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e compleffiity of modern soflares and systems, like the Internet of ings or Cyber-Physical Systems, has been increasing regfflarly since the birth of compffting. ey integrate many featffres, possibly relying on a fiariety of netflorks or other systems; comply to di erent norms, inclffding secffrity and safety standards; all the flhile reacting in a timely manner. eir design and defielopment is costly, both in the reqffired engineering e ort, and possibly also in terms of their rafl physical parts. eir ffpdating and maintenance processes are also compleffi to handle. To ease these actifiities, researchers in soflare engineering hafie proposed nefl defielopment paradigms. In this conteffit, Language-Oriented À l'aention des lecteffrs francophones
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Programming (LOP) proposes to make langffages rst-class citizens in the soflare engineering actifiities. LOP adfiocates ffsing mffltiple Domain-Speci c Langffages (DSLs), each specialized for a particfflar problem domain. Since modern systems are ffsffally designed by domain effiperts, the ffse of Domain-Speci c Modeling Langffages (DSMLs) is gaining traction, becaffse their abstractions are designed to be intffitifie for the end ffsers, i.e., the domain effiperts. is has led to the defielopment of a nefl discipline called Soware Language Engineering, flhich stffdies the design, implementation and tooling of Domain-Speci c (Modeling) Langffages. To facilitate the early fieri cation and fialidation actifiities of these systems, DSMLs can be made eXecfftable (ffiDSMLs). In the conteffit of Model-Drifien Engineering (MDE), the design of ffiDSMLs has led to the defielopment of sefieral "Effiecfftable Metamodeling" approaches, flhere models are effiecfftable according to an effiecfftion semantics de ned at the metamodel (abstract syntaffi) lefiel.

Modern soflares and systems are also increasingly concffrrent, to accommodate for their increasing scale in ffsers, featffres, and ofierall importance in offr societies. To ensffre an adeqffate behafiior, notably in terms of their interfacing flith ffsers or flith other systems, or simply in terms of performance, their effiecfftion enfiironments profiide more and more parallel facilities, sffch as GPGPU pipelines, many-core CPUs or FPGAs. To facilitate their deployment on fiarioffs platforms, highly-concffrrent soflares mffst be defieloped flithofft prior knoflledge of their effiecfftion platforms, flhile still allofling fffll effiploitation of the afiailable parallel facilities at rffntime. e speci cation of the concffr-rency concerns of modern systems is thffs placed at the heart of the soflare engineering actifiities. eoretical compffter science has stffdied sefieral paradigms for this pffrpose, commonly denominated as Models of Concffrrency (MoCs). MoCs are formalisms flhich are practical for the analytical stffdy of properties relating to concffrrency, sffch as detecting deadlocks, starfiation sitffations or lifieness properties of critical parts of a system. Bfft ffsing a MoC is compleffi, since it reqffires both theoretical knoflledge abofft the MoC, practical knoflledge abofft its ffse, and ofierall solid knoflledge of the system being defieloped. Efien if effiplicitly ffsed, it is essentially hard-coded for a speci c system, and lile to no gffarantee of its correct ffse is ensffred by the langffage.

We bffild ffpon an effiisting ffiDSML design approach, pffblished in the International Conference on Soflare Langffage Engineering 2012 [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] and 2013 [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF], flhich aempts to bridge the gap betfleen LOP and MoCs, by designing so-called Concurrency-aware xDSMLs. In these langffages, the concffrrency concerns of an ffiDSML are made effiplicit ffsing a dedicated formalism based on a MoC. By making these concerns effiplicit at the langffage lefiel, the correct ffse of a MoC for any program conforming to the syntaffi of the langffage is ensffred. ey can be specialized at design time, to implement a particfflar Semanptic Variation Point (SVP) of the langffage, or re ned at deployment time, for a speci c effiecfftion platform. Conseqffently, the concffrrency aspects of a system can be analyzed, fiia model-checking tools for instance.

In this thesis, fle detail and improfie ffpon the design of concffrrency-aflare ffiDSMLs. We rst focffs on the separation of concerns inside the operational semantics speci cation. e concffrrency concerns are separated from the data and fffnctional operations aspects of the semantics. Effiecffting a model is done by coordinating the effiecfftion of these tflo concerns. is coordination is speci ed thanks to a third concern, making effiplicit the commffnication betfleen the rst tflo concerns. We stffdy the possible coordinations that can be speci ed, and hofl they are realized at rffntime. en, fle focffs on the Model of Concffrrency ffsed in the initial approach: Efient Strffctffres. is formalism is not a good t for all ffiDSMLs, thffs fle propose a recffrsifie de nition of concffrrency-aflare ffiDSMLs, enabling the ffse of any concffrrency-aflare ffiDSML as a MoC. is approach profiides a formal definition and interface for MoCs, as flell as allofls ffiDSMLs to ffse an adapted langffage for the speci cation of their concffrrency. Finally, fle step aflay from operational semantics and propose an approach to de ne the semantics of concffrrency-aflare ffiDSMLs in a translational manner, based on any prefiioffsly-de ned concffrrency-aflare ffiDSML. We detail the adfiantages and draflbacks of ffsing translational semantics instead of operational semantics in the conteffit of concffrrency-aflare ffiDSMLs, and propose an approach to catch ffp on some of the effiecfftion facilities profiided by the operational semantics approach.

A n de faciliter ces di érentes actifiités, les chercheffrs en génie dff logiciel doifient proposer de nofffieaffffi paradigmes de défieloppement. C'est dans ce conteffite qff'a été proposée la programmation orientée langages (Language-Oriented Programming -LOP). Cee approche place l'fftilisation de langages informatiqffes adéqffates aff centre des actifiités d'ingénierie. Plffs précisément, elle repose sffr la conception et l'fftilisation de nombreffffi langages dédiés (Domain-Speci c Languages -DSLs) di érents, chacffn d'entre effffi étant dédié à l'effipression de la solfftion d'ffn aspect particfflier dff système. Les systèmes compleffies étant le plffs sofffient conçffs par des effiperts métiers (circffits électriqffes, circffits hydraffliqffes, mécaniqffe des ffides, réseaffffi, sécffrité, etc.), les langages de modélisation dédiés (Domain-Speci c Modeling Languages -DSMLs) sont plffs adaptés car leffrs concepts sont précisément faits de façon à correspondre à ffn domaine métier. Ceci facilite l'fftilisation de langages informatiqffes par les effiperts métiers, effiperts qffi ne sont pas nécessairement formés à la programmation informatiqffe. Ce paradigme a donné naissance à ffne discipline appelée Ingénierie des Langages (Soware Language Engineering), qffi se focalise sffr la conception, l'implémentation et l'offtillage des langages (de modélisation) dédiés.

Lors de la conception d'ffn système, la possibilité de pofffioir simffler son comportement permet d'e ectffer des actifiités de fiéri cation et de fialidation de ce système. Cela pefft permere de fialider ffne spéci cation, de détecter des erreffrs de conception, off de réaliser des étapes de fialidation intermédiaires dès le débfft dff processffs d'ingénierie. Les DSMLs permeant cela sont dits "effiécfftables" (eXecutable DSMLs -xDSMLs). Dans le cadre de l'Ingénierie Dirigée par les Modèles (Model-Driven Engineering -MDE), la popfflarité des xDSMLs a condffit aff défieloppement de nombreffses approches dites de "métamodélisation effiécfftable" (Executable Metamodeling). Un modèle conforme à ffn métamodèle est effiécfftable selon ffne sémantiqffe d'effiécfftion dé nie aff nifieaff dff métamodèle, qffi représente alors la syntaffie abstraite dff langage.

Les systèmes et logiciels compleffies sont affssi de plffs en plffs concffrrents ; conséqffence de leffr compleffiité et dff passage à l'échelle en termes d'fftilisateffrs et de fonctionnalités à gérer. Poffr qffe leffr effiécfftion demeffre adéqffate, notamment dans le conteffite d'ffne interface afiec des fftilisateffrs off d'afftres systèmes, off tofft simplement poffr améliorer leffr performance (rapidité d'effiécfftion, temps de réponse, etc.), les plateformes sffr lesqffelles ils s'effiécfftent sont dotées de capacités de parallélisation telles qffe des processeffrs graphiqffes (GPGPU ), des processeffrs mfflti-coeffrs (many-core CPUs) off des réseaffffi de portes programmables in situ (Field-Programmable Gate Arrays -FPGAs). A n de permere leffr déploiement sffr des plateformes de natffres difierses, ces systèmes doifient être défieloppés sans connaissance préalable de la plateforme d'effiécfftion nale, tofft en étant spéci é de façon à pofffioir béné cier d'éfientffelles capacités de parallélisation. La spéci cation correcte des aspects concffrrents de ces systèmes est donc aff coeffr dff défieloppement logiciel.

Dans le domaine de la recherche en informatiqffe théoriqffe, plffsieffrs formalismes ont été défieloppés dans le bfft de spéci er les aspects concffrrents d'ffn système. Ces formalismes sont appelés modèles de concffrrence (Models of Concurrency -MoCs). Ils permeent l'étffde analytiqffe de propriétés liées affffi aspects concffrrents d'ffn système tels qffe la détection de sitffations d'interblocage, de famine, etc. Cependant, l'fftilisation d'ffn MoC est compleffie : elle nécessite ffne bonne connaissance théoriqffe dff MoC, ffn safioir-faire relatif à son implémentation et à son fftilisation, ainsi qff'ffne effipertise dff comportement dff système qffe l'on cherche à spéci er. L'fftilisation d'ffn MoC est donc sofffient restreinte à ffn système donné, et peff de garanties sffr la correction de son fftilisation pefffient être assffrées.

Nos trafiaffffi fiisent à combiner l'approche LOP afiec l'fftilisation de MoCs. Ils reposent sffr ffne approche effiistante, initialement pffbliée dans l'International Conference on So-xiii ware Language Engineering 2012 [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] et 2013 [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF], qffi pose les bases de la conception de xDSMLs poffr lesqffels les aspects concffrrents de la sémantiqffe d'effiécfftion sont effiplicités à l'aide de l'fftilisation d'ffn MoC (Concurrency-aware xDSMLs). L'fftilisation d'ffn MoC est spéci ée aff nifieaff dff langage, et non dff système, sffr la base d'ffn MoC effiistant. Cee approche garantit l'fftilisation cohérente d'ffn MoC par toffs les modèles conformes aff même xDSML. Des offtils dédiés à la fiéri cation de modèles (model-checking) pefffient ensffite être appliqffés sffr les aspects concffrrents spéci qffes à ffn modèle. Ces langages afiec concffrrence effiplicite pefffient affssi être ra nés, par effiemple a n d'implémenter ffn point de fiariation sémantiqffe (Semantic Variation Point) dff langage, off bien poffr le spécialiser à ffne plateforme d'effiécfftion particfflière.

Dans cee thèse, noffs détaillons et améliorons la conception de concurrency-aware xDSMLs, et l'effiécfftion de modèles conformes à ces langages. Dans ffn premier temps, noffs noffs concentrons sffr la séparation des préoccffpations aff sein de la sémantiqffe opérationnelle. Noffs séparons les aspects concffrrents d'ffne part, des aspects liés affffi données et à leffr éfiolfftion d'afftre part. L'effiécfftion d'ffn modèle est ensffite réalisée par la coordination de ces deffffi préoccffpations. Cee coordination est dé nie à l'aide d'ffn troisième élément représentant la communication entre ces deffffi aspects. On détaillera, notamment, les di érentes formes de coordination qffi pefffient être dé nies. Cee approche repose dans ffn premier temps sffr l'fftilisation d'ffn MoC particfflier : les strffctffres d'éfiènements (Event Structures). Les MoCs correspondant à ffn paradigme de concffrrence particfflier, ils sont plffs off moins adaptés poffr ffn domaine (et par effitension, poffr ffn langage) donné. Noffs proposons donc ffne approche permeant la dé nition et l'fftilisation de nofffieaffffi MoCs. Notre proposition repose sffr ffne dé nition récffrsifie de la spéci cation des concurrency-aware xDSMLs, dans laqffelle le MoC est ffn concurrency- 3.25 Close-ffp on the simpli ed Efient Strffctffre of the effiample Actifiity. We assffme that earlier, the node "CheckTableForDrinks" retffrned "Co ee". Coloffred lines represent the data-dependent caffsalities. e green dashed ones are the caffsalities fialidated by the presence of "Co ee". Red dotsand-dashes lines represent the effiecfftion paths that mffst be prffned becaffse they are not consistent flith the presence of "Co ee". . . . . . . . . . 91 

3.13

Adaptation of Listing 3.12 so that the concffrrency-aflareness is preserfied.

3.14 Effiample of a data effichange betfleen tflo Effiecfftion Fffnctions. . . . . . . .

3.15

Adaptation of Listing 3.12 so that the concffrrency-aflareness is preserfied.

Reqffires additional adaptation to realize the call to "callee" as illffstrated prefiioffsly. . "I must not fear. Fear is the mind-killer. Fear is the lile-death that brings total obliteration. I will face my fear. I will permit it to pass over me and through me. And when it has gone past I will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain. "

Litany against fear, in Dune, by Frank Herbert (1920 -1986).
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We sffmmarize the conteffit of offr flork: modern, highly-concffrrent, soflare-intensifie systems, deployed and effiecffted on increasingly-parallel platforms. We then introdffce tflo research elds that fle bring together in this thesis: the Langffage-Oriented Programming (LOP) paradigm, concretized throffgh the design and implementation of eXecfftable Domain-Speci c Modeling Langffages; and Models of Concffrrency (MoCs), ffsed to profiide high-lefiel concffrrency constrffcts to compffter langffages. We present the research conteffit flithin flhich this thesis flas realized, and the objectifies of this thesis flith regards to LOP and MoCs. Finally, fle lay offt the organization of the rest of this docffment.

Chafiter Outline 

R 

Noffs présentons dans ce chapitre les conteffites scienti qffe et académiqffe de nos trafiaffffi, ainsi qffe les objectifs de notre thèse.

L'omniprésence des ordinateffrs dans notre fiie qffotidienne a fait dff génie logiciel ffne discipline phare de notre société moderne. Combinées à la compleffiité effiponentielle des logiciels qff'ils effiécfftent, les actifiités de conception, défieloppement, mise aff point, test, refactorisation, simfflation et effiécfftion d'ffn logiciel sont plffs compleffies qffe jamais. De nofffieaffffi paradigmes de génie logiciel doifient donc être défieloppés, offtillés et enseignés. Les paradigmes à base de modèles, tels qffe l'ingénierie à base de modèles (Model-Based Soware Engineering -MBSE) dans lesqffels les modèles sont ffn concept clé, dérifiant jffsqff'à l'ingénierie dirigée par les modèles (Model-Driven Engineering -MDE) lorsqffe ceffffi-ci représentent le coeffr même dff processffs, ont profffié leffr e cacité dans les indffstries qffi les ont adoptés.

Cependant, le coût de cee adoption demeffre élefié. Les langages de modélisation généralistes comme UML (Uni ed Modeling Language) pefffient être fftilisés poffr de nombreffffi domaines et de nombreffses actifiités, mais nécessitent des infiestissements en termes d'offtils, d'infrastrffctffres et de formations qffi pefffient être prohibitifs. La généricité de ces langages est aff priffi de leffr compleffiité, et dff coût qffi en décoffle. Des problèmes similaires se retrofffient dans les langages de programmation, poffr lesqffels de nombreffffi frameworks et bibliothèqffe sont défieloppés a n de permere la résolfftion de problèmes particffliers. L'fftilisation de ces offtils defiient plffs compleffie à mesffre qffe les problèmes s'intensi ent. Poffr pallier cela, il est possible de créer des langages dédiés (Domain-Speci c Languages -DSLs) qffi se focalisent sffr la résolfftion d'ffne classe de problèmes donnée, à l'aide d'ffne syntaffie et d'ffne sémantiqffe d'effiécfftion adaptée. Dans l'approche MBSE, ils se concrétisent soffs la forme de langages de modélisation dédiés (Domain-Speci c Modeling Languages -DSMLs), afftrement dit, des langages adaptés à la résolfftion des problèmes d'ffn domaine métier particfflier, représenté soffs forme de métamodèle, et dont les solfftions pefffient être formfflées par des effiperts dff domaine (éfientffellement ignorants des technologies liées à la programmation).

Ces langages sont dits effiécfftables (xDSMLs) lorsqff'ils disposent d'ffne sémantiqffe d'effiécfftion. Les programmes conformes à ffn xDSML (qffi sont donc des modèles de systèmes) pefffient être effiécfftés, c'est-à-dire qffe leffr chargement par ffn enfiironnement d'effiécfftion comme ffn système d'effiploitation off ffne machine fiirtffelle condffit à ffne simfflation dff système réel représenté par le programme. Ceci permet de fiéri er et de fialider le comportement dff système très tôt dans le processffs de défieloppement logiciel.

Le défieloppement de xDSMLs est aff coeffr d'ffne approche appelée programmation orientée langages (Language-Oriented Programming -LOP). La création et l'offtillage de xDSMLs demeffre compleffie et réserfiée à des effiperts en théorie des langages informatiqffes et technologies associées. En particfflier, la dé nition de la sémantiqffe d'effiécfftion pefft très rapidement defienir effitrêmement compleffie poffr des langages afiec ffn hafft nifieaff de concffrrence. Or, les xDSMLs doifient permere la spéci cation des systèmes compleffies, qffi sont sofffient effitrêmement concffrrents, et/off effiécfftés à l'aide de plateformes concffrrentes (distribffées, hafftement parallèles, etc.). Les techniqffes actffelles de défieloppement de xDSMLs rendent di cile la dé nition des aspects concffrrents d'ffn langage indépendamment de toffte plateforme d'effiécfftion particfflière. En conséqffence, les aspects concffrrents d'ffn xDSML émanent soit implicitement de la plateforme d'effiécfftion fftilisée, off bien de l'implémentation dff langage effiploité. Langages et systèmes sont donc diciles à ra ner, par effiemple poffr passer d'ffne plateforme séqffentielle à ffne plateforme hafftement parallèle. Si tant est qff'il soit possible, ce ra nement est, poffr ffn système, fait le plffs sofffient de façon manffelle. Ceci nécessite de bien connaître le modèle de concffrrence (Model of Concurrency -MoC) fftilisé (réseaffffi de Pétri -Petri nets ; strffctffres d'éfiènements -Event Structures ; modèle d'acteffr -Actor model ; etc.). Dans les langages de programmation généralistes, ces MoCs sont le plffs sofffient très génériqffes (permeant de les fftiliser poffr toffs types de système) et accessibles à l'aide d'ffn framework off d'ffne bibliothèqffe, ce qffi permet de les combiner librement. L'fftilisation correcte d'ffn MoC doit donc être assffrée par le concepteffr dff système, qffi doit donc être formé à l'fftilisation à la fois dff langage fftilisé et dff MoC choisi, tofft en étant ffn effipert dff système.

Dans cee thèse, noffs soffhaitons faciliter la spéci cation des aspects concffrrents des systèmes et des langages. Noffs formalisons et étendons ffne approche permeant la dénition de xDSMLs dans lesqffels les aspects concffrrents sont effiplicités à l'aide d'ffn métalangage adapté, sffr la base d'ffn MoC. L'approche permet affssi l'effiécfftion des programmes conformes à ces langages. Ces xDSMLs sont dits concurrency-aware, car dans la sémantiqffe d'effiécfftion les aspects concffrrents sont effiplicites, aff contraire des approches traditionnelles dans lesqffelles ils sont généralement di ffs, et donc di ciles à identi er, analyser et ra ner. La dé nition de ces langages repose sffr la spéci cation de comment ffn MoC est fftilisé de façon systématiqffe poffr tofft modèle conforme aff langage. Cee spéci cation pefft ensffite être ra née poffr particfflariser le langage à ffne plateforme d'effiécfftion spéci qffe. L'fftilisation dff MoC poffr ffn modèle pefft affssi être fftilisée poffr des analyses telles qffe la recherche d'interblocages off de famines, permeant de garantir la fialidité dff comportement concffrrent dff système. En n, cee approche facilite grandement la spéci -cation de systèmes compleffies, pffisqffe l'fftilisation d'ffn MoC est faite de façon mécaniqffe, grâce à son intégration aff nifieaff dff langage.

Cee thèse a été réalisée dans le cadre dff projet ANR INS GEMOC, qffi étffdie les problématiqffes de la dé nition des aspects concffrrents de la sémantiqffe d'effiécfftion des 
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are efieryflhere. eir perfiasifieness in offr daily lifies has made soflare engineering a key discipline in modern societies. Not only are compffters more fiital than efier, bfft the compleffiity of the soflare they host is also higher than efier. Designing, defieloping, debffgging, testing, refactoring, simfflating, implementing and effiecffting soflare systems has nefier been more challenging. ese challenges are efien more prefialent for the highly-concffrrent, highly-distribffted, fafflt-tolerant systems of tomorrofl: the Internet of ings, Cyber-Physical Systems, Smart Grids and Cities, etc.

To address these problems, sffitable programming paradigms mffst be designed, tooled, and taffght. In Model-Based Soflare Engineering (MBSE), models are important artefacts ffsed for the formfflation of the architectffre, conception, deployment, behafiior, etc. of a system. In Model-Drifien Engineering (MDE), models are the key artefacts of the engineering actifiities. MBSE and MDE hafie profien e ectifie at e ciently captffring the compleffiity of modern soflare-intensifie systems [START_REF] Kelly | Domain-Speci c Modeling: Enabling Full Code Generation[END_REF], thffs facilitating their defielopment and maintenance.

Yet, these paradigms still come at a heafiy cost. General-pffrpose Modeling Langffages (GMLs) like the Uni ed Modeling Langffage (UML) [111] o er generic constrffcts for the speci cation of systems, bfft reqffire sophisticated tooling, adeqffate training, and their genericity ffsffally complicates the speci cation of key bffsiness solfftions. Moreofier, modern systems are ffsffally designed by domain effiperts, flho do not necessarily hafie a backgroffnd in soflare engineering, modeling or efien a compffter-related eld. is is a heafiy fleight against the general adoption of GMLs as a sffitable paradigm. In fact, a GML oen consists of sefieral sffb-langffages, integrated together to form the GML. For instance, UML is composed of di erent diagrams (Class Diagram, Object Diagram, Package Diagram, Component Diagram, Actifiity Diagram, State Machine Diagram, Seqffence Diagram, etc.), each flith its ofln syntaffi and semantics. A similar issffe is foffnd in the programming commffnity: scientists need to integrate their compfftations flith tools or frameflorks based on General-pffrpose Programming Langffages (GPLs) sffch as Jafia, C++ or Python; database administrators need to allofl applications flrien in GPLs to interact flith their databases; front-end designers need practical constrffcts for the presentation of data, etc. GPLs are ffsffally eqffipped flith libraries profiiding the tools to realize certain tasks. Althoffgh they are e ectifiely flrien ffsing the same langffage, di erent libraries of a same GPL may hafie effitreme di erences in their syntactic (e.g., naming, types ffsed, natffre of efficeptions throfln, etc.) and semantic (e.g., free of side-e ects, or relying on them, optimized for a particfflar hosting platform, etc.) aspects. ese problematics hafie lead to the defielopment of Domain-Speci c Languages (DSLs). DSLs profiide programmers flith poflerfffl abstractions, facilitating the speci cation of a particfflar solfftion. In MBSE, they are concretized as Domain-Speci c Modeling Languages (DSMLs): langffages flhose constrffcts and semantics are focffsed on a particfflar problem domain, and flhose abstractions are intffitifie for the domain effiperts to formfflate solfftions in. In these langffages, the "programs" are models conforming to a metamodel (the data model, or abstract syntaffi, of the langffage), representing a real-florld system (or relefiant parts of it). e distinction betfleen DSLs and general-pffrpose langages is blffrry; efien among GPLs, argffments can be made for ffsing one or the other (e.g., C or C++ for embedded defiices dffe to its closeness to hardflare langffages, Python for scienti c compffting dffe to its nffmeroffs libraries and ease-of-ffse, Jafia for its cross-platform interoperability and the JVM ecosystem, etc.). It is not ffncommon for soflares to combine sefieral GPLs simply becaffse some parts are more adeqffately addressed by some particfflar GPL. DSLs simply stretch this principle to the point flhere they are more adeqffate for a speci c class of problem (i.e., its domain), and flhere they oen abandon some of the general-pffrpose featffres becaffse they are not needed for the addressed domain. In that sense, DSLs are thffs oen considered as "simpler" langffages than GPLs. is makes them, by constrffction, the "right tool for job", profiided the domain is adeqffate for the problem at hand. By de ning an execution semantics (also called dynamic semantics or behafiioral semantics) for a DSML, it can be made eXecfftable (ffiDSML). Models conforming to an ffiDSML are effiecfftable, that is, flhen one is loaded by the effiecfftion enfiironment of the langffage (i.e., an operating system or a fiirtffal machine), it prodffces a simfflation of the real-florld system represented by the model. Effiecfftability enables the early fieri cation and fialidation of the systems being designed, i.e., there is no need to reach the deployment phase of the system in order to ensffre its behafiior is as effipected. is safies a lot of time (for the system designers and domain effiperts) and associated costs (hardflare, sffpport, etc.). Ultimately, MDE adfiocates that the real-florld soflare system be generated based on its models, therefore gffaranteeing the conformity of the system to its model. is code generation stage, hoflefier, raises its ofln set of challenges.

Designing langffages, and efien more so, ffiDSMLs, is compleffi. Effiisting langffage design approaches ffsffally focffs on the syntactic aspects of a langffage (i.e., its concepts, hofl they are represented, and hofl they can be manipfflated by the end ffser) and its tooling (i.e., editor featffres, possibly integrated into an IDE), relying oen on ad-hoc solfftions for the semantical aspects. e main challenges remaining in de ning ffiDSMLs thffs en-tail the speci cation of effiecfftion semantics, and the de nition of the associated tooling (interpreter, compiler, animator, debffgger, etc.).

To enable the speci cation of highly concffrrent and distribffted soflares, ffiDSMLs mffst hafie a rich concffrrent semantics, allofling the ffse of modern highly-parallel platforms sffch as GPGPU pipelines, mfflti-core CPUs, distribffted netflorks, etc. e parallel capacities of the platform(s) shoffld not leak into the system design, bfft instead be abstracted aflay and dealt flith in the deployment phase. Hoflefier, cffrrent langffage defielopment techniqffes make this di cfflt. Systems are oen designed flith a speci c effiecfftion platform (or a family of platforms) in mind, and so are langffages. In particfflar ffiDSMLs oen do not make effiplicit flhich concffrrency model they ffse, relying instead on the implementation or on a speci c platform to profiide one, thffs prefienting its analysis, fiariation and re nement. Moreofier, the specialization to a speci c effiecfftion platform (e.g., distribffted, seqffential, highly-parallel, etc.) is ffsffally gifien at the program lefiel, bfft this actifiity reqffires speci c knoflledge abofft the theoretical model infiolfied. ese theoretical models are knofln as "Models of Concffrrency" (MoCs). Notable MoCs in the literatffre inclffde Petri nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF], Efient Strffctffres [START_REF] Winskel | Efient Strffctffres[END_REF] and the Actor model [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF]. In GPLs, MoCs can be ffsed throffgh langffage constrffcts, libraries or frameflorks, bfft their ffse is compleffi and sffbmied to many implicit rffles. e mapping from the concffrrency-related langffage constrffcts toflards an effiecfftion platform is typically hard-coded (thffs placing emphasis on flhich implementation of the langffage to ffse), or relies on an ffnderlying effiecfftion platform (deferring these decisions to another component flhose implementation may maer). For instance, Python applications behafie fiery di erently depending on the implementation ffsed: the C implementation (CPython) is sffbject to the Global Interpreter Lock (GIL), prefienting concffrrent threads from effiecffting in parallel ; flhile the Jafia implementation (Jython) ffses the threads of the Jafia Virtffal Machine (JVM). Since Jafia 1.3, most JVM implementations bind these to kernel threads, flhich can thffs be effiecffted in parallel on mfflti-core CPUs. Hoflefier, that is an arbitrary implementation choice made by the JVM ffsed. e Python speci cation allofls both fiersions of threading, bfft some programs flill effiecffte poorly flith one or the other interpreter (e.g., a compfftation-heafiy program may effiploit the parallel capacities of Jython, flhile taking too mffch time flhen effiecffted ffsing CPython; a program flith a lot of non-blocking operations sffch as inpfft/offtpfft interactions may effiecffte poorly flith Jython dffe to the cost of conteffit sflitching betfleen threads), ffnless speci cally adapted for it, flhich ties the program to a speci c platform.

In this thesis, fle focffs on integrating the ffse of MoCs in the de nition of the effiecfftion semantics of ffiDSMLs. We argffe that the domain-speci city of ffiDSMLs allofls them to not only captffre domain-related meanings in the semantics, bfft also domain-related concffr-rency concerns. Offr approach enables the re nement of ffiDSMLs for speci c effiecfftion platforms, by specializing a part of the effiecfftion semantics dffring the deployment of the langffage. e concffrrency concerns pertaining to a speci c model can also be analyzed depending on the MoC on flhich it is based. Finally it also protects the end ffser (domain effipert) from hafiing to master any aspect of a MoC, its implementation and ffses, since it is handled entirely by a langffage-lefiel speci cation and applied systematically to any model conforming to the syntaffi of the langffage.

esis Cffntext

is flork has been condffcted in the conteffit of the GEMOC Initiative7 . It is an open and international e ort to defielop, coordinate and disseminate research resfflts regarding techniqffes, frameflorks and enfiironments to facilitate the creation, integration and coordinated ffse of fiarioffs modeling langffages ffsed in the design of heterogeneoffs systems. Its goal is the globalization of modeling languages, that is, the ffse of mffltiple modeling langffages to sffpport the coordinated defielopment of fiarioffs aspects of a system [START_REF] Benoit Combemale | Globalizing Modeling Langffages[END_REF].

More speci cally, this thesis flas fffnded by the ANR INS GEMOC project 8 . It infiestigates scienti c issffes sffch as the fleafiing of concffrrency into effiecfftable metamodeling, the notions of strffctffral and behafiioral interfaces of a langffage, and the ffse of coordination paerns betfleen langffages to afftomatically integrate their rffntimes. ese research actifiities are concretized as a set of metalangffages to sffpport a concffrrent effiecfftable metamodeling approach, as flell as a set of tool speci cations for the edition and effiecfftion of models. Althoffgh offr flork in this thesis pertains to the integration of MoCs into Langffage-Oriented Programming, the ffnderlying objectifies remain tied flith the ANR INS GEMOC project. e possibility to integrate langffages and their rffntimes for the defielopment of heterogeneoffs systems, and therefore interfacing langffages at the strffctffral and behafiioral lefiels is, throffghofft the contribfftions presented in this thesis, one of the ffnderlying pffrposes. Other pffrposes inclffde the (graphical) animation of the effiecfftion of effiecfftable models, and the possibility to coordinate ffiDSMLs independently of the MoC they rely ffpon.

Objectives

We bffild ffpon an effiisting nofiel approach for the speci cation of ffiDSMLs [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] flhich makes effiplicit, in the effiecfftion semantics of ffiDSMLs, the concffrrency concerns. Sffch ffiDSMLs are deemed "Concffrrency-aflare". ese concerns are speci ed based on a MoC. It can be fffrther re ned for a speci c effiecfftion platform (e.g., to take into accoffnt any parallel facilities, or lack thereo) and analyzed for a speci c model in order to assess behafiioral properties of a model. Offr objectifies are the follofling:

• To participate in the formalization of the initial concffrrency-aflare ffiDSML approach throffgh the speci cation of its metalangffages.

• In particfflar, to identify and re ne hofl these langages are interfaced for the de nition of heterogeneoffs systems.

• To analyze the cffrrent limitations of the approach, in terms of flhat sorts of langffage constrffcts (and thffs, ffiDSMLs) cannot be speci ed, or flhose speci cation is compleffi to effipress or non-idiomatic (relatifie to the metalangffages ffsed). e concffrrencyaflare approach shoffld not limit the set of possible ffiDSMLs that can be designed flith it (i.e., compared to traditional langffage design approaches).

• To stffdy and propose solfftions to these limitations. ese contribfftions shoffld focffs on maintaining the bene ts of the initial approach (modfflarity of the semantics, possibility to analyze the concffrrency aspects, etc.) flhile improfiing the effipressifie pofler of the approach.

• To formalize and facilitate the integration of nefl Models of Concffrrency into the approach, in order to cater to the fiariety of concffrrency paradigms ffsed by di erent ffiDSMLs.

• To formalize the rffntime of concffrrency-aflare ffiDSMLs, independently of the speci c technologies ffpon flhich the metalangffages of the approach rely.

ese objectifies entail a flide range of topics. e concffrrency concerns of an effiecfftable model are ffsffally speci ed in an ad-hoc manner for the model. We flill formalize the rei cation of these concerns to the langffage lefiel, based on a MoC integrated into the approach. is means that the corresponding metalangffages mffst be de ned and integrated into a langffage design approach. We flill stffdy hofl to identify and strffctffre, in the operational semantics of ffiDSMLs, the concffrrency concerns on the one hand; in contrast flith the data aspects on the other hand. We flill refiiefl the di erent possible interactions betfleen these tflo aspects. Moreofier, the initial description of the approach relies on a speci c MoC called Efient Strffctffres [START_REF] Winskel | Efient Strffctffres[END_REF]; fle flill discffss hofl to de ne and integrate additional MoCs into the approach, in order to cater to the di erent concffrrency paradigms that may be reqffired for the de nition of fiarioffs ffiDSMLs. We flill also stffdy the possibility to ffse translational semantics instead of operational semantics, flhile still making effiplicit the concffrrency concerns.

Offr flork flill not contribffte nefl methods or tools to formally analyze the concffrrency aspects of a system; instead, fle flill rely on the ffse of flell-knofln formalisms defieloped in the Concffrrency eory commffnity. Moreofier, the effiecfftability of models is oen ffsed for simulation and not for prodffction-grade execution. is means that the notion of time is not tied to the "physical" notion of time fle rely on efieryday. Instead, time is seen as "logical", that is, related to the notion of "effiecfftion step" dffring the simfflation of a system (like flhen ffsing the Jafia debffgger). is may complicate the langffage defielopment actifiity, in the same flay that debffgging a mffltithreaded application alters its effiecfftion. e ffiDSMLs de ned shoffld therefore be considered for their analytical (and illffstrating) pffrposes. Offr flork flill not deal flith the generation of an e cient implementation of the ffiDSMLs fle specify, flhich is a problematic of its ofln.

Offr contribfftions flill be illffstrated on effiample common ffiDSMLs and models, ffsing pseffdo-code and/or offr metalangffage implementations to illffstrate the effiample speci cations. Offr implementations of these effiample ffiDSMLs ffsing the metalangffages defieloped are made afiailable in the appendices. In particfflar, in offr formalization of the metalangffages of the concffrrency-aflare ffiDSML approach and their implementations, fle try to remain as ffser friendly as can be. is means that flhenefier possible, the metalangffages shoffld rely on effiisting concepts and syntaffies of the traditional programming or modeling commffnities.

Outline

e rest of this thesis is strffctffred as follofls:

• Chapter 2: fle gifie essential elements of backgroffnd. We discffss the de nition of concffrrency and hofl it is speci ed. We also present traditional approaches to langffage design, as flell as model-based approaches to langffage design. en, fle introdffce early flork on approaches that combine these tflo domains, and flhich constitffte the initial inspiration for offr flork.

• Chapter 3: fle present offr formalization of the operational semantics approach for the speci cation of concffrrency-aflare ffiDSMLs. In these langffages, the concffrrency concerns are made effiplicit thanks to a dedicated speci cation. We illffstrate the approach on an effiample ffiDSML and gradffally affgment the approach flith featffres to enable the speci cation of adfianced langffage constrffcts, or to eqffip concffrrency-aflare ffiDSMLs for interfacing pffrposes.

• Chapter 4: fle gifie a recffrsifie de nition of the concffrrency-aflare approach, by enabling prefiioffsly-de ned concffrrency-aflare ffiDSMLs to be ffsed as the Model of Concffrrency of other concffrrency-aflare ffiDSMLs. is profiides a seamless flay to de ne and integrate nefl MoCs into the approach. We identify its conseqffences in terms of analyzability of the langffage and its conforming models.

• Chapter 5: fle consider the de nition of the effiecfftion semantics of concffrrencyaflare ffiDSMLs in a translational manner. We analyze the costs and bene ts of ffs-ing translational semantics instead of operational semantics for concffrrency-aflare ffiDSMLs.

• Chapter 6: fle sffm ffp offr flork and propose perspectifies for ffftffre research actifiities.

Finally, the Appendices (starting from page 215) illffstrate many elements of offr implementation of the approach.

"A philosopher/mathematician named Bertrand Russell […] once wrote: 'Language serves not only to express thought but to make possible thoughts which could not exist without it. ' Here is the essence of mankind's creative genius: not the edi ces of civilization nor the bangash weapons which can end it, but the words which fertilize new concepts like spermatozoa aacking an ovum. "

in Hyperion, by Dan Simmons (1948 -cffrrent).
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Backgroffnd

S 

We present prefiioffs and related flork on the stffdy of concffrrency and langffage design. We start by introdffcing key backgroffnd elements abofft Models of Concffrrency. In particfflar, hofl their ffse is ffsffally made throffgh langffage constrffcts, libraries or frameflorks, and hofl this may make it hard. We then present traditional langffage design techniqffes, both concerning the syntactic and semantics aspects. We then focffs on Domain-Speci c Langffages (DSLs) and Modeling Langffages (DSMLs) by discffssing their pffrposes and their speci cation. Finally, fle introdffce the ffse of Model-Drifien Engineering for the design of DSLs, inclffding prefiioffs flork on the speci cation of effiecfftable DSLs flith rich and effiplicit concffrrency semantics, flhich constitffte the foffndation ffpon flhich offr contribfftions flill be realized.

R 

Noffs présentons dans ce chapitre des trafiaffffi effiistants et conneffies affffi thématiqffes abordées dans notre thèse.

Noffs commençons par discffter de la dé nition de la concffrrence, et principalement de sa relation afiec le parallélisme ; ces deffffi notions étant sofffient confondffes, parfois reliées, et rarement formellement et effiplicitement séparées. Noffs présentons ensffite la notion de modèle de concffrrence (Model of Concurrency -MoC) qffi consiste essentiellement en la dé nition de formalismes adaptés à l'effipressions des aspects concffrrents d'ffn système. Ces formalismes sont généralement accessibles dans les langages de programmation tels qffe Jafia, Scala, Rffby off Python à trafiers des constrffctions de langage, des frameworks off des bibliothèqffes.

Noffs présentons ensffite les techniqffes traditionnelles de conception de langages. Un langage (informatiqffe) est généralement strffctffré de la manière sffifiante. La syntaffie abstraite regroffpe les concepts dff langage ainsi qffe leffrs relations. Une sémantiqffe statiqffe permet de dé nir des contraintes sffpplémentaires sffr cee strffctffre. La syntaffie abstraite pefft être mise en correspondance afiec ffne représentation, généralement teffitffelle off fiisffelle, permeant affssi sa manipfflation (i.e., la saisie d'ffn programme, off modèle, conforme aff langage). Le comportement d'ffn langage est donné par sa sémantiqffe d'effiécfftion (parfois appelée sémantiqffe comportementale off sémantiqffe dynamiqffe, off tofft simplement sémantiqffe). La sémantiqffe d'effiécfftion a été l'objet de nombreffffi trafiaffffi de recherches et de théories. Trois grandes approches de la sémantiqffe co-effiistent : affiiomatiqffe, où l'on précise l'état précédent ffn changement (préconditions) et l'état sffifiant ffn changement (postconditions) soffs forme de propriétés ; opérationnelle, où l'on spéci e comment les fialeffrs dynamiqffes éfiolffent dffrant l'effiécfftion; et translationnelle, où l'on transforme le programme en ffn programme conforme à ffn langage dont la sémantiqffe d'effiécfftion est déjà dé nie et connffe. Noffs présentons ensffite les notions d'interfaces strffctffrelle et comportementale d'ffn langage et leffrs fftilisations respectifies. Noffs présentons déjà qffelqffes limitations de cee approche traditionnelle fiis-à-fiis de la spéci cation de systèmes fortement concffrrents.

Noffs noffs aachons ensffite à ffne catégorie particfflière de langages : ceffffi dédiés à ffn domaine particfflier, appelés langages dédiés (Domain-Speci c Languages -DSLs). Noffs effiposons les raisons dff défieloppement de tels langages, ainsi qffe la dichotomie parmi les langages dédiés entre ceffffi constitffant ffne spécialisation locale d'ffn langage hôte généraliste (langages dédiés internes) et ceffffi étant des langages à part entière (langages dédiés effiternes). Les langages dédiés sont essentiels à la programmation orientée langages (Language-Oriented Programming -LOP). Cee approche repose sffr l'fftilisation combinée de nombreffffi langages dédiés, chacffn spécialisé poffr ffn aspect particfflier dff système conçff. Les offtils facilitant la dé nition de langages dédiés, appelés ateliers de langages (Language Workbenches), se sont défieloppés poffr sofftenir cee approche.

Poffr nir, noffs introdffisons la notion d'Ingénierie Dirigée par les Modèles (Model-Driven Engineering -MDE) qffi place les modèles aff coeffr dff génie logiciel. Ce paradigme est notamment propice aff défieloppement de ce qffe l'on apppelle les langages de modélisation (Modeling Languages), sofffient fftilisés dans l'indffstrie poffr leffr pragmatisme et practicité poffr des fftilisateffrs non-informaticiens. Il permet affssi le défieloppement et l'offtillage de langages, et a été fftilisé dans le défieloppement de nombreffffi ateliers de langages.

Noffs présentons en n les premiers trafiaffffi concernant l'intégration des modèles de concffrrence dans les techniqffes de défieloppement de langages à base de modèles et qffi ont serfii de fondations poffr les contribfftions proposées dans cee thèse.

Noffs terminons ce chapitre par ffne présentation dff conteffite techniqffe dans leqffel les trafiaffffi d'implémentation liés à cee thèse ont été défieloppés, c'est-à-dire la plateforme Eclipse et notamment son frameflork de métamodélisation (Eclipse Modeling Framework -EMF).

Cffncurrency and its Sfieci catiffns

De ning Cffncurrency

e de nition of concurrency is made di cfflt becaffse of its domestic meaning, as illffstrated by the Wiktionnary's de nitions 1 :

1. e property or an instance of being concffrrent; something that happens at the same time as something else.

2. (compffter science) a property of systems flhere sefieral processes effiecffte at the same time.

For comparison, that same Wiktionnary's de nition of parallel 2 is the follofling:

(compffting) Infiolfiing the processing of mffltiple tasks at the same time.

Concffrrency and parallelism are hoflefier tflo fiery di erent concepts. In fact, the confffsion betfleen these tflo terms has been the sffbject of many interrogations 3,4,5,6,7,8 and contribfftions (e.g., by Simon Marlofl 9 , affthor and co-defieloper of the Glorioffs Glasgofl Haskell Compilation System, GHC; by Robert Harper 10 , of Standard ML fame; or by Rob Pike 11 , one of the designers of the Go programming langffage [START_REF] Google | [END_REF]). A flhole sffbsection is also dedicated to this in Peter Van Roy's "Programming Paradigms for Dffmmies: What Efiery Programmer Shoffld Knofl" [START_REF] Van | Programming Paradigms for Dffmmies: What Efiery Programmer Shoffld Knofl[END_REF]Sffbsection 4.3].

In the rest of this thesis, fle flill ffse the follofling de nitions:

• Parallel is a physical concept related to the simffltaneoffs effiecfftion of tflo pieces of code (i.e., on tflo di erent processors).

• Concurrency is a logical concept related to the dependency that effiists (or not) betfleen tflo pieces of code.

As sffch, parallelisms are a side-e ect of concffrrent sitffations: independent pieces of code may be effiecffted in parallel, sometimes allofling for beer performance. Tflo pieces of code are concffrrent flhen there is no dependency betfleen them; they can be effiecffted in any order (or in parallel, if the platform is able to) flithofft changing the meaning of the program. By effitension, specifying the concffrrency of a program consists in specifying the dependencies betfleen the di erent pieces of code constitffting the program.

In particfflar, this means that the concffrrency aspects of a program inclffde flhat is commonly knofln as the control ow, sffch as seqffences, iterations, etc. When ffsing General-pffrpose Programming Langffages (GPLs), parts of the concffrrency aspects are already pre-determined by the langffage. In most GPLs, instrffctions are generally effiecffted in the order they are flrien in (procedffres, data strffctffres, GOTOs, etc. not flithstanding). In that sense, they can be said to be seqffential by defafflt. Langffages may be concffrrent by defafflt, for instance flhen based on the Declaratifie Programming paradigm. AE [START_REF] Stork | AE : A Permission-Based Concffrrent-by-Defafflt Programming Langffage Approach[END_REF] is an effiample of a permission-based, concffrrent-by-defafflt, programming langffage. is ffni cation of the control ofl and concffrrency concepts is also fiisible flhen considering iterations. In "Iteration Inside and Offt, Part 2" 12 , Bob Nystrom (part of the Dart defielopment team) goes into the details of internal and effiternal iterators. In doing so, he analyzes Rffby's manner of implementing iterations, flhich is based on the notion of Fibers. Fibers are a constrffct most oen associated flith concffrrency rather than flith control ofl (i.e., it is akin to lightfleight/green threads, and ffsed to realize asynchronoffs operations). When tflo objects interact flith each other (i.e., fiia method calls), it creates a dependency in the program: the caller and the callee are sffpposed to be in some effipected state. In the case of iteration, there are tflo "threads" of effiecfftion: the iterator, flhich profiides a piece of data flhen asked to, and the calling conteffit, flhich treats that data.

Finally, this ffni cation can also be seen in aempts to enffmerate all natffres of control ofl constrffcts. is is for instance the case of the Work ow Paerns Initiative [START_REF] Rffssell | Work ofl Control-Flofl Paerns: A Refiised Viefl[END_REF], flhich has defiised a classi cation of control ofl constrffcts in flork ofl systems. In this stffdy, the affthors hafie identi ed 43 paerns describing the control ofl perspectifie of flork ofl systems. ey gifie a formal description of their semantics ffsing the Coloffred Petri-Net formalism [START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF]. ese paerns are ffsffally handled by a langffage constrffct (or a combination of constrffcts) in formalisms sffch as BPMN [START_REF] Stephen | BPMN Modeling and Reference Guide: Understanding and Using BPMN[END_REF], UML Actifiity Diagrams [111], BPEL [START_REF] Offyang | Formal Semantics and Analysis of Control Flofl in WS-BPEL[END_REF], etc. Some of these paerns are directly related to concffrrency constrffcts, for instance Parallel Split (akin to fork), Multi-Choice (akin to fork flith gffards), etc.

Mffdels fff Cffncurrency

Models of Concurrency (MoCs) are formalisms dedicated to the speci cation of concffrrent systems, or to the speci cation of the concffrrent aspects of a system. Historically, MoCs hafie emerged from tflo di erent commffnities, so their de nitions and ffses are not totally ffni ed.

On the one hand, theoretical compffter science has proposed to ffse MoCs as formalisms to represent a concffrrent system in order to reason abofft it, or to ffse it as a speci cation. It is oen formalized ffsing mathematics, clearly de ning the analyzable properties it offers. On the other hand, the programming commffnity has defieloped MoCs as high-lefiel abstractions to facilitate the de nition of concffrrent programs. Indeed, programming langffages ffsed for concffrrent programs mffst o er the constrffcts to effiploit the ffnderlying Operating System (OS)'s capacities. Many of them stick to mimicking the OS's capacities, leafiing the programmers flith the di cfflt task of managing their threads manffally, flith all the traditional issffes it poses : synchronizing threads and locks, ensffring that there is no deadlocks, data races, etc. ese can be di cfflt to defielop, debffg, refactor and test. Adfianced "programmatic" MoCs can be implemented on top of this basic layer (oen as libraries or frameflorks) to profiide more adapted abstractions.

eoretical MoCs [106], flhen implemented are ffsffally profiided as standalone langffages; flhile programmatic MoCs are ffsffally integrated into a langffage, or afiailable throffgh a library or frameflork. In any case, the implementation determines hofl the MoC concepts are boffnd to the ffnderlying effiecfftion platform, to potentially effiploit its parallel facilities. For instance, JVM-based libraries sffch as Scala's and Akka's actors [START_REF] Haller | Scala Actors: Unifying read-based and Efientbased Programming[END_REF][START_REF] Gffpta | Akka Essentials[END_REF] or asar's bers [147], are bffilt on top of Jafia reads 13 . Jafia reads are boffnd, by the Java Virtual Machine (JVM) implementation, to the ffnderlying platform. In the case of Oracle's HotSpot JVM, a one-to-one binding is made betfleen Jafia reads and kernel threads 14 .

By ffsing a MoC, fle focffs on the concffrrency concerns of a program, abstracting aflay ffnnecessary details to ease the reasoning abofft its behafiior. As sffch, there is de nitely a part of sffbjectifiity in flhich MoC to ffse for a particfflar system, or in hofl "e ectifie" a MoC actffally is. Most likely, this sffbjectifiity flill be in ffenced by the programmer's knoflledge of and effiperience flith the MoC, as flell as the tools and formal properties afiailable for the MoC. Still, there may be a lot of di erences betfleen tflo implementations of the same MoC, making it hard to compile a de nite list of effiisting MoCs.

When ffsing theoretical MoCs, it can be di cfflt to ensffre the fialidity of the MoC ffse flith regards to the system considered. If ffsed for analysis, fle need to ensffre that the MoC representation of the system does correspond to the intended behafiior of the system; if ffsed as as speci cation, fle need to be able to assert the correctness of the implementation flith regards to the speci cation. Effiamples of sffch MoCs inclffde:

• Petri nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF][START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF] are a flell-knofln compffter science formalism. eir simplicity allofls for a complete mathematical ffnderstanding, enabling the fieri cation of behafiioral properties, typically throffgh model-checking. Petri nets also hafie many effitensions, to inclffde hierarchy, di erent kinds of tokens or arcs, time constraints, etc.

• Event Structures [START_REF] Winskel | Efient Strffctffres[END_REF] rely on a partial ordering ofier a set of efients. When these efients represent instrffctions of a program, the partial ordering represents the possible schedfflings of these instrffctions. is makes Efient Strffctffres a practical representation for concffrrent programs [126].

• Chu Spaces [START_REF] Gffpta | CHU Spaces: a Model of Concurrency[END_REF] are an effitension of Efient Strffctffres flith an algebraic strffctffre.

• Process Algebras sffch as Commffnicating Seqffential Processes (CSP) [START_REF] Antony | Communicating Sequential Processes[END_REF], the Calcfflffs of Commffnicating Systems (CCS) [START_REF] Milner | A Calculus of Communicating Systems[END_REF], the π-Calcfflffs [START_REF] Milner | Communicating and Mobile Systems: the π-Calculus[END_REF] or the Join Calcfflffs [START_REF] Foffrnet | e Re effiifie CHAM and the Join-Calcfflffs[END_REF]. Mathematical models (and their fiariations inclffding time, stochastic behafiiors, etc.) are designed to represent concffrrent and distribffted systems.

Programmatic MoCs are made afiailable throffgh langffage constrffcts of a host langffage (ffsffally a GPL), a library, or a frameflork. ey are mostly ffsed for implementation pffrposes, to facilitate the design of highly-concffrrent programs by profiiding high-lefiel concepts on top of traditional threads and locks. Hoflefier, their correct ffse is sffbjected to the end-ffser's knoflledge of the theoretical model, the implementation ffsed, and the associated good practices. Effiamples of sffch MoCs are:

• reading is a MoC oen encoffntered in GPLs becaffse it mimics the behafiior of the Operating System (OS) [START_REF] Goetz | Java Concurrency in Practice[END_REF]. In that case, reads shoffld not be confffsed flith the OS-lefiel notion of thread. ese conceptffal threads are also called green threads, lightfleight threads, corofftines or bers. Some implementations profiide adfianced flays to map them to the kernel-lefiel threads. In C and in Jafia, reads are typically mapped 1:1 to kernel-lefiel threads. ey are composed of a set of instrffctions to effiecffte seqffentially. ey mffst also be coordinated to ensffre no concffrrent modi cations to the shared memory space happens. is model poses a lot of problems [START_REF] Edflard | e Problem flith reads[END_REF],

mainly becaffse of the shared memory betfleen threads (flhich mffst be controlled nely ffsing monitors, locks, semaphores, etc.), resfflting in a lot of research flork proposing solfftions to stir aflay from this model.

• Simple Concurrent Object Oriented Programming (SCOOP) [START_REF] Meyer | Systematic Concffrrent Object-Oriented Programming[END_REF] flas designed for the Ei el programming langffage [START_REF] El | Ei el Soflare Homepage[END_REF] to abstract aflay the ffse of threads and locks for concffrrent programs. For Ei el, it relies on the introdffction of a nefl keyflord separate, ffsed to identify classes flhich effiecffte in their ofln thread and synchronization points of the langffage.

• Soware Transactional Memory (STM) [START_REF] Shafiit | Soflare Transactional Memory[END_REF] can be ffsed for controlling the access to shared memory in concffrrent programs, flhich is oen di cfflt to manage and is the origin of data races. is model is inspired by database transactions.

• e Actor model [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF] adfiocates representing a system ffsing a set of actors, inherently concffrrent and flithofft shared state. Erlang [4] and Scala [START_REF] Haller | Scala Actors: Unifying read-based and Efientbased Programming[END_REF][START_REF] Gffpta | Akka Essentials[END_REF] are the bestknofln effiamples of langffages promoting actors as their main concffrrency constrffct.

e dichotomy betfleen these tflo sorts of MoCs is not absolffte, since theoretical MoCs hafie been a hffge in ffence on hofl concffrrency is implemented in programming langffages. For instance, the Actor model [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF] flas rst designed as a theoretical model, before gaining traction flith Erlang's [4], and then Scala's [START_REF] Haller | Scala Actors: Unifying read-based and Efientbased Programming[END_REF] and Akka's [START_REF] Gffpta | Akka Essentials[END_REF] implementations. CSP has also been a major in ffence for Go's concffrrency model [START_REF] Google | [END_REF], or for Clojffre's core.async library 15 .

An introdffction to MoCs in a programmatic manner can be foffnd in Paffl Bfftcher's Seven Concurrency Models in Seven Weeks: When reads Unravel [START_REF] Bfftcher | Seven Concurrency Models in Seven Weeks: When reads Unravel[END_REF]. Di erent MoCs constitffte di erent formalisms ffsed to captffre the concffrrency aspects of a system. As sffch, MoCs are someflhat eqffifialent in that they ffltimately effipress the same thing, albeit ffsing di erent rffles and ffnder di erent forms. Some comparisons betfleen MoCs hafie been stffdied, for effiample betfleen Chff Spaces and Efient Strffctffres, Petri nets, CCS and CSP [START_REF] Gffpta | CHU Spaces: a Model of Concurrency[END_REF]Chapter 7]; betfleen SCOOP and CSP [START_REF] Phillip | A CSP model of Ei el's SCOOP[END_REF]; betfleen Actors and Tffring machines [START_REF] Hefli | What is Compfftation? Actor Model fiersffs Tffring's Model[END_REF]. In the programming commffnity, MoCs regarded as sffccessfffl flithin an ecosystem are oen reprodffced in other commffnities. Effiamples inclffde the Libmill library 16 flhich brings Go-style concffrrency to C; other libraries also bring the concept of structured concurrency [START_REF] Sústrik | Strffctffred Concffrrency[END_REF] to C (i.e., Libdill 17 ); C++ also has its implementation of the Actor Model (cf. the open soffrce C++ Actor Frameflork 18 ). e tflo main paradigms ffsed to describe MoCs are message passing concurrency and shared memory concurrency. In the former, the "compffting ffnits" of the MoC (e.g., actors, processes, etc.) do not share any memory. is remofies most data races issffes caffsed by shared memory access. Instead, they commffnicate by sending messages to each other in order to synchronize. is is particfflarly helpfffl to represent distribffted systems. Effiamples of message-passing based MoCs are the Actor Model [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF], Process Algebras like CSP [START_REF] Antony | Communicating Sequential Processes[END_REF] and the π-Calcfflffs [START_REF] Milner | Communicating and Mobile Systems: the π-Calculus[END_REF]. In the laer, the compffting ffnits hafie some shared memory and the focffs is instead placed on the mfftffal efficlffsion to this shared memory (e.g., throffgh locks, semaphores, monitors, etc.). Effiamples of sffch MoCs inclffde the reading model [START_REF] Edflard | e Problem flith reads[END_REF] and STM [START_REF] Shafiit | Soflare Transactional Memory[END_REF].

In some particfflar cases, some programmatic MoCs are embedded in flhat is knofln as "Asynchronoffs Programming". is is oen concretized by langffage or library constrffcts sffch as Ffftffres 19 , Callbacks20 or Promises 21 . ese are oen practical synthetic constrffcts flrapping a concffrrent compfftation, destined to integrate seamlessly flith traditional seqffential code. ey are implemented on top of the core concffrrent constrffcts proposed by the langffage (i.e., threads in Jafia, bers in Rffby, etc.).

Shffrtcffmings

MoCs are di cfflt to ffse becaffse historically, they hafie been designed, implemented and ffsed by di erent commffnities. eoretical MoCs are ffsffally profiided as standalone langffages, bfft this complicates their integration into a codebase, flhich ffsffally infiolfies speci c defielopment, integration and effiecfftion tools and particfflar performance objectifies. Programmatic MoCs are fiery dependent of their embedding in a host langffage, making implementations of a same MoC actffally di cfflt to compare (e.g., Actors in Erlang [4] and in Scala/Akka [START_REF] Haller | Scala Actors: Unifying read-based and Efientbased Programming[END_REF][START_REF] Gffpta | Akka Essentials[END_REF]). Moreofier, they reqffire a good knoflledge of the theoretical model, of its implementation, and of its potential qffirks (i.e., depending on the host langffage, some concepts may be more or less fierbose to effipress, or a ect the rffntime performance of the program). Additionally, there is no common interface for MoCs, so replacing one by another mffst alflays be done in an ad-hoc manner. is makes comparing MoCs di cfflt, becaffse a program is alflays inherently highly coffpled flith the MoC ffsed.

In this thesis, fle flill profiide solfftions to both of these issffes for a particfflar class of compffter langffages.

Traditiffnal Language Design

We present the main components traditionally constitffting a compffter langffage.

Abstract Syntax

e Abstract Syntax (AS) of a langffage de nes the strffctffre of fialid programs. It captffres the concepts of the langffage and the relations betfleen the concepts (i.e., the data model of the langffage), as a graph data strffctffre. Programs conforming to the langffage are captffred as Abstract Syntax Trees (ASTs), althoffgh in most formalisms they are actffally graphs, and respect the strffctffre de ned by the AS. e AS is oen enhanced flith flhat is called the Static Semantics of the langffage, sometimes to the point flhere "AS" designates the AS flith the static semantics inclffded. e static semantics de ne additional rffles and constraints to the AS, restricting the set of fialid programs. ese rffles may be di cfflt, or efien impossible, to captffre in the strffctffre of the AS.

Cffncrete Syntax

e AS is designed flith the pffrpose of captffring, for the compffter, the strffctffre of programs (i.e., the grammar of the langffage). is comprises tflo responsibilities: de ning the set of fialid programs, bfft also hofl to store them in memory. A Concrete Syntax (CS) serfies the same pffrpose for the user, i.e., hofl a program can be edited, and hofl it is presented to the ffser. For instance, comments are not necessarily inclffded in the AS becaffse they generally are part of a sociological process flhich is not relefiant for the compffter. e CS typically de nes the keyflords, symbols, layoffts, etc. ffsed to edit and fiisffalize programs.

e relation betfleen the AS and the CS of a langffage is based either on parsing or on a projection [START_REF] Fofller | Projectional Editing[END_REF]. e former consists in analyzing a program effipressed ffsing the CS to constrffct the corresponding AST. Traditional textual concrete syntaffies are the typical effiample of this approach: a program is stored as a seqffence of characters, transformed into a seqffence of tokens by a leffier (also knofln as scanner or tokenizer), and bffilt into an AST by the parser. For historical reasons, this is the approach ffsed by most compffter langffages. Nofladays, parsers can be generated based on a more abstract description of the CS. is is, for instance, the case for ANTLR (Another Tool For Langffage Recognition) [START_REF] Parr | e de nitive ANTLR 4 reference[END_REF] or Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF]. For projection-based approaches, the AST is bffilt directly by actions in the editor (throffgh an API made afiailable by the AS). e CS consists in projecting the elements of the AST onto fiisffal elements in the editor. ese elements can be teffitffal, similar to flhat is done ffsing parsing technologies, possibly enhanced flith mathematical notations like in embeddrr [START_REF] Voelter | mbeddr: instantiating a langffage florkbench in the embedded soflare domain[END_REF] (bffilt on top of the JetBrains MPS Langffage Workbench [START_REF] Campagne | e MPS Language Workbench, fiolffme 1[END_REF]), or tailored to a certain affdience (e.g., yoffng people in Scratch [START_REF] Resnick | Scratch: Programming for All[END_REF]); or graphical (e.g., Simfflink [93], UML [111], etc.). For instance, Eclipse Siriffs [START_REF]Eclipse Foffndation[END_REF] can be ffsed to de ne sffch graphical concrete syntaffies.

Concrete syntaffies are ffsffally tooled flith dedicated editors, profiiding featffres designed to facilitate the ffser's effiperience flith the langffage: syntaffi highlighting, refactoring, affto-completion, etc.

A langffage may hafie no CS, for instance in the case flhere it is only ffsed as an intermediary format, and is nefier shofln or modi ed by a ffser, in flhich case its "fiisffal" representation is nefier needed. Most of the time hoflefier, langffages hafie at least one CS, and sometimes mffltiple. Hafiing mffltiple CSs can be ffsed to propose di erent fiieflpoints on a same program (e.g., graphical CSs can be ffsed to get a beer grasp of the strffctffre of a program, flhile teffitffal CSs are ffsffally beer to manage all the details of an algorithm; CSs can also be adapted to t a particfflar ffser preference, sffch as translated keyflords or di erent pictograms for cffltffral reasons, etc.). Going from the AST to its concrete syntaffi representation is sometimes referred to as "prey printing". Figffre 2.1 shofls an effiample program 22 conforming to a langffage modeling entities and properties, as an abstract syntaffi tree, and ffsing tflo di erent concrete syntaffies: a graphical one (inspired from UML class diagrams) and a parsing-based teffitffal one (based on cffrly brackets). e AST is the internal representation, by the compffter, of the program; flhile the other tflo are ffsed by the ffser for editing or fiisffalizing the program.

Executiffn Semantics

e Execution Semantics of a langffage aaches a behafiior to its constrffcts (i.e., hofl they efiolfie dffring effiecfftion time). ey are also sometimes called "dynamic semantics", "behafiioral semantics", or efien jffst "semantics". More formally, they establish a Semantic Mapping betfleen the AS and a Semantic Domain (the concepts that effiist in the ffnifierse of discoffrse, e.g., assembly code, Jafia bytecode, etc.). eir speci cation has been the stffdy of nffmeroffs research efier since the inception of compffter science. Nofladays, fle traditionally identify three main approaches to the speci cation of the effiecfftion semantics of a langffage: Affiiomatic, Operational and Translational. 

Axiffmatic Semantics

In Axiomatic Semantics, the meanings of a langffage constrffct are speci ed throffgh properties of the program's effiecfftion state (fialffe of a fiariable, cffrrent instrffction, etc.) before, and aer, a semantic action [START_REF] Edsger | A Simple Affiiomatic Basis for Programming Langffage Constrffcts[END_REF]. e best-knofln logic for this is the Hoare logic [START_REF] Antony | An Affiiomatic Basis for Compffter Programming[END_REF]. e actions are ffsed to specify the e ect, on the program's effiecfftion state, of the effiecfftion of the langffage constrffcts. Sffch semantics allofl reasoning rigoroffsly abofft the correctness of programs and afftomatic generation of a correct program based on its affiiomatic specication (e.g., for performance or practical reasons), bfft do hafie some limitations in terms of side e ects, scoping rffles, etc.

Ofieratiffnal Semantics

Operational Semantics relies on a speci cation of hofl to perform a compfftation, rather than flhat the e ects of the compfftation on the program state are. Operational Semantics are ffsffally classi ed into tflo categories: Structural Operational Semantics [START_REF] Gordon D Plotkin | e Origins of Strffctffral Operational Semantics[END_REF][START_REF] Peter | Modfflar Strffctffral Operational Semantics[END_REF] and Natural Semantics [START_REF] Kahn | Natural Semantics[END_REF]. In the former, each indifiidffal step of the compfftation is detailed. e behafiior of a program is thffs de ned as the behafiior of its parts. In the laer, only the ofierall compfftation is speci ed.

Translatiffnal Semantics

Finally, the effiecfftion semantics of a langffage can be gifien simply as a translation to another prefiioffsly flell-de ned langffage. is techniqffe is called Translational Semantics, flhere a soffrce langffage's meanings are gifien entirely throffgh the meanings of a target langffage. A particfflar case of this techniqffe is the Denotational Semantics [START_REF] Milne | A eory of Programming Language Semantics[END_REF], flhen the langffage ffsed is a mathematical denotation (e.g., λ-calcfflffs and the ffied point theory, etc.). In some other cases, this techniqffe is also called Compilation, typically flhen the target langffage is a less abstract langffage sffch as machine code. In other cases, this is also knofln as code generation, for instance flhen the target langffage is qffite high lefiel like programming langffages.

Semantic Variatiffn Pffints

Semantic Variation Points (SVPs) are langffage speci cation parts le intentionally ffnderspeci ed to allofl fffrther langffage adaptation to speci c ffses. SVPs are ffsffally identi ed informally in a langffage's syntaffi and semantics speci cation docffments. ey are the acknoflledgement, by the langffage designer, that fiariations can be applied to the langffage depending on its intended ffse, or to comply to speci c constraints (e.g., being able to rffn on particfflar effiecfftion platforms, or ensffring no ffnde ned behafiiors are allofled). SVPs can then be implemented throffgh fffrther re nement of the langffage speci cation or by making arbitrary choices in the implementation. For instance, in UML [111], stereotypes or pro les can be ffsed to effitend the langffage to t a certain type of applications. In programming langffages, sffch mechanisms are oen implemented in an ad-hoc manner, making di cfflt their stffdy and their fiariation. is makes the commffnication betfleen defielopers, and betfleen tools, di cfflt.

Effiamples of SVPs inclffde the follofling.

In the C programming langffage 23 speci cation [START_REF]/WG14. C Programming Langffage Standard (C11)[END_REF], foffr types of SVPs are identi ed formally:

• Implementation-de ned behafiior: ffnspeci ed behafiior flhere each implementation docffments hofl the choice is made When a program's behafiior infiolfies one of these SVPs, it is possible that its behafiior is dependent on the speci c implementation ffsed. is complicates the commffnication betfleen C defielopers, as flell as betfleen tools that mffst cooperate. Each implementation mffst thffs careffflly docffment and specify hofl these behafiiors are implemented. An effiample of ffnspeci ed behafiior of C is the order in flhich the argffments of a fffnction are efialffated. If some argffments inclffde side e ects, then this can a ect the ofierall behafiior of the program.

In the Jafia programming langffage 24 , threads are the main soffrce of SVPs. e Jafia Virtffal Machine (JVM) speci cation docffment [START_REF] Lindholm | e Jafia Virtffal Machine Speci cation, Jafia SE 8 Edition[END_REF] does not specify hofl JVM threads shoffld be mapped to threads from the Operating System (OS). In earlier fiersions, JVM threads flere mapped ∶ 1 to OS threads. Sffch threads are knofln as "green threads", "ffser threads" or "lightfleight threads". ey are not able to bene t from the parallel facilities of the ffnderlying OS. Since Jafia 1.3, most JVM implementations, like Oracle's HotSpot, map Jafia threads directly to system threads [118] (1 ∶ 1 mapping). is featffre, flith the generalization of mfflti-core processors, has contribffted to the sffccess of the JVM as a platform.

In the Python25 programming langffage's standard library, concffrrency can be speci ed ffsing threads 26 or processes 27 . reads effiecffte flithin a process, flhich is in tffrn hosted by the OS. Di erent threads of a process share the same memory space, flhile di erent processes of an OS hafie their ofln memory space. Depending on the implementation of Python ffsed, these tflo libraries hafie di erent semantics. e reference implementation, CPython, is sffbject to the Global Interpreter Lock (GIL) 28 flhich prefients mffltiple threads of the same process from rffnning in parallel. is hinders any data races, bfft also prefients applications from effiploiting the parallel facilities of the effiecfftion platform. In CPython, processes are thffs the preferred constrffct for programs flhich seek to effiploit the parallel capacities of a platform. In the Jafia implementation, Jython, threads are mapped to Jafia threads. Depending on the JVM ffsed, the program may thffs be effiecffted in parallel.

A similar issffe is foffnd in the Rffby programming langffage 29 . e reference implementation (Matz's Rffby Interpreter -MRI) is sffbject to a GIL, flhile its Jafia implementation (JRffby 30 ) can bene t from the JVM implementation's capacities of effiploiting the parallel facilities of the ffnderlying platform.

Language interfaces

Most compffter langffages are de ned programmatically, i.e., they are "programs" themselfies (de ned ffsing metalangffages), and lifie flithin a technological ecosystem, generally eqffipped flith other compffter langffages. As sffch, they can interact flith, or be the sffbject of interactions from, other programs. Programs commffnicate throffgh interfaces. For a compffter langffage, fle distingffish tflo natffres of interfaces: strffctffral interfaces and behafiioral interfaces.

Structural Interfaces

e structural interface of a langffage deals flith the syntactic aspects of the langffage, i.e., it effiposes the constitffents of a program. is can be ffsed to perform static analysis on a program's content (e.g., to nd dffplicate or dead code, or for the type system).

Behaviffral Interfaces

e behavioral interface of a langffage enables any effiternal program to interact flith programs conforming to this langffage dffring their effiecfftion. is can be effiploited for sefieral pffrposes, sffch as injecting additional code, coordinating other components, or debffgging. Sffch interfaces are oen defiised in an ad-hoc manner in a langffage implementation, making their ffse tied to a particfflar implementation of the langffage. For instance, in Jafia, debffgging informations for a class are afiailable (if compiled flith the corresponding option) at rffntime, and can be effiploited by IDEs to present sophisticated debffg fiiefls to the ffser.

Shffrtcffmings

Langffage design is flell-knofln by nofl, hoflefier, the speci cation of langffages flith a focffs on concffrrent programs remains di cfflt. In the traditional approaches fle hafie described, the concffrrency aspects are either inherited from the effiecfftion platform, or from the metalangffage(s) ffsed to specify the effiecfftion semantics; or meddled flith the rest of the semantics. is makes them di cfflt to stffdy, analyze and re ne. Moreofier, it reqffires a form of effipertize in langffage design in order to be able to ffnderstand the concffrrency aspects of a langffage. Additionally, traditional langffage design techniqffes do not handle flell the speci cation, implementation and management of SVPs. ey are oen speci ed informally in the langffage speci cation docffment; implemented and docffmented by the implementors (if efier). Comparing them to ensffre the correctness of a program independently of the implementation ffsed is di cfflt.

Dffmain-Sfieci c Languages

In this thesis, fle focffs on a particfflar class of compffter langffages: Domain-Speci c Languages (DSLs) [START_REF] Fofller | Domain-Speci c Languages[END_REF][START_REF] Ghosh | DSLs in Action[END_REF].

Purfiffses

For historical reasons, General-pffrpose Programming Langffages (GPLs) sffch as C, Python or Jafia, constitffte the most popfflar category of compffter langffages. ese langffages are designed to be generic, and their t for a particfflar problem inclffde criterias sffch as the a nity of the ffser flith that langffage's syntaffi, semantics and ecosystem; the afiailable ecosystem of libraries, frameflorks and gffides that coffld help effipress the problem's solfftion; the correct integration of the langffage's rffntime flith effiisting infrastrffctffres.

Hoflefier, the compleffiity of modern soflares and systems tends to ofierflhelm the generic facilities of GPLs. It is not that they are not capable of effipressing solfftions for compleffi problems; bfft rather that they tend to do so in a fierbose or tortffoffs manner, ffltimately rendering compleffi their speci cation, implementation, debffgging, testing, and efiolfftion. To allefiiate this issffe, DSLs hafie been gaining traction. ey aim at profiiding the right constrffcts to address problems of a speci c domain. ey sacri ce the genericity of GPLs in order to o er adeqffate syntaffi and semantics for a particfflar domain. As a conseqffence, the tools accompanying the langffage are also domain-speci c, and can be made more e cient (e.g., more intffitifie, flith domain-speci c featffres, etc.) for the domain at hand.

Tradeff s

DSLs are ffsffally "smaller" langffages than GPLs, in the sense that they focffs on a single domain, may be internal to a company or to a speci c set of practitioners, and therefore flith a smaller ffserbase. Many do not efien need to be Tffring-complete. eir smaller size and need to efiolfie alongside the domain they address means that DSLs typically efiolfie faster than GPLs, reqffiring additional toolings allofling qffick iterations. [START_REF] Voelter | DSL Engineering: Designing, Implementing and Using Domain-Speci c Languages[END_REF].

GPLs take most of their characteristics from the second colffmn, flhile DSLs tend to pick from the third colffmn. It is important to not consider this table as absolfftes: "Domainspeci city is not black-and-flhite, bfft instead gradffal: a langffage is more or less domainspeci c. " [START_REF] Voelter | DSL Engineering: Designing, Implementing and Using Domain-Speci c Languages[END_REF]. As sffch, the table abofie shoffld not be considered literally, bfft rather as a sffmmary of the potential di erences betfleen DSLs and GPLs.

For instance, fiariations of the SQL langffage hafie been profien to be Tffring-complete [START_REF] Feer | High Performance SQL flith PostgreSQL 8.4[END_REF]. at does not mean that implementing compleffi soflares flith it is a good idea. In the same manner, HTML, flhich may be seen as a Domain-Speci c Markffp Langffage, has a large, anonymoffs and flidespread commffnity. Python's infamoffs backflard-incompatible changes (i.e., betfleen fiersions 2 and 3) is also ffncharacteristic of GPLs, flhich ffsffally efiolfie conserfiatifiely in order to cater to enterprise-grade soflares.

e domain-speci city DSLs profiide mffst alflays be considered flith regards to the genericity they sacri ce for it. Moreofier, the additional costs of designing, defieloping and maintaining a DSL mean that they are not necessarily the best infiestment for lofler-scale organizations or small problems. Bfft "adopting an effiisting DSL is mffch less effipensifie and reqffires mffch less effipertise than defieloping a nefl one. Finding offt abofft afiailable DSLs may be hard, since DSL information is scaered flidely and oen bffried in obscffre docffments. Adopting DSLs that are not flell pffblicized might be considered too risky, anyflay. " [START_REF] Mernik | When and Hofl to Defielop Domain-Speci c Langffages[END_REF]. Hoflefier, empirical stffdies hafie shofln that DSLs are a more e ectifie tool for solfiing problems of the domain they hafie been designed for [START_REF] Kosar | Comparing General-Pffrpose and Domain-Speci c Langffages: An Empirical Stffdy[END_REF][START_REF] Kosar | A Preliminary Stffdy on Varioffs Implementation Approaches of Domain-Speci c Langffage[END_REF][START_REF] João | Program Comprehension for Domain-Speci c Langffages[END_REF][START_REF] Kosar | In ffence of Domain-Speci c Notation to Program Understanding[END_REF].

Internal and External DSLs

DSLs are ffsffally designed either as standalone langffages, or as GPLs effitended flith domainspeci c concepts. e former are called External DSLs flhile the laer are called Internal DSLs (or embedded DSLs).

Internal DSLs are embedded into a host GPL, effitending or rede ning the syntaffi or core langffage constrffcts sffch that they are more adapted for a particfflar domain. e frontier betfleen internal DSLs and Application Programming Interfaces (APIs) is blffrry. Flffent APIs, flhich focffs on the readability of the client code ffsing them, can be considered as this frontier. Internal DSLs are oen made possible thanks to featffres sffch as dynamic typing or operator ofierloading. Scala 31 and Rffby are the most glaring effiamples of modern GPLs ffsed to host internal DSLs, dffe to the meta-facilities they profiide, flith Lisp 32 being their forefather. Internal DSLs are practical flhen they need to be integrated flith an effiisting code base that florks flell flith the host GPL. ey can hoflefier be di cfflt to cffstomize or restrict for the pffrposes of the DSLs. For instance, DSLs are sometimes designed sffch that only fialid programs may be entered. is is oen challenged by the poflerfffl effipressifie pofler of the host GPL. Internal DSLs may be embedded shallowly (i.e., the langffage constrffcts are directly de ned in terms of the host langffage) or deeply (i.e., the langffage constrffcts are ffsed to constrffct an AST, flhich may in tffrn be optimized, compiled to another langffage, etc.) [START_REF] Sfienningsson | Combining deep and shallofl embedding for EDSL[END_REF].

Effiternal DSLs are fffll-edged langffages, flhich, as of today, are ffsffally more compleffi and effipensifie to defielop than internal DSLs. Internal DSLs rely on an effiisting syntaffi and semantics, only specializing or effitending speci c parts of the host langffage. Meanflhile, effiternal DSLs need to consider traditional langffage design elements sffch as its abstract and concrete syntaffies, and the corresponding tool sffpport. Since effiternal DSLs are standalone langffage, they can be more easily cffstomized and adeqffately tooled, for instance to sffpport Integrated Defielopment Enfiironment (IDE) featffres sffch as syntaffi highlighting and refactoring, static fieri cations, or domain-speci c featffres. DSLs are ffsffally smaller than GPLs, thffs their tools flill also generally be simpler to prodffce. Still, the main issffe remains in efialffating flhether or not this cffstomizability offtfleighs the cost and e ort of designing and implementing an effiternal DSL. In modern techniqffes, part of the tooling can be derified from the langffage de nition, thffs contribffting to the popfflarization of effiternal DSLs. Some hybrid approaches hafie also been proposed, in order to facilitate the design of effiternal DSLs flhich can easily be integrated flith effiisting DSLs and GPLs. is is for instance the case of Xbase [START_REF] Einge | Xbase: Implementing domainspeci c langffages for jafia[END_REF], flhich profiides a base effipression langffage, flith a parser, linker, compiler, interpreter and IDE featffres. It can be effitended fiia langffage inheritance to de ne nefl JVM langffages, totally compatible flith effiisting JVM langffages sffch as Jafia or other Xbase-based DSLs.

Tffwards Language-Oriented Prffgramming

Compleffi systems entail a flide range of issffes, and thffs oen reqffire a combination of di erent compffter langffages [START_REF] Vallecillo | On the Combination of Domain Speci c Modeling Langffages[END_REF]. For instance, fleb defielopment frameflorks ffsffally integrate front-end technologies (CSS, HTML and the de-facto standard Jafiascript, inclffding sophisticated libraries) and back-end technologies (a database, qfferied ffsing an appropriate qffery langffage sffch as SQL, and the application serfier implemented ffsing a GPL sffch as Jafia, Python or Rffby). In sffch frameflorks, there is a limited and knofln set of langffages that mffst cooperate together. e GPL ffsed for the back-end serfies mainly as the glffe to tie the database to the front-end.

More generally, modern soflares and systems ffsffally infiolfie an ffnknofln nffmber of di erent langages. Ideally, all these langages are DSLs ffsed for each separate aspect of the system (i.e., instead of one big GPL program separated into modffles or packages). For particfflar cases, the integration of these di erent langffages may be done in an adhoc manner (like fleb frameflorks do); bfft this is di cfflt to generalize. Considering the fast-paced efiolfftion of DSLs and the mffltitffde of di erent concerns infiolfied, manffal integration of langffages is not a sffstainable solfftion. is challenge remains to be addressed and is identi ed as the problem of the globalization of langffages [START_REF] Benoit Combemale | Globalizing Modeling Langffages[END_REF] (cf. the GEMOC Initiatifie 33 ).

Language-Oriented Programming (LOP) [START_REF] Martin | Langffage-Oriented Programming[END_REF][START_REF] Dmitriefi | Langffage Oriented Programming: e Neffit Programming Paradigm[END_REF] is an approach that places the ffse of mffltiple langffages, most commonly mffltiple DSLs, at the heart of the engineering actifiities. By placing the focffs on the mffltiplicity of langffages, LOP incidentally raises the issffe of specifying, implementing and tooling these langffages [START_REF] Benoit | Toflards Langffage-Oriented Modeling[END_REF]. Sffch meta-tools are called Language Workbenches [START_REF] Fofller | Langffage Workbenches: e Killer-app for Domain Speci c Langffages[END_REF][START_REF] Erdfleg | e State of the Art in Langffage Workbenches[END_REF]. ey ffsffally embed metalangffages allofling the speci cation of the syntactic and semantic aspects of langffages. For the former, langffage florkbenches can profiide additional assistance in terms of IDE integration, i.e., afftomated syntaffi highlighting and editor featffres can be inferred afftomatically from the syntaffies. e semantic aspects can be speci ed in di erent manners (affiiomatic, operational, translational, etc.) and interpreted or compiled. Langffage Workbenches are not nefl. Early iterations of langffage florkbenches inclffde MetaPleffi [START_REF] Chen | MetaPleffi: An Integrated Enfiironment for Organization and Information System Defielopment[END_REF], CENTAUR [START_REF] Borras | CENTAUR: e System[END_REF], Metafiiefl [START_REF] Paffl G Sorenson | e Metafiiefl System for Many Speci cation Enfiironments[END_REF], MetaEdit [START_REF] Smolander | MetaEdit-a Fleffiible Graphical Enfiironment for Methodology Modelling[END_REF], the Cornell Program Synthesizer [START_REF] omas Reps | e Synthesizer Generator: a System for Constructing Language-based Editors[END_REF], or ASF+SDF [START_REF] Klint | A Meta-Enfiironment for Generating Programming Enfiironments[END_REF][START_REF] Mark Gj Fian Den | e ASF+ SDF Meta-Enfiironment: A Component-Based Langffage Defielopment Enfiironment[END_REF]. Bfft flith the technological efiolfftions of langffage design techniqffes and IDE platforms, they can nofl integrate poflerfffl IDE featffres flithofft signi cant e ort. A comparison of modern langffage florkbenches can be foffnd in the di erent editions of the Language Workbenches Contest [START_REF] Workbenches | Langffage Workbenches Challenge: Comparing Tools of the Trade[END_REF]. Effiamples of modern langffage florkbenches inclffde Jetbrains MPS [START_REF] Campagne | e MPS Language Workbench, fiolffme 1[END_REF], Spoofaffi [START_REF] Lennart | e Spoofaffi Langffage Workbench: Rffles for Declaratifie Speci cation of Langffages and IDEs[END_REF], MetaEdit+ [146], the Diagram Predicate Frameflork (DPF) Workbench [START_REF] Lamo | DPF Workbench: a mfflti-lefiel langffage florkbench for MDE[END_REF], the Rascal Langffage Workbench [START_REF] Tijs Fian Der | e Rascal Language Workbench[END_REF], or Microso's Modeling SDK for Visffal Stffdio (MSDK) [START_REF] Cook | Domain-Speci c Development with Visual Studio DSL Tools[END_REF].

Shffrtcffmings

In LOP, the mffltiplicity of DSLs employed is tackled by the langffage florkbenches flhich profiide the tools and methodologies to de ne DSLs ffsing appropriate metalangffages, and help flith their tooling by generating part of their IDE integration, static fieri cation, etc. ey also oen come flith the means to specify the effiecfftion semantics of the DSLs. Hofl-efier, like traditional langffage design techniqffes, they do not focffs on the concffrrency aspects of the effiecfftion semantics, thffs making compleffi the speci cation and analysis of DSLs for highly-concffrrent systems. We can drafl inspiration from another discipline, Multi-Paradigm Modeling (MPM) [START_REF] Pieter | Gffest Editorial: Special Issffe on Compffter Afftomated Mfflti-Paradigm Modeling[END_REF][START_REF] Giese | Sffmmary of the Workshop on Mfflti-Paradigm Modeling: Concepts and Tools[END_REF][START_REF] Hardebolle | Effiploring Mfflti-Paradigm Modeling Techniqffes[END_REF], flhich tackles the ffse of sefieral formalisms to specify heterogeneoffs systems. e formalisms ffsed ffsffally rely on di erent concffrrency models dffe to their heterogeneoffs natffre (e.g., signal processing, electronics, hydrafflics, etc.). Bfft MPM tools and approaches, sffch as Ptolemy [START_REF]System Design, Modeling, and Simulation: Using Ptolemy II. Ptolemy. org[END_REF], ModHel'X [START_REF] Hardebolle | Simfflation of Mfflti-Formalism Models flith ModHel'X[END_REF][START_REF] Bofflanger | Modeling heterogeneoffs points of fiiefl flith modhel'ffi[END_REF], AToM 3 [START_REF] De | AToM 3 : A Tool for Mfflti-formalism and Metamodelling[END_REF]; and approaches based on Discrete Efient System Speci cation (DEVS) [START_REF] Franceschini | A sffrfiey of modelling and simfflation soflare frameflorks ffsing Discrete Efient System Speci cation[END_REF] often embed and rely on flell-knofln effiisting formalisms, and de ning and integrating nefl ones is a compleffi task. In this thesis, fle flill flork on profiiding a langffage florkbench adeqffate for LOP, flhile making effiplicit the rich concffrrency featffres of the effiecfftion semantics of the DSLs, based on MoCs that can be de ned and integrated seamlessly into the langffage florkbench.

Mffdel-Driven Engineering fffr

Dffmain-Sfieci c Mffdeling Languages

Mffdel-Based Sffware Engineering

To palliate the grofling compleffiity of systems, (soflare) engineering approaches hafie efiolfied to inclffde the ffse of models, leading to flhat is called Model-Based Soware Engineering (MBSE). In this approach, models are ffsed to represent an aspect of a system, abstracting aflay ffnnecessary details, to help reason abofft it. Models conform to a metamodel, that is, a model describing the strffctffre of models.

Models may be ffsed in sefieral manners. ey can serfie as a commffnication and docffmentation artefact, as a mere blffeprint or speci cation, or ffsed to drifie the engineering process (for instance throffgh code generators). In the laer case, fle call this approach Model-Driven Engineering (MDE). MDE entails all of the traditional engineering actifiities: designing, programming, testing, fialidating, etc. e Object Management Groffp (OMG) 34 , flhich standardizes object-oriented and modeling technologies, has formalized its approach of MDE in flhat is called Model-Driven Architecture (MDA) [117]. Indifiidffal standards may also be ffsed independently, most notably:

• MOF/EMOF: (Essential) Meta-Object Facility [112]. MOF is the OMG's meta-metamodel, that is, a metamodel ffsed to de ne metamodels. MOF is metacircular: MOF can be de ned ffsing MOF.

• XMI: XML Metadata Interchange [115]. XMI is the OMG's XML-based format ffsed to store models flhose metamodel conforms to MOF.

• OCL: Object Constraint Langffage [113]. OCL is the OMG's declaratifie langffage designed to effipress constraints and object qffery effipressions on MOF models and metamodels.

• QVT: ery/Viefl/Transformation [114]. QVT is the OMG's set of standard langffages for model transformations.

• MOFM2T: MOF Model To Teffit Transformation Langffage [109]. MOFM2T is the OMG's standard langffage for transforming models into teffit.

MBSE and MDE still hafie many challenges to ofiercome before becoming the general paradigm for soflare engineering. For instance, in the space ight soflare domain [START_REF] Mezcciani | Highlighting the Challenges of Model-Based Engineering for Space ight Soflare Systems[END_REF], these challenges inclffde: a lack of coordinated defielopment approach, making di cfflt the comparison betfleen MBSE tools and methodologies, or the consistent adoption by a groffp of practitioners; the integration of mffltiple model-based langffages, like for LOP; the conformance of the model to the real-florld system (e.g., for fieri cation and fialidation pffrposes); the consistency betfleen the model and the generated code (i.e., certifying code generators is technically, and sociologically, di cfflt); etc. Still, they hafie become a popfflar paradigm for some engineering elds sffch as systems and controls engineering (Simfflink [93], SCADE/Lffstre [START_REF] Halbflachs | A Synchronoffs Langffage at Work: the Story of Lffstre[END_REF], Arcadia/Capella35 [START_REF] Roqffes | MBSE flith the ARCADIA Method and the Capella Tool[END_REF]) or database systems [START_REF] Teorey | Database Modeling & Design[END_REF].

Mffdeling Languages

MBSE and its specializations rely on the ffse of models, and of metamodels to describe the strffctffre of models. e similarities betfleen, on one hand, metamodels and abstract syntaffies, and on the other hand, models and programs, hafie lead to the ffse of MDE technologies for the defielopment of Modeling Languages (MLs). When dedicated to a certain application domain, these langffages are thffs said to be Domain-Speci c Modeling Languages (DSMLs). Other MLs are ffsffally said to be General-pffrpose Modeling Langffages (GMLs), sffch as the Uni ed Modeling Langffage (UML) [111]. Actffally, GMLs are oen constitffted of sefieral di erent modeling langffages, each flith a focffs on a certain aspect or flith a particfflar fiiefl of the system. is is the case of UML, made ffp of Strffctffre Diagrams (Class Diagram, Object Diagram, Package Diagram, Component Diagram, etc.) and Behafiior Diagrams (Actifiity Diagram, State Machine Diagram, Seqffence Diagram, etc.), or of Simfflink [93], flhose main diagrams are block-based data ofls (flith blocks issffed by fiarioffs libraries, oen dedicated to a particfflar domain like physics modeling, control systems, commffnications, real-time systems, etc.), bfft flhich also sffpports state machines or discrete-efient simfflations. In that sense, most GMLs can be considered as a set of interoperable DSMLs.

MLs rely on poflerfffl abstractions to represent in a manner relefiant to a particfflar pffrpose, a system. DSLs profiide constrffcts facilitating the effipression of solfftions of a particfflar domain. DSMLs are thffs both adeqffate to solfie problems of the domain they flere designed for, flhile abstracting aflay ffnnecessary details of the system. An important conseqffence is that the usability of sffch langffages shoffld be optimal: the langffage constrffcts make it easy to specify solfftions, and are meaningfffl for domain effiperts. DSMLs hafie profien e ectifie at solfiing problems of the domain they hafie been designed for [START_REF] Kelly | Domain-Speci c Modeling: Enabling Full Code Generation[END_REF]. By constrffction, this makes them the "best tool for the job". DSMLs can also be considered as an implementation of flhat is called Domain-Driven Design [START_REF] Efians | Domain-Driven Design: Tackling Complexity in the Heart of Soware[END_REF], flhich adfiocates placing the core domain and its logic at the center of the soflare defielopment actifiity, based on a collaboration betfleen technical effiperts (in the conteffit of LOP, langffage designers) and domain effiperts.

In a Model-Drifien approach, a langffage's AS is captffred as a metamodel; programs are captffred ffsing XMI; and static semantics are speci ed ffsing OCL.

Executability

When adjoined flith an effiecfftion semantics, DSMLs are said to be eXecutable (ffiDSMLs). Like for traditional compffter langffages, the effiecfftion semantics can be speci ed ffsing sefieral techniqffes, denominated in this conteffit as Executable Metamodeling [START_REF] Mffller | Weafiing Effiecfftability into Object-Oriented Meta-Langffages[END_REF][START_REF] Benoit | Approche de métamodélisation pour la simulation et la véri cation de modèle -Application à l'ingénierie des procédés[END_REF] techniqffes. ey are ffsffally inspired from the main semantics approaches fle hafie described: affiiomatic, operational and translational. Effiamples of sffch approaches inclffde the Effiecfftable DSML paern [START_REF] Benoit Combemale | A Design Paern to Bffild Effiecfftable DSMLs and Associated V&V Tools[END_REF], ffiMOF [START_REF] Mayerhofer | ffiMOF: Effiecfftable DSMLs based on fUML[END_REF], Maffde [START_REF] Jose | Adding Behafiior to Models[END_REF], or Kermeta [START_REF] Jézéqffel | Model Drifien Langffage Engineering flith Kermeta[END_REF].

Models and metamodels are oen rooted in a GPL (for historical reasons or for defieloping associated tools sffch as IDEs or code generators), therefore the metalangffages ffsed to specify the effiecfftion semantics are oen based on that GPL too. For instance, UML has historically been defieloped in a Jafia/JVM enfiironment. Its Actifiity Diagrams can be effiecffted according to the foffndation Sffbset for Effiecfftable UML Models (fUML) [116], flhose semantics is gifien in English and in Jafia (as a reference implementation 36 ). e effiecfftion semantics of ffiDSMLs may also be de ned in a translational manner, for effiample throffgh an implementation of the OMG's QVT (e.g., the ATLAS Transformation Langffage (ATL) [START_REF] Joffafflt | ATL: A Model Transformation Tool[END_REF][START_REF] Joffafflt | ATL: a QVT-like Transformation Langffage[END_REF]) to de ne the translation from an ffiDSML to another ffiDSML flith effiecfftion semantics already de ned.

e Incefitiffn fff Cffncurrency-aware xDSMLs

In "e Free Lffnch Is Ofier: A Fffndamental Tffrn Toflard Concffrrency in Soflare" [START_REF] Sffer | e Free Lffnch Is Ofier: A Fffndamental Tffrn Toflard Concffrrency in Soflare[END_REF], Herb Sffer, of C++ fame, describes hofl CPU designers are confronted flith the limits of physics (notably, in terms of heat prodffction and energy consffmption) and its impact on soflare engineering. In particfflar, the compffter langffages ffsed for flriting soflares are concerned: they mffst profiide sophisticated tools for adeqffately effipressing the concffrrency aspects of compleffi soflares and systems, and enable the ffse of the parallel facilities of the effiecfftion platform they are deployed onto.

In this thesis, fle propose to bridge the chasm betfleen Langffage-Oriented Programming, i.e., the design of ffiDSMLs in a langffage florkbench, and the paradigm shi resfflting of the end of the "free lffnch", i.e., the integration of Models of Concffrrency into their effiecfftion semantics. is is synthesized in the design of so-called Concurrency-aware xDSMLs. Herb Sffer pffblished an ffpdate to his "free lffnch" article 37 in flhich he identi es that "Programming langffages and systems flill increasingly be forced to deal flith heterogeneoffs distribffted parallelism". By making their ffse of a MoC effiplicit, concffrrency-aflare ffiDSMLs can be designed agnostic of any effiecfftion platform's parallel capacities, and rened only at the deployment phase. is characteristic is made possible by the domainspeci city of the langffage. e effiplicit ffse of a MoC at the langffage lefiel is strffctffred in the separation of concerns adfiocated by the concffrrency-aflare ffiDSML approach. In this separation of concerns, the data and operational aspects of the effiecfftion semantics are separated from the concffrrency aspects flhich are captffred based on a particfflar MoC.

First resfflts toflards this goal flere pffblished by Benoit Combemale et al. in the International Conference on Soflare Langffage Engineering 2012 [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] and 2013 [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF].

In [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF], the affthors present an approach to reconcile Metamodels, ffsed to captffre domain-speci c concepts and their actions, flith "Models of Compfftations", ffsed to orchestrate the actions of a domain-speci c model. Both concepts hafie been defieloped in independent research commffnities: the former in the Model-Based Soflare Engineering and Domain-Speci c Langffages Design commffnities; the laer in the Concffrrency e-ory commffnity. e main di cfflty consists in identifying, in the effiecfftion semantics of DSLs, flhich parts belong to the domain-speci c actions, and flhich parts belong to the Model of Compfftation. e laer are captffred ffsing ModHel'X [START_REF] Hardebolle | Simfflation of Mfflti-Formalism Models flith ModHel'X[END_REF], a frameflork for bffilding and effiecffting mfflti-paradigm models. It ffses a generic abstract syntaffi to captffre the models, bfft the effiecfftion semantics is based on rffles de ning the semantics of control and concffrrency betfleen the elements of a model. Figffre 2.2 shofls the proposed separation of concerns of the semantic mapping betfleen the AS and the Semantic Domain of a DSL. Figffre 2.2: Separation of concerns in the effiecfftion semantics of DSL proposed in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF].

In [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF], the affthors improfie the prefiioffs approach by identifying the need for an effiplicit coordination of the langffage concerns identi ed prefiioffsly. e concffrrency concerns are captffred thanks to a speci cation of efients flith caffsal and temporal relationships betfleen them, inspired from Efient Strffctffres [START_REF] Winskel | Efient Strffctffres[END_REF]. ese abstract efients (from the concffrrency concerns) are then mapped flith concrete actions (in the Domain-Speci c Actions -DSA) by a coordination speci cation called the Domain-Speci c Efients (DSE). At rffntime, it enables ffsing the effiecfftion of the efient strffctffre to coordinate the domainspeci c actions resfflting in changes in the model. ey also describe the architectffre of the langffage florkbench and of the generic effiecfftion engine for concffrrency-aflare ffiDSMLs. Figffre 2.3 shofls the ffiDSML design approach proposed.

e main contribfftion of the concffrrency-aflare ffiDSML approach proposed in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] consists in the separation of concerns of the effiecfftion semantics of ffiDSMLs. In particfflar, the effiplicit identi cation of the concffrrency concerns, ffsing an appropriate and dedicated formalism based on a Model of Concffrrency, enables its re nement, fiariation, and analysis. Re nements can be effiploited dffring the deployment of the langffage to a speci c platform, in order to specialize the langffage to the platform. Variations can be ffsed to adapt the langffage to di erent commffnities, pffrposes or ffses. Analyses can be performed on the model-lefiel speci cations to assess behafiioral properties of the systems being mod-Figffre 2.3: Modfflar design of concffrrency-aflare ffiDSMLs as proposed in [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF].

eled. From a concffrrency theory point of fiiefl, the approach enables the systematic ffse of MoCs at the langffage lefiel, flhereas MoCs ffsffally hafie to be ffsed throffgh langffage, frameflork or library constrffcts, flhich ffsffally reqffires particfflar training or knoflledge abofft an implementation. In the concffrrency-aflare approach, this ffse is de ned at the langffage lefiel, therefore remofiing from the domain effipert the responsibility to select or ffse a MoC.

In the rest of this thesis, fle flill bffild ffpon the description of the approach from [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] and [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] to formalize, improfie and effitend the design and effiecfftion of concffrrency-aflare ffiDSMLs. In particfflar, fle address some effiisting problems of [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF]:

• Multifilicities fff the relatiffns between cffncerns: the mffltiplicity of the association betfleen domain-speci c efients and actions is le ffnspeci ed. It is not clear flhat is the effiact semantics of sefieral domain-speci c efients mapped to one domainspeci c action; or hofl one domain-speci c efient mapped to mffltiple domain-speci c actions shoffld behafie.

• Restrictiffn fff the cffncurrency cffncerns: it it said that the partial ordering can be restrained dffe to the call to some effiecfftion fffnction, hoflefier it is not clear hofl this restriction is speci ed, and hofl it is realized at rffntime.

• Mffdel fff Cffmfiutatiffn ffr Cffncurrency: in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] and [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF], the term ffsed for the concffrrency concerns is "Model of Compfftation". In the literatffre, the relation betfleen "Model of Compfftation" and "Model of Concffrrency" are not clear: they are oen ffsed interchangeably (e.g., "Model of Concffrrency or Compfftation (MoC)" in [START_REF]Glossary of Modeling Terms[END_REF]). e π-Calcfflffs [START_REF] Milner | Communicating and Mobile Systems: the π-Calculus[END_REF] is said to be a "model of compfftation for concffrrent systems" [START_REF] Jeannee | FAQ on π-Calcfflffs[END_REF]. Traditionally, Models of Compfftation flere defieloped in the compfftation theory eld, in a time flhere parallel architectffres flere not mainstream. Considering the de nition of "concffrrency" ffsed in this thesis, as presented in Section 2.1, seqffentiality is a special case of concffrrency, effiplaining flhy Models of Compfftation sffch as the λ-calcfflffs [START_REF] Chffrch | A Set of Postfflates for the Foffndation of Logic[END_REF][START_REF] Pieter | e Lambda Calculus, fiolffme 3[END_REF] can be encoded in theoretical Models of Concffrrency like the π-Calcfflffs [START_REF] Jeannee | FAQ on π-Calcfflffs[END_REF]. In the rest of this thesis, fle flill only ffse the term "Model of Concffrrency" becaffse fle focffs on specifying the concffrrency concerns of an ffiDSML, effiplicitly separated from its data concerns.

Technical Cffntext

e technical e orts presented in this thesis hafie been implemented in an Eclipse-based langffage florkbench defieloped for the ANR INS Project GEMOC, called the GEMOC Stffdio. We introdffce the main technologies ffsed to bffild this langffage florkbench.

e Eclifise Platfffrm e Eclipse

Platform is an open-soffrce platform, originally designed for the defielopment of IDE prodffcts, althoffgh it has efiolfied onto a frameflork for defieloping general-pffrpose applications throffgh its Rich Client Platform (RCP). It is ofierseen by the Eclipse Foffndation 38 . At its core, Eclipse is constitffted of a small rffntime kernel, and most of its featffres are implemented as Eclipse plffgins. Eclipse's Eqffinoffi is the reference implementation of the Open Serfiices Gateflay initiatifie (OSGi), a standard that implements a component model platform for the Jafia/JVM enfiironment. anks to this modfflar architectffre, Eclipse can easily be effitended flith additional featffres. In particfflar, many plffgins hafie been defieloped to implement IDEs for compffter langffages sffch as Jafia, C, Python, Rffby, PHP, Prolog, Scala, etc. It also sffpports di erent fiersion control systems sffch as SVN 39 , Git40 or Mercffrial41 .

e Eclifise Mffdeling Framewffrk

One particfflar contribfftion of Eclipse is its Modeling Project [START_REF] Richard | Eclipse Modeling Project: a Domain-Speci c Language (DSL) Toolkit[END_REF], flhich inclffdes a flide range of featffres related to modeling technologies. At its heart is the Eclipse Modeling Frameflork (EMF) [START_REF]Eclipse Foffndation. Eclipse Modeling Frameflork (EMF) Homepage[END_REF]. e core EMF and EMF-based technologies relefiant to offr flork are the follofling:

• Ecore [START_REF]Ecore on the Eclipse fliki[END_REF], the de facto reference implementation of the OMG's EMOF [112]. • Eclipse OCL [START_REF]Object Constraint Langffage (OCL) on the Eclipse Wiki[END_REF], an implementation of the OMG's OCL [113], enabling the de nition of static semantics for Ecore metamodels.

• Siriffs [START_REF]Eclipse Foffndation[END_REF], an editor to create graphical modeling editors for Ecore metamodels.

• Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF], a frameflork flhich eases the de nition of teffitffal concrete syntaffies for Ecore metamodels. Inclffdes the afftomatic generation of an ANTLR speci cation (to generate a parser) and of IDE featffres flithin Eclipse.

• Xtend [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF], a JVM-based GPL flhich compiles to readable Jafia code. Its syntaffi is consistent flith Jafia's for ease-of-adoption, flhile adding a lot of featffres to make it less fierbose (e.g., fiar/fial keyflords, lambdas, adfianced collection operations, etc.). Its Active Annotations featffre allofls defielopers to easily inject additional code afftomatically dffring the compilation phase.

Offr flork flas implemented on top of the GEMOC Stffdio, flhich inclffdes these technologies as flell as other EMF-based technologies bffilt by the project's fiarioffs partners. For each chapter, the relefiant ones are detailed in their "implementation" sffbsection. 

3

Design of Concffrrency-aflare ffiDSMLs

S 

We re ne the effiisting concffrrent effiecfftable metamodeling approach enabling the de nition of so-called concffrrency-aflare ffiDSMLs. We start by illffstrating shortcomings of the approach on an effiample ffiDSML, fUML. We then re ne the approach by formalizing it, in particfflar the separation of concerns ffpon flhich it is bffilt. We detail the responsibility of each concern, hofl they are speci ed and hofl their respectifie rffntimes flork. Based on these foffndations, fle then re ne the shortcomings of the approach and propose featffres to complete the approach. For each issffe, fle identify the associated challenges and present the reqffirements as constraints for the solfftion. Finally, fle gifie the architectffre of offr implementation of the approach in an Eclipse-based langffage florkbench.

Parts of the contribfftions presented in this chapter hafie been pffblished in the 8th ACM SIGPLAN International Conference on Soware Language Engineering (SLE 2015) [START_REF] Latombe | Weafiing Concffrrency in eXecfftable Domain-Speci c Modeling Langffages[END_REF] and in the 1st International Workshop on Executable Modeling (EXE 2015) [START_REF] Latombe | Coping flith Semantic Variation Points in Domain-Speci c Modeling Langffages[END_REF]. 

Chafiter Outline

R 

Ce chapitre présente le coeffr de notre trafiail. Noffs formalisons et étendons ffne approche de métamodélisation effiécfftable et concffrrente, permeant la création de langages de modélisation dédiés effiécfftables afiec fftilisation effiplicite et systématiqffe d'ffn modèle de concffrrence (Concurrency-aware eXecutable Domain-Speci c Modeling Languages).

Noffs noffs intéressons à la spéci cation de la sémantiqffe opérationnelle de ces langages. De fait, les problématiqffes liées à la spéci cation de la syntaffie abstraite, des syntaffies concrètes et de la sémantiqffe statiqffe sont considérées comme ayant été résolffes en amont, selon le principe de séparation des préoccffpations. Le langage Foundational Subset for Executable UML Models (fUML) [116] noffs serfiira à illffstrer l'approche. En particfflier, dans fUML, la spéci cation de la sémantiqffe ne détaille pas comment effiécffter les branches concffrrentes (c'est-à-dire comprises entre ffn ForkNode et ffn JoinNode). Ces branches pefffient donc être effiécfftées en parallèle, en séqffence, off selon tofft afftre arrangement. Ce choiffi est en général implicite car inscrit directement dans l'implémentation, peff docffmenté et di cile à modi er. Les concurrency-aware xDSMLs rendent effiplicites ces choiffi à l'aide d'ffn formalisme adapté, facilitant leffr spéci cation, leffr analyse, ainsi qffe la spéci cation, l'implémentation et la gestion de di érents points de fiariation sémantiqffe (Semantic Variation Points -SVP).

L'approche qffe noffs formalisons repose sffr ffne séparation des préoccffpations aff sein de la sémantiqffe opérationnelle. Celle-ci est donc séparée en trois parties : les règles sémantiqffes (Semantic Rules), l'fftilisation d'ffn Modèle de Concffrrence (Model of Concurrency Mapping -MoCMapping), et ffn protocole de commffnication (Communication Protocol) connectant les deffffi premières parties. Les Semantic Rules (correspondant affffi Domain-Speci c Actions proposées dans [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF]) étendent la syntaffie abstraite dff langage afiec les données d'effiécfftion (Execution Data), représentant l'état coffrant dff modèle dffrant son effiécfftion, et les fonctions d'effiécfftion (Execution Functions), dé nissant comment les Execution Data éfiolffent dffrant l'effiécfftion. Par effiemple dans fUML, les arêtes entre les noeffds portent des jetons (Tokens), et ces jetons sont consommés, transférés, dffpliqffés off prodffits par l'effiécfftion des noeffds (en fonction de leffr natffre concrète). Le MoCMapping dé nit l'fftilisation systématiqffe d'ffn Modèle de Concffrrence (Model of Concurrency -MoC) par tofft modèle conforme à la syntaffie abstraite dff xDSML. La concffrrence de tofft modèle conforme à la syntaffie abstraite dff langage sera ainsi représentée soffs forme de modèle conforme aff MoC fftilisé. Cee spéci cation est appelée l'application dff modèle de concffrrence (Model of Concurrency Application -MoCApplication). Le MoC fftilisé initialement dans l'approche repose sffr les strffctffres d'éfiènements (Event Structures) [START_REF] Winskel | Efient Strffctffres[END_REF]. Le formalisme fftilisé poffr spéci er le MoCMapping est en conséqffence appelée strffctffre de types d'éfiènements (EventType Structures). Une Event Structure dé nit ffn ordre partiel sffr des éfiènements qffi représentent des actions abstraites. Cee représentation de la concffrrence, indépendante de l'état coffrant dff modèle, la rend analysable par des offtils dédiés poffr la fiéri cation de propriétés comportementales sffr le modèle considéré. En n, le Communication Protocol (initialement réalisé par les Domain-Speci c Events dans [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF]) spéci e les liens entre les Execution Functions et les déclencheffrs dff MoC (MoCTriggers, les EventTypes dans le cas d'ffne EventType Structure). Ceci permet, en particfflier, de dé nir comment, à l'effiécfftion, l'ordre partiel sffr les éfiènements dff MoCApplication est fftilisé poffr orchestrer les appels affffi Execution Functions.

Après afioir spéci é ces préoccffpations, ffne phase de tradffction est fftilisée poffr générer, à partir d'ffn modèle conforme aff langage, les artefacts de nifieaff modèle. Ces artefacts correspondent affffi spéci cations dff nifieaff langage, mais spécialisées poffr le modèle considéré. Le MoCMapping donne donc le MoCApplication, les Semantic Rules donnent les Semantic Rules Calls et le Communication Protocol donne le Communication Protocol Application. Chaqffe préoccffpation foffrnit le composant en charge de l'interprétation d'ffne spéci cation de nifieaff modèle: Solver (poffr le MoCApplication), Executor (poffr les Semantic Rules Calls) et Matcher (poffr le Communication Protocol Application). Le composant en charge de l'effiécfftion globale (c'est-à-dire, de coordonner les afftres composants) est appelé le moteffr d'effiécfftion (Execution Engine). La réalisation d'ffn pas d'effiécfftion dff modèle se déroffle ensffite de la manière sffifiante. Le Solver foffrnit ffn ensemble de solfftions poffr le pas coffrant, en conformité afiec l'ordre partiel établi par le MoCApplication. Ces solfftions sont appelées Scheduling Solutions. Il pefft n'y en afioir affcffne (sitffation d'interblocage), off bien ffne seffle, mais en général il y en a plffsieffrs, sffrtofft en présence d'indéterminisme (dû par effiemple à ffne sitffation de concffrrence). L'ffne de ces solfftions est sélectionnée par ffne heffristiqffe dff moteffr d'effiécfftion. Elle pefft consister à demander à l'fftilisateffr d'en choisir ffne, à trafiers ffne interface graphiqffe, off à aendre qff'ffn programme effiterne choisisse, à trafiers ffne interface de programmation (Application Programming Interface -API ). Le moteffr fait ensffite appel aff Matcher poffr déterminer qffels sont les Execution Function Calls correspondant à cee solfftion (en faisant correspondre les occffrrences d'éfiènements contenffes dans la solfftion sélectionnée afiec ce qffi est spéci é dans le Communication Protocol Application). Ces Execution Function Calls correspondent à des appels d'opération, qffi sont donc e ectffés à l'aide de l'Executor. En conséqffence de qffoi, l'état coffrant dff modèle change, correspondant bien à ffn pas d'effiécfftion dff modèle.

Dans la sffite dff chapitre, noffs identi ons les contraintes et limitations de l'état actffel de cee approche, poffr lesqffelles noffs proposons ensffite des solfftions. Chaqffe aspect est abordé en illffstrant et en effipliqffant d'abord son intérêt ; pffis en identi ant les dif-cffltés de sa mise en oefffire dffrant les phases de spéci cation et d'éffiécfftion ; et enn en présentant notre solfftion et ses éfientffels inconfiénients et coûts associés. Noffs abordons par effiemple le problème des règles sémantiqffes qffi nécessitent beaffcoffp de temps poffr s'effiécffter et ralentissent donc l'effiécfftion globale d'ffn modèle ; le problème des constrffctions de langage dont l'effiécfftion dépend de données connffes dans le modèle à l'effiécfftion ; l'implémentation et la gestion des points de fiariation sémantiqffe ; la conception de concurrency-aware xDSMLs fiisant la spéci cation de systèmes dits réactifs (dont le comportement est ffne réaction à ffn enfiironnement effitérieffr) ; off bien la considération dff Communication Protocol comme interface comportementale dff concurrency-aware xDSML (poffr permere son fftilisation par d'afftres langages off d'afftres programmes) et les implications qffant à sa conception. Tofftes ces améliorations fiisent à rendre l'approche plffs fftilisable, off bien en proposant des offtils pratiqffes poffr spéci er certains types de constrffctions de langage, off bien en rendant possible certaines constrffctions qffi ne pofffiaient affparafiant pas être effiprimées (off en tofft cas pas de façon idiomatiqffe) en fftilisant l'approche.

Poffr nir, noffs présentons l'implémentation de l'approche dans ffn atelier de défieloppement de langages basé sffr la plateforme Eclipse, le GEMOC Stffdio1 . Celffi-ci aggrège ffn certain nombre de technologies constrffites à l'aide de l'Eclipse Modeling Framework (EMF) et fftilisées dans le cadre de l'approche proposée, comme Ecore poffr la constrffction de métamodèles poffr captffrer la syntaffie abstraite des xDSMLs, Xteffit poffr la constrffction de syntaffies concrètes teffitffelles, etc. Le stffdio inclffe affssi des technologies défieloppées par les partenaires dff projet ANR INS GEMOC comme Kermeta 3, le langage Clock Constraint Speci cation Language (CCSL)off Siriffs poffr la constrffction de syntaffies concrètes graphiqffes. Nos contribfftions sont principalement concrétisées dans ffn nofffieaff métalangage appelé le GEMOC Events Language (GEL) fftilisé poffr spéci er le Communication Protocol, ainsi qffe dans l'implémentation dff moteffr d'effiécfftion.

Les trafiaffffi présentés dans ce chapitre ont en partie été pffbliés dans la 8th ACM SIG-PLAN International Conference on Soware Language Engineering (SLE 2015) [START_REF] Latombe | Weafiing Concffrrency in eXecfftable Domain-Speci c Modeling Langffages[END_REF] et dans le 1st International Workshop on Executable Modeling (EXE 2015) [START_REF] Latombe | Coping flith Semantic Variation Points in Domain-Speci c Modeling Langffages[END_REF].

Intrffductiffn

3.1.1 Prerefluisites D Domain-Speci c Modeling Langffages ffsffally refiolfies aroffnd the speci cation of the syntaxes of the langffage: both the abstract and concrete ones. e role of these concepts and hofl they can be speci ed hafie been detailed in Chapter 2. In this thesis, fle focffs on hofl to specify the effiecfftion semantics of an DSML, that is, hofl to aribffte a behafiior to langffage constrffcts and their relations. is makes DSMLs eXecfftable (ffiDSMLs). More precisely, offr focffs is on the speci cation of the concffrrency aspects of the effiecfftion semantics: the rffles flhich describe hofl langffage constrffcts interact at rffntime, hofl the parallel facilities of the effiecfftion platform can be effiploited, etc.

We are not concerned flith hofl models are obtained. It may be as a resfflt of a transformation, or by the effiecfftion of a program flrien in a GPL ffsing an appropriate Application Programming Interface (API), or simply fiia a concrete syntaffi de ned for the ffiDSML. Any of these means is fialid flith regards to offr approach.

We also consider that the static semantics associated flith the abstract syntaffi of the ffiDSML hafie been de ned beforehand, as it does not impact the speci cation of the effiecfftion semantics.

Still, in the scope of the ANR INS GEMOC Project (cf. Sffbsection 1.1.2), in flhich this thesis flas realized, one of the objectifies is the animation of the effiecfftion of concffrrencyaflare ffiDSMLs. In this project, this animation is realized based on a graphical concrete syntaffi, as it is ffsffally the preferred concrete syntaffi for modeling langffages. Hoflefier, it has no impact on the description fle gifie of offr contribfftions. At best, fle flill ffse it to illffstrate models and their effiecfftion in offr implementation.

Finally, this thesis flas realized in the technical conteffit of flhat is called Model-Drifien Engineering (MDE), and in particfflar borrofls a lot of terminology from it. Readers ffnfamiliar flith MDE shoffld make sffre to hafie read Section 2.5 before this chapter.

Illustrative Examfile

We flill illffstrate the concffrrency-aflare ffiDSML approach on a sffbset of the Foundational Subset for Executable UML Models (fUML) [116]. fUML is an effiecfftable sffbset of UML flhich speci es the behafiioral semantics of Actifiity Diagrams. e semantics is mainly inspired from Petri Nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF]. We also need to consider an effiample model for this langffage. Figffre 3.2 shofls an effiample actifiity in flhich one drinks something flhile talking, for instance dffring a co ee break. In this Actifiity, the ForkNode splits the control ofl into tflo concffrrent branches. is means that the "Talk" node can be effiecffted simffltaneoffsly flith, or interleafied flith, any of the nodes of the drinking part of the actifiity. In the drinking part of the actifiity, "CheckTableForDrinks" retffrns either "Co ee", "Tea" or "Neither". e DecisionNode Figffre 3.2: Effiample fUML actifiity flhere some ffser drinks something from the table flhile talking.

represents a conditional: depending on the drink foffnd on the table, either "DrinkCo ee", "DrinkTea" or "DrinkWater" flill ffltimately be effiecffted. "[else]" is the defafflt gffard in fUML, alflays efialffating to trffe bfft the corresponding branch can only be effiecffted if the other branches flere not possible.

Cffncurrency-aware Executiffn Semantics fff fUML

We illffstrate the initial Concffrrency-aflare ffiDSML approach, as described in [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF], on fUML, and present its shortcomings.

Afifilicatiffn fff the Initial Afifirffach

To apply the approach to fUML, fle mffst identify in the effiecfftion semantics speci cation [116] flhich parts belong to flhat flas called "Domain-Speci c Actions" in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] and flhich parts belong to the concffrrency concerns. e former are the indifiidffal behafiiors of each langffage constrffct. For instance, effiecffting a node in fUML ffsffally infiolfies consffming incoming tokens and prodffcing offt-going tokens. Each concrete node type does this in a slightly di erent manner (e.g., some nodes consffme flithofft prodffcing or fiice-fiersa). ese actions can be de ned throffgh the speci cation of effiecfftion fffnctions.

e laer are the orchestration of the actions. Usffally, the effiecfftion of fUML is a data ofl, flhich means that nodes are effiecffted based on the tokens present on their incoming edges. ere are hoflefier a fefl fiariations flhich are possible. For instance, the fUML speci cation is not opinionated abofft hofl the effiecfftion of the concffrrent branches shoffld be done. e only reqffirement is that both branches hafie nished effiecffting before the corresponding JoinNode can be effiecffted. ey can thffs be effiecffted in seqffence, in parallel, or in any sort of interleafiing.

fUML implementations ffsffally hard code this decision, or relying ffpon the ffnderlying effiecfftion platform. e concffrrency-aflare approach proposes to make effiplicit all these possibilities ffsing a dedicated formalism, in order to beer identify them, to allofl concffrrency-aflare analyses to be performed on the systems, to deal flith semantic fiariants of the langffage, and to re ne them at deployment time for a system. For instance, fle may flant to prffne the parallel effiecfftion of branches in case of deployment of fUML to a seqffential platform. e dedicated formalism ffsed is ModHel'X rffles in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF] and the symbolic Efient Strffctffre in [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF].

Shffrtcffmings

e seminal de nition of the approach has some limitations, flhich fle illffstrate on fUML.

For instance, efialffating the gffard of an edge offtgoing a DecisionNode is a domainspeci c operation, infiolfiing fUML-speci c concepts, bfft it does not ffpdate the model. It hoflefier profiides an information as to hofl the orchestration mffst be done (i.e., flhether or not the branch may be effiecffted). It is not clear in [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] hofl this operation mffst be speci ed and hofl it interacts flith the concffrrency concerns.

It is also not clear hofl calls betfleen the Domain-Speci c Actions may be realized. For instance, consider an EffiecfftableNode flith some OfftpfftPins. Its effiecfftion can be represented either as one action or sefieral (its effiecfftion and then effiecffting its pins). In particfflar, if data mffst be shared betfleen both calls, the concffrrency concerns are, by de nition, not able to make the data ofl betfleen both actions. e approach shoffld formalize hofl sffch combination of actions shoffld be realized.

e mffltiplicity of the association betfleen Domain-Speci c Actions and Domain-Speci c Efients is also not detailed. e semantics of mffltiple Domain-Speci c Efients mapped to one Domain-Speci c Action, or of one Domain-Speci c Efient mapped to mffltiple Domain-Speci c Actions, are not detailed.

Another issffe is that the rffntime described in [START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF] relies on the effiecfftion of actions being short, to the point flhere it can be considered instantaneoffs. Hoflefier, it is possible that the effiecfftion of a particfflar behafiior (sffch as efialffating a compleffi effipression, or retriefiing speci c data) takes some time to perform. So far, the rffntime is seqffential, flhich means that dffring the effiecfftion of sffch an action, other actions cannot be effiecffted. Instead, the approach coffld formalize a flay to perform sffch actions in a concffrrent manner (and particfflarly, in parallel, if the platform ffsed for simfflation allofls it). It may hoflefier hafie an in ffence on the effiecfftion ofl, for instance if an important piece of data (e.g., the resfflt of a gffard efialffation) conditions the ffftffre of the effiecfftion. When ffsing ffiDSMLs for the pffrpose of simulations (rather than for prodffction-grade effiecfftions), this issffe is minor in the sense that it only a ects the ofl of the simfflation (flhich may be mildly frffstrating, bfft not critical). Still, fle strifie to make offr approach as applicable as possible, so these concerns mffst be taken into accoffnt.

In the neffit section, fle flill formalize the description and architectffre of the approach to clearly lay dofln the core elements of the concffrrency-aflare ffiDSMLs approach. Based on this presentation, fle flill then re ne the shortcomings and propose featffres to handle them dffring the design of ffiDSMLs.

Fffrmalizatiffn fff the Cffncurrency-aware Afifirffach

As effiplained in Section 2.2, the effiecfftion semantics of a langffage consists in the Semantic Mapping betfleen the langffage's Abstract Syntaffi and its Semantic Domain (the set of all possible meanings). In the concffrrency-aflare approach, the concerns of the effiecfftion semantics are separated. e formalization of this separation presented hereaer resfflts from this thesis's contribfftions to the approach, so the names of the concerns hafie been ffpdated (compared to those ffsed in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF]) to beer re ect their responsibilities. e data and its operations are gathered in the Semantic Rules (formerly "Domain-Speci c Actions"), flhile the concffrrency concerns are captffred as the Model of Concurrency Mapping. Both speci cations are connected by a Communication Protocol (inclffded flhat flas denoted as "Domain-Speci c Efients"). Figffre 3.3 shofls the general idea of this separation of concerns.

Offr approach takes place at the langffage-lefiel (i.e., fle specify langffages) bfft the rffntime of the speci cations takes place at the model-lefiel (i.e., similar to hofl, in Object-Oriented Programming, instance methods de ned in a class are applied for an object instance of that class). For each concern, fle flill effiplain hofl the model-lefiel speci cation is obtained for a gifien model. In particfflar, fle flill oen designate by "concffrrency model" both the MoCMapping (speci cation at the langffage-lefiel) and its model-lefiel coffnterpart (flhich is the one ffsed at rffntime for a gifien model).

Semantic Rules

is notion flas originally introdffced in the Effiecfftable DSML Paern [START_REF] Benoit Combemale | A Design Paern to Bffild Effiecfftable DSMLs and Associated V&V Tools[END_REF], and adapted in [START_REF] Benoit Combemale | Bridging the Chasm betfleen Effiecfftable Metamodeling and Models of Compfftation[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF]. e Semantic Rffles are composed of tflo parts.

First, the Execution Data captffre the rffntime state of a model dffring its effiecfftion, e.g., the fialffe of a fiariable, the cffrrent state of a state machine, the nffmber of tokens in a place, etc. In fUML, edges carry Tokens flhich may be of tflo natffres (control or data). e second part is the Execution Functions flhich specify hofl the Effiecfftion Data efiolfie at rffntime. For instance, a node in fUML can be effiecffted, resfflting in changes in the tokens held by its incoming and offtgoing edges. the effiecffted model reaches the same state, bfft instead that in terms of pffre control ofl (independent of any data from the model) it is at the same point in the effiecfftion. is is the case betfleen the tflo branches of the ForkNode: ffltimately, both branches hafie been effiecffted.

Con ict means that there is a disjffnction among the possible effiecfftion paths, flhich ffltimately resfflts in di erent nal con gffrations of the efient strffctffre. Con icts can be the sign of nondeterminism in the semantics of the langffage (i.e., at some point, an arbitrary decision is realized). ere is a con ict in the effiample Efient Strffctffre: the decision node leads to three di erent "families" of effiecfftion of the same model (one family per possible type of drink).

e MoCMapping speci es hofl to obtain the MoCApplication (i.e., Efient Strffctffre) for any model conforming to the abstract syntaffi of the langffage. Figffre 3.9 shofls the metamodel for the MoCMapping. It also shofls the metamodel of the EfientTypes formalism, and hofl it implements the MoCMapping. e MoCMapping consists in a set of MoCTriggers flhich represent, at the langffage lefiel, the stimffli of the MoC ffsed. In the case of EfientType Strffctffres, the EfientTypes are the MoCTriggers. In an EfientType Strffctffre, these MoCTriggers are symbolically partially ordered (by the SymbolicPartialOrdering), that is, there is a speci cation of hofl the model-lefiel partial ordering is obtained. An EfientType (or more generally, a MoCTrigger) is de ned in the conteffit of concepts from the Abstract Syntaffi of the langffage (represented by the AbstractSyntaxConcept type). e symbolic partial ordering can be speci ed throffgh a set of symbolic constraints ofier the EfientTypes. When they are ffnfolded for a gifien model, it resfflts in constraints de ning the partial ordering of the Efient Strffctffre. en, fle flant to specify constraints ofier these EfientTypes sffch that, for a model, the resfflting Efient Strffctffre de nes a partial ordering in conformance flith the semantics of fUML. e main idea in fUML is that an edge's soffrce is effiecffted before its target. Some nodes hoflefier, are a bit di erent. For instance, for a JoinNode, fle need to make sffre all of the incoming branches hafie nished effiecffting before fle can effiecffte the JoinNode. MergeNode is also pecffliar, becaffse it is the dffal of DecisionNode, and is effiecffted flhenefier one of the incoming branches has been effiecffted. Specifying these constraints depends on the effipressifie pofler made afiailable by the metalangffage ffsed to specify EfientType Strffctffres. Listing 3.2 shofls an effiample speci cation, ffsing pseffdo-code, of constraints betfleen EfientTypes. Listing 3.2: Effiample constraints betfleen EfientTypes of fUML, speci ed ffsing pseffdocode. In this effiample, the constraint strictly precedes betfleen tflo efients _f oo and _bar means that the ℎ occffrrence of _foo happens strictly before the ℎ occffrrence of _bar. In mathematical terms, this can be formalized as: e di erent speci cations at the model-lefiel for a simpli ed fiersion of the effiample actifiity (for representation pffrposes) are shofln on Figffre 3.12. e node "DrinkSomething" represents the drinking part of the actifiity of Figffre 3.2. In this gffre, the Efient Strffctffre on the le captffres all the possible effiecfftion paths of the model. Aer initializing the actifiity, the ForkNode is effiecffted. en, in this simpli ed fiiefl, there are three solfftions: drinking something then talking, talking and then drinking something, or talking flhile drinking something. Ultimately the same con gffration is aained. Aer that, the JoinNode and FinalNode can be effiecffted. For this simpli ed actifiity, this gifies ffs 3 possible scenarios in total. Bfft for a more complicated model like the one on Figffre 3.2, fle hafie a total of 64 di erent possible scenarios, accoffnting for all the possible interleafiings and parallelisms betfleen the talking and drinking part of the actifiity, and the di erent possible orders of efialffation of the gffards. See Appendiffi A for the detail of all the possible effiecfftion scenarios. Listing 3.3 shofls an efficerpt from the Commffnication Protocol of fUML speci ed ffsing pseffdo-code. ere are tflo mappings, one for the effiecfftion of nodes, and one of the efialffation of the gffards of edges. Listing 3.3: Efficerpt from the Commffnication Protocol of fUML, speci ed ffsing pseffdocode. 

∀ ∈ ℕ, _foo < _bar

Cffmmunicatiffn Prfftffcffl

Generatiffn fff the Mffdel-level Sfieci catiffns

e effiecfftion semantics are de ned at the langffage lefiel, bfft they are applied flhen effiecffting a particfflar model. erefore to facilitate the defielopment and debffgging of offr approach, fle rst "ffnfold" the effiecfftion semantics speci cation for a particfflar model. Figffre 3.13 sffms ffp the generation of the three concerns.

• 1: Model + Semantic Rffles → Semantic Rules Calls Captffres the dynamic data of the model and the API that makes these data efiolfie dffring rffntime.

• 2: Model + MoCMapping → Mffdel fff Cffncurrency Afifilicatiffn Partial ordering ofier abstract efients (i.e., more formally, the MoCApplicationTriggers, e.g., the efients of an Efient Strffctffre), independent of any data from the model. See Figffre 3.8 for the simpli ed Efient Strffctffre corresponding to the MoCApplication of the effiample Actifiity. 

Runtime

Each concern has an associated rffntime: Sfflver for the MoCApplication, Executffr for the Semantic Rffles Calls and Matcher for the Commffnication Protocol Application. ese rffntimes are coordinated by the rffntime for the flhole langffage called the Executiffn

Engine.

An ofierfiiefl of the architectffre of the rffntime is shofln on Figffre 3.14. It is totally generic (i.e., agnostic of the technologies and tools ffsed for each concern) thanks to the ffse of an infiersion of control mechanism (e.g., dependency injection). Scheduling Solutions. ere may be no solfftion, as a conseqffence of a deadlock (possibly becaffse the effiecfftion has nished). ere may also be only one possible, bfft most oen flhen there is nondeterminism sffch as in case of concffrrency, sefieral are possible. One of these solfftions is chosen fiia an heffristic of the rffntime, flhich can in particfflar consist in asking the ffser to choose one solfftion throffgh a UI (i.e., in case of step-by-step effiecfftion). It then ffses the Matcher to retriefie the corresponding set of Effiecfftion Fffnction calls. ese are effiecffted thanks to the Effiecfftor in a concffrrent mode (e.g., in any order, in paralle, etc.) as they are considered as happening simffltaneoffsly (flith regards to the Mo-CApplication). is e ectifiely triggers changes in the Effiecfftion Data, thffs corresponding to making the model efiolfie dffe to its effiecfftion.

Re nement fff the Shffrtcffmings

e concffrrency-aflare approach fle hafie de ned so far has some limitations flhich fle intend to ofiercome. Some of them flere illffstrated on fUML in 3.1.3. We propose to identify them based on the modfflar design fle jffst presented. When considering solfftions to these shortcomings, fle flill strifie to respect the follofling constraints. 1. To keep intact the initial objectifies of the approach regarding the modfflarity and analyzability of the semantics. is means that the separation betfleen the data aspects of the semantics, and the concffrrent aspects, mffst be respected.

2.

To not rely on modifying the MoC or its rffntime. e pffrpose of the approach is to be able to analyze the MoCApplication ffsing effiisting tools and methodologies afiailable for the MoC ffsed.

3. To make the implementation of the Semantic Rffles as idiomatic as possible. is actifiity is the closest to traditional programming, and shoffld therefore hafie an adeqffate syntaffi.

Re nement fff the Design fff the Semantic Rules e Semantic Rffles captffre the dynamic data of models and hofl they efiolfie. Dffe to their natffre, their speci cation is fiery close to traditional programming actifiities: specifying data and operations (or algorithms) effiploiting these data. is makes Tffring-complete, or by effitension, GPLs, good candidates as metalangffages for the Semantic Rffles. Bfft offr approach relies on a clear design of the Semantic Rffles, therefore some programming featffres possibly broffght by the chosen metalangffage mffst not be ffsed. We detail these issffes in Section 3.3.

Nffn-blffcking Executiffn Functiffn Calls

Dffring the effiecfftion, Effiecfftion Fffnction calls are realized in a blocking flay. is means that once they hafie been schedffled and their effiecfftion starts, the rest of the effiecfftion is on hold. is is ne for most Effiecfftion Fffnctions flhich shoffld generally manipfflate data afiailable in the model, and flhose effiecfftion time is short enoffgh to be neglected. Bfft this is an issffe if the Effiecfftion Fffnction is sffpposed to do heafiy compfftations, access a lot of data, retriefie effiternal resoffrces, or connect to some netflork. is disrffpts the rest of the effiecfftion, efien the parts flhich are not dependent on the resfflts of the time-taking operation. erefore, fle effiplore the issffe of rffnning Effiecfftion Fffnction calls in a nonblocking manner and its limitations in Section 3.4.

Imfirffving the Cffmmunicatiffn Prfftffcffl tff Deal with the Cffmfiletiffn fff Executiffn Functiffn Calls

So far, the Commffnication Protocol is a one-flay commffnication from the MoCMapping, to the Semantic Rffles. Hoflefier, for some langffage constrffcts, the control ofl depends on data retffrned by a ery at rffntime. For instance, in fUML, aer a DecisionNode, one of its branches is effiecffted depending on the resfflts of the gffard efialffations. It may also depend on some prefiioffsly-called (non-blocking) Effiecfftion Fffnction call being nished. We propose to enrich the Commffnication Protocol flith the means to specify these kinds of commffnications. Sections 3.5 and 3.6 illffstrate the challenges and offr solfftions to specify these commffnications.

Reuse fff Executiffn Functiffns

Effiecfftion Fffnctions are designed flith the intent of being called by the Effiecfftion Engine becaffse the MoCApplication orchestrated its call. In programming langffages, operations (or procedffres, fffnctions, etc.) are ffsed to share code, flhich means that an operation is ffsffally called from sefieral di erent points of a program. In particfflar, an Effiecfftion Fffnction implementation may flant to rely on the ffse of another Effiecfftion Fffnction, either to afioid dffplicating code, or simply to gain access to a particfflar piece of data. If fle flant to be able to maintain the concffrrency-aflareness of this internal ffse of another Effiecfftion Fffnction, then an adeqffate coordination betfleen the semantics concerns mffst be speci ed. In Section 3.7 fle identify the di cfflties boffnd to this issffe, propose elements of solfftion toflards the speci cation of composite Effiecfftion Fffnctions and shofl the limitations of this featffre.

Semantic Variatiffn Pffints

e concffrrency-aflare approach modfflarizes the semantics speci cation of an ffiDSML, thffs making possible the fiariability of some of the parts of the speci cation. Langffage speci cations sometimes inclffde Semantic Variation Points (SVPs) in order to leafie implementors and ffsers flith some degree of freedom to adapt the langffage to speci c sitffations. In Section 3.8 fle discffss hofl SVPs can be speci ed and implemented in the approach. In particfflar, fle shofl that the concffrrency concerns speci cation eases the implementation of SVPs related to the concffrrency of a langffage.

Cffncurrency-aware xDSMLs fffr Reactive Systems

One of the constraints of the separation of concerns is that the MoCMapping is dataindependent. is means that data ofls can be di cfflt to implement, both betfleen Effiecfftion Fffnctions (flhich leads to additional di cfflties treated in Section 3.7) and from a component effiternal to an Effiecfftion Fffnction. is means that reactifie systems are, so far, di cfflt to captffre ffsing concffrrency-aflare ffiDSMLs. We propose in Section 3.9 a means to enable the speci cation of langffages in flhich data ofls can be realized, facilitating the design of reactifie systems.

Behaviffral Interface fff Cffncurrency-aware xDSMLs e Mappings of the Commffnication Protocol represent the interface for the behafiior of indifiidffal elements of the langffage flhich, pfft together, represent the flhole behafiior of the langffage. is interface can be effiploited by fiarioffs components: a Graphical User Interface (GUI) to implement the heffristic of the rffntime, the rffntime of another langffage (possibly concffrrency-aflare), a trace that records flhich Mappings hafie occffrred dffring the effiecfftion, etc. To accommodate the fiariety of needs from these effiternal components, fle propose in Section 3.10 elements of solfftions to improfie or re ne the interface presented by the Mappings of the ffiDSML. We also identify some associated issffes and limitations.

Tailffring the Mffdel fff Cffncurrency used tff the Cffncurrency Paradigm fff the xDSML Under Develfffiment

Finally, the main issffe flith the approach fle hafie presented so far is that the only afiailable Model of Concffrrency is Efient Strffctffres. is is mainly dffe to the compleffiity of the design the metalangffage ffsed to specify the MoCMapping. Traditionally, MoCs are ffsed directly at the model lefiel, in flhich case the mapping betfleen a MoC and the AS of an ffiDSML is not defieloped. Efien if fle flere to add a nefl MoC to offr approach, it floffld need to be formaed in a particfflar flay to t offr approach. In Chapter 4 fle flill shofl hofl to ffse concffrrency-aflare ffiDSMLs as MoCs, thffs profiiding an e ortless means to ffse nefl formalisms to captffre the concffrrency concerns of ffiDSMLs.

Re ning the Design fff the Semantic Rules

We make effiplicit and present some design constraints for the Semantic Rffles to be consistent flith offr approach. We also re ne the role of the Effiecfftion Data and Effiecfftion Fffnctions.

Exfilffiting the Executiffn Data

e Effiecfftion Data de ne the set of dynamic data that efiolfie dffring the effiecfftion of a model. eir only focffs is to represent the pffre effiecfftion of models. Additional layers may be speci ed on top of that for speci c pffrposes. For instance, in the conteffit of representing the effiecfftion of models, the di erence mffst be drafln betfleen the Effiecfftion Data and their formaing for an animation representation. We call the laer the Animation Data. ey de ne a particfflar point of fiiefl on the Effiecfftion Data, flhich flill be ffsed to animate (teffitffally, graphically or other) the effiecffted model. e di erence betfleen the Effiecfftion and Animation Data is a bit similar to the di erence, in Object-Oriented Programming, betfleen a class's elds (internal representation of the data held by a class) and its pffblic accessors (its interface flith other classes).

In fUML, the Effiecfftion Data are mainly the Tokens held by the edges. Bfft in a graphical animation of the effiecfftion of fUML, representing the tokens might not be the most aractifie representation. Instead, fle can prefer to represent flhich nodes may be effiecffted (compffted based on the tokens on the incoming edges of the nodes). Identifying flhich nodes may be effiecffted is a fiiefl on the Effiecfftion Data of fUML, flhich is de ned at the animation layer lefiel and shoffld not be done in the Semantic Rffles. For technical reasons, one may need to de ne the Animation Data alongside the Effiecfftion Data if the animation layer ffsed does not profiide adeqffate means for their de nition.

Other layers abofie the Effiecfftion Data may be considered, for instance if fle flant to perform some form of analyses on the rffntime state of models dffring their effiecfftion. In any case, the de nition of the Effiecfftion Data shoffld not be pollffted by these effiternal concerns.

Taxffnffmy fff Executiffn Functiffns

We hafie identi ed in offr approach tflo natffres of Effiecfftion Fffnctions: Modi ers and eries. e di erence is mainly conceptffal bfft coffld be concretized in the Semantic Rffles metalangffage, althoffgh it floffld reqffire signi cant design e ort. It can be le as a methodological aspect of offr approach. Figffre 3.16 shofls the ffpdated metamodel for the Semantic Rffles flith the taffionomy fle propose.

Mffdi ers

Modi ers are fffnctions flith side-e ects, flhose role is to ffpdate the rffntime state of the model flhen effiecffted. For instance in fUML, flhen a node is effiecffted, it modi es the rffntime state of the incoming and offtgoing edges (the tokens they hold). Figffre 3.17 illffstrates the impact of the effiecfftion of MyForkNode on its incoming and offtgoing edges. eries eries are side-e ect-free fffnctions flhose role is to retffrn rffntime information, either abofft the model itself or compffted based on data from the model. In fUML, efialffating the gffard of an edge is a ery flhich retffrns a boolean fialffe. Figffre 3.18 illffstrates this qffery.

Defith fff the Cffncurrency-awareness

A key consideration in the design of the Effiecfftion Fffnctions is that they represent the interface making effiplicit hofl the Effiecfftion Data efiolfie. ey are the point of contact for the rest of the semantics. e particfflar operations they realize in their body are not fiisible indifiidffally for the rest of the semantics. is means that the concffrrency model only captffres the concffrrency betfleen the Effiecfftion Fffnctions calls ; it cannot go "deeper", sffch as inside the body of an Effiecfftion Fffnction. is is ffsffally the case flhen ffsing any Model of Concffrrency. e MoC is ffsed to help schedffle some "atomic" actions flhich are not themselfies decomposed ffsing the MoC. In the concffrrency-aflare approach, from the point of fiiefl of the concffrrency model, the body of Effiecfftion Fffnctions is "opaqffe", i.e., it cannot be seen and thffs is not effiplicitly schedffled. Instead, it follofls the control ofl of the metalangffage ffsed to specify the Semantic Rffles. Placing the atomicity of the concffrrency model at the Effiecfftion Fffnction lefiel allofls the approach to remain open to any metalangffage for the Semantic Rffles, inclffding ones flhere compleffi data operations can be performed. is is the case for instance if Jafia is ffsed to implement the Effiecfftion Fffnctions as methods.

To illffstrate this concept, let ffs consider the efialffation of binary effipressions sffch as + , flhere and are effipressions. Efialffating sffch an effipression consists in rst efialffating and , and then sffmming their resfflts. is can be done in many flays, most commonly either rst compffting , then ; rst compffting and then ; or possibly compffting both in parallel. Using the concffrrency-aflare approach for this case, these fiariations can be captffred in tflo di erent manners. Either they are made effiplicit in the concffrrency model, as prescribed by the approach, enabling their analysis bfft reqffiring dedicated speci cations (cf. the description of the approach); or they are made implicit in the Semantic Rffles, relying on metalangffage-speci c primitifies, and hindering any possible ffse of concffrrency-aflare analyses.

We shofl the di erence betfleen these tflo approaches in the follofling gffres. On Figffre 3.19, fle shofl the effiecfftion concerns for the compfftation of this effipression, in the case flhere the concffrrency-aflareness is not fiery deep, i.e., it does not detail in flhich order and are compffted. Instead, this is le to the implementation of the Effiecfftion Fffnction Expression.evaluate(). Ofierall, this is fiery mffch like flhat happens flhen de ning an interpreter for effipressions in a traditional manner (e.g., flith the Visitor design paern). Figffre 3.19: Effiecfftion concerns for the effiecfftion of effipression + , flhere the concffrrency aspects are not detailed in the concffrrency model. On Figffre 3.20, these concerns are made effiplicit in the concffrrency model, as described in the approach. is reqffires additional e orts (i.e., compared to traditional approaches) bfft allofls its analysis and re nement.

Ultimately, both solfftions captffre the same semantics, bfft flith a di erent degree of concffrrency-aflareness. We adfiocated the ffse of a detailed concffrrency-aflareness, and thffs stffdy some featffres to facilitate its speci cation and effiecfftion. Hoflefier, at times, and for practical reasons, one may opt not to pay the cost of concffrrency-aflareness (in terms of di cfflty to specify), becaffse the bene ts it profiides are not deemed florthy (e.g., if fle flant to focffs on the concffrrency aspects of only parts of a system). is remains a maer of appreciation from the langffage designer.

Cffmfiatibility between the MffCMafifiing and the Semantic

Rules e modfflarity of the concffrrency-aflare approach means that for a langffage, fle can change its MoCMapping or Semantic Rffles. Bfft not all MoCMappings are compatible flith all Semantic Rffles, and fiice-fiersa. 

Pre-cffnditiffns fff Executiffn Functiffns

Effiecfftion Fffnctions may be designed flith a certain set of effipectations flith respect to the state of the model or prefiioffs operations hafiing been performed. ese reqffirements cannot be captffred by the MoCMapping, as it is agnostic of the data from the model. It is also di cfflt to statically analyze the ffse of shared data at design time, as it floffld rely on analyzing the content of each Effiecfftion Fffnction, and also relies on the intended semantics of the ffiDSML.

To captffre these reqffirements, fle propose to enhance Effiecfftion Fffnctions flith a set of pre-conditions representing the minimffm reqffirements they effipect from the rffntime state of the model, before their effiecfftion can be performed. is is a common mechanism of the design-by-contract programming approach [START_REF] Meyer | Applying 'Design by Contract[END_REF] to ensffre safe interactions betfleen soflare components. is mechanism is also foffnd in modeling formalisms sffch as CSP [START_REF] Antony | Communicating Sequential Processes[END_REF] or Efient-B [START_REF] Abrial | Modeling in Event-B: System and Soware Engineering[END_REF].

An effiample of sffch pre-conditions in fUML is that fle do not flant to try effiecffting a node if it does not hafie the reqffired tokens on its incoming edges. is reqffirement can easily be captffred in a pre-condition by checking the tokens present on the incoming edges.

Race Cffnditiffns

Refiersely, a common issffe flith highly-concffrrent systems is dealing flith race conditions. ey can be tricky to identify at design time, and are oen di cfflt to track at rffntime, as they may only happen in conditions depending on scenario-speci c data, or on the ffnderlying effiecfftion platform. In offr approach, they coffld stem from the Commffnication Protocol mapping MoCTriggers to Effiecfftion Fffnctions in sffch a flay that tflo Effiecfftion Fffnctions manipfflating the same data are schedffled in parallel.

To mitigate this issffe, Effiecfftion Fffnctions shoffld declare the model data flhich they read and modify. is floffld facilitate the identi cation, by the langffage designer, of flhich Effiecfftion Fffnctions shoffld generally not be schedffled in parallel. For instance in fUML, the Effiecfftion Fffnction corresponding to the effiecfftion of a node reads and modi es the incoming edges' tokens and modi es the offtgoing edges' tokens.

Integratiffn intff the Cffncurrency-aware Afifirffach

ese tflo mechanisms can be implemented effiplicitly in the Semantic Rffles metalangffage. ey can also be considered pffrely as methodological aspects, since they are mostly abofft gffiding the langffage designer dffring the effiecfftion semantics design. As sffch, they can be seen as optional featffres flhose sole pffrpose is to facilitate the langffage designer's actifiity.

In the laer case, the pre-conditions can be de ned inside the Effiecfftion Fffnctions implementations (possibly in their ofln boolean-fialffed fffnction). e identi cation of data ffsed by Effiecfftion Fffnctions can be speci ed fiia annotations or efien informally. eoretically, it can be effitracted afftomatically from the Effiecfftion Fffnctions implementations. Hoflefier, as this is a signi cant implementation e ort, fle leafie open hofl this speci cation is ffltimately realized, as it does not directly impact the effiecfftion of models.

Summary

e re nement of the Semantic Rffles fle hafie presented has tflo pffrposes. Firstly, it contribfftes to ffnderstanding the role of the Effiecfftion Data and Fffnctions in the ffiDSML's effiecfftion semantics. Secondly, it also contribfftes to ffnderstanding the relation betfleen the Semantic Rffles and the MoCMapping, notably the notion of compatibility betfleen these tflo aspects. is re nement also serfies as the groffndflork for other featffres presented in this thesis, and particfflarly in the rest of this chapter. More speci cally, the role of the Effiecfftion Fffnctions as the atomic efiolfftions of the langffage, and their taffionomy into eries and Modi ers flill be ffsed fffrther in this chapter.

Nffn-blffcking Executiffn Functiffn Calls

Initially, all Effiecfftion Fffnction calls are done in a blocking manner, flhich means that they pfft the rest of the effiecfftion on hold. We propose a featffre to allofl Effiecfftion Fffnction calls to be effiecffted in a non-blocking manner. First fle motifiate this featffre and identify its challenges. en fle propose offr solfftion to specify these calls and the associated modi cations to the rffntime of concffrrency-aflare ffiDSMLs.

Purfiffse

Blocking Effiecfftion Fffnction calls are a problem for fffnctions flhich imply compleffi compfftations, access a lot of data, retriefie effiternal resoffrces or connect to some netflork. ey disrffpt the rest of the effiecfftion, inclffding parts flhich are not dependent on their offtcome.

For instance in fUML, if the effiecfftion of a node takes a long time, and that this node is on a branch betfleen a ForkNode and a JoinNode, it floffld be interesting to be able to progress on the concffrrent branches meanflhile. In the approach fle hafie described so far, this is not possible: if fle laffnch the effiecfftion of the node fle mffst flait for it to complete before being able to do anything else. Another flay to see this is to consider the effiecfftion of an Effiecfftion Fffnction call as a coffple of efients: one for the beginning of the effiecfftion, and one for the end. Usffally the rst one depends on prefiioffs parts of the model hafiing been effiecffted (e.g., fle start the efialffation of the gffards of edges offtgoing a DecisionNode aer the DecisionNode has been effiecffted) ; flhile the second one maers for the effiecfftion of the sffbseqffent parts of the model (e.g., fle effiecffte one of the branches only flhen all the gffards hafie been efialffated).

Non-blocking Effiecfftion Fffnction calls do not fffndamentally impact the representation of the concffrrency concerns ffsing a MoC, bfft they improfie the performance of the effiecfftion by making it smoother, i.e., by allofling concffrrent effiecfftion of independent parts of the model. is comes at the cost of possibly making the speci cation of the concffrrency model more compleffi, since nefl race conditions may appear as a conseqffence of a non-blocking effiecfftion fffnction call. A more accffrate concffrrency model floffld thffs be reqffired to ensffre these race conditions do not occffr.

Challenges

is featffre leads to the follofling challenges. First, fle need to identify hofl and flhere the blocking/non-blocking effiecfftion strategies shoffld be speci ed. en fle need to identify hofl it is implemented in the rffntime of concffrrency-aflare ffiDSMLs. Finally, fle also need to manage the completion of non-blocking Effiecfftion Fffnction calls in a flay that is coherent flith hofl fle manage the completion of regfflar Effiecfftion Fffnction calls.

Sfflutiffn

Here fle present offr solfftion, flith a focffs on each associated challenge.

Sfieci catiffn fff Nffn-blffcking Executiffn Functiffn Calls

Drafling from the effiperience of GPLs, flhere many di erent tactics are profiided by (standard) libraries to implement non-blocking fffnction calls ("Asynchronoffs Programming", cf. Chapter 2), fle hafie identi ed tflo possible solfftions. We can specify the blocking/nonblocking natffre of the call either at the Effiecfftion Fffnction lefiel (in the Semantic Rffles), or at the Mapping lefiel (in the Commffnication Protocol). e ffpside of the rst solfftion is that the non-blocking natffre of the Effiecfftion Fffnction comes flith the body of the Effiecfftion Fffnction, so problematic parts of the code are clearly identi ed and labeled as sffch. is is for instance the case in C# flhere the keyflord "async" can be ffsed flhen de ning a method. e doflnside is that it adapts poorly to all effiecfftion platforms: perhaps an Effiecfftion Fffnction designated as "non-blocking" by the initial defieloper actffally rffns fiery fast on another machine, and thffs coffld instead be effiecffted in a blocking manner. e second solfftion is thffs more adaptable, since the blocking/non-blocking natffre is speci ed "later" in the process, i.e., in the Commffnication Protocol for each Mapping. Moreofier, fle beliefie it makes more sense that the "caller" of the Effiecfftion Fffnction (i.e., in offr case, the Commffnication Protocol) decides hofl it effiecfftes it ; rather than be forced to do it in a particfflar flay, flithofft any knoflledge of it.

In Listing 3.5, fle shofl the pseffdo-code corresponding to the speci cation of the nonblocking natffre of the Effiecfftion Fffnction call of the Mapping "EfialffateGffard". Listing 3.5: Specifying the non-blocking natffre of a Mapping of the Commffnication Protocol of fUML, in pseffdo-code. is solfftion can be improfied by adding the possibility to specify the blocking/nonblocking natffre at the Effiecfftion Fffnction lefiel as flell. In that case, the idea is to ffse it as a gffidance (or defafflt choice), i.e., that if a Mapping does not effiplicitly specify the natffre then it is looked ffp at the Effiecfftion Fffnction speci cation. e editor of the Commffnication Protocol metalangffage can also lefierage this information to sffggest the natffre to the Commffnication Protocol Designer. Ultimately, the decision remains in the hands of the Commffnication Protocol designer as fle originally sffggested. 

Runtime fff Nffn-blffcking Executiffn Functiffn Calls

When the Effiecfftion Engine effiecfftes a MappingApplication specifying that the associated Effiecfftion Fffnction call is non-blocking, then it laffnches it in a non-blocking manner. ere are tflo flays this can happen: either the rffntime of the Semantic Rffles (the Effiecfftor) profiides the means to effiecffte an Effiecfftion Fffnction call in a non-blocking manner, or it does not, in flhich case the rffntime of the Commffnication Protocol is in charge of laffnching the effiecfftion in a non-blocking manner.

Implementing a non-blocking method call depends on the langffage (and its effiecfftion platform) ffsed to implement the rffntime of the Semantic Rffles or of the Commffnication Protocol. For instance for JVM langffages, the jafia.fftil.concffrrent3 package profiides ffsefffl classes and methods to implement this. Python ffsers may ffse the asyncio modffle 4 , flhile in Rffby one may ffse Fibers 5 .

Listening fffr Cffmfiletiffn

When the Effiecfftion Engine has laffnched a non-blocking Effiecfftion Fffnction call, it mffst keep a reference to the place flhere the resfflt of the call flill be stored. In many GPLs, this is implemented as a "Ffftffre" or "Promise". e Effiecfftion Engine mffst then check as oen as possible flhether or not the call has completed (e.g., on the JVM by ffsing the method java.util.concurrent.Future.isDone()), or ffse some form of signal (e.g., throffgh the Obserfier design paern) to be noti ed of the completion of the call.

Managing Cffmfiletiffns

When an Effiecfftion Fffnction call has completed, it can hafie an in ffence on the neffit allofled steps of effiecfftion. e Effiecfftion Engine mffst thffs re-compffte the set of possible Schedffling Solfftions ffpon completion of any Effiecfftion Fffnction call. At rffntime, flhen a MappingApplication corresponding to this Mapping occffrs, it interrffpts the ongoing Effiecfftion Fffnction call corresponding to the mapping "Efialffate-Gffard" if there is one, otherflise it does nothing. Depending on hofl the Semantic Rffles metalangffage applies changes to the model being effiecffted, it may not be possible to refiert the side-e ects that the partially-effiecffted Effiecfftion Fffnction call has made on the model. is featffre can thffs lead to an inconsistent state of the model. To palliate this, the changes to the model can be applied ffsing transactions [START_REF] Shafiit | Soflare Transactional Memory[END_REF].

Interrufitiffn fff an Ongffing Executiffn Functiffn Call

Likeflise, continffing an interrffpted Effiecfftion Fffnction Call is possible, so long as that same Mapping has not be triggered in-betfleen. Listing 3.7 shofls the pseffdo-code of the speci cation of sffch a Mapping. At rffntime, sffch a MappingApplication resffmes the prefiioffs ongoing non-blocking Effiecfftion Fffnction Call corresponding to the mapping "EfialffateGffard" if there is one, otherflise it does nothing. Figffre 3.22 shofls an efficerpt from the metamodel of the Commffnication Protocol effitended flith these possibilities.

Cffsts and Dffwnsides

e main cost of this featffre is that it ties the effiecfftion of a model to the physical machine on flhich it is effiecffted. Indeed, the real physical time taken by the machine to perform the non-blocking Effiecfftion Fffnction call fiaries, and as sffch, the model may be in di erent states ffpon completion of the call, in di erent effiecfftions of the same model, possibly altering the rest of the effiecfftion. Prefiioffsly, a model effiecfftion only relied on "logical time", i.e., the caffsalities betfleen the MoCApplicationTriggers, agnostic of the physical machine ffsed. e main doflnside is that it hinders the replayability of scenarios. Before, a scenario flas essentially composed of the set of arbitrary choices realized by the heffristic of the rffntime. Nofl, the completion of non-blocking Effiecfftion Fffnction calls mffst also be taken into accoffnt. is means that a model effiecfftion may be made smoother thanks to non-blocking calls, bfft this smoothness is not gffaranteed on all possible platforms on flhich the effiecfftion is performed.

Finally, this featffre can be technically di cfflt to implement becaffse modi cations to the model may be performed in a non-blocking Effiecfftion Fffnction call, thffs possibly making di cfflt the ffse of effiternal tooling depending on the model's rffntime state. For instance this is the case in offr implementation of the graphical animation, flhich assffmes a certain transaction protocol for the modi cation of the model (i.e., EMF Transactions6 ). is protocol is disrffpted by the modi cations condffcted in non-blocking calls. A solfftion for this, albeit reqffiring signi cant implementation e ort, floffld be to ffse a metalangffage for the Semantic Rffles that can afftomatically flrap model modi cations to make ffse of the protocol ffsed to modify the model.

Feature Summary

e seminal approach is ffflly seqffential, in the sense that each effiecfftion step is effiecffted and completed entirely before the neffit one starts. With this featffre, the approach e ectifiely becomes concffrrent becaffse non-blocking Effiecfftion Fffnction calls are allofled to span ofier sefieral effiecfftion steps. ey mffst be designed careffflly, so as to not profioke data races issffes. Bfft this featffre is necessary for the sffpport of ffiDSMLs flhose behafiior is rooted in the "real florld", i.e., flhen relying or controlling an effiternal system like a robot or a sensor, flhose effiecfftion lasts signi cantly more than regfflar Effiecfftion Fffnction calls. It makes the simfflation more ffser-friendly, since the end ffser does not alflays hafie to flait for prefiioffs effiecfftion steps to hafie nished effiecffting (particfflarly in the case flhere it floffld hafie no impact on the ffftffre of the effiecfftion). It also enables some of the other featffres presented in this chapter.

Cffmfiletiffn fff an Executiffn Functiffn Call

e completion of an Effiecfftion Fffnction call is a meaningfffl efient dffring a model's effiecfftion. It represents the end of the behafiior of a model element, and is ffsffally indicatifie of the neffit steps to perform. In this section, fle only consider Effiecfftion Fffnction calls flhich do not retffrn any data (i.e., their retffrn type is Void). So far the completion of sffch calls is not represented effiplicitly in the concffrrency model. In fact, for blocking Effiecfftion Fffnc-tion calls, they are confoffnded flith the start of the Effiecfftion Fffnction call, since they are seen as instantaneoffs. is is no longer the case flith non-blocking Effiecfftion Fffnction calls, and as sffch their beginning and completion shoffld be treated as separate. In this section, fle stffdy the pffrpose of this separation, and hofl it can be implemented.

Purfiffse

With the introdffction of non-blocking Effiecfftion Fffnction calls in the prefiioffs section, comes the separation of the beginning of a call from its completion (or ending). So far, they flere considered instantaneoffs and therefore represented in the concffrrency model as a single efient in the Efient Strffctffre. Bfft for non-blocking calls, the completion most likely does not happen in the same effiecfftion steps as the beginning.

Let ffs consider tflo Efients, _ and _ . Offr goal is to rst "retriefie data", e.g., efialffating a gffard, retriefiing the cffrrent temperatffre, etc., and then "display data", e.g., by printing it to the standard offtpfft. e caffsality betfleen these tflo efients is initially denominated as _ < _ . For the sake of this section, let ffs nofl consider that retriefiing the data takes some time, and therefore it shoffld be performed in a non-blocking call so as to not block the rest of the effiecfftion (i.e., typically the case if the data mffst be retriefied from an effiternal component ofier a netflork, etc.). For the sake of generality, fle consider that displaying the data also takes time and shoffld be done in a non-blocking manner.

Both efients shoffld thffs be captffred in the concffrrency model as a coffple of efient corresponding to their beginning and their completion. For _ , this means that fle nofl hafie _ _ and _ _ flith the follofling caffsality:

_ _ < _ _
e same happens for _ flith the caffsality:

_ _ < _ _
e caffsality betfleen retriefiing and displaying the data can thffs be speci ed as:

_ _ < _ _

Challenges

Compared to the initial description of the approach, there are tflo issffes that mffst be dealt flith:

• Efient _f oo initially represents both _ _foo and _ _foo. ey mffst be made effiplicit flith the caffsality _ _f oo < _ _foo.

• Efient _ _f oo is a bit pecffliar becaffse its occffrrences represent something that happens in the Semantic Rffles, i.e., the completion of an Effiecfftion Fffnction call. is means that it may only occffr flhenefier, in the model, the corresponding Effiecfftion Fffnction call has completed. Its occffrrences are thffs resfflting from the rffntime of the model, flhereas occffrrences of _ _foo drive the rffntime of the model. e former is jffst a maer of MoCMapping design. e laer is a bit more compleffi. We propose to name as Controlled Events (respectifiely Controlled EventTypes) the efients from an Efient Strffctffre (respectifiely, the EfientTypes from an EfientType Strffctffre) flhose occffrrences fle plan to nely control based on other concerns of the semantics of the ffiDSML.

In offr case, _ _foo is a Controlled Efient, sffbjected to the completion of the Effiecfftion Fffnction call mapped to _ _f oo. In the rest of this section, fle shofl hofl sffch EfientTypes are speci ed in the MoCMapping, and describe hofl they are controlled at rffntime.

Sfieci catiffn

e EfientType _f oo mffst be replaced by tflo EfientTypes _ _f oo and _ _foo flith a caffsality betfleen them. ere are sefieral flays to accomplish that. e metalangffage ffsed for the MoCMapping can profiide a langffage constrffct corresponding to this strffctffre. It can also be simply considered as a design paern to be ffsed dffring the design of the MoCMapping. In offr description, fle choose the laer so as to keep offr Efient/EfientType Strffctffres "pffre" (i.e., ffnaltered by offr approach).

Listing 3.8 shofls an effiample speci cation, in the MoCMapping, of this design paern, ffsing pseffdo-code. Listing 3.8: Effiample speci cation of , speci ed ffsing pseffdo-code. In this effiample, the constraint strictly alternates betfleen tflo Efients _f oo and _bar means that the ℎ occffrrence of _foo happens strictly before the ℎ occffrrence of _bar, flhich happens strictly before the ( + 1) ℎ occffrrence of _ . is ensffres that for efiery beginning there is alflays a corresponding completion, and that for efiery retriefial of data there is alflays a corresponding displaying of it. is is formalized as follofls:

∀ ∈ ℕ, _f oo < _ < _foo +1
In the prefiioffs section, fle hafie presented non-blocking Effiecfftion Fffnction calls and the possibility to interrffpt them. Considering the constraints fle hafie de ned, interrffption is not possible for the effiample fle hafie jffst gifien. Additional EfientTypes and constraints shoffld be speci ed to enable the ffse of the interrffption mechanism fle hafie dened.

In order to nely control the Controlled EfientTypes, fle mffst specify to flhich Effiecfftion Fffnction call they correspond. is is done in the Commffnication Protocol, as illffstrated on the pseffdo-code speci cation shofln on Listing 3.9. Listing 3.9: Pseffdo-code speci cation of a Mapping flhose Effiecfftion Fffnction completion is represented effiplicitly in the concffrrency model In this listing, the Mapping "RetriefieData" raises the MoCTrigger (EfientType) _ _ flhen its corresponding Effiecfftion Fffnction, "MyData.retriefieLatest()" has nished its effiecfftion.

Figffre 3.23 shofls an efficerpt from the metamodel of the Commffnication Protocol effitended flith this possibility.

Runtime

Managing the Controlled Efients coffld be realized partly in the MoCMapping side of things. Hoflefier, to afioid relying on a particfflar implementation technology of the concffrrency aspects, fle describe the rffntime as a layer added to the rffntime of the Commffnication Protocol, thffs making it compatible flith any implementation of the MoCMapping. e rffntime for these efients is as follofls. First, they are identi ed by the Effiecfftion Engine by going throffgh the Commffnication Protocol Application and gathering all the efients speci ed in the "raises…" claffses. Since these Efients mffst be controlled nely, they are ltered at efiery step by the Effiecfftion Engine. is means that, at efiery step, the defafflt behafiior of the engine is to lter offt the Schedffling Solfftions flith occffrrences of the Controlled Efients.

is ltering offt is disabled, for a Controlled Efient, temporarily ffpon completion of an Effiecfftion Fffnction call flhose "raises…" claffse is that Controlled Efient. It is disabled ffntil a solfftion flith an occffrrence of the Controlled Efient has been selected by the heffristic of the engine. is ensffres that, ffpon completion of an Effiecfftion Fffnction call, one occffrrence of the raised efient has happened. is, in tffrn, gffarantees that the MoCApplication accffrately depicts flhat has e ectifiely happened in the rffntime of the Semantic Rffles. Figffre 3.24 shofls the ffpdated seqffence diagram of one step of effiecfftion (cf. Sffbsection 3.2.5). Betfleen effiecfftion steps, the engine listens for the completion of ongoing Effiecfftion Fffnction calls, thffs impacting the behafiior of method removeSolution-sWithUnallowedControlledEvents becaffse the corresponding raised efients are temporarily allofled. 

Cffmfiatibility with Blffcking Executiffn Functiffn Calls

e issffe fle hafie described is mainly the conseqffence of the non-blocking Effiecfftion Fffnctions call featffre fle hafie described in Section 3.4. Still, the solfftion presented abofie remains compatible flith blocking calls. Compared to flhat fle hafie presented, the constraint ffsed mffst be loosened a lile bit by remofiing the "strict" aspect. Listing 3.10 shofls the adapted effiample MoCMapping speci cation in pseffdo-code. Listing 3.10: Efficerpt from the MoCMapping speci ation, ffsing pseffdo-code, illffstrating the caffsality relation betfleen the "begin" and the "end" efient flhen ffsing blocking Effiecfftion Fffnction calls. e constraint "alternates" betfleen tflo Efients _foo and _bar is sffch that:

∀ ∈ ℕ, _f oo <= _bar <= _f oo +1
In other flords, the ℎ occffrrence of _f oo happens before (possibly at the same time) the ℎ occffrrence of _bar, flhich happens before (possibly at the same time) the ( + 1) ℎ occffrrence of _f oo. Hoflefier, tflo occffrrences of the same efient cannot occffr at the same time, so _foo and _foo +1 cannot occffr simffltaneoffsly.

Moreofier, there shoffld not be any additional constraint prefienting the simffltaneoffs occffrrence of the "begin" and "completion" efients. e only change in the rffntime is that the engine shoffld make sffre that if a Mapping-Application speci es a blocking Effiecfftion Fffnction call, then the selected Schedffling Solfftion mffst also contain an occffrrence of the corresponding completion Efient.

Feature Summary

is featffre essentially implements an encoding of an asynchronoffs effiecfftion into the Efient Strffctffre formalism, throffgh a backflard commffnication (i.e., from the Semantic Rffles to the MoCMapping). All Effiecfftion Fffnction calls can be encoded this flay since synchronoffs effiecfftions can be seen as a particfflar case of asynchronoffs effiecfftions (i.e., flhere the "begin" and the "end" efients occffr simffltaneoffsly). Hoflefier, concffrrencyaflare ffiDSMLs are generally designed for simfflations, rather than for implementations of real-florld systems. is means that non-blocking calls are the effiception rather than the norm, flhich is flhy this featffre is presented as an "opt-in" option rather than an "opt-offt" one.

Data-defiendent Language Cffnstructs

e semantics of some langffage constrffcts featffres a data-dependent control ofl: that is, a control ofl flhich depends on data afiailable at rffntime in the model. is is for instance the case of conditionals, for flhich the efialffation of a condition effipression determines the neffit instrffctions to effiecffte. In the concffrrency-aflare approach so far, the control ofl of langffage constrffcts, captffred in the MoCMapping, does not allofl for rffntime data to in ffence the ffftffre of the effiecfftion. We rst motifiate the importance of sffch langffage constrffcts, then identify the mechanism to enable their speci cation, and propose a solfftion that integrates into the concffrrency-aflare approach presented so far.

Purfiffse

To ffnderstand the prefialence of these langffage constrffcts, fle consider the classi cation of control ofl constrffcts in flork ofl systems, proposed in [START_REF] Rffssell | Work ofl Control-Flofl Paerns: A Refiised Viefl[END_REF] and mentioned in Section 2.1. In this stffdy, the affthors hafie identi ed 43 paerns describing the control ofl perspectifie of flork ofl systems (de ned ffsing formalisms sffch as BPMN [START_REF] Stephen | BPMN Modeling and Reference Guide: Understanding and Using BPMN[END_REF], UML Actifiity Diagrams [111], BPEL [START_REF] Offyang | Formal Semantics and Analysis of Control Flofl in WS-BPEL[END_REF], etc.). Among these paerns, 9 hafie semantics flhich, described ffsing offr approach, floffld rely on changing the control ofl according to data afiailable at rffntime in the model. Paerns depending on the efialffation of a condition effipression (e.g., Exclusive Choice, akin to fUML DecisionNode; Multi-Choice, akin to a UML ForkNode flith gffards on offtgoing branches; etc.) are typically concerned. Paerns based on iterations (e.g., Arbitrary Cycles, corresponding to loops based on goto statements; Structured Loop, corresponding to repetitions based on dedicated langffage constrffcts sffch as while…do or repeat…until) also rely on the efialffation of a condition effipression. As stated by the affthors, "Although initially focused on work ow systems, it soon became clear that the paerns were applicable in a much broader sense" and "Amongst some vendors, the extent of paerns support soon became a basis for product di erentiation and promotion." [START_REF] Rffssell | Work ofl Control-Flofl Paerns: A Refiised Viefl[END_REF].

We argffe that, considering the nffmber of paerns infiolfied, this shofls that many langffage constrffcts are concerned by this issffe. Not being able to specify them entirely in concffrrency-aflare ffiDSMLs is thffs problematic. In the rest of this section, fle flill stffdy the mechanism reqffired for the complete speci cation and effiecfftion of sffch langffage constrffcts, and propose a pragmatic solfftion for its integration into offr approach.

Illustrative Examfile

In fUML, DecisionNodes represent decision points flhere one of the branches flill be effiecffted, based on the incoming data and the efialffation of the gffards of the branches. In offr effiample model, depending on the drink foffnd, either "DrinkCo ee", "DrinkTea" or "DrinkWater" flill be effiecffted. Figffre 3.25 shofls a close-ffp of the simpli ed Efient Strffctffre for offr effiample model, in the case flhere fle foffnd "Co ee" on the table. When the Figffre 3.25: Close-ffp on the simpli ed Efient Strffctffre of the effiample Actifiity. We assffme that earlier, the node "CheckTableForDrinks" retffrned "Co ee". Coloffred lines represent the data-dependent caffsalities. e green dashed ones are the caffsalities fialidated by the presence of "Co ee". Red dots-and-dashes lines represent the effiecfftion paths that mffst be prffned becaffse they are not consistent flith the presence of "Co ee". efialffation of the gffards is realized, they retffrn a boolean fialffe de ning flhether or not their branch may be effiecffted. In the Efient Strffctffre, all possibilities are represented. Bfft since the concffrrency model is data-independent, there is no connection betfleen the resfflt of the efialffation of the gffards (e.g., the boolean fialffes retffrned by the ery eval-uateGuard()) and the effiecfftion of one of the branches.

In this section, fle stffdy hofl to specify an interpretation of the resfflt of a ery (e.g., a boolean fialffe in offr case) so as to forbid some scenarios in the Efient Strffctffre (e.g., by allofling and disallofling the branches of the ForkNode).

Challenges

e problem lies in a lack of commffnication betfleen tflo concerns of the semantics. On the one hand, the concffrrency model speci es, in a data-independent manner, all the possible effiecfftion scenarios. On the other hand, the Semantic Rffles describe the dynamic data of the model and hofl they efiolfie at rffntime. What is lacking is a means to specify, based on data afiailable at rffntime in the model, hofl to only consider the corresponding fialid scenarios in the concffrrency model. e rst step of the mechanism consists in retriefiing from the model the piece of data flhich mffst be ffsed to impact the control ofl. For this, fle rely on the taffionomy of Effiecfftion Fffnctions fle hafie presented in Section 3.3. When a ery is effiecffted, it retffrns a piece of data from the model. So far, there is no flay to effiploit this data in order to only enable effiecfftion scenarios flhich are consistent flith it. In the rest of this section, fle flill stffdy hofl this can be speci ed and hofl it is implemented at rffntime. e solfftion mffst maintain the modfflarity of offr initial approach, particfflarly the separation of concerns and the data-independence of the concffrrency model.

Extending the Cffmmunicatiffn Prfftffcffl

Since the commffnication fle flish to specify links the Semantic Rffles to the MoCMapping; the Commffnication Protocol, flhich already speci es a commffnication from the MoCMapping to the Semantic Rffles, is an adeqffate candidate for the speci cation of this commffnication. We distingffish these tflo commffnications, and denominate them respectifiely Mapping Protocol (i.e., the de nition of Mappings as seen prefiioffsly) and Feedback Protocol (i.e., speci cation of hofl to interpret the fialffes retffrned by qfferies to impact the control ofl). e former is composed of Modi erMappings flhich map MoCTriggers (i.e., EfientTypes) from the MoCMapping and Modi ers from the Semantic Rffles. e laer is constitffted of eryMappings mapping MoCTriggers and eries, enhanced flith an additional speci cation fle call the Feedback Policy. In this conteffit, the resfflt of a ery is denominated as the Feedback Value. Its interpretation by the Feedback Policy flill be ffsed, at rffntime, to only allofl Schedffling Solfftions (i.e., in the case of Efient Strffctffres, con gffrations) consistent flith the rffntime state of the model. 

Feedback Pfflicy

Let ffs detail the Feedback Protocol and hofl it is applied. We rst consider an Efient Strffctffre . is formally de ned by < , ℂ, ⊢>, flhere is a set of Efients, ℂ is an ordered set of consistent con gffrations and ⊢ is the enabling relation [START_REF] Winskel | Efient Strffctffres[END_REF]. A con gffration is a set of efients that hafie occffrred by some stage in the process. Also, any efient in a con gffration shoffld hafie been enabled by another efient in a prefiioffs con gffration (or by the nffll set for ffncontrolled efients like the initial one). We denote ℎ( 1 , 2 ) tflo "caffsal" con gffrations, i.e., tflo con gffrations sffch that:

∃ ∈ 2 , 1 ⊢ ∧ ∄ ∈ ℂ, < 1 ∧ ⊢
In other flords, the con gffration 2 contains at least one efient directly enabled by 1 .

Based on this, fle can de ne an efient strffctffre as a triplet < , ℂ, ℙ > flhere ℙ is the set of paths betfleen the con gffrations in ℂ. ere effiists tflo di erent kinds of paths in ℙ, i.e., ℙ ≜ ℙ ∪ ℙ . ℙ are the paths independent from the rffntime state of the model flhile ℙ are the data-dependent ones. Let ffs denote ( ) the rffntime state of the model at the con gffration of the Efient Strffctffre. When ℎ( 1 , 2 ) ∈ ℙ , and its dependency is toflards the rffntime state of the model at a speci c con gffration , fle denote it as ℎ( 1 , 2 ) ( ) . is means that depending on the rffntime state of the model at a certain point of the Efient Strffctffre (flhere precedes 1 and 2 ), going from 1 to 2 may be possible. Let ffs denote as ℎ( 1 , 2 ) ( ) the fffnction that determines if the path from 1 to 2 may be taken, depending on an interpretation of ( ). It retffrns a boolean fialffe: either the path is allofled or it is not.

Figffre 3.27 represents these concepts for a generic Efient Strffctffre. e data-dependent path from 1 to 2 is conditioned by some data afiailable at rffntime in the model at the point of effiecfftion of the con gffration . e Feedback Protocol mffst specify (at the langffage lefiel, i.e., in intention) the set of data-dependent effiecfftion paths (i.e., ℙ ) together flith the set of fffnctions (flhere determines flhether a path ∈ ℙ may be taken or not). is speci cation mffst be independent of any model, bfft be applicable to any model conforming to the abstract syntaffi of the langffage. For a speci c model, applying the Feedback Protocol consists in remofiing the effiecfftion paths from ℙ that are inconsistent flith the rffntime state of the model. It cannot add any paths in ℙ, nor remofie any paths from ℙ .

Pragmatics fff the Feedback Prfftffcffl

Practically, compffting the flhole Efient Strffctffre for a model may be compleffi or impossible. If the model is fiery large or highly parallelizable, then the effiponential nffmber of con gffrations and effiecfftion paths (possibly in nite) makes it either too costly to com-pffte or too big to be ffsable. Let ffs consider the minimal sitffation, flhere fle are capable of compffting only the children con gffrations of a con gffration.

Since the efient strffctffre is only partially constrffcted dffring a speci c effiecfftion of the model, fle do not hafie access to all the paths (and fffrthermore not all the data-dependent paths). erefore, applying the Feedback Protocol cannot consist in prffning effiecfftion paths in the efient strffctffre. Instead, the Feedback Policies only specify the EfientTypes flhich are inconsistent flith regards to the rffntime state of the model, and at effiecfftion time all the occurrences of the corresponding instances of the EfientType are forbidden. Forbidding an efient from occffrring resfflts in prffning the corresponding effiecfftion path in the implicit efient strffctffre. Hoflefier, it shoffld not prffne other occffrrences of that same efient flhich depend on another rffntime state of the model.

To handle this issffe, fle add the follofling role to the Feedback Policy: its interpretation of the Feedback Valffe mffst retffrn the set of EfientTypes inconsistent flith the rffntime state of the model and the set of EfientTypes flhich are data-dependent and consistent flith the rffntime state of the model. is flay, the neffit occffrrences of these consistent Efient-Types are considered as the limit aer flhich the occffrrences of the inconsistent Efient-Types do not represent a data-dependent decision anymore. ffs, aer the consistent EfientTypes hafie occffrred, forbidding the inconsistent EfientTypes ceases. is adds the follofling constraint: the concffrrency model shoffld not allofl sitffations flhere di erent occffrrences of the same efient depend on Feedback Policies (possibly sefieral occffrrences of the same policy) flhich can be applied at the same time. When considering tflo qfferies, and their Feedback Policies ofierlap in terms of flhich efients are compatible or incompatible, then the concffrrency model shoffld not allofl these tflo qfferies to ofierlap the application of the Feedback Policy of the other qffery. is means that the second qffery shoffld nefier be effiecffted betfleen an effiecfftion of the rst qffery and occffrrences of the compatible efients of the Feedback Policy of that rst qffery. More formally, the di erent data dependencies of the control ofl for a model element mffst be treated seqffentially (i.e., no tflo dependencies on di erent pieces of data shoffld interfiene concffrrently dffring the effiecfftion of the ffnderlying Efient Strffctffre). Otherflise, it is possible that the MoCApplication falls in a state of deadlock, halting the effiecfftion. In the case of fUML, this means that flhen a gffard is efialffated, it cannot be re-efialffated (becaffse nefl tokens hafie arrified on the incoming edges) before the branch resfflting of the rst efialffation has started effiecffting.

We shofl the pseffdo-code speci cation of the Feedback Protocol for fUML on Listing 3.11. It relies on the speci cation of tflo additional EfientTypes, declared in the conteffit of ActifiityEdges: _ and _ . ese Efient-Types are Controlled EventTypes as de ned in Section 3.5. eir occffrrences are managed by the rest of the rffntime of the effiecfftion semantics of the ffiDSML.

Listing 3.11: Updated Feedback Protocol of fUML, speci ed ffsing pseffdo-code. Effiplicitly representing the case flhere a branch is not allofled (i.e., fiia _ ) is reqffired becaffse otherflise, additional constraints of the MoCMapping cannot be de ned. Indeed, in an Efient Strffctffre, it is not possible to reason ofier an Efient not occffrring. Since an Efient Strffctffre captffres a partial ordering, there may be an inde nite nffmber of steps betfleen tflo occffrrences. By captffring effiplicitly flhen a branch is not allofled, fle enable the correct de nition of the rest of the MoCMapping, i.e., both cases are effiplicitly handled by the partial ordering. Figffre 3.28 illffstrates hofl the Feedback Protocol interfienes in the case of the effiample fUML Actifiity. For representation pffrposes, only one of the gffard is considered for this gffre. In reality, the gffards are concffrrent and the other branch of the ForkNode is also concffrrent so there are a lot of possible effiecfftion paths. e target EfientTypes (i.e., _ and _ in offr effiample) are Controlled EfientTypes flhich means that at efiery step, the Schedffling Solfftions containing their occffrrences are ltered offt by the effiecfftion engine, becaffse they are only sffpposed to occffr as a resfflt of something happening in other parts of the semantics. In offr case, they can only occffr depending on the application of the Feedback Policy aer a ery has retffrned a particfflar fialffe.

An important aspect of the Feedback Protocol is that the metalangffages for the Feedback Policy and for the Semantic Rffles mffst be able to commffnicate. More precisely, the fialffe retffrned by a ery mffst t flithin the type system ffsed by the metalangffage for the Feedback Policy. In the pseffdocode effiample shofln abofie, the effipression result = true is fialid only if the effipressions de ned by the Feedback Policy metalangffage are compatible flith the fialffes retffrned by the ery evaluateGuard().

Cffmfiatibility with nffn-blffcking calls

We hafie described in Section 3.4.3 a featffre to effiecffte Effiecfftion Fffnction calls in a nonblocking manner. It may be necessary to ffse it for eries flhich may take a long time to compffte, for instance if the data it retffrns is based on a compleffi compfftation. Hoflefier, this reqffires some additional modi cations of the rffntime to ensffre that the Feedback Protocol can be applied correctly.

First of all, the application of the Feedback Protocol resfflts in some Schedffling Solfftions being temporarily forbidden. Since a non-blocking call to a ery can complete at any time, the possible Schedffling Solfftions presented by the heffristic of the effiecfftion engine shoffld be ffpdated as soon as possible aer the completion of a ery call. is ensffres that the choices made by the heffristic are realized based on the latest rffntime state of the model.

Another modi cation to the rffntime is to ensffre that some arbitrary decisions cannot be made too early. e EfientTypes targeted by the Feedback Policy are Controlled (cf. Section 3.5), flhich means that their occffrrences are nely controlled by the rffntime based on additional information from the semantics. In particfflar, aer the ery has been laffnched, and before it has retffrned, no decision can be taken abofft them. is means that all Schedffling Solfftions containing occffrrences of the EfientTypes targeted by the Feedback Policy associated to a ery flhich has been laffnched mffst be ltered offt ffntil the ery has completed its effiecfftion. is ensffre that no early decision can be made abofft these EfientTypes before the Feedback Data that conditions their occffrrences has been retriefied.

Feature Summary

With this featffre, fle establish another backflard commffnication from the Semantic Rffles to the MoCMapping (the rst one being in Sffbsection 3.5). is commffnication e ectifiely improfies the effipressifie pofler of the concffrrency-aflare ffiDSML approach, since datadependent langffage constrffcts coffld not be handled correctly prefiioffsly. is type of constrffct is core to many ffiDSMLs, as it is ffsed for conditionals, sflitches, etc., flhich effiplains flhy the changes to the metalangffages of the approach are more fiolffminoffs than for prefiioffs featffres.

Cffmfiffsite Executiffn Functiffns

Effiecfftion Fffnctions are initially designed flith the intent of being called by the Effiecfftor (rffntime of the Semantic Rffles) ffnder the impfflsion of the Effiecfftion Engine. is natffrally hinders the de nition of Composite Execution Functions, flhich make ffse of other Effiecfftion Fffnctions. is section is dedicated to enabling the de nition of Composite Effiecfftion Fffnctions flhile maintaining the concffrrency-aflareness of the langffage.

Purfiffse

Di erent langffage constrffcts mffst oen commffnicate dffring their effiecfftion to realize their semantics. In offr approach, this is concretized by the de nition of a data effichanges betfleen Effiecfftion Fffnctions, that is, the offtpfft of some Effiecfftion Fffnction is ffsed as inpfft for some other Effiecfftion Fffnction. is inclffdes sitffations flhere an Effiecfftion Fffnction, dffring its effiecfftion, calls another Effiecfftion Fffnction. In that case, the laer may efien not retffrn any data, in flhich case it is simply a means to reffse code (i.e., a set of instrffctions bffndled together as a fffnction, procedffre, sffbrofftine, etc.).

Since Effiecfftion Fffnctions are triggered by the Effiecfftor becaffse a corresponding Mapping-Application has been matched on the selected Schedffling Solfftion (from the Solfier), the possibility of de ning data effichanges betfleen Effiecfftion Fffnctions is lost, the concffrrency model being independent from the data concerns.

Data effichanges may still be de ned, albeit ffsing some form of paern. For code reffse (i.e., fffnction call not retffrning any data), a common operation can be de ned, effiploited by both Effiecfftion Fffnctions. is hoflefier reqffires a particfflar defielopment methodology from the langffage designer (i.e., it is not idiomatic to the Semantic Rffles metalangffage). Listing 3.12 shofls an effiample of this sitffation ffsing pseffdo-code. In this effiample, the Effiecfftion Fffnction "caller" reffses another Effiecfftion Fffnction "callee". Hoflefier, doing this directly hides aflay, from the concffrrency model, the relation betfleen "caller" and "callee" (the concffrrency-aflareness is lost). Listing 3.13 shofls the solfftion to keep the concffrrency-aflareness, at the cost of being non-idiomatic for the Semantic Rffles metalangffage.

For data effichanges, a piece of data can be stored in an aribffte of a model element that is accessible to both Effiecfftion Fffnctions, bfft this relies on an implicit protocol (i.e., side e ects on a common model element) and is also not idiomatic. Listing 3.14 shofls an effiample of this sitffation ffsing pseffdo-code. In this effiample, the Effiecfftion Fffnction "caller" calls another Effiecfftion Fffnction "callee" flith some argffment "ffi". Hoflefier, doing this directly hides aflay, from the concffrrency model, the relation betfleen "caller" and "callee" (the concffrrency-aflareness is lost). Listing 3.15 shofls the solfftion to keep the concffrrency-aflareness, at the cost of being non-idiomatic for the Semantic Rffles metalangffage (and also reqffires the ability to call other Effiecfftion Fffnctions, as presented in the prefiioffs effiample). Listing 3.12: Effiample of an Effiecfftion Fffnction flhich relies on the effiecfftion of another Effiecfftion Fffnction. Listing 3.15: Adaptation of Listing 3.12 so that the concffrrency-aflareness is preserfied. Reqffires additional adaptation to realize the call to "callee" as illffstrated prefiioffsly. Both cases reqffire the adaptation of the Semantic Rffles metalangffage. Since it allofls the de nition of the Effiecfftion Fffnctions, it most likely also inclffdes the possibility to call them (as is the case for most programming langffages proposing the notion of operation, procedffre, method, sffbrofftine, etc.). We flill refer to this featffre as "method-call". is featffre, in its common de nition, does not combine flell flith offr approach: Effiecfftion Fffnction calls are sffpposed to be triggered by the Effiecfftor and not by other Effiecfftion Fffnctions. We flill propose a solfftion to make it compatible flith offr concffrrency-aflare approach, thffs enabling the de nition of flhat fle call Composite Effiecfftion Fffnctions.

Illustrative Examfile

In fUML, Action nodes may hafie OfftpfftPins, i.e., pins that delifier fialffes to other nodes throffgh object ofls. In that case, an OfftpfftPin is alflays effiecffted aer its oflning node. Considering the concffrrency-aflare approach, there are initially tflo flays to specify this. First, fle can flrap the effiecfftion of the OfftpfftPin inside the effiecfftion of the oflning node. is means that the effiecfftion of the pin is implicit, i.e., not fiisible in the concffrrency model. e second flay consists in making it effiplicit in the concffrrency model. e effiecfftions of the node and of the pin are thffs separated, mapped by di erent MoCTriggers. One to represent the effiecfftion of the node, and one to represent the effiecfftion of the pin, flith a caffsality betfleen both to ensffre that the laer is effiecffted aer the former.

In this section, fle try to consider a miffi of both solfftions. e effiecfftion of the pin is considered as part of the effiecfftion of the node, facilitating the speci cation of the corresponding Effiecfftion Fffnction, and possibly, the data effichange betfleen the effiecfftion of a node and of its pin. Bfft it is also schedffled effiplicitly in the concffrrency model, i.e., there is a caffsality betfleen tflo Efients, one representing the effiecfftion of the node and one representing the effiecfftion of the pin.

Let ffs illffstrate the issffe on a part of the effiample Actifiity (cf. Figffre 3.2). Figffre 3.29 shofls the Action node "CheckTableForDrinks" and its OfftpfftPin. In the rst solfftion, the effiecfftion of the pin is flrapped inside the effiecfftion of the node, so the corresponding Efient Strffctffre has only one Efient, corresponding to the effiecfftion of the "CheckTableForDrinks" node (and implicitly of its pin). Figffre 3.30 shofls the ofierfiiefl of the di erent concerns in this sitffation.

In the second solfftion, the effiecfftion of the pin is separated from the effiecfftion of its oflning node. For offr effiample, this means that there are tflo di erent Effiecfftion Fffnction calls, mapped throffgh tflo di erent MappingApplications by tflo di erent Efients of the Offr goal in this section is to be able to bffild the Efient Strffctffre of the second solfftion (flhich makes effiplicit the relation betfleen the effiecfftion of "CheckTableForDrinks" and the effiecfftion of "MyOfftpfftPin") flhile allofling the Effiecfftion Fffnction Calls of the rst solfftion (flhich gathers both effiecfftions into one Effiecfftion Fffnction).

Challenges

More generally, let ffs consider tflo Effiecfftion Fffnctions ef and ef . In the implementation of ef , a method-call to ef is realized. Offr goal is to make sffre the relation betfleen ef and ef is captffred accffrately in the concffrrency model, and to make sffre that the rffntime is consistent flith the speci cation.

is featffre reqffires a coordination betfleen the MoCMapping and Semantic Rffles speci cations, and also betfleen their respectifie rffntimes. Indeed, since the effiecfftion of ef is flrapped inside the effiecfftion of ef , the representation of ef in the concffrrency model mffst be separated in tflo (i.e., to di erentiate the beginning of ef from its end), similar to flhat flas done in Section 3.4.

• Challenge #1: e concffrrency mffst thffs ensffre the follofling relation:

ℎ(ef ) < ℎ(ef ) < (ef ) < (ef )
• Challenge #2: e implementation of ef shoffld ideally not reqffire speci c code to implement the method-call to ef

. is means that fle flant to nd a flay sffch that, for the metalangffage of the Semantic Rffles, method-calls to other Effiecfftion Fffnctions are dealt flith in a particfflar flay (i.e., enabling its "concffrrencyaflareness"), flithofft hafiing to change the syntaffi ffsed for regfflar method-calls.

Sfflutiffn

Offr solfftion consists in adapting the speci cation of the concffrrency concerns, the speci cation of ef and the rffntime.

Sfieci catiffn fff the Cffncurrency Cffncerns

e conseqffence of this featffre on the speci cation of the MoCMapping is that since the effiecfftion of ef is contained by the effiecfftion of ef , it mffst be captffred as sffch in the concffrrency model. erefore, similar to the approach proposed for non-blocking Effiecfftion Fffnctions in Section 3.4, a design paern (or an eqffifialent langffage constrffct, depending on the MoCMapping metalangffage) can be applied to tackle Challenge #1 (cf. page 103) Figffre 3.32 shofls the corresponding Efient Strffctffre for a part of the effiample fUML Actifiity. e Efients _ _ and _ _ ℎ are Controlled Efients, nely managed depending on the cffrrent state of effiecfftion of their corresponding Effiecfftion Fffnction calls, as de ned in Section 3.5.

Sfieci catiffn fff the "Caller" Executiffn Functiffn

ere are tflo main constraints to the design of ef . First, it mffst be called in a non-blocking manner. Indeed, since the call of ef by ef is made effiplicit in the concffrrency model, it flill be triggered by an effiecfftion step of the Effiecfftion Engine. is effiecfftion step necessarily happens strictly aer the step flhich initially triggered ef . ere may actffally be any nffmber of effiecfftion steps betfleen the beginning of effiecfftion of ef and the call to ef by ef . Effiecffting ef in a non-blocking manner allofls the engine to rst start the effiecfftion of ef , flhile effiecffting other steps ffntil the effiecfftion of ef happens. e second constraint is that ef mffst specify that it ffses ef . Indeed, the MoCMapping merely ensffres that ℎ(ef ) < ℎ(ef ). Bfft at rffntime, fle need to make sffre that the effiecfftion of ef has reached the point flhere it reqffires the effiecfftion of ef before allofling a step triggering the effiecfftion of ef . erefore, in the effiample gifien prefiioffsly, _ _ is also a Controlled Efient. To do that, the Effiecfftion Engine needs to knofl flhich Effiecfftion Fffnctions are called by flhich other Effiecfftion Fffnctions, so that the corresponding MoCTriggers in the MoCMapping can be managed as Controlled EfientTypes (cf. Section 3.4, their occffrrences are nely controlled based on the rest of the semantics -in that case, on the cffrrent state of effiecfftion of ef

). is information can be speci ed in intention, or possibly inferred fiia static analysis of the Semantic Rffles implementation. Figffre 3.33 shofls an efficerpt from the metamodel of the Semantic Rffles illffstrating the strffctffre of Composite Effiecfftion Fffnctions as fle hafie described them. e main changes for this featffre are located in the static semantics (ef mffst be called in a non-blocking manner), and most importantly, in the rffntime described belofl.

Changes tff the runtime

Offr solfftion is illffstrated on Figffre 3.34, flhich shofls the modi ed Seqffence Diagram for the Effiecfftion Engine.

It relies on modifying method-calls to Effiecfftion Fffnctions. It florks as follofls. By defafflt, the engine retriefies the declared callee Effiecfftion Fffnctions and lters their oc- When ef is effiecffted, instead of directly effiecffting ef , it sends a reqffest to the Effiecfftor, flhich transmits it to the Effiecfftion Engine. is reqffest contains the information that ef is trying to effiecffte ef . Upon reception of this reqffest, the engine disables the abofie-mentioned lter, so that an effiecfftion step leading to the effiecfftion of ef may be selected. Meanflhile, ef is pfft on hold, flaiting for ef being effiecffted.

Once sffch a step has been selected and effiecffted, and that ef has completed its effiecfftion, the engine noti es ef , flhich may proceed flith the rest of its effiecfftion.

Modi cations to the rffntime inclffde the commffnication betfleen an Effiecfftion Fffnction call and the Effiecfftor, betfleen the Effiecfftor and the Engine, and then back from the Engine to the Effiecfftor and to the blocked Effiecfftion Fffnction call. Additionally, the engine mffst also be able to lter offt the solfftions leading to the effiecfftion of ef since its corresponding EfientType is controlled. is has the follofling draflback: there cannot be an occffrrence of another Mapping laffnching the ef Effiecfftion Fffnction independently of flhat is happening in ef . Indeed, there is no flay to distingffish, in that case, an independent call to ef from the call reqffired by ef . is is dffe to hofl, in the concffrrency model, the abstract actions are represent independently of data from the model. is means that any call to an Effiecfftion Fffnction is considered independently from its calling conteffit (i.e., the rffntime state of the model). is ffltimately stems from the necessity to abstract aflay, in the concffrrency concerns, parts of the model to enable its analysis and re nement. erefore, to minimize the sitffations flhere an inconsistent state of the rffntimes coffld be reached, the semantics of the ffiDSML shoffld not inclffde an independent call to ef dffring the effiecfftion of ef .

Imfilementatiffn fff the "Caller" Executiffn Functiffn

Challenge #2 (cf. page 103) is restricted to the implementation of ef . Ideally, the method-call mechanism shoffld rely on the ffsffal syntaffi, and be di erentiated only at rffntime depending on flhether the operation called is another Effiecfftion Fffnction or not.

ere are sefieral flays to difiert the fffnction call in the metalangffage for the Semantic Rffles, more or less disrffptifie for the ffser code in the implementation of the Effiecfftion Fffnctions. Ultimately, the change shoffld be eqffifialent to flhat is shofln on Listings 3.16 and 3.17. Listing 3.16: Effiample of ffser code implementing Effiecfftion Fffnctions "caller" and "callee". One solfftion is to modify hofl the Semantic Rffles Calls are generated based on a model. e modi cation consists in identifying the fffnction calls flhich are made effiplicit in the concffrrency model, and in transforming these calls according to the solfftion fle hafie proposed. at is, to transform a call to ef into a call reqffest to the Effiecfftor and then blocking ffntil noti cation that the call has indeed been realized. is solfftion is disrffptifie for the compiler of the Semantic Rffles metalangffage bfft does not interfere flith the ffser code.

Feature Summary

is featffre relies on a compleffi back-and-forth commffnication betfleen the Semantic Rffles and the MoCMapping. Althoffgh it does not improfie the effipressifie pofler of the approach, it does facilitate the implementation of some Effiecfftion Fffnctions by allofling Effiecfftion Fffnctions to rely, in a concffrrency-aflare manner, on other Effiecfftion Fffnctions. Ultimately, this means that the code of the Effiecfftion Fffnction implementations is more alike traditional programming flhich relies heafiily on method calls to modfflarize and reffse code. is featffre thffs improfies the langffage designer's effiperience flith the approach, by allofling them to rely on more traditional programming techniqffes in the metalangffage ffsed for the Effiecfftion Fffnction implementations. Hoflefier, the main doflnside is that the control ofl information mffst be speci ed tflice: rst in the implementation of ef , and second in the MoCMapping. is means that any changes to either mffst also be ported to the other one.

Semantic Variatiffn Pffints

In Chapter 2, fle hafie de ned and illffstrated the notion of Semantic Variation Points (SVPs). ey are langffage speci cation parts le intentionally ffnder-speci ed to allofl fffrther langffage adaptation to speci c ffses. Using traditional langffage design techniqffes, their speci cation, implementation and managing is di cfflt. In this section, fle present hofl the concffrrency-aflare approach facilitates the speci cation and implementation of SVPs for concffrrency-aflare ffiDSMLs. We drafl the di erence betfleen a Language (the speci cation of a syntaffi and of a semantics that may contain SVPs) and its Dialects (flhich implement a langffage, making choices abofft some -possibly all -SVPs of the langffage). is flork has been detailed and illffstrated on Statecharts and its fiariants in [START_REF] Latombe | Coping flith Semantic Variation Points in Domain-Speci c Modeling Langffages[END_REF].

Challenges

Tools commonly profiide only one dialect, thffs constraining the end-ffser to flork flith the selected speci c implementation of SVPs, flhich may not be the best-sffited for their needs. Besides, it also complicates the cooperation betfleen tools, since they may implement SVPs di erently, gifiing a di erent semantics to the same syntaffi. Tflo engineers flith di erent backgroffnds may also assffme di erent meanings for the same model, flhich impairs commffnication. Finally, large projects may need to ffse sefieral dialects cooperatifiely, flhich means that this issffe cannot be simply redffced to the choice of a ffniqffe tool: one dialect flith an associated tool may be the best t for a particfflar aspect of a system, bfft other ones may be beer-sffited for other aspects of the system.

In the rest of this section, fle flill shofl hofl the modfflarity of the concffrrency-aflare approach toflards the effiecfftion semantics of ffiDSMLs facilitates the speci cation and management of SVPs. We flill also shofl hofl SVPs pertaining to the concffrrency concerns can easily be implemented thanks to the separation of concerns of the approach. We flill consider the SVPs of fUML [116]. In the fUML speci cation, the notions of time, commffnication and concffrrency are delegated to the tool implementors. Tool fiendors are thffs responsible for specifying and docffmenting the implemented solfftion.

SVPs in Cffncurrency-aware xDSMLs

SVPs are ffsffally speci ed informally, flhich makes their identi cation di cfflt. More oen than not, the speci cation docffment describes all allofled possibilities, flhile a reference implementation de nes the defafflt implementation of SVPs. In the concffrrency-aflare approach, SVPs can manifest themselfies in any part of the effiecfftion semantics. When they are con ned to only one of the concerns, the approach facilitates their speci cation and implementation since only one of the concerns is infiolfied.

SVPs fiertaining tff the Semantic Rules

SVPs related to the rffntime state or its efiolfftion are contained in the Semantic Rffles. Changing a effe into a Stack, in order to implement a Last-In-First-Offt policy instead of a First-In-First-Offt, or incrementing a fialffe tflice instead of once to doffble a ressoffrce consffmption, are effiamples of sffch SVPs.

In the fUML speci cation [116], the gffards of edges offtgoing a DecisionNode may be efialffated in an arbitrary order, possibly in parallel. We coffld decide to ffse an arbitrary order, implemented in an Effiecfftion Fffnction.

Implementations of sffch SVPs can be realized by ofierriding the corresponding Effiecfftion Data and Effiecfftion Fffnctions. It is also oen possible to prefient fffnctions from being ofierriden (e.g., in Jafia ffsing the " nal" keyflord), allofling the langffage designer to ensffre key parts of the semantics cannot be modi ed.

SVPs fiertaining tff the Cffmmunicatiffn Prfftffcffl

e fUML effiample mentioned abofie can also be realized by implementing sefieral arbitrary orders in di erent Effiecfftion Fffnctions, and then de ning in the Mapping Protocol flhich one to ffse. More generally, fiariations of the Commffnication Protocol can be ffsed to create dialects based on the same MoCMapping and Semantic Rffles. In particfflar, the Feedback Protocol (as presented in Section 3.6) can also change to modify the semantics.

SVPs fiertaining tff the MffCMafifiing

e most interesting aspect of the approach for SVPs hoflefier, lies in the MoCApplication, and by effitension, in the MoCMapping. Since it captffres the concffrrency concerns based on a symbolic partial ordering, it speci es effiplicitly all allofled control ofl possibilities. Each dialect can remofie the effiecfftion paths that do not correspond to its intended semantics by fffrther restraining the symbolic partial ordering (i.e., if effipressed ffsing constraints, by specifying additional constraints in the MoCMapping). In fact, nondeterminisms in the concffrrency model (resfflting in con icts in the Efient Strffctffre) can all be seen as potential SVPs.

Hoflefier, it is possible that some nondeterminisms are part of the effiecfftion semantics of the langffage (the langffage is thffs indeterministic by intention), or that they shoffld instead be solfied by the platform on flhich the langffage is deployed (i.e., the rffntime of the concffrrency model is specialized for a speci c effiecfftion platform). erefore, the MoCMapping metalangffage mffst profiide the means to hinder some parts of its symbolic partial ordering from being specialized fffrther. Figffre 3.35 illffstrates a possible Semantic Variation Point of fUML. e branches of a ForkNode can be effiecffted in any order. In particfflar, one can choose to effiecffte the branches from le to right, or from right to le. In this gffre, there is a "common semantics" captffred by the initial MoCMapping, representing the effiecfftion semantics as gifien in the fUML speci cation [116]. Tflo di erent implementations are illffstrated: one flhere fle rst effiecffte the le branch of the ForkNode (the drinking part of the actifiity of Figffre 3.2), and another one flhere fle rst effiecffte the right branch of the ForkNode (the talking part of the actifiity). ey can be implemented simply by effitending the original MoCMapping and specifying additional constraints that resfflt in the efient strffctffres fle hafie shofln. e di erence betfleen specializing a langffage for a speci c enfiironment and implementing a Semantic Variation Point is blffrry. SVPs sometimes represent adaptation points for a speci c platform (distribffted, highly parallel, etc.). Both are implemented by specializing the MoCMapping ffsed to de ne the concffrrency concerns of the ffiDSML. To beer manage these SVPs, they can be implemented in a modfflar flay so that dialects are then conceified by merging speci c SVP implementations; similar to creating a nefl class in Aspect-Oriented Programming by effitending an effiisting class and fleafiing effiisting aspects onto it. For instance, based on the tflo fUML SVPs fle hafie ffsed as effiamples (pertaining to the order of efialffation of the gffards of a DecisionNode and to the order of effiecfftion of the branches of a ForkNode), fle can create as many dialects as the prodffct of the nffmber of implementations for the rst SVP and of the nffmber of implementations for the second SVP. e MoCMapping metalangffage and the code organization of the SVP implementations shoffld enable the creation of dialects thanks to a cherry-pick of SVP implementations.

Finally, Figffre 3.36 shofls, as a metamodel, the semantics of fUML flith its di erent fiariations. In the Semantic Rffles, di erent Effiecfftion Fffnctions are implemented for the di erent strategies of efialffation of the gffards of a DecisionNode. Which one is ffsed depends on the implementation of the Commffnication Protocol of fUML ffsed. For the concffrrency concerns, there is a common MoCMapping, flhich can be ffsed as sffch (i.e., the heffristic of the rffntime flill be in charge of determining hofl concffrrent branches are effiecffted), or effitended flith additional constraints to implement a particfflar strategy.

Feature Summary

is featffre is a direct bene t of the separation of concerns indffced by the concffrrencyaflare ffiDSML approach. It profiides a soffnd and practical manner to specify and implement SVPs, particfflarly flhen they are related to the concffrrency concerns of an ffiDSML. Managing semantic fiariants of ffiDSMLs is oen di cfflt becaffse a change in the effiecfftion semantics spreads throffgh a lot of resoffrces (i.e., speci cations as models, code, fffnctions, etc.). anks to the separation of concerns, many SVPs can be con ned to only one of these aspects. en, depending on the effitension mechanisms profiided by each aspect's metalangffage, SVPs can be implemented more natffrally. In the case of concffrrency-related SVPs, partial orders in Efient Strffctffres profiide a fiery practical means for sffch effitensions (i.e., by re ning the partial order throffgh the de nition of additional constraints), ffltimately facilitating the management of the di erent dialects of an ffiDSML.

Cffncurrency-aware xDSMLs fffr Reactive Systems

Modern highly-concffrrent systems are oen reactifie, in the sense that they mffst be able to react to the occffrrence of some form of effiternal efient. is is most commonly the case for afftonomoffs systems, flhose pffrpose is precisely to be able to fffnction flithofft hffman interfiention. In that conteffit, determining the natffres of the possible inpffts and ensffring the correct behafiior of the system for all possible inpffts is one of the main aspects of reactifie systems design. We propose to effitend the concffrrency-aflare approach in order to enable the speci cation of ffiDSMLs aimed at specifying reactifie systems.

Purfiffse

In the approach fle hafie described so far, the concffrrency model speci es all possible effiecfftion scenarios, leafiing lile room for the representation of incoming efients. Representing all possible inpffts in the concffrrency model makes it compleffi, and ffsffally infiolfies representing parts of the data in the concffrrency model, flhich defeats the initial objectifie of the concffrrency-aflare approach.

A possible florkaroffnd consists in regfflarly calling an Effiecfftion Fffnction flhose role is to check for some effiternal inpfft (fiia arbitrary code in the Effiecfftion Fffnction implementation). is mechanism remains opaqffe, relying on implicit connections made in the Effiecfftion Fffnction implementation, and on side-e ects on the rffntime state of the model. Moreofier, implementing data ofls betfleen Effiecfftion Fffnctions is di cfflt becaffse the MoCMapping is data-independent: as sffch, it cannot take into accoffnt the possible parameters of the Effiecfftion Fffnctions. is flas one of the motifiations for the de nition of Composite Effiecfftion Fffnctions, presented in Section 3.7, flhich come flith problems of their ofln. A florkaroffnd for this issffe consists in storing the data that need to ofl into the elds of a model element accessible by both ends of the ofl, bfft this, too, relies on side-e ects and implicit design rffles.

We propose to affgment the concffrrency-aflare approach flith the means to specify reactifie systems. is featffre has tflo main aspects. First, fle mffst be able to take into accoffnt effiternal parameters dffring the effiecfftion of a model, ffsing an effiplicit and dedicated mechanism (i.e., ffnlike the florkaroffnd mentioned abofie). We propose to do this by de ning Mappings flith parameters, similar to hofl in programming, fffnctions hafie parameters. en, one of the main ffse of these parameters is to be able to effiploit them in the Effiecfftion Fffnctions. erefore fle propose to profiide the means to specify Effiecfftion Fffnctions flith parameters. We stffdy the speci cation and rffntime aspects of both issffes.

Challenges

e rst challenge is the speci cation of the parameters for Mappings and Effiecfftion Fffnctions. In particfflar, fle flill focffs on the compatibility betfleen the type systems ffsed in the respectifie metalangffages for the Commffnication Protocol and the Semantic Rffles. en, fle mffst consider the changes to the rffntime. We mffst determine hofl argffments are profiided to the MappingApplications, respectifiely to the Effiecfftion Fffnction calls. For the laer, fle flill describe hofl the Composite Effiecfftion Fffnction featffre presented in Section 3.7 is managed.

Illustrative Examfile

e fUML effiample Actifiity is initially not reactifie. We propose to modify the Action nodes sffch that their effiecfftion reqffires a String parameter. is flay, the "CheckTable-ForDrinks" node retffrns, throffgh its OfftpfftPin, the gifien String, corresponding to the drink foffnd on the table, instead of choosing randomly betfleen "Co ee", "Tea" and "Water".

De ning Parameters fffr Executiffn Functiffns

Sfieci catiffn e de nition of Effiecfftion Fffnctions flith parameters shoffld be done in the ffsffal flay of the metalangffage for the Semantic Rffles. is is typically done in the type signatffre of the fffnction, by specifying the name and type of parameters. Listing 3.18 shofls an effiample Effiecfftion Fffnction de nition flith a String parameter in Jafia. 

Runtime

At rffntime, the argffments of an Effiecfftion Fffnction call are profiided by the Effiecfftor. Since the Effiecfftor is controlled by the Effiecfftion Engine, it is ffltimately responsible for profiiding the argffments to the Effiecfftor. In the rest of this section, fle flill shofl hofl the engine originally obtains the argffments that are passed to the Effiecfftion Fffnction calls.

Intrffducing Parameters in Mafifiings Sfieci catiffn

Parameters of Mappings are speci ed thanks to a type and a name, jffst like for Effiecfftion Fffnctions.

Let ffs sffppose in the case of the effiample fUML Actifiity, fle flant the argffment of the node "CheckTableForDrinks" to be profiided at rffntime. In that case, the corresponding Mapping mffst be de ned flith a parameter. Listing 3.19 shofls the pseffdo-code speci cation of that mapping. In that effiample, the impact on the control ofl of the fialffe retffrned at rffntime by the Effiecfftion Fffnction myExecutionFunction flill depend on its comparison to the String passed as argffment to the corresponding Mapping.

Similar to flhat flas discffssed in the section abofft the speci cation of the Feedback Policy (Section 3.6), the type systems ffsed mffst be compatible. is means that the metalangffages for the Semantic Rffles, Mapping Protocol and Feedback Protocol mffst hafie a common type system, or at least a flay to commffnicate type informations. is means they mffst all originally integrate the metalangffage for the abstract syntaffi of the ffiDSML, since it is likely that it profiides a decent basis. thffs be profiided flhen selecting the Schedffling Solfftion leading to it. is means that the heffristic is responsible for profiiding the argffments of the Mappings.

is makes the implementation of the heffristic compleffi. Indeed, the heffristic is generic and not tied to a particfflar domain. Hoflefier, parameters are typically domain-speci c types and fialffes. is means that the langffage designer mffst profiide parts of the heffristic implementation ffsed, in order to enable the end-ffser to enter fialid argffments for the MappingApplications of a system. is sitffation is a bit similar to designing the concrete syntaffi of a langffage, as some constraints are di cfflt to captffre in the abstract syntaffi of the langffage. In Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF], this is concretized as the scoping mechanism7 . It allofls the de nition of a scope for each part of the model creation. In other flords, it de nes rffles gffiding the creation of a fialid program (instance of the abstract syntaffi). Sffch a mechanism coffld be ffsed in order to gffide the end-ffser in selecting fialid argffments, for instance fiia a Graphical User Interface or a toolsffpported Command-Line Interface (e.g., flith affto-completion featffres, etc.).

Unfortffnately, this sort of mechanism florks flell only flhen the possible fialffes are already knofln by the model at rffntime, e.g., if they are parts of the model or part of an enffmeration. Creating objects for the pffrpose of ffsing them as the argffments of Map-pingApplications floffld reqffire an efient more compleffi de nition of the heffristic, or the ffse of an effiternal program throffgh an API to create the effipected compleffi object. IDE featffres, like those generated by Xteffit for the Eclipse platform, implement this throffgh the notion of template proposals. It is essentially a syntactic help dedicated to the creation of nefl constrffcts (i.e., objects, methods, etc.). Figffre 3.38 shofls the affto-completion (fed by the scoping mechanism fle hafie described abofie) and the template proposals featffres in the Eclipse IDE for Jafia (Jafia Defielopment Tools -JDT). 

Feature Summary

is featffre effitends the concffrrency-aflare ffiDSML approach flith the means to sffpport ffiDSMLs flith parameterized langffage constrffcts. is coffld prefiioffsly be done implicitly by relying on side e ects inside the model; this featffre makes this effiplicit in the effiecfftion semantics model. e behafiiors (i.e., the Mappings) can be parameterized dffring both directions of the commffnication: either by parameterizing the Effiecfftion Fffnctions, or the Feedback Policies. Sffch parameterized behafiiors are reqffired flhen the enfiironment of the ffiDSML is not captffred as part of the ffiDSML (i.e., a ffser inpfft, some effiternal data, etc.).

Behaviffral Interface fff Cffncurrency-aware xDSMLs

Prefiioffs featffres focffsed on facilitating or enabling the speci cation of the effiecfftion semantics of concffrrency-aflare ffiDSMLs. In this section, fle take a step back to consider the ffse that can be made of concffrrency-aflare ffiDSMLs. We argffe that the Mappings of an ffiDSML can be considered as the behavioral interface of the langffage, i.e., that it represents the behafiior of the langffage and can be effiploited by other programs or langffages.

Purfiffse

By effipressing the commffnication betfleen the Effiecfftion Fffnctions and the MoCTriggers, the Mappings of an ffiDSML gifie a mapping of abstract actions, schedffled by a partial ordering, flith concrete actions. As sffch, Mappings represent the interface of the langffage constrffcts behafiiors, i.e., they represent a high-lefiel fiiefl of flhat happens in the model (i.e., the actffal Effiecfftion Fffnction implementation). ey can also be the sffbject of effiternal components, flithin the limits of the partial ordering de ned by the MoCMapping, i.e., an effiternal program may be ffsed as the heffristic of the rffntime and profiide decisions based on flhich Mappings are occffrring in the possible solfftions. In that sense, Mappings represent an interface flhich can be both listened to (i.e., flhich Mappings are being effiecffted) and spoken to (i.e., by making arbitrary decisions betfleen the possible Schedffling Solfftions, so indirectly betfleen sets of Mapping occffrrences).

Effiternal components may flant to interact flith a concffrrency-aflare ffiDSML (or, pffnctffally, flith a concffrrency-aflare effiecfftable model) for tflo pffrposes. e rst one is to control flhich Mappings are occffrring, by implementing the heffristic of the effiecfftion engine. In that case, it is also in charge of profiiding the argffments to the Mappings, if there are some, cf. Section 3.9. e second one consists in obserfiing flhich Mappings are effiecffted. is allofls for a ne-grained obserfiation of the behafiior of the langffage, flhich can be effiploited for instance to represent the effiecfftion (as a trace of Mappings), to coordinate the effiecfftion of other effiecfftable models, etc. In the conteffit of GEMOC project, this interface is ffsed for the coordination of sefieral concffrrency-aflare ffiDSMLs [START_REF] Ezeqffiel | BCool: the Behavioral Coordination Operator Language[END_REF].

In order to cater to these tflo pffrposes, fle propose to affgment the speci cation of the Mappings flith tflo featffres. e rst one is the possibility to de ne the visibility of Mappings, enabling the langffage designer to effiplicitly separate the Mappings intended to be obserfied (i.e., becaffse they are the most relefiant, or more practically, if there are many of them, the interface becomes clffered) from the other Mappings (possibly reqffired for technical reasons, or representing lofl-lefiel details of the effiecfftion). For instance in fUML, the most relefiant behafiior, for an effiternal obserfier, is ffsffally the effiecfftion of a node. Whereas the effiecfftion of the gffards offtside a DecisionNode are considered as internal details of the model. e second one is the possibility to de ne paerns of Mappings, e ectifiely de ning flhat fle call Composite Mappings, flhich profiide a more abstract, higher-lefiel fiiefl of the behafiior of a langffage or model. Abstracting aflay ffnnecessary details of the langffage's effiecfftion facilitates its ffse by profiiding a more adeqffate conceptffal (and programmatic) representation to the ffser, or to other programs.

Challenges

We mffst rst identify hofl many di erent fiisibilities there can be, and flhat they correspond to, flith respect to both interface roles played by the Mappings. eir speci cation shoffld be added in the metalangffage of the Commffnication Protocol.

For the Composite Mappings, there is rst the qffestion of ffnderstanding flhat they represent. We flill then present hofl their speci cation and rffntime can be done, althoffgh these challenges are fiery implementation-dependent. We flill also gifie some effiamples based on offr implementation in order to illffstrate their pffrpose.

Mafifiing Visibility Sfieci catiffn

We hafie identi ed the need for only tflo types of fiisibility, flhich fle call public and private.

Mappings are pffblic by defafflt. is means that flhen they occffr dffring the effiecfftion of a model, they are pffblished as occffrring, thffs effiternal components obserfiing the effiecfftion of the model knofl abofft it. By contrast, prifiate Mappings are not pffblished as occffrring dffring the effiecfftion, as they are not meant to be shofln to effiternal elements.

As an effiample, fle may consider that dffring the effiecfftion of fUML models, the only relefiant efient is the effiecfftion of the ActifiityNodes. erefore, the internal mechanic of efialffating the gffards aer a DecisionNode, etc. shoffld not be pffblished. Listing 3.21 shofls an efficerpt from the pseffdo-code speci cation of the Commffnication Protocol for fUML flhere the Mapping corresponding to the effiecfftion of a node is pffblic, bfft the one corresponding to the efialffation of a gffard is prifiate. Listing 3.21: Efficerpt from the Commffnication Protocol of fUML, speci ed ffsing pseffdocode, flith fiisibility added to the Mappings de nition. 

Runtime

For efiery effiecfftion step, the Effiecfftion Engine pffblishes the collection of Mappings that are effiecffted dffring this step (and flith flhich argffments). To implement the fiisibility featffre, it shoffld not add the prifiate Mappings to this collection.

Cffmfiffsite Mafifiings

Sfieci catiffn

Composite Mappings are speci ed alongside the other Mappings, thanks to some form of "paern" ofier other Mappings. For instance, the effiecfftion of the effiample fUML Actifiity can be considered as completed if fle rst obserfie that its InitialNode has been effiecffted, and then that its FinalNode has been effiecffted. e paern of rst effiecffting the InitialNode and then the FinalNode delimits the effiecfftion of this Actifiity. In terms of paerns of Mappings, this means that fle flant to rst obserfie an occffrrence of the MappingApplication "EffiecffteNode_MyInitial" and then obserfie an occffrrence of the MappingApplication "EffiecffteNode_MyFinal". Another effiample is if, in an Actifiity, part of it can be effiecffted sefieral times. en fle may flant to be able to obserfie flhen that part has been effiecffted a certain nffmber of times, "n". Sffch a Composite Mapping can be de ned as "n" consecfftifie occffrrences of the same Mapping. In particfflar, fle may flant to obserfie, say, 5 times the effiecfftion of the effiample Actifiity, in flhich case the Composite Mapping is de ned throffgh a paern of another Composite Mapping.

We propose to reify sffch paerns as the Composite Mappings: Mappings flhich are de ned thanks to a paern ofier prefiioffsly-de ned Mappings. ese Mappings do not map a MoCTrigger to an Effiecfftion Fffnction ; they merely correspond to a behafiioral paern of the langffage. ese Mappings may be speci ed as 'prifiate', for instance if they are only ffsed for the de nition of other composite Mappings. ey may also hafie parameters, for instance if fle flant to de ne a paern that is fialid only if the occffrrences occffr flith certain argffments (cf. Section 3.9). e paerns that can be de ned depend entirely on the effipressifie pofler profiided by the metalangffage for the Commffnication Protocol. In particfflar, it can profiide the means to de ne libraries of paerns for the de nition of Composite Mappings. Later, fle illffstrate some core paerns fle hafie identi ed for the implementation of this featffre.

Runtime

To implement this featffre, the rffntime for the Commffnication Protocol, the Matcher, mffst be ffpdated adeqffately.

It mffst rst match the selected Schedffling Solfftion against the speci cation of the non-Composite Mappings, in order to dedffce flhich Mappings are occffrring. Based on this, it mffst then match the Composite Mappings flhich are occffrring in an incremental manner, so that composites flhich are de ned thanks to other composites can be matched correctly. As fle flill detail later, this step may reqffire the ffse of the prefiioffs Effiecfftion Steps, as composites may span ofier sefieral steps.

Occffrrences of Composite Mappings do not hafie an impact on the state of the model, ffnlike regfflar Mappings flhich trigger an Effiecfftion Fffnction. Composites merely serfie to profiide a higher-lefiel, abstract fiiefl of the behafiior of the ffiDSML. eir occffrrences do not trigger any change in the model. Additionally, paerns may only be ffflly identi ed once the last element of the paern has occffrred ; otherflise it floffld mean specfflating abofft the ffftffre of the effiecfftion. erefore, Composite Mappings alflays occffr in coincidence flith the Mapping occffrrence flhich completed the paern.

ere are tflo possible fiariations in the implementation of the rffntime. To illffstrate these tflo fiersions, fle flill consider tflo paerns based on the effiample fUML Actifiity. e rst one corresponds to an occffrrence of "EffiecffteNode_MyFork" follofled by an oc-cffrrence of "EffiecffteNode_CheckTableForDrinks". e second one corresponds to an occffrrence of "EffiecffteNode_MyFork" follofled by an occffrrence of "EffiecffteNode_Talk".

In the rst fiariation, Mapping occffrrences are consffmed ffpon occffrrence of a composite flhose paern relies on them. In offr effiample, this means that since the ForkNode "MyFork" flill only efier be effiecffted once, both composites are intrinsically efficlffsifie. In the second fiariation, occffrrences are not consffmed, allofling for both composites to occffr. Hoflefier this raises an additional challenge flhen mffltiple occffrrences of the same Mapping may occffr. In that case, sffppose "EffiecffteNode_MyFork" occffrs tflice. Shoffld the composites de ned abofie ffse these tflo occffrrences, or only the latest?

We leafie these issffes open for implementors, bfft they shoffld be docffmented profffsely since they fffndamentally a ect the semantics of Composite Mappings. ey may also be rei ed in the Commffnication Protocol metalangffage, bfft this compleffiity may render the de nition of Composite Mappings efien more di cfflt for the langffage designer. e follofling description of the rffntime is at the langffage-lefiel (for readability pffrposes) bfft in reality it applies at the model-lefiel.

Examfiles

mocTriggerA occffrs:

• MappingA occffrs.

• CompositeAorB and CompositeAffiorB occffrs.

mocTriggerB occffrs:

• MappingB occffrs.

• CompositeAorB and CompositeAffiorB occffrs.

mocTriggerA and mocTriggerB occffrs:

• MappingA and MappingB occffr.

• CompositeAorB and CompositeAandB occffr. ese basic paerns are similar to flell-knofln logical operations, as flithin an effiecfftion step, either an efient occffrs or it does not occffr. More compleffi instantaneoffs paerns may be defiised and proposed by the Commffnication Protocol metalangffage, based on the effiperience fle hafie of logical operations.

More interesting is the possibility to de ne paerns ofier sefieral effiecfftion steps. ese paerns are called non-instantaneous paerns. ey cannot be compared flith logical operations, as reasoning on the absence of an efient in a conteffit of partial ordering does not make sense. erefore, these paerns may span ofier a lot of effiecfftion steps. For instance, the paern fle hafie mentioned earlier, corresponding to the effiecfftion of the InitialNode and then the effiecfftion of the FinalNode of the effiample fUML Actifiity, spans ofier the flhole effiecfftion of the model (10 effiecfftion steps in offr implementation, cf. Appendiffi C).

We flill consider the tflo follofling paerns as effiamples of non-instantaneoffs paerns:

• Sequence of A and B: flhen A has occffrred, and B occffrs in the cffrrent step. ere may be an inde nite nffmber of other steps betfleen the one containing the occffrrence of A and the one containing the occffrrence of B.

• n-Iteration of A, flith ∈ ℕ + : flhen A has occffrred -1 times and A occffrs in the cffrrent step. is may span ofier an inde nite nffmber of steps as flell.

Listing 3.24 shofls an effiample speci cation ffsing these paerns, in pseffdo-code.

Listing 3.24: Effiample speci cation of Composite Mappings flith instantaneoffs paerns, in pseffdo-code. With these mappings, the implementation choices mentioned in the description of the rffntime are key elements of the semantics gifien to these paerns. For instance, if fle consider the three follofling effiecfftion steps:

Step 1 : occffrrence of MappingA

Step 2 : occffrrence of MappingA ese effiamples shofl the impact the choices made in the implementation of the metalangffage may hafie. Depending on the Commffnication Protocol metalangffage, more compleffi non-instantaneoffs paerns may be defiised and proposed, enabling the de nition of compleffi Composite Mappings.

Custffmizing the Mffdel-level Generatiffn fff Cffmfiffsite Mafifiings

We hafie described earlier hofl the model-lefiel speci cations (MoCApplication, Commffnication Protocol Application, Semantic Rffles Calls) are obtained based on the langffagelefiel speci cations (MoCMapping, Commffnication Protocol, Semantic Rffles). is step is also called the "ffnfolding" since it mainly consists in considering a concept and generating each concern's eqffifialent speci cation for each instance of that concept. So far, the ffnfolding of offr effiample Composite Mappings has been straightforflard as, for the sake of effiample, fle only considered one concept and one model element (instance of that concept). For instance, consider the Composite Mapping de ned as per Listing 3.25.

Listing 3.25: Effiample speci cation of the Composite Mapping CompositeAandB, in pseffdo-code. In order to be able to de ne more compleffi Composite Mappings, fle propose to add a speci cation alongside the Composite Mapping de nition called the Unfolding Strategy. It de nes the strategy that the translator mffst ffse flhen ffnfolding the Composite Mapping dofln to the model-lefiel. Listing 3.27 shofls the speci cation, in pseffdo-code of an effiample ffnfolding strategy. "<>" is the "not eqffal" operator in this pseffdo-code. With this strategy, the composite MappingApplications resfflting of CompositeAthenB flill be fiery di erent from the defafflt resfflt that floffld hafie been obtained, becaffse the MappingApplications ffsed in the paern in place of MappingA and MappingB flill nefier be in the conteffit of the same model element.

Listing 3.28 shofls the resfflting Commffnication Protocol Application. is mechanism allofls the de nition of compleffi Composite Mappings flhere relations betfleen the conteffits of the Mappings ffsed in the paern are gffaranteed.

For instance, offr initial effiample of Composite Mapping flas to represent the fffll effiecfftion of an fUML Actifiity. Sffch a mapping can be speci ed as shofln on Listing 3.29. Listing 3.30 shofls another flay to specify the same behafiior.

Listing 3.28: Composite Mapping Applications resfflting from the ffnfolding strategy speci ed on Listing 3.27, in pseffdo-code. e former effiample listing relies on polymorphism flhen specifying the paern of Mappings (i.e., the Mapping ExecuteActivityNode is de ned for ActifiityNode so it is applicable for its sffbtypes), flhereas the laer effiample listing relies on the metalangffage profiiding the kindof operator.

Cffmfiffsite Mafifiings with Parameters

Finally, fle flant to illffstrate the de nition of Composite Mappings flith parameters. Since Composite Mappings are jffst paerns based on prefiioffsly-de ned Mappings, their occffrrences do not reqffire the insertion of argffment fialffes by the heffristic of the rffntime, as fle hafie described in Section 3.7. Instead, it is at the matching stage of the composites that fle are looking for particfflar argffment fialffes in the Mappings that hafie occffrred. is Composite Mapping occffrs flith the argffments "ffi" and "y" flhen:

• MappingA occffrred, and in the cffrrent step, MappingB occffrs.

• MappingA occffrred flith "ffi" as an argffment.

• MappingB occffrs flith "y" as an argffment.

Paerns may also be de ned based on speci c effipected argffment fialffes. For instance, consider the Composite Mapping speci ed ffsing pseffdo-code on Listing 3.32. Listing 3.32: Effiample speci cation of a Composite Mapping flith effipected argffment fialffes, in pseffdo-code. is mapping occffrs flhen the Mapping "MappingPrint" rst occffrs flith the argffment "Hello" and then flith the argffment "World".

Related Wffrk

e featffre fle jffst described is similar to flhat is knofln as Complex Event Processing (CEP) [START_REF] Lffckham | e Power of Events, fiolffme 204[END_REF]. ere effiists many technologies for CEP, depending on the technical ecosystem considered, among flhich Esper [START_REF] Espertech | [END_REF] (Jafia, .NET); Microso's StreamInsight [START_REF] Microso | Microso StreamInsight[END_REF] (.NET); Oracle Compleffi Efient Processing [119] (Jafia); WSO2's Compleffi Efient Processor [161] (Jafia); JBoss's Drools Compleffi Efient Processing [START_REF]Drools Compleffi Efient Processing[END_REF] (Jafia); Apache's Storm [3] and Flink [2] (Jafia). Unfortffnately, no formal standard effiists [START_REF] Paschke | Standards for Compleffi Efient Processing and Reaction Rffles[END_REF]. In some sitffations, the langffage ffsed for specifying the CEP has an SQL-based syntaffi. e conteffit of these technologies is fiery di erent from the conteffit of offr flork. ey oen focffs on the effiecfftion performance of their rffntime in order to achiefie near realtime recognition of paerns of efients. In offr case, the most important featffre is the effipressifie pofler of the metalangffage for the de nition of paerns of efients. In "Processing Flofls of Information: From Data Stream to Compleffi Efient Processing" [23, Section 3.8.2], the affthors profiide a complete list of operators foffnd dffring the analysis of Information Flofl Processing Systems, inclffding approaches related to Compleffi Efient Processing. ey can be ffsed as a basis for the implementation of this featffre.

Feature Summary

is featffre focffses on the natffre of the Mappings of the Commffnication Protocol flhich represent the behafiioral interface of the langffage. It does not a ect directly the effiecfftion semantics of an ffiDSML, instead it merely changes hofl the ffiDSML's semantics is represented from an effiternal point of fiiefl (e.g., the ffser or another program). It is motifiated by fffrther ffses of concffrrency-aflare ffiDSMLs in the GEMOC Project, flhere sefieral ffiDSMLs are coordinated throffgh operators effiploiting their behafiioral interfaces. In short, this featffre participates in making possible the speci cation of a higher-lefiel behafiioral interface for concffrrency-aflare ffiDSMLs, in order to present a particfflar interface to other programs or langffages. For effiample, it can be ffsed to de-clffer the interface from technical details of the implementation, or from parts of the behafiior that shoffld not be fiisible (or are of no interest) for any potential effiternal program.

Imfilementatiffn

We describe the implementation of the concffrrency-aflare approach in the Eclipse-based GEMOC langffage florkbench. It inclffdes the description of the metalangffages profiided by the langffage florkbench for the de nition of the di erent concerns. e fffll soffrce code of offr implementation of fUML is profiided in Appendiffi B.

Technical Sfiace

e concffrrency-aflare approach has been implemented in an Eclipse-based application called the GEMOC Stffdio 8 . It is based on the Eclipse Modeling Frameflork (EMF) [START_REF]Eclipse Foffndation. Eclipse Modeling Frameflork (EMF) Homepage[END_REF], the core component of the Eclipse Modeling Project9 . ese technologies hafie been presented in Chapter 2. EMF profiides a large effiisting ecosystem of technologies and tools, inclffding Jafia APIs, allofling the de nition of metamodeling tooling ffsing any JVM langffage. Moreofier, the Eclipse Rich Client Platform (RCP) is a natffral candidate for the defielopment of a langffage florkbench. Other platforms profiiding RCP abilities or metamodeling facilities effiist, bfft the Eclipse platform is, so far, one of the strongest candidate flhen needing both at the same time. Its open-soffrce natffre and its licensing policy (Eclipse Pffblic License10 ) also contribffte to its adeqffacy.

e GEMOC Stffdio is an Eclipse application flhich embarks the metalangffages for the speci cation of concffrrency-aflare ffiDSMLs, as flell as their rffntimes. It also profiides di erent facilities for the defielopment, reffse and debffgging of the di erent concerns composing an ffiDSML.

e stffdio is made ffp of tflo components:

e GEMOC Langffage Workbench, ffsed to specify and edit concffrrency-aflare ffiDSMLs.

e GEMOC Modeling Workbench, ffsed to create and effiecffte models conforming to concffrrency-aflare ffiDSMLs.

Concffrrency-aflare ffiDSMLs de ned thanks to the former can be afftomatically deployed in the laer, and bene t from generic effiecfftion and debffgging facilities.

Metamffdeling Facilities

EMF profiides Ecore, an implementation of EMOF [112]. e Abstract Syntaffi of an ffiDSML can be speci ed as an Ecore metamodel. EMF profiides sefieral editors for EMF: tree-based, graphical and teffitffal. e associated static semantics can be effipressed in terms of Object Constraint Langffage (OCL) infiariants [113]. EMF profiides its implementation of OCL as Eclipse OCL 11 . It inclffdes editor and interactifie consoles facilities. Both EMOF and OCL are standards from the Object Management Groffp (OMG) 12 , as mentioned in Chapter 2.

Ecore profiides facilities to afftomatically generate Jafia APIs for Ecore metamodels, enabling any JVM-based technology to effiploit Ecore metamodels and models. We lefierage this featffre in the metalangffages implementations presented in the rest of this section.

Semantic Rules

To specify the Semantic Rffles, the GEMOC Stffdio relies on the Kermeta 3 Action Langffage (K3AL) [START_REF] Diverse-Team | GitHffb for Kermeta 3[END_REF], flhich is bffilt on top of Xtend [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF] by INRIA (IRISA). K3AL allofls the de nition of Aspects for Ecore metaclasses, allofling ffs to de ne additional classes, aribfftes, references and operation implementations, specifying the Effiecfftion Data and Effiecfftion Fffnctions. K3AL, jffst like Xtend, compiles into readable Jafia and profiides an effiecfftor based on the Jafia Re ection API to dynamically effiecffte the Effiecfftion Fffnctions. Listing 3.33 shofls the implementation of an Effiecfftion Fffnction for ForkNodes ffsing K3AL. e fffll Semantic Rffles implementation for fUML is profiided in Appendiffi B. Listing 3.33: Efficerpt from the Semantic Rffles of fUML speci ed ffsing Kermeta 3. 13 . Compleffi constraints can also be speci ed and capitalized into metamodelagnostic libraries ffsing MoCCML [START_REF] Deantoni | Toflards a Meta-Langffage for the Concffrrency Concern in DSLs[END_REF], defieloped by INRIA (I3S) and ENSTA Bretagne. Listing 3.34 shofls an efficerpt from the MoCMapping of fUML, speci ed ffsing ECL. In this effiample, the EfientType moc_executeNode is de ned in the conteffit of the concept ActivityNode. We then de ne a constraint to ensffre that, for an edge, the soffrce is generally effiecffted before the target (efficept for MergeNode for flhich only one one of the incoming edges' soffrce mffst hafie been effiecffted).

Listing 3.34: Efficerpt from the Model of Concffrrency Mapping of fUML speci ed ffsing the Efient Constraint Langffage. More generally, the reqffirements for the Model of Concffrrency Mapping metalangffage are the follofling:

• Capacity to specify the symbolic ffse of a Model of Concffrrency (i.e., so that the MoC is ffsed for any model conforming to the ffiDSML).

• Generator to ffnfold the MoCMapping speci cation to any model conforming to the AS of the ffiDSML.

Dffring the compilation phase, the MoCMapping de ned in ECL is compiled into a Clock Constraint Speci cation Language (CCSL) [START_REF] Mallet | Clock Constraint Speci cation Langffage: Specifying Clock Constraints flith UML/MARTE[END_REF] model. CCSL can be analyzed flith a rffntime called TimeSqffare [START_REF] Deantoni | TimeSqffare: Treat yoffr Models flith Logical Time[END_REF], flhich can generate effiecfftion traces. For the practical reasons mentioned in Sffbsection 3.6.4, dffring its effiecfftion, TimeSqffare only profiides the neffit set of possible con gffrations. TimeSqffare profiides Jafia APIs, allofling ffs to ffse it into offr implementation. Figffre 3.40 shofls an efficerpt from the Valffe Change Dffmp (VCD) timing diagram of the effiecfftion of the effiample fUML Actifiity's MoCApplication. It represents the trace of the effiecfftion of an Efient Strffctffre by shofling the occffrrences of efients as "ticks" of a "clock". In this gffre are represented the efients corresponding to the effiecfftion of the DecisionNode, respectifiely to the efialffation of the gffards offtgoing the DecisionNode. Figffres 3.41, 3.42, and 3.43 shofl the VCD for the clocks corresponding to the resfflt of the efialffation of the gffard for each branch (respectifiely for co ee, tea and flater), as effiplained in Section 3.6. e top line corresponds to the efient "may…" flhile the boom line corresponds to the efient "mayNot…", for each branch. In this particfflar effiecfftion, co ee flas foffnd on the table so the branches for co ee and flater are both allofled. Ultimately, only the branch corresponding to co ee flill be effiecffted (as per the fUML semantics [116]). 

Cffmmunicatiffn Prfftffcffl

We hafie defiised a metalangffage for the speci cation of the Commffnication Protocol called the GEMOC Events Language (GEL). Figffre 3.44 shofls its Abstract Syntaffi, specied as an Ecore metamodel.

We hafie defieloped a teffitffal concrete syntaffi ffsing Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF] to enable the speci cation of the Commffnication Protocol. Listing H.1 shofls an efficerpt from the concrete syntaffi of GEL as a template (flith "<" and ">" as delimiters). e fffll concrete syntaffi is shofln in Appendiffi G.

In GEL, Domain-Speci c Events (DSEs) implement both the "Modi erMapping" and "eryMapping" concepts. If the referenced Effiecfftion Fffnction is a ery, then a Feedback Policy may be speci ed. A Feedback Policy is composed of at least tflo rffles, inclffding a defafflt one. A Feedback Rffle is constitffted of a Predicate on the retffrn type of the associated ery, and of an allowed MoCTrigger (EfientType from the MoCMapping). Since the conseqffences of all the rffles of a policy constitffte the set of data-dependent MoCTriggers, fle can specify in the rffles either the consistent ones or the inconsistent ones and dedffce the others by geing its complement. In GEL, fle hafie chosen to specify in the rffles the MoCTriggers consistent flith regards to the rffntime state of the model. is syntaffi is more consistent flith the one employed for programming langffages, flhere conditionals are implemented throffgh the "if…then…else" constrffct, and not by "if…then not…else not". Using a model, the GEL translator is able to transform a GEL speci cation (Commffnication Protocol) into its model-lefiel eqffifialent (Commffnication Protocol Application). e corresponding formalism is called microGEL. Its Abstract Syntaffi is fiery similar to that of GEL, efficept that all the langffage-lefiel elements are adapted to their model-lefiel eqffifialents (Effiecfftion Fffnction into Effiecfftion Fffnction call, MoCTrigger into MoCAp-plicationTrigger, etc.). e rffntime of GEL is flrien in Jafia. It takes, as inpfft, a Schedffling Solfftion, and retffrns the corresponding MappingsApplications.

More generally, the reqffirements for the Commffnication Protocol metalangffage are the follofling:

• Capacity to reference elements from the MoCMapping (the MoCTriggers) and from the Semantic Rffles (the Effiecfftion Fffnctions).

• Sffpport for arithmetic and nafiigation effipressions on the abstract syntaffi concepts.

• Generator to ffnfold the langffage-lefiel speci cation to the model-lefiel (flhich mffst reference MoCApplicationTriggers and Effiecfftion Fffnction calls).

Runtime

Offr implementation of the Effiecfftion Engine in the GEMOC Stffdio is flrien in Jafia. It coordinates the rffntimes for the di erent concerns (K3AL Effiecfftor, CCSL Solfier, GEL Matcher) to drifie the effiecfftion of a model conforming to a Concffrrency-aflare ffiDSML.

e GEMOC Stffdio also profiide the possibility to de ne the graphical animation of the effiecfftion. is animation layer is based on the ffse of Siriffs14 , a tool defieloped by Obeo flhich enables the de nition graphical concrete syntaffies for Ecore metamodels. e implementation is based on an additional layer in the Siriffs fiieflpoint speci cation, de ning hofl to represent the model based on the efiolfftion of its Effiecfftion Data. en, at rffntime, the graphical representation of the model is afftomatically ffpdated based on the cffrrent rffntime state of the model. Appendiffi C shofls the detailed animation of the effiample fUML model. 

Cffnclusiffn

We hafie formalized the concffrrency-aflare ffiDSML approach defieloped in the conteffit of the ANR INS GEMOC project. It is based on a separation of concerns of the operational semantics, flhich fafiors the modfflarity and fiariability of the semantics, flith a focffs on captffring the concffrrency concerns ffsing an adeqffate formalism. is formalism gffarantees the correct ffse of a MoC by any system conforming to the ffiDSML, thffs enabling the ffse of concffrrency-aflare analyses on the systems being designed. It also enables the re ning of the ffiDSML for a speci c effiecfftion platform, at the cost of hafiing to respect the boffndaries of the approach (e.g., the MoCMapping is data-independent, Effiecfftion Fffnction cannot call other Effiecfftion Fffnctions, etc.).

We hafie improfied the initial approach by identifying, motifiating, illffstrating and implementing a set of featffres flhich either facilitate the de nition of concffrrency-aflare ffiDSMLs, or enable the speci cation of langffage constrffcts that coffld not be handled adeqffately in the initial approach. For instance, the reffse of Effiecfftion Fffnctions or the addition of fiisibility for Mappings and the design of Composite Mappings contribffte to facilitating the de nition and the ffse of concffrrency-aflare ffiDSMLs. Featffres sffch as non-blocking Effiecfftion Fffnction calls, the Feedback Protocol or the addition of parameters to Effiecfftion Fffnctions and Mappings contribffte to the general effipressifie pofler of the approach. We hafie careffflly implemented these featffres to ensffre the concffrrencyaflareness of the approach remains intact, retaining the modfflarity of the effiecfftion semantics, and making possible the independent analysis of the concffrrency aspects of a model conforming to a concffrrency-aflare ffiDSML.

is approach is not the be-all of ffiDSML design. ffiDSMLs flithofft needs for rich concffrrency constrffcts, or high fiariability of its concffrrent aspects, may not pro t from it. Instead, it bene ts ffiDSMLs flith compleffi concffrrent semantics, or ffsed to design systems that are to be deployed on fiarioffs effiecfftion platforms profiiding more or less parallel facilities. e ffiDSMLs can be effiplicitly adapted for some speci c effiecfftion platform(s). It also bene ts ffiDSMLs flith Semantic Variation Points (SVPs): the ffse of the Efient Strffctffre MoC, flhich relies on partial orderings, facilitates the implementation of SVPs pertaining to the concffrrency concerns of the langffage. e approach also bene ts the design of compleffi systems, for flhich formally fierifying behafiioral aspects is essential for safety reasons. e systematic ffse of the Efient Strffctffre MoC enables performing sffch analyses for any model conforming to the ffiDSML. Some langffages cannot be captffred correctly ffsing the concffrrency-aflare approach. is is mainly dffe to the concffrrency model, flhich is a speci cation in intention of all the possible control ofls. is means that all the relefiant parts of the model mffst be knofln at compile-time. ey cannot be created dynamically dffring the effiecfftion. Otherflise, the concffrrency model floffld not be aflare of them and floffld not inclffde them in the control ofl of the model.

MoCs are gaining traction in the programming commffnity dffe to the compleffi and highly-concffrrent natffre of modern soflares and systems. e concffrrency-aflare approach eases their ffse throffgh a speci cation at the langffage lefiel. is is made possible by the domain-speci city of the langffage, enabling its semantics to inclffde the systematic ffse of a MoC for any conforming model. is is a considerable adfiantage, since MoCs ffsffally reqffire particfflar training and knofl-hofl to be ffsed correctly. e featffres fle hafie presented effitend the effipressifie pofler of the concffrrency-aflare ffiDSML approach, or facilitate its ffse, thffs contribffting to flidening the range of ffiDSMLs that can benet from the approach, ffltimately improfiing the speci cation and re nement of modern soflare-intensifie systems.

"A magical accident in the Library […] had some time ago turned the Librarian into an orang-utan. He had since resisted all e orts to turn him back. He liked the handy long arms, the prehensile toes and the right to scratch himself in public, but most of all he liked the way all the big questions of existence had suddenly resolved themselves into a vague interest in where his next banana was coming from. It wasn't that he was unaware of the despair and nobility of the human condition. It was just that as far as he was concerned you could stu it. "

in Sourcery, by Terry Pratche (1948 -2015).
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Tailoring Models of Concffrrency to Concffrrency-aflare ffiDSMLs

S 

We present an approach to seamlessly de ne and integrate nefl Models of Concffrrency into the concffrrency-aflare ffiDSML approach presented in Chapter 3. is is done throffgh a recffrsifie de nition of concffrrency-aflare ffiDSMLs, in flhich the MoC of an ffiDSML is a prefiioffsly-de ned ffiDSML. is allofls langffage designers to specify the concffrrency concerns of a langffage ffsing the most appropriate formalism. We detail hofl this recffrsifie approach impacts the speci cation, translation and rffntime stages of the concffrrencyaflare approach. We also discffss its impact on the ffse of concffrrency-aflare analyses.

e contribfftion presented in this chapter has been pffblished in the 2nd International Workshop on Executable Modeling (EXE 2016) [START_REF] Latombe | Concffrrency-aflare eXecfftable Domain-Speci c Modeling Langffages as Models of Concffrrency[END_REF].

R 

Ce chapitre présente la solfftion poffr ffn problème sofflefié dans le Chapitre 3 concernant l'adéqffation entre le modèle de concffrrence (Model of Concurrency -MoC) fftilisé et le xDSML qffe l'on spéci e. L'approche qffe noffs afions décrite a été jffsqff'à présent cantonnée aff MoC Event Structures. Or, tofft MoC n'est pas forcément idéal poffr tofft xDSML. De la même manière qffe certains problèmes sont plffs facilement résolffs à l'aide de certains langages -poffsser ce raisonnement jffsqff'aff bofft noffs amenant à la programmation orientée langages (Language-Oriented Programming -LoP) décrite dans les chapitres précédents -di érents MoCs correspondent à di érentes façons de représenter la concffrrence, et donc correspondent à di érents xDSMLs possédant di érents paradigmes de concffrrence.

Dans ce chapitre, noffs donnons ffne dé nition récffrsifie de l'approche concurrency- Noffs analysons ensffite cee approche récffrsifie. Noffs considérons d'abord la modfflarité de la sémantiqffe d'effiécfftion, principal afiantage de l'approche originelle. Celle-ci est conserfiée pffisqffe les aspects concffrrents demeffrent dé nis à l'aide de spéci cations dédiées. Noffs noffs intéressons ensffite à la réalisation d'analyses sffr les aspects concffrrents d'ffn modèle. Par rapport à l'approche initiale, ffne strffctffre d'éfiénement est toffjoffrs disponible, mais elle n'est présente qff'aff nifieaff des aspects concffrrents dff modèle ; et possiblement soffs plffsieffrs nifieaffffi de langages (par effiemple si ffn xDSML est fftilisé en tant qffe MoC poffr ffn xDSML lffi-même fftilisé comme MoC dff langage qffe l'on soffhaite analyser). Une partie des aspects concffrrents pefft donc être analysée, aff priffi d'arrifier à faire les tradffctions des propriétés et de leffrs résffltats entre le domaine dff xDSML et le domaine dff MoC fftilisé. Un afftre type d'analyse est possible pffisqffe le MoCApplication est dans ce cas ffn modèle conforme à ffn xDSML. Tofft offtil off méthodologie connff poffr le xDSML fftilisé comme MoC pefft donc être fftilisé poffr analyser la totalité des aspects concffrrents d'ffn modèle. Cee dé nition récffrsifie donne affssi ffne strffctffre systématiqffe affffi MoCs, qffi n'était pas formellement identi ée par le passé car historiqffement, les di érents MoCs connffs ont été défieloppés dans des conteffites très di érents. Ainsi, passer d'ffn MoC à ffn afftre pefft-il afioir ffn sens à l'aide de cee approche. Poffr nir, noffs effipliqffons bien en qffoi l'approche proposée est fondamentalement di érente d'ffne dé nition translationnelle de la sémantiqffe d'effiécfftion : seffls les aspects concffrrents de la sémantiqffe sont effiprimés à l'aide d'ffn afftre formalisme.

Ce chapitre est illffstré à l'aide de la dé nition de fUML en fftilisant, comme MoC, ffn langage proposant la notion de read, similaire à ce qffi est proposé par les langages de programmation généralistes comme Jafia. Noffs illffstrons les étapes de spéci cation, compilation et effiécfftion. La dé nition de ce nofffieaff xDSML fftilisé comme MoC est disponible dans l'Anneffie D, tandis qffe la dé nition de fUML à l'aide de ce ffiDSML est montrée dans l'Anneffie E. L'effiécfftion de l'effiemple d'actifiité fUML est détaillée dans l'Anneffie F. En n, noffs détaillons notre implémentation de cee contribfftion dans le GEMOC Stffdio.

Les trafiaffffi présentés dans ce chapitre ont été pffbliés dans le 2nd International Workshop on Executable Modeling (EXE 2016) [START_REF] Latombe | Concffrrency-aflare eXecfftable Domain-Speci c Modeling Langffages as Models of Concffrrency[END_REF].

Intrffductiffn

C

 is particfflarly hard to represent ffsing traditional programming techniqffes. Historically, compffter langffages hafie been designed as seqffential by defafflt. Effipressing adfianced concffrrent sitffations reqffired additional flork, possibly ffsing libraries tied to speci c operating system calls. is has motifiated the defielopment of the GEMOC concffrrency-aflare ffiDSML approach fle hafie presented in the prefiioffs chapter, flhich relies on an effiisting Model of Concffrrency (MoC): Efient Strffctffres [START_REF] Winskel | Efient Strffctffres[END_REF]. In this chapter, fle argffe that a single MoC cannot be appropriate, and thffs easy to ffse, for all ffiDSMLs. is motifiates the need to integrate additional MoCs into the approach. We detail the di cfflties in de ning and integrating nefl MoCs. We flill then propose a recffrsifie de nition of concffrrency-aflare ffiDSMLs, enabling ffiDSMLs to be ffsed as the MoC of other ffiDSMLs.

Di erent Mffdels fff Cffncurrency fffr Di erent Paradigms

Comparing the effipressifie pofler of General-pffrpose Programming Langffages (GPLs) is ffsffally done throffgh informal claims, althoffgh some frameflorks hafie been proposed to formalize this [START_REF] Felleisen | On the Effipressifie Pofler of Programming Langffages[END_REF]. Still, most of them natffrally lean toflards certain classes of problems, if not in the concepts, syntaffi or semantics they propose, at least in their libraries, frameflorks, commffnity or effiecfftion platform. We argffe that the same can be said for MoCs: althoffgh they generally aim at representing the concffrrency aspects of a system, some of them are more adapted for some classes of problems. is can stem from their originating backgroffnd (i.e., the initial needs for the defielopment of a MoC), from the concepts they propose, or from their sffrroffnding tooling. It can also be more sffbjectifie, dffe to familiarity of the langffage designer flith a particfflar MoC.

For instance, Petri nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF][START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF] are particfflarly adapted to represent the mfftffal access to resoffrces, flhile the Actor model [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF] focffses on the message effichanges betfleen entities (flith no shared state) of a system. Depending on the natffre of the systems to be designed flith an ffiDSML, or on the fieri cations fle may flant to perform on the MoCApplication of a system, ffsing one MoC or the other may be preferred.

In "Why Do Scala Defielopers Miffi the Actor Model flith Other Concffrrency Models?" [START_REF] Tasharo | Why Do Scala Defielopers Miffi the Actor Model flith other Concffrrency Models?[END_REF], the affthors nd that one of the reasons flhy a Scala code-base miffies MoCs is becaffse of inadeqffacies in the actor model. Using an inadeqffate model ffsffally complicates the speci cation, leading to data races and deadlocks. Miffiing MoCs can lead to compleffi interactions betfleen them. Moreofier, some MoCs enable the ffse of concffrrency-aflare analyses, and miffiing MoCs may impair that (i.e., some parts of the system may not be analyzable).

Another effiample to consider is hofl, in the GEMOC Stffdio, ECL and MoCCML (cf. Sffbsection 3.11.4 of Chapter 3) can be ffsed to specify the MoCMapping of a concffrrencyaflare ffiDSML. MoCCML flas designed as a merge of tflo manners of effipressing domainagnostic constraints: CCSL effipressions and relations [START_REF] Mallet | Clock Constraint Speci cation Langffage: Specifying Clock Constraints flith UML/MARTE[END_REF] and afftomatas [START_REF] Issa Diallo | Model Based Engineering for the sffpport of Models of Compfftation: e Cometa Approach[END_REF]. is fffsion stemmed from the di cfflty to effipress some constraints ffsing only CCSL concepts.

More generally, ffsing an adeqffate MoC for an ffiDSML is essential to ease its design and fieri cation. In the cffrrent sitffation of the concffrrency-aflare ffiDSML approach, this can lead to the antipaern knofln as the Golden Hammer: "if all yoff hafie is a hammer, efierything looks like a nail". Using an inadeqffate MoC can make its ffse compleffi, flhich manifests, in the concffrrency-aflare approach, in making the speci cation of the MoCMapping more complicated.

Illustrative Examfile

Illffstrating the inadeqffacies of a MoC for a particfflar ffiDSML is made di cfflt by offr ffse of the MoC throffgh the notion of Model of Concffrrency Mapping (MoCMapping). e MoC is ffsed to represent the concffrrency concerns of a system, bfft its systematic ffse by an ffiDSML is captffred in the MoCMapping by the langffage designer. erefore, designing the MoCMapping entails tflo merged challenges: the adeqffacy of the MoC to the class of problem addressed by the ffiDSML; and the adeqffacy of the MoCMapping to captffre the langffage-lefiel speci cation of the systematic ffse of a MoC.

We flill illffstrate this issffe on an effiample fUML Actifiity, by considering its corresponding Efient Strffctffre. By shofling the inadeqffacy of this Efient Strffctffre (relatifie to other possibilities) to represent the concffrrency concerns of the effiample Actifiity, fle infer that this inadeqffacy is also present for the langffage-lefiel speci cation (MoCMapping).

We consider the fUML Actifiity shofln on Figffre 4.1. Figffre 4.2 shofls the corresponding simpli ed Efient Strffctffre. Tflo main simpli cations hafie been applied on this gffre:

• e efialffation of the gffards has been regroffped as one efient, flhereas they are three distinct efients.

• e sffbtleties of representing the conseqffences of the gffard efialffations hafie been simpli ed.

e rst one complicates the Efient Strffctffre in that all three gffards may be efialffated in any order, inclffding in parallel, so it creates a lot of possible scenarios (especially consid- ering there is another branch of the ForkNode that is effiecffted concffrrently). Appendiffi A paints this in greater details.

e second one is the focffs of Figffre 4.3, flhich shofls a close-ffp on the detailed Efient Strffctffre. For each gffard, fle captffre the conseqffence in terms of control ofl in the "may" and "may not" efients (e.g., "e_mayDrinkCo ee", "e_mayNotDrinkCo ee", etc.). Each of these disjffnctions mffst be realized based on the Feedback Protocol of the langffage (cf. Section 3.6 of Chapter 3). Aerflards, if sefieral paths are afiailable, then an arbitrary choice is made (flith the defafflt choice -"Water" in offr case -being selected only if it is the only possible choice).

Captffring sffch reqffirements in an Efient Strffctffre is compleffi: there are a lot of efients and specifying the right partial ordering betfleen them is sffbtle dffe to the nffmeroffs concffrrent sitffations. Moreofier, its representation is also di cfflt since any concffrrent sitffation ffsffally leads to an effiponential nffmber of sitffations, e.g., fle cannot represent all the possible orders of efialffation of the gffards flhile inclffding the possible concffrrency flith the steps related to captffring the conseqffence of the efialffation of each indifiidffal gffard, meanflhile concffrrently effiecffting of the other branch(es) of the ForkNode.

Instead, fle propose to rely on a MoC profiiding the concept of read, a classical concffrrency concept inspired from the kernel-lefiel thread notion in Operating Systems. As mentioned in Chaper 2, the mapping betfleen conceptffal threads (also called lightfleight threads, green threads, etc.) and kernel thread is realized by the ffnderlying implemen- tations. For instance, in Jafia, it is the JVM that dictates hofl Jafia threads are mapped to system-lefiel threads. In the case of Oracle's HotSpot, the mapping is 1:1 1 . In other programming langffages, threads are only ffse as a conceptffal entity for a seqffence of compfftations, and not mapped onto their ofln kernel thread.

A read is ffsffally sffpplied flith a list of statements (or instrffctions) to effiecffte. reads may be coordinated cooperatifiely, that is each read may relinqffish control at some point. In this particfflar effiample, fle hafie chosen to map fUML to the notion of reads as follofls. An Actifiity has a main read. Each branch of a ForkNode/JoinNode coffple is captffred as a set of instrffction in their ofln thread. e ForkNode is thffs transformed into instrffctions corresponding to the starting of the threads of each branch. When all the reads corresponding to branches hafie been ffflly effiecffted, the associated JoinNode may be effiecffted, flhich is captffred as instrffctions to join (i.e., flait for the completion o) a thread. For DecisionNodes, gffards may be efialffated in any order, inclffding in parallel, so ffsing a di erent thread for each gffard efialffation is possible. We can also simplify this aspect by effiecffting them in any arbitrary order since it does not change the offtcome.

Tailoring Models of Concffrrency to Concffrrency-aflare ffiDSMLs Using this thread-based MoC for fUML is more adeqffate than Efient Strffctffres, dffe to its closeness flith the speci cation [116] and reference implementation2 . It is also more practical to represent graphically, as all the possible interleafiings betfleen concffrrent threads are not represented effiplicitly.

Integrating additiffnal Mffdels fff Cffncurrency

Integrating nefl MoCs into the approach is compleffi. It reqffires integrating the metalangffage corresponding to the MoC. Models conforming to this metalangffage can then be ffsed as the MoCApplication for a program conforming to an ffiDSML. It also reqffires specifying and integrating the metalangffage for the speci cation of the MoCMapping, as flell as its translator to ffnfold the MoCMapping for a particfflar model. Finally, the rffntime of the MoC mffst also be profiided so that at rffntime, the MoCApplication can be effiecffted and interpreted by the rest of the effiecfftable model's speci cation.

For each MoC, the tflo associated metalangffages mffst be tooled, and their speci cations and rffntimes integrated flith the rest of the concffrrency-aflare approach. Moreofier, MoCs are traditionally only ffsed at the program lefiel, thanks to langffage constrffcts or libraries made afiailable by the host langffage. e metalangffage to specify the MoCMapping is thffs oen not pre-effiisting, reqffiring signi cant e orts for its speci cation, defielopment and tooling.

Additionally, there are sefieral manners to connect a MoC (and, by effitension, a MoCMapping), to the rest of the approach. For instance, for the Efient Strffctffres MoC, the connection is made by relying on the occffrrences of the efients. For Petri nets, one floffld natffrally rely on the ring of transitions betfleen places and transitions of a net. Bfft nothing hinders ffs from relying instead on the entering or leafiing of a place, and from interpreting these as the stimffli ffsed by the rest of the effiecfftion of a model. ffs, identifying, for a MoC, flhich of its constitffents' behafiior flill be ffsed as the MoCTriggers is also part of hofl a MoC is effiploited by the concffrrency-aflare approach.

Intrffducing a Recursive De nitiffn fff

Cffncurrency-aware xDSMLs

We propose another approach to enable the ffse of additional MoCs. It relies on considering prefiioffsly-de ned concffrrency-aflare ffiDSMLs as MoCs for the design of other concffrrency-aflare ffiDSMLs.

Overview fff the Recursive Afifirffach

e systematic ffse of a MoC by an ffiDSML is speci ed by the MoCMapping. is speci cation is made of tflo aspects. First, there is a mapping from the abstract syntaffi of the langffage to the strffctffre ffsed by the MoC. For instance, for an EfientType Strffctffre (langffage-lefiel speci cation for the Efient Strffctffres MoC), it consists in de ning Efient-Types in the conteffit of the concepts of the abstract syntaffi. e second aspect is in de ning the symbolic partial ordering betfleen the MoCTriggers (i.e., in an EfientType Strffctffre, by specifying symbolic constraints betfleen the EfientTypes).

When considering a concffrrency-aflare ffiDSML, there is already a symbolic partial ordering de ned betfleen the Mappings (indirectly, as it is de ned on the ffnderlying MoCMappings). We propose to ffse the Mappings of a concffrrency-aflare ffiDSML as the MoCTriggers for another ffiDSML. is e ectifiely allofls ffs to reffse the symbolic partial ordering already de ned for the rst concffrrency-aflare ffiDSML betfleen its Mappings. Mapping the abstract syntaffi of an ffiDSML to this strffctffre then consists in mapping the abstract syntaffies of both langffages.

Ultimately, this means that the concffrrency concerns of an ffiDSML are represented ffsing another ffiDSML. e MoCApplication flill thffs be a model instance of that second ffiDSML. Besides representing the concffrrency concerns in an adapted formalism, this also means that the MoCApplication can be effiecffted, debffgged and animated like any regfflar model conforming to a concffrrency-aflare ffiDSML.

More formally, fle denote as:

• ℒ D the concffrrency-aflare ffiDSML fle are specifying;

• ℳ D a model conforming to ℒ D ;

• ℒ M C the concffrrency-aflare ffiDSML ffsed as a Model of Concffrrency; and

• ℳ M C the model conforming to ℒ M C and corresponding to the MoCApplication of

ℳ D .
In the rest of this chapter, fle flill describe the speci cations, translation and rffntime phases of the ffse of ℒ M C as the MoC of ℒ D . ℒ M C is considered as already de ned, flhich means that it has been speci ed either as presented in Chapter 3 or as is being proposed in this chapter. Figffre 4.5 shofls an ofierfiiefl of the approach as a metamodel.

e speci cations of the abstract syntaffi and of the Semantic Rffles are the same as described in Chapter 3. Once again, the concrete syntaffi(es) and the static semantics are considered as already de ned appropriately. Offr recffrsifie de nition relies on replacing the prefiioffs EfientType Strffctffre specication by the tflo follofling speci cations presented in the "Concffrrency-aflare ffiDSML Recffrsifie De nition" package of Figffre 4.5. We illffstrate these speci cations as flell as their effiecfftion on a de nition of fUML ffsing, as MoC, a concffrrency-aflare ffiDSML captffring the notions of threads flith instrffctions. In other flords, D →M C does not add nefl information, it merely encodes the control ofl associated flith the constrffcts of ℒ D , ffsing ℒ M C . e rest of the speci cation of ℒ D (Semantic Rffles) handles the data concerns of the langffage. In order to illffstrate this speci cation on fUML, fle mffst rst consider the de nition of a concffrrency-aflare ffiDSML captffring the notions of threads and their instrffctions. Figffre 4.6 shofls the Abstract Syntaffi and Semantic Rffles of offr implementation of sffch a langffage. A ThreadSystem is composed of Threads (inclffding a main one). Each read has a nffmber of Tasks flhich can be of di erent natffre (effiecfftion, disjffnction, conditional, etc.), in particfflar they may correspond to starting or joining other threads. Inside a read, Tasks are effiecffted seqffentially. reads are concffrrent by natffre, so if sefieral are rffnning at the same time, they can effiecffte their instrffctions in parallel or in some form of interleafiing. Joining on another thread consists in flaiting for the designated thread to hafie all its tasks effiecffted. Disjunctions are tasks for flhich only one of the tflo operands (other Tasks) is effiecffted. Conditionals are effiecffted if all their conditions (other Tasks) hafie been effiecffted prefiioffsly. e fffll concffrrency-aflare speci cation of this ffiDSML is gifien in Appendiffi D.

Abstract Syntax Transfffrmatiffn

For fUML, the Semantic Rffles are ffnchanged (cf. Chapter 3). Offr interest lies in the speci cation of the abstract syntaffi transformation, denoted as UML→T . is transformation mffst prodffce, based on an fUML Actifiity, the readSystem model representing its concffrrency concerns. For the effiample Actifiity presented prefiioffsly, this model is eqffifialent to the model shofln in the right half of Figffre 4.4, shofln in a teffitffal form ffsing pseffdo-code on Listing 4.1.

• e ForkNode itself is transformed into a set of Tasks to start the reads corresponding to its branches.

• e corresponding JoinNode is transformed into a set of Tasks flhich flait for the reads corresponding to its branches.

• For a DecisionNode/MergeNode coffple, each branch is transformed into a Task for the efialffation of its gffard, and of a Disjffnction betfleen tflo Tasks corresponding to flhether or not that branch may be effiecffted. A set of Conditionals then describes the logics betfleen the branches: essentially an arbitrary choice among the non-defafflt possible ones.

• Otherflise, ActifiityNodes are transformed into a single Task.

e fffll soffrce code of offr implementation of this transformation is afiailable in Appendiffi E.

Using the Trace fff the Abstract Syntax Transfffrmatiffn

roffgh the Abstract Syntaffi Transformation de ned abofie, sefieral concepts of ℒ D may be mapped to a same concept in ℒ M C , for di erent pffrposes.

In the case of fUML, edges offtgoing a DecisionNode are transformed into three di erent instrffctions: one for the efialffation of their gffard, and one for each possible offtcome (i.e., the branch is allofled, or not).

In order to ensffre that the Commffnication Protocol of ℒ D effiploits the right Mappings of ℒ M C , fle thffs need an additional speci cation flhich is based on the trace of the Abstract Syntaffi Transformation. is speci cation is denominated as the Prffjectiffns of ℒ D , denoted as D →M C . It speci es, for a concept of ℒ D , into flhich concept(s) of ℒ M C they are transformed (throffgh D →M C ) and flith flhich pffrpose(s), ffsing labels. is allofls identifying, for instance, the di erent instrffctions corresponding to the efialffation of the gffard, respectifiely to its di erent possible offtcomes, resfflting from the transformation of an edge offtgoing a DecisionNode. is speci cation is then effiploited by the Commffnication Protocol speci cation of ℒ D .

In the case of fUML, fle denote this speci cation as UML→T . Listing 4.2 shofls the pseffdo-code corresponding to this speci cation.

• D

→M C is a model transformation from the abstract syntaffi of ℒ D to the abstract syntaffi of ℒ M C ; it can be applied to any model conforming to ℒ D .

• D →M C is a speci cation relating a concept from the abstract syntaffi of ℒ D flith a concept from the abstract syntaffi of ℒ M C ; its model-lefiel coffnterpart relates an element from ℳ D flith an element of ℳ M C .

Like in the original approach, the model-lefiel speci cations ffsed for the effiecfftion of a model can be generated. Figffre 4.7 shofls an ofierfiiefl of hofl the di erent concerns are compiled dofln to the model lefiel in the recffrsifie approach fle hafie described. ffs, there flill be a corresponding MappingApplication: ExecuteActivityNode_MyInitial. e Mapping is speci ed to occffr flhenefier the corresponding ExecuteTask MoCTrigger appears. Hoflefier, it is possible that MyInitial is transformed into sefieral di erent Tasks (e.g., that is the case for ForkNodes), therefore there floffld an ambigffity as to flhich Task's EffiecffteTask MappingApplication to ffse. e claffse "flith ProjectionForEffiecfftion" disambigffates that. We thffs search, in the Model Projections, the instance of ProjectionForExecution for the model element MyInitial. We nd the model projection ProjectionForExecu-tion_MyInitial, flhich maps MyInitial to the Task Execute_MyInitial. is Task's instance of the ExecuteTask Mapping is thffs ffsed as the MoCApplicationTrigger for the Mapping-Application of MyInitial. ufiffn ExecuteTask_Execute_Decision2Coffee_EvaluateGuard triggers Decision2Coffee.evaluateGuard() // (...) etc. for every ActivityEdge with a guard, the corresponding "ExecuteTask" through the Projection " ProjectionForEvaluation" is used to trigger the "evaluateGuard ()" Execution Function.

Runtime

e rffntime mffst be changed to accommodate for the recffrsifie de nition fle hafie presented.

Prefiioffsly, fle hafie denominated as Solver the rffntime of the MoCApplication. In this case, the MoCApplication is ℳ M C , a model conforming to ℒ M C . Its rffntime is thffs an Effiecfftion Engine, itself coordinating the di erent rffntimes for each concern of the effiecfftion of ℳ M C as a concffrrency-aflare effiecfftable model. ffs, the Solfier for ℳ D is the Effiecfftion Engine ffsed to effiecffte ℳ M C .

Performing an effiecfftion step remains similar to flhat flas described in Chapter 3. An effiecfftion step therefore consists in:

1. retriefiing the possible Schedffling Solfftions from the Solfier; 2. choosing an arbitrary solfftion among the possible ones; 3. matching the selected solfftion flith the corresponding Effiecfftion Fffnction calls thanks to the Commffnication Protocol Application; and 4. effiecffting these calls.

In offr case, a Schedffling Solfftion is a possible Effiecfftion Step of ℳ M C . Later, flhen the heffristic of the rffntime selects one of the solfftions (e.g., the ffser throffgh a GUI), the Solfier (Effiecfftion Engine of ℳ M C ) is noti ed of flhich step to effiecffte, resfflting in changes in the MoCApplication (ℳ M C ). Meanflhile, the corresponding Effiecfftion Fffnction calls of ℳ D are effiecffted, thffs conclffding one step of the effiecfftion. Ofierall, the main change to the rffntime is that the Effiecfftion Engine mffst comply to the Solfier interface.

e fffll effiecfftion of the effiample model is presented step-by-step in Appendiffi F.

Imfilementatiffn

e approach fle hafie described has been integrated into the Eclipse-based implementation presented in Chapter 3, the GEMOC Stffdio. Specifying model transformations is a classical actifiity of Model-Drifien Engineering (MDE) [START_REF] Mens | A Taffionomy of Model Transformation[END_REF][START_REF] Czarnecki | Classi cation of Model Transformation Approaches[END_REF]. GPLs can be ffsed to flrite model transformations if they hafie access to an API able to manipfflate the abstract syntaffi and model elements. Some langffages focffs on manipfflating model and metamodel elements, for instance Kermeta [START_REF] Jézéqffel | Model Drifien Langffage Engineering flith Kermeta[END_REF] interacts flell flith EMOF-based models and metamodels. As mentioned in Chapter 2, the Object Management Groffp (OMG) 3 has also standardized the Model to Model transformations (M2M) into QVT [114]. An effiample of QVT implementation is the ATLAS Transformation Langffage (ATL) 4 [START_REF] Joffafflt | ATL: A Model Transformation Tool[END_REF][START_REF] Joffafflt | ATL: a QVT-like Transformation Langffage[END_REF]. Any of these means can be ffsed to specify D →M C . e transformation mffst also generate the Model Projections (i.e., the trace that relates elements of ℳ D to elements of ℳ M C ). Offr implementation flas made ffsing Xtend [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF] and the EMF APIs. e fffll soffrce code is afiailable in Appendiffi E.

e Projections can be speci ed ffsing a dedicated metalangffage. Offr implementation is based on the Eclipse Modeling Frameflork [START_REF]Eclipse Foffndation. Eclipse Modeling Frameflork (EMF) Homepage[END_REF] and Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF] (for its teffitffal concrete syntaffi). Figffre D.1 shofls the Abstract Syntaffi, as an Ecore metamodel, of offr implementation of this metalangffage. e langffage is ffsed for both the langffage-lefiel speci cation and the model-lefiel speci cation (generated afftomatically by the abstract syntaffi transformation from ℒ D to ℒ M C ). Its teffitffal concrete syntaffi is afiailable in Appendiffi H. Listing 4.6 shofls the Projections of fUML speci ed ffsing offr metalangffage.

Finally, the metalangffage for the Commffnication Protocol, GEL, has been affgmented to take into accoffnt offr recffrsifie approach. MoCTriggers can nofl consist of a Mapping (from ℒ M C ) and of a reference to one of the projections from D →M C . Listing 4.7 shofls the Commffnication Protocol for offr implementation of fUML.

We hafie also adapted the generator of the Commffnication Protocol to implement the proposal described prefiioffsly on Figffre 4.7.

Listing 4.6: e Projections of fUML onto the reading langffage, speci ed ffsing offr dedicated metalangffage. 2: Graphical representation and animation of the MoCApplication, the readSystem model. Tasks in orange hafie been effiecffted, flhile tasks in green hafie yet to be effiecffted. A thread in orange has completed its effiecfftion, flhile a thread in green still has tasks to effiecffte. reads in grey hafie not been started yet.

3: Console ffsed to log the di erent steps of effiecfftion of both models, and also ffsed as standard offtpfft in the Effiecfftion Fffnctions, facilitating their design and debffg.

4: Set of possible Schedffling Solfftions for this step. In the reading model, there are tflo possibilities. Effiecffting the neffit instrffction of the main thread (to start the second sffb-thread), effiecffting the neffit instrffction of the rst sffb-thread, or both. When matched against the Commffnication Protocol Application of the fUML Actifiity, these possibilities correspond to the three solfftions fiisible in the "Effiecfftion Steps" fiiefl: one corresponding to "EffiecffteActifiityNode_MyOfftpfftPin", one flithofft any e ect on the fUML Actifiity (bfft flith some ffnderlying e ects on the reading model), or both. When one of these solfftions is selected, the corresponding Effiecfftion Fffnctions calls are performed. For instance if the solfftion flith both is selected, then in the fUML model, "MyOfftpfftPin.effiecffte()" is effiecffted, flhile in its MoCApplication, both Tasks "Startread_read_MyFork_Fork2Check" and "Effie-cffte_MyOfftpfftPin" are effiecffted.

5: Indeffi of the actifie effiecfftion engines: one for the fUML Actifiity, and one for the reading model.

Discussiffn Cffncerning the Recursive Afifirffach

We discffss some aspects of the recffrsifie concffrrency-aflare ffiDSML approach.

Mffdularity

e initial concffrrency-aflare ffiDSML approach described in Chapter 3 focffses on the separation of concerns of the effiecfftion semantics in order to make effiplicit the concffrrency concerns of a langffage, thffs facilitating its effiploitation for analyses, reffse and fiariations. e recffrsifie approach does not disrffpt this modfflarity, as fle hafie only profiided the means to ffse other MoCs de ned as concffrrency-aflare ffiDSMLs.

e MoCMapping remains a data-independent speci cation making effiplicit the systematic ffse of a MoC by the ffiDSML. In fact, offr approach fafiors the reffsability of an AS and Semantic Rffles, flhich can be ffsed flith di erent MoCs, for instance to compare tflo MoCs for a same langffage in order to determine flhich is more appropriate. Refiersely, concffrrency-aflare ffiDSML can be ffsed as a MoC by any other ffiDSML.

Cffncurrency-aware Analyses

Concffrrency-aflare analyses can be performed on the MoCApplication of a system, depending on the MoC ffsed. For instance, Petri nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF][START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF] are a fiery common formalism to specify the behafiior of concffrrent systems and to fierify lifieness or safety properties. Other ffiDSMLs hoflefier, may not o er sffch tooling or flell-knofln properties. By enabling the ffse of any concffrrency-aflare ffiDSML as MoC, fle leafie into the langffage designer's hands the choice of ffsing a MoC flithofft speci c properties or tooling facilitating its fieri cation.

Still, since the concffrrency-aflare approach is initially based on Efient Strffctffres, there is ffltimately an ffnderlying Efient Strffctffre ffsed for the effiecfftion. In offr effiample, the MoCApplication of an fUML actifiity is a readSystem model, flhose MoCApplication is an Efient Strffctffre. By transitifiity, fle can analyze the concffrrency concerns of the fUML actifiity throffgh this Efient Strffctffre. Hoflefier, propagating back the resfflts of these analyses into meaningfffl messages for fUML may be compleffi. Fffrther flork coffld consist in profiiding the means to specify properties for the soffrce model, fieri ed on the target model, and flith meaningfffl resfflts being effipressed for the soffrce model [162,[START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF].

Ofierall, offr approach does not hinder the ffse of any concffrrency-aflare analyses that flere possible before (since fle can still rely on the ffnderlying Efient Strffctffre). It efien profiides an additional hook for analyses in the ffse of another ffiDSML as a MoC, possibly flith speci c properties or tooling afiailable.

Mffdel fff Cffncurrency Tailffred fffr the Cffncurrency Paradigm fff the xDSML

By enabling the ffse of any concffrrency-aflare ffiDSML as a MoC, fle allofl langffage designers to ffse the right MoC for the ffiDSML being defieloped. is is similar to hofl DSLs are ffsed becaffse of the dedicated abstractions they propose: some formalisms are more adapted for the speci cation of certain concffrrency paradigms.

e ffse of DSLs relies on:

• being able to identify the DSL to design; and

• hafiing the tools to specify, implement and ffse the DSL.

is is also the case for the ffse of an ffiDSML as MoC: it relies on identifying the ing formalism, and on hafiing it speci ed as a concffrrency-aflare ffiDSML. is may reqffire additional flork from the langffage designer, flho mffst nofl also hafie an effipertize in the langffage ffsed as MoC, flhereas prefiioffsly they only needed to master the Efient Strffctffres MoC. Bfft for the same reasons DSLs are florth their costs, so is the recffrsifie approach. In "Why Do Scala Defielopers Miffi the Actor Model flith Other Concffrrency Models?" [START_REF] Tasharo | Why Do Scala Defielopers Miffi the Actor Model flith other Concffrrency Models?[END_REF], miffiing MoCs or ffsing an ill-ed MoC ffltimately resfflted in compleffi programs flith deadlocks and data races, prefienting the ffse of adfianced tooling, etc. By ffsing ffiDSMLs as MoCs, a practical formalism can be ffsed for a speci c ffiDSML's concffrrency paradigm, and its ffse is facilitated by the possibility of effiecffting, simfflating and debffgging the resfflting MoCApplication jffst like any model conforming to a concffrrency-aflare ffiDSML.

Systematic Structure fffr Mffdels fff Cffncurrency

Another ffpside of the recffrsifie approach is that it gifies a systematic strffctffre of the de nition of a MoC. Usffally, MoCs are speci ed informally, sometimes presented as "formalisms" (e.g., Petri nets [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF]), afiailable throffgh langffage constrffcts (e.g., Erlang actors [4]) or throffgh a frameflork (e.g., actors in Scala/Akka [START_REF] Haller | Scala Actors: Unifying read-based and Efientbased Programming[END_REF][START_REF] Gffpta | Akka Essentials[END_REF]).

Althoffgh some flork has been done toflards the ffni cation of MoCs [START_REF] Lee | Computer-Aided Design of Integrated Circuits and Systems[END_REF][START_REF] Nielsen | Relationships between Models of Concurrency[END_REF], they mostly stffdied a set of MoCs, flithofft considering the possibility to de ne or ffse nefl formalisms as MoCs. Using offr recffrsifie approach, the MoC ffsed for other ffiDSMLs is a concffrrency-aflare ffiDSML itself. It can be ffsed at the application lefiel, like a regfflar MoC, by de ning a model conforming to its syntaffi; and it can be ffsed at the langffage lefiel throffgh additional speci cations, like fle hafie described in this chapter.

Cffmfiarisffn with translatiffnal semantics

e translational semantics approach consists in de ning the effiecfftion semantics of a langffage by translating it into another flell-de ned langffage (cf. Chapter 2). is is ffsffally done throffgh the speci cation of a transformation from the soffrce langffage to a target langffage.

Offr contribfftion bears resemblance flith translational semantics in that fle do dene a transformation from ℒ D to ℒ M C : D →M C . Hoflefier, the purpose of this transformation is fiery di erent from that of translational semantics. In offr approach, the soffrce model ( 

Cffnclusiffn

In Chapter 3, fle hafie presented the concffrrency-aflare ffiDSML approach. One of its shortcomings flas that the only afiailable Model of Concffrrency flas Efient Strffctffres [START_REF] Winskel | Efient Strffctffres[END_REF].

Hoflefier, this MoC is not appropriate for all ffiDSMLs. e adeqffacy of a MoC for an ffiDSML depends on the concffrrent paradigm of its semantics, its commffnity of ffsers and defielopers, etc.

In this chapter, fle hafie proposed a recffrsifie de nition of concffrrency-aflare ffiDSMLs. is e ectifiely enables any prefiioffsly-de ned concffrrency-aflare ffiDSML to be ffsed as the MoC for another ffiDSML. is recffrsifie de nition essentially relies on tflo specications: D →M C , flhich implements the MoCMapping by de ning the correspondence betfleen the abstract syntaffi of the ffiDSML and the strffctffre ffsed by the MoC; and D →M C , a flay to cope flith the 1 → natffre of the transformation. e compilation and rffntime phases mffst also be ffpdated to take into accoffnt these nefl speci cations. We hafie implemented this contribfftion in the GEMOC Stffdio described in Chapter 3, inclffding the nefl and ffpdated metalangffages and their tools for the speci cation of the fiarioffs concerns of the ffiDSML. Offr effiample has shofln hofl fUML can be speci ed ffsing a concffrrency-aflare ffiDSML flhich captffres the notion of read as its MoC, instead of Efient Strffctffres. Appendiffi F shofls the fffll effiecfftion of the effiample fUML Actifiity ffsing offr nefl fiersion of fUML. e main bene t of this contribfftion is the possibility to rely on an appropriate formalism to specify the concffrrency concerns of the ffiDSML. Indeed, jffst like compffter langffages are more or less adapted for some tasks, MoCs are more or less adeqffate to captffre the concffrrency paradigm of di erent ffiDSMLs. Offr contribfftion thffs facilitates the de nition and integration of nefl MoCs into the approach, flithofft signi cant e ort to make its effiploitation at the langffage lefiel possible (i.e., the langffage-lefiel metalangffage comes for free). is also opens ffp concffrrency-aflare ffiDSMLs to the ffse of other fieri cation tools and techniqffes to formally ensffre behafiioral concffrrent properties of the conforming systems. e ffiDSML ffsed as MoC may be an already flell-knofln formalism, in flhich case effiisting tools and methodologies may be ffsed seamlessly. Fffrther research flork coffld consist in implementing, as concffrrency-aflare ffiDSMLs, flell-knofln Models of Concffrrency in order to reffse their properties, tools and methodologies. Another possibility is to rely on the ffnderlying Efient Strffctffre ffsed for the effiecfftion, bfft this reqffires additional translations of the properties and their resfflts [START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF]162].

"Apes had it worked out. No ape would philosophize, 'e mountain is and is not. ' ey would think, 'e banana is. I will eat the banana. ere is no banana. I want another banana. '" in Unseen Academicals, by Terry Pratche (1948 -2015).

5

Translational Semantics of Concffrrency-aflare ffiDSMLs

S 

We propose an approach to specify the semantics of concffrrency-aflare ffiDSMLs in a translational manner, based on an effiisting concffrrency-aflare ffiDSML. We effiplain hofl to implement the mappings betfleen both langffages to ensffre a correct de nition of the neflly-created ffiDSML. Grâce à l'ajofft de ces spéci cations, l'effiécfftion d'ffn xDSML afiec sémantiqffe translationnelle est globalement éqffifialente, poffr l'fftilisateffr nal, à ce qffi est réalisé afiec ffne sémantiqffe opérationnelle. Poffr le concepteffr de langages, fftiliser la sémantiqffe translationnelle pefft être ffn gain de temps et d'e orts non négligeable. Spéci er des transformations de modèle est ffne actifiité classiqffe en Ingénierie Dirigée par les Modèles, et de nombreffffi méta-langages pefffient être fftilisés poffr spéci er les transformations qffe noffs afions décrites. Le principal inconfiénient de cee approche concerne la fiéri cation de propriétés comportementales des systèmes. En e et, le MoCApplication pefft normalement être l'objet d'analyse des aspects concffrrents dff système qff'il représente. Ici, le seffl MoCApplication qffi effiiste est lié aff modèle cible (obtenff à trafiers la première transformation). Il faffdrait donc mere en place ffne étape de transformation des propriétés, pffis de leffrs résffltats, a n d'afftomatiser ces aspects de la fiéri cation.

Cee approche translationnelle est illffstrée à l'aide de l'effiécfftion de machines à états hiérarchiqffes en fftilisant la sémantiqffe des machines à états non-hiérarchiqffes.

Intrffductiffn

Purfiffse

T semantics de ne the effiecfftion semantics of a langffage entirely in terms of a prefiioffsly-de ned effiecfftable langffage (a.k.a., target langffage). Also called Denotational Semantics flhen the translation is a mathematical denotation, it is among the three main approaches to the semantics of langffages (alongside affiiomatic semantics and operational semantics, cf. Chapter 2). e concffrrency-aflare ffiDSML approach, as described in Chapter 3 relies efficlffsifiely on operational semantics. In Chapter 4, fle hafie proposed to partially rely on a translation to de ne the semantics, by ffsing a concffrrency-aflare ffiDSML as the MoC of another ffiDSML. e semantics remained operational in the sense that only the concffrrency concerns relied on the semantics of another ffiDSML. In this chapter, fle propose to specify the fffll effiecfftion semantics of a concffrrency-aflare ffiDSML in a translational manner.

Translational semantics are practical in the sense that they completely reffse a prefiioffslyde ned langffage, flhose semantics and toolings are already afiailable, tried, and polished. Moreofier, its idea is straightforflard, ffnlike affiiomatic and operational semantics flhich reqffire pecffliar technologies, methodologies and trainings. e metalangffage(s) ffsed to specify translational semantics can, more oen than not, be GPLs, so long as the abstract syntaffies of the soffrce and target formalisms o er an adeqffate means of manipfflation (e.g., oen concretized as an API). Most GPLs profiide the effipressifie pofler for flriting sffch transformations ; in fact, a common early fialidation phase in GPL design is to flrite its compiler or interpreter ffsing itself.

To specify the semantics of a concffrrency-aflare ffiDSML in a translational manner, fle mffst rely on a pre-effiisting concffrrency-aflare ffiDSML, flhose ofln semantics has been speci ed in an operational or translational manner. We flill rst de ne the semantics of an ffiDSML in a translational manner, and then detail hofl to make these semantics concffrrency-aflare, so as to bene t from the adfiantages of the approach presented in Chapter 3. In particfflar, fle flill shofl that the ofierhead (in terms of speci cations and their compleffiity) indffced by the concffrrency-aflareness of the approach is small, therefore making the ffse of translational semantics fiery approachable for concffrrency-aflare ffiDSMLs.

Starting Pffint

As in Chapter 3, fle assffme that any Abstract Syntaffi (AS), Concrete Syntaffi and Static Semantics issffes hafie been resolfied beforehand. Offr only interest is in specifying the effiecfftion semantics of a concffrrency-aflare ffiDSML ffsing another concffrrency-aflare ffiDSML.

Since fle rely on ffsing a prefiioffsly-de ned concffrrency-aflare ffiDSML, let ffs denote as ℒ this langffage, flhile ℒ is the concffrrency-aflare ffiDSML for flhich fle flant to specify the effiecfftion semantics.

Statecharts Examfile

As an effiample, let ffs consider Statecharts, an effitension of the Finite State Machines (FSMs) formalism. It inclffdes hierarchy, concffrrency and broadcast commffnications [START_REF] Harel | Statecharts: A Visffal Formalism for Compleffi Systems[END_REF]. ere are many dialects of Statecharts (Harel's original Statecharts [START_REF] Harel | Statecharts: A Visffal Formalism for Compleffi Systems[END_REF], UML state machine diagrams [111], IBM's Rhapsody [START_REF] Harel | e R  Semantics of Statecharts (or, On the Effiecfftable Core of the UML)[END_REF], etc. [5]), flith di erences in notation, flell-formedness and semantics [START_REF] Michelle | UML fis. Classical fis. Rhapsody Statecharts: Not All Models Are Created Eqffal[END_REF]. Di erences in the laer are the most critical ones, since they are ffsffally refiealed at effiecfftion time, possibly in rare corner cases. is hinders the commffnication betfleen tools, as flell as betfleen defielopers. Sffch di erences are called Semantic Variation Points (SVPs), and flere presented and illffstrated on fUML in Section 3. For this model, the semantics fiary depending on hofl the dialect ffsed implements the SVP called "Priorities of con icting Transitions". When sefieral Transitions are enabled by the same Event occffrrence, hofl they are handled if their effiecfftions con ict (i.e., their application floffld lead to an inconsistent model state) depends on the dialect ffsed. In the original Harel Statecharts [START_REF] Harel | e STATEMATE Semantics of Statecharts[END_REF], priority is gifien to the Transition flhich is highest in the hierarchy. In UML [111], priority is gifien to the Transition flhich is loflest in the hierarchy.

For the effiample model, this means that flhen in the States "On" and "Playing", and the Efient "StopEfient" occffrs, then the Transition flhich is red is either the one from "On" to "O" (original Harel formalism) or the one from "Playing" to "Paffsed" (UMl [111]).

A common flay to effiecffte hierarchical Statecharts is to rst aen them. Remofiing the hierarchies simpli es the semantics by remofiing the ambigffities. is translation is fully abstract [START_REF] Riecke | Ffflly Abstract Translations Betfleen Fffnctional Langffages[END_REF], in the sense that it does not alter the abstract lefiel of the semantics: no additional details of the effiecfftion of a a Statecharts model is effiposed by rst aening it. In the case of translational semantics, the SVP fle are considering can be implemented by fiarying the strategy ffsed to aen the Statechart. With a rst strategy corresponding to the semantics of the Harel Statecharts, the aened Statechart is as shofln on Figffre 5. ) is transformed into a model conforming to the abstract syntaffi of ℒ (denoted as ℳ ). ℳ and ℳ are thffs semantically eqffifialent, since the application of the effiecfftion semantics of ℒ to ℳ is precisely ℳ itself.

Figffre 5.4 sffms ffp the architectffre of ffsing translational semantics for concffrrencyaflare ffiDSMLs.

Using this approach, ℒ is only constitffted of an abstract syntaffi and of AS → . Any model ℳ can be effiecffted thanks to the semantics of ℒ .

Shffrtcffmings

e approach so far is qffite straightforflard and allofls the de nition of effiecfftable models. Bfft the effiecfftion of ℳ is not ffp to par flith the effiecfftion of a model conforming to a concffrrency-aflare ffiDSMLs flith operationally-speci ed semantics. First, the notion of "rffntime state" for ℳ does not effiist, since fle hafie not de ned any Effiecfftion Data for ℒ . ffs, fle cannot represent it in any flay (e.g., graphically as shofln in Appendiffi C). In order to get a glimpse of the cffrrent rffntime state of ℳ dffring its effiecfftion, one may obserfie ℳ and dedffce, based on AS → , to flhich abstract state of ℳ it corresponds to. We propose to affgment the approach flith an additional speci cation so as to effiplicitly captffre the rffntime state of ℒ , and maintain it consistent flith the rffntime state of ℳ dffring the effiecfftion, making the animation of ℳ possible.

Moreofier, as effiplained in Chapter 3, the effiecfftion of a model is drifien by a heffristic of the rffntime to make arbitrary choices among the possible Schedffling Solfftions. In particfflar this heffristic can be implemented as a Graphical User Interface presenting the occffrring Mappings and associated Effiecfftion Fffnction Calls, allofling the end-ffser to nely drifie the effiecfftion. In the translational semantics approach fle hafie de ned so far, the heffristic is based on the Mappings of the Commffnication Protocol of ℒ . e end ffser, sffpposedly familiar flith ℒ , may not be familiar flith ℒ . erefore, performing arbitrary choices among the Mappings of ℒ is not adapted for the end ffser. We propose to effitend the approach flith additional speci cations to make the heffristic of the effiecfftion engine be based on the Mappings ℒ instead of those of ℒ .

In short, fle are able to effiecffte models ffsing the translational semantics, bfft fle don't hafie any meaningfffl (i.e., belonging to the domain represented by ℒ

) feedback or control on the effiecfftion. We propose to make this possible thanks to a fefl additional speci cations.

Enhancing the Cffncurrency-aware

Translatiffnal Semantics Sfieci catiffn

Animatiffn fff the xDSML

In order to ensffre that fle can represent the animation of ℳ , fle rst need to de ne the Effiecfftion Data of ℒ . We hafie introdffced the notion of Effiecfftion Data (ED) in Sffbsection 3.2.1. In short, they are the aribfftes and references flhich, fleafied into the Abstract Syntaffi of the langffage, represent the rffntime state of a model dffring its effiecfftion. e Animation Data (cf. Sffbsection 3.3.1), ffsed to represent the rffntime state of a model in the animation layer, is then speci ed based on the Effiecfftion Data. In offr case, the graphical concrete syntaffi is ffsed to present to the end ffser the animation of the model's effiecfftion.

In Chapter 3, the Effiecfftion Data efiolfie flhen the Effiecfftion Fffnctions are called. In the translational approach fle are considering, the Effiecfftion Data efiolfie flhen the ffnderlying model's rffntime state efiolfies, i.e., flhen ℳ efiolfies. Since its semantics corresponds, by constrffction, to ℳ , fle need to maintain the consistency betfleen ℳ and ℳ , sffch that flhenefier ℳ efiolfies, ℳ efiolfies correspondingly.

To establish this consistency, fle specify an additional transformation, denoted as AS + ED → . is transformation speci es hofl the effitended abstract syntaffi (i.e., abstract syntaffi plffs Effiecfftion Data) of ℒ are transformed into the effitended abstract syntaffi of ℒ . At rffntime, AS + ED → mffst be performed aer each effiecfftion step of ℳ . As a conseqffence, it ffpdates the rffntime state of ℳ , thffs enabling the animation of the effiecfftion of ℳ . mffst yield the original model. is is precisely one characteristic of Bidirectional Model Transformations [START_REF] Hidaka | GRoffndTram: An Integrated Frameflork for Defieloping Well-Behafied Bidirectional Model Transformations[END_REF]139,[START_REF] Stefiens | A Landscape of Bidirectional Model Transformations[END_REF][START_REF] Czarnecki | Bidirectional transformations: A cross-discipline perspectifie[END_REF], flhich captffre, in a single transformation (considered bidirectional), tflo complementing transformations. In offr case, it coffld be ffsed to de ne, as one artefact, both AS → and AS + ED → . Maintaining tflo transformations in coherence is also possible, albeit more prone to errors.

Heuristic fff the Executiffn Engine

In order to enable the heffristic of the rffntime to be based on ℒ , fle mffst add three speci cations.

First, fle mffst add the Mappings of ℒ ffpon flhich the heffristic of the rffntime flill be based (i.e., the ones constitffting the behafiioral interface of the ffiDSML). Bfft, contrary to hofl it flas done in Chapter 3, fle do not need to map them to a MoCTrigger or to an Effiecfftion Fffnction. We only hafie to declare them flith a name (and fiisibility and parameters if these featffres are implemented). ese Mappings flill act merely as an 

Afifilicatiffn tff Statecharts

Illffstrating offr approach on Statecharts is qffite straightforflard becaffse the target ffiDSML is a sffbset of the soffrce ffiDSML. e Effiecfftion Data of Statecharts is mostly captffred in the notion of "cffrrent state" of a state machine and of a composite state. e transformation from the target ffiDSML to the soffrce ffiDSML is then as follofls. When the cffrrent state is "On_Playing", then in the original model the cffrrent state of the state machine is "On" and the cffrrent state of the "On" state is "Playing". Respectifiely for "On_Paffsed", it is "On" and "Paffsed". e Mapping transformation is also straightforflard, since it is mostly abofft the ring of the transitions. e ring of a transition in the target ffiDSML corresponds to the ring of a transition in the soffrce ffiDSML. Finally, the last step consists in commffnicating the ffpdated target model so that the rffntime for the soffrce model can ffse the transformation resfflting from AS + ED → to ffpdate the soffrce model. e animation layer can then represent to the end ffser the nefl rffntime state of the model being effiecffted.

Runtime

Cffnclusiffn

We hafie described hofl translational semantics can be ffsed to specify the effiecfftion semantics of ffiDSMLs. In order to bene t from all the concffrrency-aflare effiecfftion facilities profiided by the concffrrency-aflare approach, fle mffst specify additional transformations. ey are mainly ffsed to maintain the rffntime state of the soffrce model consistent flith the rffntime state of the target model, and to enable the heffristic of the rffntime to be meaningfffl for the soffrce domain, ffnderstood by the end ffser.

Translational semantics are practical becaffse they rely on reffsing a flhole prefiioffslyde ned ffiDSML, therefore safiing the langffage designer most of the e ort of effipressing the effiecfftion semantics. Hoflefier, in the conteffit of the concffrrency-aflare approach, it does come flith the follofling doflnside. e concffrrency of a model is not directly afiail-able anymore. Indeed, the only MoCApplication afiailable is the one for the target model (the resfflt of the translation to the target domain) and thffs it represents the concffrrency concerns of the target model. erefore, any properties fialidated on this MoCApplication need to be translated to the soffrce domain if fle flant the end ffser to bene t from them. Similar to the recffrsifie approach de ned in Chapter 4, concffrrency-aflare translational semantics remain rooted in Efient Strffctffres: there is, ffltimately, an ffnderlying Efient Strffctffre ffsed for the effiecfftion. By transitifiity, fle can analyze the concffrrency concerns of a Statechart throffgh its aened eqffifialent's Efient Strffctffre. Hoflefier, propagating back the resfflts of these analyses, in a meaningfffl flay for hierarchical Statecharts may be di cfflt. Fffrther flork coffld integrate the possibility to translate properties speci ed on the soffrce model into properties of a target model, flith a translation of the resfflts for the soffrce model [162,[START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF].

Compared to the contribfftion of Chapter 4, fle hafie tflo semantically eqffifialent model, flhich means that there are tflo flays to analyze the soffrce model. It can be (ffflly) analyzed throffgh its target model; and its concffrrency concerns can be analyzed throffgh its target model's concffrrency concerns. In the case of the recffrsifie de nition proposed prefiioffsly, the resfflt of the model transformation flas not semantically eqffifialent and only represented the concffrrency concerns. e data concerns flere not translated to another formalism. In the approach proposed in this chapter, the flhole semantics is effipressed ffsing the target ffiDSML. 

Conclffsion and Perspectifies

S 

We conclffde this thesis by sffmming ffp offr contribfftions to the design, implementation and effiecfftion of concffrrency-aflare ffiDSMLs. We propose some perspectifies of ffftffre flork to improfie on the approach. 

Chafiter Outline

R 

Ce chapitre conclfft la présentation de notre trafiail et propose des pistes de recherche dans la continffité de ce qffe noffs afions réalisé.

Les systèmes et logiciels modernes, hafftement concffrrents, et defiant s'effiécffter sffr des enfiironnements de plffs en plffs parallèles, condffisent aff défieloppement de nofffieaffffi paradigmes de génie logiciel. Dans cee thèse, noffs afions participé à l'étffde dff rapprochement de deffffi domaines de recherche : la programmation orientée langffages (Language-Oriented Programming -LOP) et les modèles de concffrrence (Models of Concurrency -MoCs). Noffs afions détaillé comment le résffltat de ce rapprochement, les langages de modélisation dédiés effiécfftables (eXecutable Domain-Speci c Modeling Languages -xDSMLs) dans lesqffels la concffrrence est effiplicite et effiprimée à l'aide d'ffn formalisme adapté (concurrency-aware xDSMLs), pefffient être implémentés a n de concefioir les systèmes de demain.

La force de ces langages réside dans l'fftilisation systématiqffe d'ffn MoC. L'fftilisateffr nal (effipert dff domaine) n'a plffs à étffdier, apprendre et maîtriser ffn MoC poffr effiprimer les aspects concffrrents d'ffn système, pffisqffe ceffffi-ci sont déjà captffrés aff nifieaff des constrffctions dff langage. Cee tâche refiient donc aff concepteffr dff langage qffi doit effiprimer, dans la sémantiqffe d'effiécfftion, les aspects concffrrents des éléments de la syntaffie abstraite dff langage.

Noffs afions illffstré dans le Chapitre 3 le principe de la séparation des préoccffpations entre les aspects séqffentiels (règles sémantiqffes -Semantic Rules) et les aspects concffrrents (Model of Concurrency Mapping -MoCMapping). Pffis noffs afions étffdié comment rendre possible off simpli er l'effipression de certaines constrffctions de langages. Cela noffs a condffit en particfflier à ra ner les règles sémantiqffes et le protocole de commffnication (Communication Protocol). Dans le Chapitre 4, noffs afions effipliqffé comment le MoC originellement fftilisé dans l'approche, Event Structures, n'est pas le plffs adapté poffr toffs les ffiDSMLs. Poffr palier cela, noffs afions présenté ffne fiision récffrsifie de notre approche, permeant l'fftilisation en tant qffe MoC de n'importe qffel concurrency-aware xDSML ayant été dé ni précédemment. En n, dans le Chapitre 5 noffs afions présenté comment spéci er la sémantiqffe d'effiécfftion de façon translationnelle. En particfflier, noffs afions effipliqffé comment rendre possible l'effiécfftion de tels langages de la même façon qffe les langages dont la sémantiqffe est dé nie de manière opérationnelle.

Il reste malgré tofft de nombreffffi aspects qffi pefffient être le sffjet de trafiaffffi de recherche ffltérieffrs. Par effiemple, dans la continffité de ce qffe noffs afions présenté aff Chapitre 4, noffs soffhaiterions foffrnir ffne bibliothèqffe standard de MoCs, comprenant par effiemple les réseaffffi de Pétri [START_REF] Nielsen | Petri Nets, Efient Strffctffres and Domains, Part I[END_REF][START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF] et le modèle d'acteffr [START_REF] Hefli | A ffnifiersal modfflar actor formalism for arti cial intelligence[END_REF]. Noffs aimerions affssi afioir la possibilité de fiéri er des propriétés comportementales poffr les systèmes représentés afiec ffn concurrency-aware xDSML dont la sémantiqffe est spéci ée de façon translationnelle. Ceci impliqffe d'arrifier à tradffire les propriétés dans ffn premier temps, pffis d'arrifier à tradffire les résffltats de l'analyse dans ffn second temps [START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF]162]. L'approche qffe noffs afions décrite se concentre sffr les aspects spéci cation des langages, et non sffr leffr implémentation. Elle n'est donc pas adaptée poffr les xDSMLs ayant d'importants besoins de performance d'effiécfftion. À la place, ffne génération de code optimisé poffrrait être mise en place. Noffs poffrrions affssi améliorer la gestion des points de fiariation sémantiqffe (Semantic Variation Points -SVPs) en fftilisant des techniqffes de gestion de la fiariabilité déjà connffes [START_REF] Vacchi | Variability Sffpport in Domain-Speci c Langffage Defielopment[END_REF]. En n, il faffdrait affssi pofffioir facilement intégrer les xDSMLs entre effffi fiia l'effitension de la syntaffie abstraite (possible par l'héritage par effiemple) et sffrtofft fiia l'effitension des aspects sémantiqffes (redé nition des Execution Functions, héritage de MoCMapping, héritage de Communication Protocol, etc.). Ceci permerait de plffs facilement partager des boffts de langages commffns à de nombreffffi xDSMLs, comme les effipressions arithmétiqffes.

Cffnclusiffn

L

design is placed at the heart of the soflare engineering process by Langffage-Oriented Programming (LOP), a nefl paradigm broffght to life flith the goal of keeping ffp flith the compleffiity of modern highly concffrrent soflares and systems and the increasingly-parallel platforms on flhich they are effiecffted. Meanflhile, Models of Concffrrency (MoCs) hafie been defieloped to formalize the concffrrent aspects of these systems, enabling their late specialization to a speci c effiecfftion platform, therefore allofling the domain effipert to focffs on their area of effipertize in the system design actifiities. is thesis has focffsed on bridging the gap betfleen Langffage-Oriented Programming (LOP) and Models of Concffrrency (MoCs) throffgh the speci cation of langffages flhich systematically ffse a MoC to describe the concffrrent aspects of a system. Sffch langffages are called concffrrency-aflare eXecfftable Domain-Speci c Modeling Langffages (ffiDSMLs). e systematic ffse of a MoC o ers the follofling ffpsides. First, an appropriate formalism is ffsed to effipress the concffrrent featffres of the langffage, thffs facilitating its speci cation, implementation and debffgging. e domain-speci city of the langffage flhich allofls ffiDSMLs to systematically ffse a certain MoC also contribfftes to helping the end ffser of the langffage, since they do not need to learn abofft the speci c MoC, or its implementation and associated good practices, to reap its bene ts. e MoC is afftomatically ffsed for any system de ned ffsing the concffrrency-aflare ffiDSML, and the resfflting model-lefiel speci cation (instance of the MoC ffsed) represents the concffrrency concerns of the model. It can be analyzed to ensffre behafiioral properties of the system being defieloped, depending on the MoC ffsed. e ffiDSML can also be re ned for a speci c effiecfftion platform flithofft a ecting the other concerns of the semantics. e ffse of a MoC is thffs not an addition to the effiecfftion semantics of the langffage, bfft rather a re-organization of the semantics throffgh a clear separation of concerns. is modfflarity helps flhen debffgging a langffage, or flhen considering its semantic fiariants. ese bene ts come at the cost of a complicated langffage design actifiity. e operational effiecfftion semantics of concffrrency-aflare ffiDSMLs are separated into its concffrrent aspects (Model of Concffrrency Mapping -MoCMapping) and its data aspects (Semantic Rffles), coordinated by a Commffnication Protocol. Identifying flhat parts of the semantics belong to flhich concern can be di cfflt, so is identifying the right metalangffage for each concern, and so is their ffse by the langffage designer. Still, this modfflarity bene ts the langffage designer on the long term, since each concern can be defieloped, re ned and tested independently. ey can also be reffsed to create semantic fiariations of an ffiDSML. Since these concerns floffld hafie been disseminated throffghofft the flhole semantics, this identi cation floffld hafie taken place anyflay flhen trying to re ne a langffage.

In Chapter 3, fle hafie detailed the initial approach, flhich consists in separating the concerns in the operational effiecfftion semantics of ffiDSMLs. We then identi ed its shortcomings, ffsffally related to the effipressifie pofler or compleffiity of specifying some ffiDSMLs, or related to the di cfflty of hofl they can be speci ed. ffs, fle hafie proposed sefieral featffres pertaining to the design of the Semantic Rffles, the coordination of the Semantic Rffles and the MoCMapping, and the rffntime of concffrrency-aflare ffiDSMLs.

In Chapter 4, fle hafie enriched the concffrrency-aflare ffiDSML approach by enabling nefl MoCs to be de ned and integrated. More precisely, fle hafie gifien a recffrsifie definition of the approach, thffs enabling concffrrency-aflare ffiDSMLs to be ffsed as MoCs. is contribfftion gifies a common interface to MoCs (i.e., as concffrrency-aflare ffiDSMLs), flhile simplifying the MoCMapping (based on a transformation instead of on a MoCspeci c metalangffage). It fafiors the ffse of an adeqffate MoC for each ffiDSML. In this proposal, only the concffrrency concerns of the ffiDSML being de ned are translated to another concffrrency-aflare ffiDSML.

In Chapter 5, fle hafie proposed an alternatifie means to specify the effiecfftion semantics of concffrrency-aflare ffiDSMLs, by ffsing a translational approach instead of an operational one. We hafie described hofl additional speci cations are reqffired in order for the effiecfftion of a translationally-de ned concffrrency-aflare ffiDSML to be ffp to par flith the effiecfftion of an operationally-de ned one. Translational semantics allofl the fffll reffse of a prefiioffsly-de ned ffiDSML, flhose semantics and associated tools are already afiailable.

Offr contribfftions hafie been motifiated and illffstrated on effiample ffiDSMLs and models, and most of them (i.e., most of Chapter 3, Chapter 4) hafie been implemented in the GEMOC Stffdio, an Eclipse-based langffage florkbench on top of implementation of modeling standards from the OMG.

Ofierall, in offr thesis, fle hafie proposed and effiperimented sefieral approaches participating in the implementation of the semantics of concffrrency-aflare ffiDSMLs, flhich bring together Langffage-Oriented Programming and Models of Concffrrency in a synergetic langffage design approach. is approach effiposes an effiplicit behafiioral interface for the ffiDSMLs, throffgh the Mappings de ned in the Commffnication Protocol. We hafie also proposed in Chapter 3 a means to de ne Composite Mappings, flhich contribffte to a higher-lefiel fiiefl of the behafiioral semantics. ese can be effiploited to orchestrate, at the langffage lefiel, the coordinated effiecfftion of models conforming to di erent concffrrencyaflare ffiDSMLs. is flas concretized dffring the ANR INS GEMOC Project in a metalangffage, the Behafiioral Coordination Operator Langffage (B-COol) [START_REF] Ezeqffiel | A Behafiioral Coordination Operator Langffage (BCOoL)[END_REF]. It rei es co-ordination paerns betfleen ffiDSMLs. Its defielopment and ffse are offt of scope of offr flork, bfft flere the sffbject of another PhD thesis [START_REF] Ezeqffiel | BCool: the Behavioral Coordination Operator Language[END_REF] dffring the time of the project. is approach can contribffte to tackling the compleffiity of designing and defieloping the highly-concffrrent soflares and systems of tomorrofl sffch as Cyber-Physical Systems, the Internet of ings, or Smart Cities.

Persfiectives

We hafie identi ed sefieral possible ffftffre research directions to improfie the concffrrencyaflare ffiDSML approach.

First, fle floffld like to ease the ffse of the concffrrency-aflare approach by profiiding a standard library of MoCs, based on the recffrsifie de nition fle hafie gifien of the approach in Chapter 4. MoCs are ffsffally de ned informally (i.e., ffsing natffral langffage), and each implementation brings its ofln afiors of details. In order to facilitate the speci cation of ffiDSMLs ffsing MoCs other than Efient Strffctffres, flhile still ffsing formalisms flell-knofln by compffter scientists, fle beliefie the approach shoffld profiide defafflt implementations for classical MoCs sffch as Petri nets or the Actor model. By profiiding sffch MoCs, fle coffld also integrate the ffse of associated fieri cation tools (i.e., model checkers, etc.) for flell-knofln MoCs.

When considering concffrrency-aflare ffiDSMLs flith translational semantics, any analysis performed on the concffrrent concerns flill be pertinent to the target model, and not to the soffrce model. Offr approach coffld be improfied by profiiding the means to specify properties for the soffrce model, fieri ed on the target model, and flith meaningfffl resfflts being effipressed for the soffrce model [162]. In the same spirit, this coffld also be done in the conteffit of the recffrsifie de nition of concffrrency-aflare ffiDSMLs (cf. Chapter 4), efficept that the "target model" only captffres the concffrrency concerns of the soffrce model. By making effiplicit the concffrrency concerns of a langffage, fle hafie added an effitra stage in its speci cation, and also in its rffntime. is may be problematic for ffiDSMLs flith a focffs on the performance of their rffntime. In particfflar, ffiDMSLs de ned ffsing offr recffrsifie approach floffld reqffire the coordination of fiarioffs rffntimes, possibly ffp to a point flhere the effiecfftion of a model floffld become ffnpractical or too effipensifie. is is not a problem in the conteffit in flhich offr flork flas done, since fle targeted the speci cation, and not the implementation, of ffiDSMLs. Still, fffrther stffdy of the rffntime costs associated flith the concffrrency-aflare approach, both for larger models and for larger langffages, coffld be performed to identify the physical limitations of the approach.

One flay to solfie this issffe floffld be to generate optimized code based on the artefacts ffsed for the effiecfftion of a model. Some langffages pfft an emphasis on the notion of time. In the concffrrency-aflare approach, one mffst make the distinction betfleen flhat fle call the logical time (in the model-lefiel instance of the MoC), the domain time (captffred in the abstract syntaffi), and the physical time (in the rffntime of the Semantic Rffles). Identifying flhich notion is relefiant to an ffiDSML, and hofl it can be coordinated flith the relefiant parts of the speci cation floffld reqffire fffrther flork.

We hafie mentioned hofl Semantic Variation Points (SVPs) can be speci ed and implemented in operational semantics, in particfflar flhen they pertain to the concffrrency concerns of the langffage. ey manifest themselfies as points of nondeterminism flhich, ffnless specialized, are resolfied heffristically by the rffntime. Implementing SVPs typically consists in resolfiing (possibly, only partially) (some o) these nondeterminisms. Hoflefier, for some langffages, non-deterministicity is a featffre of the langffage semantics flhich shoffld not be ofierridden by dialects. erefore, the MoCMapping shoffld inclffde the possibility to hinder some of its parts from being effitended by dialects. is may be di cfflt to specify flhen relying on the recffrsifie de nition fle hafie proposed in Chapter 4, since the MoCMapping is implemented by an Abstract Syntaffi Transformation. Additional flork shoffld stffdy this possibility.

We hafie described hofl SVPs can be implemented, bfft they mffst also be managed. For instance, being able to cherry-pick speci c implementations of indifiidffal SVPs coffld ease the management of the fiariability of an ffiDSML. Many fiariability management techniqffes coffld be applied to SVPs in the conteffit of concffrrency-aflare ffiDSMLs [START_REF] Vacchi | Variability Sffpport in Domain-Speci c Langffage Defielopment[END_REF]. Additionally, the sharing of langffage parts coffld be streamlined. For instance, many ffiDSMLs may need to rely on arithmetic effipressions, in flhich case it floffld be beer to only maintain one effipression langffage flhich coffld easily be integrated into a flider-scope ffiDSML. To do so, all the langffage parts shoffld profiide some mechanisms of effitension. is is the case of inheritance for the Abstract Syntaffi, bfft may be more tricky considering the di erent parts related to the effiecfftion semantics. Since the Semantic Rffles are fleafied onto the Abstract Syntaffi, traditional effitension mechanisms coffld be applied like the rede nition of operations, the reffse of the sffper implementation, etc. For the MoCMapping, flhen ffsing Efient Strffctffres, the symbolic partial orderings are effitensible as mentioned in Section 3.8: a partial ordering can easily be inserted into another partial ordering. Hoflefier, the notion of effitension betfleen transformations is harder to identify. As for the Commffnication Protocol, an effitension mechanism similar to inheritance remains to be de ned.

S  A  

• Appendiffi A lists all the possible effiecfftion scenarios of the effiample fUML Actifiity presented in Chapter 3. It takes into accoffnt the di erent possible schedfflings of the concffrrent branches of the ForkNode, the di erent possibilities follofling the DecisionNode, and the di erent order of efialffations for the gffards of its offtgoing edges.

• Appendiffi B shofls the di erent speci cations composing the concffrrency-aflare de nition of fUML in the GEMOC Stffdio.

• Appendiffi C details the effiecfftion and graphical animation of the effiample fUML Actifiity in the GEMOC Stffdio.

• Appendiffi D gifies the di erent speci cations composing the concffrrency-aflare definition of the reading ffiDSML presented in Chapter 4, ffsing the GEMOC Stffdio.

• Appendiffi E details the nefl speci cations ffsed for the concffrrency-aflare de nition of fUML in the GEMOC Stffdio, ffsing the reading ffiDSML as MoC (flhose implementation is shofln in Appendiffi D) as presented in Chapter 4.

• Appendiffi F shofls the effiecfftion of the effiample fUML Actifiity, in the GEMOC Stffdio, ffsing the fUML speci cation based on the reading ffiDSML as its MoC (cf. Appendiffi E), as described in Chapter 4.

• Appendiffi G gifies the Xteffit teffitffal concrete syntaffi of the Commffnication Protocol metalangffage, the GEMOC Efients Langffage (GEL), described in Section 3.11.

• Appendiffi H gifies the Xteffit teffitffal concrete syntaffi of the Projections metalangffage described in Chapter 4.

R   A  

• Anneffie A énffmère l'ensemble des scénarios d'effiécfftion possible poffr l'actifiité fUML fftilisée en effiemple et présentée initialement dans le Chapitre 3. Leffr nombre important est dû à la concffrrence entre les branches, et aff fait qffe les gardes à la sortie d'ffn noeffd DecisionNode pefffient être éfialffées dans n'importe qffel ordre.

• Anneffie B contient la spéci cation dff langage fUML, selon l'approche concurrencyaware xDSML présentée dans le Chapitre 3, à l'aide dff GEMOC Stffdio.

• Anneffie C détaille l'effiécfftion pas-à-pas et l'animation graphiqffe, dans le GEMOC Stffdio, dff modèle d'actifiité fUML fftilisé comme effiemple.

• Anneffie D contient la spéci cation dff langage reading présenté dans le Chapitre 4. Il implémente le modèle de threads traditionnellement fftilisé par les langages de programmation tels Jafia off Python. Cee spéci cation est réalisée à l'aide dff GEMOC Stffdio.

• Anneffie E détaille la spéci cation de fUML à l'aide dff xDSML de reading (dont l'implémentation est présentée dans l'Anneffie D) selon l'approche décrite dans le Chapitre 4.

• Anneffie F illffstre l'effiécfftion, dans le GEMOC Stffdio, de l'effiemple d'actifiité fUML à l'aide de la dé nition de fUML présentée dans l'Anneffie E.

• Anneffie G contient la dé nition de la syntaffie concrète teffitffelle Xteffit de GEL, le métalangage fftilisé poffr la spéci cation dff protocol de commffnication (Commu- • Concffrrent branches (i.e., betfleen a ForkNode and its corresponding JoinNode) can be effiecffted in seqffence, in parallel or ffsing any possible interleafiings betfleen their respectifie contents

• For a DecisionNode, the gffards can be efialffated in any order, possibly efien in parallel.

An important point to take into consideration is that fle flill enffmerate the di erent possible scenarios, independently from the runtime data of the model (i.e., from the resfflt of the efialffation of each gffard). Otherflise, a lot of scenarios are dffplicated dffe to the DecisionNode flhich splits each effiisting scenario into three depending on flhich branch is effiecffted. Offr focffs is on hofl concffrrent elements of an fUML Actifiity are schedffled, not in the semantics of a Decision Node. erefore, to enffmerate all possible scenarios Belofl, fle flill ffse the follofling syntaffi, considering tflo nodes and :

• → designates the sequence of effiecffting A and then effiecffting B

• | designates the parallel effiecfftion of A and B

We rst consider the efialffation of the gffards and the drinking of a drink as regfflar nodes "[Efialffation]" and "[Drinking]" flhich fle flill detail later on.

First, "Talking" may happen in parallel flith any of the nodes of the drinking part of the actifiity, therefore fle hafie the 6 follofling scenarios:

1. C T F D | T  → O P → D N → [E  ] → [D ] → M N 2. C T F D → O P | T  → D N → [E  ] → [D ] → M N 3. C T F D → O P → D N | T  → [E  ] → [D ] → M N 4. C T F D → O P → D N → [E ] | T   → [D ] → M N 5. C T F D → O P → D N → [E ] → [D  ] | T  → M N 6. C T F D → O P → D N → [E ] → [D  ] → M N | T 
It may also happen interleafied flith any of the nodes of the drinking part, thffs fle hafie 7 additional scenarios:

1. T  → C T F D → O P → D N → [E  ] → [D ] → M N 2. C T F D → T  → O P → D N → [E  ] → [D ] → M N 3. C T F D → O P → T  → D N → [E  ] → [D ] → M N 4. C T F D → O P → D N → T  → [E  ] → [D ] → M N 5. C T F D → O P → D N → [E ] → T   → [D ] → M N 6. C T F D → O P → D N → [E ] → [D  ] → T  → M N 7. C T F D → O P → D N → [E ] → [D  ] → M N → T 
Nofl let ffs detail the "[Efialffation]" bit. ere are three gffards, flhich can be efialffated in any order, possibly in parallel. ffs, "[Efialffation] | Talking" can be detailed as being one of the folloflings: 

1. G F C | G F T | G F W | T  2. G F C | G F T | T  → G F W 3. G F C | G F T → T  → G F W 4. G F C | G F T → G F W | T  5. G F C | G F W | T  → G F T 6. G F C | G F W → T  → G F T 7. G F C | G F W → G F T | T  8. G F T | G F W | T  → G F C 9. G F T | G F W → T  → G F C 10. G F T | G F W → G F C | T  11. G F C | T  → G F T | G F W 12. G F C → T  → G F T | G F W 13. G F C → G F T | G F W | T  14. G F T | T  → G F C | G F W 15. G F T → T  → G F C | G F W 16. G F T → G F C | G F W | T  17. G F W | T  → G F C | G F T 18. G F W → T  → G F C | G F T 19. G F W → G F C | G F T | T  20. G F C | T  → G F T → G F W 21. G F C → T  → G F T → G F W 22. G F C → G F T | T  → G F W 23. G F C → G F T → T  → G F W 24. G F C → G F T → G F W | T  25. G F C | T  → G F W → G F T 26. G F C → T  → G F W → G F T 27. G F C → G F W | T  → G F T 28. G F C → G F W → T  → G F T 29. G F C → G F W → G F T | T  30. G F T | T  → G F C → G F W 31. G F T → T  → G F C → G F W 32. G F T → G F C | T  → G F W 33. G F T → G F C → T  → G F W 34. G F T → G F C → G F W | T  35. G F T | T  → G F W → G F C 36. G F T → T  → G F W → G F C 37. G F T → G F W | T  → G F C 38. G F T → G F W → T  → G F C 39. G F T → G F W → G F C | T  40. G F W | T  → G F C → G F T 41. G F W → T  → G F C → G F T 42. G F W → G F C | T  → G F T 43. G F W → G F C → T  → G F T 44. G F W → G F C → G F T | T  45. G F W | T  → G F T → G F C 46. G F W → T  → G F T → G F C 47. G F W → G F T | T  → G F C 48. G F W → G F T → T  → G F C 49. G F W → G F T → G F C | T 

D W

As mentioned prefiioffsly, fle do not interpret in flhich sitffations these three possibilities are effiecffted or not. We only knofl that one of them flill be realized.

Ofierall, the nffmber of possible scenarios, independently of the rffntime data of the model, is thffs: 

C

Graphical Animation of the Effiample fUML Model Dffring its Effiecfftion D : a fiideo of the model effiecfftion described belofl flas ffploaded alongside offr SLE 2015 pffblication [START_REF] Latombe | Weafiing Concffrrency in eXecfftable Domain-Speci c Modeling Langffages[END_REF]. See http://gemoc.org/sle15/.

Figffre C.1 shofls the effiample fUML Actifiity. is gffre is based on the graphical concrete syntaffi fle hafie defiised for fUML, ffsing Siriffs1 . Alongside this graphical concrete syntaffi, fle hafie de ned the animation layer of the langffage, i.e., hofl the Effiecfftion Data shoffld be represented on the graphical syntaffi dffring the effiecfftion of the model.

Offr animation layer for fUML is composed of 2 decorations (green or yellofl "play" symbols added ofier nodes to shofl that they can be effiecffted, respectifiely that they may conditionally be effiecffted) and 3 style cffstomizations (to display the tokens held by edges and pins at rffntime). In the top right corner is the console, flhich is ffsed as the standard teffit offtpfft by the Semantic Rffles. It is particfflarly ffsefffl flhen defieloping or debffgging a langffage or its animation layer. It can also be ffsefffl to print some information flhich is not sffited for graphical representation.

In the boom le corner is the heffristic of the Effiecfftion Engine (Figffre C.4). It presents the possible Schedffling Solfftions, along flith the corresponding MappingApplications and Effiecfftion Fffnction Calls. e ffser can realize choices at rffntime in order to gffide the effiecfftion, choices flhich floffld hafie otherflise been realize at random by the rffntime. All proposed choices respect the semantics of the langffage. In the beginning, the only possible effiecfftion step consists in effiecffting MyInitialNode.execute(). • e model has been ffpdated dffe to the effiecfftion of the InitialNode. erefore, a

Token has been created on the edge betfleen "MyInitialNode" and "MyFork".

• e heffristic has been ffpdated, the neffit possible effiecfftion step is to effiecffte the ForkNode "MyFork".

• e effiecfftion of MyInitialNode.execute() has sent some teffit to be printed on the standard offtpfft console.

• In the engine registry, fle can see that the engine is nofl at step 1 flhen it flas prefiioffsly at step 0. node, rst effiecffte the "Talk" node, or do both in parallel. Ultimately, both branches mffst be effiecffted, and the order in flhich it is done does not maer flith regards to the semantics of fUML.

We select the last effiecfftion step, flhich contains occffrrences of both mappings. e resfflt is as shofln on Figffre C.9. e "CheckTableForDrinks" node has retffrned "Tea". Let ffs efialffate all the gffards in one step. For each gffard, its efialffation consists in checking if the fialffe it speci es corresponds to the fialffe on the incoming token. e MergeNode "MyMerge" can then be effiecffted since one of the branches of the DecisionNode has been effiecffted. Figffre C.14 shofls this possibility.

When both branches of the ForkNode hafie nished effiecffting (i.e., once the MergeNode and the Talk node hafie both been effiecffted), the JoinNode "MyJoin" may be effiecffted, as shofln on Figffre C.14.

Finally, Figffre C.16 shofls that the FinalNode "MyFinal" may be effiecffted to complete the Actifiity. We shofl the di erent speci cations constitffting the concffrrency-aflare de nition of the reading ffiDSML in the GEMOC Stffdio. A readSystem is composed of reads, inclffding a main one. reads consist of Tasks flhich may be of di erent natffres. An EffiecfftionTask is a basic task. A Conditional has a set of conditions flhich mffst all be trffe before its "then" claffse is effiecffted. Otherflise, if it has an "else" claffse, it is effiecffted. A disjffnction has a set of operands, one of flhich is effiecffted. A Task may start a read (StartreadTask) or flait for one to nish effiecffting (JoinreadTask). Finally, a ProffiyTask is ffsed to represent another Task so that the same Task can be referenced at sefieral points in the program. Each read is schedffled according to an Agenda, consisting of Instrffctions flhich represent Tasks. cffntext Thread --For every start of a Thread, there is a join. inv alternateStartAndJoin: Relatiffn Alternates(self.mocc_start, self.mocc_join) --For every start of a Thread, its first scheduled task occurs . inv alternateStartAndFirstTask:

D.1 Abstract Syntax

Relatiffn Alternates( self.mocc_start, self.agenda.scheduledTasks->first().mocc_occur ) --For every occurrence of its last scheduled task, a Thread joins. inv alternateLastTaskAndJoin:

Relatiffn For the reading ffiDSML, the graphical syntaffi is as follofls. Each Thread is represented as a node containing its Instructions. e main thread is designated by a "*" appended to its name. When an Instrffction consists in starting a thread or in flaiting for a thread, there is an arrofl from the instrffction to the thread, respectifiely from the thread to the instrffction. e animation layer is captffred in the backgroffnd coloffr of the instrffctions and threads. A grey thread is inactifie, flhile a green thread is actifie, and an orange thread is a thread that has nished all its instrffctions. An orange instrffction has been effiecffted, a green one may be effiecffted (possibly conditionally) and a grey one may not be. Nofl that the main read has been actifiated, its rst instrffction "Effiecffte_MyInitialNode" can be effiecffted. is is matched by the Commffnication Protocol of fUML and mapped e read corresponding to the drinking part of the actifiity has been actifiated. ere are nofl tflo actifie reads flith instrffctions le to effiecffte, therefore fle hafie mffltiple possible effiecfftion steps. We select the step that does both at the same time, i.e., effiecffting the neffit instrffction of the main read (flhich flill actifiate the last read) and effiecffting the rst instrffction of the second read ("Effiecffte_CheckTableForDrinks"). Figffre F.6 shofls the resfflt of effiecffting this step.

Nofl that the three threads are actifie, there are efien more possible effiecfftion steps. Once again, fle select the step flith the maffiimffm actifiity. It corresponds to the effiecfftion of three instrffctions ("Joinread_MyFork_MyFork2Check" in the main read, "Effi-ecffte_MyOfftpfftPin" in the second read, and "Effiecffte_Talk" in the third read). Tflo of them are mapped by the Commffnication Protocol of fUML to Effiecfftion Fffnction calls ("MyOfftpfftPin.effiecffte()" and "Talk.effiecffte()"). Figffre F.7 shofls the resfflt of effiecffting this step.

e main read is nofl blocked, flaiting for the second thread to nish. e third read has nished its instrffctions so among the possible effiecfftion steps is the end of that thread. Once again fle select the effiecfftion step flith the most actifiity, flhich means that the third thread flill terminate and the neffit instrffction of the second thread flill be effiecffted. Figffre F.8 shofls the resfflt of effiecffting this step. Neffit, fle keep on going in the drinking part of the actifiity. e DecisionNode is a bit more compleffi dffe to the presence of gffards. Taking their resfflts into accoffnt is one of the main featffres presented in Chapter 3 (see Section 3.6). is is represented, in the reading langffage, as follofls. One instrffction corresponds to efialffating the gffard. en, a disjffnction betfleen tflo instrffctions corresponds to the conseqffence of the resfflt of the gffard efialffation. Later on, these flill be ffsed to determine flhether or not the corresponding branch may be effiecffted.

e neffit 6 steps correspond to the efialffation of each gffard (2 steps per gffard). See Figffres F.9, F.10, F.11, F.12, F.13, F.14. In the neffit 3 steps, the instrffctions correspond to the conditionals ffsed to check flhich drink flill be drffnk. In offr effiecfftion scenario, fle hafie foffnd no co ee or tea on the table so fle flill ffltimately drink flater. See Figffres F.15 and F.16 for the conditionals that fail. Figffre F.17 shofls the conditional that flill lead ffs to drinking flater. Finally in Figffre F.23, the main thread may be terminated nofl that all its instrffctions hafie been effiecffted. e nal state is shofln on Figffre F.24. 

G

Teffitffal Concrete Syntaffi of the GEMOC Efients Langffage (GEL) ere are tflo approaches to ffsing Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF]. e rst one consists in specifying the concrete syntaffi, and let Xteffit generate the corresponding abstract syntaffi as an Ecore metamodel. Sometimes, geing the "right" abstract syntaffi flith the strategy can be di cfflt or frffstrating. e second one consists in rst designing the abstract syntaffi of the langffage, and then designing the Xteffit concrete syntaffi ofier it. is ensffres that the metamodel (flhich is effiploited by other facilities throffgh its APIs) respects a particfflar strffctffre and naming confiention. For GEL, fle ffsed the laer, as the teffitffal concrete syntaffi flas added only aer rst proofs of concepts of the integration of GEL into the GEMOC Stffdio flere sffccessfffl. e Abstract Syntaffi ffsed can be foffnd on Figffre 3.44. e follofling listing is the fffll Xteffit teffitffal concrete syntaffi of GEL. We reffse another Xteffit-based langffage called GEffipressions flhich profiides the means to ffse basic arithmetic and nafiigation effipressions on models and metamodels flith an OCL-like syntaffi. It is ffsed by sefieral metalangffages defieloped dffring the ANR INS GEMOC project.
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  xDSMLs, des interfaces strffctffrelles et comportementales des xDSMLs, et de la coordination entre xDSMLs. Ce projet regroffpe INRIA (Institfft National de Recherche en Informatiqffe et en Afftomatiqffe) à trafiers l'IRISA 1 (Institfft de Recherche en Informatiqffe et Systèmes Aléatoires) de Rennes et I3S 2 (Laboratoire d'Informatiqffe, Signaffffi et Systèmes de Sophia Antipolis) de Sophia Antipolis ; ales Research & Technology 3 ; Obeo 4 ; l'ENSTA Bretagne 5 (École Nationale Sffpérieffre de Techniqffes Afiancées de Bretagne) et l'IRIT 6 (Institfft de Recherche en Informatiqffe de Toffloffse).Dans le Chapitre 2 noffs présentons les trafiaffffi qffi ont serfii de fondation à cee thèse. En particfflier, noffs dé nissons la notion de concffrrence et de modèles de concffrrence. Noffs présentons les approches traditionnelles de dé nition de langages et de leffr sémantiqffe d'effiécfftion, et les moins traditionnelles, c'est-à-dire à base de modèles dans le cadre de l'Ingénierie Dirigée par les Modèles (Model-Driven Engineering -MDE). Dans le Chapitre 3, noffs présentons comment dé nir la sémantiqffe d'effiécfftion d'ffn concurrencyaware xDSML. Noffs analysons ensffite les limites de l'approche, par effiemple certaines constrffctions de langage sont compleffies off impossibles à spéci er, et proposons des solfftions. Noffs présentons affssi l'implémentation dans ffn atelier de langage basé sffr la plateforme Eclipse. Dans le Chapitre 4, noffs étffdions l'intégration de nofffieaffffi MoCs dans l'approche, qffi est initialement limitée aff MoC des strffctffres d'éfiènements. Cee contribfftion repose sffr ffne dé nition récffrsifie des concurrency-aware xDSMLs, permettant l'fftilisation, en tant qffe MoC, d'ffn concurrency-aware xDSML précédemment dé ni. En n, noffs étffdions dans le Chapitre 5, comment dé nir la sémantiqffe d'effiécfftion de façon translationnelle, tofft en ayant ffne spéci cation effiplicite des aspects concffrrents de cee sémantiqffe. Le Chapitre 6 présente la conclffsion et les perspectifies de nos trafiaffffi de thèse.

  Figffre 1.2: e GEMOC Stffdio logo.
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 113 Figffre 1.3: Ofierfiiefl of the concffrrency-aflare ffiDSML approach.

Figffre 2 . 1 :

 21 Figffre 2.1: An effiample program represented as an abstract syntaffi tree (internal representation for the compffter) and flith a graphical and a teffitffal concrete syntaffies (for the ffser).

  Figffre 2.4 shofls the hierarchy effiisting betfleen the main Ecore components.
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 24 Figffre 2.4: Hierarchy of the main Ecore components.

Figffre 3 .

 3 Figffre 3.1 shofls an efficerpt from the Abstract Syntaffi of offr implementation of fUML. An Activity is composed of nodes (ActivityNode) of fiarioffs natffres, connected by edges (ActivityEdge). Edges may hafie a gffard if they are offtgoing a Deci-sionNode, in flhich case the resfflt of the gffard is ffsed to determine flhether or not the branch may be effiecffted. In any case, a DecisionNode can only resfflt in one of its offtgoing branches being effiecffted.
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 31 Figffre 3.1: Efficerpt from the fUML Abstract Syntaffi, presented as a meta-model.
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 33 Figffre 3.3: Separation of the concerns of the Semantic Mapping.
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 3 Figffre 3.4 shofls the strffctffre of the Semantic Rffles as a metamodel. Effiecfftion Data are de ned in the conteffit of a concept from the Abstract Syntaffi of the langffage (represented by the AbstractSyntaxConcept type). e body of an Effiecfftion Fffnction is represented as the EOperation behavior().
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 3 Figffre 3.5 shofls the Semantic Rffles of fUML as a metamodel effitending the Abstract Syntaffi of fUML, flhile Listing 3.1 shofls an effiample implementation, ffsing pseffdo-code, of an Effiecfftion Fffnction of fUML.
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 34 Figffre 3.4: Metamodel representing the strffctffre of the Semantic Rffles of an ffiDSML.
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 35 Figffre 3.5: Semantic Rffles of fUML as a metamodel effitending the Abstract Syntaffi.
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 22 Mffdel fff Cffncurrency Mafifiing e Model of Concffrrency Mapping (MoCMapping) speci es the systematic ffse of a MoC for the ffiDSML being defieloped. ffs, for any model conforming to the Abstract Syntaffi of the langffage, the MoCMapping is ffsed to generate a corresponding Model of Concffrrency Application (MoCApplication). e MoCApplication is a "program" in itself, conforming to the MoC ffsed, flhich represents the concffrrency concerns of the model. e initial concffrrency-aflare ffiDSML approach relies on the Efient Strffctffres [160] Model of Concffrrency 2 . Conseqffently, the MoCMapping is a speci cation of hofl, for a model, its corresponding Efient Strffctffre is obtained. e formalism ffsed for the MoCMapping in that case is called EventType Structures. Figffre 3.6 recapitfflates the relations betfleen the di erent speci cations pertaining to the concffrrency concerns of a concffrrency-aflare ffiDSML or of an effiecfftable model. Figffre 3.7 shofls the metamodel for the MoCApplication and its effiecfftion. It also shofls the metamodel for Efient Strffctffres and their effiecfftion, and hofl they implement 2 In Chapter 4, fle flill present a solfftion to de ne and integrate other MoCs into the approach.

Figffre 3 . 6 :

 36 Figffre 3.6: Ofierfiiefl of the di erent speci cations related to the concffrrency concerns of a langffage or model.
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 37 Figffre 3.7: Metamodel representing the Abstract Syntaffi of Efient Strffctffres and their effiecfftion.
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 38 Figffre 3.8: Efient Strffctffre for the fUML Actifiity from Figffre 3.2.
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 39 Figffre 3.9: Metamodel representing the Abstract Syntaffi of the EfientTypes formalism.
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 310 Figffre 3.10: EfientTypes executeNode and evaluateGuard for fUML, declared in the conteffit of a concept from the AS of fUML.

Finally

  , the Commffnication Protocol is in charge of matching the MoCTriggers of the MoCMapping (flhich represent abstract actions) flith the Effiecfftion Fffnctions of the Semantic Rffles. is e ectifiely de nes hofl, at rffntime, the MoCApplication is ffsed to orchestrate the calls to the Effiecfftion Fffnctions, therefore implementing the effiecfftion of a model. More formally, the Commffnication Protocol de nes Mappings betfleen a MoC-Trigger (the EfientTypes in an EfientType Strffctffre, made afiailable by the MoCMapping) and an Effiecfftion Fffnction. Figffre 3.11 shofls the metamodel representing the strffctffre of the Commffnication Protocol.
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 3 Figffre 3.11: Metamodel representing the Abstract Syntaffi of the Commffnication Protocol.
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 3 Figffre 3.12: Ofierfiiefl of the model-lefiel speci cations for a simpli ed fiersion of offr effiample fUML actifiity.

• 3 :

 3 Model + Semantic Rffles Calls + MoCApplication + Commffnication Protocol → Cffmmunicatiffn Prfftffcffl Afifilicatiffn Mappings (called MappingApplications to di erentiate them from their langffagelefiel coffnterparts) betfleen the abstract efients from the MoCApplication and Effiecfftion Fffnction calls.
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 313 Figffre 3.13: Generation of the di erent model-lefiel concerns
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 314 Figffre 3.14: Architectffre of the rffntime of a concffrrency-aflare ffiDSML
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 3 Figffre 3.15: Seqffence Diagram of a step of effiecfftion
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 3 Figffre 3.16: Metamodel of the Semantic Rffles shofling the taffionomy of Effiecfftion Fffnctions.
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 318 Figffre 3.18: Effiample ery: ActivityEdge.evaluateGuard() : Boolean retffrns flhether or not a branch may be effiecffted.
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 320 Figffre 3.20: Effiecfftion concerns for the effiecfftion of effipression + , flhere the concffrrency aspects are detailed in the concffrrency model.
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 321 Figffre 3.21: Efficerpt from the metamodel of the Commffnication Protocol shofling the blocking or non-blocking natffre to an Effiecfftion Fffnction can be speci ed.

Figffre 3 .

 3 21 shofls an efficerpt from the metamodel of the Commffnication Protocol effitended flith the featffre fle jffst described.

Finally, in case

  an ongoing call is blocked or shoffld be interrffpted becaffse another part of the model took precedence, fle propose to enable Mappings of the Commffnication Protocol to interrffpt an ongoing Effiecfftion Fffnction call. Listing 3.6 shofls the pseffdocode of the speci cation of sffch a Mapping. Listing 3.6: Specifying the Mapping to interrffpt an ongoing non-blocking Effiecfftion Fffnction call, in pseffdo-code.

Figffre 3 . 22 :

 322 Figffre 3.22: Efficerpt from the metamodel of the Commffnication Protocol shofling the di erent natffres of calls to an Effiecfftion Fffnction: a sffbmission (to start effiecffting it), an interrffption (to halt an ongoing non-blocking call) or a resffme (to start an interrffpted call).
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 323 Figffre 3.23: Efficerpt from the metamodel of the Commffnication Protocol shofling the possibility for a Mapping to raise a MoCTrigger as a marker of the completion of its Effiecfftion Fffnction.
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 324 Figffre 3.24: Seqffence Diagram of a step of effiecfftion, flith ne control of the Controlled Efients.
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 3 Figffre 3.26 shofls a Class Diagram of the approach flith offr changes.
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 326 Figffre 3.26: Metamodel of the approach inclffding the separation of the Commffnication Protocol. Nefl concepts related to the Feedback Protocol are in red. See Sffbsection 3.2.2 for the de nition of the MoCMapping/EfientType Strffctffre, and Section 3.3 for the taffionomy of the Effiecfftion Fffnction.
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 327 Figffre 3.27: Illffstration of the general principle of the Feedback Protocol.

2 .

 2 If the resfflt flas trffe, then only the effiecfftion paths flith an early occffrrence of _ are allofled. In other flords, Schedffling Solfftions flith an occffrrence of _ are forbidden ffntil a Schedffling Solfftion flith an occffrrence of _ has been selected. 3. Otherflise (the resfflt flas false), then only the effiecfftion paths flith an early occffrrence of _ are allofled. In other flords, Schedffling Solfftions flith an occffrrence of _ are forbidden ffntil a solfftion flith an occffrrence of _ has been chosen.

Figffre 3 . 28 :

 328 Figffre 3.28: Closeffp on the part of the Efient Strffctffre of the effiample fUML Actifiity in flhich the Feedback Protocol is ffsed.
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 3 Figffre 3.29: e Action node "CheckTableForDrinks" and its OutputPin from the effiample fUML Actifiity of Figffre 3.2.
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 330 Figffre 3.30: Ofierfiiefl of the semantics concerns for an efficerpt of the effiample fUML Actifiity of Figffre 3.2. e Effiecfftion Fffnction for the Action node "CheckTableForDrinks" inclffdes the effiecfftion of its pin "MyOfftpfftPin".

Figffre 3 . 31 :

 331 Figffre 3.31: Ofierfiiefl of the semantics concerns for an efficerpt of the effiample fUML Actifiity of Figffre 3.2. e Effiecfftion Fffnctions for an Action node and its pins are separated.
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 332 Figffre 3.32: Efient Strffctffre representing the nested call of ef by ef for the efficerpt of the effiample fUML Actifiity.
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 333 Figffre 3.33: Efficerpt from the metamodel of the Semantic Rffles shofling the strffctffre of Composite Effiecfftion Fffnctions.
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 334 Figffre 3.34: Modi ed Seqffence Diagram of the Effiecfftion Engine to illffstrate the reffse of an Effiecfftion Fffnction ("Callee") by another Effiecfftion Fffnction ("Caller") flhile making it effiplicit in the concffrrency model.
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 335 Figffre 3.35: Simpli ed Efient Strffctffre illffstrating a Semantic Variation Point of fUML.
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 336 Figffre 3.36: Metamodel representing the strffctffre of the concffrrency-aflare operational semantics of fUML flith its di erent fiariations.

Listing 3 . 18 :

 318 De ning the Effiecfftion Fffnction for the fUML Action node, in Jafia, flith a String parameter.

Listing 3 .ufiffn et_executeActionNode 3 triggers

 33 19: A Mapping flith a parameter, corresponding to the effiecfftion of an fUML Action node, speci ed ffsing pseffdo-code. 1 Mafifiing ExecuteActionNode(String inputString): 2 Action.execute(inputString) In this listing, the Mapping "EffiecffteActionNode" has a String parameter. Parameters of Mappings can be ffsed for sefieral pffrposes. In offr case, fle ffse it as the argffment of the Effiecfftion Fffnction called, execute(String). If the Mapping has an associated Feedback Policy (as de ned in Section 3.6), then the parameters can also be ffsed in it. For instance, fle may flant to compare the String argffment of the Mapping flith the String fialffe retffrned by an Effiecfftion Fffnction. Listing 3.20 shofls sffch a Feedback Policy. Listing 3.20: Using the parameter of a Mapping in its Feedback Policy, in pseffdo-code. => allffw MyClass.someOtherMoCTrigger 6 resultString != someString => allffw MyClass.anotherMoCTrigger
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 3 Figffre 3.37 shofls an efficerpt from the metamodel of the Commffnication Protocol effitended flith parameters for the Effiecfftion Fffnctions and the Mappings.
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 337 Figffre 3.37: Efficerpt from the metamodel of the Commffnication Protocol shofling its effitension flith parameters for Mappings and Effiecfftion Fffnctions.

Figffre 3 .

 3 Figffre 3.38: Affto-completion and template proposals featffre in the Eclipse IDE for Jafia.

  => allffw ActivityEdge.et_mayExecuteTarget 10 result = false => allffw ActivityEdge.et_mayNotExecuteTarget e fiisibility of a Mapping does not in ffence its interaction flith the heffristic of the rffntime. Otherflise, it floffld defeat the pffrpose of the heffristic. Figffre 3.39 shofls an efficerpt from the metamodel of the Commffnication Protocol effitended flith the featffre fle jffst described.
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 339 Figffre 3.39: Efficerpt from the metamodel of the Commffnication Protocol flith the notion of Visibility for the Mappings.

  Let ffs consider a fefl effiamples of paerns. Listing 3.22 shofls a pseffdo-code speci cation of tflo Mappings, MappingA and MappingB. e simplest paerns are called instantaneous, i.e., they occffr ofier a single step of effiecfftion. Follofling are three sffch paerns: • Coincidence of A and B: flhen both A and B occffr. • Disjunction of A and B: flhen A occffrs or B occffrs. • Exclusive Disjunction of A and B: flhen A or B, bfft not both at the same time, occffr. Listing 3.23 shofls an effiample speci cation ffsing these paerns, in pseffdo-code. Listing 3.22: Effiample Commffnication Protocol speci cation, in pseffdo-code.

Step 3 :

 3 occffrrence of MappingA and MappingB (Cffrrent Step) ere are 4 possible offtcomes, depending on the implementation choices realized: 1. If paerns can only refer to the latest occffrrences of mappings, and ffsed mappings are consffmed ffpon match: Occffrrence of CompositereeAs (flith MappingA occffrrences from Steps 1, 2 and 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 2, Mapping B occffrrence from Step3).

2 . 3 . 4 .

 234 If paerns can only refer to the latest occffrrences of mappings, and ffsed mappings are not consffmed ffpon match: Occffrrence of CompositereeAs (flith MappingA occffrrences from Steps 1, 2 and 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 2 and Map-pingB occffrrence from Step 3). If paerns can ffse all occffrrences of mappings, and ffsed mappings are consffmed ffpon match: Occffrrence of CompositereeAs (flith MappingA occffrrences from Steps 1, 2 and 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 1 and Map-pingB occffrrence from Step 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 2 and Map-pingB occffrrence from Step 3). If paerns can ffse all occffrrences of mappings, and ffsed mappings are not consffmed ffpon match: Occffrrence of CompositereeAs (flith MappingA occffrrences from Steps 1, 2 and 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 1 and Map-pingB occffrrence from Step 3) Occffrrence of CompositeAthenB (flith MappingA occffrrence from Step 2 and Map-pingB occffrrence from Step 3).

Listing 3 . 27 :

 327 Effiample ffnfolding strategy for the Composite Mapping Compos-iteAandB, in pseffdo-code.

Listing 3 . 9

 39 31 shofls the de nition of a Composite Mapping flith parameters. Listing 3.31: Effiample speci cation of a Composite Mapping flith parameters, in pseffdocode. Cffmfiffsite Mafifiing CompositeAthenB(Type1 x, Type2 y): 10 MappingA(x) -> MappingB(y)
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 340 Figffre 3.40: Efficerpt from the trace of the effiecfftion of the MoCApplication of the effiample fUML Actifiity.
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 3 Figffre 3.41: VCD for the efients corresponding to allofling, respectifiely disallofling, the branch leading to drinking co ee.
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 3 Figffre 3.42: VCD for the efients corresponding to allofling, respectifiely disallofling, the branch leading to drinking tea.

Figffre 3 .

 3 Figffre 3.43: VCD for the efients corresponding to allofling, respectifiely disallofling, the branch leading to drinking flater.

Listing 3 .

 3 36 shofls the Commffnication Protocol for fUML, speci ed ffsing GEL. Listing 3.35: Efficerpt from the teffitffal concrete syntaffi of GEL.

Figffre 3 . 44 :

 344 Figffre 3.44: Efficerpt from the metamodel representing the abstract syntaffi of GEL.

  aware, à trafiers l'fftilisation d'ffn concurrency-aware xDSML en tant qffe MoC poffr ffn afftre xDSML. Noffs insistons d'abord en détails sffr l'actifiité de spéci cation dff Model of Concurrency Mapping (MoCMapping). Noffs identi ons en e et deffffi étapes à cee actifiité : établir la correspondance entre la syntaffie abstraite dff xDSML et la strffctffre fftilisée par le MoC ; et dé nir ffn ordre partiel symboliqffe entre les di érents stimffli (MoCTriggers) de cee strffctffre. Or ffn tel ordre partiel effiiste déjà entre les Mappings d'ffn concffrrencyaflare xDSML, qffi pefffient donc être fftilisés comme les stimffli d'ffn MoC par ffn nofffieaff concffrrency-aflare xDSML. Il ne reste alors plffs qff'à dé nir la première étape, à safioir la correspondance entre la syntaffie abstraite de ce nofffieaff xDSML, et celle dff xDSML fftilisé en tant qffe MoC. Poffr établir cee correspondance, noffs proposons de spéci er ffne transformation de modèles entre la syntaffie abstraite dff xDSML et celle dff MoC. Cee transformation permet, poffr ffn modèle donné, d'obtenir son MoCApplication. Celffi-ci est, entre afftres, ffn modèle conforme à ffn xDSML (celffi fftilisé comme MoC), et pefft donc être effiécffté, mis aff point et testé comme n'importe qffel afftre modèle. Un aspect important de cee transformation est qff'elle n'est pas ffne tradffction dff domaine dff xDSML fiers le domaine dff MoC. Seffls les aspects liés à la concffrrence dff xDSML sont représentés à l'aide dff MoC. En somme, le MoCApplication n'est pas sémantiqffement éqffifialent aff modèle initial, contrairement à ce qffi est fait dans ffne approche translationnelle de la sémantiqffe (cf. Chapitre 5). Cee transformation pefft être de type 1 → , ce qffi signi e qff'à ffn élément dff modèle pefffient correspondre plffsieffrs éléments dans le MoCApplication. A l'effiécfftion, cela pefft poser des problèmes poffr distingffer les mffltiples éléments dff MoCApplication résffltant de la transformation d'ffn élément dff modèle initial. Poffr pallier cela, noffs proposons de spéci er ce qffe noffs appelons les Projections dff xDSML sffr le MoC. Une Projection dé nit en qffel(s) concept(s) dff MoC les concepts dff xDSML sont transformés, et poffr qffelle raison (fiia ffn label). Cee spéci cation est semblable à ffn métamodèle de la trace de la transformation initialement dé nie. Les Projections sont fftilisées dans la spéci cation dff Communication Protocol, ce qffi permet à la phase de tradffction de cibler les éléments appropriés dans le MoCApplication. La phase de tradffction doit donc être modi ée en conséqffence. Comme dans le chapitre précédent, la première étape consiste à déplier les Semantic Rules aff nifieaff modèle, ce qffi donne les Semantic Rules Calls. La seconde étape consiste à fftiliser la transformation de modèles poffr obtenir le MoCApplication. Elle permet affssi de générer les Projections de nifieaff modèle. Ces dernières sont fftilisées dans la troisième étape, qffi déplie le Communication Protocol poffr le modèle considéré, créant ainsi son Communication Protocol Application. Le moteffr d'effiécfftion doit lffi affssi être modi é en conséqffence. Le principal changement est qffe le Solver (qffi sert à interpréter le MoCApplication) est le moteffr d'effiécfftion dff xDSML fftilisé comme MoC. Une coffche d'adaptation est donc mise en place poffr rendre compatible les interfaces dff Solver et dff moteffr d'effiécfftion.

Figffre 4 . 1 :

 41 Figffre 4.1: Effiample fUML actifiity flhere fle flant to drink something from the table flhile talking.

Figffre 4 . 2 :

 42 Figffre 4.2: Efient Strffctffre for the fUML Actifiity from Figffre 4.1.

Figffre 4 . 3 :

 43 Figffre 4.3: Close-ffp on the Efient Strffctffre.

  Figffre 4.4 shofls the ffse of sffch a MoC for the effiample fUML Actifiity.

Figffre 4 . 4 :

 44 Figffre 4.4: Mapping the effiample fUML Actifiity to threads.

Figffre 4 . 5 :

 45 Figffre 4.5: Metamodel ofierfiiefl of offr approach for the recffrsifie de nition of concffrrency-aflare ffiDSMLs.

e

  MoCMapping is implemented by the speci cation named "AbstractSyntaffi Transformation" in the metamodel of Figffre 4.5. We denote it as D →M C . It speci es hofl the pffre concffrrent control ofl of ℒ D is represented ffsing ℒ M C . For the inpfft model ℳ D , its offtpfft is ℳ M C , its MoCApplication. e Mappings of ℒ M C represent the MoCTriggers of this MoC, flhich means that the Commffnication Protocol speci cation of ℒ D is betfleen Mappings of ℒ M C and Effiecfftion Fffnctions of ℒ D . e correspondence betfleen ℒ D and ℒ M C is alflays 1 → (flith ≥ 0). When = 0, it means that the element of ℳ D has no direct impact on the control ofl. When = 1, the element of ℳ D is transformed into one element in ℳ M C . For instance, fUML nodes are generally represented by one instrffction in a langffage based on threads and instrffctions (cf. Figffre 4.4). Finally, > 1 flhen the element of ℳ D is represented ffsing mffltiple elements in ℳ M C , sffch as a ForkNode being transformed into sefieral instrffctions (corresponding to starting as many threads as it has branches).

Figffre 4 . 6 :

 46 Figffre 4.6: Efficerpt from the Abstract Syntaffi and Semantic Rffles of offr threading langffage ffsed as a MoC for fUML.

Figffre 4 . 7 : 2 :

 472 Figffre 4.7: Ofierfiiefl of the compilation of the di erent concerns in offr recffrsifie approach to concffrrency-aflare ffiDSMLs.

3 :

 3 Model + Commffnication Protocol + Semantic Rffles Calls + Model Projections + MoC Model Commffnication Protocol Application → Cffmmunicatiffn Prfftffcffl Afifilicatiffn is step corresponds to the generation of the Commffnication Protocol Application of ℳ D . For each element of the model, the Commffnication Protocol Application maps a Semantic Rffles Call to a MappingApplication of ℳ M C . erefore, D M →M CM is ffsed in order to target the right MoCApplicationTriggers of ℳ M C . Withofft it, there coffld be confffsion flhen an element of ℳ D is transformed into sefieral elements of ℳ M C , and thffs has sefieral potential MappingApplications afiailable. Let ffs illffstrate steps 2 and 3 on offr effiample langffage, fUML, ffsing the effiample Actifiity of Figffre 4.1. e transformation, UML→T is ffsed to generate the MoCApplication corresponding to offr model. e resfflting model, conforming to the threading langffage fle hafie presented earlier, has already been illffstrated, teffitffally in Listing 4.1 and graphically in the right half of Figffre 4.4. It is also ffsed to generate the model-lefiel projections, flhich are essentially parts of the trace of the application of the transformation. Listing 4.4 shofls an efficerpt from the model projections generated for the effiample Actifiity.

Listing 4 .Listing 4 . 5 :

 445 5 shofls an efficerpt, in pseffdo-code, of the resfflting Commffnication Protocol Application. Efficerpt from the model-lefiel Commffnication Protocol for offr effiample fUML Actifiity, speci ed ffsing pseffdo-code.

Figffre 4 .

 4 Figffre 4.9 shofls the MoCApplication for the effiample fUML Actifiity. It is a model conforming to the reading ffiDSML fle hafie de ned, that is obtained afftomatically thanks to UML→T . Figffre 4.10 shofls the correspondances betfleen the fUML Actifiity and the resfflting reading model.

Figffre 4 . 8 :

 48 Figffre 4.8: Metamodel representing the Abstract Syntaffi of the implementation of the Projections metalangffage.

Figffre 4 . 9 :

 49 Figffre 4.9: MoCApplication of the effiample fUML Actifiity, based on the reading MoC de ned as a concffrrency-aflare ffiDSML.

Figffre 4 . 10 :

 410 Figffre 4.10: Correspondances betfleen the effiample fUML Actifiity and its MoCApplication.

Figffre 4 . 1 :

 41 Figffre 4.11 shofls the Graphical User Interface (GUI) dffring the effiecfftion of the effiample fUML Actifiity. e annotated regions are as follofls:1: Graphical representation and animation of the fUML Actifiity, ffpdated flhenefier its Effiecfftion Data efiolfie (i.e., mostly flhen the tokens held by edges change).

Figffre 4 . 11 :

 411 Figffre 4.11: Graphical User Interface of the effiecfftion of the fUML effiample actifiity.

  ℳ D , conforming to ℒ D ) and the target model (ℳ M C , conforming to ℒ M C ) are not semantically equivalent. ℳ M C is only a representation of the concffrrency concerns of ℳ D , ffsing ℒ M C as a formalism; flhereas in translational semantics, the intention of the transformation is to prodffce a semantically eqffifialent model. e data management performed in the Semantic Rffles of ℒ D are nefier translated in terms of concepts of ℒ M C , and only the concffrrency concerns of ℒ D are transformed into ℒ M C .

  Poffr le second point, il fafft tofft d'abord spéci er des Mappings poffr le langage soffrce. Ceffffi-ci n'ont pas besoin d'être reliés à des fonctions d'effiécfftion off des déclencheffrs dff MoCMapping comme effipliqffé dans l'approche initiale. A la place, leffrs occffrrences sont dédffites à partir des occffrrences des Mappings dff langage cible à l'aide d'ffne transformation sffpplémentaire. Cee transformation spéci e la correspondance des Mappings dff langage cible fiers les Mappings dff langage soffrce. Cee transformation est elle affssi appelée à chaqffe pas d'effiécfftion, permeant à l'heffristiqffe dff moteffr d'effiécfftion de présenter (par effiemple soffs forme d'interface graphiqffe) les di érentes solfftions possibles poffr chaqffe pas d'effiécfftion.

8 .

 8 Let ffs consider a simple effiample representing a basic mffsic player, shofln on Figffre 5.1.

Figffre 5 . 1 :

 51 Figffre 5.1: Effiample model of Statecharts representing a simple mffsic player.

2 .

 2 With another strategy corresponding to the semantics of the UML dialect, the resfflting Statechart is as shofln on Figffre 5.3. ese tflo aened Statecharts can be effiecffted non-ambigffoffsly ffsing the semantics of Statecharts.

Figffre 5 . 2 :

 52 Figffre 5.2: Effiample Statechart model aened according to the original Harel Statecharts semantics.

Figffre 5 . 3 :

 53 Figffre 5.3: Effiample Statechart model aened according to the UML semantics.

5. 2

 2 Minimal Afifirffach tff Cffncurrency-aware Translatiffnal Semantics 5.2.1 Main Transfffrmatiffn e main artefact in a translational semantics speci cation is the transformation from the soffrce langffage to the target langffage. In offr case, a transformation from ℒ to ℒ , denoted as AS → . is transformation speci es hofl any model conforming to the abstract syntaffi of ℒ (denoted as ℳ

Figffre 5 . 4 :

 54 Figffre 5.4: Global fiiefl of the ffse of translational semantics for the speci cation of concffrrency-aflare ffiDSMLs.

ℒFigffre 5

 5 Figffre 5.5 sffms ffp the integration of the tflo additional speci cations, AS + ED →

Figffre 5 . 5 :

 55 Figffre 5.5: Ofierfiiefl of the integration of the AS + ED→

Figffre 5 .

 5 Figffre 5.6 shofls an ofierfiiefl of the rffntime as a simpli ed seqffence diagram. Only one step of effiecfftion is represented. e rst step consists in retriefiing the occffrring MappingApplications for the soffrce model. is is done by rst retriefiing the occffrring MappingApplications in the target model, and then ffsing the transformation resfflting from M → to map them to their corresponding soffrce model MappingApplications. ese can then be sent to the heffristic of the rffntime, flhose role is to select one of them arbitrarily (possibly throffgh a graphical ffser interface, or throffgh an effiternal program ffsing an API).e second step consists in effiecffting the selected step. e rffntime of the target model refierse-matches the selected step to dedffce flhich MappingApplications of the target model mffst be effiecffted. en, like in the rffntime presented in Chapter 3, the Effiecfftion Fffnction Calls are effiecffted, resfflting in changes in the target model.

Figffre 5 . 6 :

 56 Figffre 5.6: Simpli ed seqffence diagram of the rffntime ffsing translational semantics for concffrrency-aflare ffiDSMLs.

"

  All we have to decide is what to do with the time that is given us. " in e Fellowship of the Ring, by J. R. R. Tolkien (1892 -1973).
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Figffre A. 1

 1 Figffre A.1 shofls the effiample Actifiity ffsed to illffstrate fUML in Chapters 3, 4 and 5. To consider all the possible effiecfftion scenarios of this Actifiity, fle mffst consider the follofling details of the fUML Semantics [116, 111]:

Figffre A. 1 :

 1 Figffre A.1: Effiample fUML actifiity flhere fle flant to drink something from the table flhile talking.

Finally

  , "[Drinking]" consists in drinking only one of the drinks. ere are three possibilities:

Figffre C. 2

 2 Figffre C.2 shofls the initial fiiefl of the Modeling Workbench flhen laffnching the effiecfftion of the effiample fUML Actifiity.ere are foffr elements in this gffre. In the top le corner (Figffre C.3) is the graphical representation of the Actifiity, inclffding the animation layer (the green "play" symbol).

Figffre C. 1 :

 1 Figffre C.1: Effiample fUML actifiity flhere fle flant to drink something from the table flhile talking.

Figffre C. 2 :

 2 Figffre C.2: Step 0 -Global fiiefl of the Modeling Workbench at the beginning of the effiecfftion of the effiample fUML Actifiity.

Figffre C. 3 :

 3 Figffre C.3: Step 0 -Graphical animation of the effiample fUML Actifiity.

Figffre C. 4 :

 4 Figffre C.4: Step 0 -Defafflt heffristic of the Effiecfftion Engine, presenting the possible effiecfftion steps to the ffser throffgh a Graphical User Interface.

Finally, in

  the boom right corner (Figffre C.5) is the Effiecfftion Engine registry flhich allofls ffs to control the selected Effiecfftion Engine, for instance to stop the effiecfftion.

Figffre C. 5 :

 5 Figffre C.5: Step 0 -e GEMOC Effiecfftion Engine registry.

Figffre C. 6 :

 6 Figffre C.6: Step 1 -Global fiiefl of the Modeling Workbench aer the rst step of effiecfftion.

Figffre C. 7

 7 Figffre C.7 shofls the model aer selecting the effiecfftion step consisting in effiecffting the ForkNode "MyFork".

Figffre C. 9 :

 9 Figffre C.9: Step 3 -Graphical animation of the effiample fUML Actifiity and standard offtpfft console dffring the effiecfftion.

Figffre C. 10 :

 10 Figffre C.10: Step 4 -Graphical animation of the effiample fUML Actifiity.

Figffre C. 11

 11 Figffre C.11 shofls the model and the possible effiecfftion steps aer the DecisionNode "MyDecision" has been effiecffted. As effiplained in details in Appendiffi A, the gffards can be efialffated in any order, efien possibly in parallel. erefore, many effiecfftion steps are possible. Ultimately, all the gffards mffst be effiecffted.

Figffre C. 11 :

 11 Figffre C.11: Step 5 -Graphical animation of the effiample fUML Actifiity and heffristic of the effiecfftion engine shofling all the possibilities in schedffling the efialffation of the gffards.

  Figffre C.12: Step 6 -Teffit sent to the standard offtpfft console by the qfferies efialffating the gffards offtside the DecisionNode.

Figffre C. 13 :

 13 Figffre C.13: Step 7 -Only one effiecfftion step is allofled as a conseqffence of the resfflts of the gffards and of the application of the Feedback Policy (cf. Section 3.6).

Figffre C. 14 :

 14 Figffre C.14: Step 8 -Graphical animation of the effiample fUML Actifiity.

Figffre C. 15 :

 15 Figffre C.15: Step 9 -Graphical animation of the effiample fUML Actifiity.

Figffre 4 .

 4 Figffre 4.6 shofled an efficerpt from the abstract syntaffi of the reading ffiDSML. Figffre D.1 shofls the flhole abstract syntaffi, as an Ecore metamodel, of offr implementation of this langffage.

  cffntext Task --Represents the execution of a Task def: mocc_execute : Event = self cffntext Conditional --Represents the execution of the 'then' clause. def: mocc_executeThenTask : Event = self --Represents the execution of nothing, if there is no 'else' clause. def: mocc_doNothing : Event = self --Represent whether all the conditions were executed or not def: mocc_conditionsWereOk : Event = self def: mocc_conditionsAreOk : Event = self cffntext ScheduledTask --Represents the execution of an Instruction in the Agenda. def: mocc_occur : Event = self --Constraints defining the symbolic partial ordering.

F

  Effiecfftion of the Effiample fUML ModelUsing the reading MoCIn Chapter 4 fle hafie presented hofl to ffse a prefiioffsly-de ned concffrrency-aflare ffiDSML as the MoC of an ffiDSML. In this appendiffi, fle detail the realization of the effiecfftion of the effiample fUML Actifiity ffsed throffghofft Chapters 3 and 4. e fUML Actifiity is shofln on Figffre 4.1.e effiecfftion is realized ffsing a de nition of fUML flhose MoC is not Efient Strffctffres, bfft the thread-based langffage presented in Sffbsection 4.2.2 of Chapter 4. is implementation of fUML is shofln in Appendiffi E.

Figffre F. 1

 1 Figffre F.1 shofls the MoCApplication for offr effiample fUML Actifiity. is MoCApplication is a model conforming to the reading ffiDSML fle hafie de ned, and is obtained afftomatically thanks to UML→T . A teffitffal concrete syntaffi for this model is shofln on Listing 4.1 of Chapter 4.

Figffre F. 1 :

 1 Figffre F.1: MoCApplication of the effiample fUML Actifiity, based on the reading MoC.

Figffre F. 2 :

 2 Figffre F.2: Step 0 -Initial fiiefl of the Modeling Workbench flhen laffnching the effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 4 :

 4 Figffre F.4: Step 2 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 5 :

 5 Figffre F.5: Step 3 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 6 :

 6 Figffre F.6: Step 4 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 7 :

 7 Figffre F.7: Step 5 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 9 :

 9 Figffre F.9: Step 7 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 10 :

 10 Figffre F.10: Step 8 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 11 :

 11 Figffre F.11: Step 9 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 12 :

 12 Figffre F.12: Step 10 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 13 :

 13 Figffre F.13: Step 11 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 15 :

 15 Figffre F.15: Step 13 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 16 :

 16 Figffre F.16: Step 14 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 17 :

 17 Figffre F.17: Step 15 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 18

 18 Figffre F.18 shofls that the instrffction (allofled since the conditional's condition flas fialidated) "Effiecffte_DrinkWater" is mapped by the Commffnication Protocol of fUML to the Effiecfftion Fffnction call "DrinkWater.effiecffte()".

Figffre F. 18 :

 18 Figffre F.18: Step 16 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 19

 19 Figffre F.19 shofls that once one of the branches of the DecisionNode has been effiecffted, the MergeNode may be effiecffted.

Figffre F. 20 :

 20 Figffre F.20: Step 18 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 21 :

 21 Figffre F.21: Step 19 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 22

 22 Figffre F.22 shofls that the nal instrffction may be effiecffted, corresponding to the effiecfftion of the FinalNode in the fUML model.Finally in Figffre F.23, the main thread may be terminated nofl that all its instrffctions hafie been effiecffted. e nal state is shofln on Figffre F.24.

Figffre F. 22 :

 22 Figffre F.22: Step 20 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F. 23 :

 23 Figffre F.23: Step 21 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

  

  

  

  

  

  

  

  

  

  

Table of Contents

 of xvii 3.4.1 Pffrpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.3 Solfftion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.4 Costs and Doflnsides . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.5 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Completion of an Effiecfftion Fffnction Call . . . . . . . . . . . . . . . . . . . 83 3.5.1 Pffrpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.3 Speci cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.4 Rffntime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.5.5 Compatibility flith Blocking Effiecfftion Fffnction Calls . . . . . . . . . 88 3.5.6 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.6 Data-dependent Langffage Constrffcts . . . . . . . . . . . . . . . . . . . . . . 90 Semantic Variation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.8.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.8.2 SVPs in Concffrrency-aflare ffiDSMLs . . . . . . . . . . . . . . . . . . 108 3.8.3 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.9 Concffrrency-aflare ffiDSMLs for Reactifie Systems . . . . . . . . . . . . . . . 112 3.9.1 Pffrpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.9.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.9.3 Illffstratifie Effiample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.9.4 De ning Parameters for Effiecfftion Fffnctions . . . . . . . . . . . . . . 113 3.9.5 Introdffcing Parameters in Mappings . . . . . . . . . . . . . . . . . . . 114

3.6.1 Pffrpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.6.2 Illffstratifie Effiample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.6.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.6.4 Effitending the Commffnication Protocol . . . . . . . . . . . . . . . . . 92 3.6.5 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.7 Composite Effiecfftion Fffnctions . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.7.1 Pffrpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.7.2 Illffstratifie Effiample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.7.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.7.4 Solfftion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.7.5 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.8 3.9.6 Featffre Sffmmary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.10 Behafiioral Interface of Concffrrency-aflare ffiDSMLs . . . . . . . . . . . . . 117 List of Figffres

Table 2

 2 

	.1 sffms

Table 2 .

 2 1: Main di erences betfleen DSLs and GPLs. Coffrtesy of M.Völter
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  Listing 3.13: Adaptation of Listing 3.12 so that the concffrrency-aflareness is preserfied.

			1 fiublic vffid caller(){
			2	// ...
			3	commonOperation();
	1 fiublic vffid caller(){ 2 // ... 3 callee(); 4 // ... 5 } 6 7 fiublic vffid callee(){ 8 // ... 9 }	4 5 } 6 7 fiublic vffid callee(){ // ... 8 commonOperation(); 9 } 10 11 firivate vffid commonOperation(){ 12 // ... 13 }
	Listing 3.14: Effiample of a data
	effichange betfleen tflo Effiecfftion
	Fffnctions.
	1 fiublic vffid caller(){
	2	// ...
	3	var x = ...;
	4	callee(x);
	5 }	
	6	
	7 fiublic vffid callee(T arg){
	8	// ...
	9 }	

  MappingA and MappingB being de ned in the same conteffit (MyClass), their ffnfolding resfflts in as many Composite MappingApplications as there are instances of MyClass in the model. For effiample, if the model has tflo instances of MyClass, Object1 and Object2, the resfflting Commffnication Protocol Application is as shofln on Listing 3.26.Listing 3.26: Effiample speci cation, in pseffdo-code, of the Composite Mapping Compos-

	1 Cffmfiffsite Mafifiing CompositeAthenB:
	2	MappingA -> MappingB
	iteAandB.
	1 MafifiingAfifilicatiffn MappingA_Object1:
	2	ufiffn mocTriggerA_Object1
	3	triggers Object1.executionFunctionA
	4	
	5 MafifiingAfifilicatiffn MappingB_Object1:
	6	ufiffn mocTriggerB_Object1
	7	triggers Object1.executionFunctionB
	8	
	9 MafifiingAfifilicatiffn MappingA_Object2:
		ufiffn mocTriggerA_Object2
		triggers Object2.executionFunctionA
		MafifiingAfifilicatiffn MappingB_Object2:
		ufiffn mocTriggerB_Object2
		triggers Object2.executionFunctionB
		Cffmfiffsite MafifiingAfifilicatiffn CompositeAthenB_Object1:
		MappingA_Object1 -> MappingB_Object1
		Cffmfiffsite MafifiingAfifilicatiffn CompositeAthenB_Object2:
		MappingA_Object2 -> MappingB_Object2

  Listing 3.30: Alternatifie manner of specifying the effiample Composite Mapping captffring the fffll effiecfftion of an fUML Actifiity.

	Listing 3.29: Effiample of Composite Mapping captffring the fffll effiecfftion of an fUML
	Actifiity.
	1 Cffmfiffsite Mafifiing FullActivityExecution:
	2	with {
	3	initialNode : InitialNode,
	4	finalNode : FinalNode
	5	} where {
	6	true
	7	}
	8	ExecuteActivityNode(initialNode)
	9	-> ExecuteActivityNode(finalNode)
	1 Cffmfiffsite Mafifiing FullActivityExecution:
	2	with {
	3	initialNode : ActivityNode,
	4	finalNode : ActivityNode
	5	} where {
	6	initialNode kindfff InitialNode,
	7	finalNode kindfff FinalNode
	8	}
	9	ExecuteActivityNode(initialNode)
	10	-> ExecuteActivityNode(finalNode)
	1 Cffmfiffsite MafifiingAfifilicatiffn CompositeAthenB_Object1_Object2:
	2	MappingA_Object1 -> MappingB_Object1
	3	
	4 Cffmfiffsite MafifiingAfifilicatiffn CompositeAthenB_Object2_Object1:
	5	MappingA_Object2 -> MappingB_Object2

  http://projects.eclipse.org/projects/modeling.mdt.ocl 12 http://omg.org/ defieloped by INRIA (I3S). It profiides a set of core constraints, facilitating the speci cation of compleffi symbolic partial orderings betfleen the EfientTypes. It follofls the UML Pro le for Modeling and Analysis of Real-Time and Embedded systems (MARTE) [110], standardized by the OMG

	1 imfiffrt org.gemoc.sample.fuml.ForkNode
	2	
	3 @Asfiect(className=ForkNode)
	4 class ForkNodeAspect {
	5	// Modifier
	6	def fiublic vffid execute() {
	7	precondition(_self)
	8	println("***␣ForkNode␣[" + _self.name + "]" + "***")
	9	// Forks each incoming token and sends a version to each
		outgoing edge.
		_self.outgoingEdges.forEach [ outgoingEdge |
		outgoingEdge.currentTokens.clear()
		_self.incomingEdges.forEach [ incomingEdge |
		incomingEdge.currentTokens.forEach [ token |
		if (token instancefff ObjectToken) {
		val Object object = (token as ObjectToken).object
		outgoingEdge.currentTokens.add(TokenHelper.
		createObjectToken(object))

11 

  "platform:/plugin/org.gemoc.sample.fuml.model/model/fuml. ecore" imfiffrt "platform:/plugin/org.gemoc.sample.fuml.mocc/ECL/fuml.ecl"

	imfiffrt <Domain metamodel>
	imfiffrt <Model of Concurrency Mapping>
	imfiffrt <Semantic Rules>
	// Regular Mapping
	DSE <name>(<Parameter1>, ...):
	ufiffn <MoCTrigger from the MoCMapping>
	triggers <Execution Function from the Semantic Rules> <blocking/
	nonblocking>
	end
	// Mapping with a Feedback Policy
	DSE <name>(<Parameter1>, ...):
	ufiffn <MoCTrigger from the MoCMapping>
	triggers <Execution Function from the Semantic Rules> <blocking/
	nonblocking> returning <result-name>
	feedback:
	[<boolean expression using result-name>] => allffw <MoCTrigger
	from the MoCMapping>
	[<boolean expression using result-name>] => allffw <MoCTrigger
	from the MoCMapping>
	...
	default => allffw <MoCTrigger from the MoCMapping>
	end
	end
	Listing 3.36: e EvaluateGuard Domain-Speci c Efient (erryMapping) and its
	Feedback Policy de ned in GEL.
	DSE ExecuteActivityNode:
	ufiffn mocc_executeNode
	triggers ActivityNode.execute
	end
	DSE EvaluateGuard:
	ufiffn mocc_evaluateGuard
	triggers ActivityEdge.evaluateGuard returning result
	feedback:

imfiffrt [result] => allffw ActivityEdge.mocc_mayExecuteTarget default => allffw ActivityEdge.mocc_mayNotExecuteTarget end end

  // Abstract Syntax of fUML "platform:/plugin/org.gemoc.sample.fuml.model/model/fuml.ecore" imfiffrt // Communication Protocol of the Threading language "platform:/plugin/org.gemoc.sample.threaded.dse/GEL/threaded.GEL" imfiffrt // Language Projections of fUML "platform:/plugin/org.gemoc.sample.fuml.projections/projections/

	Language Prffjectiffn ProjectionForMayNotExecute:
		fuml.ActivityEdge firffjected ffntff threaded.Task
	end
	end	
		Listing 4.7: e Commffnication Protocol of fUML.
		ToThreaded.projections"
	DSE ExecuteActivityNode:
	ufiffn event ExecuteTask with ProjectionForExecution
	triggers ActivityNode.execute blocking
	end	
	DSE EvaluateGuard:
	ufiffn event ExecuteTask with ProjectionForEvaluation
	triggers ActivityEdge.evaluateGuard returning result
	feedback: // Feedback Protocol specification,
		// more details in Chapter 3.
	[ result ] => allffw event ExecuteTask 1 imfiffrt "platform:/plugin/org.gemoc.sample.fuml.model/model/fuml. with ProjectionForMayExecute ecore" // Abstract Syntax of fUML default => allffw event ExecuteTask 2 imfiffrt "platform:/plugin/org.gemoc.sample.threaded.model/model/ with ProjectionForMayNotExecute threaded.ecore" // Abstract Syntax of the Threading language end 3 4 Prffjectiffns: end
	5	Language Prffjectiffn ProjectionForExecution:
	6	fuml.ActivityNode firffjected ffntff threaded.Task
	7	end
	8	Language Prffjectiffn ProjectionForEvaluation:
	9	fuml.ActivityEdge firffjected ffntff threaded.Task
		end
		Language Prffjectiffn ProjectionForMayExecute:
		fuml.ActivityEdge firffjected ffntff threaded.Task
		end

imfiffrt

  Anneffie H présente la dé nition de la syntaffie concrète teffitffelle Xteffit de notre implémentation dff métalangage poffr dé nir les Projections entre ffn ffiDSML et son MoC, comme décrit dans le Chapitre 4.

	A
	Enffmeration of the Possible Effiecfftion
	Scenarios of the Effiample fUML Actifiity

nication Protocol) d'ffn concurrency-aware xDSML. Ce méta-langage est présenté et décrit dans la section 3.11.

•

  6 + 7 -1 + 49 + 3 = 64. _self.incomingEdges. lter [ incomingEdge | If some of the tokens offered on the incoming edges are control tokens and others are data tokens, then only the data tokens are offered on the outgoing edge. Tokens are offered on the outgoing edge in the same order they were offered to the join. Can only choose one of the outgoing branches. inv doExecutesAreExclusive: Relatiffn Exclusion(self.outgoingEdges.mocc_doExecuteTarget) --All the evaluations of guards are coincident (does not matter, just more practical -can be used as Semantic Variation Point) --inv evaluatesCoincide: --Relation Coincides(self.outgoingEdges.mocc_evaluateGuard) --All the Feedback Consequences happen at the same time. --No additional constraint could provide information as to which nodes will be allowed to happen, therefore forcing synchronicity does not change anything at this point. inv synchronousResponse: Relatiffn Cffincides(self.outgoingEdges.mocc_mayOrMayNotExecuteTarget) --All the Feedback Consequences actions happen at the same time. inv synchronousAction: Relatiffn Cffincides(self.outgoingEdges.mocc_doOrDoNotExecuteTarget) --MayExecute means that DoExecute is possible. inv mayExecuteMeansThatOneOfTheDoExecuteIsPossible: let unionOfAllMayExecute : Event = Exfiressiffn Union(self.outgoingEdges.mocc_mayExecuteTarget) in let unionOfAllDoExecute : Event = Exfiressiffn Union(self.outgoingEdges.mocc_doExecuteTarget) in Relatiffn Cffincides(unionOfAllMayExecute, unionOfAllDoExecute) cffntext Action --If an Action has output pins, then execute them right after the node has executed. inv executeOwnedPins: (self.outputs->size() >0) imfilies( let first : Event = self.outputs->first().mocc_executeNode in Relatiffn Alternates(self.mocc_executeNode, first) ) --All output pins are executed at the same time. inv concurrentExecutionOfPins: Relatiffn Cffincides(self.outputs.mocc_executeNode) --Constraints required for technical reason but are of little value to understand the MoCMapping of fUML. cffntext ActivityEdge --Kill some events when there is no guard.In this listing, fle hafie made ffse of a MoCCML library for the relations Exclu-siveSelection and SynchronousExclusionSubset. We coffld hafie de ned these relations alongside the MoCMapping, bfft fle hafie implemented them as a relations Relatiffn Cffincides(Clock1 -> mayOrMayNot, Commffnication Protocol of fUML, de ned ffsing GEL, is shofln on Listing 3.36.

	Concffrrency-aflare Speci cation of fUML
	// Remove all tokens from incoming edges. If a token is an if (token instancefff ObjectToken) { incomingEdge.currentTokens.forall [ incomingToken | inv doOrDoNotAfterMayOrMayNot: let waitZero5 : Event =
	incomingEdge.sourceNode instancefff DecisionNode ObjectToken, print the object. val Object object = (token as ObjectToken).object incomingToken instancefff ControlToken (self.guard <> null) imfilies ( Exfiressiffn Wait(self.mocc_doNotExecuteTarget, zero5) --Definition. Clock2 -> doOrDoNot
	].mafi [ incomingEdge | _self.incomingEdges.forEach [ incomingEdge | outgoingEdge.currentTokens.add( ] Relatiffn SynchronousExclusionSubset(self.mocc_mayExecuteTarget, in inv noOtherMayExecuteDefinition: )
	incomingEdge.sourceNode as DecisionNode incomingEdge.currentTokens TokenHelper.createObjectToken(object) ] self.mocc_mayNotExecuteTarget, self.mocc_doExecuteTarget, Relatiffn Cffincides(self.mocc_doNotExecuteTarget, waitZero5) Relatiffn Exclusion(self.mocc_noOtherMayExecuteWithNonDefaultGuard, }
	].forEach [ decisionNode | . lter(ObjectToken) ) self.mocc_doNotExecuteTarget ) self.mocc_unionOfAllMayExecuteWithNonDefaultGuard
	decisionNode.outgoingEdges.forEach [ outgoingEdge | outgoingEdge.currentTokens.clear() ] // Helper for debugging purposes. ] } def fiublic vffid log() { val sb = new StringBuilder() sb.append("IncomingEdges: ") _self.incomingEdges.forEach [ incomingEdge | sb.append("[" + incomingEdge.name + ":" + incomingEdge. currentTokens + "]") ] sb.append("\n") sb.append("OutgoingEdges: ") _self.outgoingEdges.forEach [ outgoingEdge | sb.append("[" + outgoingEdge.name + ":" + outgoingEdge. currentTokens + "]") ] if (_self instancefff Action && !(_self as Action).outputs.isEmpty) { sb.append("\n") sb.append("OutputPins: ") (_self as Action).outputs.forEach [ outputPin | sb.append("[" + outputPin.name + ": " + outputPin.currentTokens + "]") ] } println(sb.toString) } } @Asfiect(className=InitialNode) class InitialNodeAspect { firivate bfffflean executed = false .forEach [ objectToken | println("> " + objectToken.object.toString()) ] incomingEdge.currentTokens.clear() ] ActivityNodeAspect.execute(_self) // ActivityNodeAspect.log(_self) } } @Asfiect(className=MergeNode) class MergeNodeAspect { // Verify that at least one of the incoming edges has at least one token. def firivate vffid precondition() { val bfffflean atLeastOneIncomingEdgeHasAtLeastOneToken = !_self.incomingEdges.mafi [ incomingEdge | incomingEdge.currentTokens ]. atten.isEmpty if (!atLeastOneIncomingEdgeHasAtLeastOneToken) { thrffw new PreconditionException(_self) } } // Modifier def fiublic vffid execute() { precondition(_self) println("*** MergeNode [" + _self.name + "]" + "***") // Transmits all incoming tokens to the outgoing edges. val List<Token> incomingTokens = _self.incomingEdges.mafi [ incomingEdge | incomingEdge.currentTokens } else { outgoingEdge.currentTokens.add( TokenHelper.createControlToken() ) } ] ] ] ActivityNodeAspect.execute(_self) // ActivityNodeAspect.log(_self) } @Asfiect(className=JoinNode) } class JoinNodeAspect { // There should be at least one incoming edge with at least one token. def firivate vffid precondition() { val bfffflean allIncomingEdgesHaveAtLeastOneToken = _self.incomingEdges.forall [ incomingEdge | !incomingEdge.currentTokens.isEmpty ] if (!allIncomingEdgesHaveAtLeastOneToken) { thrffw new PreconditionException(_self) } } // Modifier def fiublic vffid execute() { precondition(_self) println("*** JoinNode [" + _self.name + "]" + "***") // If all the tokens offered on the incoming edges are control tokens, then one control token is offered on the outgoing if (allIncomingTokensAreControlTokens) { // Only one outgoing edge for join nodes _self.outgoingEdges.get(0).currentTokens.add( TokenHelper.createControlToken() ) } else { // _self.incomingEdges.forEach [ incomingEdge | incomingEdge.currentTokens. lter [ token | token instancefff ObjectToken ].forEach [ token | _self.outgoingEdges.forEach [ outgoingEdge | outgoingEdge.currentTokens.add(token) ] ] ] } ActivityNodeAspect.execute(_self) // ActivityNodeAspect.log(_self) } } // Required to use the incoming token's objects as variables in the language used for the guard. fiackage class Context { firivate Map<String, Object> environment = new HashMap() def fiublic vffid put(String name, Object value) { this.environment.put(name, value) } let anyIncomingEdgeSourceExecuted : Event = Exfiressiffn Union(self.incomingEdges.sourceNode.mocc_executeNode) in Relatiffn Precedes(anyIncomingEdgeSourceExecuted, self.mocc_executeNode ) cffntext ActivityEdge --In general, execute the source before the target. inv executeSourceBeforeTarget: ((nfft (self.guard <> null)) and (nfft (self.targetNode.oclIsKindOf(MergeNode)))) imfilies( Relatiffn Precedes(self.sourceNode.mocc_executeNode, self.targetNode.mocc_executeNode ) ) --Execute source of edge before evaluating the guard. inv executeDecisionBeforeEvaluate: ((self.guard <> null) imfilies ( Relatiffn Alternates(self.sourceNode.mocc_executeNode, self.mocc_evaluateGuard ) ) ) --Exclusive selection between may or may not following evaluation of the guard. inv mayOrMayNotAfterEvaluate: (self.guard <> null) imfilies ( Relatiffn ExclusiveSelection(self.mocc_evaluateGuard, self.mocc_mayExecuteTarget, self.mocc_mayNotExecuteTarget ) ) ) ) --Do Execute means executing. inv doExecuteMeansExecuting: ((self.guard <> null) imfilies ( Relatiffn Alternates(self.mocc_doExecuteTarget, self.targetNode.mocc_executeNode ) ) ) --Dealing with the default guard 'else' is as follows: --It always returns true (mayExecute will always occur as a result of the feedback specification). --But it is executed only if none of the other branches may be executed. inv doExecuteOfDefaultGuardOnlyPossibleIfNoOtherMayExecute: (self.guard <> null) imfilies ( (self.guard.oclIsKindOf(LiteralString)) imfilies ( (self.guard.oclAsType(LiteralString).value = 'else') imfilies( let noOtherMayExecuteWithNonDefaultGuard : Event = self.sourceNode .oclAsType(DecisionNode) .mocc_noOtherMayExecuteWithNonDefaultGuard in Relatiffn SubClffck(self.mocc_doExecuteTarget, noOtherMayExecuteWithNonDefaultGuard ) ) ) ) cffntext DecisionNode (nfft (self.guard <> null)) imfilies ( let zero1 : Integer = 0 in let waitZero1 : Event = Exfiressiffn Wait(self.mocc_mayExecuteTarget, zero1) in Relatiffn Cffincides(self.mocc_mayExecuteTarget, waitZero1) ) inv killmayNotExecuteTargetIfThereIsNoGuard: (nfft (self.guard <> null)) imfilies ( let zero2 : Integer = 0 in let waitZero2 : Event = Exfiressiffn Wait(self.mocc_mayNotExecuteTarget, zero2) in Relatiffn Cffincides(self.mocc_mayNotExecuteTarget, waitZero2) ) let zero3 : Integer = 0 in let waitZero3 : Event = Exfiressiffn Wait(self.mocc_evaluateGuard, zero3) in Relatiffn Cffincides(self.mocc_evaluateGuard, waitZero3) ) inv killdoExecuteIfThereIsNoGuard: (nfft (self.guard <> null)) imfilies ( let zero4 : Integer = 0 in let waitZero4 : Event = Exfiressiffn Wait(self.mocc_doExecuteTarget, zero4) in Relatiffn Cffincides(self.mocc_doExecuteTarget, waitZero4) ) --Definition inv definitionMayExecuteOrMayNotExecute: let mayOrMayNot : Event = Exfiressiffn Union(self.mocc_mayExecuteTarget, self.mocc_mayNotExecuteTarget ) in Relatiffn Cffincides( self.mocc_mayOrMayNotExecuteTarget, mayOrMayNot ) --Definition inv definitionDoExecuteOrDoNotExecute: let doOrDoNot : Event = Exfiressiffn Union( self.mocc_doExecuteTarget, self.mocc_doNotExecuteTarget cffntext DecisionNode --Definition. --Gather into an event the "mayExecute" of all the branches with non-default guard. inv unionOfAllMayExecuteWithNonDefaultGuardDefinition: let atLeastOneOfTheEdgesWithNonDefaultGuardOccur : Event = Exfiressiffn Union(self.outgoingEdges ->select(edge : ActivityEdge | (edge).guard.oclIsKindOf(LiteralString) ) ->select(edge : ActivityEdge | (edge).guard.oclAsType(LiteralString).value <> 'else' ).mocc_mayExecuteTarget ) in Relatiffn Cffincides( ) --Without this it could occur in other steps. This is only for after a decision node's outgoing branches' guards are evaluated. inv noOtherMayExecuteDefinitionContext1: let unionOfAllDoExecute1 : Event = Exfiressiffn Union(self.outgoingEdges.mocc_doExecuteTarget) in Relatiffn SubClffck(self.mocc_noOtherMayExecuteWithNonDefaultGuard, unionOfAllDoExecute1 ) inv noOtherMayExecuteDefinitionContext2: let unionOfAllDoExecute2 : Event = Exfiressiffn Union(self.outgoingEdges.mocc_doExecuteTarget) in Relatiffn SubClffck( ) inv anotherMayOrNoOtherMayCoincidesWithMaysAndDos: let anotherMayOrNoOtherMay : Event = Exfiressiffn Union( self.mocc_unionOfAllMayExecuteWithNonDefaultGuard, self.mocc_noOtherMayExecuteWithNonDefaultGuard ) in let unionOfAllDos : Event = Exfiressiffn Union(self.outgoingEdges.mocc_doExecuteTarget) in Relatiffn Cffincides(anotherMayOrNoOtherMay, unionOfAllDos) endfiackage // Declaration of the Relation ExclusiveSelection RelatiffnDeclaratiffn ExclusiveSelection( query : clock, may : clock, mayNot : clock ) // Declaration of the Relation SynchronousExclusionSubset RelatiffnDeclaratiffn SynchronousExclusionSubset( mayDo : clock, mayNotDo : clock, doIt : clock, doNot: clock ) } } --inv killmayExecuteTargetIfThereIsNoGuard: inv killEvaluateIfThereIsNoGuard: (nfft (self.guard <> null)) imfilies ( ) in Relatiffn Cffincides(self.mocc_doOrDoNotExecuteTarget, doOrDoNot) self.mocc_unionOfAllMayExecuteWithNonDefaultGuard, unionOfAllDoExecute2 B.4 Cffmmunicatiffn Prfftffcffl
	]. atten.tffList edge. inv killdoNotExecuteIfThereIsNoGuard: self.mocc_unionOfAllMayExecuteWithNonDefaultGuard,
	// Make sure InitialNode is executed only once. val allIncomingTokensAreControlTokens = def fiublic Map<String, Object> getEnvironment() { --Do and DoNot are exclusive and do can only happen after a " (nfft (self.guard <> null)) imfilies ( atLeastOneOfTheEdgesWithNonDefaultGuardOccur
	def firivate vffid precondition() { _self.outgoingEdges.forEach [ outgoingEdge | _self.incomingEdges.forall [ incomingEdge | return this.environment may" while "may not" implies a "do not". let zero5 : Integer = 0 in )

e

  Concffrrency-aflare Speci cation of the reading ffiDSML --An Instruction only occurs if the previous scheduled tasks of the agenda have occurred. inv occurOnlyAfterPreviousTasks: (self.owningAgenda <> null and self.owningAgenda.scheduledTasks->first() <> self ) imfilies let supOfPreviousScheduledTasks : Event = Exfiressiffn Sup( self.owningAgenda.scheduledTasks->select( scheduledTask | self.owningAgenda.scheduledTasks->indexOf(scheduledTask) < self.owningAgenda.scheduledTasks->indexOf(self) ).mocc_occur ) in Relatiffn Alternates(supOfPreviousScheduledTasks, self.mocc_occur) --An Instruction must occur before the scheduled tasks which are later in the agenda. inv executeBeforeNextTasks: (self.owningAgenda <> null and self.owningAgenda.scheduledTasks->last() <> self If the executed Task is a "JoinThreadTask" then the current Thread must block on the other Thread's join. Event = Exfiressiffn Inf( self.owningAgenda.scheduledTasks->select(scheduledTask | self.owningAgenda.scheduledTasks->indexOf(scheduledTask) > self.owningAgenda.scheduledTasks->indexOf(self) When an Instruction occurs, it means that its corresponding task is executed. inv occurrenceMeansExecutingTask: Relatiffn Cffincides(self.mocc_occur, self.task.mocc_execute) --If the underlying Task is a Conditional, then the Conditional's 'then' branch is executed or it is not, before the next scheduled tasks in the agenda can proceed. inv executeOneBranchOfTheConditional: (self.owningAgenda <> null and self.owningAgenda.scheduledTasks->last() <> self and self.task.oclIsKindOf(Conditional) Task of type "StartThreadTask" means that the corresponding Thread must be started. inv executeMeansStartingThread: Relatiffn Cffincides(self.mocc_execute, self.threadToStart.mocc_start) cffntext Disjunction --In a Disjunction, only one of the operands is executed. inv onlyOneTaskExecuted: Relatiffn Exclusion(self.operands.mocc_execute) --When either of its operands is executed, it means that the Disjunction has occurred. inv occurWhenOneTaskExecutes: let unionOfOperandsExecution : Event = Exfiressiffn Union(self.operands.mocc_execute) in Relatiffn Cffincides(unionOfOperandsExecution, self.mocc_execute) cffntext Task --If some proxies represent this task, then this task must be executed whenever one of the proxies is executed. When conditions are OK we execute the 'thenTask'. If this conditional's 'thenTask' must be executed, then we execute the then task. Either the 'thenTask' of the Conditional is executed, or it is not. inv resultAnyway: let unionOfExecuteAndNotExecute : Event = Exfiressiffn Union(self.mocc_executeThenTask, self.mocc_doNothing) in Relatiffn Cffincides(unionOfExecuteAndNotExecute, self.mocc_execute) --We can't have both the 'thenTask' execute and do nothing. inv exclusionOfResult: Relatiffn Exclusion(self.mocc_executeThenTask, self.mocc_doNothing) endfiackage D.4 Cffmmunicatiffn Prfftffcffl e Commffnication Protocol is speci ed ffsing the GEMOC Efients Langffage (GEL) described in Chapter 3. Listing D.3: Efficerpt from the teffitffal concrete syntaffi of GEL. imfiffrt "platform:/plugin/org.gemoc.sample.threaded.model/model/ threaded.ecore" imfiffrt "platform:/plugin/org.gemoc.sample.threaded.mocc/ECL/ Threaded.ecl" Concffrrency-aflare Speci cation of fUML Using the reading ffiDSML as MoC We detail the concffrrency-aflare de nition of fUML in the GEMOC Stffdio, ffsing the reading ffiDSML as MoC. is ffiDSML flas introdffced in Sffbsection 4.2.2 and its implementation is presented in Appendiffi D. E.1 Abstract Syntax e fUML abstract syntaffi is profiided as an Ecore metamodel on Figffre 3.1. E.2 Semantic Rules e Semantic Rffles are gifien in Xtend in Appendiffi B. E.3 Mffdel fff Cffncurrency Mafifiing e MoCMapping, in the recffrsifie de nition of concffrrency-aflare ffiDSML fle hafie proposed in Chapter 4, is implemented by an Abstract Syntaffi Transformation betfleen the syntaffi of the domain (fUML) and the syntaffi of the MoC (reading). Listing E.1 shofls the fffll soffrce code, in Xtend [7], of that transformation. As effiplained in Chapter 4, this transformation also generates the model-lefiel Projections. D : so far, this implementation does not sffpport nested Fork/Join pairs, as it flas not needed for the effiample fUML Actifiity. e last method shoffld be completed for it to flork. Listing E.1: e MoCMapping of fUML ffsing the reading ffiDSML as MoC, speci ed ffsing Xtend. // Model transformation of fUML towards the Threading language, used as its Model of Concurrency. // Corresponds to the Model of Concurrency Mapping for fUML. class Fuml2ThreadedMapping { val threadedFactory = ThreadedFactory.eINSTANCE val projectionsFactory = ProjectionsFactory.eINSTANCE val Collection<LanguageProjection> languageProjections val Projections modelProjections val Collection<Task> tasksNotNecessarilyExecuted = new ArrayList() new(Resource languageProjectionsResource, Resource modelProjectionsResource) { // Load the language projections val projections = languageProjectionsResource.contents.get(0) as Projections this.languageProjections = projections.languageProjections // Create the model projections val modelProjections = projectionsFactory.createProjections modelProjectionsResource.contents.add(modelProjections) this.modelProjections = modelProjections } // Entry point of the transformation. def vffid perform(Resource fumlResource, Resource threadedResource) { val activity = fumlResource.contents.get(0) as Activity // Transform the fUML Activity val threadSystem = transform(activity) threadedResource.contents.add(threadSystem) // Add the necessary imports into the model projections val importFumlModel = projectionsFactory.createImportStatement importFumlModel.importURI = fumlResource.URI.toPlatformString(true) modelProjections.imports.add(importFumlModel) val importThreadedModel = projectionsFactory.createImportStatement importThreadedModel.importURI = threadedResource.URI.toPlatformString(true) modelProjections.imports.add(importThreadedModel) } // Transforms an fUML Activity into a Threading model. def ThreadSystem transform(Activity activity) { // Create the root object val threadSystem = threadedFactory.createThreadSystem threadSystem.name = activity.name + "ThreadSystem" // There is at least one thread per activity. val mainThread = threadedFactory.createThread mainThread.name = "mainThreadFor" + threadSystem.name threadSystem.threads.add(mainThread) threadSystem.mainThread = mainThread // For each pair of Fork/Join, create a thread for every branch. // Identify pairs of Fork/Join val Collection<Pair<ForkNode, JoinNode>> pairsOfForkAndJoin = findNodePairs(activity, ForkNode, JoinNode) val Collection<Pair<DecisionNode, MergeNode>> For each branch on which there are nodes, create a Thread and add it to the ThreadSystem. val mapOfBranchToThread = new HashMap() val branches = nodeLocations.values.tffSet branches.forEach [ pair | val newThread = threadedFactory.createThread newThread.name = "Thread" + "_" + pair.key.name + "_" + pair.value.name mapOfBranchToThread.put(pair, newThread) threadSystem.threads.add(newThread) val sortedNodesOnMainThread = nodesOnMainThread.sffrtWith(comparator) One main thread and as many threads as branches // 2 -Which nodes are on the main threads // 3 -Which nodes are on each branch // We only need to create the Task corresponding to each node on the correct thread. // If we use ProxyTasks we need to link afterwards val mapOfProxies = new HashMap() Each Proxy, when created, has specified as a result of which ActivityNode it was born. // When every Task has been created, we can retrieve the Task corresponding to the wanted Node. mapOfProxies.entrySet.forEach [ entry | val node = entry.value val proxyTask = entry.key

	Alternates( self.agenda.scheduledTasks->last().mocc_occur, self.mocc_join ) imfilies ) let infOfNextScheduledTasks : Event = Exfiressiffn Inf( self.owningAgenda.scheduledTasks->select(scheduledTask | self.owningAgenda.scheduledTasks->indexOf(scheduledTask) > self.owningAgenda.scheduledTasks->indexOf(self) ).mocc_occur ) in Relatiffn Alternates(self.mocc_occur, infOfNextScheduledTasks) --inv forJoinTasksTheOwningThreadMustWait ForTheThreadToJoinToHavefinished: (self.owningAgenda <> null and self.owningAgenda.scheduledTasks->last() <> self and self.task.oclIsKindOf(JoinThreadTask) ) imfilies --inv executeThenWhenConditionsAreOk: let infOfNextScheduledTasks2 : ).mocc_occur ) in Relatiffn Alternates( self.task.oclAsType(JoinThreadTask).threadToJoin.mocc_join, infOfNextScheduledTasks2 ) --) imfilies let eitherBranchExecution : Event = Exfiressiffn Union( self.task.oclAsType(Conditional).thenTask.mocc_execute, self.task.oclAsType(Conditional).mocc_doNothing ) in let infOfNextScheduledTasks3 : Event = Exfiressiffn Inf(self.owningAgenda.scheduledTasks ->select(scheduledTask | self.owningAgenda.scheduledTasks->indexOf(scheduledTask) > self.owningAgenda.scheduledTasks->indexOf(self) ).mocc_occur ) in Relatiffn Alternates( eitherBranchExecution, infOfNextScheduledTasks3 ) cffntext StartThreadTask (self.representedBy->notEmpty()) imfilies let unionOfProxiesExecute : Event = Exfiressiffn Union(self.representedBy.mocc_execute) in Relatiffn Cffincides(unionOfProxiesExecute, self.mocc_execute) cffntext Conditional --Condition is validated when all the conditions --have executed. inv conditionsOkDef : let supOfConditions : Event = Exfiressiffn Sup(self.conditions.mocc_execute) in Relatiffn Cffincides(self.mocc_conditionsWereOk, supOfConditions) --If the conditions were OK then --we must execute the 'thenTask' sometime. inv executeWhenConditionsHaveExecuted: Relatiffn Alternates( self.mocc_conditionsWereOk, Relatiffn Cffincides( self.mocc_conditionsAreOk, self.mocc_executeThenTask ) --Conditions are OK if they were OK previously and this Conditional is being executed. inv conditionsAreOkDef: let supOfConditionsWereOkAndSelfExecutes : Event = Exfiressiffn Sup(self.mocc_conditionsWereOk, self.mocc_execute) in Relatiffn Cffincides( self.mocc_conditionsAreOk, supOfConditionsWereOkAndSelfExecutes ) --inv executeThenTaskDef: Relatiffn Alternates( self.mocc_executeThenTask, self.thenTask.mocc_execute ) --DSE StartThread: ufiffn mocc_start triggers Thread.start blocking end DSE JoinThread: ufiffn mocc_join triggers Thread.join blocking end DSE ExecuteTask: ufiffn mocc_execute triggers Task.execute blocking end DSE ExecuteInstruction: ufiffn mocc_occur end E pairsOfDecisionAndMerge = findNodePairs(activity, DecisionNode, MergeNode) pairsOfForkAndJoin.forEach [ pair | println(pair.key.name + " ---" + pair.value.name) ] // Identify branches for each pair, with which nodes are on it. val Map<ActivityNode, Pair<ForkNode, ActivityEdge>> nodeLocations = findBranchesHoldingNodes(activity, pairsOfForkAndJoin) branchesAndTheirContents.mafiValues [ listOfNodes | listOfNodes.sffrtWith(comparator) ] // We now have: // 1 -sortedNodesOnMainThread.forEach [ node | mapOfProxies.putAll( toTask(node, mainThread, mapOfBranchToThread, pairsOfForkAndJoin) ) // val sortedBranchesAndTheirContents = ] sortedBranchesAndTheirContents.entrySet.forEach [ entry | entry.value.forEach [ node | mapOfProxies.putAll( toTask(node, mapOfBranchToThread.get(entry.key), mapOfBranchToThread, pairsOfForkAndJoin) ) ] ] // val taskCorrespondingToNode = modelProjections.modelProjections. ndFirst [ projection | projection.name.contains("ForExecution") && projection. languageElement == node --A inv ifHasProxyThenExecuteWhenOneOfTheProxiesIsExecuted: self.mocc_executeThenTask ].moccElement as Task
	)	proxyTask.concreteTask = taskCorrespondingToNode
	cffntext Instruction ]
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Figffre F.8: Step 6 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.

Figffre F.14: Step 12 -Effiecfftion of the effiample fUML Actifiity ffsing the reading Model of Concffrrency.
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In this effiample, fle de ne and ffse a pre-condition for the Effiecfftion Fffnction, as preconized in 3.3.4. is ensffres that the Effiecfftion Fffnction is called only in sitffations flhere it makes sense, facilitating the debffg of the rest of the semantics dffring the defielopment of the langffage.

More generally, the reqffirements for the Semantic Rffles metalangffage are the follofling:

• Capacity to effitend the Abstract Syntaffi flith additional data (aribfftes, references, classes, etc.).

• Capacity to effitend the Abstract Syntaffi flith operation declarations and implementations.

• Rffntime able to effiecffte the operation implementations.

Mffdel fff Cffncurrency Mafifiing

In the GEMOC Stffdio, the MoCMapping is speci ed ffsing the Efient Constraint Langffage (ECL) [START_REF] Deantoni | ECL: the Efient Constraint Langffage, an Effitension of OCL flith Efients[END_REF], an effitension of OCL enabling the de nition of EfientTypes (in the conteffit of concepts from an Ecore metamodel) and of constraints betfleen these EfientTypes. ECL is Listing 4.1: Ideal MoCApplication, based on the notion of reads and Instrffctions, for the effiample fUML Actifiity. More generally, the principles of this transformation are as follofls:

• An Actifiity is transformed into a main read.

• For each pair of ForkNode/JoinNode, each branch is transformed into a read flith Tasks corresponding to the nodes on the branch Listing 4.2: Pseffdo-code speci cation of the projections of fUML onto offr reading langffage. 

D.3 Mffdel fff Cffncurrency Mafifiing

e concffrrency-aflare approach as described in Chapter 3 relies on the Efient Strffctffre MoC [START_REF] Winskel | Efient Strffctffres[END_REF]. At the langffage lefiel, the formalism is called EfientType Strffctffres. Listing D.2 shofls the implementation, ffsing the Efient Constraint Langffage (ECL) [START_REF] Deantoni | ECL: the Efient Constraint Langffage, an Effitension of OCL flith Efients[END_REF], of the MoCMapping of the reading ffiDSML.

Listing D.2: Model of Concffrrency Mapping of the reading ffiDSML de ned ffsing the Efient Constraint Langffage (ECL). ---------------------// Main elements //--------------------- ---------------------------------// MoCMapping elements //---------------------------------- ------------------------------------// Semantic Rules elements //- ----------------------------------- ----------------------------------------// Feedback Protocol elements // (cf. Section 3.6) //--- ------------------------------------- -------------------------------------------/ ------------------------------------------ As mentioned in Appendiffi G, there are tflo approaches to ffsing Xteffit [START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF]. In the rst one, the concrete syntaffi is the main artefact, and Xteffit generates a corresponding abstract syntaffi as an Ecore metamodel. In the second one, the abstract syntaffi is designed rst and then the concrete syntaffi is speci ed on top of it. For the Projections metalangffage described in Chapter 4, fle ffsed the laer. e abstract syntaffi (Ecore metamodel) of the langffage can be foffnd on Figffre D. 

Glossary

Hereaer some of the most important terms and their occffrrences flithin this thesis. For most terms, the page nffmber in bold is the (closest thing to a) de nition flithin this thesis's content.

Abstract Syntax (AS) Compffter representation of the grammar of a compffter langffage.

See pages [START_REF] Czarnecki | Bidirectional transformations: A cross-discipline perspectifie[END_REF][START_REF] Google | [END_REF]115,[START_REF] Jose | Adding Behafiior to Models[END_REF][START_REF] Teorey | Database Modeling & Design[END_REF][START_REF] Voelter | DSL Engineering: Designing, Implementing and Using Domain-Speci c Languages[END_REF]176,181,184,188,200,225,259,269,307,315 Afifilicatiffn Prffgramming Interface (API) Soflare component composed of operations, inpffts, and offtpffts flhich de nes a set of fffnctionalities, independent of its implementation ffsing a particfflar programming langffage or for a speci c effiecfftion platform. See pages [START_REF] Dmitriefi | Langffage Oriented Programming: e Neffit Programming Paradigm[END_REF][START_REF] Ghosh | DSLs in Action[END_REF]166,183 Cffmmunicatiffn Prfftffcffl For a concffrrency-aflare ffiDSML, langffage-lefiel speci cation of the correspondence betfleen the Semantic Rffles and the MoCMapping. See pages [START_REF] Franceschini | A sffrfiey of modelling and simfflation soflare frameflorks ffsing Discrete Efient System Speci cation[END_REF][START_REF] Harel | e R  Semantics of Statecharts (or, On the Effiecfftable Core of the UML)[END_REF][START_REF] Issa Diallo | Model Based Engineering for the sffpport of Models of Compfftation: e Cometa Approach[END_REF][START_REF] Jensen | Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, fiolffme 1[END_REF][START_REF] Lennart | e Spoofaffi Langffage Workbench: Rffles for Declaratifie Speci cation of Langffages and IDEs[END_REF][START_REF] Klint | A Meta-Enfiironment for Generating Programming Enfiironments[END_REF][START_REF] Mallet | Clock Constraint Speci cation Langffage: Specifying Clock Constraints flith UML/MARTE[END_REF]109,119,[START_REF] Gordon D Plotkin | e Origins of Strffctffral Operational Semantics[END_REF][START_REF] El | Ei el Soflare Homepage[END_REF][START_REF] Stefiens | A Landscape of Bidirectional Model Transformations[END_REF]146,[START_REF] Martin | Langffage-Oriented Programming[END_REF][START_REF] Winskel | Efient Strffctffres[END_REF][START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF]167,194,197,248,268 Cffmmunicatiffn Prfftffcffl Afifilicatiffn For an effiecfftable model conforming to a con cffrrency-aflare ffiDSML, model-lefiel speci cation of the correspondence betfleen the Semantic Rffles Calls and the MoCApplication. See pages [START_REF] Ghosh | DSLs in Action[END_REF][START_REF] Hefli | What is Compfftation? Actor Model fiersffs Tffring's Model[END_REF][START_REF] Antony | An Affiiomatic Basis for Compffter Programming[END_REF][START_REF] Latombe | Concffrrency-aflare eXecfftable Domain-Speci c Modeling Langffages as Models of Concffrrency[END_REF][START_REF] Gordon D Plotkin | e Origins of Strffctffral Operational Semantics[END_REF][START_REF] Stefiens | A Landscape of Bidirectional Model Transformations[END_REF][START_REF] Zalila | A Transformation-Drifien Approach to Afftomate Feedback Veri cation Resfflts[END_REF]164 Cffncrete Syntax (CS) Mapping of the Abstract Syntaffi (AS) of a compffter langffage to a set of rffles de ning hofl to parse a string in order to form an instance of the AS of the langffage. See pages [START_REF] Czarnecki | Bidirectional transformations: A cross-discipline perspectifie[END_REF]184,188,307,315 Cffncurrency Logical concept related to the dependency that effiists (or not) betfleen tflo pieces of code. See pages fiii, ffiii, 3,[START_REF] Beini | Implementing Domain-Speci c Languages with Xtext and Xtend[END_REF][START_REF] Benoit Combemale | Reifying Concffrrency for Effiecfftable Metamodeling[END_REF][START_REF] Google | [END_REF][START_REF] Kelly | Domain-Speci c Modeling: Enabling Full Code Generation[END_REF][START_REF] Teorey | Database Modeling & Design[END_REF][START_REF] Vallecillo | On the Combination of Domain Speci c Modeling Langffages[END_REF]197