REF] Mohapatra | Neutrino Mass and Baryon Number Nonconservation in Superstring Models[END_REF][START_REF] Gronau | Extending Limits on Neutral Heavy Leptons[END_REF] and Linear [START_REF] Barr | A Di erent seesaw formula for neutrino masses[END_REF][START_REF] Malinsky | Novel supersymmetric SO(10) seesaw mechanism[END_REF] seesaw mechanisms; these variants allow having large neutrino Yukawa couplings with a seesaw scale potentially within collider reach.

In this chapter, we examine the presence of sterile fermions within a mass range spanning from a few GeV to several hundreds of GeV, which we will refer to as Heavy Neutral Leptons (HNLs). The crucial parameters governing any process involving HNLs are their mass M N and their mixings with the active neutrino sector, denoted as U -N , where -= e, µ, • . Traditionally, exclusion regions in the (M N , |U -N | 2 ) parameter space are determined under the assumption of the existence of a single HNL that predominantly mixes with a single lepton flavor. However, these simplified benchmarks overlook several phenomenologically intriguing aspects of more realistic models, where the presence of at least two HNLs (as demanded by neutrino data) is required, and these HNLs can couple to the active sector through a generic combination of active-sterile mixings (U eN , U µN , U • N ). In this chapter, we will provide a simple method to recast the bounds to models incorporating multiple HNLs and with arbitrary combinations of active-sterile mixings, and we will show that the constraints obtained within the commonly considered simplified scenarios can di er significantly when applied to such realistic models.

Motivations to go beyond simplified scenarios

Due to the presence of HNLs, the charged and neutral weak currents are modified, with the leptonic mixing matrix encoding now not only the PMNS mixing matrix [START_REF] Pontecorvo | Mesonium and anti-mesonium[END_REF][START_REF] Maki | Remarks on the unified model of elementary particles[END_REF], but also the active-HNL mixings U -N , -= e, µ, • . In particular, the Lagrangian containing the charged current interactions reads

L cc = ≠ g Ô 2 ÿ -=e,µ,• 3+n ÿ i=1 U -i 1 ¯-" µ P L ‹ i 2 W ≠ µ + h.c. (3.1)
with ‹ i indicating the physical neutrino states, including the sterile ones, from 1 to 3+n. The unitary matrix U -i encodes the mixings among the 3 + n neutrinos. For instance, in the simple case with n = 2, U is defined by 10 angles, 6 Dirac phases and 4 Majorana phases. With these modifications, and depending on the mass scale of the HNLs, one expects an impact on numerous observables, allowing to put constraints on the plane (M N , |U -N | 2 ) (see Refs. [START_REF] Atre | The Search for Heavy Majorana Neutrinos[END_REF][START_REF] Abada | E ective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays[END_REF][START_REF] Bolton | Neutrinoless double beta decay versus other probes of heavy sterile neutrinos[END_REF][START_REF] Abdullahi | The Present and Future Status of Heavy Neutral Leptons[END_REF] and references therein).

In this section, we focus on HNL searches at high-energy colliders, mainly at the LHC, due to its current extensive program dedicated to HNL searches (see for instance [START_REF]Feebly-Interacting Particles:FIPs 2020 Workshop Report[END_REF]), and the numerous dedicated works and analyses . With very few exceptions, the large amount of available HNL bounds have been derived relying on the assumption of the existence of a single (usually Majorana) HNL, that mixes with only one lepton flavor. However, the mixing pattern in most of the BSM scenarios involving new neutral leptons is expected to be quite complex, giving rise to many di erent lepton number conserving/violating processes. For this reason, experimental bounds derived under simplified hypotheses (only one HNL which mixes to only one active flavor) are in general over-constraining if directly applied to generic models. Consequently, most of the experimental bounds on HNL need to be recast depending on the BSM scenario under consideration.

The motivation for reinterpreting LHC bounds is a well-established topic, see for instance Ref. [START_REF] Abdallah | Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2[END_REF] and references therein. In the context of HNL searches, Ref. [START_REF] Abada | Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC[END_REF] addressed searches of HNLs with displaced vertices, while Ref. [START_REF] Tastet | Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model[END_REF] focused on HNLs decaying promptly to a trilepton final state. In the latter study, the single-flavor mixing results obtained by ATLAS have been recast to a low-scale seesaw model with a pseudo-degenerate pair of HNLs, which is the most minimal and simple extension of the SM in order to accommodate neutrino oscillation data (the lightest neutrino being massless). Due to the simplicity of this model, the active neutrino masses and mixings determine the flavor pattern of the HNLs [START_REF] Ibarra | Neutrino phenomenology: The Case of two right-handed neutrinos[END_REF][START_REF] Gavela | Minimal Flavour Seesaw Models[END_REF], and it is possible to define benchmark points beyond the single-mixing assumption [START_REF] Drewes | New Benchmark Models for Heavy Neutral Lepton Searches[END_REF]. While being a very interesting scenario, as it is probing the parameter space connected to light neutrino masses, this approach has the drawback of being model dependent. For example, considering other sources of light neutrino masses,1 could spoil the correlation between light and heavy sectors that motivated such scenarios.

For this reason, this thesis will follow a di erent approach, presented in Ref. [START_REF] Abada | Collider searches for heavy neutral leptons: beyond simplified scenarios[END_REF]. In order to discuss how to go beyond the simplest single-flavor mixing scenario, we will work with physical HNL states with mixings and masses as independent parameters, with the motivation of covering every scenario that could be realized in generic BSM models. This idea is actually the most straightforward extension to what is usually assumed at LHC searches. In doing so, we will examine what would be the most relevant quantities to be bounded experimentally in order to reinterpret the results easily.

Motivated by previous studies [START_REF] Das | Same Sign versus Opposite Sign Dileptons as a Probe of Low Scale Seesaw Mechanisms[END_REF][START_REF] Abada | Interference e ects in LNV and LFV semileptonic decays: the Majorana hypothesis[END_REF][START_REF] Najafi | CP violation in rare lepton-number-violating W decays at the LHC[END_REF], we will also explore the case where more than one HNL is present and, in particular, the e ects of interferences arising when at least two HNLs are nearly degenerate or possibly forming a pseudo-Dirac neutrino pair. As we will see, such e ects can lead to significant modifications of the bounds on the active-sterile mixings. This chapter is organized as follows: after having thoroughly discussed the status of high-energy collider searches of HNL in Section 3.2, in Section 3.3 we examine the implications of going beyond the single active-sterile mixing approximation. We discuss how to constraint the model parameter space, i.e. HNL masses and mixings, by reinterpreting experimental data on branching ratios. In Section 3.4, we address the reinterpretation of the bounds when the interference e ects among di erent (nearly degenerate) HNLs are relevant. Final comments are presented in Section 3.5, and further details for deriving the relevant amplitudes are collected in Appendix A.

Collider searches of HNL

Current Status

Heavy Neutral Leptons can be searched for in a wide variety of processes and experiments. HNLs lighter than the GeV scale can lead to signatures in nuclear -decays or in leptonic or semileptonic meson and tau decays, while heavy HNLs above the TeV are better explored indirectly by electroweak (EW) precision observables or rare flavor processes. For a detailed review of all these signals and experimental status, see for instance Refs. [START_REF] Atre | The Search for Heavy Majorana Neutrinos[END_REF][START_REF] Abada | E ective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays[END_REF][START_REF] Bolton | Neutrinoless double beta decay versus other probes of heavy sterile neutrinos[END_REF].

Here, we are interested in the intermediate regime, with HNL masses M N ranging from a few to hundreds of GeVs. Such HNLs could be directly produced at high-energy colliders and their lifetimes are usually short enough to decay within the detectors. As these are weak processes, the SM boson masses obviously define the relevant scale to be compared to. Along this work, we will refer to light HNL as those with masses lighter than the W boson, and as heavy HNL to the ones with M N > M W . Extensive reviews about HNL searches at colliders can be found for instance in Refs. [START_REF] Abdullahi | The Present and Future Status of Heavy Neutral Leptons[END_REF][START_REF] Cai | Lepton Number Violation: Seesaw Models and Their Collider Tests[END_REF]173]. Here we summarize and update the list of experimental analyses, introducing at the same time the most relevant aspects that we will use in our discussion in the next sections.

At a hadronic collider such as the LHC, the main production channel comes from Drell-Yan processes involving W and Z bosons, pp ae W (ú) ae N ¸± and pp ae Z (ú) ae N ‹ , (

where the gauge bosons could be on-or o -shell, depending on whether the HNL is lighter or heavier than the W or Z bosons. Additional production channels could also arise from the Higgs boson decays, which could be motivated in several models providing large neutrino Yukawa couplings. However, Higgs bosons are produced less abundantly than the weak gauge bosons, so they are usually neglected. Moreover the W channel has the additional prompt charged lepton that can help identifying the process and reducing backgrounds, that is why experimental searches focused mostly on this channel. Nevertheless, it is worth mentioning that for very heavy masses, at around the TeV scale, vector boson fusion channels such as W " or W W become important and could even dominate the production of HNLs [START_REF] Dev | New Production Mechanism for Heavy Neutrinos at the LHC[END_REF][START_REF] Alva | Heavy Majorana neutrinos from W " fusion at hadron colliders[END_REF][START_REF] Fuks | Majorana neutrinos in same-sign W ± W ± scattering at the LHC: Breaking the TeV barrier[END_REF]. Indeed, the latest CMS analysis [START_REF] Sirunyan | Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at Ô s = 13 TeV[END_REF] already included the W " channel in order to enhance their sensitivity to high HNL masses.

After being produced, a HNL with masses ranging from few GeV to M W will decay dominantly via o -shell W or Z bosons to a 3-body final state

N ae ¸± -jj , (3.3) N ae ¸± -¸û -‹ -, (3.4) 
N ae ‹ -jj , (3.5)

N ae ‹ -¸± -¸û -, (3.6) 
N ae 3‹ , (

where j refers to any quark jet conserving electric charge. On the other hand, if M N is above the EW scale, the dominant decays will be to on-shell W, Z and to H bosons, i.e. N ae ¸±W û , ‹Z, ‹H. These 2-body decays will be followed by the decay of the heavy bosons, leading at the end to the same final states. Nevertheless, it is important to keep in mind that the kinematics in these two mass regimes will be di erent.

Combining both production and decay channels, we get a full process such as the example shown in Fig. 3.1. Depending on the relative size of M N and M W , either the first or the second W boson will be on-/o -shell, distinguishing the light and heavy HNL regimes. A full catalogue of HNL signatures, combining the di erent production and decay processes, can be found for instance in Ref. [START_REF] Antusch | Sterile neutrino searches at future e ≠ e + , pp, and e ≠ p colliders[END_REF]. Here we focus only on those that have been already searched for at the LHC, which we collect in Table 3.1.

Most of the LHC searches focused on the smoking gun signature for Majorana neutrinos, the same sign (SS) dilepton final state:

pp ae ¸± -N ae ¸± -¸± -+ nj . (3.8)
Here, the lepton pair is accompanied by at least two jets (n Ø 2) (see Fig. 3.1), unless M N is much lighter or much heavier than M W , which leads to boosted particles and collimated jets that are reconstructed as a single one.

Being a Lepton Number Violating (LNV) process, the SS dilepton does not su er from severe SM backgrounds. Unfortunately, current collider searches are sensitive only to relatively large mixings between the HNL and the active neutrinos, too large to explain the masses of the light neutrinos, unless a symmetry protected scenario is invoked. More specifically, this symmetry is an approximated conservation of lepton number [START_REF] Mo At | Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model[END_REF], which also suppresses the expected LNV signal from HNLs (see Refs. [START_REF] Antusch | Resolvable heavy neutrino-antineutrino oscillations at colliders[END_REF][START_REF] Drewes | On lepton number violation in heavy neutrino decays at colliders[END_REF][179]).

From this point of view, searching for opposite sign (OS) dileptons, as done by LHCb [180], is more relevant in order to explore theoretically motivated scenarios. The drawback is the large amount of background from Z ae ¸+¸≠ decays, which reduces the sensitivity. A possible way to reduce backgrounds would be to focus on LFV channels [START_REF] Arganda | Exotic µ• jj events from heavy ISS neutrinos at the LHC[END_REF][START_REF] Antusch | Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders[END_REF]. Yet another alternative consists on the fully leptonic process pp ae ¸± -N ae ¸± -¸± -¸û " ‹ . (3.9) This channel has a trilepton signature, rather clean in a hadronic collider, nevertheless it also has a source of Missing Transverse Energy (MET), which might spoil the complete reconstruction of M N .

The trilepton channel o ers the possibility to search for both LNV and Lepton Number Conserving (LNC) signals, however most of the experimental analyses only focus on the LNV channels to reduce backgrounds from Z ae ¸+¸≠. For example, ATLAS searched [START_REF] Aad | Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector[END_REF] for e ± e ± µ û and µ ± µ ± e û channels 2 , but not for e ± e û µ ± and µ ± µ û e ± . CMS did something similar for light HNLs, although they also included channels with OS but same flavor lepton pairs in the heavy HNL regime, removing only those events with lepton pairs compatible with a decay of a Z boson [START_REF] Sirunyan | Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at Ô s = 13 TeV[END_REF]. As stated before for the SS dilepton channel, searching for HNLs without assuming their Majorana nature will be helpful to probe scenarios compatible with neutrino oscillation data, and thus with potentially suppressed LNV signals.

Finally, it is important to stress that improving the experimental sensitivities to smaller values of the mixings implies exploring HNL with longer lifetimes, which can travel macroscopic distances 2 Having an undetected (anti)neutrino, it is not always possible to define a LNV or LNC process unambiguously.

Assuming the presence of a HNL which mixes only to electrons or to muons, as ATLAS did, the e ± e ± µ û and µ ± µ ± e û channels are originated only from LNV processes. However, this is not anymore true if the HNL mixes to both flavors e and µ [START_REF] Tastet | Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model[END_REF]. before decaying. Such long-lived HNL would avoid the searches mentioned so far (all assumed prompt decaying HNLs), and therefore this kind of topologies need dedicated searches. Recently, both ATLAS [START_REF]Search for heavy neutral leptons in decays of W bosons using a dilepton displaced vertex in Ô s = 13 TeV pp collisions with the ATLAS detector[END_REF] and CMS [START_REF] Tumasyan | Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at Ô s =13 TeV[END_REF] have searched for displaced vertex signatures for light HNLs, setting the strongest constraints for GeV masses up to 20 GeV. This can be seen in Fig. 3.2, where we summarize all the relevant LHC constraints explained in this section.

Channel

Searches at lepton colliders

Despite the fact that our current most powerful high-energy collider is a hadronic one, it is important to stress that lepton colliders are extremely relevant for HNL searches. This is not only due to the impressive sensitivities expected at future leptonic colliders such as the FCCee [190], but also because HNL searches at LEP still provide the most relevant limits for some M N hypotheses.

The great advantage of a leptonic collider is its clean environment, in contrast with the hadronic ones. LEP combined this cleanliness with the huge amount of Z bosons collected to search for HNLs produced in Z ae ‹N . Moreover, both visible and semi-invisible HNL decays were considered, such as monojet final states [START_REF] Abreu | Search for neutral heavy leptons produced in Z decays[END_REF]:

e + e ≠ ae ‹N ae ‹‹q q , (3.10)

with the q q pair clustered as a single jet due to the large HNL boost (e cient for M N . 30 GeV). For heavier masses, M N oe (30, 80) GeV, the signature was composed by two jets with or without a charged lepton. Such a search has the advantage of being sensitive to all flavors, including the 3.1. In the upper (lower) panel a single mixing scenario to electrons (muons) is assumed. Shadowed area cover the area excluded by direct searches at LEP. Notice that below 2 GeV and above (approx.) 100 GeV, bounds from meson decays and from non-unitarity of the lepton mixing [START_REF] Fernandez-Martinez | Global constraints on heavy neutrino mixing[END_REF] dominate, respectively, over current LHC bounds, although we do not show them explicitly for easier reading of the collider results.

mixing to the • lepton, not explored so far by LHC searches. The DELPHI results [START_REF] Abreu | Search for neutral heavy leptons produced in Z decays[END_REF], derived for both long-lived and prompt light HNLs, were not improved (for mixings to e and µ flavors) by LHC until very recently, and still dominate for some mass ranges (cf. Fig. 3.2).

Additionally, the L3 collaboration explored the heavy HNL regime by considering their production via the t-channel W diagram [192]. This process dominates the heavy HNL production at an e + e ≠ collider running above the Z pole, however it is sensitive only to mixings to electrons. The results by L3 still provide the strongest limits for masses between 100 and 200 GeV.

Despite the great e ort in the search for HNLs by both LEP and LHC, it is important to analyze their implications for realistic models introducing and motivating the existence of HNLs. A common feature of all these searches is the assumption of a simplified scenario, most of the time consisting on a single HNL mixing to a single lepton flavor, which is not the standard hypothesis one would use from the theory side. To our knowledge, the only exceptions to these simplifications are provided by the recent ATLAS search for long-lived HNLs, that also considered a minimal but realistic 2HNL scenario [START_REF]Search for heavy neutral leptons in decays of W bosons using a dilepton displaced vertex in Ô s = 13 TeV pp collisions with the ATLAS detector[END_REF], and CMS searches for SS eµ final states [START_REF] Sirunyan | Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at Ô s = 13 TeV[END_REF][START_REF] Khachatryan | Search for heavy Majorana neutrinos in e ± e ± + jets and e ± µ ± + jets events in proton-proton collisions at Ô s = 8 TeV[END_REF], although still neglecting the mixing to taus. In the two following sections, we discuss the importance of going beyond these simplified scenarios to explore more realistic ones.

Beyond the single mixing assumption

As explained in the previous section, most of the LHC analyses are done assuming the existence of just one HNL that mixes to a single flavor, which we referred to as the "single mixing scenario". In this section, we consider deviations from this simplified hypothesis and discuss their implications for reinterpreting the LHC bounds summarized in Fig. 3.2. In particular, we focus on prompt searches, while the implications for long-lived HNL were discussed, for instance, in Ref. [START_REF] Abada | Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC[END_REF].

We start by considering the setup in which the SM is extended by one additional HNL, N , with a generic mixing pattern, and without assuming any specific underlying model or mechanism of light neutrino mass and leptonic mixing generation 3 .In such a framework, the lepton mixing matrix is thus enlarged to a 4 ◊ 4 unitary matrix

U ‹ = Q a U 3◊3 ‹‹ U 3◊1 ‹N U 1◊3 N ‹ U 1◊1 NN R b , ( 3.11) 
so the would-be-PMNS matrix U ‹‹ is no longer unitary, a feature which is indeed used to constrain these models [START_REF] Fernandez-Martinez | Global constraints on heavy neutrino mixing[END_REF], and the fourth column contains the HNL mixings to each flavor:

U T ‹N = 1 U eN , U µN , U • N 2 .
(3.12)

For our discussion, it is interesting to parametrize this column as

U T ‹N = Ô U 2 1 Á e , Á µ , Á • 2 , ( 3.13) 
3 Notice however that reproducing oscillation data in a given framework may introduce relations between the HNL mass and mixings, shrinking the parameter space we will consider.

where U 2 represents the total (squared) mixing of the HNL and the Á -its flavor strengths, with

|Á e | 2 + |Á µ | 2 + |Á • | 2 = 1.
Notice that this framework is precisely the one considered by most LHC analyses, the only di erence being that they simplify it by setting the a priori non-relevant mixings to zero. Here, we are interested in knowing how these bounds need to be modified in a generic mixing pattern scenario, involving the three active flavors.

The reason why we expect the bounds to be modified is twofold. The first reason is due to the importance of the HNL decay width, which depends on every mixing U -N , and which plays a major role in the resonant searches (on-shell produced HNL) we are interested in. This means that the final cross sections will depend on all of the mixings, even on those flavors that are not explicitly present in the process. The second reason is that for some channels, considering generic mixings might open new contributing diagrams, which could modify the distributions and thus the e ciencies of the searches as discussed thoroughly in Ref. [START_REF] Tastet | Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model[END_REF]. Complete expressions for the computation of the total decay width N can be found for instance in Ref. [START_REF] Bondarenko | Phenomenology of GeV-scale Heavy Neutral Leptons[END_REF], however for our purposes we parameterize it as

N = |U eN | 2 e N + |U µN | 2 µ N + |U • N | 2 • N , (3.14) 
where - N stand for the sum of partial decay widths depending on the mixing U -N , after factorizing the |U -N | 2 dependence itself. Thus, - N are independent of the mixings (at leading order) and depend only on the HNL mass. Moreover, when the HNL is heavy enough so that we can neglect charged lepton masses, we get e N ƒ µ N ƒ • N and thus

N Ã ÿ - - - -U -N - - - 2 = U 2 . (3.15)
With this discussion in mind, we can now study how the di erent processes displayed in Table 3.1 depend on the HNL mixings. Let us start focusing on the dilepton channels, which is the most straighforward case as we only need to track the e ect of the HNL total decay width.

In the narrow width approximation, the processes with SS and same flavor dileptons can be factorized in the production of the HNL together with a charged lepton, times its subsequent decay to the same lepton plus jets. The first part depends only on the mixing to the flavor of that lepton, however the second one involves all the mixings due to the HNL decay width. More explicitly, we have

‡(pp ae ¸± -N ae ¸± -¸± -+ nj) à |U -N | 2 BR(N ae ¸± -jj) à |U -N | 4 N , ( 3.16) 
or, when assuming a heavy enough HNL, we have ‡(pp ae ¸± -N ae

¸± -¸± -+ nj) à U 2 |Á -| 4 . (3.17)
We clearly see that the bounds obtained in the single mixing benchmark (Á -= 1) will be relaxed in process (prompt)

Relevant parameters (Majorana HNL) approx.

complete dependence a general flavor scenario with a fixed U 2 , since in general we will have |Á -| 2 AE 1 for each -= e, µ, • . This is actually the expected behavior, as switching on other mixings opens for new decay channels, so not every produced HNL will decay to the final state we are searching for.

pp ae ¸± -¸± -+ nj U 2 |Á -| 4 - -U -N - -2 BR(N ae ¸± -jj) pp ae ¸± -¸± -+ nj U 2 |Á -| 2 |Á -| 2 |U -N | 2 BR(N ae ¸± -jj) + |U -N | 2 BR(N ae ¸± -jj) pp ae ¸+ -¸+ -¸≠ -+ / E T U 2 |Á -| 4 |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) pp ae ¸+ -¸+ -¸≠ -+ / E T U 2 |Á -| 2 (|Á -| 2 + |Á -| 2 ) |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) pp ae ¸+ -¸≠ -¸+ -+ / E T U 2 |Á -| 2 (|Á -| 2 + 3|Á -| 2 ) |U -N | 2 BR(N ae ¸≠ -¸+ -‹ ) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ ) pp ae ¸+ -¸+ -¸≠ " + / E T U 2 ÿ i=-,- |Á i | 2 ! 1 ≠ |Á i | 2 " |U -N | 2 BR(N ae ¸+ -¸≠ " ‹ ) + |U -N | 2 BR(N ae ¸+ -¸≠ " ‹ )
We can repeat the exercise for the di erent flavor SS dilepton processes. Obviously, the minimal setup in this case requires to have two non-zero mixings, which leads to two diagrams that in principle interfere. Nevertheless, using the narrow width approximation, we can see that both diagrams cannot resonate at the same time, so we can neglect the interference and add both processes incoherently:

‡(pp ae ¸± -¸± -+ nj) à 3 |U -N | 2 BR(N ae ¸± -jj) + |U -N | 2 BR(N ae ¸± -jj) 4 à |U -N | 2 |U -N | 2 N à U 2 |Á -| 2 |Á -| 2 . (3.18)
The case of the trilepton channels is more involved, mainly because we cannot know the lepton number and the flavor carried by the missing (anti)neutrino. Let us consider first the case of same flavor trileptons. There are two contributing diagrams, one with a neutrino and one with an antineutrino, which we can add incoherently4 . Then, considering for simplicity a W + Drell-Yan channel, we have ‡(pp ae

¸+ -¸+ -¸≠ -+ / E T ) à 3 |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) 4 . (3.19)
Notice that the first contribution is mediated by the Majorana nature of the HNL, while the second one is of Dirac type. In principle, both contributions are identical when integrated over the full phase space. However, di erent spin-correlations induce di erent angular distributions, which might translate into di erent acceptances under a given experimental analysis. Still, both channels have the same flavor dependence, so we can write, ‡(pp ae

¸+ -¸+ -¸≠ -+ / E T ) à |U -N | 2 BR(N ae ¸-¸-‹ -) à |U -N | 4 N à U 2 |Á -| 4 . (3.20)
When the trilepton signal involves leptons of two di erent flavors, we need to distinguish two subcases: the same-sign same-flavor (SSSF) and opposite-sign same-flavor (OSSF). These channels are trickier because in a generic flavor pattern there are new diagrams not present in the single mixing scenario. For instance, in the case of the SSSF, we have two types of contributions:

Majorana-like: pp ae ¸+ -N , N ae ¸+ -¸≠ -‹-, Dirac-like: pp ae ¸+ -N , N ae ¸≠ -¸+ -‹ -. (3.21) 
It is clear that the first process requires a Majorana HNL, while for the second one has mixings to both flavors. As before, the interference is negligible, so we have ‡(pp ae

¸+ -¸+ -¸≠ -+ / E T ) à 3 |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) 4 . (3.22)
Due to the missing (anti)neutrino, both processes are almost identical at the LHC, with the only di erence coming again from the di erent distributions and acceptances of the experimental analysis. This was studied in detail in Ref. [START_REF] Tastet | Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model[END_REF] for the case of light HNLs. Nevertheless, in order to get a first rough estimate, we can neglect these di erences and write ‡(pp ae

¸+ -¸+ -¸≠ -+ / E T ) à |U -N | 2 |U -N | 2 + |U -N | 2 N à U 2 |Á -| 2 (|Á -| 2 + |Á -| 2 ) . (3.23)
The case of OSSF is similar, although the roles of Majorana and Dirac HNLs are now flipped:

Majorana-like: pp ae ¸+ -N , N ae ¸+ -¸≠ -‹-, Dirac-like: pp ae ¸+ -N , N ae ¸≠ -¸+ -‹ -. (3.24)
Moreover, since we are working in the prompt HNL regime, we can also have pp ae

¸+ -N, N ae ¸+ -¸≠ - (-)
‹ -. This means that a proper recasting of this kind of signals would require to compute the e ciencies for all these diagrams. If, for the shake of this discussion, we neglect these e ects again, process (prompt) Relevant parameters (Dirac HNL) approx.

complete dependence

pp ae ¸± -¸û -+ nj U 2 |Á -| 4 - -U -N - -2 BR(N ae ¸± -jj) pp ae ¸± -¸û -+ nj U 2 |Á -| 2 |Á -| 2 |U -N | 2 BR(N ae ¸± -jj) + |U -N | 2 BR(N ae ¸± -jj) pp ae ¸+ -¸+ -¸≠ -+ / E T U 2 |Á -| 4 |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) pp ae ¸+ -¸+ -¸≠ -+ / E T U 2 |Á -| 2 |Á -| 2 |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) pp ae ¸+ -¸≠ -¸+ -+ / E T U 2 |Á -| 2 (|Á -| 2 + |Á -| 2 ) |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) pp ae ¸+ -¸+ -¸≠ " + / E T U 2 |Á " | 2 ! 1 ≠ |Á " | 2 " |U -N | 2 BR(N ae ¸≠ " ¸+ -‹ -) + |U -N | 2 BR(N ae ¸≠ " ¸+ -‹ -)
Table 3.3: Same as Table 3.2, but for Dirac HNL. We give only the OS dileptons in this case, since the SS are not sensitive to Dirac HNLs.

we obtain:

‡(pp ae ¸+ -¸≠ -¸+ -+ / E T ) à 3 |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) + |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) + |U -N | 2 BR(N ae ¸+ -¸≠ -‹-) 4 à |U -N | 2 |U -N | 2 + 3|U -N | 2 N à U 2 |Á -| 2 (|Á -| 2 + 3|Á -| 2 ) . (3.25)
Finally, and even if no LHC searches have been performed so far, we can also consider the case with 3 di erent flavors. Following the same former steps, we obtain ‡(pp ae

¸+ -¸+ -¸≠ " + / E T ) à 3 |U -N | 2 BR(N ae ¸+ -¸≠ " ‹" ) + |U -N | 2 BR(N ae ¸≠ " ¸+ -‹ -) + |U -N | 2 BR(N ae ¸+ -¸≠ " ‹-) + |U -N | 2 BR(N ae ¸≠ -¸+ -‹ -) 4 à U 2 ; |Á -| 2 1 1 ≠ |Á -| 2 2 + |Á -| 2 1 1 ≠ |Á -| 2 2 < . (3.26)
We summarize our discussion in Table 3.2. Here, we assume a Majorana HNL, although a similar table can be easily obtained for Dirac HNL by just switching o the LNV channels we discussed above. This is done in Table 3.3. Notice how some channels that were designed for Majorana HNLs are also sensitive to Dirac HNLs in the case of having generic mixing patterns, as it was already discussed in Ref. [START_REF] Tastet | Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model[END_REF].

These tables are to be compared with the minimal mixing scenario where all of the processes scale as

|U -N | 2 , or |U -N | 2 |U -N | 2 /(|U -N | 2 + |U -N | 2
) for -" = -. However, we see that, in general, each process is sensitive to a di erent combinations of mixing strengths. This means that, in order to generalize the bounds to a generic pattern, it is better to set bounds on the quantity on the last columns of Tables 3.2 and 3.3, since then we only need to recompute the new BRs for each mixing hypothesis.

While there are some experimental results also presenting (in the single mixing assumption) bounds in the (M N , |U -N | 2 ◊BR) plane, most of the results are given directly in the (M N , |U -N | 2 ) one. Translating the latter to the former is straightforward in most of the cases, since the experimental collaborations usually assume a constant5 branching ratio for each channel under study, although not always specifying the precise value they used. Nevertheless, this recasting to

|U -N | 2
◊BR is not possible when the experimental results on |U -N | 2 are presented after combining di erent channels. This is the case for instance for the latest CMS searches for trileptons [START_REF] Sirunyan | Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at Ô s = 13 TeV[END_REF], where they combined channels like e ± e ± e û and e ± e ± µ û (see Table 3.1). While in the single mixing scenario both channels depend only on |U eN | 2 , they have a di erent dependence in the case of a generic mixing scenario (see Table 3.2), and thus, it is not easy to recast the obtained bounds without a dedicated analysis. For this reason, together with the potential e ciency di erences discussed above, we will focus the rest of our discussion only on the dilepton channels.

A specific example: dimuon channel

As a case of study for the use of Table 3.2, let us consider the CMS [START_REF] Sirunyan | Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at Ô s = 13 TeV[END_REF] and LHCb [180] searches for the LNV dimuon channel µ ± µ ± . For a given total active-sterile mixing U 2 (see Eq. (3.13)), we can display the full flavor mixing space in a ternary diagram, as in the left panel of Fig. 3.3. Then, the single mixing scenario constraints by both CMS and LHCb lie in the top corner. As we move along the ternary, we decrease the flavor strength to muons, so the bounds are relaxed, as shown in the right panel (dashed lines). Here we chose, for the sake of illustration, few benchmark points for the light HNL mass regime, although the same logic applies to the heavy one.

As discussed above, the physical reason for the relaxation of these bounds is due to the new HNL decay channels in the generic mixing scenario. On the other hand, this also implies that the experimental searches for the other channels with di erent flavors might become relevant. In order to show the interplay between di erent flavor channels, let us consider again a ternary diagram. We can understand it as a subspace of the parameter space with fixed values of M N and U 2 , which is dissected in flavor space. Then, searches for dimuon channels will cover the area close to the Á µ = 1 corner, becoming weaker as we move further away. Equivalently, dielectron searches will cover the ternary from the Á e = 1 corner, while the e ± µ ± channel will cover the area in between. This is depicted in Fig. 3.4 for two benchmark points, one in the light regime (left panel, M N = 30 GeV) and one in the heavy regime (right panel, M N = 300 GeV). Figure 3.4 clearly shows the complementarity of the di erent dilepton searches, to which we could supplementary add the bounds from trilepton channels if the above mentioned concerns are solved. If the combination of every channel covered all the area of the ternary, we could say that this (M N , U 2 ) point is excluded no matter which flavor mixing pattern we were considering. This is not the case in any of the two examples in the figure, since the bottom left corner is still allowed by LHC. Notice that this is always the case at present, since there are no LHC searches for HNLs mixing to the tau lepton, so the corner of Á • = 1 will always be allowed. Although we already discussed that a single mixing scenario is not very natural for a realistic model including HNLs, closing this gap still motivates the need of performing dedicated searches in the tau sector.

On the other hand, it is important to stress that the benchmark points in Fig. 3.4 are chosen just for illustrative purposes, since they are already excluded by LEP searches or global fit bounds. Indeed, this is actually the case in a large part of the parameter space for the current LHC bounds discussed in Sec. 3.2. Nevertheless, it is worth emphasizing that LHC sensitivities are expected to improve during the currently ongoing runs, pushing our knowledge on HNLs beyond present limits. Therefore, combining the di erent LHC channels as we discussed here will become crucial in order to determine whether a heavy neutral lepton with a given mass and mixing is completely excluded or not.

Beyond the single HNL assumption

Should HNL exist in Nature, there is a priori no bound on their number and, in general, BSM models involving HNLs do not introduce just one of them. For example, in a model embedding 3.1), which were derived within a single mixing scenario (or assuming U • N for the e ± µ ± channel). The white area is still allowed by LHC searches.

the standard type-I seesaw mechanism, at least two HNL are needed to explain neutrino oscillation data. In this work, in order to explore deviations from the single HNL hypothesis, we extend the framework considered in the previous section to include more neutral fermions focusing here on the minimal case of SM extension via two HNLs. In this case, the lepton mixing matrix is now a 5 ◊ 5 unitary matrix

U ‹ = Q a U 3◊3 ‹‹ U 3◊2 ‹N U 2◊3 N ‹ U 2◊2 NN R b , ( 3.27) 
with the fourth and fifth columns now encoding the mixings of both HNLs to the active leptons

U ‹N = Q c c c a U eN 1 U eN 2 U µN 1 U µN 2 U • N 1 U • N 2 R d d d b . (3.28)
For the sake of simplicity, we will assume in this section that the two HNLs mix to just a single flavor. In a sense, it can be seen as extending the interpretation of the bounds of Fig. 3.2 in horizontal in U ‹N , to additional columns, while in Section 3.3 we extended them in vertical, to additional flavors. The most general case with several HNLs and arbitrary mixing patterns can then be inferred as a combination of these two discussions.

In the case where only one of these HNLs is within experimental reach or when there are several HNLs but with well-separated mass regimes, our conclusions derived in the single HNL scenario will apply to each of the HNLs. Nevertheless, if two HNLs happen to be close in mass (as motivated by low-scale seesaw models [START_REF] Gavela | Minimal Flavour Seesaw Models[END_REF][START_REF] Ibarra | TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (--) 0‹ -Decay[END_REF][START_REF] Abada | Looking for the minimal inverse seesaw realisation[END_REF], resonant leptogenesis [START_REF] Pilaftsis | Resonant leptogenesis[END_REF] or ARS leptogenesis [START_REF] Akhmedov | Baryogenesis via neutrino oscillations[END_REF]), they could lead to interference e ects and modify the results and the bounds obtained in the single HNL hypothesis. Moreover, these modifications might a ect both LNV and LNC branching ratios, and thus studying their correlation could shed light on the nature of the HNL (see for instance [START_REF] Abada | Interference e ects in LNV and LFV semileptonic decays: the Majorana hypothesis[END_REF] and references therein).

In this section, we discuss how these e ects could a ect the LHC bounds obtained in the single HNL scenario from searches for LNV and LNC channels, and provide a method to combine both results (on LNV and LNC searches) in order to bring forth more robust bounds on the HNLs parameter space. The method is also applicable to the case where HNLs interfere. We mostly focus on the LHCb results [180] for the prompt dimuon channel, since this is the only available analysis addressing both SS and OS dilepton channels (cf. Table 3.1). More specifically, this search considers light HNLs which are dominantly produced from on-shell Drell-Yann W bosons in Fig. 3.1, that is,

pp ae W + ae ¸+ -N i ae ¸+ -¸+ -q q Õ , pp ae W + ae ¸+ -N i ae ¸+ -¸≠ -q q Õ . ( 3.29) 
In the presence of just a single Majorana HNL, the total rates of these two processes are equal if -= -, while if -" = -the LNV process is enhanced by a factor of 2 with respect to the LNC one6 (see Appendix A for more details).

When assuming the existence of two HNLs, we have two identical contributions to the total amplitude of the processes, one for each N i . The squared amplitude is given as sum of the individual contributions of each HNL, plus a potential interference between N 1 and N 2 contributions. For each individual contribution to the amplitudes, we find that they are proportional to U ú -N i U ú -N i for the SS process and to U ú -N i U -N i for the OS one, proving convenient to write

U -N i = |U -N i | e i" -i , ( 3.30) 
with

" -i oe [0, 2fi], -= e, µ,
• and i = 1, 2. In this way, the interference term resulting from both amplitudes will be proportional to

|U -N 1 | |U -N 2 | |U -N 1 | |U -N 2 | e i"" ± , ( 3.31) 
where we have defined "" ± as follows:

"" ± = (" -2 ≠ " -1 ) ± (" -2 ≠ " -1 ) , ( 3.32) 
with +/≠ for the SS/OS channel. Details on the complete analytical amplitude and decay rates, which we have additionally checked with the monte-carlo event generator Whizard [START_REF] Kilian | WHIZARD: Simulating Multi-Particle Processes at LHC and ILC[END_REF][START_REF] Moretti | O'Mega: An Optimizing matrix element generator[END_REF], can be found in Appendix A, both for the case with just one HNL and with two HNLs.

As already stated, when the mass di erence of the two HNLs is too large compared to their decay width, the interference is negligible. In this case, the total rates for the LNV and LNC rates are related, as in the the single HNL scenario. In the following, we will consider the case in which the interference e ects can considerably modify the relative size of the LNV and LNC rates. More specifically, we assume that

M N = M N 2 ≠ M N 1 π N , with N = N 1 ƒ N 2 . Moreover, we also consider |U -N 2 | |U -N 2 | = |U -N 1 | |U -N 1 |.
In fact, these relations appear naturally in low-scale realizations of the seesaw mechanism. 7 In these models, the phases " of the two HNLs di er by fi/2, independently of the flavor -, -, so that "" + = fi and "" ≠ = 0 (the two heavy neutrinos forming a pseudo-Dirac neutrino pair), and M N is proportional to the light neutrino masses [START_REF] Drewes | On lepton number violation in heavy neutrino decays at colliders[END_REF]179]. Under these conditions, we can write the total decay rate driven by the two HNLs (denoted for clarity with the subscript N 1 &N 2 ) in the case of W + channel as (see Appendix A)

1 W + ae ¸+ -¸± -q qÕ 2- - - N 1 &N 2 = 2 K 1 y, "" ± 2 1 W + ae ¸+ -¸± -q qÕ 2- - - N 1 , ( 3.33) 
and equivalently for the W ≠ channel with K (y, "" ± ). Here, we have factorized the total rate in the presence of only one HNL, and defined the modulation functions

K 1 y, "" ± 2 © A 1 + cos "" ± 1 1 + y 2 ≠ sin "" ± y 1 + y 2 B , (3.34) K 1 y, "" ± 2 © A 1 + cos "" ± 1 1 + y 2 + sin "" ± y 1 + y 2 B , ( 3.35) 
where

y ƒ M N N . (3.36)
The functions K and K encode the e ects of the interference. In the limit M N ∫ N , the two HNL are too separated in mass, coherence is lost and the total contribution is just twice the single HNL contribution for both LNV and LNC (K, K ae 1). On the other hand, for M N < N , the modulation function can take values from 0 (maximally destructive interference) to 2 (maximally constructive). Moreover, these e ects will be di erent for LNV and LNC, breaking the equal size prediction in the single HNL scenario.

< + = < + = + = < - - - [ ] | | = + = | | | | | | 1 
These modulation function can be used, for instance, to simply recast the bounds derived by LHCb [180] under the assumption of a single HNL. Noticing that LHCb searched only for the W + channel and given Eq. (3.16), to recast these bounds to our scenario with two HNLs, we need to rescale the mixing as

|U µN | 2 ae |U µN | 2 ◊ 2K 1 y, "" ± 2 , ( 3.37) 
with "" ≠ = 0 in the channel with -= -. Following this modulation, we show in the left panel of Fig. 3.5 how the LHCb bounds might vary, depending on the values of y (Eq. (3.36)) and the relative phases "" + , for both LNV and LNC searches, which defines the green and blue bands, respectively. The vertical axis needs to be understood now as the (squared) mixing of each of the HNLs to muons, which, in absence of interference (y ∫ 1) is just a factor of two stronger with respect to the single HNL scenario. For y π 1, however, constructive interference can strengthen the bounds by up to an additional factor of two, while destructive interference could relax it, even avoid it completely in the case of LNV signals. The latter corresponds to the case where "" + = fi, which is precisely when the two HNLs have opposite phases (thus forming a pseudo-Dirac pair), as required by low-scale seesaws with approximated lepton number conservation. Interestingly, the same choice of parameters that maximizes the destructive interference of LNV channels also maximizes the constructive interference for the LNC ones, making the bounds derived from the latter stronger.

This interplay prompts us to consider both channels at the same time, using their complementarity to set absolute bounds on the mixings that could not be avoided even with ad-hoc values of the parameters that maximize the interference. We show this in the right panel of Fig. 3.5 for a particular example of M N = 30 GeV and opposite phases, "" + = fi. When the contributions of the two HNLs is maximally coherent (y π 1), the LNV bounds are loosened at the price of maximizing the LNC bounds. If coherence is lost (y ∫ 1), then the LNV bounds always dominate over the LNC ones. We see then that the largest possible mixing could be obtained between the two cases, when the two curves cross over, which we can consider as an absolute bound on the mixing that cannot be avoided even with 2 interfering HNLs.

To summarize, searches for LNC and LNV processes are important and complementary, since they can cover areas of the parameter space even in the case where there is some interference (partially) cancelling any of the two channels. This strongly motivates the need of searching for both LNC and LNV channels in parallel, even if the latter is more challenging experimentally, since, when combining both of them, we could set more robust bounds on generic scenarios including more than one heavy neutral lepton.

CP violation

When more than one HNL is considered, new CP-violating phases are introduced, which can induce di erences in the decays of these particles to leptons over antileptons. If HNLs were discovered in processes such as those in Eq. (3.29), and provided that enough events were collected, one way of measuring this potential CP asymmetry would be by defining the ratio [171]

A ± CP = BR 1 W ≠ ae ¸≠ -¸û -qq Õ 2 ≠ BR 1 W + ae ¸+ -¸± -q qÕ 2 BR 1 W ≠ ae ¸≠ -¸û -qq Õ 2 + BR 1 W + ae ¸+ -¸± -q qÕ 2 . (3.38)
Using our previous results for the W decays in the case of a pair of HNLs, see Eq. (3.33), it is straightforward to see that A ± CP takes the simple form

A ± CP = y sin "" ± 1 + y 2 + cos "" ± , ( 3.39) 
where +/≠ denotes again LNV/LNC processes.

As can be seen, this equation does not depend on the HNL masses, but on their mass di erence M N (through y = M N / N ). It vanishes for the obvious case of "" ± = 0, since then there is no di erence in both the W decay and its CP equivalent; this is also the case when y is close to zero or too large. This is shown in Fig. 3.6 where we display the CP asymmetry for di erent values of "" ± .

A similar computation was performed in Ref. [START_REF] Najafi | CP violation in rare lepton-number-violating W decays at the LHC[END_REF] with which our results agree up to slight CP , defined in Eq. (3.39), as function of the relevant ratio y = M N / N and for di erent choices of the relative phases "" ± . Red dots were obtained with Whizard as a cross-check of our analytical results. di erences. On the one hand, we find a discrepancy when applying the narrow width approximation for the interference term (see App. A for more details). On the other hand, we performed the computation considering prompt heavy neutral leptons, so we did not take into account their time evolution and their possible oscillations before decaying. Our approach is appropriate for HNLs with masses above ≥ 10 GeV, while for lighter HNLs, having longer decay lifetimes, one should take into account the evolution e ect as it was done in Ref. [START_REF] Najafi | CP violation in rare lepton-number-violating W decays at the LHC[END_REF].

Summary

In this chapter, we focused on LHC searches of heavy neutral leptons that decay promptly (shortleaved). In most of the searches, which we summarized in Sec. 3.2, the obtained bounds were derived under the hypothesis of the existence of a single (usually Majorana) HNL which mixes with only one lepton flavor, while most of the BSM scenarios involving new neutral fermions require more than one HNL in order to accommodate neutrino data. Moreover, unless some specific symmetries are present, the mixing pattern in these BSM scenarios is more complex. Each HNL mixes in general with all charged leptons, and thus, the bounds derived from searches on the HNL parameter space have to be recast before being applied to a generic BSM scenario.

We discussed how to recast the present experimental bounds on the HNL parameter space, i.e. the active-sterile mixings U -N , -= e, µ, • , versus the mass of the HNL, to the case of generic mixing to all active flavors as well as to the case with several HNLs. The former was covered in Sec. 3.3, where we inspected the flavor dependencies of each of the channels searched for by the LHC, and stressed the importance of setting bounds not only on the mixings, but on the relevant combination of |U -N | 2 ◊ BR (see Tables 3.2 and 3.3). Considering the bounds on this combination, we proposed a method to combine the results in flavor space, using the ternary diagrams in Fig. 3.4 to conclude whether that area of parameter space is fully excluded, regardless of the assumed mixing pattern.

In the case with several heavy neutral leptons, we focused on the scenario when two HNLs are in the same mass regime, nearly degenerate or possibly forming a pseudo-Dirac neutrino pair, paying special attention to the non-trivial role of the interference between their contributions. To illustrate its importance, we focused on dilepton channels and considered both channels with the same and opposite charge of the final leptons, as it was done by LHCb [180]. We showed the complementarity of the LNC and LNV searches and the importance of performing both of them in parallel. We stressed that by doing this, we are not only taking into account the two possible natures of a single HNL, Dirac or Majorana, but also covering the case when, for example, two Majorana HNLs exist, and however they interfere destructively, suppressing the expected LNV signature.

To summarize, we have discussed the importance of going beyond simplified scenarios such as the single mixing hypothesis. While they are useful for simplifying experimental analyses, they are not directly applicable to BSM models introducing HNLs. Unfortunately, recasting the bounds of each experimental analysis to a given BSM scenario can be a tedious task. In this chapter, we have proposed an alternative way of presenting the bounds on the parameter space of the HNLs, which under some approximations can be both directly constrained by experimental analyses and also easily recast to a generic BSM scenario.

Chapter 4

Confronting open issues in Flavor Physics

Over the past decade, a great e ort in the high-energy physics community has been invested in studying the exclusive decays based on the b ae s¸¸process, with ¸oe {e, µ}. Mediated by flavor-changing neutral currents, these decays can occur only through loops in the Standard Model. Therefore their measurement was expected to give insight into the loop content, which in turn could reveal a presence of physics BSM. The LHC experiments performed detailed studies of B ae K ú (ae Kfi)µµ [START_REF] Aaij | Angular analysis of the B 0 ae K ú0 µ + µ ≠ decay using 3 fb ≠1 of integrated luminosity[END_REF][START_REF] Sirunyan | Angular analysis of the decay B + ae K ú (892) + µ + µ ≠ in proton-proton collisions at Ô s = 8 TeV[END_REF] and B ae Kµµ [START_REF] Aaij | Angular analysis of charged and neutral B ae Kµ + µ ≠ decays[END_REF][START_REF] Sirunyan | Angular analysis of the decay B + ae K + µ + µ ≠ in proton-proton collisions at Ô s = 8 TeV[END_REF]. The angular distribution of these decays o ered access to a set of new observables, free of the Cabibbo-Kobayashi-Maskawa (CKM) uncertainties, each with an additional and often complementary way to test the presence of BSM physics [START_REF] Becirevic | On transverse asymmetries in B -> K* l+l[END_REF][START_REF] Descotes-Genon | Optimizing the basis of B ae K ú ll observables in the full kinematic range[END_REF]. It soon became clear, however, that the main obstacles to such an endeavor are the hadronic uncertainties. On the one hand, and despite the improvement in controlling the uncertainties of hadronic matrix elements of the local operators, an O(10%) uncertainty can be warrantied only in a few cases. On the other hand, the matrix element of the non-local operators, arising from couplings to the cc-pairs, remains an open problem, see e.g. Ref. [START_REF] Ciuchini | B ae K ú ¸+¸≠ decays at large recoil in the Standard Model: a theoretical reappraisal[END_REF]. To get around the latter problem, one tries to "stay" below the region populated by the cc-resonances. To evaluate the matrix element of the non-local operator, one then opts to either invoking the quark-hadron duality, which then means relying entirely on the perturbation theory [START_REF] Greub | Analytic calculation of two-loop QCD corrections to b ae sl + l ≠ in the high q 2 region[END_REF][START_REF] Asatryan | Calculation of two loop virtual corrections to b ae sl + l ≠ in the standard model[END_REF][START_REF] Asatrian | Exact NLO matching and analyticity in b ae s¸¸[END_REF], or employing a (hadronic) model calculation [START_REF] Khodjamirian | Charm-loop e ect in B ae K (ú) ¸+¸≠ and B ae K ú[END_REF][START_REF] Khodjamirian | B ae K¸+¸≠ decay at large hadronic recoil[END_REF][START_REF] Gubernari | Non-local matrix elements in B (s) ae {K (ú) , "}¸+¸≠[END_REF][START_REF] Gubernari | Improved theory predictions and global analysis of exclusive b sµ + µ ≠ processes[END_REF]. The problems related to both kinds of hadronic uncertainties appear to be almost entirely absent in the measurement of the ratios R [START_REF] Hiller | More model-independent analysis of b ae s processes[END_REF], where B Õ is used to indicate that the partial branching fractions are measured in the di-lepton invariant mass interval q 2 oe [1.1, 6] GeV 2 , therefore below the first cc resonance, m 2 J/ = (3.097 GeV) 2 . Indeed, the measurement of R K and R K ú [START_REF]Test of lepton universality in b ae s¸+¸≠ decays[END_REF], and of B(B s ae µµ) [START_REF] Aaboud | Study of the rare decays of B 0 s and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector[END_REF][START_REF]Combination of the ATLAS, CMS and LHCb results on the B 0 (s) ae µ + µ ≠ decays[END_REF][219] resulted in clean constraints on the BSM models and their couplings. Many BSM scenarios predict a significant deviation of B(B ae K (ú) ‹ ‹) with respect to its SM prediction and therefore B(B ae K (ú) ‹ ‹) can provide us with either a test of the validity of a given model, or with a constraint when building an acceptable scenario of physics BSM.

K (ú) = B Õ (B ae K (ú) µµ)/B Õ (B ae K (ú) ee)
In Ref. [START_REF] Bečirević | Revisiting B ae K (ú) ‹ ‹ decays in the Standard Model and beyond[END_REF], we evaluate B(B ae K (ú) ‹ ‹) in the SM by arguing that the most precise information can be obtained if one splits the B ae K‹ ‹ events to those with high-and those with low-q 2 . From the comparison of the measured B(B ae K‹ ‹) high≠q 2 with the one predicted in the SM, one can check for consistency with the SM. Instead, from the ratio B(B ae K‹ ‹) low≠q 2 /B(B ae K‹ ‹) high≠q 2 one can check on the validity of the shape of the sole form factor entering the expression for dB(B ae K‹ ‹)/dq 2 à |f + (q 2 )| 2 . We argue, like in Ref. [START_REF] Bartsch | Precision Flavour Physics with B ae K‹ ‹ and B ae Kl + l ≠[END_REF], that the ratio B Õ (B ae Kµµ)/B Õ (B ae K‹ ‹), in the low q 2 -bin, is essentially free of the form factor uncertainty and, if measured, it allows to extract the desired Wilson coe cient C e 9 , which is the one plagued by uncertainties arising from the hadronic matrix element of the non-local operators. A similar discussion, even if somewhat less accurate, can then be extended to the B ae K ú ‹ ‹ process. In that way, one can also assess the size of the non-factorizable contribution to the C e 9 which, according to Ref. [START_REF] Khodjamirian | Charm-loop e ect in B ae K (ú) ¸+¸≠ and B ae K ú[END_REF], is di erent in the case of K from the case of K ú in the final state.

On the basis of that information, the controversies of other observables, extracted from the experimental angular analysis of B ae K (ú) µµ, in comparison with their SM values, would be removed, and the search of a scenario of physics BSM consistent with many more experimental constraints would become more compelling. We show that a study of the ratio B Õ (B ae Kµµ)/B Õ (B ae K‹ ‹) could provide us with a useful filter to select among the acceptable models of physics BSM. This chapter is organized as follows: In Sect. 4.1 we describe the B ae K (ú) ‹ ‹ decays in the SM, with a focus on hadronic uncertainties. In Sect. 4.2, we propose alternative observables that are potentially less sensitive to hadronic uncertainties, and we discuss their sensitivity to physics beyond the SM in Sect. 4.3. Our findings are summarized in Sect. 4.4.

B ae K (ú) ‹ ‹ Decays in the SM

E ective theory description

E ective Field Theories serve as a valuable tool for investigating new physics phenomena. They provide a systematic and model-independent framework to compute measurable quantities at a specific energy scale, allowing for the exploration of interactions and dynamics beyond the Standard Model without precise knowledge on the underlying high-energy theory. They also prove to be useful when the dynamics are non-perturbative, as we will see in Chapter 5 for the case of chiral perturbation theory. The idea is that, at a given energy scale, only some of the dynamical degrees of freedom will contribute to the long-distance matrix elements that we want to compute. Heavy fields will contribute to the short-distance part, which can be factorized into dimensionless coe cients C i (µ) multiplying local operators O i (µ), µ being the renormalization scale. The operators respect gauge and Lorentz invariance, as well as any other symmetry imposed on the theory. The e ective Lagrangian can thus be written as an expansion in terms of operators of increasing dimension d

L e = ÿ d,i C d i (µ) d≠4 O d i (µ) (4.1)
which translates into an expansion in the short-distance scale of new physics, C d i (µ)/ d≠4 . EFTs allow to compute amplitudes at a given order in the expansion parameter, and although an infinite number of higher dimension operators are needed to fully renormalize the theory, at a given order d only a finite number of operators contribute, thus requiring a finite number of counter-terms. The Wilson coe cients C i can be matched at the energy µ ≥ to the UV theory, to ensure that both the full theory and the EFT coincide at low energies.

If the scale of NP is above the Electroweak scale, the SM E ective Field Theory (SMEFT) is a powerful tool to examine contributions to low-energy observables. The SMEFT operators are invariant under SU(3) c ◊SU(2) L ◊U (1) Y , and are organized according to their mass dimension [START_REF] Leung | Low-energy manifestations of a new interactions scale: Operator analysis[END_REF][START_REF] Buchmüller | E ective lagrangian analysis of new interactions and flavour conservation[END_REF][START_REF] Grzadkowski | Dimension-Six Terms in the Standard Model Lagrangian[END_REF]. After the Electroweak symmetry breaking, these operators can contribute to semileptonic B decays, which are well described by the Low-Energy E ective Field Theory (LEFT). Decays based on the b ae s‹ ‹ transition are described by the following e ective Lagrangian,

L baes‹‹ e = 4G F Ô 2 ⁄ t ÿ a C a O a + h.c. , (4.2) 
where G F is the Fermi constant, ⁄ t = V tb V ú ts is a suitable product of the CKM entries 1 , and the only relevant operator in the SM is given by 2

O ‹ i ‹ j L = e 2 (4fi) 2 (s L " µ b L )(‹ i " µ (1 ≠ " 5 )‹ j ) . (4.3)
The SM e ective Wilson coe cient

Ë C ‹ i ‹ j L È SM © " ij C SM L is known [224], C SM L = ≠X t / sin 2 ◊ W , X t = 1.462(17)(2) , ( 4.4) 
and it includes the NLO QCD corrections [START_REF] Buchalla | QCD corrections to rare K and B decays for arbitrary top quark mass[END_REF][START_REF] Buchalla | The rare decays K ae fi‹ ‹, B ae X‹ ‹ and B ae l + l ≠ : An Update[END_REF][START_REF] Misiak | QCD corrections to FCNC decays mediated by Z penguins and W boxes[END_REF], as well as the two-loop electroweak contributions [START_REF] Brod | Two-Loop Electroweak Corrections for the K ae fi‹ ‹ Decays[END_REF]. Using sin 2 ◊ W = 0.23141(4) [START_REF] Workman | Review of Particle Physics[END_REF], one finally arrives at C SM L = ≠6.32 [START_REF] Sakharov | Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe[END_REF], where the dominant source of uncertainty comes from the higher order QCD corrections. 1 The contributions of the charm and up quarks to the loop functions associated to the process b ae s‹ ‹ are negligible with respect to the top one. This is why we only consider the CKM combination

⁄ t = V tb V ú ts . 2 The right-handed operator O ‹i‹j R = e 2 (4fi) 2 (s R " µ b R )(‹ i " µ (1 ≠ " 5 )‹ j )
is absent in the SM, but it can appear in some of the BSM scenarios (see Sect. 4.3).

B ae K‹ ‹ The SM di erential decay rate of B ae K‹ ‹ can be written as

dB dq 2 (B ae K‹ ‹) =N K (q 2 ) |C SM L | 2 |⁄ t | 2 Ë f + (q 2 ) È 2 , ( 4.5) 
where 0 < q 2 AE (m B ≠ m K ) 2 is the di-neutrino invariant mass, f + (q 2 ) is the B ae K vector form factor which will be discussed in Sect. 4.1.2, and N K (q 2 ) denotes a known q 2 -dependent function,

N K (q 2 ) = • B G 2 F -2 em 256fi 5 ⁄ 3/2 K m 3 B , ( 4.6) 
with

⁄ K © ⁄(q 2 , m 2 B , m 2 K ) being the triangle function ⁄(a 2 , b 2 , c 2 ) © (a 2 ≠ (b ≠ c) 2 ) (a 2 ≠ (b + c) 2
). In the above expressions we summed over the neutrino flavors, since they are not detected experimentally.

B ae K ú ‹ ‹ Similarly to the previous case, the B ae K ú ‹ ‹ branching fraction can be written as:

dB dq 2 (B ae K ú ‹ ‹) =N K ú (q 2 )|C SM L | 2 |⁄ t | 2 F(q 2 ) , ( 4.7) 
where the kinematical factor reads,

N K ú (q 2 ) = • B G 2 F -2 em 128fi 5 ⁄ 1/2 K ú q 2 m 3 B (m B + m K ú ) 2 , ( 4.8) 
with

⁄ K ú © ⁄(q 2 , m 2 B , m 2 K ú )
, and F(q 2 ) given by

F(q 2 ) = [A 1 (q 2 )] 2 + 32 m 2 K ú m 2 B q 2 (m B + m K ú ) 2 [A 12 (q 2 )] 2 + ⁄ K ú (m B + m K ú ) 4 [V (q 2 )] 2 .
(4.9)

The B ae K ú form factors A 1 (q 2 ), A 12 (q 2 ) and V (q 2 ) will be defined shortly, in Sect. 4.1.3.

Besides the small and controlled uncertainty in C SM L , two other sources of theoretical uncertainties in the above expressions come from: (i) the B ae K (ú) form factors that must be determined nonperturbatively, see Sect. 4.1.2 and 4.1.3, and (ii) the product of the CKM matrix elements

⁄ t = V tb V ú
ts , which will be discussed in Sect. 4.1.4.

B ae K form factors

The B ae K hadronic matrix element is the main source of theoretical uncertainty entering the B ae K‹ ‹ branching fraction. It is usually decomposed as The results of our fit for f + (q 2 ) and f 0 (q 2 ) form factors are depicted by the blue and red solid curves respectively. The dashed lines correspond to the results reported by FLAG [231]. The synthetic data points by HPQCD (green) [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] and by FNAL/MILC (orange) [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] are also shown for comparison.

È K(k)|s" µ b| B(p)Í = 5 (p + k) µ ≠ m 2 B ≠ m 2 K q 2 q µ 6 f + (q 2 ) + m 2 B ≠ m 2 K q 2 q µ f 0 (q 2 ) , ( 4.10) 
P +,0 (q 2 ) are the inverse pole terms defined in Eq. (B.5). Right: Rescaled di erential branching fraction |⁄ t | ≠2 dB(B + ae K + ‹ ‹)/dq 2 is plotted by using the form factor f + (q 2 ) from the FLAG review [231], and by using the one discussed in this letter. The lower panel shows the relative uncertainty on this quantity as a function of q 2 using the FLAG form factors.

where f + (f 0 ) are the so-called vector (scalar) B ae K form factors, satisfying at q 2 = 0 the condition f + (0) = f 0 (0). Note also that the scalar form factor does not enter the theoretical expression for B(B ae K‹ ‹), cf. Eq. (4.5), since the neutrino masses are negligible. We used the latest lattice QCD results provided by the HPQCD collaboration [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF], combined with the ones provided by the FNAL/MILC collaboration [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] and followed the same procedure as FLAG [231] in order to provide the new average of the lattice QCD form factors, cf. Appendix B. Our average, therefore, supersedes the one presented in Ref. [231], in which now obsolete HPQCD results from Ref. [START_REF] Bouchard | Rare decay B ae K¸+¸≠ form factors from lattice QCD[END_REF] have been used. Since the lattice QCD results are obtained for q 2 & 16 GeV 2 , an extrapolation is needed to cover the entire B ae K‹ ‹ physical region. This is provided by the parametrization of the q 2 dependence of the form factors, which is discussed in Ref. [231]. In Fig. 4.1, left panel, we show the newly averaged form factors and their shapes (solid curves), and compare them with the previous ones (dashed) presented in [231]. Clearly, the e ect of the inclusion of the new HPQCD results is that the form factors at low q 2 are now more accurate. One should keep in mind, however, that the low-q 2 region is a result of an extrapolation which is thus a potential source of systematic uncertainty, not accounted in the error budget. We propose a way to monitor such an uncertainty by splitting the sample of B ae K‹ ‹ events into two bins: low q 2 for q 2 /(m B ≠ m K ) 2 oe (0, 1/2), and high q 2 for q 2 /(m B ≠ m K ) 2 oe (1/2, 1). 3 From the measured ratio:

r lh = B(B ae K‹ ‹) low≠q 2 B(B ae K‹ ‹) high≠q 2 , ( 4.11) 
one can check whether or not the result is consistent with prediction, which is obtained by using lattice QCD results for f + (q 2 ) at high q 2 , and the ones obtained through extrapolation to low q 2 . Note that the above ratio r lh is independent on the CKM factor, and on the Wilson coe cient regardless of the presence of physics BSM (which, a priori, would give a q 2 independent contribution), provided we consider the left-handed neutrinos. Using the new average for the form factor provided in Ref. [START_REF] Bečirević | Revisiting B ae K (ú) ‹ ‹ decays in the Standard Model and beyond[END_REF], we find r lh = 1.91( 6) , (4.12)

which is obviously consistent with r lh = 1.92 [START_REF] Higgs | Broken symmetries and the masses of gauge bosons[END_REF], obtained by using solely the FNAL/MILC form factors [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF], as well as with r lh = 1.85 [START_REF] Gavela | Standard model CP violation and baryon asymmetry. Part 2: Finite temperature[END_REF], that we obtain by using only the new HPQCD values [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF]. Finally, and for future reference, we note that from our average f + (0) = 0.336 [START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF], which again is consistent with the FNAL/MILC value, f + (0) = 0.335 [START_REF] Hirata | Experimental Study of the Atmospheric Neutrino Flux[END_REF], and with the new one obtained by HPQCD, f + (0) = 0.332 [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF]. All these values agree within 1 ‡ with f + (0) = 0.304 [START_REF] Adamson | Constraints on Oscillation Parameters from ‹ e Appearance and ‹ µ Disappearance in NOvA[END_REF], often used in the literature and obtained by using the so-called light cone sum rules (LCSR) [START_REF] Ball | New results on B ae fi, K, ÷ decay formfactors from light-cone sum rules[END_REF].

Regarding the total branching fraction, with our new average of the lattice QCD form factor, we obtain:

B(B ae K‹ ‹) SM /|⁄ t | 2 = Y _ ] _ [ (1.33 ± 0.04) K S ◊ 10 ≠3 , (2.87 ± 0.10) K + ◊ 10 ≠3 , (4.13)
where we factored out the CKM dependence and distinguished the charged from the neutral kaon case. 4 The comparison of this prediction with the ones available in the literature is provided in Table 4.1, each corresponding to a di erent choice of the form factor f + (q 2 ): in Ref. [START_REF] Buras | B ae K (ú) ‹‹ decays in the Standard Model and beyond[END_REF] the lattice results of Ref. [START_REF] Bouchard | Rare decay B ae K¸+¸≠ form factors from lattice QCD[END_REF] are combined with the LCSR value; in Ref. [START_REF] Blake | Rare B Decays as Tests of the Standard Model[END_REF] only the FNAL/MILC lattice results [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] have been used; in Ref. [START_REF] Parrott | Standard Model predictions for B ae K¸+¸≠, B ae K¸≠ 1 ¸+ 2 and B ae K‹ ‹ using form factors from N f = 2 + 1 + 1 lattice QCD[END_REF] only the new HPQCD results are considered [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF]; in obtaining our result for the branching fraction we use the average of the form factor result obtained by FNAL/MILC [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] and the new HPQCD result [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF]. In Fig. 4.1, right panel, we show the impact of the new form factor on the di erential branching fraction. In the same plot we emphasize the consequence of using the new form factor average on the error of the branching fraction in the low q 2 region. One should, however, keep in mind that the form factor at low q 2 's is obtained through an extrapolation from large q 2 's where the actual lattice QCD data are available. This is done by using a pole-like shape of the form factor, multiplied by a suitable polynomial, as proposed in the model of Ref. [START_REF] Bourrely | Model-independent description of B -> pi l nu decays and a determination of -V(ub)[END_REF]. It is therefore of major importance to devise strategies aiming at reducing the impact of hadronic uncertainties in the observables that can be accessed experimentally, as we explore in Sect. [START_REF] Bečirević | Revisiting B ae K (ú) ‹ ‹ decays in the Standard Model and beyond[END_REF] 

B(B +

ae K + ‹ ‹) is related to the symmetry relation among the matrix elements:

ÈK S | b" µ s|B 0 Í = ≠ÈK S |s" µ b| B0 Í = 1 Ô 2 ÈK + |s" µ b| B+ Í , ( 4.14) 
where we accounted for the Clebsch-Gordan coe cient, so that, in the end, we have

B(B 0 ae K S ‹ ‹) = B(B 0 ae K S ‹ ‹) = 1 2 
• B 0 • B + B(B + ae K + ‹ ‹) , ( 4.15) 
where, for illustration purposes, we neglect the tiny phase space di erence. In our numerics, however, we use the correct masses of the charged and of the neutral kaons. Note in particular that it is important to properly account for the B-meson lifetimes, because • B + /• B 0 = 1.076(4) [START_REF] Workman | Review of Particle Physics[END_REF].

B ae K ú form factors

The hadronic matrix element entering the B ae K ú ‹ ‹ decay can be parameterized as follows 5È Kú (k)|s" µ (1

≠ " 5 )b| B(p)Í = Á µ‹fl ‡ Á ú‹ p fl k ‡ 2V (q 2 ) m B + m K ú ≠ iÁ ú µ (m B + m K ú )A 1 (q 2 ) + i(p + k) µ (Á ú • q) A 2 (q 2 ) m B + m K ú + iq µ (Á ú • q) 2m K ú q 2 Ë A 3 (q 2 ) ≠ A 0 (q 2 ) È , (4.16)
where Á µ is the polarization vector of K ú , while V (q 2 ) and A 0,1,2,3 (q 2 ) are the form factors. In the above definition we use A 3 (q 2 ), while in Eq. (4.9) we used A 12 (q 2 ). They are both related to A 1 (q 2 ) and A 2 (q 2 ) as:

A 3 (q 2 ) = m B + m K ú 2m K ú A 1 (q 2 ) ≠ m B ≠ m K ú 2m K ú A 2 (q 2 ), A 12 (q 2 ) = (m B + m K ú )(m 2 B ≠ m 2 K ú ≠ q 2 ) 16m B m 2 K ú A 1 (q 2 ) ≠ ⁄ K ú 16m B m 2 K ú (m B + m K ú ) A 2 (q 2 ), (4.17) 
so that at q 2 = 0 they satisfy:

8m B m K ú A 12 (0) = (m 2 B ≠ m 2 K ú )A 0 (0)
, and A 3 (0) = A 0 (0). The full set of form factors is shown in the left panel of Fig. 4.2. Since the pseudoscalar form factor A 0 (q 2 ) does not contribute to the decay rate in the massless neutrino limit, three independent form factors are needed to compute B ae K ú ‹ ‹, namely V , A 1 and A 2 .

The situation for the B ae K ú transition is far more intricate than for B ae K because there are more form factors. Furthermore, the results of only one lattice QCD study at nonzero recoil have been reported so far, with a specific lattice setup [START_REF] Horgan | Lattice QCD calculation of form factors describing the rare decays B ae K ú ¸+¸≠ and B s ae "¸+¸≠[END_REF]. In this paper, we take the results of Ref. [START_REF] Bharucha | B ae V ¸+¸≠ in the Standard Model from light-cone sum rules[END_REF] in which the lattice QCD values from Ref. [START_REF] Horgan | Lattice QCD calculation of form factors describing the rare decays B ae K ú ¸+¸≠ and B s ae "¸+¸≠[END_REF] were combined with those obtained by using the LCSR. By adopting the form factor parameterizations and inputs from Ref. [START_REF] Bharucha | B ae V ¸+¸≠ in the Standard Model from light-cone sum rules[END_REF], we obtain

B(B ae K ú ‹ ‹) SM /|⁄ t | 2 = Y _ ] _ [
(5.9 ± 0.8) K ú0 ◊ 10 ≠3 , (6.4 ± 0.9) K ú+ ◊ 10 ≠3 , (4.18) in good agreement with Ref. [START_REF] Blake | Rare B Decays as Tests of the Standard Model[END_REF]. 6 We should point out, however, that this result is less robust than the one for B(B ae K‹ ‹). This is strengthening even more our motivation to look for the options that allow one to reduce sensitivity to the form factor uncertainties, see Sect. 4.2. 

CKM couplings

The uncertainty on the CKM factor ⁄ t = V tb V ú ts introduces the largest parametric uncertainty in B(B ae K‹ ‹). The usual procedure, often adopted in the literature, is to determine |V cb | from the tree-level processes and then, by virtue of the CKM unitarity, evaluate |⁄ t |, cf. e.g. Ref. [START_REF] Buras | B ae K (ú) ‹‹ decays in the Standard Model and beyond[END_REF]. In that way the loop-induced processes are used to probe the e ects of BSM physics. Unfortunately, that procedure is intrinsically ambiguous too, because the CKM coupling |V 7 In other words, there is a discrepancy in |⁄ t | depending on the particular input considered, | = (38.9 ± 0.9) ◊ 10 ≠3 reported by FLAG [231].

|⁄ t | ◊ 10 3 = Y _ _ _ _ _ ] _ _ _ _ _ [
where the inclusive value is about 1 ‡ and 2 ‡ larger than the ones derived from B ae Dl‹ and B ae D ú l‹ decays, respectively.

For future reference, we will use |⁄ t | excl = (39.3 ± 1.0) ◊ 10 ≠3 , and |⁄ t | incl as noted above. Notice that by multiplying the results in Eqs. (4.13,4.18) by |⁄ t | excl we obtain the branching fractions 1.5 ‡ smaller than the values we get by using |⁄ t | incl , which again highlights the importance of clarifying the issue of the determination of V cb . 8 Another possibility is to rely on the CKM unitarity and extract the V cb from the global fit with data in which b ae c¸‹ experimental input is removed. This leads to |V UTfit which again renders the value of ⁄ t ambiguous. One way to avoid the ambiguity on the CKM couplings will be discussed in Sect. 4.2.

Numerical Predictions

Before we give our final numerical results, we need to account for one significant correction. It was first noted in Ref. [START_REF] Kamenik | Tree-level contributions to the rare decays B+ -> pi+ nu anti-nu, B+ -> K+ nu anti-nu, and B+ -> K*+ nu anti-nu in the Standard Model[END_REF] that there is an important tree level contribution to the charged B ± ae K ± ‹ ‹ mode arising from the weak annihilation mediated by the on-shell • -lepton. We will follow Ref. [START_REF] Kamenik | Tree-level contributions to the rare decays B+ -> pi+ nu anti-nu, B+ -> K+ nu anti-nu, and B+ -> K*+ nu anti-nu in the Standard Model[END_REF] and call this new contribution as "Tree", while keeping in mind that its amplitude is à G 2 F . To be more specific, we write:

dB(B + ae K + ‹ ‹) Tree dq 2 dp 2 • = • B + G 4 F |V us V ub | 2 f 2 K f 2 B 64fi 3 m 3 B p 4 • ◊ m 2 B (p 2 • ≠ m 2 K ) ≠ p 2 • (p 2 • + q 2 ≠ m 2 K ) (m 2 • ≠ p 2 • ) 2 + m 2 • 2 • , (4.20) 
where p 2 • and • are the invariant mass and the full width of the intermediate • -lepton. After integrating over the phase space we have:

B(B + ae K + ‹ ‹) Tree = • B + G 4 F |V us V ub | 2 f 2 K f 2 B 128fi 2 m 3 B ◊ m • • (m 2 • ≠ m 2 K ) 2 (m 2 B ≠ m 2 • ) 2 , ( 4.21) 
where we have used a narrow-width approximation. Similarly, for the B + ae K ú+ ‹ ‹ mode we have, which leads, after integration, to Despite being à G 4 F this contribution is indeed numerically significant. We find that it amounts to more than 10% with respect to the dominant e ect à G 2 F , and therefore, if we aim at the 10% experimental precision or better at Belle-II, the "Tree" contribution must be included [START_REF] Altmannshofer | The Belle II Physics Book[END_REF]. We do so to obtain our final estimates for the total branching fractions collected in Table. [START_REF] Bečirević | Revisiting B ae K (ú) ‹ ‹ decays in the Standard Model and beyond[END_REF].2, which are just below the current experimental limits [START_REF] Grygier | Search for B ae h‹ ‹ decays with semileptonic tagging at Belle[END_REF]. Note, once again, that in our final results we used |⁄ t | = (3.93 ± 0.10) ◊ 10 ≠2 . For the readers' convenience, in Tables 4.3 and 4.4 we also provide the binned values for the B ae K (ú) ‹ ‹ branching fractions, while in Appendix B.3 we provide the binned SM predictions without including the tree-level annihilation contributions to these decays.

dB(B + ae K ú+ ‹ ‹) Tree dq 2 dp 2 • = • B + G 4 F |V us V ub | 2 f 2 K ú f 2 B 64fi 3 m 3 B p 4 • ◊ (m 2 B ≠ p 2 • )(p 2 • ≠ m 2 K ú ) ≠ q 2 (p 2 • ≠ 2m 2 K ú ) (m 2 • ≠ p 2 • ) 2 + m 2 • 2 • , ( 4 
B(B + ae K ú+ ‹ ‹) Tree = • B + G 4 F |V us V ub | 2 f 2 K ú f 2 B 128fi 2 m 3 B m • • ◊ (m 2 • ≠ m 2 K ú ) 2 (m 2 B ≠ m 2 • ) 2 A 1 + 2m 2 K ú m 2 • B . ( 4 
Before closing this section, we should stress that depending on the precision, the so-called "Tree" contribution can be important when discussing the ratio r lh (4.11). While the case of B ae K S ‹ ‹ remains unchanged, we note that for the charged mode:

q 2 -bin [GeV 2 ] B(B + ae K + ‹ ‹) ◊ 10 6 ‡ B K + /B K + B(B 0 ae K S ‹ ‹) ◊ 10 6 ‡ B K S /B K S [0, 4] (1 
q 2 -bin [GeV 2 ] B(B + ae K ú+ ‹ ‹) ◊ 10 6 ‡ B K ú+ /B K ú+ B(B 0 ae K ú0 ‹ ‹) ◊ 10 6 ‡ B K ú0 /B K ú0 [0, 4] (1 
B(B + ae K + ‹ ‹) Tree B(B + ae K + ‹ ‹) ¥ 11 % - - - - - low≠q 2 , 13% - - - - - high≠q 2 , ( 4.25) 
where the denominator represents the sum of values obtained by using Eq. (4.5) and Eq. (4.20).

Improved strategies

We now explore the strategies allowing us to reduce the impact of hadronic uncertainties, while trying to keep the sensitivity to the BSM physics pronounced. In the following discussion, we focus on B ae K S ‹ ‹ which is not impacted by the above mentioned "Tree" contribution.

B ae K‹ ‹ at high-q 2

For B ae K‹ ‹ decays, the simplest strategy to reduce the theoretical uncertainty is to focus on the high-q 2 region, where f + (q 2 ) is precisely determined in LQCD. This restriction to high q 2 does hamper the sensitivity of this quantity to New Physics which would only rescale the entire q 2spectrum for left-handed neutrinos (see Sect. 4.3). 9 The main disadvantage of this approach is that less statistics would be available in the experimental measurement, which to our view is outweighed by the advantage of having better theoretical control over the SM prediction.

By considering the two intervals, q 2 Ø 12 GeV 2 (bin I) and q 2 Ø 16 GeV 2 (bin II), we find that they comprise about 30 % and 15 % of the full event sample, respectively. The corresponding SM predictions in these bins are:

B(B ae K S ‹ ‹) SM bin I = (0.670 ± 0.018 ± 0.040) ◊ 10 ≠6 , ( 4.26) 
B(B ae K S ‹ ‹) SM bin II = (0.292 ± 0.008 ± 0.017) ◊ 10 ≠6 , (

where the form factor uncertainties become subdominant compared to the one arising from the CKM matrix elements. Note also that the relative uncertainties in these intervals are about a factor of 2 smaller than the one from the total branching fraction, see Table 4.2.

This strategy provides a clear way to avoid the uncontrolled form factor uncertainties in the B ae K transitions, provided the binned information will be made available by Belle-II. However, there are several limitations to this approach. Firstly, the uncertainty associated with the CKM factor remains important, in particular the one arising from discrepancies between di erent determinations of |V cb |, cf. Sect. 4.1.4. Moreover, as of now, this idea cannot be fully exploited for B ae K ú decays since the LQCD results at nonzero recoil have been obtained by only one collaboration and without a full control over systematic uncertainties [START_REF] Horgan | Lattice QCD calculation of form factors describing the rare decays B ae K ú ¸+¸≠ and B s ae "¸+¸≠[END_REF]. These limitations call for alternative approaches to reduce the theoretical errors, as discussed in the following.

(‹/¸) ratios

In this section we explore an alternative way to reduce the theoretical uncertainty on both B ae K‹ ‹ and B ae K ú ‹ ‹ decays by exploiting the similarity with the corresponding decays into charged leptons. More precisely, we study the following ratio,

R (‹/¸) K (ú) [q 2 0 , q 2 1 ] © B(B ae K (ú) ‹ ‹) B(B ae K (ú) ¸¸) - - - - - - [q 2 0 ,q 2 1 ] , ( 4.28) 
where ¸oe {e, µ}, and the branching fractions are integrated over the same q 2 interval, [q 2 0 , q 2 1 ], both in the numerator and in the denominator. Since the considered lepton masses are negligible with respect to the other mass scales in the process, we can expect a cancellation not only of the CKM factors, but also of the form factors in Eq. (4.28), provided the q 2 -bin is chosen judiciously. Of course, the region around the cc resonances (i.e. q 2 ≥ [6, 15] GeV 2 ) must be avoided, as the resonances would completely spoil the benefits of the ratio R

(‹/¸) K (ú) [q 2 0 , q 2 1 ]
. Moreover, one should consider a region where C e 9 (q 2 ) is under reasonable theoretical control. The optimal choice turns out to be the interval q 2 oe [1.1, 6] GeV 2 , the one that is already considered in the experimental tests of lepton flavor universality (LFU) [START_REF]Test of lepton universality in b ae s¸+¸≠ decays[END_REF].

We briefly recall that the processes based on b ae s¸¸can be described by the following e ective Lagrangian [START_REF] Altmannshofer | Symmetries and Asymmetries of B ae K ú µ + µ ≠ Decays in the Standard Model and Beyond[END_REF]:

L baes¸ȩ = 4G F Ô 2 ⁄ t ÿ i 3 C i O i + C iÕ O iÕ 4 + h.c. , (4.29) 
where the e ective coe cients C ¸i © C ¸i (µ) and operators O ¸i © O ¸i (µ) are defined at the scale µ = m b . The relevant operators to our study are [START_REF] Altmannshofer | Symmetries and Asymmetries of B ae K ú µ + µ ≠ Decays in the Standard Model and Beyond[END_REF][START_REF] Buras | Theoretical uncertainties and phenomenological aspects of B -> X(s) gamma decay[END_REF][START_REF] Bobeth | Photonic penguins at two loops and m t dependence of BR[B ae X s l + l ≠ ][END_REF].

O ¸9 = e 2 (4fi) 2 1 s" µ P L b 21 ¯"µ ¸2 , ( 4.30) 
O ¸1 0 = e 2 (4fi) 2 1 s" µ P L b 21 ¯"µ " 5 ¸2 , ( 4 
By relying on the theoretical inputs described above, we obtain the following predictions for the and R

(‹/µ) K ú
are plotted in orange and blue respectively, as functions of q 2 in the region well below the first cc resonance. In the lower panel we display the relative error in order to better appreciate the precision with respect to those shown in Figs. [START_REF] Bečirević | Revisiting B ae K (ú) ‹ ‹ decays in the Standard Model and beyond[END_REF] Note that the di erence between the rates with muons and with electrons in the final state is completely marginal with respect to the current theoretical uncertainties. By combining these results with B(B ae K (ú) ‹ ‹) [1.1,6] , we find:

R (‹/¸) K [1.1, 6] - - - - - SM = 7.58 ± 0.04 , ( 4.34) 
and

R (‹/¸) K ú [1.1, 6] - - - - - SM = 8.6 ± 0.3 , ( 4.35) 
which are shown in Fig. 4.3. For the ratios based on B ae K decays, we obtain a relative uncertainty less than 1%, which is much smaller the 7.5% error on B(B ae K‹ ‹) [1.1,6] . The cancellation of the f + (q 2 ) form factor in R

(‹/¸) K
is indeed e cient, since the contributions involving the scalar (f 0 ) and tensor (f T ) form factors are suppressed by m 2 ¸/q 2 and by |C 7 |/|C 9 | ¥ 0.1, respectively. The same argument holds true for the pseudoscalar (A 0 ) and the tensor form factors (T 1,2,3 ) entering the B ae K ú observables. However, in the latter case, there are more form factors that survive even in the limit in which the charged lepton mass and the photon-dipole are neglected. Therefore the cancellation of the form factors work to a lesser extent and the ratio R (‹/¸) K ú is predicted with a relative uncertainty of about 5% in the bin we chose, q 2 oe [1.1, 6] GeV 2 . This resulting uncertainty is, however, almost a factor 3 smaller than the one in B(B ae K ú ‹ ‹) [1.1,6] , proving that the proposal to study the ratio could be advantageous also in this case.

Standard Model Considerations

The caveat in the above discussion is related to the choice of C e 9 (q 2 ) that one has to make in order to evaluate the full and/or partial branching fractions, B(B ae K (ú) ¸¸). That issue attracted quite a lot of attention in the literature and we will not dwell on it here. To obtain the results in Eqs. (4.34,4.35) we relied on the quark-hadron duality and used the two-loop results from Ref. [START_REF] Asatryan | Calculation of two loop virtual corrections to b ae sl + l ≠ in the standard model[END_REF]. The inclusion of the non-factorizable nonperturbative cc-contribution to C e 9 has been discussed in Ref. [START_REF] Khodjamirian | B ae K¸+¸≠ decay at large hadronic recoil[END_REF], and recently improved in Refs. [START_REF] Gubernari | Non-local matrix elements in B (s) ae {K (ú) , "}¸+¸≠[END_REF][START_REF] Gubernari | Improved theory predictions and global analysis of exclusive b sµ + µ ≠ processes[END_REF]. A reliable estimate of that contribution remains a challenging task. In practice, for example, the quark-hadron duality, mentioned above, in the interval q 2 oe [1.1, 6] GeV 2 , leads to C e 9 ƒ 4.4, also used in the popular flavio code [START_REF] Straub | flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond[END_REF]. Instead, in Ref. [START_REF] Ciuchini | Lessons from the B 0,+ ae K ú0,+ µ + µ ≠ angular analyses[END_REF] the value C e 9 ƒ 4.1 is preferred. We can now turn that problem around and actually use our ratios R where we neglect the q 2 -variation of C e 9 , which is why in Fig. 4.4 we employed ÈC e 9 Í to emphasize that it corresponds to the average of C e 9 (q 2 ) over the interval of q 2 's in which the ratio R [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF][START_REF] Luzio | a fififi decay at next-to-leading order in chiral perturbation theory[END_REF] is measured with a precision of 10% (20%), the error on the extracted ÈC e 9 Í would be ±0.4 (±0.8). Finally, we should stress that it is important to consider both the pseudoscalar and the vector kaon in the final state, since the nonfactorizable contributions are expected to be smaller in the case of K than in the case of outgoing K ú [START_REF] Khodjamirian | B ae K¸+¸≠ decay at large hadronic recoil[END_REF].

(‹/¸) K (ú) has been measured. It is interesting to note that if R (‹/¸) K [1.

BSM implications

In this section we discuss the sensitivity of the observables discussed above to the contributions arising from BSM physics. We will provide the most general expressions for the ratios defined in are plotted as a function of the average value of C e 9 in a fixed q 2 bin. The black points correspond to the predictions obtained using the C e 9 input from Ref. [START_REF] Straub | flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond[END_REF]. Note that the ratio R (‹/µ) K is practically constant in the low-q 2 region and, for this reason, is only plotted in the Eq. (4.28) and briefly illustrate their variation with respect to the SM in the case of a peculiar New Physics scenario.

General expressions:

We factorize the SM contribution and, in a given q 2 -bin, we write for ¸= e, µ:

R (‹/¸) K (ú) = R (‹/¸) K (ú) - - - - SM 1 1 + "R (‹/¸) K (ú) 2 , ( 4.38) 
where "R

(‹/¸) K (ú) is the New Physics contribution. Similarly, "B ‹ ‹ K (ú)
and "B ¸Ķ (ú) are the respective shifts of B(B ae K (ú) ‹ ‹) and B(B ae K (ú) ¸¸) in a given q 2 bin, arising from BSM,

B(B ae K (ú) ‹‹) = B(B ae K (ú) ‹‹) - - - SM ! 1 + "B ‹‹ K (ú) " , B(B ae K (ú) ¸¸) = B(B ae K (ú) ¸¸) - - - SM ! 1 + "B ¸Ķ (ú) " . (4.39)
In other words, we can write:

"R (‹/¸) bin by using the B ae K and B ae K ú form factors from Ref. [231] and Ref. [START_REF] Bharucha | B ae V ¸+¸≠ in the Standard Model from light-cone sum rules[END_REF], respectively. The di erence between electron and muon coe cients lies within the quoted uncertainties.

K (ú) = "B ‹ ‹ K (ú) ≠ "B ¸Ķ (ú) 1 + "B ¸Ķ (ú) . (4.40) Decays (l = e, µ) a V V a V A a AV a AA b V V b V A b AV b AA B ae K¸¸0.
The "B ‹ ‹ K (ú) can be easily expressed in terms of the Wilson coe cients defined in the Lagrangian given in Eq. (4.2), namely,

"B ‹ ‹ K (ú) = ÿ i 2Re[C SM L ("C ‹ i ‹ i L + "C ‹ i ‹ i R )] 3|C SM L | 2 + ÿ i,j |"C ‹ i ‹ j L + "C ‹ i ‹ j R | 2 3|C SM L | 2 ≠ ÷ K (ú) ÿ i,j Re["C ‹ i ‹ j R (C SM L " ij + "C ‹ i ‹ j L )] 3|C SM L | 2 , ( 4.41) 
where we sum over the neutrino flavors i, j oe {1, 2, 3}. Note that the last term vanishes for B ae K‹ ‹ (÷ K = 0), but it is nonzero for B ae K ú ‹ ‹, since the form factors depend di erently on on the left and right Wilson coe cients. We find

÷ K ú = 2 + 2 s q 2 2 q 2 1 Â int (q 2 ) dq 2 s q 2 2 q 2 1 Â SM (q 2 ) dq 2 , ( 4.42) 
where (cf. Eq. (4.9))

 SM (q 2 ) = |N K ú (q 2 )| 2 ; 2(m B + m K ú ) 2 [A 1 (q 2 )] 2 + 64 m 2 K ú m 2 B q 2 [A 12 (q 2 )] 2 + 2⁄ K ú (m B + m K ú ) 2 [V (q 2 )] 2 < ,  int (q 2 ) = |N K ú (q 2 )| 2 ; 2(m B + m K ú ) 2 [A 1 (q 2 )] 2 + 64 m 2 K ú m 2 B q 2 [A 12 (q 2 )] 2 ≠ 2⁄ K ú (m B + m K ú ) 2 [V (q 2 )] 2 < . (4.43)
Using the form factor described in Sect. 4.1, we find that ÷ K ú = 3.47 [START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF] in the [1.1, 6] GeV 2 bin. Similarly for "B ¸Ķ (ú) we have,

"B ¸Ķ (ú) = ÿ i a i Re 1 "C ¸i 2 + ÿ i b i |"C ¸i | 2 (4.44)
where i oe {V V , AV , V A, AA}, with

"C ¸V V = "C ¸9 Õ + "C ¸9 , "C ¸V A = "C ¸1 0 Õ + "C ¸1 0 , "C ¸AV = "C ¸9 Õ ≠ "C ¸9 , "C ¸AA = "C ¸1 0 Õ ≠ "C ¸1 0 . (4.45)
We computed the numerical coe cients a i and b i , and the results are collected in Table 4.5.

SMEFT: Since we are interested in New Physics scenarios defined well above the electroweak scale, the low-energy e ective theory must be replaced by the SMEFT, which is invariant under the SU(3) c ◊ SU(2) L ◊ U (1) Y gauge symmetry [START_REF] Buchmuller | E ective Lagrangian Analysis of New Interactions and Flavor Conservation[END_REF]. The main interest of using this approach is that contributions to the b ae s‹ ‹ are partially correlated to b ae sµµ via SU(2) L gauge invariance [START_REF] Buras | B ae K (ú) ‹‹ decays in the Standard Model and beyond[END_REF][START_REF] Bause | Interplay of dineutrino modes with semileptonic rare B-decays[END_REF][START_REF] De Giorgi | A lesson from R K (ú) • • and R K (ú) ‹‹ at Belle II[END_REF][START_REF] Rajeev | Consequences of b sµ+µ-anomalies on B K(*)‹‹ , Bs (÷,÷')‹‹ and Bs "‹‹ decay observables[END_REF].

The d = 6 operators relevant to our study are:

Ë O (1) lq È ijkl = 1 L i " µ L j 21 Q k " µ Q l 2 , Ë O (3) lq È ijkl = 1 L i " µ • I L j 21 Q k • I " µ Q l 2 , Ë O eq È ijkl = 1 e i " µ e j 21 Q k " µ Q l 2 , Ë O ld È ijkl = 1 L i " µ L j 21 d k " µ d l 2 , Ë O ed È ijkl = 1 e i " µ e j 21 d k " µ d l 2 , ( 4.46) 
where Q, L denote the SM quark and lepton SU(2) L doublets, and u, d, e are the quark and lepton weak singlets. Flavor indices are denoted by i, j, k, l. In what follows, we work in the flavor basis defined with diagonal down-quark Yukawa matrix, i.e. the CKM matrix appears in the upper component of

Q i = [(V † u) i , d i ] T .
The matching of the SMEFT Lagrangian to Eq. (4. [START_REF] Altmann | Complete results for five years of GNO solar neutrino observations[END_REF] gives

"C ¸i¸i 9 ≠ "C ¸i¸i 10 = 2fi -em ⁄ t v 2 2 ÓË C (1) ¸q È ii23 + Ë C (3) ¸q È ii23 Ô , "C ¸i¸i 9 + "C ¸i¸i 10 = 2fi -em ⁄ t v 2 2 Ë C qe È ii23 , "C ¸i¸i 9 Õ ≠ "C ¸i¸i 10 Õ = 2fi -em ⁄ t v 2 2 Ë C ¸dÈ ii23 , ( 4.47 
)

"C ¸i¸i 9 Õ + "C ¸i¸i 10 Õ = 2fi -em ⁄ t v 2 2 Ë C ed È ii23 .
The (pseudo)scalar Wilson coe cients are not explicitly written since their contributions to B(B ae K (ú) ¸¸) are suppressed by the light lepton masses. Similarly, for the b ae s‹ ‹ e ective Lagrangian defined in Eq. (4.2) we get:

"C ‹ i ‹ j L = fi -em ⁄ t v 2 2 ; Ë C (1) ¸q È ij23 ≠ Ë C (3) ¸q È ij23 < , "C ‹ i ‹ j R = fi -em ⁄ t v 2 2 Ë C ¸dÈ ij23
.

(4.48)

The above relations, together with the general expression given in Eq. (4.40), allow us to predict

R (‹/¸) K (ú)
in any extension of the SM.

Illustration:

We will now consider the simplest scenario of New Physics that can contribute to the b ae sµµ decay modes, namely via left-handed e ective operators satisfying "C µµ 9 = ≠"C µµ 10 , and illustrate its impact onto the ratios (4.28). In terms of the SMEFT operators, this scenario can arise from any combination of C

(1) ¸q and C

(3) ¸q , with couplings to muons, and to 2 ae 3 quark-flavor indices. Several concrete models can induce these operators through the exchange of new bosons [START_REF] Buras | B ae K (ú) ‹‹ decays in the Standard Model and beyond[END_REF]. Clearly, these operators contribute not only to b ae sµµ, but also to b ae s‹ µ ‹µ , i.e. to both the numerator and denominator of Eq. (4.28). We classify them in terms of their SM quantum numbers (SU(3) c , SU(2) L , U(1) Y ),

• Z Õ ≥ (1, 1, 0) : One of the simplest scenarios is to extend the SM with a Z Õ that couples exclusively to left-handed quarks and leptons,

L Z Õ ∏ Ë g ij Q Qi " µ Q j + g ij L Li " µ L j È Z Õ µ , ( 4.49) 
where g Q and g L are Hermitian matrices. In this case, we find that

C (1)
¸q " = 0 , C

(3) ¸q = 0 . (4.50)

• V ≥ (1, 3, 0) : Z Õ could be a part of a weak triplet V with the following interaction Lagrangian [START_REF] Greljo | On the breaking of Lepton Flavor Universality in B decays[END_REF],

L V ∏ Ë g ij Q Qi • a " µ Q j + g ij L Li • a " µ L j È V µ a , ( 4.51) 
where g Q and g L are again Hermitian matrices, and • a are the Pauli matrices, with a = 1, 2, 3.

In this case, C

¸q = 0 , C (1) 
¸q " = 0 . (4.52)

• S 3 ≥ ( 3, 3, 1/3) : S 3 is the scalar leptoquark, often used in the literature [START_REF] Buchmuller | Leptoquarks in Lepton -Quark Collisions[END_REF][START_REF] Hiller | R K and future b ae s¸¸physics beyond the standard model opportunities[END_REF]. Its Yukawa interaction is given by

L S 3 ∏ y ij L Q C i i• 2 1 • • S3 2 L j + h.c. , (4.53) 
which then imply at tree-level, C

¸q = 3 C (1) 
• U 1 ≥ (3, 1, 2/3) : Another leptoquark often used in literature is the vector leptoquark U 1 which interacts with the left-handed fermions via [START_REF] Buchmuller | Leptoquarks in Lepton -Quark Collisions[END_REF],

L U 1 ∏ x ij L Q i " µ L j U µ 1 + h.c. , (4.55) 
from which we have, C

¸q = C (3) ¸q . (4.56) (1) 
This combination of Wilson coe cient is peculiar as it contributes to b ae s¸¸at tree-level, but not to b ae s‹ ‹ due to a cancellation in Eq. (4.48).

The concrete models listed above predict di erent patterns for the e ective coe cients C (right panel) for each of the scenarios listed above. For illustration purposes we consider the [1.1, 6] GeV 2 interval. The SMEFT operators induce not only a modification of the numerator, but also of the denominator, which actually enhances the e ect up to O(40%) in some models. In other words, besides the theoretical accuracy of the R (‹/¸) K (ú) ratios, which is improved compared to the separate branching fractions, these ratios also allow us to increase the sensitivity to the type of New Physics e ects considered here.

The above discussion is based on a minimalistic assumption that only the muonic couplings in the b ae s¸¸and b ae s‹ ‹ transitions are a ected by New Physics, but obviously that assumption can be changed. For example, one can test whether or not the New Physics couplings to • 's are significant [START_REF] De Giorgi | A lesson from R K (ú) • • and R K (ú) ‹‹ at Belle II[END_REF][START_REF] Descotes-Genon | Implications of b ae sµµ anomalies for future measurements of B ae K (ú) ‹ ‹ and K ae fi‹ ‹[END_REF], such as the case in some leptoquark scenarios that can accommodate the LFU discrepancies in the b ae c• ‹ transition [START_REF] Angelescu | Single leptoquark solutions to the B-physics anomalies[END_REF]. Since these scenarios predict an enhancement of B(B ae K‹ • ‹• ) [START_REF] Bečirević | Model with two scalar leptoquarks: R2 and S3[END_REF][START_REF] Fuentes-Martín | Vector Leptoquarks Beyond Tree Level III: Vector-like Fermions and Flavor-Changing Transitions[END_REF][START_REF] Gherardi | Low-energy phenomenology of scalar leptoquarks at one-loop accuracy[END_REF], it is clear that the e ects depicted in Fig. 4.5 would only increase in this case.

Summary

In this chapter we revisited the SM estimate of B(B ae K (ú) ‹ ‹). This is particularly important for the case of the pseudoscalar meson in the final state, because the relevant form factor has been extensively studied and computed by means of LQCD. Since a new lattice calculation appeared after the most recent release of the FLAG review, we updated the FLAG average of all three form factors relevant to the B ae K transitions. Since the lattice QCD results are obtained for large q 2 one should be careful when addressing the issue of systematic uncertainties. For that reason we believe that the most reliable way to test the SM value for B Õ (B ae K (ú) ‹ ‹) is in the region of large q 2 . Furthermore, the experimental information on r lh = B(B ae K‹ ‹) low≠q 2 /B(B ae K‹ ‹) high≠q 2 would be helpful to test the validity of the extrapolation of LQCD results (obtained at high-q 2 ) to low q 2 . Besides the hadronic uncertainties in B(B ae K (ú) ‹ ‹), it is important to further improve the value of ⁄ t = V tb V ú ts which, by virtue of the CKM unitarity, is related to the problem of reconciling the value of V cb extracted from exclusive and from inclusive semileptonic decays.

Most of the uncertainties mentioned above actually cancel out if one considers the ratio of the partial decay rates of B Õ (B ae K (ú) ‹ ‹) and of B(B ae K (ú) ¸¸), which we denote by R (‹/¸) K (ú) . The major hadronic uncertainty in both rates comes from the form factor which cancels out in R (‹/¸) K (ú) . The uncertainty from the multiplicative CKM factor ⁄ t cancels out as well. However, the price to pay is that the Wilson coe cient C 9 , entering B(B ae K (ú) ¸¸), becomes an obstacle because it is sensitive to the contribution from the non-local operator arising from the vector current couplings to cc. In the literature, this contribution is often estimated by using the quark-hadron duality or by resorting to the model calculations. If we stick to the SM, we show that from a measurement of the ratio R (‹/¸) K (ú) in a given interval of q 2 (preferably below the first cc resonance), one can extract the value ÈC e 9 Í, and indeed check whether the sizable non-factorizable contribution would result in ÈC e 9 Í K " = ÈC e 9 Í K ú , as sometimes argued in the literature (we recall that by ÈC e 9 Í we denote the C e 9 (q 2 ) averaged over the interval in which R (‹/¸) K (ú) is measured). To further support the benefits of measuring R (‹/¸) K (ú) , we also illustrate how it can be used to look for the e ects of BSM physics. In a scenario in which the New Physics contributed at low energies through left-handed couplings to quarks and leptons, we find that R (‹/¸) K (ú) would be a more sensitive test of presence of physics BSM than its numerator and/or its denominator separately. We also provided an illustration of such a scenario in several simple models.

Chapter 5 Axions, a path to the hot dark matter bound

In recent years, significant progress in experimental technologies have brought within reach the possibility of detecting in terrestrial experiments the "invisible" axions. This sparked interest in the field, leading to numerous new theoretical and phenomenological studies, as well as to a plethora of experimental proposals (see [START_REF] Irastorza | New experimental approaches in the search for axion-like particles[END_REF][START_REF] Di Luzio | The landscape of QCD axion models[END_REF][START_REF] Sikivie | Invisible Axion Search Methods[END_REF] for recent reviews). Moreover, the ongoing experiments have already started to investigate the benchmark KSVZ/DFSZ axion models, with plans to delve deeper into the relevant parameter space in the coming decades. For this reason, it is of great importance, from the theory side, to push the "precision axion physics" in order to be ready to face any possible discovery.

The experimental developments have been also accompanied by theoretical progresses. In particular, for a proper understanding of the axion properties (such as its mass and its couplings to photons and matter fields) one has to deal with low-energy QCD. This is typically done via chiral Lagrangian techniques [START_REF] Vecchia | Chiral Dynamics in the Large n Limit[END_REF][START_REF] Kaplan | Opening the Axion Window[END_REF][START_REF] Georgi | Manifesting the Invisible Axion at Low-energies[END_REF], but also, more importantly, with the help of numerical simulations of QCD on the Lattice [START_REF] Bonati | Axion phenomenology and ◊-dependence from N f = 2 + 1 lattice QCD[END_REF][START_REF] Borsanyi | Calculation of the axion mass based on high-temperature lattice quantum chromodynamics[END_REF]. For instance, the QCD Next-to-Leading Order (NLO) corrections to the axion potential (involving the non-derivative part of the axion-pion Lagrangian) and to the axion coupling to photons were computed in Ref. [START_REF] Di Cortona | The QCD axion, precisely[END_REF], while we presented the complete NLO axion-pion Lagrangian (also involving derivative axion couplings) in Refs. [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF][START_REF] Luzio | a fififi decay at next-to-leading order in chiral perturbation theory[END_REF] for the QCD axion case and for the axion-like particle case, respectively.

An important application of the axion-pion Lagrangian is the axion hot DM (HDM) bound, which depends on the axion thermalization via pion scattering. The process afi ae fifi can be computed at low energies within chiral perturbation theory (ChPT). The Leading Order (LO) calculation was performed in Refs. [START_REF] Chang | Hadronic axion window and the big bang nucleosynthesis[END_REF][START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF], while in Ref. [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF] we considered the impact of NLO corrections in order to assess the convergence of the chiral expansion. Our result at NLO shows that the temperature at which the chiral expansion of the axion-pion thermalization rate breaks down is T ‰ ≥ 70 MeV, and hence it is very important to extend the validity of ChPT to the range between T ‰ and the critical temperature of QCD confinement, namely T c ƒ 155 MeV. For this purpose, the improvement of the chiral description of the axion-pion scattering was performed independently in Refs. [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF][START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF], with di erent phenomenological approaches, leading to 8% agreement between the thermal rates. The most updated HDM bound, obtained in Refs. [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF][START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF], reads 1 m a . 0.24 eV. Although this bound is one order of magnitude weaker than typical astrophysical constraints, the latter are subject to either model-dependence (see e.g. [START_REF] Di Luzio | Astrophobic Axions[END_REF][START_REF] Bjorkeroth | Axion-electron decoupling in nucleophobic axion models[END_REF]) or very significant astrophysical uncertainties (as in the case of the SN1987A limit [START_REF] Ra Elt | Astrophysical methods to constrain axions and other novel particle phenomena[END_REF]). Moreover, future Cosmic Microwave Background (CMB) probes, such as CMB-S4 experiments [284] and Simons Observatory (SO) [START_REF] Ade | The Simons Observatory: Science goals and forecasts[END_REF], might even turn the HDM bound into a discovery tool for the axion. This chapter is structured as follows: In Sect. 5.1 we introduce the axion as a solution to the strong CP problem. We further present the axion e ective Lagrangian, with a particular focus on the low-energy interactions with pions, and the matching with the two most studied benchmark models, the KSVZ and DFSZ models. In Sect. 5.2 we briefly overview the possibility for an axion thermal population to be discovered by the next generation of CMB experiments. Afterward, in Sect. 5.3 we provide the axion thermal production rate at NLO in ChPT, and in Sect. 5.4 we examine the convergence of the chiral expansion. In Sect. 5.5 we present the calculation of the axion-pion thermalization rate within unitarized NLO ChPT, and extract the HDM bound on the axion mass. We complete the phenomenological study in Sect. 5.6, by showing the impact on the HDM bound of the axion running couplings in the case of DFSZ model. We finally summarise our findings in Sect. 5.7, while additional technical details relevant to this chapter are provided in Appendix D.

Axion physics

Solving the Strong-CP problem

One of the most appealing solutions to the strong CP problem is the one proposed by Peccei and Quinn [START_REF] Peccei | Constraints Imposed by CP Conservation in the Presence of Instantons[END_REF][START_REF] Peccei | CP Conservation in the Presence of Instantons[END_REF] in 1977. The so-called Peccei-Quinn (PQ) mechanism relies upon the introduction of the axion [START_REF] Weinberg | A New Light Boson?[END_REF][START_REF] Wilczek | Problem of Strong P and T Invariance in the Presence of Instantons[END_REF], a scalar field denoted a(x), described by the following e ective Lagrangian:

L a = 1 2 (ˆµa) 2 + g 2 s 32fi 2 a f a G  G + L(ˆµa, Â).
(5.1)

1 Altough Refs. [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF][START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF] obtain the same bound, it must be stressed that this agreement is almost an accident. On the one hand, in Ref. [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF] we employ the exact axion-pion scattering amplitude at NLO, but the instantaneous decoupling approximation is used to obtain the decoupling temperature of the axion. On the other hand, Ref. [START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF] performs a detailed cosmological analysis using an approximated scattering amplitude. More details on the comparison can be found in [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF].

The basic ingredient solving the strong CP problem is a quasi-shift symmetry a ae a + -f a , where f a is the axion decay constant, under which the Lagrangian transforms as

L a ae L Õ a = L a + g 2 s 32fi 2 -G Â G. (5.2)
This shift, tuning accordingly the -parameter, can be used to remove the ◊ term (cf. Appendix C) from the Lagrangian. On the other hand, a theorem by Vafa and Witten [START_REF] Vafa | Parity Conservation in QCD[END_REF] ensures that the vacuum expectation value of the axion vanishes, ÈaÍ = 0, thus solving the strong CP problem. This result relies on the fact that QCD is a vector-like theory, then if ⁄ is an eigenvalue of the Dirac operator i / D = ⁄Â, also is ≠⁄, i / D(" 5 Â) = ≠⁄(" 5 Â). This ensures that the path integral measure of QCD is positive definite, since the fermion determinant is a product of positive terms [START_REF] Vafa | Restrictions on Symmetry Breaking in Vector-Like Gauge Theories[END_REF]. Using the path-integral formula for the ground state energy [START_REF] Coleman | Aspects of Symmetry: Selected Erice Lectures[END_REF][START_REF] Peskin | An Introduction to quantum field theory[END_REF] e ≠(V T )V e = ⁄ dA a µ d d  e ≠S(A,Â, Â)+i◊‹ , (

the following inequality holds:

e ≠(V T )V e = - - - - - ⁄ dA a µ d d  e ≠S(A,Â, Â)+i◊‹ - - - - - AE ⁄ dA a µ d d  - - - - - e ≠S(A,Â, Â)+i◊‹ - - - - - = ⁄ dA a µ d d  e ≠S(A,Â, Â) .
(5.4) Therefore, once ◊ has been absorbed by the axion shift, the minimum of the vacuum state energy is reached when ÈaÍ = 0. This result can be verified explicitly by computing the axion potential in chiral perturbation theory. In Eq. (5.3) S stands for the Euclidean action, (V T ) for the Euclidean volume, and V e for the e ective potential, while ‹ is the winding number defined in Eq. (C.17).

The axion-gluon operator at the core of the PQ-mechanism has dimension d = 5, therefore the e ective Lagrangian in Eq. (5.1) requires a UV completion above the scale f a . The first renormalizable theory solving the strong CP problem in this way has been formulated by Peccei and Quinn [START_REF] Peccei | Constraints Imposed by CP Conservation in the Presence of Instantons[END_REF][START_REF] Peccei | CP Conservation in the Presence of Instantons[END_REF]. Their theory enlarges the Standard Model with a global U (1) P Q chiral symmetry, spontaneously broken and anomalous under QCD. Later, Weinberg and Wilczek [START_REF] Weinberg | A New Light Boson?[END_REF][START_REF] Wilczek | Problem of Strong P and T Invariance in the Presence of Instantons[END_REF] realized that the pseudo-Goldston boson related to the spontaneous symmetry breaking of U (1) P Q had remarkable physicals implications.

Axion e ective Lagrangian

In this section we introduce the model-independent axion properties in the case of 2-flavor QCD, which will be the groundwork for the main results presented in this part of the thesis. A description of the e ective Lagrangian above the Electroweak scale is given in [START_REF] Georgi | Manifesting the Invisible Axion at Low-energies[END_REF], along with the scaling procedure down to low energies. Here we will present the e ective Lagrangian at energies above the QCD confinement scale, and we will show how to match it to the Chiral Lagrangian describing a theory of axions, pions and photons [START_REF] Di Luzio | The landscape of QCD axion models[END_REF]. Defining

q = Q a u d R b , M q = Q a m u 0 0 m d R b , ( 5.5) 
the e ective Lagrangian reads

L e = 1 2 (ˆµa) 2 + g 2 s 32fi 2 a f a G  G + 1 4 g 0 a" aF  F + ˆµa 2f a qc 0 q " µ " 5 q ≠ qL M q q R + h.c. . (5.6)
Firstly, apart from the anomalous terms G Â G and F Â F , we observe that the shift symmetry implies that the Lagrangian only involves derivatives of the axion field. As already noted, the anomalous couplings to gluons and photons arise when, schematically,

Tr 3 ‰ P Q Q 2 4 " = 0, Tr 3 ‰ P Q T a T b 4 " = 0 , ( 5.7) 
where ‰ P Q is the matrix containing the PQ charges of the SM particles, Q is the electric charge matrix Q = diag(2/3, ≠1/3) and T a,b are the SU(3) C generators. The coupling of the axion to the quark axial current is given by the model-dependent matrix

c 0 q = Q a c 0 u 0 0 c 0 d R b .
(5.8)

To avoid dealing with gluons, it is convenient to rotate away the aG Â G term in Eq. (5.6) with a chiral rotation acting on the quarks as q ae e i" 5 a 2fa Qa q.

(5.9)

As a consequence of the non-invariance of the integration measure in the path integral, the following terms are added to the Lagrangian (N c is the number of colors)

"L ef f = ≠ g 2 s 32fi 2 a f a Tr(Q a )G Â G ≠ N c - 4fif a Tr(Q a Q 2 )F Â F . (5.10)
It is su cient to require Tr(Q a ) = 1 in order to make the axion-gluon term disappear. As we will see, the arbitrariness of Q a will be extremely useful to simplify the calculations, since it can be used to avoid linear axion-pion mixing at LO. As a result of this axion-dependent rotation, the mass matrix becomes M q ae M a © e i a 2fa Qa M q e i a 2fa Qa , (5.11) while the kinetic term modifies c 0 q to c 0 q ae c q © c 0 q ≠ Q a .

(5.12)

The e ective Lagrangian then becomes:

L e = 1 2 (ˆµa) 2 + 1 4 g a" aF  F + ˆµa 2f a qc q " µ " 5 q ≠ qL M a q R + h.c. , (5.13) with g a" = g 0 a" ≠ N c - 4fif a Tr(Q a Q 2 ) . (5.14)
The above Lagrangian is valid at energies between v EW and O( QCD ). Below the latter scale, it is necessary to describe the axion interactions with strongly interacting particles through an e ective Chiral Lagrangian [START_REF] Vecchia | Chiral Dynamics in the Large n Limit[END_REF][START_REF] Georgi | Manifesting the Invisible Axion at Low-energies[END_REF] containing pions as pseudo-Goldstone bosons

L ‰ a = f 2 fi 4 Tr Ë (D µ U ) † D µ U + U ‰ + ‰ † U † È + ˆµa f a 1 2 Tr [c q ‡ a ] J a µ (5.15)
with f fi = 92.21 MeV, and ‰ = 2B 0 M a , where M a is defined in Eq. (5.11) and B 0 = ÈqqÍ/f 2 fi is proportional to the quark condensate. The Goldstone matrix U , in the simple SU(2) case, takes the form

U = e ifi a ‡ a /ffi = 1 cos fi f fi + i ‡ a fi a fi sin fi f fi (5.16)
with fi a and ‡ a (a = 1, 2, 3) being the real pions fields and the Pauli matrices, respectively, and fi = Ô fi 0 fi 0 + 2fi + fi ≠ . J a µ is the chiral axial current, which to lowest order in the chiral expansion reads

J a µ = i 4 f 2 fi Tr Ë ‡ a {U, (D µ U ) † } È .
(5.17)

The covariant derivative is given by

D µ U = ˆµU + ieA µ [Q, U ],
where A µ is the photon field. Note that we used the identity

‡ a ij ‡ a kl = 2(" il " jk ≠ 1 2 " ij " kl ) to write qi [c q ] ij " µ " 5 q j = 1 2 3 Tr[c q ] q" µ " 5 q ¸˚˙I so≠singlet +Tr[c q ‡ a ] q" µ " 5 ‡ a q ¸˚˙I so≠triplet 4 , ( 5.18) 
and thus to obtain Eq. (5.15) from Eq. (5.13). The Iso-singlet current is associated with the ÷ Õ and can be neglected for our purposes, while the Iso-triplet current is analogous to Eq. (5.17) for the quark fields. The Chiral Lagrangian is a very powerful tool for axion physics, since it provides the 67 axion potential and mass. By expanding the mass term in Eq. (5.15), namely,

V (a, fi) = ≠ f 2 fi 4 Tr Ë U ‰ + ‰ † U † È ƒ ≠ f 2 fi B 0 Y ] [ Tr [M q ] cos fi f fi ≠ a 2f a Tr 5 ‡ a fi a fi {Q a , M q } 6 sin fi f fi Z \ , (5.19)
we get the axion mass [START_REF] Weinberg | A New Light Boson?[END_REF][START_REF] Georgi | Manifesting the Invisible Axion at Low-energies[END_REF]]

m 2 a = m u m d (m u + m d ) 2 m 2 fi f 2 fi f 2 a ae m a ƒ 5.7 Q a 10 12 f a [GeV] R b µeV , (5.20)
and we further observe that by choosing Q a = M ≠1 q /Tr[M ≠1 q ] the linear axion-pion couplings in the second term of the potential vanish, since Pauli matrices are traceless.

Axion coupling to pions

Now we move on to analyze the axion derivative interaction with the axial pion current

L ‰ a ∏ ˆµa f a 1 2 Tr [c q ‡ a ] J a µ .
(5.21)

Firstly by fixing Q a = M ≠1 q /Tr[M ≠1 q ], we observe that c q is a diagonal matrix

c q = Q a c 0 u ≠ m d mu+m d 0 0 c 0 d ≠ mu mu+m d R b , (5.22)
and therefore the only non-zero component in the trace is the one with index a = 3

Tr Ë c q ‡ 3 È = c u ≠ c d = c 0 u ≠ c 0 d + m u ≠ m d m u + m d . (5.23)
Now, after recalling that fi © Ô fi 0 fi 0 + 2fi + fi ≠ , we can expand the current

J a µ = i 4 f 2 fi Tr 5 ‡ a 3 UD µ U † ≠ U † D µ U 46 =f fi ˆµfi a ≠ 1 f fi fi 2 ˆµfi a ≠ 3 2f fi fi a ˆµfi 2 .
(5.24)

As a result, the derivative interaction is given by

ˆµa f a 1 2 Tr [c q ‡ a ] J a µ ƒ (5.25) ≠ 1 2 Q a m d ≠ m u m u + m d + c 0 d ≠ c 0 u R b f fi f a ˆµaˆµfi 0 + 1 3 Q a m d ≠ m u m u + m d + c 0 d ≠ c 0 u R b 1 f a f fi ˆµa 3 2ˆµfi 0 fi + fi ≠ ≠ fi 0 ˆµfi + fi ≠ ≠ fi 0 fi + ˆµfi ≠ 4 .
The first term introduces a derivative mixing of the axion with the neutral pion, which can be rotated away, so that the physical fields are defined as

Y _ ] _ [ a phys = a + 'fi 0 fi 0 phys = fi 0 , (5.26) with ' © ≠ 1 2 f fi f a 3 m d ≠ m u m d + m u + c 0 d ≠ c 0 u 4 .
(5.27)

Finally, defining

C afi = 1 3 Q a m d ≠ m u m u + m d + c 0 d ≠ c 0 u R b , ( 5.28) 
we obtain that the LO Chiral Lagrangian contains only one linear term in the axion field, given by [START_REF] Di Luzio | The landscape of QCD axion models[END_REF][START_REF] Kaplan | Opening the Axion Window[END_REF][START_REF] Chang | Hadronic axion window and the big bang nucleosynthesis[END_REF][START_REF] Peccei | The Strong CP problem and axions[END_REF][START_REF] Kim | Axions and the Strong CP Problem[END_REF]]

L afi = C afi f a f fi ˆµa 3 2ˆµfi 0 fi + fi ≠ ≠ fi 0 ˆµfi + fi ≠ ≠ fi 0 fi + ˆµfi ≠ 4 .
(5.29)

The couplings c 0 d , c 0 u will be defined in Sect. 5.1.3 for the KSVZ and DFSZ models.

Axion models

The original axion model, proposed by Peccei, Quinn, Weinberg, and Wilczek (WW) [START_REF] Peccei | Constraints Imposed by CP Conservation in the Presence of Instantons[END_REF][START_REF] Peccei | CP Conservation in the Presence of Instantons[END_REF][START_REF] Weinberg | A New Light Boson?[END_REF][START_REF] Wilczek | Problem of Strong P and T Invariance in the Presence of Instantons[END_REF], is based on the assumption that the symmetry-breaking scale of the PQ-symmetry is of the order of the electroweak scale, f a ≥ 250 GeV. This implies an axion mass of order m a ≥ 100 KeV and a lifetime of order • a ≥ 0.7 s. In this model, two Higgs doublets are needed in order to implement the U (1) P Q symmetry, while the QCD anomaly is provided by the SM quarks charged under the PQ symmetry.

The vacuum expectation values of the doublets, v 1 and v 2 , are such that

v a = Ò v 2 1 + v 2 2 = v EW .
Unfortunately, experimental bounds on rare kaons and quarkonia decays, K + ae fi + a, J/Â ae "a, ae "a, have quickly ruled out an axion with such properties. This led to the building of the so-called invisible axion model, in which the axion couplings to the SM particles are su ciently suppressed to survive experimental constraints. To achieve this property, a new heavy scalar singlet is needed to decouple the PQ scale from the EW scale, so that f a ∫ v EW . Such UV completions can be classified according to whether the QCD anomaly of U (1) P Q is generated by SM quarks [START_REF] Dine | A Simple Solution to the Strong CP Problem with a Harmless Axion[END_REF][START_REF] Zhitnitsky | On Possible Suppression of the Axion Hadron Interactions[END_REF] (Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type) or by new colored fermions [START_REF] Kim | Axions and the Strong CP Problem[END_REF][START_REF] Shifman | Can Confinement Ensure Natural CP Invariance of Strong Interactions?[END_REF] (Kim-Shifman-Vainsthein-Zakharov (KSVZ) type). The main di erence between KSVZ and DFSZ-type axions is that the former does not couple to ordinary quarks and leptons at the tree level. Though many other possible axion models have been considered in the literature (see Ref. [START_REF] Di Luzio | The landscape of QCD axion models[END_REF] for a comprehensive overview), the two above-mentioned models are the most studied and universally regarded as benchmark QCD axion models.

DFSZ model

As mentioned above, in the DFSZ model [START_REF] Dine | A Simple Solution to the Strong CP Problem with a Harmless Axion[END_REF][START_REF] Zhitnitsky | On Possible Suppression of the Axion Hadron Interactions[END_REF], the scalar sector contains two Higgs doublets 

H u ≥ (1, 2, ≠1/2), H d ≥ (1,
L Y DFSZ = ≠Y U QL u R H u ≠ Y D QL d R H d ≠ Y E ¯Le R H d + h.c. . (5.30)
The scalar fields pick up the following vacuum expectation values

H u ∏ v u Ô 2 e i au vu Q a 1 0 R b , H d ∏ v d Ô 2 e i a d v d Q a 0 1 R b , ∏ v Ô 2 e i a v
, (5.31) with the requirement, in order to decouple the PQ scale, that

v ∫ v = Ò v 2 u + v 2 d ƒ 246 GeV. (5.32)
The requirement of orthogonality with the hypercharge current leads to the condition

X u v 2 u = X d v 2 d , which is satisfied for X = 1, X u = 2 cos 2 -, X d = 2 sin 2 -, with tan -= v u /v d and X i , i = , u, d are the PQ charges of the scalars.
Finally, the physical axion field is identified with

a = 1 v a ÿ i= ,u,d X i v i a i , v 2 a = v 2 + v 2 sin 2 2-, (5.33) so that v ∫ v implies v a ≥ v .
By rotating away the axion from the mass terms with the transformation f ae e ≠i" 5 X f a 2va f , f = u, d, e, the anomalous axion couplings to G G and F F are introduced, namely,

"L DFSZ = -s 8fi a f a G G + -em 8fi E N a f a F F (5.34)
where

f a = v a /2N , N = n g 3 1 2 X u + 1 2 X d 4 = 3 , (5.35) E = n g A 3 3 2 3 4 2 X u + 3 3 ≠ 1 3 4 2 X d + (≠1) 2 X d B = 8 , (5.36)
and n g the number of SM fermions generations. In addition, the fermionic kinetic terms generate the following derivative coupling of the axion to the SM particles d,c,s,b,t,e,µ,• (5.37) from which we obtain the axion-fermion couplings defined in the DFSZ-I model

"L f kin = X f ˆµa 2v a f " µ " 5 f = c 0 f ˆµa 2f a f " µ " 5 f , f = u,
c 0 u,c,t = 1 3 cos 2 -, c 0 d,s,b = c 0 e,µ,• = 1 3 sin 2 -. (5.38)
The range of -can be obtained by imposing the partial wave unitarity on 2 ae 2 fermion scattering mediated by Yukawa coupling. Taking into account the group theory factors [START_REF] Di Luzio | Implications of perturbative unitarity for scalar di-boson resonance searches at LHC[END_REF][START_REF] Luzio | What is the scale of new physics behind the B-flavour anomalies?[END_REF], Ref. [START_REF] Björkeroth | Axion-electron decoupling in nucleophobic axion models[END_REF] finds (5.39)

Y DFSZ t,b < Ò 16fi/3. Considering that Y SM t = Ô 2m t /v = Y DFSZ
In total, this model features 10 spin-zero particles, among which three are absorbed by the SM gauge bosons W ± and Z. Of the remaining seven scalars, two charged scalars H ± , one pseudoscalar A 0 and two scalars h 2,3 are generally heavy, with masses that can range from the TeV to the v scale, depending on the scalar potential parameters (see e.g. [START_REF] Bertolini | Massive neutrinos and invisible axion minimally connected[END_REF][START_REF] Espriu | Axion-Higgs interplay in the two Higgs-doublet model[END_REF]). The lightest scalars are the SM Higgs, with m H Ã v and, finally, the massless axion.

KSVZ model

The KSVZ model [START_REF] Kim | Axions and the Strong CP Problem[END_REF][START_REF] Shifman | Can Confinement Ensure Natural CP Invariance of Strong Interactions?[END_REF] is constructed by requiring that ordinary quarks and leptons are not charged under U (1) P Q . This means that c 0 f = 0 for every SM fermion. The KSVZ UV completion contains a new fermion which transforms as Q ≥ (3, 1, 0) under SU(3) ◊ SU(2) ◊ U (1), coupled to a SM-singlet scalar ≥ (1, 1, 0). The Lagrangian is

L KSVZ = |ˆµ | 2 + Qi / DQ ≠ (y Q QL Q R + h.c.) ≠ ⁄ A | | 2 ≠ v 2 a 2 B 2 , (5.40)
which is symmetric under the global U (1) P Q symmetry

ae e i-, Q L ae e i-/2 Q L , Q R ae e ≠i-/2 Q R .
(5.41)

In polar coordinates, the scalar field has the form

= fl + v a Ô 2 e i a va , (5.42)
where the axion is the massless Goldstone boson and fl is the radial mode with a mass m 2 fl = 2⁄v 2 a . The fermion Q gets a mass through the Higgs mechanism,

m 2 Q = y 2 Q v 2 a /2.
Assuming v a ∫ v EW , we integrate out the heavy field fl and we are left with

L KSVZ = ≠m Q QL Q R e i a va + h.c. . (5.43)
By performing a chiral axion-dependent rotation Q ae e ≠i" 5 a 2va Q, it is possible to decouple the axion from Q, thus integrating it away. As a consequence of the QCD anomaly, the aG G coupling required by the PQ mechanism is of the form .44) where in this specific implementation N = 1. The coupling with photons arises through axionmesons mixing, even if the new quark Q has zero electric charge. In more general cases, Q can be taken to belong to a non-trivial representation of SU( 2)◊U (1), so that besides the QCD anomalous term also an electromagnetic anomalous term arises, yielding a non-zero g 0 a" . Phenomenologically, the preferred values of g 0 a" have been discussed in Refs. [START_REF] Di Luzio | Redefining the Axion Window[END_REF][START_REF] Di Luzio | Window for preferred axion models[END_REF].

"L KSVZ = g 2 s 32fi 2 a v a G G , ( 5 

Axion as hot dark matter

In spite of the extensive history of the QCD axion paradigm, it is only recently that the experimental axion program has become a reality. Indeed, several experiments and new detection concepts promise to open for exploration the regions of parameter space which were thought unreachable until a decade ago.

In the rest of this chapter, we will focus on the bound on the axion mass known as the hot dark matter (HDM) bound, which depends on the axion thermalization via pion scattering in the early Universe.

From the standpoint of the axion solution to the strong CP problem, an unavoidable process keeping the axion in equilibrium with the SM bath arises from the model-independent coupling to gluons, -s 8fi a fa G G. For decoupling temperatures T D & 1 GeV, the axion thermal production proceeds via its scatterings with gluons in the quark-gluon plasma [START_REF] Masso | On axion thermalization in the early universe[END_REF][START_REF] Graf | Thermal axion production in the primordial quark-gluon plasma[END_REF], along with other thermalization channels arising from model-dependent axion couplings to quarks [START_REF] Salvio | Thermal axion production[END_REF][START_REF] Baumann | New Target for Cosmic Axion Searches[END_REF][START_REF] Ferreira | Observable Windows for the QCD Axion Through the Number of Relativistic Species[END_REF][START_REF] Arias-Aragon | Production of Thermal Axions across the ElectroWeak Phase Transition[END_REF], photons [START_REF] Turner | Thermal Production of Not SO Invisible Axions in the Early Universe[END_REF], and leptons [START_REF] D'eramo | Hot Axions and the H 0 tension[END_REF]. For decoupling temperatures below the QCD phase transition, T D . 155 MeV, processes involving pions and nucleons are dominant [START_REF] Chang | Hadronic axion window and the big bang nucleosynthesis[END_REF][START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF][START_REF] Berezhiani | Primordial background of cosmological axions[END_REF]. These interactions have the advantage of occurring very late in the thermal history, so that it is unlikely that the corresponding population of thermal axions could be diluted by inflation. The determination of the axion production rate during and above3 the quark-hadron transition demands for non perturbative techniques, and the transition encompasses the range of axion masses m a oe [0.01, 0.1] eV (with heavier axions leading to lower decoupling temperatures). For axions approaching the eV, scale the main thermalization channel is afi ¡ fifi [START_REF] Chang | Hadronic axion window and the big bang nucleosynthesis[END_REF][START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF], with T D . 155 MeV. In this regime, scatterings with nucleons are subdominant because of the exponential suppression in their number density, while processes involving kaons start to be relevant at temperatures T & 150 MeV, see e.g. [START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF].

The axion thermal population will give a sizeable contribution to the number of relativistic degrees of freedom in the early Universe, denoted as N e [314]. This parameter is constrained by the Big Bang Nucleosynthesis (BBN) [START_REF] Cyburt | Big Bang Nucleosynthesis: 2015[END_REF] and the cosmic microwave background (CMB) observations [START_REF] Aghanim | Planck 2018 results. I. Overview and the cosmological legacy of Planck[END_REF][START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF], and thus it is sensitive to species that were relativistic at the recombination time and during BBN. In the SM, only neutrinos contribute to N e . Accounting for the fact that neutrino decoupling is not instantaneous (in which case N SM e = 3), and including subleading corrections, the most precise determination reads N SM e = 3.0432(2) [START_REF] Cielo | Ne in the Standard Model at NLO is 3.043[END_REF]. The presence of other relativistic degrees of freedom beyond the SM, such as a thermal population of axions [START_REF] Hannestad | Neutrino and axion hot dark matter bounds after WMAP-7[END_REF][START_REF] Archidiacono | Axion hot dark matter bounds after Planck[END_REF][START_REF] Valentino | Cosmological Axion and neutrino mass constraints from Planck 2015 temperature and polarization data[END_REF] g S (T D ) being the number of entropy degrees of freedom at the axion decoupling temperature T D (see Fig. 5.1). Remarkably, N e only depends on the temperature at which the axion decouples from the thermal bath, which in turn depends on the axion couplings and its mass. Comparing cosmological fits with observational data allows us to constrain the highest attainable axion mass, and such bound is also known as the Hot Dark Matter (HDM) bound. The forecast sensitivity of the planned CMB-S4 [START_REF] Abazajian | CMB-S4 Science Book, First Edition[END_REF] and Simons Observatory (SO) [START_REF] Ade | The Simons Observatory: Science goals and forecasts[END_REF] surveys will cover the mass range in which the axion decouples below or during the QCD crossover, as shown by the dashed horizontal lines in Fig. 5.1, thus a precise determination of the axion-pion thermalization rate, including N e as a function of T . Horizontal lines represent current (solid) and forecast (dashed) bounds from Planck [START_REF] Aghanim | Planck 2018 results. I. Overview and the cosmological legacy of Planck[END_REF][START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF], CMB-S4 [START_REF] Abazajian | CMB-S4 Science Book, First Edition[END_REF] and Simons Observatory (SO) [START_REF] Ade | The Simons Observatory: Science goals and forecasts[END_REF].

renormalization group e ects, will be necessary to set definite targets.

It is the purpose of the following sections to revisit the axion HDM bound in light of the recent progresses in the phenomenological description of the axion-pion scattering [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF][START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF][START_REF] Di Luzio | Running into QCD axion phenomenology[END_REF].

Axion-pion scattering rate

LO amplitude

For temperatures below the QCD phase transition, the main process relevant for the axion thermalization rate is a(p 1 )fi 0 (p 2 ) ae fi + (p 3 )fi ≠ (p 4 ). At LO, the amplitude of such process reads (see Eq. (5.29))

M LO afi 0 aefi + fi ≠ = C afi f fi f a 3 2 Ë m 2 fi ≠ s È , ( 5.46) 
with s = (p 1 +p 2 ) 2 . Similar expressions hold for the crossed channels, afi ≠ ae fi 0 fi ≠ and afi + ae fi + fi 0 , after replacing s ae t = (p 1 ≠ p 3 ) 2 and s ae u = (p 1 ≠ p 4 ) 2 , respectively. By taking equal masses for the neutral and charged pions, one finds the squared matrix element, summed over the three above channels, to be [START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF] ÿ

|M| 2 LO = A C afi f a f fi B 2 9 4 Ë s 2 + t 2 + u 2 ≠ 3m 4 fi È .
(5.47)

NLO amplitude

To compute the axion thermalization process beyond LO we need to consider the one-loop amplitudes from the LO Lagrangian in Eq. (5.29), as well as the tree-level amplitudes stemming from the NLO axion-pion Lagrangian, both contributing to O(p 4 ) in the chiral expansion. The NLO interactions include the derivative coupling of the axion to the NLO axial current, which has been computed in Ref. [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF] for the first time.

We use the NLO chiral Lagrangian given in Ref. [START_REF] Gasser | Chiral Perturbation Theory to One Loop[END_REF] (see for example Appendix D in [START_REF] Scherer | Introduction to chiral perturbation theory[END_REF] for the trace notation), which, considering only two flavors, depends on 10 low-energy constants (LECs): ¸1, ¸2, . . . , ¸7, h 1 , h 2 , h 3 . The axion field has been included in the phase of the quark mass matrix, as shown in Eq. (5.11). Since we are interested in the 2 ae 2 scattering processes, we can neglect the O(p 4 ) Wess-Zumino-Witten term [START_REF] Wess | Consequences of anomalous Ward identities[END_REF][START_REF] Witten | Global Aspects of Current Algebra[END_REF] as it contains operators with an odd number of bosons.

To compute the axial current J A µ at NLO, we promote the ordinary derivative to a covariant one, defined as D µ U = ˆµU ≠ ir µ U + iU l µ , where r µ = r A µ ‡ A /2 and l µ = l A µ ‡ A /2 are the external fields which can include electromagnetic or weak e ects. The left and right SU(2) currents are obtained by di erentiating the NLO Lagrangian with respect to l A µ and r A µ , respectively. Taking the R ≠ L combination and switching o the external fields, the NLO axial current reads

J A µ | NLO = i 2 ¸1Tr Ë ‡ A Ó ˆµU † , U ÔÈ Tr Ë ˆ‹U ˆ‹U † È + i 4 ¸2Tr Ë ‡ A Ó ˆ‹U † , U ÔÈ Tr Ë ˆµU ˆ‹U † + ˆ‹U ˆµU † È ≠ i 8 ¸4Tr Ë ‡ A Ó ˆµU, ‰ † a Ô ≠ ‡ A Ó U, ˆµ‰ † a Ô + ‡ A Ó ˆµ‰ a , U † Ô ≠ ‡ A Ó ‰ a , ˆµU † Ô È , ( 5.48) 
where the curly brackets indicate anti-commutators.

New a-fi 0 mixings arise at NLO, both at tree level from the NLO Lagrangian and at one loop from the LO Lagrangian in Eq. (5.15). These mixings are explicitly taken into account in the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [START_REF] Lehmann | On the formulation of quantized field theories[END_REF]. Focussing for instance on the afi 0 ae fi + fi ≠ channel, we have

M afi 0 aefi + fi ≠ = 1 Ò Z a Z 3 fi 4 i=1 lim p 2 i aem 2 i 1 p 2 i ≠ m 2 i 2 ◊ G afi 0 fi + fi ≠ (p 1 , p 2 , p 3 , p 4 ) , ( 5.49) 
where the index i runs over the external particles, Z a (Z fi ) is the wave-function renormalization of the axion (pion) field and the full 4-point Green function is given by

G afi 0 fi + fi ≠ = ÿ i,j=a,fi 0 G ijfi + fi ≠ ◊ G fi + fi + (m 2 fi )G fi ≠ fi ≠ (m 2 fi )G ai (m 2 a = 0)G fi 0 j (m 2 fi ) . (5.50)
The first term is the amputated 4-point function, multiplied by the 2-point functions of the external legs with the axion mass to zero. Working with LO diagonal propagators, the 2-point amplitude for the a-fi 0 system reads

P ij = diag (p 2 , p 2 ≠ m 2 fi ) ≠ ij ,
where ij encodes the NLO corrections including mixings. The 2-point Green function

G ij = (≠iP) ≠1 ij is hence G ij = i Q a 1 p 2 afi p 2 (p 2 ≠m 2 fi ≠ fifi ) afi p 2 (p 2 ≠m 2 fi ≠ fifi ) 1 p 2 ≠m 2 fi ≠ fifi R b .
(5.51) Plugging Eq. (5.50) and Eq. ( 5.51) into the LSZ formula for the scattering amplitude and neglecting the O(1/f 2 a ) terms, one finds

M afi 0 aefi + fi ≠ = 3 1 + 3 2 Õ fifi (m 2 fi ) 4 G LO afi 0 fi + fi ≠ ≠ afi (m 2 a = 0) m 2 fi G LO fi 0 fi 0 fi + fi ≠ + G NLO afi 0 fi + fi ≠ , (5.52)
where the G's are evaluated at the physical masses of the external particles, Z a = 1, Z fi = 1 + Õ fifi (m 2 fi ) and primes indicate derivatives with respect to p 2 . The one-loop amplitudes have been computed in dimensional regularization. To carry out the renormalization procedure in the modified MS scheme, we define the scale independent parameters ¸i as [START_REF] Gasser | Chiral Perturbation Theory to One Loop[END_REF] ¸i

= " i 32fi 2 C ¸i + R + ln A m 2 fi µ 2 BD , ( 5.53) 
where R = 2 d≠4 ≠ log(4fi) + " E ≠ 1, in order to cancel the divergent terms (in the limit d = 4) with a suitable choice of the " i factors. Eventually, only the terms proportional to ¸1,2,7 contribute to the NLO amplitude, which is renormalized for " 1 = 1/3, " 2 = 2/3 and " 7 = 0. The latter coincide with the values obtained in Ref. [START_REF] Gasser | Chiral Perturbation Theory to One Loop[END_REF] for the standard chiral theory without the axion.

The full analytical expression of the renormalized NLO amplitude for the afi 0 ae fi + fi ≠ process reads4 

M NLO afi 0 aefi + fi ≠ = C afi 192fi 2 f 3 fi f a Y ] [ 15m 2 fi (u + t) ≠ 11u 2 ≠ 8ut ≠ 11t 2 ≠ 6¸1 1 m 2 fi ≠ s 2 1 2m 2 fi ≠ s 2 ≠ 6¸2 1 ≠3m 2 fi (u + t) + 4m 4 fi + u 2 + t 2 2 + 18¸4m 2 fi (m 2 fi ≠ s) + 3 S U 3 Û 1 ≠ 4m 2 fi s s 1 m 2 fi ≠ s 2 ln A ‡(s) ≠ 1 ‡(s) + 1 B + Û 1 ≠ 4m 2 fi t 1 m 2 fi (t ≠ 4u) + 3m 4 fi + t(u ≠ t) 2 ln A ‡(t) ≠ 1 ‡(t) + 1 B + Û 1 ≠ 4m 2 fi u 1 m 2 fi (u ≠ 4t) + 3m 4 fi + u(t ≠ u) 2 ln A ‡(u) ≠ 1 ‡(u) + 1 B T V Z \ ≠ 4¸7m 2 fi m d (s ≠ 2m 2 fi ) m u (m d ≠ m u ) f 3 fi f a (m d + m u ) 3 , (5.54)
where ‡(s) = (1 ≠ 4m 2 fi /s) 1/2 . Note that the term proportional to ¸4 in the second row arises from the NLO correction to f fi in the LO amplitude (see e.g. Ref. [START_REF] Gasser | Chiral Perturbation Theory to One Loop[END_REF]). The amplitudes for the crossed channels afi ≠ ae fi 0 fi ≠ and afi + ae fi + fi 0 are obtained by crossing symmetry through the replacements s ¡ t and s ¡ u, respectively. Similarly, for the afi 0 ae fi 0 fi 0 amplitude that is needed for the unitarization procedure that will be described in Sect. 5.5, we obtain:

M afi 0 aefi 0 fi 0 = 3C afi 96fi 2 f 3 fi f a Y ] [ ≠ 2(¸1 + 2¸2 + 3) 1 3m 4 fi ≠ 3m 2 fi (t + u) + t 2 + tu + u 2 2 ≠ 3 Q a Û 1 ≠ 4m 2 fi s 1 m 2 fi ≠ s 2 2 ln A ‡(s) ≠ 1 ‡(s) + 1 B + Û 1 ≠ 4m 2 fi t 1 m 2 fi ≠ t 2 2 ln A ‡(t) ≠ 1 ‡(t) + 1 B + Û 1 ≠ 4m 2 fi u 1 m 2 fi ≠ u 2 2 ln A ‡(u) ≠ 1 ‡(u) + 1 B R b Z \ + 36¸7m 4 fi m d m u (m d ≠ m u ) f 3 fi f a (m d + m u ) 3
.

(5.55)

We have also checked that the same analytical result is obtained via a direct NLO diagonalization of the a and fi 0 propagators, without employing the LSZ formalism with o -diagonal propagators. For consistency, we will only consider the interference between the LO and NLO terms in the squared matrix elements,

q |M| 2 ƒ q |M| 2 LO + q 2Re [M LO M ú NLO ]
, because the NLO squared correction is of the same order of the NNLO-LO interference, which we neglect.

Thermal rate at NLO

The key quantity needed to extract the HDM bound is the axion decoupling temperature, T D , obtained via the freeze-out condition (following the same criterion as in [START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF])

a (T D ) = H(T D ) , ( 5.56) 
where H(T ) = Ò 4fi 3 g ı (T )/45 T 2 /m pl is the Hubble rate (assuming a radiation dominated Universe) in terms of the Planck mass m pl = 1.22◊10 19 GeV and the e ective number of relativistic degrees of freedom, g ı (T ). a in Eq. (5.56) is the axion thermalization rate entering the Boltzmann equation

a = 1 n eq a ⁄ 4 Ÿ i=1 d 3 p i (2fi) 3 2E i ◊ ÿ |M| 2 (2fi) 4 " 4 (p 1 + p 2 ≠ p 3 ≠ p 4 ) ◊ f 1 f 2 (1 + f 3 )(1 + f 4 ) , (5.57) 
where n eq a = (' 3 /fi 2 )T 3 and f i = 1/(e E i /T ≠ 1). In the following, we will set the model-dependent axion couplings c 0 u, d = 0 (cf. Eq. (5.28)), to comply with the standard setup considered in the literature [START_REF] Chang | Hadronic axion window and the big bang nucleosynthesis[END_REF][START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF][START_REF] Hannestad | Neutrino and axion hot dark matter bounds after WMAP-7[END_REF][START_REF] Archidiacono | Axion hot dark matter bounds after Planck[END_REF][START_REF] Valentino | Cosmological Axion and neutrino mass constraints from Planck 2015 temperature and polarization data[END_REF][START_REF] Melchiorri | An improved cosmological bound on the thermal axion mass[END_REF][START_REF] Hannestad | Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5[END_REF][START_REF] Giusarma | Relic Neutrinos, thermal axions and cosmology in early 2014[END_REF][START_REF] Valentino | Robustness of cosmological axion mass limits[END_REF][START_REF] Archidiacono | Future cosmological sensitivity for hot dark matter axions[END_REF][START_REF] Giarè | New cosmological bounds on hot relics: Axions & Neutrinos[END_REF] (see [START_REF] Ferreira | Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB[END_REF] for an exception). The generalization to the DFSZ case will be presented in Sect. 5.6, together with the study of the e ects of the running couplings c 0 u, d on the HDM bound. Moreover, we will neglect the thermal corrections to the scattering matrix element, which are known to be small for T . m fi [START_REF] Gasser | Light Quarks at Low Temperatures[END_REF][START_REF] Gasser | Thermodynamics of Chiral Symmetry[END_REF][START_REF] Gerber | Hadrons Below the Chiral Phase Transition[END_REF]. By integrating the phase space in Eq. (5.57) numerically, we find

a (T ) = A C afi f a f fi B 2 0.163 T 5 5 h LO (m fi /T ) ≠ 0.251 T 2 f 2 fi h NLO (m fi /T ) 6 , (5.58) 
where the h-functions are shown in Fig. 5.2. Note that we normalized h LO (m fi /T c ) = h NLO (m fi /T c ) = 1, with m fi /T c ƒ 0.88. In fact, the h-functions are meaningful only for T . T c , since for higher temperatures pions are deconfined.

For the numerical evaluation, we used the central values of the LECs, namely, ¸1 = ≠0.36(59) [START_REF] Colangelo | fifi scattering[END_REF], ¸2 = 4.31 [START_REF] Rummukainen | The Universality class of the electroweak theory[END_REF] [START_REF] Colangelo | fifi scattering[END_REF], ¸3 = 3.53 [START_REF] Cleveland | Measurement of the solar electron neutrino flux with the Homestake chlorine detector[END_REF] [START_REF] Aoki | FLAG Review 2019: Flavour Lattice Averaging Group (FLAG)[END_REF], ¸4 = 4.73 [START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF] [START_REF] Aoki | FLAG Review 2019: Flavour Lattice Averaging Group (FLAG)[END_REF] and ¸7 = 7(4) ◊ 10 ≠3 [START_REF] Di Cortona | The QCD axion, precisely[END_REF], in addition to m u /m d = 0.50(2) [START_REF] Aoki | FLAG Review 2019: Flavour Lattice Averaging Group (FLAG)[END_REF], f fi = 92.1(8) MeV [START_REF] Zyla | Review of Particle Physics, Section 91. Axions and Other Similar Particles[END_REF] and m fi = 137 MeV (the average neutral and charged pion masses). We have also checked that h LO reproduces the result of Ref. [START_REF] Hannestad | New cosmological mass limit on thermal relic axions[END_REF] with a percent accuracy.

On the breakdown of the chiral expansion

In Ref. [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF], the ratio between the NLO correction and the LO value of the axion-pion thermalization rate was taken as a criterion for the breakdown of ChPT, by requiring that | NLO a / LO a | . 50%. This would correspond to T ƒ 130 MeV, as shown in the black curve of the right panel of Fig. 5.3. However, it is more instructive to inspect the breakdown of ChPT both at the level of cross-sections and thermal rates, as well as for di erent final states separately. This analysis is summarized in Fig. 5.3. For the fi + fi 0 channel, the ratio between cross-sections (left panel) reaches the maximal value of ≥ 40% around Ô s ≥ 600 MeV. As discussed in Sec. 5.5.1, this is due to large unitarity corrections and to the emergence of the fl resonance, which is ultimately the cause of the breakdown of the chiral expansion in the I = J = 1 channel at those energies. In the case of the ratio between thermal rates (right panel), this corresponds to T ≥ 70 MeV, that, according to our discussion for the cross sections, we interpret as the temperature at which the ChPT breaks down.

Di erent qualitative arguments support the above correspondence between Ô s and T . In particular, by equating the NLO/LO ratio of cross-sections and thermal rates given in Fig. 5.3, one gets the correlation between Ô s and T shown in Fig. 5.4. We have also checked that alternative criteria, like e.g. taking Ô s ≥ ÈE fi Í T + ÈE a Í T in terms of the thermal average, ÈEÍ T = fl(T )/n(T ), leads to similar results. The early breakdown of the chiral expansion is actually not surprising [START_REF] Schenk | Pion propagation at finite temperature[END_REF][START_REF] Song | Pions at finite temperature[END_REF], since the mean energies of pions and axions, in a heat bath of T ƒ 100 MeV, are ÈEÍ © fl/n ƒ 350 MeV and 270 MeV, respectively. The resulting "center-of-mass" energy is already above the scale of tree-level unitarity violation in fi-fi scattering, given by Ô s ƒ Ô 8fif fi ƒ 460 MeV [START_REF] Weinberg | Pion scattering lengths[END_REF][START_REF] Aydemir | Self-healing of unitarity in e ective field theories and the onset of new physics[END_REF].

Note, finally, that in the presence of model-dependent axion couplings c 0 u,d ∫ 1 (as in some axion models [START_REF] Darmé | Selective enhancement of the QCD axion couplings[END_REF]), one obtains the same decoupling temperature as in the c 0 u,d = 0 case, provided that f a is larger, thus shifting down the mass window relevant for the axion HDM bound.

Towards a reliable axion HDM bound

The problem we have encountered is actually well-known in hadron physics, see e.g. [START_REF] Ananthanarayan | Roy equation analysis of pi pi scattering[END_REF][START_REF] Garcia-Martin | The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV[END_REF][START_REF] Gan | Precision tests of fundamental physics with ÷ and ÷' mesons[END_REF][START_REF] Oller | Improved dispersion relations for gamma gamma -> pi0 pi0[END_REF], and is due to the rapid unitarity violation appearing in the resonant I = J = 0, 1 channels. An ecient strategy to overcome this problem is to construct the amplitudes that satisfy unitarity exactly for elastic processes, allowing to extrapolate the low-energy region to the resonant regime. There are several approaches to achieve the unitarization, most of them based on dispersion relations (for recent reviews see [START_REF] Oller | A Brief Introduction to Dispersion Relations[END_REF][START_REF] Oller | Unitarization technics in hadron physics with historical remarks[END_REF]). In the following, we will use one of the most often adopted approaches, the Inverse Amplitude Method (IAM) [START_REF] Lehmann | Chiral invariance and e ective range expansion for pion pion scattering[END_REF][START_REF] Truong | Chiral Perturbation Theory and Final State Theorem[END_REF][START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF][START_REF] Dobado | Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering[END_REF][START_REF] Dobado | A Global fit of pi pi and pi K elastic scattering in ChPT with dispersion relations[END_REF], which restores the exact elastic unitarity attached to the so-called unitarity or right-handed cut of the amplitude, while preserving the crossing symmetry perturbatively.

Unitarized axion-pion scattering

Partial wave amplitudes (PWAs) are the most adequate to impose unitarity constraints at low energies. As it is also conventional in studies of fifi scattering, we start our analysis by projecting the amplitudes M from the charge basis to a basis with well-defined total isospin I, giving rise to the amplitudes A I . For afi 0 ae fi + fi ≠ and afi 0 ae fi 0 fi 0 scattering, we have

A 0 = ≠ 1 Ô 3 (2M +≠ + M 00 ) , A 2 = Û 2 3 (M 00 ≠ M +≠ ) , (5.59) 
where we simplified the notation by indicating the charges of the two final pions as subscripts of the amplitudes in the charge basis. We have also used that M +≠ = M ≠+ because of charge conjugation symmetry. For the afi + ae fi 0 fi + scattering, we obtain

A 1 = ≠ 1 Ô 2 (M +0 ≠ M 0+ ) , A Õ 2 = ≠ 1 Ô 2 (M +0 + M 0+ ) . ( 5.60) 
The amplitudes with definite isospin for afi ≠ ae fi 0 fi ≠ di er from A 1 and A Õ 2 only by a global minus sign. Note that A 2 and A Õ 2 are di erent because the coupling of the axion with pions violate isospin.

The projection of these amplitudes into a basis of states with well-defined total angular momentum J is obtained by means of the usual formulae for the PWAs of the scattering of spin zero particles, namely

A IJ (s) = 1 2 ⁄ +1 ≠1 dxP J (x)A I (s, x) , A I (s, x) = OE ÿ J=0 (2J + 1)P J (x)A IJ (s) , (5.61) 
where x = cos ◊ is the scattering angle in the center of mass and P J (x) are Legendre polynomials.

As long as the inelasticities in afi ae fifi scattering can be neglected (see discussion below), unitarity implies the following algebraic constraint for its PWAs [START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF][START_REF] Oller | Coupled-channel approach in hadron-hadron scattering[END_REF],

Im A IJ (s) = ‡(s) 32fi A IJ (s)T ú IJ (s)◊(s ≠ 4m 2 fi ) , (5.62) 
where ‡(s) = (1≠4m 2 fi /s) 1/2 is a phase-space factor and T IJ (s) are the strong PWAs of fifi scattering in the isospin basis. In Eq. (5.62) we are including a Bose-symmetric factor 1/2 that appears in the isospin basis. From the unitarity relation it follows that the continuous phases of A IJ (s) and T IJ (s) (i.e. phase shifts) are the same, which is the Watson's theorem for the final state interactions [START_REF] Watson | The E ect of final state interactions on reaction cross-sections[END_REF].

Unitarity is fulfilled only perturbatively in ChPT. Indeed, if we denote the amplitudes calculated up to O(p 2n ) in the chiral expansion by A (2n)

IJ and T (2n)

IJ , then Eq. (5.62) implies 5Im A (4)

IJ (s) = ‡(s) 32fi A (2) IJ (s)T (2) 
IJ (s)◊(s ≠ 4m 2 fi ) .

(5.63)

Di erent methods have been proposed to impose the exact elastic unitarity in scattering amplitudes that match to the perturbative ChPT predictions at low energies. These have seen multiple applications and led to very significant progress in the understanding of the hadronic phenomena (see Refs. [START_REF] Oller | A Brief Introduction to Dispersion Relations[END_REF][START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF][START_REF] Oller | Coupled-channel approach in hadron-hadron scattering[END_REF][START_REF] Pelaez | From controversy to precision on the sigma meson: a review on the status of the non-ordinary f 0 (500) resonance[END_REF] for recent reviews). In fact, the fifi scattering, with the characterization of the ‡ or f 0 (500) resonance, stands as one of the first successful applications of these methods [START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF][START_REF] Pelaez | From controversy to precision on the sigma meson: a review on the status of the non-ordinary f 0 (500) resonance[END_REF][START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF][START_REF] Oller | Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the ‡, f 0 (980), a 0 (980) scalar mesons[END_REF][START_REF] Oller | Meson meson interaction in a nonperturbative chiral approach[END_REF][START_REF] Nieves | Bethe-Salpeter approach for meson meson scattering in chiral perturbation theory[END_REF]. Given that the unitary corrections to the ChPT NLO calculation of afi ae fifi scattering will be given by the final-state interactions of pions, we expect the unitarization methods to provide a realistic amplitude in the energy region relevant to the axion hot dark matter bound.

In our analysis we focus on the IAM technique, which is based on the fact that above the two body elastic threshold, and below other inelastic thresholds, the unitarity implies that (we focus for simplicity on the strong PWAs of fifi scattering here)

Im T IJ (s) = ‡(s) 32fi |T IJ (s)| 2 , ( 5.64) 
which is valid for the full amplitude. In practice, any calculation is performed in ChPT to a given order, thus expanding T IJ = T

(2)

IJ + T (4) IJ + . . . , we get at O(s 2 )
Im T (4)

IJ (s) = ‡(s) 32fi - - -T (2) 
IJ (s) - - - 2 .
(5.65)

Since the ChPT amplitudes grow with energy, and we are here neglecting the O(s 3 ) terms, the above formula holds true for low energies, but will be violated for high enough s. This typically happens around Ô s ≥ 500 MeV. A possible way to restore unitarity to all orders is based on the observation that Im 1

T IJ = ≠ ‡(s) 32fi . ( 5.66) 
We thus know exactly the imaginary part of the full inverse amplitude, and therefore

1 T IJ = Re 1 T IJ ≠ i ‡(s) 32fi . ( 5.67) 
Using the perturbative expansion, T IJ = T

(2)

IJ + T (4) IJ + . . . , we can write Re 1 T IJ ƒ Re 1 T (2) IJ + T (4) IJ ƒ Re T (2) IJ ≠ T (4) IJ T (2) 2 IJ ≠ T (4) 2 IJ ƒ T (2) IJ ≠ Re T (4) IJ T (2) 2 IJ . ( 5.68) 
Finally, by noting that T (4)

IJ = Re T (4) IJ + i ‡(s)/32fi - - -T (2) IJ - - - 2
, the full amplitude can be written as

T IJ ƒ T (2) IJ 1 ≠ T (4)
IJ /T

(2) IJ .

(

This can also be regarded as a Padé approximant of the NLO ChPT amplitude [START_REF] Dobado | Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering[END_REF]. The IAM formula can be formally derived using a dispersion relation [START_REF] Truong | Chiral Perturbation Theory and Final State Theorem[END_REF][START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF][START_REF] Dobado | A Global fit of pi pi and pi K elastic scattering in ChPT with dispersion relations[END_REF][START_REF] Truong | Remarks on the unitarization methods[END_REF] and the di erent caveats and uncertainties of the method have been thoroughly studied in Ref. [START_REF] Salas-Bernárdez | Systematizing and addressing theory uncertainties of unitarization with the Inverse Amplitude Method[END_REF]. In the axionpion case, the amplitude takes the form,

A IJ (s) = A (2) IJ (s) 1 ≠ A (4) IJ (s)/A (2) IJ (s)
.

(5.70)

One particular caveat concerns the validity of the two-body unitarity relation for s above the fourpion threshold. However, as discussed and estimated quantitatively for fifi scattering in [START_REF] Salas-Bernárdez | Systematizing and addressing theory uncertainties of unitarization with the Inverse Amplitude Method[END_REF], these inelastic contributions to the imaginary part are quite suppressed and can be neglected for the energy scales of interest.

An obvious benefit of expanding the inverse of A IJ instead of A IJ is that A ≠1 IJ has a zero at a resonance pole, while A IJ becomes infinity. This makes the IAM, in the form written in Eq. (5.70), a suitable method to address the resonance dynamics below the chiral expansion breaking scale ChSB ƒ 4fif fi [START_REF] Salas-Bernárdez | Systematizing and addressing theory uncertainties of unitarization with the Inverse Amplitude Method[END_REF]. This is also reflected in the two-body elastic unitarity relation for the inverse a ≠ fi amplitude which reads

Im A ≠1 IJ (s) = ≠ ‡(s) 32fi T IJ (s) A IJ (s) , ( 5.71) 
as it can be easily deduced from Eq. (5.62). Therefore, a resonance pole, which appears both in T IJ and A IJ , actually cancels in their ratio.

In our analysis we implement the IAM for the PWAs in both the S-wave (J = 0, I = 0, 2) and P -wave (J = 1, I = 1). The cases I = J = 0, 1 are of special interest since they correspond to the quantum numbers of the prominent f 0 (500) (also known as ‡) and fl(770) resonances [START_REF] Workman | Review of Particle Physics[END_REF], respectively, driving to large (unitarity) corrections to fifi scattering in the low-energy region of interest, below 1 GeV. The infinite tower of PWAs with J Ø 2 can be included perturbatively in ChPT. Indeed, we checked that their contribution is just a few percent with respect to the S-and P -waves in the low-energy region. Therefore, we neglect them in the following.

In Fig. 5.6 we show the phase shifts " IJ (s) of the di erent afi ae fifi PWAs compared to the experimental data from fifi scattering, which should be identical as per Watson's theorem (cf. Eq. (5.63)). Besides the prediction based on the IAM, for comparison we show the fifi scattering phase shifts obtained from perturbative ChPT at LO and NLO. The latter is derived using the results in Ref. [START_REF] Gasser | Chiral Perturbation Theory to One Loop[END_REF] and the standard values for the LECs already given in Sect. 5.3.3. The perturbative expressions for
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0.5 0.6 0.7 0.8 0.9 1.0 0 50 100 150 Figure 5.6: Experimental data for the fifi ae fifi phase shifts in the relevant channels compared to the theoretical afi ae fifi phase shifts in IAM (solid red), and the fifi ae fifi predictions at LO ChPT (dotted black) and NLO ChPT (dashed blue). The IAM predictions include the 1 ‡ confidence level regions that stem from the uncertainties in the LECs. The references for the data of the phase shifts for the fifi PWAs are given next: i) " 11 , [START_REF] Lindenbaum | Coupled channel analysis of J(PC) = 0++ and 2++ isoscalar mesons with masses below 2-GeV[END_REF] (pink squares) and [START_REF] Estabrooks | pi pi Phase Shift Analysis Below the K anti-K Threshold[END_REF] (black circles); " 20 , [START_REF] Losty | A Study of pi-pi-scattering from pi-p interactions at 3.93-GeV/c[END_REF] (pink triangles) and [START_REF] Hoogland | Measurement and Analysis of the pi+ pi+ System Produced at Small Momentum Transfer in the Reaction pi+ p -> pi+ pi+ n at 12.5-GeV[END_REF] (black circles); " 00 [381] (green triangles), [START_REF] Froggatt | Phase Shift Analysis of pi+ pi-Scattering Between 1.0-GeV and 1.8-GeV Based on Fixed Momentum Transfer Analyticity. 2[END_REF] (pink squares), and the average data from Refs. [383][START_REF] Hyams | fifi Phase Shift Analysis from 600-MeV to 1900-MeV[END_REF][START_REF] Protopopescu | Pi pi Partial Wave Analysis from Reactions pi+ p -> pi+ pi-Delta++ and pi+ p -> K+ K-Delta++ at 7.1-GeV/c[END_REF][START_REF] Estabrooks | AIP Conf. Proc[END_REF][START_REF] Grayer | Proceedings of the 3rd Philadephia Conference on Experimental Meson Spectroscopy[END_REF][START_REF] Kaminski | Separation of S wave pseudoscalar and pseudovector amplitudes in pi-p (polarized) -> pi+ pi-n reaction on polarized target[END_REF] (black circles). The average procedure is explained in the " 00 11 subsection of Ref. [START_REF] Oller | N/D description of two meson amplitudes and chiral symmetry[END_REF].
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the phase shifts are described in Appendix D.1. In our phenomenological approach, we use a set of ¸1 and ¸2 LECs which are determined from the fifi scattering to fit the pole position and width of the fl resonance precisely [START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF], namely ¸1 ≠ ¸2 = ≠5.95 [START_REF] Abada | Collider searches for heavy neutral leptons: beyond simplified scenarios[END_REF], and ¸1 + ¸2 = 4.9 [START_REF] Luzio | a fififi decay at next-to-leading order in chiral perturbation theory[END_REF]. These values are ≥ 20% larger with respect to those of ChPT (¸1 = ≠0.36 [START_REF] Glashow | The Future of Elementary Particle Physics[END_REF], ¸2 = 4.31 [START_REF] Rummukainen | The Universality class of the electroweak theory[END_REF] [START_REF] Colangelo | fifi scattering[END_REF]), and allow our method to accurately reproduce the observed phase shifts in fifi scattering. This is illustrated on the left panel of Fig. 5.6 by the good agreement of " 11 (s) with data across the resonance region.

For the case of the phase shifts of afi 0 scattering the IAM agrees with the experimental data in both the I = 0 and I = 2 channels. In particular, the amplitudes describe the structure induced by the presence of the ‡ resonance in " 00 (s). As expected, the phase shifts obtained for the afi scattering amplitudes are equivalent to those calculated in [START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF] for the fifi scattering amplitudes using the IAM. Note that the agreement in " 00 worsens starting from Ô s & 0.8 GeV, e ect induced by the raise of the f 0 (980) resonance and the subsequent strong coupling to the K K channel with a prominent threshold e ect [START_REF] Oller | Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the ‡, f 0 (980), a 0 (980) scalar mesons[END_REF][START_REF] Oller | Meson meson interaction in a nonperturbative chiral approach[END_REF][START_REF] Janssen | On the structure of the scalar mesons f0 (975) and a0 (980)[END_REF], omitted in our SU(2) analysis. In fact, our results for " 00 (s) are in a very good agreement with those obtained in Ref. [START_REF] Albaladejo | On the size of the sigma meson and its nature[END_REF] by unitarizing the fifi scattering calculated at NLO in SU(2) ChPT. Clearly, the energy range of applicability of the IAM framework can be improved by unitarizing the coupled fifi, K K and ÷÷ interactions predicted by NLO SU(3) ChPT, as first shown in Ref. [START_REF] Guerrero | K K scattering amplitude to one loop in chiral perturbation theory, its unitarization and pion form-factors[END_REF].

In the left panel of Fig. 5.7 we present our theoretical predictions for the afi ae fifi cross sections in the di erent channels of the charge basis, obtained in the IAM by inverting Eqs. (5.59), (5.60) and (5.61). ChPT departs from the IAM results at low energies, Ô s ƒ 0.5 GeV. In case of the fi + fi ≠ channel, this is the typical scale at which the unitarity corrections become large due to the ‡ resonance in the I = J = 0 channel. In the fi ± fi 0 channel, instead, the disagreement starts at a . Left: Plots for afi 0 ae fi + fi ≠ (blue), afi 0 ae fi 0 fi 0 (magenta) and afi ± ae fi ± fi 0 (orange). Solid lines are the predictions in IAM, dashed in NLO ChPT and dotted in LO ChPT. We also include a dot-dashed magenta line describing the rate for the afi 0 ae fi 0 fi 0 channel in ChPT which is a pure NLO 2 contribution (the amplitude is zero at LO [START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF]). Right: Sum of all the cross-sections predicted in the IAM (solid, red) and in ChPT at LO (dotted, black), NLO (dashed, blue) and including the squared NLO pieces (NNLO) in the cross-section (dot-dashed, green). Uncertainties in the IAM predictions are 1 ‡ C.L. regions stemming from the errors in the LECs. somewhat higher energies, and it is due to the fl resonance emerging in the amplitude.
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In the right panel of Fig. 5.7 we show the IAM and ChPT predictions for the sum of cross sections, which is the quantity most closely related to the thermal rate, to be calculated in the next section. For completeness, we present in Appendix D a more detailed comparison between ChPT at di erent orders and the IAM for the cross sections as well as for the absolute values of the PWAs.

One could use di erent non-perturbative methods that at low energies recover the chiral expansion up to some order in ChPT and end up with unitarized partial-wave amplitudes with the correct analytical properties [START_REF] Oller | Unitarization Technics in Hadron Physics with Historical Remarks[END_REF]. Besides the IAM, another popular approach is the one based on the N/D method [START_REF] Oller | N/D description of two meson amplitudes and chiral symmetry[END_REF], used in many instances to study meson-meson, meson-baryon and baryonbaryon scattering. To compare the two, one could take, for instance, the spread in the central values of the pole positions of the ‡ and fl(770) resonances, stemming from both methods by taking as input the chiral expansion calculated at several orders in di erent versions of ChPT. For the ‡ we have a spread in the real and imaginary parts of the pole position in Ô s of only 1.2% and 2.4%, respectively. We have taken the pole positions reported by applying, on the one hand, the IAM implemented from the NLO SU(2) [START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF], NNLO SU(2) [START_REF] Hannah | Pion scalar form-factor and the sigma meson[END_REF] and NLO SU(3) ChPT [START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF][START_REF] Oller | Meson meson interaction in a nonperturbative chiral approach[END_REF], and, on the other hand, the N/D method applied from the NLO SU(2) [START_REF] Albaladejo | On the size of the sigma meson and its nature[END_REF], NNLO U(3) [START_REF] Guo | Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality[END_REF], and tree-level ChPT [START_REF] Albaladejo | Identification of a Scalar Glueball[END_REF]. Similarly, for the fl(770) pole position in the Ô s plane, we find less than 1% and 2.7% of spread for the real and imaginary parts of the pole positions, respectively. Here, we have considered the pole positions from Refs. [START_REF] Dobado | The Inverse amplitude method in chiral perturbation theory[END_REF][START_REF] Oller | Meson meson interaction in a nonperturbative chiral approach[END_REF][START_REF] Guo | Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality[END_REF]. Therefore, we conclude that the variation in the results from the choice of the unitarization method is quite small, and sub-leading compared to the uncertainty adopted in the next section. Figure 5.9: Temperature dependence of Ô s MAX at which it is su cient to cut o the integration of the thermal rate in order to get the 90%, 80%, 70% of the total rate (without cuto ) for the LO and IAM cases. The plot shows the channel fi + fi ≠ .

Unitarized axion-pion thermalization rate

The thermal rate obtained via the unitarized IAM amplitude can be written as

IAM a (T ) = A C afi f a f fi B 2 0.137 T 5 h IAM (m fi /T ) , (5.72) 
where we factored out a T 5 dependence, characteristic of the LO ChPT rate. In order to compare the IAM result with the perturbative one (cf. Fig. 5.8), we also normalized

h IAM (m fi /T c ) = 1.
Integrals in Eq. (5.57) cover a broad range of energies with contributions suppressed at high energies by the axion and pion Boltzmann factors. In order to assess the robustness of our predictions, especially at temperatures close to T c , it is important to investigate the relative contributions to the thermal rate stemming from low-energies Ô s . 1 GeV, which we deem to be the upper energy limit of applicability of the IAM (see Ref. [START_REF] Salas-Bernárdez | Systematizing and addressing theory uncertainties of unitarization with the Inverse Amplitude Method[END_REF]).

In Fig. 5.9 we illustrate this feature by showing the temperature dependence of Ô s MAX which is the cut-o (in Ô s) needed in Eq. (5.57) for the low-energy contributon to describe the 70%, 80% or 90% of the total thermal rate. By looking at the value of Ô s MAX for T ƒ T c we find that 90% of the contribution to the thermal rates in IAM stem from the low-energy region for all the temperatures of interest in our work.

In our analysis and in the expressions shown in Eq. ( 5.72), we use the result of a obtained by cutting o the contributions to Eq. ( 5.57) at Ô s MAX = 1 GeV. Moreover, we use as an estimate of our theoretical uncertainty the di erence between the thermal rate obtained in the IAM and integrated with and without cuto . Finally, in Fig. 5.10 we show the ratio of the thermal rates between the results obtained with IAM and ChPT at LO. The di erences in this case are more prominent and appear at much lower temperatures. In fact, significant di erences are visible even at T = 20 MeV in the fi + fi ≠ channel. However, this is not surprising given that a similar e ect at threshold is know from the fifi scattering. Indeed, higher-orders corrections to the I = J = 0 fifi scattering length at LO are around 25% [START_REF] Leutwyler | pi pi scattering[END_REF], which implies a correction of around 50% at the level of cross-section near threshold.

The updated HDM bound

While an exhaustive treatment of cosmological observables is beyond the scope of this thesis (for recent analyses, see Refs. [START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF][START_REF] Caloni | Novel cosmological bounds on thermally-produced axion-like particles[END_REF][START_REF] D'eramo | Cosmological bound on the QCD axion mass, redux[END_REF]), here we focus once more on the axion contribution to the e ective number of extra relativistic degrees of freedom in the instantaneous decoupling limit illustrated in Sect. 5.3.3. The perturbative and unitarized rates are shown in Fig. 5.11 for the reference axion mass value of m a = 0.3 eV. For the IAM rate, the theoretical uncertainty is estimated using the criterium discussed at the end of Sect. 5.5.2.

The bound on N e from the Planck'18 data [START_REF] Aghanim | Planck 2018 results. I. Overview and the cosmological legacy of Planck[END_REF][START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF] is displayed in Fig. 5.12 as a function of the axion mass and by employing di erent approximations for the ChPT calculation of the axionpion thermalization rate. Using the IAM result, valid up to temperatures approaching T c , we can extract the conservative bound m a . 0.24 eV. To assess the impact of the high-energy discrepancy between the " 00 phase shift obtained from fifi data and the theoretical IAM prediction (cf. Fig. 5.6), we also computed the fi + fi ≠ and fi 0 fi 0 rates by cutting o the energies above Ô s & 0.8 GeV. Under this condition, the total rate is reduced by 10% at T = 150 MeV, with an error band reaching 11%, in comparison to the 7% represented by the red band in Fig. 5.11. The corresponding HDM bound would be m a . 0.25 eV.

Note that in the region between m a = 0.1 eV and 1 eV, the axions transit from behaving as dark radiation to hot dark matter. Clearly, a more refined cosmological analysis is needed in this intermediate regime. On the other hand, for m a . 0.3 eV, where the bound is extracted, the use of N e is still adequate (see e.g. Fig. 1 in Ref. [START_REF] Caloni | Novel cosmological bounds on thermally-produced axion-like particles[END_REF]).

Our total rate is (accidentally) in agreement within O(8%) with Ref. [START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF], where the validity of ChPT for axion-pion scattering has been extended by using fifi scattering data via a rescaling of the corresponding cross-sections. A detailed comparison between the two approaches can be found in Ref. [START_REF] Di Luzio | Axion-pion thermalization rate in unitarized NLO chiral perturbation theory[END_REF].

Running e ects on the HDM bound

So far, we have been focused on KSVZ axions, which do not couple with SM fermions at tree level. The other benchmark axion model is the DFSZ, featuring a two-Higgs doublet model (2HDM) and a SM singlet scalar. In such models, the axion parameter space at the tree level depends solely on m a and tan -, the latter being the ratio of the vevs of the 2HDM (see Sect. 5.1.3). However, the top-Yukawa radiative corrections induce a logarithmic dependence on m BSM ƒ m h, A, H + , the mass scale of the heavy scalars of the e ective PQ-2HDM, which are all degenerate in the decoupling limit (see e.g. [START_REF] Gunion | The CP conserving two Higgs doublet model: The Approach to the decoupling limit[END_REF]) assumed in the following. These corrections are often large and may emerge in future experimental data and/or in astrophysical observations. In particular, in Ref. [START_REF] Di Luzio | Running into QCD axion phenomenology[END_REF] we analyzed the impact on the QCD axion phenomenology of the renormalization group running of the axion couplings to matter fields (electrons, nucleons, pions and other hadrons). Here we describe the main results relevant to the HDM bound. As defined in Eq. (5.28), the axion-pion coupling reads, and tan

C afi = 1 3 Q a m d ≠ m u m u + m d + c 0 d ≠ c 0 u R b , ( 5 
-= ÈH u Í / ÈH d Í © v u /v d .
The e ects of RG running on the low-energy axion couplings to the first generation SM fermions can be parametrized as 6 (see e.g. [START_REF] Choi | Precision axion physics with running axion couplings[END_REF]) g. [START_REF] Bertolini | Massive neutrinos and invisible axion minimally connected[END_REF][START_REF] Espriu | Axion-Higgs interplay in the two Higgs-doublet model[END_REF]) and ranges from about 1 TeV (the approximate lower bound set by LHC searches for new heavy scalars) up to f a . Note that as long as the couplings are considered at a renormalization scale µ above m BSM there are no running e ects induced by the top Yukawa coupling. This is because in this regime the axion couplings to the SM fermions correspond to the global charges of the PQ current, which is classically conserved, and thus they do not renormalize. For µ < m BSM we enter a di erent regime, in which Higgs doublets with di erent PQ charges mix to give rise to heavy scalars (which are integrated out) and to the light Higgs, that has no well-defined charge. In this e ective theory there is no more a conserved PQ current, and running e ects for the axion-fermion couplings can kick in. This is the reason why the largest RG e ects appear when the BSM scale is taken at the largest possible scale m BSM ≥ f a . Contrary, when the 2HDM structure keeps holding all the way down to the TeV scale, running e ects are much less sizeable.

c 0 u (2 GeV) = c 0 u (f a ) + c u , ( 5 
The coupling to pions depends on the combination c u ≠c d , and the RG corrections can be written as

C fi = 1 3 c 0 t (f a ) Ë r t d (m BSM ) ≠ r t u (m BSM ) È .
(5.78)

The running e ects are computed by numerically solving the full set of the RG equations, including the threshold corrections at the electroweak (EW) scale [START_REF] Bauer | The Low-Energy E ective Theory of Axions and ALPs[END_REF]. In the calculation, the two-loop running for the SM gauge and Yukawa couplings is implemented and their input values at µ w = m Z are taken from Ref. [START_REF] Antusch | Running quark and lepton parameters at various scales[END_REF]. Here we use the following fitting function

r t u ≠ r t d ƒ ≠0.54 ln 1 Ô x ≠ 0.52 2 , ( 5.79) 
with x = log 10 (m BSM / GeV), which agrees with the numerical results with 2% accuracy in the range 1 TeV AE m BSM AE 10 18 GeV.

Our results for the HDM bound in the DFSZ models (both 1 and 2) are summarized in Fig. 5.13, including RG corrections which are especially important for small tan -. In fact, it was shown in Ref. [START_REF] Ferreira | Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB[END_REF] that the thermalization channels involving axion scattering o leptons become relevant in DFSZ-II at small tan -. However, RG corrections tend to compensate this e ect, since the axionpion coupling remains sizeable also at low tan -and can eventually dominate the thermalization rate. The domain in which tan -is allowed to vary is obtained by requiring that the DFSZ Yukawas remain perturbative up to scales of O(f a ). This corresponds to imposing perturbative unitarity on Higgs-mediated 2 ae 2 SM fermion scatterings (see e.g. [START_REF] Di Luzio | Implications of perturbative unitarity for scalar di-boson resonance searches at LHC[END_REF]) up to f a . The perturbative domain is evaluated by evolving the values of the gauge couplings and of the SM Yukawa couplings at m Z given in Ref. [START_REF] Antusch | Running quark and lepton parameters at various scales[END_REF] up to the scale m BSM employing the two-loop RG equations. from m BSM to f a is computed in the 2HDM. In the case when m BSM ≥ 1 TeV perturbative unitarity up to f a ≥ 10 9 GeV translates in the following interval tanoe [0. [START_REF] Ma | Pathways to naturally small neutrino masses[END_REF][START_REF] Tanabashi | Review of Particle Physics[END_REF] for m BSM ≥ 1 TeV .

(5.81)

The lower bound on tan -for m BSM ≥ f a ≥ 10 9 GeV is shown as a gray line in Fig. 5.13.

Summary and outlook

In this chapter we have revisited the axion HDM bound, exploring several aspects related to the convergence of the axion-pion EFT used to compute the axion thermalization rate in the early Universe.

In Sect. 5.3, we computed the NLO correction to the axion-pion thermal rate in ChPT, while in Sect. 5.4 we have shown that the perturbative expansion is reliable up to temperatures of T ‰ ≥ 70 MeV.

In Sect. 5.5, we employed the IAM unitarization method to extend the validity of the chiral description of the axion-pion scattering to the resonant region, and we computed the thermalization rate within the unitarized ChPT, which also allows to extend the validity range up to temperatures approaching the QCD deconfinement, T c ƒ 155 MeV.

The IAM rate shows a sizable deviation from the perturbative one for temperatures T & 40 MeV, corresponding to the contribution of the ‡ and fl resonances in the region Ô s & 500 MeV for the axion-pion scattering. In the instantaneous decoupling approximation, the HDM bound obtained employing the IAM is m a . 0.24 eV.

Further improvements in the calculation of the axion thermal rate could be made by extending the analysis to three flavors, which, as discussed in Sect. 5.5.1, can start producing large e ects from energies Ô s & 800 MeV due to the kaon thresholds and the appearance of the f 0 (980) resonance. As discussed in Sect. 5.5.2 and illustrated in Fig. 5.9, these energies are only relevant for the higher temperatures, which could indeed become important to fully exploit future measurements of N e expected from the next generation experiments. In this context, one should also consider computing thermal corrections to the scattering amplitude (along the lines of the calculations done in Refs. [START_REF] Gomez Nicola | Finite temperature pion scattering to one loop in chiral perturbation theory[END_REF][START_REF] Dobado | Thermal rho and sigma mesons from chiral symmetry and unitarity[END_REF]) and, eventually, to develop techniques in order to describe the axion thermal production in the region of the QCD crossover, between T c ƒ 155 MeV and T ≥ 1 GeV.

Finally, in Sect. 5.6 we have studied the impact of the renormalization group e ects to the HDM bound, focussing on the DFSZ model. The result is that the bound depends crucially on the scale at which the heavy Higgs states are integrated out, and, furthermore, the running e ects are particularly important for small values of tan -.

Chapter 6

Conclusions

This thesis delves into some phenomenological aspects of three domains: neutrino physics, flavor physics, and axion physics, which are currently under intense experimental investigation for potential signals of physics BSM.

In Chapter 2, after an introduction to the SM, we presented the main experimental observations and current theoretical questions that demand the presence of physics beyond the SM.

In Chapter 3 we dealt with collider searches of heavy neutral leptons, and with the experimental bounds on their masses and their mixings with the active sector. We stressed that these searches commonly assume simplified scenarios (only one HNL mixing with only one active flavor and), which lack phenomenologically interesting features present in more realistic models. In particular, we examined the e ects of a general active-sterile mixing pattern, as well as possible interferences between di erent HNLs, and we proposed a methodology to apply the existent experimental bounds to generic models. This approach provides a more comprehensive understanding of HNL phenomenology and is crucial for interpreting experimental results in the context of broader and more compelling theoretical frameworks.

In Chapter 4, we studied the rare decays of the B meson B ae K (ú) ‹ ‹. For these channels, we computed the updated theoretical predictions, and discussed the main sources of uncertainties coming form non-perturbative QCD. In particular, the stability of the extrapolation in the low-q 2 region of the lattice results for the B ae K form factors can be verified given the experimental measurement of r lh = B(B ae K‹ ‹) low≠q 2 /B(B ae K‹ ‹) high≠q 2 . Moreover, the ratio between the partial decay rates of B ae K (ú) ‹ ‹ and B ae K (ú) ¸¸, denoted as R (‹/¸) K (ú) , was identified as a valuable observable for testing the validity of the Standard Model, and a powerful tool for exploring beyond the Standard Model scenarios.

In Chapter 5, we investigated the axion thermal production in the early Universe via the axionpion scattering. Within chiral perturbation theory, we assessed the breakdown of the chiral expansion at temperatures T ƒ 70 MeV. By employing the unitarization method known as the Inverse Amplitude Method, we extended the validity of the chiral description of the axion-pion scattering to the resonant region. The IAM calculation presented in this thesis showed a significant deviation from the perturbative results, mainly due to the presence of the ‡(500) and fl(770) resonances. The unitarized axion production rate, valid up to temperatures approaching the QCD crossover, T c ƒ 155 MeV, allows to extract the HDM bound on the axion mass m a . 0.24 eV.

Future pivotal developments will rely on the use of lattice QCD techniques to obtain the axion thermal production in the intermediate region across the QCD phase transition, which is crucial to fully exploit future N e measurements expected from the next-generation experiments. Regarding the study of neutrinos and flavor physics, future investigations extending the scope of the research presented in this thesis will explore the implications of BSM particles, such as sterile neutrinos, on flavor observables testable at B-factories, such as the (• ae µµµ) currently studied at LHC. with p N = p W ≠ p ¸-. The channel with crossed ¸-and ¸-gives rise to the same amplitude, but it must be added incoherently to our process since the rate is dominated by on-shell N i , and thus the momentum of the first lepton is fixed by the 2-body decay kinematics. Therefore the two processes do not interfere and we can neglect for the moment the crossed channel. The only modification results in a factor of 2 in the rate.

Defining the leptonic mixing U -N i = |U -N i | e i" -i , "" + = (" -2 ≠ " -1 ) + (" -2 ≠ " -1 ) and using the narrow width approximation (NWA), the squared matrix element becomes

|M + | 2 = C g 3 2 Ô 2M 2 W D 2 fi 1 p ¸-• p q 2 (2E ¸-E q Õ + p ¸-• p q Õ ) ◊ Y ] [ |U -N 1 | 2 |U -N 1 | 2 M N 1 N 1 " 1 p 2 N ≠ M 2 N 1 2 + |U -N 2 | 2 |U -N 2 | 2 M N 2 N 2 " 1 p 2 N ≠ M 2 N 2 2 + 2 |U -N 1 | |U -N 2 | |U -N 1 | |U -N 2 | M N 1 M N 2 Ë " 1 p 2 N ≠ M 2 N 1 2 + " 1 p 2 N ≠ M 2 N 2 2È C cos "" + N 1 M N 1 + N 2 M N 2 ( M 2 N ) 2 + ( N 1 M N 1 + N 2 M N 2 ) 2 ≠ sin "" + M 2 N ( M 2 N ) 2 + ( N 1 M N 1 + N 2 M N 2 ) 2 DJ , (A.2)
where

M 2 N © M 2 N 2 ≠ M 2 N 1 .
Notice that, for the interference term, we used the NWA as follows:

1 1 p 2 N ≠ M 2 N 1 + i N 1 M N 1 2 1 p 2 N ≠ M 2 N 2 ≠ i N 2 M N 2 2 = fi ( N 2 M N 2 + N 1 M N 1 ) ( M 2 N ) 2 + ( N 1 M N 1 + N 2 M N 2 ) 2 Ë " 1 p 2 N ≠ M 2 N 1 2 + " 1 p 2 N ≠ M 2 N 2 2È + ifi M 2 N ( M 2 N ) 2 + ( N 1 M N 1 + N 2 M N 2 ) 2 Ë " 1 p 2 N ≠ M 2 N 1 2 + " 1 p 2 N ≠ M 2 N 2 2È , (A.3)
which di ers from the expression in Ref. [START_REF] Najafi | CP violation in rare lepton-number-violating W decays at the LHC[END_REF], as discussed in Section 3.4. Assuming

M N 1 ƒ M N 2 © M N , N 1 ƒ N 2 © N and M N © M N 2 ≠ M N 1 " = 0, and considering that |U -N 1 | |U -N 1 | = |U -N 2 | |U -N 2 | © |U -N | |U -N |, we get |M + | 2 ƒ C g 3 2 Ô 2M 2 W D 2 fi 1 p ¸-• p q 2 (2E -E q Õ + p -• p q Õ ) " 1 p 2 N ≠ M 2 N 2 M N N |U -N | 2 |U -N | 2 ◊ 2 Y ] [ 1 + 2 C 2 cos "" + M 2 N 2 N ( M 2 N ) 2 + 4 2 N M 2 N ≠ sin "" + M N N M 2 N ( M 2 N ) 2 + 4 2 N M 2 N D Z \ . (A.4)
We observe that the squared amplitude in the case of only one sterile neutrino factorizes out.

Integrating over the phase space and after factorizing the decay width in the single HNL framework, it is straightforward to obtain

1 W + ae ¸+ -¸+ -q Õ q2 = 2 A 1 + cos "" + 1 1 + y 2 ≠ sin "" + y 1 + y 2 B 1 W + ae ¸+ -¸+ -q Õ q2-- - N 1 , (A.5)
where we have defined

y © M 2 N 2M N N ƒ M 2 N 2 ≠ M 2 N 1 (M N 1 + M N 2 ) N = M N N . (A.6)
Notice that we obtain the same result of Ref. [START_REF] Das | Same Sign versus Opposite Sign Dileptons as a Probe of Low Scale Seesaw Mechanisms[END_REF]. This is because we are using the NWA, which corresponds to consider on-shell HNL, leading to the same result after integrating over t, the time evolution of the intermediate HNL, from 0 to OE. In fact the factor 1/ coming from the NWA is equivalent to the factor

s OE 0 - - -e ≠ t/2 - - - 2 
= 1/ , and the interference part of Eq. (A.4) coincides with the finding of Ref. [START_REF] Das | Same Sign versus Opposite Sign Dileptons as a Probe of Low Scale Seesaw Mechanisms[END_REF].

A.2 Di erent sign leptons: W

+ ae ¸+ -¸≠ -q Õ q
In this appendix, the decay rate for the process W + ae ¸+ -¸≠ -q Õ q mediated by the two HNLs N 1,2 almost degenerate in mass is computed. The amplitude of this process is given by

M ≠ = ÿ i=1,2 g 3 2 Ô 2M 2 W U ú -N i U -N i ' ú µ ¯-" µ / p N " ‹ P L ¸+ -q" ‹ P L q Õ p 2 N ≠ M 2 N i + i N i M N i , (A.7)
where, again, p N = p W ≠ p ¸-. With the help of FeynCalc [START_REF] Shtabovenko | New Developments in FeynCalc 9.0[END_REF], we obtain for the squared amplitude,

- - -M ≠ - - - 2 = A g 3 2 Ô 2M 2 W B 2 Y _ ] _ [ |U -N 1 | 2 |U -N 1 | 2 K 11 1 p 2 N ≠ M 2 N 1 2 2 + 2 N 1 M 2 N 1 + |U -N 2 | 2 |U -N 2 | 2 K 22 1 p 2 N ≠ M 2 N 2 2 2 + 2 N 2 M 2 N 2 +2 Re S U U ú -N 1 U -N 1 U -N 2 U ú -N 2 K 12 1 p 2 N ≠ M 2 N 1 + i N 1 M N 1 2 1 p 2 N ≠ M 2 N 2 ≠ i N 2 M N 2 2 T V Z \ , (A.8)
with the K ij factors defined as

K ij = ≠ 16 M W (p -• p q Õ ) I M W 1 p N i • p N j 2 5 (p -• p q ) + 2 E -E q 6 ≠ 2 E - Ë (p N i • p W ) 1 p N j • p q 2 + 1 p N j • p W 2 (p N i • p q ) È ≠M W Ë (p N i • p q ) 1 p N j • p - 2 + 1 p N j • p q 2 (p N i • p -) È J . (A.9) Assuming as before that M N 1 ¥ M N 2 © M N and N 1 ¥ N 2 © N , then K 11 = K 22 = K 12 © K. Also, considering that |U -N 1 | |U -N 1 | = |U -N 2 | |U -N 2 | © |U -N | |U -N |, we can simplify the expression notably - - -M ≠ - - - 2 = A g 3 2 Ô 2M 2 W B 2 |U -N | 2 |U -N | 2 2 I K (p 2 N ≠ M 2 N ) 2 + 2 N M 2 N + Re S U K e i"" ≠ 1 p 2 N ≠ M 2 N 1 + i N 1 M N 1 2 1 p 2 N ≠ M 2 N 2 ≠ i N 2 M N 2 2 T V Z \ , (A.10)
with "" ≠ = (" -2 ≠ " -1 ) ≠ (" -2 ≠ " -1 ). And using the narrow width approximation, we get

- - -M ≠ - - - 2 = 2 A g 3 2 Ô 2M 2 W B 2 |U -N | 2 |U -N | 2 K fi N M N " 1 p 2 N ≠ M 2 N 2 I 1 + Re C 2 N M N 2 N M N + i M 2 N ( M 2 N ) 2 + 4 2 N M 2 N e i "" ≠ DJ , (A.11)
Finally, it is straightforward to obtain the total decay width in terms of the decay width mediated by just one HNL,

1 W + ae ¸+ -¸≠ -q Õ q2 = 2 A 1 + cos "" ≠ 1 1 + y 2 ≠ sin "" ≠ y 1 + y 2 B ◊ 1 W + ae ¸+ -¸≠ -q Õ q2 - - - - N 1 , (A.12)
with y defined in Eq. (A.6).

Figure B.1:

The result of our fit for the f T (q 2 ) form factors is depicted by the blue region respectively, compared to the result reported by FLAG [231] and the HPQCD (green points) [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] and FNAL/MILC (orange points) [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] results.

and (B.

3), which we take to be a 0 2 ,

a 0 2 = f + (0) ≠ a 0 0 ≠ a 0 1 z(q 2 = 0) z 2 (q 2 = 0) . (B.7)
In this thesis, we update the combined fit to the B ae K form factors made by FLAG [231], by including the latest HPQCD results [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] that are combined with the ones from FNAL/MILC [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF]. To this purpose, we follow the same procedure as FLAG which consists in generating synthetic data points for {f + (q 2 ), f 0 (q 2 ), f T (q 2 )} for both HPQCD and FNAL/MILC form factors at three q 2 values, namely q 2 oe {18, 20.5, 23} GeV 2 . The central values and the covariance matrix obtained for each collaboration are then fitted in a combined ‰ 2 assuming that the HPQCD and FNAL/MILC results are uncorrelated. We consider the same parameterization of FLAG with N = 3, as specified above, and we remove the a 0 2 coe cient by exploiting the scalar/vector form factor relations at q 2 = 0.

The results of our ‰ 2 fit are given in Table B.1, including the correlation matrix between form factor coe cients. Our combined fit gives ‰ 2 min /d.o.f ƒ 9.2/10 and, di erently from FLAG [231], we opt for not rescaling the uncertainties of the fitted parameters by Ò ‰ 2 min /d.o.f. Our results for f + (q 2 ) are given in Fig. 4.1, where we see a good agreement between the two calculations and our combined fit.

We have performed several cross-checks of our fitting procedure. In particular, we are able 

a + 0 a + 1 a + 2 a 0 0 a 0 1 a T 0 a T 1 a T 2 0.
• • • • • 1 ≠0.0255 ≠0.0535 • • • • • • 1 0 .6920 • • • • • • • 1 Table B.1:
Values of the z-expansion coe cients and correlation matrix obtained by our combined fit to the B ae K form factors computed by HPQCD [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] and FNAL/MILC [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] (with ‰ 2 min /d.o.f ƒ 9.2/10). We consider the parameterization from Eq. (B.2)-(B.4) with N = 3, and we remove the a 0 2 coe cient by imposing the relation f + (0) = f 0 (0). The covariance matrix is provided with more digits in an ancillary file. See text for more details.

to perfectly reproduce the FLAG results when combining FNAL/MILC [START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] with the previous HPQCD results [START_REF] Bouchard | Rare decay B ae K¸+¸≠ form factors from lattice QCD[END_REF], provided we rescaled the uncertainties of the fitted parameters by Ò ‰ 2 min /d.o.f. As already stated above, we opt for not rescaling the uncertainties of our new combined fit.

B.2 B ae K ú

The vector and axial form factors entering the B ae K ú transition are {A 0 , A 1 , A 2 , V }, which are defined in Eq. 4.16. The tensor form factors {T 1 , T 2 , T 3 } are defined by

È Kú (k)|s ‡ µ‹ q ‹ (1 ≠ " 5 )b| B(p)Í = 2iÁ µ--" ' ú-p -k " T 1 (q 2 ) + Ë (m 2 B ≠ m 2 K ú )' ú µ ≠ (' ú • q)(k + p) µ È T 2 (q 2 ) +(' ú • q) C q µ ≠ q 2 m 2 B ≠ m 2 K ú (k + p) µ D T 3 (q 2 ) , (B.8)
where Á µ is the polarization vector of K ú . The B ae K ú form factor parameterization and input parameters used in our study are taken from Ref. [START_REF] Bharucha | B ae V ¸+¸≠ in the Standard Model from light-cone sum rules[END_REF], and we conservatively assume the fitted parameters to be uncorrelated.

B.3 B + ae K (ú)+ ‹‹ predictions without tree-level contributions

In Table B.2, we provide the predictions for the binned branching fraction of B + ae K (ú)+ ‹‹ decays at O(G 2 F ), i.e. without including the tree-level contributions described in Eq. (4.20) and (4.22). These values are to be compared to the full predictions given in Tables 4.3 and 4.4. the manifold of SU( 2) is isomorphic to S 31 , we are mapping S 3 ae S 3 through (x). These maps are divided in homotopy classes, collecting mapping that can be continuously deformed into each other. Therefore we arrive at the result that the vacuum configurations defined in Eq. (C.2) can be classified by an integer n, called winding number, as follows:

q 2 -bin [GeV 2 ] B(B + ae K + ‹ ‹) loop ◊ 10 6 ‡ B K + /B K + B(B + ae K ú+ ‹ ‹) loop ◊ 10 6 ‡ B K ú+ /B K ú+ [0, 4] (1 
A (n) i (x) - - - - - min = i g s Ò i n (x) † n (x) , (C.4)
and n is common to every element of the same homotopy class. The winding number can be expressed in terms of an integral over the gauge fields (see e.g. [START_REF] Weinberg | The quantum theory of fields[END_REF])

n = ig 3 s 24fi 2 ⁄ d 3 x' ijk Tr 5 A (n) i A (n) j A (n) k 6 , i, j, k = 1, 2, 3. (C.5)
The vacuum field configurations A (n) are not gauge invariant, and it can be shown that the correct vacuum state of QCD, called ◊-vacuum, is given by a superposition of states |nÍ with winding number n,

|◊Í = +OE ÿ n=≠OE e ≠i◊n |nÍ . (C.6)
Each value of ◊ selects a di erent theory, since Green's functions of gauge invariant operators between two di erent vacuum states vanish:

È◊ Õ |T (O 1 . . . O q )|◊Í = ÿ n,m e i(m◊ Õ ≠n◊) Èm|T (O 1 . . . O q )|nÍ , (C.7) defining n = m + ‹, then ÿ n,m e i(m◊ Õ ≠n◊) Èm|T (O 1 . . . O q )|nÍ = ÿ m e im(◊ Õ ≠◊) ÿ ‹ e ≠i‹◊ Èm|T (O 1 . . . O q )|m + ‹Í. (C.8)
Since the O i are gauge invariant, the scalar product depends only on ‹, Èm|T (O 1 . . . O q )|m + ‹Í © F (‹) allowing the sum over m to be performed freely

ÿ m e im(◊ Õ ≠◊) ÿ ‹ e ≠i‹◊ Èm|T (O 1 . . . O q )|m + ‹Í = 2fi"(◊ Õ ≠ ◊) ÿ ‹ e ≠i‹◊ F (‹) , (C.9)
implying a vanishing Green's function if ◊ Õ " = ◊.

C.2 Yang-Mills Instantons

So far we have seen that the QCD action has an infinity of classical vacua labeled by an integer n. Di erent n configurations are topologically disconnected, in the sense that one cannot go from a configuration to the other by means of continuous gauge transformation without leaving the ground state. This means that if a transition from di erent winding numbers vacua occours, field configurations with finite Euclidean action, S E > 0, will be encountered, which take the name of instantons. Let us analyze this situation in more detail, rewriting the action through the following identity [412]

S = 1 4 ⁄ d 4 x G a µ‹ G µ‹ a = 1 4 ⁄ d 4 x S U ± G a µ‹  G µ‹ a + 1 2 3 G a µ‹ û  G a µ‹ 4 2 T V , (C.10)
where

 G a µ‹ = 1 2 ' µ‹fl ‡ G µ‹ a , ' 0123 = +1. (C.11)
Let us inspect the two pieces separately. The second one, using the Bogomol'nyi inequality [START_REF] Bogomolny | Stability of Classical Solutions[END_REF] ⁄

d 4 x 3 G a µ‹ ±  G a µ‹ 4 2 Ø 0, (C.12)
is always positive. The first one instead can be rewritten using Bardeen's identity [START_REF] Bardeen | Anomalous currents in gauge field theories[END_REF] G

a µ‹  G µ‹ a = ˆµK µ (C.13)
with the Chern-Simons current given by

K µ = ' µ--" A - a 5 G -" a ≠ g 3 f abc A - b A " c 6 = 2' µ--" Tr 5 A -G -" + i 2g 3 A -A -A " 6 . (C.14)
In the temporal gauge, the only non-vanishing component is K 0

K 0 = 4 3 ig' ijk Tr 5 A i A j A k 6 . (C.15)
Thus the first integral on the r.h.s. of Eq. (C.10) is the integral over spacetime of a 4-divergence

⁄ d 4 x G a µ‹  G µ‹ a = ⁄ d 4 x ˆµK µ = ⁄ d 3 x K 0 - - - - - t=+OE t=≠OE . (C.16)
Recalling the expression for the winding number Eq. (C.5), the integral of G Â G is nothing but the di erence of the topological charges of the vacuum states at t = ±OE

g 2 32fi 2 ⁄ d 4 x G a µ‹  G µ‹ a = n + ≠ n ≠ © ‹. (C.17)
Being ‹ a topological invariant, the minimum of the action is given for field configurations such that (cf. Eq. (C.12))

G a µ‹ = ±  G a µ‹ (C.18)
and the action associated to these instantonic solution is

S = 8fi 2 g 2 ‹ . (C.19)
Moreover, the result in Eq. (C.17) allows to express the phase factor in Eq. (C.9) as an e ective contribution to the QCD action, given by

S ae S e = S + i◊ g 2 32fi 2 ⁄ d 4 x G a µ‹  G µ‹ a . (C.20)
The ◊ term, being gauge invariant, Lorentz invariant, hermitian and with dimension 4, could have been in principle added to the QCD Lagrangian from the start. Notice that, being a total divergence, it will not contribute to perturbation theory due to total momentum conservation.

To summarize, the non trivial structure of the Yang-Mills vacuum requires field configurations with non-zero winding number to be included in the path integral. This, in turn, translates into the addition to the QCD Lagrangian of a CP-Violating term which weights di erent vacuum configurations, the ◊G G term.

Historically, the QCD vacuum structure has been understood while trying to solve the U (1) A problem. According to Goldstone theorem, as a consequence of the spontaneous symmetry breaking of U (1) A , a Goldstone boson had to be found in the hadron's spectrum, with a mass computed by Weinberg to be m GB < Ô 3m fi [START_REF] Weinberg | The quantum theory of fields[END_REF][START_REF] Weinberg | The U(1) problem[END_REF] . The U (1) A problem is that no such strongly interacting particle exists, while a solution to that is provided by the non-trivial QCD vacuum structure, that forbid the U (1) A to be a symmetry of strong interactions [START_REF] Hooft | Symmetry Breaking Through Bell-Jackiw Anomalies[END_REF][START_REF] Hooft | Computation of the Quantum E ects Due to a Four-Dimensional Pseudoparticle[END_REF][START_REF] Hooft | How Instantons Solve the U(1) Problem[END_REF].

C.3 Neutron EDM

In this Section we discuss the implication of the ◊ angle on the nEDM, which provides the most sensitive test of CP-Violation (CPV) in the strong interactions. To begin, we observe that the full 106 QCD Lagrangian

L QCD = ÿ q 1 qi / Dq ≠ m q e i◊q qL q R ≠ m q e ≠i◊q qR q L 2 ≠ 1 4 G a µ‹ G µ‹ a + ◊ g 2 32fi 2 G a µ‹  G µ‹ a (C.21)
has two potential sources of CPV, the phase of the quark masses ◊ q and the topological term G G. Under a chiral rotation q ae e i" 5 -q (C. [START_REF] Workman | Review of Particle Physics[END_REF] the quark mass phase gets shifted as

◊ q ae ◊ q + 2-. (C.23)
Moreover, due to the non invariance of the path integral measure under chiral transformations [START_REF] Fujikawa | Path Integral Measure for Gauge Invariant Fermion Theories[END_REF],

DqD q ae 3 e ≠i-g 2 16fi 2 s d 4 xG Â G 4
DqD q (C.24)

the ◊ angle gets shifted as well, this time with opposite sign

◊ ae ◊ ≠ 2- (C.25) hence only the invariant combination ◊ = ◊ + ◊ q (C.26)
is physical and observable. In the SM, the quarks mass matrices originate from Yukawa matrices, which are diagonalized by separate left and right handed transformations. In doing so, because in the general case di erent left and right transformations are needed, a U (1) chiral rotation is automatically performed, shifting the ◊ to the physical value (see e.g. [START_REF] Donoghue | Dynamics of the standard model[END_REF])

◊ = ◊ + ArgDetY u Y d (C.27)
with Y u and Y d the up and down Yukawa matrices. The ◊ has sizable e ects on the electric dipole moment of the nucleon. To see this, let us use a chiral rotation to shift the ◊ dependence back to the quark mass

L M = qL Ê Mq R + h.c. (C.28)
with the modified quark mass matrix given by Ê M = Me i ◊. This expression can be recast in the following way

L M =q L Ê Mq R + h.c. = (C.29) =q L (M + i÷) q R + qR (M ≠ i÷) q L =qM q + iq" 5 ÷q
with ÷ given by imposing ◊ = ArgDet (M + i÷):

÷ = ◊ m u m d m s m u m d + m u m s + m d m s . (C.30)
This gives the CP violating operator in the QCD sector, which accounts for the non-zero nEDM.

Considering the scale for the dipole moment µ N = e/2m N with m N the nucleon mass, the Lorentz invariant nEDM operator

L = ≠ i 2 d n n ‡ µ‹ " 5 nF µ‹ (C.31)
has a size Explaining why ◊ is so small goes under the name of strong-CP problem. Moreover, the ◊ is stable against radiative corrections. Indeed, the first divergent contribution to ◊, due to the CKM phase, is proportional to the Jarlskog invariant [START_REF] Jarlskog | Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP nonconservation[END_REF], and is a 7-loop e ect of size [START_REF] Khriplovich | Infinite renormalization of Theta term and Jarlskog invariant for CP violation[END_REF][START_REF] Ellis | Strong and Weak CP Violation[END_REF] " ◊ ¥ 10 ≠33 log UV (C. [START_REF] Agostini | Improved measurement of 8 B solar neutrinos with 1.5kt y of Borexino exposure[END_REF] with UV an ultraviolet cut-o . This has to be compared, e.g., to the hierarchy problem of the SM, for which the Higgs mass is quadratically sensitive to the UV scale "m 2 H Ã 2 UV . The ◊ angle is therefore screened (in the SM) against radiative corrections. ae fi + fi ≠ (left panel) and afi + ae fi 0 fi + (right panel) channels predicted by the IAM (solid, red) and in ChPT at LO (dotted, black), NLO (dashed, blue) and including NNLO pieces (dot-dashed, green). Uncertainties in the IAM predictions are 1 ‡ C.L. regions stemming from the errors in the LECs.
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Synthèse en français

Le Modèle Standard (SM) de la physique des particules est une théorie des champs renormalisable qui a connu un succès remarquable dans la description du comportement des particules élémentaires et de leurs interactions, jusqu'à des distances d'au moins 10 ≠16 cm. Son cadre a été validé par de nombreuses observations expérimentales, et la cohérence entre la théorie et les expériences a indirectement confirmé les idées de renormalisation et de corrections radiatives, conduisant à des prédictions qui ont été confirmées au fil du temps, comme l'existence des quarks charm et top, du boson de Higgs, etc.

Cependant, malgré ses succès, le SM est largement reconnu comme une Théorie des Champs E ectifs (EFT), représentant une limite à basse énergie d'une théorie plus fondamentale qui opère à des échelles d'énergie plus élevées encore à explorer.

Cela est motivé, d'une part, par le fait que plusieurs observations ne peuvent pas être expliquées par le SM. Celles-ci comprennent (i) l'asymétrie baryonique observée dans l'Univers (n B ∫ n B ), nécessitant des conditions spécifiques [START_REF] Sakharov | Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe[END_REF] qui ne peuvent pas être satisfaites dans le SM [START_REF] Gavela | Standard model CP violation and baryon asymmetry[END_REF][START_REF] Gavela | Standard model CP violation and baryon asymmetry. Part 2: Finite temperature[END_REF][START_REF] Kajantie | Is there a hot electroweak phase transition at m H & m W ?[END_REF][START_REF] Rummukainen | The Universality class of the electroweak theory[END_REF], (ii) la présence de la matière noire (DM) [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF][START_REF] Bartelmann | Weak gravitational lensing[END_REF][START_REF] Mateo | Dwarf galaxies of the Local Group[END_REF], demandant une forme de matière faiblement interactive probablement associée à de nouvelles particules élémentaires, et, de manière remarquable, (iii) le mécanisme de génération des petites masses des neutrinos observées [START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF][START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF], ce dernier constituant une preuve flagrante de la présence de physique au-delà du Modèle Standard (BSM). D'autre part, le SM fait face à quelques énigmes théoriques, liées à notre compréhension des tailles relatives de certains paramètres. Par exemple, les masses des fermions dans la Lagrangienne du SM ne peuvent pas être prédites par la théorie, et leurs valeurs sont obtenues en comparant les expressions théoriques avec les observables mesurées expérimentalement. Elles apparaissent dans un schéma hiérarchique, couvrant plus de 12 ordres de grandeur si l'on inclut les masses des neutrinos. Comprendre la dynamique derrière une telle structure de saveur est l'un des objectifs centraux de la physique moderne.

De plus, la masse du boson de Higgs est quadratiquement sensible à une échelle de Nouvelle Physique (NP) potentiellement grande en principe, à travers des diagrammes en boucle, de sorte qu'une annulation fine-tunée entre la valeur nue et la correction est nécessaire pour obtenir la masse physique du Higgs. Ce problème est connu sous le nom de problème de la hiérarchie.

De plus, les interactions fortes permettent un couplage de violation de CP d'ordre O(1), ◊QCD , qui, au contraire, est trouvé à partir des données expérimentales comme étant extrêmement petit, voire nul, posant ainsi le problème de CP forte.

Bien que ces énigmes ne représentent pas une incohérence du SM en soi, elles pointent vers une complétion UV non triviale du SM à une échelle d'énergie plus élevée. Divers cadres théoriques ont été proposés pour relever ces défis, séparément ou simultanément, o rant des prédictions impliquant l'existence de nouvelles particules et interactions, certaines pouvant être testées expérimentalement.

Bien que le SM ait été testé expérimentalement avec une grande précision, de nombreuses pièces du puzzle manquent encore et attendent d'être découvertes. Les générations actuelle et à venir d'expériences devraient, espérons-le, faire le saut vers des échelles d'énergie très élevées. Comme mentionné dans l'introduction, dans cette thèse, nous nous concentrerons sur les aspects phénoménologiques liés à certains des problèmes les plus convaincants qui attirent les e orts des communautés théoriques et expérimentales, à savoir les masses des neutrinos, la structure de saveur du SM et le problème de CP forte. Dans les sections suivantes, nous introduirons brièvement les principales motivations derrière ces sujets. L'image générale est cohérente avec des oscillations induites par la masse entre trois saveurs distinctes. Le scénario minimal peut donc être paramétré par une matrice de mélange leptonique 3 ◊ 3, connue sous le nom de matrice PMNS (Pontecorvo ≠ Maki ≠ Nakagawa ≠ Sakata), analogue à la matrice CKM pour les quarks, mais avec deux phases supplémentaires dues à la possible nature Majorana des neutrinos [START_REF] Pontecorvo | Mesonium and anti-mesonium[END_REF][START_REF] Maki | Remarks on the unified model of elementary particles[END_REF] : où R ij (◊ ij ) représente la matrice de rotation pour les saveurs i et j avec un angle ◊ ij , c ij = cos(◊ ij ), s ij = sin(◊ ij ), " est la phase de violation de CP de Dirac, et P est la matrice de phase contenant les phases de violation de CP de Majorana -1 et -2 . Notez que cette paramétrisation suppose que seuls 3 neutrinos subissent des mélanges et des oscillations. Cependant, cela n'est pas compatible avec l'hypothèse de l'existence de neutrinos stériles, qui peuvent se mélanger avec les actifs. Néanmoins, compte tenu des fortes contraintes au niveau du millième sur la non-unitarité de la matrice U [START_REF] Antusch | Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities[END_REF][START_REF] Escrihuela | On the description of nonunitary neutrino mixing[END_REF], le paradigme 3 ◊ 3 reste robuste.

U PMNS = R 23 (◊ 23 ) • R 13 (◊ 13 , ") • R 12 (◊ 12 ) • P = Q c c
Dans le cas de l'ordre normal, m 1 < m 2 < m 3 , les angles de mélange mesurés sont [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF] ◊ 12 = (33.4 ) ¶ [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF]. Notez que les expériences LSND [START_REF] Aguilar | Evidence for neutrino oscillations from the observation of ‹e appearance in a ‹µ beam[END_REF], MiniBooNE [START_REF] Aguilar-Arevalo | Updated MiniBooNE neutrino oscillation results with increased data and new background studies[END_REF] et Gallium [START_REF] Hampel | GALLEX solar neutrino observations: Results for GALLEX IV[END_REF][START_REF] Altmann | Complete results for five years of GNO solar neutrino observations[END_REF] ont signalé des preuves en faveur de l'existence de neutrinos supplémentaires avec des masses de l'ordre de l'électronvolt.

Étant donné que les expériences d'oscillations ne sont sensibles qu'aux di érences de masse au carré et aux angles de mélange, la valeur exacte des masses des neutrinos et de leurs hiérarchies est encore inconnue. Les seules informations indépendantes du modèle sur les masses des neutrinos peuvent être extraites du spectre des désintégrations bêta, comme suggéré par Fermi en 1933 [START_REF] Fermi | An attempt of a theory of beta radiation. 1[END_REF]. Jusqu'à présent, la limite supérieure a été fixée à m ‹e < 0.8 eV (à 90% de niveau de confiance) [START_REF] Aker | Direct neutrino-mass measurement with sub-electronvolt sensitivity[END_REF]. Dans l'ensemble, les expériences et les observations cosmologiques ont révélé non seulement que certaines masses de neutrinos sont non nulles, mais aussi que les masses de neutrinos sont minuscules, suggérant que le mécanisme de génération des masses des neutrinos pourrait être di érent de celui des autres fermions du SM. Cette image générale indique que le SM nécessite des modifications, et de nombreuses explications ont été proposées.

L'absence de preuve directe de cette nouvelle physique (NP) peut être contournée en adoptant une approche de la théorie e ective des champs (EFT) pour étudier les e ets de la complétion UV inconnue sur les observables à basse énergie. De manière remarquable, en considérant la tour d'opérateurs e ectifs non renormalisables qui peuvent être construits à partir des champs du Modèle Standard (SM), à la dimension d = 5, il existe un opérateur unique, invariant sous Lorentz et jauge, l'opérateur de Weinberg [START_REF] Weinberg | Baryon-and lepton-nonconserving processes[END_REF], défini comme suit :

L 5 = C ij 2 (L c i Ê H ú )( Ê H † L j ) + h.c. , (D.12)
où est l'échelle UV et C ij sont les coe cients de Wilson associés aux saveurs i, j = e, µ, • . Cet opérateur viole le nombre leptonique de deux unités, et après la brisure spontanée de la symétrie électrofaible (SSB), il génère un terme de masse Majorana pour les neutrinos gauches :

L M = C ij v 2 2 ‹ c L i ‹ L j + h.c. . (D.13)
Dans tous les scénarios de NP qui expliquent les masses des neutrinos de Majorana, une fois que les degrés de liberté lourds sont intégrés, le premier opérateur dans le développement en 1/ est le même opérateur de Weinberg dans Eq. (2.27).

L'opérateur de Weinberg peut être généré dans la théorie UV par l'échange d'arbre de champs lourds, comme illustré dans la figure 2.1. Les particules en propagation peuvent être soit des singulets fermioniques (see-saw de type-I), des triplets scalaires (see-saw de type-II) ou des triplets fermioniques (see-saw de type-III).

En particulier, pour les modèles de type-I et de type-III, les masses des neutrinos actifs évoluent comme suit : TeV. Quelle que soit la méthode, la phénoménologie de ce modèle est extrêmement supprimée, ce qui le rend di cile à sonder expérimentalement.

m ‹ ≥ v 2 Y 2
Une alternative pour avoir une réalisation à petite échelle avec de grands couplages de Yukawa est de considérer des fermions stériles supplémentaires et une symétrie approximative. C'est le cas des réalisations du type "inverse see-saw" (ISS) [START_REF] Wyler | Massless Neutrinos in Left-Right Symmetric Models[END_REF][START_REF] Mohapatra | Neutrino Mass and Baryon Number Nonconservation in Superstring Models[END_REF][START_REF] Gonzalez-Garcia | Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models[END_REF] ou "linear see-saw" (LSS) [START_REF] Barr | A Di erent seesaw formula for neutrino masses[END_REF][START_REF] Malinsky | Novel supersymmetric SO(10) seesaw mechanism[END_REF], où la symétrie globale B ≠ L est utilisée pour protéger les masses des neutrinos actifs, en les reliant à leur petitesse à de petits paramètres qui quantifient la brisure de la symétrie B ≠ L.

Une autre option est représentée par les modèles radiatifs [START_REF] Zee | A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation[END_REF][START_REF] Zee | Quantum Numbers of Majorana Neutrino Masses[END_REF][START_REF] Babu | Model of 'Calculable' Majorana Neutrino Masses[END_REF][START_REF] Perez | On the Origin of Neutrino Masses[END_REF], dans lesquels les neutrinos sont sans masse au niveau de l'arbre, et leurs masses sont générées de manière dynamique via des boucles. Cela o re une explication naturelle de la petitesse des masses des neutrinos actifs observées, et, dans les scénarios scotogéniques, propose des candidats viables pour la matière noire des particules [START_REF] Ma | Verifiable radiative seesaw mechanism of neutrino mass and dark matter[END_REF]. La suppression due aux facteurs de boucle permet à la NP (Nouvelle Physique) d'être à l'échelle du TeV, rendant de tels scénarios testables dans les futurs collisionneurs. Dans la référence [START_REF] Abada | Gauged inverse seesaw from dark matter[END_REF], nous avons exploré un mécanisme ISS généré à partir de la brisure spontanée d'une symétrie locale U (1) B≠L , avec les masses de Majorana des neutrinos stériles générées de manière radiative à partir du secteur sombre.

Les neutrinos stériles seront le sujet du chapitre 3, où nous discuterons des principales contraintes sur leurs masses et leurs mélanges provenant des recherches menées dans la gamme de masse allant de quelques GeV à plusieurs centaines de GeV. Nous montrerons comment reformuler de telles contraintes dans des configurations réalistes avec plus d'un HNL (Heavy Neutral Lepton) et avec des schémas de mélanges généraux avec les saveurs actives. Ce faisant, nous resterons agnostiques quant au mécanisme de génération de masse des neutrinos, en considérant le cas le plus générique avec des masses et des mélanges en tant que paramètres libres.

Le nombre de paramètres du modèle standard (SM) dans le secteur de Yukawa s'élève à 22 dans le cas des neutrinos de Majorana et à 20 dans le cas des neutrinos de Dirac. En ce qui concerne le secteur leptonique, à ce jour, les principales inconnues demeurent l'échelle des masses des neutrinos et leur ordre, ainsi que les deux phases majeures leptiques possibles. Étant donné le grand nombre de paramètres dans le secteur de saveur, l'explication de leurs valeurs et hiérarchies constitue une question intéressante et intrigante qui peut éclairer la théorie fondamentale à partir de laquelle ces paramètres proviennent. L'image générale des mélanges de quarks montre une structure fortement hiérarchique: avec ⁄ = 0.225(1) le sinus de l'angle de Cabibbo [START_REF] Cabibbo | Unitary symmetry and leptonic decays[END_REF]. Cela se reflète dans la paramétrisation de Wolfenstein [START_REF] Wolfenstein | Parametrization of the kobayashi-maskawa matrix[END_REF] de la matrice CKM (Cabibbo-Kobayashi-Maskawa): Le problème de saveur pourrait également être finalement lié au problème de hiérarchie, résultant du fait que le paramètre de masse au carré du Higgs reçoit des corrections proportionnelles au carré de l'échelle NP. Pour éviter le réglage fin entre la masse nue du Higgs et son contre-terme, une telle échelle NP doit être raisonnablement basse. Cependant, des contraintes fortes (voir par exemple [START_REF]Cms summary plot[END_REF]) sur la NP universelle de saveur poussent l'échelle associée au-dessus de 10 TeV, aggravant le problème de hiérarchie. Une éventuelle solution est le paradigme de la Violation Minimale de Saveur (MFV) [START_REF] D'ambrosio | Minimal flavor violation: An E ective field theory approach[END_REF][START_REF] Isidori | Minimal Flavour Violation and Beyond[END_REF], où les couplages Yukawa du SM sont la seule source de violation de saveur au-delà du SM. De cette manière, la structure de saveur du SM est reproduite dans la complétion UV, ce qui permet de réduire l'échelle NP et de stabiliser le secteur du Higgs. Dans le même temps, cela revient à négliger le problème de saveur et à en reporter l'origine à des échelles plus élevées.

V CKM = Q c c c a 1 ≠ ⁄ 2 2 ⁄ A⁄ 3 (fl ≠ i÷) ≠⁄ 1 ≠ ⁄ 2 2 A⁄ 2 A⁄ 3 (1 ≠ fl ≠ i÷) ≠A⁄
Une autre possibilité, qui aborde à la fois le problème de hiérarchie et le problème de saveur [START_REF] Dvali | Families as neighbors in extra dimension[END_REF][START_REF] Panico | Flavor hierarchies from dynamical scales[END_REF][START_REF] Bordone | A three-site gauge model for flavor hierarchies and flavor anomalies[END_REF][START_REF] Allwicher | Stability of the Higgs Sector in a Flavor-Inspired Multi-Scale Model[END_REF][START_REF] Davighi | Non-universal gauge interactions addressing the inescapable link between Higgs and Flavour[END_REF], consiste à autoriser plusieurs complétions UV à plusieurs échelles avec des interactions de saveur non universelle, afin d'obtenir une NP à l'échelle du TeV principalement couplée aux fermions de troisième génération pour lesquels les contraintes sont plus faibles, et une NP plus lourde principalement couplée aux fermions de première et deuxième génération.

Finalement, les solutions aux problèmes de hiérarchie et de saveur demeurent une question ouverte. Dans ce contexte, les indications expérimentales obtenues à partir de recherches indirectes et/ou directes jouent un rôle crucial dans la direction des e orts théoriques.

Dans Chapter 4, nous étudierons une puissante sonde indirecte de la violation de saveur NP, le processus b ae s‹‹. À la lumière des déterminations récentes des form-factors B ae K par la collaboration HPQCD [START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] et de la future mesure à Belle-II, nous réexaminerons la prédiction du SM pour les taux de branchement Br(B ae K (ú) ‹‹), et explorerons les opportunités de tester la physique du SM et BSM.

Avant l'avènement du SM, on croyait que la parité était une symétrie conservée de toutes les interactions. Cependant, le bien connu puzzle ◊ ≠ • (décroissance des kaons chargés en deux/trois pions) a poussé Lee et Yang [START_REF] Lee | Question of Parity Conservation in Weak Interactions[END_REF] (1956) à analyser le rôle des symétries discrètes dans les interactions faibles, concluant que "la conservation de la parité n'est jusqu'à présent qu'une hypothèse extrapolée non étayée par des preuves expérimentales". Cette suggestion a été reprise par Wu, qui a observé un an plus tard une grande asymétrie dans la direction d'émission des électrons provenant de la décroissance -du Co 60 [START_REF] Wu | Experimental Test of Parity Conservation in Beta Decay[END_REF], fournissant ainsi une preuve claire de la violation de la parité dans les interactions faibles. À l'heure actuelle, nous savons que les interactions électromagnétiques sont les seules dans lesquelles C, P et T sont individuellement conservées, tandis que les interactions faibles violent individuellement C, P, T et donc CP, PT et CT. Comme le montre Appendix C, la violation de CP est permise dans les interactions fortes via le terme

L ◊ QCD = ◊ g 2 s 32fi 2 G a µ‹  G µ‹ a , (D.20)
où  G a µ‹ = 1/2' µ‹fl ‡ G µ‹ a et ◊ est un paramètre libre. En empruntant la version du Principe Totalitaire de Gell-Mann1 , nous nous attendrions naïvement à une mesure non nulle d'un processus de violation de CP médié par un tel terme lagrangien. Cependant, les limites sur le moment électrique dipolaire du neutron (nEDM) [START_REF] Abel | Measurement of the permanent electric dipole moment of the neutron[END_REF] ont montré que CP est conservée à un degré remarquable d'exactitude par l'interaction forte, donnant naissance au puzzle de CP forte.

Di érentes solutions ont été proposées. La plus simple est liée aux masses des quarks. L'e et physique du paramètre ◊ s'annule si l'un des quarks légers est sans masse (voir Appendix C.3). Cela crée e ectivement une nouvelle symétrie chirale, qui permet de rendre le terme de violation de CP non physique. Cependant, cette possibilité a été exclue par les résultats de la QCD sur réseau les neutrinos. De plus, à moins que des symétries spécifiques ne soient présentes, le schéma de mélange dans ces scénarios BSM est plus complexe. Chaque LNL se mélange en général avec tous les leptons chargés, et donc, les limites déduites de recherches sur l'espace des paramètres des LNL doivent être reformulées avant d'être appliquées à un scénario BSM générique.

Nous avons discuté de la manière de reformuler les limites expérimentales actuelles sur l'espace des paramètres des LNL, c'est-à-dire les mélanges actif-stérile U -N , -= e, µ, • , par rapport à la masse des LNL, pour le cas d'un mélange générique avec toutes les saveurs actives ainsi que pour le cas avec plusieurs LNL. Le premier cas a été abordé dans la section 3.3, où nous avons examiné les dépendances de saveur de chacun des canaux recherchés par le LHC, et souligné l'importance de définir des limites non seulement sur les mélanges, mais aussi sur la combinaison pertinente

|U -N | 2
◊ BR (voir les tableaux 3.2 et 3.3). En considérant les limites de cette combinaison, nous avons proposé une méthode pour combiner les résultats dans l'espace des saveurs, en utilisant les diagrammes ternaires de la figure 3.4 pour conclure si cette région de l'espace des paramètres est entièrement exclue, indépendamment du schéma de mélange supposé.

Dans le cas de plusieurs leptons neutres lourds, nous nous sommes concentrés sur le scénario où deux LNL se trouvent dans la même région de masse, presque dégénérés ou formant éventuellement une paire de neutrinos pseudo-Dirac, en accordant une attention particulière au rôle non trivial de l'interférence entre leurs contributions. Pour illustrer son importance, nous nous sommes concentrés sur les canaux dileptoniques et avons examiné à la fois les canaux avec la même charge et avec la charge opposée des leptons finaux, comme cela a été fait par le LHCb [180]. Nous avons montré la complémentarité des recherches LNC et LNV ainsi que l'importance de les mener toutes deux en parallèle. Nous avons souligné qu'en faisant cela, nous prenons en compte non seulement les deux natures possibles d'un seul LNL, Dirac ou Majorana, mais aussi le cas où, par exemple, deux LNL Majorana existent, et cependant ils interfèrent de manière destructive, supprimant la signature LNV attendue.

En résumé, nous avons discuté de l'importance de dépasser les scénarios simplifiés tels que l'hypothèse de mélange unique. Bien qu'ils soient utiles pour simplifier les analyses expérimentales, ils ne s'appliquent pas directement aux modèles BSM introduisant des LNL. Malheureusement, reformuler les limites de chaque analyse expérimentale à un scénario BSM donné peut être une tâche fastidieuse. Dans ce chapitre, nous avons proposé une alternative pour présenter les limites de l'espace des paramètres des LNL, qui, sous certaines approximations, peuvent être à la fois directement contraintes par les analyses expérimentales et facilement reformulées dans un scénario BSM générique.

Dans le Chapter 4, nous avons revisité l'estimation du SM de B(B ae K (ú) ‹ ‹). Cela est particulièrement important pour le cas du méson pseudo-scalaire dans l'état final, car le facteur de forme pertinent a été largement étudié et calculé par des méthodes de la chromodynamique quantique sur réseau (LQCD). Étant donné qu'un nouveau calcul sur réseau est apparu après la publication la plus récente de l'examen FLAG, nous avons mis à jour la moyenne FLAG des trois facteurs de forme pertinents pour les transitions B ae K. Étant donné que les résultats de la QCD sur réseau sont obtenus pour de grands q 2 , il faut être prudent lors de l'examen des incertitudes systématiques. Pour cette raison, nous croyons que le moyen le plus fiable de tester la valeur SM de B Õ (B ae K (ú) ‹ ‹) est dans la région de grands q 2 . De plus, les informations expérimentales sur r lh = B(B ae K‹ ‹) low≠q 2 /B(B ae K‹ ‹) high≠q 2 seraient utiles pour vérifier la validité de l'extrapolation des résultats de la LQCD (obtenus à grand q 2 ) à faible q 2 . Outre les incertitudes hadroniques dans B(B ae K (ú) ‹ ‹), il est important d'améliorer davantage la valeur de ⁄ t = V tb V ú ts qui, en vertu de l'unitarité CKM, est liée au problème de concilier la valeur de V cb extraite des désintégrations semi-leptoniques exclusives et inclusives.

La plupart des incertitudes mentionnées ci-dessus s'annulent en réalité si l'on considère le rapport des taux de désintégration partiels de B Õ (B ae K (ú) ‹ ‹) et de B(B ae K (ú) ¸¸), que nous notons R (‹/¸) K (ú) . L'incertitude majeure d'origine hadronique dans les deux taux provient du facteur de forme, qui s'annule dans R (‹/¸) K (ú) . L'incertitude due au facteur CKM multiplicatif ⁄ t s'annule également. Cependant, le coe cient de Wilson C 9 , entrant dans B(B ae K (ú) ¸¸), devient un obstacle car il est sensible à la contribution de l'opérateur non local résultant des couplages du courant vectoriel aux quarks cc. Dans la littérature, cette contribution est souvent estimée en utilisant la dualité quarkhadron ou en recourant à des calculs de modèle. Si nous nous en tenons au SM, nous montrons qu'à partir d'une mesure du rapport R (‹/¸) K (ú) dans un intervalle donné de q 2 (de préférence en dessous de la première résonance cc), on peut extraire la valeur ÈC e 9 Í et vérifier en e et si la contribution non factorisable importante aboutirait à ÈC e 9 Í K " = ÈC e 9 Í K ú , comme cela est parfois avancé dans la littérature (nous rappelons qu'avec ÈC e 9 Í, nous désignons C e 9 (q 2 ) moyenné sur l'intervalle dans lequel R (‹/¸) K (ú) est mesuré). Pour soutenir davantage les avantages de la mesure de R (‹/¸) K (ú) , nous illustrons également comment elle peut être utilisée pour rechercher les e ets de la nouvelle physique au-delà du SM. Dans un scénario dans lequel la nouvelle physique contribue à basses énergies par le biais de couplages gauches aux quarks et aux leptons, nous constatons que R (‹/¸) K (ú) serait un test plus sensible de la présence de la nouvelle physique que son numérateur et/ou son dénominateur séparément. Nous fournissons également une illustration de ce scénario dans plusieurs modèles simples. de thermalisation dans le cadre de la ChPT unitarisée, ce qui permet également d'étendre la plage de validité jusqu'à des températures approchant la déconfinement QCD, T c ƒ 155 MeV.

Le taux IAM présente une déviation notable par rapport à celui perturbatif pour des températures T & 40 MeV, correspondant à la contribution des résonances ‡ et fl dans la région Ô s & 500 MeV pour la di usion axion-pion. Dans l'approximation du découplage instantané, la limite HDM obtenue en utilisant l'IAM est m a . 0.24 eV.

Des améliorations supplémentaires dans le calcul du taux de thermalisation des axions pourraient être réalisées en étendant l'analyse à trois saveurs, ce qui, comme discuté dans la section 5.5.1, peut commencer à produire des e ets importants à partir d'énergies Ô s & 800 MeV en raison des seuils des kaons et de l'apparition de la réson ance f 0 (980). Comme discuté dans la section 5.5.2 et illustré dans la figure 5.9, ces énergies ne sont importantes que pour les températures plus élevées, qui pourraient en e et devenir importantes pour exploiter pleinement les futures mesures de N e attendues des expériences de la prochaine génération. Dans ce contexte, il faudrait également envisager de calculer les corrections thermiques à l'amplitude de di usion (dans le cadre des calculs réalisés dans les références [START_REF] Gomez Nicola | Finite temperature pion scattering to one loop in chiral perturbation theory[END_REF][START_REF] Dobado | Thermal rho and sigma mesons from chiral symmetry and unitarity[END_REF]) et éventuellement de développer des techniques pour décrire la production thermique des axions dans la région de la transition QCD, entre T c ƒ 155 MeV et T ≥ 1 GeV.

Enfin, dans la section 5.6, nous avons étudié l'impact des e ets de renormalisation sur la limite HDM, en nous concentrant sur le modèle DFSZ. Le résultat est que la limite dépend crucialement de l'échelle à laquelle les états Higgs lourds sont intégrés, et, en outre, les e ets de renormalisation sont particulièrement importants pour de faibles valeurs de tan -.

Un résumé des résultats obtenus dans cette thèse est présenté dans le Chapter 6, où nous discutons également de quelques pistes possibles pour poursuivre et approfondir davantage la recherche abordée dans ce travail.
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 21 Figure 2.1: Heavy field exchange generating the Weinberg operator in Eq. (2.26): (a) singlet fermion N R (see-saw type-I), (b) triplet fermion R (see-saw type-III) and (c) triplet scalar (see-saw type-II).
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 31 Figure 3.1: Drell-Yann HNL production leading to a dilepton signature. The thunder-shaped arrow indicates that the HNL could be of Dirac or of Majorana nature.

Figure 3 . 2 :

 32 Figure3.2: Summary of direct HNL searches performed at the LHC so far, either by CMS (dashed), ATLAS (dotted) or LHCb (dot-dashed), and group by colors for di erent kind of searches as given in Table3.1. In the upper (lower) panel a single mixing scenario to electrons (muons) is assumed. Shadowed area cover the area excluded by direct searches at LEP. Notice that below 2 GeV and above (approx.) 100 GeV, bounds from meson decays and from non-unitarity of the lepton mixing[START_REF] Fernandez-Martinez | Global constraints on heavy neutrino mixing[END_REF] dominate, respectively, over current LHC bounds, although we do not show them explicitly for easier reading of the collider results.
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 33 Figure 3.3: Rescaling of the bounds on |U µN | 2 from CMS [174] (solid red line) and LHCb [180] (solid blue line), fixing the active≠sterile mixings to the values corresponding to the green points 1 ≠ 4 in the ternary plot on the left. The orange squared point represents the single mixing case.

Figure 3 . 4 :

 34 Figure 3.4: Combination of several bounds in a general mixing pattern for two benchmark points of mass and total mixing U 2 . Each bound correspond to the latest SS dilepton searches by CMS (Table3.1), which were derived within a single mixing scenario (or assuming U • N for the e ± µ ± channel). The white area is still allowed by LHC searches.
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 35 Figure 3.5: Left: rescaling of the bounds on |U µN | 2 from LHCb[180] in the presence of two HNLs. Dark blue line is the LHCb bound in the LNC searches, while in lighter blue (lower curve) is the rescaled bound for y = M N / N < 1. The dark green line is the bound in the LNV searches, which can be relaxed (upper green region) if the N 1,2 form a pseudo≠Dirac pair ("" + = fi, y π 1), or strengthened (lower green region) if "" + = 0. Right: |U µN | 2 as a function of y, with M N = 30 GeV and "" + = fi. Blue (green) region is for LNC (LNV) channel with the thick lines corresponding to the (rescaled) LHCb bounds to the case of a low-scale seesaw with pseudo-Dirac HNL pair.
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 36 Figure 3.6: CP violating ratio A ±CP , defined in Eq. (3.39), as function of the relevant ratio y = M N / N and for di erent choices of the relative phases "" ± . Red dots were obtained with Whizard as a cross-check of our analytical results.
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 41 Figure 4.1: Left:The results of our fit for f + (q 2 ) and f 0 (q 2 ) form factors are depicted by the blue and red solid curves respectively. The dashed lines correspond to the results reported by FLAG[231]. The synthetic data points by HPQCD (green)[START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] and by FNAL/MILC (orange)[START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF] are also shown for comparison.
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 42 Figure 4.2: Left panel: Form factors for the B ae K ú ‹ ‹ hadornic matrix element. Right panel: Predictions for |⁄ t | ≠2 dB(B 0 ae K ú0 ‹ ‹)/dq 2 obtained by using the form factors from Bharucha et al. '15 [238]; the lower panel shows the relative uncertainty on this quantity as a function of q 2 .

  incl cb | extracted from the inclusive semileptonic decay, does not coincide with |V excl cb | obtained from the exclusive modes. The latest HFLAV average values of the inclusive |V cb | read: |V incl cb | kin = (42.2 ± 0.8) ◊ 10 ≠3 or |V incl cb | 1S = (42.0 ± 0.5) ◊ 10 ≠3 [241], with subscripts denoting di erent renormalization schemes. Those values are larger than |V BaeD cb | = (40.0 ± 1.0) ◊ 10 ≠3 [231] obtained after combining the experimental results on the exclusive B ae D¸‹ decays [241] (with ¸= e, µ) with the LQCD form factors from Refs. [242, 243]. This discrepancy holds if one compares the inclusive values with the one derived from B ae D ú ¸‹, namely |V BaeD ú cb | = (38.5 ± 0.7) ◊ 10 ≠3 [241].

cb|

  = 42.2(5) ◊ 10 ≠3 [245], or |V CKMfitter cb | = 41.3(3) ◊ 10 ≠3 [246], mostly constrained by the K 0 ≠ K 0 and B s ≠ B s mixing. Clearly, one could extract ⁄ t from m Bs , as advocated inRef.[START_REF] Buras | Standard Model predictions for rare K and B decays without new physics infection[END_REF]. In all these alternative strategies, an excellent control over the matrix element of the B s ≠ B s mixing is required, usually referred to as f Bs Ò BBs , which is currently not the case. In the FLAG review, f Bs Ò BBs = 274(8) MeV (N f = 2 + 1), and f Bs Ò BBs = 256(6) MeV (N f = 2 + 1 + 1),

. 23 )

 23 To estimate the size of this contribution, we take f K = 155.7(3) MeV and f B = 190.0(1.3) MeV from the FLAG review[231], in addition to f K ú = 205[START_REF] Luzio | a fififi decay at next-to-leading order in chiral perturbation theory[END_REF] MeV, which we extracted from the measuredB(• ae K ú ‹) = 1.20(7)% [229], and by using |V us | = 0.2259(5) [248], |V ub | = 3.74(17) ◊ 10 ≠3 [231]. We finally obtain B(B + ae K + ‹ ‹) Tree = (6.28 ± 0.06) ◊ 10 ≠7 , B(B + ae K ú+ ‹ ‹) Tree = (1.07 ± 0.10) ◊ 10 ≠6 . (4.24)
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 43 Figure 4.3: The ratios R (‹/µ) K

K 1 R

 1 (ú) [1.1, 6] in order to extract the C e 9 from the data. If we stick to the SM, we obtain
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 44 Figure 4.4: The ratios R (‹/µ) K and R (‹/µ) K ú

[ 1 . 1 , 6 ]

 116 GeV 2 bin, see Fig. 4.3 .
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 45 Figure 4.5: The ratios R (‹/e) K (ú) (bottom and top left panels) and R (‹/µ) K (ú) (bottom and top right panels) normalized to their SM values, in the region q 2 oe [1.1, 6] GeV 2 , and plotted against "C µµ 9 = ≠"C µµ 10 for selected New Physics scenarios with left-handed couplings to muons, see Sect. 4.3.

  model-dependent correlations between the b ae sµµ and b ae s‹ µ ‹ µ transitions. In Fig. 4.5 we plot the New Physics contribution to the ratios R (‹/µ) K (left panel) and R (‹/µ) K ú

t

  sin -and Y SM b = Ô 2m b /v = Y DFSZ b cos -, and using the values m t = 173.1 GeV, m b = 4.18 GeV and v = 246 GeV, this translate into the following range of allowed -: tanoe [0.25, 170] .

  , will contribute to N e as N e = N e ≠ N SM e
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 52 Figure 5.2: Profile of the h LO and h NLO functions, normalized to 1 at the value m fi /T c ƒ 0.88.
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 53 Figure 5.3: Left (right) panel: ratio between the NLO correction and LO axion-pion cross-section (thermalization rate), considering the individual final-state channels fi +fi ≠ (red), fi + fi 0 and fi ≠ fi 0 (blue, the latter two being equal) and their sum (black).

Figure 5

 5 Figure 5.4: Ô s-T correspondence, using two di erent criteria: equating the % correction in the left and right panels of Fig. 5.3 (black line) and summing the axion-pion thermal energies in the initial state of the scattering (orange line).

Fig. 5 .

 5 Fig. 5.5 shows the extraction of the decoupling temperature (defined via Eq. (5.56)) for two illustrative values of the axion mass (setting the strength of the axion coupling via f a ), namely m a = 1 eV and 0.3 eV. We see that, considering the LO rates (dashed lines), T LO D ƒ 59 MeV for m a = 1 eV and T LO D ƒ 120 MeV for m a = 0.3 eV. While for m a = 1 eV the decoupling temperature is within the validity range of the chiral expansion, set by T ‰ ƒ 70 MeV, for m a = 0.3 eV it is well above it.
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 55 Figure 5.5: Axion-pion thermalization rate vs. Hubble rate for two reference values of the axion mass, m a = 1 eV and 0.3 eV.
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 57 Figure 5.7: Cross sections ‡ a (s) for axion-pion scattering in units of mbarn for f a = f fi , so they scales as à f ≠2 a . Left: Plots for afi 0 ae fi + fi ≠ (blue), afi 0 ae fi 0 fi 0 (magenta) and afi ± ae fi ± fi 0 (orange). Solid lines are the predictions in IAM, dashed in NLO ChPT and dotted in LO ChPT. We also include a dot-dashed magenta line describing the rate for the afi 0 ae fi 0 fi 0 channel in ChPT which is a pure NLO 2 contribution (the amplitude is zero at LO[START_REF] Di Luzio | Breakdown of chiral perturbation theory for the axion hot dark matter bound[END_REF]). Right: Sum of all the cross-sections predicted in the IAM (solid, red) and in ChPT at LO (dotted, black), NLO (dashed, blue) and including the squared NLO pieces (NNLO) in the cross-section (dot-dashed, green). Uncertainties in the IAM predictions are 1 ‡ C.L. regions stemming from the errors in the LECs.
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 58 Figure 5.8: Profile of the h LO , h NLO and h IAM functions, normalized to 1 at the value m fi /T c ƒ 0.88.
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 510 Figure 5.10: Ratio between the IAM (cuto at 1 GeV) and LO thermalization rate considering the individual final-state channels fi +fi ≠ (red), fi + fi 0 and fi ≠ fi 0 (blue, the latter two being equal) and their sum (black).
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 5512 Figure 5.11: Axion-pion thermalization rate vs. Hubble rate (blue line) for m a = 0.3 eV. LO, NLO correction, and the total rate at NLO are denoted respectively by dashed, dotted and solid black lines, while the IAM rate is represented by a red band.

. 73 )

 73 where c 0 u, d = c 0 u, d (2 GeV) are the low-energy couplings evaluated at the scale µ = 2 GeV by numerically solving the RG equations from the boundary values at the scale f a , given by c 0 u,c,t (f a )

.75) c 0 d ( 2

 2 GeV) = c 0 d (f a ) + c d , (5.76) with c ƒ r t (m BSM ) c 0 t (f a ) , (5.77) and = u, d, e. The parameter r t (m BSM ) encodes the RG correction approximated by taking only the top-Yukawa contribution. This depends logarithmically on the parameter m BSM ƒ m h, A, H + , denoting the mass scale of the heavy scalar degrees of freedom of the PQ-2HDM. The m BSM scale depends on the structure of the DFSZ scalar potential (see e.

For,Figure 5 . 13 :

 513 Figure 5.13: HDM bound in the DFSZ1/2 models. The red region shows the e ect of RG corrections, for m BSM ranging from f a (left border) to 1 TeV (right border). The gray line corresponds to the perturbative unitarity bound on tanfor m BSM = f a .

)Figure D. 1 :Figure D. 2 :

 12 Figure D.1: Absolute values of the PWAs in the di erent isospin and angular momentum channels considered in this work. The predictions in IAM, ChPT at LO and ChPT at NLO are shown in solid (red), dotted (black) and dashed (blue) lines, respectively. Error bands at 1 ‡ in the IAM stem from uncertainties in the LECs.

F

  sont les couplages de Yukawa au champ de Higgs et M F sont les masses des fermions lourds, F = N R , R (voir la figure 2.1). Afin d'accommoder les masses des neutrinos sub-électronvoltiques [72], Eq. (D.14) nécessite soit une échelle de violation du nombre leptonique (LNV) élevée M F ƒ O(10 14 ) GeV avec Y F ƒ O(1), soit des couplages de Yukawa très petits Y F ƒ O(10 ≠6 ) si réalisés à une échelle basse M F ƒ O(1)

|V ud | ¥ 1 , (D. 15 )

 115 |V us | ¥ ⁄, (D.[START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF])|V cb | ¥ ⁄ 2 , (D.17) |V ub | ¥ ⁄ 3 , (D.18)

+

  O(⁄ 4 ), (D.[START_REF] Higgs | Spontaneous symmetry breakdown without massless bosons[END_REF] dans lequel ⁄ est le paramètre d'expansion. À partir de l'ajustement d'une multitude de données expérimentales, nous avons: A = 0.826 ± 0.012, fl = 0.152 ± 0.014, et ÷ = 0.357 ± 0.010[START_REF] Bona | The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Delta m(s) and BR(B -> tau nu(tau))[END_REF].Dans le secteur leptonique, les mélanges montrent une structure non hiérarchique et des angles plutôt importants, ◊ 12 ƒ 33.4 ¶ , ◊ 23 ƒ 49.1 ¶ , ◊ 13 ƒ 8.5 ¶[START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF], contrairement à l'angle CKM le plus grand, l'angle de Cabibbo, ◊ CKM 12 ƒ 13 ¶ . Les masses des quarks et des leptons sont présentées dans Fig.2.2, ainsi que les scénarios d'ordre normal (m 1 < m 2 < m 3 ) ou inversé (m 3 < m 1 < m 2 ) possibles dans le secteur des neutrinos. L'absence d'explication pour ce motif apparemment compliqué est appelée le problème de saveur, et il pourrait trouver son origine dans un mécanisme sous-jacent responsable du mécanisme de violation de saveur BSM. De plus, cette NP pourrait également être liée aux sources supplémentaires de violation de CP, en plus des phases CKM et PMNS, nécessaires pour expliquer l'asymétrie baryonique de l'Univers.

  

  

Table 3 .

 3 1: HNL searches at the LHC, classified according to the type of signal searched for. OS/SS are for opposite/same sign for the charges of final leptons and nj for a number n of final jets.

		Lepton flavor ee/µµ	Experiment CMS'12 [184]	Ô	s [TeV] L [fb ≠1 ] M N [GeV] 7 4.98 (50, 210)
		µµ	CMS'15 [185]		8	19.7	(40, 500)
	prompt SS dilepton	ee/eµ	CMS'16 [186]		8	19.7	(40, 500)
	pp ae ¸± -N ae ¸± -¸± -+ nj	ee/µµ ee/eµ/µµ	ATLAS'15 [187] CMS'18 [174]		8 13	20.3 35.9	(100, 500) (20, 1600)
		µµ	LHCb'20 [180]		7-8	3.0	(5, 50)
	prompt OS dilepton pp ae ¸± -N ae ¸± -¸û -+ nj	µµ	LHCb'20 [180]		7-8	3.0	(5, 50)
	Prompt trilepton	eee + eeµ/µµµ + µµe CMS'18 [188]		13	35.9	(1, 1200)
	pp ae ¸± -N ae ¸± -¸± -¸û " ‹	eeµ/µµe	ATLAS'19 [181]		13	36.1	(5, 50)
	Displaced trilepton	ATLAS'19 [181] 6 combinations of e, µ ATLAS'22 [182] µ ≠ eµ/µ ≠ µµ		13 13	32.9 139	(4.5, 10) (3, 15)
	pp ae ¸-N, N ae ¸-¸"‹	6 combinations of e, µ CMS'22 [183]		13	138	(1, 20)

Table 3 .

 3 2: Summary table for generic flavor dependences of dilpeton and trilepton channels at the LHC assuming a single Majorana HNL with generic mixing patterns. Flavor indices are to be understood as di erent, i.e. -" = -" = ". For trileptons, we are neglecting the e ects of di erential distributions, as discussed in the text.

  .2. Before continuing, we need to stress that the di erence between B(B 0 ae K S ‹ ‹) and

	Ref.	Form factors B(B +	ae K + ‹ ‹)/|⁄ t | 2
	Buras et al. [224]	[232, 233]	(2.5 ± 0.3) ◊ 10 ≠3
	Blake et al. [234]	[230]	(2.8 ± 0.3) ◊ 10 ≠3
	Parrott et al. [235]	[95]	(2.81 ± 0.15) ◊ 10 ≠3
	This work	[95, 230, 231]	(2.87 ± 0.10) ◊ 10 ≠3

Table 4 .

 4 

1: SM predictions for B(B + ae K + ‹ ‹)/|⁄ t | 2

and the corresponding form factors used in the computation. Note that the non-negligible contribution proportional to G

4 

F has not been included in the above results, cf. Sect. 4.1.5.

Table 4 .

 4 2: Our final predictions for the branching fractions of the most relevant b ae s‹ ‹ decay modes. The first uncertainty comes from the hadronic form factors, while the second one is dominated by the uncertainty of |⁄ t |.

		Decay	Branching ratio
	B +	ae K + ‹ ‹	(5.06 ± 0.14 ± 0.28) ◊ 10 ≠6
	B 0	ae K S ‹ ‹	(2.05 ± 0.07 ± 0.12) ◊ 10 ≠6
	B +	ae K ú+ ‹ ‹ (10.86 ± 1.30 ± 0.59) ◊ 10 ≠6
	B 0	ae K ú0 ‹ ‹	(9.05 ± 1.25 ± 0.55) ◊ 10 ≠6

.22) 8 This discrepancy would be even stronger if, instead of |V BaeD cb |, we used the HFLAV value of |V BaeD ú cb | [241]. Note also that a larger |V BaeD ú cb | has been recently advocated in Ref. [244].

Table 4 .

 4 3: SM predictions for the partially integrated B ae K‹ ‹ branching fraction, in a given q 2 -bin, obtained by using our fit to the lattice form factors from HQPCD[START_REF] Hpqcd Collaboration | B K and D K form factors from fully relativistic lattice QCD[END_REF] and FNAL/MILC[START_REF] Bailey | B ae Kl + l ≠ Decay Form Factors from Three-Flavor Lattice QCD[END_REF], and the CKM input |⁄ t | = 3.93(10) ◊ 10 ≠2 . The first uncertainty comes from the hadronic form factors and the second one is dominated by the uncertainty on |⁄ t | 2 . The total relative uncertainty of each observable is shown in the last column.

		.206 ± 0.055 ± 0.066)	0.07	(0.490 ± 0.026 ± 0.030)	0.08
	[4, 8]	(1.161 ± 0.039 ± 0.064)	0.06	(0.477 ± 0.018 ± 0.029)	0.07
	[8, 12]	(1.064 ± 0.027 ± 0.059)	0.06	(0.439 ± 0.013 ± 0.027)	0.07
	[12, 16]	(0.889 ± 0.020 ± 0.049)	0.06	(0.365 ± 0.009 ± 0.022)	0.07
	[16, q 2 max ]	(0.744 ± 0.017 ± 0.039)	0.06	(0.282 ± 0.008 ± 0.017)	0.07
	[0, q 2 max ]	(5.06 ± 0.14 ± 0.28)	0.06	(2.05 ± 0.07 ± 0.12)	0.07

Table 4 .

 4 4: SM predictions similar to those presented in Tab. 4.3 but for the case of vector meson in the final state, B ae K

ú ‹ ‹.

  .31) in addition to the chirality flipped ones, O ¸i Õ , obtained from O ¸i by replacing P L ¡ P R , and the dipole operators O 7,8 . The contributions from the four-quark operators O 1≠6 are included in the redefinition of the coe cients C 7,9

  .1 and 4.2.

	B(B 0	ae K S ¸¸) SM [1.1,6] /|⁄ t | 2 = 0.507(24) ◊ 10 ≠4 ,	(4.32)
	B(B 0	ae K ú0 ¸¸) SM [1.1,6] /|⁄	

B ae K

(ú) 

¸¸partial branching fractions (with ¸= e, µ), t | 2 = 1.46(21) ◊ 10 ≠4 . (4.33)

Table 4 .

 4 5: Numerical coe cients defined in Eq. (4.44) for ¸= e, µ, which are computed in the [1.1, 6] GeV 2

	2430(1) ≠0.260(1)	0	0	0.0316(2) 0.0317(2)	0	0
	B ae K ú ¸¸0.0012(48) ≠0.038(8) ≠0.191(10) 0.255(6) 0.0048(10) 0.0047(10) 0.0312(7) 0.0311(7)

  2, +1/2) and a scalar singlet ≥ (1, 1, 0). The threefold re-phasing symmetry of the scalar sector U(1) ◊ U(1) Hu ◊ U(1) H d is broken to U(1) PQ ◊ U(1) Y by a renormalizable non-Hermitian operator that can be chosen as H u H d †2 or H u H d

† 

, and the Yukawa Lagrangian reads

2 

  4742(62) ≠0.894(51) ≠0.44(14) 0.2939(36) 0.277(40) 0.4752(92) ≠0.921(82) ≠0.53[START_REF] Agostini | Improved measurement of 8 B solar neutrinos with 1.5kt y of Borexino exposure[END_REF] 

	1	≠0.2904	≠0.0347	0.7480	0.1844	0.6558	≠0.2193	≠0.0751
	•	1	0 .7757	0.2291	0.8527	≠0.2569	0.5371	0.2574
	•	•	1	0 .1690	0.8455	≠0.1029	0.3700	0.2653
	•	•	•	1	0 .4568	0.5232	0.0314	0.0257
	•	•	•	•	1	0 .0182	0.4501	0.2372

  F ), i.e. without including the tree-level annihilation contributions to these decays. The first uncertainty comes from the hadronic form factors and the second one is dominated by the uncertainty on |⁄ t | 2 . The total relative uncertainty of each observable is shown in the last column. See the captions of Tables 4.3 and 4.4 for the inputs considered.

		.056 ± 0.055 ± 0.064)	0.08	(1.48 ± 0.20 ± 0.09)	0.15
	[4, 8]	(1.028 ± 0.039 ± 0.062)	0.07	(2.00 ± 0.23 ± 0.12)	0.13
	[8, 12]	(0.948 ± 0.027 ± 0.058)	0.07	(2.41 ± 0.30 ± 0.15)	0.14
	[12, 16]	(0.790 ± 0.020 ± 0.048)	0.07	(2.51 ± 0.39 ± 0.15)	0.17
	[16, q 2 max ]	(0.614 ± 0.017 ± 0.037)	0.07	(1.40 ± 0.30 ± 0.09)	0.23
	[0, q 2 max ]	(4.44 ± 0.14 ± 0.27)	0.07	(9.79 ± 1.30 ± 0.60)	0.15
	Table B.2: SM predictions for the partially integrated B + q 2 -bin, at O(G 2	ae K (ú)+	‹ ‹ branching fractions, in a given

  10 ≠15 e cm. (C.32) More sophisticated calculations have been carried out in[START_REF] Baluni | CP Violating E ects in QCD[END_REF][START_REF] Pich | Strong CP violation in an e ective chiral Lagrangian approach[END_REF][START_REF] Pospelov | Theta vacua, QCD sum rules, and the neutron electric dipole moment[END_REF]. The nEDM is the most sensitive probe of ◊ since the largest SM contribution to the nEDM arises at the three-loop level via a strong penguin diagram, which contributes to d n with d n ¥ 10 ≠32 e cm, way smaller than experimental sensitivities.

The current experimental limit is

[START_REF] Abel | Measurement of the permanent electric dipole moment of the neutron[END_REF] 

|d n | exp < 1.8 ◊

10 ≠26 e cm (C.33) thus implying the bound | ◊| . 10 ≠10 . (C.34)

  +0.78 ≠0.75 ) ¶ , ◊ 23 = (49.0 +1.1 ≠1.4 ) ¶ , ◊ 13 = (8.57 +0.13 ≠0.12 ) ¶ , = (7.42 +0.21 ≠0.20 ) ◊ 10 ≠5 eV 2 , m 2 atm = |m 2 3 ≠ m 2 1 | = (2.514 +0.028 ≠0.027 ) ◊ 10 ≠3 eV 2 , (D.11) alors que la phase CP est " ƒ (195 +51 ≠25

	les écarts de masse sont [53]
	m 2 sol = m 2 2 ≠ m 2 1
	(D.10)

Gravity is treated with the formalism of general relativity, and not included in the SM description since its typical scale is 17 orders of magnitude bigger than the scale of the electroweak interactions. Quantization of gravity might require a di erent framework than the one of QFT.

Unlike baryon number or lepton number alone, the di erence between barion and lepton number (B ≠ L) is not broken by anomalies.

In Ref.[START_REF] Abada | Gauged inverse seesaw from dark matter[END_REF], we explored an ISS mechanism generated from the spontaneous breaking of a local U (1) B≠L symmetry, with the Majorana masses of the sterile neutrinos radiatively generated from the dark sector.

"Any process which is not forbidden by a conservation law actually does take place with appreciable probability"[START_REF] Gell-Mann | The interpretation of the new particles as displaced charge multiplets[END_REF].

Additional HNLs, not necessarily within the LHC range, would actually be needed in order to relax the hypothesis of the lightest active neutrino being massless and thus have in general 3 massive active neutrinos.

If light neutrinos are of Majorana nature, then there is an interference term, which is however highly suppressed as it is proportional to light neutrino masses.

This is a well-justified approximation, but still, it could be avoided by setting bounds directly on |U -N | 2 ◊BR.

The LNV process receives contribution from two identical channels, given by the exchange of ¸+ -and ¸+ -. These channels do not interfere, since the HNL is on-shell and fixes the kinematics of the two leptons. In the case -= -, there is an additional 1/2 factor from having two identical particles in the final states.

In such scenarios, the mass splitting M N is proportional to the LNV parameters of the low-scale seesaw. Small values of such parameters are protected by radiative corrections, and are considered natural[START_REF] Hooft | Recent Developments in Gauge Theories. Proceedings[END_REF], since setting them to zero restores the lepton number symmetry at the Lagrangian level.

Here we propose to split the sample in two bins, but obviously splitting the sample into more than two bins would be even better when it comes to monitoring the shape of the form factor.

The charged mode is also a ected by the non-negligible tree-level contribution proportional to G 4 F , as discussed in Sect. 4.1.5.

The convention used in Eq. (4.16) is Á 0123 = +1.

Notice that slightly smaller values are obtained in Ref.[START_REF] Buras | Standard Model predictions for rare K and B decays without new physics infection[END_REF] by using the B ae K ú form factors provided in Ref.[START_REF] Gubernari | B ae P and B ae V Form Factors from B-Meson Light-Cone Sum Rules beyond Leading Twist[END_REF].

See Ref.[START_REF] Felkl | A tale of invisibility: constraints on new physics in b s‹‹[END_REF] for a discussion that includes right-handed neutrinos too.

Notice that in alternative versions of the model described here (DFSZ-I), the lepton sector can be equally coupled to i ‡ 2 H ú u , in which case the model takes the name DFSZ-II.

Perturbative axion-gluon computations at finite temperature can only be trusted for T ∫ TeV, due to infrared divergences that are under control for g s π 1[START_REF] Masso | On axion thermalization in the early universe[END_REF][START_REF] Graf | Thermal axion production in the primordial quark-gluon plasma[END_REF][START_REF] Salvio | Thermal axion production[END_REF]. Moreover, non-perturbative contributions to the axion thermal rate can become dominant for T . 10 GeV[START_REF] Notari | Improved hot dark matter bound on the QCD axion[END_REF].

The calculation of the amplitudes was carried out using the computational tools FeynRules[START_REF] Alloul | FeynRules 2.0 -A complete toolbox for tree-level phenomenology[END_REF][START_REF] Christensen | FeynRules -Feynman rules made easy[END_REF], Fey-nArts[START_REF] Hahn | Generating Feynman diagrams and amplitudes with FeynArts 3[END_REF], FeynCalc[START_REF] Shtabovenko | FeynCalc 9.3: New features and improvements[END_REF][START_REF] Shtabovenko | New Developments in FeynCalc 9.0[END_REF][START_REF] Mertig | FEYN CALC: Computer algebraic calculation of Feynman amplitudes[END_REF] and Package-X[START_REF] Patel | Package-X: A Mathematica package for the analytic calculation of one-loop integrals[END_REF].

We have explicitly checked that the imaginary parts of our NLO results fulfill perturbative unitarity (Eq. (5.63)) in the PWAs studied in this work.

In universal axion models these corrections extend to each SM generation of a given flavor.

In the

2-dimensional representation a generic element of SU (2) can be written as U = u 0 + iu i ‡ i , u oe R, with the condition u 2 0 + u 2 i = 1, which is the defining equation of S 3

"Tout processus qui n'est pas interdit par une loi de conservation a en réalité lieu avec une probabilité appréciable"[START_REF] Gell-Mann | The interpretation of the new particles as displaced charge multiplets[END_REF].

Enfin, dans le Chapter 5, nous avons revisité la limite de la masse des axions HDM, explorant plusieurs aspects liés à la convergence de l'EFT axion-pion utilisée pour calculer le taux de thermalisation des axions dans l'univers primitif.Dans la section 5.3, nous avons calculé la correction NLO au taux de thermalisation axion-pion en ChPT, tandis que dans la section 5.4, nous avons montré que l'expansion perturbative est fiable jusqu'à des températures de l'ordre de T ‰ ≥ 70 MeV.Dans la section 5.5, nous avons utilisé la méthode d'unitarisation IAM pour étendre la validité de la description chiral de la di usion axion-pion à la région résonante, et nous avons calculé le taux
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Dans le Chapter 3, nous nous sommes concentrés sur les recherches du LHC concernant les leptons neutres lourds (LNL) qui se désintègrent rapidement (à courte durée de vie). Dans la plupart des recherches, que nous avons résumées dans la section 3.2, les limites obtenues ont été déduites sous l'hypothèse de l'existence d'un seul LNL (généralement Majorana) qui se mélange avec une seule saveur de lepton, alors que la plupart des scénarios au-delà du modèle standard (BSM) impliquant de nouveaux fermions neutres nécessitent plus d'un LNL pour expliquer les données sur

Appendix A

Decay process in presence of 2 HNL

In this appendix we collect the relevant details for the computation of the W boson decay into a HNL, followed by its semileptonic decay. This is the relevant process for the searches performed by LHCb [180] and that we discussed in Sec. 3.4 in the scenario with two interfering HNLs.

A.1 Same sign leptons: W +

ae ¸+ -¸+ -q Õ q

We start with the decay rate for the process W + ae ¸+ -¸+ -q Õ q mediated by two HNLs N 1,2 almost degenerate in mass, similar to that shown in Fig. 3.1, but without the initial quarks. The amplitude reads

Appendix B

B ae K (ú) form factors

B.1 B ae K

The definitions of the vector (f + ) and scalar (f 0 ) form factors are given in Eq. 4.10, while the tensor form factor f T is defined as follows

We consider the same parameterization for the B ae K form factors as provided by FLAG [231],

where a i n (with i oe {0, +, T }) are numerical coe cients, the pole factors are given by

with M + = M T = 5.4154 GeV and M 0 = 5.711 GeV [START_REF] Lang | Predicting positive parity B s mesons from lattice QCD[END_REF], and z © z(q 2 ) reads

where

Since the scalar and vector form factor satisfy f + (0) = f 0 (0), it is possible to remove one of the coe cients in Eq. (B.2)

Appendix C

◊ term, the origins

C.1 QCD vacuum structure

Here, we will show that the Euclidean QCD action has a countable infinity of degenerate minima labeled by an integer n called winding number, and the true QCD vacuum state is given by a gauge-invariant superposition of such vacua.

Restricting only to gauge fields, the Euclidean action takes the form

The topological distinction between di erent vacua derives from the observation that the vacuum states are classically associated to pure gauge configurations of the field A a µ (x), since the Euclidean action is non negative and its minimum is given by G a µ‹ = 0. Therefore, using for convenience the temporal gauge A a 0 = 0, and defining

with oe SU(3) c . Then we can use the residual gauge freedom (keeping A a 0 = 0) to impose that at spatial infinity the gauge fields satisfy definite boundary conditions [START_REF] Forkel | A Primer on instantons in QCD[END_REF][START_REF] Jackiw | Vacuum Periodicity in a Yang-Mills Quantum Theory[END_REF] This condition identifies all the points at infinity, so it is equivalent to a compactification of the three dimensional space into the 3-Sphere S 3 . Therefore, every (x) defined on this space is in turn a mapping from S 3 to the gauge group. Now we can use a general result [START_REF] Bott | On the iteration of closed geodesics and the sturm intersection theory[END_REF] stating that any mapping from S 3 into any simple Lie group G can be deformed into a mapping to a SU(2) subgroup of G in a continuous way, to restrict ourselves to an SU(2) subgroup of SU( 3) C . Since

Appendix D

Conventions and details of the IAM analysis

The IAM analysis is performed at the level of PWAs, which requires the relations between fifi states in the isospin basis, labeled as |I I 3 Í for total isospin I and third component I 3 , and the charge basis. For the fi + fi ≠ final state,

For the fi ± fi 0 final state,

These relations have been used to project the chiral amplitudes (given in the charge basis) onto the isospin basis, leading to Eqs. (5.59) and (5.60).

In the following we present additional results comparing the di erent amplitudes included in our analysis. In Figs. D.1 we show the absolute values of the PWAs in ChPT at LO (black dotted), at NLO (blue dashed) and in the IAM (red solid lines). In turn, we show in Figs. D.2 the contributions to the cross sections in separate channels (in the charge basis) contributing to the thermal rate. Besides the results in IAM (red solid), we show the ones in ChPT at LO (black dotted), contributing to the cross-section like LO 2 , NLO (blue dashed), adding to the latter also the LO-NLO interference terms and, finally, adding also the NNLO contributions to the rates (green dot-dashed lines).

D.1 ChPT expressions of phase shifts

Let us describe a given afi ae fifi PWA (omitting indices I and J) in ChPT up to NLO as

where we have labeled the amplitudes by their chiral order and fl © fl(s) = ‡(s)/32fi. Then

Comparing the two equations we obtain that

(D.5)

A similar calculation can be done for fifi scattering PWAs that we denote as T . Given the corresponding element of the S-matrix, S = e 2i" = 1 + 2iflT , with