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Abstract

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contigu-

ous spectral bands (a three dimensional data cube), has opened a new range of relevant applications,

such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However,

while HS sensors provide abundant spectral information, their spatial resolution is generally more

limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as

multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fus-

ing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but

lower spectral resolution, also known as multi-resolution image fusion, has been explored for many

years [AMV+11]. From an application point of view, this problem is also important as motivated by

recent national programs, e.g., the Japanese next-generation space-borne hyperspectral image suite

(HISUI), which fuses co-registered MS and HS images acquired over the same scene under the same

conditions [YI13]. Bayesian fusion allows for an intuitive interpretation of the fusion process via the

posterior distribution. Since the fusion problem is usually ill-posed, the Bayesian methodology offers

a convenient way to regularize the problem by defining appropriate prior distribution for the scene

of interest.

The aim of this thesis is to study new multi-band image fusion algorithms to enhance the resolu-

tion of HS image. In the first chapter, a hierarchical Bayesian framework is proposed for multi-band

image fusion by incorporating forward model, statistical assumptions and Gaussian prior for the

target image to be restored. To derive Bayesian estimators associated with the resulting posterior

distribution, two algorithms based on Monte Carlo sampling and optimization strategy have been
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developed. In the second chapter, a sparse regularization using dictionaries learned from the ob-

served images is introduced as an alternative of the naive Gaussian prior proposed in Chapter 1 to

regularize the ill-posed problem. Identifying the supports jointly with the dictionaries circumvented

the difficulty inherent to sparse coding. To minimize the target function, an alternate optimization

algorithm has been designed, which accelerates the fusion process magnificently comparing with the

simulation-based method. In the third chapter, by exploiting intrinsic properties of the blurring

and downsampling matrices, a much more efficient fusion method is proposed thanks to a closed-

form solution for the Sylvester matrix equation associated with maximizing the likelihood. The

proposed solution can be embedded into an alternating direction method of multipliers or a block

coordinate descent method to incorporate different priors or hyper-priors for the fusion problem,

allowing for Bayesian estimators. In the last chapter, a joint multi-band image fusion and unmixing

scheme is proposed by combining the well admitted linear spectral mixture model and the forward

model. The joint fusion and unmixing problem is solved in an alternating optimization framework,

mainly consisting of solving a Sylvester equation and projecting onto a simplex resulting from the

non-negativity and sum-to-one constraints. The simulation results conducted on synthetic and semi-

synthetic images illustrate the advantages of the developed Bayesian estimators, both qualitatively

and quantitatively.
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Introduction

Context and objectives of the thesis

Background

In general, a multi-band image can be represented as a three-dimensional data cube indexed by three

exploratory variables (x, y, λ), where x and y are the two spatial dimensions of the scene, and λ is

the spectral dimension (covering a range of wavelengths), as is shown in Fig. 1. Typical examples of

multi-band images include hyperspectral (HS) images [Lan02], multi-spectral (MS) images [Nav06],

integral field spectrographs [BCM+01], magnetic resonance spectroscopy images etc. However, multi-

band imaging generally suffers from the limited spatial resolution of the data acquisition devices,

mainly due to an unsurpassable tradeoff between spatial and spectral sensitivities [Cha07] as well as

the atmospheric scattering, secondary illumination, changing viewing angles, sensor noise, etc.

As a consequence, the problem of fusing a high spatial and low spectral resolution image with an

auxiliary image of higher spectral but lower spatial resolution, also known as multi-resolution image

fusion, has been explored for many years and is still a challenging but very crucial and active research

area in various scenarios [Wal99, DCLS07, ASN+08, AMV+11, Sta11a, GZM12, JD14, LAJ+]. A

live example is shown in Fig. 2.

When considering remotely sensed images, an archetypal fusion task is the pansharpening [THHC04,

GASCG04, ASN+08, JJ10, LY11], which generally consists of fusing a high spatial resolution panchro-

matic (PAN) image and low spatial resolution MS image. Pansharpening has been addressed in the

1



2 Introduction

Figure 1: Hyperspectral data cube

literature for several decades and still remains an active topic [AMV+11, LB12, DJHP14]. More re-

cently, HS imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral

bands, has opened a new range of relevant applications, such as target detection [MS02], classification

[C.-03], spectral unmixing [BDPD+12], and visualization [KC13]. However, while HS sensors provide

abundant spectral information, their spatial resolution is generally more limited [Cha07]. To take

advantage of the newest benefits offered by HS images to obtain images with both good spectral

and spatial resolutions, the remote sensing community has been devoting increasing research efforts

to the problem of fusing HS with other highly-resolved MS or PAN images [CQAX12, HCBD+14].

In practice, the spectral bands of PAN images always cover the visible and infra-red spectra. How-

ever, in several practical applications, the spectrum of MS data includes additional high-frequency

spectral bands. For instance the MS data of WorldView-31 have spectral bands in the intervals

[400 ∼ 1750]nm and [2145 ∼ 2365]nm whereas the PAN data are in the range [450 ∼ 800]nm. More

examples of HS and MS sensor resolutions are given in Table 1.

The problem of fusing HS and PAN images has been explored recently [CM09, LKC+12, LAJ+].

Capitalizing on decades of experience in MS pansharpening, most of the HS pansharpening ap-

proaches merely adapt existing algorithms for PAN and MS fusion [MWB09, CPWJ14]. Other

methods are specifically designed to the HS pansharpening problem (see, e.g., [WW02, CQAX12,
1http://www.satimagingcorp.com/satellite-sensors/WorldView3-DS-WV3-Web.pdf
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Figure 2: (Left) Hyperspectral image (size: 99×46×224, res.: 80m × 80m). (Middle) Panchromatic

image (size: 396× 184 res.: 20m × 20m). (Right) Target image (size: 396× 184× 224 res.: 20m ×

20m).

LKC+12]). Conversely, the fusion of MS and HS images has been considered in fewer research works

and is still a challenging problem because of the high dimensionality of the data to be processed. In-

deed, the fusion of HS and MS differs from traditional MS or HS pansharpening by the fact that more

spatial and spectral information is contained in multi-band images. Therefore, a lot of pansharpening

methods, such as component substitution [She92] and relative spectral contribution [ZCS98] are in-

applicable or inefficient for the fusion of HS and MS images. Another motivation for this multi-band

fusion problem is the HS+MS suite (called hyperspectral imager suite (HISUI)) that aims at fusing

co-registered MS and HS images acquired over the same scene under the same conditions has been



4 Introduction

Name AVIRIS (HS) SPOT-5 (MS) Pleiades (MS) WorldView-3 (MS)

Res. (m) 20 10 2 1.24

# bands 224 4 4 8

Table 1: Some existing remote sensors characteristics

developed by the Japanese ministry of economy, trade, and industry (METI) [OIKI10]. HISUI is

the Japanese next-generation Earth-observing sensor composed of HS and MS imagers and will be

launched by the H-IIA rocket in 2015 or later as one of mission instruments onboard JAXA’s ALOS-3

satellite. Some research activities have already been conducted for this practical multi-band fusion

problem [YI13].

Note that in this thesis, the image fusion we are interesting in is the pixel-level fusion, in which

the output is an image with increased information comparing with each input. However, there exist

other aspects of image fusions, such as feature-level fusion, symbol-level fusion and decision-level

fusion depending to the stage at which the fusion takes place [ZZVG06, Sta11b]. The choice of the

appropriate level relies on the characteristics of sensory data, fusion application, and availability of

tools [LK95]. Though these kinds of fusions are not considered in this thesis, they have recently

attracted great interests in classification [FCB06], sub-pixel mapping [CKRS12], target detection

[HFP+15], etc.

Problem formulation (matrix form)

To better distinguish spectral and spatial degradations, the pixels of the target multi-band image,

which is of high-spatial and high-spectral resolution, can be rearranged to build an mλ×n matrix X,

where mλ is the number of spectral bands and n = nr × nc is the number of pixels in each band (nr
and nc represent the number of rows and columns respectively). In other words, each column of the

matrix X consists of a mλ-valued pixel and each row gathers all the pixel values in a given spectral

band. Note that in this thesis, the image X of interest is the hyperspectral image of reflectance data

which takes values between 0 and 1.
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Generally, the linear degradations of the observed images w.r.t. the target high-spatial and

high-spectral image reduce to spatial and spectral transformations. Based on this pixel ordering,

any linear operation applied to the left (resp. right) side of X describes a spectral (resp. spatial)

degradation. Thus, the multi-band image fusion problem can be interpreted as restoring a three

dimensional data-cube from two degraded data-cubes. A more precise description of the problem

formulation is provided in what follows. Note that using matrix notations allows the fusion problem

to be more easily formulated. The HS image, referred to as YH, is supposed to be a blurred, down-

sampled and noisy version of the target image X whereas the MS image, referred to as YM is a

spectrally degraded and noisy version of X. As a consequence, the observation models associated

with the HS and MS images can be written as [MKM99, HEW04, MVMK08]

YH = XBS + NH

YM = RX + NM

(1)

where X = [x1, · · · ,xn] ∈ Rmλ×n is the unknown full resolution HS image composed of mλ bands

and n pixels, YH ∈ Rmλ×m is the HS image composed of mλ bands and m pixels and YM ∈ Rnλ×n

is the MS image composed of nλ bands and n pixels. In (1), B ∈ Rn×n is a cyclic convolution

operator acting on the bands that models the point spread function of the HS sensor and S ∈ Rn×m

is a downsampling matrix (with downsampling factor denoted as d). Conversely, R ∈ Rnλ×mλ

models the spectral response of the MS sensor, which is assumed to be unknown. The noise matrices

NH ∈ Rmλ×m and NM ∈ Rnλ×n are assumed to be distributed according to the following matrix

Gaussian distributions [Daw81]

NH ∼MNmλ,m(0mλ,m,ΛH, Im)

NM ∼MN nλ,n(0nλ,n,ΛM, In)
(2)

where 0a,b is the a × b matrix of zeros, I·λ is the ·λ × ·λ identity matrix, ΛH = diag
(
s2

H
)
, s2

H =[
s2

H,1, . . . , s
2
H,mλ

]T
, and ΛM = diag

(
s2

M
)
, s2

M =
[
s2

M,1, . . . , s
2
M,nλ

]T
. In (2),MN represents the matrix

normal distribution. The probability density function of a matrix normal distributionMN (M,Σr,Σc)
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is defined by

p(X|M,Σr,Σc) =
exp

(
−1

2 tr
[
Σ−1
c (X−M)TΣ−1

r (X−M)
])

(2π)np/2|Σc|n/2|Σr|p/2

where M denotes its mean and Σr and Σc are two matrices denoting row and column covariance ma-

trices. To facilitate the reading, all matrix dimensions and their respective relations are summarized

in Table 2. Note that besides this popular matrix formulation, there exists a corresponding vectorized

formulation, which vectorized all the multi-band image, such as in [WCJ+13, HCBD+14, WDT15a].

The equivalent formulation in vector form of the considered fusion problem is available in the Ap-

pendix A.

Table 2: Notations

Notation Definition Relation

mr row number of HS image mr = nr/dr

mc column number of HS image mc = nc/dc

m number of pixels in each band of HS image m = mr ×mc

nr row number of MS image nr = mr × dr

nc column number of MS image nc = mc × dc

n number of pixels in each band of MS image n = nr × nc

dr decimation factor in row dr = nr/mr

dc decimation factor in column dc = nc/mc

d decimation factor d = dr × dc

Bayesian framework

Since the fusion problem is usually ill-posed, the Bayesian methodology offers a convenient way to

regularize the problem by defining an appropriate prior distribution for the scene of interest. More
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specifically, Bayesian fusion allows an intuitive interpretation of the fusion process via the posterior

distribution. Following this strategy, Gaussian or `2-norm priors have been considered to build

various estimators, in the image domain [HEW04, WDT15a, WDT14a] or in a transformed domain

[ZDBS09]. Recently, the fusion of HS and MS images based on spectral unmixing has also been

explored [YYI12, YCI12].

Furthermore, many strategies related to HS resolution enhancement have been proposed to define

this prior distribution. For instance, in [JJ10], the highly resolved image to be estimated is a priori

modeled by an in-homogeneous Gaussian Markov random field (IGMRF). The parameters of this

IGMRF are empirically estimated from a panchromatic image in the first step of the analysis. In

[HEW04] and related works [EH04, EH05], a multivariate Gaussian distribution is proposed as prior

distribution for the unobserved scene. The resulting conditional mean and covariance matrix can then

be inferred using a standard clustering technique [HEW04] or using a stochastic mixing model [EH04,

EH05], incorporating spectral mixing constraints to improve spectral accuracy in the estimated high

resolution image.

Objective

To address the challenge raised by the high dimensionality, spatial degradation and spectral mixture

of the data to be fused, innovative methods need to be developed, which is the main objective of this

thesis.

In this thesis, we propose to explicitly exploit the acquisition process of the different images. More

precisely, the sensor specifications (i.e., spectral or spatial responses) are exploited to properly design

the spatial or spectral degradations suffered by the image to be recovered [OGAFN05]. Moreover,

to define the prior distribution assigned to this image, we resort to geometrical considerations well

admitted in the HS imaging literature devoted to the linear unmixing problem [DMC+09]. In partic-

ular, the high spatial resolution HS image to be estimated is assumed to live in a lower dimensional

subspace, which is a suitable hypothesis when the observed scene is composed of a finite number of

macroscopic materials.

In this work, different forms of prior knowledge accounting for artificial constraints related to
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the fusion problem are incorporated into the model via the prior distribution assigned to the scene

to be estimated. Within a Bayesian estimation framework, two statistical estimators are generally

considered. The minimum mean square error (MMSE) estimator is defined as the mean of the

posterior distribution. Its computation generally requires intractable multidimensional integration.

Conversely, the maximum a posteriori (MAP) estimator is defined as the mode of the posterior

distribution and is usually associated with a penalized maximum likelihood approach. Mainly due

to the complexity of the integration required by the computation of the MMSE estimator (especially

in high-dimension data space), most Bayesian estimators proposed to solve the HS and MS fusion

problem use a MAP formulation [HEW04, ZDBS09, JBC06]. In general, optimization algorithms

designed to maximize the posterior distribution are computationally efficient but they may suffer

from the presence of local extrema, that prevents any guarantee to converge towards the actual

maximum of the posterior. The MMSE estimator can overcome the local extrema problem but

demands much more expensive computational burden. In this thesis, both estimators are explored

to solve the Bayesian fusion problem.

Organization of the manuscript

• Chapter 1: This chapter is interested in a Bayesian fusion technique for remotely sensed multi-

band images, including the HS, MS and PAN images [WDT15a, WDT14a, WDT15c, WDT14b].

First, the fusion problem is formulated within a hierarchical Bayesian estimation framework,

by introducing the general forward model and statistical assumptions for the observed multi-

band images. An appropriate Gaussian prior distribution exploiting geometrical consideration

is introduced. To approximate the Bayesian estimator of the scene of interest from its posterior

distribution, a Markov chain Monte Carlo (MCMC) algorithm (more precisely a hybrid Gibbs

sampler) is proposed to generate samples asymptotically distributed according to the target

distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte

Carlo step is introduced within a Gibbs sampling strategy. The efficiency of the proposed fusion

method is evaluated with respect to (w.r.t.) several state-of-the-art fusion techniques. Secondly,
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an optimization based counterpart of the proposed Bayesian statistical method, consisting of an

alternating direction method of multipliers (ADMM) within block coordinate descent (BCD)

algorithm is developed to decrease the computational complexity. Besides, an extension of this

work to the case where the sensor spectral response is unknown is available in Appendix B.

• Chapter 2: In this chapter, we develop a variational-based approach for fusing HS and MS

images [WBDDT15, WDT14c]. The fusion problem is formulated as an inverse problem whose

solution is the target image that is assumed to live in a lower dimensional subspace. A sparse

regularization term is carefully designed, ensuring that the target image is well represented by

a linear combination of atoms belonging to an appropriate dictionary. The dictionary atoms

and the supports of the corresponding active coding coefficients are a priori learned from the

observed images. Then, conditionally on these dictionaries and supports, the fusion problem

is solved via alternating optimization with respect to the target image (using the ADMM) and

the coding coefficients. Compared with other state-of-the-art fusion methods, the proposed

fusion method shows smaller spatial error and smaller spectral distortion with a reasonable

computation complexity [LAJ+]. This improvement is attributed to the specific sparse prior

designed to regularize the resulting inverse problem.

• Chapter 3: This chapter studies a fast multi-band image fusion algorithm [WDT15d, WDT15e].

Following the well admitted forward model and the corresponding likelihoods of the observa-

tions introduced in Chapter 1, maximizing the target distribution is equivalent to solving a

Sylvester matrix equation. By exploiting the properties of the circulant and downsampling

matrices associated with the fusion problem, a closed-form solution of this Sylvester equation

is obtained, getting rid of any iterative update step. Coupled with the ADMM and the BCD

method, the proposed algorithm can be easily generalized to incorporate some prior information

for the fusion problem, such as the ones derived in Chapters 2 and 3 and [SBDAC15]. Sim-

ulation results show that the proposed algorithm achieves the same performance as previous

algorithms as well as the one in [SBDAC15], with the advantage of significantly decreasing the

computational complexity of these algorithms.
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• Chapter 4:

In this chapter, we propose a multi-band image fusion algorithm based on unsupervised spec-

tral unmixing [WBDDTb]. We decompose any image pixel as a linear mixture of endmembers

weighted by their abundances. The non-negativity and sum-to-one constraints are introduced

for the abundances whereas the non-negativity is imposed to the endmembers. A joint fu-

sion and unmixing strategy is introduced, leading to a maximization of the joint posterior

distribution w.r.t. the abundances and endmember signatures, which can be solved using an

alternating optimization algorithm. Thanks to the fast fusion algorithm based on solving the

associated Sylvester equation presented in Chapter 3, the optimization w.r.t. the abundances

can be solved efficiently. Simulation results show that the proposed joint fusion and unmixing

strategy improves both the unmixing performance as well as the fusion performance compared

with the results obtained with some state-of-the-art joint fusion and unmixing algorithms.

• Appendix D:

This appendix presents a fast spectral unmixing algorithm based on Dykstra’s alternating pro-

jection. The proposed algorithm formulates the fully constrained least squares optimization

problem associated with the spectral unmixing task as an unconstrained regression problem

followed by a projection onto the intersection of several closed convex sets. This projection

is achieved by iteratively projecting onto each of the convex sets individually, following Dyk-

tra’s scheme. The sequence thus obtained is guaranteed to converge to the sought projection.

Thanks to the preliminary matrix decomposition and variable substitution, the projection is

implemented intrinsically in a subspace, whose dimension is very often much lower than the

number of bands. A benefit of this strategy is that the order of the computational complex-

ity for each projection is decreased from quadratic to linear time. Numerical experiments

considering diverse spectral unmixing scenarios provide evidence that the proposed algorithm

competes with the state-of-the-art, namely when the number of endmembers is relatively small,

a circumstance often observed in real hyperspectral applications.
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Main Contributions

The main contributions of this thesis are

• Chapter 1. A hierarchical Bayesian framework is proposed for multi-band image fusion

[WDT15a, WDT14b, WDT15c]. Two solutions are developed to evaluate the resulting pos-

terior distribution of interest. From the simulation-based perspective, a Hamiltonian Monte

Carlo within Gibbs sampler is designed to generate samples asymptotically distributed accord-

ing to the target distribution. From the optimization perspective, an ADMM within BCD

algorithm is developed to maximize the posterior.

• Chapter 2. A sparse regularization using dictionaries learned from the observed images is in-

corporated to regularize the ill-posed problem [WBDDT15, WDT14c]. Identifying the supports

jointly with the dictionaries circumvented the difficulty inherent to sparse coding. An alternate

optimization algorithm, consisting of an ADMM and a least square regression, is designed to

minimize the target function.

• Chapter 3. A closed-form solution for the Sylvester matrix equation associated with maxi-

mizing the likelihood of the target image is obtained by exploiting the properties of the blur-

ring and downsampling matrices in the fusion problem, getting rid of any iterative update

step [WDT15d, WDT15e]. The proposed solution can be embedded in an ADMM or a BCD

method to incorporate different priors or hyper-priors for the fusion problem, allowing alternate

Bayesian estimators to be considered.

• Chapter 4. A joint multi-band image fusion and unmixing scheme is proposed by combining

the well admitted linear spectral mixture model and the forward model used in the first three

chapters [WBDDTb]. The non-negativity and sum-to-one constraints resulted from the intrinsic

physical properties of the abundances are introduced as prior information to regularize this ill-

posed problem. The joint fusion and unmixing problem is solved in an alternating optimization

framework, mainly consisting of solving a Sylvester equation and projecting onto a simplex.
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Chapter 1

Bayesian fusion of multi-band images

using a Gaussian prior

Part of this chapter has been adapted from the journal paper [WDT15a] (published) and the
conference papers [WDT14a] (published), [WDT14b] (published) and [WDT15c] (published).
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1.1 Introduction

In this chapter, a prior knowledge accounting for artificial constraints related to the fusion problem

is incorporated within the model via the prior distribution assigned to the scene to be estimated.

Many strategies related to HS resolution enhancement have been proposed to define this prior dis-

tribution. For instance, in [JJ10], the highly resolved image to be estimated is a priori modeled by

an in-homogeneous Gaussian Markov random field (IGMRF). The parameters of this IGMRF are

empirically estimated from a panchromatic image in the first step of the analysis. In [HEW04] and

related works [EH04, EH05], a multivariate Gaussian distribution is proposed as prior distribution

for the unobserved scene. The resulting conditional mean and covariance matrix can then be inferred

using a standard clustering technique [HEW04] or using a stochastic mixing model [EH04, EH05], in-

corporating spectral mixing constraints to improve spectral accuracy in the estimated high resolution

image.

In this chapter, we propose to explicitly exploit the acquisition process of the different images.

More precisely, the sensor specifications (i.e., spectral or spatial responses) are exploited to properly

design the spatial or spectral degradations suffered by the image to be recovered [OGAFN05]. More-

over, to define the prior distribution assigned to this image, we resort to geometrical considerations

well admitted in the HS imaging literature devoted to the linear unmixing problem [DMC+09]. In

particular, the high spatial resolution HS image to be estimated is assumed to live in a lower dimen-

sional subspace, which is an admissible hypothesis when the observed scene is composed of a finite

number of macroscopic materials.

Within a Bayesian estimation framework, two statistical estimators are generally considered.

The MMSE estimator is defined as the mean of the posterior distribution. Its computation generally

requires an intractable multidimensional integration. Conversely, the MAP estimator is defined as the
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mode of the posterior distribution and is usually associated with a penalized maximum likelihood

approach. Mainly due to the complexity of the integration required by the computation of the

MMSE estimator (especially in high-dimension data space), most of the Bayesian estimators have

proposed to solve the HS and MS fusion problem using a MAP formulation [HEW04, ZDBS09,

JBC06]. However, optimization algorithms designed to maximize the posterior distribution may

suffer from the presence of local extrema, that prevents any guarantee to converge towards the

actual maximum of the posterior. In this work, we propose to approximate the Bayesian estimators

of the unknown scene by using samples generated by an MCMC algorithm. The posterior distribution

resulting from the proposed forward model and the a priori modeling is defined in a high dimensional

space, which makes difficult the use of any conventional MCMC algorithm, e.g., the Gibbs sampler

or the Metropolis-Hastings sampler [RC04]. To overcome this difficulty, a particular MCMC scheme,

called Hamiltonian Monte Carlo (HMC) algorithm, is derived [DKPR87, Nea10]. It differs from the

standard Metropolis-Hastings algorithm by exploiting Hamiltonian evolution dynamics to propose

states with higher acceptance ratio, reducing the correlation between successive samples. Finally,

the MMSE estimation for unknown parameters can be both computed from generated samples.

Thus, the main contributions of this chapter are two-fold. First, this chapter introduces a new

hierarchical Bayesian fusion model whose parameters and hyperparameters have to be estimated

from the observed images. This model is defined by the likelihood, the priors and the hyper-priors

detailed in the following sections. Second, a hybrid Gibbs sampler based on a Hamiltonian MCMC

method is introduced to sample the desired posterior distribution. These samples are subsequently

used to approximate the MMSE estimator of the fused image.

1.1.1 Bayesian estimation of X

In this work, we propose to estimate the unknown scene X within a Bayesian estimation framework

following the model (1). In this statistical estimation scheme, the fused highly-resolved image X is

inferred through its posterior distribution f (X|Y), where Y = {YH,YM} contains the two observed

images. Given the observed data, this target distribution can be derived from the likelihood function

f (Y |X) and the prior distribution f (X) by using the Bayes formula f (X|Y) ∝ f (Y |X) f (X), where
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∝ means “proportional to”. Based on the posterior distribution, several estimators of the scene X

can be investigated. For instance, maximizing f (X|Y) leads to the MAP estimator

X̂MAP = arg max
X

f (X|Y) . (1.1)

This estimator has been widely exploited for HS image enhancement (see for instance [HEW04,

EH04, EH05] or more recently [JJ10, ZDBS09]). This work proposes to focus on the first moment

of the posterior distribution f (X|Y), which is known as the posterior mean estimator or the MMSE

estimator X̂MMSE. This estimator is defined as

X̂MMSE =
∫

Xf (X|Y) dX =
∫

Xf (Y |X) f (X) dX∫
f (Y |X) f (X) dX . (1.2)

In order to compute (1.2), we propose a flexible and relevant statistical model to solve the fusion

problem. Deriving the corresponding Bayesian estimators X̂MMSE defined in (1.2), requires the

definition of the likelihood function f (Y |X) and the prior distribution f (X). These quantities are

detailed in the next section.

1.1.2 Lower-dimensional subspace

The unknown image is X = [x1, . . . ,xn] where xi = [xi,1, xi,2, . . . , xi,mλ ]T is the mλ × 1 vector

corresponding to the ith spatial location (with i = 1, . . . , n). Because the HS bands are spectrally

correlated, the HS vector xi usually lives in a space whose dimension is much smaller than mλ

[BDN08]. This property has been extensively exploited when analyzing HS data, in particular to

perform spectral unmixing [BDPD+12]. More precisely, the HS image can be rewritten as X =

HU where H ∈ Rmλ×m̃λ has full column rank and U ∈ Rm̃λ×n is the projection of X onto the

subspace spanned by the columns of H. Incorporating this decomposition of the HS image X into

the observation model (1) leads to

YH = HUBS + NH

YM = RHU + NM.

(1.3)
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1.1.3 Likelihood and prior distributions

Likelihoods: Using the statistical properties of the matrices NH and NM, the distributions of YH

and YM are matrix Gaussian distributions, i.e.,

YH ∼MNmλ,m(HUBS,ΛH, Im)

YM ∼MN nλ,n(RHU,ΛM, In).
(1.4)

As the observed HS and MS images are acquired by different heterogeneous sensors, YH and YM

are assumed to be independent, conditionally upon the unobserved scene U and the noise covariances

s2 =
{
s2

H, s
2
M
}
. As a consequence, the joint likelihood function of the observed data is

f
(
Y |U, s2

)
= f

(
YH|U, s2

H

)
f
(
YM|U, s2

M

)
(1.5)

Using the change of variables X = HU, the unknown parameters to be estimated to solve the

fusion problem are the projected scene U and the vector of noise variances s2 = {s2
H, s

2
M}. The

appropriate prior distributions assigned to these parameters are presented below.

Scene prior: A Gaussian prior distribution is assigned to the projected image U, assuming that its

column vectors ui for i = 1, · · · , n are spatially a priori independent, i.e.,

p(U) =MN m̃λ,n
(µ,Σ, In) (1.6)

where µ and Σ are the mean and covariance matrix of the matrix normal distribution. The Gaussian

prior assigned to U implies that the target image U is a priori not too far from the mean vector

µ, whereas the covariance matrix Σ tells us how much confidence we have for the prior. In this

work, µ is fixed using the interpolated HS image in the subspace of interest following the strategy

investigated in [HEW04] and Σ is an unknown hyperparameter to be estimated jointly with U.

Choosing a Gaussian prior for the matrix U is also motivated by the fact that this kind of prior has

been used successfully in several works related to the fusion of multiple degraded images, including

[HBA97, EH04, WGK06]. Note finally that the Gaussian prior has the interest of being a conjugate

distribution relative to the statistical model (1.5). As it will be shown in Section 1.1.7, coupling
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this Gaussian prior distribution with the Gaussian likelihood function leads to simpler estimators

constructed from the posterior distribution f (U|Y).

Noise variance priors:

Conjugate inverse-gamma distributions are chosen as prior distributions for the noise variances

s2
H,i and s2

M,j

s2
H,i|νH, γH ∼ IG

(νH
2 ,

γH
2
)
, i = 1, · · · ,mλ

s2
M,i|νM, γM ∼ IG

(νM
2 ,

γM
2
)
, i = 1, · · · , nλ.

(1.7)

The hyperparameters νH, γH, νM and γM can be fixed to generate an informative or non-informative

prior, depending on the applications. In this work, they are fixed in order to obtain a non-informative

prior.

1.1.4 Hyperparameter prior

The hyperparameter vector associated with the parameter priors defined above is Φ = {Σ}.

Hyperparameter Σ:

Assigning a conjugate a priori inverse-Wishart distribution to the covariance matrix of a Gaussian

vector has provided interesting results in the signal and image processing literature [DTI08, BF13].

Following these works, we have chosen the following prior for Σ

Σ ∼ IW(Ψ, η) (1.8)

whose density is

f(Σ|Ψ, η) = |Ψ|
η
2

2
ηm̃λ

2 Γm̃λ(η2 )
|Σ|−

η+m̃λ+1
2 e−

1
2 tr(ΨΣ−1).

The parameters (Ψ, η)T are fixed to provide a non-informative prior for Σ.

1.1.5 Posterior distribution

The unknown parameter vector θ associated with the proposed hierarchical Bayesian fusion model is

composed of the projected scene U and the noise variances s2, i.e., θ =
{
U, s2}. The joint posterior
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distribution of the unknown parameters and hyperparameters can be computed using the following

hierarchical structure

f (θ,Φ|Y) ∝ f (Y |θ) f (θ|Φ) f (Φ) (1.9)

where the parameter and hyperparameter priors are given by

f (θ|Φ) = f (U|Σ) f
(
s2

H
)
f
(
s2

M
)

f (Φ) = f (Σ) .
(1.10)

1.1.6 Inferring the highly-resolved HS image from the posterior of U

The posterior distribution of the projected target image U, required to compute the Bayesian esti-

mators (1.2), is obtained by marginalizing out the hyperparameter vector Φ and the noise variances

s2 from the joint posterior distribution f (θ,Φ|Y)

f (U|Y) ∝
∫
f (θ,Φ|Y) dΦds2. (1.11)

The posterior distribution (1.11) is too complex to obtain closed-form expressions of the MMSE and

MAP estimators ÛMMSE and ÛMAP. As an alternative, we propose to use an MCMC algorithm

to generate a collection of NMC samples U =
{
Ũ1, . . . , ŨNMC

}
that are asymptotically distributed

according to the posterior of interest f (U|Y). These samples will be used to compute the Bayesian

estimators of U. More precisely, the MMSE estimator of U will be approximated by an empirical

average of the generated samples Ũt

ÛMMSE ≈
1

NMC −Nbi

NMC∑
t=Nbi+1

Ũt (1.12)

where Nbi is the number of burn-in iterations. Once the MMSE estimate ÛMMSE has been computed,

the highly-resolved HS image can be computed as X̂MMSE = HÛMMSE. Sampling directly according

to the marginal posterior distribution f (U|Y) is not straightforward. Instead, we propose to sample

according to the joint posterior f
(
U, s2,Σ|Y

)
by using a Metropolis-within-Gibbs sampler, which

can be easily implemented since all the conditional distributions associated with f
(
U, s2,Σ|Y

)
are

relatively simple. The resulting hybrid Gibbs sampler is detailed in the following section.
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1.1.7 Hybrid Gibbs sampler

The Gibbs sampler has received a considerable attention in the statistical community to solve

Bayesian estimation problems [RC04]. The interesting property of this Monte Carlo algorithm is

that it only requires to determine the conditional distributions associated with the distribution of

interest. These conditional distributions are generally easier to simulate than the joint target distri-

bution. The block Gibbs sampler that we use to sample according to f
(
U, s2,Σ|Y

)
is defined by a

3-step procedure reported in Algorithm 1. The distribution involved in this algorithm are detailed

below.

Algorithm 1: Hybrid Gibbs sampler
1 for t = 1 to NMC do

/* Sampling the image covariance matrix */

2 Sample Σ̃(t)
U from f(Σ|U(t−1), s2(t−1)

,YH,YM);
/* Sampling the multispectral noise variances */

3 for ` = 1 to nλ do
4 Sample s̃2(t)

M,` from f(s2
M,`|U(t−1),YM);

5 end
/* Sampling the hyperspectral noise variances */

6 for ` = 1 to mλ do
7 Sample s̃2(t)

H,` from f(s2
H,`|U(t−1),YH);

8 end
/* Sampling the high-resolved image */

9 Sample Ũt using a Hamiltonian Monte Carlo algorithm
10 end

Sampling the covariance matrix of the image Σ

Standard computations yield the following inverse-Wishart distribution as conditional distribution

for the covariance matrix Σ of the scene to be recovered

Σ|U, s2,Y ∼ IW
(
Ψ + (U− µ)(U− µ)T , n+ η

)
(1.13)
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This inverse-Wishart distribution is easy to sample using standard generators.

Sampling the projected image U

Choosing a Gaussian prior distribution for the projected image U (defined in Section 1.1.3) leads to

the conditional log-posterior distribution

− log f(U|Σ, s2,Y) =

1
2‖Λ

− 1
2

H (YH −HUBS)‖2F + 1
2‖Λ

− 1
2

M (YM − R̃U)‖2F + 1
2‖Σ

− 1
2 (U− µ)‖2F + C

where ‖.‖F is the Frobenius norm and C does not depend on U. Note that the vector obtained

by vectorizing U has a Gaussian distribution. However, f(U|Σ, s2,Y) is not the PDF of a matrix

normal distribution. Therefore, sampling U directly from its conditional distribution would be

computationally intensive, since it would require the inversion of large matrices, which is impossible

in most fusion problems. An alternative would consist of sampling each element ui (i = 1, . . . ,mλn)

of U conditionally upon the others according to f
(
ui|U−i, s2,Σ,Y

)
, where U−i is the vector U

whose ith component has been removed. However, this alternative would require to sample U by

using mλn Gibbs moves, which is time demanding and leads to poor mixing properties.

The efficient strategy adopted in this work relies on a particular MCMC method, called Hamilto-

nian Monte Carlo (HMC) method (sometimes referred to as hybrid Monte Carlo method), which is

considered to generate matrices U directly. More precisely, we consider the HMC algorithm initially

proposed by Duane et al. for simulating the lattice field theory in [DKPR87]. As detailed in [Nea93],

this technique allows mixing property of the sampler to be improved, especially in a high-dimensional

problem. It exploits the gradient of the distribution to be sampled by introducing auxiliary “mo-

mentum” variables M ∈ Rmλ×n. The joint distribution of the unknown parameter vector U and the

momentum is defined as

f
(
U,M|s2,Σ,Y

)
= f

(
U|s2,Σ,Y

)
f (M)

where f (M) is the matrix normal PDF with zero mean and identity covariance matrices for both

columns and rows. The Hamiltonian of the considered system is defined by taking the negative
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logarithm of the posterior distribution f
(
U,M|s2,Σ,Y

)
to be sampled, i.e.,

H (U,M) = − log f
(
U,M|s2,Σ,Y

)
= U (U) +K (M)

(1.14)

where U (U) is the potential energy function defined by the negative logarithm of f
(
U|s2,Σ,Y

)
and

K (M) is the corresponding kinetic energy

U (U) = − log f
(
U|s2,Σ,Y

)
K (M) = 1

2MTM.

(1.15)

The parameter space where (U,M) lives is explored following the scheme detailed in Algorithm 2. At

iteration t of the Gibbs sampler, a so-called leap-frogging procedure composed of Nleapfrog iterations

is achieved to propose a move from the current state
{
Ũt, M̃t

}
to the state

{
Ũ?, M̃?

}
with step size

ε. This move is operated in RM̃ ×RM̃ in a direction given by the gradient of the energy function

∇UU (U) = HTΛ−1
H (HUBS−YH) + (RH)TΛ−1

M (RHU−YM) + Σ−1(U− µ)

Then, the new state is accepted with probability ρt = min {1, At} where

At =
f
(
Ũ?, M̃?|s2,Σ,Y

)
f
(
Ũt, M̃t|s2,Σ,Y

)
= exp

[
H
(
Ũt, M̃t

)
−H

(
Ũ?, M̃?

)]
.

This accept/reject procedure ensures that the simulated vectors (Ũt, M̃t) are asymptotically dis-

tributed according to the distribution of interest. The way the parameters ε and NL have been

adjusted will be detailed in Section 1.2. The proposed hybrid Monte Carlo method has been sum-

marized in Algorithm 2.

To sample according to a high-dimension Gaussian distribution such as f
(
U|Σ, s2,Y

)
, one might

think of using other simulation techniques such as the method proposed in [ZZLH12] to solve super-

resolution problems. Similarly, Orieux et al. have proposed a perturbation approach to sample

high-dimensional Gaussian distributions for general linear inverse problems [OFG12]. However,
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Algorithm 2: Hybrid Monte Carlo algorithm
/* Momentum initialization */

1 Sample M̃? ∼ N
(
0
M̃
, I
M̃

)
;

2 Set M̃t ← M̃?;
/* Leapfrogging */

3 for j = 1 to NL do
4 Set M̃? ← M̃? − ε

2∇UU
(
Ũ?
)
;

5 Set Ũ? ← Ũ? + εM̃?;
6 Set M̃? ← M̃? − ε

2∇uU
(
Ũ?
)
;

7 end
/* Accept/reject procedure, See (8) */

8 Sample w ∼ U ([0, 1]);
9 if w < ρt then

10 Ũt+1 ← Ũ?

11 else
12 Ũt+1 ← Ũt;
13 end
14 Set X̃t+1 = HŨt+1;
15 Run Algorithm 3 to update stepsize.

these techniques rely on additional optimization schemes included within the Monte Carlo algo-

rithm, which implies that the generated samples are only approximately distributed according to the

target distribution. Conversely, the HMC strategy proposed here ensures asymptotic convergence

of the generated samples to the posterior distribution. Moreover, the HMC method is very flexible

and can be easily extended to handle non-Gaussian posterior distributions contrary to the methods

investigated in [ZZLH12, OFG12].
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Sampling the noise variance vector s2

The conditional distributions of the noise variances s2
H,i and s2

M,i are the following inverse-gamma

distributions

s2
H,i|Σ,U,Y ∼ IG

(
m+νH

2 ,
‖(YH−HUBS)i‖22+γH

2

)
s2

M,j |Σ,U,Y ∼ IG
(
n+νM

2 ,
‖(YM−RHU)j‖22+γM

2

)

where (·)i represents the ith row. These inverse-gamma distributions are easy to sample. In practice,

if the noise variances are known a priori, we simply fix the noise variances to those values and remove

these sampling steps.

1.1.8 Complexity analysis

The MCMC method can be computationally costly compared with optimization methods. The

complexity of the proposed Gibbs sampler is mainly due to the Hamiltonian Monte Carlo method.

More precisely, the complexity of the Hamiltonian MCMC method is O((m̃λ)3) +O((m̃λn)2), which

is highly expensive as mλ increases. Generally the number of pixels n = mxmy cannot be reduced

significantly. Thus, projecting the high-dimensional mλ× 1 vectors to a low-dimension space to form

m̃λ × 1 vectors decreases the complexity while keeping most important information.

1.2 Simulation results (MCMC algorithm)

This section studies the performance of the proposed Bayesian fusion algorithm. The reference image,

considered here as the high spatial and high spectral image, is an hyperspectral image acquired

over Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared imaging spectrometer

(AVIRIS)1. This image was of size 64 × 128 and initially composed of 224 bands that have been

reduced to 177 bands (mλ = nλ,1 = 177) after removing the water vapor absorption bands.

1http://aviris.jpl.nasa.gov/
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1.2.1 Fusion of HS and MS images

We propose to reconstruct the reference HS image from two lower resolved images. First, a high-

spectral low-spatial resolution image, i.e., an HS image, has been generated by applying a 5 × 5

Gaussian filter on each band of the reference image. Besides, an MS image is obtained by successively

averaging the adjacent bands according to realistic spectral responses. More precisely, the reference

image is filtered using the LANDSAT-like spectral responses depicted in Fig. 1.1, to obtain a 7-band

(nλ = 7) MS image [Fle06]. Note here that the observation models B, S and R corresponding to the

HS and MS images are perfectly known. In addition to the blurring and spectral mixing, the HS and

MS images have been both contaminated by zero-mean independent additive Gaussian noises. The

simulations have been conducted with SNRH,j = 35dB for the first 127 bands and SNRH,j = 30dB

for the remaining 50 bands of the HS image, where SNRH,j = 10 log
(
‖[XBS]j‖2F

s2H,j

)
. For the MS image,

the noise level has been adjusted to obtain SNRM,j = 10 log
(
‖[RX]j‖2F
s2M,j

)
= 30dB in all the spectral

bands. A composite color image, formed by selecting the red, green and blue bands of the high-spatial

resolution HS image (the reference image) is shown in the top 3 of Fig. 1.2. The noise-contaminated

HS and MS images are depicted in the top 1 and top 2 of Fig. 1.2.

20 40 60 80 100 120 140 160
0

0.5

1

Band

R

Figure 1.1: LANDSAT-like spectral responses.

Subspace learning

Learning the matrix H in (1.4) is a preprocessing step, which can be solved by different dimen-

sionality reduction (DR) strategies. A lot of DR methods might be exploited, such as locally linear
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Figure 1.2: AVIRIS dataset: (Top 1) HS image. (Top 2) MS image. (Top 3) Reference image.
(Middle 1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) MCMC. (Bottom 1-3)
The corresponding RMSE errors.

embedding (LLE) [RS00], independent component analysis (ICA) [WC06], hyperspectral signal sub-

space identification by minimum error (HySime) [BDN08], minimum change rate deviation (MCRD)

[DK10] and so on. In this work, we propose to use the principal component analysis (PCA), which

is a classical DR technique used in HS imagery. It maps the original data into a lower dimensional

subspace while preserving most information about the original data. Note that the bases of this

subspace are the columns of the transformation matrix HT , which are exactly the same for all pixels

(or spectral vectors). The sample covariance matrix Υ of the HS vectors is diagonalized leading to

WTΥW = D (1.16)

where W is an mλ×mλ orthogonal matrix (WT = W−1) and D is a diagonal matrix whose diagonal

elements are the ordered eigenvalues of Υ denoted as d1 ≥ d2 ≥ ... ≥ dmλ . The dimension of the

projection subspace m̃λ is defined as the minimum integer satisfying the condition∑m̃λ
i=1 di/

∑mλ
i=1 di ≥
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0.99. The matrix H is then constructed as the eigenvectors associated with the m̃λ largest eigenvalues

of Υ. As an illustration, the eigenvalues of the sample covariance matrix Υ for the Moffett field

image are displayed in Fig. 1.3. For this example, the m̃λ = 10 eigenvectors contain 99.93% of the

information.
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Figure 1.3: Eigenvalues of Υ for the HS image.

Hyper-hyperparameter selection

In our experiments, fixed hyper-hyperparameters have been chosen as follows: Ψ = Im̃λ , η = m̃λ+ 3,

νH = νM = γH = γM = 0. These choices can be motivated by the following arguments

• The identity matrix assigned to Ψ ensures a non-informative prior.

• Setting the inverse gamma parameters to η = m̃λ + 3 leads to a vague prior for Σ [PADF02].

• The parameters ν and γ are fixed to 0 to generate non-informative priors.

1.2.2 Stepsize and leapfrog steps

The performance of the HMC method is mainly governed by the stepsize ε and the number of

leapfrog steps NL. As pointed out in [Nea10], a too large stepsize will result in a very low acceptance

rate and a too small stepsize yields high computational complexity. In order to adjust the stepsize

parameter ε, we propose to monitor the statistical acceptance ratio ρ̂t defined as ρ̂t = Na,t
NW

where

NW is the length of the counting window (in our experiment, the counting window at time t contains

the vectors X̃t−NW+1, X̃t−NW , · · · , X̃t with NW = 50) and Na,t is the number of accepted samples
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in this window at time t. As explained in [RR07], the adaptive tuning should adapt less and less

as the algorithm proceeds to guarantee that the generated samples form a stationary Markov chain.

In our implementation, the parameter ε is adjusted as in Algorithm 3. The thresholds have been

fixed to (αd, αu) = (0.3, 0.9) and the scale parameters are (βd, βu) = (1.1, 0.9) (these parameters were

adjusted by cross-validation). Note that the initial value of ε should not be too large to ‘blow up’

the leapfrog trajectory [Nea10]. Generally, the stepsize converges after some iterations of Algorithm

3.

Algorithm 3: Adjusting stepsize
1 Update ρ̂t with Na,t : ρ̂t = Na,t

NW
;

/* Burn-in (t ≤ Nbi): */

2 if ρ̂t > αu then
3 Set ε = βuε;
4 else if ρ̂t < αd then
5 Set ε = βdε;
6 end

/* After Burn in (t > Nbi i.e. t = Nbi + 1, · · · , NMC): */

7 if ρ̂t > αu then
8 Set ε = [1− (1− βu)exp(−0.01× (t−Nbi))]ε;
9 else if ρ̂t < αd then

10 Set ε = [1− (1− βd)exp(−0.01× (t−Nbi))]ε;
11 end

Regarding the number of leapfrogs, setting the trajectory length NL by trial and error is necessary

[Nea10]. To avoid the potential resonance, NL is randomly chosen from a uniform distribution in

this set [Nmin, Nmax]. After some preliminary runs and tests, Nmin = 50 and Nmax = 55 have been

selected.
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1.2.3 Evaluation of the fusion quality

To evaluate the quality of the proposed fusion strategy, different image quality measures can be

investigated. Referring to [ZDBS09], we propose to use RSNR, SAM, UIQI, ERGAS and DD as

defined below. These measures have been widely used in the HS image processing community and

are appropriate for evaluating the quality of the fusion in terms of spectral and spatial resolutions

[HEW04, ZDS12, YYI12].

RSNR/RMSE The reconstruction SNR (RSNR) or root mean square error (RMSE) is related to

the difference between the actual and fused images, which is defined as following

RMSE(X, X̂) = 1
nmλ

‖X− X̂‖2F

RSNR(X, X̂) = 10 log10

(
‖X‖2F

‖X− X̂‖2F

)
.

The larger RSNR (smaller RMSE), the better the fusion quality and vice versa.

SAM The spectral angle mapper (SAM) measures the spectral distortion between the actual and

estimated images. The SAM of two spectral vectors xn and x̂n is defined as

SAM(xn, x̂n) = arccos
( 〈xn, x̂n〉
‖xn‖2‖x̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs computed from all image pixels. Note

that the SAM value is expressed in degrees and thus belongs to (−90, 90]. The smaller the absolute

value of SAM, the less important the spectral distortion.

UIQI The universal image quality index (UIQI) was proposed in [WB02] for evaluating the sim-

ilarity between two single band images. It is related to the correlation, luminance distortion and

contrast distortion of the estimated image w.r.t. the reference image. The UIQI between two single-

band images a = [a1, a2, · · · , aN ] and â = [â1, â2, · · · , âN ] is defined as

UIQI(a, â) = 4σ2
aâµaµâ

(σ2
a + σ2

â)(µ2
a + µ2

â)
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where
(
µa, µâ, σ

2
a, σ

2
â

)
are the sample means and variances of a and â, and σ2

aâ is the sample covariance

of (a, â). The range of UIQI is [−1, 1] and UIQI(a, â) = 1 when a = â. For multi-band images, the

overall UIQI can be computed by averaging the UIQI computed band-by-band.

ERGAS The relative dimensionless global error in synthesis (ERGAS) calculates the amount of

spectral distortion in the image [Wal00]. This measure of fusion quality is defined as

ERGAS = 100× 1
d2

√√√√ 1
mλ

mλ∑
i=1

(RMSE(i)
µi

)

where 1/d2 is the ratio between the pixel sizes of the MS and HS images, µi is the mean of the ith

band of the HS image, and mλ is the number of HS bands. The smaller ERGAS, the smaller the

spectral distortion.

DD The degree of distortion (DD) between two images X and X̂ is defined as

DD(X, X̂) = 1
nmλ

‖vec(X)− vec(X̂)‖1.

The smaller DD, the better the fusion.

1.2.4 Comparison with other Bayesian models

The Bayesian model proposed here differs from previous Bayesian models [HEW04, ZDBS09] in

three-fold. First, in addition to the target image X, the hierarchical Bayesian model allows the

distributions of the noise variances s2 and the hyperparameter Σ to be inferred. The hierarchical

inference structure makes this Bayesian model more general and flexible. Second, the covariance

matrix Σ is assumed to be block diagonal, which allows the correlations between spectral bands to

be exploited. Third, the proposed method takes advantage of the relation between the MS image

and the target image by introducing a forward model R. This paragraph compares the proposed

Bayesian fusion method with the two state-of-the-art fusion algorithms of [HEW04] [ZDBS09] for

HS+MS fusion. The MMSE estimator of the image using the proposed Bayesian method is obtained

from (1.12). In this section, NMC = 500 and Nbi = 500. The fusion results obtained with different
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algorithms are depicted in Fig. 1.2. Visually, the proposed algorithm performs competitively with

the other state-of-the-art methods. This result is confirmed quantitatively in Table 1.1 which shows

the RSNR, UIQI, SAM, ERGAS and DD for the three methods. Note that the HMC method provides

slightly better results in terms of image restoration than the other methods. However, the proposed

method allows the image covariance matrix and the noise variances to be estimated, contrary to the

other two methods. The samples generated by the MCMC method can also be used to compute

confidence intervals for the estimators (e.g., see error bars in Fig. 1.4).

Table 1.1: Performance of HS+MS fusion methods in terms of: RSNR (in dB), UIQI, SAM (deg),
ERGAS, DD(in 10−2) and time (in second) (AVIRIS dataset).

Methods RSNR UIQI SAM ERGAS DD Time(s)

MAP [HEW04] 23.33 0.9913 5.05 4.21 4.87 1.6

Wavelet [ZDBS09] 25.53 0.9956 3.98 3.95 3.89 31

Proposed 26.74 0.9966 3.40 3.77 3.33 530

1.2.5 Estimation of the noise variances

The proposed Bayesian method allows noise variances s2
H and s2

M to be estimated from the samples

generated by the Gibbs sampler. The MMSE estimators of s2
H and s2

M are illustrated in Fig. 1.4.

Graphically, the estimations can track the variations of the noise powers within tolerable discrepancy.
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Figure 1.4: Noise variances and their MMSE estimates. (Top) HS image. (Bottom) MS image.

1.2.6 Robustness with respect to the knowledge of R

The sampling algorithm summarized in Algorithm 2 requires the knowledge of the spectral response

R. However, this knowledge can be partially known in some practical applications. This paragraph

is devoted to testing the robustness of the proposed algorithm to the imperfect knowledge of R. In

order to analyze this robustness, a zero-mean white Gaussian error has been added to any non-zero

component of R as shown in the bottom of Fig. 1.5. Of course, the level of uncertainty regarding

R is controlled by the variance of the error denoted as σ2
R. The corresponding FSNR is defined as

FSNR = 10 log10

(
‖R‖2F

mλnλσ
2
R

)
to adjust the knowledge of R.The larger FSNR, the more knowledge

we have about R. The RSNRs between the reference and estimated images are displayed in Fig.

1.6 as a function of FSNR. Obviously, the performance of the proposed Bayesian fusion algorithm

decreases as the uncertainty about R increases. However, as long as the FSNR is above 8dB, the

performance of the proposed method outperforms the MAP and wavelet-based MAP methods. Thus,

the proposed method is quite robust with respect to the imperfect knowledge of R. It is interesting
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to note that jointly estimating R with other parameters in the Bayesian framework is a possible

solution to overcome the absence of R, which is available in Appendix B.
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Figure 1.5: LANDSAT-like spectral responses. (Top) without noise. (Bottom) with an additive
Gaussian noise with FSNR = 8dB.

1.2.7 Application to Pansharpening

The proposed algorithm can also be used for pansharpening, which is an important and popular

application in the area of remote sensing. In this section, we focus on fusing panchromatic and

hyperspectral images (HS+PAN), which is the extension of conventional pansharpening (MS+PAN)

[LAJ+]. The reference image considered in this section (the high spatial and high spectral image) is

a 128× 64× 93 HS image with very high spatial resolution of 1.3 m/pixel) acquired by the Reflective

Optics System Imaging Spectrometer (ROSIS) optical sensor over the urban area of the University of

Pavia, Italy. The flight was operated by the Deutsches Zentrum für Luft- und Raumfahrt (DLR, the

German Aerospace Agency) in the framework of the HySens project, managed and sponsored by the

European Union. This image was initially composed of 115 bands that have been reduced to 93 bands
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Figure 1.6: Reconstruction errors of the different fusion methods versus FSNR.

after removing the water vapor absorption bands (with spectral range from 0.43 to 0.86 µm). This

image has received a lot of attention in the remote sensing literature [TFCB10]. The HS blurring

kernel is the same as in paragraph 1.4.1 whereas the PAN image was obtained by averaging all the

high resolution HS bands. The SNR of the PAN image is 30dB. Apart from [HEW04, ZDBS09], we

also compare the results with the method of [RSM+10], which proposes a popular pansharpening

method. The results are displayed in Fig. 1.7 and the quantitative results are reported in Table 1.2.

The proposed Bayesian method still provides interesting results.

Table 1.2: Performance of HS+PAN fusion methods in terms of: RSNR (in dB), UIQI, SAM (in
degree), ERGAS, DD(in 10−2) and time (in second) (ROSIS dataset).

Methods RSNR UIQI SAM ERGAS DD Time(s)

AIHS [RSM+10] 16.69 0.9176 7.23 4.24 9.99 7.7

MAP [HEW04] 17.54 0.9177 6.55 3.78 8.78 1.4

Wavelet [ZDBS09] 18.03 0.9302 6.08 3.57 8.33 26

Proposed 18.23 0.9341 6.05 3.49 8.20 387

1.3 Block Coordinate Descent method

To accelerate the multi-band image fusion based on the computationally intensive Monte Carlo

sampling strategy introduced in Section 1.1.7, an optimization algorithm is investigated in this part
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Figure 1.7: ROSIS dataset: (Top left) Reference image. (Top right) PAN image. (Middle left)
Adaptive IHS [RSM+10]. (Middle right) MAP [HEW04]. (Bottom left) Wavelet MAP [ZDBS09].
(Bottom right) MCMC.

to maximize p (θ,Σ|Y) providing the MAP estimator of (θ,Σ). The negative logarithm of the joint

posterior distribution p (θ,Σ|Y) is given as

L(U, s2,Σ) = − log p (θ,Σ|Y) = − log p (YH|θ)− log p (YM|θ)−
n∑
l=1

log p (ul|Σ)

−
mλ∑
i=1

log p
(
s2

H,i

)
−

nλ∑
j=1

log p
(
s2

M,j

)
− log p (Σ)− C

(1.17)

where C is a constant. The MAP estimator of the unknown model parameters can then be obtained

by minimizing the function L(U, s2,Σ) with respect to U, s2 and Σ. To solve this multivariate

optimization problem, we propose to use a BCD algorithm whose details are given in the following
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section.

The BCD algorithm consists of minimizing a cost function w.r.t. its unknown parameters itera-

tively, which can be easily implemented in the considered fusion problem (see Algorithm 4). Contrary

to gradient based optimization methods, BCD does not require any stepsize tuning, which makes

the algorithm more usable by practitioners. BCD is known to converge to a stationary point of the

target cost function to be optimized provided that this target function has a unique minimum w.r.t.

each variable [Ber99, Prop. 2.7.1], which is the case for the criterion (1.17). The three steps of the

BCD algorithm are detailed below.

Algorithm 4: Block Coordinated Descent algorithm
Input: YH, YM, m̃λ, B, S, R, s2

0, Σ0

1 for t = 1, 2, . . . to stopping rule do
2 Ut = arg minU L(U, s2

t−1,Σt−1) ; /* See Section 1.3.1 */

3 s2
t = arg mins2 L(Ut, s

2,Σt−1) ; /* See Section 1.3.2 */

4 Σt = arg minΣ L(Ut, s
2
t ,Σ) ; /* See Section 1.3.3 */

5 end
Output: Û (Projected high resolution HS image)

1.3.1 Optimization with respect to U

The optimization w.r.t. to U consists of minimizing

LU(U) = 1
2‖Λ

− 1
2

H (YH −HUBS) ‖2F + 1
2‖Λ

− 1
2

M (YM −RHU) ‖2F + 1
2‖Σ

− 1
2 (U− µU) ‖2F . (1.18)

Determining U which makes the gradient of LU(U) equal to zero is not straightforward, mainly

due to left- and right-side linear operators applied to U and the size of the matrices involved in the

computation. In fact, it is equivalent to solve the following Sylvester equation [BS72]

HTΛ−1
H HUBS (BS)T +

(
(RH)TΛ−1

M RH + Σ−1
)

U

= VTΛ−1
H YH (BS)T + (RH)TΛ−1

M YM + Σ−1µU.

(1.19)

As the Schur decomposition of matrix BS (BS)T is not easy to obtain, an analytic solution of the

Sylvester equation is difficult to be computed.
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Fortunately, this kind of optimization problem has been solved efficiently by the ADMM method

[BPC+11]. After defining the splittings V1 = UB, V2 = U and V3 = U and the respective scaled

Lagrange multipliers G1,G2,G3, the augmented Lagrangian associated with (1.18) is

LU(U,V1,V2,V3,G1,G2,G3) =
1
2
∥∥Λ− 1

2
H (YH −HV1S)

∥∥2
F

+ µ

2
∥∥UB−V1 −G1

∥∥2
F

+
1
2
∥∥Λ− 1

2
M (YM −RHV2)

∥∥2
F

+ µ

2
∥∥U−V2 −G2

∥∥2
F

+
1
2
∥∥Σ− 1

2 (µU −V3)
∥∥2
F

+ µ

2
∥∥U−V3 −G3

∥∥2
F
.

The iterative update of U,V1,V2,V3,G1,G2,G3 can be achieved with the split augmented La-

grangian shrinkage algorithm (SALSA) [ABDF10, AJF11], which is an instance of the ADMM algo-

rithm with convergence guaranty. The detailed implementation of the SALSA scheme for our fusion

problem are summarized in Algorithm 5. Obviously, the optimization of LU(U) w.r.t. U is decom-

posed into the optimization of LU(U,V1,V2,V3,G1,G2,G3) w.r.t. U, V1, V2 and V3, which can

be interpreted as deconvolution, up-sampling, spectral regression and denoising.

1.3.2 Optimization with respect to s2

The optimization w.r.t. s2 is decomposed into (mλ+nλ) parallel optimizations w.r.t.
{
s2

H,j

}mλ
j=1

and{
s2

M,j

}nλ
j=1

thanks to the criterion separability

Ls2(s2) =
(
νH+m

2 + 1
) mλ∑
i=1

log s2
H,i +

mλ∑
i=1

γH+‖(YH−HUt−1BS)i‖2F
2s2H,i(

νM+n
2 + 1

) nλ∑
j=1

log s2
M,j +

nλ∑
j=1

γM+‖(YM−RHUt−1)j‖2F
2s2M,j

.

Computing the derivatives of Ls2(s2) w.r.t. s2
H,i and s2

M,j and forcing them to be zero leads to the

update rules

s2
H,i = 1

νH+m+2
(
γH + ‖ (YH −HUt−1BS)i ‖2F

)
s2

M,j = 1
νM+n+2

(
γM + ‖ (YM −RHUt−1)j ‖2F

)
.
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Algorithm 5: SALSA step

1 Define: Ds ∈ {0, 1}n such that Ds(i) =

 1 if pixel i is sampled,

0 otherwise;

2 Initialization: choose µ > 0, V(0)
1 ,V(0)

2 ,V(0)
3 ,G(0)

1 , G(0)
2 ,G(0)

3

3 for k = 0, 1, . . . to stopping rule do
/* optimize w.r.t U (light with FFT) */

4 U(k+1) ←
[
(V(k)

1 + G(k)
1 )BT + (V(k)

2 + G(k)
2 ) + (V(k)

3 + G(k)
3 )

] (
BBT + 2I

)−1
;

/* optimize w.r.t V1 */

5 ν1 ← (U(k+1)B−G(k)
1 );

/* Update V1 according to downsampling */

6 V(k+1)
1 (:,Ds)←

(
HTΛ−1

H H + µI
)−1

(HTΛ−1
H YH + ν1(:,Ds));

7 V(k+1)
1 (:, 1−Ds)← ν1(:, 1−Ds) ;

/* optimize w.r.t V2 */

8 ν2 ← (U(k+1) −G(k)
2 );

9 V(k+1)
2 ←

(
HTRTΛ−1

M RH + µI
)−1

(HTRTΛ−1
M YM + µν2);

/* optimize w.r.t V3 */

10 ν3 ← (U(k+1) −G(k)
3 );

11 V(k+1)
3 ←

(
Σ−1 + µI

)−1 (
Σ−1µU + µν3

)
;

/* update Lagrange multipliers */

12 G(k+1)
1 ← (−ν1 + V(k+1)

1 );
13 G(k+1)

2 ← (−ν2 + V(k+1)
2 );

14 G(k+1)
3 ← (−ν3 + V(k+1)

3 );
15 end

1.3.3 Optimization with respect to Σ

Fixing U and s2, the objective function is

LΣ(Σ) = η+m̃λ+n+1
2 log |Σ|

+1
2tr
((∑n

i=1
(
ui − µui

) (
ui − µui

)T + Ψ
)

Σ−1
)
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where tr(·) is the trace operator. The maximum of this function is obtained for

Σt = (Ut−1 − µU) (Ut−1 − µU)T + Ψ
η + m̃λ + n+ 1 .

1.3.4 Relationship with the MCMC method

It is worthy to note that the proposed optimization procedure is structured similarly to the Gibbs

sampler developed at the beginning of this chapter to solve the fusion problem. Indeed, the BCD

method can be interpreted as a deterministic counterpart of the Gibbs sampler, consisting of replacing

the stochastic sampling procedures associated with the conditional posterior distributions of the

target distribution by iterative evaluations of their modes. However, the BCD method requires much

fewer computation resources when compared with Monte Carlo-based methods, which is crucial for

practical implementations.

1.4 Simulation results (BCD algorithm)

This section presents numerical results obtained with the proposed BCD based fusion algorithm.

Similarly to Section 1.4.1, the reference image X is a 128× 128× 176 AVIRIS HS image displayed in

the top 3 panel of Fig. 1.8.

1.4.1 Simulation scenario

We propose to reconstruct the reference HS image X from two HS and MS images YH and YM.

The HS image has been generated by applying a 5× 5 Gaussian filter on each band of the reference

image. A 7-band MS image YM has been obtained by filtering X with the LANDSAT-like reflectance

spectral responses shown in Fig. 1.1. The HS and MS images are both contaminated by additive

centered Gaussian noises. The simulations have been conducted with SNRH,j = 35dB for the first

127 bands and SNRH,j = 30dB for the remaining 50 bands of the HS image. For the MS image, the

noise level has been adjusted to obtain SNRM,j = 30dB in all the spectral bands. The observed HS

and MS images are shown in the top 1 and 2 of Fig. 1.8 (note that the HS image has been scaled

for better visualization and that the MS image has been displayed using RGB bands). To learn
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Figure 1.8: AVIRIS dataset: (Top 1) HS image. (Top 2) MS image. (Top 3) Reference image.
(Middle 1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) MCMC. (Middle 4):
Proposed method. (Bottom 1-4) The corresponding RMSE maps (more black, smaller errors; more
white, larger errors).

the projection matrix H, a PCA has been conducted, i.e., the m̃λ = 10 most discriminant vectors

associated with the 10 largest eigenvalues of the sample covariance matrix of the HS image have been

computed. These 10 vectors lead to 99.89% of the information contained in the HS image.
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1.4.2 Hyperparameter selection

Similarly to the Monte Carlo-based approach in [WDT14a], the proposed algorithm requires to tune

the hyperparameters γH and νH (γM and νM, resp.) associated with the HS (MS, resp.) noise variance

priors, and Ψ and η associated with the image covariance matrix prior. The strategy adopted to

adjust these hyperparameters is detailed in what follows.

The noise variance hyperparameters can be tuned based on some prior knowledge. Indeed, since

the SNRH,i are approximately known in practice, rough estimations of s2
H,i can be obtained as

s̃2
H,i = ‖ (YH)i ‖2F

10SNRH,i/10 .

Following a 1st-order moment technique, these rough estimations can be used to adjust the means

of the prior in (1.7), leading to γH = (νH − 2) s̃2
H,i. A similar strategy is adopted to define γM.

The values of νH and νM are related to the variances of the inverse-gamma distributions (1.7),

since var
[
s2
·,i

]
= 2γ2

·
(ν·−2)2(ν·−4) . It has been observed that assigning non-informative priors for the

noise variances of the HS and MS images (i.e., fixing νH and νM to both small values) lead to poor

fusion results, since these priors are not sufficiently informative to regularize the ill-posed problem.

In this work, informative priors for s2
M,j have been chosen by fixing νM = 10n and flat priors for s2

H,j

have been chosen by fixing νH = 3.

The prior distribution assigned to Σ depends on the parameters Ψ and η. As there is no available

prior knowledge about Σ, the two parameters η and Ψ have been chosen in order to obtain a non-

informative prior for Σ, leading to η = m̃λ + 3 and Ψ = (η + m̃λ + 1) Im̃λ .

1.4.3 Fusion performance

To evaluate the quality of the proposed fusion strategy, five image quality measures have been

investigated. The RSNR, UIQI, averaged SAM, ERGAS and DD are used as quantitative measures,

which have been defined in Section 1.2.3.

The experiments compare the proposed algorithm with two state-of-the-art fusion algorithms

[HEW04, ZDBS09] and the MCMC algorithm in Section 1.1.7. Note that the MCMC based fusion

method presented in Section 1.1.7 can be considered as the Monte Carlo-based counterpart of the
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proposed method, since both methods share the same hierarchical Bayesian model. Results obtained

with these algorithms are depicted in Fig. 1.8 and quantitative results are reported in Table 1.3.

These results show that the proposed method provides better results than the methods of [HEW04],

[ZDBS09] and competitive results when compared with the MCMC method in Section 1.1.7. Besides,

as observed by comparing the execution times reported in Table 1.3, the proposed optimization

algorithm is significantly faster than the MCMC method in Section 1.1.7.

Table 1.3: Performance of the compared fusion methods: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−2) and time (in second) (AVIRIS dataset).

Methods RSNR UIQI SAM ERGAS DD Time

Hardie [HEW04] 23.14 0.9932 5.147 3.524 4.958 3

Zhang [ZDBS09] 24.91 0.9956 4.225 3.282 4.120 72

MCMC 25.92 0.9971 3.733 2.926 3.596 6228

Proposed 25.85 0.9970 3.738 2.946 3.600 96

The estimation of noise variances for both HS bands and MS bands are shown in Fig. 1.9. These

results show that the noise variances for different bands can be tracked with tolerant discrepancy.
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Figure 1.9: Noise variances and their MMSE estimates. Top: HS image. Bottom: MS image.
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1.5 Conclusion

This chapter proposed a hierarchical Bayesian model to fuse multiple multi-band images with various

spectral and spatial resolutions. The image to be recovered was assumed to be degraded according

to physical transformations included within a forward model. An appropriate prior distribution,

that exploited geometrical concepts encountered in spectral unmixing problems was proposed. This

prior was combined with the likelihood to provide a posterior distribution associated with the fusion

problem. This posterior was too complicated to compute analytical expression of the Bayesian

estimator. Thus, two strategies were investigated. First, the posterior distribution of the proposed

fusion model was efficiently sampled thanks to a Hamiltonian Monte Carlo algorithm within a Gibbs

sampler. Simulations conducted on pseudo-real data showed that the proposed method competed

with the state-of-the-art techniques to fuse MS and HS images. These experiments also illustrated

the robustness of the proposed method with respect to the misspecification of the forward model.

Second, an alternative for fusing multispectral and hyperspectral images is to maximize the posterior

distribution of our fusion model using a block coordinate descent method. The joint optimization was

conducted iteratively with respect to the image to be recovered, the noise variances and the image

prior covariance matrix. One particularity of the proposed BCD algorithm was to involve an ADMM

step for estimating the unknown image. Numerical experiments showed that the proposed method

compares competitively with other state-of-the-art methods, with the great advantage of reducing

the computational complexity when compared with a Monte Carlo-based counterpart method.
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Chapter 2

Bayesian fusion based on a sparse
representation

Part of this chapter has been adapted from the journal paper [WBDDT15] (published) and the
conference paper [WDT14c] (published).
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2.1 Introduction

Recently, sparse representations have received a considerable interest exploiting the self-similarity

properties of natural images [SI07, MES08, MBPS09, DF10]. Using this property, a sparse constraint

has been proposed in [YWHM10, YLF13] to regularize various ill-posed super-resolution and/or

fusion problems. The linear decomposition of an image using a few atoms of a redundant dictionary

learned from this image (instead of a predefined dictionary, e.g., of wavelets) has recently been

used for several problems related to low-level image processing tasks such as denoising [EA06] and

classification [RSS10], demonstrating the ability of sparse representations to model natural images.

Learning a dictionary from the image of interest is commonly referred to as dictionary learning

(DL). Liu et al. recently proposed to solve the pansharpening problem based on DL [LB12]. DL

has also been investigated to restore HS images [XZC+12]. More precisely, a Bayesian scheme was

introduced in [XZC+12] to learn a dictionary from an HS image, which imposes a self-consistency

of the dictionary by using Beta-Bernoulli processes. This method provided interesting results at

the price of a high computational complexity. Fusing multiple images using a sparse regularization

based on the decomposition of these images into high and low frequency components was considered

in [YLF13]. However, the method developed in [YLF13] required a training dataset to learn the

dictionaries. The references mentioned before proposed to solve the corresponding sparse coding

problem either by using greedy algorithms such as matching pursuit (MP) and orthogonal MP [TG07]

or by relaxing the `0-norm to an `1-norm to take advantage of the last absolute shrinkage and selection

operator (LASSO) [Tib96].

In this chapter, we propose to fuse HS and MS images within a constrained optimization frame-

work, by incorporating a sparse regularization using dictionaries learned from the observed images.

Knowing the trained dictionaries and the corresponding supports of the codes circumvents the diffi-

culties inherent to the sparse coding step. The optimization problem can then be solved by optimizing

alternatively w.r.t. the projected target image and the sparse code. The optimization w.r.t. the im-

age is achieved by the SALSA [AJF11], which is an instance of the ADMM. By a suitable choice of

variable splittings, SALSA enables a huge non-diagonalizable quadratic problem to be decomposed
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into a sequence of convolutions and pixel decoupled problems, which can be solved efficiently. The

coding step is performed using a standard least-square (LS) algorithm which is possible because the

supports have been fixed a priori.

The chapter is organized as follows. Section 2.2 formulates the fusion problem within a constrained

optimization framework. Section 2.3 presents the proposed sparse regularization and the method

used to learn the dictionaries and the code support. The strategy investigated to solve the resulting

optimization problem is detailed in Section 2.4. Simulation results are presented in Section 2.5

whereas conclusions are reported in Section 2.6.

2.2 Problem formulation

2.2.1 Notations and observation model

Recall the fusion model introduced in (1)

YH = XBS + NH

YM = RX + NM

(2.1)

where

• X = [x1, . . . ,xn] ∈ Rmλ×n is the full resolution target image with mλ bands and n pixels,

• YH ∈ Rmλ×m and YM ∈ Rnλ×n are the observed HS and MS images,

• B ∈ Rn×n is a cyclic convolution operator acting on the bands,

• S ∈ Rn×m is a down-sampling matrix (with down-sampling factor denoted as d),

• R ∈ Rnλ×mλ is the spectral response of the MS sensor,

• NH and NM are the HS and MS noises.
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Recall also that the signal to noise ratios (SNRs) of each band in the two images (expressed in

decibels) are defined as

SNRH,i = 10 log
(
‖(XBS)i‖2F

s2H,i

)
, i = 1, . . . ,mλ

SNRM,j = 10 log
(
‖(RX)j‖2F

s2M,j

)
, j = 1, . . . , nλ.

2.2.2 Subspace learning

Using the subspace transformation X = HU where U ∈ Rm̃λ×n, the fusion problem (2.1) can be

reformulated as estimating the unknown matrix U from the following observation equations

YH = HUBS + NH

YM = RHU + NM.

(2.2)

The dimension of the subspace m̃λ is generally much smaller than the number of HS bands, i.e.,

m̃λ � mλ. As a consequence, inferring in the subspace Rm̃λ×1 greatly decreases the computational

burden of the fusion algorithm. Another motivation for working in the subspace associated with

U is to bypass the possible matrix singularity caused by the spectral dependency of the HS data.

Note that each column of the orthogonal matrix H can be interpreted as a basis of the subspace

of interest. In this work, the subspace transformation matrix H will be determined from a PCA of

the HS data YH = [yH,1, . . . ,yH,m] (see step 7 of Algorithm 6). Note that instead of modifying the

principal components directly as in the substitution based method [TSSH01, SYK08], the PCA is

only employed to learn the subspace where the fusion problem is solved.

2.3 Proposed fusion method for MS and HS images

2.3.1 Ill-posed inverse problem

As shown in (B.3), recovering the projected high-spectral and high-spatial resolution image U from

the observations YH and YM is a linear inverse problem (LIP) [AJF11]. In most single-image

restoration problems (using either YH or YM), the inverse problem is ill-posed or under-constrained
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[YWHM10], which requires regularization or prior information (in the Bayesian terminology). How-

ever, for multi-source image fusion, the inverse problem can be ill-posed or well-posed, depending

on the dimension of the subspace and the number of spectral bands. If the matrix RH has full

column rank and is well conditioned, which is seldom the case, the estimation of U according to

(B.3) is an over-determined problem instead of an under-determined problem [DB08]. In this case,

it is redundant to introduce regularizations. Conversely, if there are fewer MS bands than the sub-

space dimension m̃λ (e.g., the MS image degrades to a PAN image), the matrix RH cannot have full

column rank, which means that the fusion problem is an ill-posed LIP. In this work, we focus on the

under-determined case. Note however that the over-determined problem can be viewed as a special

case with a regularization term set to zero. Another motivation for studying the under-determined

problem is that it includes an archetypal fusion task referred to as pansharpening [AMV+11].

Based on the model (B.3) and the noise assumption, the distributions of YH and YM are

YH|U ∼MNmλ,m(HUBS,ΛH, Im)

YM|U ∼MN nλ,n(RHU,ΛM, In).
(2.3)

According to Bayes’ theorem and using the fact that the noises NH and NM are independent,

the posterior distribution of U can be written as

p (U|YH,YM) ∝ p (YH|U) p (YM|U) p (U) . (2.4)

In this chapter, we proposed to compute the MAP estimator using an optimization framework

to solve the fusion problem. Taking the negative logarithm of the posterior distribution, maximizing

the posterior distribution is equivalent to solving the following minimization problem

min
U

1
2
∥∥Λ− 1

2
H (YH −HUBS)

∥∥2
F︸ ︷︷ ︸

HS data term
∝ln p(YH|U)

+ 1
2
∥∥Λ− 1

2
M (YM −RHU)

∥∥2
F︸ ︷︷ ︸

MS data term
∝ln p(YM|U)

+ λφ(U)︸ ︷︷ ︸
regularizer
∝ln p(U)

(2.5)

where the two first terms are associated with the MS and HS images (data fidelity terms) and the

last term is a penalty ensuring appropriate regularization. Note that λ is a parameter adjusting

the importance of regularization w.r.t. the data fidelity terms. It is also noteworthy that the MAP
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estimator is equivalent to the MMSE estimator when φ(U) is a quadratic function of U, which is the

case in the approach detailed below.

2.3.2 Sparse regularization

Based on the self-similarity property of natural images, modeling image patches with a sparse rep-

resentation has been shown to be very effective in many signal processing applications [CDS98,

DFKE07, YWHM10]. Instead of incorporating a simple Gaussian prior or smooth regularization for

the fusion of HS and MS images [HEW04, ZDBS09, WDT14a], we propose to introduce a sparse

representation to regularize the fusion problem. More specifically, image patches of the target image

projected into a subspace are represented as a sparse linear combination of elements from an appro-

priately chosen over-complete dictionary with columns referred to as atoms. In this work, the atoms

of the dictionary are tuned to the input images, leading to much better results than predefined dic-

tionaries. More specifically, the goal of sparse regularization is to represent the patches of the target

image as a weighted linear combination of a few elementary basis vectors or atoms, chosen from a

learned over-complete dictionary. The proposed sparse regularization is defined as

φ(U) = 1
2

m̃λ∑
i=1

∥∥Ui − P
(
D̄iĀi

) ∥∥2

F
(2.6)

where

• Ui ∈ Rn is the ith band (or row) of U ∈ Rm̃λ×n, with i = 1, . . . , m̃λ,

• P(·) : Rnp×npat 7→ Rn×1 is a linear operator that averages the overlapping patches1 of each

band,

• D̄i ∈ Rnp×nat is an overcomplete dictionary whose columns are basis elements of size np (cor-

responding to the size of a patch),

• Āi ∈ Rnat×npat is the ith band code (nat is the number of atoms and npat is the number of

patches associated with the ith band).
1Note that the overlapping decomposition adopted here is to prevent block artifacts [Gul06].



2.3 - Proposed fusion method for MS and HS images 55

Note that there are m̃λ vectors Ui ∈ Rn since the dimension of the hyperspectral subspace in

which the observed vectors xi have been projected is m̃λ. The operation decomposing each band into

overlapping patches of size √np ×
√
np is denoted as P∗(·) : Rn×1 7→ Rnp×npat , which is the adjoint

operation of P(·), i.e., P [P∗(X)] = X.

2.3.3 Dictionary learning

The DL strategy advocated in this work consists of learning the dictionaries D̄i and an associated

sparse code Āi for each band of a rough estimation of U using the observed HS and MS images.

A rough estimation of U, referred as Ũ is constructed using the MS image YM and the HS image

YH, following the strategy initially studied in [HEW04]. Note that other estimation methods could

also be used to compute a rough estimation of U (see step 1 in Algorithm 6). Then each band

Ũi of Ũ is decomposed into npat overlapping patches of size √np ×
√
np forming a patch matrix

P∗(Ũi) ∈ Rnp×npat .

Many DL methods have been studied in the recent literature. These methods are for instance

based on K-SVD [AEB06], online dictionary learning (ODL) [MBPS09] or Bayesian learning [XZC+12].

In this study, we propose to learn the set D̄ ,
[
D̄1, . . . , D̄m̃λ

]
of over-complete dictionaries using

ODL since it is effective from the computational point of view and has empirically demonstrated to

provide more relevant representations. More specifically, the dictionary Di associated with the band

Ui is trained by solving the following optimization problem (see step 3 in Algorithm 6).

{
D̄i, Ãi

}
= argmin

Di,Ai

1
2
[∥∥P∗(Ũi)−DiAi

∥∥2
F

+ µ
∥∥Ai

∥∥
1

]
. (2.7)

Then, to provide a more compact representation, we propose to re-estimate the sparse code

Āi = argmin
Ai

1
2
∥∥P∗(Ũi)− D̄iAi

∥∥2
F
, s.t.

∥∥Ai

∥∥
0 ≤ K (2.8)

where K is a given maximum number of atoms, for each patch of Ui. This `0-norm constrained

regression problem can be approximately addressed using greedy algorithms, such as the orthogonal

matching pursuit (OMP) algorithm. Generally, the maximum number of atoms K is chosen to be
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much smaller than the number of atoms in the dictionary, i.e., K � nat. The positions of the non-

zero elements of the code Āi, namely the supports denoted as Ω̄i ,
{

(j, k)|Āi(j, k) 6= 0
}
, are also

identified (see steps 4 and 5 in Algorithm 6).

2.3.4 Including the sparse code into the estimation framework

Since the regularization term (2.6) exhibits separable terms w.r.t. each image Ui in band #i, it can

be easily interpreted in a Bayesian framework as the result of assigning independent Gaussian priors

to Ui (i = 1, . . . , m̃λ), more precisely, a Gaussian prior with mean P
(
D̄iĀi

)
for ith band, similarly

with the prior used in Chapter 1. By denoting Ā ,
[
Ā1, . . . , Ām̃λ

]
, the prior distribution for U

associated with the regularization (2.6) can be written

p
(
U|D̄, Ā

)
=

m̃λ∏
i=1

p
(
Ui|D̄i, Āi

)
. (2.9)

In a standard approach, the hyperparameters D̄ and Ā can be a priori fixed, e.g., based on the DL

step detailed in the previous section. However, this choice can drastically impact the accuracy of

the representation and therefore the relevance of the regularization term. Inspired by hierarchical

models frequently encountered in Bayesian inference [GCS+13] or more directly by the hierarchical

model introduced in Chapter 1, we propose to add a second level in the Bayesian paradigm by fixing

the dictionaries D̄ and the set of supports Ω̄ ,
{
Ω̄1, . . . , Ω̄m̃λ

}
, but by including the code A within

the estimation process. The associated joint prior can be written as follows

p
(
U,A|D̄, Ā

)
=

m̃λ∏
i=1

p
(
Ui|D̄i,Ai

)
p
(
Ai|Āi

)
(2.10)

where Ω̄ is derived from Ā. Therefore, the regularization term (2.6) reduces to

φ(U,A) = 1
2

m̃λ∑
i=1

∥∥Ui − P
(
D̄iAi

) ∥∥2

F
= 1

2
∥∥U− Ū

∥∥2
F
, s.t.

{
Ai,\Ω̄i

= 0
}m̃λ
i=1

(2.11)

where Ū ,
[
P
(
D̄1A1

)
, . . . ,P

(
D̄m̃λ

Am̃λ

)]
and Ai,\Ω̄i

=
{
Ai(j, k) | (j, k) 6∈ Ω̄i

}
. It is worthy

to note that i) the regularization term in (2.11) is still separable w.r.t. each band Ui, and ii) the

optimization of (2.11) w.r.t. Ai reduces to an `2-norm optimization task w.r.t. the non-zero elements
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in Ai, which can be solved easily. The hierarchical structure of the observed data, parameters and

hyperparameters is summarized in Fig. 2.1.

Ā

��
D̄

��

A

��
ΛH

��

U

~~   

ΛM

��
YH YM

Figure 2.1: DAG for the data, parameters and hyperparameters (the fixed parameters appear in
boxes).

Finally, substituting (2.11) into (2.5), the optimization problem to be solved can be expressed as

follows

minU,A L(U,A) , 1
2
∥∥Λ− 1

2
H (YH −HUBS)

∥∥2
F

+ 1
2
∥∥Λ− 1

2
M (YM −RHU)

∥∥2
F

+ λ
2
∥∥U− Ū

∥∥2
F
,

s.t.
{
Ai,\Ω̄i

= 0
}m̃λ
i=1

.

(2.12)

Note that the set of constraints
{
Ai,\Ω̄i

= 0
}m̃λ
i=1

could have been removed. In this case, to ensure

a sparse representation of Ui (i = 1, . . . , m̃λ), sparse constraints on the codes Ai (i = 1, . . . , m̃λ),

such as {‖Ai‖0 < K}m̃λi=1 or sparsity promoting penalties (e.g.,
m̃λ∑
i=1
‖Ai‖1) should have been included

into the object function (2.12). This would have resulted in a much more computationally intensive

algorithm.

2.4 Alternate optimization

Once D̄, Ω̄ and H have been learned from the observed data, (2.12) reduces to a standard constrained

quadratic optimization problem w.r.t. U and A. However, this problem is difficult to solve due to its
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large dimension and to the fact that the operators H(·)BD and P(·) cannot be easily diagonalized.

To cope with this difficulty, we propose an optimization technique that alternates optimization w.r.t.

U and A, which is a simple version of a BCD algorithm.

The optimization w.r.t. U conditional on A (or equivalent on Ū) can be achieved efficiently with

the ADMM [BPC+11] whose convergence has been proved in the convex case. The optimization

w.r.t. A with the support constraint Ai,\Ω̄i
= 0 (i = 1, 2, . . . , m̃λ) conditional on U is a LS regression

problem for the non-zero elements of A, which can be solved easily. The resulting scheme including

learning D̄, Ω̄ and H is detailed in Algorithm 6. The alternating ADMM and LS steps are detailed

in what follows.

Note that the objective function is convex w.r.t U and A separately. In practice, a very simple

way to ensure convergence is to add the quadratic terms µa‖A‖2F , with a very small constant µa. In

this case, the solution of Algorithm 6 is unique and the ADMM algorithm converges linearly [LT92].

In practice, we have noticed that even when µa is zero, the solution of Algorithm 6 always converges

to a unique point.

2.4.1 ADMM Step

The function to be minimized w.r.t. U conditionally on A (or Ū) is

1
2
∥∥Λ− 1

2
H (YH −HUBS)

∥∥2
F

+ 1
2
∥∥Λ− 1

2
M (YM −RHU)

∥∥2
F

+ λ
2
∥∥U− Ū

∥∥2
F
. (2.13)

By introducing the splittings V1 = UB, V2 = U and V3 = U and the respective scaled Lagrange

multipliers G1,G2 and G3, the augmented Lagrangian associated with the optimization of U can be

written as

L(U,V1,V2,V3,G1,G2,G3) =
1
2
∥∥Λ− 1

2
H (YH −HV1S)

∥∥2
F

+ µ

2
∥∥UB−V1 −G1

∥∥2
F

+
1
2
∥∥Λ− 1

2
M (YM −RHV2)

∥∥2
F

+ µ

2
∥∥U−V2 −G2

∥∥2
F

+
1
2
∥∥Ū−V3

∥∥2
F

+ µ

2
∥∥U−V3 −G3

∥∥2
F
.
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Algorithm 6: Fusion of HS and MS based on a sparse representation
Input: YH, YM, SNRH, SNRM, m̃λ, R, B, S, K
/* Propose a rough estimation Ũ of U */

1 Compute Ũ , µ̂U|YM following the method in [HEW04] ;
2 for i = 1 to m̃λ do

/* Online dictionary learning */

3 D̄i ← ODL(Ũi);
/* Sparse coding */

4 Āi ← OMP(D̄i, Ũi,K);
/* Identify the supports */

5 Set Ω̄i =
{

(j, k)|Āi(j, k) 6= 0
}
;

6 end
/* Identify the hyperspectral subspace */

7 Ĥ← PCA(YH, m̃λ);
/* Start alternate optimization */

8 for t = 1, 2, . . . to stopping rule do
/* Optimize w.r.t. U using SALSA (see Algorithm 7) */

9 Û(t) ∈ {U|L(U, Â(t−1)) ≤ L(Û(t−1), Â(t−1))};
/* Optimize w.r.t. A (LS regression) */

10 Â(t) ∈ {A|L(Û(t),A) ≤ L(Û(t), Â(t−1))};
11 end
12 Set X̂ = ĤÛ;

Output: X̂ (high resolution HS image)

The updates of U,V1,V2,V3,G1,G2 and G3 are obtained with the SALSA algorithm [ABDF10,

AJF11], which is an instance of the ADMM algorithm with guaranteed convergence. The SALSA

scheme is summarized in Algorithm 7. Note that the optimization w.r.t. to U (step 5) can be

efficiently solved in the Fourier domain.



60 Chapter 2 - Bayesian fusion based on a sparse representation

Algorithm 7: SALSA sub-iterations
Input: Û(t), D̄, Â(t), YH, YM, SNRH, SNRM, H, R, B, S, λ and µ (SALSA parameter)

1 Set Ū =
[
P
(
D̄1Â(t)

1

)
, . . . ,P

(
D̄m̃λ

Â(t)
m̃λ

)]
;

2 Set δ ∈ {0, 1}n such that δ(i) =

 1 if pixel i is sampled,

0 otherwise;

3 Initialization: V(0)
1 ,V(0)

2 ,V(0)
3 , G(0)

1 , G(0)
2 ,G(0)

3 ;
4 for k = 0 to nit do

/* Optimize w.r.t U */

5 Û(t,k+1) ←
[
(V(k)

1 + G(k)
1 )BT + (V(k)

2 + G(k)
2 ) + (V(k)

3 + G(k)
3 )

] (
BBT + 2I

)−1
;

/* Optimize V1 (according to down-sampling) */

6 ν1 ← (Û(t,k+1)B−G(k)
1 );

7 V(k+1)
1 (:, δ)←

(
HTΛ−1

H H + µI
)−1

(HTΛ−1
H YH + ν1(:, δ));

8 V(k+1)
1 (:, 1− δ)← ν1(:, 1− δ) ;

/* Optimize w.r.t V2 */

9 ν2 ← (Û(t,k+1) −G(k)
2 );

10 V(k+1)
2 ←

(
HTRTΛ−1

M RH + µI
)−1

(HTRTΛ−1
M YM + µν2);

/* Optimize w.r.t V3 */

11 ν3 ← (Û(t,k+1) −G(k)
3 );

12 V(k+1)
3 ← (λ+ µ)−1

(
λŪ + µν3

)
;

/* Update Lagrange multipliers */

13 G(k+1)
1 ← (−ν1 + V(k+1)

1 );
14 G(k+1)

2 ← (−ν2 + V(k+1)
2 );

15 G(k+1)
3 ← (−ν3 + V(k+1)

3 );
16 end
17 Set Û(t+1) = Û(t,nit);

Output: Û(t+1)
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2.4.2 Patchwise sparse coding

The optimization w.r.t. A conditional on U is

Âi = arg min
Ai

∥∥Ui − P(D̄iAi)
∥∥2
F
, s.t. Ai,\Ω̄i

= 0 (2.14)

where i = 1, . . . , m̃λ. Since the operator P(·) is a linear mapping from patches to images and

P [P∗ (X)] = X, the problem (2.14) can be rewritten as

Âi = arg min
Ai

∥∥P (P∗(Ui)− D̄iAi

) ∥∥2
F
, s.t. Ai,\Ω̄i

= 0. (2.15)

The solution of (2.15) can be approximated by solving

Âi = arg min
Ai

∥∥P∗(Ui)− D̄iAi

∥∥2
F
, s.t. Ai,\Ω̄i

= 0. (2.16)

Note that if the patches decomposed from images are not overlapping, which means P∗ [P (X)] = X,

the problems (2.15) and (2.16) are equivalent. More specifically, the optimization (2.16) is the result

of regularizing the decomposed patches while the optimization (2.15) is the result of regularizing the

images. In this work, using the sub-optimal solution instead of the optimal solution does not affect

the convergence of the alternating optimization. Tackling the support constraint consists of only

updating the non-zero elements of each column of Ai. In what follows, the jth vectorized column of

P∗(Ui) is denoted as pi,j , the vector composed of the K non-zero elements of the jth column of Ai

is denoted as aΩ̄j
i
, and the corresponding column of D̄i is denoted as D̄Ω̄j

i
. With these notations,

the m̃λ constrained problems in (2.16) reduce to m̃λ × npat unconstrained sub-problems

âΩ̄j
i

= arg min
a

Ω̄j
i

∥∥pi,j − D̄Ω̄j
i
aΩ̄j

i

∥∥2

F
(2.17)

whose solutions âΩ̄j
i

= (D̄T
Ω̄j
i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

pi,j (for i = 1, . . . , m̃λ, j = 1, . . . , npat) can be explicitly com-

puted in parallel. The corresponding patch estimate is p̂i,j , Ti,jpi,j , with Ti,j = D̄Ω̄j
i
(D̄T

Ω̄j
i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

.

These patches are used to build Ū (i.e., equivalently, P
(
D̄iAi

)
) required in the optimization w.r.t.

U (see section 2.4.1). Note that Ti,j is a projection operator, and hence is symmetric (TT
i,j = Ti,j)

and idempotent (T2
i,j = Ti,j). Note also that Ti,j needs to be calculated only once, given the learned

dictionaries and associated supports.
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2.4.3 Complexity analysis

The SALSA algorithm has a complexity of the order O (nitm̃λn log (m̃λn)) [AJF11], where nit is

the number of SALSA iterations. The computational complexity of the patchwise sparse coding is

O (Knpnpatm̃λ). Conducting the fusion in a subspace of dimension m̃λ instead of working with the

initial space of dimension mλ significantly decreases the complexity of the SALSA and sparse coding

steps.

2.5 Simulation results on synthetic data

This section studies the performance of the proposed sparse representation-based fusion algorithm.

The reference image considered here as the high spectral and high spectral image is a 128×128×93 HS

image with spatial resolution of 1.3m acquired by the ROSIS optical sensor over the urban area of the

University of Pavia, Italy. This image was initially composed of 115 bands that have been reduced to

93 bands after removing the water vapor absorption bands (with spectral range from 430 to 860nm).

It has received a lot of attention in the remote sensing literature [PBB+09, TFCB10, LBDP13]. A

composite color image, formed by selecting the red, green and blue bands of the reference image is

shown in the right of Fig. 2.2.

Figure 2.2: ROSIS dataset: (Left) HS Image. (Middle) MS Image. (Right) Reference image.

2.5.1 Simulation scenario

We propose to reconstruct the reference HS image from two lower resolved images. A high-spectral

low-spatial resolution HS image has been constructed by applying a 5× 5 Gaussian spatial filter on
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each band of the reference image and down-sampling every 4 pixels in both horizontal and vertical

directions. In a second step, we have generated a 4-band MS image by filtering the reference image

with the IKONOS-like reflectance spectral responses depicted in Fig. 2.3. The HS and MS images

are both contaminated by zero-mean additive Gaussian noises. Our simulations have been conducted

with SNR1,· = 35dB for the first 43 bands and SNR1,· = 30dB for the remaining 50 bands of the

HS image. For the MS image, SNR2,· = 30dB for all bands. The noise-contaminated HS and MS

images are depicted in the left and middle of Fig. 2.2 (the HS image has been interpolated for better

visualization).

20 40 60 80
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R

Figure 2.3: IKONOS-like spectral responses.

2.5.2 Learning the subspace, the dictionaries and the code supports

Subspace

To learn the transform matrix H, we use the PCA as in Section 2.2.2. The empirical correlation

matrix Υ = E
[
xix

T
i

]
of the HS pixel vectors is diagonalized leading to

WTΥW = Γ (2.18)

where W is an mλ ×mλ unitary matrix (WT = W−1) and Γ is a diagonal matrix whose diagonal

elements are the ordered eigenvalues of Υ denoted as d1 ≥ d2 ≥ ... ≥ dmλ . The top m̃λ components

are selected and the matrix H is then constructed as the eigenvectors associated with the m̃λ largest

eigenvalues of Υ. In practice, the selection of the number of principal components m̃λ depends on

how many materials (or endmembers) the target image contains. If the number of truncated principal
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components is smaller than the dimension of the subspace spanned by the target image vectors, the

projection will lead to a loss of information. On the contrary, if the number of principal components

is larger than the real dimension, the over-fitting problem may arise leading to a degradation of the

fusion performance. As an illustration, the eigenvalues of Υ for the Pavia image are displayed in

Fig. 2.4. For this example, the m̃λ = 5 eigenvectors contain 99.9% of the information and have been

chosen to build the subspace of interest.
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Figure 2.4: Eigenvalues of Υ for the Pavia HS image.

Dictionaries

As explained before, the target high resolution image is assumed to live in a lower dimensional

subspace. Firstly, a rough estimation of the projected image is obtained with the method proposed

in [HEW04]. In a second step, m̃λ = 5 dictionaries are learned from the rough estimation of the

projected image using the ODL method. As nat � np, the dictionary is over-complete. There is

no unique rule to select the dictionary size np and the number of atoms nat. However, two limiting

cases can be identified

• The patch reduces to a single pixel, which means np = 1. In this case, the sparsity is not

necessary to be introduced since only one 1D dictionary atom (which is a constant) is enough

to represent any target patch.

• The patch is as large as the whole image, which means only one atom is needed to represent

the image. In this case, the atom is too “specialized” to describe any other image.
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More generally, the smaller the patches, the more objects the atoms can approximate. However,

too small patches are not efficient to properly capture the textures, edges, etc. With larger patch

size, a larger number of atoms are required to guarantee the over-completeness (which requires larger

computation cost). In general, the size of patches is selected empirically. For the ODL algorithm

used in this study, this size has been fixed to np = 6 × 6 and the number of atoms is nat = 256.

The learned dictionaries for the five bands of Ũ are displayed in the left column of Fig. 2.5. This

figure shows that the spatial properties of the target image have been captured by the atoms of the

dictionaries.

Code supports

Based on the dictionaries learned following the strategy presented in Section 2.5.2, the codes are

re-estimated by solving (2.8) with the OMP algorithm. Note that the target sparsity K represents

the maximum number of atoms used to represent one patch, which also determines the number

of non-zeros elements of A estimated jointly with the projected image U. If K is too large, the

optimization w.r.t. U and A leads to over-fitting, which means there are too many parameters to

estimate while the sample size is too small. The training supports for the five bands are displayed

in the right column of Fig. 2.5. The number of rows is 256, which represents the number of atoms

in each dictionary D̄i (i = 1, . . . , m̃λ). The white dots in the jth column indicate which atoms are

used for reconstructing the jth patch (j = 1, . . . , npat). The sparsity is clearly observed in this figure.

Note that some atoms are frequently used whereas some others are not. The most popular atoms

represent spatial details that are quite common in images. The other atoms represent details that

are characteristics of specific patches.

2.5.3 Comparison with other fusion methods

This section compares the proposed fusion method with three state-of-the-art fusion algorithms for

MS and HS images [HEW04, ZDBS09, YYI12] as well as the one proposed in Chapter 1. The

parameters used for the proposed fusion algorithm have been specified as follows
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Figure 2.5: Learned dictionaries (left) and corresponding supports (right).
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• The regularization parameter used in the SALSA method is µ = 0.05
‖NH‖F . The selection of this

parameter µ is still an open issue even if there are some strategies to tune it to accelerate

convergence [AJF11]. According to the convergence theory [EB92], for any µ > 0, if the

minimization of (2.13) has a solution, say U(t,?), then the sequence
{
U(t,k)

}∞
k=1

converges

to U(t,?). If the minimization of (2.13) has no solution, then at least one of the sequences{
U(t,k)

}∞
k=1

or
{
G(t,k)

}∞
k=1

diverges. Simulations have shown that the choice of µ does not

affect significantly the fusion performance as long as µ is positive.

• The regularization coefficient is λ = 25. The choice of this parameter will be discussed in

Section 2.5.4.

All the algorithms have been implemented using MATLAB R2013A on a computer with Intel(R)

Core(TM) i7-2600 CPU@3.40GHz and 8GB RAM. The fusion results obtained with the different

algorithms are depicted in Fig. 2.6. Visually, the proposed method performs competitively with

other state-of-the-art methods. To better illustrate the difference of the fusion results, the same

image quality measures defined in Section 1.2.3 have been calculated, which are reported in Table 2.1

showing the RMSE, UIQI, SAM, ERGAS and DD for all methods. It can be seen that the proposed

method always provides the best results.

Table 2.1: Performance of different MS + HS fusion methods (Pavia dataset): RMSE (in 10−2),
UIQI, SAM (in degree), ERGAS, DD (in 10−3) and Time (in second).

Methods RMSE UIQI SAM ERGAS DD Time

MAP [HEW04] 1.148 0.9875 1.962 1.029 8.666 3

Wavelet MAP [ZDBS09] 1.099 0.9885 1.849 0.994 8.349 75

CNMF [YYI12] 1.119 0.9857 2.039 1.089 9.007 14

HMC (Chapter 1) 1.011 0.9903 1.653 0.911 7.598 6003

Rough Ũ 1.136 0.9878 1.939 1.019 8.586 \

Proposed 0.947 0.9913 1.492 0.850 7.010 282
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Figure 2.6: Pavia dataset: (Top 1) Reference image. (Top 2) HS image. (Top 3) MS image. (Middle
1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) CNMF fusion [YYI12]. (Middle
4) MCMC (Chapter 1). (Middle 5) Proposed method. (Bottom 1-5): The Corresponding RMSE
maps.

2.5.4 Selection of the regularization parameter λ

To select an appropriate value of λ, the performance of the proposed algorithm has been evaluated as

a function of λ. The results are displayed in Fig. 2.7 showing that there is no optimal value of λ for

all the quality measures. In the simulation of Section 2.5.3, we have chosen λ = 25 which provides

the best fusion results in terms of RMSE. It is noteworthy that in a wide range of λ, the proposed

method always outperforms the other four methods.
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Figure 2.7: Performance of the proposed fusion algorithm versus λ: (Top left) RMSE. (Top right)
UIQI. (Bottom left) SAM. (Bottom right) DD.

2.5.5 Test with other datasets

This section includes the results of other experiments to illustrate and qualify the performance of the

proposed fusion algorithm based on DL. These results are to highlight the robustness of the proposed

method w.r.t. the types of images that are processed.

Fusion of PAVIA data and MS data (whole version)

The fusion results, including qualitative and quantitative ones, obtained with the whole PAVIA

dataset are also given in Fig. 2.8 and Table 2.2. They are consistent with the results in Section 2.5.3.
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Figure 2.8: Whole Pavia dataset: (Top 1) Reference image. (Top 2) HS image. (Top 3) MS image.
(Middle 1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) CNMF fusion [YYI12].
(Bottom 1) MCMC (Chapter 1). (Bottom 2) Rough estimation Ũ. (Bottom 3) Proposed method.
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Table 2.2: Performance of different MS + HS fusion methods (Whole Pavia dataset): RMSE (in
10−2), UIQI, SAM (in degree), ERGAS, DD (in 10−3) and Time (in second).

Methods RMSE UIQI SAM ERGAS DD Time

MAP [HEW04] 1.111 0.9879 1.921 1.012 8.359 24

Wavelet MAP [ZDBS09] 1.037 0.9895 1.717 0.942 7.719 624

CNMF [YYI12] 1.174 0.9864 1.903 1.061 8.457 102

HMC (Chapter 1) 1.010 0.9899 1.668 0.928 7.513 27412

Rough Ũ 1.103 0.9881 1.904 1.005 8.301 \

Proposed 0.944 0.9911 1.491 0.864 6.887 641

Fusion of AVIRIS data and MS data

The proposed fusion method has also been tested with an AVIRIS dataset. The reference image is

a 128 × 128 × 176 hyperspectral image acquired over Moffett field, CA, in 1994 by the JPL/NASA

AVIRIS [GES+98]. The blurring kernel B, down-sampling operator S and SNRs for the two images

are the same as in Section 2.5.2. The reference image is filtered using the LANDSAT-like spectral

responses depicted in Fig. 2.9, to obtain a 4-band MS image. For the dictionaries and supports,

the number and size of atoms and the sparsity of the code are the same as in Section 2.5.2. The

proposed fusion method has been applied to the observed HS and MS images with a subspace of

dimension m̃λ = 10. The regularization parameter has been selected by cross-validation to get the

best performance in terms of RMSE. The images (reference, MS and MS) and the fusion results

obtained with the different methods are shown in Fig. 2.10. More quantitative results are reported

in Table 2.3. These results are in good agreement with those obtained with the previous image,

proving that the proposed sparse representation based fusion algorithms improves the fusion quality.
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Figure 2.9: LANDSAT-like spectral responses (4 bands in MS image).

Figure 2.10: Moffett dataset (HS+MS): (Top 1) Reference image. (Top 2) HS image. (Top 3) MS
image. (Middle 1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) CNMF fusion
[YYI12]. (Bottom 1) MCMC (Chapter 1). (Bottom 2) Rough estimation Ũ. (Bottom 3) Proposed
method.
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Table 2.3: Performance of different MS + HS fusion methods (Moffett field): RMSE (in 10−2), UIQI,
SAM (in degree), ERGAS, DD (in 10−2) and Time (in second).

Methods RMSE UIQI SAM ERGAS DD Time

MAP [HEW04] 2.583 0.9580 4.586 3.106 1.814 3

Wavelet MAP [ZDBS09] 2.150 0.9695 3.815 2.584 1.509 68

CNMF [YYI12] 2.218 0.9669 3.885 2.663 1.529 17

HMC (Chapter 1) 1.813 0.9772 3.201 2.221 1.239 12708

Rough Ũ 2.585 0.9579 4.575 3.107 1.814 \

Proposed 1.745 0.9790 3.182 2.117 1.222 280

Pansharpening of AVIRIS data

The only difference with the Section 2.5.5 is that the MS image is replaced with a PAN image

obtained by averaging all the bands of the reference image (contaminated by Gaussian noise with

SNR = 30dB). The qualitative results are displayed in Fig. 2.11. The quantitative results are given

in Table 2.4 and are again in favor of the proposed fusion method.

Table 2.4: Performance of different Pansharpening (HS + PAN) methods (Moffett field): RMSE (in
10−2), UIQI, SAM (in degree), DD (in 10−2) and Time (in second).

Methods RMSE UIQI SAM ERGAS DD Time

MAP [HEW04] 1.857 0.9690 4.162 2.380 1.356 2

Wavelet MAP [ZDBS09] 1.848 0.9697 4.191 2.354 1.360 55

CNMF [YYI12] 1.964 0.9669 4.569 2.467 1.450 5

HMC (Chapter 1) 1.748 0.9730 3.996 2.234 1.288 7828

Rough Ũ 1.853 0.9691 4.158 2.375 1.355 \

Proposed 1.745 0.9731 3.948 2.231 1.281 252



74 Chapter 2 - Bayesian fusion based on a sparse representation

Figure 2.11: Moffett dataset (HS+PAN): (Top 1) Reference image. (Top 2) HS image. (Top 3) PAN
image. (Middle 1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) CNMF fusion
[YYI12]. (Bottom 1) HMC (Chapter 1). (Bottom 2) Rough estimation Ũ. (Bottom 3) Proposed
method.
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2.6 Conclusions

In this chapter, we proposed a novel method for hyperspectral and multispectral image fusion based

on a sparse representation. The sparse representation ensured that the target image was well rep-

resented by atoms of dictionaries a priori learned from the observations. Identifying the supports

jointly with the dictionaries circumvented the difficulty inherent to sparse coding. An alternate op-

timization algorithm, consisting of an alternating direction method of multipliers and a least square

regression, was designed to minimize the target function. Compared with other state-of-the-art fu-

sion methods, the proposed fusion method offered smaller spatial error and smaller spectral distortion

with a reasonable computation complexity. This improvement was attributed to the specific sparse

prior designed to regularize the resulting inverse problem. Future works include the estimation the

regularization parameter λ within the fusion scheme. Updating the dictionary jointly with the target

image would also deserve some attention.
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Chapter 3

Fast fusion based on solving a
Sylvester equation

Part of this chapter has been adapted from the journal paper [WDT15d] (published) and the
conference paper [WDT15e] (submitted).

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.3 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Fast fusion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Sylvester equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2 Existence of a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.3 A classical algorithm for the Sylvester matrix equation . . . . . . . . . . . . . 82
3.3.4 Proposed closed-form solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.5 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Generalization to Bayesian estimators . . . . . . . . . . . . . . . . . . . . . 86
3.4.1 Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.2 Non-Gaussian prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.3 Hierarchical Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.1 Fusion of HS and MS images . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Hyperspectral Pansharpening . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

77



78 Chapter 3 - Fast fusion based on solving a Sylvester equation

3.1 Introduction

3.1.1 Background

Following the linear forward model introduced in the first two chapters, the linear degradations

applied to the observed images w.r.t. the target high-spatial and high-spectral image consist of

spatial and spectral transformations. Thus, the multi-band image fusion problem can be interpreted

as restoring a three dimensional data-cube from two degraded data-cubes.

3.1.2 Problem statement

In this work, we continue to use the well-admitted model

YM = RX + NM

YH = XBS + NH.

(3.1)

Remind that the noise matrices are assumed to be distributed according to the following matrix

normal distributions
NM ∼MNmλ,m(0mλ,m,ΛM, Im)

NH ∼MN nλ,n(0nλ,n,ΛH, In).

In this work, no particular structure is assumed for the row covariance matrices ΛM and ΛH except

that they are both symmetric positive definite, which allows for considering spectrally colored noises.

Conversely, the column covariance matrices are assumed to be the identity matrix to reflect the fact

that the noise is pixel-independent. In practice, ΛM and ΛH depend on the sensor characteristics

and can be known or learnt using cross-calibration. To simplify the problem, ΛM and ΛH are often

assumed to be diagonal matrices, where the ith diagonal element is the noise variance in the ith

band. Thus, the number of variables in ΛM is decreased from nλ(nλ+1)
2 to nλ. Similar results hold for

ΛH. Furthermore, if we want to ignore the noise terms NM and NH, which means the noises of YM

and YH are both trivial for fusion, we can simply set ΛM and ΛH to identity matrices as in [LAJ+].

To summarize, the problem of fusing high-spectral and high-spatial resolution images can be

formulated as estimating the unknown matrix X from (3.1). There are two main statistical estimation
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methods that can be used to solve this problem. These methods are based on maximum likelihood

(ML) or on Bayesian inference. ML estimation is purely data-driven while Bayesian estimation

relies on prior information, which can be regarded as a regularization (or a penalization) for the

fusion problem. Various priors have been already advocated to regularize the multi-band image

fusion problem, such as Gaussian priors [WDT15a, WDT15c], sparse representations [WBDDT15] or

total variation (TV) [SBDAC15] priors. The choice of the prior usually depends on the information

resulting from previous experiments or from a subjective view of constraints affecting the unknown

model parameters [Rob07, GCS+13].

Computing the ML or the Bayesian estimators (whatever the form chosen for the prior) is a

challenging task, mainly due to the large size of X and to the presence of the downsampling operator

S, which prevents any direct use of the Fourier transform to diagonalize the blurring operator B.

To overcome this difficulty, several computational strategies have been designed to approximate the

estimators. Based on a Gaussian prior modeling, a MCMC algorithm has been was proposed in

Chapter 1 to generate a collection of samples asymptotically distributed according to the posterior

distribution of X. The Bayesian estimators of X can then be approximated using these samples.

Despite this formal appeal, MCMC-based methods have the major drawback of being computationally

expensive, which prevents their effective use when processing images of large size. Relying on exactly

the same prior model, the strategy developed at the end of Chapter 1 exploited an ADMM embedded

in a BCD to compute the MAP estimator of X. This optimization strategy allows the numerical

complexity to be greatly decreased when compared to its MCMC counterpart. A prior built from a

sparse representation of the target image was introduced in Chapter 2 to solve the fusion problem

with the SALSA [AJF11] (which is an instance of ADMM).

In this chapter, contrary to the algorithms described above, a much more efficient method is pro-

posed to solve explicitly an underlying Sylvester equation (SE) associated with the fusion problem

derived from (3.1), leading to an algorithm referred to as Fast fUsion based on Sylvester Equation

(FUSE). This algorithm can be implemented per se to compute the ML estimator in a computation-

ally efficient manner. The proposed FUSE algorithm has also the great advantage of being easily

generalizable within a Bayesian framework when considering various priors as those considered in
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Chapter 1 and 2. The MAP estimators associated with a Gaussian prior similar to the one used in

Chapter 1 can be directly computed thanks to the proposed strategy. When handling more complex

priors such as those used in [SBDAC15] and Chapter 2, the FUSE solution can be conveniently

embedded within a conventional ADMM or a BCD algorithm.

3.1.3 Chapter organization

The remaining of this chapter is organized as follows. Section 3.2 studies the optimization problem

to be addressed in absence of any regularization, i.e., in an ML framework. The proposed fast

fusion method is presented in Section 3.3 and generalized to Bayesian estimators associated with

various priors in Section 3.4. Section 3.5 presents experimental results assessing the accuracy and

the numerical efficiency of the proposed fusion method. Conclusions are finally reported in Section

B.5.

3.2 Problem formulation

Using the statistical properties of the noise matrices NM and NH, YM and YH have matrix Gaussian

distributions, i.e.,

p (YM|X) =MN nλ,n(RX,ΛM, In)

p (YH|X) =MNmλ,m(XBS,ΛH, Im).
(3.2)

As the collected measurements YM and YH have been acquired by different (possibly heteroge-

neous) sensors, the noise matrices NM and NH are sensor-dependent and can be generally assumed

to be statistically independent. Therefore, YM and YH are independent conditionally upon the un-

observed scene X = [x1, · · · ,xn]. As a consequence, the joint likelihood function of the observed

data is

p (YM,YH|X) = p (YM|X) p (YH|X) . (3.3)

Since adjacent HS bands are known to be highly correlated, the HS vector xi usually lives in a

subspace whose dimension is much smaller than the number of bands mλ [CZAP98, BDN08], i.e.,
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X = HU where H is a full column rank matrix and U ∈ Rm̃λ×n is the projection of X onto the

subspace spanned by the columns of H ∈ Rmλ×m̃λ .

Defining Y = {YM,YH} as the set of the observed images, the negative logarithm of the likelihood

is

− log p (Y |U) = − log p (YM|U)− log p (YH|U) + C

= 1
2 tr

(
(YH −HUBS)T Λ−1

H (YH −HUBS)
)

+

1
2 tr

(
(YM −RHU)T Λ−1

M (YM −RHU)
)

+ C

where C is a constant. Thus, calculating the ML estimator of U from the observed images Y , i.e.,

maximizing the likelihood can be achieved by solving the following problem

arg min
U

L(U) (3.4)

where

L(U) = tr
(
(YH −HUBS)T Λ−1

H (YH −HUBS)
)

+

tr
(
(YM −RHU)T Λ−1

M (YM −RHU)
)
.

Note that it is also obvious to formulate the optimization problem (3.4) from the linear model

(3.1) directly in the least-squares (LS) sense [LH74]. However, specifying the distributions of the

noises NM and NH allows us to consider the case of colored noises (band-dependent) more easily by

introducing the covariance matrices ΛH and ΛM, leading to the weighted LS problem (3.4).

In this chapter, we prove that the minimization of (3.4) w.r.t. the target image U can be solved

analytically, without any iterative optimization scheme or Monte Carlo based method. The resulting

closed-form solution to the optimization problem is presented in Section 3.3. Furthermore, it is shown

in Section 3.4 that the proposed method can be easily generalized to Bayesian fusion methods with

appropriate prior distributions.
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3.3 Fast fusion scheme

3.3.1 Sylvester equation

Minimizing (3.4) w.r.t. U is equivalent to force the derivative of L(U) to be zero, i.e., dL(U)/dU = 0,

leading to the following matrix equation

HHΛ−1
H HUBS (BS)H +

(
(RH)HΛ−1

L RH
)

U = HHΛ−1
H YR (BS)H + (RH)HΛ−1

L YL. (3.5)

As mentioned in Section 3.1.2, the difficulty for solving (3.5) results from the high dimensionality of

U and the presence of the downsampling matrix S. In this work, we will show that Eq. (3.5) can be

solved analytically with some assumptions summarized below.

Assumption 1. The blurring matrix B is a block circulant matrix with circulant blocks.

The physical meaning of this assumption is that the matrix B stands for a convolution operator

by a space-invariant blurring kernel. This assumption has been currently used in the image processing

literature, e.g., [LB90, EF97, EHO01, SBDAC15]. Moreover, the blurring matrix B is assumed to

be known in this work. In practice, it can be learnt by cross-calibration [YMI13] or estimated from

the data directly [SBDAC15]. A consequence of this assumption is that B can be decomposed as

B = FDFH and BH = FD∗FH , where F ∈ Rn×n is the discrete Fourier transform (DFT) matrix

(FFH = FHF = In), D ∈ Rn×n is a diagonal matrix and ∗ represents the conjugate operator.

Assumption 2. The decimation matrix S corresponds to downsampling the original image and its
conjugate transpose SH interpolates the decimated image with zeros.

Again, this assumption has been widely admitted in various image processing applications, such

as super-resolution [EF97, PPK03] and fusion [HEW04, SBDAC15]. Moreover, a decimation matrix

satisfies the property SHS = Im and the matrix S , SSH ∈ Rn×n is symmetric and idempotent,

i.e., S = SH and SSH = S2 = S. For a practical implementation, multiplying an image by S can

be achieved by doing entry-wise multiplication with an n× n mask matrix with ones in the sampled

position and zeros elsewhere.
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After multiplying (3.5) on both sides by
(
HHΛ−1

H H
)−1

, we obtain1

C1U + UC2 = C3 (3.6)

where

C1 =
(
HHΛ−1

H H
)−1 (

(RH)HΛ−1
L RH

)
C2 = BSBH

C3 =
(
HHΛ−1

H H
)−1 (

HHΛ−1
H YR (BS)H + (RH)HΛ−1

L YL
)
.

Eq. (3.6) is a Sylvester matrix equation [BS72]. It is well known that an SE has a unique solution if

and only if an arbitrary sum of the eigenvalues of C1 and C2 is not equal to zero [BS72].

3.3.2 Existence of a solution

In this section, we study the eigenvalues of C1 and C2 to check if (3.6) has a unique solution. As

the matrix C2 = BSBH is positive semi-definite, its eigenvalues include positive values and zeros

[HJ12]. In order to study the eigenvalues of C1, Lemma 1 is introduced below.

Lemma 1. If the matrix A1 ∈ Rn×n is symmetric (resp. Hermitian) positive definite and the matrix
A2 ∈ Rn×n is symmetric (resp. Hermitian) positive semi-definite, the product A1A2 is diagonalizable
and all the eigenvalues of A1A2 are non-negative.

Proof. See Appendix C.1.

According to Lemma 1, since the matrix C1 is the product of a symmetric positive definite matrix(
HHΛ−1

H H
)−1

and a symmetric semi-definite matrix (RH)HΛ−1
L RH, it is diagonalizable and all its

eigenvalues are non-negative. As a consequence, the eigen-decomposition of C1 can be expressed as

C1 = QΛCQ−1, where ΛC = diag
(
λ1
C , · · · , λ

m̃λ
C

)
(diag

(
λ1
C , · · · , λ

m̃λ
C

)
is a diagonal matrix whose

elements are λ1
C , · · · , λ

m̃λ
C ) and λiC ≥ 0, ∀i. Therefore, as long as zero is not an eigenvalue of C1

(or equivalently C1 is invertible), any sum of eigenvalues of C1 and C2 is different from zero (more

accurately, this sum is > 0), leading to the existence of a unique solution of (3.6).
1The invertibility of the matrix HHΛ−1

H H is guaranteed since H has full column rank and ΛH is positive definite.



84 Chapter 3 - Fast fusion based on solving a Sylvester equation

However, the invertibility of C1 is not always guaranteed depending on the forms and dimensions

of H and R. For example, if nλ < m̃λ, meaning that the number of MS bands is smaller than

the subspace dimension, the matrix (RH)HΛ−1
M RH is rank deficient and thus there is not a unique

solution of (3.6). In cases where C1 is singular, a regularization or prior information is necessary to

be introduced to ensure (3.6) has a unique solution. In this section, we focus on the case when C1 is

non-singular. The generalization to Bayesian estimators based on specific priors already considered

in the literature will be elaborated in Section 3.4.

3.3.3 A classical algorithm for the Sylvester matrix equation

A classical algorithm for obtaining a solution of the SE is the Bartels-Stewart algorithm [BS72]. This

algorithm decomposes C1 and C2 into Schur forms using a QR algorithm and solves the resulting

triangular system via back-substitution. However, as the matrix C2 = BSBH is very large for our

application (n×n, where n is the number of image pixels), it is unfeasible to construct the matrix C2,

let alone use the QR algorithm to compute its Schur form (which has the computational cost O(n3)

arithmetical operations). The next section proposes an innovative strategy to obtain an analytical

expression of the SE (3.6) by exploiting the specific properties of the matrices C1 and C2 associated

with the fusion problem.

3.3.4 Proposed closed-form solution

Using the decomposition C1 = QΛCQ−1 and multiplying both sides of (3.6) by Q−1 leads to

ΛCQ−1U + Q−1UC2 = Q−1C3. (3.7)

Right multiplying (3.7) by FD on both sides and using the definitions of matrices C2 and B yields

ΛCQ−1UFD + Q−1UFD
(
FHSFD

)
= Q−1C3FD (3.8)

where D = (D∗) D is a real diagonal matrix. Note that UFD = UBF ∈ Rm̃λ×n can be interpreted

as the Fourier transform of the blurred target image, which is a complex matrix. Eq. (3.8) can be

regarded as an SE w.r.t. Q−1UFD, which has a simpler form compared to (3.6) as ΛC is a diagonal
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matrix. The next step in our analysis is to simplify the matrix FHSFD appearing on the left hand

side of (3.8). First, we introduce the following lemma.

Lemma 2. The following equality holds

FHSF = 1
d
Jd ⊗ Im (3.9)

where F and S are defined as in Section 3.3.1, Jd is the d× d matrix of ones and Im is the m×m
identity matrix.

Proof. See Appendix C.2.

This lemma shows that the spectral aliasing resulting from a downsampling operator applied to

a multi-band image in the spatial domain can be easily formulated as a Kronecker product in the

frequency domain.

Then, let introduce the following md×md matrix

P =



Im 0 · · · 0

−Im Im · · · 0
...

... . . . ...

−Im 0 · · · Im


︸ ︷︷ ︸

d

(3.10)

whose inverse2 can be easily computed

P−1 =



Im 0 · · · 0

Im Im · · · 0
...

... . . . ...

Im 0 · · · Im


.

2Note that left multiplying a matrix by P corresponds to subtracting the first row blocks from all the other row
blocks. Conversely, right multiplying by the matrix P−1 means replacing the first (block) column by the sum of all the
other (block) columns.
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Right multiplying both sides of (3.8) by P−1 leads to

ΛCŪ + ŪM = C̄3 (3.11)

where Ū = Q−1UFDP−1, M = P
(
FHSFD

)
P−1 and C̄3 = Q−1C3FDP−1. Eq. (3.11) is a

Sylvester matrix equation w.r.t. Ū whose solution is significantly easier than for (3.7), thanks to the

simple structure of the matrix M outlined in the following lemma.

Lemma 3. The following equality holds

M = 1
d



d∑
i=1

Di D2 · · · Dd

0 0 · · · 0
...

... . . . ...

0 0 · · · 0


(3.12)

where the matrix D has been partitioned as follows

D =



D1 0 · · · 0

0 D2 · · · 0
...

... . . . ...

0 0 · · · Dd


with Di m×m real diagonal matrices.

Proof. See Appendix C.3.

This lemma, which exploits the equality (3.9) and the resulting specific structure of the matrix

FHSFD, allows the matrix M to be written block-by-block, with nonzero blocks only located in its

first (block) row (see (3.12)). Finally, using this simple form of M, the solution Ū of the SE (3.11)

can be computed block-by-block as stated in the following theorem.

Theorem 1. Let (C̄3)l,j denotes the jth block of the lth band of C̄3 for any l = 1, · · · , m̃λ. Then,
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the solution Ū of the SE (3.11) can be decomposed as

Ū =



ū1,1 ū1,2 · · · ū1,d

ū2,1 ū2,2 · · · ū2,d
...

... . . . ...

ūm̃λ,1 ūm̃λ,2 · · · ūm̃λ,d


(3.13)

with

ūl,j =


(C̄3)l,j

(
1
d

d∑
i=1

Di + λlCIm
)−1

, j = 1,

1
λlC

[
(C̄3)l,j − 1

d ūl,1Dj

]
, j = 2, · · · , d.

(3.14)

Proof. See Appendix C.4.

Note that ul,j ∈ R1×m denotes the jth block of the lth band. Note also that the matrix 1
d

d∑
i=1

Di+

λlCIn appearing in the expression of ūl,1 is an n × n real diagonal matrix whose inversion is trivial.

The final estimator of X is obtained as follows3

X̂ = HQŪPD−1FH . (3.15)

Algorithm 8 summarizes the derived FUSE steps required to calculate the estimated image X̂.

3.3.5 Complexity analysis

The most computationally expensive part of the proposed algorithm is the computation of matrices

D and C̄3 because of the FFT and iFFT operations. Using the notation C4 = Q−1
(
HHΛ−1

H H
)−1

,

the matrix C̄3 can be rewritten

C̄3 = C4
(
HHΛ−1

H YR (BS)H + (RH)HΛ−1
L YL

)
BFP−1

= C4
(
HHΛ−1

H YRSHFD∗ + (RH)H Λ−1
L YLF

)
DP−1.

(3.16)

The most heavy step in computing (3.16) is the decomposition B = FDFH (or equivalently the

FFT of the blurring kernel), which has a complexity of order O(n logn). The calculations of
3It may happen that the diagonal matrix D does not have full rank (containing zeros in diagonal) or is ill-conditioned

(having very small numbers in diagonal), resulting from the property of blurring kernel. In this case, D−1 can be replaced
by (D + τIm)−1 for regularization purpose, where τ is a small penalty parameter [LB90].



88 Chapter 3 - Fast fusion based on solving a Sylvester equation

Algorithm 8: Fast fUsion of multi-band images based on solving a Sylvester Equation
(FUSE)

Input: YM, YH, ΛM, ΛH, R, B, S, H
/* Circulant matrix decomposition: B = FDFH */

1 D← Dec (B);
2 D = D∗D;

/* Calculate C1 */

3 C1 ←
(
HHΛ−1

H H
)−1 (

(RH)HΛ−1
L RH

)
;

/* Eigen-decomposition of C1: C1 = QΛCQ−1 */

4 (Q,ΛC)← EigDec (C1);
/* Calculate C̄3 */

5 C̄3 ← Q−1
(
HHΛ−1

H H
)−1

(HHΛ−1
H YR (BS)H +(RH)HΛ−1

L YL)BFP−1;

/* Calculate Ū block by block (d blocks) and band by band (m̃λ bands) */

6 for l = 1 to m̃λ do
/* Calculate the 1st block in lth band */

7 ūl,1 = (C̄3)l,1
(

1
d

d∑
i=1

Di + λlCIn
)−1

;

/* Calculate other blocks in lth band */

8 for j = 2 to d do
9 ūl,j = 1

λlC

(
(C̄3)l,j − 1

d ūl,1Dj

)
;

10 end
11 end
12 Set X = HQŪPD−1FH ;

Output: X

HHΛ−1
H YRSHFD∗ and (RH)H Λ−1

L YLF require one FFT operation each. All the other compu-

tations are made in the frequency domain. Note that the multiplication by DP−1 has a cost of O(n)

operations as D is diagonal, and P−1 reduces to block shifting and addition. The left multiplica-

tion with Q−1
(
HHΛ−1

H H
)−1

is of order O(m̃2
λn). Thus, the calculation of C3BFP−1 has a total

complexity of order O(n ·max
{
logn, m̃2

λ

}
).
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3.4 Generalization to Bayesian estimators

As mentioned in Section 3.3.2, if the matrix (RH)HΛ−1
M RH is singular or ill-conditioned (e.g., when

the number of MS bands is smaller than the dimension of the subspace spanned by the pixel vectors,

i.e., nλ < m̃λ), a regularization or prior information p (U) has to be introduced to ensure the Sylvester

matrix equation (3.11) has a unique solution. The resulting estimator U can then be interpreted as

a Bayesian estimator. Combining the likelihood (4.5) and the prior p (U), the posterior distribution

of U can be written as
p (U|Y) ∝ p (Y |U) p (U)

∝ p (YM|U) p (YH|U) p (U)

where ∝ means “proportional to” and where we have used the independence between the observation

vectors YM and YH.

The mode of the posterior distribution p (U|Y) is the so-called MAP estimator, which can be

obtained by solving the following optimization problem

arg min
U

L(U) (3.17)

where
L(U) = 1

2 tr
(
(YH −HUBS)T Λ−1

H (YH −HUBS)
)

+

1
2 tr

(
(YM −RHU)T Λ−1

M (YM −RHU)
)
− log p(U).

(3.18)

Different Bayesian estimators corresponding to different choices of p(U) have been considered in the

literature. These estimators are first recalled in the next sections. We will then show that the explicit

solution of the SE derived in Section 3.3 can be used to compute the MAP estimator of U for these

prior distributions.

3.4.1 Gaussian prior

Gaussian priors, as considered in Chapter 1 and 2, have been used widely in image processing

[HBA97, EH04, WGK06], and can be interpreted as a Tikhonov regularization [TA77]. Assume that

a matrix normal distribution is assigned a priori to the projected target image U

p(U) =MN m̃λ,n
(µ,Σ, In) (3.19)
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where µ and Σ are the mean and covariance matrix of the matrix normal distribution. Note that the

covariance matrix Σ explores the correlations between HS band and controls the distance between

U and its mean µ. Forcing the derivative of L(U) in (3.17) to be zero leads to the following SE

C1U + UC2 = C3 (3.20)

where
C1 =

(
HHΛ−1

H H
)−1 (

(RH)HΛ−1
L RH + Σ−1

)
C2 = BSBH

C3 =
(
HHΛ−1

H H
)−1

(HHΛ−1
H YR (BS)H +

(RH)HΛ−1
L YL + Σ−1µ).

(3.21)

The matrix C1 is positive definite as long as the covariance matrix Σ−1 is positive definite. Algorithm

8 can thus be adapted to a matrix normal prior case by simply replacing C1 and C3 by their new

expressions defined in (3.21).

3.4.2 Non-Gaussian prior

When the projected image U is assigned a non-Gaussian prior, the objective function L(U) in (3.17)

can be split into a data term f(U) corresponding to the likelihood and a regularization term φ(U)

corresponding to the prior in a Bayesian framework as

L(U) = f(U) + φ(U) (3.22)

where
f(U) = 1

2 tr
(
(YH −HUBS)T Λ−1

H (YH −HUBS)
)

+1
2 tr

(
(YM −RHU)T Λ−1

M (YM −RHU)
)

and

φ(U) = − log p (U) .

The optimization of (3.22) w.r.t. U can be solved efficiently by using an ADMM that consists of two

steps: 1) solving a surrogate optimization problem associated with a Gaussian prior and 2) applying
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a proximity operator [CP11]. This strategy can be implemented in the image domain or in the

frequency domain. The resulting algorithms, referred to as FUSE-within-ADMM (FUSE-ADMM)

are described below. Note that the convergence of ADMM to a global optimal point is guaranteed

when φ(U) is convex [BPC+11]. If φ(U) is non-convex, the convergence of ADMM is still an open

problem [MWRF14, HLR14].

Solution in image domain

Eq. (3.22) can be rewritten as

L(U,V) = f(U) + φ(V) s.t. U = V.

The augmented Lagrangian associated with this problem is

Lµ(U,V,λ) = f(U) + φ(V) + λT (U−V) + µ

2 ‖U−V‖2F (3.23)

or equivalently

Lµ(U,V,W) = f(U) + φ(V) + µ

2 ‖U−V−W‖2F (3.24)

where W is the scaled dual variable. This optimization problem can be solved by an ADMM as

follows
(Uk+1,Vk+1) = arg min

U,V
f(U) + φ(V)+

µ
2‖U−V−Wk‖2F

Wk+1 = Wk − (Uk+1 −Vk+1).

The updates of the derived ADMM algorithm are

Uk+1 = arg min
U

f(U) + µ
2‖U−Vk −Wk‖2F

Vk+1 = proxφ,µ(Uk+1 −Wk)

Wk+1 = Wk − (Uk+1 −Vk+1).

(3.25)

• Update U: Instead of using any iterative update method, the optimization w.r.t. U can be

solved analytically by using Algorithm 8 as for the Gaussian prior investigated in Section 3.4.1.



92 Chapter 3 - Fast fusion based on solving a Sylvester equation

For this, we can set µ = Vk + Wk and Σ−1 = µIm̃λ in (3.21). However, the computational

complexity of updating U in each iteration is O(n logn) because of the FFT and iFFT steps

required for computing C̄3 and U from Ū.

• Update V: The update of V requires computing a proximity operator, which depends on the

form of φ(V). When the regularizer φ(V) is simple enough, the proximity operator can be

evaluated analytically. For example, if φ(V) ≡ ‖V‖1, then

proxφ,µ(Uk+1 −Wk) = soft
(

Uk+1 −Wk,
1
µ

)

where soft is the soft-thresholding function defined as

soft(g, τ) = sign(g) max(|g| − τ, 0).

More examples of proximity computations can be found in [CP11].

• Update W: The update of W is simply a matrix addition whose implementation has a small

computational cost.

Solution in frequency domain

Recalling that B = FDFH , a less computationally expensive solution is obtained by rewriting L(U)

in (3.22) as

L(U ,V) = f(U) + φ(V) s.t. U = V

where U = UF is the Fourier transform of U, V = VF is the Fourier transform of V, and

f(U) = 1
2 tr

(
(YH −HUDFHS)TΛ−1

H (YH −HUDFHS)
)

+1
2 tr

((
YM − LHUFH

)T
Λ−1

M

(
YM − LHUFH

))
and

φ(V) = − log p (V) .
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Thus, the ADMM updates, defined in the image domain by (3.25), can be rewritten in the frequency

domain as
Uk+1 = arg min

U
f(U) + µ

2‖U − V
k −Wk‖2F

Vk+1 = proxφ,µ(Uk+1 −Wk)

Wk+1 =Wk − (Uk+1 − Vk+1).

(3.26)

where W is the dual variable in frequency domain. At the (k + 1)th ADMM iteration, updating U

can be efficiently conducted thanks to an SE solver similar to Algorithm 8, where the matrix C̄3 is

defined by

C̄3 = Cs + Cc

(
Vk +Wk

)
DP−1 (3.27)

with
Cs = Q−1

(
HHΛ−1

H H
)−1

(HHΛ−1
H YRSHFDH

+ (RH)H Λ−1
L YLF)DP−1

Cc = Q−1
(
HHΛ−1

H H
)−1

Σ−1.

Note that the update of C̄3 does not require any FFT computation since Cs and Cc can be calculated

once and are not updated in the ADMM iterations.

3.4.3 Hierarchical Bayesian framework

When considering a hierarchical Bayesian framework, hyperparameters Φ are assigned a hyper prior,

denoted as p(Φ). Thus, the optimization w.r.t. U can be replaced by an optimization w.r.t. (U,Φ)

as follows
(U,Φ) = arg max

U,Φ
p (U,Φ|Y)

= arg max
U,Φ

p (YM|U) p (YH|U) p (U|Φ) p (Φ) .

A standard way of solving this problem is to optimize alternatively between U and Φ using the

following updates

Uk+1 = arg max
U

p (YM|U) p (YH|U) p
(
U|Φk

)
Φk+1 = arg max

Φ
p
(
Uk+1|Φ

)
p (Φ) .
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The update of Uk+1 can be solved using FUSE (Gaussian prior) or FUSE-ADMM (non-Gaussian pri-

ors) whereas the update of Φ depends on the form of the hyperprior p (Φ). The derived optimization

method is referred to as FUSE-ADMM-within-BCD (FUSE-ADMM-BCD) or FUSE-within-BCD

(FUSE-BCD).

It is interesting to note that the strategy of Section 3.4.2 proposed to handle the case of a non-

Gaussian prior can be interpreted as a special case of a hierarchical updating for Gaussian prior

where Φ = {µ,Σ}. Indeed, if we interpret V + d and 1
µIm̃λ in (3.24) as the mean µ and covariance

matrix Σ, the ADMM update (3.25) can be considered as the iterative updates of U and µ = V + d

with fixed Σ = 1
µIm̃λ .

3.5 Experimental results

This section applies the proposed fusion method to three kinds of priors that have been investigated in

Chapter 1, Chapter 2 and [SBDAC15] for the multi-band image fusion. Note that these three methods

require to solve a minimization problem similar to (3.17). All the algorithms have been implemented

using MATLAB R2013A on a computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and 8GB

RAM. The MATLAB codes and all the simulation results are available in the author’s homepage4.

3.5.1 Fusion of HS and MS images

The reference image considered here as the high-spatial and high-spectral image is a 512× 256× 93

HS image acquired over Pavia, Italy, by the ROSIS sensor. This image was initially composed of

115 bands that have been reduced to 93 bands after removing the water vapor absorption bands. A

composite color image of the scene of interest is shown in Fig. 3.1 (right).

4http://wei.perso.enseeiht.fr/

http://wei.perso.enseeiht.fr/
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Figure 3.1: Pavia dataset: (Left) HS image. (Middle) MS image. (Right) reference image.

Our objective is to reconstruct the high-spatial high-spectral image X from a low-spatial high-

spectral HS image YH and a high-spatial low-spectral MS image YM. First, YH has been generated

by applying a 5× 5 Gaussian filter and by down-sampling every dr = dc = 4 pixels in both vertical

and horizontal directions for each band of the reference image. Second, a 4-band MS image YM has

been obtained by filtering X with the LANDSAT-like reflectance spectral responses [Fle06]. The HS

and MS images are both contaminated by zero-mean additive Gaussian noises. Our simulations have

been conducted with SNRH,i = 35dB for the first 43 bands of the HS image and SNRH,i = 30dB for

the remaining 50 bands. For the MS image, SNRM,j = 30dB for all spectral bands. The observed HS

and MS images are shown in Fig. 3.1 (left and middle). Note that the HS image has been scaled for

better visualization (i.e., the HS image contains d = 16 times less pixels than the MS image) and that

the MS image has been displayed using an arbitrary color composition. The subspace transformation

matrix H has been defined as the PCA following the strategy of Chapter 1 and Chapter 2.

Example 1: HS+MS fusion with a naive Gaussian prior

We first consider the Bayesian fusion model described in Chapter 1. This method assumed a naive

Gaussian prior for the target image, leading to an `2-regularization of the fusion problem. The mean

of this Gaussian prior was fixed to an interpolated HS image. The covariance matrix of the Gaussian

prior can be fixed a priori (supervised fusion) or estimated jointly with the unknown image within a
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Table 3.1: Performance of HS+MS fusion methods: RSNR (in dB), UIQI, SAM (in degree), ERGAS,
DD (in 10−3) and time (in second).

Regularization Methods RSNR UIQI SAM ERGAS DD Time

supervised ADMM (Chap. 1) 29.321 0.9906 1.555 0.888 7.115 126.83

naive Gaussian FUSE 29.372 0.9908 1.551 0.879 7.092 0.38

unsupervised ADMM-BCD (Chap. 1) 29.084 0.9902 1.615 0.913 7.341 99.55

naive Gaussian FUSE-BCD 29.077 0.9902 1.623 0.913 7.368 1.09

sparse ADMM-BCD (Chap. 2) 29.582 0.9911 1.423 0.872 6.678 162.88

representation FUSE-BCD 29.688 0.9913 1.431 0.856 6.672 73.66

TV
ADMM [SBDAC15] 29.473 0.9912 1.503 0.861 6.922 134.21

FUSE-ADMM 29.631 0.9915 1.477 0.845 6.788 90.99

hierarchical Bayesian method (unsupervised fusion). This section compares the performance of the

ADMM-BCD algorithm in Chapter 1 with the one obtained by the proposed FUSE-based methods

detailed in Section 3.4.1 and 3.4.3 respectively. For the supervised case, the explicit solution of the

SE can be constructed directly following the Gaussian prior-based generalization in Section 3.4.1.

Conversely, for the unsupervised case, the generalized version denoted FUSE-BCD and described in

Section 3.4.3 is exploited, which requires embedding the closed-form solution into a BCD algorithm.

The estimated images obtained with the different algorithms are depicted in Fig. 3.2 and are visually

very similar. More quantitative results are reported in the first four lines of Table 3.1 and confirm the

similar performance of these methods in terms of the various fusion quality measures (RSNR, UIQI,

SAM, ERGAS and DD). However, the computational time of the proposed algorithm is reduced by

a factor larger than 200 (supervised) and 90 (unsupervised) due to the existence of a closed-form

solution for the Sylvester matrix equation.
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Example 2: HS+MS fusion with a sparse representation

This section investigates a Bayesian fusion model based on a Gaussian prior associated with a sparse

representation introduced in Chapter 2. The basic idea of this approach was to design a prior that

results from the sparse decomposition of the target image on a set of dictionaries learned empirically.

Some parameters needed to be adjusted by the operator (regularization parameter, dictionaries and

supports) whereas the other parameters (sparse codes) were jointly estimated with the target image.

In Chapter 2, the MAP estimator associated with this model was reached using an optimization

algorithm that consists of an ADMM step embedded in a BCD method (ADMM-BCD). Using the

strategy proposed in Section 3.4.3, this ADMM step can be avoid by exploiting the FUSE solution.

Thus, the performance of the ADMM-BCD algorithm in Chapter 2 is compared with the performance

of the FUSE-BCD scheme as described in Section 3.4.3. As shown in Fig. 3.2 and the 5th and 6th

lines of Table 3.1, the performance of both algorithms is quite similar. However, the proposed solution

exhibits a significant complexity reduction.

Example 3: HS+MS Fusion with TV regularization

The third experiment is based on a TV regularization (can be interpreted as a specific instance of a

non-Gaussian prior) studied in [SBDAC15]. The regularization parameter of this model needs to be

fixed by the user. The ADMM-based method investigated in [SBDAC15] requires to compute a TV-

based proximity operator (which increases the computational cost when compared to the previous

algorithms). To solve this optimization problem, the frequency domain SE solution derived in Section

3.4.2 can be embedded in an ADMM algorithm. The fusion results obtained with the ADMM method

of [SBDAC15] and the proposed FUSE-ADMM method are shown in the first two rows of Fig. 3.2,

which are quite similar visually. Note that the RMSE error maps displayed in the last two rows of

Fig. 3.2 are obtained by averaging over all the HS bands. The last two lines of Table 3.1 confirms

this similarity more quantitatively by using the quality measures introduced in Section 1.2.3. Note

that the computational time obtained with the proposed explicit fusion solution is reduced when

compared to the ADMM method. In order to complement this analysis, the convergence speeds of

the FUSE-ADMM algorithm and the ADMM method of [SBDAC15] are studied by analyzing the
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evolution of the objective function for the two fusion solutions. Fig. 3.3 shows that the FUSE-ADMM

algorithm converges faster at the starting phase and gives smoother convergence result.
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Figure 3.2: HS+MS fusion results: (Row 1 and 2) The state-of-the-art-methods and corresponding
proposed fast fusion methods (FUSE), respectively, with various regularizations: supervised naive
Gaussian prior (1st column), unsupervised naive Gaussian prior (2nd column), sparse representation
(3rd column) and TV (4th column). (Row 3 and 4) The corresponding RMSE maps.
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Figure 3.3: Convergence speeds of the ADMM [SBDAC15] and the proposed FUSE-ADMM with
TV-regularization.
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3.5.2 Hyperspectral Pansharpening

Figure 3.4: Observations and ground truth: (Left) scaled HS image. (Middle) PAN image. (Right)
Reference image.

When nλ = 1, the fusion of HS and MS images reduces to the HS pansharpening (HS+PAN) problem,

which is the extension of conventional pansharpening (MS+PAN) and has become an important and

popular application in the area of remote sensing [LAJ+]. In order to show that the proposed method

is also applicable to this problem, we consider the fusion of HS and PAN images using another HS

dataset.

Moffet dataset

The reference image, considered here as the high-spatial and high-spectral image, is an HS image

of size 396 × 184 × 176 acquired over Moffett field, CA, in 1994 by the AVIRIS. This image was

initially composed of 224 bands that have been reduced to 176 bands after removing the water vapor

absorption bands. The HS image has been generated by applying a 5 × 5 Gaussian filter on each

band of the reference image. Besides, a PAN image is obtained by successively averaging the adjacent

bands in visible bands (1 ∼ 41 bands) according to realistic spectral responses. In addition, the HS

and PAN images have been both contaminated by zero-mean additive Gaussian noises. The SNR of

the HS image is 35dB for the first 126 bands and 30dB for the last remaining bands. The reference,
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Table 3.2: Performance of the Pansharpening methods: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−2) and time (in second).

Regularization Methods RSNR UIQI SAM ERGAS DD Time

supervised ADMM (Chap. 1) 18.630 0.9800 4.952 3.564 1.306 94.36

naive Gaussian FUSE 18.695 0.9803 4.904 3.541 1.292 0.39

unsupervised ADMM-BCD (Chap. 1) 18.681 0.9802 4.901 3.548 1.296 207.94

naive Gaussian FUSE-BCD 18.680 0.9802 4.897 3.548 1.294 2.94

sparse ADMM-BCD (Chap. 2) 19.012 0.9815 4.716 3.410 1.241 261.38

representation FUSE-BCD 19.070 0.9817 4.730 3.387 1.233 66.34

TV
ADMM [SBDAC15] 18.531 0.9797 4.649 3.601 1.258 172.09

FUSE-ADMM 18.682 0.9804 4.572 3.541 1.230 156.75

HS and PAN images are displayed in 3.4.

As in Section 3.5.1, three kinds of priors are chosen to regularize this ill-posed inverse problem.

The ADMM based optimization and the SE based version are compared to solve the pansharpening

problem. The results are displayed in Fig. 3.5 whereas more quantitative results are reported in

Table 3.2. Again, the proposed FUSE-based method provides similar qualitative and quantitative

fusion results with a significant computational cost reduction. More results for HS pansharpening are

available in a recently published review paper, where the authors compare eleven fusion algorithms,

including the proposed FUSE, on three datasets [LAJ+]. For the sparse prior, the regularization

parameter is fixed to 1 by cross-validation.



3.5 - Experimental results 103

St
at
e-
of
-t
he

-a
rt

m
et
ho

ds
Fa

st
fu
sio

n
m
et
ho

d
Er

ro
r
of

St
at
e-
of
-t
he

-a
rt

m
et
ho

ds
Er

ro
r
of

FU
SE

Figure 3.5: Hyperspectral pansharpening results: (Row 1 and 2) The state-of-the-art-methods and
corresponding proposed fast fusion methods (FUSE), respectively, with various regularizations: su-
pervised naive Gaussian prior (1st column), unsupervised naive Gaussian prior (2nd column), sparse
representation (3rd column) and TV (4th column). (Row 3 and 4) The corresponding RMSE maps.
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Madonna dataset

In this section, we test the FUSE algorithm on another HS datasets. The reference image is selected

as a 512× 512× 160 HS image acquired in 2010 by the HySpex HS sensor over Villelongue, France

(00◦03’W and 42◦57’N) with L = 160 spectral bands ranging from about 408nm to 985nm, a spectral

resolution of 3.6nm and a spatial resolution of 0.5m. A composite color image of the scene of interest

is shown in Fig. 3.6 (bottom right). The HS image YR has been generated by applying a 5 × 5

Gaussian filter and by down-sampling every 4 pixels, similarly with the Moffet dataset. Second, a

PAN image YL has been obtained by averaging the first 81 bands of the HS image. The HS and

PAN images are both contaminated by additive centered Gaussian noises. The simulations have been

conducted with SNR = 30dB for both HS and PAN images. The observed HS and PAN images are

shown in the top left and right of Fig. 3.6. The supervised fusion with Gaussian prior has been

implemented. The mean µ of the Gaussian prior was fixed to an interpolated HS image following the

strategy proposed in [WDT15a]. The covariance matrix of the Gaussian prior is fixed a priori. More

specifically, the HS image has been interpolated and then blurred and down-sampled to generate the

degraded image, referred to as Ȳ. The covariance matrix Σ was estimated using this degraded image

Ȳ and the HS image YR as

Σ̃ = (YR − Ȳ)(YR − Ȳ)T
m− 1 .

We compare the performance of the proposed FUSE algorithm with the MAP estimators of [HEW04]

and Chapter 1. The estimated images obtained with the three algorithms are depicted in Fig. 3.6

and are visually very similar. More quantitative results are reported in Table 3.3 and confirm the

similar performance of these methods in terms of the various fusion quality measures (RSNR, UIQI,

SAM, ERGAS and DD). However, the computational time of the proposed algorithm is reduced by a

factor larger than 150 comparing with the result using the method in Chapter 1 due to the existence

of a closed-form solution for the Sylvester matrix equation.
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Figure 3.6: Madonna dataset: (Top left) HS image. (Top middle) PAN image. (Top right) Reference
image. (Bottom left) Fusion with method in [HEW04]. (Bottom middle) Fusion with ADMM in
Chap. 1. (Bottom right) Fusion with proposed FUSE.

Table 3.3: Performance of HS Pansharpening methods: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−3) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

MAP [HEW04] 18.006 0.9566 3.801 3.508 4.687 42.08

ADMM (Chap. 1) 19.040 0.9642 3.377 3.360 4.253 159.36

FUSE 19.212 0.9656 3.368 3.283 4.199 0.94
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3.6 Conclusion

This chapter developed a fast multi-band image fusion method based on an explicit solution of a

Sylvester equation. This method was applied to both the fusion of multispectral and hyperspectral

images and to the fusion of panchromatic and hyperspectral images. Coupled with the alternating

direction method of multipliers, the proposed algorithm can be easily generalized to compute Bayesian

estimators for different fusion problems, including Gaussian and non-Gaussian priors. Besides, the

analytical solution of the Sylvester equation can be embedded in a block coordinate descent algorithm

to compute the solution of a fusion model based on hierarchical Bayesian inference. Numerical

experiments showed that the proposed fast fusion method compares competitively with the ADMM

based methods, with the advantage of reducing the computational complexity significantly. Future

work will consist of incorporating learning of the subspace transform matrix H into the fusion scheme.

Implementing the proposed fusion scheme in real datasets will also be interesting.
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Multi-band image fusion based on
spectral unmixing

Part of this chapter has been adapted from the journal paper [WBDDTb] (to be submitted).
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4.1 Introduction

Recall that the high correlation between all the bands results in a low rank property, which has been

exploited to regularize the fusion problem [ZOLR99, EH04, YYI12, AS14, SHZZ14, HSC+14]. In
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[EH04], a MAP estimator incorporating a stochastic mixing model has been designed for the fusion

of HS and MS images. Similarly, a non-negative sparse promoting algorithm for fusing HS and

RGB images have been developed by exploiting an alternating optimization algorithm in [WCJ+13].

However, both approaches developed in [EH04] and [WCJ+13] require a very basic assumption that a

low spatial resolution pixel is obtained by averaging the high resolution pixels belonging to the same

area. In another word, the size of the blurring kernel is smaller or equal than the downsampling

ratio. This nontrivial assumption implies that the fusion of two multi-band images can be divided

into fusing small blocks, which greatly decreases the complexity. Note that this assumption has

also used in [ZDBS09, KWT+11, HSC+14]. However, this assumption on the size of the blurring

kernel and the downsampling ratio can be violated easily as the size of a blurring kernel can be

arbitrarily large and the downsampling ratio is generally fixed, depending on the sensor physical

characteristics. To overcome this limitation, a more general forward model, which formulates the

blurring and downsampling as two separate operations, has been recently developed and widely

admitted [BHPJ10, YYI12, HCBD+14, WDT15a, SBDAC15, LAJ+]. Based on this model, a non-

negative matrix factorization pansharpening of HS image has been proposed [BHPJ10]. Similar works

have been developed independently in [BCA+11, ZSA13, AS14]. Later, Yokoya et al. have proposed

to use a coupled nonnegative matrix factorization (CNMF) unmixing for the fusion of low-spatial-

resolution HS and high-spatial-resolution MS data, where both HS and MS data are alternately

unmixed into endmember and abundance matrices by the CNMF algorithm [YYI12]. Though this

algorithm is physically straightforward and easy to implement owing to its simple update rules, it

does not use the abundances estimated from the HS image and the endmember signatures estimated

from the MS image, which makes the spectral and spatial information in both images not fully

exploited. Besides, the convergence of the CNMF to a stationary point is not guaranteed.

In this work, we propose to formulate the fusion problem as an inverse problem, which is regu-

larized by the spectral sparsity, imposed by the linear spectral mixture assumption. We term our

proposed method as Fusion and Unmixing of Multi-band Images (FUMI). The endmember signatures

and abundances are estimated jointly from the observed multi-band images. The optimization w.r.t.

the endmember signatures is a non-negative linear regression problem and can be solved analytically.
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The optimization w.r.t. the abundances can be solved efficiently by the ADMM method. It is inter-

esting to note that a similar fusion and unmixing framework has been recently introduced in [LBS15].

However, the optimization algorithm used in this chapter is different, which will be detailed in the

following sections.

The remaining of this chapter is organized as follows. Section 4.2 gives a short introduction

of the widely used linear mixture model and forward model for multi-band images. Section 4.3

formulates the unmixing based fusion problem as an optimization problem to be addressed in the

Bayesian framework by introducing the popular constraints associated with the endmembers and

abundances. The proposed fast alternating optimization algorithm are presented in Section 4.4.

Section 4.5 presents experimental results assessing the accuracy and the numerical efficiency of the

proposed method. Conclusions are finally reported in Section B.5.

4.2 Problem Statement

4.2.1 Linear Mixture Model

This work exploits an intrinsic property of multi-band images, according to which each spectral

vector of an image can be represented by a linear mixture of several spectral signatures, referred to

as endmembers. Mathematically, we have

X = MA (4.1)

where M ∈ Rmλ×p is the endmember matrix whose columns are spectral signatures and A ∈ Rp×n

is the corresponding abundance matrix whose columns are abundance fractions. Note that A can

be regarded as the projection of X onto the subspace spanned by the columns of M (in general not

orthogonal). This linear mixture model has been widely used in HS unmixing (see [BDPD+12] for a

detailed review).
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4.2.2 Forward model

Following the well-admitted forward model used in the former chapters, the observed images resulted

from linear spectral and spatial degradations of the full resolution image X are as follows

YM = RX + NM

YH = XBS + NH

(4.2)

where

• X = [x1, . . . ,xn] ∈ Rmλ×n is the full resolution target image as described in Section 4.2.1,

• YM ∈ Rnλ×n and YH ∈ Rmλ×m are the observed spectrally degraded and spatially degraded

images,

• R ∈ Rnλ×mλ is the spectral response of the MS sensor, which can be a priori known or estimated

by cross-calibration [YMI13]

• B ∈ Rn×n has the specific property of being a cyclic convolution operator acting on the bands.

The matrix S ∈ Rn×m is a d = dr × dc uniform downsampling operator (it has m = n/d ones

on the block diagonal and zeros elsewhere) such that STS = Im,

• NM and NH are additive terms that include both modeling errors and sensor noises.

The noise matrices are assumed to be distributed according to the following matrix normal

distributions

NM ∼MNmλ,m(0mλ,m,ΛM, Im)

NH ∼MN nλ,n(0nλ,n,ΛH, In).

As in former chapters, the column covariance matrices are assumed to be the identity matrix to reflect

the fact that the noise is pixel-independent. The row covariance matrices ΛM and ΛH are assumed

to be diagonal matrices, while the diagonal elements can vary depending on the noise powers of the

different bands. More specifically, ΛH = diag
[
s2

H,1, · · · , s2
H,mλ

]
and ΛM = diag

[
s2

M,1, · · · , s2
M,nλ

]
.
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4.2.3 Composite fusion model

Combining the linear mixture model (4.1) and the forward model (4.2) leads to

YM = RMA + NM

YH = MABS + NH.

(4.3)

Note that the matrix M can be selected from a known spectral library [IBDP11] or estimated a

priori from the HS data [WBDDTa]. Also, it can be estimated jointly with the abundance matrix A

[NBD05, DMC+09, LBD08], which will be the case in this work.

4.2.4 Statistical methods

To summarize, the problem of fusing and unmixing high-spectral and high-spatial resolution images

can be formulated as estimating the unknown matrix M and A from (4.3), which can be regarded

as a joint non-negative matrix factorization (NMF) problem. As is well known, the NMF problem

is non-convex and has no unique solution, leading to an ill-posed problem. Thus, it is necessary to

incorporate some intrinsic constraints or prior information to regularize this problem, leading to a

Bayesian estimator.

Various priors have been already advocated to regularize the multi-band image fusion problem,

such as Gaussian priors [WDT15a, WDT15c], sparse representations [WBDDT15] or total variation

(TV) priors [SBDAC15] . The choice of the prior usually depends on the information resulting

from previous experiments or from a subjective view of constraints affecting the unknown model

parameters [Rob07, GCS+13]. Computing the Bayesian estimators (whatever the form chosen for the

prior) is a challenging task, mainly due to the large size of X and to the presence of the downsampling

operator S, which prevents any direct use of the Fourier transform to diagonalize the blurring operator

B. To overcome this difficulty, several computational strategies, including Markov chain Monte

Carlo (MCMC) [WDT15a] or block coordinate descent method (BCD) [Ber99], has been proposed,

both applied to different kinds of priors, e.g., empirical Gaussian prior [WDT15a, WDT15c], sparse

representation based prior [WBDDT15], or TV regularization [SBDAC15].
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In our work, we propose to form priors by exploiting the intrinsic physical properties of abundances

and endmembers, which is widely used in conventional unmixing, to infer A and M from the observed

data YM and YH. More details will be give in following sections.

4.3 Problem Formulation

Following the Bayes’ rule, the posterior distribution of unknown parameters {M,A} can be obtained

by the product of their likelihoods and prior distributions, which are detailed in what follows.

4.3.1 Data fitting terms (likelihoods)

Using the statistical properties of the noise matrices NM and NH, YM and YH have matrix Gaussian

distributions, i.e.,

p (YM|M,A) =MN nλ,n(RMA,ΛM, In)

p (YH|M,A) =MNmλ,m(MABS,ΛH, Im).
(4.4)

As the collected measurements YM and YH have been acquired by different (possibly heteroge-

neous) sensors, the noise matrices NM and NH are sensor-dependent and can be generally assumed

to be statistically independent. Therefore, YM and YH are independent conditionally upon the un-

observed scene X = MA. As a consequence, the joint likelihood function of the observed data is

p (YM,YH|M,A) = p (YM|M,A) p (YH|M,A) . (4.5)

Defining Y = {YM,YH} as the set of the observed images, the negative logarithm of the likelihood

is
− log p (Y |M,A)

= − log p (YM|M,A)− log p (YH|M,A) + C

= 1
2‖Λ

− 1
2

H (YH −MABS) ‖2F + 1
2‖Λ

− 1
2

M (YM −RMA) ‖2F

+C

where C is a constant.
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4.3.2 Constraints and regularizations (priors)

Abundances

As the mixing coefficient ai,j (the element located in the ith row and jth column of A) represents

the proportion (or probability of occurrence) of the the ith endmember in the jth measurement

[KM02, BDPD+12], the abundance vectors satisfy the following abundance non-negativity constraint

(ANC) and abundance sum-to-one constraint (ASC)

aj ≥ 0 and 1Tp aj = 1, ∀j ∈ {1, · · · , n} (4.6)

where aj is the jth column of A, ≥ means “element-wise greater than” and 1Tp is a p× 1 vector with

all ones. Accounting for all the image pixels, the constraints (4.6) can be rewritten in matrix form

A ≥ 0 and 1Tp A = 1Tn . (4.7)

Moreover, the ANC and ASC constraints can be regarded as a uniform distribution for A on the

feasible region A, i.e.,

p(A) =


cA if A ∈ A

0 elsewhere
(4.8)

where A =
{
A|A ≥ 0,1Tp A = 1Tn

}
and cA = 1/vol(A).

Endmembers

As the endmember signatures represent the reflectances of different materials, each element of the

matrix M should be between 0 and 1. Thus, the prior distribution for M can be written as

0 ≤M ≤ 1. (4.9)

Similarly, these constraints for the endmember matrix M can be regarded as a uniform distribu-

tion on the feasible regionM

p(M) =


cM if M ∈M

0 elsewhere
(4.10)
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whereM = {M|0 ≤M ≤ 1} and cM = 1/vol(M).

4.3.3 Constrained optimization formulation

Combining the data terms (4.5) and the constraints p (M) and p (A), Bayes theorem provides the

posterior distribution of M and A

p (M,A|Y) ∝ p (Y |M,A) p (M) p (A)

∝ p (YM|M,A) p (YH|M,A) p (M) p (A) .

where ∝ means “proportional to”. Thus, the unmixing based fusion problem can be interpreted as

maximizing the posterior distribution of A and M. Moreover, by taking the negative logarithm of

p (M,A|Y), the MAP estimator of A and M can be obtained by solving the following minimization

problem

min
M,A

L(M,A)

s.t. A ≥ 0 and 1Tp A = 1Tn

0 ≤M ≤ 1

(4.11)

where

L(M,A) = 1
2‖Λ

− 1
2

H (YH −MABS) ‖2F

+ 1
2‖Λ

− 1
2

M (YM −RMA) ‖2F .

Note that it is also obvious to formulate the optimization problem (4.11) from the linear model (4.3)

directly in the constrained least-squares (LS) sense [LH74]. However, specifying the distributions of

the noises NM and NH allows us to consider the case of colored noises (band-dependent) more easily

by introducing the covariance matrices ΛH and ΛM, leading to the weighting LS problem (4.11).

In this formulation, the fusion problem can be regarded as a generalized unmixing problem, which

includes two data fidelity term. Thus, both images contribute to the estimation of the endmember

signatures (endmember extraction step) and the high-resolution abundance maps (inversion step).
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4.4 Alternating Optimization Scheme

To solve problem (4.11), we propose an optimization technique that alternates optimizations w.r.t.

M and A, which is a simple version of a BCD algorithm. The optimization w.r.t. M (resp. A)

conditional on A (resp. M) can be achieved efficiently with the ADMM algorithm [BPC+11] which

is proved to converge to a stationary point under some mild conditions. More details are given in

the followings.

4.4.1 Optimization w.r.t. the abundance matrix A

The minimization of L(M,A) w.r.t. the abundance matrix A conditional on M can be formulated

as

min
A

1
2‖Λ

− 1
2

H (YH −MABS) ‖2F + 1
2‖Λ

− 1
2

M (YM −RMA) ‖2F

s.t. A ≥ 0 and 1Tp A = 1Tn .
(4.12)

This constrained minimization can be solved by introducing an auxiliary variable to split the

objective and the constraints, which is the spirit of the ADMM algorithm. More specifically, by

introducing the splittings V = A, the optimization problem w.r.t. A can be written as

L(A,V) = L1(A) + L2(V) s.t. V = A

where

L1(A) =1
2‖Λ

− 1
2

H (YH −MABS) ‖2F

+ 1
2‖Λ

− 1
2

M (YM −RMA) ‖2F ,

L2(V) =ιA(V),

and

ιA(V) =


0 if V ∈ A

+∞ otherwise.
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Recall that A =
{
A|A ≥ 0,1Tp A = 1n

}
.

The augmented Lagrangian associated with the optimization of A can be written as

L(A,V,G) = 1
2‖Λ

− 1
2

H (YH −MABS) ‖2F + ιA(V)

+ 1
2‖Λ

− 1
2

M (YM −RMA) ‖2F + µ

2
∥∥A−V−G

∥∥2
F

(4.13)

where G is the so-called scaled dual variable and µ is the augmented Lagrange multiplier, which is

always positive. The ADMM algorithm consists of an A-minimization step, a V-minimization step

and a dual variable G update step, which are summarized in Algorithm 9.

Algorithm 9: ADMM sub-iterations to estimate A
Input: YM, YH, ΛM, ΛH, R, B, S, M, µ

1 Initialization: V(0),G(0);
2 for k = 0 to stopping rule do

/* Minimize w.r.t A (Algorithm 8) */

3 A(t,k+1) ∈ arg min
A
L(A,V(k),G(k));

/* Minimize w.r.t V (Algorithm 10) */

4 V(k+1) ← proxιA(A(t,k+1) −G(k));
/* Update Dual Variable G */

5 G(k+1) ← G(k) −
(
A(t,k+1) −V(k+1)

)
;

6 end
7 Set A(t+1) = A(t,nit);
Output: A(t+1)

It can be found that the functions L1(A) and L2(V) are both closed, proper and convex as defined

in [BV04, p. 43]. As shown in the following parts, the optimization w.r.t. A and V can be solved

analytically. Thus, according to the theorem proposed by Eckstein and Bertsekas in [EB92], the

convergence of Algorithm 9 is guaranteed.
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Updating A

In order to minimize (4.13) w.r.t. A, one can force the derivative of L(A,V(k),G(k)) to be zero, i.e.,

∂L(A,V(k),G(k))/∂A = 0, leading to the following matrix equation

MHΛ−1
H MABS (BS)H +

(
(RM)HΛ−1

M RM + µIp
)

A =

MHΛ−1
H YH (BS)H + (RM)HΛ−1

M YM + µ
(
V(k) + G(k)

)
.

(4.14)

Eq. (4.14) is a generalized Sylvester equation, which can be solved analytically by exploiting the

properties of the circulant and downsampling matrices B and S, as summarized in Algorithm 8 in

Chapter 3. Besides, it is interesting to note that when considering only HS image, it is also possible

to formulate a similar Sylvester equation with some spectral regularization, as detailed in [AFRM14].

Updating V

The update of V can be made by simply computing the Euclidean projection of A(t,k+1) −G(k+1)

onto the canonical simplex A, which can be expressed as follows

V̂ = arg min
V

µ

2
∥∥V− (A(t,k+1) −G(k+1)

) ∥∥2
F

+ ιA(V)

= ΠA
(
A(t,k+1) −G(k+1)

)
where ΠA denotes the projection (in the sense of the Euclidean norm) onto the simplex A.

This classical projection problem has been widely studied and can be achieved by numerous meth-

ods [HWC74, Mic86, DSSC08, Con14]. In this work, we adopt the popular strategy first proposed in

[HWC74] and summarized in Algorithm 10. Note that the matrix V is rewritten as

V = [v1, · · · ,vn] =



v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n

...
... . . . ...

vp,1 vp,2 · · · vp,n


. (4.15)

Note also that the projection of all the columns of A(t,k+1) − G(k+1) can be implemented in

parallel, which accelerates the projection dramatically.
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Algorithm 10: Projecting (A−G)i onto the Simplex A
Input: (A−G)i , ith column of A(t,k+1) −G(k+1)

/* Sorting the elements of (A−G)i */

1 Sort (A−G)i into y: y1 ≥ · · · ≥ yp ;
2 Set K := max

1≤k≤p
{k|

(∑k
r=1 yr − 1

)
/k < yk};

3 Set τ :=
(∑K

r=1 yr − 1
)
/K;

4 for r = 1 to p do
5 set v̂r,i := max{yr − τ, 0};
6 end
Output: V(k+1) = V̂

In practice, the ASC constraint is sometimes criticized for being not able to account for every

material in a pixel or huge endmember variability [BDPD+12]. In this case, the sum-to-one constraint

can be simply removed. Thus, the Algorithm 10 will degrade to projecting (A −G)i onto the non-

negative half-space, which simply consists of setting the negative values of (A−G)i to zeros.

4.4.2 Optimization w.r.t. the endmember matrix M

The minimization of (4.11) w.r.t. the abundance matrix M conditional on A can be rewritten as

min
M
L1(M) + L2(M) (4.16)

where
L1(M) = 1

2‖Λ
− 1

2
H (YH −MAH) ‖2F

+1
2‖Λ

− 1
2

M (YM −RMA) ‖2F ,

L2(M) = ιM(M),

AH = ABS.

By splitting the quadratic data fidelity term and the inequality constraints, the augmented La-

grangian of (4.17) can be expressed as

L(M,T,G) = L1(M) + L2(Λ
1
2
HT) + µ

2
∥∥Λ− 1

2
H M−T−G

∥∥2
F
. (4.17)
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The optimization of L(M,T,G) consists of updating M, T and G iteratively as summarized in

Algorithm 11 and detailed below. As L1(M) and L2(Λ
1
2
HT) are closed, proper and convex functions

and Λ
1
2
H has full column rank, the ADMM algorithm is guaranteed to converge to the solution of

problem (4.17).

Algorithm 11: ADMM steps to estimate M
Input: YM, YH, ΛM, ΛH, R, B, S, A, µ

1 Initialization: T(0),G(0);
2 for k = 0 to stopping rule do

/* Optimize w.r.t M */

3 M(t,k+1) ∈ arg min
M
L(M,T(k),G(k));

/* Optimize w.r.t T */

4 T(k+1) ← proxιT (Λ−
1
2

H M(t,k+1) −G(k));
/* Update Dual Variable G */

5 G(k+1) ← G(k) −
(

Λ−
1
2

H M(k+1) −T(k+1)
)
;

6 end
7 Set M(t+1) = M(t,nit);
Output: M(t+1)

Updating M

Forcing the derivative of (4.17) to be zero leads to the following Sylvester equation

H1M + MH2 = H3 (4.18)

where

H1 = ΛHRTΛ−1
M R,

H2 =
[
AHAH

T + µIp
] (

AAT
)−1

,

H3 =[
YHAT

H + ΛHRTΛ−1
M YMAT + µΛ

1
2
H (T + G)

] (
AAT

)−1
.
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Note that vec(AXB) =
(
BT ⊗A

)
vec(X), where vec (X) denotes the vectorization of the matrix

X formed by stacking the columns of X into a single column vector and ⊗ denotes the Kronecker

product [HJ12]. Thus, vectorizing both sides of (4.18) leads to

Wvec(M) = vec(H4) (4.19)

where W =
(
Ip ⊗H1 + HT

2 ⊗ Imλ
)
. Thus, vec

(
M̂
)

= W−1vec(H3). Note that W−1 is of size

mλp ×mλp and is invertible as long as one of matrices H1 and H2 is non-singular. Note also that

W−1 can be computed and stored in advance instead of being computed in each iteration. More

particularly, H1 can be computed at the beginning of Algorithm 12 and H2 can be computed at the

beginning of Algorithm 11. Remind that it is not possible to use the similar strategy to solve the

Sylvester equation (4.14) w.r.t. A, mainly due to the huge dimensionality and non-diagonalizability

of the spatial degradation operator BS.

Beside from the above vectorization based approach, there exists a more efficient way to calculate

the solution M analytically. Note that the matrices H1 ∈ Rmλ×mλ and H2 ∈ Rp×p are both the

products of two symmetric matrices. According to Lemma 1 in Chapter 3, H1 and H2 can be

diagonalized by eigen-decomposition, i.e., H1 = V1D1V−1
1 and H2 = V2D2V−1

2 , where D1 and D2

are diagonal matrices denoted as

D1 = diag{s1, · · · , smλ}

D2 = diag{t1, · · · , tp}.
(4.20)

Thus, (4.18) can be transformed to

D1M̃ + M̃D2 = V−1
1 H3V2. (4.21)

where M̃ = V−1
1 MV2. Straightforward computations lead to

H̃ ◦ M̃ = V−1
1 H3V2 (4.22)
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where

H̃ =



s1 + t1 s1 + t2 · · · s1 + tp

s2 + t1 s2 + t2 · · · s2 + tp

...
... . . . ...

smλ + t1 smλ + t2 · · · smλ+tp


(4.23)

and ◦ represents the Hadamard product, defined as the entrywise product of two matrices (having

the same size). Then, M̃ can be calculated by element-wise division of V−1
1 H3V2 and H̃. Finally,

M can be estimated as M̂ = V1M̃V−1
2 .

Updating T

The optimization w.r.t. T can be transformed as

arg min
T

1
2‖T−Λ−

1
2

H M + G‖+ ιT (T) (4.24)

where ιT (T) = ιM(Λ
1
2
HT). As Λ−

1
2

H is a diagonal matrix, the solution of (4.24) can be obtained easily

by setting

T̂ = Λ−
1
2

H min
(

max
(

M−Λ
1
2
HG, 0

)
, 1
)

(4.25)

4.4.3 Convergence analysis

To summarize, the resulting alternating optimization scheme between M and A is detailed in Al-

gorithm. 12. To analyze the convergence of Algorithm 12, we recall a convergence criterion for the

BCD algorithm available in [Ber99, p. 273].

Theorem 2 (Bertsekas, [Ber99]; Proposition 2.7.1). Suppose that f is continuously differentiable
w.r.t. A and M. Suppose also that for each {A,M}, f(A,M) viewed as a function of A, attains
a unique minimum Ā and is monotonically nonincreasing in the interval from A to Ā. The similar
uniqueness also holds for M. Let

{
A(t),M(t)

}
be the sequence generated by the BCD method as in

Algorithm 12. Then, every limit point of
{
A(t),M(t)

}
is a stationary point.

According to Theorem 2, as the target function defined in (4.11) satisfies the properties of being

continuously differentiable and the problem (4.11) has a unique solution w.r.t. A (resp. M) by
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Algorithm 12: Joint Fusion and Unmixing for Multi-band Images(FUMI)
Input: YM, YH, ΛM, ΛH, R, B, S
/* Initialize M */

1 M(0) ← EEA(YH);
2 for t = 1, 2, . . . to stopping rule do

/* Optimize w.r.t. A using ADMM (see Algorithm 9) */

3 A(t) ∈ arg min
A

L(M(t−1),A);

/* Optimize w.r.t. M using ADMM (see Algorithm 11) */

4 M(t) ∈ arg min
M

L(M,A(t));

5 end
6 Set Â = A(t) and M̂ = M(t);
Output: Â and M̂

fixing M (resp. A), the limiting point of the sequences
{
A(t),M(t)

}
generated by Algorithm 12 is

a stationary point of problem (4.11). Note that though problem (4.11) is convex w.r.t. M and A

separately, it is non-convex w.r.t. these two matrices jointly. In fact, the problem (4.11) has more

than one solution as in a standard non-negative matrix factorization problem [LS01]. Thus, the

stationary point to which Algorithm 12 converges is not necessarily the global optimal point.

Remark. If the endmember signatures are fixed a priori, i.e., M is known, the unsupervised unmixing
and fusion will degrade to a supervised unmixing and fusion by simply forgetting to update of M. In
this case, the alternating scheme is not necessary, since Algorithm 12 reduces to Algorithm 9. Note
that fixing M a priori transforms the non-convex problem (4.11) into a convex one, which can be
solved much more efficiently. The solution produced by the resulting algorithm is also guaranteed to
be the global optimal point instead of a stationary point.

4.5 Experimental results

This section applies the proposed unmixing based fusion method to multi-band images associated

with both synthetic and semi-real data. All the algorithms have been implemented using MAT-

LAB R2014A on a computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and 8GB RAM. The
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MATLAB codes and all the simulation results are available in the first author’s homepage1.

4.5.1 Quality metrics

Fusion quality

To evaluate the quality of the proposed fusion strategy, RSNR, SAM, UIQI, ERGAS and DD as

defined in Section 1.2.3 have been used.

Unmixing quality

In order to analyze the quality of the unmixing results, we consider the normalized mean square error

(NMSE) for both endmember and abundance matrices

NMSEM = ‖M̂−M‖2F
‖M‖2F

NMSEA = ‖Â−A‖2F
‖A‖2F

.

The smaller NMSE, the better the quality of the unmixing.

The SAM of real endmembers and estimated endmembers can measure the spectral distortion

and is defined as

SAMM(mn, m̂n) = arccos
( 〈mn, m̂n〉
‖mn‖2‖m̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs computed from all endmembers. Note

that the value of SAM is expressed in degrees and thus belongs to (−90, 90]. The smaller the absolute

value of SAM, the less important the spectral distortion.

4.5.2 Synthetic data

This section applies the proposed FUMI method to synthetic data and compares it with the joint

unmixing and fusion methods investigated in [BHPJ10] and [YYI12]. Note that the method studied

in [BHPJ10] can be regarded as a one-step version of [YYI12].
1http://wei.perso.enseeiht.fr/

http://wei.perso.enseeiht.fr/
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The reference endmembers are m reflectance spectra selected randomly from the United States

Geological Survey (USGS) digital spectral library2. Each reflectance spectrum consists of L = 224

spectral bands from 383 nm to 2508 nm. In this simulation, the number of endmembers is fixed to

p = 5. The abundances A are generated simulated according to a Dirichlet distribution over the

simplex defined by the ANC and ASC constraints. There is one vector of abundance per pixel, i.e.,

A ∈ R5×1002 , for the considered image of size 100×100 pixels. The synthetic image is then generated

by the product of endmembers and abundances, i.e., X = MA.

• Initialization: As shown in Algorithm 12, the proposed algorithm only requires the initializa-

tion of the endmember matrix M. Theoretically, any endmember extraction algorithm (EEA)

can be used to initialize M. In this work, we have used the simplex identification via split

augmented Lagrangian (SISAL) method [BD09], which is a state-of-the-art method which has

the advantage of not requiring the presence of pure pixels in the image.

• Subspace Identification: For the endmember estimation, a popular strategy is to use a

subspace transformation as a preprocessing step, such as in [BDN08, DMC+09]. In general, the

subspace transformation is learned a priori from the high-spectral resolution image empirically,

e.g., from the HS data. In this work, the projection matrix has been learned by applying a

PCA to YH (i.e., associated with the 5 largest eigenvalues of the covariance matrix of YH’s

columns). Then the input HS data YH, HS noise covariance matrix ΛH and spectral response

R in Algorithm 12 are replaced with their projections onto the learned subspace. This empirical

subspace transformation alleviates the computational burden greatly and can be incorporated

in our framework easily.

• Stopping rule: The stopping rule for Algorithm 12 is that the relative difference for the

successive updates of the objective L(M,A) is less than 10−4, i.e.,

L(M(t+1),A(t+1))− L(M(t),A(t))
L(M(t),A(t))

≤ 10−4 (4.26)

2http://speclab.cr.usgs.gov/spectral.lib06/
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HS and MS image fusion

In this section, we consider the fusion of HS and MS images. The HS image YH has been generated

by applying a 7× 7 Gaussian filter (with zero mean and standard deviation σB = 1.7) and then by

down-sampling every 4 pixels in both vertical and horizontal directions for each band of the reference

image. A 7-band MS image YM has been obtained by filtering X with the LANDSAT-like reflectance

spectral responses as in Fig. 1.1. The HS and MS images are both contaminated by zero-mean

additive Gaussian noises. Our simulations have been conducted with SNRH,i = 50dB for all the HS

bands with SNRH,i = 10 log
(
‖(XBS)i‖2F

s2H,i

)
. For the MS image SNRM,j = 10 log

(
‖(RX)j‖2F

s2M,j

)
= 50dB

for all spectral bands.

As the endmembers are selected randomly from the USGS library, 30 Monte Carlo simulations

have been implemented and all the results have been obtained by averaging these 30 Monte Carlo

runs. The fusion and unmixing results using different methods are reported in Tables 4.1 and 4.2, re-

spectively. For fusion performance, the proposed FUMI method outperforms the other two methods,

with a competitive time complexity. Regarding unmixing, Berne’s method and FUMI perform simi-

larly for endmember estimation, both much better than Yokoya’s. In terms of abundance estimation,

FUMI outperforms the other methods.

Table 4.1: Fusion Performance for Synthetic HS+MS dataset: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−3) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 48.871 0.99949 0.169 0.1011 1.404 8.13

Yokoya2012 48.278 0.99945 0.188 0.1077 1.513 29.95

Proposed FUMI 50.100 0.99960 0.146 0.0877 1.235 8.50

HS and PAN image fusion

When the number of MS bands degrade to one, the fusion of HS and MS degrade to HS pansharpening,

which is a more challenging problem. In this experiment, the PAN image is obtained by averaging
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Table 4.2: Unmixing Performance for Synthetic HS+MS dataset: SAMM (in degree), NMSEM (in
dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 0.549 -39.44 -18.22

Yokoya2012 1.443 -31.91 -13.97

Proposed FUMI 0.690 -39.71 -22.44

the first 50 bands of the reference image. The quantitative results obtained after averaging 30 Monte

Carlo runs for fusion and unmixing are summarized in Tables 4.3 and 4.4, respectively. In terms of

fusion performance, the proposed FUMI method performs the best for all the quality measures, with

the least CPU time. Regarding the unmixing performance, Berne’s method gives the best estimation

for endmembers whereas FUMI gives best abundance estimations.

Table 4.3: Fusion Performance for Synthetic HS+PAN dataset: RSNR (in dB), UIQI, SAM (in
degree), ERGAS, DD (in 10−3) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 32.34 0.9887 0.669 0.682 6.776 6.74

Yokoya2012 33.00 0.9901 0.592 0.633 6.072 11.65

Proposed FUMI 36.16 0.9960 0.399 0.458 3.899 6.36

Table 4.4: Unmixing Performance for Synthetic HS+PAN dataset: SAMM (in degree), NMSEM (in
dB) and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 0.566 -39.03 -16.38

Yokoya2012 1.543 -29.31 -14.09

Proposed FUMI 0.716 -38.07 -18.49
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4.5.3 Semi-real data

In this section, we will test our proposed FUMI algorithm on semi-real datasets, in which we have

the real HS image as the reference image and simulate the degraded images from the reference image.

As HS pansharpening is more challenging than HS and MS image fusion, we consider pansharpening

different HS images in the following sections.

Moffet dataset

In this experiment, the reference image is an HS image of size 100 × 100 × 176 acquired over Mof-

fett field, CA, in 1994 by the JPL/NASA airborne visible/infrared imaging spectrometer (AVIRIS)

[GES+98]. This image was initially composed of 224 bands that have been reduced to 176 bands

after removing the water vapor absorption bands. A composite color image of the scene of interest

is shown in the top 3 of Fig. 4.1 and its scattered data have been displayed as the red points in

Fig. 4.2. As there is no ground truth for endmembers and abundances for the reference image, we

have first unmixed this image (with any unsupervised unmixing method) and then reconstructed the

reference image X with the estimated endmembers and abundances (after being normalized). The

number of endmembers has been fixed as p = 3 empirically as in [DMC+09].

The reference image X is reconstructed from one HS and one coregistered PAN images. The

observed HS image has been generated by applying a 7 × 7 Gaussian filter with zero mean and

standard deviation σB = 1.7 and by down-sampling every 4 pixels in both vertical and horizontal

directions for each band of X, as done in Section 4.5.2. In a second step, the PAN image has been

obtained by averaging the first 50 HS bands. The HS and PAN images are both contaminated by

additive Gaussian noises, whose SNRs are 50dB for all the bands. The scattered data are displayed

in Fig. 4.2, showing that there is no pure pixel in the degraded HS image.

To analyze the impact of endmember estimation, the proposed FUMI method has been imple-

mented in two scenarios: estimating A with fixed M, referred to as supervised FUMI (S-FUMI)

and estimating A and M jointly, referred to as unsupervised FUMI (UnS-FUMI). In this work, the

S-FUMI algorithm has been run with a matrix M obtained using SISAL.
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The proposed FUMI algorithm (including both S-FUMI and UnS-FUMI) and other state-of-the-

art methods have been implemented to fuse the two observed images and to unmix the HS image.

The fusion results and RMSE maps (averaged over all the bands) are shown in Figs. 4.1. Visually,

S-FUMI and UnS-FUMI give better fused images than the other methods. This result is confirmed by

the RMSE maps, where the two FUMI methods offer much smaller errors than the other two methods.

Furthermore, the quantitative fusion results reported in Table 4.5 are consistent with this conclusion

as S-FUMI and UnS-FUMI outperform the other methods for all the fusion metrics. Regarding the

computation time, S-FUMI and UnS-FUMI cost more than the other two methods, mainly due to

the alternating update of the endmembers and abundances and also the ADMM updates within the

alternating updates.

The unmixed endmembers and abundance maps are displayed in Figs. 4.3 and 4.4 whereas quan-

titative unmixing results are reported in Table 4.6. FUMI offers competitive endmember estimation

and much better abundance estimation compared with Berne’s and Yokoya’s methods. It is interest-

ing to note that S-FUMI and UnS-FUMI share very similar fusion results. However, the endmember

estimation of UnS-FUMI is much better compared with S-FUMI, which only exploits the HS image to

estimate the endmembers. This demonstrates that the estimation of endmembers benefits from be-

ing updated jointly with abundances, thanks to the complementary spectral and spatial information

contained in the HS and high resolution PAN images.

Table 4.5: Fusion Performance for Moffet HS+PAN dataset: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−2) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 16.95 0.8923 4.446 3.777 3.158 0.3

Yokoya2012 17.04 0.9002 4.391 3.734 3.132 1.1

S-FUMI 22.57 0.9799 2.184 2.184 1.488 21.1

UnS-FUMI 22.15 0.9778 2.346 2.292 1.577 32.2
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Figure 4.1: Hyperspectral pansharpening results (Moffet dataset): (Top 1) HS image. (Top 2) MS
image. (Top 3) Reference image. (Middle 1) Berne’s method. (Middle 2) Yokoya’s method. (Middle
3) S-FUMI (Middle 4) UnS-FUMI. (Bottom 1-4) The corresponding RMSE maps.

Pavia dataset

In this section, we test the proposed algorithm on another dataset, in which the reference image

is a 100 × 100 × 93 HS image acquired over Pavia, Italy, by the reflective optics system imaging

spectrometer (ROSIS). This image was initially composed of 115 bands that have been reduced to
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Figure 4.2: Scattered Moffet data: The 1st and the 100th bands are selected as the coordinates.

Table 4.6: Unmixing Performance for Pavia HS+PAN dataset: SAMM (in degree), NMSEM (in dB)
and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 7.568 -16.425 -11.167

Yokoya2012 6.772 -17.405 -11.167

S-FUMI 7.579 -16.419 -14.172

UnS-FUMI 7.028 -16.685 -14.695

93 bands after removing the water vapor absorption bands. A composite color image of the scene

of interest is shown in the top 3 of Figs. 4.5. The observed HS and co-registered PAN images are

simulated similarly to the Moffet dataset and are shown in the top 1 and 2 of Figs. 4.5. The scattered

reference and HS data are displayed in Fig. 4.6, showing the high mixture of endmembers in the HS

image. The fusion results are available in Figs. 4.5. The unmixed endmembers and abundance maps

are displayed in Figs. 4.7 and 4.8 whereas quantitative fusion and unmixing results are reported

in Tables 4.7 and 4.8. These results are consistent with the analysis associated with the Moffet

dataset. Both visually and quantitatively, S-FUMI and UnS-FUMI give competitive results, which
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Figure 4.3: Unmixed endmembers for Madonna HS+PAN datasets: (Top and bottom left) Estimated
three endmembers and ground truth. (Bottom right) Sum of absolute value of all endmember errors
as a function of wavelength.

are much better than the other methods. In terms of unmixing, UnS-FUMI outperforms S-FUMI

for both endmember and abundance estimations, due to the alternating update of endmembers and

abundances.



132 Chapter 4 - Multi-band image fusion based on spectral unmixing

Table 4.7: Fusion Performance for Pavia HS+PAN dataset: RSNR (in dB), UIQI, SAM (in degree),
ERGAS, DD (in 10−2) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne2010 21.53 0.9023 2.499 1.692 1.425 0.6

Yokoya2012 21.73 0.9119 2.416 1.655 1.388 3.3

S-FUMI 24.13 0.9456 1.504 1.261 0.948 4.9

UnS-FUMI 24.26 0.9504 1.541 1.215 0.925 34.3

Table 4.8: Unmixing Performance for Pavia HS+PAN dataset: SAMM (in degree), NMSEM (in dB)
and NMSEA (in dB).

Methods SAMM NMSEM NMSEA

Berne2010 11.77 -8.78 -7.21

Yokoya2012 10.43 -9.21 -7.26

S-FUMI 11.80 -8.78 -6.19

UnS-FUMI 9.71 -10.04 -8.06

4.6 Conclusion

This chapter develops a new algorithm for joint multi-band image fusion and unmixing. In the

proposed algorithm, the endmembers and abundances have been updated alternatively from the ob-

served hyperspectral and multispectral images, both using an ADMM based method. The ADMM

updates for abundances consists of solving a Sylvester matrix equation and projecting onto a simplex.

Thanks to the FUSE algorithm proposed in Chapter 3, this Sylvester equation can be solved ana-

lytically thus efficiently, requiring no iterative update. As for endmember updating, a least square

regression and a thresholding are iterated, that are both not computationally intensive. Numerical

experiments showed that the proposed joint fusion and unmixing algorithm compare competitively

with two state-of-the-art methods, with the advantage of improving the performance for both fusion

and unmixing. Future work will consist of incorporating the spatial and spectral degradations into
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the estimation framework. Implementing the proposed fusion scheme for real datasets will also be

interesting.
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Figure 4.4: Unmixed abundance maps for Madonna HS+PAN dataset: Estimated abundance maps
using (Row 1) Berne’s method, (Row 2) Yokoya’s method, and (Row 3) UnS-FUMI. (Row 4) Refer-
ence abundance maps.
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Figure 4.5: Hyperspectral pansharpening results (Pavia dataset): (Top 1) HS image. (Top 2) PAN
image. (Top 3) Reference image. (Middle 1) Berne’s method. (Middle 2) Yokoya’s method. (Middle
3) S-FUMI method. (Middle 4) UnS-FUMI method. (Bottom 1-4) The corresponding RMSE maps.
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Figure 4.6: Scattered Pavia data: The 30th and the 80th bands are selected as the coordinates.



4.6 - Conclusion 137

450 500 550 600 650 700 750 800 850
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ef

le
ct

an
ce

Wavelength (nm)

 

 

Groundtruth
SISAL(S−FUMI)
Berne
Yokoya
UnS−FUMI

450 500 550 600 650 700 750 800 850
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ef

le
ct

an
ce

Wavelength (nm)

450 500 550 600 650 700 750 800 850
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

R
ef

le
ct

an
ce

Wavelength (nm)
450 500 550 600 650 700 750 800 850

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

|R
ef

el
ct

an
ce

 E
rr

.|

Wavelength (nm)

 

 

SISAL(S−FUMI)
Berne
Yokoya
UnS−FUMI

Figure 4.7: Unmixed endmembers for PAVIA HS+PAN dataset: (Top and bottom left) Estimated
three endmembers and ground truth. (Bottom right) Sum of absolute value of all endmember errors
as a function of wavelength.
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Figure 4.8: Unmixed abundance maps for PAVIA HS+PAN dataset: Estimated abundance maps us-
ing (Row 1) Berne’s method, (Row 2) Yokoya’s method, and (Row 3) UnS-FUMI. (Row 4) Reference
abundance maps.



Conclusions and perspectives

The aim of this thesis was to study the multi-band image fusion problem and propose new fusion

algorithms. The main difficulty of fusing multi-band images results from the spatial degradation

(blurring and downsampling) and the spectral degradation (spectral mixture), which makes the

spatial and spectral degradations entangled in the observed data, leading to an ill-posed inverse

problem. To overcome these difficulties, this thesis has mainly proposed three fusion algorithms,

including the Markov Chain Monte Carlo based algorithm, sparse representation based optimization

algorithm and Sylvester equation based fast algorithm. The three algorithms have solved the fusion

problem from different perspectives and have been validated using various datasets. Finally, the

proposed fusion algorithms can be combined with the spectral mixture model to implement joint

fusion and unmixing of multi-band images.

4.6.1 Conclusion

The first work in Chapter 1 proposed a hierarchical Bayesian model to fuse multiple multi-band

images with various spectral and spatial resolutions. The image to be recovered was assumed to be

degraded according to physical transformations included within a forward model. An appropriate

prior distribution, that exploited geometrical concepts encountered in spectral unmixing problems was

proposed. This prior was combined with the likelihood to provide a posterior distribution associated

with the fusion problem. This posterior was too complicated to compute analytical expression of

the Bayesian estimators. Thus, two strategies were investigated. First, the posterior distribution of

the proposed fusion model was efficiently sampled thanks to a Hamiltonian Monte Carlo algorithm

within a Gibbs sampler. Simulations conducted on pseudo-real data showed that the proposed method
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competed with the state-of-the-art techniques to fuse MS and HS images. These experiments also

illustrated the robustness of the proposed method with respect to the misspecification of the forward

model. Second, an alternative for fusing multispectral and hyperspectral images is to maximize

the posterior distribution of our fusion model using a block coordinate descent method. The joint

optimization was conducted iteratively with respect to the image to be recovered, the noise variances

and the image prior covariance matrix. One particularity of the proposed alternating algorithm

was to involve an alternating direction method of multipliers step for estimating the unknown image.

Numerical experiments showed that the proposed method compares competitively with other state-of-

the-art methods, with the great advantage of reducing the computational complexity when compared

with a Monte Carlo-based counterpart method.

Chapter 2 proposed a novel method for multi-band image fusion based on a sparse representa-

tion. The sparse representation ensured that the target image was well represented by atoms of

dictionaries a priori learned from the observations. Identifying the supports jointly with the dictio-

naries circumvented the difficulty inherent to sparse coding. An alternate optimization algorithm,

consisting of an alternating direction method of multipliers and a least square regression, was de-

signed to minimize the target function. Compared with other state-of-the-art fusion methods, the

proposed fusion method offered smaller spatial error and smaller spectral distortion with a reason-

able computation complexity. This improvement was attributed to the specific sparse prior designed

to regularize the resulting inverse problem. In fact, the estimator proposed in Chapter 2 can be

regarded as a hierarchical Bayesian estimator with Gaussian prior and sparse representation based

hyperprior, generalized from the Bayesian estimator with Gaussian prior in Chapter 1.

Chapter 3 developed a fast multi-band image fusion method based on an explicit solution of a

Sylvester equation. This method was applied to both the fusion of multispectral and hyperspectral

images and to the fusion of panchromatic and hyperspectral images. Coupled with the alternating di-

rection method of multipliers, the proposed algorithm can be easily generalized to compute Bayesian

estimators for different fusion problems, including Gaussian and non-Gaussian priors. Besides, the

analytical solution of the Sylvester equation can be embedded in a block coordinate descent algorithm

to compute the solution of a fusion model based on hierarchical Bayesian inference. Consequently,
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the proposed algorithm allows the fusion strategies developed in Chapter 1 and 2 to be implemented

much more efficiently. Numerical experiments showed that the proposed fast fusion method com-

pares competitively with state-of-the-art methods, with the advantage of reducing the computational

complexity significantly.

Chapter 4 presented a multi-band image fusion algorithm based on unsupervised spectral unmix-

ing. The well admitted forward model and the linear spectral mixture model are combined to form

the likelihoods of the observations. The non-negativity and sum-to-one constraints resulted from the

intrinsic physical properties of the abundances are introduced as prior information to regularize this

ill-posed problem. The joint fusion and unmixing leads to maximizing the joint posterior distribution

with respect to the endmember signatures and abundance maps, which can be solved in an alter-

nating optimization framework. Thanks to the fast fusion algorithm developed in Chapter 3, the

optimization with respect to the abundances can be solved efficiently conditionally on exploiting the

properties of the spatial degradation operators, including the block circulant and downsampling ma-

trices. Simulation results show that the proposed unmixing based fusion scheme improves both the

abundance and endmember estimation comparing with the state-of-the-art joint fusion and unmixing

algorithms.

4.6.2 Future work

Perspectives and open issues related to the considered multi-band image problem are listed in what

follows.

Forward model: The most important assumption in this thesis is that all the algorithms are

based on the observation model, which is a linear forward model. The parameters of the forward

model associated with spatial and spectral degradations are possibly available in practice by careful

sensor cross-calibration. However, in other situations, these degradation operations are not clearly

known or even totally unknown. Thus, estimating the degradation operator, including the blurring

kernel B and spectral response R would be required. Some works proposed to estimate these degra-

dation parameters, such as [YMI13, SBDAC15], either from the observed data as a preprocessing

step or by cross-calibration. Joint estimation of these degradation operators with the parameters of
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interest would deserve some attention. Furthermore, if the spatial degradation varies from band to

band, the widely used forward model is not valid. A more general degradation model, such as tensor

based model [ZZTH13], needs to be developed.

Real data, misregistration and nonlinear degradation Up to now, only very few fusion

algorithms have been applied to real multi-band images. One main difficulty is to acquire two well co-

registered multi-band images, especially when the two images come from two different platforms. In

the existing works, the two observed complementary images are generally assumed well co-registered.

This assumption holds when the two images are captured on exactly the same condition. However,

this is usually not the case, especially for multi-band images from different carriers, which means

that the spatial alignment of the two images are no longer consistent. Thus, image distortions

(including translation, rotation, stretching) may be present and some are nonlinear degradations

[Sze06, FM08]. In this case, it is extremely important to preprocess the observed images to make

them well co-registered. This step may include some nonlinear mapping/transformation according to

the observation perspective and sensor characteristics. In turn, how well the developed multi-band

fusion algorithm performs when there exists certain misregistration? Is the proposed method robust

enough to the misregistration? This problem should be considered carefully and is very important

to help implement the fusion algorithms on real datasets.

Illposedness and regularizations: As it is well known, multi-band image restoration is always

ill-posed which can be roughly explained by the fact that the number of parameters to be estimated

is larger than the number of observations. To overcome this ill-posedness, various regularizations,

including naive Gaussian prior, sparse prior based on learned dictionary, or TV prior have been

considered in our works and also recent references. However, this basic assumption of ill-posedness

requires further considerations. One obvious motivation to consider this is that there exist lots of

fusion algorithms requiring no other regularizations [JBC06, HEW04, ZDBS09, CPWJ14]. Further-

more, are we sure that this multi-band fusion problem is always ill-posed? In another word, is a

regularization always necessary for fusing multi-band images? We have analyzed in Chapter 3 that

the fusion of two images is equivalent to solving a matrix Sylvester equation. Thus, the problem of

ill-posedness can be translated as: Does this Sylvester equation has a unique solution? Note that in
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cases where the degradations in both images are not so severe, it is possible to have a unique solution

for the derived Sylvester equation. Even though introducing some regularizations may help restore

the high-spectral high-spatial resolution image, it is worthy to note that appropriate regularizations

highly depend on the contents of images. For example, some smooth regularizations maybe help a

lot to infer natural images containing large homogeneous or smooth areas but may neglect details in

some tissue images, which contain huge high-frequency information. Based on the above analysis,

judging whether the multi-band image fusion problem is ill-posed or not can be a critical task for

the future work. From the applicative point of view, can we design sensor accordingly such that

the fusion problem is well-posed? In this way, a maximum likelihood estimator, which is purely

data-driven and free from artificial or subjective regularizations, may be properly designed.

Joint fusion and unmixing: In Chapter 4, the joint fusion and unmixing have been achieved

in an alternating optimization framework. However, we have to realize that this problem is non-

convex and there is no unique solution for this non-negative matrix factorization problem. In fact,

any endmembers enclosing the true endmembers in the hyperplane where the endmembers live in

can explain both the hyperspectral and multispectral data well enough. Thus, if we initialize the

algorithm from any points that are outside the close sets defined by the true endmemers, it is im-

possible to converge to the real endmembers by alternating updates. To solve this very challenging

problem, there have been several related works on transforming this non-convex NMF problem into

convex NMF problem [DLJ+10, RRTB12]. This will also be a very interesting direction to explore in

future work. Besides, a critical issue related to the unmixing problem is that there exists nonlinearity

or endmember variability in practice, due to the interaction of photons with multiple components,

variable illumination, environmental, atmospheric, and temporal conditions [ZH14]. This nonlin-

earity/variability makes the linear mixture model less accurate and improper for real hyperspectral

data and has caught intensive attention recently [HADT11, SATC11, HDTed, TDTed]. Incorporating

nonlinearity and variability in the joint fusion and unmixing model in future will be of great interest.

Sequential inference: Recently, the hyperspectral video camera which can capture hyper-

spectral datacubes at near video rates3 has appeared [VNBC10, UHV+13, TCG+14]. The massive

3A very interesting video can be found online: https://vimeo.com/64705346.
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multi-temporal hyperspectral cube turns to be a 4-D datacube, in which there exists highly redundant

spatial, spectral and temporal information. With this huge information, a dynamic super-resolution

method can be possibly developed using the hyperspectral sequences, similarly with the strategy

in conventional super-resolution method [BBAM12]. It is interesting to note that except for en-

hancing the spatial resolution, much more information can be explored by analyzing the temporal

series, such as multi-temporal unmixing [VdVDC08, Ozd10], classification [FHES10], constructing

cloud-free images [PVG98], etc. Another example is online image change detection, which tracks

the changes of one or several materials and could possibly be achieved using sequential inference,

such as online expectation-maximization (OEM) or sequential Monte Carlo methods. Thus, how to

adapt or extend the existing hyperspectral analyzing methods, including super-resolution, unmixing,

classification and so on, to the hyperspectral sequences, will be a changeling but interesting topic.
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Appendix A

Vector formulation of hierarchical
Bayesian inference

A.1 Problem formulation

A.1.1 Notations and observation model

Let Z1, . . . ,ZP denote a set of P multi-band images acquired by different optical sensors for a same

scene X. These measurements can be of different natures, e.g., PAN, MS and HS, with different

spatial and/or spectral resolutions. The observed data Zp, p = 1, . . . , P , are supposed to be de-

graded versions of the high-spectral and high-spatial resolution scene X, according to the following

observation model

Zp = Fp (X) + Ep. (A.1)

In (A.1), Fp (·) is a linear or nonlinear transformation that models the degradation operated on

X. As previously assumed in numerous works (see for instance [JBC06, FTBK08, EA08, ZDBS09,

JJ10] among some recent contributions), these degradations may include spatial blurring, spatial

decimation and spectral mixing which can all be modeled by linear transformations. In what follows,

the remotely sensed images Zp and the unobserved scene X are assumed to be pixelated images of

sizes nx,p×ny,p×nλ,p andmx×my×mλ, respectively, where ·x and ·y refer to both spatial dimensions

of the images, and ·λ is for the spectral dimension. Moreover, in the right-hand side of (A.1), Ep

stands for an additive error term that both reflects the mismodeling and the observation noise.

Classically, the observed image Zp can be lexicographically ordered to build the Np×1 vector zp,

where Np = nx,pny,pnλ,p is the total number of measurements in the observed image Zp. For writing

convenience, but without any loss of generality, the band interleaved by pixel (BIP) vectorization
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scheme (see [Cam02, pp. 103–104] for a more detailed description of these data format conventions)

is adopted in what follows (see paragraph A.2.2). Considering a linear degradation, the observation

equation (A.1) can be easily rewritten as follows

zp = Fpx + ep (A.2)

where x ∈ RM and ep ∈ RNp are ordered versions of the scene X (with M = mxmymλ) and

the noise term Ep, respectively. In this work, the noise vector ep will be assumed to be a band-

dependent Gaussian sequence, i.e., ep ∼ N
(
0Np ,Λp

)
where 0Np is an Np × 1 vector made of zeros

and Λp = Inx,pny,p⊗Sp is an Np×Np matrix where Inx,pny,p ∈ Rnx,pny,p×nx,pny,p is the identity matrix,

⊗ is the Kronecker product and Sp ∈ Rnλ,p×nλ,p is a diagonal matrix containing the noise variances,

i.e., Sp = diag
[
s2
p,1, · · · , s2

p,nλ,p

]
.

In (A.2), Fp is an Np ×M matrix that reflects the spatial and/or spectral degradation Fp (·)

operated on x. As in [HEW04], Fp (·) can represent a spatial decimating operation. For instance,

when applied to a single-band image (i.e., nλ,p = mλ = 1) with a decimation factor d in both

spatial dimensions, it is easy to show that Fp is an nx,pny,p × mxmy block diagonal matrix with

mx = dnx,p and my = dny,p [SS94]. Another example of degradation frequently encountered in the

signal and image processing literature is spatial blurring [ZDBS09], where Fp (·) usually represents a

2-dimensional convolution by a kernel κp. Similarly, when applied to a single-band image, Fp is an

nxny × nxny Toeplitz matrix. The problem addressed in this section consists of recovering the high-

spectral and high-spatial resolution scene x by fusing the various spatial and/or spectral information

provided by all the observed images z = {z1, . . . , zP }.

A.1.2 Bayesian estimation of x

In this work, we propose to estimate the unknown scene x within a Bayesian estimation frame-

work. In this statistical estimation scheme, the fused highly-resolved image x is inferred through

its posterior distribution f (x|z). Given the observed data, this target distribution can be derived

from the likelihood function f (z|x) and the prior distribution f (x) by using the Bayes formula
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f (x|z) ∝ f (z|x) f (x), where ∝ means “proportional to”. Based on the posterior distribution, sev-

eral estimators of the scene x can be investigated. For instance, maximizing f (x|z) leads to the

MAP estimator

x̂MAP = arg max
x

f (x|z) . (A.3)

This estimator has been widely exploited for HS image enhancement (see for instance [HEW04,

EH04, EH05] or more recently [JJ10, ZDBS09]). This work proposes to focus on the first moment

of the posterior distribution f (x|z), which is known as the posterior mean estimator or the MMSE

estimator x̂MMSE. This estimator is defined as

x̂MMSE =
∫

xf (x|z) dx =
∫

xf (z|x) f (x) dx∫
f (z|x) f (x) dx . (A.4)

In order to compute (A.4), we propose a flexible and relevant statistical model to solve the fusion

problem. Deriving the corresponding Bayesian estimators x̂MMSE defined in (A.4), requires the

definition of the likelihood function f (z|x) and the prior distribution f (x). These quantities are

detailed in the next section. To facilitate reading, notations have been summarized in Table A.1.

A.2 Hierarchical Bayesian model

A.2.1 Likelihood function

The statistical properties of the noise vectors ep (p = 1, . . . , P ) allow one to state that the observed

vector zp is normally distributed with mean vector Fpx and covariance matrix Λp. Consequently,

the likelihood function, that represents a data fitting term relative to the observed vector zp, can be

easily derived leading to

f (zp|x,Λp) = (2π)−
Np
2 |Λp|−

nx,pny,p
2 × exp

(
−1

2 (zp − Fpx)T Λ−1
p (zp − Fpx)

)

where |Λp| is the determinant of the matrix Λp. As mentioned in the previous section, the collected

measurements z may have been acquired by different (possibly heterogeneous) sensors. Therefore,

the observed vectors z1, . . . , zP can be generally assumed to be independent, conditionally upon the
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Table A.1: Notations Summary

Notation Definition Size

X unobserved scene/target image mx ×my ×mλ

x vectorization of X mxmymλ × 1

xi ith spectral vector of x mλ × 1

u vectorized image in subspace mxmym̃λ × 1

ui ith spectral vector of u m̃λ × 1

µ?u prior mean of u mxmym̃λ × 1

Σ?
u prior covariance of u mxmym̃λ ×mxmym̃λ

µui prior mean of ui m̃λ × 1

Σui prior covariance of ui m̃λ × m̃λ

P number of multi-band images 1

Zp pth remotely sensed images nx,p × ny,p × nλ,p

zp vectorization of Zp nx,pny,pnλ,p × 1

z set of P observation zp nx,pny,pnλ,pP × 1

unobserved scene x and the noise covariances Λ1, . . . ,Λp. As a consequence, the joint likelihood

function of the observed data is

f (z|x,Λ) =
P∏
p=1

f (zp|x,Λp) (A.5)

with Λ = (Λ1, . . . ,ΛP )T .

A.2.2 Prior distributions

The unknown parameters are the scene x to be recovered and the noise covariance matrix Λ relative

to each observation. In this section, prior distributions are introduced for these parameters.
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Scene prior

Following a BIP strategy, the vectorized image x can be decomposed as x =
[
xT1 ,x

T
2 , · · · ,xTmxmy

]T
,

where xi = [xi,1, xi,2, · · · , xi,mλ ]T is the mλ×1 vector corresponding to the ith spatial location (with

i = 1, · · · ,mxmy).

Since adjacent HS bands are known to be highly correlated, the HS vector xi usually lives in a

subspace whose dimension is much smaller than the number of bands mλ [BDN08], i.e.,

xi = VTui (A.6)

where ui is the projection of the vector xi onto the subspace spanned by the columns of VT ∈

Rmλ×m̃λ . Note that VT is possibly known a priori from the scene we are interested in or can be

learned from the HS data. In the proposed framework, we exploit the dimensionality reduction

(DR) as prior information instead of reducing the dimensionality of HS data directly. Another

motivation for DR is that the dimension of the subspace m̃λ is generally much smaller than the

number of bands, i.e., m̃λ � mλ. As a consequence, inferring in the subspace Rm̃λ×1 greatly

decreases the computational burden of the fusion algorithm. Note that the DR technique defined

by (A.6) has been used in some related HS analysis references, e.g., [BDN08, DMC+09]. More

experimental justifications for the necessity of DR can be found in [WDT15b]. Using the notation

u =
[
uT1 ,u

T
2 , · · · ,uTmxmy

]T
, we have u = Vx, where V is an M̃ ×M block-diagonal matrix whose

blocks are equal to V and M̃ = mxmym̃λ. Instead of assigning a prior distribution to the vectors xi,

we propose to define a prior for the projected vectors ui (i = 1, · · · ,mxmy)

ui|µui ,Σui ∼ N
(
µui ,Σui

)
. (A.7)

As ui is a linear transformation of xi, the Gaussian prior assigned to ui leads to a Gaussian prior

for xi, which allows the ill-posed problem (A.2) to be regularized. The covariance matrix Σui is

designed to explore the correlations between the different spectral bands after projection in the

subspace of interest. Also, the mean µ?u of the whole image u as well as its covariance matrix Σ?
u
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can be constructed from µui and Σui as follows

µ?u =
[
µTu1 , · · · ,µ

T
umxmy

]T
Σ?

u = diag
[
Σu1 , · · · ,Σumxmy

]
.

The Gaussian prior assigned to u implies that the target image u is a priori not too far from the

mean vector µ?u, whereas the covariance matrix Σ?
u tells us how much confidence we have for the

prior (the choice of the hyperparameters µ?u and Σ?
u will be discussed later in Section A.2.3).

Noise variance priors

Inverse-gamma distributions are chosen as prior distributions for the noise variances s2
p,i (i = 1, . . . , nλ,p, p =

1, . . . , P )

s2
p,i|ν, γ ∼ IG

(
ν

2 ,
γ

2

)
. (A.8)

The inverse-gamma distribution is a very flexible distribution whose shape can be adjusted by

its two parameters. For simplicity, we propose to fix the hyperparameter ν whereas the hyper-

parameter γ will be estimated from the data. This strategy is very classical for scale parameters

(e.g., see [PADF02]). Note that the inverse-gamma distribution (A.8) is conjugate for the statistical

model (A.5), which will allow closed-form expressions to be obtained for the conditional distribu-

tions f
(
s2
p,i|z

)
of the noise variances. By assuming the variances s2 =

{
s2
p,i

}
(∀p, i) are a priori

independent, the joint prior distribution of the noise variance vector s2 is

f
(
s2|ν, γ

)
=

P∏
p=1

nλ,p∏
i=1

f
(
s2
p,i|ν, γ

)
. (A.9)

A.2.3 Hyperparameter priors

The hyperparameter vector associated with the parameter priors defined above includes µ?u, Σ?
u

and γ. The quality of the fusion algorithm investigated in this work depends on the values of the

hyperparameters that need to be adjusted carefully. Instead of fixing all these hyperparameters a

priori, we propose to estimate some of them from the data using a hierarchical Bayesian algorithm

[Rob07, Chap. 8]. Specifically, we propose to fix µ?u as the interpolated HS image in the subspace of
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interest following the strategy in [HEW04]. Similarly, to reduce the number of statistical parameters

to be estimated, all the covariance matrices are assumed to equal, i.e., Σui = Σ (for i = 1, · · · ,mxmy).

Thus, the hyperparameter vector to be estimated jointly with the parameters of interest is Φ =

{Σ, γ}. The prior distributions for these two hyperparameters are defined below.

Hyperparameter Σ

Assigning a conjugate a priori inverse-Wishart distribution to the covariance matrix of a Gaussian

vector has provided interesting results in the signal and image processing literature [BF13]. Following

these works, we have chosen the following prior for Σ

Σ ∼ IW(Ψ, η) (A.10)

whose density is

f(Σ|Ψ, η) = |Ψ|
η
2

2
ηm̃λ

2 Γm̃λ(η2 )
|Σ|−

η+m̃λ+1
2 e−

1
2 tr(ΨΣ−1).

Again, the hyper-hyperparameters Ψ and η will be fixed to provide a non-informative prior.

Hyperparameter γ

To reflect the absence of prior knowledge regarding the mean noise level, a non-informative Jeffreys

prior is assigned to the hyperparameter γ

f (γ) ∝ 1
γ
1R+ (γ) (A.11)

where 1R+ (·) is the indicator function defined on R+

1R+ (u) =


1, if u ∈ R+,

0, otherwise.

The use of the improper distribution (A.11) is classical and can be justified by different means (e.g.,

see [Rob07, Chap. 1]), providing that the corresponding full posterior distribution is statistically well

defined, which is the case for the proposed fusion model.
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A.2.4 Inferring the highly-resolved HS image from the posterior distribution of
its projection u

Following the parametrization in the prior model (A.6), the unknown parameter vector θ =
{
u, s2} is

composed of the projected scene u and the noise variance vector s2. The joint posterior distribution of

the unknown parameters and hyperparameters can be computed following the hierarchical structure

f (θ,Φ|z) ∝ f (z|θ) f (θ|Φ) f (Φ). By assuming prior independence between the hyperparameters Σ

and γ and the parameters u and s2 conditionally upon (Σ, γ), the following results can be obtained

f (θ|Φ) = f (u|Σ) f
(
s2|γ

)
and f (Φ) = f (Σ) f (γ). Note that f (z|θ), f (u|Σ) and f

(
s2|γ

)
have

been defined in (A.5), (A.7) and (A.9).

The posterior distribution of the projected target image u, required to compute the Bayesian esti-

mators (A.4), is obtained by marginalizing out the hyperparameter vector Φ and the noise variances

s2 from the joint posterior distribution f (θ,Φ|z)

f (u|z) ∝
∫
f (θ,Φ|z) dΦds2

1,1, . . . , ds
2
P,nλ,P

. (A.12)

The posterior distribution (A.12) is too complex to obtain closed-form expressions of the MMSE

and MAP estimators ûMMSE and ûMAP. As an alternative, we propose to use an MCMC algorithm

to generate a collection of NMC samples U =
{
ũ1, . . . , ũNMC

}
that are asymptotically distributed

according to the posterior of interest f (u|z). These samples will be used to compute the Bayesian

estimators of u. More precisely, the MMSE estimator of u will be approximated by an empirical

average of the generated samples

ûMMSE ≈
1

NMC −Nbi

NMC∑
t=Nbi+1

ũt (A.13)

where Nbi is the number of burn-in iterations. Once the MMSE estimate ûMMSE has been computed,

the highly-resolved HS image can be computed as x̂MMSE = VT ûMMSE. Sampling directly according

to the marginal posterior distribution f (u|z) is not straightforward. Instead, we propose to sample

according to the joint posterior f
(
u, s2,Σ|z

)
(hyperparameter γ has been marginalized) by using a

Metropolis-within-Gibbs sampler, which can be easily implemented since all the conditional distri-

butions associated with f
(
u, s2,Σ|z

)
are relatively simple. The resulting hybrid Gibbs sampler is
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detailed in the following section.

A.3 Hybrid Gibbs Sampler

The block Gibbs sampler that we use to sample according to f
(
u, s2,Σ|z

)
is defined by a 3-step

procedure reported in Algorithm 13. The distribution involved in this algorithm are detailed below.

Algorithm 13: Hybrid Gibbs sampler in vector form
1 for t = 1 to NMC do

/* Sampling the image covariance - see paragraph A.3.1 */

2 Sample Σ̃(t)
u according to the conditional distribution (A.14);

/* Sampling the high-resolved image - see paragraph A.3.2 */

3 Sample ũt using an HMC algorithm detailed in Algorithm 14;
/* Sampling the noise variances - see paragraph A.3.3 */

4 for p = 1 to P do
5 for i = 1 to nλ,p do
6 Sample s̃2(t)

p,i from the conditional distribution (A.20);
7 end
8 end
9 end

A.3.1 Sampling Σ according to f (Σ|u, s2, z)

Standard computations yield the following inverse-Wishart distribution as conditional distribution

for the covariance matrix Σ of the scene to be recovered

Σ|u, s2, z ∼ IW
(

Ψ +
mxmy∑
i=1

(ui − µui)
T (ui − µui),mxmy + η

)
. (A.14)

This PDF is easy and direct to be sampled.
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A.3.2 Sampling u according to f (u|Σ, s2, z)

Choosing the conjugate distribution (A.7) as prior distribution for the projected unknown image u

leads to the following conditional posterior distribution for u

u|Σ, s2, z ∼ N
(
µu|z,Σu|z

)
(A.15)

with
Σu|z =

[
Σ?

u
−1 +∑P

p=1 VFT
p Λ−1

p FpV
T
]−1

µu|z = Σu|z
[∑P

p=1 VFT
p Λ−1

p zp + Σ?
u
−1µ?u

]
.

Sampling directly according to this multivariate Gaussian distribution requires the inversion of an

M̃×M̃ matrix, which is impossible in most fusion problems. An alternative would consist of sampling

each element ui (i = 1, . . . , M̃) of u conditionally upon the others according to f
(
ui|u−i, s2,Σ, z

)
,

where u−i is the vector u whose ith component has been removed. However, this alternative would

require to sample u by using M̃ Gibbs moves, which is time demanding and leads to poor mixing

properties. The efficient strategy adopted in this work relies on a Hamiltonian Monte Carlo (HMC)

method (sometimes referred to as hybrid Monte Carlo method), which is considered to generate

vectors u directly. More precisely, we consider the HMC algorithm initially proposed by Duane

et al. for simulating the lattice field theory in [DKPR87]. As detailed in [Nea93], this technique

allows mixing property of the sampler to be improved, especially in a high-dimensional problem.

It exploits the gradient of the distribution to be sampled by introducing auxiliary “momentum”

variables m ∈ RM̃ . The joint distribution of the unknown parameter vector u and the momentum

is defined as

f
(
u,m|s2,Σ, z

)
= f

(
u|s2,Σ, z

)
f (m)

where f (m) is the normal probability density function (pdf) with zero mean and identity covariance

matrix. The Hamiltonian of the considered system is defined by taking the negative logarithm of the

posterior distribution f
(
u,m|s2,µu,Σ, z

)
to be sampled, i.e.,

H (u,m) = − log f
(
u,m|s2,µu,Σ, z

)
= U (u) +K (m)

(A.16)
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where U (u) is the potential energy function defined by the negative logarithm of f
(
u|s2,Σ, z

)
and

K (m) is the corresponding kinetic energy

U (u) = − log f
(
u|s2,Σ, z

)
K (m) = 1

2mTm.

(A.17)

The parameter space where (u,m) lives is explored following the scheme detailed in Algorithm 14. At

iteration t of the Gibbs sampler, a so-called leap-frogging procedure composed of Nleapfrog iterations

is achieved to propose a move from the current state
{
ũt, m̃t

}
to the state {ũ?, m̃?} with step size

ε. This move is operated in RM̃ ×RM̃ in a direction given by the gradient of the energy function

∇uU (u) = −
P∑
p=1

VFT
p Λ−1

p

(
zp − FpV

Tu
)

+ Σ−1
u (u− µ?u).

Then, the new state is accepted with probability ρt = min {1, At} where

At = f
(
ũ?, m̃?|s2,Σ, z

)
f (ũt, m̃t|s2,Σ, z)

= exp
[
H
(
ũt, m̃t

)
−H (ũ?, m̃?)

]
.

(A.18)

This accept/reject procedure ensures that the simulated vectors (ũt, m̃t) are asymptotically dis-

tributed

A.3.3 Sampling s2 according to f (s2|u,Σ, z)

The conditional pdf of the noise variance s2
p,i (i = 1, . . . , nλ,p, p = 1, . . . , P ) is

f
(
s2
p,i|u,Σ, z

)
∝
(

1
s2
p,i

)nx,pny,p
2 +1

exp

−
∥∥∥(zp − FpV

Tu)i
∥∥∥2

2s2
p,i

 (A.19)

where (zp − FpV
Tu)i contains the elements of the ith band. Generating samples s2

p,i distributed

according to f
(
s2
p,i|u,Σ, z

)
is classically achieved by drawing samples from the following inverse-

gamma distribution

s2
p,i|u, z ∼ IG

nx,pny,p
2 ,

∥∥∥(zp − FpV
Tu)i

∥∥∥2

2

 . (A.20)

In practice, if the noise variances are known a priori, we simply assign the noise variances to be

known values and remove the sampling of the noise variances.
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Algorithm 14: Hybrid Monte Carlo algorithm in vector form
/* Momentum initialization */

1 Sample m̃? ∼ N
(
0
M̃
, I
M̃

)
;

2 Set m̃t ← m̃?;
/* Leapfrogging */

3 for j = 1 to NL do
4 Set m̃? ← m̃? − ε

2∇uU (ũ?);
5 Set ũ? ← ũ? + εm̃?;
6 Set m̃? ← m̃? − ε

2∇uU (ũ?);
7 end

/* Accept/reject procedure, See (A.18) */

8 Sample w ∼ U ([0, 1]);
9 if w < ρt then

10 ũt+1 ← ũ?;
11 else
12 ũt+1 ← ũt;
13 end
14 Set x̃t+1 = VT ũt+1;
15 Update stepsize;



Appendix B

Fusion with unknown spectral
response R

In this work, we propose to estimate the spectral response of the MS sensor jointly with the unknown

image to be recovered, generalizing the approach of Chapter 1. Exploiting the intrinsic dimension of

the data to be recovered, the MS characteristics R are expressed in a lower-dimensional subspace,

significantly reducing the difficulties inherent to the resulting blind deconvolution problem. Based on

the posterior distribution of the unknown parameters, we propose to compute the MMSE estimators

of the unknown scene and a so-called pseudo-spectral response by using samples generated by a

hybrid Gibbs sampler.

B.1 Problem formulation

As mentioned before, the observation models associated with the HS and MS images can be written

as
YH = XBS + NH

YM = RX + NM

(B.1)

where R ∈ Rnλ×mλ models the spectral response of the MS sensor, which is assumed to be unknown.

B.2 Hierarchical Bayesian model

B.2.1 Reformulation in a lower-dimensional subspace

Recall that the HS image can be rewritten as X = HU where H ∈ Rmλ×m̃λ is the subspace transfor-

mation matrix and U ∈ Rm̃λ×n is the projection of X onto the subspace spanned by the columns of

159
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H. Incorporating this decomposition of the HS image X into the observation model (B.1) leads to

YH = HUBS + NH

YM = R̃U + NM

(B.2)

where R̃ , RV is the so-called pseudo-spectral response of the MS sensor. Since H is a full-column

rank matrix, the rows of H span the space Rm̃λ×1, which implies that the rows of R̃ = RV also

live in Rm̃λ×1. Thus, without loss of generality, the estimation of the full spectral response R

can be substituted by the estimation of the pseudo-response R̃, which significantly decreases the

computational complexity of the fusion algorithm since m̃λ � mλ. In this work, we assume that the

signal subspace denoted as span {H} has been previously identified, e.g., obtained from available a

priori knowledge regarding the scene of interest, or after conducting a principal component analysis

(PCA) of the HS data. Then, the considered fusion problem is solved in this lower-dimensional

subspace, by estimating the projected image U and the pseudo-spectral response R̃.

B.2.2 Likelihood and prior distributions

Using the statistical properties of the matrices NH and NM, the distributions of YH and YM are

matrix Gaussian distributions, i.e.,

YH ∼MNmλ,m(HUBS, s2
hImλ , Im),

YM ∼MN nλ,n(RHU, s2
mInλ , In).

(B.3)

The unknown parameters to be estimated are the projected scene U, the pseudo-spectral response

R̃ and the vector of noise variances s2 = {s2
h, s

2
m}. The appropriate prior distributions assigned to

these parameters are presented below.

Scene prior: Gaussian prior distributions are assigned to the projected vectors ui (i = 1, · · · , n)

that are assumed to be a priori independent, i.e.,

ui|µui ,Σui ∼ N
(
µui ,Σui

)
(B.4)
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where µui are fixed using the interpolated HS image in the subspace of interest following the strategy

in [HEW04] and Σui are unknown hyperparameters. To reduce the number of parameters to be

estimated, Σui are assumed to be identical, i.e., Σu1 = · · · = Σun = Σ.

Pseudo-spectral response prior: A matrix Gaussian prior is chosen for R̃, i.e., p
(
R̃|R̄, σ2

R

)
=

MN nλ,m̃λ
(R̄, σ2

RInλ , Im̃λ). In absence of additional knowledge, the mean response R̄ is set to the

zero matrix and σ2
R is set to a large value to ensure a non-informative prior for R̃.

Noise variance priors: A non-informative Jeffreys’ prior is assigned to the noise variances s2
h and

s2
m, i.e., f

(
s2
h

)
∝ 1

s2
h
1R+

(
s2
h

)
and f

(
s2
m

)
∝ 1

s2m
1R+

(
s2
m

)
, where 1R+ (·) is the indicator function

defined on R+ (see [RC04] for motivations).

B.2.3 Hyperparameter priors

The hyperparameter vector associated with the parameter priors defined above is Φ = {Σ}. The

quality of the fusion algorithm investigated in this work clearly depends on the value of this hy-

perparameter. Instead of fixing the hyperparameter a priori, we propose to estimate it from the

data by defining a hierarchical Bayesian model. This approach requires to define prior for the this

hyperparameter (usually referred to as hyperprior) which is detailed below.

Hyperparameter Σ: Assigning a conjugate inverse-Wishart (IW) distribution to the covariance

matrix Σ has provided interesting results in the signal/image processing literature [BF13]. Following

these works, an IW distribution Σ ∼ IW(Ψ, η) has been chosen, where the parameters (Ψ, η)T are

fixed to provide a non-informative prior for Σ.

B.2.4 Posterior distribution

The unknown parameter vector θ associated with the proposed hierarchical Bayesian fusion model

is composed of the projected scene U, the pseudo-spectral response R̃ and the noise variances s2,

i.e., θ =
{
U, R̃, s2

}
. Defining Y = {YH,YM} the set of the observed images, the joint posterior

distribution of the unknown parameters and hyperparameters can be computed using the following
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hierarchical structure

f (θ,Φ|Y) ∝ f (Y |θ) f (θ|Φ) f (Φ) (B.5)

where the parameter and hyperparameter priors are given by

f (θ|Φ) = f (U|Σ) f(R̃)f
(
s2
h

)
f
(
s2
m

)
f (Φ) = f (Σ) .

(B.6)

Computing the posterior distribution of the projected scene f (U|Y) requires to marginalize out the

parameters Φ, R̃ and s2 from the joint posterior. As this marginalization is clearly not easy to

perform, computing the MMSE and MAP estimators of the projected scene U analytically from

the posterior (B.5) is difficult. Similar with Chapter 1, we propose to generate a collection of NMC

samples
{

(θ,Φ)(1), . . . , (θ,Φ)(NMC)
}
that are asymptotically distributed according to the posterior

of interest (B.5). The Bayesian estimators of the parameters of interest can then be computed

using these generated samples. In order to sample according to the joint posterior f (θ,Φ|Y), a

Metropolis-within-Gibbs sampler are designed in the next section.

B.3 Hybrid Gibbs sampler

The Gibbs sampler is defined by a 4-step procedure detailed below.

B.3.1 Sampling the covariance matrix of the image Σ

Standard computations yield the following inverse-Wishart distribution as conditional distribution

for the covariance matrix Σ

Σ|U, R̃, s2,Y ∼ IW
(

Ψ +
n∑
i=1

(ui − µui)
T (ui − µui), n+ η

)
(B.7)

which is easy to sample.

B.3.2 Sampling the pseudo-spectral response matrix R̃

The conditional PDF of R̃ can be computed using the likelihood (B.3) and the prior defined in

Section B.2.2. We obtain R̃|Σ,U, s2,Y ∼MN nλ,m̃λ

(
µR̃, Inλ ,ΣR̃

)
with
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µR̃ =
(

1
s2m

YMUT + 1
σ2

R
R̄
)

ΣR̃

ΣR̃ =
(

1
s2m

UUT + 1
σ2

R
Im̃λ

)−1

which can be sampled easily. Note in particular that the matrix ΣR̃ ∈ Rm̃λ×m̃λ can be computed

easily since it has a small size (m̃λ is generally smaller than 10).

B.3.3 Sampling the projected image U

Choosing the prior distribution for the projected image U defined in Section B.2.2 leads to the

conditional log-posterior distribution

− log f(U|Σ, R̃, s2,Y) = 1
2s2
h
‖YH −HUBS‖2F+

1
2s2m
‖YM − R̃U‖2F + 1

2
n∑
i=1

(ui − µui)
TΣ−1(ui − µui) + C

where ‖.‖F is the Frobenius norm and C does not depend on U. Note that the vector obtained

by vectorizing U has a Gaussian distribution. However, f(U|Σ, R̃, s2,Y) is not the PDF of a

matrix normal distribution. Therefore, sampling U directly from its conditional distribution would

be computationally intensive, since it would require the inversion of large matrices. Similarly, an

HMC method is exploited to generate matrices distributed according to the conditional distribution

of U.

B.3.4 Sampling the noise variance vector s2

The conditional distributions of the noise variances s2
h and s2

m are the following inverse-gamma (IG)

distributions
s2
h|Σ,U, R̃,Y ∼ IG

(
mλm

2 ,
‖YH−VUBS‖22

2

)
s2
m|Σ,U, R̃,Y ∼ IG

(
nλn

2 ,

∥∥YM−R̃U
∥∥2

2
2

)

that are easy to sample.

Finally, the derived 4-step hybrid Gibbs sampler is summarized in Algorithm 15.
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Algorithm 15: Hybrid Gibbs sampler with unknown R
1 for t = 1 to NMC do

/* Sampling the image covariance matrix */

2 Sample Σ̃(t)
u from f(Σ|U(t−1), s2(t−1)

,YH,YM);
/* Sampling the multispectral noise variances */

3 for ` = 1 to nλ do
4 Sample s̃2(t)

M,` from f(s2
M,`|U(t−1),YM);

5 end
/* Sampling the hyperspectral noise variances */

6 for ` = 1 to mλ do
7 Sample s̃2(t)

H,` from f(s2
H,`|U(t−1),YH);

8 end
/* Sampling the pseudo spectral response */

9 Sample ˜̃R from f(R̃|U(t−1), s2
M

(t)
,YM);

/* Sampling the high-resolved image */

10 Sample Ũt using a Hamiltonian Monte Carlo algorithm;
11 end

B.4 Simulation results

This section presents numerical results obtained with the proposed Bayesian fusion algorithm. The

reference image, considered here as the high spatial and high spectral resolution image to be recovered,

is an HS image acquired over Moffett field, CA, in 1994 by the JPL/NASA airborne visible/infrared

imaging spectrometer (AVIRIS) [GES+98]. This image is of size 128×64 and was initially composed

of 224 bands that have been reduced to 177 bands after removing the water vapor absorption bands.

A composite color image of the scene of interest is shown in the top 1 of Fig. B.1.

B.4.1 Simulation scenario

We propose to reconstruct the reference HS image X from two HS and MS images YH and YM.

First, a high-spectral and low-spatial resolution image YH has been generated by applying a 5 × 5
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averaging filter and by down-sampling every 4 pixels in both vertical and horizontal direction for

each band of the reference image. Second, a 7-band MS image YM has been obtained by filtering X

with the LANDSAT reflectance spectral responses [Fle06].

The HS and MS images have been both contaminated by zero-mean additive Gaussian noises

with signal to noise ratios SNRH = 10 log
(
‖XBS‖2F
‖NH‖2F

)
= 30dB and SNRM = 10 log

(
‖RX‖2F
‖NM‖2F

)
= 30dB.

The observed HS and MS images are shown in the top 2 and 3 of Fig. B.1. Note that the HS

image has been interpolated for better visualization and that the MS image has been displayed

using an arbitrary color composition. In order to learn the projection matrix H, we have computed

the m̃λ = 10 most discriminant vectors (associated with the 10 largest eigenvalues of the sample

covariance matrix) of the HS image. These 10 vectors correspond to 99.89% of the information

contained in the HS image.

B.4.2 Hyperparameter Selection

As presented in Section B.2, some prior parameters are fixed to generate a non-informative prior as

detailed below:

• σ2
R is equal to 103 to provide a non-informative prior for the spectral response.

• Ψ is fixed to the identical matrix and η is fixed to be m̃λ + 3 to ensure a non-informative prior

for Σ.

B.4.3 Fusion performance

To evaluate the quality of the proposed fusion strategy, five image quality measures, including RSNR,

SAM, UIQI, ERGAS and DD have been investigated, as detailed in Section 1.2.3.

The experiments compare the proposed hierarchical Bayesian method with three state-of-the-

art fusion algorithms for MS and HS images ([HEW04, ZDBS09] and the one proposed in Chapter

1). Note that the Bayesian method in Chapter 1 mainly differs from the proposed strategy in that

the spectral response R was perfectly known while it is estimated in this work. Consequently,

the algorithm in Chapter 1 can be considered as an oracle method that can be employed with an
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Figure B.1: Fusion results. (Top 1) Reference image. (Top 2) HS image. (Top 3) MS image. (Middle
1) MAP [HEW04]. (Middle 2) Wavelet MAP [ZDBS09]. (Middle 3) MCMC with known R. (Middle
4) MCMC with unknown R. (Bottom 1-4) The corresponding RMSE maps.

exact knowledge of R. Results obtained with the different algorithms are depicted in Fig. B.1.

The proposed algorithm performs competitively with the other methods for MS and HS fusion.

Quantitative results reported in Table B.1 in terms of RSNR, SAM, UIQI, ERGAS and DD show

that the proposed method provides better results than the methods of [HEW04], [ZDBS09] and similar

performance when compared to the oracle method proposed in Chapter 1. Table B.1 also shows that

the performance of the oracle method [WDT14a] degrades heavily when using a spectral response

with some uncertainty (obtained by adding noise with variance σ2
R defined by 10 log10

(
‖R‖2F /σ2

R

)
=

10dB). An advantage of the proposed method is that it allows the pseudo-spectral response of the MS



B.4 - Simulation results 167

 

 

−0.02

−0.01

0

0.01

0.02

0.03

0.04

 

 

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure B.2: True pseudo-spectral response R̃ (top) and its estimation (bottom).

sensor R̃ to be estimated. Fig. B.2 shows that the resulting estimated R̃ is in good agreement with

the true pseudo-spectral response (obtained by multiplying the spectral response of the LANDSAT

satellite [Fle06] by the matrix H defined in Section B.4.1). Note that the original spectral response

R is not easy to be estimated from R̃ since the matrix H is not invertible. Besides, the estimated

noise variances for both HS and MS images are given in Fig. B.3.
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Table B.1: Performance of the compared fusion methods: RSNR (in db), UIQI, SAM (in degree),
ERGAS, DD (in 10−2) and Time (in second)(AVIRIS dataset).

Methods RSNR UIQI SAM ERGAS DD Time

MAP 16.655 0.9336 5.739 3.930 2.354 3

Wavelet MAP 19.501 0.9626 4.186 2.897 1.698 73

MCMC with known R 21.913 0.9771 3.094 2.231 1.238 8811

MCMC with imperfect R (FSNR=10dB) 21.804 0.9764 3.130 2.260 1.257 8388

MCMC with unknown R 21.897 0.9769 3.101 2.234 1.244 10471
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Figure B.3: Noise variances and their MMSE estimates: (Top) HS Image. (Bottom) MS Image.



B.5 - Conclusion 169

B.5 Conclusion

This work proposed a new hierarchical Bayesian model for the fusion of multispectral and hyper-

spectral images when the spectral response of the multispectral sensor is unknown. The image to be

recovered was assumed to be degraded by physical transformations included within a forward model.

We introduced an appropriate prior distribution for the high spatial and high spectral resolution

image to be recovered defined in a lower-dimensional subspace. The resulting posterior distribution

was sampled using a hybrid Gibbs sampler. The particularity of this sampler is to involve a Hamil-

tonian Monte Carlo step for sampling the unknown image, which is projected onto a low dimensional

subspace defined by the main vectors of a principal component analysis of the hyperspectral image.

Numerical experiments showed that the proposed method compares favorably with other state-of-

the-art methods, with the advantage of jointly estimating the spectral response of the multispectral

sensor.
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Appendix C

Proofs related to FUSE algorithm

C.1 Proof of Lemma 1

As A1 is symmetric (resp. Hermitian) positive definite, A1 can be decomposed as A1 = A
1
2
1 A

1
2
1 ,

where A
1
2
1 is also symmetric (resp. Hermitian) positive definite thus invertible. Therefore, we have

A1A2 = A
1
2
1

(
A

1
2
1 A2A

1
2
1

)
A−

1
2

1 . (C.1)

As A
1
2
1 and A2 are both symmetric (resp. Hermitian) matrices, A

1
2
1 A2A

1
2
1 is also a symmetric (resp.

Hermitian) matrix that can be diagonalized. As a consequence, A1A2 is similar to a diagonalizable

matrix, and thus it is diagonalizable.

Similarly, A2 can be written as A2 = A
1
2
2 A

1
2
2 , where A

1
2
2 is positive semi-definite. Thus, A

1
2
1 A2A

1
2
1 =

A
1
2
1 A

1
2
2 A

1
2
2 A

1
2
1 is positive semi-definite showing that all its eigenvalues are non-negative. As similar

matrices share equal similar eigenvalues, the eigenvalues of A1A2 are non-negative.

C.2 Proof of Lemma 2

The n dimensional DFT matrix F can be written explicitly as follows

F = 1√
n



1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
... . . . ...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


171
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where ω = e−
2πi
n is a primitive nth root of unity in which i =

√
−1. The matrix S can also be written

as follows

S = E1 + E1+d + · · ·+ E1+(m−1)d

where Ei ∈ Rn×n is a matrix containing only one non-zero element equal to 1 located at the ith row

and ith column as follows

Ei =



0 · · · 0 · · · 0
... . . . ... . . . ...

0 · · · 1 · · · 0
... . . . ... . . . ...

0 · · · 0 · · · 0


.

It is obvious that Ei is an idempotent matrix, i.e., Ei = E2
i . Thus, we have

FHEiF = (EiF)H EiF =
[
0T · · · fHi · · ·0T

]



0
...

fi
...

0


= fHi fi

where fi = 1√
n

[
1 ωi−1 ω2(i−1) ω3(i−1) · · ·ω(n−1)(i−1)

]
is the ith row of the matrix F and 0 ∈ R1×n

is the zero vector of dimension 1× n. Straightforward computations lead to

fHi fi = 1
n



1 ωi−1 · · · ω(i−1)(n−1)

ω−(i−1) 1 · · · ω(i−1)(n−2)

...
... . . . ...

ω−(i−1)(n−1) ω−(i−1)(n−2) · · · 1


.
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Using the ω’s property
n∑
i=1

ωi = 0 and n = md leads to

fH1 f1 + fH1+df1+d + · · · fH1+(m−1)df1+(m−1)d

= 1
n





m 0 · · · 0

0 m · · · 0
...

... . . . ...

0 0 · · · m


· · ·



m 0 · · · 0

0 m · · · 0
...

... . . . ...

0 0 · · · m


... . . . ...

m 0 · · · 0

0 m · · · 0
...

... . . . ...

0 0 · · · m


· · ·



m 0 · · · 0

0 m · · · 0
... . . . ...

...

0 0 · · · m





= 1
d


Im · · · Im
... . . . ...

Im · · · Im


= 1

dJd ⊗ Im.

C.3 Proof of Lemma 3

According to Lemma 2, we have

FHSFD = 1
d

(Jd ⊗ Im) D = 1
d


D1 D2 · · · Dd

...
... . . . ...

D1 D2 · · · Dd

 (C.2)
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Thus, multiplying (C.2) by P on the left side and by P−1 on the right side leads to

M = P
(
FHSFD

)
P−1

= 1
d



Di D2 · · · Dd

0 0 · · · 0
...

... . . . ...

0 0 · · · 0


P−1

= 1
d



d∑
i=1

Di D2 · · · Dd

0 0 · · · 0
...

... . . . ...

0 0 · · · 0



C.4 Proof of Theorem 1

Substituting (3.12) and (3.13) into (3.11) leads to (C.4), where

C̄3 =



(C̄3)1,1 (C̄3)1,2 · · · (C̄3)1,d

(C̄3)2,1 (C̄3)2,2 · · · (C̄3)2,d

...
... . . . ...

(C̄3)d,1 (C̄3)d,2 · · · (C̄3)d,d


. (C.3)

Identifying the first (block) columns of (C.4) allows us to compute the element ū1,1 for l = 1, ..., d

as follows

ūl,1 = (C̄3)l,1
(

1
d

d∑
i=1

Di + λlCIn
)−1

for l = 1, · · · , m̃λ. Using the values of ūl,1 determined above, it is easy to obtain ūl,2, · · · , ūl,d as

ūl,j = 1
λlC

[
(C̄3)l,j −

1
d
ūl,1Dj

]
for l = 1, · · · , m̃λ and j = 2, · · · , d.
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

ū1,1

(
1
d

d∑
i=1

Di + λ1
CIn

)
λ1
C ū1,2 + 1

d ū1,1D2 · · · λ1
C ū1,d + 1

d ū1,1Dd

ū2,1

(
1
d

d∑
i=1

Di + λ2
CIn

)
λ2
C ū2,2 + 1

d ū2,1D2 · · · λ2
C ū2,d + 1

d ū2,1Dd

...
... . . . ...

ūm̃λ,1

(
1
d

d∑
i=1

Di + λm̃λC In
)

λm̃λC ūm̃λ,2 + 1
d ūm̃λ,1D2 · · · λm̃λC ūm̃λ,d + 1

d ūm̃λ,1Dd


= C̄3 (C.4)
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Fast Spectral Unmixing based on Dykstra’s
Alternating Projection

Qi Wei, Student Member, IEEE, José Bioucas-Dias,Member, IEEE,
Nicolas Dobigeon,Senior Member, IEEE, and Jean-Yves Tourneret,Senior Member, IEEE

Abstract—This paper presents a fast spectral unmixing al-
gorithm based on Dykstra’s alternating projection. The pro-
posed algorithm formulates the fully constrained least squares
optimization problem associated with the spectral unmixing
task as an unconstrained regression problem followed by a
projection onto the intersection of several closed convex sets.
This projection is achieved by iteratively projecting onto each
of the convex sets individually, following Dyktra’s scheme. The
sequence thus obtained is guaranteed to converge to the sought
projection. Thanks to the preliminary matrix decomposition and
variable substitution, the projection is implemented intrinsically
in a subspace, whose dimension is very often much lower than
the number of bands. A benefit of this strategy is that the
order of the computational complexity for each projection is
decreased from quadratic to linear time. Numerical experiments
considering diverse spectral unmixing scenarios provide evidence
that the proposed algorithm competes with the state-of-the-art,
namely when the number of endmembers is relatively small, a
circumstance often observed in real hyperspectral applications.

Index Terms—spectral unmixing, fully constrained least
squares, projection onto convex sets, Dykstra’s algorithm

I. I NTRODUCTION

SPECTRAL unmixing (SU) aims at decomposing a set
of n multivariate measurementsX = [x1, . . . ,xn] into

a collection ofm elementary signaturesE = [e1, · · · , em],
usually referred to asendmembers, and estimating the relative
proportionsA = [a1, . . . ,an] of these signatures, calledabun-
dances. SU has been advocated as a relevant multivariate anal-
ysis technique in various applicative areas, including remote
sensing [1], planetology [2], microscopy [3], spectroscopy
[4] and gene expression analysis [5]. In particular, it has
demonstrated a great interest when analyzing multi-band (e.g.,
hyperspectral) images, for instance for pixel classification [6],
material quantification [7] and subpixel detection [8].

In this context, several models have been proposed in the
literature to properly describe the physical process underly-
ing the observed measurements. Under some generally mild
assumptions [9], these measurements are supposed to result
from linear combinations of the elementary spectra, according

Part of this work has been supported by the Chinese Scholarship Council,
the Hypanema ANR Project n◦ANR-12-BS03-003, the ANR-11-LABX-0040-
CIMI Project, in particular during the ANR-11-IDEX-0002-02 program within
the thematic trimester on image processing, and the Portuguese Science and
Technology Foundation under Projects UID/EEA/50008/2013and PTDC/EEI-
PRO/1470/2012.

Qi Wei, Nicolas Dobigeon and Jean-Yves Tourneret are with University
of Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse cedex 7, France (e-mail:
{qi.wei, nicolas.dobigeon, jean-yves.tourneret}@enseeiht.fr).

José Bioucas-Dias is with Instituto de Telecomunicações and Instituto
Superior Técnico, Universidade de Lisboa, Portugal (e-mail: bioucas@lx.it.pt).

to the popularlinear mixing model(LMM) [10]–[12]. More
precisely, each columnxj ∈ Rnλ of the measurement matrix
X = [x1, . . . ,xn] can be regarded as a noisy linear combina-
tion of the spectral signatures leading to the following matrix
formulation

X = EA+N (1)

where

• E ∈ Rnλ×m is the endmember matrix whose columns
e1, · · · , em are the signatures of them materials,

• A ∈ Rm×n is the abundance matrix whosejth column
aj ∈ Rm contains the fractional abundances of thejth
spectral vectorxj ,

• N ∈ Rnλ×n is the additive noise matrix.

As the mixing coefficientai,j represents the proportion (or
probability of occurrence) of the theith endmember in the
jth measurement [10], [11], the abundance vectors satisfy
the followingabundance non-negativity constraint(ANC) and
abundance sum-to-one constraint(ASC)

aj ≥ 0 and 1T
maj = 1, ∀j = 1, · · · , n (2)

where ≥ means element-wise greater or equal and1T
m ∈

Rm×1 represents a vector with all ones. Accounting for all
the image pixels, the constraints (2) can be rewritten in matrix
form

A ≥ 0 and 1T
mA = 1T

n . (3)

Unsupervised linear SU boils down to estimating the end-
member matrixE and abundance matrixA from the mea-
surementsX following the LMM (1). It can be regarded as
a special instance of (constrained) blind source separation,
where the endmembers are the sources [13]. There already
exists a lot of algorithms for solving SU (the interested reader
is invited to consult [10]–[12] for comprehensive reviews
on the SU problem and existing unmixing methods). Most
of the unmixing techniques tackle the SU problem into two
successive steps. First, the endmember signatures are identified
thanks to a prior knowledge regarding the scene of interest,or
extracted from the data directly using dedicated algorithms,
such as N-FINDR [14], vertex component analysis (VCA)
[15], and successive volume maximization (SVMAX) [16].
Then, in a second step, calledinversionor supervisedSU, the
abundance matrixA is estimated given the previously identi-
fied endmember matrixE, which is the problem addressed in
this paper.

Numerous inversion algorithms have been developed in
the literature, mainly based on deterministic or statistical ap-



2

proaches. Heinzet al. [17] developed a fully constrained least
squares (FCLS) algorithm by generalizing the Lawson-Hanson
non-negativity constrained least squares (NCLS) algorithm
[18]. Dobigeonet al. formulated the unmixing problem into
a Bayesian framework and proposed to draw samples from
the posterior distribution using a Markov chain Monte Carlo
algorithm [19]. This simulation-based method considers the
ANC and ASC both strictly while the computational complex-
ity is significant when compared with other optimization-based
methods. Bioucas-Diaset al. developed a sparse unmixing
algorithm by variable splitting and augmented Lagrangian
(SUnSAL) and its constrained version (C-SUnSAL), which
generalizes the unmixing problem by introducing spectral
sparsity explicitly [20]. More recently, Chouzenouxet al. [21]
proposed a primal-dual interior-point optimization algorithm
allowing for a constrained least squares (LS) estimation ap-
proach and an algorithmic structure suitable for a parallelim-
plementation on modern intensive computing devices such as
graphics processing units (GPU). Heylenet al. [22] proposed
a new algorithm based on the Dykstra’s algorithm [23] for
projections onto convex sets (POCS), with runtimes that are
competitive compared to several other techniques.

In this paper, we follow a Dykstra’s strategy for POCS to
solve the unmixing problem. Using an appropriate decompo-
sition of the endmember matrix and a variable substitution,
the unmixing problem is formulated as a projection onto the
intersection ofm + 1 convex sets (determined by ASC and
ANC) in a subspace, whose dimension is much lower than the
number of bands. The intersection ofm+1 convex sets is split
into the intersection ofm convex set pairs, which guarantees
that the abundances always live in the hyperplane governed by
ASC to accelerate the convergence of iterative projections. In
each projection, the subspace transformation yields linear or-
der (of the number of endmembers) computational operations
which decreases the complexity greatly when compared with
Heylen’s method [22].

The paper is organized as follows. In Section II, we formu-
late SU as a projection problem onto the intersection of convex
sets defined in a subspace with reduced dimensionality. We
present the proposed strategy for splitting the intersection of
m+1 convex sets into the intersection ofm convex set pairs.
Then, the Dykstra’s alternating projection is used to solvethis
projection problem, where each individual projection can be
solved analytically. The convergence and complexity analysis
of the resulting algorithm is also studied. Section III applies
the proposed algorithm to synthetic and real multi-band data.
Conclusions and future work are summarized in Section IV.

II. PROPOSEDFAST UNMIXING ALGORITHM

In this paper, we address the problem of supervised SU,
which consists of solving the following optimization problem

min
A
‖X−EA‖2F

subject to (s.t.) A ≥ 0 and 1T
mA = 1T

n

(4)

where ‖ · ‖F is the Frobenius norm. As explained in the
introduction, this problem has been considered in many ap-
plications where spectral unmixing plays a relevant role.

It is worthy to interpret this optimization problem from a
probabilistic point of view. The quadratic objective function
can be easily related to the negative log-likelihood function
associated with observationsX corrupted by an additive white
Gaussian noise. Moreover, the ANC and ASC constraints can
be regarded as a uniform distribution foraj (∀j = 1, · · · , n)
on the feasible regionA

p(aj) =

{
c if aj ∈ A
0 elsewhere

(5)

whereA =
{
a|a ≥ 0,1Ta = 1

}
and c = 1/vol(A). Thus,

minimizing (4) can be interpreted as maximizing the posterior

distribution of A with the prior p(A) =
n∏

j=1

p(aj), where

we have assumed the abundance vectorsai are a priori
independent. In this section, we will demonstrate that the
optimization problem (4) can be decomposed into an uncon-
strained optimization, more specifically an unconstrainedleast
square (LS) problem with an explicit closed form solution,
followed by a projection step that can be efficiently achieved
with the Dykstra’s alternating projection algorithm.

A. Reformulating Unmixing as a Projection Problem

Under the assumption thatE has full column rank1, it is
straightforward to show that the problem (4) is equivalent to

min
A
‖Y −DA‖2F

s.t. A ≥ 0 and 1T
mA = 1T

n

(6)

whereD is anym×m square matrix such thatETE = DTD
and

Y , (D−1)TETX. (7)

Since we usually havem ≪ nλ, then the formulation
(6) opens the door to faster solvers. Given thatETE is
positive definite, the equationETE = DTD has non-singular
solutions. In this paper, we use the Cholesky decompositionto
find a solution of that equation. Note that we have also used
solutions based on the eigendecomposition ofETE, leading
to very similar results.

DefiningU , DA andbT , 1T
mD−1, the problem (6) can

be transformed as

min
U
‖Y −U‖2F

s.t. D−1U ≥ 0 and bTU = 1T
n .

(8)

Obviously, the optimization (8) with respect to (w.r.t.)U
can be implemented in parallel for each spectral vectoruj ,
whereU = [u1, · · · ,un] anduj is the jth column ofU. In
another words, (8) can be split inton independent problems

min
u
‖yj − u‖22

s.t. D−1u ≥ 0 and bTu = 1
(9)

whereyj is thejth column ofY (∀j = 1, · · · , n).
Recall now that the Euclidean projection of a given vector

1This assumption is satisfied once the endmember spectral signatures are
linearly independent.
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v onto a closed and convex setC is defined as [24]

ΠC(u) , argmin
u

(
‖v− u‖22 + ιC(u)

)
(10)

whereιC(u) denotes the indicator function

ιC(u) =

{
0 if u ∈ C
∞ otherwise.

(11)

Therefore, the solution ûj of (9) is the projection
of yj onto the intersection of convex setsN ={
u ∈ Rm : D−1u ≥ 0

}
(associated with the initial ANC) and

S =
{
u ∈ Rm : bTu = 1

}
(associated with the initial ASC)

as follows

ûj = argmin
u
‖yj − u‖2F + ιN∩S(u)

= ΠN∩S(yj)
(12)

whereûj is thejth column of matrixÛ.

Remark. It is interesting to note thatY defined by(7) can
also be written asY = DALS whereALS ,

(
ETE

)−1
ETX

is the LS estimator associated with the unconstrained coun-
terpart of (4). Therefore,Y, Û andN ∩S correspond toX,
A andA, respectively, under the linear mapping induced by
D.

To summarize, supervised SU can be conducted following
Algorithm 1 by first transforming the observation matrix as
Y = (D−1)TETX, and then looking for the projection̂U
of Y onto N ∩ S. Finally, the abundance matrix is easily
recovered through the inverse linear mappingÂ = D−1Û.
The projection ontoN ∩ S is detailed in the next paragraph.

Algorithm 1: Fast Unmixing Algorithm
Input : X (measurements),E (endmember matrix),N , S
// Calculate the subspace transformation D

from the Cholesky decomposition

ETE = DTD

1 D← Chol
(
ETE

)
;

// Compute Y

2 Y ← D−TETX;
// Project Y onto N ∩ S (Algo. 2)

3 Û← ΠN∩S(Y);
// Calculate the abundance

4 Â← D−1Û;
Output : Â (abundance matrix)

B. Dykstra’s Projection ontoN ∩ S

While the matrixY can be computed easily and efficiently
from (7), its projection ontoN ∩S following (12) is not easy
to perform. The difficulty mainly comes from the spectral
correlation induced by the linear mappingD in the non-
negativity constraints definingN , which prevents any use of
fast algorithms similar to those introduced in [25]–[27] dedi-
cated to the projection onto the canonical simplex. However,
as this set can be regarded asm inequalities,S ∩ N can be

rewritten as the intersection ofm sets

S ∩ N =

m⋂

i=1

S ∩ Ni

by splitting N into N = N1 ∩ · · · ∩ Nm, whereNi ={
u ∈ Rm : dT

i u ≥ 0
}

anddT
i represent theith row of D−1,

i.e., D−1 = [d1, · · · ,dm]
T . Even though projecting onto

this m-intersection is difficult, projecting onto each convex
set S ∩ Ni (i = 1, . . . ,m) is easier, as it will be shown in
paragraph II-C. Based on this remark, we propose to perform
the projection ontoS ∩ N using the Dykstra’s alternating
projection algorithm, which was first proposed in [23], [28]
and has been developed to more general optimization problems
[29], [30]. More specifically, this projection is split intom it-
erative projections onto each convex setS∩Ni (i = 1, . . . ,m),
following the Dykstra’s procedure described in Algorithm 2.

Algorithm 2: Dykstra’s Projection ofY ontoS ∩ N
Input : Y, D, K
// Compute b

1 bT ← 1T
mD−1;

// Initialization

2 SetU(0)
m ← Y, Q(0)

1 = · · · = Q
(0)
m ← 0;

// Main iterations

3 for k = 1, · · · ,K do
// Projection onto S ∩ N1 (Algo. 3)

4 U
(k)
1 ← ΠS∩N1(U

(k−1)
m +Q

(k−1)
m );

5 Q
(k)
m ← U

(k−1)
m +Q

(k−1)
m −U

(k)
1 ;

6 for i = 2, · · · ,m do
// Projection onto S ∩ Ni (Algo. 3)

7 U
(k)
i ← ΠS∩Ni(U

(k)
i−1 +Q

(k−1)
i−1 );

8 Q
(k)
i−1 ← U

(k)
i−1 +Q

(k−1)
i−1 −U

(k)
i ;

9 end
10 end
11 Û← U

(K)
m ;

Output : Û← ΠS∩N (Y)

The motivations for projecting ontoS ∩ Ni are two-fold.
First, this projection guarantees that the vectorsûj always
satisfy the sum-to-one constraintbT ûj = 1, which implies
that these vectors never jump out from the hyperplaneS,
and thus accelerates the convergence significantly. Second, as
illustrated later, incorporating the constraintbTu = 1 does
not increase the projection computational complexity, which
means that projecting ontoS ∩ Ni is as easy as projecting
onto Ni (for i = 1, · · · ,m). The projection ontoS ∩ Ni is
described in the next paragraph.

C. Projection ontoS ∩ Ni

The main step of the Dykstra’s alternating procedure (Al-
gorithm 2) consists of computing the projectionU∗

i of a given
matrix Z onto the setS ∩Ni

U∗
i = ΠS∩Ni (Z)

≡ [ΠS∩Ni(z1), . . . ,ΠS∩Ni(zn)].
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Fig. 1. Illustration of the projection ofz onto the setS ∩ N1: the setS is
defined by the vectorc ∈ S and by the vectorb orthogonal to the subspace
S − {c}; the vectoru ∈ S may be written asu = Vα+ c whereV spans
the subspaceS − {c} and α ∈ R(m−1); the vectorz is the orthogonal
projection ofz onto S; the vectorz is the orthogonal projection ofz onto
S ∩N1, which is also the orthogonal projection ofz onto the setS ∩ N1.

Let z ∈ Rm denote a generic column ofZ. The computation
of the projectionΠS∩Ni(z) can be achieved by solving the
following convex constrained optimization problem:

min
u
‖z− u‖22

s.t. dT
i u ≥ 0 and bTu = 1.

(13)

To solve the optimization (13), we start by removing the
constraintbTu = 1 by an appropriate change of variables.
Having in mind that the setS = {u ∈ Rm : bTu = 1 } is
a hyperplane that contains the vectorc = b/‖b‖22, then that
constraint is equivalent tou = c+Vα, whereα ∈ Rm−1 and
the columns ofV ∈ Rm×(m−1) span the subspaceS −{c} =
{u ∈ Rm : bTu = 0 }, of dimension(m − 1). The matrix
V is chosen such thatVTV = Im−1, i.e., the columns of
V are orthonormal. Fig. 1 schematizes the mentioned entities
jointly with z, the orthogonal projection ofz ontoS, andz, the
orthogonal projection ofz ontoS1∩N1. The former projection
may be written as

z ≡ ΠS(z)

= c+P(z− c) (14)

whereP ≡ VVT = Im − bbT /‖b‖22 denotes the orthogonal
projection matrix ontoS − {c}. With these objects in place,
and givenz ∈ Rm andu ∈ S, we simplify the cost function
‖z− u‖22 by introducing the projection ofz onto S and by
using the Pythagorean theorem as follows:

‖z− u‖22 = ‖z− z‖22 + ‖z− u‖22
= ‖z− z‖22 + ‖(z− c)−Vα‖22
= ‖z− z‖22 + ‖VT (z− c)−α‖22 (15)

where the right hand term in (15) derives directly from
(14) and from the fact thatVTV = Im−1. By introducing

u = c+Vα in (13), we obtain the equivalent optimization

min
α
‖VT (z− c)−α‖22 s.t. (VTdi)

Tα ≥ −(dT
i c) (16)

which is a projection onto a half space whose solution is [24]

α∗ = VT (z− c) + τi
VTdi

‖VTdi‖2
where

τi = max

{
0,− dT

i V

‖VTdi‖2
(
VT (z− c)

)
− dT

i c

‖VTdi‖2

}

= max{0,−sTi z+ fi}
with si ≡ Pdi/‖Pdi‖2, fi ≡ −dT

i c/‖Pdi‖2, and we have
used the facts that‖VTx‖2 = ‖Px‖2 andVT c = 0.

Recalling thatu = c+Vα, we obtain

z = c+VVT (z− c) + τisi

= ΠS(z) + τisi.
(17)

The interpretation of (17) is clear: the orthogonal projection of
z ontoS ∩Ni is obtained by first computingz = ΠS(z), i.e..
the projectionz onto the hyperplaneS, and then computing
z = ΠS∩Ni(z), i.e.. the projectionz onto the intersection
S ∩ Ni. Given thatS ∩ Ni ⊂ S, then (17) is, essentially,
a consequence of a well know result: given a convex set
contained in some subspace, then the orthogonal projection
of any point in the convex set can be accomplished by first
projecting orthogonally on that subspace, and then projecting
the result on the convex set [31, Ch. 5.14].

Finally, computingU∗
i can be conducted in parallel for

each column ofZ leading to the following matrix update rule
summarized in Algorithm 3):

U∗
i = ΠS(Z) + siτ

T
i (18)

with τT
i ∈ R1×n given by

τT
i = max{0, fi1T

n − sTi Z}
where

fi = −
dT
i c

‖Pdi‖2
(19)

and the operatormax has to be understood in the component-
wise sense

Note that using the Karush-Kuhn-Tucker (KKT) conditions
to solve the problem (13) can also lead to this exact solution,
as described in the Appendix.

D. Convergence Analysis

The convergence of the Dykstra’s projection was first proved
in [28], where it was claimed that the sequences generated
using Dykstra’s algorithm are guaranteed to converge to the
projection of the original point onto the intersection of the
convex sets. Its convergence rate was explored later [32],
[33]. We now recall the Deutsch-Hundal theorem providing
the convergence rate of the projection onto the intersection of
m closed half-spaces.

Theorem 1 (Deutsch-Hundal, [32]; Theorem 3.8). Assuming
thatXk is thekth projected result in Dykstra’s algorithm and
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Algorithm 3: ProjectingZ ontoS ∩ Ni

Input : Z, b, di

// Calculate Pdi, si, c and fi
1 c← b/‖b‖22;
2 Pdi ← di − cbTdi;
3 si ← Pdi/‖Pdi‖2 ;
4 fi ← −dT

i c/‖Pdi‖2 ;
// Calculate τT

i

5 τT
i ← max{0, fi1T

n − sTi Z};
// Project Z onto S

6 ΠS(Z)← c1T
n +P(Z− c1T

n );
// Compute the final solution U∗

i

7 U∗
i ← ΠS(Z) + siτ

T
i ;

Output : U∗
i

X∞ is the converged point, there exist constants0 ≤ c < 1
and ρ > 0 such that

‖Xk −X∞‖2F ≤ ρck (20)

for all k.

Theorem 1 demonstrates that Dykstra’s projection has a
linear convergence rate [34]. The convergence speed depends
on the constantc, which depends on the number of constraints
m and the ‘angle’ between two half-spaces [32]. To the best
of our knowledge, the explicit form ofc only exists form = 2
half-spaces and its determination form > 2 is still an open
problem [35].

E. Complexity Analysis

To summarize, the projection ontoS ∩ N can be obtained
by iteratively projecting onto them setsS∩Ni (i = 1, . . . ,m)
using a Dykstra’s projection scheme as described in Algorithm
2. The output of this algorithm converges to the projection of
the initial pointY onto S ∩ N . It is interesting to note that
the quantities denoted asΠS(Z) in Algorithm 3 needs to be
calculated only once since the projection ofZ will be itself Z
from the second projectionΠS∩N2 . This results from the fact
that the projection never jumps out from the hyperplaneS.

Moreover, the most computationally expensive part of the
proposed unmixing algorithm (Algorithm 1) is the iterative
procedure to project ontoS ∩ N , as described in Algorithm
2. For each iteration, the heaviest step is the projection onto
the intersectionS ∩ Ni summarized in Algorithm 3. With
the proposed approach, this projection only requires vector
products and sums, with a cost ofO(nm) operations, contrary
to theO(nm2) computational cost of [22]. Thus, each iteration
of Algorithm 2 has a complexity of orderO(nm2).

III. E XPERIMENTS USINGSYNTHETIC AND REAL DATA

This section compares the proposed unmixing algorithm
with several state-of-the-art unmixing algorithms, i.e.,FCLS
[17], SUNSAL [20], IPLS [21] and APU [22]. All algorithms
have been implemented using MATLAB R2014A on a com-
puter with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and
8GB RAM. To conduct a fair comparison, they have been

implemented in the signal subspace without using any par-
allelization. These unmixing algorithms have been compared
using the figures of merit described in Section III-A. Several
experiments have been conducted using synthetic datasets
and are presented in Section III-B. Two real hyperspectral
(HS) datasets associated with two different applications are
considered in Section III-C. The MATLAB codes and all the
simulation results are available on the first author’s home-
page2.

A. Performance Measures

In what follows,Ât denotes the estimation ofA obtained
at timet (in seconds) for a given algorithm. Provided that the
endmember matrixE has full column rank, the solution of
(4) is unique and all the algorithms are expected to converge
to this unique solution, denoted asA⋆ , Â∞ (ignoring
numerical errors). In this work, one of the state-of-the-art
methods is run with a large number of iterations (n = 5000 in
our experiments) to guarantee that the optimal pointA⋆ has
been reached.

1) Convergence Assessment:First, different solvers de-
signed to compute the solution of (4) have been compared
w.r.t. the time they require to achieve a given accuracy. Thus,
all these algorithms have been run on the same platform and
we have evaluated the relative error (RE) betweenÂt andA⋆

as a function of the computational time defined as

REt =
‖Ât −A⋆‖2F
‖A⋆‖2F

.

2) Quality Assessment:To analyze the quality of the un-
mixing results, we have also considered the normalized mean
square error (NMSE)

NMSEt =
‖Ât −A‖2F
‖A‖2F

.

The smaller NMSEt, the better the quality of the unmixing.
Note that NMSE∞ =

‖A⋆−A‖2
F

‖A‖2
F

is a characteristic of the
objective criterion (4) and not of the algorithm.

B. Unmixing Synthetic Data

The synthetic data is generated using endmember spectra
selected from the United States Geological Survey (USGS)
digital spectral library3. These reflectance spectra consists
of L = 224 spectral bands from383nm to 2508nm. To
mitigate the impact of the intra-endmember correlation, three
different subsetsE3, E10 and E20 have been built from
this USGS library. More specifically,Eα is an endmember
matrix in which the angle between any two different columns
(endmember signatures) is larger thanα (in degree). Thus, the
smallerα, the more similar the endmembers and the higher the
conditioning number ofE. For example,E3 contains similar
endmembers with very small variations (including scalings) of
the same materials andE20 contains endmembers which are
relatively less similar. As an illustration, a random selection

2http://wei.perso.enseeiht.fr/
3http://speclab.cr.usgs.gov/spectral.lib06/
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of several endmembers fromE3 andE20 have been depicted
in Fig. 2. The abundances have been generated uniformly in
the simplexA defined by the ANC and ASC constraints.

Unless indicated, the performance of these algorithms has
been evaluated on a synthetic image of size100× 100 whose
signal to noise ratio (SNR) has been fixed to SNR=30dB and
the number of considered endmembers ism = 5.
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End 1
End 2
End 3
End 4
End 5

Fig. 2. Five endmember signatures randomly selected fromE3 (left) and
E20 (right).

1) Initialization: The proposed SUDAP, APU and FCLS
algorithms do not require any initialization contrary to SUN-
SAL and IPLS. As suggested by the authors of these two
methods, SUNSAL has been initialized with the unconstrained
LS estimator of the abundances whereas IPLS has been
initialized with the zero matrix. Note that our simulationshave
shown that both SUNSAL and IPLS are not sensitive to these
initializations.

2) Performancevs. Time: The NMSE and RE for these
five different algorithms are displayed in Fig. 3 as a function
of the execution time. These results have been obtained by
averaging the outputs of30 Monte Carlo runs. More pre-
cisely, 10 randomly selected matrices for each setE3, E10

and E20 are used to consider the different intra-endmember
correlations. All the algorithms converge to the same solution
as expected. However, as demonstrated in these two figures,
SUNSAL, APU and the proposed SUDAP are much faster
than FCLS and IPLS. From the zoomed version in Fig. 3, we
can observe that in the first iterations SUDAP converges faster
than APU and SUNSAL. More specifically, for instance, if the
respective algorithms are stopped once REt < −80dB (around
t = 50ms), SUDAP performs faster than SUNSAL and APU
and with a lower NMSEt.
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Fig. 3. NMSE (left) and RE (right)vs. time (zoomed version in top right).

3) Time vs. the Number of Endmembers:In this test, the
number of endmembersm varies from 3 to 23 while the
other parameters have been fixed to the same values as in

Section III-B2 (SNR= 30dB andn = 1002). The endmember
signatures have been selected fromE10 (similar results have
been observed when usingE3 andE20). All the algorithms
have been stopped oncêAt reaches the same convergence
criterion REt < −100dB. The proposed SUDAP has been
compared with the two most competitive algorithms SUNSAL
and APU. The final REs and the corresponding computational
times versusm have been reported in Fig. 4, including error
bars to monitor the stability of the algorithms (these results
have been computed from30 Monte Carlo runs).
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Fig. 4. RE (left) and time (right)vs. number of endmembers for SUNSAL,
APU and SUDAP (REt < −100dB).

Fig. 4 (left) shows that all the algorithms have converged to
a point satisfying REt < −100dB and that SUDAP and APU
are slightly better than SUNSAL. However, SUNSAL provides
a smaller estimation variance leading to a more stable estima-
tor. Fig. 4 (right) shows that the execution time of the three
methods is an increasing function of the number of endmem-
bersm, as expected. However, there are significant differences
between the respective rates of increase. The execution times
of APU and SUDAP are cubic and quadratic functions ofm
whereas SUNSAL benefits from a milder increasing rate. More
precisely, SUDAP is faster than SUNSAL when the number
of endmembers is small, e.g., smaller than19 (this value may
change depending on the SNR value, the conditioning number
of E, the abundance statistics, etc.). Conversely, SUNSAL is
faster than SUDAP form ≥ 19. SUNSAL is more efficient
than APU for m ≥ 15 and SUDAP is always faster than
APU. The error bars confirm that SUNSAL offers more stable
results than SUDAP and APU. Therefore, it can be concluded
that the proposed SUDAP is more promising to unmix a
multi-band image containing a reasonable number of materials,
while SUNSAL is more efficient when considering a scenario
containing a lot of materials.

4) Timevs. Number of Pixels:In this test, the performance
of the algorithms has been evaluated for a varying number of
pixels n from 1002 to 4002 (the other parameters have been
fixed the same values as in Section III-B2). The endmember
signatures have been selected fromE10 (similar results have
been observed when usingE3 and E20) and the stopping
rule has been chosen as REt < −100dB. All results have
been averaged from30 Monte Carlo runs. The final REs
and the corresponding computational times are shown in Fig.
5. The computational time of the three algorithms increases
approximately linearly w.r.t. the number of image pixels and
SUDAP provides the faster solution, regardless the number of
pixels.
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Fig. 5. RE (left) and time (right)vs. number of pixels for SUNSAL, APU
and SUDAP (REt < −100dB).

5) Timevs. SNR: In this experiment, the SNR of the HS
image varies from0dB to 50dB while the other parameters
are the same as in Section III-B2. The stopping rule is the
one of Section III-B3. The results are displayed in Fig. 6 and
indicate that SUNSAL is more efficient than APU and SUDAP
(i.e., uses less time) for low SNR scenarios. More specifically,
to achieve REt < −100dB, SUNSAL provides more efficient
unmixing when the SNR is lower than5dB while SUDAP is
faster than SUNSAL when the SNR is higher than5dB.
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Fig. 6. RE (left) and time (right)vs. SNR for SUNSAL, APU and SUDAP
(REt < −100dB).

C. Real Data

This section compares the performance of the proposed
SUDAP algorithm with that of SUNSAL and APU using two
real datasets associated with two different applications,i.e.,
spectroscopy and hyperspectral imaging.

1) EELS Dataset: In this experiment, a spectral image
acquired by electron energy-loss spectroscopy (EELS) is con-
sidered. The analyzed dataset is a64 × 64 pixel spectrum-
image acquired innλ = 1340 energy channels over a region
composed of several nanocages in a boron-nitride nanotubes
(BNNT) sample [3]. A false color image of the EELS data
(with an arbitrary selection of three channels as RGB bands)
is displayed in Fig. 7 (left). Following [3], the number of end-
members has been set tom = 6. The endmember signatures
have been extracted from the dataset using VCA [15] and are
depicted in Fig. 7 (right). The abundance maps estimated by
the considered unmixing algorithms are shown in Fig. 8 for a
stopping rule defined as REt < 100dB.

There is no visual difference between the abundance maps
provided by SUNSAL, APU and the proposed SUDAP. Since
there is no available ground-truth for the abundances, the
objective criterionJt = ‖X−EÂt‖2F minimized by the algo-
rithms has been evaluated instead of NMSEt. The variations of
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Fig. 7. EELS dataset: HS image (left) and extracted endmember signatures
(right).

the objective function and the corresponding REs are displayed
in Fig. 9 as a function of the computational time.
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Fig. 9. Objective (left) and RE (right)vs. time for SUNSAL, APU and
SUDAP (EELS data).

Both figures show that the proposed SUDAP performs faster
than APU and SUNSAL as long as the stopping rule has been
fixed as REt < −60dB. For lower REt, SUDAP becomes
less efficient than SUNSAL. To explore the convergence more
explicitly, the number of spectral vectors that do not satisfy
the convergence criterion, i.e., for which RE> −100dB,
has been determined and is depicted in Fig. 10. It is clear
that most of the spectral vectors (around3600 out of 4096
pixels) converged quickly, e.g., in less than0.02 seconds. The
remaining measurements (around500 pixels) require longer
time to converge, which leads to the slow convergence as
observed in Fig. 9. The slow convergence of the projection
methods for these pixels may result from an inappropriate
observational model due to, e.g., endmember variability [36]
or nonlinearity effects [9]. On the contrary, SUNSAL is more
robust to these discrepancies and converges faster for these
pixels. This corresponds to the results shown in Fig. 9.
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Fig. 10. Number of pixels that do not satisfy the stopping rule vs. time for
SUNSAL, APU and SUDAP (EELS data).
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Fig. 8. EELS dataset: abundance maps estimated by SUNSAL (top), APU (middle) and SUDAP (bottom).

2) Cuprite Dataset: This section investigates the perfor-
mance of the proposed SUDAP algorithm when unmixing
a real HS image. This image, which has received a lot
of interest in the remote sensing and geoscience literature,
was acquired over Cuprite field by the JPL/NASA airborne
visible/infrared imaging spectrometer (AVIRIS) [37]. Cuprite
scene is a mining area in southern Nevada composed of
several minerals and some vegetation, located approximately
200km northwest of Las Vegas. The image considered in this
experiment consists of250× 190 pixels ofnλ = 189 spectral
bands obtained after removing the water vapor absorption
bands. A composite color image of the scene of interest is
shown in Fig. 11 (left). As in Section III-C2, the endmember
matrix E has been learnt from the HS data using VCA.
According to [15], the number of endmembers has been set to
m = 14. The estimated endmember signatures are displayed
in Fig. 11 (right) ant the first five corresponding abundance
maps recovered by SUNSAL, APU and SUDAP are shown in
Fig. 12. Visually, all three methods provide similar abundance
maps4.

From Fig. 11 (right), the signatures appear to be highly
correlated, which makes the unmixing quite challenging. This
can be confirmed by computing the smallest angle between any
couple of endmembers, which is equal toα = 2.46 (in degree).
This makes the projection-based methods, including SUDAP
and APU, less efficient since alternating projections are widely
known for their slower convergence when the convex sets
exhibit small angles, which is consistent with the convergence
analysis in Section II-D. Fig. 13, which depicts the objective
function and the RE w.r.t. the computational times corroborates

4Similar results were also observed for abundance maps of theother
endmembers. They are not shown here for brevity and are available in a
separate technical report [38].
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Fig. 11. Cuprite dataset: HS image (left) and extracted endmember signatures
(right).

this point. Indeed, SUDAP performs faster than SUNSAL and
APU if the algorithms are stopped before RE< −30dB. For
lower REt, SUNSAL surpasses SUDAP.
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Fig. 13. Objective function (left) and RE (right)vs. time for SUNSAL, APU
and SUDAP (Cuprite data).

IV. CONCLUSION

This paper proposed a fast unmixing method based on
an alternating projection strategy. Formulating the spectral



9

Fig. 12. Cuprite dataset: abundance maps estimated by SUNSAL (top), APU (middle) and SUDAP (bottom).

unmixing problem as a projection onto the intersection of
convex sets allowed Dykstra’s algorithm to be used to compute
the solution of this unmixing problem. The projection was
implemented intrinsically in a subspace, making the proposed
algorithm computationally efficient. In particular, the proposed
unmixing algorithm showed similar performance comparing to
state-of-the-art methods, with significantly reduced execution
time, especially when the number of endmembers is small or
moderate, which is often the case when analyzing conventional
multi-band images. Future work includes the generalization of
the proposed algorithm to cases where the endmember matrix
is rank deficient or ill-conditioned.

APPENDIX

SOLVING (13) WITH KKT CONDITIONS

Following the KKT conditions, the problem (13) can be
reformulated as findingu∗ satisfying the following conditions

u∗ − z+ µb− λdi = 0
dT
i u

∗ ≥ 0
bTu∗ = 1

λ ≥ 0
µ ≥ 0

λdT
i u

∗ = 0.

(21)

Direct computations lead to

u∗ = z− z̃+∆z (22)

where

z̃ = c
(
bT z− 1

)

c = b/ ‖b‖22
∆z = τisi
τi = max{0,−dT

i (z− z̃) /‖Pdi‖2}
si = Pdi/‖Pdi‖2
P = Im − bbT / ‖b‖22 .

(23)
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Computing the projection ofzj for j = 1, · · · , n can be
conducted in parallel, leading to the following matrix update
rule

U∗
i = ΠS∩Ni(Z)

= Z− Z̃+ siτ
T
i

= ΠS(Z) + siτ
T
i

(24)

where

Z̃ = c
(
bTZ− 1T

n

)

τT
i = max{0,−dT

i

(
Z− Z̃

)
/‖Pdi‖2}.

As a conclusion, the updating rules (24) and (18) only differ
by the way the projectionΠS(Z) ontoS has been computed.
However, it is easy to show thatΠS(Z) = Z− Z̃ used in (24)
is fully equivalent toΠS(Z) = c1T

n + P(Z − c1T
n ) required

in (18).

Remark. It is worthy to provide an alternative geometric
interpretation of the KKT-based solution(22). First, z − z̃
is the projection ofz onto the affine setS. Second, if the
projection is inside the setNi, which meansdT

i (z− z̃) ≥ 0,
then the projection ofz onto the intersectionS ∩ Ni is
z− z̃. If the projection is outside of the setNi, implying that
dT
i (z− z̃) < 0, a move∆z inside the affine setS should

be added toz− z̃ to reach the setNi. This move∆z should
ensure three constraints: 1)∆z keeps the pointz − z̃ + ∆z
inside the affine setS, 2) z− z̃+∆z is on the boundary of the
setNi, and 3) the Euclidean norm of∆z is minimal. The first
constraint, which can be formulated asbT∆z = 0, is ensured
by imposing a move of the form∆z = Pw whereP = VVT

is the projector onto the subspaceS0 orthogonal tob. The
second constraint is fulfilled whendT

i (z− z̃+∆z) = 0,
leading todT

i Pw = −δi, whereδi = dT
i (z− z̃). Thus, due

to the third constraint,w can be defined as

w = argmin
v
‖Pv‖22 s.t. dT

i Pw = −δi. (25)

Using the fact thatP is an idempotent matrix, i.e.,P2 = P,
the constrained optimization problem can be solved analyti-
cally with the method of Lagrange multipliers, leading to

w = −δi
(
dT
i Pdi

)−1
di (26)

and ∆z = Pw = −δi
(
dT
i Pdi

)−1
Pdi. This final result is

consistent with the move defined in(22) and (23) by setting
τi = max{0,− δi

‖Pdi‖2
} and si = Pdi/‖Pdi‖2. Recall that

‖Pdi‖22 =
(
dT
i Pdi

)
sincePTP = P.
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