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All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.
From the ashes a fire shall be woken,

A light from the shadows shall spring;
Renewed shall be blade that was broken,

The crownless again shall be king.

in The Fellowship of the Ring,
by J. R. R. Tolkien (1892 — 1973).
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Abstract

The complexity of modern softwares and systems, like the Internet of Things or Cyber-
Physical Systems, has been increasing regularly since the birth of computing. They inte-
grate many features, possibly relying on a variety of networks or other systems; comply to
different norms, including security and safety standards; all the while reacting in a timely
manner. Their design and development is costly, both in the required engineering effort,
and possibly also in terms of their raw physical parts. Their updating and maintenance
processes are also complex to handle. To ease these activities, researchers in software en-
gineering have proposed new development paradigms. In this context, Language-Oriented
Programming (LOP) proposes to make languages first-class citizens in the software en-
gineering activities. LOP advocates using multiple Domain-Specific Languages (DSLs),
each specialized for a particular problem domain. Since modern systems are usually de-
signed by domain experts, the use of Domain-Specific Modeling Languages (DSMLs) is
gaining traction, because their abstractions are designed to be intuitive for the end users,
i.e., the domain experts. This has led to the development of a new discipline called Software
Language Engineering, which studies the design, implementation and tooling of Domain-
Specific (Modeling) Languages. To facilitate the early verification and validation activities
of these systems, DSMLs can be made eXecutable (xDSMLs). In the context of Model-
Driven Engineering (MDE), the design of xDSMLs has led to the development of several
“Executable Metamodeling” approaches, where models are executable according to an ex-
ecution semantics defined at the metamodel (abstract syntax) level.

Modern softwares and systems are also increasingly concurrent, to accommodate for
their increasing scale in users, features, and overall importance in our societies. To en-
sure an adequate behavior, notably in terms of their interfacing with users or with other
systems, or simply in terms of performance, their execution environments provide more
and more parallel facilities, such as GPGPU pipelines, many-core CPUs or FPGAs. To
facilitate their deployment on various platforms, highly-concurrent softwares must be de-
veloped without prior knowledge of their execution platforms, while still allowing full

exploitation of the available parallel facilities at runtime. The specification of the concur-
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rency concerns of modern systems is thus placed at the heart of the software engineering
activities. Theoretical computer science has studied several paradigms for this purpose,
commonly denominated as Models of Concurrency (MoCs). MoCs are formalisms which
are practical for the analytical study of properties relating to concurrency, such as detect-
ing deadlocks, starvation situations or liveness properties of critical parts of a system. But
using a MoC is complex, since it requires both theoretical knowledge about the MoC, prac-
tical knowledge about its use, and overall solid knowledge of the system being developed.
Even if explicitly used, it is essentially hard-coded for a specific system, and little to no
guarantee of its correct use is ensured by the language.

We build upon an existing xDSML design approach, published in the International Con-
ference on Software Language Engineering 2012 [18] and 2013 [19], which attempts to
bridge the gap between LOP and MoCs, by designing so-called Concurrency-aware xDSMLs.
In these languages, the concurrency concerns of an xDSML are made explicit using a dedi-
cated formalism based on a MoC. By making these concerns explicit at the language level,
the correct use of a MoC for any program conforming to the syntax of the language is
ensured. They can be specialized at design time, to implement a particular Semanptic
Variation Point (SVP) of the language, or refined at deployment time, for a specific exe-
cution platform. Consequently, the concurrency aspects of a system can be analyzed, via
model-checking tools for instance.

In this thesis, we detail and improve upon the design of concurrency-aware xDSMLs.
We first focus on the separation of concerns inside the operational semantics specification.
The concurrency concerns are separated from the data and functional operations aspects
of the semantics. Executing a model is done by coordinating the execution of these two
concerns. This coordination is specified thanks to a third concern, making explicit the com-
munication between the first two concerns. We study the possible coordinations that can
be specified, and how they are realized at runtime. Then, we focus on the Model of Concur-
rency used in the initial approach: Event Structures. This formalism is not a good fit for all
xDSMLs, thus we propose a recursive definition of concurrency-aware xDSMLs, enabling
the use of any concurrency-aware xDSML as a MoC. This approach provides a formal def-
inition and interface for MoCs, as well as allows xDSMLs to use an adapted language for
the specification of their concurrency. Finally, we step away from operational semantics
and propose an approach to define the semantics of concurrency-aware xDSMLs in a trans-
lational manner, based on any previously-defined concurrency-aware xDSML. We detail
the advantages and drawbacks of using translational semantics instead of operational se-
mantics in the context of concurrency-aware xDSMLs, and propose an approach to catch

up on some of the execution facilities provided by the operational semantics approach.
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Résume
Abstract (in French)

La complexité des systemes et logiciels contemporains, tels que 'internet des objets (the
Internet of Things) ou les systémes cyber-physiques (Cyber-Physical Systems), ne cesse
de croitre. Le nombre de fonctionnalités et d’intéractions qu’ils doivent gérer s’élargit
sans arrét, et celles-ci impliquent généralement un nombre croissant d’acteurs tel des
réseaux de différentes natures, ainsi que d’autres systéemes ou logiciels. Ils doivent aussi
respecter de nombreuses normes de stireté et de sécurité, tout en fonctionnant suivant un
temps de réponse acceptable pour les acteurs externes (utilisateurs ou autres systémes).
Leur conception et développement sont de plus en plus coliteux, principalement en terme
d’ingénierie, mais aussi possiblement en terme de composants matériels. Leurs processus
de mises a jour et de maintenance deviennent eux aussi, en conséquence, plus complexes

que jamais.

Afin de faciliter ces différentes activités, les chercheurs en génie du logiciel doivent
proposer de nouveaux paradigmes de développement. C’est dans ce contexte qu’a été pro-
posée la programmation orientée langages (Language-Oriented Programming — LOP). Cette
approche place I'utilisation de langages informatiques adéquates au centre des activités
d’ingénierie. Plus précisément, elle repose sur la conception et I'utilisation de nombreux
langages dédiés (Domain-Specific Languages — DSLs) différents, chacun d’entre eux étant
dédié a 'expression de la solution d’un aspect particulier du systéme. Les systémes com-
plexes étant le plus souvent concus par des experts métiers (circuits électriques, circuits
hydrauliques, mécanique des fluides, réseaux, sécurité, etc.), les langages de modélisation
dédiés (Domain-Specific Modeling Languages — DSMLs) sont plus adaptés car leurs con-
cepts sont précisément faits de facon a correspondre a un domaine métier. Ceci facilite
I'utilisation de langages informatiques par les experts métiers, experts qui ne sont pas
nécessairement formés a la programmation informatique. Ce paradigme a donné nais-

sance a une discipline appelée Ingénierie des Langages (Software Language Engineering),
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qui se focalise sur la conception, 'implémentation et 'outillage des langages (de modéli-
sation) dédiés.

Lors de la conception d’un systéme, la possibilité de pouvoir simuler son comporte-
ment permet d’effectuer des activités de vérification et de validation de ce systéme. Cela
peut permettre de valider une spécification, de détecter des erreurs de conception, ou de
réaliser des étapes de validation intermédiaires des le début du processus d’ingénierie. Les
DSMLs permettant cela sont dits “exécutables” (eXecutable DSMLs — xDSMLs). Dans le
cadre de I'Ingénierie Dirigée par les Modéles (Model-Driven Engineering — MDE), la popu-
larité des xDSMLs a conduit au développement de nombreuses approches dites de “méta-
modélisation exécutable” (Executable Metamodeling). Un modele conforme a un métamod-
éle est exécutable selon une sémantique d’exécution définie au niveau du métamodele, qui

représente alors la syntaxe abstraite du langage.

Les systemes et logiciels complexes sont aussi de plus en plus concurrents ; conséquence
de leur complexité et du passage a I’échelle en termes d’utilisateurs et de fonctionnalités a
gérer. Pour que leur exécution demeure adéquate, notamment dans le contexte d'une in-
terface avec des utilisateurs ou d’autres systemes, ou tout simplement pour améliorer leur
performance (rapidité d’exécution, temps de réponse, etc.), les plateformes sur lesquelles ils
s’exécutent sont dotées de capacités de parallélisation telles que des processeurs graphiques
(GPGPU), des processeurs multi-cceurs (many-core CPUs) ou des réseaux de portes pro-
grammables in situ (Field-Programmable Gate Arrays — FPGAs). Afin de permettre leur dé-
ploiement sur des plateformes de natures diverses, ces systéemes doivent étre développés
sans connaissance préalable de la plateforme d’exécution finale, tout en étant spécifié de
facon a pouvoir bénéficier d’éventuelles capacités de parallélisation. La spécification cor-

recte des aspects concurrents de ces systémes est donc au cceur du développement logiciel.

Dans le domaine de la recherche en informatique théorique, plusieurs formalismes ont
été développés dans le but de spécifier les aspects concurrents d’un systéme. Ces formal-
ismes sont appelés modéles de concurrence (Models of Concurrency — MoCs). Ils permettent
I’étude analytique de propriétés liées aux aspects concurrents d’un systéme tels que la dé-
tection de situations d’interblocage, de famine, etc. Cependant, I'utilisation d’'un MoC est
complexe : elle nécessite une bonne connaissance théorique du MoC, un savoir-faire re-
latif & son implémentation et a son utilisation, ainsi qu'une expertise du comportement du
systeme que 'on cherche a spécifier. L’utilisation d’'un MoC est donc souvent restreinte
a un systeme donné, et peu de garanties sur la correction de son utilisation peuvent étre

assurées.

Nos travaux visent a combiner I’approche LOP avec I'utilisation de MoCs. Ils reposent

sur une approche existante, initialement publiée dans I'International Conference on Soft-
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ware Language Engineering 2012 [18] et 2013 [19], qui pose les bases de la conception de
xDSMLs pour lesquels les aspects concurrents de la sémantique d’exécution sont explicités
a l’aide de l'utilisation d'un MoC (Concurrency-aware xDSMLs). L’utilisation d’un MoC est
spécifiée au niveau du langage, et non du systéme, sur la base d’'un MoC existant. Cette ap-
proche garantit |'utilisation cohérente d'un MoC par tous les modeles conformes au méme
xDSML. Des outils dédiés a la vérification de modeles (model-checking) peuvent ensuite
étre appliqués sur les aspects concurrents spécifiques a un modéle. Ces langages avec con-
currence explicite peuvent aussi étre raffinés, par exemple afin d’implémenter un point de
variation sémantique (Semantic Variation Point) du langage, ou bien pour le spécialiser a
une plateforme d’exécution particuliere.

Dans cette thése, nous détaillons et améliorons la conception de concurrency-aware
xDSMLs, et exécution de modeles conformes a ces langages. Dans un premier temps,
nous nous concentrons sur la séparation des préoccupations au sein de la sémantique
opérationnelle. Nous séparons les aspects concurrents d’une part, des aspects liés aux
données et a leur évolution d’autre part. L’exécution d’'un modéle est ensuite réalisée par
la coordination de ces deux préoccupations. Cette coordination est définie a 1'aide d’un
troisieme élément représentant la communication entre ces deux aspects. On détaillera,
notamment, les différentes formes de coordination qui peuvent étre définies. Cette ap-
proche repose dans un premier temps sur l'utilisation d’'un MoC particulier : les struc-
tures d’évenements (Event Structures). Les MoCs correspondant a un paradigme de con-
currence particulier, ils sont plus ou moins adaptés pour un domaine (et par extension,
pour un langage) donné. Nous proposons donc une approche permettant la définition et
I'utilisation de nouveaux MoCs. Notre proposition repose sur une définition récursive de
la spécification des concurrency-aware xDSMLs, dans laquelle le MoC est un concurrency-
aware xDSML défini préalablement. Enfin, nous proposons une approche translationnelle
de la sémantique de ces langages, c’est-a-dire une définition de la sémantique d’exécution
d’un langage reposant entierement sur I'utilisation d'un autre concurrency-aware xDSML.
Cette approche facilite la spécification de nouveaux langages, mais certains avantages de
I'utilisation de concurrency-aware xDSMLs sont perdus par 'utilisation de cette technique.

Nous proposons donc une solution permettant de pallier ces inconvénients.
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“I must not fear. Fear is the mind-killer. Fear is the little-death that brings
total obliteration. I will face my fear. I will permit it to pass over me and
through me. And when it has gone past I will turn the inner eye to see its

path. Where the fear has gone there will be nothing. Only I will remain.”
Litany against fear, in Dune, by Frank Herbert (1920 — 1986).

INTRODUCTION AND OBJECTIVES

SuUMMARY

We summarize the context of our work: modern, highly-concurrent, software-intensive
systems, deployed and executed on increasingly-parallel platforms. We then introduce
two research fields that we bring together in this thesis: the Language-Oriented Program-
ming (LOP) paradigm, concretized through the design and implementation of eXecutable
Domain-Specific Modeling Languages; and Models of Concurrency (MoCs), used to pro-
vide high-level concurrency constructs to computer languages. We present the research
context within which this thesis was realized, and the objectives of this thesis with regards

to LOP and MoCs. Finally, we lay out the organization of the rest of this document.

Chapter Outline
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2 Introduction and Objectives

RESUME

Nous présentons dans ce chapitre les contextes scientifique et académique de nos travaux,
ainsi que les objectifs de notre these.

L’omniprésence des ordinateurs dans notre vie quotidienne a fait du génie logiciel une
discipline phare de notre société moderne. Combinées a la complexité exponentielle des
logiciels qu’ils exécutent, les activités de conception, développement, mise au point, test,
refactorisation, simulation et exécution d’un logiciel sont plus complexes que jamais. De
nouveaux paradigmes de génie logiciel doivent donc étre développés, outillés et enseignés.
Les paradigmes a base de modéles, tels que I'ingénierie a base de modéles (Model-Based
Software Engineering — MBSE) dans lesquels les modeles sont un concept clé, dérivant
jusqu’a 'ingénierie dirigée par les modeéles (Model-Driven Engineering — MDE) lorsque
ceux-ci représentent le coeur méme du processus, ont prouvé leur efficacité dans les in-
dustries qui les ont adoptés.

Cependant, le cout de cette adoption demeure élevé. Les langages de modélisation
généralistes comme UML (Unified Modeling Language) peuvent étre utilisés pour de nom-
breux domaines et de nombreuses activités, mais nécessitent des investissements en termes
d’outils, d’infrastructures et de formations qui peuvent étre prohibitifs. La généricité de
ces langages est au prix de leur complexité, et du colit qui en découle. Des problemes
similaires se retrouvent dans les langages de programmation, pour lesquels de nombreux
frameworks et bibliotheque sont développés afin de permettre la résolution de problemes
particuliers. L’utilisation de ces outils devient plus complexe a mesure que les problémes
s’intensifient. Pour pallier cela, il est possible de créer des langages dédiés (Domain-Specific
Languages — DSLs) qui se focalisent sur la résolution d’une classe de problemes donnée, a
I'aide d’une syntaxe et d’'une sémantique d’exécution adaptée. Dans I’approche MBSE, ils
se concrétisent sous la forme de langages de modélisation dédiés (Domain-Specific Model-
ing Languages — DSMLs), autrement dit, des langages adaptés a la résolution des problemes
d’un domaine métier particulier, représenté sous forme de métamodeéle, et dont les solu-
tions peuvent étre formulées par des experts du domaine (éventuellement ignorants des
technologies liées a la programmation).

Ces langages sont dits exécutables (xDSMLs) lorsqu’ils disposent d’une sémantique
d’exécution. Les programmes conformes a un xDSML (qui sont donc des modéles de
systémes) peuvent étre exécutés, c’est-a-dire que leur chargement par un environnement
d’exécution comme un systeme d’exploitation ou une machine virtuelle conduit a une sim-
ulation du systéme réel représenté par le programme. Ceci permet de vérifier et de valider

le comportement du systeme tres tot dans le processus de développement logiciel.



Le développement de xDSMLs est au coeur d’'une approche appelée programmation
orientée langages (Language-Oriented Programming — LOP). La création et l'outillage de
xDSMLs demeure complexe et réservée a des experts en théorie des langages informatiques
et technologies associées. En particulier, la définition de la sémantique d’exécution peut
trés rapidement devenir extrémement complexe pour des langages avec un haut niveau de
concurrence. Or, les xDSMLs doivent permettre la spécification des systemes complexes,
qui sont souvent extrémement concurrents, et/ou exécutés a 'aide de plateformes concur-
rentes (distribuées, hautement paralléles, etc.). Les techniques actuelles de développement
de xDSMLs rendent difficile la définition des aspects concurrents d’un langage indépen-
damment de toute plateforme d’exécution particuliere. En conséquence, les aspects con-
currents d’'un xDSML émanent soit implicitement de la plateforme d’exécution utilisée,
ou bien de I'implémentation du langage exploité. Langages et systémes sont donc diffi-
ciles a raffiner, par exemple pour passer d’'une plateforme séquentielle a une plateforme
hautement paralléle. Si tant est qu’il soit possible, ce raffinement est, pour un systéme,
fait le plus souvent de fagcon manuelle. Ceci nécessite de bien connaitre le modéle de con-
currence (Model of Concurrency — MoC) utilisé (réseaux de Pétri — Petri nets ; structures
d’évenements — Event Structures ; modele d’acteur — Actor model ; etc.). Dans les langages
de programmation généralistes, ces MoCs sont le plus souvent trés génériques (permettant
de les utiliser pour tous types de systéme) et accessibles a 'aide d’'un framework ou d’une
bibliotheque, ce qui permet de les combiner librement. L’utilisation correcte d’'un MoC doit
donc étre assurée par le concepteur du systeme, qui doit donc étre formé a I'utilisation a

la fois du langage utilisé et du MoC choisi, tout en étant un expert du systeme.

Dans cette these, nous souhaitons faciliter la spécification des aspects concurrents des
systémes et des langages. Nous formalisons et étendons une approche permettant la défi-
nition de xDSMLs dans lesquels les aspects concurrents sont explicités a I’aide d'un méta-
langage adapté, sur la base d'un MoC. L’approche permet aussil’exécution des programmes
conformes a ces langages. Ces xDSMLs sont dits concurrency-aware, car dans la sémantique
d’exécution les aspects concurrents sont explicites, au contraire des approches tradition-
nelles dans lesquelles ils sont généralement diffus, et donc difficiles a identifier, analyser
et raffiner. La définition de ces langages repose sur la spécification de comment un MoC
est utilisé de facon systématique pour tout modéle conforme au langage. Cette spécifica-
tion peut ensuite étre raffinée pour particulariser le langage a une plateforme d’exécution
spécifique. L'utilisation du MoC pour un modele peut aussi étre utilisée pour des analyses
telles que la recherche d’interblocages ou de famines, permettant de garantir la validité du

comportement concurrent du systéme. Enfin, cette approche facilite grandement la spécifi-
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cation de systémes complexes, puisque I'utilisation d'un MoC est faite de facon mécanique,
grace a son intégration au niveau du langage.

Cette thése a été réalisée dans le cadre du projet ANR INS GEMOC, qui étudie les
problématiques de la définition des aspects concurrents de la sémantique d’exécution des
xDSMLs, des interfaces structurelles et comportementales des xDSMLs, et de la coordina-
tion entre xDSMLs. Ce projet regroupe INRIA (Institut National de Recherche en Informa-
tique et en Automatique) a travers I'IRISA' (Institut de Recherche en Informatique et Sys-
témes Aléatoires) de Rennes et 13S* (Laboratoire d’Informatique, Signaux et Systémes de
Sophia Antipolis) de Sophia Antipolis ; Thales Research & Technology® ; Obeo* ; 'ENSTA
Bretagne® (Ecole Nationale Supérieure de Techniques Avancées de Bretagne) et 'IRIT® (In-
stitut de Recherche en Informatique de Toulouse).

Dans le Chapitre 2 nous présentons les travaux qui ont servi de fondation a cette these.
En particulier, nous définissons la notion de concurrence et de modéles de concurrence.
Nous présentons les approches traditionnelles de définition de langages et de leur sé-
mantique d’exécution, et les moins traditionnelles, c’est-a-dire a base de modeles dans le
cadre de I'Ingénierie Dirigée par les Modeéles (Model-Driven Engineering — MDE). Dans le
Chapitre 3, nous présentons comment définir la sémantique d’exécution d’un concurrency-
aware xDSML. Nous analysons ensuite les limites de 'approche, par exemple certaines
constructions de langage sont complexes ou impossibles a spécifier, et proposons des so-
lutions. Nous présentons aussi 'implémentation dans un atelier de langage basé sur la
plateforme Eclipse. Dans le Chapitre 4, nous étudions I'intégration de nouveaux MoCs
dans ’approche, qui est initialement limitée au MoC des structures d’événements. Cette
contribution repose sur une définition récursive des concurrency-aware xDSMLs, permet-
tant I'utilisation, en tant que MoC, d’un concurrency-aware xDSML précédemment défini.
Enfin, nous étudions dans le Chapitre 5, comment définir la sémantique d’exécution de
facon translationnelle, tout en ayant une spécification explicite des aspects concurrents de
cette sémantique. Le Chapitre 6 présente la conclusion et les perspectives de nos travaux
de thése.

'http://diverse.irisa.fr/

https://team.inria.fr/aoste/
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*http://www.ensta-bretagne.fr/stic/index.php/ingenierie-dirigees-par-les-modeles/
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1.1 Context

1.1.1 Technological Context

C OMPUTERS are everywhere. Their pervasiveness in our daily lives has made soft-

ware engineering a key discipline in modern societies. Not only are computers

more vital than ever, but the complexity of the software they host is also higher than
ever. Designing, developing, debugging, testing, refactoring, simulating, implementing
and executing software systems has never been more challenging. These challenges are
even more prevalent for the highly-concurrent, highly-distributed, fault-tolerant systems

of tomorrow: the Internet of Things, Cyber-Physical Systems, Smart Grids and Cities, etc.

To address these problems, suitable programming paradigms must be designed, tooled,
and taught. In Model-Based Software Engineering (MBSE), models are important artefacts
used for the formulation of the architecture, conception, deployment, behavior, etc. of
a system. In Model-Driven Engineering (MDE), models are the key artefacts of the en-
gineering activities. MBSE and MDE have proven effective at efficiently capturing the
complexity of modern software-intensive systems [78], thus facilitating their development

and maintenance.

Yet, these paradigms still come at a heavy cost. General-purpose Modeling Languages
(GMLs) like the Unified Modeling Language (UML) [111] offer generic constructs for the
specification of systems, but require sophisticated tooling, adequate training, and their
genericity usually complicates the specification of key business solutions. Moreover, mod-
ern systems are usually designed by domain experts, who do not necessarily have a back-
ground in software engineering, modeling or even a computer-related field. This is a heavy
weight against the general adoption of GMLs as a suitable paradigm. In fact, a GML often
consists of several sub-languages, integrated together to form the GML. For instance, UML
is composed of different diagrams (Class Diagram, Object Diagram, Package Diagram,
Component Diagram, Activity Diagram, State Machine Diagram, Sequence Diagram, etc.),
each with its own syntax and semantics. A similar issue is found in the programming com-
munity: scientists need to integrate their computations with tools or frameworks based on
General-purpose Programming Languages (GPLs) such as Java, C++ or Python; database
administrators need to allow applications written in GPLs to interact with their databases;
front-end designers need practical constructs for the presentation of data, etc. GPLs are
usually equipped with libraries providing the tools to realize certain tasks. Although they
are effectively written using the same language, different libraries of a same GPL may

have extreme differences in their syntactic (e.g., naming, types used, nature of exceptions
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thrown, etc.) and semantic (e.g., free of side-effects, or relying on them, optimized for a

particular hosting platform, etc.) aspects.

These problematics have lead to the development of Domain-Specific Languages (DSLs).
DSLs provide programmers with powerful abstractions, facilitating the specification of a
particular solution. In MBSE, they are concretized as Domain-Specific Modeling Languages
(DSMLs): languages whose constructs and semantics are focused on a particular problem
domain, and whose abstractions are intuitive for the domain experts to formulate solutions
in. In these languages, the “programs” are models conforming to a metamodel (the data
model, or abstract syntax, of the language), representing a real-world system (or relevant
parts of it). The distinction between DSLs and general-purpose langages is blurry; even
among GPLs, arguments can be made for using one or the other (e.g., C or C++ for embed-
ded devices due to its closeness to hardware languages, Python for scientific computing
due to its numerous libraries and ease-of-use, Java for its cross-platform interoperability
and the JVM ecosystem, etc.). It is not uncommon for softwares to combine several GPLs
simply because some parts are more adequately addressed by some particular GPL. DSLs
simply stretch this principle to the point where they are more adequate for a specific class
of problem (i.e., its domain), and where they often abandon some of the general-purpose
features because they are not needed for the addressed domain. In that sense, DSLs are thus
often considered as “simpler” languages than GPLs. This makes them, by construction, the

“right tool for job”, provided the domain is adequate for the problem at hand.

By defining an execution semantics (also called dynamic semantics or behavioral seman-
tics) for a DSML, it can be made eXecutable (xDSML). Models conforming to an xDSML
are executable, that is, when one is loaded by the execution environment of the language
(i.e., an operating system or a virtual machine), it produces a simulation of the real-world
system represented by the model. Executability enables the early verification and valida-
tion of the systems being designed, i.e., there is no need to reach the deployment phase
of the system in order to ensure its behavior is as expected. This saves a lot of time (for
the system designers and domain experts) and associated costs (hardware, support, etc.).
Ultimately, MDE advocates that the real-world software system be generated based on
its models, therefore guaranteeing the conformity of the system to its model. This code

generation stage, however, raises its own set of challenges.

Designing languages, and even more so, xDSMLs, is complex. Existing language de-
sign approaches usually focus on the syntactic aspects of a language (i.e., its concepts, how
they are represented, and how they can be manipulated by the end user) and its tooling
(i.e., editor features, possibly integrated into an IDE), relying often on ad-hoc solutions

for the semantical aspects. The main challenges remaining in defining xDSMLs thus en-
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tail the specification of execution semantics, and the definition of the associated tooling

(interpreter, compiler, animator, debugger, etc.).

To enable the specification of highly concurrent and distributed softwares, xDSMLs
must have a rich concurrent semantics, allowing the use of modern highly-parallel plat-
forms such as GPGPU pipelines, multi-core CPUs, distributed networks, etc. The parallel
capacities of the platform(s) should not leak into the system design, but instead be ab-
stracted away and dealt with in the deployment phase. However, current language de-
velopment techniques make this difficult. Systems are often designed with a specific ex-
ecution platform (or a family of platforms) in mind, and so are languages. In particular
xDSMLs often do not make explicit which concurrency model they use, relying instead on
the implementation or on a specific platform to provide one, thus preventing its analysis,
variation and refinement. Moreover, the specialization to a specific execution platform
(e.g., distributed, sequential, highly-parallel, etc.) is usually given at the program level,
but this activity requires specific knowledge about the theoretical model involved. These
theoretical models are known as “Models of Concurrency” (MoCs). Notable MoCs in the lit-
erature include Petri nets [107], Event Structures [160] and the Actor model [65]. In GPLs,
MoCs can be used through language constructs, libraries or frameworks, but their use is
complex and submitted to many implicit rules. The mapping from the concurrency-related
language constructs towards an execution platform is typically hard-coded (thus placing
emphasis on which implementation of the language to use), or relies on an underlying ex-
ecution platform (deferring these decisions to another component whose implementation
may matter). For instance, Python applications behave very differently depending on the
implementation used: the C implementation (CPython) is subject to the Global Interpreter
Lock (GIL), preventing concurrent threads from executing in parallel ; while the Java imple-
mentation (Jython) uses the threads of the Java Virtual Machine (JVM). Since Java 1.3, most
JVM implementations bind these to kernel threads, which can thus be executed in parallel
on multi-core CPUs. However, that is an arbitrary implementation choice made by the
JVM used. The Python specification allows both versions of threading, but some programs
will execute poorly with one or the other interpreter (e.g., a computation-heavy program
may exploit the parallel capacities of Jython, while taking too much time when executed
using CPython; a program with a lot of non-blocking operations such as input/output in-
teractions may execute poorly with Jython due to the cost of context switching between

threads), unless specifically adapted for it, which ties the program to a specific platform.

In this thesis, we focus on integrating the use of MoCs in the definition of the execution
semantics of xDSMLs. We argue that the domain-specificity of xDSMLs allows them to not

only capture domain-related meanings in the semantics, but also domain-related concur-
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rency concerns. Our approach enables the refinement of xDSMLs for specific execution
platforms, by specializing a part of the execution semantics during the deployment of the
language. The concurrency concerns pertaining to a specific model can also be analyzed
depending on the MoC on which it is based. Finally it also protects the end user (domain
expert) from having to master any aspect of a MoC, its implementation and uses, since it is
handled entirely by a language-level specification and applied systematically to any model

conforming to the syntax of the language.

1.1.2 Thesis Context

This work has been conducted in the context of the GEMOC Initiative’. It is an open and
international effort to develop, coordinate and disseminate research results regarding tech-
niques, frameworks and environments to facilitate the creation, integration and coordi-
nated use of various modeling languages used in the design of heterogeneous systems.
Its goal is the globalization of modeling languages, that is, the use of multiple modeling
languages to support the coordinated development of various aspects of a system [20].
More specifically, this thesis was funded by the ANR INS GEMOC project®. It investi-
gates scientific issues such as the weaving of concurrency into executable metamodeling,
the notions of structural and behavioral interfaces of a language, and the use of coordina-
tion patterns between languages to automatically integrate their runtimes. These research
activities are concretized as a set of metalanguages to support a concurrent executable
metamodeling approach, as well as a set of tool specifications for the edition and exe-
cution of models. The resulting implementation is an open-source Eclipse-based language
workbench, the GEMOC Studio’. The partners of the ANR INS GEMOC project are: INRIA

(Institut National de Recherche en Informatique et en Automatique; French Institute for

"http://gemoc.org/
®http://gemoc.org/ins/
*http://www.gemoc.org/studio

ANR-12-INSE-00T1 R
=2 5 10V

Figure 1.1: The ANR INS Project GEMOC logo.
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Gemi@@ﬁ
Studio

Figure 1.2: The GEMOC Studio logo.

Research in Computer Science and Automation), through IRISA'® (Institut de Recherche en
Informatique et Systemes Aléatoires; Research Institute of Computer Science and Random
Systems) and I3S" (Laboratoire d’Informatique, Signaux et Systémes de Sophia Antipo-
lis; Computer Science, Signals and Systems Research Institute of Sophia Antipolis); Thales
Research & Technology'?; Obeo'®; ENSTA Bretagne'* (Ecole Nationale Supérieure de Tech-
niques Avancées de Bretagne; National Institute of Advanced Technologies of Brittany);
and IRIT® (Institut de Recherche en Informatique de Toulouse; Computer Science Research
Institute of Toulouse) where I conducted this thesis.

Although our work in this thesis pertains to the integration of MoCs into Language-
Oriented Programming, the underlying objectives remain tied with the ANR INS GEMOC
project. The possibility to integrate languages and their runtimes for the development of
heterogeneous systems, and therefore interfacing languages at the structural and behav-
ioral levels is, throughout the contributions presented in this thesis, one of the underlying
purposes. Other purposes include the (graphical) animation of the execution of executable
models, and the possibility to coordinate xDSMLs independently of the MoC they rely

upon.

1.2 Objectives

We build upon an existing novel approach for the specification of xDSMLs [19] which

makes explicit, in the execution semantics of xXDSMLs, the concurrency concerns. Such

Yhttp://diverse.irisa.fr/
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xDSMLs are deemed “Concurrency-aware”. These concerns are specified based on a MoC.

It can be further refined for a specific execution platform (e.g., to take into account any

parallel facilities, or lack thereof) and analyzed for a specific model in order to assess be-

havioral properties of a model.

Figure 1.3 sums up the design and use of concurrency-aware xDSMLs.

]..P.—Eggp:lggf:l’ga:st:éséa:nﬂm&nb J‘i‘/‘ ) Language
! w*ﬂ@_bea_rwgtet_vess e
(Gormin Exper )~~~ Resigner
w]r specifies
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Semantics relding Theory
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Figure 1.3: Overview of the concurrency-aware xDSML approach.

Our objectives are the following:

« To participate in the formalization of the initial concurrency-aware xDSML approach

through the specification of its metalanguages.

« In particular, to identify and refine how these langages are interfaced for the defini-

tion of heterogeneous systems.
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+ To analyze the current limitations of the approach, in terms of what sorts of language
constructs (and thus, xDSMLs) cannot be specified, or whose specification is complex
to express or non-idiomatic (relative to the metalanguages used). The concurrency-
aware approach should not limit the set of possible xDSMLs that can be designed

with it (i.e., compared to traditional language design approaches).

+ To study and propose solutions to these limitations. These contributions should fo-
cus on maintaining the benefits of the initial approach (modularity of the semantics,
possibility to analyze the concurrency aspects, etc.) while improving the expressive

power of the approach.

+ To formalize and facilitate the integration of new Models of Concurrency into the
approach, in order to cater to the variety of concurrency paradigms used by different
xDSMLs.

« To formalize the runtime of concurrency-aware xDSMLs, independently of the spe-

cific technologies upon which the metalanguages of the approach rely.

These objectives entail a wide range of topics. The concurrency concerns of an exe-
cutable model are usually specified in an ad-hoc manner for the model. We will formalize
the reification of these concerns to the language level, based on a MoC integrated into
the approach. This means that the corresponding metalanguages must be defined and in-
tegrated into a language design approach. We will study how to identify and structure,
in the operational semantics of xDSMLs, the concurrency concerns on the one hand; in
contrast with the data aspects on the other hand. We will review the different possible
interactions between these two aspects. Moreover, the initial description of the approach
relies on a specific MoC called Event Structures [160]; we will discuss how to define and
integrate additional MoCs into the approach, in order to cater to the different concurrency
paradigms that may be required for the definition of various xDSMLs. We will also study
the possibility to use translational semantics instead of operational semantics, while still
making explicit the concurrency concerns.

Our work will not contribute new methods or tools to formally analyze the concurrency
aspects of a system; instead, we will rely on the use of well-known formalisms developed
in the Concurrency Theory community. Moreover, the executability of models is often
used for simulation and not for production-grade execution. This means that the notion of
time is not tied to the “physical” notion of time we rely on everyday. Instead, time is seen
as “logical”, that is, related to the notion of “execution step” during the simulation of a sys-

tem (like when using the Java debugger). This may complicate the language development
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activity, in the same way that debugging a multithreaded application alters its execution.
The xDSMLs defined should therefore be considered for their analytical (and illustrating)
purposes. Our work will not deal with the generation of an efficient implementation of
the xDSMLs we specify, which is a problematic of its own.

Our contributions will be illustrated on example common xDSMLs and models, using
pseudo-code and/or our metalanguage implementations to illustrate the example specifica-
tions. Our implementations of these example xDSMLs using the metalanguages developed
are made available in the appendices. In particular, in our formalization of the metalan-
guages of the concurrency-aware xDSML approach and their implementations, we try to
remain as user friendly as can be. This means that whenever possible, the metalanguages
should rely on existing concepts and syntaxes of the traditional programming or modeling

communities.

1.3 Outline

The rest of this thesis is structured as follows:

+ Chapter 2: we give essential elements of background. We discuss the definition
of concurrency and how it is specified. We also present traditional approaches to
language design, as well as model-based approaches to language design. Then, we
introduce early work on approaches that combine these two domains, and which

constitute the initial inspiration for our work.

« Chapter 3: we present our formalization of the operational semantics approach for
the specification of concurrency-aware xDSMLs. In these languages, the concur-
rency concerns are made explicit thanks to a dedicated specification. We illustrate
the approach on an example xXDSML and gradually augment the approach with fea-
tures to enable the specification of advanced language constructs, or to equip concur-

rency-aware xXDSMLs for interfacing purposes.

« Chapter 4: we give a recursive definition of the concurrency-aware approach, by
enabling previously-defined concurrency-aware xXDSMLs to be used as the Model of
Concurrency of other concurrency-aware xDSMLs. This provides a seamless way to
define and integrate new MoCs into the approach. We identify its consequences in

terms of analyzability of the language and its conforming models.

« Chapter 5: we consider the definition of the execution semantics of concurrency-

aware xDSMLs in a translational manner. We analyze the costs and benefits of us-



1.3 Outline 13

ing translational semantics instead of operational semantics for concurrency-aware
xDSMLs.

« Chapter 6: we sum up our work and propose perspectives for future research activ-

ities.

Finally, the Appendices (starting from page 215) illustrate many elements of our imple-

mentation of the approach.






“A philosopher/mathematician named Bertrand Russell [...] once wrote:
‘Language serves not only to express thought but to make possible
thoughts which could not exist without it’ Here is the essence of
mankind’s creative genius: not the edifices of civilization nor the bang-
flash weapons which can end it, but the words which fertilize new con-

cepts like spermatozoa attacking an ovum.”

in Hyperion, by Dan Simmons (1948 — current).

Background

SUMMARY

We present previous and related work on the study of concurrency and language design.
We start by introducing key background elements about Models of Concurrency. In partic-
ular, how their use is usually made through language constructs, libraries or frameworks,
and how this may make it hard. We then present traditional language design techniques,
both concerning the syntactic and semantics aspects. We then focus on Domain-Specific
Languages (DSLs) and Modeling Languages (DSMLs) by discussing their purposes and
their specification. Finally, we introduce the use of Model-Driven Engineering for the
design of DSLs, including previous work on the specification of executable DSLs with rich
and explicit concurrency semantics, which constitute the foundation upon which our con-

tributions will be realized.
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RESUME

Nous présentons dans ce chapitre des travaux existants et connexes aux thématiques abor-
dées dans notre these.

Nous commencons par discuter de la définition de la concurrence, et principalement de
sa relation avec le parallélisme ; ces deux notions étant souvent confondues, parfois reliées,
et rarement formellement et explicitement séparées. Nous présentons ensuite la notion de
modele de concurrence (Model of Concurrency — MoC) qui consiste essentiellement en la
définition de formalismes adaptés a I'expressions des aspects concurrents d’un systéeme.
Ces formalismes sont généralement accessibles dans les langages de programmation tels
que Java, Scala, Ruby ou Python a travers des constructions de langage, des frameworks ou
des bibliotheques.

Nous présentons ensuite les techniques traditionnelles de conception de langages. Un
langage (informatique) est généralement structuré de la maniére suivante. La syntaxe
abstraite regroupe les concepts du langage ainsi que leurs relations. Une sémantique
statique permet de définir des contraintes supplémentaires sur cette structure. La syn-
taxe abstraite peut étre mise en correspondance avec une représentation, généralement
textuelle ou visuelle, permettant aussi sa manipulation (i.e., la saisie d’'un programme,
ou modele, conforme au langage). Le comportement d’un langage est donné par sa sé-
mantique d’exécution (parfois appelée sémantique comportementale ou sémantique dy-
namique, ou tout simplement sémantique). La sémantique d’exécution a été 'objet de
nombreux travaux de recherches et de théories. Trois grandes approches de la sémantique
co-existent : axiomatique, ou I'on précise 1’état précédent un changement (préconditions)
et I’état suivant un changement (postconditions) sous forme de propriétés ; opérationnelle,
ou 'on spécifie comment les valeurs dynamiques évoluent durant ’exécution; et transla-
tionnelle, ou 'on transforme le programme en un programme conforme a un langage dont
la sémantique d’exécution est déja définie et connue. Nous présentons ensuite les notions
d’interfaces structurelle et comportementale d’'un langage et leurs utilisations respectives.
Nous présentons déja quelques limitations de cette approche traditionnelle vis-a-vis de la
spécification de systémes fortement concurrents.

Nous nous attachons ensuite a une catégorie particuliéere de langages : ceux dédiés
a un domaine particulier, appelés langages dédiés (Domain-Specific Languages — DSLSs).
Nous exposons les raisons du développement de tels langages, ainsi que la dichotomie
parmi les langages dédiés entre ceux constituant une spécialisation locale d’'un langage
hote généraliste (langages dédiés internes) et ceux étant des langages a part entiére (lan-
gages dédiés externes). Les langages dédiés sont essentiels a la programmation orientée

langages (Language-Oriented Programming — LOP). Cette approche repose sur I'utilisation
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combinée de nombreux langages dédiés, chacun spécialisé pour un aspect particulier du
systéme congu. Les outils facilitant la définition de langages dédiés, appelés ateliers de
langages (Language Workbenches), se sont développés pour soutenir cette approche.

Pour finir, nous introduisons la notion d’Ingénierie Dirigée par les Modeéles (Model-
Driven Engineering — MDE) qui place les modéles au coeur du génie logiciel. Ce paradigme
est notamment propice au développement de ce que 'on apppelle les langages de mod-
élisation (Modeling Languages), souvent utilisés dans 'industrie pour leur pragmatisme
et practicité pour des utilisateurs non-informaticiens. Il permet aussi le développement
et I'outillage de langages, et a été utilisé dans le développement de nombreux ateliers de
langages.

Nous présentons enfin les premiers travaux concernant l'intégration des modeles de
concurrence dans les techniques de développement de langages a base de modeles et qui
ont servi de fondations pour les contributions proposées dans cette these.

Nous terminons ce chapitre par une présentation du contexte technique dans lequel les
travaux d’implémentation liés a cette these ont été développés, c’est-a-dire la plateforme
Eclipse et notamment son framework de métamodélisation (Eclipse Modeling Framework —
EMF).
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2.1 Concurrency and its Specifications

2.1.1 Defining Concurrency

The definition of concurrency is made difficult because of its domestic meaning, as illus-

trated by the Wiktionnary’s definitions':

1. The property or an instance of being concurrent; something that happens at the same

time as something else.

2. (computer science) a property of systems where several processes execute at the

same time.
For comparison, that same Wiktionnary’s definition of parallel® is the following:
(computing) Involving the processing of multiple tasks at the same time.

Concurrency and parallelism are however two very different concepts. In fact, the con-

3,4,5,6,7,8 and

fusion between these two terms has been the subject of many interrogations
contributions (e.g., by Simon Marlow’, author and co-developer of the Glorious Glasgow
Haskell Compilation System, GHC; by Robert Harper'?, of Standard ML fame; or by Rob
Pike ", one of the designers of the Go programming language [52]). A whole subsection
is also dedicated to this in Peter Van Roy’s “Programming Paradigms for Dummies: What
Every Programmer Should Know” [152, Subsection 4.3].

In the rest of this thesis, we will use the following definitions:

« Parallel is a physical concept related to the simultaneous execution of two pieces of

code (i.e., on two different processors).

« Concurrency is a logical concept related to the dependency that exists (or not) be-

tween two pieces of code.

'https://en.wiktionary.org/wiki/concurrency
*https://en.wiktionary.org/wiki/parallel
*http://stackoverflow.com/q/1897993/

*http://stackoverflow.com/q/4844637/

*http://stackoverflow.com/q/3086467/

®http://stackoverflow.com/q/3324643/
"http://stackoverflow.com/q/23571339/
®http://stackoverflow.com/q/1073098/
*https://ghcmutterings.wordpress.com/2009/10/06/parallelism-concurrency/
https://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
Thttp://blog.golang.org/concurrency-is-not-parallelism
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As such, parallelisms are a side-effect of concurrent situations: independent pieces of code
may be executed in parallel, sometimes allowing for better performance. Two pieces of
code are concurrent when there is no dependency between them; they can be executed in
any order (or in parallel, if the platform is able to) without changing the meaning of the
program. By extension, specifying the concurrency of a program consists in specifying the

dependencies between the different pieces of code constituting the program.

In particular, this means that the concurrency aspects of a program include what is
commonly known as the control flow, such as sequences, iterations, etc. When using
General-purpose Programming Languages (GPLs), parts of the concurrency aspects are
already pre-determined by the language. In most GPLs, instructions are generally exe-
cuted in the order they are written in (procedures, data structures, GOTOS, etc. not with-
standing). In that sense, they can be said to be sequential by default. Languages may be
concurrent by default, for instance when based on the Declarative Programming paradigm.
ZAMINIUM [140] is an example of a permission-based, concurrent-by-default, programming

language.

This unification of the control flow and concurrency concepts is also visible when con-
sidering iterations. In “Iteration Inside and Out, Part 2” '?, Bob Nystrom (part of the Dart
development team) goes into the details of internal and external iterators. In doing so,
he analyzes Ruby’s manner of implementing iterations, which is based on the notion of
Fibers. Fibers are a construct most often associated with concurrency rather than with
control flow (i.e, it is akin to lightweight/green threads, and used to realize asynchronous
operations). When two objects interact with each other (i.e., via method calls), it creates a
dependency in the program: the caller and the callee are supposed to be in some expected
state. In the case of iteration, there are two “threads” of execution: the iterator, which

provides a piece of data when asked to, and the calling context, which treats that data.

Finally, this unification can also be seen in attempts to enumerate all natures of control
flow constructs. This is for instance the case of the Workflow Patterns Initiative [133], which
has devised a classification of control flow constructs in workflow systems. In this study,
the authors have identified 43 patterns describing the control flow perspective of workflow
systems. They give a formal description of their semantics using the Coloured Petri-Net
formalism [71]. These patterns are usually handled by a language construct (or a combi-
nation of constructs) in formalisms such as BPMN [158], UML Activity Diagrams [111],
BPEL [120], etc. Some of these patterns are directly related to concurrency constructs, for
instance Parallel Split (akin to fork), Multi-Choice (akin to fork with guards), etc.

2http://journal.stuffwithstuff.com/2013/02/24/iteration-inside-and-out-part-2/
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2.1.2 Models of Concurrency

Models of Concurrency (MoCs) are formalisms dedicated to the specification of concurrent
systems, or to the specification of the concurrent aspects of a system. Historically, MoCs
have emerged from two different communities, so their definitions and uses are not totally
unified.

On the one hand, theoretical computer science has proposed to use MoCs as formalisms
to represent a concurrent system in order to reason about it, or to use it as a specification.
It is often formalized using mathematics, clearly defining the analyzable properties it of-
fers. On the other hand, the programming community has developed MoCs as high-level
abstractions to facilitate the definition of concurrent programs. Indeed, programming lan-
guages used for concurrent programs must offer the constructs to exploit the underlying
Operating System (OS)’s capacities. Many of them stick to mimicking the OS’s capacities,
leaving the programmers with the difficult task of managing their threads manually, with
all the traditional issues it poses : synchronizing threads and locks, ensuring that there is
no deadlocks, data races, etc. These can be difficult to develop, debug, refactor and test.
Advanced “programmatic” MoCs can be implemented on top of this basic layer (often as
libraries or frameworks) to provide more adapted abstractions.

Theoretical MoCs [106], when implemented are usually provided as standalone lan-
guages; while programmatic MoCs are usually integrated into a language, or available
through a library or framework. In any case, the implementation determines how the MoC
concepts are bound to the underlying execution platform, to potentially exploit its paral-
lel facilities. For instance, JVM-based libraries such as Scala’s and Akka’s actors [58, 55]
or Quasar’s fibers [147], are built on top of Java Threads". Java Threads are bound, by
the Java Virtual Machine (JVM) implementation, to the underlying platform. In the case
of Oracle’s HotSpot JVM, a one-to-one binding is made between Java Threads and kernel
threads'.

By using a MoC, we focus on the concurrency concerns of a program, abstracting away
unnecessary details to ease the reasoning about its behavior. As such, there is definitely a
part of subjectivity in which MoC to use for a particular system, or in how “effective” a MoC
actually is. Most likely, this subjectivity will be influenced by the programmer’s knowledge
of and experience with the MoC, as well as the tools and formal properties available for
the MoC. Still, there may be a lot of differences between two implementations of the same

MoC, making it hard to compile a definite list of existing MoCs.

Phttp://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
“http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html#Thread%
20Management|outline
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When using theoretical MoCs, it can be difficult to ensure the validity of the MoC use
with regards to the system considered. If used for analysis, we need to ensure that the MoC
representation of the system does correspond to the intended behavior of the system; if
used as as specification, we need to be able to assert the correctness of the implementation

with regards to the specification. Examples of such MoCs include:

o Petri nets [107, 71] are a well-known computer science formalism. Their simplicity
allows for a complete mathematical understanding, enabling the verification of be-
havioral properties, typically through model-checking. Petri nets also have many
extensions, to include hierarchy, different kinds of tokens or arcs, time constraints,

etc.

o Event Structures [160] rely on a partial ordering over a set of events. When these
events represent instructions of a program, the partial ordering represents the pos-
sible schedulings of these instructions. This makes Event Structures a practical rep-

resentation for concurrent programs [126].
+ Chu Spaces [56] are an extension of Event Structures with an algebraic structure.

« Process Algebras such as Communicating Sequential Processes (CSP) [68], the Cal-
culus of Communicating Systems (CCS) [101], the t-Calculus [102] or the Join Cal-
culus [44]. Mathematical models (and their variations including time, stochastic be-

haviors, etc.) are designed to represent concurrent and distributed systems.

Programmatic MoCs are made available through language constructs of a host lan-
guage (usually a GPL), a library, or a framework. They are mostly used for implementation
purposes, to facilitate the design of highly-concurrent programs by providing high-level
concepts on top of traditional threads and locks. However, their correct use is subjected
to the end-user’s knowledge of the theoretical model, the implementation used, and the

associated good practices. Examples of such MoCs are:

« Threading is a MoC often encountered in GPLs because it mimics the behavior of the
Operating System (OS) [51]. In that case, Threads should not be confused with the
OS-level notion of thread. These conceptual threads are also called green threads,
lightweight threads, coroutines or fibers. Some implementations provide advanced
ways to map them to the kernel-level threads. In C and in Java, Threads are typically
mapped 1:1 to kernel-level threads. They are composed of a set of instructions to ex-
ecute sequentially. They must also be coordinated to ensure no concurrent modifica-

tions to the shared memory space happens. This model poses a lot of problems [89],
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mainly because of the shared memory between threads (which must be controlled
finely using monitors, locks, semaphores, etc.), resulting in a lot of research work

proposing solutions to stir away from this model.

« Simple Concurrent Object Oriented Programming (SCOOP) [98] was designed for the
Eiffel programming language [136] to abstract away the use of threads and locks
for concurrent programs. For Eiffel, it relies on the introduction of a new keyword
separate, used to identify classes which execute in their own thread and syn-

chronization points of the language.

« Software Transactional Memory (STM) [134] can be used for controlling the access
to shared memory in concurrent programs, which is often difficult to manage and is

the origin of data races. This model is inspired by database transactions.

« The Actor model [65] advocates representing a system using a set of actors, inherently
concurrent and without shared state. Erlang [4] and Scala [58, 55] are the best-

known examples of languages promoting actors as their main concurrency construct.

The dichotomy between these two sorts of MoCs is not absolute, since theoretical MoCs
have been a huge influence on how concurrency is implemented in programming lan-
guages. For instance, the Actor model [65] was first designed as a theoretical model, before
gaining traction with Erlang’s [4], and then Scala’s [58] and Akka’s [55] implementations.
CSP has also been a major influence for Go’s concurrency model [52], or for Clojure’s
core.async library™.

An introduction to MoCs in a programmatic manner can be found in Paul Butcher’s
Seven Concurrency Models in Seven Weeks: When Threads Unravel [11].

Different MoCs constitute different formalisms used to capture the concurrency as-
pects of a system. As such, MoCs are somewhat equivalent in that they ultimately express
the same thing, albeit using different rules and under different forms. Some comparisons
between MoCs have been studied, for example between Chu Spaces and Event Structures,
Petri nets, CCS and CSP [56, Chapter 7]; between SCOOP and CSP [10]; between Actors
and Turing machines [64]. In the programming community, MoCs regarded as success-
ful within an ecosystem are often reproduced in other communities. Examples include the
Libmill library*® which brings Go-style concurrency to C; other libraries also bring the con-

cept of structured concurrency [141] to C (i.e., Libdill'?); C++ also has its implementation of

Phttp://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://libmill.org/
7http://libdill.org/structured-concurrency.html
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the Actor Model (cf. the open source C++ Actor Framework'®). The two main paradigms
used to describe MoCs are message passing concurrency and shared memory concurrency. In
the former, the “computing units” of the MoC (e.g., actors, processes, etc.) do not share any
memory. This removes most data races issues caused by shared memory access. Instead,
they communicate by sending messages to each other in order to synchronize. This is
particularly helpful to represent distributed systems. Examples of message-passing based
MoCs are the Actor Model [65], Process Algebras like CSP [68] and the n-Calculus [102].
In the latter, the computing units have some shared memory and the focus is instead placed
on the mutual exclusion to this shared memory (e.g., through locks, semaphores, monitors,
etc.). Examples of such MoCs include the Threading model [89] and STM [134].

In some particular cases, some programmatic MoCs are embedded in what is known as
“Asynchronous Programming”. This is often concretized by language or library constructs
such as Futures'®, Callbacks® or Promises?'. These are often practical synthetic constructs
wrapping a concurrent computation, destined to integrate seamlessly with traditional se-
quential code. They are implemented on top of the core concurrent constructs proposed

by the language (i.e., threads in Java, fibers in Ruby, etc.).

2.1.3 Shortcomings

MoCs are difficult to use because historically, they have been designed, implemented and
used by different communities. Theoretical MoCs are usually provided as standalone lan-
guages, but this complicates their integration into a codebase, which usually involves spe-
cific development, integration and execution tools and particular performance objectives.
Programmatic MoCs are very dependent of their embedding in a host language, making
implementations of a same MoC actually difficult to compare (e.g., Actors in Erlang [4]
and in Scala/Akka [58, 55]). Moreover, they require a good knowledge of the theoreti-
cal model, of its implementation, and of its potential quirks (i.e., depending on the host
language, some concepts may be more or less verbose to express, or affect the runtime
performance of the program). Additionally, there is no common interface for MoCs, so re-
placing one by another must always be done in an ad-hoc manner. This makes comparing
MoCs difficult, because a program is always inherently highly coupled with the MoC used.

In this thesis, we will provide solutions to both of these issues for a particular class of

computer languages.

Bhttp://www.actor-framework.org/
Yhttp://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
http://www.w3schools.com/jquery/jquery_callback.asp
*Thttp://clojuredocs.org/clojure.core/promise
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2.2 Traditional Language Design

We present the main components traditionally constituting a computer language.

2.2.1 Abstract Syntax

The Abstract Syntax (AS) of a language defines the structure of valid programs. It captures
the concepts of the language and the relations between the concepts (i.e., the data model
of the language), as a graph data structure. Programs conforming to the language are
captured as Abstract Syntax Trees (ASTs), although in most formalisms they are actually
graphs, and respect the structure defined by the AS.

The AS is often enhanced with what is called the Static Semantics of the language,
sometimes to the point where “AS” designates the AS with the static semantics included.
The static semantics define additional rules and constraints to the AS, restricting the set of

valid programs. These rules may be difficult, or even impossible, to capture in the structure
of the AS.

2.2.2 Concrete Syntax

The AS is designed with the purpose of capturing, for the computer, the structure of pro-
grams (i.e., the grammar of the language). This comprises two responsibilities: defining
the set of valid programs, but also how to store them in memory. A Concrete Syntax (CS)
serves the same purpose for the user, i.e., how a program can be edited, and how it is pre-
sented to the user. For instance, comments are not necessarily included in the AS because
they generally are part of a sociological process which is not relevant for the computer.
The CS typically defines the keywords, symbols, layouts, etc. used to edit and visualize
programs.

The relation between the AS and the CS of a language is based either on parsing or
on a projection [46]. The former consists in analyzing a program expressed using the CS
to construct the corresponding AST. Traditional textual concrete syntaxes are the typical
example of this approach: a program is stored as a sequence of characters, transformed into
a sequence of tokens by a lexer (also known as scanner or tokenizer), and built into an AST
by the parser. For historical reasons, this is the approach used by most computer languages.
Nowadays, parsers can be generated based on a more abstract description of the CS. This
is, for instance, the case for ANTLR (Another Tool For Language Recognition) [121] or
Xtext [7]. For projection-based approaches, the AST is built directly by actions in the editor
(through an API made available by the AS). The CS consists in projecting the elements of
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the AST onto visual elements in the editor. These elements can be textual, similar to what
is done using parsing technologies, possibly enhanced with mathematical notations like in
embeddrr [156] (built on top of the JetBrains MPS Language Workbench [12]), or tailored
to a certain audience (e.g., young people in Scratch [129]); or graphical (e.g., Simulink [93],
UML [111], etc.). For instance, Eclipse Sirius [37] can be used to define such graphical

concrete syntaxes.

Concrete syntaxes are usually tooled with dedicated editors, providing features de-
signed to facilitate the user’s experience with the language: syntax highlighting, refactor-
ing, auto-completion, etc.

A language may have no CS, for instance in the case where it is only used as an in-
termediary format, and is never shown or modified by a user, in which case its “visual”
representation is never needed. Most of the time however, languages have at least one CS,
and sometimes multiple. Having multiple CSs can be used to propose different viewpoints
on a same program (e.g., graphical CSs can be used to get a better grasp of the structure of
a program, while textual CSs are usually better to manage all the details of an algorithm;
CSs can also be adapted to fit a particular user preference, such as translated keywords or
different pictograms for cultural reasons, etc.). Going from the AST to its concrete syntax

representation is sometimes referred to as “pretty printing”.

Figure 2.1 shows an example program* conforming to a language modeling entities
and properties, as an abstract syntax tree, and using two different concrete syntaxes: a
graphical one (inspired from UML class diagrams) and a parsing-based textual one (based
on curly brackets). The AST is the internal representation, by the computer, of the program;

while the other two are used by the user for editing or visualizing the program.

2.2.3 Execution Semantics

The Execution Semantics of a language attaches a behavior to its constructs (i.e., how they
evolve during execution time). They are also sometimes called “dynamic semantics”, “be-
havioral semantics”, or even just “semantics”. More formally, they establish a Semantic
Mapping between the AS and a Semantic Domain (the concepts that exist in the universe
of discourse, e.g., assembly code, Java bytecode, etc.). Their specification has been the
study of numerous research ever since the inception of computer science. Nowadays, we
traditionally identify three main approaches to the specification of the execution semantics

of a language: Axiomatic, Operational and Translational.

22of. http://www.eclipse.org/Xtext/documentation/
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Figure 2.1: An example program represented as an abstract syntax tree (internal repre-
sentation for the computer) and with a graphical and a textual concrete syntaxes (for the
user).

Axiomatic Semantics

In Axiomatic Semantics, the meanings of a language construct are specified through prop-
erties of the program’s execution state (value of a variable, current instruction, etc.) before,
and after, a semantic action [31]. The best-known logic for this is the Hoare logic [67]. The

actions are used to specify the effect, on the program’s execution state, of the execution of
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the language constructs. Such semantics allow reasoning rigorously about the correctness
of programs and automatic generation of a correct program based on its axiomatic speci-
fication (e.g., for performance or practical reasons), but do have some limitations in terms

of side effects, scoping rules, etc.

Operational Semantics

Operational Semantics relies on a specification of how to perform a computation, rather
than what the effects of the computation on the program state are. Operational Semantics
are usually classified into two categories: Structural Operational Semantics [125, 103] and
Natural Semantics [76]. In the former, each individual step of the computation is detailed.
The behavior of a program is thus defined as the behavior of its parts. In the latter, only

the overall computation is specified.

Translational Semantics

Finally, the execution semantics of a language can be given simply as a translation to an-
other previously well-defined language. This technique is called Translational Semantics,
where a source language’s meanings are given entirely through the meanings of a target
language. A particular case of this technique is the Denotational Semantics [100], when
the language used is a mathematical denotation (e.g., A-calculus and the fixed point the-
ory, etc.). In some other cases, this technique is also called Compilation, typically when
the target language is a less abstract language such as machine code. In other cases, this
is also known as code generation, for instance when the target language is quite high level

like programming languages.

2.2.4 Semantic Variation Points

Semantic Variation Points (SVPs) are language specification parts left intentionally under-
specified to allow further language adaptation to specific uses. SVPs are usually identified
informally in a language’s syntax and semantics specification documents. They are the
acknowledgement, by the language designer, that variations can be applied to the language
depending on its intended use, or to comply to specific constraints (e.g., being able to run
on particular execution platforms, or ensuring no undefined behaviors are allowed). SVPs
can then be implemented through further refinement of the language specification or by
making arbitrary choices in the implementation. For instance, in UML [111], stereotypes
or profiles can be used to extend the language to fit a certain type of applications. In

programming languages, such mechanisms are often implemented in an ad-hoc manner,
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making difficult their study and their variation. This makes the communication between
developers, and between tools, difficult.

Examples of SVPs include the following.

In the C programming language® specification [75], four types of SVPs are identified
formally:

« Implementation-defined behavior: unspecified behavior where each implementation

documents how the choice is made

« Locale-specific behavior: behavior that depends on local conventions of nationality,

culture, and language that each implementation documents

+ Undefined behavior: behavior, upon use of a nonportable or erroneous program
construct or of erroneous data, for which the International Standard imposes no re-

quirements

« Unspecified behavior: use of an unspecified value, or other behavior where the In-
ternational Standard provides two or more possibilities and imposes no further re-

quirements on which is chosen in any instance

When a program’s behavior involves one of these SVPs, it is possible that its behavior is
dependent on the specific implementation used. This complicates the communication be-
tween C developers, as well as between tools that must cooperate. Each implementation
must thus carefully document and specify how these behaviors are implemented. An ex-
ample of unspecified behavior of C is the order in which the arguments of a function are
evaluated. If some arguments include side effects, then this can affect the overall behavior
of the program.

In the Java programming language?!, threads are the main source of SVPs. The Java
Virtual Machine (JVM) specification document [90] does not specify how JVM threads
should be mapped to threads from the Operating System (OS). In earlier versions, JVM
threads were mapped n : 1 to OS threads. Such threads are known as “green threads”,
“user threads” or “lightweight threads”. They are not able to benefit from the parallel
facilities of the underlying OS. Since Java 1.3, most JVM implementations, like Oracle’s
HotSpot, map Java threads directly to system threads [118] (1 : 1 mapping). This feature,
with the generalization of multi-core processors, has contributed to the success of the JVM

as a platform.

“http://www.open-std.org/jtc1/sc22/wgl4/
2https://www.java.net
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In the Python® programming language’s standard library, concurrency can be specified
using threads®® or processes”’. Threads execute within a process, which is in turn hosted
by the OS. Different threads of a process share the same memory space, while different
processes of an OS have their own memory space. Depending on the implementation of
Python used, these two libraries have different semantics. The reference implementation,
CPython, is subject to the Global Interpreter Lock (GIL)*® which prevents multiple threads
of the same process from running in parallel. This hinders any data races, but also prevents
applications from exploiting the parallel facilities of the execution platform. In CPython,
processes are thus the preferred construct for programs which seek to exploit the parallel
capacities of a platform. In the Java implementation, Jython, threads are mapped to Java

threads. Depending on the JVM used, the program may thus be executed in parallel.

A similar issue is found in the Ruby programming language®’. The reference implemen-
tation (Matz’s Ruby Interpreter — MRI) is subject to a GIL, while its Java implementation
(JRuby™) can benefit from the JVM implementation’s capacities of exploiting the parallel
facilities of the underlying platform.

2.2.5 Language interfaces

Most computer languages are defined programmatically, i.e., they are “programs” them-
selves (defined using metalanguages), and live within a technological ecosystem, gener-
ally equipped with other computer languages. As such, they can interact with, or be the
subject of interactions from, other programs. Programs communicate through interfaces.
For a computer language, we distinguish two natures of interfaces: structural interfaces

and behavioral interfaces.

Structural Interfaces

The structural interface of a language deals with the syntactic aspects of the language, i.e.,
it exposes the constituents of a program. This can be used to perform static analysis on a

program’s content (e.g., to find duplicate or dead code, or for the type system).

»https://www.python.org/
*https://docs.python.org/3.5/library/threading.html
*"https://docs.python.org/3.5/library/multiprocessing.html
®https://docs.python.org/3.5/glossary.html#term-global-interpreter-lock
*https://www.ruby-lang.org

*http://jruby.org/
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Behavioral Interfaces

The behavioral interface of a language enables any external program to interact with pro-
grams conforming to this language during their execution. This can be exploited for several
purposes, such as injecting additional code, coordinating other components, or debugging.
Such interfaces are often devised in an ad-hoc manner in a language implementation, mak-
ing their use tied to a particular implementation of the language. For instance, in Java, de-
bugging informations for a class are available (if compiled with the corresponding option)

at runtime, and can be exploited by IDEs to present sophisticated debug views to the user.

2.2.6 Shortcomings

Language design is well-known by now, however, the specification of languages with a
focus on concurrent programs remains difficult. In the traditional approaches we have
described, the concurrency aspects are either inherited from the execution platform, or
from the metalanguage(s) used to specify the execution semantics; or meddled with the
rest of the semantics. This makes them difficult to study, analyze and refine. Moreover,
it requires a form of expertize in language design in order to be able to understand the
concurrency aspects of a language. Additionally, traditional language design techniques
do not handle well the specification, implementation and management of SVPs. They are
often specified informally in the language specification document; implemented and doc-
umented by the implementors (if ever). Comparing them to ensure the correctness of a

program independently of the implementation used is difficult.

2.3 Domain-Specific Languages

In this thesis, we focus on a particular class of computer languages: Domain-Specific Lan-
guages (DSLs) [47, 49].

2.3.1 Purposes

For historical reasons, General-purpose Programming Languages (GPLs) such as C, Python
or Java, constitute the most popular category of computer languages. These languages are
designed to be generic, and their fit for a particular problem include criterias such as the
affinity of the user with that language’s syntax, semantics and ecosystem; the available
ecosystem of libraries, frameworks and guides that could help express the problem’s solu-

tion; the correct integration of the language’s runtime with existing infrastructures.
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However, the complexity of modern softwares and systems tends to overwhelm the
generic facilities of GPLs. It is not that they are not capable of expressing solutions for
complex problems; but rather that they tend to do so in a verbose or tortuous manner,
ultimately rendering complex their specification, implementation, debugging, testing, and
evolution. To alleviate this issue, DSLs have been gaining traction. They aim at providing
the right constructs to address problems of a specific domain. They sacrifice the genericity
of GPLs in order to offer adequate syntax and semantics for a particular domain. As a
consequence, the tools accompanying the language are also domain-specific, and can be
made more efficient (e.g., more intuitive, with domain-specific features, etc.) for the domain
at hand.

2.3.2 Tradeoffs

DSLs are usually “smaller” languages than GPLs, in the sense that they focus on a single
domain, may be internal to a company or to a specific set of practitioners, and therefore
with a smaller userbase. Many do not even need to be Turing-complete. Their smaller size
and need to evolve alongside the domain they address means that DSLs typically evolve
faster than GPLs, requiring additional toolings allowing quick iterations. Table 2.1 sums

up the main differences between DSLs and GPLs, in the general case.

GPLs DSLs
Domain large and complex smaller and well-defined
Language size large small
Turing completeness always often not
User-defined abstractions || sophisticated limited
Execution via intermediate GPL native
Lifespan years to decades months to years (driven by
context)
Designed by guru or committee a few engineers and domain
experts
User community large, anonymous and | small, accessible and local
widespread
Evolution slow, often standardized fast-paced
Deprecation/incompatible || almost impossible feasible
changes

Table 2.1: Main differences between DSLs and GPLs. Courtesy of M.Vélter [155].
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GPLs take most of their characteristics from the second column, while DSLs tend to pick
from the third column. It is important to not consider this table as absolutes: “Domain-
specificity is not black-and-white, but instead gradual: a language is more or less domain-
specific.” [155]. As such, the table above should not be considered literally, but rather as a
summary of the potential differences between DSLs and GPLs.

For instance, variations of the SQL language have been proven to be Turing-complete [43].
That does not mean that implementing complex softwares with it is a good idea. In the
same manner, HTML, which may be seen as a Domain-Specific Markup Language, has a
large, anonymous and widespread community. Python’s infamous backward-incompatible
changes (i.e., between versions 2 and 3) is also uncharacteristic of GPLs, which usually
evolve conservatively in order to cater to enterprise-grade softwares.

The domain-specificity DSLs provide must always be considered with regards to the
genericity they sacrifice for it. Moreover, the additional costs of designing, developing and
maintaining a DSL mean that they are not necessarily the best investment for lower-scale
organizations or small problems. But “adopting an existing DSL is much less expensive
and requires much less expertise than developing a new one. Finding out about available
DSLs may be hard, since DSL information is scattered widely and often buried in obscure
documents. Adopting DSLs that are not well publicized might be considered too risky,
anyway. [96]. However, empirical studies have shown that DSLs are a more effective tool

for solving problems of the domain they have been designed for [82, 80, 123, 81].

2.3.3 Internal and External DSLs

DSLs are usually designed either as standalone languages, or as GPLs extended with domain-
specific concepts. The former are called External DSLs while the latter are called Internal
DSLs (or embedded DSLs).

Internal DSLs are embedded into a host GPL, extending or redefining the syntax or core
language constructs such that they are more adapted for a particular domain. The frontier
between internal DSLs and Application Programming Interfaces (APIs) is blurry. Fluent
APIs, which focus on the readability of the client code using them, can be considered as
this frontier. Internal DSLs are often made possible thanks to features such as dynamic
typing or operator overloading. Scala *' and Ruby are the most glaring examples of mod-
ern GPLs used to host internal DSLs, due to the meta-facilities they provide, with Lisp*
being their forefather. Internal DSLs are practical when they need to be integrated with
an existing code base that works well with the host GPL. They can however be difficult

Shttp://www.scala-lang.org/
Zhttps://common-lisp.net/
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to customize or restrict for the purposes of the DSLs. For instance, DSLs are sometimes
designed such that only valid programs may be entered. This is often challenged by the
powerful expressive power of the host GPL. Internal DSLs may be embedded shallowly (i.e.,
the language constructs are directly defined in terms of the host language) or deeply (i.e.,
the language constructs are used to construct an AST, which may in turn be optimized,

compiled to another language, etc.) [143].

External DSLs are full-fledged languages, which, as of today, are usually more complex
and expensive to develop than internal DSLs. Internal DSLs rely on an existing syntax and
semantics, only specializing or extending specific parts of the host language. Meanwhile,
external DSLs need to consider traditional language design elements such as its abstract
and concrete syntaxes, and the corresponding tool support. Since external DSLs are stan-
dalone language, they can be more easily customized and adequately tooled, for instance to
support Integrated Development Environment (IDE) features such as syntax highlighting
and refactoring, static verifications, or domain-specific features. DSLs are usually smaller
than GPLs, thus their tools will also generally be simpler to produce. Still, the main issue
remains in evaluating whether or not this customizability outweighs the cost and effort of
designing and implementing an external DSL. In modern techniques, part of the tooling
can be derived from the language definition, thus contributing to the popularization of
external DSLs.

Some hybrid approaches have also been proposed, in order to facilitate the design of
external DSLs which can easily be integrated with existing DSLs and GPLs. This is for
instance the case of Xbase [38], which provides a base expression language, with a parser,
linker, compiler, interpreter and IDE features. It can be extended via language inheritance
to define new JVM languages, totally compatible with existing JVM languages such as Java
or other Xbase-based DSLs.

2.3.4 Towards Language-Oriented Programming

Complex systems entail a wide range of issues, and thus often require a combination of
different computer languages [149]. For instance, web development frameworks usually
integrate front-end technologies (CSS, HTML and the de-facto standard Javascript, includ-
ing sophisticated libraries) and back-end technologies (a database, queried using an appro-
priate query language such as SQL, and the application server implemented using a GPL
such as Java, Python or Ruby). In such frameworks, there is a limited and known set of
languages that must cooperate together. The GPL used for the back-end serves mainly as
the glue to tie the database to the front-end.
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More generally, modern softwares and systems usually involve an unknown number
of different langages. Ideally, all these langages are DSLs used for each separate aspect
of the system (i.e.,, instead of one big GPL program separated into modules or packages).
For particular cases, the integration of these different languages may be done in an ad-
hoc manner (like web frameworks do); but this is difficult to generalize. Considering the
fast-paced evolution of DSLs and the multitude of different concerns involved, manual in-
tegration of languages is not a sustainable solution. This challenge remains to be addressed
and is identified as the problem of the globalization of languages [20] (cf. the GEMOC Ini-
tiative®®).

Language-Oriented Programming (LOP) [157, 33] is an approach that places the use of
multiple languages, most commonly multiple DSLs, at the heart of the engineering activ-
ities. By placing the focus on the multiplicity of languages, LOP incidentally raises the
issue of specifying, implementing and tooling these languages [16]. Such meta-tools are
called Language Workbenches [45, 39]. They usually embed metalanguages allowing the
specification of the syntactic and semantic aspects of languages. For the former, language
workbenches can provide additional assistance in terms of IDE integration, i.e., automated
syntax highlighting and editor features can be inferred automatically from the syntaxes.
The semantic aspects can be specified in different manners (axiomatic, operational, trans-
lational, etc.) and interpreted or compiled.

Language Workbenches are not new. Early iterations of language workbenches in-
clude MetaPlex [13], CENTAUR [8], Metaview [137], MetaEdit [135], the Cornell Program
Synthesizer [128], or ASF+SDF [79, 150]. But with the technological evolutions of lan-
guage design techniques and IDE platforms, they can now integrate powerful IDE features
without significant effort. A comparison of modern language workbenches can be found
in the different editions of the Language Workbenches Contest [84]. Examples of modern
language workbenches include Jetbrains MPS [12], Spoofax [77], MetaEdit+ [146], the Dia-
gram Predicate Framework (DPF) Workbench [83], the Rascal Language Workbench [151],
or Microsoft’s Modeling SDK for Visual Studio (MSDK) [21].

2.3.5 Shortcomings

In LOP, the multiplicity of DSLs employed is tackled by the language workbenches which
provide the tools and methodologies to define DSLs using appropriate metalanguages, and
help with their tooling by generating part of their IDE integration, static verification, etc.

They also often come with the means to specify the execution semantics of the DSLs. How-

Shttp://www.gemoc.org/
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ever, like traditional language design techniques, they do not focus on the concurrency
aspects of the execution semantics, thus making complex the specification and analysis
of DSLs for highly-concurrent systems. We can draw inspiration from another discipline,
Multi-Paradigm Modeling (MPM) [104, 50, 59], which tackles the use of several formalisms
to specify heterogeneous systems. The formalisms used usually rely on different concur-
rency models due to their heterogeneous nature (e.g., signal processing, electronics, hy-
draulics, etc.). But MPM tools and approaches, such as Ptolemy [127], ModHel’X [60, 9],
AToM? [26]; and approaches based on Discrete Event System Specification (DEVS) [48] of-
ten embed and rely on well-known existing formalisms, and defining and integrating new
ones is a complex task. In this thesis, we will work on providing a language workbench
adequate for LOP, while making explicit the rich concurrency features of the execution
semantics of the DSLs, based on MoCs that can be defined and integrated seamlessly into

the language workbench.

2.4 Model-Driven Engineering for
Domain-Specific Modeling Languages

2.4.1 Model-Based Software Engineering

To palliate the growing complexity of systems, (software) engineering approaches have
evolved to include the use of models, leading to what is called Model-Based Software En-
gineering (MBSE). In this approach, models are used to represent an aspect of a system,
abstracting away unnecessary details, to help reason about it. Models conform to a meta-
model, that is, a model describing the structure of models.

Models may be used in several manners. They can serve as a communication and doc-
umentation artefact, as a mere blueprint or specification, or used to drive the engineering
process (for instance through code generators). In the latter case, we call this approach
Model-Driven Engineering (MDE). MDE entails all of the traditional engineering activities:
designing, programming, testing, validating, etc.

The Object Management Group (OMG)**, which standardizes object-oriented and mod-
eling technologies, has formalized its approach of MDE in what is called Model-Driven
Architecture (MDA) [117]. Individual standards may also be used independently, most no-
tably:

*http://www.omg.org/
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« MOF/EMOF: (Essential) Meta-Object Facility [112]. MOF is the OMG’s meta-metamodel,
that is, a metamodel used to define metamodels. MOF is metacircular: MOF can be
defined using MOF.

« XMI: XML Metadata Interchange [115]. XMI is the OMG’s XML-based format used

to store models whose metamodel conforms to MOF.

« OCL: Object Constraint Language [113]. OCL is the OMG’s declarative language
designed to express constraints and object query expressions on MOF models and

metamodels.

« QVT: Query/View/Transformation [114]. QVT is the OMG’s set of standard lan-

guages for model transformations.

« MOFM2T: MOF Model To Text Transformation Language [109]. MOFM2T is the

OMG’s standard language for transforming models into text.

MBSE and MDE still have many challenges to overcome before becoming the general
paradigm for software engineering. For instance, in the spaceflight software domain [124],
these challenges include: a lack of coordinated development approach, making difficult
the comparison between MBSE tools and methodologies, or the consistent adoption by a
group of practitioners; the integration of multiple model-based languages, like for LOP;
the conformance of the model to the real-world system (e.g., for verification and valida-
tion purposes); the consistency between the model and the generated code (i.e., certifying
code generators is technically, and sociologically, difficult); etc. Still, they have become a
popular paradigm for some engineering fields such as systems and controls engineering
(Simulink [93], SCADE/Lustre [57], Arcadia/Capella® [132]) or database systems [145].

2.4.2 Modeling Languages

MBSE and its specializations rely on the use of models, and of metamodels to describe
the structure of models. The similarities between, on one hand, metamodels and abstract
syntaxes, and on the other hand, models and programs, have lead to the use of MDE tech-
nologies for the development of Modeling Languages (MLs). When dedicated to a certain
application domain, these languages are thus said to be Domain-Specific Modeling Lan-
guages (DSMLs). Other MLs are usually said to be General-purpose Modeling Languages
(GMLs), such as the Unified Modeling Language (UML) [111]. Actually, GMLs are often

constituted of several different modeling languages, each with a focus on a certain aspect

*https://www.polarsys.org/capella/
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or with a particular view of the system. This is the case of UML, made up of Structure
Diagrams (Class Diagram, Object Diagram, Package Diagram, Component Diagram, etc.)
and Behavior Diagrams (Activity Diagram, State Machine Diagram, Sequence Diagram,
etc.), or of Simulink [93], whose main diagrams are block-based dataflows (with blocks
issued by various libraries, often dedicated to a particular domain like physics modeling,
control systems, communications, real-time systems, etc.), but which also supports state
machines or discrete-event simulations. In that sense, most GMLs can be considered as a
set of interoperable DSMLs.

MLs rely on powerful abstractions to represent in a manner relevant to a particular
purpose, a system. DSLs provide constructs facilitating the expression of solutions of a
particular domain. DSMLs are thus both adequate to solve problems of the domain they
were designed for, while abstracting away unnecessary details of the system. An important
consequence is that the usability of such languages should be optimal: the language con-
structs make it easy to specify solutions, and are meaningful for domain experts. DSMLs
have proven effective at solving problems of the domain they have been designed for [78].
By construction, this makes them the “best tool for the job”. DSMLs can also be considered
as an implementation of what is called Domain-Driven Design [41], which advocates plac-
ing the core domain and its logic at the center of the software development activity, based
on a collaboration between technical experts (in the context of LOP, language designers)
and domain experts.

In a Model-Driven approach, a language’s AS is captured as a metamodel; programs

are captured using XMI; and static semantics are specified using OCL.

2.4.3 Executability

When adjoined with an execution semantics, DSMLs are said to be eXecutable (xDSMLs).
Like for traditional computer languages, the execution semantics can be specified using
several techniques, denominated in this context as Executable Metamodeling [105, 15] tech-
niques. They are usually inspired from the main semantics approaches we have described:
axiomatic, operational and translational. Examples of such approaches include the Exe-
cutable DSML pattern [17], xMOF [94], Maude [131], or Kermeta [72].

Models and metamodels are often rooted in a GPL (for historical reasons or for devel-
oping associated tools such as IDEs or code generators), therefore the metalanguages used
to specify the execution semantics are often based on that GPL too. For instance, UML
has historically been developed in a Java/JVM environment. Its Activity Diagrams can be
executed according to the foundation Subset for Executable UML Models (fUML) [116],
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whose semantics is given in English and in Java (as a reference implementation®). The ex-
ecution semantics of xDSMLs may also be defined in a translational manner, for example
through an implementation of the OMG’s QVT (e.g., the ATLAS Transformation Language
(ATL) [74, 73]) to define the translation from an xXDSML to another xDSML with execution

semantics already defined.

2.4.4 'The Inception of Concurrency-aware xDSMLs

In “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software” [142],
Herb Sutter, of C++ fame, describes how CPU designers are confronted with the limits of
physics (notably, in terms of heat production and energy consumption) and its impact on
software engineering. In particular, the computer languages used for writing softwares
are concerned: they must provide sophisticated tools for adequately expressing the con-
currency aspects of complex softwares and systems, and enable the use of the parallel
facilities of the execution platform they are deployed onto.

In this thesis, we propose to bridge the chasm between Language-Oriented Program-
ming, i.e., the design of xDSMLs in a language workbench, and the paradigm shift resulting
of the end of the “free lunch”, i.e., the integration of Models of Concurrency into their exe-
cution semantics. This is synthesized in the design of so-called Concurrency-aware xDSMLs.
Herb Sutter published an update to his “free lunch” article’” in which he identifies that
“Programming languages and systems will increasingly be forced to deal with heteroge-
neous distributed parallelism”. By making their use of a MoC explicit, concurrency-aware
xDSMLs can be designed agnostic of any execution platform’s parallel capacities, and re-
fined only at the deployment phase. This characteristic is made possible by the domain-
specificity of the language. The explicit use of a MoC at the language level is structured in
the separation of concerns advocated by the concurrency-aware xDSML approach. In this
separation of concerns, the data and operational aspects of the execution semantics are
separated from the concurrency aspects which are captured based on a particular MoC.

First results towards this goal were published by Benoit Combemale et al. in the Inter-
national Conference on Software Language Engineering 2012 [18] and 2013 [19].

In [18], the authors present an approach to reconcile Metamodels, used to capture
domain-specific concepts and their actions, with “Models of Computations”, used to or-
chestrate the actions of a domain-specific model. Both concepts have been developed in
independent research communities: the former in the Model-Based Software Engineering

and Domain-Specific Languages Design communities; the latter in the Concurrency The-

Shttps://github.com/ModelDriven/fUML-Reference-Implementation
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ory community. The main difficulty consists in identifying, in the execution semantics of
DSLs, which parts belong to the domain-specific actions, and which parts belong to the
Model of Computation. The latter are captured using ModHel’X [60], a framework for
building and executing multi-paradigm models. It uses a generic abstract syntax to cap-
ture the models, but the execution semantics is based on rules defining the semantics of
control and concurrency between the elements of a model. Figure 2.2 shows the proposed
separation of concerns of the semantic mapping between the AS and the Semantic Domain
of a DSL.

Abstract
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Syntax . .
1 Domain-Specific
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Figure 2.2: Separation of concerns in the execution semantics of DSL proposed in [18].

In [19], the authors improve the previous approach by identifying the need for an ex-
plicit coordination of the language concerns identified previously. The concurrency con-
cerns are captured thanks to a specification of events with causal and temporal relation-
ships between them, inspired from Event Structures [160]. These abstract events (from
the concurrency concerns) are then mapped with concrete actions (in the Domain-Specific
Actions — DSA) by a coordination specification called the Domain-Specific Events (DSE).
At runtime, it enables using the execution of the event structure to coordinate the domain-
specific actions resulting in changes in the model. They also describe the architecture of the
language workbench and of the generic execution engine for concurrency-aware xDSMLs.
Figure 2.3 shows the xDSML design approach proposed.

The main contribution of the concurrency-aware xDSML approach proposed in [18, 19]
consists in the separation of concerns of the execution semantics of xDSMLs. In particular,
the explicit identification of the concurrency concerns, using an appropriate and dedicated
formalism based on a Model of Concurrency, enables its refinement, variation, and analy-
sis. Refinements can be exploited during the deployment of the language to a specific plat-
form, in order to specialize the language to the platform. Variations can be used to adapt
the language to different communities, purposes or uses. Analyses can be performed on

the model-level specifications to assess behavioral properties of the systems being mod-
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Figure 2.3: Modular design of concurrency-aware xDSMLs as proposed in [19].

eled. From a concurrency theory point of view, the approach enables the systematic use
of MoCs at the language level, whereas MoCs usually have to be used through language,
framework or library constructs, which usually requires particular training or knowledge
about an implementation. In the concurrency-aware approach, this use is defined at the
language level, therefore removing from the domain expert the responsibility to select or
use a MoC.

In the rest of this thesis, we will build upon the description of the approach from [18]

and [19] to formalize, improve and extend the design and execution of concurrency-aware

xDSMLs. In particular, we address some existing problems of [19]:
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« Multiplicities of the relations between concerns: the multiplicity of the associ-

ation between domain-specific events and actions is left unspecified. It is not clear
what is the exact semantics of several domain-specific events mapped to one domain-
specific action; or how one domain-specific event mapped to multiple domain-specific

actions should behave.

Restriction of the concurrency concerns: it it said that the partial ordering can
be restrained due to the call to some execution function, however it is not clear how

this restriction is specified, and how it is realized at runtime.

Model of Computation or Concurrency: in [18] and [19], the term used for the
concurrency concerns is “Model of Computation”. In the literature, the relation be-
tween “Model of Computation” and “Model of Concurrency” are not clear: they are
often used interchangeably (e.g., “Model of Concurrency or Computation (MoC)”
in [54]). The n-Calculus [102] is said to be a “model of computation for concurrent
systems” [159]. Traditionally, Models of Computation were developed in the com-
putation theory field, in a time where parallel architectures were not mainstream.
Considering the definition of “concurrency” used in this thesis, as presented in Sec-
tion 2.1, sequentiality is a special case of concurrency, explaining why Models of
Computation such as the A-calculus [14, 6] can be encoded in theoretical Models of
Concurrency like the mt-Calculus [159]. In the rest of this thesis, we will only use
the term “Model of Concurrency” because we focus on specifying the concurrency

concerns of an xDSML, explicitly separated from its data concerns.

2.5 Technical Context

The technical efforts presented in this thesis have been implemented in an Eclipse-based
language workbench developed for the ANR INS Project GEMOC, called the GEMOC Stu-

dio. We introduce the main technologies used to build this language workbench.

2.5.1 The Eclipse Platform

The Eclipse Platform is an open-source platform, originally designed for the development

of IDE products, although it has evolved onto a framework for developing general-purpose

applications through its Rich Client Platform (RCP). It is overseen by the Eclipse Founda-

tion®®. At its core, Eclipse is constituted of a small runtime kernel, and most of its features

https://www.eclipse.org/org/foundation/
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are implemented as Eclipse plugins. Eclipse’s Equinox is the reference implementation
of the Open Services Gateway initiative (OSGi), a standard that implements a component
model platform for the Java/JVM environment.

Thanks to this modular architecture, Eclipse can easily be extended with additional
features. In particular, many plugins have been developed to implement IDEs for computer
languages such as Java, C, Python, Ruby, PHP, Prolog, Scala, etc. It also supports different

version control systems such as SVN*°, Git* or Mercurial*'.

2.5.2 The Eclipse Modeling Framework

One particular contribution of Eclipse is its Modeling Project [53], which includes a wide
range of features related to modeling technologies. At its heart is the Eclipse Modeling
Framework (EMF) [36]. The core EMF and EMF-based technologies relevant to our work

are the following:

+ Ecore [34], the de facto reference implementation of the OMG’s EMOF [112]. Fig-

ure 2.4 shows the hierarchy existing between the main Ecore components.

« Eclipse OCL [35], an implementation of the OMG’s OCL [113], enabling the defini-

tion of static semantics for Ecore metamodels.
« Sirius [37], an editor to create graphical modeling editors for Ecore metamodels.

« Xtext [7], a framework which eases the definition of textual concrete syntaxes for
Ecore metamodels. Includes the automatic generation of an ANTLR specification (to

generate a parser) and of IDE features within Eclipse.

« Xtend [7], a JVM-based GPL which compiles to readable Java code. Its syntax is
consistent with Java’s for ease-of-adoption, while adding a lot of features to make it
less verbose (e.g., var/val keywords, lambdas, advanced collection operations, etc.).
Its Active Annotations feature allows developers to easily inject additional code au-

tomatically during the compilation phase.

Our work was implemented on top of the GEMOC Studio, which includes these tech-
nologies as well as other EMF-based technologies built by the project’s various partners.

For each chapter, the relevant ones are detailed in their “implementation” subsection.

*https://subversion.apache.org/
*https://git-scm.com/
“https://www.mercurial-scm.org/
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Figure 2.4: Hierarchy of the main Ecore components.



“It is at this point that normal language gives up, and goes and has a

drink.”
in The Color of Magic, by Terry Pratchett (1948 — 2015).

Design of Concurrency-aware xDSMLs

SuMMARY

We refine the existing concurrent executable metamodeling approach enabling the defini-
tion of so-called concurrency-aware xDSMLs. We start by illustrating shortcomings of the
approach on an example xDSML, fUML. We then refine the approach by formalizing it, in
particular the separation of concerns upon which it is built. We detail the responsibility
of each concern, how they are specified and how their respective runtimes work. Based
on these foundations, we then refine the shortcomings of the approach and propose fea-
tures to complete the approach. For each issue, we identify the associated challenges and
present the requirements as constraints for the solution. Finally, we give the architecture

of our implementation of the approach in an Eclipse-based language workbench.

Parts of the contributions presented in this chapter have been published in the 8th ACM
SIGPLAN International Conference on Software Language Engineering (SLE 2015) [85] and
in the Ist International Workshop on Executable Modeling (EXE 2015) [86].
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RESUME

Ce chapitre présente le cceur de notre travail. Nous formalisons et étendons une approche
de métamodélisation exécutable et concurrente, permettant la création de langages de
modélisation dédiés exécutables avec utilisation explicite et systématique d’'un modéle de
concurrence (Concurrency-aware eXecutable Domain-Specific Modeling Languages).

Nous nous intéressons a la spécification de la sémantique opérationnelle de ces lan-
gages. De fait, les problématiques liées a la spécification de la syntaxe abstraite, des syn-
taxes concrétes et de la sémantique statique sont considérées comme ayant été résolues en
amont, selon le principe de séparation des préoccupations. Le langage Foundational Subset
for Executable UML Models (fUML) [116] nous servira a illustrer ’approche. En particulier,
dans fUML, la spécification de la sémantique ne détaille pas comment exécuter les branches
concurrentes (c’est-a-dire comprises entre un ForkNode et un JoinNode). Ces branches peu-
vent donc étre exécutées en paralléle, en séquence, ou selon tout autre arrangement. Ce
choix est en général implicite car inscrit directement dans I'implémentation, peu docu-
menté et difficile a modifier. Les concurrency-aware xDSMLs rendent explicites ces choix
a l’aide d’un formalisme adapté, facilitant leur spécification, leur analyse, ainsi que la spé-
cification, 'implémentation et la gestion de différents points de variation sémantique (Se-
mantic Variation Points — SVP).

L’approche que nous formalisons repose sur une séparation des préoccupations au sein
de la sémantique opérationnelle. Celle-ci est donc séparée en trois parties : les regles
sémantiques (Semantic Rules), I'utilisation d’'un Modele de Concurrence (Model of Con-
currency Mapping — MoCMapping), et un protocole de communication (Communication
Protocol) connectant les deux premiéres parties. Les Semantic Rules (correspondant aux
Domain-Specific Actions proposées dans [18, 19]) étendent la syntaxe abstraite du langage
avec les données d’exécution (Execution Data), représentant ’état courant du modele du-
rant son exécution, et les fonctions d’exécution (Execution Functions), définissant comment
les Execution Data évoluent durant I’exécution. Par exemple dans fUML, les arétes entre
les noeuds portent des jetons (Tokens), et ces jetons sont consommeés, transférés, dupliqués
ou produits par I’exécution des noeuds (en fonction de leur nature concrete). Le MoCMap-
ping définit 'utilisation systématique d’'un Modéle de Concurrence (Model of Concurrency
— MoC) par tout modéle conforme a la syntaxe abstraite du xDSML. La concurrence de tout
modele conforme a la syntaxe abstraite du langage sera ainsi représentée sous forme de
modele conforme au MoC utilisé. Cette spécification est appelée I'application du modele
de concurrence (Model of Concurrency Application — MoCApplication). Le MoC utilisé ini-
tialement dans 'approche repose sur les structures d’événements (Event Structures) [160].

Le formalisme utilisé pour spécifier le MoCMapping est en conséquence appelée structure
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de types d’évenements (EventType Structures). Une Event Structure définit un ordre par-
tiel sur des événements qui représentent des actions abstraites. Cette représentation de la
concurrence, indépendante de 1’état courant du modele, la rend analysable par des outils
dédiés pour la vérification de propriétés comportementales sur le modele considéré. Enfin,
le Communication Protocol (initialement réalisé par les Domain-Specific Events dans [19])
spécifie les liens entre les Execution Functions et les déclencheurs du MoC (MoCTriggers, les
EventTypes dans le cas d'une EventType Structure). Ceci permet, en particulier, de définir
comment, a ’exécution, 'ordre partiel sur les événements du MoCApplication est utilisé

pour orchestrer les appels aux Execution Functions.

Apres avoir spécifié ces préoccupations, une phase de traduction est utilisée pour géné-
rer, a partir d'un modele conforme au langage, les artefacts de niveau modele. Ces artefacts
correspondent aux spécifications du niveau langage, mais spécialisées pour le modéle con-
sidéré. Le MoCMapping donne donc le MoCApplication, les Semantic Rules donnent les
Semantic Rules Calls et le Communication Protocol donne le Communication Protocol Ap-
plication. Chaque préoccupation fournit le composant en charge de l'interprétation d’une
spécification de niveau modele: Solver (pour le MoCApplication), Executor (pour les Seman-
tic Rules Calls) et Matcher (pour le Communication Protocol Application). Le composant
en charge de I'exécution globale (c’est-a-dire, de coordonner les autres composants) est
appelé le moteur d’exécution (Execution Engine). La réalisation d’'un pas d’exécution du
modele se déroule ensuite de la maniére suivante. Le Solver fournit un ensemble de solu-
tions pour le pas courant, en conformité avec 'ordre partiel établi par le MoCApplication.
Ces solutions sont appelées Scheduling Solutions. 1l peut n’y en avoir aucune (situation
d’interblocage), ou bien une seule, mais en général il y en a plusieurs, surtout en présence
d’indéterminisme (d{i par exemple a une situation de concurrence). L’une de ces solutions
est sélectionnée par une heuristique du moteur d’exécution. Elle peut consister a deman-
der a I'utilisateur d’en choisir une, a travers une interface graphique, ou a attendre qu’un
programme externe choisisse, a travers une interface de programmation (Application Pro-
gramming Interface — API). Le moteur fait ensuite appel au Matcher pour déterminer quels
sont les Execution Function Calls correspondant a cette solution (en faisant correspondre les
occurrences d’événements contenues dans la solution sélectionnée avec ce qui est spécifié
dans le Communication Protocol Application). Ces Execution Function Calls correspondent
a des appels d’opération, qui sont donc effectués a I’aide de I’ Executor. En conséquence de

quoi, ’état courant du modele change, correspondant bien a un pas d’exécution du modele.

Dans la suite du chapitre, nous identifions les contraintes et limitations de I’état actuel
de cette approche, pour lesquelles nous proposons ensuite des solutions. Chaque aspect

est abordé en illustrant et en expliquant d’abord son intérét ; puis en identifiant les dif-
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ficultés de sa mise en oeuvre durant les phases de spécification et d’éxécution ; et en-
fin en présentant notre solution et ses éventuels inconvénients et colts associés. Nous
abordons par exemple le probleme des régles sémantiques qui nécessitent beaucoup de
temps pour s’exécuter et ralentissent donc 'exécution globale d’'un modéle ; le probléme
des constructions de langage dont 'exécution dépend de données connues dans le modele
a I'exécution ; 'implémentation et la gestion des points de variation sémantique ; la con-
ception de concurrency-aware xDSMLs visant la spécification de systemes dits réactifs (dont
le comportement est une réaction a un environnement extérieur) ; ou bien la considéra-
tion du Communication Protocol comme interface comportementale du concurrency-aware
xDSML (pour permettre son utilisation par d’autres langages ou d’autres programmes) et
les implications quant a sa conception. Toutes ces améliorations visent a rendre I’approche
plus utilisable, ou bien en proposant des outils pratiques pour spécifier certains types de
constructions de langage, ou bien en rendant possible certaines constructions qui ne pou-
vaient auparavant pas étre exprimées (ou en tout cas pas de fagon idiomatique) en utilisant
I’approche.

Pour finir, nous présentons 'implémentation de ’approche dans un atelier de développe-
ment de langages basé sur la plateforme Eclipse, le GEMOC Studio'. Celui-ci aggrége un
certain nombre de technologies construites a ’aide de I'Eclipse Modeling Framework (EMF)
et utilisées dans le cadre de I'approche proposée, comme Ecore pour la construction de
métamodeles pour capturer la syntaxe abstraite des xDSMLs, Xtext pour la construction
de syntaxes concretes textuelles, etc. Le studio inclue aussi des technologies développées
par les partenaires du projet ANR INS GEMOC comme Kermeta 3, le langage Clock Con-
straint Specification Language (CCSL)ou Sirius pour la construction de syntaxes concretes
graphiques. Nos contributions sont principalement concrétisées dans un nouveau méta-
langage appelé le GEMOC Events Language (GEL) utilisé pour spécifier le Communication
Protocol, ainsi que dans I'implémentation du moteur d’exécution.

Les travaux présentés dans ce chapitre ont en partie été publiés dans la 8th ACM SIG-
PLAN International Conference on Software Language Engineering (SLE 2015) [85] et dans
le 1st International Workshop on Executable Modeling (EXE 2015) [86].

'http://gemoc.org/studio/


http://gemoc.org/studio/

3.1 Introduction 51

3.1 Introduction

3.1.1 Prerequisites

D ESIGNING Domain-Specific Modeling Languages usually revolves around the spec-

ification of the syntaxes of the language: both the abstract and concrete ones. The

role of these concepts and how they can be specified have been detailed in Chapter 2. In
this thesis, we focus on how to specify the execution semantics of an DSML, that is, how
to attribute a behavior to language constructs and their relations. This makes DSMLs eX-
ecutable (xDSMLs). More precisely, our focus is on the specification of the concurrency
aspects of the execution semantics: the rules which describe how language constructs in-
teract at runtime, how the parallel facilities of the execution platform can be exploited,

etc.

We are not concerned with how models are obtained. It may be as a result of a transfor-
mation, or by the execution of a program written in a GPL using an appropriate Application
Programming Interface (API), or simply via a concrete syntax defined for the xDSML. Any
of these means is valid with regards to our approach.

We also consider that the static semantics associated with the abstract syntax of the
xDSML have been defined beforehand, as it does not impact the specification of the exe-
cution semantics.

Still, in the scope of the ANR INS GEMOC Project (cf. Subsection 1.1.2), in which this
thesis was realized, one of the objectives is the animation of the execution of concurrency-
aware xDSMLs. In this project, this animation is realized based on a graphical concrete
syntax, as it is usually the preferred concrete syntax for modeling languages. However, it
has no impact on the description we give of our contributions. At best, we will use it to
illustrate models and their execution in our implementation.

Finally, this thesis was realized in the technical context of what is called Model-Driven
Engineering (MDE), and in particular borrows a lot of terminology from it. Readers unfa-

miliar with MDE should make sure to have read Section 2.5 before this chapter.

3.1.2 Illustrative Example

We will illustrate the concurrency-aware xDSML approach on a subset of the Foundational
Subset for Executable UML Models (fUML) [116]. fUML is an executable subset of UML
which specifies the behavioral semantics of Activity Diagrams. The semantics is mainly
inspired from Petri Nets [107].
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Figure 3.1 shows an excerpt from the Abstract Syntax of our implementation of f{UML.
An Activity is composed of nodes (Act ivityNode) of various natures, connected
by edges (ActivityEdge). Edges may have a guard if they are outgoing a Deci-
sionNode, in which case the result of the guard is used to determine whether or not the
branch may be executed. In any case, a DecisionNode can only result in one of its outgoing

branches being executed.

[5] ObjectFlow [ =| ControlFIow] [ [ LiteralString ] h'_] Utera.‘Spec;‘ﬁcat.‘onw ‘@ ValueSpecification ‘
L J L._-. value : EString J ‘ ‘ ‘ ‘

[ AY | Al A A
| | I T | T
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B ——
= name : EString
[0..*] incomingEdges ‘[1..1] upperValge|
s[o"*] edges [1..1] lowerValue
[ £} Activity ]
{-f name : EString J
s [0..*] nodes
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Ja
I —[ I 1
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Figure 3.1: Excerpt from the fUML Abstract Syntax, presented as a meta-model.

We also need to consider an example model for this language. Figure 3.2 shows an ex-
ample activity in which one drinks something while talking, for instance during a coffee
break. In this Activity, the ForkNode splits the control flow into two concurrent branches.
This means that the “Talk” node can be executed simultaneously with, or interleaved with,
any of the nodes of the drinking part of the activity. In the drinking part of the activ-
ity, “CheckTableForDrinks” returns either “Coffee”, “Tea” or “Neither”. The DecisionNode
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TalkAndDrink

My Initial
MyFork

CheckTableForDrinks Talk

MyOutputPi
["Coffee"] MyDecision

|

| DrinkCoffee | DrinkTea DrinkWater

MyFinal

&a

Figure 3.2: Example f{UML activity where some user drinks something from the table while
talking.

represents a conditional: depending on the drink found on the table, either “DrinkCoffee”,
“DrinkTea” or “DrinkWater” will ultimately be executed. “[else]” is the default guard in
fUML, always evaluating to true but the corresponding branch can only be executed if the

other branches were not possible.

3.1.3 Concurrency-aware Execution Semantics of f{UML

We illustrate the initial Concurrency-aware xDSML approach, as described in [19], on

fUML, and present its shortcomings.

Application of the Initial Approach

To apply the approach to fUML, we must identify in the execution semantics specifica-
tion [116] which parts belong to what was called “Domain-Specific Actions” in [18, 19]
and which parts belong to the concurrency concerns.

The former are the individual behaviors of each language construct. For instance, ex-

ecuting a node in fUML usually involves consuming incoming tokens and producing out-
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going tokens. Each concrete node type does this in a slightly different manner (e.g., some
nodes consume without producing or vice-versa). These actions can be defined through
the specification of execution functions.

The latter are the orchestration of the actions. Usually, the execution of fUML is a
data flow, which means that nodes are executed based on the tokens present on their in-
coming edges. There are however a few variations which are possible. For instance, the
fUML specification is not opinionated about how the execution of the concurrent branches
should be done. The only requirement is that both branches have finished executing before
the corresponding JoinNode can be executed. They can thus be executed in sequence, in
parallel, or in any sort of interleaving.

fUML implementations usually hard code this decision, or relying upon the underly-
ing execution platform. The concurrency-aware approach proposes to make explicit all
these possibilities using a dedicated formalism, in order to better identify them, to allow
concurrency-aware analyses to be performed on the systems, to deal with semantic vari-
ants of the language, and to refine them at deployment time for a system. For instance,
we may want to prune the parallel execution of branches in case of deployment of fUML
to a sequential platform. The dedicated formalism used is ModHel’X rules in [18] and the

symbolic Event Structure in [19].

Shortcomings

The seminal definition of the approach has some limitations, which we illustrate on f{UML.

For instance, evaluating the guard of an edge outgoing a DecisionNode is a domain-
specific operation, involving fUML-specific concepts, but it does not update the model. It
however provides an information as to how the orchestration must be done (i.e., whether
or not the branch may be executed). It is not clear in [19] how this operation must be
specified and how it interacts with the concurrency concerns.

It is also not clear how calls between the Domain-Specific Actions may be realized.
For instance, consider an ExecutableNode with some OutputPins. Its execution can be
represented either as one action or several (its execution and then executing its pins). In
particular, if data must be shared between both calls, the concurrency concerns are, by
definition, not able to make the data flow between both actions. The approach should
formalize how such combination of actions should be realized.

The multiplicity of the association between Domain-Specific Actions and Domain-
Specific Events is also not detailed. The semantics of multiple Domain-Specific Events
mapped to one Domain-Specific Action, or of one Domain-Specific Event mapped to mul-

tiple Domain-Specific Actions, are not detailed.
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Another issue is that the runtime described in [19] relies on the execution of actions
being short, to the point where it can be considered instantaneous. However, it is possible
that the execution of a particular behavior (such as evaluating a complex expression, or re-
trieving specific data) takes some time to perform. So far, the runtime is sequential, which
means that during the execution of such an action, other actions cannot be executed. In-
stead, the approach could formalize a way to perform such actions in a concurrent manner
(and particularly, in parallel, if the platform used for simulation allows it). It may how-
ever have an influence on the execution flow, for instance if an important piece of data
(e.g., the result of a guard evaluation) conditions the future of the execution. When using
xDSMLs for the purpose of simulations (rather than for production-grade executions), this
issue is minor in the sense that it only affects the flow of the simulation (which may be
mildly frustrating, but not critical). Still, we strive to make our approach as applicable as
possible, so these concerns must be taken into account.

In the next section, we will formalize the description and architecture of the approach
to clearly lay down the core elements of the concurrency-aware xDSMLs approach. Based
on this presentation, we will then refine the shortcomings and propose features to handle
them during the design of xDSMLs.

3.2 Formalization of the Concurrency-aware Approach

As explained in Section 2.2, the execution semantics of a language consists in the Seman-
tic Mapping between the language’s Abstract Syntax and its Semantic Domain (the set
of all possible meanings). In the concurrency-aware approach, the concerns of the exe-
cution semantics are separated. The formalization of this separation presented hereafter
results from this thesis’s contributions to the approach, so the names of the concerns have
been updated (compared to those used in [18, 19]) to better reflect their responsibilities.
The data and its operations are gathered in the Semantic Rules (formerly “Domain-Specific
Actions”), while the concurrency concerns are captured as the Model of Concurrency Map-
ping. Both specifications are connected by a Communication Protocol (included what was
denoted as “Domain-Specific Events”). Figure 3.3 shows the general idea of this separation
of concerns.

Our approach takes place at the language-level (i.e., we specify languages) but the run-
time of the specifications takes place at the model-level (i.e., similar to how, in Object-
Oriented Programming, instance methods defined in a class are applied for an object in-
stance of that class). For each concern, we will explain how the model-level specification is

obtained for a given model. In particular, we will often designate by “concurrency model”
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Figure 3.3: Separation of the concerns of the Semantic Mapping.

both the MoCMapping (specification at the language-level) and its model-level counterpart

(which is the one used at runtime for a given model).

3.2.1 Semantic Rules

This notion was originally introduced in the Executable DSML Pattern [17], and adapted

in [18, 19]. The Semantic Rules are composed of two parts.

First, the Execution Data capture the runtime state of a model during its execution, e.g.,
the value of a variable, the current state of a state machine, the number of tokens in a place,

etc. In fUML, edges carry Tokens which may be of two natures (control or data).

The second part is the Execution Functions which specify how the Execution Data evolve
atruntime. For instance, a node in fUML can be executed, resulting in changes in the tokens

held by its incoming and outgoing edges.

Figure 3.4 shows the structure of the Semantic Rules as a metamodel. Execution Data
are defined in the context of a concept from the Abstract Syntax of the language (repre-
sented by the AbstractSyntaxConcept type). The body of an Execution Function
is represented as the EOperation behavior ().

Figure 3.5 shows the Semantic Rules of fUML as a metamodel extending the Abstract
Syntax of f{UML, while Listing 3.1 shows an example implementation, using pseudo-code,

of an Execution Function of f{UML.
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# semanticruIes.speciﬁcationJ =
[ [ SemanticRules 1
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Figure 3.4: Metamodel representing the structure of the Semantic Rules of an xDSML.
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Figure 3.5: Semantic Rules of fUML as a metamodel extending the Abstract Syntax.

{ @& getValue() : EJavaObjectJ

Listing 3.1: Implementation of an fUML Execution Function, specified using pseudo-code.

1| context ForkNode:
2 def void execute():
3 self.outgoingEdges. [ outgoingEdge |
4 self. incomingEdges. [ incomingEdge |
5 incomingEdge.currentTokens. [ token |
6 outgoingEdge.currentTokens.add(token.copy())
7 ]
8 ]
9 ]
10 self. incomingEdges. [ incomingEdge |
11 incomingEdge.currentTokens.clear ()
12 1
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3.2.2 Model of Concurrency Mapping

The Model of Concurrency Mapping (MoCMapping) specifies the systematic use of a MoC
for the xDSML being developed. Thus, for any model conforming to the Abstract Syntax of
the language, the MoCMapping is used to generate a corresponding Model of Concurrency
Application (MoCApplication). The MoCApplication is a “program” in itself, conforming
to the MoC used, which represents the concurrency concerns of the model.

The initial concurrency-aware xDSML approach relies on the Event Structures [160]
Model of Concurrency?. Consequently, the MoCMapping is a specification of how, for a
model, its corresponding Event Structure is obtained. The formalism used for the MoCMap-
ping in that case is called EventType Structures.

Figure 3.6 recapitulates the relations between the different specifications pertaining to
the concurrency concerns of a concurrency-aware xDSML or of an executable model.

Figure 3.7 shows the metamodel for the MoCApplication and its execution. It also

shows the metamodel for Event Structures and their execution, and how they implement

?In Chapter 4, we will present a solution to define and integrate other MoCs into the approach.

Model of Concurrency Abstract Syntax Language
{e.g. Event Structures formalism) {e.g. EMOF/Ecore)
/ T target formalism conforms ta*+ Metalanguages (M3)
;f? |
! MoCMapping references Abstract Syntax
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| Tt A 7ok,
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% ﬁ input model !
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) 2 : o
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Figure 3.6: Overview of the different specifications related to the concurrency concerns of

a language or model.



3.2 Formalization of the Concurrency-aware Approach 59

4 mocapplication.speciﬁcationJ 4 mocapplication.executionJ

ﬁ'_j MoCApplicationExecution ’

= o [1..*] schedulingSolutions
[1.%] triggers | & MoCApplication o omat - |

- = JAN
— | & ey SchedulingSolution
i $[1..*] occurrences
> %] MoCApplicationTrigger .
— [1..11trigger| | |, MoCApplicationTrigger,
T name : EString Occurrence
& context : ModelElement s =
-4 eventstructure.speciﬁcationJ 4 eventstructure.executionJ ==
= EventStructureExecution]
- < [1..1] eventStructure ]
< : ] EventStructure \
=]
[1..1] partialOrdering [1..*] configurations ? -
) [0..*] causalities
$ [1..*] events

— [1..1] fromConfiguration — —
= {= Configuration {= Causality
{ =] PartiaIOrdering] { [ Event ] ] -
J [1..1] toConfiguration

{ J ‘ J $[1..*] eventOccurrences

[1..*] overEvents T [1..1] event ] EventOccurrence

Figure 3.7: Metamodel representing the Abstract Syntax of Event Structures and their ex-
ecution.

the former. The MoCApplication is made of MoCApplicationTriggers (i.e., its stimuli, the
Events in an Event Structure). Its execution is a succession of Scheduling Solutions con-
taining occurrences of the MoCApplicationTriggers. In an Event Structure, the events are
constrained by a partial ordering, thus specifying “when” their occurrences happen.

Let us illustrate the Event Structures MoC on fUML. Figure 3.8 shows the simplified
Event Structure corresponding to our example Activity. In this graphical representation
of the execution of an Event Structure, a node is a Configuration: an unordered set of event
occurrences which have happened at this point. For representation purposes, “..” in a con-
figuration represents the collection of event occurrences from the previous configurations,
e.g.{....,e_MyFork} is {e_Mylnitial, e_MyFork}. This Event Structure captures all the possi-
ble execution paths for the model: the two concurrent branches which can be executed in
parallel or interleaved, and the three different possibilities resulting of the DecisionNode.

If several execution paths are allowed at a point in the event structure, it means that
there is either Concurrency or Conflict.

Concurrency means that other events are happening concurrently (interleaved or in

parallel), in which case the execution paths will eventually merge. It does not mean that
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Figure 3.8: Event Structure for the f{UML Activity from Figure 3.2.

the executed model reaches the same state, but instead that in terms of pure control flow
(independent of any data from the model) it is at the same point in the execution. This is
the case between the two branches of the ForkNode: ultimately, both branches have been
executed.

Conflict means that there is a disjunction among the possible execution paths, which
ultimately results in different final configurations of the event structure. Conflicts can be
the sign of nondeterminism in the semantics of the language (i.e., at some point, an arbi-
trary decision is realized). There is a conflict in the example Event Structure: the decision
node leads to three different “families” of execution of the same model (one family per
possible type of drink).

The MoCMapping specifies how to obtain the MoCApplication (i.e., Event Structure) for
any model conforming to the abstract syntax of the language. Figure 3.9 shows the meta-
model for the MoCMapping. It also shows the metamodel of the EventTypes formalism,
and how it implements the MoCMapping. The MoCMapping consists in a set of MoCTrig-
gers which represent, at the language level, the stimuli of the MoC used. In the case of
EventType Structures, the EventTypes are the MoCTriggers. In an EventType Structure,
these MoCTriggers are symbolically partially ordered (by the SymbolicPartialOrdering),
that is, there is a specification of how the model-level partial ordering is obtained. An
EventType (or more generally, a MoCTrigger) is defined in the context of concepts from
the Abstract Syntax of the language (represented by the AbstractSyntaxConcept

type). The symbolic partial ordering can be specified through a set of symbolic constraints
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over the EventTypes. When they are unfolded for a given model, it results in constraints

defining the partial ordering of the Event Structure.
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Figure 3.9: Metamodel representing the Abstract Syntax of the EventTypes formalism.

For fUML, the two main points of interest are the execution of a node and the evaluation
of the guard of an edge. Figure 3.10 shows the declaration of these two EventTypes in the
context of concepts from the AS of f{UML.

&5 ActivityNode &5 ActivityEdge

= executeNode : EventType = evaluateGuard : EventType

Figure 3.10: EventTypes executeNode and evaluateGuard for f{UML, declared in
the context of a concept from the AS of f{UML.

Then, we want to specify constraints over these EventTypes such that, for a model, the
resulting Event Structure defines a partial ordering in conformance with the semantics of
fUML. The main idea in f{UML is that an edge’s source is executed before its target. Some
nodes however, are a bit different. For instance, for a JoinNode, we need to make sure
all of the incoming branches have finished executing before we can execute the JoinN-
ode. MergeNode is also peculiar, because it is the dual of DecisionNode, and is executed
whenever one of the incoming branches has been executed. Specifying these constraints
depends on the expressive power made available by the metalanguage used to specify
EventType Structures. Listing 3.2 shows an example specification, using pseudo-code, of

constraints between EventTypes.
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Listing 3.2: Example constraints between EventTypes of fUML, specified using pseudo-

code.

1|context ActivityEdge:

2 constraint executeSourceBeforeTarget:

3 if (self. guard == null and !self.targetNode kindof MergeNode) {
4 self. sourceNode . executeNode

5 strictly precedes self.targetNode.executeNode;

6

In this example, the constraint strictly precedes between two events e_foo
and e_bar means that the i"* occurrence of e_foo happens strictly before the i"* occurrence

of e_bar. In mathematical terms, this can be formalized as:

Vi € N,e_foo, < e_bar,

3.2.3 Communication Protocol

Finally, the Communication Protocol is in charge of matching the MoCTriggers of the
MoCMapping (which represent abstract actions) with the Execution Functions of the Se-
mantic Rules. This effectively defines how, at runtime, the MoCApplication is used to
orchestrate the calls to the Execution Functions, therefore implementing the execution of
a model. More formally, the Communication Protocol defines Mappings between a MoC-
Trigger (the EventTypes in an EventType Structure, made available by the MoCMapping)
and an Execution Function. Figure 3.11 shows the metamodel representing the structure

of the Communication Protocol.

# communicationprotocol.specification
/

{= CommunicationProtocol

eventtype.specification
(imported)

mocmapping.specification semanticrules.specification
(imported) [0..*] mappings (imported)

— . | = Mapping
- ) =) e
{] EventType % MoCTrigger | [1-11mocTrigger - [1.1] executionFunction | 5] ExecutionFunction
I . name : EString

[
l

Figure 3.11: Metamodel representing the Abstract Syntax of the Communication Protocol.
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Figure 3.12: Overview of the model-level specifications for a simplified version of our
example fUML activity.

The different specifications at the model-level for a simplified version of the example
activity (for representation purposes) are shown on Figure 3.12. The node “DrinkSome-
thing” represents the drinking part of the activity of Figure 3.2. In this figure, the Event
Structure on the left captures all the possible execution paths of the model. After initial-
izing the activity, the ForkNode is executed. Then, in this simplified view, there are three
solutions: drinking something then talking, talking and then drinking something, or talk-
ing while drinking something. Ultimately the same configuration is attained. After that,
the JoinNode and FinalNode can be executed. For this simplified activity, this gives us 3
possible scenarios in total. But for a more complicated model like the one on Figure 3.2, we
have a total of 64 different possible scenarios, accounting for all the possible interleavings
and parallelisms between the talking and drinking part of the activity, and the different
possible orders of evaluation of the guards. See Appendix A for the detail of all the possible

execution scenarios.

Listing 3.3 shows an excerpt from the Communication Protocol of f{UML specified using
pseudo-code. There are two mappings, one for the execution of nodes, and one of the

evaluation of the guards of edges.
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Listing 3.3: Excerpt from the Communication Protocol of fUML, specified using pseudo-

code.

1
2
3
4
5
6
7
8

9
10
11
12

// Syntax:

// Mapping [mapping name]:

// upon [MoCTrigger from MoCMapping ]

// triggers [Execution Function from Semantic Rules]

Mapping ExecuteActivityNode:
upon executeNode
triggers ActivityNode.execute()

Mapping EvaluateGuard:
upon evaluateGuard
triggers ActivityEdge.evaluateGuard()

3.2.4 Generation of the Model-level Specifications

The execution semantics are defined at the language level, but they are applied when ex-

ecuting a particular model. Therefore to facilitate the development and debugging of our

approach, we first “unfold” the execution semantics specification for a particular model.

Figure 3.13 sums up the generation of the three concerns.

« 1: Model + Semantic Rules — Semantic Rules Calls
Captures the dynamic data of the model and the API that makes these data evolve

during runtime.

+ 2: Model + MoCMapping — Model of Concurrency Application
Partial ordering over abstract events (i.e., more formally, the MoCApplicationTrig-
gers, e.g., the events of an Event Structure), independent of any data from the model.
See Figure 3.8 for the simplified Event Structure corresponding to the MoCApplica-

tion of the example Activity.

+ 3: Model + Semantic Rules Calls + MoCApplication + Communication Protocol —
Communication Protocol Application
Mappings (called MappingApplications to differentiate them from their language-
level counterparts) between the abstract events from the MoCApplication and Exe-

cution Function calls.
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Figure 3.13: Generation of the different model-level concerns

As an example, Listing 3.4 shows an excerpt from the Communication Protocol Appli-
cation for our example fUML Activity. It shows the pseudo-code specification obtained by
automatically unfolding the Communication Protocol shown on Listing 3.3 for the Activity
shown on Figure 3.2. This specification is often big and repetitive since models often have
several instances of the same concept from the abstract syntax, so the unfolding of the

Communication Protocol results in a same specification being adapted for each instance.

Listing 3.4: Excerpt from the generated Communication Protocol Application for the ex-

ample fUML Activity, specified using pseudo-code.

1|// Syntax:

2| // MappingApplication [mapping application name]:
31// upon [MoCApplicationTrigger from MoCApplication]
41// triggers [Execution Function Call from Semantic Rules Calls]
5

6| MappingApplication ExecuteActivityNode_MyInitial:

7 upon executeNode_MyInitial

8| triggers MyInitial.execute()

9

10| MappingApplication ExecuteActivityNode_MyFork:

11 upon executeNode_MyFork
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12 triggers MyMyFork.execute()

13

14| MappingApplication ExecuteActivityNode_Talk:

15 upon executeNode_Talk

16| triggers Talk.execute()

17

18| MappingApplication ExecuteActivityNode_CheckTableForDrinks:
19| wupon executeNode_CheckTableForDrinks

20| triggers CheckTableForDrinks.execute()

21

22| MappingApplication ExecuteActivityNode_MyOutputPin:
23 upon executeNode_MyOutputPin

24| triggers MyOutputPin.execute()

25

26| MappingApplication ExecuteActivityNode_MyDecision:
27 upon executeNode_MyDecision

28| triggers MyDecision.execute()

29

30| MappingApplication ExecuteActivityNode_DrinkCoffee:
31 upon executeNode_DrinkCoffee

32| triggers DrinkCoffee.execute()

33

34| MappingApplication ExecuteActivityNode_DrinkTea:

35 upon executeNode_DrinkTea

36| triggers DrinkTea.execute()

37

38| MappingApplication ExecuteActivityNode_DrinkwWater:
39| upon executeNode_DrinkWater

40| triggers DrinkWater.execute()

41

42| MappingApplication ExecuteActivityNode_MyMerge:

43 upon executeNode_MyMerge

44| triggers MyMerge.execute()

45

46| MappingApplication ExecuteActivityNode_MyJoin:

47 upon executeNode_MyJoin

48| triggers MyJoin.execute()

49

50| MappingApplication ExecuteActivityNode_MyFinal:

51 upon executeNode_MyFinal

52| triggers MyFinal.execute()

53

54| MappingApplication EvaluateGuard_MyDecision2DrinkCoffee:

55

upon evaluateGuard_MyDecision2DrinkCoffee
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56| triggers MyDecision2DrinkCoffee.evaluateGuard()
57
58| MappingApplication EvaluateGuard_MyDecision2DrinkTea:
59| wupon evaluateGuard_MyDecision2DrinkTea

60| triggers MyDecision2DrinkTea.evaluateGuard()

61
62| MappingApplication EvaluateGuard_MyDecision2DrinkWater:
63| wupon evaluateGuard_MyDecision2DrinkWater

64| triggers MyDecision2DrinkWater.evaluateGuard()

3.2.5 Runtime

Each concern has an associated runtime: Solver for the MoCApplication, Executor for the
Semantic Rules Calls and Matcher for the Communication Protocol Application. These
runtimes are coordinated by the runtime for the whole language called the Execution
Engine.

An overview of the architecture of the runtime is shown on Figure 3.14. It is totally
generic (i.e., agnostic of the technologies and tools used for each concern) thanks to the

use of an inversion of control mechanism (e.g., dependency injection).

Concurrency-aware Model Execution Concerns

I . I ] . . [} ] [}
Semantic Rules Communication Model of Concurrenc
: [ 1 > Yi

references|] Calls i | Protocol Application ! ! Application :

T Si—— e i a
i i i i
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Model
Executor Matcher Solver
Loader
Execution Engine
Depends on the Depends on Depends on the Depends on
meta-language used the meta-language meta-language used m the Model of
for instances of the used for the for the Communication Concurrency
abstract syntax Semantic Rules Calls Protocol Application used

Figure 3.14: Architecture of the runtime of a concurrency-aware xDSML

Figure 3.15 shows the simplified sequence diagram corresponding to the realization

of one step of execution. First, the Solver provides the set of possible solutions, called
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Figure 3.15: Sequence Diagram of a step of execution

Scheduling Solutions. There may be no solution, as a consequence of a deadlock (possibly
because the execution has finished). There may also be only one possible, but most often
when there is nondeterminism such as in case of concurrency, several are possible. One
of these solutions is chosen via an heuristic of the runtime, which can in particular consist
in asking the user to choose one solution through a UI (i.e., in case of step-by-step exe-
cution). It then uses the Matcher to retrieve the corresponding set of Execution Function
calls. These are executed thanks to the Executor in a concurrent mode (e.g., in any order, in
paralle, etc.) as they are considered as happening simultaneously (with regards to the Mo-
CApplication). This effectively triggers changes in the Execution Data, thus corresponding

to making the model evolve due to its execution.

3.2.6 Refinement of the Shortcomings

The concurrency-aware approach we have defined so far has some limitations which we
intend to overcome. Some of them were illustrated on fUML in 3.1.3. We propose to
identify them based on the modular design we just presented. When considering solutions

to these shortcomings, we will strive to respect the following constraints.

1. To keep intact the initial objectives of the approach regarding the modularity and
analyzability of the semantics. This means that the separation between the data

aspects of the semantics, and the concurrent aspects, must be respected.
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2. To not rely on modifying the MoC or its runtime. The purpose of the approach is
to be able to analyze the MoCApplication using existing tools and methodologies
available for the MoC used.

3. To make the implementation of the Semantic Rules as idiomatic as possible. This
activity is the closest to traditional programming, and should therefore have an ad-

equate syntax.

Refinement of the Design of the Semantic Rules

The Semantic Rules capture the dynamic data of models and how they evolve. Due to their
nature, their specification is very close to traditional programming activities: specifying
data and operations (or algorithms) exploiting these data. This makes Turing-complete,
or by extension, GPLs, good candidates as metalanguages for the Semantic Rules. But
our approach relies on a clear design of the Semantic Rules, therefore some programming
features possibly brought by the chosen metalanguage must not be used. We detail these

issues in Section 3.3.

Non-blocking Execution Function Calls

During the execution, Execution Function calls are realized in a blocking way. This means
that once they have been scheduled and their execution starts, the rest of the execution
is on hold. This is fine for most Execution Functions which should generally manipulate
data available in the model, and whose execution time is short enough to be neglected. But
this is an issue if the Execution Function is supposed to do heavy computations, access a
lot of data, retrieve external resources, or connect to some network. This disrupts the rest
of the execution, even the parts which are not dependent on the results of the time-taking
operation. Therefore, we explore the issue of running Execution Function calls in a non-

blocking manner and its limitations in Section 3.4.

Improving the Communication Protocol to Deal with the Completion of Execu-
tion Function Calls

So far, the Communication Protocol is a one-way communication from the MoCMapping,
to the Semantic Rules. However, for some language constructs, the control flow depends
on data returned by a Query at runtime. For instance, in fUML, after a DecisionNode, one
of its branches is executed depending on the results of the guard evaluations. It may also
depend on some previously-called (non-blocking) Execution Function call being finished.

We propose to enrich the Communication Protocol with the means to specify these kinds of
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communications. Sections 3.5 and 3.6 illustrate the challenges and our solutions to specify

these communications.

Reuse of Execution Functions

Execution Functions are designed with the intent of being called by the Execution Engine
because the MoCApplication orchestrated its call. In programming languages, operations
(or procedures, functions, etc.) are used to share code, which means that an operation
is usually called from several different points of a program. In particular, an Execution
Function implementation may want to rely on the use of another Execution Function, ei-
ther to avoid duplicating code, or simply to gain access to a particular piece of data. If
we want to be able to maintain the concurrency-awareness of this internal use of another
Execution Function, then an adequate coordination between the semantics concerns must
be specified. In Section 3.7 we identify the difficulties bound to this issue, propose ele-
ments of solution towards the specification of composite Execution Functions and show

the limitations of this feature.

Semantic Variation Points

The concurrency-aware approach modularizes the semantics specification of an xDSML,
thus making possible the variability of some of the parts of the specification. Language
specifications sometimes include Semantic Variation Points (SVPs) in order to leave imple-
mentors and users with some degree of freedom to adapt the language to specific situations.
In Section 3.8 we discuss how SVPs can be specified and implemented in the approach. In
particular, we show that the concurrency concerns specification eases the implementation

of SVPs related to the concurrency of a language.

Concurrency-aware xDSMLs for Reactive Systems

One of the constraints of the separation of concerns is that the MoCMapping is data-
independent. This means that data flows can be difficult to implement, both between Ex-
ecution Functions (which leads to additional difficulties treated in Section 3.7) and from a
component external to an Execution Function. This means that reactive systems are, so far,
difficult to capture using concurrency-aware xDSMLs. We propose in Section 3.9 a means
to enable the specification of languages in which data flows can be realized, facilitating the

design of reactive systems.
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Behavioral Interface of Concurrency-aware xDSMLs

The Mappings of the Communication Protocol represent the interface for the behavior of
individual elements of the language which, put together, represent the whole behavior of
the language. This interface can be exploited by various components: a Graphical User In-
terface (GUI) to implement the heuristic of the runtime, the runtime of another language
(possibly concurrency-aware), a trace that records which Mappings have occurred dur-
ing the execution, etc. To accommodate the variety of needs from these external compo-
nents, we propose in Section 3.10 elements of solutions to improve or refine the interface
presented by the Mappings of the xDSML. We also identify some associated issues and

limitations.

Tailoring the Model of Concurrency used to the Concurrency Paradigm of the
xDSML Under Development

Finally, the main issue with the approach we have presented so far is that the only available
Model of Concurrency is Event Structures. This is mainly due to the complexity of the
design the metalanguage used to specify the MoCMapping. Traditionally, MoCs are used
directly at the model level, in which case the mapping between a MoC and the AS of an
xDSML is not developed. Even if we were to add a new MoC to our approach, it would
need to be formatted in a particular way to fit our approach. In Chapter 4 we will show
how to use concurrency-aware xDSMLs as MoCs, thus providing an effortless means to

use new formalisms to capture the concurrency concerns of xDSMLs.

3.3 Refining the Design of the Semantic Rules

We make explicit and present some design constraints for the Semantic Rules to be con-
sistent with our approach. We also refine the role of the Execution Data and Execution

Functions.

3.3.1 Exploiting the Execution Data

The Execution Data define the set of dynamic data that evolve during the execution of a
model. Their only focus is to represent the pure execution of models. Additional layers
may be specified on top of that for specific purposes.

For instance, in the context of representing the execution of models, the difference
must be drawn between the Execution Data and their formatting for an animation repre-

sentation. We call the latter the Animation Data. They define a particular point of view
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on the Execution Data, which will be used to animate (textually, graphically or other) the
executed model. The difference between the Execution and Animation Data is a bit sim-
ilar to the difference, in Object-Oriented Programming, between a class’s fields (internal
representation of the data held by a class) and its public accessors (its interface with other
classes).

In fUML, the Execution Data are mainly the Tokens held by the edges. But in a graph-
ical animation of the execution of fUML, representing the tokens might not be the most
attractive representation. Instead, we can prefer to represent which nodes may be exe-
cuted (computed based on the tokens on the incoming edges of the nodes). Identifying
which nodes may be executed is a view on the Execution Data of fUML, which is defined
at the animation layer level and should not be done in the Semantic Rules. For technical
reasons, one may need to define the Animation Data alongside the Execution Data if the
animation layer used does not provide adequate means for their definition.

Other layers above the Execution Data may be considered, for instance if we want to
perform some form of analyses on the runtime state of models during their execution. In
any case, the definition of the Execution Data should not be polluted by these external

concerns.

3.3.2 Taxonomy of Execution Functions

We have identified in our approach two natures of Execution Functions: Modifiers and
Queries. The difference is mainly conceptual but could be concretized in the Semantic
Rules metalanguage, although it would require significant design effort. It can be left as a
methodological aspect of our approach. Figure 3.16 shows the updated metamodel for the

Semantic Rules with the taxonomy we propose.

Modifiers

Modifiers are functions with side-effects, whose role is to update the runtime state of the
model when executed. For instance in f{UML, when a node is executed, it modifies the
runtime state of the incoming and outgoing edges (the tokens they hold). Figure 3.17
illustrates the impact of the execution of MyForkNode on its incoming and outgoing
edges.

Queries

Queries are side-effect-free functions whose role is to return runtime information, either

about the model itself or computed based on data from the model. In fUML, evaluating
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Figure 3.16: Metamodel of the Semantic Rules showing the taxonomy of Execution Func-
tions.

MyFork.execute()

 —

Figure 3.17: Example Modifier: ActivityNode.execute () modifies the tokens
held by incoming and outgoing edges.

the guard of an edge is a Query which returns a boolean value. Figure 3.18 illustrates this

query.

3.3.3 Depth of the Concurrency-awareness

A key consideration in the design of the Execution Functions is that they represent the
interface making explicit how the Execution Data evolve. They are the point of contact for
the rest of the semantics. The particular operations they realize in their body are not visible
individually for the rest of the semantics. This means that the concurrency model only
captures the concurrency between the Execution Functions calls ; it cannot go “deeper”,

such as inside the body of an Execution Function.
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Figure 3.18: Example Query: ActivityEdge.evaluateGuard() : Boolean
returns whether or not a branch may be executed.

This is usually the case when using any Model of Concurrency. The MoC is used to help
schedule some “atomic” actions which are not themselves decomposed using the MoC. In
the concurrency-aware approach, from the point of view of the concurrency model, the
body of Execution Functions is “opaque”, i.e., it cannot be seen and thus is not explicitly
scheduled. Instead, it follows the control flow of the metalanguage used to specify the Se-
mantic Rules. Placing the atomicity of the concurrency model at the Execution Function
level allows the approach to remain open to any metalanguage for the Semantic Rules, in-
cluding ones where complex data operations can be performed. This is the case for instance
if Java is used to implement the Execution Functions as methods.

To illustrate this concept, let us consider the evaluation of binary expressions such
as a + b, where a and b are expressions. Evaluating such an expression consists in first
evaluating a and b, and then summing their results. This can be done in many ways,
most commonly either first computing a, then b; first computing b and then a; or possibly
computing both in parallel. Using the concurrency-aware approach for this case, these
variations can be captured in two different manners. Either they are made explicit in the
concurrency model, as prescribed by the approach, enabling their analysis but requiring
dedicated specifications (cf. the description of the approach); or they are made implicit
in the Semantic Rules, relying on metalanguage-specific primitives, and hindering any
possible use of concurrency-aware analyses.

We show the difference between these two approaches in the following figures. On
Figure 3.19, we show the execution concerns for the computation of this expression, in the
case where the concurrency-awareness is not very deep, i.e., it does not detail in which
order a and b are computed. Instead, this is left to the implementation of the Execution
Function Expression.evaluate (). Overall, this is very much like what happens
when defining an interpreter for expressions in a traditional manner (e.g., with the Visitor

design pattern).
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Figure 3.19: Execution concerns for the execution of expression a + b, where the concur-
rency aspects are not detailed in the concurrency model.

On Figure 3.20, these concerns are made explicit in the concurrency model, as described
in the approach. This requires additional efforts (i.e., compared to traditional approaches)

but allows its analysis and refinement.

Ultimately, both solutions capture the same semantics, but with a different degree of
concurrency-awareness. We advocated the use of a detailed concurrency-awareness, and
thus study some features to facilitate its specification and execution. However, at times,
and for practical reasons, one may opt not to pay the cost of concurrency-awareness (in
terms of difficulty to specify), because the benefits it provides are not deemed worthy (e.g.,
if we want to focus on the concurrency aspects of only parts of a system). This remains a

matter of appreciation from the language designer.

3.3.4 Compatibility between the MoCMapping and the Semantic
Rules

The modularity of the concurrency-aware approach means that for a language, we can
change its MoCMapping or Semantic Rules. But not all MoCMappings are compatible

with all Semantic Rules, and vice-versa.
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Figure 3.20: Execution concerns for the execution of expression a + b, where the concur-
rency aspects are detailed in the concurrency model.

Pre-conditions of Execution Functions

Execution Functions may be designed with a certain set of expectations with respect to
the state of the model or previous operations having been performed. These requirements
cannot be captured by the MoCMapping, as it is agnostic of the data from the model. It is
also difficult to statically analyze the use of shared data at design time, as it would rely on
analyzing the content of each Execution Function, and also relies on the intended semantics
of the xDSML.

To capture these requirements, we propose to enhance Execution Functions with a set
of pre-conditions representing the minimum requirements they expect from the runtime
state of the model, before their execution can be performed. This is a common mecha-
nism of the design-by-contract programming approach [97] to ensure safe interactions be-
tween software components. This mechanism is also found in modeling formalisms such
as CSP [68] or Event-B [1].

An example of such pre-conditions in fUML is that we do not want to try executing
a node if it does not have the required tokens on its incoming edges. This requirement
can easily be captured in a pre-condition by checking the tokens present on the incoming

edges.
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Race Conditions

Reversely, a common issue with highly-concurrent systems is dealing with race conditions.
They can be tricky to identify at design time, and are often difficult to track at runtime,
as they may only happen in conditions depending on scenario-specific data, or on the
underlying execution platform. In our approach, they could stem from the Communication
Protocol mapping MoCTriggers to Execution Functions in such a way that two Execution
Functions manipulating the same data are scheduled in parallel.

To mitigate this issue, Execution Functions should declare the model data which they
read and modify. This would facilitate the identification, by the language designer, of which
Execution Functions should generally not be scheduled in parallel. For instance in f{UML,
the Execution Function corresponding to the execution of a node reads and modifies the

incoming edges’ tokens and modifies the outgoing edges’ tokens.

Integration into the Concurrency-aware Approach

These two mechanisms can be implemented explicitly in the Semantic Rules metalanguage.
They can also be considered purely as methodological aspects, since they are mostly about
guiding the language designer during the execution semantics design. As such, they can
be seen as optional features whose sole purpose is to facilitate the language designer’s
activity.

In the latter case, the pre-conditions can be defined inside the Execution Functions im-
plementations (possibly in their own boolean-valued function). The identification of data
used by Execution Functions can be specified via annotations or even informally. Theo-
retically, it can be extracted automatically from the Execution Functions implementations.
However, as this is a significant implementation effort, we leave open how this specifica-

tion is ultimately realized, as it does not directly impact the execution of models.

3.3.5 Summary

The refinement of the Semantic Rules we have presented has two purposes. Firstly, it con-
tributes to understanding the role of the Execution Data and Functions in the xDSML’s
execution semantics. Secondly, it also contributes to understanding the relation between
the Semantic Rules and the MoCMapping, notably the notion of compatibility between
these two aspects. This refinement also serves as the groundwork for other features pre-
sented in this thesis, and particularly in the rest of this chapter. More specifically, the role
of the Execution Functions as the atomic evolutions of the language, and their taxonomy

into Queries and Modifiers will be used further in this chapter.
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3.4 Non-blocking Execution Function Calls

Initially, all Execution Function calls are done in a blocking manner, which means that they
put the rest of the execution on hold. We propose a feature to allow Execution Function
calls to be executed in a non-blocking manner. First we motivate this feature and identify
its challenges. Then we propose our solution to specify these calls and the associated

modifications to the runtime of concurrency-aware xDSMLs.

3.4.1 Purpose

Blocking Execution Function calls are a problem for functions which imply complex com-
putations, access a lot of data, retrieve external resources or connect to some network.
They disrupt the rest of the execution, including parts which are not dependent on their
outcome.

For instance in fUML, if the execution of a node takes a long time, and that this node
is on a branch between a ForkNode and a JoinNode, it would be interesting to be able
to progress on the concurrent branches meanwhile. In the approach we have described
so far, this is not possible: if we launch the execution of the node we must wait for it to
complete before being able to do anything else. Another way to see this is to consider the
execution of an Execution Function call as a couple of events: one for the beginning of
the execution, and one for the end. Usually the first one depends on previous parts of the
model having been executed (e.g., we start the evaluation of the guards of edges outgoing
a DecisionNode after the DecisionNode has been executed) ; while the second one matters
for the execution of the subsequent parts of the model (e.g., we execute one of the branches
only when all the guards have been evaluated).

Non-blocking Execution Function calls do not fundamentally impact the representa-
tion of the concurrency concerns using a MoC, but they improve the performance of the
execution by making it smoother, i.e., by allowing concurrent execution of independent
parts of the model. This comes at the cost of possibly making the specification of the con-
currency model more complex, since new race conditions may appear as a consequence of
a non-blocking execution function call. A more accurate concurrency model would thus

be required to ensure these race conditions do not occur.

3.4.2 Challenges

This feature leads to the following challenges. First, we need to identify how and where the

blocking/non-blocking execution strategies should be specified. Then we need to identify
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how it is implemented in the runtime of concurrency-aware xDSMLs. Finally, we also
need to manage the completion of non-blocking Execution Function calls in a way that is

coherent with how we manage the completion of regular Execution Function calls.

3.4.3 Solution

Here we present our solution, with a focus on each associated challenge.

Specification of Non-blocking Execution Function Calls

Drawing from the experience of GPLs, where many different tactics are provided by (stan-
dard) libraries to implement non-blocking function calls (“Asynchronous Programming”,
cf. Chapter 2), we have identified two possible solutions. We can specify the blocking/non-
blocking nature of the call either at the Execution Function level (in the Semantic Rules),

or at the Mapping level (in the Communication Protocol).

The upside of the first solution is that the non-blocking nature of the Execution Func-
tion comes with the body of the Execution Function, so problematic parts of the code are
clearly identified and labeled as such. This is for instance the case in C# where the key-
word “async” can be used when defining a method. The downside is that it adapts poorly
to all execution platforms: perhaps an Execution Function designated as “non-blocking”
by the initial developer actually runs very fast on another machine, and thus could instead
be executed in a blocking manner. The second solution is thus more adaptable, since the
blocking/non-blocking nature is specified “later” in the process, i.e., in the Communication
Protocol for each Mapping. Moreover, we believe it makes more sense that the “caller” of
the Execution Function (i.e., in our case, the Communication Protocol) decides how it ex-
ecutes it ; rather than be forced to do it in a particular way, without any knowledge of
it.

In Listing 3.5, we show the pseudo-code corresponding to the specification of the non-

blocking nature of the Execution Function call of the Mapping “EvaluateGuard”.

Listing 3.5: Specifying the non-blocking nature of a Mapping of the Communication Pro-
tocol of fUML, in pseudo-code.

1|Mapping EvaluateGuard:
2 upon evaluateGuard
3 triggers ActivityEdge.evaluateGuard() nonblocking
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Figure 3.21: Excerpt from the metamodel of the Communication Protocol showing the
blocking or non-blocking nature to an Execution Function can be specified.

This solution can be improved by adding the possibility to specify the blocking/non-
blocking nature at the Execution Function level as well. In that case, the idea is to use it as
a guidance (or default choice), i.e., that if a Mapping does not explicitly specify the nature
then it is looked up at the Execution Function specification. The editor of the Communi-
cation Protocol metalanguage can also leverage this information to suggest the nature to
the Communication Protocol Designer. Ultimately, the decision remains in the hands of
the Communication Protocol designer as we originally suggested.

Figure 3.21 shows an excerpt from the metamodel of the Communication Protocol ex-

tended with the feature we just described.

Runtime of Non-blocking Execution Function Calls

When the Execution Engine executes a MappingApplication specifying that the associated
Execution Function call is non-blocking, then it launches it in a non-blocking manner.
There are two ways this can happen: either the runtime of the Semantic Rules (the Execu-
tor) provides the means to execute an Execution Function call in a non-blocking manner,
or it does not, in which case the runtime of the Communication Protocol is in charge of
launching the execution in a non-blocking manner.

Implementing a non-blocking method call depends on the language (and its execution
platform) used to implement the runtime of the Semantic Rules or of the Communication
Protocol. For instance for JVM languages, the java.util.concurrent® package provides useful
classes and methods to implement this. Python users may use the asyncio module*,

while in Ruby one may use Fibers °.

*http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
*https://docs.python.org/3.4/library/asyncio.html
*http://ruby-doc.org/core-2.1.1/Fiber. html


http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.python.org/3.4/library/asyncio.html
http://ruby-doc.org/core-2.1.1/Fiber.html
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Listening for Completion

When the Execution Engine has launched a non-blocking Execution Function call, it must
keep a reference to the place where the result of the call will be stored. In many GPLs, this
is implemented as a “Future” or “Promise”. The Execution Engine must then check as often
as possible whether or not the call has completed (e.g., on the JVM by using the method
java.util.concurrent.Future. isDone()), or use some form of signal (e.g.,
through the Observer design pattern) to be notified of the completion of the call.

Managing Completions

When an Execution Function call has completed, it can have an influence on the next
allowed steps of execution. The Execution Engine must thus re-compute the set of possible

Scheduling Solutions upon completion of any Execution Function call.

Interruption of an Ongoing Execution Function Call

Finally, in case an ongoing call is blocked or should be interrupted because another part
of the model took precedence, we propose to enable Mappings of the Communication
Protocol to interrupt an ongoing Execution Function call. Listing 3.6 shows the pseudo-

code of the specification of such a Mapping.

Listing 3.6: Specifying the Mapping to interrupt an ongoing non-blocking Execution Func-

tion call, in pseudo-code.

1|Mapping InterruptEvaluateGuard:
2 upon interruptEvaluateGuard
3 interrupts EvaluateGuard

At runtime, when a MappingApplication corresponding to this Mapping occurs, it in-
terrupts the ongoing Execution Function call corresponding to the mapping “Evaluate-
Guard” if there is one, otherwise it does nothing. Depending on how the Semantic Rules
metalanguage applies changes to the model being executed, it may not be possible to re-
vert the side-effects that the partially-executed Execution Function call has made on the
model. This feature can thus lead to an inconsistent state of the model. To palliate this,
the changes to the model can be applied using transactions [134].

Likewise, continuing an interrupted Execution Function Call is possible, so long as that
same Mapping has not be triggered in-between. Listing 3.7 shows the pseudo-code of the
specification of such a Mapping.
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Figure 3.22: Excerpt from the metamodel of the Communication Protocol showing the
different natures of calls to an Execution Function: a submission (to start executing it),
an interruption (to halt an ongoing non-blocking call) or a resume (to start an interrupted
call).

Listing 3.7: Specifying the Mapping to resume an interrupted non-blocking Execution

Function call, in pseudo-code.

1|Mapping InterruptEvaluateGuard:
2 upon interruptEvaluateGuard
3 resumes EvaluateGuard

At runtime, such a MappingApplication resumes the previous ongoing non-blocking
Execution Function Call corresponding to the mapping “EvaluateGuard” if there is one,
otherwise it does nothing.

Figure 3.22 shows an excerpt from the metamodel of the Communication Protocol ex-

tended with these possibilities.

3.4.4 Costs and Downsides

The main cost of this feature is that it ties the execution of a model to the physical machine
on which it is executed. Indeed, the real physical time taken by the machine to perform the
non-blocking Execution Function call varies, and as such, the model may be in different
states upon completion of the call, in different executions of the same model, possibly
altering the rest of the execution. Previously, a model execution only relied on “logical
time”, i.e., the causalities between the MoCApplicationTriggers, agnostic of the physical
machine used. The main downside is that it hinders the replayability of scenarios. Before,

a scenario was essentially composed of the set of arbitrary choices realized by the heuristic
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of the runtime. Now, the completion of non-blocking Execution Function calls must also
be taken into account. This means that a model execution may be made smoother thanks
to non-blocking calls, but this smoothness is not guaranteed on all possible platforms on
which the execution is performed.

Finally, this feature can be technically difficult to implement because modifications
to the model may be performed in a non-blocking Execution Function call, thus possibly
making difficult the use of external tooling depending on the model’s runtime state. For
instance this is the case in our implementation of the graphical animation, which assumes
a certain transaction protocol for the modification of the model (i.e., EMF Transactions®).
This protocol is disrupted by the modifications conducted in non-blocking calls. A solution
for this, albeit requiring significant implementation effort, would be to use a metalanguage
for the Semantic Rules that can automatically wrap model modifications to make use of

the protocol used to modify the model.

3.4.5 Feature Summary

The seminal approach is fully sequential, in the sense that each execution step is executed
and completed entirely before the next one starts. With this feature, the approach effec-
tively becomes concurrent because non-blocking Execution Function calls are allowed to
span over several execution steps. They must be designed carefully, so as to not provoke
data races issues. But this feature is necessary for the support of xDSMLs whose behavior
is rooted in the “real world”, i.e., when relying or controlling an external system like a
robot or a sensor, whose execution lasts significantly more than regular Execution Func-
tion calls. It makes the simulation more user-friendly, since the end user does not always
have to wait for previous execution steps to have finished executing (particularly in the
case where it would have no impact on the future of the execution). It also enables some

of the other features presented in this chapter.

3.5 Completion of an Execution Function Call

The completion of an Execution Function call is a meaningful event during a model’s exe-
cution. It represents the end of the behavior of a model element, and is usually indicative of
the next steps to perform. In this section, we only consider Execution Function calls which
do not return any data (i.e., their return type is Void). So far the completion of such calls is

not represented explicitly in the concurrency model. In fact, for blocking Execution Func-

Shttp://www.eclipse.org/emf-transaction/
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tion calls, they are confounded with the start of the Execution Function call, since they are
seen as instantaneous. This is no longer the case with non-blocking Execution Function
calls, and as such their beginning and completion should be treated as separate. In this

section, we study the purpose of this separation, and how it can be implemented.

3.5.1 Purpose

With the introduction of non-blocking Execution Function calls in the previous section,
comes the separation of the beginning of a call from its completion (or ending). So far, they
were considered instantaneous and therefore represented in the concurrency model as a
single event in the Event Structure. But for non-blocking calls, the completion most likely

does not happen in the same execution steps as the beginning.

Let us consider two Events, e_retrieve Data and e_displayData. Our goal is to first
“retrieve data”, e.g., evaluating a guard, retrieving the current temperature, etc., and then
“display data”, e.g., by printing it to the standard output. The causality between these
two events is initially denominated as e_retrieve Data < e_displayData. For the sake of
this section, let us now consider that retrieving the data takes some time, and therefore
it should be performed in a non-blocking call so as to not block the rest of the execution
(i.e., typically the case if the data must be retrieved from an external component over a
network, etc.). For the sake of generality, we consider that displaying the data also takes

time and should be done in a non-blocking manner.

Both events should thus be captured in the concurrency model as a couple of event cor-
responding to their beginning and their completion. For e_retrieve Data, this means that

we now have e_begin_retrieve Data and e_end _retrieve Data with the following causality:

e_begin_retrieveData < e_end_retrieveData

The same happens for e_displayData with the causality:

e_begin_displayData < e_end_displayData

The causality between retrieving and displaying the data can thus be specified as:

e_end_retrieveData < e_begin_displayData
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3.5.2 Challenges

Compared to the initial description of the approach, there are two issues that must be dealt
with:

« Event e_foo initially represents both e_begin_foo and e_end_foo. They must be

made explicit with the causality e_begin_foo < e_end_foo.

« Event e_end_foo is a bit peculiar because its occurrences represent something that
happens in the Semantic Rules, i.e., the completion of an Execution Function call.
This means that it may only occur whenever, in the model, the corresponding Ex-
ecution Function call has completed. Its occurrences are thus resulting from the
runtime of the model, whereas occurrences of e_begin_foo drive the runtime of the

model.

The former is just a matter of MoCMapping design. The latter is a bit more complex. We
propose to name as Controlled Events (respectively Controlled EventTypes) the events from
an Event Structure (respectively, the EventTypes from an EventType Structure) whose oc-
currences we plan to finely control based on other concerns of the semantics of the xDSML.

In our case, e_end_foo is a Controlled Event, subjected to the completion of the Ex-
ecution Function call mapped to e_begin_foo. In the rest of this section, we show how
such EventTypes are specified in the MoCMapping, and describe how they are controlled

at runtime.

3.5.3 Specification

The EventType et_foo must be replaced by two EventTypes et_begin_foo and ef_end_foo
with a causality between them. There are several ways to accomplish that. The meta-
language used for the MoCMapping can provide a language construct corresponding to
this structure. It can also be simply considered as a design pattern to be used during the
design of the MoCMapping. In our description, we choose the latter so as to keep our
Event/EventType Structures “pure” (i.e., unaltered by our approach).

Listing 3.8 shows an example specification, in the MoCMapping, of this design pattern,

using pseudo-code.

Listing 3.8: Example specification of , specified using pseudo-code.

1| context MyData:
2 EventType et_begin_retrieveData;
3 EventType et_end_retrieveData;
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4| EventType et_begin_displayData;
5 EventType et_end_displayData;
6
7 constraint beginRetrieveBeforeCompletion:
8 self.et_begin_retrieveData
9 strictly alternates self.et_end_retrieveData;
10
11 constraint beginDisplayBeforeCompletion:
12 self.et_begin_displayData
13 strictly alternates self.et_end_displayData;
14
15 constraint retrieveBeforeDisplay:
16 self.et _end retrieveData
17 strictly alternates self.et_begin_displayData;

In this example, the constraint strictly alternatesbetweentwoEventse foo
and e_bar means that the i"" occurrence of e_foo happens strictly before the i occurrence
of e_bar, which happens strictly before the (i + 1)"* occurrence of e_foo. This ensures
that for every beginning there is always a corresponding completion, and that for every
retrieval of data there is always a corresponding displaying of it. This is formalized as
follows:

Vi € N,e_foo; < e_bar; < e_foo,,,

In the previous section, we have presented non-blocking Execution Function calls and
the possibility to interrupt them. Considering the constraints we have defined, interrup-
tion is not possible for the example we have just given. Additional EventTypes and con-
straints should be specified to enable the use of the interruption mechanism we have de-
fined.

In order to finely control the Controlled EventTypes, we must specify to which Ex-
ecution Function call they correspond. This is done in the Communication Protocol, as

illustrated on the pseudo-code specification shown on Listing 3.9.

Listing 3.9: Pseudo-code specification of a Mapping whose Execution Function completion

is represented explicitly in the concurrency model

1| Mapping RetrieveData:

2| upon et_begin_retrieveData

3 triggers MyData.retrieveLatest () nonblocking
4 raises et _end_retrieveData
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Figure 3.23: Excerpt from the metamodel of the Communication Protocol showing the pos-
sibility for a Mapping to raise a MoCTrigger as a marker of the completion of its Execution
Function.

In this listing, the Mapping “RetrieveData” raises the MoCTrigger (EventType) et_end_retrieve Data
when its corresponding Execution Function, “MyData.retrieveLatest()” has finished its ex-
ecution.

Figure 3.23 shows an excerpt from the metamodel of the Communication Protocol ex-

tended with this possibility.

3.5.4 Runtime

Managing the Controlled Events could be realized partly in the MoCMapping side of things.
However, to avoid relying on a particular implementation technology of the concurrency
aspects, we describe the runtime as a layer added to the runtime of the Communication
Protocol, thus making it compatible with any implementation of the MoCMapping.

The runtime for these events is as follows. First, they are identified by the Execution
Engine by going through the Communication Protocol Application and gathering all the

o

events specified in the “raises..” clauses. Since these Events must be controlled finely,
they are filtered at every step by the Execution Engine. This means that, at every step, the
default behavior of the engine is to filter out the Scheduling Solutions with occurrences of
the Controlled Events.

This filtering out is disabled, for a Controlled Event, temporarily upon completion of
an Execution Function call whose “raises..” clause is that Controlled Event. It is disabled
until a solution with an occurrence of the Controlled Event has been selected by the heuris-
tic of the engine. This ensures that, upon completion of an Execution Function call, one
occurrence of the raised event has happened. This, in turn, guarantees that the MoCAp-

plication accurately depicts what has effectively happened in the runtime of the Semantic
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Rules. Figure 3.24 shows the updated sequence diagram of one step of execution (cf. Sub-
section 3.2.5). Between execution steps, the engine listens for the completion of ongoing
Execution Function calls, thus impacting the behavior of method removeSolution-
sWithUnallowedControlledEvents because the corresponding raised events

are temporarily allowed.

E’I‘E‘:C“t'onl Solver I Matcher I Executor I

nextP055|bIeSqut|ons

removeSolutionsWithUnallowed
ControlIedEvents(p055|bIeScheduI|ngSqutlons)

execute(call)

|¢oncurrent loop (call: executionFunctionCalls) |

AN
7|

Figure 3.24: Sequence Diagram of a step of execution, with fine control of the Controlled
Events.

—

3.5.5 Compatibility with Blocking Execution Function Calls

The issue we have described is mainly the consequence of the non-blocking Execution
Functions call feature we have described in Section 3.4. Still, the solution presented above
remains compatible with blocking calls. Compared to what we have presented, the con-
straint used must be loosened a little bit by removing the “strict” aspect. Listing 3.10 shows

the adapted example MoCMapping specification in pseudo-code.
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Listing 3.10: Excerpt from the MoCMapping specifiation, using pseudo-code, illustrating
the causality relation between the “begin” and the “end” event when using blocking Exe-

cution Function calls.

1| context MyData:

2| constraint beginRetrieveBeforeCompletion:
3 self.et_begin_retrieveData

4 alternates self.et _end retrieveData;

The constraint “alternates” between two Events e_foo and e_bar is such that:
Vi € N,e_foo, <= e_bar, <=e_foo,,,

In other words, the i occurrence of e_foo happens before (possibly at the same time)
the i" occurrence of e_bar, which happens before (possibly at the same time) the (i + 1)
occurrence of e foo. However, two occurrences of the same event cannot occur at the

same time, so e_foo, and e_foo,,; cannot occur simultaneously.

Moreover, there should not be any additional constraint preventing the simultaneous

occurrence of the “begin” and “completion” events.

The only change in the runtime is that the engine should make sure that if a Mapping-
Application specifies a blocking Execution Function call, then the selected Scheduling So-

lution must also contain an occurrence of the corresponding completion Event.

3.5.6 Feature Summary

This feature essentially implements an encoding of an asynchronous execution into the
Event Structure formalism, through a backward communication (i.e., from the Semantic
Rules to the MoCMapping). All Execution Function calls can be encoded this way since
synchronous executions can be seen as a particular case of asynchronous executions (i.e.,
where the “begin” and the “end” events occur simultaneously). However, concurrency-
aware xXDSMLs are generally designed for simulations, rather than for implementations of
real-world systems. This means that non-blocking calls are the exception rather than the
norm, which is why this feature is presented as an “opt-in” option rather than an “opt-out”

one.
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3.6 Data-dependent Language Constructs

The semantics of some language constructs features a data-dependent control flow: that
is, a control flow which depends on data available at runtime in the model. This is for
instance the case of conditionals, for which the evaluation of a condition expression de-
termines the next instructions to execute. In the concurrency-aware approach so far, the
control flow of language constructs, captured in the MoCMapping, does not allow for run-
time data to influence the future of the execution. We first motivate the importance of
such language constructs, then identify the mechanism to enable their specification, and

propose a solution that integrates into the concurrency-aware approach presented so far.

3.6.1 Purpose

To understand the prevalence of these language constructs, we consider the classification
of control flow constructs in workflow systems, proposed in [133] and mentioned in Sec-
tion 2.1. In this study, the authors have identified 43 patterns describing the control flow
perspective of workflow systems (defined using formalisms such as BPMN [158], UML Ac-
tivity Diagrams [111], BPEL [120], etc.). Among these patterns, 9 have semantics which,
described using our approach, would rely on changing the control flow according to data
available at runtime in the model. Patterns depending on the evaluation of a condition ex-
pression (e.g., Exclusive Choice, akin to fUML DecisionNode; Multi-Choice, akin to a UML
ForkNode with guards on outgoing branches; etc.) are typically concerned. Patterns based
on iterations (e.g., Arbitrary Cycles, corresponding to loops based on goto statements; Struc-
tured Loop, corresponding to repetitions based on dedicated language constructs such as
while...do or repeat...until) also rely on the evaluation of a condition expression. As stated
by the authors, ”Although initially focused on workflow systems, it soon became clear that
the patterns were applicable in a much broader sense” and ” Amongst some vendors, the extent

of patterns support soon became a basis for product differentiation and promotion.” [133].

We argue that, considering the number of patterns involved, this shows that many
language constructs are concerned by this issue. Not being able to specify them entirely in
concurrency-aware xXDSMLs is thus problematic. In the rest of this section, we will study
the mechanism required for the complete specification and execution of such language

constructs, and propose a pragmatic solution for its integration into our approach.
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3.6.2 Illustrative Example

In fUML, DecisionNodes represent decision points where one of the branches will be ex-
ecuted, based on the incoming data and the evaluation of the guards of the branches. In
our example model, depending on the drink found, either “DrinkCoffee”, “DrinkTea” or
“DrinkWater” will be executed. Figure 3.25 shows a close-up of the simplified Event Struc-

ture for our example model, in the case where we found “Coffee” on the table. When the

{..., e_EvaluateGuards}

/7
7
/7
Zz
A
{....e_Drink o T ;
ea
Coffee} _ {..e_Drink ) ....e_brink
{...e_MyJoin}@® Coffee, {...e_MyJoin}® Tea, e_Talk}
{...e_MyFina}@® € Talk} {..., e_MyFinal}

| & —— > _._l._._._):
| data-dependent paths execution paths and |
I validated by the sub-paths to prune I
I presence of "Coffee" I

Figure 3.25: Close-up on the simplified Event Structure of the example Activity. We assume
that earlier, the node “CheckTableForDrinks” returned “Coffee”. Coloured lines represent
the data-dependent causalities. The green dashed ones are the causalities validated by the
presence of “Coffee”. Red dots-and-dashes lines represent the execution paths that must
be pruned because they are not consistent with the presence of “Coffee”.

evaluation of the guards is realized, they return a boolean value defining whether or not
their branch may be executed. In the Event Structure, all possibilities are represented. But
since the concurrency model is data-independent, there is no connection between the re-
sult of the evaluation of the guards (e.g., the boolean values returned by the Query eval -
uateGuard()) and the execution of one of the branches.

In this section, we study how to specify an interpretation of the result of a Query (e.g.,
a boolean value in our case) so as to forbid some scenarios in the Event Structure (e.g., by

allowing and disallowing the branches of the ForkNode).
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3.6.3 Challenges

The problem lies in a lack of communication between two concerns of the semantics. On
the one hand, the concurrency model specifies, in a data-independent manner, all the pos-
sible execution scenarios. On the other hand, the Semantic Rules describe the dynamic
data of the model and how they evolve at runtime. What is lacking is a means to specify,
based on data available at runtime in the model, how to only consider the corresponding

valid scenarios in the concurrency model.

The first step of the mechanism consists in retrieving from the model the piece of data
which must be used to impact the control flow. For this, we rely on the taxonomy of Ex-
ecution Functions we have presented in Section 3.3. When a Query is executed, it returns
a piece of data from the model. So far, there is no way to exploit this data in order to only
enable execution scenarios which are consistent with it. In the rest of this section, we will
study how this can be specified and how it is implemented at runtime. The solution must
maintain the modularity of our initial approach, particularly the separation of concerns

and the data-independence of the concurrency model.

3.6.4 Extending the Communication Protocol

Since the communication we wish to specify links the Semantic Rules to the MoCMap-
ping; the Communication Protocol, which already specifies a communication from the
MoCMapping to the Semantic Rules, is an adequate candidate for the specification of this
communication. We distinguish these two communications, and denominate them respec-
tively Mapping Protocol (i.e., the definition of Mappings as seen previously) and Feedback
Protocol (i.e., specification of how to interpret the values returned by queries to impact the
control flow). The former is composed of ModifierMappings which map MoCTriggers (i.e.,
EventTypes) from the MoCMapping and Modifiers from the Semantic Rules. The latter
is constituted of QueryMappings mapping MoCTriggers and Queries, enhanced with an
additional specification we call the Feedback Policy.

Figure 3.26 shows a Class Diagram of the approach with our changes.

In this context, the result of a Query is denominated as the Feedback Value. Its interpre-
tation by the Feedback Policy will be used, at runtime, to only allow Scheduling Solutions
(i.e., in the case of Event Structures, configurations) consistent with the runtime state of
the model.
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Figure 3.26: Metamodel of the approach including the separation of the Communication
Protocol. New concepts related to the Feedback Protocol are in red. See Subsection 3.2.2 for
the definition of the MoCMapping/EventType Structure, and Section 3.3 for the taxonomy
of the Execution Function.

Feedback Policy

Let us detail the Feedback Protocol and how it is applied. We first consider an Event Struc-
ture E. E is formally defined by < Evt, C, >, where Eut is a set of Events, C is an ordered
set of consistent configurations and - is the enabling relation [160]. A configuration is a
set of events that have occurred by some stage in the process. Also, any event in a config-
uration should have been enabled by another event in a previous configuration (or by the
null set for uncontrolled events like the initial one). We denote path(c,, c,) two “causal”

configurations, i.e., two configurations such that:
Je€c,eiFeAdceCie<e Acke

In other words, the configuration ¢, contains at least one event directly enabled by c;.
Based on this, we can define an event structure as a triplet < Evt, C,[® > where P is

the set of paths between the configurations in C. There exists two different kinds of paths

inP, ie,P £ P, UP,. P, are the paths independent from the runtime state of the model

while [P, are the data-dependent ones. Let us denote r¢s(c) the runtime state of the model
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at the configuration ¢ of the Event Structure. When path(c,, c,) € P, and its dependency
is towards the runtime state of the model at a specific configuration ¢, we denote it as
path(cy, ;). This means that depending on the runtime state of the model at a certain
point ¢ of the Event Structure (where ¢ precedes ¢, and ¢,), going from ¢, to ¢, may be
possible. Let us denote as f path(er. s, the function that determines if the path from ¢, to ¢,
may be taken, depending on an interpretation of rts(c). It returns a boolean value: either
the path is allowed or it is not.

Figure 3.27 represents these concepts for a generic Event Structure. The data-dependent
path from ¢, to ¢, is conditioned by some data available at runtime in the model at the point

of execution of the configuration c.

~"Excerpt from -
rts(c) .- Used to determine
T ) whether or not
this data-dependent
path is allowed
Configuration ¢2_1 =
{..., e_MayDoBarForFoo}

® > (.)

Configuration c= Configuration ¢1 =

{..., e_DoSomethingForFoo} {..., e_MaybeDoBarForFoo} )>0— >0 Configuration c2_2 =
(.ot rStuFfFor(FoL} {..., otherStuffForFoo,

..., €_MayDoBarForFoo}
— =) e (..) >>@— »@ Configuration ¢2_3 =

data-dependent paths  data-independent paths| {... yetOtherForFoo} {... yetOtherForFoo,
..., €_MayDoBarForFoo}

Figure 3.27: Illustration of the general principle of the Feedback Protocol.

The Feedback Protocol must specify (at the language level, i.e., in intention) the set
of data-dependent execution paths (i.e., ;) together with the set of functions f, (where
f, determines whether a path p € P°), may be taken or not). This specification must
be independent of any model, but be applicable to any model conforming to the abstract
syntax of the language. For a specific model, applying the Feedback Protocol consists in
removing the execution paths from P, that are inconsistent with the runtime state of the

model. It cannot add any paths in P, nor remove any paths from P,.

Pragmatics of the Feedback Protocol

Practically, computing the whole Event Structure for a model may be complex or impos-
sible. If the model is very large or highly parallelizable, then the exponential number of

configurations and execution paths (possibly infinite) makes it either too costly to com-
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pute or too big to be usable. Let us consider the minimal situation, where we are capable

of computing only the children configurations of a configuration.

Since the event structure is only partially constructed during a specific execution of the
model, we do not have access to all the paths (and furthermore not all the data-dependent
paths). Therefore, applying the Feedback Protocol cannot consist in pruning execution
paths in the event structure. Instead, the Feedback Policies only specify the EventTypes
which are inconsistent with regards to the runtime state of the model, and at execution
time all the occurrences of the corresponding instances of the EventType are forbidden.
Forbidding an event from occurring results in pruning the corresponding execution path
in the implicit event structure. However, it should not prune other occurrences of that

same event which depend on another runtime state of the model.

To handle this issue, we add the following role to the Feedback Policy: its interpreta-
tion of the Feedback Value must return the set of EventTypes inconsistent with the runtime
state of the model and the set of EventTypes which are data-dependent and consistent with
the runtime state of the model. This way, the next occurrences of these consistent Event-
Types are considered as the limit after which the occurrences of the inconsistent Event-
Types do not represent a data-dependent decision anymore. Thus, after the consistent
EventTypes have occurred, forbidding the inconsistent EventTypes ceases. This adds the
following constraint: the concurrency model should not allow situations where different
occurrences of the same event depend on Feedback Policies (possibly several occurrences
of the same policy) which can be applied at the same time. When considering two queries,
and their Feedback Policies overlap in terms of which events are compatible or incom-
patible, then the concurrency model should not allow these two queries to overlap the
application of the Feedback Policy of the other query. This means that the second query
should never be executed between an execution of the first query and occurrences of the
compatible events of the Feedback Policy of that first query. More formally, the different
data dependencies of the control flow for a model element must be treated sequentially
(i.e., no two dependencies on different pieces of data should intervene concurrently dur-
ing the execution of the underlying Event Structure). Otherwise, it is possible that the
MoCApplication falls in a state of deadlock, halting the execution. In the case of fUML,
this means that when a guard is evaluated, it cannot be re-evaluated (because new tokens
have arrived on the incoming edges) before the branch resulting of the first evaluation has

started executing.

We show the pseudo-code specification of the Feedback Protocol for f{UML on List-
ing 3.11. It relies on the specification of two additional EventTypes, declared in the context

of ActivityEdges: et_mayExecuteT arget and et_mayN ot ExecuteT arget. These Event-
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Types are Controlled EventTypes as defined in Section 3.5. Their occurrences are managed

by the rest of the runtime of the execution semantics of the xDSML.

Listing 3.11: Updated Feedback Protocol of fUML, specified using pseudo-code.

Mapping EvaluateGuard:
upon et_evaluateGuard
triggers ActivityEdge.evaluateGuard() returning result
feedback:
result = true => allow ActivityEdge.et_mayExecuteTarget

A kWD

result = false => allow ActivityEdge.et_mayNotExecuteTarget

The following description is at the language level, but it is applied at runtime at the

model-level.

1. Upon execution of the query evaluateGuard(), its boolean result is stored in
the variable result.

2. If the result was true, then only the execution paths with an early occurrence of
et_mayExecuteT arget are allowed. In other words, Scheduling Solutions with an
occurrence of et_mayN ot ExecuteT arget are forbidden until a Scheduling Solution

with an occurrence of er_mayExecuteT arget has been selected.

3. Otherwise (the result was false), then only the execution paths with an early oc-
currence of er_mayN ot ExecuteT arget are allowed. In other words, Scheduling So-
lutions with an occurrence of et_mayExecuteT arget are forbidden until a solution

with an occurrence of et_mayN ot ExecuteT arget has been chosen.

Explicitly representing the case where a branch is not allowed (i.e., via er_mayN ot
ExecuteT arget) is required because otherwise, additional constraints of the MoCMap-
ping cannot be defined. Indeed, in an Event Structure, it is not possible to reason over an
Event not occurring. Since an Event Structure captures a partial ordering, there may be
an indefinite number of steps between two occurrences. By capturing explicitly when a
branch is not allowed, we enable the correct definition of the rest of the MoCMapping, i.e.,
both cases are explicitly handled by the partial ordering.

Figure 3.28 illustrates how the Feedback Protocol intervenes in the case of the example
fUML Activity. For representation purposes, only one of the guard is considered for this
figure. In reality, the guards are concurrent and the other branch of the ForkNode is also

concurrent so there are a lot of possible execution paths.
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Figure 3.28: Closeup on the part of the Event Structure of the example fUML Activity in
which the Feedback Protocol is used.

The target EventTypes (i.e., et_mayExecuteT arget and et_mayN ot ExecuteT arget in
our example) are Controlled EventTypes which means that at every step, the Scheduling
Solutions containing their occurrences are filtered out by the execution engine, because
they are only supposed to occur as a result of something happening in other parts of the
semantics. In our case, they can only occur depending on the application of the Feedback

Policy after a Query has returned a particular value.

An important aspect of the Feedback Protocol is that the metalanguages for the Feed-
back Policy and for the Semantic Rules must be able to communicate. More precisely, the
value returned by a Query must fit within the type system used by the metalanguage for
the Feedback Policy. In the pseudocode example shown above, the expression result
= true is valid only if the expressions defined by the Feedback Policy metalanguage are
compatible with the values returned by the Query evaluateGuard().

Compatibility with non-blocking calls

We have described in Section 3.4.3 a feature to execute Execution Function calls in a non-
blocking manner. It may be necessary to use it for Queries which may take a long time to
compute, for instance if the data it returns is based on a complex computation. However,
this requires some additional modifications of the runtime to ensure that the Feedback

Protocol can be applied correctly.
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First of all, the application of the Feedback Protocol results in some Scheduling Solu-
tions being temporarily forbidden. Since a non-blocking call to a Query can complete at
any time, the possible Scheduling Solutions presented by the heuristic of the execution
engine should be updated as soon as possible after the completion of a Query call. This
ensures that the choices made by the heuristic are realized based on the latest runtime state
of the model.

Another modification to the runtime is to ensure that some arbitrary decisions cannot
be made too early. The EventTypes targeted by the Feedback Policy are Controlled (cf.
Section 3.5), which means that their occurrences are finely controlled by the runtime based
on additional information from the semantics. In particular, after the Query has been
launched, and before it has returned, no decision can be taken about them. This means
that all Scheduling Solutions containing occurrences of the EventTypes targeted by the
Feedback Policy associated to a Query which has been launched must be filtered out until
the Query has completed its execution. This ensure that no early decision can be made
about these EventTypes before the Feedback Data that conditions their occurrences has

been retrieved.

3.6.5 Feature Summary

With this feature, we establish another backward communication from the Semantic Rules
to the MoCMapping (the first one being in Subsection 3.5). This communication effectively
improves the expressive power of the concurrency-aware xDSML approach, since data-
dependent language constructs could not be handled correctly previously. This type of
construct is core to many xDSMLs, as it is used for conditionals, switches, etc., which
explains why the changes to the metalanguages of the approach are more voluminous

than for previous features.

3.7 Composite Execution Functions

Execution Functions are initially designed with the intent of being called by the Executor
(runtime of the Semantic Rules) under the impulsion of the Execution Engine. This nat-
urally hinders the definition of Composite Execution Functions, which make use of other
Execution Functions. This section is dedicated to enabling the definition of Composite

Execution Functions while maintaining the concurrency-awareness of the language.
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3.7.1 Purpose

Different language constructs must often communicate during their execution to realize
their semantics. In our approach, this is concretized by the definition of a data exchanges
between Execution Functions, that is, the output of some Execution Function is used as
input for some other Execution Function. This includes situations where an Execution
Function, during its execution, calls another Execution Function. In that case, the latter
may even not return any data, in which case it is simply a means to reuse code (i.e., a set

of instructions bundled together as a function, procedure, subroutine, etc.).

Since Execution Functions are triggered by the Executor because a corresponding Mapping-
Application has been matched on the selected Scheduling Solution (from the Solver), the
possibility of defining data exchanges between Execution Functions is lost, the concur-

rency model being independent from the data concerns.

Data exchanges may still be defined, albeit using some form of pattern. For code reuse
(i.e., function call not returning any data), a common operation can be defined, exploited by
both Execution Functions. This however requires a particular development methodology
from the language designer (i.e., it is not idiomatic to the Semantic Rules metalanguage).
Listing 3.12 shows an example of this situation using pseudo-code. In this example, the
Execution Function “caller” reuses another Execution Function “callee”. However, doing
this directly hides away, from the concurrency model, the relation between “caller” and
“callee” (the concurrency-awareness is lost). Listing 3.13 shows the solution to keep the
concurrency-awareness, at the cost of being non-idiomatic for the Semantic Rules meta-

language.

For data exchanges, a piece of data can be stored in an attribute of a model element
that is accessible to both Execution Functions, but this relies on an implicit protocol (i.e.,
side effects on a common model element) and is also not idiomatic. Listing 3.14 shows
an example of this situation using pseudo-code. In this example, the Execution Function
“caller” calls another Execution Function “callee” with some argument “x”. However, doing
this directly hides away, from the concurrency model, the relation between “caller” and
“callee” (the concurrency-awareness is lost). Listing 3.15 shows the solution to keep the
concurrency-awareness, at the cost of being non-idiomatic for the Semantic Rules meta-
language (and also requires the ability to call other Execution Functions, as presented in

the previous example).
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Listing 3.12: Example of an Ex-
ecution Function which relies on
the execution of another Execu-

tion Function.

public void caller() {
//

callee();

//

public void callee(){
//

O 0 NN O U W
—

Listing 3.14: Example of a data
exchange between two Execution

Functions.

public void caller() {
//

var X = ...;
callee(x);

public void callee(T arg){
//

O 0 N O U W N
—

U=y
=)

00 N U R W N R
-

O
-

Listing 3.13: Adaptation of Listing 3.12 so

that the concurrency-awareness is preserved.

public void caller(){
//

commonOperation() ;

//

public void callee(){
commonOperation() ;

11| private void commonOperation() {
12 //

[uny

S O 00 N O U bk WN R
-

Listing 3.15: Adaptation of Listing 3.12 so
that the concurrency-awareness is preserved.
Requires additional adaptation to realize the

call to “callee” as illustrated previously.

public void caller() {
//

var x = ..
self.foo = x;
callee();

public void callee() {
var arg = self.foo

Both cases require the adaptation of the Semantic Rules metalanguage. Since it allows

the definition of the Execution Functions, it most likely also includes the possibility to call

them (as is the case for most programming languages proposing the notion of operation,

procedure, method, subroutine, etc.). We will refer to this feature as “method-call”. This

feature, in its common definition, does not combine well with our approach: Execution

Function calls are supposed to be triggered by the Executor and not by other Execution

Functions. We will propose a solution to make it compatible with our concurrency-aware

approach, thus enabling the definition of what we call Composite Execution Functions.
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3.7.2 Illustrative Example

In fUML, Act ion nodes may have OutputPins, i.e., pins that deliver values to other nodes
through object flows. In that case, an OutputPin is always executed after its owning node.
Considering the concurrency-aware approach, there are initially two ways to specify this.
First, we can wrap the execution of the OutputPin inside the execution of the owning node.
This means that the execution of the pin is implicit, i.e., not visible in the concurrency
model. The second way consists in making it explicit in the concurrency model. The
executions of the node and of the pin are thus separated, mapped by different MoCTriggers.
One to represent the execution of the node, and one to represent the execution of the pin,
with a causality between both to ensure that the latter is executed after the former.

In this section, we try to consider a mix of both solutions. The execution of the pin
is considered as part of the execution of the node, facilitating the specification of the cor-
responding Execution Function, and possibly, the data exchange between the execution
of a node and of its pin. But it is also scheduled explicitly in the concurrency model, i.e.,
there is a causality between two Events, one representing the execution of the node and
one representing the execution of the pin.

Let us illustrate the issue on a part of the example Activity (cf. Figure 3.2). Figure 3.29
shows the Action node “CheckTableForDrinks” and its OutputPin.

|

CheckTableForDrinks

MyOutputPi

Figure 3.29: The Action node “CheckTableForDrinks” and its OutputPin from the
example fUML Activity of Figure 3.2.

In the first solution, the execution of the pin is wrapped inside the execution of the
node, so the corresponding Event Structure has only one Event, corresponding to the ex-
ecution of the “CheckTableForDrinks” node (and implicitly of its pin). Figure 3.30 shows
the overview of the different concerns in this situation.

In the second solution, the execution of the pin is separated from the execution of its
owning node. For our example, this means that there are two different Execution Function

calls, mapped through two different MappingApplications by two different Events of the
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Model of Concurrency Communication Semantic
Application Protocol Rules Calls
(Event Structure) Application 1
—— e — = - CheckTableFarDrinks CheckTableForDrinks |
LT .execute()
- MappingApplication MyOutputhl
{.... e_CheckTableForDrinksAndMyOutPutPin} ExecuteMode CheckTableForDrinks

Figure 3.30: Overview of the semantics concerns for an excerpt of the example fUML Ac-
tivity of Figure 3.2. The Execution Function for the Action node “CheckTableForDrinks”
includes the execution of its pin “MyOutputPin”.

Event Structure. Figure 3.31 shows the overview of the different concerns in this situation.

Model of Concurrency | Communication Semantic
Application Protocol Application Rules Calls
(Event Structure) MappingApplication l
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ExecuteNode_MyOutputPin
{..., &_MyOutPutPin}

Figure 3.31: Overview of the semantics concerns for an excerpt of the example fUML Ac-
tivity of Figure 3.2. The Execution Functions for an Action node and its pins are separated.

Our goal in this section is to be able to build the Event Structure of the second solution
(which makes explicit the relation between the execution of “CheckTableForDrinks” and
the execution of “MyOutputPin”) while allowing the Execution Function Calls of the first

solution (which gathers both executions into one Execution Function).

3.7.3 Challenges

More generally, let us consider two Execution Functions ef and ef In the im-

callee caller*

plementation of ef a method-call to ef is realized. Our goal is to make sure the

caller> callee

relation between ef and ef is captured accurately in the concurrency model, and

caller callee

to make sure that the runtime is consistent with the specification.

This feature requires a coordination between the MoCMapping and Semantic Rules
specifications, and also between their respective runtimes. Indeed, since the execution
of ef in the

concurrency model must be separated in two (i.e., to differentiate the beginning of ef

is wrapped inside the execution of ef the representation of ef

callee caller> caller

caller

from its end), similar to what was done in Section 3.4.
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+ Challenge #1: The concurrency must thus ensure the following relation:

launch(ef ) < launch(ef ) < return(ef ) < return(ef ., )

caller callee callee

+ Challenge #2: The implementation of ef should ideally not require specific code

caller

to implement the method-call to ef This means that we want to find a way

callee*
such that, for the metalanguage of the Semantic Rules, method-calls to other Exe-
cution Functions are dealt with in a particular way (i.e., enabling its “concurrency-

awareness”), without having to change the syntax used for regular method-calls.

3.7.4 Solution

Our solution consists in adapting the specification of the concurrency concerns, the spec-

ification of ef and the runtime.

caller

Specification of the Concurrency Concerns

The consequence of this feature on the specification of the MoCMapping is that since the

execution of ef is contained by the execution of ef it must be captured as such

callee caller>

in the concurrency model. Therefore, similar to the approach proposed for non-blocking
Execution Functions in Section 3.4, a design pattern (or an equivalent language construct,
depending on the MoCMapping metalanguage) can be applied to tackle Challenge #1 (cf.
page 103) Figure 3.32 shows the corresponding Event Structure for a part of the example
fUML Activity. The Events e_end_M yOutput Pin and e_end_CheckT able ForDrinks are
Controlled Events, finely managed depending on the current state of execution of their

corresponding Execution Function calls, as defined in Section 3.5.

Specification of the “Caller” Execution Function

There are two main constraints to the design of ef ,,,,.

First, it must be called in a non-blocking manner. Indeed, since the call of ef,,,,, by
ef

of the Execution Engine. This execution step necessarily happens strictly after the step

caller 18 made explicit in the concurrency model, it will be triggered by an execution step

which initially triggered ef There may actually be any number of execution steps
and the call to ef by ef

in a non-blocking manner allows the engine to first start the execution of ef

caller*

between the beginning of execution of ef
ef

while executing other steps until the execution of ef

Executing

caller callee caller*

caller caller>

happens.

callee

The second constraint is that ef Indeed, the

). But at runtime, we

must specify that it uses ef
) < launch(ef

caller callee*

MoCMapping merely ensures that /aunch(ef

caller callee
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Model of Concurrency
Application
(Event Structure)

{..., e_begin_CheckTableForDrinks}

{..., e_begin_MyOutPutPin}

{..., e_end_MyOutPutPin}

\ {..., e_end_CheckTableForDrinks}

Figure 3.32: Event Structure representing the nested call of ef
of the example fUML Activity.

by ef for the excerpt

callee caller

need to make sure that the execution of ef has reached the point where it requires the

caller

execution of ef before allowing a step triggering the execution of ef Therefore,

callee callee*

in the example given previously, e_begin_M yOutput Pin is also a Controlled Event.

To do that, the Execution Engine needs to know which Execution Functions are called
by which other Execution Functions, so that the corresponding MoCTriggers in the MoCMap-
ping can be managed as Controlled EventTypes (cf. Section 3.4, their occurrences are finely
controlled based on the rest of the semantics — in that case, on the current state of exe-
cution of ef _,,,). This information can be specified in intention, or possibly inferred via
static analysis of the Semantic Rules implementation.

Figure 3.33 shows an excerpt from the metamodel of the Semantic Rules illustrating the
structure of Composite Execution Functions as we have described them. The main changes

for this feature are located in the static semantics (ef must be called in a non-blocking

caller

manner), and most importantly, in the runtime described below.

Changes to the runtime

Our solution is illustrated on Figure 3.34, which shows the modified Sequence Diagram for
the Execution Engine.
It relies on modifying method-calls to Execution Functions. It works as follows. By

default, the engine retrieves the declared callee Execution Functions and filters their oc-
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Figure 3.33: Excerpt from the metamodel of the Semantic Rules showing the structure of
Composite Execution Functions.

currences out. This means that Scheduling Solutions leading to their execution are filtered
out from the execution steps that can be selected by the heuristic of the engine.

When ef
Executor, which transmits it to the Execution Engine. This request contains the informa-
tion that ef
disables the above-mentioned filter, so that an execution step leading to the execution of
ef

cuted.

is executed, instead of directly executing ef it sends a request to the

caller callee®

is trying to execute ef Upon reception of this request, the engine

caller callee*

may be selected. Meanwhile, ef is put on hold, waiting for ef being exe-

callee caller callee

Once such a step has been selected and executed, and that ef has completed its

callee

execution, the engine notifies ef which may proceed with the rest of its execution.

caller>

Modifications to the runtime include the communication between an Execution Func-
tion call and the Executor, between the Executor and the Engine, and then back from the
Engine to the Executor and to the blocked Execution Function call. Additionally, the en-
gine must also be able to filter out the solutions leading to the execution of ef ,,,, since its

corresponding EventType is controlled.

This has the following drawback: there cannot be an occurrence of another Mapping

launching the ef Execution Function independently of what is happening in ef_,,,,.

callee

Indeed, there is no way to distinguish, in that case, an independent call to ef,,,, from

the call required by ef This is due to how, in the concurrency model, the abstract

caller*

actions are represent independently of data from the model. This means that any call
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Execution Caller Callee
En ine EXGCUtOI" (Execution Function) (Execution Function)

execute(call, nonblocking) Execution Function
call launch =

Request for
Callee execution

Request for Callee launch

execute(call) ] . Execution Function -
: : call launch
* |[Execution Function .
. call return .
Call completed 3
Requested Call completion notification | Callee execution
> completion
notification
.| Execution Function
Call completed . call return
Execution Function Execution Function Alternative Method
call to Caller call to Callee Call System

Figure 3.34: Modified Sequence Diagram of the Execution Engine to illustrate the reuse of
an Execution Function (“Callee”) by another Execution Function (“Caller”) while making
it explicit in the concurrency model.

to an Execution Function is considered independently from its calling context (i.e., the
runtime state of the model). This ultimately stems from the necessity to abstract away,
in the concurrency concerns, parts of the model to enable its analysis and refinement.
Therefore, to minimize the situations where an inconsistent state of the runtimes could
be reached, the semantics of the xDSML should not include an independent call to ef_,,,

during the execution of ef .,

Implementation of the “Caller” Execution Function

Ideally, the

method-call mechanism should rely on the usual syntax, and be differentiated only at run-

Challenge #2 (cf. page 103) is restricted to the implementation of ef

caller*

time depending on whether the operation called is another Execution Function or not.

There are several ways to divert the function call in the metalanguage for the Semantic

Rules, more or less disruptive for the user code in the implementation of the Execution
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Functions. Ultimately, the change should be equivalent to what is shown on Listings 3.16
and 3.17.

Listing 3.17: Code actually executed corre-

Listing 3.16: Example of user sponding to the specification shown on List-
code implementing Execution ing 3.16.
Functions “caller” and “callee”. 1 public void caller(){
1|public void caller(){ 2 // .
2 /] ... 3 Executor.
3 callee(); requestExecutionAndBlockFor (
4 /] ... callee, []);
5} 4| //
6 53
7| public void callee() { 6
8 // 7| public void callee() {
9|} 8 //
91}

One solution is to modify how the Semantic Rules Calls are generated based on a model.
The modification consists in identifying the function calls which are made explicit in the
concurrency model, and in transforming these calls according to the solution we have

proposed. That is, to transform a call to ef into a call request to the Executor and then

callee
blocking until notification that the call has indeed been realized. This solution is disruptive
for the compiler of the Semantic Rules metalanguage but does not interfere with the user

code.

3.7.5 Feature Summary

This feature relies on a complex back-and-forth communication between the Semantic
Rules and the MoCMapping. Although it does not improve the expressive power of the
approach, it does facilitate the implementation of some Execution Functions by allowing
Execution Functions to rely, in a concurrency-aware manner, on other Execution Func-
tions. Ultimately, this means that the code of the Execution Function implementations
is more alike traditional programming which relies heavily on method calls to modular-
ize and reuse code. This feature thus improves the language designer’s experience with
the approach, by allowing them to rely on more traditional programming techniques in
the metalanguage used for the Execution Function implementations. However, the main
downside is that the control flow information must be specified twice: first in the imple-
mentation of ef _,,,,, and second in the MoCMapping. This means that any changes to

either must also be ported to the other one.
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3.8 Semantic Variation Points

In Chapter 2, we have defined and illustrated the notion of Semantic Variation Points (SVPs).
They are language specification parts left intentionally under-specified to allow further
language adaptation to specific uses. Using traditional language design techniques, their
specification, implementation and managing is difficult. In this section, we present how
the concurrency-aware approach facilitates the specification and implementation of SVPs
for concurrency-aware xDSMLs. We draw the difference between a Language (the spec-
ification of a syntax and of a semantics that may contain SVPs) and its Dialects (which
implement a language, making choices about some — possibly all — SVPs of the language).

This work has been detailed and illustrated on Statecharts and its variants in [86].

3.8.1 Challenges

Tools commonly provide only one dialect, thus constraining the end-user to work with the
selected specific implementation of SVPs, which may not be the best-suited for their needs.
Besides, it also complicates the cooperation between tools, since they may implement SVPs
differently, giving a different semantics to the same syntax. Two engineers with different
backgrounds may also assume different meanings for the same model, which impairs com-
munication. Finally, large projects may need to use several dialects cooperatively, which
means that this issue cannot be simply reduced to the choice of a unique tool: one dialect
with an associated tool may be the best fit for a particular aspect of a system, but other
ones may be better-suited for other aspects of the system.

In the rest of this section, we will show how the modularity of the concurrency-aware
approach towards the execution semantics of xDSMLs facilitates the specification and
management of SVPs. We will also show how SVPs pertaining to the concurrency con-
cerns can easily be implemented thanks to the separation of concerns of the approach.
We will consider the SVPs of fUML [116]. In the fUML specification, the notions of time,
communication and concurrency are delegated to the tool implementors. Tool vendors are

thus responsible for specifying and documenting the implemented solution.

3.8.2 SVPs in Concurrency-aware xDSMLs

SVPs are usually specified informally, which makes their identification difficult. More often
than not, the specification document describes all allowed possibilities, while a reference
implementation defines the default implementation of SVPs. In the concurrency-aware

approach, SVPs can manifest themselves in any part of the execution semantics. When
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they are confined to only one of the concerns, the approach facilitates their specification

and implementation since only one of the concerns is involved.

SVPs pertaining to the Semantic Rules

SVPs related to the runtime state or its evolution are contained in the Semantic Rules.
Changing a Queue into a Stack, in order to implement a Last-In-First-Out policy instead
of a First-In-First-Out, or incrementing a value twice instead of once to double a ressource
consumption, are examples of such SVPs.

In the f{UML specification [116], the guards of edges outgoing a DecisionNode may be
evaluated in an arbitrary order, possibly in parallel. We could decide to use an arbitrary
order, implemented in an Execution Function.

Implementations of such SVPs can be realized by overriding the corresponding Exe-
cution Data and Execution Functions. It is also often possible to prevent functions from
being overriden (e.g., in Java using the “final” keyword), allowing the language designer to

ensure key parts of the semantics cannot be modified.

SVPs pertaining to the Communication Protocol

The fUML example mentioned above can also be realized by implementing several arbitrary
orders in different Execution Functions, and then defining in the Mapping Protocol which
one to use. More generally, variations of the Communication Protocol can be used to create
dialects based on the same MoCMapping and Semantic Rules. In particular, the Feedback

Protocol (as presented in Section 3.6) can also change to modify the semantics.

SVPs pertaining to the MoCMapping

The most interesting aspect of the approach for SVPs however, lies in the MoCApplication,
and by extension, in the MoCMapping. Since it captures the concurrency concerns based
on a symbolic partial ordering, it specifies explicitly all allowed control flow possibilities.
Each dialect can remove the execution paths that do not correspond to its intended seman-
tics by further restraining the symbolic partial ordering (i.e., if expressed using constraints,
by specifying additional constraints in the MoCMapping). In fact, nondeterminisms in the
concurrency model (resulting in conflicts in the Event Structure) can all be seen as potential
SVPs.

However, it is possible that some nondeterminisms are part of the execution semantics
of the language (the language is thus indeterministic by intention), or that they should
instead be solved by the platform on which the language is deployed (i.e., the runtime
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Figure 3.35: Simplified Event Structure illustrating a Semantic Variation Point of fUML.

of the concurrency model is specialized for a specific execution platform). Therefore, the
MoCMapping metalanguage must provide the means to hinder some parts of its symbolic

partial ordering from being specialized further.

Figure 3.35 illustrates a possible Semantic Variation Point of fUML. The branches of
a ForkNode can be executed in any order. In particular, one can choose to execute the
branches from left to right, or from right to left. In this figure, there is a “common seman-
tics” captured by the initial MoCMapping, representing the execution semantics as given
in the fUML specification [116]. Two different implementations are illustrated: one where
we first execute the left branch of the ForkNode (the drinking part of the activity of Fig-
ure 3.2), and another one where we first execute the right branch of the ForkNode (the
talking part of the activity). They can be implemented simply by extending the original
MoCMapping and specifying additional constraints that result in the event structures we

have shown.

The difference between specializing a language for a specific environment and imple-
menting a Semantic Variation Point is blurry. SVPs sometimes represent adaptation points
for a specific platform (distributed, highly parallel, etc.). Both are implemented by special-
izing the MoCMapping used to define the concurrency concerns of the xDSML. To better
manage these SVPs, they can be implemented in a modular way so that dialects are then
conceived by merging specific SVP implementations; similar to creating a new class in
Aspect-Oriented Programming by extending an existing class and weaving existing as-

pects onto it.
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Figure 3.36: Metamodel representing the structure of the concurrency-aware operational
semantics of fUML with its different variations.

For instance, based on the two fUML SVPs we have used as examples (pertaining to
the order of evaluation of the guards of a DecisionNode and to the order of execution of
the branches of a ForkNode), we can create as many dialects as the product of the number
of implementations for the first SVP and of the number of implementations for the second
SVP. The MoCMapping metalanguage and the code organization of the SVP implementa-
tions should enable the creation of dialects thanks to a cherry-pick of SVP implementa-
tions.

Finally, Figure 3.36 shows, as a metamodel, the semantics of f{UML with its different
variations. In the Semantic Rules, different Execution Functions are implemented for the
different strategies of evaluation of the guards of a DecisionNode. Which one is used
depends on the implementation of the Communication Protocol of f{UML used. For the
concurrency concerns, there is a common MoCMapping, which can be used as such (i.e.,
the heuristic of the runtime will be in charge of determining how concurrent branches are

executed), or extended with additional constraints to implement a particular strategy.

3.8.3 Feature Summary

This feature is a direct benefit of the separation of concerns induced by the concurrency-
aware xDSML approach. It provides a sound and practical manner to specify and imple-
ment SVPs, particularly when they are related to the concurrency concerns of an xDSML.
Managing semantic variants of xDSMLs is often difficult because a change in the execution
semantics spreads through a lot of resources (i.e., specifications as models, code, functions,
etc.). Thanks to the separation of concerns, many SVPs can be confined to only one of these
aspects. Then, depending on the extension mechanisms provided by each aspect’s meta-

language, SVPs can be implemented more naturally. In the case of concurrency-related
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SVPs, partial orders in Event Structures provide a very practical means for such exten-
sions (i.e., by refining the partial order through the definition of additional constraints),

ultimately facilitating the management of the different dialects of an xDSML.

3.9 Concurrency-aware xDSMLs for Reactive Systems

Modern highly-concurrent systems are often reactive, in the sense that they must be able
to react to the occurrence of some form of external event. This is most commonly the case
for autonomous systems, whose purpose is precisely to be able to function without human
intervention. In that context, determining the natures of the possible inputs and ensuring
the correct behavior of the system for all possible inputs is one of the main aspects of
reactive systems design. We propose to extend the concurrency-aware approach in order

to enable the specification of xDSMLs aimed at specifying reactive systems.

3.9.1 Purpose

In the approach we have described so far, the concurrency model specifies all possible exe-
cution scenarios, leaving little room for the representation of incoming events. Represent-
ing all possible inputs in the concurrency model makes it complex, and usually involves
representing parts of the data in the concurrency model, which defeats the initial objective
of the concurrency-aware approach.

A possible workaround consists in regularly calling an Execution Function whose role
is to check for some external input (via arbitrary code in the Execution Function imple-
mentation). This mechanism remains opaque, relying on implicit connections made in the
Execution Function implementation, and on side-effects on the runtime state of the model.

Moreover, implementing data flows between Execution Functions is difficult because
the MoCMapping is data-independent: as such, it cannot take into account the possible
parameters of the Execution Functions. This was one of the motivations for the definition
of Composite Execution Functions, presented in Section 3.7, which come with problems of
their own. A workaround for this issue consists in storing the data that need to flow into
the fields of a model element accessible by both ends of the flow, but this, too, relies on
side-effects and implicit design rules.

We propose to augment the concurrency-aware approach with the means to specify
reactive systems. This feature has two main aspects. First, we must be able to take into
account external parameters during the execution of a model, using an explicit and ded-

icated mechanism (i.e., unlike the workaround mentioned above). We propose to do this
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by defining Mappings with parameters, similar to how in programming, functions have
parameters. Then, one of the main use of these parameters is to be able to exploit them in
the Execution Functions. Therefore we propose to provide the means to specify Execution

Functions with parameters. We study the specification and runtime aspects of both issues.

3.9.2 Challenges

The first challenge is the specification of the parameters for Mappings and Execution Func-
tions. In particular, we will focus on the compatibility between the type systems used in

the respective metalanguages for the Communication Protocol and the Semantic Rules.

Then, we must consider the changes to the runtime. We must determine how argu-
ments are provided to the MappingApplications, respectively to the Execution Function
calls. For the latter, we will describe how the Composite Execution Function feature pre-

sented in Section 3.7 is managed.

3.9.3 Illustrative Example

The fUML example Activity is initially not reactive. We propose to modify the Action
nodes such that their execution requires a String parameter. This way, the “CheckTable-
ForDrinks” node returns, through its OutputPin, the given String, corresponding to the
drink found on the table, instead of choosing randomly between “Coffee”, “Tea” and “Wa-

B

ter’.

3.9.4 Defining Parameters for Execution Functions
Specification

The definition of Execution Functions with parameters should be done in the usual way of
the metalanguage for the Semantic Rules. This is typically done in the type signature of the
function, by specifying the name and type of parameters. Listing 3.18 shows an example

Execution Function definition with a String parameter in Java.
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Listing 3.18: Defining the Execution Function for the f{UML Action node, in Java, with

a String parameter.

class Action extends ExecutableNode{

//

1

2

3 void execute(String inputString) {
4 //

51 3

6

Runtime

At runtime, the arguments of an Execution Function call are provided by the Executor.
Since the Executor is controlled by the Execution Engine, it is ultimately responsible for
providing the arguments to the Executor. In the rest of this section, we will show how the

engine originally obtains the arguments that are passed to the Execution Function calls.

3.9.5 Introducing Parameters in Mappings
Specification

Parameters of Mappings are specified thanks to a type and a name, just like for Execution
Functions.

Let us suppose in the case of the example f{UML Activity, we want the argument of the
node “CheckTableForDrinks” to be provided at runtime. In that case, the corresponding
Mapping must be defined with a parameter. Listing 3.19 shows the pseudo-code specifica-
tion of that mapping.

Listing 3.19: A Mapping with a parameter, corresponding to the execution of an fUML
Action node, specified using pseudo-code.

1|Mapping ExecuteActionNode(String inputString):
2 upon et_executeActionNode
3 triggers Action.execute(inputString)

In this listing, the Mapping “ExecuteActionNode” has a String parameter. Parameters
of Mappings can be used for several purposes. In our case, we use it as the argument of

the Execution Function called, execute (String). If the Mapping has an associated
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Feedback Policy (as defined in Section 3.6), then the parameters can also be used in it. For
instance, we may want to compare the String argument of the Mapping with the String

value returned by an Execution Function. Listing 3.20 shows such a Feedback Policy.

Listing 3.20: Using the parameter of a Mapping in its Feedback Policy, in pseudo-code.

1|Mapping MyMapping(String someString):

2 upon someMoCTrigger

3 triggers MyClass.myExecutionFunction() returning resultString

4 feedback:

5 resultString == someString => allow MyClass.someOtherMoCTrigger
6 resultString != someString => allow MyClass.anotherMoCTrigger

In that example, the impact on the control flow of the value returned at runtime by the
Execution Function myExecutionFunction will depend on its comparison to the

String passed as argument to the corresponding Mapping.

Similar to what was discussed in the section about the specification of the Feedback
Policy (Section 3.6), the type systems used must be compatible. This means that the met-
alanguages for the Semantic Rules, Mapping Protocol and Feedback Protocol must have
a common type system, or at least a way to communicate type informations. This means
they must all originally integrate the metalanguage for the abstract syntax of the xDSML,

since it is likely that it provides a decent basis.

Figure 3.37 shows an excerpt from the metamodel of the Communication Protocol ex-

tended with parameters for the Execution Functions and the Mappings.

Runtime

Part of the runtime is straightforward. If the arguments of the Mappings are to be used by
the Execution Function, then they are passed to it during the launching of the Execution
Function. If they are to be used in the Feedback Policy then they are used during the
interpretation of the Feedback Policy once the associated Query has returned a value (cf.
Section 3.6).

The complex part of the runtime is how arguments are provided to the Mappings in
the first place. When handling an execution step, the runtime first retrieves the set of
possible Scheduling Solutions from the Solver, and an heuristic chooses one of them. It
is then matched against the Communication Protocol Application to deduce which Exe-

cution Function calls must be executed. The arguments of a MappingApplication must
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Figure 3.37: Excerpt from the metamodel of the Communication Protocol showing its ex-
tension with parameters for Mappings and Execution Functions.

thus be provided when selecting the Scheduling Solution leading to it. This means that the
heuristic is responsible for providing the arguments of the Mappings.

This makes the implementation of the heuristic complex. Indeed, the heuristic is generic
and not tied to a particular domain. However, parameters are typically domain-specific
types and values. This means that the language designer must provide parts of the heuris-
tic implementation used, in order to enable the end-user to enter valid arguments for the
MappingApplications of a system.

This situation is a bit similar to designing the concrete syntax of a language, as some
constraints are difficult to capture in the abstract syntax of the language. In Xtext [7], this
is concretized as the scoping mechanism’. It allows the definition of a scope for each part of
the model creation. In other words, it defines rules guiding the creation of a valid program
(instance of the abstract syntax). Such a mechanism could be used in order to guide the
end-user in selecting valid arguments, for instance via a Graphical User Interface or a tool-
supported Command-Line Interface (e.g., with auto-completion features, etc.).

Unfortunately, this sort of mechanism works well only when the possible values are
already known by the model at runtime, e.g., if they are parts of the model or part of an
enumeration. Creating objects for the purpose of using them as the arguments of Map-
pingApplications would require an event more complex definition of the heuristic, or the
use of an external program through an API to create the expected complex object. IDE

features, like those generated by Xtext for the Eclipse platform, implement this through

"https://eclipse.org/Xtext/documentation/303_runtime_concepts.html#scoping
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the notion of template proposals. It is essentially a syntactic help dedicated to the creation
of new constructs (i.e., objects, methods, etc.). Figure 3.38 shows the auto-completion (fed
by the scoping mechanism we have described above) and the template proposals features
in the Eclipse IDE for Java (Java Development Tools — JDT).

et

package org.eclipse.xtext.example.fowlerdsl;
public class TemplateExample {

public static void main(string[] args) {
int x =
}
}

8 (® TemplateExample - org.eclipse xtext.example fowle

Sy B e S

auto-completion & main(Stringl args) : void - TemplateExample

= new- create new object

template proposals

= nls - non-externalized string marker

= runnable - runnable

Figure 3.38: Auto-completion and template proposals feature in the Eclipse IDE for Java.

3.9.6 Feature Summary

This feature extends the concurrency-aware xDSML approach with the means to support
xDSMLs with parameterized language constructs. This could previously be done implicitly
by relying on side effects inside the model; this feature makes this explicit in the execution
semantics model. The behaviors (i.e., the Mappings) can be parameterized during both
directions of the communication: either by parameterizing the Execution Functions, or
the Feedback Policies. Such parameterized behaviors are required when the environment
of the xDSML is not captured as part of the xDSML (i.e., a user input, some external data,
etc.).

3.10 Behavioral Interface of Concurrency-aware xDSMLs

Previous features focused on facilitating or enabling the specification of the execution se-
mantics of concurrency-aware xDSMLs. In this section, we take a step back to consider the
use that can be made of concurrency-aware xDSMLs. We argue that the Mappings of an
xDSML can be considered as the behavioral interface of the language, i.e., that it represents

the behavior of the language and can be exploited by other programs or languages.
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3.10.1 Purpose

By expressing the communication between the Execution Functions and the MoCTriggers,
the Mappings of an xDSML give a mapping of abstract actions, scheduled by a partial or-
dering, with concrete actions. As such, Mappings represent the interface of the language
constructs behaviors, i.e., they represent a high-level view of what happens in the model
(i.e., the actual Execution Function implementation). They can also be the subject of ex-
ternal components, within the limits of the partial ordering defined by the MoCMapping,
i.e., an external program may be used as the heuristic of the runtime and provide decisions
based on which Mappings are occurring in the possible solutions. In that sense, Mappings
represent an interface which can be both listened to (i.e., which Mappings are being exe-
cuted) and spoken to (i.e., by making arbitrary decisions between the possible Scheduling

Solutions, so indirectly between sets of Mapping occurrences).

External components may want to interact with a concurrency-aware xDSML (or, punc-
tually, with a concurrency-aware executable model) for two purposes. The first one is to
control which Mappings are occurring, by implementing the heuristic of the execution en-
gine. In that case, it is also in charge of providing the arguments to the Mappings, if there
are some, cf. Section 3.9. The second one consists in observing which Mappings are exe-
cuted. This allows for a fine-grained observation of the behavior of the language, which
can be exploited for instance to represent the execution (as a trace of Mappings), to co-
ordinate the execution of other executable models, etc. In the context of GEMOC project,

this interface is used for the coordination of several concurrency-aware xDSMLs [153].

In order to cater to these two purposes, we propose to augment the specification of
the Mappings with two features. The first one is the possibility to define the visibility of
Mappings, enabling the language designer to explicitly separate the Mappings intended
to be observed (i.e., because they are the most relevant, or more practically, if there are
many of them, the interface becomes cluttered) from the other Mappings (possibly required
for technical reasons, or representing low-level details of the execution). For instance in
fUML, the most relevant behavior, for an external observer, is usually the execution of a
node. Whereas the execution of the guards outside a DecisionNode are considered
as internal details of the model. The second one is the possibility to define patterns of
Mappings, effectively defining what we call Composite Mappings, which provide a more
abstract, higher-level view of the behavior of a language or model. Abstracting away un-
necessary details of the language’s execution facilitates its use by providing a more ade-

quate conceptual (and programmatic) representation to the user, or to other programs.
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3.10.2 Challenges

We must first identify how many different visibilities there can be, and what they corre-
spond to, with respect to both interface roles played by the Mappings. Their specification
should be added in the metalanguage of the Communication Protocol.

For the Composite Mappings, there is first the question of understanding what they
represent. We will then present how their specification and runtime can be done, although
these challenges are very implementation-dependent. We will also give some examples

based on our implementation in order to illustrate their purpose.

3.10.3 Mapping Visibility
Specification

We have identified the need for only two types of visibility, which we call public and
private.

Mappings are public by default. This means that when they occur during the execu-
tion of a model, they are published as occurring, thus external components observing the
execution of the model know about it. By contrast, private Mappings are not published as
occurring during the execution, as they are not meant to be shown to external elements.

As an example, we may consider that during the execution of f{UML models, the only
relevant event is the execution of the ActivityNodes. Therefore, the internal mechanic of
evaluating the guards after a DecisionNode, etc. should not be published. Listing 3.21
shows an excerpt from the pseudo-code specification of the Communication Protocol for
fUML where the Mapping corresponding to the execution of a node is public, but the one

corresponding to the evaluation of a guard is private.

Listing 3.21: Excerpt from the Communication Protocol of f{UML, specified using pseudo-
code, with visibility added to the Mappings definition.

public Mapping ExecuteActivityNode:
upon et_executeNode
triggers ActivityNode.execute()

private Mapping EvaluateGuard:
upon et_evaluateGuard
triggers ActivityEdge.evaluateGuard() returning result
feedback:
result

true => allow ActivityEdge.et_mayExecuteTarget
result = false => allow ActivityEdge.et_mayNotExecuteTarget
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The visibility of a Mapping does not influence its interaction with the heuristic of the
runtime. Otherwise, it would defeat the purpose of the heuristic.
Figure 3.39 shows an excerpt from the metamodel of the Communication Protocol ex-

tended with the feature we just described.

# communicationprotocol.specification ] “ Visibility '
-~ public
‘ = | Communica[ionPro(ocol] - private

semanticrules.specification

[ [0..*] mappings | = —

mocmapping.specificationJ

(imported) (imported)
i E — r g
r 1 [1..1] mocTrigger {= Mapping .
E?_; MoCTrigger {51 ExecutionFunction ]
o = ] &’ name : EString [1..1] executionFunction —
< visibility : Visibility = public J
\

Figure 3.39: Excerpt from the metamodel of the Communication Protocol with the notion
of Visibility for the Mappings.

Runtime

For every execution step, the Execution Engine publishes the collection of Mappings that
are executed during this step (and with which arguments). To implement the visibility

feature, it should not add the private Mappings to this collection.

3.10.4 Composite Mappings
Specification

Composite Mappings are specified alongside the other Mappings, thanks to some form of
“pattern” over other Mappings. For instance, the execution of the example fUML Activ-
ity can be considered as completed if we first observe that its InitialNode has been
executed, and then that its FinalNode has been executed. The pattern of first exe-
cuting the InitialNode and then the FinalNode delimits the execution of this Activity. In
terms of patterns of Mappings, this means that we want to first observe an occurrence of
the MappingApplication “ExecuteNode_MyInitial” and then observe an occurrence of the
MappingApplication “ExecuteNode_MyFinal”. Another example is if, in an Activity, part
of it can be executed several times. Then we may want to be able to observe when that

part has been executed a certain number of times, “n”. Such a Composite Mapping can be
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defined as “n” consecutive occurrences of the same Mapping. In particular, we may want
to observe, say, 5 times the execution of the example Activity, in which case the Composite
Mapping is defined through a pattern of another Composite Mapping.

We propose to reify such patterns as the Composite Mappings: Mappings which are
defined thanks to a pattern over previously-defined Mappings. These Mappings do not
map a MoCTrigger to an Execution Function ; they merely correspond to a behavioral
pattern of the language.

These Mappings may be specified as ’private’, for instance if they are only used for the
definition of other composite Mappings. They may also have parameters, for instance if we
want to define a pattern that is valid only if the occurrences occur with certain arguments
(cf- Section 3.9).

The patterns that can be defined depend entirely on the expressive power provided by
the metalanguage for the Communication Protocol. In particular, it can provide the means
to define libraries of patterns for the definition of Composite Mappings. Later, we illustrate

some core patterns we have identified for the implementation of this feature.

Runtime

To implement this feature, the runtime for the Communication Protocol, the Matcher, must
be updated adequately.

It must first match the selected Scheduling Solution against the specification of the
non-Composite Mappings, in order to deduce which Mappings are occurring. Based on
this, it must then match the Composite Mappings which are occurring in an incremental
manner, so that composites which are defined thanks to other composites can be matched
correctly. As we will detail later, this step may require the use of the previous Execution
Steps, as composites may span over several steps.

Occurrences of Composite Mappings do not have an impact on the state of the model,
unlike regular Mappings which trigger an Execution Function. Composites merely serve
to provide a higher-level, abstract view of the behavior of the xXDSML. Their occurrences
do not trigger any change in the model. Additionally, patterns may only be fully identified
once the last element of the pattern has occurred ; otherwise it would mean speculating
about the future of the execution. Therefore, Composite Mappings always occur in coin-
cidence with the Mapping occurrence which completed the pattern.

There are two possible variations in the implementation of the runtime. To illustrate
these two versions, we will consider two patterns based on the example f{UML Activity.

The first one corresponds to an occurrence of “ExecuteNode_MyFork” followed by an oc-
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currence of “ExecuteNode_CheckTableForDrinks”. The second one corresponds to an oc-
currence of “ExecuteNode_MyFork” followed by an occurrence of “ExecuteNode_Talk”.

In the first variation, Mapping occurrences are consumed upon occurrence of a com-
posite whose pattern relies on them. In our example, this means that since the ForkNode
“MyFork” will only ever be executed once, both composites are intrinsically exclusive. In
the second variation, occurrences are not consumed, allowing for both composites to oc-
cur. However this raises an additional challenge when multiple occurrences of the same
Mapping may occur. In that case, suppose “ExecuteNode_MyFork” occurs twice. Should
the composites defined above use these two occurrences, or only the latest?

We leave these issues open for implementors, but they should be documented profusely
since they fundamentally affect the semantics of Composite Mappings. They may also be
reified in the Communication Protocol metalanguage, but this complexity may render the

definition of Composite Mappings even more difficult for the language designer.

Examples

Let us consider a few examples of patterns. Listing 3.22 shows a pseudo-code specification
of two Mappings, MappingA and MappingB. The simplest patterns are called instan-

taneous, i.e., they occur over a single step of execution. Following are three such patterns:

« Coincidence of A and B: when both A and B occur.

« Disjunction of A and B: when A occurs or B occurs.

« Exclusive Disjunction of A and B: when A or B, but not both at the same time, occur.

Listing 3.23 shows an example specification using these patterns, in pseudo-code.

Listing 3.22: Example Communication Protocol specification, in pseudo-code.

Mapping MappingA:
upon mocTriggerA
triggers MyClass.executionFunctionA

Mapping MappingB:
upon mocTriggerB
triggers MyClass.executionFunctionB

N Ok WO R
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Listing 3.23: Example specification of Composite Mappings with instantaneous patterns,

in pseudo-code.

Composite Mapping CompositeAandB:
MappingA and MappingB

Composite Mapping CompositeAorB:
MappingA or MappingB

Composite Mapping CompositeAxorB:
MappingA xor MappingB

O N N Gk W

The following description of the runtime is at the language-level (for readability pur-

poses) but in reality it applies at the model-level.
1. mocTriggerA occurs:

« MappingA occurs.

« CompositeAorB and CompositeAxorB occurs.
2. mocTriggerB occurs:

+ MappingB occurs.

« CompositeAorB and CompositeAxorB occurs.
3. mocTriggerA and mocTriggerB occurs:

« MappingA and MappingB occur.

« CompositeAorB and CompositeAandB occur.

These basic patterns are similar to well-known logical operations, as within an execu-
tion step, either an event occurs or it does not occur. More complex instantaneous patterns
may be devised and proposed by the Communication Protocol metalanguage, based on the
experience we have of logical operations.

More interesting is the possibility to define patterns over several execution steps. These
patterns are called non-instantaneous patterns. They cannot be compared with logical op-
erations, as reasoning on the absence of an event in a context of partial ordering does not
make sense. Therefore, these patterns may span over a lot of execution steps. For instance,

the pattern we have mentioned earlier, corresponding to the execution of the InitialNode
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and then the execution of the FinalNode of the example fUML Activity, spans over the
whole execution of the model (10 execution steps in our implementation, cf. Appendix C).

We will consider the two following patterns as examples of non-instantaneous patterns:

« Sequence of A and B: when A has occurred, and B occurs in the current step. There
may be an indefinite number of other steps between the one containing the occur-

rence of A and the one containing the occurrence of B.

« n-Iteration of A, with n € N*: when A has occurred n — 1 times and A occurs in the

current step. This may span over an indefinite number of steps as well.

Listing 3.24 shows an example specification using these patterns, in pseudo-code.

Listing 3.24: Example specification of Composite Mappings with instantaneous patterns,

in pseudo-code.

Composite Mapping CompositeAthenB:
MappingA -> MappingB

Composite Mapping CompositeThreeAs:

1
2
3
4
5| MappingA[3]

With these mappings, the implementation choices mentioned in the description of the
runtime are key elements of the semantics given to these patterns. For instance, if we

consider the three following execution steps:
Step 1 : occurrence of MappingA
Step 2 : occurrence of MappingA
Step 3 : occurrence of MappingA and MappingB (Current Step)
There are 4 possible outcomes, depending on the implementation choices realized:

1. If patterns can only refer to the latest occurrences of mappings, and used mappings
are consumed upon match:
Occurrence of CompositeThreeAs (with MappingA occurrences from Steps 1, 2 and 3)
OR
Occurrence of CompositeAthenB (with MappingA occurrence from Step 2, Mapping

B occurrence from Step3).
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2. If patterns can only refer to the latest occurrences of mappings, and used mappings
are not consumed upon match:
Occurrence of CompositeThreeAs (with MappingA occurrences from Steps 1, 2 and 3)
AND
Occurrence of CompositeAthenB (with MappingA occurrence from Step 2 and Map-

pingB occurrence from Step 3).

3. If patterns can use all occurrences of mappings, and used mappings are consumed
upon match:
Occurrence of CompositeThreeAs (with MappingA occurrences from Steps 1, 2 and 3)
OR
Occurrence of CompositeAthenB (with MappingA occurrence from Step 1 and Map-
pingB occurrence from Step 3)
OR
Occurrence of CompositeAthenB (with MappingA occurrence from Step 2 and Map-

pingB occurrence from Step 3).

4. If patterns can use all occurrences of mappings, and used mappings are not con-
sumed upon match:
Occurrence of CompositeThreeAs (with MappingA occurrences from Steps 1, 2 and 3)
AND
Occurrence of CompositeAthenB (with MappingA occurrence from Step 1 and Map-
pingB occurrence from Step 3)
AND
Occurrence of CompositeAthenB (with MappingA occurrence from Step 2 and Map-

pingB occurrence from Step 3).

These examples show the impact the choices made in the implementation of the met-
alanguage may have. Depending on the Communication Protocol metalanguage, more
complex non-instantaneous patterns may be devised and proposed, enabling the defini-

tion of complex Composite Mappings.

Customizing the Model-level Generation of Composite Mappings

We have described earlier how the model-level specifications (MoCApplication, Commu-
nication Protocol Application, Semantic Rules Calls) are obtained based on the language-
level specifications (MoCMapping, Communication Protocol, Semantic Rules). This step is
also called the “unfolding” since it mainly consists in considering a concept and generating

each concern’s equivalent specification for each instance of that concept.
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So far, the unfolding of our example Composite Mappings has been straightforward as,
for the sake of example, we only considered one concept and one model element (instance

of that concept). For instance, consider the Composite Mapping defined as per Listing 3.25.

Listing 3.25: Example specification of the Composite Mapping CompositeAandB, in

pseudo-code.

1| Composite Mapping CompositeAthenB:
2 MappingA -> MappingB

MappingA and MappingB being defined in the same context (MyClass), their unfolding
results in as many Composite MappingApplications as there are instances of MyClass in
the model. For example, if the model has two instances of MyClass, Objectl and Object2,

the resulting Communication Protocol Application is as shown on Listing 3.26.

Listing 3.26: Example specification, in pseudo-code, of the Composite Mapping Compos -
iteAandB.

MappingApplication MappingA_Object1:
upon mocTriggerA_Objectl
triggers Objectl.executionFunctionA

1
2
3
4
5| MappingApplication MappingB_Object1:
6| upon mocTriggerB_Objectl

7 triggers Objectl.executionFunctionB
8

9| MappingApplication MappingA_Object2:

10| wupon mocTriggerA_Object2

11| triggers Object2.executionFunctionA

13| MappingApplication MappingB_Object2:
14| upon mocTriggerB_Object2
15 triggers Object2.executionFunctionB

18| Composite MappingApplication CompositeAthenB_Objectl:
19| MappingA_Objectl -> MappingB_Objectl

21| Composite MappingApplication CompositeAthenB_Object2:
22| MappingA_Object2 -> MappingB_Object2
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In order to be able to define more complex Composite Mappings, we propose to add
a specification alongside the Composite Mapping definition called the Unfolding Strategy.
It defines the strategy that the translator must use when unfolding the Composite Map-
ping down to the model-level. Listing 3.27 shows the specification, in pseudo-code of an

example unfolding strategy. “<>" is the “not equal” operator in this pseudo-code.

Listing 3.27: Example unfolding strategy for the Composite Mapping Compos-
iteAandB, in pseudo-code.

Composite Mapping CompositeAthenB:
with {

ol : MyClass,

02 : MyClass

where {

ol <> 02

¥
MappingA(ol) -> MappingB(o02)

00 N O Ul W WD
-

With this strategy, the composite MappingApplications resulting of CompositeAthenB
will be very different from the default result that would have been obtained, because the
MappingApplications used in the pattern in place of MappingA and MappingB will never

be in the context of the same model element.
Listing 3.28 shows the resulting Communication Protocol Application.

This mechanism allows the definition of complex Composite Mappings where relations

between the contexts of the Mappings used in the pattern are guaranteed.

For instance, our initial example of Composite Mapping was to represent the full ex-
ecution of an fUML Activity. Such a mapping can be specified as shown on Listing 3.29.

Listing 3.30 shows another way to specify the same behavior.

Listing 3.28: Composite Mapping Applications resulting from the unfolding strategy spec-
ified on Listing 3.27, in pseudo-code.

Composite MappingApplication CompositeAthenB_Objectl_Object2:
MappingA_Objectl -> MappingB_Objectl

Composite MappingApplication CompositeAthenB_Object2_Objectl:

1
2
3
4
5| MappingA_Object2 -> MappingB_Object2
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Listing 3.29: Example of Composite Mapping capturing the full execution of an fUML
Activity.

Composite Mapping FullActivityExecution:
with {

initialNode : InitialNode,
finalNode : FinalNode

where {

true

}

ExecuteActivityNode(initialNode)

-> ExecuteActivityNode(finalNode)

O 0 NN N Uk W N
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Listing 3.30: Alternative manner of specifying the example Composite Mapping capturing
the full execution of an fUML Activity.

Composite Mapping FullActivityExecution:

with {
initialNode : ActivityNode,
finalNode : ActivityNode

} where {
initialNode kindof InitialNode,
finalNode kindof FinalNode

}

ExecuteActivityNode(initialNode)
-> ExecuteActivityNode(finalNode)
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The former example listing relies on polymorphism when specifying the pattern of
Mappings (i.e., the Mapping ExecuteActivityNode is defined for ActivityNode so it
is applicable for its subtypes), whereas the latter example listing relies on the metalanguage

providing the kindof operator.

Composite Mappings with Parameters

Finally, we want to illustrate the definition of Composite Mappings with parameters. Since
Composite Mappings are just patterns based on previously-defined Mappings, their occur-
rences do not require the insertion of argument values by the heuristic of the runtime, as
we have described in Section 3.7. Instead, it is at the matching stage of the composites that

we are looking for particular argument values in the Mappings that have occurred.



3.10 Behavioral Interface of Concurrency-aware xDSMLs 129

Listing 3.31 shows the definition of a Composite Mapping with parameters.

Listing 3.31: Example specification of a Composite Mapping with parameters, in pseudo-

code.

=
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Mapping MappingA(Typel X):
upon mocTriggerA
triggers MyClass.executionFunctionA (x)

Mapping MappingB(Type2 y):
upon mocTriggerB
triggers MyClass.executionFunctionB(y)

Composite Mapping CompositeAthenB(Typel x, Type2 y):
MappingA(x) -> MappingB(Yy)

This Composite Mapping occurs with the arguments “x” and “y” when:

« MappingA occurred, and in the current step, MappingB occurs.

« MappingA occurred with “x” as an argument.

« MappingB occurs with “y” as an argument.

Patterns may also be defined based on specific expected argument values. For instance,

consider the Composite Mapping specified using pseudo-code on Listing 3.32.

Listing 3.32: Example specification of a Composite Mapping with expected argument val-

ues, in pseudo-code.

[43

Mapping MappingPrint (String s):
upon someMocTrigger
triggers MyClass.executionFunctionPrint(s)

Composite Mapping CompositePrintHelloThenPrintworld:

1
2
3
4
5
6| MappingPrint("Hello") -> MappingPrint("World")

This mapping occurs when the Mapping “MappingPrint” first occurs with the argument
Hello” and then with the argument “World”.
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Related Work

The feature we just described is similar to what is known as Complex Event Processing
(CEP) [91]. There exists many technologies for CEP, depending on the technical ecosystem
considered, among which Esper [40] (Java, .NET); Microsoft’s StreamInsight [99] (.NET);
Oracle Complex Event Processing [119] (Java); WSO2’s Complex Event Processor [161]
(Java); JBoss’s Drools Complex Event Processing [70] (Java); Apache’s Storm [3] and Flink [2]
(Java). Unfortunately, no formal standard exists [122]. In some situations, the language
used for specifying the CEP has an SQL-based syntax.

The context of these technologies is very different from the context of our work. They
often focus on the execution performance of their runtime in order to achieve near real-
time recognition of patterns of events. In our case, the most important feature is the ex-
pressive power of the metalanguage for the definition of patterns of events. In “Processing
Flows of Information: From Data Stream to Complex Event Processing” [23, Section 3.8.2],
the authors provide a complete list of operators found during the analysis of Informa-
tion Flow Processing Systems, including approaches related to Complex Event Processing.

They can be used as a basis for the implementation of this feature.

3.10.5 Feature Summary

This feature focuses on the nature of the Mappings of the Communication Protocol which
represent the behavioral interface of the language. It does not affect directly the execution
semantics of an xDSML, instead it merely changes how the xDSML’s semantics is repre-
sented from an external point of view (e.g., the user or another program). It is motivated by
further uses of concurrency-aware xDSMLs in the GEMOC Project, where several xDSMLs
are coordinated through operators exploiting their behavioral interfaces. In short, this fea-
ture participates in making possible the specification of a higher-level behavioral interface
for concurrency-aware xDSMLs, in order to present a particular interface to other pro-
grams or languages. For example, it can be used to de-clutter the interface from technical
details of the implementation, or from parts of the behavior that should not be visible (or

are of no interest) for any potential external program.

3.11 Implementation

We describe the implementation of the concurrency-aware approach in the Eclipse-based

GEMOC language workbench. It includes the description of the metalanguages provided
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by the language workbench for the definition of the different concerns. The full source

code of our implementation of f{UML is provided in Appendix B.

3.11.1 Technical Space

The concurrency-aware approach has been implemented in an Eclipse-based application
called the GEMOC Studio®. It is based on the Eclipse Modeling Framework (EMF) [36], the
core component of the Eclipse Modeling Project’. These technologies have been presented
in Chapter 2. EMF provides a large existing ecosystem of technologies and tools, includ-
ing Java APIs, allowing the definition of metamodeling tooling using any JVM language.
Moreover, the Eclipse Rich Client Platform (RCP) is a natural candidate for the develop-
ment of a language workbench. Other platforms providing RCP abilities or metamodeling
facilities exist, but the Eclipse platform is, so far, one of the strongest candidate when need-
ing both at the same time. Its open-source nature and its licensing policy (Eclipse Public
License'?) also contribute to its adequacy.

The GEMOC Studio is an Eclipse application which embarks the metalanguages for
the specification of concurrency-aware xDSMLs, as well as their runtimes. It also provides
different facilities for the development, reuse and debugging of the different concerns com-
posing an xDSML.

The studio is made up of two components:

{3 The GEMOC Language Workbench, used to specify and edit
" concurrency-aware XDSMLs.

The GEMOC Modeling Workbench, used to create and execute models

conforming to concurrency-aware xDSMLs.

Concurrency-aware xXDSMLs defined thanks to the former can be automatically de-

ployed in the latter, and benefit from generic execution and debugging facilities.

3.11.2 Metamodeling Facilities

EMF provides Ecore, an implementation of EMOF [112]. The Abstract Syntax of an xDSML
can be specified as an Ecore metamodel. EMF provides several editors for EMF: tree-based,

graphical and textual.

®http://gemoc.org/studio/
*http://www.eclipse.org/modeling/
http://www.eclipse.org/legal/epl-v10.html
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The associated static semantics can be expressed in terms of Object Constraint Lan-
guage (OCL) invariants [113]. EMF provides its implementation of OCL as Eclipse OCL".
It includes editor and interactive consoles facilities. Both EMOF and OCL are standards
from the Object Management Group (OMG)'2, as mentioned in Chapter 2.

Ecore provides facilities to automatically generate Java APIs for Ecore metamodels,
enabling any JVM-based technology to exploit Ecore metamodels and models. We leverage

this feature in the metalanguages implementations presented in the rest of this section.

3.11.3 Semantic Rules

To specity the Semantic Rules, the GEMOC Studio relies on the Kermeta 3 Action Language
(K3AL) [32], which is built on top of Xtend [7] by INRIA (IRISA). K3AL allows the defini-
tion of Aspects for Ecore metaclasses, allowing us to define additional classes, attributes,
references and operation implementations, specifying the Execution Data and Execution
Functions. K3AL, just like Xtend, compiles into readable Java and provides an executor
based on the Java Reflection API to dynamically execute the Execution Functions. List-
ing 3.33 shows the implementation of an Execution Function for ForkNodes using K3AL.

The full Semantic Rules implementation for f{UML is provided in Appendix B.

Listing 3.33: Excerpt from the Semantic Rules of f{UML specified using Kermeta 3.

1|import org.gemoc.sample.fuml.ForkNode

2

3 (className=ForkNode)

4| class ForkNodeAspect {

5 // Modifier

6 def public void execute() {

7 precondition(_self)

8 println("*** ForkNode,[" + _self.name + "]" + "***")

9 // Forks each incoming token and sends a version to each
outgoing edge.

10 _self.outgoingEdges.forEach [ outgoingEdge |

11 outgoingEdge.currentTokens.clear()

12 _self.incomingEdges.forEach [ incomingEdge |

13 incomingEdge.currentTokens.forEach [ token |

14 if (token instanceof ObjectToken) {

15 val Object object = (token as ObjectToken).object

16 outgoingEdge.currentTokens.add(TokenHelper.
createObjectToken(object))

Thttp://projects.eclipse.org/projects/modeling.mdt.ocl
http://omg.org/
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17 } else {

18 outgoingEdge.currentTokens.add(TokenHelper.
createControlToken())

19 1

20 ]

21 ]

22 ]

23 }

24
25 // There should be at least one incoming edge with at least one
token.

26 def private void precondition() {

27 val boolean atLeastOneIncomingEdgeHasAtLeastOneToken = !_self.
incomingEdges. [ incomingEdge |

28 incomingEdge.currentTokens

29 1. .isEmpty

30 if (!atLeastOneIncomingEdgeHasAtLeastOneToken) {

31 throw new PreconditionException(_self)

32 }

33 }

34|}

In this example, we define and use a pre-condition for the Execution Function, as pre-
conized in 3.3.4. This ensures that the Execution Function is called only in situations where
it makes sense, facilitating the debug of the rest of the semantics during the development
of the language.

More generally, the requirements for the Semantic Rules metalanguage are the follow-

ing:

« Capacity to extend the Abstract Syntax with additional data (attributes, references,

classes, etc.).

« Capacity to extend the Abstract Syntax with operation declarations and implemen-

tations.

« Runtime able to execute the operation implementations.

3.11.4 Model of Concurrency Mapping

In the GEMOC Studio, the MoCMapping is specified using the Event Constraint Language
(ECL) [27], an extension of OCL enabling the definition of EventTypes (in the context of

concepts from an Ecore metamodel) and of constraints between these EventTypes. ECL is
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developed by INRIA (I3S). It provides a set of core constraints, facilitating the specification
of complex symbolic partial orderings between the EventTypes. It follows the UML Profile
for Modeling and Analysis of Real-Time and Embedded systems (MARTE) [110], standardized
by the OMG"®. Complex constraints can also be specified and capitalized into metamodel-
agnostic libraries using MoCCML [29], developed by INRIA (I3S) and ENSTA Bretagne.
Listing 3.34 shows an excerpt from the MoCMapping of f{UML, specified using ECL. In this
example, the EventType moc_executeNode is defined in the context of the concept
ActivityNode. We then define a constraint to ensure that, for an edge, the source is
generally executed before the target (except for MergeNode for which only one one of

the incoming edges’ source must have been executed).

Listing 3.34: Excerpt from the Model of Concurrency Mapping of f{UML specified using the

Event Constraint Language.

1|import 'platform:/resource/org.gemoc.sample.fuml.model/model/fuml.
ecore'

2

3| package fuml

4| -- A node may be executed

5| context ActivityNode

6 def: moc_executeNode : = self

7

8| context ActivityEdge

9] -- In general, execute the source before the target.

10 inv executeSourceBeforeTarget:

11 ((self.guard = null) and

12 (not (self.targetNode.oclIsKindOf (MergeNode)))

13 ) implies (

14 Precedes (self. sourceNode . moc_executeNode,

15 self. targetNode.moc_executeNode)

16 )

17| endpackage

The full source code of the MoCMapping for our implementation of fUML is available
in Appendix B.
More generally, the requirements for the Model of Concurrency Mapping metalan-

guage are the following:

« Capacity to specify the symbolic use of a Model of Concurrency (i.e., so that the MoC
is used for any model conforming to the xDSML).

3Object Management Group - http://www.omg.org/
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+ Generator to unfold the MoCMapping specification to any model conforming to the
AS of the xDSML.

During the compilation phase, the MoCMapping defined in ECL is compiled into a
Clock Constraint Specification Language (CCSL) [92] model. CCSL can be analyzed with
a runtime called TimeSquare [28], which can generate execution traces. For the practical
reasons mentioned in Subsection 3.6.4, during its execution, TimeSquare only provides the
next set of possible configurations. TimeSquare provides Java APIs, allowing us to use it
into our implementation.

Figure 3.40 shows an excerpt from the Value Change Dump (VCD) timing diagram of
the execution of the example fUML Activity’s MoCApplication. It represents the trace of
the execution of an Event Structure by showing the occurrences of events as “ticks” of a
“clock”. In this figure are represented the events corresponding to the execution of the
DecisionNode, respectively to the evaluation of the guards outgoing the DecisionNode.
Figures 3.41, 3.42, and 3.43 show the VCD for the clocks corresponding to the result of
the evaluation of the guard for each branch (respectively for coffee, tea and water), as ex-
plained in Section 3.6. The top line corresponds to the event “may...” while the bottom line
corresponds to the event “mayNot..”, for each branch. In this particular execution, coffee
was found on the table so the branches for coffee and water are both allowed. Ultimately,

only the branch corresponding to coffee will be executed (as per the f{UML semantics [116]).

TalkAndDrink::mainBlock::DecisionNode ...

TalkAndDrink::mainBlock::Decision2Coffee...

TalkAndDrink::mainBlock::Decision2Tea _m...

TalkAndDrink::mainBlock::Decision2Water ...

Figure 3.40: Excerpt from the trace of the execution of the MoCApplication of the example
fUML Activity.

TalkAndDrink::mainBlock::Decision2Coffee...

TalkAndDrink::mainBlock::Decision2Coffee...

Figure 3.41: VCD for the events corresponding to allowing, respectively disallowing, the
branch leading to drinking coffee.
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TalkAndDrink::mainBlock::Decision2Tea_m...

TalkAndDrink::mainBlock::Decision2Tea m...

Figure 3.42: VCD for the events corresponding to allowing, respectively disallowing, the
branch leading to drinking tea.

TalkAndDrink::mainBlock::Decision2Water ...

TalkAndDrink::mainBlock::Decision2Water ...

Figure 3.43: VCD for the events corresponding to allowing, respectively disallowing, the
branch leading to drinking water.

3.11.5 Communication Protocol

We have devised a metalanguage for the specification of the Communication Protocol
called the GEMOC Events Language (GEL). Figure 3.44 shows its Abstract Syntax, speci-
fied as an Ecore metamodel.

We have developed a textual concrete syntax using Xtext [7] to enable the specification
of the Communication Protocol. Listing H.1 shows an excerpt from the concrete syntax of
GEL as a template (with “<” and “>” as delimiters). The full concrete syntax is shown in
Appendix G.

In GEL, Domain-Specific Events (DSEs) implement both the “ModifierMapping” and
“QueryMapping” concepts. If the referenced Execution Function is a Query, then a Feed-
back Policy may be specified. A Feedback Policy is composed of at least two rules, in-
cluding a default one. A Feedback Rule is constituted of a Predicate on the return type of
the associated Query, and of an allowed MoCTrigger (EventType from the MoCMapping).
Since the consequences of all the rules of a policy constitute the set of data-dependent
MoCTriggers, we can specify in the rules either the consistent ones or the inconsistent
ones and deduce the others by getting its complement. In GEL, we have chosen to specify
in the rules the MoCTriggers consistent with regards to the runtime state of the model.
This syntax is more consistent with the one employed for programming languages, where
conditionals are implemented through the “if...then...else” construct, and not by “if...then
not...else not”.

Listing 3.36 shows the Communication Protocol for f{UML, specified using GEL.

Listing 3.35: Excerpt from the textual concrete syntax of GEL.
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1|import <Domain metamodel>

2|import <Model of Concurrency Mapping>

3|import <Semantic Rules>

4

5|// Regular Mapping

6|/|DSE <name>(<Parameterl>, ...):

7 upon <MoCTrigger from the MoCMapping>

8| triggers <Execution Function from the Semantic Rules> <blocking/
nonblocking>

9| end

10

11|// Mapping with a Feedback Policy

12| DSE <name>(<Parameterl>, ...):

13 upon <MoCTrigger from the MoCMapping>

14| triggers <Execution Function from the Semantic Rules> <blocking/
nonblocking> returning <result-name>

15 feedback:

16 [<boolean expression using result-name>] => allow <MoCTrigger
from the MoCMapping>

17 [<boolean expression using result-name>] => allow <MoCTrigger
from the MoCMapping>

18 R

19 default => allow <MoCTrigger from the MoCMapping>

20| end

21| end

Listing 3.36: The EvaluateGuard Domain-Specific Event (QuerryMapping) and its
Feedback Policy defined in GEL.

1|import "platform:/plugin/org.gemoc.sample.fuml.model/model/fuml.
ecore"
import "platform:/plugin/org.gemoc.sample.fuml.mocc/ECL/fuml.ecl"

DSE ExecuteActivityNode:
upon mocc_executeNode
triggers ActivityNode.execute

end

O N O U B W N

9| DSE EvaluateGuard:

10| upon mocc_evaluateGuard

11| triggers ActivityEdge.evaluateGuard returning result

12| feedback:

13 [result] => allow ActivityEdge.mocc_mayExecuteTarget
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14| default => allow ActivityEdge.mocc_mayNotExecuteTarget
15| end
16| end

Using a model, the GEL translator is able to transform a GEL specification (Commu-
nication Protocol) into its model-level equivalent (Communication Protocol Application).
The corresponding formalism is called microGEL. Its Abstract Syntax is very similar to
that of GEL, except that all the language-level elements are adapted to their model-level
equivalents (Execution Function into Execution Function call, MoCTrigger into MoCAp-
plicationTrigger, etc.).

The runtime of GEL is written in Java. It takes, as input, a Scheduling Solution, and
returns the corresponding MappingsApplications.

More generally, the requirements for the Communication Protocol metalanguage are
the following:

« Capacity to reference elements from the MoCMapping (the MoCTriggers) and from

the Semantic Rules (the Execution Functions).
« Support for arithmetic and navigation expressions on the abstract syntax concepts.

+ Generator to unfold the language-level specification to the model-level (which must

reference MoCApplicationTriggers and Execution Function calls).

3.11.6 Runtime

Our implementation of the Execution Engine in the GEMOC Studio is written in Java. It
coordinates the runtimes for the different concerns (K3AL Executor, CCSL Solver, GEL
Matcher) to drive the execution of a model conforming to a Concurrency-aware xDSML.

The GEMOC Studio also provide the possibility to define the graphical animation of the
execution. This animation layer is based on the use of Sirius **, a tool developed by Obeo
which enables the definition graphical concrete syntaxes for Ecore metamodels. The im-
plementation is based on an additional layer in the Sirius viewpoint specification, defining
how to represent the model based on the evolution of its Execution Data. Then, at runtime,
the graphical representation of the model is automatically updated based on the current
runtime state of the model. Appendix C shows the detailed animation of the example f{UML
model.

Y“http://www.eclipse.org/sirius/


http://www.eclipse.org/sirius/

139

3.11 Implementation

_

i _

[

_

uianediox [ ; — auanbasiesibo [ g

— usanedsnid 7

syuawnbayylmaduaIaeyIuaAIdypadsuewog m;

v

L

usenedio _

usaedaduappuiod [ ;

v

[

v

ﬁ 109lqoIabajul3 : suonesayOIAqWINU

3

_

uispeduopnesslp m

v

_ [

— 3dUIRJRWIUAATdYPAdSURWOg m;

sjuawnbae [LL]

swawnbayfosn [,

ne3 1]

syuawnbayvaidniniy m

juawnbaya|buis E

peay [1-1] juawnbae

Bus3 : aweu &

3|qenepied0

sajqeriepe20] [yL]

Abarensbuipjojun £

L]

usanndhinuig mr 7

usnpdhioun mr

|

v puesadoua) [1-L]

[

puesadoiybu [11]

Tgmbcm&:m\.muguu ds a 5

Apoq [11]

puesado [LL]

Bus3 : awreu —

.i

L

3}jnsayuopdunjuopRniaxy m:

|
— UuoPUN4UONNI3IXIERIDULISY m:

3nsai [10]

Cm— )

adAnuangpa [ _

; BupjoojgUOU = puIM|[ed : puIi|ed & 7

v —

ﬁ

uoIUNJUOINIAXT mu

12661110/ @_

22usnbasuodydeqpaay [

L

_

2suanbasuod [11]

uoissaidx3 : uoissaldxa _

J2iegpaey [ _

uonounjuopnaxa [10]

>m8m.;m [10]

asgpasuaiajaa [171]

|

sajeaipaud [4L]

aA3dYPadsulewogaysodwod ;

uoissaldx3 : uoissaidxa

73
=

S —

3led|paiduoneueisur m

19b66u>onuodn [11]

juaazadow [11]
13661 1>0/pasies [10]

a3y [10]

ainypeqpaas

s3jni [y 0]

— foijoaxdegpaay [

anynesap (171l

_

v

aygnd = Apqisia : Aupgisia &
Busa : aweu

1uan3zafpadsupwoq m_ 7

Buppoolg — uondnuaiu = aeaud - sjuana [0l H
Bupjoojguou = uoIssigns = agnd -
puied & pupjuonnax3 & Rinqisin & uonedypadssiuanzaypadsuiewog E

Busa : panuodun

wawaeisuodwy

suodwi [40]

— UOISSILUQNS = PUIMUONNISXT © PUIMUONNIAXa & T>u|+

llod>2eqpa3} [10]
— ucw>mu=_uwnmr__mEODU_E0u< m ;

Excerpt from the metamodel representing the abstract syntax of GEL.

Figure 3.44



140 Design of Concurrency-aware xDSMLs

3.12 Conclusion

We have formalized the concurrency-aware xDSML approach developed in the context of
the ANR INS GEMOC project. It is based on a separation of concerns of the operational
semantics, which favors the modularity and variability of the semantics, with a focus on
capturing the concurrency concerns using an adequate formalism. This formalism guar-
antees the correct use of a MoC by any system conforming to the xDSML, thus enabling
the use of concurrency-aware analyses on the systems being designed. It also enables the
refining of the xDSML for a specific execution platform, at the cost of having to respect the
boundaries of the approach (e.g., the MoCMapping is data-independent, Execution Func-
tion cannot call other Execution Functions, etc.).

We have improved the initial approach by identifying, motivating, illustrating and im-
plementing a set of features which either facilitate the definition of concurrency-aware
xDSMLs, or enable the specification of language constructs that could not be handled ad-
equately in the initial approach. For instance, the reuse of Execution Functions or the
addition of visibility for Mappings and the design of Composite Mappings contribute to
facilitating the definition and the use of concurrency-aware xDSMLs. Features such as
non-blocking Execution Function calls, the Feedback Protocol or the addition of parame-
ters to Execution Functions and Mappings contribute to the general expressive power of
the approach. We have carefully implemented these features to ensure the concurrency-
awareness of the approach remains intact, retaining the modularity of the execution se-
mantics, and making possible the independent analysis of the concurrency aspects of a
model conforming to a concurrency-aware xDSML.

This approach is not the be-all of xDSML design. xDSMLs without needs for rich con-
currency constructs, or high variability of its concurrent aspects, may not profit from it.
Instead, it benefits xDSMLs with complex concurrent semantics, or used to design systems
that are to be deployed on various execution platforms providing more or less parallel facil-
ities. The xDSMLs can be explicitly adapted for some specific execution platform(s). It also
benefits xDSMLs with Semantic Variation Points (SVPs): the use of the Event Structure
MoC, which relies on partial orderings, facilitates the implementation of SVPs pertaining
to the concurrency concerns of the language. The approach also benefits the design of
complex systems, for which formally verifying behavioral aspects is essential for safety
reasons. The systematic use of the Event Structure MoC enables performing such analyses
for any model conforming to the xDSML.

Some languages cannot be captured correctly using the concurrency-aware approach.
This is mainly due to the concurrency model, which is a specification in intention of all the

possible control flows. This means that all the relevant parts of the model must be known
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at compile-time. They cannot be created dynamically during the execution. Otherwise,
the concurrency model would not be aware of them and would not include them in the
control flow of the model.

MoCs are gaining traction in the programming community due to the complex and
highly-concurrent nature of modern softwares and systems. The concurrency-aware ap-
proach eases their use through a specification at the language level. This is made possible
by the domain-specificity of the language, enabling its semantics to include the systematic
use of a MoC for any conforming model. This is a considerable advantage, since MoCs
usually require particular training and know-how to be used correctly. The features we
have presented extend the expressive power of the concurrency-aware xDSML approach,
or facilitate its use, thus contributing to widening the range of xDSMLs that can bene-
fit from the approach, ultimately improving the specification and refinement of modern

software-intensive systems.






“A magical accident in the Library [...] had some time ago turned the
Librarian into an orang-utan. He had since resisted all efforts to turn
him back. He liked the handy long arms, the prehensile toes and the
right to scratch himself in public, but most of all he liked the way all the
big questions of existence had suddenly resolved themselves into a vague
interest in where his next banana was coming from. It wasn’t that he was
unaware of the despair and nobility of the human condition. It was just

that as far as he was concerned you could stuff it.”

in Sourcery, by Terry Pratchett (1948 - 2015).

Tailoring Models of Concurrency to

Concurrency-aware xDSMLs

SuMMARY

We present an approach to seamlessly define and integrate new Models of Concurrency
into the concurrency-aware xDSML approach presented in Chapter 3. This is done through
a recursive definition of concurrency-aware xDSMLs, in which the MoC of an xDSML is
a previously-defined xDSML. This allows language designers to specify the concurrency
concerns of a language using the most appropriate formalism. We detail how this recursive
approach impacts the specification, translation and runtime stages of the concurrency-

aware approach. We also discuss its impact on the use of concurrency-aware analyses.

The contribution presented in this chapter has been published in the 2nd International
Workshop on Executable Modeling (EXE 2016) [87].
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RESUME

Ce chapitre présente la solution pour un probléme soulevé dans le Chapitre 3 concer-
nant ’adéquation entre le modele de concurrence (Model of Concurrency — MoC) utilisé et
le xDSML que l'on spécifie. L’approche que nous avons décrite a été jusqu’a présent can-
tonnée au MoC Event Structures. Or, tout MoC n’est pas forcément idéal pour tout xDSML.
De la méme maniere que certains problemes sont plus facilement résolus a I'aide de cer-
tains langages — pousser ce raisonnement jusqu’au bout nous amenant a la programma-
tion orientée langages (Language-Oriented Programming — LoP) décrite dans les chapitres
précédents — différents MoCs correspondent a différentes fagons de représenter la con-
currence, et donc correspondent a différents xDSMLs possédant différents paradigmes de
concurrence.

Dans ce chapitre, nous donnons une définition récursive de ’approche concurrency-
aware, a travers I'utilisation d’un concurrency-aware xDSML en tant que MoC pour un autre
xDSML. Nous insistons d’abord en détails sur I'activité de spécification du Model of Con-
currency Mapping (MoCMapping). Nous identifions en effet deux étapes a cette activité :
établir la correspondance entre la syntaxe abstraite du xDSML et la structure utilisée par
le MoC ; et définir un ordre partiel symbolique entre les différents stimuli (MoCTriggers)
de cette structure. Or un tel ordre partiel existe déja entre les Mappings d’'un concurrency-
aware xDSML, qui peuvent donc étre utilisés comme les stimuli d’'un MoC par un nouveau
concurrency-aware xDSML. Il ne reste alors plus qu’a définir la premiére étape, a savoir la
correspondance entre la syntaxe abstraite de ce nouveau xDSML, et celle du xDSML utilisé
en tant que MoC.

Pour établir cette correspondance, nous proposons de spécifier une transformation de
modeéles entre la syntaxe abstraite du xDSML et celle du MoC. Cette transformation permet,
pour un modeéle donné, d’obtenir son MoCApplication. Celui-ci est, entre autres, un modéle
conforme a un xDSML (celui utilisé comme MoC), et peut donc étre exécuté, mis au point
et testé comme n’importe quel autre modéle. Un aspect important de cette transformation
est qu’elle n’est pas une traduction du domaine du xDSML vers le domaine du MoC. Seuls
les aspects liés a la concurrence du xDSML sont représentés a I’aide du MoC. En somme,
le MoCApplication n’est pas sémantiquement équivalent au modele initial, contrairement
a ce qui est fait dans une approche translationnelle de la sémantique (cf. Chapitre 5).

Cette transformation peut étre de type 1 — n, ce qui signifie qu’a un élément du modele
peuvent correspondre plusieurs éléments dans le MoCApplication. A I'exécution, cela peut
poser des problémes pour distinguer les multiples éléments du MoCApplication résultant
de la transformation d’un élément du modéele initial. Pour pallier cela, nous proposons

de spécifier ce que nous appelons les Projections du xDSML sur le MoC. Une Projection
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définit en quel(s) concept(s) du MoC les concepts du xDSML sont transformés, et pour
quelle raison (via un label). Cette spécification est semblable a un métamodeéle de la trace
de la transformation initialement définie. Les Projections sont utilisées dans la spécification
du Communication Protocol, ce qui permet a la phase de traduction de cibler les éléments

appropriés dans le MoCApplication.

La phase de traduction doit donc étre modifiée en conséquence. Comme dans le chapitre
précédent, la premiére étape consiste a déplier les Semantic Rules au niveau modele, ce qui
donne les Semantic Rules Calls. La seconde étape consiste a utiliser la transformation de
modeles pour obtenir le MoCApplication. Elle permet aussi de générer les Projections de
niveau modele. Ces dernieres sont utilisées dans la troisieme étape, qui déplie le Com-
munication Protocol pour le modele considéré, créant ainsi son Communication Protocol

Application.

Le moteur d’exécution doit lui aussi étre modifié en conséquence. Le principal change-
ment est que le Solver (qui sert a interpréter le MoCApplication) est le moteur d’exécution
du xDSML utilisé comme MoC. Une couche d’adaptation est donc mise en place pour rendre

compatible les interfaces du Solver et du moteur d’exécution.

Nous analysons ensuite cette approche récursive. Nous considérons d’abord la mod-
ularité de la sémantique d’exécution, principal avantage de I’approche originelle. Celle-ci
est conservée puisque les aspects concurrents demeurent définis a 'aide de spécifications
dédiées. Nous nous intéressons ensuite a la réalisation d’analyses sur les aspects concur-
rents d'un modele. Par rapport a I'approche initiale, une structure d’événement est tou-
jours disponible, mais elle n’est présente qu’au niveau des aspects concurrents du modele ;
et possiblement sous plusieurs niveaux de langages (par exemple si un xDSML est utilisé en
tant que MoC pour un xDSML lui-méme utilisé comme MoC du langage que 'on souhaite
analyser). Une partie des aspects concurrents peut donc étre analysée, au prix d’arriver a
faire les traductions des propriétés et de leurs résultats entre le domaine du xDSML et le
domaine du MoC utilisé. Un autre type d’analyse est possible puisque le MoCApplication
est dans ce cas un modele conforme a un xDSML. Tout outil ou méthodologie connu pour
le xXDSML utilisé comme MoC peut donc étre utilisé pour analyser la totalité des aspects
concurrents d’'un modele. Cette définition récursive donne aussi une structure systéma-
tique aux MoCs, qui n’était pas formellement identifiée par le passé car historiquement,
les différents MoCs connus ont été développés dans des contextes tres différents. Ainsi,
passer d’'un MoC a un autre peut-il avoir un sens a I'aide de cette approche. Pour finir,
nous expliquons bien en quoi ’approche proposée est fondamentalement différente d’une
définition translationnelle de la sémantique d’exécution : seuls les aspects concurrents de

la sémantique sont exprimés a I’aide d’un autre formalisme.
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Ce chapitre est illustré a ’aide de la définition de fUML en utilisant, comme MoC, un
langage proposant la notion de Thread, similaire a ce qui est proposé par les langages de
programmation généralistes comme Java. Nous illustrons les étapes de spécification, com-
pilation et exécution. La définition de ce nouveau xDSML utilisé comme MoC est disponible
dans ’Annexe D, tandis que la définition de f{UML a ’aide de ce xDSML est montrée dans
I’Annexe E. L’exécution de I'exemple d’activité fUML est détaillée dans I’Annexe F. Enfin,
nous détaillons notre implémentation de cette contribution dans le GEMOC Studio.

Les travaux présentés dans ce chapitre ont été publiés dans le 2nd International Work-
shop on Executable Modeling (EXE 2016) [87].
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4.1 Introduction

C ONCURRENCY is particularly hard to represent using traditional programming tech-

niques. Historically, computer languages have been designed as sequential by de-

fault. Expressing advanced concurrent situations required additional work, possibly using
libraries tied to specific operating system calls. This has motivated the development of the
GEMOC concurrency-aware xDSML approach we have presented in the previous chapter,
which relies on an existing Model of Concurrency (MoC): Event Structures [160]. In this
chapter, we argue that a single MoC cannot be appropriate, and thus easy to use, for all
xDSMLs. This motivates the need to integrate additional MoCs into the approach. We
detail the difficulties in defining and integrating new MoCs. We will then propose a recur-
sive definition of concurrency-aware xDSMLs, enabling xDSMLs to be used as the MoC of
other xDSMLs.

4.1.1 Different Models of Concurrency for Different Paradigms

Comparing the expressive power of General-purpose Programming Languages (GPLs) is
usually done through informal claims, although some frameworks have been proposed to
formalize this [42]. Still, most of them naturally lean towards certain classes of problems,
if not in the concepts, syntax or semantics they propose, at least in their libraries, frame-
works, community or execution platform. We argue that the same can be said for MoCs:
although they generally aim at representing the concurrency aspects of a system, some of
them are more adapted for some classes of problems. This can stem from their originat-
ing background (i.e., the initial needs for the development of a MoC), from the concepts
they propose, or from their surrounding tooling. It can also be more subjective, due to
familiarity of the language designer with a particular MoC.

For instance, Petri nets [107, 71] are particularly adapted to represent the mutual ac-
cess to resources, while the Actor model [65] focuses on the message exchanges between
entities (with no shared state) of a system. Depending on the nature of the systems to be
designed with an xDSML, or on the verifications we may want to perform on the MoCAp-
plication of a system, using one MoC or the other may be preferred.

In “Why Do Scala Developers Mix the Actor Model with Other Concurrency Mod-
els?” [144], the authors find that one of the reasons why a Scala code-base mixes MoCs
is because of inadequacies in the actor model. Using an inadequate model usually com-
plicates the specification, leading to data races and deadlocks. Mixing MoCs can lead to

complex interactions between them. Moreover, some MoCs enable the use of concurrency-
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aware analyses, and mixing MoCs may impair that (i.e., some parts of the system may not
be analyzable).

Another example to consider is how, in the GEMOC Studio, ECL and MoCCML (cf.
Subsection 3.11.4 of Chapter 3) can be used to specify the MoCMapping of a concurrency-
aware XDSML. MoCCML was designed as a merge of two manners of expressing domain-
agnostic constraints: CCSL expressions and relations [92] and automatas [69]. This fusion
stemmed from the difficulty to express some constraints using only CCSL concepts.

More generally, using an adequate MoC for an xDSML is essential to ease its design and
verification. In the current situation of the concurrency-aware xDSML approach, this can
lead to the antipattern known as the Golden Hammer: “if all you have is a hammer, every-
thing looks like a nail”. Using an inadequate MoC can make its use complex, which mani-
fests, in the concurrency-aware approach, in making the specification of the MoCMapping

more complicated.

4.1.2 TIllustrative Example

Illustrating the inadequacies of a MoC for a particular xDSML is made difficult by our use
of the MoC through the notion of Model of Concurrency Mapping (MoCMapping). The
MoC is used to represent the concurrency concerns of a system, but its systematic use by
an xDSML is captured in the MoCMapping by the language designer. Therefore, designing
the MoCMapping entails two merged challenges: the adequacy of the MoC to the class of
problem addressed by the xDSML; and the adequacy of the MoCMapping to capture the
language-level specification of the systematic use of a MoC.

We will illustrate this issue on an example fUML Activity, by considering its corre-
sponding Event Structure. By showing the inadequacy of this Event Structure (relative to
other possibilities) to represent the concurrency concerns of the example Activity, we infer
that this inadequacy is also present for the language-level specification (MoCMapping).

We consider the fUML Activity shown on Figure 4.1.

Figure 4.2 shows the corresponding simplified Event Structure. Two main simplifica-

tions have been applied on this figure:

+ The evaluation of the guards has been regrouped as one event, whereas they are

three distinct events.

+ The subtleties of representing the consequences of the guard evaluations have been

simplified.

The first one complicates the Event Structure in that all three guards may be evaluated

in any order, including in parallel, so it creates a lot of possible scenarios (especially consid-
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TalkAndDrink

My Initial
MyFork

CheckTableForDrinks Talk

MyOutputPi
["Coffee"] MyDecision

1 \/ llelsel
["Tea"]

| DrinkCoffee | DrinkTea |DrinkWater

MyFinal

éa

Figure 4.1: Example f{UML activity where we want to drink something from the table while
talking.

{..., e_CheckTableForDrinks} {..., e_Talk}

{..., e_CheckTableForDrinks,
e_Talk}
..., 8_EvaluateGuards, e_Talk}

{..., e_EvaluateGuards

{...e_Drink T ;
ea
Coffee} . {....e_Drink ) ...,e_Drink
{... e_MyJoin}@ Coffee, {.. e_MyJoin}® Tea, e Talk}|| (.
{..., e_MyFinal} e_Talk} {..., e_MyFinal} e G

Figure 4.2: Event Structure for the fUML Activity from Figure 4.1.
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ering there is another branch of the ForkNode that is executed concurrently). Appendix A
paints this in greater details.

The second one is the focus of Figure 4.3, which shows a close-up on the detailed Event
Structure. For each guard, we capture the consequence in terms of control flow in the
“may” and “may not” events (e.g.,'e_mayDrinkCoffee”, “e_mayNotDrinkCoffee”, etc.). Each
of these disjunctions must be realized based on the Feedback Protocol of the language (cf.
Section 3.6 of Chapter 3). Afterwards, if several paths are available, then an arbitrary choice
is made (with the default choice — “Water” in our case — being selected only if it is the only
possible choice).

Capturing such requirements in an Event Structure is complex: there are a lot of events
and specifying the right partial ordering between them is subtle due to the numerous con-
current situations. Moreover, its representation is also difficult since any concurrent sit-
uation usually leads to an exponential number of situations, e.g., we cannot represent all
the possible orders of evaluation of the guards while including the possible concurrency
with the steps related to capturing the consequence of the evaluation of each individual
guard, meanwhile concurrently executing of the other branch(es) of the ForkNode.

Instead, we propose to rely on a MoC providing the concept of Thread, a classical con-
currency concept inspired from the kernel-level thread notion in Operating Systems. As
mentioned in Chaper 2, the mapping between conceptual threads (also called lightweight

threads, green threads, etc.) and kernel thread is realized by the underlying implemen-

{.., e_evaluateForCoffee} {..,e_evaluateForTea} {..., e_evaluateForwater}

I\ A

{.... e_mayNot
DrinkTea}

I\
| \ {-.e_mayDrinkTea}

{.. e_mayNot
{..., e_mayDrinkCoffee} {-. e_mayNot | {..., &_mayDrinkWalkr} Drinkwater}
DrinkCoffee} ! |
I I :
i {... _doDrinkTga} ( doNot l
.y &_doNol
. DrinkTea} (... e_doNat
{s e_doDrinkCoFFee}¥ {"r’ilni_cdo%?l:et} {..., e_doDrinkWater DrinkWater}
{..e_Drink¥ gp {...e_Drink Ty {..eDrink g =
Coffee} Tea} Water}
——> — = — =
P _— Default branch must not
Subjected to Al least ene of the "do -
the Feedback Pratocol events should occur be execui;e;lolsfs?glt;ther one

Figure 4.3: Close-up on the Event Structure.
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tations. For instance, in Java, it is the JVM that dictates how Java threads are mapped
to system-level threads. In the case of Oracle’s HotSpot, the mapping is 1:1'. In other
programming languages, threads are only use as a conceptual entity for a sequence of
computations, and not mapped onto their own kernel thread.

A Thread is usually supplied with a list of statements (or instructions) to execute.
Threads may be coordinated cooperatively, that is each Thread may relinquish control at

some point. Figure 4.4 shows the use of such a MoC for the example fUML Activity.

Main Thread
______ Main Thread Instructions
Ta]kAndDri“ kJ | Execute Mylnitial |
MyInitial | Execute MyFork |
SubThreMYfOX SubThread® [start subThread1 and SubThread2]
===
L] ¥ | Join SubThreadl and 5ubThread2 |
CheckTableForDrinks Talk
| Execute Myoin |
MyOutputPi
| Execute MyFinal |
["Coffee"] MyDecision A e . T S T

1 \ﬁnan, 11:1 — SubThreadl Instructions SubThread?2 Instructions

IDrinkCof‘Fee l DrinkTea “ Drinkw: | Execute Talk

MyMerge

Execute CheckTableForDrinks

Execute MyOutputPin

Execute MyDecision

T e e m— — —

MyJoin

MyFinal Execute DrinkCoffee or

DrinkTea or DrinkWater

Execute MyMerge

Figure 4.4: Mapping the example f{UML Activity to threads.

In this particular example, we have chosen to map fUML to the notion of Threads as
follows. An Activity has a main Thread. Each branch of a ForkNode/JoinNode couple is
captured as a set of instruction in their own thread. The ForkNode is thus transformed
into instructions corresponding to the starting of the threads of each branch. When all
the Threads corresponding to branches have been fully executed, the associated JoinNode
may be executed, which is captured as instructions to join (i.e., wait for the completion of)
a thread. For DecisionNodes, guards may be evaluated in any order, including in parallel,
so using a different thread for each guard evaluation is possible. We can also simplify this

aspect by executing them in any arbitrary order since it does not change the outcome.

'http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview . html#Thread%
20Management|outline
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Using this thread-based MoC for fUML is more adequate than Event Structures, due to
its closeness with the specification [116] and reference implementation®. It is also more
practical to represent graphically, as all the possible interleavings between concurrent

threads are not represented explicitly.

4.1.3 Integrating additional Models of Concurrency

Integrating new MoCs into the approach is complex. It requires integrating the metalan-
guage corresponding to the MoC. Models conforming to this metalanguage can then be
used as the MoCApplication for a program conforming to an xDSML. It also requires spec-
ifying and integrating the metalanguage for the specification of the MoCMapping, as well
as its translator to unfold the MoCMapping for a particular model. Finally, the runtime of
the MoC must also be provided so that at runtime, the MoCApplication can be executed
and interpreted by the rest of the executable model’s specification.

For each MoC, the two associated metalanguages must be tooled, and their specifica-
tions and runtimes integrated with the rest of the concurrency-aware approach. Moreover,
MoCs are traditionally only used at the program level, thanks to language constructs or
libraries made available by the host language. The metalanguage to specify the MoCMap-
ping is thus often not pre-existing, requiring significant efforts for its specification, devel-
opment and tooling.

Additionally, there are several manners to connect a MoC (and, by extension, a MoCMap-
ping), to the rest of the approach. For instance, for the Event Structures MoC, the connec-
tion is made by relying on the occurrences of the events. For Petri nets, one would naturally
rely on the firing of transitions between places and transitions of a net. But nothing hin-
ders us from relying instead on the entering or leaving of a place, and from interpreting
these as the stimuli used by the rest of the execution of a model. Thus, identifying, for a
MoC, which of its constituents’ behavior will be used as the MoCTriggers is also part of

how a MoC is exploited by the concurrency-aware approach.

4.2 Introducing a Recursive Definition of

Concurrency-aware xDSMLs

We propose another approach to enable the use of additional MoCs. It relies on con-
sidering previously-defined concurrency-aware xXDSMLs as MoCs for the design of other

concurrency-aware XDSMLs.

*https://github.com/ModelDriven/fUML-Reference-Implementation
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4.2.1 Overview of the Recursive Approach

The systematic use of a MoC by an xDSML is specified by the MoCMapping. This spec-
ification is made of two aspects. First, there is a mapping from the abstract syntax of
the language to the structure used by the MoC. For instance, for an EventType Structure
(language-level specification for the Event Structures MoC), it consists in defining Event-
Types in the context of the concepts of the abstract syntax. The second aspect is in defining
the symbolic partial ordering between the MoCTriggers (i.e., in an EventType Structure,
by specifying symbolic constraints between the EventTypes).

When considering a concurrency-aware xXDSML, there is already a symbolic partial
ordering defined between the Mappings (indirectly, as it is defined on the underlying
MoCMappings). We propose to use the Mappings of a concurrency-aware xDSML as the
MoCTriggers for another xDSML. This effectively allows us to reuse the symbolic partial
ordering already defined for the first concurrency-aware xDSML between its Mappings.
Mapping the abstract syntax of an xDSML to this structure then consists in mapping the
abstract syntaxes of both languages.

Ultimately, this means that the concurrency concerns of an xXDSML are represented
using another xDSML. The MoCApplication will thus be a model instance of that second
xDSML. Besides representing the concurrency concerns in an adapted formalism, this also
means that the MoCApplication can be executed, debugged and animated like any regular
model conforming to a concurrency-aware xDSML.

More formally, we denote as:

.« Z

bovany he concurrency-aware xDSML we are specifying;

o« M a model conforming to &},

Domain OMAIN?

+ Zyoc the concurrency-aware xDSML used as a Model of Concurrency; and

o My the model conforming to £, and corresponding to the MoCApplication of
M

DomMaIN®

In the rest of this chapter, we will describe the specifications, translation and runtime
phases of the use of &), as the MoC of &},

which means that it has been specified either as presented in Chapter 3 or as is being

ovann: Zaoc 18 considered as already defined,

proposed in this chapter. Figure 4.5 shows an overview of the approach as a metamodel.
The specifications of the abstract syntax and of the Semantic Rules are the same as

described in Chapter 3. Once again, the concrete syntax(es) and the static semantics are

considered as already defined appropriately.
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Metamodel overview of our approach for the recursive definition of

concurrency-aware xXDSMLs.

Figure 4.5:
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Our recursive definition relies on replacing the previous EventType Structure specifi-
cation by the two following specifications presented in the “Concurrency-aware xDSML
Recursive Definition” package of Figure 4.5. We illustrate these specifications as well as
their execution on a definition of f{UML using, as MoC, a concurrency-aware xDSML cap-

turing the notions of threads with instructions.

4.2.2 Abstract Syntax Transformation

The MoCMapping is implemented by the specification named “AbstractSyntax Transfor-
mation” in the metamodel of Figure 4.5. We denote it as I, nonoc- 1t Specifies how the

pure concurrent control flow of &,

M

omary 18 represented using &),,c. For the input model

its output is My, its MoCApplication.

Domain®

The Mappings of &), represent the MoCTriggers of this MoC, which means that

the Communication Protocol specification of Z}, is between Mappings of %), . and

OMAIN

Execution Functions of £}, -

The correspondence between Z;, and &), is always 1 — n (with n > 0). When

has no direct impact on the control flow.

OMAIN

n = 0, it means that the element of
When n = 1, the element of #

stance, fUML nodes are generally represented by one instruction in a language based on

Domain

Pomany 18 transformed into one element in .#,, . For in-

threads and instructions (cf. Figure 4.4). Finally, n > 1 when the element of .# s

Domam 1
represented using multiple elements in .#,, ., such as a ForkNode being transformed into
several instructions (corresponding to starting as many threads as it has branches).

In other words, I, amomoc does not add new information, it merely encodes the con-
trol flow associated with the constructs of Z,

Domain®
tion of Zp,

In order to illustrate this specification on fUML, we must first consider the definition

using Z);,c- The rest of the specifica-

(Semantic Rules) handles the data concerns of the language.

of a concurrency-aware xDSML capturing the notions of threads and their instructions.
Figure 4.6 shows the Abstract Syntax and Semantic Rules of our implementation of such a
language. A ThreadSystem is composed of Threads (including a main one). Each
Thread has a number of Tasks which can be of different nature (execution, disjunction,
conditional, etc.), in particular they may correspond to starting or joining other threads.
Inside a Thread, Tasks are executed sequentially. Threads are concurrent by nature, so if
several are running at the same time, they can execute their instructions in parallel or in
some form of interleaving. Joining on another thread consists in waiting for the designated
thread to have all its tasks executed. Disjunctions are tasks for which only one of
the two operands (other Tasks) is executed. Conditionals are executed if all their

conditions (other Tasks) have been executed previously.
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\ [1..*] threads . :
| ThreadSystem |a= (| Thread
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| [1..1] mainThread |'= S Toeadsians - Nonexsten]
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=
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Figure 4.6: Excerpt from the Abstract Syntax and Semantic Rules of our threading language
used as a MoC for f{UML.

For this xDSML, the Mapping of interest in the Communication Protocol is the execu-
tion of a Task, ExecuteTask. Its occurrences will be used as the MoCTriggers by the

Communication Protocol of f{UML.
The full concurrency-aware specification of this xDSML is given in Appendix D.

For fUML, the Semantic Rules are unchanged (cf. Chapter 3). Our interest lies in the
specification of the abstract syntax transformation, denoted as I,y - Turpapme- 1101S trans-
formation must produce, based on an fUML Activity, the ThreadSystem model represent-
ing its concurrency concerns. For the example Activity presented previously, this model
is equivalent to the model shown in the right half of Figure 4.4, shown in a textual form

using pseudo-code on Listing 4.1.
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Listing 4.1: Ideal MoCApplication, based on the notion of Threads and Instructions, for the

example fUML Activity.

1|Main Thread TalkAndDrinkActivity {

2 Execute_MyInitial;

3 StartThread SubThread1l; StartThread SubThread2;

4| JoinThread SubThreadl; JoinThread SubThread?2;

5 Execute_MyFinal;

6|}

7

8| Thread SubThreadl {

9 Execute_CheckTableForDrinks;

10| Execute_MyOutputPin;

11 Execute_MyDecision;

12 Decision2Coffee EvaluateGuard;

13 Disjunction { MayDrinkCoffee | MayNotDrinkCoffee };

14 Decision2Tea EvaluateGuard;

15 Disjunction { MayDrinkTea | MayNotDrinkTea };

16 Decision2Water EvaluateGuard;

17 Disjunction { MayDrinkwWater | MayNotDrinkWater };

18| if MayDrinkCoffee and MayDrinkTea and MayDrinkWater

19 then Disjunction { Execute_DrinkCoffee | Execute_DrinkTea } end;
20| if MayDrinkCoffee and MayNotDrinkTea and MayDrinkWater
21 then Execute DrinkCoffee end;

22 if MayNotDrinkCoffee and MayDrinkTea and MayDrinkWater
23 then Execute_DrinkTea end;

24| if MayNotDrinkCoffee and MayNotDrinkTea and MayDrinkWater
25 then Execute DrinkWater end;

26 Execute_MyMerge;

27|}

28

29| Thread SubThread2 {

30 Execute Talk;

31|}

More generally, the principles of this transformation are as follows:

+ An Activity is transformed into a main Thread.

« For each pair of ForkNode/JoinNode, each branch is transformed into a Thread with

Tasks corresponding to the nodes on the branch
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« The ForkNode itself is transformed into a set of Tasks to start the Threads corre-

sponding to its branches.

+ The corresponding JoinNode is transformed into a set of Tasks which wait for the

Threads corresponding to its branches.

« For a DecisionNode/MergeNode couple, each branch is transformed into a Task for
the evaluation of its guard, and of a Disjunction between two Tasks corresponding to
whether or not that branch may be executed. A set of Conditionals then describes the
logics between the branches: essentially an arbitrary choice among the non-default

possible ones.
« Otherwise, ActivityNodes are transformed into a single Task.

The full source code of our implementation of this transformation is available in Ap-
pendix E.

4.2.3 Using the Trace of the Abstract Syntax Transformation

Through the Abstract Syntax Transformation defined above, several concepts of £}, .1

may be mapped to a same concept in £, for different purposes.

In the case of fUML, edges outgoing a DecisionNode are transformed into three differ-
ent instructions: one for the evaluation of their guard, and one for each possible outcome
(i.e., the branch is allowed, or not).

In order to ensure that the Communication Protocol of £y,

exploits the right Map-
pings of Z,;,c, we thus need an additional specification which is based on the trace of the

Abstract Syntax Transformation. This specification is denominated as the Projections of
Z denoted as %

DOMAIN’ DoMAIN—MoC* into which con-

It specifies, for a concept of L}, s
cept(s) of &y, they are transformed (through I3 ,,,nonoc) @and with which purpose(s),
using labels. This allows identifying, for instance, the different instructions corresponding
to the evaluation of the guard, respectively to its different possible outcomes, resulting
from the transformation of an edge outgoing a DecisionNode.

This specification is then exploited by the Communication Protocol specification of

<

Domain*

In the case of f{UML, we denote this specification as S

FUML—THREADING*

Listing 4.2 shows

the pseudo-code corresponding to this specification.
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Listing 4.2: Pseudo-code specification of the projections of f{UML onto our Threading lan-
guage.

// Syntax:
// [Projection label]: [L_Domain concept] onto [L_MoC concept]

ProjectionForExecution: fuml.ActivityNode onto threaded.Task
ProjectionForEvaluation: fuml.ActivityEdge onto threaded.Task

ProjectionForMayExecute: fuml.ActivityEdge onto threaded.Task

S 0O 00 N Uk W N R

U=y

ProjectionForMayNotExecute: fuml.ActivityEdge onto threaded.Task

Listing 4.3 shows an excerpt of the pseudo-code specification of the Communication
Protocol of fUML, exploiting the Projections of f{UML to ensure the right MoCTriggers
from the Threading language will be used.

Listing 4.3: Excerpt from the Communication Protocol of fUML, specified using pseudo-
code.

1|// Syntax:
2|// Mapping [mapping name]:
// upon [MoCTrigger from MoCMapping] with [Projection label from

w

Projections]
// triggers [Execution Function from Semantic Rules]

Mapping ExecuteActivityNode:
upon ExecuteTask with ProjectionForExecution

(o e S

triggers ActivityNode.execute()

10| Mapping EvaluateGuard:
11 upon ExecuteTask with ProjectionForEvaluation
12 triggers ActivityEdge.evaluateGuard()

4.2.4 Generation of the Model-level Specifications

The two additional specifications we have described are at the language level:
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T bomam—Moc 15 @ model transformation from the abstract syntax of &}

abstract syntax of &%), ; it can be applied to any model conforming to Z,

Domain—Mo

c is a specification relating a concept from the abstract syntax of Z},

to the

OMAIN

OMAIN*

OMAIN

with a concept from the abstract syntax of £, ; its model-level counterpart relates

an element from

Domain

with an element of /.

Like in the original approach, the model-level specifications used for the execution of

a model can be generated. Figure 4.7 shows an overview of how the different concerns are

compiled down to the model level in the recursive approach we have described.

L Dormain
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Syntax |
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Model

references

L_Domain Concurrency-aware Operational Semantics
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i conforms to Rules Protocol P
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Figure 4.7: Overview of the compilation of the different concerns in our recursive approach
to concurrency-aware xDSMLs.

There are three steps of generation:

1: Model + Semantic Rules — Semantic Rules Calls

The Semantic Rules are compiled as previously defined in Chapter 3.
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2: Model + I amomoc — Model Projections + MoC Model (MoCApplication)
This step corresponds to the unfolding of the MoCMapping of &}, to the model

OMAIN

we want to execute. I, nomoc 1S applied using A as input, resulting in the

Domain

generation of .#,, ., corresponding to the MoCApplication of .4 Since My

DomaIN*
conforms to £, its own execution concerns can be generated. In particular, its
Communication Protocol Application will be used later on. During the application of
T bomam—Moc (OF based on the trace of its execution), the model-level projections can

also be generated. We denote them as %, They map, based on

OMAINMODEL—MOCMODEL*

the language-level projections specification, which elements of .# correspond

Domain

to which elements of .#,, . and with which purpose (through a label).

3: Model + Communication Protocol + Semantic Rules Calls + Model Projections + MoC
Model Communication Protocol Application - Communication Protocol Appli-
cation
This step corresponds to the generation of the Communication Protocol Application
of M
cation maps a Semantic Rules Call to a MappingApplication of #,,,-. Therefore,
P
of M ,,,. Without it, there could be confusion when an element of .#

pomany- FOT €ach element of the model, the Communication Protocol Appli-

is used in order to target the right MoCApplicationTriggers

OMAINMODEL—MOCMODEL

Domary 18 trans-
formed into several elements of .#,, ., and thus has several potential MappingAp-

plications available.

Let us illustrate steps 2 and 3 on our example language, f{UML, using the example Ac-

tivity of Figure 4.1.

1 o
The transformation, I,y - Tureapive

is used to generate the MoCApplication corre-
sponding to our model. The resulting model, conforming to the threading language we
have presented earlier, has already been illustrated, textually in Listing 4.1 and graphically
in the right half of Figure 4.4. It is also used to generate the model-level projections, which
are essentially parts of the trace of the application of the transformation. Listing 4.4 shows

an excerpt from the model projections generated for the example Activity.
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Listing 4.4: Excerpt from the Model Projections of the example fUML Activity onto the

corresponding Threading model. Generated by I

O N O G bk W

W W W W W W NDNDNDNDNDNDNDNDDNDDNR R R R R R R R R @R[
R W N R, O VWO UL WD R O VKN ONU R WD R OO

for A

o
FUML—THREADING®

// Syntax:
// [label]: [M_Domain element] onto [M_MoC element ]

// For all ActivityNode instances
ProjectionForExecution_MyInitial:

MyInitial onto Execute_MyInitial
ProjectionForExecution_CheckTableForDrinks:

CheckTableForDrinks onto Execute_ CheckTableForDrinks
ProjectionForExecution_MyDecision:

MyDecision onto Execute_MyDecision
ProjectionForExecution DrinkCoffee:

DrinkCoffee onto Execute_ DrinkCoffee

// (...) etc.

// For all ActivityEdges instances with a guard
ProjectionForEvaluation_Decision2Coffee:
Decision2Coffee onto Decision2Coffee_ EvaluateGuard
ProjectionForMayExecute_Decision2Coffee:
Decision2Coffee onto MayDrinkCoffee
ProjectionForMayNotExecute_Decision2Coffee:
Decision2Coffee onto MayNotDrinkCoffee

ProjectionForEvaluation_Decision2Tea:
Decision2Tea onto Decision2Tea EvaluateGuard

ProjectionForMayExecute_Decision2Tea:
Decision2Tea onto MayDrinkTea

ProjectionForMayNotExecute_Decision2Tea:
Decision2Tea onto MayNotDrinkTea

ProjectionForEvaluation_ Decision2water:
Decision2Water onto Decision2Water EvaluateGuard

ProjectionForMayExecute_Decision2Water:
Decision2Water onto MayDrinkWater

ProjectionForMayNotExecute_Decision2Water:
Decision2Water onto MayNotDrinkWater

This specification is then used to generate the Communication Protocol Application

bomany- FOT instance, when considering the ActivityNode Mylnitial, of the example

Activity, there is one Mapping to instantiate (cf. Listing 3.3), called ExecuteActivityNode.
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Thus, there will be a corresponding MappingApplication: ExecuteActivityNode_Mylnitial.
The Mapping is specified to occur whenever the corresponding ExecuteTask MoCTrigger
appears. However, it is possible that MyInitial is transformed into several different Tasks
(e.g., that is the case for ForkNodes), therefore there would an ambiguity as to which Task’s
ExecuteTask MappingApplication to use. The clause “with ProjectionForExecution” dis-
ambiguates that. We thus search, in the Model Projections, the instance of ProjectionForEx-
ecution for the model element Mylnitial. We find the model projection ProjectionForExecu-
tion_Mylnitial, which maps MylInitial to the Task Execute_MylInitial. This Task’s instance
of the ExecuteTask Mapping is thus used as the MoCApplicationTrigger for the Mapping-
Application of Mylnitial.

Listing 4.5 shows an excerpt, in pseudo-code, of the resulting Communication Protocol

Application.

Listing 4.5: Excerpt from the model-level Communication Protocol for our example fUML

Activity, specified using pseudo-code.

// Syntax:

// MappingApplication [name]:

// upon [MoCApplicationTrigger]

// triggers [Execution Function call]

MappingApplication ExecuteActivityNode_MyInitial:
upon ExecuteTask_Execute_MyInitial
triggers MyInitial.execute()

O 00 9 N U i W DN -

"

// (...) etc. for every ActivityNode, the corresponding
ExecuteTask" through the Projection "ProjectionForExecution"
is used to trigger the "execute()" Execution Function.

10

11| MappingApplication EvaluateGuard_Decision2Coffee:

12 upon ExecuteTask_Execute_Decision2Coffee_EvaluateGuard

13| triggers Decision2Coffee.evaluateGuard()

14|// (...) etc. for every ActivityEdge with a guard, the

corresponding "ExecuteTask" through the Projection "

ProjectionForEvaluation" is used to trigger the "evaluateGuard

()" Execution Function.
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4.2.5 Runtime

The runtime must be changed to accommodate for the recursive definition we have pre-
sented.

Previously, we have denominated as Solver the runtime of the MoCApplication. In
this case, the MoCApplication is ..., a model conforming to £,... Its runtime is thus
an Execution Engine, itself coordinating the different runtimes for each concern of the
execution of ./, - as a concurrency-aware executable model. Thus, the Solver for /4,
is the Execution Engine used to execute /.

Performing an execution step remains similar to what was described in Chapter 3. An

execution step therefore consists in:
1. retrieving the possible Scheduling Solutions from the Solver;
2. choosing an arbitrary solution among the possible ones;

3. matching the selected solution with the corresponding Execution Function calls thanks

to the Communication Protocol Application; and
4. executing these calls.

In our case, a Scheduling Solution is a possible Execution Step of .#,.. Later, when
the heuristic of the runtime selects one of the solutions (e.g., the user through a GUI), the
Solver (Execution Engine of /#,,) is notified of which step to execute, resulting in changes
in the MoCApplication (/#,,-). Meanwhile, the corresponding Execution Function calls
of M

Overall, the main change to the runtime is that the Execution Engine must comply to

pomary are executed, thus concluding one step of the execution.
the Solver interface.

The full execution of the example model is presented step-by-step in Appendix F.

4.2.6 Implementation

The approach we have described has been integrated into the Eclipse-based implementa-
tion presented in Chapter 3, the GEMOC Studio.

Specifying model transformations is a classical activity of Model-Driven Engineering
(MDE) [95, 24]. GPLs can be used to write model transformations if they have access to
an API able to manipulate the abstract syntax and model elements. Some languages fo-
cus on manipulating model and metamodel elements, for instance Kermeta [72] interacts
well with EMOF-based models and metamodels. As mentioned in Chapter 2, the Object
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Management Group (OMG)® has also standardized the Model to Model transformations
(M2M) into QVT [114]. An example of QVT implementation is the ATLAS Transforma-
tion Language (ATL)* [74, 73]. Any of these means can be used to specify Ipommoc:
The transformation must also generate the Model Projections (i.e., the trace that relates el-
ements of M ., t0 elements of A, ). Our implementation was made using Xtend [7]
and the EMF APIs. The full source code is available in Appendix E.

The Projections can be specified using a dedicated metalanguage. Our implementation
is based on the Eclipse Modeling Framework [36] and Xtext [7] (for its textual concrete
syntax). Figure D.1 shows the Abstract Syntax, as an Ecore metamodel, of our implemen-
tation of this metalanguage. The language is used for both the language-level specification
and the model-level specification (generated automatically by the abstract syntax trans-

formation from <, to ZLyoc)- Its textual concrete syntax is available in Appendix H.

OMAIN
Listing 4.6 shows the Projections of f{UML specified using our metalanguage.

Finally, the metalanguage for the Communication Protocol, GEL, has been augmented
to take into account our recursive approach. MoCTriggers can now consist of a Mapping
(from Z);,c) and of a reference to one of the projections from %, . . \oc. Listing 4.7
shows the Communication Protocol for our implementation of f{UML.

We have also adapted the generator of the Communication Protocol to implement the

proposal described previously on Figure 4.7.

Listing 4.6: The Projections of f{UML onto the Threading language, specified using our

dedicated metalanguage.

[uny

import "platform:/plugin/org.gemoc.sample.fuml.model/model/fuml.
ecore" // Abstract Syntax of fUML

2|import "platform:/plugin/org.gemoc.sample.threaded.model/model/

threaded.ecore" // Abstract Syntax of the Threading language

3

4| Projections :

5 Language Projection ProjectionForExecution:

6 fuml.ActivityNode projected onto threaded.Task

7 end

8| Language Projection ProjectionForEvaluation:

9 fuml.ActivityEdge projected onto threaded.Task
10 end
11| Language Projection ProjectionForMayExecute:
12 fuml.ActivityEdge projected onto threaded.Task
13 end

*http://www.omg.org/

*http://www.eclipse.org/atl/
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14
15
16
17

A Uk W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Language Projection ProjectionForMayNotExecute:
fuml.ActivityEdge projected onto threaded.Task

end

end
Listing 4.7: The Communication Protocol of f{UML.

import // Abstract Syntax of fUML
"platform:/plugin/org.gemoc.sample. fuml.model/model/fuml.ecore"
import // Communication Protocol of the Threading language
"platform:/plugin/org.gemoc.sample.threaded.dse/GEL/threaded.GEL"
import // Language Projections of fUML
"platform:/plugin/org.gemoc.sample.fuml.projections/projections/

ToThreaded.projections"

DSE ExecuteActivityNode:
upon event ExecuteTask with ProjectionForExecution
triggers ActivityNode.execute blocking

end

DSE EvaluateGuard:
upon event ExecuteTask with ProjectionForEvaluation
triggers ActivityEdge.evaluateGuard returning result
feedback: // Feedback Protocol specification,
// more details in Chapter 3.
[ result ] => allow event ExecuteTask
with ProjectionForMayExecute
default => allow event ExecuteTask
with ProjectionForMayNotExecute
end

end

Figure 4.9 shows the MoCApplication for the example fUML Activity. It is a model con-

forming to the Threading xDSML we have defined, that is obtained automatically thanks

loas

to J

FUML—THREADING®

Figure 4.10 shows the correspondances between the fUML Activity and the resulting

Threading model.
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D} &5 NamedElement }<)
‘{# &’ name : EString

[1..1] owningAgenda

[0..*] scheduledTasks

[1..1] agenda
- ~\ [1..1] owningSystem [1..*] threads D
[ ThreadSystem (@ [ Thread
[1..1] mainThread
\ o status : ThreadStatus = NonExistent
? start() @ ScheduledTask
. @ join
£ Threadstatus [0..1] owningThread 2 on0
~ NonExistent [1..1] threadToStart [1..1] threadTojoin
- Running
- Finished
[1..%] tasks
] Instruction ]
[1..*] operands & Task
1..*] conditions = executed : EBoolean = false J
0. = executed : EBoolean = false [1..1] task
[1..1] thenTask ? execute()
[0..1] elseTask £\ 1. 1] ncreteT K
0..*]r presente B
] conditional ] ProxyTask [ [ startThreadTask
{
£ Disjunction ] =] ExecutionTask] [ JoinThreadTask |
J

J ( J

Figure 4.8: Metamodel representing the Abstract Syntax of the implementation of the Pro-
jections metalanguage.
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TalkAndDrinkThreadSystem

/ mainThreadForTalkAnd DrlnkThreadSys(em*\

1
1 ¥
1
| Execute_MylnitialNode ]| " Thread_MyFork_Fork2Check I
1
: Execute_CheckTableForDrinks

I StartThread_Thread_MyFork_Fork2Check I--

Execute_MyOutputPin

jmmmm———— 1+ StartThread_Thread_MyFork_Fork2Talk | Execution_MyDecision

Thread_MyFork_Fork2Talk Execute_Decision2Coffee_EvaluateGuard

| JoinThread_Thread_MyFork_Fork2Check  |d-

Disjunction_MayOrMayNotDrinkCoffee

"' JoinThread_Thread_MyFork_Fork2Talk I IExecutichask_MayDrinkCoffeeI IExecutinnTask_MayNotDrinkCoffee

I Execute_MyFinal I I Execute_Decision2Tea_EvaluateGuard I

. —

Disjunction_MayOrMayNotDrinkTea

I ExecutionTask_MayDrinkTea I I ExecutionTask_MayNotDrinkTea I

I Execute_Decision2Water_EvaluateGuard l

Disjunction_MayOrMayNotDrinkWater

IExecutionTask_MayDrinkWaterII ExecutionTask_MayNotDrinkWater I

IConditional_Decision2Coffee_Decision2Tea_Decision2Water_Allowed|

Disjunction_DrinkCoffeeOrDrinkTea

I Execute_DrinkCoffee I I Execute_DrinkTea I

Conditional_Decision2Tea_Decision2Water_Allowed

| Execute_DrinkTea I

Conditional_Decision2Coffee_Decision2Water_Allowed
I Execute_DrinkCoffee I

Conditional_Decision2Water_Allowed
I Execute_DrinkWater |

\_ | Execute_MyMerge | )

Figure 4.9: MoCApplication of the example fUML Activity, based on the Threading MoC
defined as a concurrency-aware xDSML.
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Figure 4.10: Correspondances between the example fUML Activity and its MoCApplica-

tion.
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Figure 4.11 shows the Graphical User Interface (GUI) during the execution of the ex-
ample fUML Activity. The annotated regions are as follows:

1: Graphical representation and animation of the fUML Activity, updated whenever its

Execution Data evolve (i.e., mostly when the tokens held by edges change).

2: Graphical representation and animation of the MoCApplication, the ThreadSystem
model. Tasks in orange have been executed, while tasks in green have yet to be
executed. A thread in orange has completed its execution, while a thread in green

still has tasks to execute. Threads in grey have not been started yet.

3: Console used to log the different steps of execution of both models, and also used as

standard output in the Execution Functions, facilitating their design and debug.

4: Set of possible Scheduling Solutions for this step. In the Threading model, there
are two possibilities. Executing the next instruction of the main thread (to start
the second sub-thread), executing the next instruction of the first sub-thread, or
both. When matched against the Communication Protocol Application of the f{UML
Activity, these possibilities correspond to the three solutions visible in the “Execu-
tion Steps” view: one corresponding to “ExecuteActivityNode_MyOutputPin”, one
without any effect on the f{UML Activity (but with some underlying effects on the
Threading model), or both. When one of these solutions is selected, the correspond-
ing Execution Functions calls are performed. For instance if the solution with both is
selected, then in the fUML model, “MyOutputPin.execute()” is executed, while in its
MoCApplication, both Tasks “StartThread_Thread_MyFork_Fork2Check” and “Exe-

cute_MyOutputPin” are executed.

5: Index of the active execution engines: one for the fUML Activity, and one for the

Threading model.

4.3 Discussion Concerning the Recursive Approach

We discuss some aspects of the recursive concurrency-aware xDSML approach.

4.3.1 Modularity

The initial concurrency-aware xDSML approach described in Chapter 3 focuses on the sep-

aration of concerns of the execution semantics in order to make explicit the concurrency
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Figure 4.11: Graphical User Interface of the execution of the f{UML example activity.
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concerns of a language, thus facilitating its exploitation for analyses, reuse and variations.
The recursive approach does not disrupt this modularity, as we have only provided the
means to use other MoCs defined as concurrency-aware xDSMLs.

The MoCMapping remains a data-independent specification making explicit the sys-
tematic use of a MoC by the xDSML. In fact, our approach favors the reusability of an AS
and Semantic Rules, which can be used with different MoCs, for instance to compare two
MoCs for a same language in order to determine which is more appropriate. Reversely,

concurrency-aware xXDSML can be used as a MoC by any other xDSML.

4.3.2 Concurrency-aware Analyses

Concurrency-aware analyses can be performed on the MoCApplication of a system, de-
pending on the MoC used. For instance, Petri nets [107, 71] are a very common formalism
to specify the behavior of concurrent systems and to verify liveness or safety properties.
Other xDSMLs however, may not offer such tooling or well-known properties. By enabling
the use of any concurrency-aware xDSML as MoC, we leave into the language designer’s
hands the choice of using a MoC without specific properties or tooling facilitating its ver-
ification.

Still, since the concurrency-aware approach is initially based on Event Structures, there
is ultimately an underlying Event Structure used for the execution. In our example, the
MoCApplication of an fUML activity is a ThreadSystem model, whose MoCApplication
is an Event Structure. By transitivity, we can analyze the concurrency concerns of the
fUML activity through this Event Structure. However, propagating back the results of
these analyses into meaningful messages for f{UML may be complex. Further work could
consist in providing the means to specify properties for the source model, verified on the
target model, and with meaningful results being expressed for the source model [162, 163].

Overall, our approach does not hinder the use of any concurrency-aware analyses that
were possible before (since we can still rely on the underlying Event Structure). It even
provides an additional hook for analyses in the use of another xDSML as a MoC, possibly

with specific properties or tooling available.

4.3.3 Model of Concurrency Tailored for the Concurrency Paradigm
of the xDSML

By enabling the use of any concurrency-aware xDSML as a MoC, we allow language de-
signers to use the right MoC for the xDSML being developed. This is similar to how DSLs
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are used because of the dedicated abstractions they propose: some formalisms are more
adapted for the specification of certain concurrency paradigms.
The use of DSLs relies on:

+ being able to identify the DSL to design; and
« having the tools to specify, implement and use the DSL.

This is also the case for the use of an xXDSML as MoC: it relies on identifying the fitting
formalism, and on having it specified as a concurrency-aware xDSML. This may require
additional work from the language designer, who must now also have an expertize in the
language used as MoC, whereas previously they only needed to master the Event Struc-
tures MoC.

But for the same reasons DSLs are worth their costs, so is the recursive approach. In
“Why Do Scala Developers Mix the Actor Model with Other Concurrency Models?” [144],
mixing MoCs or using an ill-fitted MoC ultimately resulted in complex programs with
deadlocks and data races, preventing the use of advanced tooling, etc. By using xDSMLs as
MoCs, a practical formalism can be used for a specific xDSML’s concurrency paradigm, and
its use is facilitated by the possibility of executing, simulating and debugging the resulting

MoCApplication just like any model conforming to a concurrency-aware xDSML.

4.3.4 Systematic Structure for Models of Concurrency

Another upside of the recursive approach is that it gives a systematic structure of the
definition of a MoC. Usually, MoCs are specified informally, sometimes presented as “for-
malisms” (e.g., Petri nets [107]), available through language constructs (e.g., Erlang ac-
tors [4]) or through a framework (e.g., actors in Scala/Akka [58, 55]).

Although some work has been done towards the unification of MoCs [88, 108], they
mostly studied a set of MoCs, without considering the possibility to define or use new
formalisms as MoCs. Using our recursive approach, the MoC used for other xDSMLs is
a concurrency-aware xDSML itself. It can be used at the application level, like a regular
MoC, by defining a model conforming to its syntax; and it can be used at the language

level through additional specifications, like we have described in this chapter.

4.3.5 Comparison with translational semantics

The translational semantics approach consists in defining the execution semantics of a lan-

guage by translating it into another well-defined language (cf. Chapter 2). This is usually
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done through the specification of a transformation from the source language to a target
language.
Our contribution bears resemblance with translational semantics in that we do de-

fine a transformation from &,

. o .
bovam 10 Lo Ipomam—moc: HOWever, the purpose of this

transformation is very different from that of translational semantics. In our approach, the

source model (. conforming to &) and the target model (., conforming

Domain> OMAIN

to Zoc) are not semantically equivalent. M, - is only a representation of the concurrency

concerns of using £ as a formalism; whereas in translational semantics, the

Domain>

intention of the transformation is to produce a semantically equivalent model. The data

management performed in the Semantic Rules of Z, are never translated in terms

OMAIN

of concepts of Z,,, and only the concurrency concerns of £}, are transformed into

gMOC .

OMAIN

4.4 Conclusion

In Chapter 3, we have presented the concurrency-aware xDSML approach. One of its short-
comings was that the only available Model of Concurrency was Event Structures [160].
However, this MoC is not appropriate for all xDSMLs. The adequacy of a MoC for an
xDSML depends on the concurrent paradigm of its semantics, its community of users and
developers, etc.

In this chapter, we have proposed a recursive definition of concurrency-aware xDSMLs.
This effectively enables any previously-defined concurrency-aware xDSML to be used as
the MoC for another xDSML. This recursive definition essentially relies on two speci-
fications: I, .nomoc> Which implements the MoCMapping by defining the correspon-
dence between the abstract syntax of the xDSML and the structure used by the MoC; and
R

% omam—Mocs @ Way to cope with the 1 — n nature of the transformation. The compilation

and runtime phases must also be updated to take into account these new specifications.
We have implemented this contribution in the GEMOC Studio described in Chapter 3, in-
cluding the new and updated metalanguages and their tools for the specification of the
various concerns of the xDSML. Our example has shown how fUML can be specified using
a concurrency-aware XDSML which captures the notion of Thread as its MoC, instead of
Event Structures. Appendix F shows the full execution of the example fUML Activity using
our new version of f{UML.

The main benefit of this contribution is the possibility to rely on an appropriate for-
malism to specify the concurrency concerns of the xXDSML. Indeed, just like computer

languages are more or less adapted for some tasks, MoCs are more or less adequate to
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capture the concurrency paradigm of different xDSMLs. Our contribution thus facilitates
the definition and integration of new MoCs into the approach, without significant effort to
make its exploitation at the language level possible (i.e., the language-level metalanguage
comes for free). This also opens up concurrency-aware xDSMLs to the use of other ver-
ification tools and techniques to formally ensure behavioral concurrent properties of the
conforming systems. The xDSML used as MoC may be an already well-known formalism,
in which case existing tools and methodologies may be used seamlessly. Further research
work could consist in implementing, as concurrency-aware xDSMLs, well-known Models
of Concurrency in order to reuse their properties, tools and methodologies. Another possi-
bility is to rely on the underlying Event Structure used for the execution, but this requires

additional translations of the properties and their results [163, 162].






“Apes had it worked out. No ape would philosophize, ‘The mountain is
and is not” They would think, ‘The banana is. I will eat the banana.

]

There is no banana. I want another banana.”

in Unseen Academicals, by Terry Pratchett (1948 — 2015).

Translational Semantics of

Concurrency-aware xDSMLs

SuMMARY

We propose an approach to specify the semantics of concurrency-aware xDSMLs in a
translational manner, based on an existing concurrency-aware xDSML. We explain how
to implement the mappings between both languages to ensure a correct definition of the
newly-created xDSML.
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RESUME

Ce chapitre propose une alternative pour la définition de la sémantique d’exécution
d’un concurrency-aware xDSML. L’approche proposée dans le Chapitre 3 s’appuie sur une
définition opérationnelle de la sémantique, tandis que dans le Chapitre 4, nous avons pro-
posé d’utiliser un concurrency-aware xDSML en tant que modele de concurrence (Model of
Concurrency — MoC). Les aspects concurrents étaient donc définis a I’aide d’une translation
vers un autre concurrency-aware xDSML. Nous nous attachons dans ce chapitre a donner
une définition translationnelle de la sémantique d’exécution, c’est-a-dire entiérement en
termes de la sémantique d’un autre concurrency-aware xDSML.

De maniere générale, la sémantique translationnelle (ou dénotationnelle, dans le cas
ou l'on s’appuie sur des constructions mathématiques) consiste a définir la sémantique
d’un langage en le traduisant vers un autre langage dont la sémantique est déja définie. La
premiere étape consiste donc a spécifier une transformation allant de la syntaxe abstraite
du langage en cours de définition, vers la syntaxe abstraite du langage que nous allons
exploiter. Les deux modeles (source et cible) doivent donc étre sémantiquement équivalents
par construction, et le modéle source peut étre exécuté a I’aide de la sémantique déja définie
pour le langage cible.

Cependant, certaines capacités d’exécution définies dans le Chapitre 3 reposaient sur
des éléments de la sémantique propres a 'approche opérationnelle. Sans ces éléments,
I'exécution d’'un modéle a I'aide de la sémantique translationnelle est possible, mais pas
avec toutes les fonctionnalités qui étaient proposées dans le cadre d’'une sémantique opéra-
tionnelle. Nous proposons donc, dans ce chapitre, de compenser ce manque. Deux aspects
doivent étre considérés. D’une part, la représentation de '’exécution (graphiquement dans
notre cas), qui se faisait sur la base des Execution Data, ne peut pas étre réalisée (les données
sur lesquelles s’appuierait I’animation n’étant pas définies). D’autre part, I'utilisateur pou-
vait influencer 'exécution en jouant, pour le moteur d’exécution, le réle de I'heuristique
en charge de choisir un pas d’exécution parmi ceux rendus possibles par la sémantique.
Cela n’est, pour I'instant, pas possible dans le cas d’une sémantique translationnelle, car la
notion de pas d’exécution repose sur les Mappings du Communication Protocol, qui ne sont
pas définis pour le langage source dans le cadre d'une sémantique par translation.

Pour le premier point, les Execution Data doivent étre définies pour le langage source.
Leur mise a jour durant 'exécution, au lieu de se faire grace a des fonctions d’exécution,
se fait a 'aide du modéle cible. Nous définissons donc une nouvelle transformation entre
la syntaxe abstraite étendue du langage cible, et la syntaxe abstraite étendue du langage
source. Cette transformation doit étre utilisée a chaque pas d’exécution, permettant la

synchronisation des Execution Data du langage source avec celles du langage cible.
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Pour le second point, il faut tout d’abord spécifier des Mappings pour le langage source.
Ceux-ci n’ont pas besoin d’étre reliés a des fonctions d’exécution ou des déclencheurs du
MoCMapping comme expliqué dans ’approche initiale. A la place, leurs occurrences sont
déduites a partir des occurrences des Mappings du langage cible a 'aide d’une transfor-
mation supplémentaire. Cette transformation spécifie la correspondance des Mappings du
langage cible vers les Mappings du langage source. Cette transformation est elle aussi
appelée a chaque pas d’exécution, permettant a I’heuristique du moteur d’exécution de
présenter (par exemple sous forme d’interface graphique) les différentes solutions possi-
bles pour chaque pas d’exécution.

Grace a I'ajout de ces spécifications, 'exécution d’'un xDSML avec sémantique transla-
tionnelle est globalement équivalente, pour l'utilisateur final, a ce qui est réalisé avec une
sémantique opérationnelle. Pour le concepteur de langages, utiliser la sémantique trans-
lationnelle peut étre un gain de temps et d’efforts non négligeable. Spécifier des trans-
formations de modele est une activité classique en Ingénierie Dirigée par les Modeles, et
de nombreux méta-langages peuvent étre utilisés pour spécifier les transformations que
nous avons décrites. Le principal inconvénient de cette approche concerne la vérification
de propriétés comportementales des systémes. En effet, le MoCApplication peut normale-
ment étre 'objet d’analyse des aspects concurrents du systéme qu’il représente. Ici, le seul
MoCApplication qui existe est lié au modéle cible (obtenu a travers la premiére transfor-
mation). Il faudrait donc mettre en place une étape de transformation des propriétés, puis
de leurs résultats, afin d’automatiser ces aspects de la vérification.

Cette approche translationnelle est illustrée a ’aide de I’exécution de machines a états

hiérarchiques en utilisant la sémantique des machines a états non-hiérarchiques.
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5.1 Introduction

5.1.1 Purpose

T RANSLATIONAL semantics define the execution semantics of a language entirely in

terms of a previously-defined executable language (a.k.a., target language). Also

called Denotational Semantics when the translation is a mathematical denotation, it is
among the three main approaches to the semantics of languages (alongside axiomatic se-
mantics and operational semantics, c¢f. Chapter 2). The concurrency-aware xDSML ap-
proach, as described in Chapter 3 relies exclusively on operational semantics. In Chap-
ter 4, we have proposed to partially rely on a translation to define the semantics, by us-
ing a concurrency-aware xDSML as the MoC of another xDSML. The semantics remained
operational in the sense that only the concurrency concerns relied on the semantics of
another xDSML. In this chapter, we propose to specify the full execution semantics of a

concurrency-aware xXDSML in a translational manner.

Translational semantics are practical in the sense that they completely reuse a previously-
defined language, whose semantics and toolings are already available, tried, and polished.
Moreover, its idea is straightforward, unlike axiomatic and operational semantics which
require peculiar technologies, methodologies and trainings. The metalanguage(s) used to
specify translational semantics can, more often than not, be GPLs, so long as the abstract
syntaxes of the source and target formalisms offer an adequate means of manipulation
(e.g., often concretized as an API). Most GPLs provide the expressive power for writing
such transformations ; in fact, a common early validation phase in GPL design is to write

its compiler or interpreter using itself.

To specify the semantics of a concurrency-aware xDSML in a translational manner, we
must rely on a pre-existing concurrency-aware xDSML, whose own semantics has been
specified in an operational or translational manner. We will first define the semantics
of an xDSML in a translational manner, and then detail how to make these semantics
concurrency-aware, so as to benefit from the advantages of the approach presented in
Chapter 3. In particular, we will show that the overhead (in terms of specifications and
their complexity) induced by the concurrency-awareness of the approach is small, there-
fore making the use of translational semantics very approachable for concurrency-aware
xDSMLs.
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5.1.2 Starting Point

As in Chapter 3, we assume that any Abstract Syntax (AS), Concrete Syntax and Static
Semantics issues have been resolved beforehand. Our only interest is in specifying the
execution semantics of a concurrency-aware xDSML using another concurrency-aware
xDSML.

Since we rely on using a previously-defined concurrency-aware xDSML, let us denote

as &

TARGET

want to specify the execution semantics.

this language, while &, is the concurrency-aware xDSML for which we

SOURCE

5.1.3 Statecharts Example

As an example, let us consider Statecharts, an extension of the Finite State Machines (FSMs)
formalism. It includes hierarchy, concurrency and broadcast communications [61]. There
are many dialects of Statecharts (Harel’s original Statecharts [61], UML state machine dia-
grams [111], IBM’s Rhapsody [62], etc. [5]), with differences in notation, well-formedness
and semantics [22]. Differences in the latter are the most critical ones, since they are usu-
ally revealed at execution time, possibly in rare corner cases. This hinders the communi-
cation between tools, as well as between developers. Such differences are called Semantic

Variation Points (SVPs), and were presented and illustrated on f{UML in Section 3.8.

Let us consider a simple example representing a basic music player, shown on Fig-

ure 5.1.

MusicPlayer

MainRegion

On

OnRegion

StartEvent

[

StartEvent
StopEvent

Figure 5.1: Example model of Statecharts representing a simple music player.
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For this model, the semantics vary depending on how the dialect used implements
the SVP called “Priorities of conflicting Transitions”. When several Transitions are
enabled by the same Event occurrence, how they are handled if their executions conflict
(i.e., their application would lead to an inconsistent model state) depends on the dialect
used. In the original Harel Statecharts [63], priority is given to the Transition which is
highest in the hierarchy. In UML [111], priority is given to the Transition which is lowest
in the hierarchy.

For the example model, this means that when in the States “On” and “Playing”, and
the Event “StopEvent” occurs, then the Transition which is fired is either the one from “On”
to “Off” (original Harel formalism) or the one from “Playing” to “Paused” (UMI [111]).

A common way to execute hierarchical Statecharts is to first flatten them. Removing
the hierarchies simplifies the semantics by removing the ambiguities. This translation is
fully abstract [130], in the sense that it does not alter the abstract level of the semantics: no
additional details of the execution of a a Statecharts model is exposed by first flattening it.
In the case of translational semantics, the SVP we are considering can be implemented by
varying the strategy used to flatten the Statechart. With a first strategy corresponding to
the semantics of the Harel Statecharts, the flattened Statechart is as shown on Figure 5.2.
With another strategy corresponding to the semantics of the UML dialect, the resulting

Statechart is as shown on Figure 5.3.

These two flattened Statecharts can be executed non-ambiguously using the semantics
of Statecharts.

MusicPlayer
MainRegion
StartEvent m
1]
I N
StopEvent
- [

Figure 5.2: Example Statechart model flattened according to the original Harel Statecharts
semantics.
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MusicPlayer

MainRegion

i

StartEvent

StartEvent [

[

StopEvent

StopEvent

1l

Figure 5.3: Example Statechart model flattened according to the UML semantics.

5.2 Minimal Approach to Concurrency-aware

Translational Semantics

5.2.1 Main Transformation

The main artefact in a translational semantics specification is the transformation from the
source language to the target language. In our case, a transformation from &, ... to
<. denoted as T

TARGET? SOURCE—TARGET"*

This transformation specifies how any model conforming to the abstract syntax of

& oures (denoted as A ) is transformed into a model conforming to the abstract syn-

SOURCE

tax of £, ,.r (denoted as M, pr)- M yopney A0 M o cr are thus semantically equivalent,
since the application of the execution semantics of £ ., t0 M . ne; is precisely M ., e
itself.

Figure 5.4 sums up the architecture of using translational semantics for concurrency-
aware XDSMLs.
Using this approach, &,

SOURCE 9AS
Any model ./

is only constituted of an abstract syntax and of 77 . 1uncer-

can be executed thanks to the semantics of &,

SOURCE TARGET"*

5.2.2 Shortcomings

The approach so far is quite straightforward and allows the definition of executable models.
But the execution of 4.,

a concurrency-aware xDSMLs with operationally-specified semantics.

is not up to par with the execution of a model conforming to
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Previously-defined concurrency-aware xDSML

Target xDSML
Semantic Rules

New concurrency-aware xDSML A

Target xDSML | Target xDSML
Abstract Syntax Communication Protocoll

jconforms to h 4

Target xDSML
MoCMapping

Languages (M2}

R N —
Source xDSML I
Model A | Targhilc:)zlé)lSML Communication Protoc
i, S e ' ____Application _ »<
2 T L orgetsomi vedel |
I:‘_f'\-‘.; Language Domain : i Targetx odel
“ Designer o Bxpert LY Generated : MoCApplication .-%

Figure 5.4: Global view of the use of translational semantics for the specification of
concurrency-aware xXDSMLs.

First, the notion of “runtime state” for .# does not exist, since we have not defined

SOURCE

any Execution Data for Z,

ource- 1NUS, We cannot represent it in any way (e.g., graphically

as shown in Appendix C). In order to get a glimpse of the current runtime state of 4,

and deduce, based on T4 to

during its execution, one may observe ./ SOURCE— TARGET>

which abstract state of A e

with an additional specification so as to explicitly capture the runtime state of &£ .., and

TARGET

it corresponds to. We propose to augment the approach

maintain it consistent with the runtime state of ./ during the execution, making the

TARGET
animation of /., possible.

Moreover, as explained in Chapter 3, the execution of a model is driven by a heuris-
tic of the runtime to make arbitrary choices among the possible Scheduling Solutions. In
particular this heuristic can be implemented as a Graphical User Interface presenting the

occurring Mappings and associated Execution Function Calls, allowing the end-user to
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finely drive the execution. In the translational semantics approach we have defined so far,
The end

Therefore, per-

the heuristic is based on the Mappings of the Communication Protocol of &, ...

user, supposedly familiar with £

ources May not be familiar with &

TARGET*

forming arbitrary choices among the Mappings of Z.

arcer 1S DOt adapted for the end user.

We propose to extend the approach with additional specifications to make the heuristic of
instead of those of &

TARGET*

the execution engine be based on the Mappings Z,

SOURCE

In short, we are able to execute models using the translational semantics, but we don’t
) feedback or

control on the execution. We propose to make this possible thanks to a few additional

have any meaningful (i.e., belonging to the domain represented by &£, ...

specifications.

5.3 Enhancing the Concurrency-aware

Translational Semantics Specification

5.3.1 Animation of the xDSML

In order to ensure that we can represent the animation of .# we first need to define

the Execution Data of &

SOURCE*

SOURCE?

We have introduced the notion of Execution Data (ED)
in Subsection 3.2.1. In short, they are the attributes and references which, weaved into
the Abstract Syntax of the language, represent the runtime state of a model during its
execution. The Animation Data (cf. Subsection 3.3.1), used to represent the runtime state
of a model in the animation layer, is then specified based on the Execution Data. In our
case, the graphical concrete syntax is used to present to the end user the animation of the

model’s execution.

In Chapter 3, the Execution Data evolve when the Execution Functions are called. In the
translational approach we are considering, the Execution Data evolve when the underlying

model’s runtime state evolves, i.e., when evolves. Since its semantics corresponds,

SOURCE

by construction, to # ,,...» We need to maintain the consistency between /.. and
M 1y nesr> SUCh that whenever A, ... evolves, 4 ... evolves correspondingly.
To establish this consistency, we specify an additional transformation, denoted as 7,252

This transformation specifies how the extended abstract syntax (i.e., abstract syntax plus
Execution Data) of &

TARGET
: - AS + ED :
At runtime, I, 1o coune: MUSt be performed after each execution step of ./

are transformed into the extended abstract syntax of & ...

As a

thus enabling the animation of the

TARGET "

consequence, it updates the runtime state of ;>

execution of M ;.-
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o AS + ED . : o AS
T iancrrosounce MUSt be consistent with 7

SOURCE—TARGET"
and then through 743 EP must yield the original model. This is precisely one char-

gAS
SOURCE— TARGET

Passing a model through

acteristic of Bidirectional Model Transformations [66, 139, 138, 25], which capture, in a sin-
gle transformation (considered bidirectional), two complementing transformations. In our

and A3 + ED Main-

gAS
TARGET—SOURCE"*

case, it could be used to define, as one artefact, both 7> .. ancer

taining two transformations in coherence is also possible, albeit more prone to errors.

5.3.2 Heuristic of the Execution Engine

In order to enable the heuristic of the runtime to be based on &£ we must add three

SOURCE?

specifications.

First, we must add the Mappings of Z,

ource UpON which the heuristic of the runtime

will be based (i.e., the ones constituting the behavioral interface of the xDSML). But, con-
trary to how it was done in Chapter 3, we do not need to map them to a MoCTrigger
or to an Execution Function. We only have to declare them with a name (and visibility

and parameters if these features are implemented). These Mappings will act merely as an
<,

SOURCE

-meaningful interface on top of the Mappings of Z.

TARGET*®

MAPPINGS
g

anerrssounce. Which expresses how Map-

Then, we must add a specification denoted as

pings from &, This transformation is

ancer are transformed into Mappings from &,

SOURCE*

used for every execution step of A retrieving the possibly occurring Mappings based

TARGET?

on the available Scheduling Solutions, presenting them in the heuristic as Mappings of
<

ourcy> A1d upon selection executing them as their corresponding Mappings of &

TARGET*

g Mareves . is specified between the Mappings of £, ..., and £, ., but it is applied
on the MappingApplications of /... and M, ,... This means that FNarrmes — g

essentially a Higher-Order-Transformation, i.e., a transformation which produces another

transformation.

9AS +ED

Figure 5.5 sums up the integration of the two additional specifications, I, .12 courcs

& MAPPINGS
and I TARGET—SOURCE’

into the approach.

5.3.3 Application to Statecharts

Ilustrating our approach on Statecharts is quite straightforward because the target xDSML
is a subset of the source xDSML.

The Execution Data of Statecharts is mostly captured in the notion of “current state”
of a state machine and of a composite state. The transformation from the target xDSML to

the source xDSML is then as follows. When the current state is “On_Playing”, then in the
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Transformation of
Abstract Syntax + Execution Data

Execution | Target -> Source Execution
Data - : Data
Source xDSML Transformation Target xDSML
Model of Mappings Model
] . Target -> Source ]
Mappings [ Mappings
Animation and Heuristic GUI controls A
uses
End user
{Domain Expert)
Figure 5.5: Overview of the integration of the A5 ~ and FMarewes — in the

concurrency-aware xDSML approach.

original model the current state of the state machine is “On” and the current state of the

“On” state is “Playing”. Respectively for “On_Paused”, it is “On” and “Paused”.

The Mapping transformation is also straightforward, since it is mostly about the firing
of the transitions. The firing of a transition in the target xDSML corresponds to the firing

of a transition in the source xDSML.

5.3.4 Runtime

Figure 5.6 shows an overview of the runtime as a simplified sequence diagram. Only one

step of execution is represented.

The first step consists in retrieving the occurring MappingApplications for the source

model. This is done by first retrieving the occurring MappingApplications in the target

MAPPINGS
g

model, and then using the transformation resulting from J_, 7"~

to map them to
their corresponding source model MappingApplications. These can then be sent to the
heuristic of the runtime, whose role is to select one of them arbitrarily (possibly through

a graphical user interface, or through an external program using an API).

The second step consists in executing the selected step. The runtime of the target
model reverse-matches the selected step to deduce which MappingApplications of the tar-
get model must be executed. Then, like in the runtime presented in Chapter 3, the Execu-

tion Function Calls are executed, resulting in changes in the target model.
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Source Target Target Mabpings Source Target

xDSML xDSML xDSML Tappina®|| xosmL || xpsmL

Execution Execution .

Engine Engine Solver aeon Heuristic J | Executor
I

getTargetExecutionSteps()_| getSchedulingSolutions()

> .

match(schedulingSolutions),

targetPossibleExecutionSte D:s(p_)gs_ybIeExecu_t|_o_nS§eps _____ :

transformMappingsOf(targetExecutionSteps), -

.,
ral

i S A - -—— ——trbm— . .
:selectAmong|(spurcePossiblefx ecutionSteps)iﬂ
. . . L

execute(selectedExecutionStep) : :
0 > . getTargetExecutionStep(selectedifxpcutionStep) |-
. > .

targetExecutionStep

getCaIIsOf(targetExécutionSteB): . e

(gx_e_cutionFunEt_icanalls

. |Parallel loop (call: exécutionFunctiohCalls) |

. . execute(call)‘ 5
updatedModel ] . . i . 'EI
e e 1 . . . . =

Figure 5.6: Simplified sequence diagram of the runtime using translational semantics for
concurrency-aware xXDSMLs.

Finally, the last step consists in communicating the updated target model so that the

9"AS + ED

TARGET—SOURCE to

runtime for the source model can use the transformation resulting from
update the source model. The animation layer can then represent to the end user the new

runtime state of the model being executed.

5.4 Conclusion

We have described how translational semantics can be used to specify the execution se-
mantics of xDSMLs. In order to benefit from all the concurrency-aware execution facilities
provided by the concurrency-aware approach, we must specify additional transformations.
They are mainly used to maintain the runtime state of the source model consistent with
the runtime state of the target model, and to enable the heuristic of the runtime to be
meaningful for the source domain, understood by the end user.

Translational semantics are practical because they rely on reusing a whole previously-
defined xDSML, therefore saving the language designer most of the effort of expressing
the execution semantics. However, in the context of the concurrency-aware approach, it

does come with the following downside. The concurrency of a model is not directly avail-
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able anymore. Indeed, the only MoCApplication available is the one for the target model
(the result of the translation to the target domain) and thus it represents the concurrency
concerns of the target model. Therefore, any properties validated on this MoCApplication
need to be translated to the source domain if we want the end user to benefit from them.
Similar to the recursive approach defined in Chapter 4, concurrency-aware translational
semantics remain rooted in Event Structures: there is, ultimately, an underlying Event
Structure used for the execution. By transitivity, we can analyze the concurrency concerns
of a Statechart through its flattened equivalent’s Event Structure. However, propagating
back the results of these analyses, in a meaningful way for hierarchical Statecharts may be
difficult. Further work could integrate the possibility to translate properties specified on
the source model into properties of a target model, with a translation of the results for the
source model [162, 163].

Compared to the contribution of Chapter 4, we have two semantically equivalent model,
which means that there are two ways to analyze the source model. It can be (fully) ana-
lyzed through its target model; and its concurrency concerns can be analyzed through its
target model’s concurrency concerns. In the case of the recursive definition proposed pre-
viously, the result of the model transformation was not semantically equivalent and only
represented the concurrency concerns. The data concerns were not translated to another
formalism. In the approach proposed in this chapter, the whole semantics is expressed
using the target xDSML.



“All we have to decide is what to do with the time that is given us.”

in The Fellowship of the Ring, by J. R. R. Tolkien (1892 - 1973).

Conclusion and Perspectives

SuMMARY

We conclude this thesis by summing up our contributions to the design, implementation
and execution of concurrency-aware xDSMLs. We propose some perspectives of future

work to improve on the approach.
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RESUME

Ce chapitre conclut la présentation de notre travail et propose des pistes de recherche
dans la continuité de ce que nous avons réalisé.

Les systemes et logiciels modernes, hautement concurrents, et devant s’exécuter sur
des environnements de plus en plus paralléles, conduisent au développement de nou-
veaux paradigmes de génie logiciel. Dans cette thése, nous avons participé a I'étude du
rapprochement de deux domaines de recherche : la programmation orientée languages
(Language-Oriented Programming — LOP) et les modeles de concurrence (Models of Con-
currency — MoCs). Nous avons détaillé comment le résultat de ce rapprochement, les lan-
gages de modélisation dédiés exécutables (eXecutable Domain-Specific Modeling Languages
— xDSMLs) dans lesquels la concurrence est explicite et exprimée a ’aide d’un formalisme
adapté (concurrency-aware xDSMLs), peuvent étre implémentés afin de concevoir les sys-
temes de demain.

La force de ces langages réside dans l'utilisation systématique d’'un MoC. L’utilisateur
final (expert du domaine) n’a plus a étudier, apprendre et maitriser un MoC pour exprimer
les aspects concurrents d’'un systéme, puisque ceux-ci sont déja capturés au niveau des
constructions du langage. Cette tache revient donc au concepteur du langage qui doit ex-
primer, dans la sémantique d’exécution, les aspects concurrents des éléments de la syntaxe
abstraite du langage.

Nous avons illustré dans le Chapitre 3 le principe de la séparation des préoccupations
entre les aspects séquentiels (régles sémantiques — Semantic Rules) et les aspects concur-
rents (Model of Concurrency Mapping — MoCMapping). Puis nous avons étudié comment
rendre possible ou simplifier 'expression de certaines constructions de langages. Cela
nous a conduit en particulier a raffiner les regles sémantiques et le protocole de commu-
nication (Communication Protocol). Dans le Chapitre 4, nous avons expliqué comment le
MoC originellement utilisé dans ’approche, Event Structures, n’est pas le plus adapté pour
tous les xDSMLs. Pour palier cela, nous avons présenté une vision récursive de notre
approche, permettant 'utilisation en tant que MoC de n’importe quel concurrency-aware
xDSML ayant été défini précédemment. Enfin, dans le Chapitre 5 nous avons présenté com-
ment spécifier la sémantique d’exécution de facon translationnelle. En particulier, nous
avons expliqué comment rendre possible 'exécution de tels langages de la méme fagon
que les langages dont la sémantique est définie de maniere opérationnelle.

Il reste malgré tout de nombreux aspects qui peuvent étre le sujet de travaux de recherche
ultérieurs. Par exemple, dans la continuité de ce que nous avons présenté au Chapitre 4,
nous souhaiterions fournir une bibliothéque standard de MoCs, comprenant par exemple

les réseaux de Pétri [107, 71] et le modéle d’acteur [65]. Nous aimerions aussi avoir la
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possibilité de vérifier des propriétés comportementales pour les systémes représentés avec
un concurrency-aware xDSML dont la sémantique est spécifiée de facon translationnelle.
Ceci implique d’arriver a traduire les propriétés dans un premier temps, puis d’arriver a
traduire les résultats de ’analyse dans un second temps [163, 162]. L’approche que nous
avons décrite se concentre sur les aspects spécification des langages, et non sur leur im-
plémentation. Elle n’est donc pas adaptée pour les xXDSMLs ayant d’importants besoins de
performance d’exécution. A la place, une génération de code optimisé pourrait étre mise
en place. Nous pourrions aussi améliorer la gestion des points de variation sémantique
(Semantic Variation Points — SVPs) en utilisant des techniques de gestion de la variabilité
déja connues [148]. Enfin, il faudrait aussi pouvoir facilement intégrer les xDSMLs entre
eux via I'extension de la syntaxe abstraite (possible par I'’héritage par exemple) et surtout
via 'extension des aspects sémantiques (redéfinition des Execution Functions, héritage de
MoCMapping, héritage de Communication Protocol, etc.). Ceci permettrait de plus facile-
ment partager des bouts de langages communs a de nombreux xDSMLs, comme les expres-

sions arithmétiques.






6.1 Conclusion 197

6.1 Conclusion

L ANGUAGE design is placed at the heart of the software engineering process by Language-

Oriented Programming (LOP), a new paradigm brought to life with the goal of keep-

ing up with the complexity of modern highly concurrent softwares and systems and the
increasingly-parallel platforms on which they are executed. Meanwhile, Models of Con-
currency (MoCs) have been developed to formalize the concurrent aspects of these systems,
enabling their late specialization to a specific execution platform, therefore allowing the

domain expert to focus on their area of expertize in the system design activities.

This thesis has focused on bridging the gap between Language-Oriented Programming
(LOP) and Models of Concurrency (MoCs) through the specification of languages which
systematically use a MoC to describe the concurrent aspects of a system. Such languages
are called concurrency-aware eXecutable Domain-Specific Modeling Languages (xDSMLs).
The systematic use of a MoC offers the following upsides. First, an appropriate formalism
is used to express the concurrent features of the language, thus facilitating its specifica-
tion, implementation and debugging. The domain-specificity of the language which allows
xDSMLs to systematically use a certain MoC also contributes to helping the end user of the
language, since they do not need to learn about the specific MoC, or its implementation
and associated good practices, to reap its benefits. The MoC is automatically used for any
system defined using the concurrency-aware xDSML, and the resulting model-level spec-
ification (instance of the MoC used) represents the concurrency concerns of the model. It
can be analyzed to ensure behavioral properties of the system being developed, depending
on the MoC used. The xDSML can also be refined for a specific execution platform without
affecting the other concerns of the semantics. The use of a MoC is thus not an addition
to the execution semantics of the language, but rather a re-organization of the semantics
through a clear separation of concerns. This modularity helps when debugging a language,

or when considering its semantic variants.

These benefits come at the cost of a complicated language design activity. The opera-
tional execution semantics of concurrency-aware xDSMLs are separated into its concurrent
aspects (Model of Concurrency Mapping — MoCMapping) and its data aspects (Semantic
Rules), coordinated by a Communication Protocol. Identifying what parts of the seman-
tics belong to which concern can be difficult, so is identifying the right metalanguage for
each concern, and so is their use by the language designer. Still, this modularity benefits
the language designer on the long term, since each concern can be developed, refined and

tested independently. They can also be reused to create semantic variations of an xDSML.
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Since these concerns would have been disseminated throughout the whole semantics, this

identification would have taken place anyway when trying to refine a language.

In Chapter 3, we have detailed the initial approach, which consists in separating the
concerns in the operational execution semantics of xDSMLs. We then identified its short-
comings, usually related to the expressive power or complexity of specifying some xDSMLs,
or related to the difficulty of how they can be specified. Thus, we have proposed several
features pertaining to the design of the Semantic Rules, the coordination of the Semantic

Rules and the MoCMapping, and the runtime of concurrency-aware xDSMLs.

In Chapter 4, we have enriched the concurrency-aware xDSML approach by enabling
new MoCs to be defined and integrated. More precisely, we have given a recursive def-
inition of the approach, thus enabling concurrency-aware xDSMLs to be used as MoCs.
This contribution gives a common interface to MoCs (i.e., as concurrency-aware xDSMLs),
while simplifying the MoCMapping (based on a transformation instead of on a MoC-
specific metalanguage). It favors the use of an adequate MoC for each xDSML. In this
proposal, only the concurrency concerns of the xDSML being defined are translated to

another concurrency-aware xDSML.

In Chapter 5, we have proposed an alternative means to specify the execution seman-
tics of concurrency-aware xDSMLs, by using a translational approach instead of an oper-
ational one. We have described how additional specifications are required in order for the
execution of a translationally-defined concurrency-aware xDSML to be up to par with the
execution of an operationally-defined one. Translational semantics allow the full reuse of

a previously-defined xDSML, whose semantics and associated tools are already available.

Our contributions have been motivated and illustrated on example xDSMLs and mod-
els, and most of them (i.e., most of Chapter 3, Chapter 4) have been implemented in the
GEMOC Studio, an Eclipse-based language workbench on top of implementation of mod-
eling standards from the OMG.

Overall, in our thesis, we have proposed and experimented several approaches par-
ticipating in the implementation of the semantics of concurrency-aware xDSMLs, which
bring together Language-Oriented Programming and Models of Concurrency in a syner-
getic language design approach. This approach exposes an explicit behavioral interface
for the xDSMLs, through the Mappings defined in the Communication Protocol. We have
also proposed in Chapter 3 a means to define Composite Mappings, which contribute to a
higher-level view of the behavioral semantics. These can be exploited to orchestrate, at the
language level, the coordinated execution of models conforming to different concurrency-
aware xDSMLs. This was concretized during the ANR INS GEMOC Project in a meta-
language, the Behavioral Coordination Operator Language (B-COol) [154]. It reifies co-
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ordination patterns between xDSMLs. Its development and use are out of scope of our
work, but were the subject of another PhD thesis [153] during the time of the project.
This approach can contribute to tackling the complexity of designing and developing the
highly-concurrent softwares and systems of tomorrow such as Cyber-Physical Systems,

the Internet of Things, or Smart Cities.

6.2 Perspectives

We have identified several possible future research directions to improve the concurrency-

aware xDSML approach.

First, we would like to ease the use of the concurrency-aware approach by providing a
standard library of MoCs, based on the recursive definition we have given of the approach
in Chapter 4. MoCs are usually defined informally (i.e., using natural language), and each
implementation brings its own flavors of details. In order to facilitate the specification of
xDSMLs using MoCs other than Event Structures, while still using formalisms well-known
by computer scientists, we believe the approach should provide default implementations
for classical MoCs such as Petri nets or the Actor model. By providing such MoCs, we
could also integrate the use of associated verification tools (i.e., model checkers, etc.) for

well-known MoCs.

When considering concurrency-aware xDSMLs with translational semantics, any anal-
ysis performed on the concurrent concerns will be pertinent to the target model, and not
to the source model. Our approach could be improved by providing the means to specify
properties for the source model, verified on the target model, and with meaningful results
being expressed for the source model [162]. In the same spirit, this could also be done in the
context of the recursive definition of concurrency-aware xDSMLs (cf. Chapter 4), except

that the “target model” only captures the concurrency concerns of the source model.

By making explicit the concurrency concerns of a language, we have added an extra
stage in its specification, and also in its runtime. This may be problematic for xDSMLs
with a focus on the performance of their runtime. In particular, xDMSLs defined using
our recursive approach would require the coordination of various runtimes, possibly up
to a point where the execution of a model would become unpractical or too expensive.
This is not a problem in the context in which our work was done, since we targeted the
specification, and not the implementation, of xDSMLs. Still, further study of the runtime
costs associated with the concurrency-aware approach, both for larger models and for

larger languages, could be performed to identify the physical limitations of the approach.
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One way to solve this issue would be to generate optimized code based on the artefacts

used for the execution of a model.

Some languages put an emphasis on the notion of time. In the concurrency-aware
approach, one must make the distinction between what we call the logical time (in the
model-level instance of the MoC), the domain time (captured in the abstract syntax), and the
physical time (in the runtime of the Semantic Rules). Identifying which notion is relevant
to an xDSML, and how it can be coordinated with the relevant parts of the specification

would require further work.

We have mentioned how Semantic Variation Points (SVPs) can be specified and im-
plemented in operational semantics, in particular when they pertain to the concurrency
concerns of the language. They manifest themselves as points of nondeterminism which,
unless specialized, are resolved heuristically by the runtime. Implementing SVPs typically
consists in resolving (possibly, only partially) (some of) these nondeterminisms. However,
for some languages, non-deterministicity is a feature of the language semantics which
should not be overridden by dialects. Therefore, the MoCMapping should include the pos-
sibility to hinder some of its parts from being extended by dialects. This may be difficult
to specify when relying on the recursive definition we have proposed in Chapter 4, since
the MoCMapping is implemented by an Abstract Syntax Transformation. Additional work
should study this possibility.

We have described how SVPs can be implemented, but they must also be managed. For
instance, being able to cherry-pick specific implementations of individual SVPs could ease
the management of the variability of an xDSML. Many variability management techniques
could be applied to SVPs in the context of concurrency-aware xDSMLs [148]. Additionally,
the sharing of language parts could be streamlined. For instance, many xDSMLs may need
to rely on arithmetic expressions, in which case it would be better to only maintain one
expression language which could easily be integrated into a wider-scope xDSML. To do
so, all the language parts should provide some mechanisms of extension. This is the case
of inheritance for the Abstract Syntax, but may be more tricky considering the different
parts related to the execution semantics. Since the Semantic Rules are weaved onto the
Abstract Syntax, traditional extension mechanisms could be applied like the redefinition
of operations, the reuse of the super implementation, etc. For the MoCMapping, when
using Event Structures, the symbolic partial orderings are extensible as mentioned in Sec-
tion 3.8: a partial ordering can easily be inserted into another partial ordering. However,
the notion of extension between transformations is harder to identify. As for the Commu-

nication Protocol, an extension mechanism similar to inheritance remains to be defined.
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A metalanguage such as Melange [30], which focuses on composing DSL parts, could be

used for this purpose.
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SUMMARY OF APPENDICES

Appendix A lists all the possible execution scenarios of the example fUML Activ-
ity presented in Chapter 3. It takes into account the different possible schedulings
of the concurrent branches of the ForkNode, the different possibilities following
the DecisionNode, and the different order of evaluations for the guards of its

outgoing edges.

Appendix B shows the different specifications composing the concurrency-aware
definition of fUML in the GEMOC Studio.

Appendix C details the execution and graphical animation of the example fUML
Activity in the GEMOC Studio.

Appendix D gives the different specifications composing the concurrency-aware def-
inition of the Threading xDSML presented in Chapter 4, using the GEMOC Studio.

Appendix E details the new specifications used for the concurrency-aware defini-
tion of f{UML in the GEMOC Studio, using the Threading xDSML as MoC (whose

implementation is shown in Appendix D) as presented in Chapter 4.

Appendix F shows the execution of the example fUML Activity, in the GEMOC Stu-
dio, using the fUML specification based on the Threading xDSML as its MoC (cf.
Appendix E), as described in Chapter 4.

Appendix G gives the Xtext textual concrete syntax of the Communication Protocol
metalanguage, the GEMOC Events Language (GEL), described in Section 3.11.

Appendix H gives the Xtext textual concrete syntax of the Projections metalanguage
described in Chapter 4.
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RESUME DES ANNEXES

« Annexe A énumere I'ensemble des scénarios d’exécution possible pour l'activité
fUML utilisée en exemple et présentée initialement dans le Chapitre 3. Leur nombre
important est di a la concurrence entre les branches, et au fait que les gardes a la

sortie d’'un noeud DecisionNode peuvent étre évaluées dans n’'importe quel ordre.

« Annexe B contient la spécification du langage fUML, selon ’approche concurrency-
aware xDSML présentée dans le Chapitre 3, a I'aide du GEMOC Studio.

« Annexe C détaille 'exécution pas-a-pas et 'animation graphique, dans le GEMOC

Studio, du modéle d’activité fUML utilisé comme exemple.

« Annexe D contient la spécification du langage Threading présenté dans le Chapitre 4.
Il implémente le modéle de threads traditionnellement utilisé par les langages de pro-
grammation tels Java ou Python. Cette spécification est réalisée a I'aide du GEMOC
Studio.

+ Annexe E détaille la spécification de fUML a I'aide du xDSML de Threading (dont
I'implémentation est présentée dans ’Annexe D) selon I'approche décrite dans le
Chapitre 4.

+ Annexe F illustre I’exécution, dans le GEMOC Studio, de 'exemple d’activité f{UML
a l'aide de la définition de f{UML présentée dans I’Annexe E.

« Annexe G contient la définition de la syntaxe concreéte textuelle Xtext de GEL, le
métalangage utilisé pour la spécification du protocol de communication (Commu-
nication Protocol) d’'un concurrency-aware xDSML. Ce méta-langage est présenté et

décrit dans la section 3.11.

« Annexe H présente la définition de la syntaxe concrete textuelle Xtext de notre im-
plémentation du métalangage pour définir les Projections entre un xDSML et son

MoC, comme décrit dans le Chapitre 4.






Enumeration of the Possible Execution
Scenarios of the Example fUML Activity

Figure A.1 shows the example Activity used to illustrate fUML in Chapters 3, 4 and 5.
To consider all the possible execution scenarios of this Activity, we must consider the
following details of the fUML Semantics [116, 111]:

« Concurrent branches (i.e., between a ForkNode and its corresponding JoinNode) can
be executed in sequence, in parallel or using any possible interleavings between their

respective contents

« For a DecisionNode, the guards can be evaluated in any order, possibly even in par-
allel.

An important point to take into consideration is that we will enumerate the different
possible scenarios, independently from the runtime data of the model (i.e., from the result
of the evaluation of each guard). Otherwise, a lot of scenarios are duplicated due to the
DecisionNode which splits each existing scenario into three depending on which branch
is executed. Our focus is on how concurrent elements of an fUML Activity are scheduled,

not in the semantics of a Decision Node. Therefore, to enumerate all possible scenarios
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TalkAndDrink
My Initial
MyFork
CheckTableForDrinks Talk

MyOutputPi
“Coffee"] MyDecision

[else]
v ["Tea"]

| DrinkCoffee | DrinkTea DrinkWater

MyMerge
My]oin
MyFinal

&

Figure A.1: Example f{UML activity where we want to drink something from the table while
talking.

while taking the data of the model into account, one would have to multiply the number
of scenarios before anything is drunk by the number of possible drinks (3).

Below, we will use the following syntax, considering two nodes A and B:
« A — B designates the sequence of executing A and then executing B
« A | B designates the parallel execution of A and B

We first consider the evaluation of the guards and the drinking of a drink as regular
nodes “[Evaluation]” and “[Drinking]” which we will detail later on.
First, “Talking” may happen in parallel with any of the nodes of the drinking part of

the activity, therefore we have the 6 following scenarios:

1. CHECKTABLEFORDRINKS | TALKING — OUTPUTPIN — DECISIONNODE — [EvALUA-

TION] — [DRINKING]| - MERGENODE

2. CHECKTABLEFORDRINKS — OUTPUTPIN | TALKING — DECISIONNODE — [EVALUA-

TION] — [DRINKING]| - MERGENODE
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3. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE | TALKING — [EvALUA-

TION]| — [DRINKING] - MERGENODE

4. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION] | TALK-

ING — [DRINKING] — MERGENODE

5. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION] — [DRINK-

ING] | TALKING — MERGENODE

6. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION] — [DRINK-

ING] - MERGENODE| TALKING

It may also happen interleaved with any of the nodes of the drinking part, thus we

have 7 additional scenarios:

1. TALKING — CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALU-

ATION] — [DRINKING] — MERGENODE

2. CHECKTABLEFORDRINKS — TALKING — OUTPUTPIN — DECISIONNODE — [EVALU-

ATION] — [DRINKING] — MERGENODE

3. CHECKTABLEFORDRINKS — OUTPUTPIN — TALKING — DECISIONNODE — [EVALU-

ATION] — [DRINKING] — MERGENODE

4. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — TALKING — [EVALU-

ATION] — [DRINKING] — MERGENODE

5. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION]| — TALK-

ING — [DRINKING] - MERGENODE

6. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION]| — [DRINK-

ING] » TALKING — MERGENODE

7. CHECKTABLEFORDRINKS — OUTPUTPIN — DECISIONNODE — [EVALUATION] — [DRINK-

ING] - MERGENODE — TALKING

Now let us detail the “[Evaluation]” bit. There are three guards, which can be evaluated
in any order, possibly in parallel. Thus, “[Evaluation] | Talking” can be detailed as being

one of the followings:
1. GUARDFORCOFFEE | GUARDFORTEA | GUARDFORWATER | TALKING

2. GUARDFORCOFFEE | GUARDFORTEA | TALKING — GUARDFORWATER
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3. GUARDFORCOFFEE | GUARDFORTEA — TALKING — GUARDFORWATER
4. GUARDFORCOFFEE | GUARDFORTEA — GUARDFORWATER | TALKING
5. GUARDFORCOFFEE | GUARDFORWATER | TALKING — GUARDFORTEA
6. GUARDFORCOFFEE | GUARDFORWATER — TALKING — GUARDFORTEA
7. GUARDFORCOFFEE | GUARDFORWATER — GUARDFORTEA | TALKING
8. GUARDFORTEA | GUARDFORWATER | TALKING — GUARDFORCOFFEE
9. GUARDFORTEA | GUARDFORWATER — TALKING — GUARDFORCOFFEE
10. GUARDFORTEA | GUARDFORWATER — GUARDFORCOFFEE | TALKING
11. GUARDFORCOFFEE | TALKING — GUARDFORTEA | GUARDFORWATER
12. GUARDFORCOFFEE — TALKING — GUARDFORTEA | GUARDFORWATER
13. GUARDFORCOFFEE — GUARDFORTEA | GUARDFORWATER | TALKING
14. GUARDFORTEA | TALKING — GUARDFORCOFFEE | GUARDFORWATER
15. GUARDFORTEA — TALKING — GUARDFORCOFFEE | GUARDFORWATER
16. GUARDFORTEA — GUARDFORCOFFEE | GUARDFORWATER | TALKING
17. GUARDFORWATER | TALKING — GUARDFORCOFFEE | GUARDFORTEA
18. GUARDFORWATER — TALKING — GUARDFORCOFFEE | GUARDFORTEA
19. GUARDFORWATER — GUARDFORCOFFEE | GUARDFORTEA | TALKING
20. GUARDFORCOFFEE | TALKING — GUARDFORTEA — GUARDFORWATER
21. GUARDFORCOFFEE — TALKING — GUARDFORTEA — GUARDFORWATER
22. GUARDFORCOFFEE — GUARDFORTEA | TALKING — GUARDFORWATER
23. GUARDFORCOFFEE — GUARDFORTEA — TALKING — GUARDFORWATER
24. GUARDFORCOFFEE — GUARDFORTEA — GUARDFORWATER | TALKING
25. GUARDFORCOFFEE | TALKING — GUARDFORWATER — GUARDFORTEA

26. GUARDFORCOFFEE — TALKING — GUARDFORWATER — GUARDFORTEA
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

GUARDFORCOFFEE — GUARDFORWATER | TALKING — GUARDFORTEA
GUARDFORCOFFEE — GUARDFORWATER — TALKING — GUARDFORTEA
GUARDFORCOFFEE — GUARDFORWATER — GUARDFORTEA | TALKING
GUARDFORTEA | TALKING — GUARDFORCOFFEE — GUARDFORWATER
GUARDFORTEA — TALKING — GUARDFORCOFFEE — GUARDFORWATER
GUARDFORTEA — GUARDFORCOFFEE | TALKING — GUARDFORWATER
GUARDFORTEA — GUARDFORCOFFEE — TALKING — GUARDFORWATER
GUARDFORTEA — GUARDFORCOFFEE — GUARDFORWATER | TALKING
GUARDFORTEA | TALKING — GUARDFORWATER — GUARDFORCOFFEE
GUARDFORTEA — TALKING — GUARDFORWATER — GUARDFORCOFFEE
GUARDFORTEA — GUARDFORWATER | TALKING — GUARDFORCOFFEE
GUARDFORTEA — GUARDFORWATER — TALKING — GUARDFORCOFFEE
GUARDFORTEA — GUARDFORWATER — GUARDFORCOFFEE | TALKING
GUARDFORWATER | TALKING — GUARDFORCOFFEE — GUARDFORTEA
GUARDFORWATER — TALKING — GUARDFORCOFFEE — GUARDFORTEA
GUARDFORWATER — GUARDFORCOFFEE | TALKING — GUARDFORTEA
GUARDFORWATER — GUARDFORCOFFEE — TALKING — GUARDFORTEA
GUARDFORWATER — GUARDFORCOFFEE — GUARDFORTEA | TALKING
GUARDFORWATER | TALKING — GUARDFORTEA — GUARDFORCOFFEE
GUARDFORWATER — TALKING — GUARDFORTEA — GUARDFORCOFFEE
GUARDFORWATER — GUARDFORTEA | TALKING — GUARDFORCOFFEE
GUARDFORWATER — GUARDFORTEA — TALKING — GUARDFORCOFFEE

GUARDFORWATER — GUARDFORTEA — GUARDFORCOFFEE | TALKING
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Finally, “[Drinking]” consists in drinking only one of the drinks. There are three pos-

sibilities:
1. DRINKCOFFEE
2. DRINKTEA
3. DRINKWATER

As mentioned previously, we do not interpret in which situations these three possibil-
ities are executed or not. We only know that one of them will be realized.

Overall, the number of possible scenarios, independently of the runtime data of the
model, is thus: 6 +7 — 1 +49 + 3 = 64.



Concurrency-aware Specification of f{UML

DiscLAIMER: This concurrency-aware specification of f{UML was made available alongside
our SLE 2015 publication [85]. See http://gemoc.org/sle15/.

We show the different specifications constituting the concurrency-aware definition of
fUML in the GEMOC Studio.

B.1 Abstract Syntax

The Abstract Syntax of f{UML is shown as an Ecore metamodel on Figure 3.1.

B.2 Semantic Rules

The Semantic Rules of f{UML were presented on Figure 3.5 as a metamodel extending the AS
of fUML. Listing B.1 shows their full implementation using Kermeta 3 [32]. For technical
reasons, the Execution Functions and Execution Data must be declared in the Abstract

Syntax.


http://gemoc.org/sle15/
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Listing B.1: Implementation, using Kermeta 3, of the Semantic Rules of f{UML.

package org.gemoc.sample.fuml.dsa

import fr.inria.diverse.k3.al.annotationprocessor.Aspect
import java.util.HashMap

import java.util.List

import java.util.Map

import org.gemoc.sample.fuml.Action

import org.gemoc.sample.fuml.ActivityEdge

import org.gemoc.sample.fuml.ActivityNode

import org.gemoc.sample.fuml.ControlToken

import org.gemoc.sample.fuml.DecisionNode

0 N N U kWP

[SEG S
N = O VO

import org.gemoc.sample.fuml.FinalNode
import org.gemoc.sample.fuml.ForkNode
import org.gemoc.sample.fuml.FumlFactory
import org.gemoc.sample.fuml.InitialNode

[ Y
A G kW

import org.gemoc.sample.fuml.JoinNode
import org.gemoc.sample.fuml.LiteralString
import org.gemoc.sample.fuml.MergeNode
import org.gemoc.sample.fuml.ObjectToken
import org.gemoc.sample.fuml.OpaqueAction

NN R R
= O O 0 3

import org.gemoc.sample.fuml.OutputPin
import org.gemoc.sample.fuml.Token
import groovy.lang.GroovyShell

import groovy.lang.Script

NN DN NN
A G W N

// Semantic Rules (Execution Functions and Execution Data) of
fUML
27|// Includes pre-conditions for each function to help debug the

MoCMapping
28
29 (className=ActivityNode)
30| class ActivityNodeAspect {
31

32| // Modifier
33| def public void execute() {
34 // Delete the tokens of incoming edges.

35 _self.incomingEdges.forEach [ incomingEdge |
36 incomingEdge.currentTokens.clear ()

37 ]

38

39 // If an incomingEdge's source is a DecisionNode, clear the

other outgoing edges of this decision node.
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

_self.incomingEdges. [ incomingEdge |
incomingEdge . sourceNode instanceof DecisionNode
1. [ incomingEdge |
incomingEdge.sourceNode as DecisionNode
].forEach [ decisionNode |
decisionNode.outgoingEdges.forEach [ outgoingEdge |
outgoingEdge.currentTokens.clear()
]
]
3
// Helper for debugging purposes.
def public void log() {
val sb = new StringBuilder()
sb.append("IncomingEdges: ")
_self.incomingEdges.forEach [ incomingEdge |
sb.append("[" + incomingEdge.name + ":" + incomingEdge.
currentTokens + "]")
]
sb.append("\n")
sb.append("OutgoingEdges: ")
_self.outgoingEdges.forEach [ outgoingEdge |
sb.append("[" + outgoingEdge.name + ":" + outgoingEdge.
currentTokens + "]")
]
if (_self instanceof Action
&& ! (_self as Action).outputs.isEmpty) {
sb.append("\n")
sb.append ("OutputPins: ")
(_self as Action).outputs.forEach [ outputPin |
sb.append("[" + outputPin.name + ": "
+ outputPin.currentTokens + "]")
]
}
println(sb.toString)
3
}
(className=InitialNode)
class InitialNodeAspect {

private boolean executed = false

// Make sure InitialNode is executed only once.
def private void precondition() {
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82 if (!_self.executed) {

83 _self.executed = true

84 } else {

85 throw new PreconditionException(_self)
86 }

87| }

88

89| // Modifier

90| def public void execute() {

91 precondition(_self)

92 println("*** InitialNode [" + _self.name + "]" + "***")
93
94 // Create a ControlToken on each outgoing edge.
95| _self.outgoingEdges.forEach [ outgoingEdge |

96 outgoingEdge.currentTokens.add(
97 TokenHelper.createControlToken ()
98 )

99| ]

100

101 ActivityNodeAspect.execute(_self)
102 // ActivityNodeAspect.log(_self)

103| 1}

104/}
105
106 (className=FinalNode)

107| class FinalNodeAspect {

108| private boolean executed = false
109
110| // Make sure FinalNode is executed only once.
111 def private void precondition() {

112 if (!_self.executed) {

113 _self.executed = true

114 } else {

115 throw new PreconditionException(_self)
116 1

117| }

118

119 // Modifier

120 def public void execute() {
121 precondition(_self)

122
123 println("*** FinalNode [" + _self.name + "]" + "***")
124
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125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

// Remove all tokens from incoming edges. If a token is an
ObjectToken, print the object.
_self.incomingEdges.forEach [ incomingEdge |
incomingEdge.currentTokens
(ObjectToken)

.forEach [ objectToken |

println("> " + objectToken.object.toString())

]

incomingEdge.currentTokens.clear()

]

ActivityNodeAspect.execute(_self)
// ActivityNodeAspect.log(_self)

}

(className=MergeNode)
class MergeNodeAspect {

// Verify that at least one of the incoming edges has at least
one token.
def private void precondition() {
val boolean atLeastOneIncomingEdgeHasAtLeastOneToken =
! _self.incomingEdges. [ incomingEdge |
incomingEdge.currentTokens
)
if (!atLeastOneIncomingEdgeHasAtLeastOneToken) {
throw new PreconditionException(_self)

.1sEmpty

// Modifier
def public void execute() {
precondition(_self)

println("*** MergeNode [" + _self.name + "]" + "***")

// Transmits all incoming tokens to the outgoing edges.
val List<Token> incomingTokens =
_self.incomingEdges. [ incomingEdge |
incomingEdge.currentTokens

1.

_self.outgoingEdges.forEach [ outgoingEdge |
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167 outgoingEdge.currentTokens. (incomingTokens)
168 ]

169 ActivityNodeAspect.execute(_self)

170 // ActivityNodeAspect.log(_self)

171 3}

172}
173
174 (className=DecisionNode)
175]| class DecisionNodeAspect {

176
177 // There should be at least one incoming edge with at least one
token.

178 def private void precondition() {

179 val boolean atLeastOneIncomingEdgeHasAtLeastOneToken =
180 ! _self.incomingEdges. [ incomingEdge |

181 incomingEdge.currentTokens

182 1. .isEmpty

183 if (!atLeastOneIncomingEdgeHasAtLeastOneToken) {

184 throw new PreconditionException(_self)

185 }

186 }

187

188 // Modifier
189 def public void execute() {
190 precondition(_self)

191

192 println("*** DecisionNode [" + _self.name + "]" + "***")

193

194 // Supposedly transmits all incoming tokens to the outgoing
edges.

195 // For the purpose of this implementation, there should be

only one incoming ObjectToken and it is passed to the outgoing
edges so they can evaluate their guard.

196 // For animation purposes, the Execution Data must be in the
AS so we have to take care when modifying lists we are
iterating over.

197 if (_self.incomingEdges.size > 1) {

198 throw new UnsupportedOperationException/(

199 "This implementation only supports DecisionNode with one
200 incoming edge. Found: " + _self.incomingEdges.size)

201 } else {

202 val incomingEdgeTokens =

203 _self.incomingEdges.get(0) .currentTokens

204 if (incomingEdgeTokens.size > 1) {
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205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247

throw new UnsupportedOperationException/(
"This implementation only supports DecisionNode for one
token at a time. Found: " + incomingEdgeTokens.size)
1 else {
val token = incomingEdgeTokens.get(0)
if (! (token instanceof ObjectToken)) {
throw new UnsupportedOperationException(
"This implementation only supports incoming ObjectTokens
for DecisionNode. Found: " + token)
} else {
_self.outgoingEdges.forEach [ outgoingEdge |
outgoingEdge.currentTokens.clear()
val Object object = (token as ObjectToken).object
outgoingEdge.currentTokens.add(
TokenHelper.createObjectToken(object)
)
]
}
}
}
ActivityNodeAspect.execute(_self)
// ActivityNodeAspect.log(_self)
}
}
(className=OpaqueAction)
class OpaqueActionAspect {

// There should be at least one incoming edge with at least one
token.
def private void precondition() {
val boolean atLeastOneIncomingEdgeHasAtLeastOneToken =
! _self.incomingEdges. [ incomingEdge |
incomingEdge. currentTokens
]. .1sEmpty
if (!atLeastOneIncomingEdgeHasAtLeastOneToken) {
throw new PreconditionException(_self)

// Modifier
def public void execute() {
precondition(_self)
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248

249 println("*** OpaqueActionNode [" + _self.name + "]" + "***")

250

251 if (_self.bodies.size != _self.languages.size) {

252 throw new UnsupportedOperationException("OpaqueActions should

253 have the same number of bodies and languages.")

254 } else {

255 if (_self.bodies.size != 1) {

256 throw new UnsupportedOperationException("Only one body/

257 language supported in OpaqueAction.")

258 } else {

259 if (_self.languages.get(0) != "Groovy") {

260 throw new UnsupportedOperationException("Only Groovy is

261 supported as action language.")

262 1 else {

263

264 // At this point, we know there is only one body and one
language that is Groovy.

265 // First execute the body of the action using the Groovy
interpreter.

266 val String body = _self.bodies.get(0)

267 val Object result = GroovySupport.execute(body, null)

268

269 // If Groovy returned some object, print it.

270 if (result != null) {

271 println(" => " + result)

272 1

273

274 // Create a ControlToken on every outgoing edge (if any).

275 _self.outgoingEdges.forEach [ outgoingEdge |

276 outgoingEdge.currentTokens.add(

277 TokenHelper.createControlToken ()

278 )

279 ]

280

281 // Publish the result of the body of the action on the
output pins.

282 _self.outputs.forEach [ outputPin |

283 val newToken = TokenHelper.createObjectToken(result)

284 outputPin. currentTokens.add(newToken)

285 ]

286

287 ActivityNodeAspect.execute(_self)

288 // ActivityNodeAspect.log(_self)
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289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329

(className=OutputPin)
class OutputPinAspect {

// There should be at least one incoming edge with at least one
token.

def private void precondition() {

val boolean atLeastOneIncomingEdgeHasAtLeastOneToken =
! _self.incomingEdges. [ incomingEdge |
incomingEdge.currentTokens
1. .isEmpty

val boolean pinHasAtLeastOneToken = !_self.currentTokens.empty

if (!atLeastOneIncomingEdgeHasAtLeastOneToken
&& !pinHasAtLeastOneToken) {
throw new PreconditionException(_self)

// Modifier
def public void execute() {
precondition(_self)

println("*** OutputPin [" + _self.name + "]" + "***")

// Transmits all currentTokens given by the owning Action to

the outgoing edges.

_self.outgoingEdges.forEach [ outgoingEdge |
outgoingEdge.currentTokens. (_self.currentTokens)

// ActivityNodeAspect.log( _self)
}

(className=ActivityEdge)
class ActivityEdgeAspect {
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330 // To evaluate a guard, we need at least one ObjectToken on the
edge.

331 def private void precondition() {

332 if (!(_self.currentTokens.size == 1)) {

333 throw new PreconditionException(_self)

334 } else {

335 if (! (_self.currentTokens.get(0) instanceof ObjectToken)) {

336 throw new PreconditionException(_self)

337 3

338 }

339 }

340

341 // Query

342 def public boolean evaluateGuard() {

343 precondition(_self)

344

345 println("*** Evaluating Guard [" + _self.name + "]" + "***")

346 if (_self.guard == null) {

347 throw new NullPointerException("There is no guard

348 on this edge.")

349 } else {

350 if (!(_self.guard instanceof LiteralString)) {

351 throw new UnsupportedOperationException(

352 "Concrete type of ValueSpecification cannot be

353 dealt with yet: " + _self.guard)

354 } else {

355 val guard = _self.guard as LiteralString

356

357 val objects = _self.currentTokens

358 [token|token instanceof ObjectToken]

359 [token|

360 token as ObjectToken]

361 [objectToken|objectToken.object]

362

363 if (objects.size != 1) {

364 throw new RuntimeException("There should only be one

365 object at this point.")

366 } else {

367 var boolean resultOfGuard

368 if (guard.value.equals("else")) {

369

370 // Default guard "else" in fUML always return true, but
the branch is executed only if none of the other branches are
possible.
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371 resultOfGuard = true

372 } else {

373 val String object = objects.get(0) as String

374

375 // Compare the value specified in the guard to the value
contained by the incoming ObjectToken.

376 resultOfGuard = guard.value.equals(object)

377 }

378 println("Guard [" + _self.name + "]

379 returned: " + resultOfGuard)

380 return resultOfGuard

381 }

382 1

383 }

384 }

385}

386

387 (className=ForkNode)

388| class ForkNodeAspect {

389

390 // There should be at least one incoming edge with at least one
token.
391 def private void precondition() {

392 val boolean atLeastOneIncomingEdgeHasAtLeastOneToken =
393 !_self.incomingEdges. [ incomingEdge |

394 incomingEdge. currentTokens

395 1. .1sEmpty

396 if (!atLeastOneIncomingEdgeHasAtLeastOneToken) {

397 throw new PreconditionException(_self)

398 }

399 1}

400

401 // Modifier
402 def public void execute() {
403 precondition(_self)

404

405 println("*** ForkNode [" + _self.name + "]" + "***")

406

407 // Forks each incoming token and sends a version to each
outgoing edge.

408 _self.outgoingEdges.forEach [ outgoingEdge |

409 outgoingEdge.currentTokens.clear()

410 _self.incomingEdges.forEach [ incomingEdge |

411 incomingEdge.currentTokens.forEach [ token |
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412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

451
452

if (token instanceof ObjectToken) {
val Object object = (token as ObjectToken).object
outgoingEdge.currentTokens. add(
TokenHelper.createObjectToken(object)
)
1 else {
outgoingEdge.currentTokens.add(
TokenHelper.createControlToken ()

ActivityNodeAspect.execute(_self)
// ActivityNodeAspect.log(_self)

}

(className=JoinNode)
class JoinNodeAspect {

// There should be at least one incoming edge with at least one
token.
def private void precondition() {
val boolean allIncomingEdgesHaveAtLeastOneToken =
_self.incomingEdges.forall [ incomingEdge |
!incomingEdge. currentTokens.isEmpty
]
if (!allIncomingEdgesHaveAtLeastOneToken) {
throw new PreconditionException(_self)

// Modifier
def public void execute() {
precondition(_self)

println("*** JoinNode [" + _self.name + "]" + "***")

// If all the tokens offered on the incoming edges are control
tokens, then one control token is offered on the outgoing
edge.

val allIncomingTokensAreControlTokens =
_self.incomingEdges.forall [ incomingEdge |
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453
454
455
456
457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484
485
486
487
488
489
490
491

incomingEdge.currentTokens.forall [ incomingToken |
incomingToken instanceof ControlToken

]

]

if (allIncomingTokensAreControlTokens) {
// Only one outgoing edge for join nodes
_self.outgoingEdges.get(0).currentTokens.add/(
TokenHelper.createControlToken()

)
} else {

// If some of the tokens offered on the incoming edges are
control tokens and others are data tokens, then only the data
tokens are offered on the outgoing edge. Tokens are offered on

the outgoing edge in the same order they were offered to the
join.

_self.incomingEdges.forEach [ incomingEdge |

incomingEdge.currentTokens. [ token |
token instanceof ObjectToken

].forEach [ token |
_self.outgoingEdges.forEach [ outgoingEdge |
outgoingEdge.currentTokens.add(token)

]

}
ActivityNodeAspect.execute(_self)

// ActivityNodeAspect.log(_self)
¥

// Required to use the incoming token's objects as variables in
the language used for the guard.
package class Context {
private Map<String, Object> environment = new HashMap/()

def public void put (String name, Object value) {
this. environment . put (name, value)

}

def public Map<String, Object> getEnvironment() {
return this.environment
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492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

518
519
520
521

522
523
524
525
526
527
528
529
530
531
532

// Useful for debugging.
package class PreconditionException extends RuntimeException {
Object context

new (Object o) {
this.context = o

}

package class TokenHelper {

def package static ObjectToken createObjectToken(Object object) {
val ObjectToken res = FumlFactory.eINSTANCE.createObjectToken()
res.object = object
return res
}
def package static ControlToken createControlToken() {
return FumlFactory.eINSTANCE.createControlToken()
}
}
// Provides the means to execute an arbitrary string as a Groovy

program.
class GroovySupport {
private static val shell = new GroovyShell()

//Parses the given string as a Groovy program and executes it.
If there is a context, then it is set up before executing the
program.

def public static Object execute(String program, Context context) {

// Parse the string to get a Groovy program.
val Script script = shell.parse(program)

// If there is a context, set it up.

if (context != null) {
context.environment.forEach [ name, value |
script.setProperty(name, value)

]
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533
534
535
536
537
538
539

// Run the script.
val Object result = script.run();

return result

}

B.3 Model of Concurrency Mapping

The concurrency-aware approach as described in Chapter 3 relies on the Event Structure

MoC [160]. At the language level, the formalism is called EventType Structures. List-

ing B.2 shows the implementation, using the Event Constraint Language (ECL) [27], of the
MoCMapping of fUML.

Listing B.2: Model of Concurrency Mapping of fUML defined using the Event Constraint
Language (ECL).

1
2

N

10
11
12
13
14
15
16
17
18
19
20

-- Abstract Syntax (AS) of fUML.
import 'platform:/resource/org.gemoc.sample.fuml.model/model/fuml.
ecore'

-- Core libraries of constraints of CCSL/MoccML
"platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib"
"platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/CCSL.ccslLib"

-- Custom library of constraints, written in MoccML. AS-agnostic.
"platform:/resource/org.gemoc.sample. fuml.mocc/lib/
MyLibrary.moccml"
package fuml
-- MoCTriggers declaration.
context ActivityNode
-- Represents the execution of a node.

def: mocc_executeNode : = self

-- An edge can have its guard evaluated.
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21

22

23

24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57

-- If it is outgoing of a DecisionNode, it may be allowed (
mocc_mayExecuteTarget) or disallowed (mocc_mayNotExecuteTarget
) depending on the result of the guard.
-- If it is disallowed then it may not be executed (
mocc_doNotExecuteTarget) .
-- If it is allowed then it is either executed (
mocc_doExecuteTarget) or it is not (mocc_doNotExecuteTarget).
context ActivityEdge
-- Represents the evaluation of the guard of an edge.
def: mocc_evaluateGuard : Event = self
-- Controlled Events for the Feedback Protocol.
def: mocc_mayExecuteTarget : Event = self
def: mocc_mayNotExecuteTarget : Event = self

-- Needed for local variable.
def: mocc_mayOrMayNotExecuteTarget : Event = self

-- Needed to differentiate allowed branches from executed
branches.

def: mocc_doExecuteTarget : Event = self

def: mocc_doNotExecuteTarget : Event = self

-- Needed for local variable.
def: mocc_doOrDoNotExecuteTarget : Event = self

-- Required for technical reasons.
context DecisionNode

-- Needed for local variable.

def: mocc_unionOfAllMayExecuteWithNonDefaultGuard : Event = self
def: mocc_noOtherMayExecuteWithNonDefaultGuard : Event = self

-- Constraints defining the symbolic partial ordering.

context ITnitialNode

-- Execute InitialNode only once.

-- Since every node is executed before its outgoing edges'
target, this will be the only node available for execution at
start.

inv executeInitialNodeOnce:
let onlyOneFirst : Event = Expression OneTickAndNoMore (

self.mocc_executeNode
) in

Relation Coincides (self. mocc_executeNode, onlyOneFirst)
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58
59
60
61

62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97

context MergeNode

-- Execute Merge Node whenever any of the incoming edges'

source is executed.

inv executeIfAnyIncomingEdgeSourceExecuted:

let anyIncomingEdgeSourceExecuted : =

Union(self. incomingEdges. sourceNode.mocc_executeNode)
in
Precedes (anyIncomingEdgeSourceExecuted,
self . mocc_executeNode

)

context ActivityEdge
-- In general, execute the source before the target.
inv executeSourceBeforeTarget:
((not (self.guard <> null))
and (not (self.targetNode.oclIsKindOf (MergeNode)))) implies(
Precedes (self. sourceNode.mocc_executeNode,
self. targetNode.mocc_executeNode
)
)

-- Execute source of edge before evaluating the guard.
inv executeDecisionBeforeEvaluate:
((self.guard <> null) implies (
Alternates (self . sourceNode.mocc_executeNode,
self.mocc_evaluateGuard
)
)
)

-- Exclusive selection between may or may not following
evaluation of the guard.
inv mayOrMayNotAfterEvaluate:
(self.guard <> null) implies (
ExclusiveSelection(self.mocc_evaluateGuard,
self. mocc_mayExecuteTarget, self.mocc_mayNotExecuteTarget
)
)

-- Do and DoNot are exclusive and do can only happen after a "
may" while "may not" implies a "do not".
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98 inv doOrDoNotAfterMayOrMayNot :
99 (self.guard <> null) implies (
100 SynchronousExclusionSubset (self. mocc_mayExecuteTarget,
101 self . mocc_mayNotExecuteTarget, self.mocc_doExecuteTarget,
102 self. mocc_doNotExecuteTarget
103 )
104 )
105
106 -- Do Execute means executing.
107| inv doExecuteMeansExecuting:
108 ((self.guard <> null) implies (
109 Alternates (self.mocc_doExecuteTarget,
110 self. targetNode.mocc_executeNode
111 )
112 )
113 )
114
115 -- Dealing with the default guard 'else' is as follows:
116 -- It always returns true (mayExecute will always occur as a
result of the feedback specification).
117 -- But it is executed only if none of the other branches may be
executed.
118 inv doExecuteOfDefaultGuardOnlyPossibleIfNoOtherMayExecute:
119 (self.guard <> null) implies (
120 (self.guard.oclIsKindOf (LiteralString)) implies (
121 (self.guard.oclAsType(LiteralString).value = 'else') implies(
122 let noOtherMayExecuteWithNonDefaultGuard : =
123 self . sourceNode
124 .oclAsType(DecisionNode)
125 .mocc_noOtherMayExecuteWithNonDefaultGuard
126 in
127 SubClock (self . mocc_doExecuteTarget,
128 noOtherMayExecuteWithNonDefaultGuard
129 )
130 )
131 )
132 )
133
134
135| context DecisionNode
136 -- Can only choose one of the outgoing branches.
137 inv doExecutesAreExclusive:
138 Exclusion(self.outgoingEdges.mocc_doExecuteTarget)
139
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140

141
142
143
144
145

146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176

-- All the evaluations of guards are coincident (does not
matter, just more practical - can be used as Semantic
Variation Point)

-- 1inv evaluatesCoincide:

-- Relation Coincides(self.outgoingEdges.mocc_evaluateGuard)

-- All the Feedback Consequences happen at the same time.

-- No additional constraint could provide information as to
which nodes will be allowed to happen, therefore forcing
synchronicity does not change anything at this point.

inv synchronousResponse:

Relation Coincides (self. outgoingEdges.mocc_mayOrMayNotExecuteTarget)

-- All the Feedback Consequences actions happen at the same
time.
inv synchronousAction:

Relation Coincides (self. outgoingEdges.mocc_doOrDoNotExecuteTarget)

-- MayExecute means that DoExecute is possible.
inv mayExecuteMeansThatOneOfTheDoExecuteIsPossible:
let unionOfAllMayExecute : Event =
Expression Union(self.outgoingEdges.mocc_mayExecuteTarget)
in
let unionOfAllDoExecute : Event =
Expression Union(self.outgoingEdges.mocc_doExecuteTarget)
in
Relation Coincides (unionOfAll1MayExecute, unionOfAllDoExecute)

context Action
-- If an Action has output pins, then execute them right after
the node has executed.
inv executeOwnedPins:
(self.outputs->size() >0) implies(
let first : Event = self.outputs->first().mocc_executeNode in
Relation Alternates (self. mocc_executeNode, first)

-- All output pins are executed at the same time.
inv concurrentExecutionOfPins:
Relation Coincides (self.outputs.mocc_executeNode)
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177| -- Constraints required for technical reason but are of little
value to understand the MoCMapping of fUML.

178

179| context ActivityEdge

180 -- Kill some events when there is no guard.

181 inv killmayExecuteTargetIfThereIsNoGuard:

182 (not (self.guard <> null)) implies (

183 let zerol : Integer = 0 in

184 let waitZerol : =

185 wWait (self.mocc_mayExecuteTarget, zerol)

186 in

187 Coincides (self. mocc_mayExecuteTarget, waitZerol)

188 )

189

190 inv killmayNotExecuteTargetIfThereIsNoGuard:

191 (not (self.guard <> null)) implies (

192 let zero2 : Integer = 0 in

193 let waitZero2 : =

194 Wait (self.mocc_mayNotExecuteTarget, zero2)

195 in

196 Coincides (self. mocc_mayNotExecuteTarget, waitZero2)

197 )

198

199 inv killEvaluateIfThereIsNoGuard:
200 (not (self.guard <> null)) implies (

201 let zero3 : Integer = 0 in

202 let waitZero3 : =

203 wait (self.mocc_evaluateGuard, zero3)

204 in

205 Coincides (self.mocc_evaluateGuard, waitZero3)
206 )

207

208 inv killdoExecutelfTherelIsNoGuard:
209 (not (self.guard <> null)) implies (

210 let zero4 : Integer = 0 in

211 let waitZero4 : =

212 Wait (self.mocc_doExecuteTarget, zero4)

213 in

214 Coincides (self. mocc_doExecuteTarget, waitZero4)
215 )

216

217 inv killdoNotExecuteIfThereIsNoGuard:
218 (not (self.guard <> null)) implies (

219 let zero5 : Integer = 0 in
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220 let waitZero5 : =

221 Wait (self.mocc_doNotExecuteTarget, zero5)

222 in

223 Coincides (self. mocc_doNotExecuteTarget, waitZero5)
224 )

225
226 -- Definition

227 inv definitionMayExecuteOrMayNotExecute:
228 let mayOrMayNot : =

229 Union (self.mocc_mayExecuteTarget,
230 self.mocc_mayNotExecuteTarget

231 ) in

232 Coincides (

233 self. mocc_mayOrMayNotExecuteTarget,

234 mayOrMayNot

235 )

236

237 -- Definition

238 inv definitionDoExecuteOrDoNotExecute:
239 let doOrDoNot : =

240 Union(

241 self. mocc_doExecuteTarget,

242 self. mocc_doNotExecuteTarget

243 ) in

244 Coincides (self . mocc_doOrDoNotExecuteTarget, doOrDoNot)
245

246| context DecisionNode

247 -- Definition.

248 -- Gather into an event the "mayExecute" of all the branches

with non-default guard.
249| inv unionOfAllMayExecuteWithNonDefaultGuardDefinition:

250 let atLeastOneOfTheEdgesWithNonDefaultGuardOccur : =
251 Union(self.outgoingEdges

252 ->select(edge : ActivityEdge |

253 (edge) .guard.oclIsKindOf (LiteralString)

254 )

255 ->select(edge : ActivityEdge |

256 (edge) .guard.oclAsType(LiteralString) .value <> 'else'
257 ) .mocc_mayExecuteTarget

258 )

259 in Coincides (

260 self.mocc_unionOfAllMayExecuteWithNonDefaultGuard,

261 atLeastOneOfTheEdgesWithNonDefaultGuardOccur

262 )
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263

264 -- Definition.

265| inv noOtherMayExecuteDefinition:

266 Exclusion(self.mocc_noOtherMayExecuteWithNonDefaultGuard,

267 self .mocc_unionOfAllMayExecuteWithNonDefaultGuard

268 )

269

270 -- Without this it could occur in other steps. This is only for
after a decision node's outgoing branches' guards are
evaluated.

271 inv noOtherMayExecuteDefinitionContext1:

272 let unionOfAllDoExecutel : =

273 Union(self.outgoingEdges.mocc_doExecuteTarget)

274 in

275 SubClock (self. mocc_noOtherMayExecuteWithNonDefaultGuard,

276 unionOfAllDoExecutel

277 )

278

279| inv noOtherMayExecuteDefinitionContext2:

280 let unionOfAllDoExecute2 : =

281 Union(self.outgoingEdges.mocc_doExecuteTarget)

282 in

283 SubClock (

284 self.mocc_unionOfAllMayExecuteWithNonDefaultGuard,

285 unionOfAllDoExecute?2

286 )

287

288| inv anotherMayOrNoOtherMayCoincidesWithMaysAndDos:

289 let anotherMayOrNoOtherMay : =

290 Union (

291 self. mocc_unionOfAllMayExecuteWithNonDefaultGuard,

292 self. mocc_noOtherMayExecutewWithNonDefaultGuard

293 ) in

294 let unionOfAllDos : =

295 Union(self.outgoingEdges.mocc_doExecuteTarget)

296 in

297 Coincides (anotherMayOrNoOtherMay, unionOfAllDos)

298

299| endpackage

In this listing, we have made use of a MoCCML library for the relations Exclu-

siveSelectionand SynchronousExclusionSubset. We could have defined

these relations alongside the MoCMapping, but we have implemented them as a relations




B.3 Model of Concurrency Mapping 247

library which is shown on Listing B.3. As described in Section 3.11, they are domain-

agnostic and can thus be used for the MoCMapping of any xDSML. This library is imported
at the top of Listing B.2.

N =

N N G

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Listing B.3: Library of MoCCML relations used by the MoCMapping of f{UML.

AutomataConstraintLibrary myLibrary {
import "platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib" as kernel ;
import "platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/CCSL.ccslLib" as CCSLLib ;

RelationLibrary relations {

// Implementation of the Relation ExclusiveSelection

// Alternation between an EventType mapped to a query and
its result.

// Its result is either May or MayNot, depending on the
runtime state of the model thanks to the Feedback Protocol.

RelationDefinition ExclusiveSelectionDef[ExclusiveSelection]{

Relation (Clockl -> may, Clock2 -> mayNot)
Expression result = (Clockl -> may, Clock2 -> mayNot)
Relation (

AlternatesLeftClock -> query,
AlternatesRightClock -> result

)

// Implementation of the Relation
SynchronousExclusionSubset
// MayDo and MayNotDo are exclusive; so are DoIt and DoNot.
// If MayDo occurs, then DolIt or DoNot occurs.
// If MayNoDot occurs, then DoNot occurs.
RelationDefinition SynchronousExclusionSubsetDef
[SynchronousExclusionSubset] {
Expression mayOrMayNot =
(Clockl -> mayDo, Clock2 -> mayNotDo)
Expression doOrDoNot =
(Clockl -> doIt, Clock2 -> doNot)

Relation (Clockl -> doIt, Clock2 -> doNot)
Relation (Clockl -> mayDo, Clock2 -> mayNotDo)
Relation (LeftClock -> doIt, RightClock -> mayDo)
Relation (LeftClock -> doNot,

RightClock -> mayOrMayNot
)
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34 Relation (Clockl -> mayOrMayNot,

35 Clock2 -> doOrDoNot

36 )

37 }

38

39 // Declaration of the Relation ExclusiveSelection
40 RelationDeclaration ExclusiveSelection/(

41 query clock,

42 may clock,

43 mayNot clock

44 )

45

46 // Declaration of the Relation SynchronousExclusionSubset
47 RelationDeclaration SynchronousExclusionSubset (

48 mayDo clock,

49 mayNotDo clock,

50 doIt clock,

51 doNot: clock

52 )

53 }

54|}

B.4 Communication Protocol

The Communication Protocol of fUML, defined using GEL, is shown on Listing 3.36.




Graphical Animation of the Example
fUML Model During its Execution

DiscLAIMER: a video of the model execution described below was uploaded alongside our
SLE 2015 publication [85]. See http://gemoc.org/sle15/.

Figure C.1 shows the example fUML Activity. This figure is based on the graphical
concrete syntax we have devised for {UML, using Sirius'. Alongside this graphical concrete
syntax, we have defined the animation layer of the language, i.e., how the Execution Data
should be represented on the graphical syntax during the execution of the model.

Our animation layer for fUML is composed of 2 decorations (green or yellow “play”
symbols added over nodes to show that they can be executed, respectively that they may
conditionally be executed) and 3 style customizations (to display the tokens held by edges
and pins at runtime).

Figure C.2 shows the initial view of the Modeling Workbench when launching the
execution of the example f{UML Activity.

There are four elements in this figure. In the top left corner (Figure C.3) is the graphical

representation of the Activity, including the animation layer (the green “play” symbol).

http://www.eclipse.org/sirius/


http://gemoc.org/sle15/
http://www.eclipse.org/sirius/
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TalkAndDrink |
My nitial
MyFork
CheckTableForDrinks Talk
MyOutputPi
“Coffee"] MyDecision
[else]
v VTGB"] l
l DrinkCoffee DrinkTea DrinkWater
MyMerge
My]oin
MyFinal
&a

Figure C.1: Example fUML activity where we want to drink something from the table while
talking.

8 e UL asgsm &

TalkAndDrink|

L MyintialNede
Myfor

10n |1242677342|

vityhicde MyInitialhode Initialode »HyInitiaidede. sxacute] ) votd

Figure C.2: Step 0 — Global view of the Modeling Workbench at the beginning of the exe-
cution of the example f{UML Activity.
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TalkAndDrinkJ

f

_MyinitialNode

MyForkm

CheckTableForDrinks Talk

“MyOUtputPin
"Coffee"] MyDecision

[else]

["Tea"]

DrinkCoffee DrinkTea DrinkWater

Figure C.3: Step 0 — Graphical animation of the example fUML Activity.

In the top right corner is the console, which is used as the standard text output by the
Semantic Rules. It is particularly useful when developing or debugging a language or its
animation layer. It can also be useful to print some information which is not suited for

graphical representation.

In the bottom left corner is the heuristic of the Execution Engine (Figure C.4). It
presents the possible Scheduling Solutions, along with the corresponding MappingAppli-
cations and Execution Function Calls. The user can realize choices at runtime in order to
guide the execution, choices which would have otherwise been realize at random by the
runtime. All proposed choices respect the semantics of the language. In the beginning, the

only possible execution step consists in executing MyInitialNode.execute().

M Execution Steps 2

v o SchedulingSolution [1842677542]
ExecuteActivityNode MyInitialNode InitialNode->MyInitialNode.execute():Void

Figure C.4: Step 0 — Default heuristic of the Execution Engine, presenting the possible
execution steps to the user through a Graphical User Interface.
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Finally, in the bottom right corner (Figure C.5) is the Execution Engine registry which

allows us to control the selected Execution Engine, for instance to stop the execution.

M Gemoc Engines Status 3 i g | Qv
' TalkAndDrinkActivity.fuml @

Figure C.5: Step 0 — The GEMOC Execution Engine registry.

Let us select the only available execution step: it triggers the execution of the InitialN-

ode “MylInitialNode”. Figure C.6 shows the view after selecting the execution step.

& ‘nowiUMLdsgTm

it i
AVESTE . o - m T

TalkAndDrink
‘Myi niialNode
Myfnrq \'amsm

CheckTrcFamiinks | Tk |

Figure C.6: Step 1 — Global view of the Modeling Workbench after the first step of execu-
tion.

+ The model has been updated due to the execution of the InitialNode. Therefore, a
Token has been created on the edge between “MyInitialNode” and “MyFork”.

« The heuristic has been updated, the next possible execution step is to execute the
ForkNode “MyFork”.

+ Theexecutionof MyInitialNode. execute () hassent some textto be printed

on the standard output console.

+ In the engine registry, we can see that the engine is now at step 1 when it was

previously at step 0.
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Figure C.7 shows the model after selecting the execution step consisting in executing

the ForkNode “MyFork”.

TaIkAndDrinkJ .

MylnitialNode
M YFO rk IToken@ 160920657
ControlToken@17895651
Check] ' brDrinks L J

MyDecision

Y l [else]
["Tea"]

DrinkCoffee DrinkTea [ DrinkWater l

["Coffee”]

MyMerge

Figure C.7: Step 2 — Graphical animation of the example fUML Activity.

At this point, there are several solutions, as illustrated by the execution steps presented
by the heuristic of the engine (Figure C.8). We can first execute the “CheckTableForDrinks”

M Execution Steps &3
~ o SchedulingSolution [554276626]

ExecuteActivityNode CheckTableForDrinks OpaqueAction->CheckTableForDrinks.execute():Void
v &% SchedulingSolution [1191114982]
ExecuteActivityNode Talk OpaqueAction->Talk.execute():Void
v &% SchedulingSolution [669048600]
ExecuteActivityNode Talk OpaqueAction->Talk.execute():Void
ExecuteActivityNode CheckTableForDrinks OpaqueAction->CheckTableForDrinks.execute():Void

Figure C.8: Step 2 — Heuristic of the execution engine after executing the ForkNode.

node, first execute the “Talk” node, or do both in parallel. Ultimately, both branches must
be executed, and the order in which it is done does not matter with regards to the semantics
of f{UML.

We select the last execution step, which contains occurrences of both mappings. The

result is as shown on Figure C.9. The “CheckTableForDrinks” node has returned “Tea”.
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& *new fUML diagram &2 2 Console &
e .| Default MessagingSystem console
A 0L AL 2 il T = 4 e+ InitialNode [MyInitialNode]***

*** ForkNode [MyFork]*=#
+++ OpaqueActionNode [Talk]***

Greetings everybody!
TalkAndDrink . *=* OpaqueActionNode [CheckTableForDrinks]+*=

MylnitialNode => Tea

MyFork,

CheckTableForDrinks | Talk

MyOutputPin
(ObjectToken(Tea)

MyDecision

felse]
["Tea*)

DrinkTea

DrinkCoffee l

| DrinkWater I

Figure C.9: Step 3 — Graphical animation of the example f{UML Activity and standard out-
put console during the execution.

Let us continue executing the rest of the branch corresponding to the drinking part of
the activity. Figure C.10 shows the model after executing the OutputPin of “CheckTable-
ForDrinks”.

TaIkAndDrinkJ .

MylnitialNode
MyFork
CheckTableForDrinks Talk
YOUtpUEPIn
Objectifioken (Tea)
['Coffee”) /. “MyDecision

[else]

Syt "1’ea"]
DrinkCoffee DrinkTea DrinkWater

ControlTokpn@201551240

Figure C.10: Step 4 — Graphical animation of the example fUML Activity.
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Figure C.11 shows the model and the possible execution steps after the DecisionNode
“MyDecision” has been executed. As explained in details in Appendix A, the guards can
be evaluated in any order, even possibly in parallel. Therefore, many execution steps are

possible. Ultimately, all the guards must be executed.

TalkAndDrinkJ .

MylnitiaINode
MyFork;

CheckTableForDrinks Talk

551240
MyMerge
M Execution Steps &
EvaluateGuard Decision2Water ObjectFlow->Decision2wWater.evaluateGuard() :EBoolean
w & SchedulingSolution [1542043782]
EvaluateGuard Decision2Tea ObjectFlow->Decision2Tea.evaluateGuard():EBoolean
v o SchedulingSolution [1319245561]
EvaluateGuard Decision2Tea ObjectFlow->Decision2Tea.evaluateGuard():EBoolean
EvaluateGuard Decision2Water ObjectFlow->Decision2Water.evaluateGuard() :EBoolean
~ o SchedulingSolution [1947232595]
EvaluateGuard Decision2Tea ObjectFlow->Decision2Tea.evaluateGuard() :EBoolean
EvaluateGuard Decision2Coffee ObjectFlow->Decision2Coffee.evaluateGuard():EBoolean
v o SchedulingSolution [448508403]
EvaluateGuard Decision2Tea ObjectFlow->Decision2Tea.evaluateGuard() :EBoolean
EvaluateGuard Decision2Coffee ObjectFlow->Decision2Coffee.evaluateGuard():EBoolean
EvaluateGuard Decision2Water ObjectFlow->Decision2Water.evaluateGuard() :EBoolean

Figure C.11: Step 5 — Graphical animation of the example f{UML Activity and heuristic
of the execution engine showing all the possibilities in scheduling the evaluation of the
guards.



256 Graphical Animation of the Example f{UML Model During its Execution

Let us evaluate all the guards in one step. For each guard, its evaluation consists in
checking if the value it specifies corresponds to the value on the incoming token. Fig-

ure C.12 shows the text sent to the standard output by the evaluation of the guards. These

**x Evaluating Guard [Decision2Tea]***
Guard [Decision2Tea] returned: true

*** Evaluating Guard [Decision2Water]***
Guard [Decision2Water] returned: true

*** Evaluating Guard [Decision2Coffee]***
Guard [Decision2Coffee] returned: false

Figure C.12: Step 6 — Text sent to the standard output console by the queries evaluating
the guards outside the DecisionNode.

Execution Function calls are queries which return a boolean value. As explained in Sec-
tion 3.6, this boolean value is then interpreted by a corresponding Feedback Policy. As a
consequence, some of the future execution steps are forbidden from being selected because
they are not consistent with regards to the runtime state of the model (represented by the
returned boolean values).

Therefore, there is only one possible execution step afterwards, corresponding to drink-

ing tea, as shown on Figure C.13.

M Execution Steps &3
v & SchedulingSolution [1706508414]
ExecuteActivityNode DrinkTea OpaqueAction->DrinkTea.execute():Void

Figure C.13: Step 7 — Only one execution step is allowed as a consequence of the results
of the guards and of the application of the Feedback Policy (cf. Section 3.6).

The MergeNode “MyMerge” can then be executed since one of the branches of the
DecisionNode has been executed. Figure C.14 shows this possibility.

When both branches of the ForkNode have finished executing (i.e., once the MergeNode
and the Talk node have both been executed), the JoinNode “MyJoin” may be executed, as
shown on Figure C.14.

Finally, Figure C.16 shows that the FinalNode “MyFinal” may be executed to complete
the Activity.
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TalkAndDrinkJ .

MyFork

MyilnitialNode

CheckTableForDrinks

Talk

MyDecision

Y [else]
: ¥ ta’)

| DrinkCoffee || DrinkTea | DrinkWater

ControlToken @2146892472

MyMerge'

MyJoin
MyFinal

ControlTokpEn@201%51240

&

Figure C.14: Step 8 — Graphical animation of the example f{UML Activity.

TaIkAndDrinkJ .

MyFork

MyinitialNode

CheckTableForDrinks

Talk

["Coffee"] MyDecision

[eise]
["Tea"] !

DrinkCoffeeI DrinkTea \ DrinkWater]
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Figure C.15: Step 9 — Graphical animation of the example fUML Activity.
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TaIkAndDrinkJ
.MylnitialNode

MyFOFKm

CheckTableForDrinks Talk

putPin

"Coffee"] MyDecision
[else]

["Tea"]
DrinkCoffee DrinkTea DrinkWater

MyMerge

&

Figure C.16: Step 10 — Graphical animation of the example fUML Activity.



Concurrency-aware Specification of the
Threading xDSML

We show the different specifications constituting the concurrency-aware definition of the
Threading xXDSML in the GEMOC Studio.

D.1 Abstract Syntax

Figure 4.6 showed an excerpt from the abstract syntax of the Threading xDSML. Figure D.1
shows the whole abstract syntax, as an Ecore metamodel, of our implementation of this
language.

A ThreadSystem is composed of Threads, including a main one. Threads consist of
Tasks which may be of different natures. An ExecutionTask is a basic task. A Conditional
has a set of conditions which must all be true before its “then” clause is executed. Other-
wise, if it has an “else” clause, it is executed. A disjunction has a set of operands, one of
which is executed. A Task may start a Thread (StartThreadTask) or wait for one to finish
executing (JoinThreadTask). Finally, a ProxyTask is used to represent another Task so that
the same Task can be referenced at several points in the program. Each Thread is scheduled

according to an Agenda, consisting of Instructions which represent Tasks.
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—

% Eﬁ NamedElement ]4

> 2

7 hame : EString I(’T

.

.1] owningAgenda

[1..1] agenda

[0..*] scheduledTasks

&5 ScheduledTask

£ Instruction

|
J

executed : EBoolean = false

= N\ [1..1] owningSystem [1..*] threads =
=] ThreadSystem |@ {= Thread ]
[1..1] mainThread
\ o status : ThreadStatus = NonExistent
@ start()
@ join()
£ Threadstatus [0..1] owningThread 2 :
~ NonExistent [1..1] threadToStart [1..1] threadToJoin
- Running
- Finished
[1..%] tasks
[1..*] operands 3 Task /———\_}
e a
[1..*] conditions = executed : EBoolean = false [1..1] task
[1..1] thenTask ? execute()
[0..1] elseTask 2\ T & N1 ncreteTask 4
0..*] representedBy|
[ conditional [ ProxyTask [ [ startThreadTask
L J |1 3lIe )
£ Disjunction ] = ExecutionTask] [ JoinThreadTask |
L J J { J

Figure D.1: Metamodel representing the abstract syntax of the Threading xDSML.

D.2 Semantic Rules

For technical reasons, the Execution Functions and Data must be declared in the meta-

model representing the abstract syntax of the language. Their implementation, however,

is realized using Kermeta 3, as shown on Listing D.1.

Listing D.1: Excerpt from the Semantic Rules of fUML specified using Kermeta 3.

import
import org.
org.
org.
org.
org.
org.
org.

import
import
import
import

import

S 0O 00 NN U AW R

import

gemoc.
gemoc.
gemoc.
gemoc.
gemoc.
gemoc.
gemoc.

fr.inrjia.diverse.

sample.
sample.
sample.
sample.
sample.
sample.
sample.

k3.al.annotationprocessor.Aspect
threaded.

threaded
threaded
threaded

threaded.
threaded.
threaded.

package org.gemoc.sample.threaded.dsa

Conditional

.Disjunction

.ExecutionTask
.Instruction

JoinThreadTask
NamedElement
ScheduledTask
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53

import org.gemoc.sample.threaded.StartThreadTask
import org.gemoc.sample.threaded.Task

import org.gemoc.sample.threaded.Thread

import org.gemoc.sample.threaded.ThreadStatus
import org.gemoc.sample.threaded.ThreadSystem

(className=typeof (Thread))
class ThreadAspect extends NamedElementAspect {

// Modifier
// Starts the Thread
def public void start() {

println("Starting Thread: " + _self.name)
_self.status = ThreadStatus.RUNNING

}

// Modifier

// Terminates the Thread

def public void O {

println("Joining Thread: " + _self.name)
_self.status = ThreadStatus.FINISHED

}
}

(className=typeof (Task))
abstract class TaskAspect extends NamedElementAspect {

// Modifier
// Executes the Task.
// Also sets the Instruction that triggered the Task as executed

def public void execute() {
println("Executing Task: " + _self.name)

_self.executed = true

val instructions =
_self.owningThread.agenda.scheduledTasks
[ scheduledTask |
scheduledTask instanceof Instruction
1. [ scheduledTask |
scheduledTask as Instruction

]

val instruction = instructions
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54
55
56
57

58
59
60
61
62
63
64
65
66

[ instruction |
instruction. task.equals(_self)
| | ((instruction.task instanceof Disjunction)
&& (instruction.task as Disjunction).operands.contains(_self)
)
| | ((instruction.task instanceof Conditional)
&& (instruction.task as Conditional).thenTask.equals(_self))
]
if (instruction != null) {
instruction.executed = true
}
}
}

D.3 Model of Concurrency Mapping

The concurrency-aware approach as described in Chapter 3 relies on the Event Structure

MoC [160]. At the language level, the formalism is called EventType Structures. List-

ing D.2 shows the implementation, using the Event Constraint Language (ECL) [27], of
the MoCMapping of the Threading xDSML.

Listing D.2: Model of Concurrency Mapping of the Threading xDSML defined using the

Event Constraint Language (ECL).

1

N G

10
11
12
13
14

import 'platform:/resource/org.gemoc.sample.threaded.model/model/
threaded. ecore'

"platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/kernel.ccslLib"

"platform:/plugin/fr.inria.aoste.timesquare.ccslkernel.
model/ccsllibrary/CCSL.ccslLib"
package threaded
-- MoCTriggers of the EventType Structure.
context Thread
-- Represents the start and the end of a Thread's execution.
def: mocc_start : = self
def: mocc_join : = self
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15| context Task

16 -- Represents the execution of a Task

17 def: mocc_execute : Event = self

18

19| context Conditional

20 -- Represents the execution of the 'then' clause.

21 def: mocc_executeThenTask : Event = self

22 -- Represents the execution of nothing, if there is no 'else'
clause.

23| def: mocc_doNothing : Event = self

24 -- Represent whether all the conditions were executed or not

25 def: mocc_conditionsWereOk : Event = self
26 def: mocc _conditionsAreOk : Event = self

27

28| context ScheduledTask

29 -- Represents the execution of an Instruction in the Agenda.
30 def: mocc_occur : Event = self

31

32

33|-- Constraints defining the symbolic partial ordering.

34

35| context Thread

36 -- For every start of a Thread, there is a join.

37 inv alternateStartAndJoin:

38 Relation Alternates (self. mocc_start, self.mocc_join)

39

40 -- For every start of a Thread, its first scheduled task occurs

41 inv alternateStartAndFirstTask:

42 Relation Alternates (

43 self.mocc_start,

44 self. agenda.scheduledTasks->first () .mocc_occur

45 )

46

47 -- For every occurrence of its last scheduled task, a Thread
joins.

48 inv alternateLastTaskAndJoin:

49 Relation Alternates (

50 self. agenda.scheduledTasks->last () .mocc_occur,

51 self.mocc_join

52 )

53

54

55| context Instruction
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56 -- An Instruction only occurs if the previous scheduled tasks
of the agenda have occurred.

57| inv occurOnlyAfterPreviousTasks:

58 (self.owningAgenda <> null

59 and self.owningAgenda.scheduledTasks->first() <> self

60 ) implies

61 let supOfPreviousScheduledTasks : =

62 Sup (

63 self. owningAgenda.scheduledTasks->select ( scheduledTask |

64 self.owningAgenda.scheduledTasks->indexOf (scheduledTask)

65 < self.owningAgenda.scheduledTasks->indexOf (self)

66 ) .mocc_occur

67 )

68 in

69 Alternates (supOfPreviousScheduledTasks, self.mocc_occur)

70

71 -- An Instruction must occur before the scheduled tasks which
are later in the agenda.

72 inv executeBeforeNextTasks:

73 (self.owningAgenda <> null

74 and self.owningAgenda.scheduledTasks->last() <> self

75 ) implies

76 let infOfNextScheduledTasks : =

77 Inf (

78 self. owningAgenda.scheduledTasks->select (scheduledTask |

79 self. owningAgenda.scheduledTasks->indexOf (scheduledTask)

80 > self.owningAgenda.scheduledTasks->1indexOf (self)

81 ) .mocc_occur

82 )

83 in

84 Alternates (self.mocc_occur, infOfNextScheduledTasks)

85

86 -- If the executed Task is a "JoinThreadTask" then the current
Thread must block on the other Thread's join.

87 inv forJoinTasksTheOwningThreadMustWait

88 ForTheThreadToJoinToHavefinished:

89 (self.owningAgenda <> null

90 and self.owningAgenda.scheduledTasks->last() <> self

91 and self.task.oclIsKindOf (JoinThreadTask)

92 ) implies

93 let infOfNextScheduledTasks2 : =

94 Inf (

95 self. owningAgenda.scheduledTasks->select (scheduledTask |

96 self. owningAgenda.scheduledTasks->indexOf (scheduledTask)
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97 > self.owningAgenda.scheduledTasks->indexOf (self)

98 ) .mocc_occur

99 )

100 in

101 Alternates (

102 self. task.oclAsType(JoinThreadTask) .threadToJoin.mocc_join,
103 infOfNextScheduledTasks?2

104 )

105

106 -- When an Instruction occurs, it means that its corresponding

task is executed.
107 inv occurrenceMeansExecutingTask:

108 Coincides (self.mocc_occur, self.task.mocc_execute)
109
110 -- If the underlying Task is a Conditional, then the

Conditional's 'then' branch is executed or it is not, before
the next scheduled tasks in the agenda can proceed.
111 inv executeOneBranchOfTheConditional:

112 (self.owningAgenda <> null

113 and self.owningAgenda.scheduledTasks->last() <> self
114 and self.task.oclIsKindOf (Conditional)

115 ) implies

116 let eitherBranchExecution : =

117 Union (

118 self. task.oclAsType(Conditional).thenTask.mocc_execute,
119 self. task.oclAsType(Conditional) .mocc_doNothing
120 ) in

121 let infOfNextScheduledTasks3 : =

122 Inf (self.owningAgenda.scheduledTasks

123 ->select (scheduledTask |

124 self. owningAgenda.scheduledTasks->indexOf (scheduledTask)
125 > self.owningAgenda.scheduledTasks->indexOf (self)
126 ) .mocc_occur

127 ) in

128 Alternates (

129 eitherBranchExecution,

130 infOfNextScheduledTasks3

131 )

132

133

134| context StartThreadTask

135 -- A Task of type "StartThreadTask" means that the

corresponding Thread must be started.

136 inv executeMeansStartingThread:
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137 Coincides (self.mocc_execute, self.threadToStart.mocc_start)
138
139
140| context Disjunction
141 -- In a Disjunction, only one of the operands is executed.
142 inv onlyOneTaskExecuted:

143 Exclusion(self.operands.mocc_execute)

144

145 -- When either of its operands is executed, it means that the
Disjunction has occurred.

146 inv occurWhenOneTaskExecutes:

147 let unionOfOperandsExecution : =

148 Union(self. operands.mocc_execute)

149 in

150 Coincides (unionOfOperandsExecution, self.mocc_execute)

151

152

153| context Task

154 -- If some proxies represent this task, then this task must be
executed whenever one of the proxies is executed.

155 inv ifHasProxyThenExecuteWhenOneOfTheProxiesIsExecuted:

156 (self. representedBy->notEmpty()) implies

157 let unionOfProxiesExecute : =

158 Union(self. representedBy.mocc_execute)

159 in

160 Coincides (unionOfProxiesExecute, self.mocc_execute)

161

162| context Conditional

163 -- Condition is validated when all the conditions

164 -- have executed.

165 inv conditionsOkDef

166 let supOfConditions : =

167 Sup (self.conditions.mocc_execute)

168 in

169 Coincides (self. mocc_conditionsWereOk, supOfConditions)

170

171 -- If the conditions were OK then

172 -- we must execute the 'thenTask' sometime.

173 inv executeWhenConditionsHaveExecuted:

174 Alternates (

175 self.mocc_conditionsWereOKk,

176 self .mocc_executeThenTask

177 )

178
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179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196

197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213
214

-- When conditions are OK we execute the 'thenTask'.
inv executeThenWhenConditionsAreOk:
Coincides (
self.mocc_conditionsAreOKk,
self.mocc_executeThenTask

)

-- Conditions are OK if they were OK previously and this
Conditional is being executed.
inv conditionsAreOkDef:
let supOfConditionsWereOkAndSelfExecutes : =
Sup (self . mocc_conditionsWereOk, self.mocc_execute)
in
Coincides (
self .mocc_conditionsAreOk,
supOfConditionsWereOkAndSelfExecutes

)

-- If this conditional's 'thenTask' must be executed, then we
execute the then task.
inv executeThenTaskDef :
Alternates (
self .mocc_executeThenTask,
self. thenTask.mocc_execute

)

-- Either the 'thenTask' of the Conditional is executed, or it
is not.
inv resultAnyway:
let unionOfExecuteAndNotExecute : =
Union(self.mocc_executeThenTask, self.mocc_doNothing)
in
Coincides (unionOfExecuteAndNotExecute, self.mocc_execute)
-- We can't have both the 'thenTask' execute and do nothing.
inv exclusionOfResult:

Exclusion(self.mocc_executeThenTask, self.mocc_doNothing)

endpackage
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D.4 Communication Protocol

The Communication Protocol is specified using the GEMOC Events Language (GEL) de-

scribed in Chapter 3.

Listing D.3: Excerpt from the textual concrete syntax of GEL.

import "platform:/plugin/org.gemoc.sample.threaded.model/model/

threaded. ecore"

import "platform:/plugin/org.gemoc.sample.threaded.mocc/ECL/

Threaded.ecl"

DSE StartThread:

upon mocc_start

triggers Thread.start blocking
end

DSE JoinThread:

upon mocc_join

triggers Thread.join blocking
end

DSE ExecuteTask:
upon mocc_execute
triggers Task.execute blocking

end

DSE ExecutelInstruction:
upon MOCC_occur
end

Concurrency-aware Specification of the Threading xDSML




Concurrency-aware Specification of f{UML
Using the Threading xDSML as MoC

We detail the concurrency-aware definition of fUML in the GEMOC Studio, using the
Threading xDSML as MoC. This xDSML was introduced in Subsection 4.2.2 and its im-

plementation is presented in Appendix D.

E.1 Abstract Syntax

The fUML abstract syntax is provided as an Ecore metamodel on Figure 3.1.

E.2 Semantic Rules

The Semantic Rules are given in Xtend in Appendix B.

E.3 Model of Concurrency Mapping

The MoCMapping, in the recursive definition of concurrency-aware xDSML we have pro-

posed in Chapter 4, is implemented by an Abstract Syntax Transformation between the
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syntax of the domain (fUML) and the syntax of the MoC (Threading). Listing E.1 shows
the full source code, in Xtend [7], of that transformation. As explained in Chapter 4, this

transformation also generates the model-level Projections.

DiscLAIMER: so far, this implementation does not support nested Fork/Join pairs, as it
was not needed for the example f{UML Activity. The last method should be completed for

it to work.

Listing E.1: The MoCMapping of fUML using the Threading xDSML as MoC, specified
using Xtend.

package org.gemoc.sample.fuml.mapping.threaded

import com.google.common.collect.Sets
import java.util.ArrayList

1

2

3

4

5/import java.util.Collection

6|import java.util.Comparator

7|import java.util.HashMap

8|import java.util.HashSet

9|import java.util.LinkedList

10|import java.util.List

11|import java.util.Map

12|import java.util.Queue

13|import java.util.Set

14|import org.eclipse.emf.ecore.resource.Resource
15|import org.gemoc.gel.projections.LanguageProjection
16|import org.gemoc.gel.projections.Projections
17|import org.gemoc.gel.projections.ProjectionsFactory
18|import org.gemoc.sample.fuml.Action

19|import org.gemoc.sample.fuml.Activity

20|import org.gemoc.sample.fuml.ActivityEdge
21|import org.gemoc.sample.fuml.ActivityNode
22|import org.gemoc.sample.fuml.DecisionNode
23|import org.gemoc.sample. fuml.ForkNode

24|import org.gemoc.sample.fuml.JoinNode

25|import org.gemoc.sample.fuml.LiteralString
26|import org.gemoc.sample.fuml.OutputPin

27|import org.gemoc.sample.threaded.Thread

28|import org.gemoc.sample.threaded.ThreadSystem
29|import org.gemoc.sample.threaded.ThreadedFactory
30|import org.gemoc.sample.threaded.ProxyTask
31|import org.gemoc.sample.threaded.Task

32|import org.gemoc.sample.fuml.MergeNode

33
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34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

// Model transformation of fUML towards the Threading language,
used as its Model of Concurrency.
// Corresponds to the Model of Concurrency Mapping for fUML.

class Fuml2ThreadedMapping {
val threadedFactory = ThreadedFactory.eINSTANCE
val projectionsFactory = ProjectionsFactory.eINSTANCE
val Collection<LanguageProjection> languageProjections
val Projections modelProjections
val Collection<Task> tasksNotNecessarilyExecuted
= new ArrayList()

new (Resource languageProjectionsResource,
Resource modelProjectionsResource) {
// Load the language projections
val projections =
languageProjectionsResource.contents.get(0) as Projections
this. languageProjections = projections.languageProjections

// Create the model projections

val modelProjections = projectionsFactory.createProjections
modelProjectionsResource.contents.add(modelProjections)
this. modelProjections = modelProjections

// Entry point of the transformation.
def void perform(Resource fumlResource,
Resource threadedResource) {
val activity = fumlResource.contents.get(0) as Activity

// Transform the fUML Activity
val threadSystem = transform(activity)
threadedResource.contents.add(threadSystem)

// Add the necessary imports into the model projections
val importFumlModel = projectionsFactory.createImportStatement
importFumlModel. importURI =
fumlResource.URI. toPlatformString (true)
modelProjections.imports.add(importFumlModel)
val importThreadedModel =
projectionsFactory.createImportStatement
importThreadedModel. importURI =
threadedResource.URI. toPlatformString (true)
modelProjections.imports.add(importThreadedModel)
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77 }

78

79 // Transforms an fUML Activity into a Threading model.

80 def ThreadSystem transform(Activity activity) {

81

82 // Create the root object

83 val threadSystem = threadedFactory.createThreadSystem

84 threadSystem.name = activity.name + "ThreadSystem"

85

86 // There is at least one thread per activity.

87 val mainThread = threadedFactory.createThread

88 mainThread.name = "mainThreadFor" + threadSystem.name

89 threadSystem. threads.add(mainThread)

90 threadSystem.mainThread = mainThread

91

92 // For each pair of Fork/Join, create a thread for every
branch.

93 // Identify pairs of Fork/Join

94 val Collection<Pair<ForkNode, JoinNode>> pairsOfForkAndJoin =

95 findNodePairs(activity, ForkNode, JoinNode)

96 val Collection<Pair<DecisionNode, MergeNode>>
pairsOfDecisionAndMerge =

97 findNodePairs(activity, DecisionNode, MergeNode)

98

99 pairsOfForkAndJoin.forEach [ pair |

100 println(pair.key.name + " --- " 4+ pair.value.name)

101 ]

102

103 // Identify branches for each pair, with which nodes are on
it.

104 val Map<ActivityNode, Pair<ForkNode, ActivityEdge>>
nodeLocations =

105 findBranchesHoldingNodes (activity, pairsOfForkAndJoin)

106

107 // For each branch on which there are nodes, create a Thread

and add it to the ThreadSystem.

108 val mapOfBranchToThread = new HashMap ()

109 val branches = nodeLocations.values.

110 branches.forEach [ pair |

111 val newThread = threadedFactory.createThread

112 newThread.name =

113 "Thread" + "_" + pair.key.name + "_" + pair.value.name

114 mapOfBranchToThread.put (pair, newThread)

115 threadSystem. threads.add(newThread)
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116
117
118

119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141

142
143

144
145
146
147
148
149
150
151
152
153
154
155

// We know which nodes are on which branches, we want to find
which nodes are on the main thread.
val allNodes = new ArrayList(activity.nodes)
allNodes. (
activity.nodes. [node |node instanceof Action]
[node| (node as Action).outputs]

val nodesOnMainThread =
allNodes. [node|! (nodeLocations.keySet.contains(node)) ]

// The nodes should be in the right order to ensure the
instructions will be in the right order.
val branchesAndTheirContents =
new HashMap<
Pair<ForkNode, ActivityEdge>, List<ActivityNode>
>
branches.forEach [ branch |
branchesAndTheirContents.put (branch,
nodeLocations.entrySet
[entry|entry.value == branch]
[entry|entry.key]. )

val Comparator<ActivityNode> comparator = new Comparator<
ActivityNode>() {
override compare(ActivityNode ol, ActivityNode o02) {
// Return -1 when ol is before 02, that is when there is
a trail of edges from ol to o2
// Return 1 if the contrary
// Otherwise return 0
if (nodeIsAncestorOf (o2, ol)) {
return 1
} else if (nodeIsAncestorOf(ol, o02)) {
return -1
} else {

return O
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156 val sortedNodesOnMainThread =

157 nodesOnMainThread. (comparator)

158 val sortedBranchesAndTheirContents =

159 branchesAndTheirContents. [ listOfNodes |

160 listOfNodes. (comparator)

161 ]

162

163 // We now have:

164 // 1 - One main thread and as many threads as branches

165 // 2 - Which nodes are on the main threads

166 // 3 - Which nodes are on each branch

167 // We only need to create the Task corresponding to each node

on the correct thread.

168 // 1f we use ProxyTasks we need to link afterwards

169 val mapOfProxies = new HashMap()

170 sortedNodesOnMainThread.forEach [ node |

171 mapOfProxies.putAll(

172 toTask(node, mainThread, mapOfBranchToThread,
pairsOfForkAndJoin)

173 )

174 ]

175 sortedBranchesAndTheirContents.entrySet.forEach [ entry |

176 entry.value.forEach [ node |

177 mapOfProxies.putAll(

178 toTask (node, mapOfBranchToThread.get(entry.key),

179 mapOfBranchToThread, pairsOfForkAndJoin)

180 )

181 ]

182 ]

183

184 // Each Proxy, when created, has specified as a result of
which ActivityNode it was born.

185 // When every Task has been created, we can retrieve the Task

corresponding to the wanted Node.

186 mapOfProxies.entrySet.forEach [ entry |

187 val node = entry.value

188 val proxyTask = entry.key

189 val taskCorrespondingToNode =

190 modelProjections.modelProjections. [ projection |

191 projection.name.contains ("ForExecution") && projection.
languageElement == node

192 ] .moccElement as Task

193 proxyTask.concreteTask = taskCorrespondingToNode

194 ]
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195
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

// If a node is on a branch of a Decision Node, it is not
necessarily executed
allNodes
[node |
pairsOfDecisionAndMerge. [pair |
nodeIsAncestorOf (pair.key, node)
&& nodelIsAncestorOf (node, pair.value)

1. [node |
modelProjections.modelProjections. [projection
projection.name.contains ("ForExecution")
1. [projection |
projection.languageElement == node

] .moccElement as Task
].forEach [ task |
tasksNotNecessarilyExecuted.add(task)

// Create the Agenda for each Thread
threadSystem. threads.forEach[ thread |
createAgenda(thread, tasksNotNecessarilyExecuted)

return threadSystem

private def void createAgenda(Thread thread,
Collection<Task> tasksToRemove) {
val agenda = threadedFactory.createAgenda
agenda.name = "Agenda_" + thread.name
val instructions = new ArrayList(thread.tasks)
[task|! tasksToRemove.contains(task)]
[ task |
val instruction = threadedFactory.createInstruction
instruction.name = task.name
instruction.owningAgenda = agenda
instruction.task = task
instruction
]
agenda.scheduledTasks. (instructions)
thread.agenda = agenda
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238 // Transforms the given ActivityNode into a (set of) Task on
the given thread. May use the map of threads to reference the
correct one (i.e. in case of Fork/Join)

239| private def Map<ProxyTask, ActivityNode> toTask(

240 ActivityNode node, Thread thread,

241 Map<Pair<ForkNode, ActivityEdge>, Thread> mapOfBranchToThread,

242 Collection<Pair<ForkNode, JoinNode>> pairsOfForkAndJoin) {

243

244 // Used later on to do the linking part for ProxyTasks.

245 val result = new HashMap()

246

247 // Retrieve the different Projections of fUML

248 // When transforming a Node, we will create a ModelProjection

corresponding to what we did.

249 val LanguageProjection projectionForEvaluation =

250 this. languageProjections. [ projection |

251 projection.name.contains("ForEvaluation")

252 ]

253 val LanguageProjection projectionForExecution =

254 this. languageProjections. [ projection |

255 projection.name.contains("ForExecution")

256 ]

257 val LanguageProjection projectionForMayExecute =

258 this. languageProjections. [ projection |

259 projection.name.contains ("ForMayExecute")

260 1

261 val LanguageProjection projectionForMayNotExecute =

262 this. languageProjections. [ projection |

263 projection.name.contains ("ForMayNotExecute")

264 ]

265

266 switch (node) {

267 ForkNode case true: {

268 // Create as many "Start Thread" tasks as there are
branches on this ForkNode.

269 val tasksCreatedForNode = new ArrayList()

270 node.outgoingEdges.forEach [ edge |

271 val branch = new Pair(node, edge)

272 val threadToStart = mapOfBranchToThread.get(branch)

273 val task = threadedFactory.createStartThreadTask

274 task.name = "StartThread " + threadToStart.name

275 task.owningThread = thread

276 task.threadToStart = threadToStart

277 tasksCreatedForNode.add(new Pair(task, node))
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278 ]

279

280 // Create the ModelProjection corresponding to this
transformation

281 // We decide that the *first* StartThread Task resulting

of a ForkNode transformation is the one that is mapped to the
ForkNode's execution.

282 val lastTaskForNode = tasksCreatedForNode.

283 val modelProjection = projectionsFactory.
createModelProjection

284 modelProjection.name =

285 projectionForExecution.name + "_" +

286 lastTaskForNode.value.name

287 modelProjection.moccElement = lastTaskForNode.key

288 modelProjection. languageElement = lastTaskForNode.value

289 modelProjections.modelProjections.add(modelProjection)

290 }

291

292 JoinNode case true: {

293 // Create as many "Join Thread" tasks as there are
branches incoming to this JoinNode.

294 val tasksCreatedForNode = new ArrayList()

295 val associatedForkNode =

296 pairsOfForkAndJoin. [pair|pair.value == node].key

297 associatedForkNode.outgoingEdges.forEach [ edge |

298 val branch = new Pair(associatedForkNode, edge)

299 val threadToJoin = mapOfBranchToThread.get(branch)

300 val task = threadedFactory.createJoinThreadTask

301 task.name = "JoinThread " + threadToJoin.name

302 task.owningThread = thread

303 task.threadToJoin = threadToJoin

304 tasksCreatedForNode.add(new Pair(task, node))

305 ]

306

307 // Create the ModelProjection corresponding to this
transformation

308 // We decide that the *last* JoinThread Task resulting of

a JoinNode transformation is the one that is mapped to the
JoinNode's execution.

309 val lastTaskForNode = tasksCreatedForNode.
310 val modelProjection =

311 projectionsFactory.createModelProjection
312 modelProjection.name =

313 projectionForExecution.name + "_"
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314 + lastTaskForNode.value.name

315 modelProjection.moccElement = lastTaskForNode.key

316 modelProjection. languageElement = lastTaskForNode.value

317 modelProjections.modelProjections.add(modelProjection)

318 }

319

320 DecisionNode case true: {

321 // Create a task for the Decision itself

322 val task = threadedFactory.createExecutionTask

323 task.name = "Execution_ " + node.name

324 task.owningThread = thread

325 // Create the corresponding ModelProjection

326 val modelProjectionForDecisionNode =

327 projectionsFactory.createModelProjection

328 modelProjectionForDecisionNode.name =

329 projectionForExecution.name + "_" + node.name

330 modelProjectionForDecisionNode.moccElement = task

331 modelProjectionForDecisionNode. languageElement = node

332 modelProjections.modelProjections.add(

333 modelProjectionForDecisionNode

334 )

335

336 // Transform the decision node into a sequence of (
evaluate guard of a branch, disjunction of its result)

337 // followed by a sequence of conditionals capturing all
possible outcomes.

338 node.outgoingEdges.forEach [ edge |

339 // First create a Task for the evaluation of the guard

340 val taskEvaluate = threadedFactory.createExecutionTask

341 taskEvaluate.name =

342 "Execute_" + edge.name + "_EvaluateGuard"

343 taskEvaluate.owningThread = thread

344 // And the corresponding ModelProjection

345 val modelProjection =

346 projectionsFactory.createModelProjection

347 modelProjection.name =

348 projectionForEvaluation.name + "_" + edge.name

349 modelProjection.moccElement = taskEvaluate

350 modelProjection. languageElement = edge

351 modelProjections.modelProjections.add(modelProjection)

352 // Then create the disjunction between its two outcomes

353 val taskMay = threadedFactory.createExecutionTask

354 taskMay.name =

355 "ExecutionTask_May" + edge.targetNode.name
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taskMay.owningThread = thread
tasksNotNecessarilyExecuted.add(taskMay)
val taskMayNot = threadedFactory.createExecutionTask
taskMayNot.name =
"ExecutionTask_MayNot" + edge.targetNode.name
taskMayNot.owningThread = thread
tasksNotNecessarilyExecuted.add(taskMayNot)
val disjunctionTask = threadedFactory.createDisjunction
disjunctionTask.name =
"Disjunction_MayOrMayNot" + edge.targetNode.name
disjunctionTask.owningThread = thread
disjunctionTask.operands.add(taskMay)
disjunctionTask.operands.add(taskMayNot)
// And the corresponding ModelProjections
val modelProjectionMay =
projectionsFactory.createModelProjection
modelProjectionMay.name =
projectionForMayExecute.name + "_" + edge.name
modelProjectionMay.moccElement = taskMay
modelProjectionMay.languageElement = edge
modelProjections.modelProjections.add(
modelProjectionMay
)
val modelProjectionMayNot =
projectionsFactory.createModelProjection
modelProjectionMayNot .name =
projectionForMayNotExecute.name + "_" + edge.name
modelProjectionMayNot.moccElement = taskMayNot
modelProjectionMayNot. languageElement = edge
modelProjections.modelProjections.add(
modelProjectionMayNot

// Now we want to create a sequence of conditionals

// First create the set of all possible outcomes

val Set<Set<ActivityEdge>> possiblePermutations =
computePossiblePermutations (node.outgoingEdges)

// Order them by the number of elements
val orderedPermutations =
possiblePermutations
[set|set.size]

279
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400

401 // Create the tasks corresponding to all the possible
sets.

402 // First a conditional with the MayExecute of every edge
of the set

403 // 1If there is more than 1 solution, create a disjunction

404 // In any case, target some ProxyTask created for the
purpose of this conditional

405 orderedPermutations.forEach [ set |

406 val conditionalTask = threadedFactory.createConditional

407 conditionalTask.name =

408 set. ("Conditional_ ", "_", "_Allowed",

409 [edge|edge.name]

410 )

411 conditionalTask.owningThread = thread

412 val mayTasksForEdges = set. [ edge |

413 modelProjections.modelProjections

414 [ projection |

415 projection.name.contains (

416 projectionForMayExecute.name

417 )

418 && projection.languageElement == edge

419 ] .moccElement as Task

420 ]

421 conditionalTask.conditions. (mayTasksForEdges)

422 if (set.size == 1

423 || (set.size ==

424 && set. [edge | edgeHasDefaultGuard(edge) ]

425 )

426 ) {

427 val edgeToConsider = if (set.size == 1) {

428 set.get(0)

429 } else {

430 set. [edge|! edgeHasDefaultGuard(edge) ]

431 1

432 val thenTask = threadedFactory.createProxyTask

433 thenTask.name = "Proxy" +

434 (result.values. [activityNode |

435 activityNode == edgeToConsider.targetNode

436 1. .size + 1

437 ) + "For"

438 + edgeToConsider.targetNode.name

439 thenTask.owningThread = thread

440 result.put(thenTask, edgeToConsider.targetNode)
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441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476
477
478
479
480
481
482
483

conditionalTask.thenTask = thenTask
tasksNotNecessarilyExecuted.add(thenTask)
} else {
// Only consider the non-default branches
val nonDefaultBranches =
set. [edge|! edgeHasDefaultGuard(edge) ]
val thenTask = threadedFactory.createDisjunction

thenTask.name = "Disjunction "
+ nonDefaultBranches. [ edge |
edge.targetNode
1.join("", "Or", "",
[firstNodeOfBranch|firstNodeOfBranch.name]
)
thenTask.owningThread = thread
thenTask.operands. (
nonDefaultBranches. [ edge |
val proxyTask = threadedFactory.createProxyTask
proxyTask.name = "Proxy" +
(result.values. [ activityNode |
activityNode == edge.targetNode
1. .size + 1)

+ "For" + edge.targetNode.name
proxyTask.owningThread = thread
result.put (proxyTask, edge.targetNode)
tasksNotNecessarilyExecuted.add(proxyTask)
proxyTask

1
conditionalTask.thenTask = thenTask
tasksNotNecessarilyExecuted.add(thenTask)

}
default: {

// Default case is to transform the Node into an
ExecutionTask.

val task = threadedFactory.createExecutionTask

task.name = "Execute_ " + node.name

task.owningThread = thread

// Create the corresponding ModelProjection
val modelProjection =

projectionsFactory.createModelProjection
modelProjection.name =
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484 projectionForExecution.name + "_" + node.name
485 modelProjection.moccElement = task
486 modelProjection.languageElement = node
487 modelProjections.modelProjections.add(modelProjection)
488 }
489 }
490
491 return result
492| 1}
493
494| private def Set<Set<ActivityEdge>> computePossiblePermutations(
495 List<ActivityEdge> edges) {
496 var Set<Set<ActivityEdge>> result = Sets.powerSet(edges. )
497
498 // Check if one of the edges has the default guard
499 if (edges. [edge | edgeHasDefaultGuard(edge)]) {
500 // In that case, remove all the sets where the default edge
is not present
501 val defaultEdge =
502 edges. [edge | edgeHasDefaultGuard(edge) ]
503
504 result = result. [ set |
505 set.contains(defaultEdge)
506 ].
507 }
508
509 return result
510 }
511
512 private def boolean edgeHasDefaultGuard(ActivityEdge edge) {
513 edge.guard instanceof LiteralString
514 && (edge.guard as LiteralString).value.equals("else")
515 }
516
517 private def boolean nodeIsAncestorOf (
518 ActivityNode candidateAncestor,
519 ActivityNode candidateSuccessor) {
520 if (candidateAncestor == candidateSuccessor) {
521 // If the two nodes are the same, the coherent result is
false.
522 return false
523 } else // If an outgoing edge leads to the candidate successor
524 if (candidateAncestor.outgoingEdges. [ edge |
525 edge.targetNode == candidateSuccessor
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526
527
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

DA

return true
} else // If the candidate successor is a pin of the candidate
ancestor
if (candidateAncestor instanceof Action &&

(candidateAncestor as Action).outputs. [ pin |
pin == candidateSuccessor
D |

return true
} else { // Recursivity with the correct navigation
val nextNodesToExplore = new ArrayList()

nextNodesToExplore. (
candidateAncestor.outgoingEdges. [edge|edge.targetNode]
)
if (candidateAncestor instanceof Action) {
nextNodesToExplore. (
(candidateAncestor as Action).outputs
)
}
return nextNodesToExplore. [nextNode |
nodeIsAncestorOf (nextNode, candidateSuccessor)
]

private def Map<ActivityNode, Pair<ForkNode, ActivityEdge>>
findBranchesHoldingNodes (Activity activity,
Collection<Pair<ForkNode, JoinNode>> pairsOfForkAndJoin) {
val result = new HashMap()
val nodesToConsider = new ArrayList(activity.nodes)
nodesToConsider. (
activity.nodes
[node|node instanceof Action]
[node| (node as Action).outputs]

nodesToConsider.forEach [ node |
val branch = findBranchFor(node, pairsOfForkAndJoin)
if (branch != null) {
result.put (node, branch)
1 else {
// It's on the main thread
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568 ]

569

570 return result

571 }

572

573 private def Pair<ForkNode, ActivityEdge> findBranchFor (
ActivityNode node,

574 Collection<Pair<ForkNode, JoinNode>> pairsOfForkAndJoin) {

575 switch node {

576 JoinNode case true:

577 // A JoinNode is on the same branch as its corresponding
ForkNode

578 {

579 return findBranchFor (pairsOfForkAndJoin

580 [ pair |

581 pair.value == node

582 ].key,

583 pairsOfForkAndJoin)

584 }

585 OutputPin case true:

586 // A Pin is on the same branch as its owning node

587 {

588 return findBranchFor (

589 node.eContainer as Action, pairsOfForkAndJoin

590 )

591 }

592 ActivityNode case node.incomingEdges. [ edge |

593 edge.sourceNode instanceof ForkNode

594 K

595 // The node is the beginning of a branch

596 {

597 return new Pair(node.incomingEdges. [ edge |

598 edge.sourceNode instanceof ForkNode

599 ] . sourceNode,

600 node.incomingEdges. [ edge |

601 edge.sourceNode instanceof ForkNode

602 D

603 }

604 default:

605 // In all other cases, return one of the incoming edges'
source

606 {

607 if (node.incomingEdges.isEmpty) {

608 return null
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609
610
611
612
613
614
615
616
617
618
619
620

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

642
643
644

645
646
647
648

} else {
return findBranchFor (
node.incomingEdges. .sourceNode, pairsOfForkAndJoin

// Go through an Activity to find out its Fork/Join couples.
private def <T1 extends ActivityNode, T2 extends ActivityNode>
Collection<Pair<T1l, T2>> findNodePairs(Activity activity,
Class<T1> t1, Class<T2> t2) {
val result = new ArrayList<Pair<T1l, T2>>()

val forkNodes = activity.nodes
[node|t1l.isAssignableFrom(node.class) ]
[node|node as T1]

val joinNodes = activity.nodes
[node|t2.isAssignableFrom(node.class) ]
[node|node as T2]

if (forkNodes.size == 1 && joinNodes.size == 1) {
result.add(new Pair(forkNodes.get(0), joinNodes.get(0)))

// Enough for the example Activity
1 else {

val remainingForkNodes = new ArrayList(forkNodes)
val remainingJoinNodes = new ArrayList(joinNodes)

// For the outer-most ForkNode, there is at most forkNodes.
size-1 ForkNode/JoinNode couples before its own JoinNode.
for (depth : 0 ..< forkNodes.size) {

// Find the ForkNodes for which there is depth other
ForkNodes and depth JoinNodes on its path to a JoinNode.
val Collection<Pair<T1, T2>> currentInnerMostCouples =
findNodeCouplesBasedOnDepth (
remainingForkNodes, remainingJoinNodes, depth
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649

650 // The first JoinNode encountered is the one we are
looking for

651 // Add this couple to the result and remove them from the
pool of remaining forks and joins.

652 result. (currentInnerMostCouples)

653 remainingForkNodes. (

654 currentInnerMostCouples

655 [pair|pair.key]

656 )

657 remainingJoinNodes. (

658 currentInnerMostCouples

659 [pair|pair.value]

660 )

661 }

662 }

663 return result

664 }

665

666 // Returns the ForkNodes for which there is $depth other
forknodes on their path to a JoinNode. Also associates the
JoinNode in question.

667| private def <T1 extends ActivityNode, T2 extends ActivityNode>

668
669
670
671
672
673
674

675
676
677
678
679
680

681
682

683

Collection<Pair<T1, T2>> findNodeCouplesBasedOnDepth (
Collection<T1> forkNodes,

Collection<T2> joinNodes, int depth) {

val result = new ArrayList()

forkNodes.forEach [ forkNode |
var stop = false
var numberOfCouplesEncountered = 0
val Queue<ActivityEdge> pathsToExplore = new LinkedList(
forkNode.outgoingEdges)
// Keep going until
// Either the number of couples encountered is > depth
// Or there is no more paths to explore
while (!stop) {
// To be completed
// Navigate the paths until we encounter a JoinNode and
$depth ForkNode and JoinNode have been met.
stop =
numberOfCouplesEncountered > depth || pathsToExplore.
isEmpty
¥
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684 ]
685
686 return result
687 }

688
689|}

E.4 Projections

The Projections, as presented in Chapter 4, are specified using the Projections metalan-
guage (whose textual concrete syntax is available in Appendix H). They are shown on
Listing 4.6.

E.5 Communication Protocol

The Communication Protocol, specified using GEL and exploiting the Projections defined

in the previous section, are shown on Listing 4.7.






Execution of the Example f{UML Model
Using the Threading MoC

In Chapter 4 we have presented how to use a previously-defined concurrency-aware xDSML
as the MoC of an xDSML. In this appendix, we detail the realization of the execution of the
example fUML Activity used throughout Chapters 3 and 4. The fUML Activity is shown

on Figure 4.1.

The execution is realized using a definition of f{UML whose MoC is not Event Structures,
but the thread-based language presented in Subsection 4.2.2 of Chapter 4. This implemen-
tation of fUML is shown in Appendix E.

For the Threading xDSML, the graphical syntax is as follows. Each Thread is rep-
resented as a node containing its Instructions. The main thread is designated by a
“*” appended to its name. When an Instruction consists in starting a thread or in waiting
for a thread, there is an arrow from the instruction to the thread, respectively from the
thread to the instruction. The animation layer is captured in the background colour of the
instructions and threads. A grey thread is inactive, while a green thread is active, and an
orange thread is a thread that has finished all its instructions. An orange instruction has
been executed, a green one may be executed (possibly conditionally) and a grey one may

not be.
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Figure F.1 shows the MoCApplication for our example fUML Activity. This MoCAp-
plication is a model conforming to the Threading xDSML we have defined, and is obtained
automatically thanks to 7, A textual concrete syntax for this model is shown

FUML—THREADING®

on Listing 4.1 of Chapter 4.

ThreadSystem_TalkAndDrinkActivity

/~ MainThread TalkAndDrinkActivity* ) | v
e Thread_MyFork MyFork2Check I
| Execute_MylnitialNode | | - -
: Execute_CheckTableForDrinks
[ startThread_Thread_MyFork MyFork2Check | 4 -

Execute_MyDecision

jmmmmmmm————- 4 StartThread Thread MyFork MyFork2Talk |

[ ]
[ Execute_MyOutputPin l
[ ]
| Execute Decision2Coffee_EvaluateGuard |

Thread_MyFork_MyFork2Talk
— — I JoinThread_Thread_MyFork_MyFork2Check ]( - Disjunction_MayOrMayNotDrinkCoffee
| Execute_Talk | -

IExecutlonTask_MayDnnkCoﬁee l IExecutlonTask_MayNotDrinkCuffee l

S — t» JoinThread Thread MyFork MyFork2Talk |

| Execute Decision2Tea_EvaluateGuard |

I Execute_MyFinal l
\\ / Disjunction_MayOrMayNotDrinkTea

IExecutlonTask_MayDnnkTea IIExecutlonTask_MayNotDnnkTea I

| Execute_Decision2Water_EvaluateGuard |

Disjunction_MayOrMayNotDrinkWater

lExecutionTask_MayDrinkWater I IExecutionTask_MayNotDrinkWater I

Conditional_CoffeeTeaWaterAvailable

Disjunction_DrinkCoffeeOrTea

| Execute_DrinkCoffee I I Execute_DrinkTea I

|Conditional_c0ffeeWaterAvaiIabIe Execute DrinkCoffee |
|Conditional_TeaWaterAvailable Execute DrinkTea |

onditional_WaterAvailable I Execute_DrinkWater I I

\ I Execute_MyMerge | /

Figure F.1: MoCApplication of the example fUML Activity, based on the Threading MoC.

The initial view of the Modeling Workbench when launching the execution of the ex-
ample fUML Activity is shown on Figure F.2. There are two active Execution Engine: one
for fUML, and one for the Threading xDSML. The second one is used as the Solver of the
first engine, as explained in Chapter 4. We focus on the execution of the f{UML Activity,
and therefore we do not show the occurring MappingApplications of the Threading model
or its underlying Event Structure.

The first possible execution step does not have occurrences of MappingApplications for
fUML, but it does have an occurrence of the MappingApplication corresponding to starting
the main Thread. Figure F.3 shows the result of executing this step.

Now that the main Thread has been activated, its first instruction “Execute_MyInitialNode”

can be executed. This is matched by the Communication Protocol of fUML and mapped
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Figure F.2: Step 0 - Initial view of the Modeling Workbench when launching the execution

of the example f{UML Activity using the Threading Model of Concurrency.
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to the f{UML Execution Function call of “MylInitialNode.execute()”. Figure F.4 shows the
result of executing this step.
The first instruction of the main thread has been executed, and so has the InitialNode

in the f{UML model. In the next possible execution step, executing the second instruction
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Figure F.3: Step 1 — Execution of the example f{UML Activity using the Threading Model
of Concurrency.
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Figure F.4: Step 2 — Execution of the example fUML Activity using the Threading Model
of Concurrency.
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“StartThread_Thread_MyFork_MyFork2Check” is mapped to the Execution Function call
corresponding to “MyFork.execute()”. Figure F.5 shows the result of executing this step.

The Thread corresponding to the drinking part of the activity has been activated. There
are now two active Threads with instructions left to execute, therefore we have multiple
possible execution steps. We select the step that does both at the same time, i.e., executing
the next instruction of the main Thread (which will activate the last Thread) and executing
the first instruction of the second Thread (“Execute_CheckTableForDrinks”). Figure F.6
shows the result of executing this step.

Now that the three threads are active, there are even more possible execution steps.
Once again, we select the step with the maximum activity. It corresponds to the execu-
tion of three instructions (“JoinThread_MyFork_MyFork2Check” in the main Thread, “Ex-
ecute_MyOutputPin” in the second Thread, and “Execute_Talk” in the third Thread). Two
of them are mapped by the Communication Protocol of fUML to Execution Function calls
(“MyOutputPin.execute()” and “Talk.execute()”). Figure F.7 shows the result of executing
this step.

The main Thread is now blocked, waiting for the second thread to finish. The third
Thread has finished its instructions so among the possible execution steps is the end of
that thread. Once again we select the execution step with the most activity, which means
that the third thread will terminate and the next instruction of the second thread will be

executed. Figure F.8 shows the result of executing this step.
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Figure F.5: Step 3 — Execution of the example f{UML Activity using the Threading Model
of Concurrency.
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Figure F.6: Step 4 — Execution of the example fUML Activity using the Threading Model
of Concurrency.
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Figure F.7: Step 5 — Execution of the example fUML Activity using the Threading Model
of Concurrency.



295

9 papea.yy 220w AITATIOMUTICPUWIIEL @ &

ung  AITATIOVAUTIGRUYY 1BL
A0 % ®Ba 52 Smess sauibu3 20w m

C )

ue3100g3: ()p4ENY31LN]BAS " 33110)ZUOTSTI30<-M014123[q0 93110)ZUOTSTI3Q PJengalenieAd «

[1SZpLL6TT] UOTIN10SBUTINPaYRS
3¢ sdaysuonndax3 w

( )

ajosuod wasksbuibessap ynejaa
alda@gE & 5% 3josuod &

EQIEQIEQ

Wil
(agian)uayol}oalao

SYULQIOIIGELNIAD

F > Ho4 0 UL peaiyiuels {v_;ombz
R wuoz_m_u_:;s_.
\___ +Ammowiuugpuviier peasutue ) Juugpuynjiel

u AuARdYULIGpUYY[eL waisASpeaiyL

b ‘ ‘ ‘ ‘ = [5] B w | B [HE sl $[aBEasaF ‘ ‘ =Bl o 2 (7 @[« bal [ $]|aFa o

2} weubeip'papeayly § 33 weibeip 1NNy Mauy @

Figure F.8: Step 6 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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Next, we keep on going in the drinking part of the activity. The DecisionNode is a bit
more complex due to the presence of guards. Taking their results into account is one of the
main features presented in Chapter 3 (see Section 3.6). This is represented, in the Thread-
ing language, as follows. One instruction corresponds to evaluating the guard. Then, a
disjunction between two instructions corresponds to the consequence of the result of the
guard evaluation. Later on, these will be used to determine whether or not the correspond-

ing branch may be executed.

The next 6 steps correspond to the evaluation of each guard (2 steps per guard). See
Figures F.9, F.10, F.11, F.12, F.13, F.14.
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Figure F.9: Step 7 — Execution of the example f{UML Activity using the Threading Model
of Concurrency.
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Figure F.10: Step 8 — Execution of the example fUML Activity using the Threading Model
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Figure F.12: Step 10 — Execution of the example fUML Activity using the Threading Model
of Concurrency.
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Figure F.13: Step 11 — Execution of the example fUML Activity using the Threading Model
of Concurrency.
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Figure F.14: Step 12 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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In the next 3 steps, the instructions correspond to the conditionals used to check which
drink will be drunk. In our execution scenario, we have found no coffee or tea on the table
so we will ultimately drink water. See Figures F.15 and F.16 for the conditionals that fail.

Figure F.17 shows the conditional that will lead us to drinking water.
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Figure F.15: Step 13 - Execution of the example f{UML Activity using the Threading Model
of Concurrency.
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Figure F.16: Step 14 — Execution of the example fUML Activity using the Threading Model
of Concurrency.
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Figure F.17: Step 15 — Execution of the example fUML Activity using the Threading Model

of Concurrency.

Figure F.18 shows that the instruction (allowed since the conditional’s condition was

validated) “Execute_DrinkWater” is mapped by the Communication Protocol of f{UML to

the Execution Function call “DrinkWater.execute()”.
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Figure F.18: Step 16 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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e ©m
Thraadsystam_TalkAndDrinkActivity

Figure F.19 shows that once one of the branches of the DecisionNode has been executed,

the MergeNode may be executed.
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Figure F.19: Step 17 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
In Figure F.20, all the instructions of the second Thread have been executed, therefore
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the Thread will be terminated.
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Figure F.20: Step 18 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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In Figure F.21, the second Thread has been terminated. This unblocks the main Thread,
which may now block on the third Thread having been executed. This corresponds to the
execution of the JoinNode in the f{UML model.
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Figure F.21: Step 19 — Execution of the example fUML Activity using the Threading Model
of Concurrency.

Figure F.22 shows that the final instruction may be executed, corresponding to the
execution of the FinalNode in the f{UML model.
Finally in Figure F.23, the main thread may be terminated now that all its instructions

have been executed. The final state is shown on Figure F.24.
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Figure F.22: Step 20 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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Figure F.23: Step 21 — Execution of the example fUML Activity using the Threading Model

of Concurrency.
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Figure F.24: Step 22 — Execution of the example fUML Activity using the Threading Model

of Concurrency.






Textual Concrete Syntax of
the GEMOC Events Language (GEL)

There are two approaches to using Xtext [7]. The first one consists in specifying the con-
crete syntax, and let Xtext generate the corresponding abstract syntax as an Ecore meta-
model. Sometimes, getting the “right” abstract syntax with the strategy can be difficult or
frustrating. The second one consists in first designing the abstract syntax of the language,
and then designing the Xtext concrete syntax over it. This ensures that the metamodel
(which is exploited by other facilities through its APIs) respects a particular structure and
naming convention. For GEL, we used the latter, as the textual concrete syntax was added
only after first proofs of concepts of the integration of GEL into the GEMOC Studio were
successful. The Abstract Syntax used can be found on Figure 3.44.

The following listing is the full Xtext textual concrete syntax of GEL. We reuse another
Xtext-based language called GExpressions which provides the means to use basic arith-
metic and navigation expressions on models and metamodels with an OCL-like syntax. It

is used by several metalanguages developed during the ANR INS GEMOC project.
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16
17
18
19
20
21
22
23
24
25
26

27 ;

28
29
30
31
32
33
34
35
36
37
38

Listing G.1: The Xtext textual concrete syntax of GEL.

grammar org.gemoc.gel.GEL with org.gemoc.gel.gexpressions.xtext.
GExpressions

// Used for the Abstract Syntax (and Semantic Rules) of the xDSML
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

// Abstract Syntax of GEL

import "http://www.gemoc.org/gel/GEL" as gel

// Used for the MoCMapping

import "http://fr.inria.aoste.timesquare.ecl" as ecl

// Used for the xXDSML as MoC feature (cf. Chapter 4)

import "http://www.gemoc.org/gel/projections" as projections

DomainSpecificEventsSpecification returns gel: :
DomainSpecificEventsSpecification:
{gel: :DomainSpecificEventsSpecification}
(imports += ImportStatement)*
events+=(DomainSpecificEvent) *

ImportStatement returns gel::ImportStatement:
'import' =STRING

DomainSpecificEvent returns gel::DomainSpecificEvent:
AtomicDomainSpecificEvent | CompositeDomainSpecificEvent

b

AtomicDomainSpecificEvent returns gel::DomainSpecificEvent:
{gel: :AtomicDomainSpecificEvent}
(visibility = Visibility)?
'DSE' =ID ':'
'upon' uponMoccEvent=MoccEvent
(executionKind=ExecutionKind executionFunction=ExecutionFunction
('feedback' ':' feedbackPolicy=FeedbackPolicy 'end')?
)?
('raises' raisedMoccEvent=MoccEvent)?
'end'

39| ;

40

// End
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41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

J === m e
// MoCMapping elements

[/ mmmmm e e e e
MoccEvent returns gel::MoccEvent:

EclEvent | GelEvent

// When using EventType Structures through ECL
EclEvent returns gel::MoccEvent:

{gel::EclEvent}

eventReference = [ecl::ECLDefCS|QualifiedName]

// When using an xDSML as the MoC
GelEvent returns gel::GelEvent:

59];

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

{gel::GelEvent}
'event' eventReference = [gel::DomainSpecificEvent|QualifiedName
] 'with' projection=[projections::LanguageProjection|ID]
// End
/o m e e e e e
// Semantic Rules elements
J = mmmm e e e e
ExecutionFunction returns gel::ExecutionFunction:

Kermeta3ExecutionFunction

Kermeta3ExecutionFunction returns gel::ExecutionFunction:
{gel: :Kermeta3ExecutionFunction}
navigationPathToOperation = GExpression
(callKind=CallKind)?

('returning'
result=ExecutionFunctionResult)?

ExecutionFunctionResult returns gel::ExecutionFunctionResult:

{gel: :ExecutionFunctionResult}
=ID
// End
e e e ittt
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84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112|;

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

// Feedback Protocol elements
// (cf. Section 3.6)

FeedbackPolicy returns gel::FeedbackPolicy:
{gel: :FeedbackPolicy}

(rules += FeedbackRule)*

defaultRule = DefaultFeedbackRule

FeedbackRule returns gel: :FeedbackRule:
{gel: :FeedbackRule}
'['" filter=FeedbackFilter ']’
'=>"' consequence=FeedbackConsequence

DefaultFeedbackRule returns gel::FeedbackRule:
{gel: :FeedbackRule}
'default' '=>' consequence=FeedbackConsequence

FeedbackFilter returns gel::FeedbackFilter:
{gel: :FeedbackFilter}
body=GExpression

FeedbackConsequence returns gel::FeedbackConsequence:
{gel: :FeedbackConsequence}
'allow' moccEvent=MoccEvent

b

// End

// Composite Mapping elements
// (cf. Subsection 3.10.4)

CompositeDomainSpecificEvent returns gel::DomainSpecificEvent:
{gel: :CompositeDomainSpecificEvent}
(visibility = Visibility)?
'Composite’ =ID ':'
(unfoldingStrategy = UnfoldingStrategy)?
body = DomainSpecificEventsPattern
'end'
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152

153
154
155
156

157
158
159
160

161
162
163
164

165
166

UnfoldingStrategy returns gel::UnfoldingStrategy:
{gel::UnfoldingStrategy}
'forall' '{'
(localvariables+=LocalVvariable)+
'}'" 'where' '{'
(instantiationPredicates+=InstantiationPredicate)+

|}|

Localvariable returns gel::LocalVariable:
{gel::Localvariable}
=ID ':' type=[ecore::EClassifier|QualifiedName]

InstantiationPredicate returns gel::InstantiationPredicate:
{gel::InstantiationPredicate}
body=GExpression

b

DomainSpecificEventsPattern returns gel::
DomainSpecificEventsPattern:
LogicalSequence

LogicalSequence returns gel::DomainSpecificEventsPattern:
1

CoincidencePattern ({gel::LogicalSequence.leftOperand=current}=>
--->' rightOperand=CoincidencePattern)*

CoincidencePattern returns gel::DomainSpecificEventsPattern:
OrPattern ({gel::CoincidencePattern.leftOperand=current} '&'
rightOperand=OrPattern)*

OrPattern returns gel::DomainSpecificEventsPattern:
XorPattern ({gel::OrPattern.leftOperand=current} '|' rightOperand=
XorPattern)*

XorPattern returns gel::DomainSpecificEventsPattern:
PlusPattern ({gel::XorPattern.leftOperand=current} '><'
rightOperand=PlusPattern) *
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167
168
169
170
171
172

173
174
175

176
177
178
179
180

181

182
183
184

185
186
187
188
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

PlusPattern returns gel::DomainSpecificEventsPattern:
IterationPattern ({gel::PlusPattern.operand=current} '+')?

IterationPattern returns gel::DomainSpecificEventsPattern:
DomainSpecificEventReferenceOrPattern ({gel::IterationPattern.
operand=current} '[' numberOfIterations=INT ']')?

DomainSpecificEventReferenceOrPattern returns gel: :
DomainSpecificEventsPattern:
DomainSpecificEventReferencewithOrwWithoutTarget
| '(' DomainSpecificEventsPattern ')'

DomainSpecificEventReferencewWwithOrWithoutTarget returns gel::
DomainSpecificEventsPattern:

DomainSpecificEventReference |
DomainSpecificEventReferenceWithArguments

DomainSpecificEventReference returns gel::
DomainSpecificEventsPattern:
{gel: :DomainSpecificEventReference}
referencedDse=[gel: :DomainSpecificEvent | ID]

DomainSpecificEventReferencewWithArguments returns gel::
DomainSpecificEventsPattern:
{gel: :DomainSpecificEventReferencewithArguments}
referencedDse=[gel: :DomainSpecificEvent |ID]
'(' arguments=ListOfArguments ')'

b

ListOfArguments returns gel::ListOfArguments:
SingleArgument | MultipleArguments

SingleArgument returns gel::ListOfArguments:
{gel::SingleArgument}
argument=[gel: :LocalVariable|ID]

MultipleArguments returns gel::ListOfArguments:
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205
206
207
208

209];

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

{gel::MultipleArguments}
head=[gel: :LocalVariable|ID]

" "
B

tail=ListOfArguments

// End

[ = m e m e -
// Miscellaneous elements

[ m e
// cf. Subsection 3.10.3

enum Visibility returns gel::Visibility:
public="'public' | private='private'

b

// cf. Section 3.4

enum ExecutionKind returns gel: :ExecutionKind:
submission="'triggers' | interruption='interrupts'

enum CallKind returns gel::CallKind:
blocking="'blocking' | nonBlocking='nonblocking'

b

QualifiedName returns ecore::EString:
ID (=>'.' ID)*

// End







Textual Concrete Syntax of the Projections

Metalanguage

As mentioned in Appendix G, there are two approaches to using Xtext [7]. In the first one,
the concrete syntax is the main artefact, and Xtext generates a corresponding abstract
syntax as an Ecore metamodel. In the second one, the abstract syntax is designed first
and then the concrete syntax is specified on top of it. For the Projections metalanguage
described in Chapter 4, we used the latter. The abstract syntax (Ecore metamodel) of the
language can be found on Figure D.1.

The following listing is the full Xtext textual concrete syntax of the Projections meta-

language.



316 Textual Concrete Syntax of the Projections Metalanguage

O N O U W N

BB W W W W W W W W W WNNN DN DN DNDNDNDNDNRR R R RO m )
m O VW 00 N U R WD R O VOO U R WDNDR O VO N U WD R OV

Listing H.1: The Xtext textual concrete syntax of the Projections metalanguage.

grammar org.gemoc.gel.projections.xtext.Projections
with org.eclipse.xtext.common.Terminals

import "http://www.gemoc.org/gel/projections" as projections
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

Projections returns projections: :Projections:
{projections: :Projections}
(imports += ImportStatement)*
'Projections' ':'

languageProjections += (LanguageProjection)®

modelProjections += (ModelProjection)*

'end'

ImportStatement returns projections::ImportStatement:
'import' =STRING

LanguageProjection returns projections::LanguageProjection:

{projections: :LanguageProjection}
'Language Projection' = ID ':'
languageConcept =

[ecore: :EClassifier|QualifiedName] 'projected onto'
moccConcept = [ecore::EClassifier|QualifiedName]
'end'

ModelProjection returns projections::ModelProjection:
{projections: :ModelProjection}
'Model Projection' = ID ':'
languageElement =
[ecore: :EObject|QualifiedName] 'projected onto'
moccElement = [ecore::EObject|QualifiedName]
'end'

QualifiedName returns ecore::EString:
ID (=>'.' ID)*
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Hereafter some of the most important terms and their occurrences within this thesis. For
most terms, the page number in bold is the (closest thing to a) definition within this thesis’s

content.

Abstract Syntax (AS) Computer representation of the grammar of a computer language.
See pages 25, 52, 115, 131, 145, 155, 176, 181, 184, 188, 200, 225, 259, 269, 307, 315

Application Programming Interface (API) Software component composed of opera-
tions, inputs, and outputs which defines a set of functionalities, independent of its
implementation using a particular programming language or for a specific execution
platform. See pages 33, 49, 166, 183

Communication Protocol For a concurrency-aware xDSML, language-level specifica-
tion of the correspondence between the Semantic Rules and the MoCMapping. See
pages 48, 62, 69,71,77,79, 92, 109, 119, 125, 136, 138, 146, 157, 160, 163, 167, 194, 197,
248, 268

Communication Protocol Application For an executable model conforming to a con
currency-aware xDSML, model-level specification of the correspondence between
the Semantic Rules Calls and the MoCApplication. See pages 49, 64, 67, 87, 125, 138,
163, 164

Concrete Syntax (CS) Mapping of the Abstract Syntax (AS) of a computer language to a
set of rules defining how to parse a string in order to form an instance of the AS of
the language. See pages 25, 184, 188, 307, 315

Concurrency Logical concept related to the dependency that exists (or not) between two
pieces of code. See pages vii, xii, 3, 7, 19, 52, 78, 145, 149, 197
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Concurrency-aware xXDSML xDSML for which the execution semantics make explicit
the systematic use of a MoC for any valid program. See pages viii, xiii, 3, 39, 48, 108,
117, 140, 145, 154, 172, 176, 181, 184, 194, 197, 225, 259, 269, 289

Domain-Specific Language (DSL) Computer language specialized to a particular appli-
cation domain. Generally considered in opposition to GPLs. See pages vii, xi, 2, 6,
31, 33,174

Domain-Specific Modeling Language (DSML) Computer language specialized to, and
presenting adequate abstractions for expressing solutions of, a particular application

domain. Generally considered in opposition to GMLs. See pages vii, xi, 2, 6, 37, 51

Event Structures MoC relying on a set of events constrained by a partial ordering. See
pages viii, xiii, 3, 22, 40, 48, 54, 58, 63, 71, 85, 91, 93, 94, 109, 145, 149, 150, 154, 174,
192, 194, 199, 239, 262

eXecutable Domain-Specific Modeling Language (xDSML) Executable computer lan-
guage specialized to, and presenting adequate abstractions for expressing solutions
of a particular application domain. See pages vii, xii, 2, 6, 38, 51, 108, 112, 145, 175,
194

Execution Data For a concurrency-aware xDSML, part of the Semantic Rules specifying,
as additional attributes and references weaved onto the AS of the language, the dy-
namic elements evolving during the execution. See pages 56, 68, 71, 109, 132, 138,
181, 188

Execution Functions For a concurrency-aware xDSML, part of the Semantic Rules spec-
ifying, as operations, the evolution of the Execution Data. See pages 56, 62, 68-70,
72,76, 78, 83, 92, 98, 104, 109, 112, 118, 132, 140, 188

foundational Subset for Executable UML Models (fUML) Specification by the OMG
of an execution semantics for UML Activity Diagrams. See pages 48, 51, 69, 72, 78,
91, 101, 109, 119, 138, 147, 150, 157, 158, 160, 163, 176, 219, 225, 249, 269, 289

GEMOC International initiative to coordinate research results regarding the development
and integration of various modeling languages for the development of heteroge-
neous systems. See pages 4, 8, 35, 42, 50, 131, 147, 150, 166, 176, 198, 225, 259, 269,
307



Glossary 319

General-purpose Modeling Language (GML) Computer language used to capture mod-
els of real-world systems from a wide variety of application domains. Generally

considered in opposition to DSMLs. See pages 5, 37

General-purpose Programming Language (GPL) Computer language used for writ-
ing software corresponding to a wide variety of application domains. Generally
considered in opposition to DSLs. See pages 5, 31, 33, 79, 81, 149, 166, 183

Language-Oriented Programming (LOP) Programming paradigm placing languages at

the heart of the software engineering activities. See pages vii, xi, 3, 35, 194, 197

Model of Concurrency (MoC) Formalism used to represent the concurrency concerns
of a system. See pages viii, xii, 3, 7, 21, 48, 58, 71, 74, 92, 140, 145, 149, 154, 174-176,
194, 197, 199

Model of Concurrency Application (MoCApplication) For an executable model con-
forming to a concurrency-aware xDSML, model-level specification of the use of a
MoC to capture the concurrency concerns. See pages 49, 64, 67, 109, 125, 145, 154,
157, 163, 166, 174, 175, 182, 192

Model of Concurrency Mapping (MoCMapping) Fora concurrency-aware xDSML, lan
guage-level specification of the systematic use of a MoC for any valid program. See
pages 48, 58, 62, 71, 75, 85, 88, 102, 109, 112, 118, 125, 133, 140, 150, 154, 163, 174, 182,
194, 197, 239, 262

Model-Based Software Engineering (MBSE) Software development methodology based
on the use of models, although they are not necessarily the key artefacts of the en-

gineering processes. Superset of MDE. See pages 2, 5, 36

Model-Driven Engineering (MDE) Engineering paradigm in which models are the key
artefacts for the specification, development, testing, validation, verification, etc. of

systems. See pages vii, xii, 2, 5, 36, 51, 166

Object Management Group (OMG) International not-for-profit technology standards con-
sortium, managing modeling standards such as UML, MOF, OCL, XMI and QVT. See
pages 36, 134, 166, 198

Operational Semantics For an executable computer language, a specification of the se-
mantics of the language through a sequence of computational steps. See pages viii,
xiii, 28, 48, 181, 194, 197
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Parallelism Physical concept related to the simultaneous execution of two pieces of code

(i.e., on two different processors). See pages vii, xii, 3, 19, 48, 194, 197

Semantic Rules For a concurrency-aware xDSML, language-level specification of the set
of data and operations capturing the runtime state and its evolution at runtime. See
pages 48, 56, 62, 69, 71, 75, 92, 98, 102, 125, 146, 155, 162, 194, 197, 200, 225, 269

Semantic Rules Calls For an executable model conforming to a concurrency-aware xDSML,
model-level specification of the set of data and operations capturing the runtime state

and its evolution at runtime. See pages 49, 64, 67, 125, 146, 162

Semantic Variation Point (SVP) Part of a specification left intentionally underspecified,
allowing implementations to vary in order to cater to different needs while still being
conform to the specification as a whole. See pages viii, 28, 48, 70, 108, 140, 184, 195,
200

Static Semantics For a computer language, additional rules and constraints to its AS,

restricting the set of valid programs. See pages 25, 132, 184

Threads Sequence of programmed instructions. Two variants must be considered: kernel
threads, provided and scheduled by the Operating System; and logical threads, pro-
vided by a programming language. Both notions are commonly mapped 1:1 although
that is not always the case. See pages 21, 22, 30, 147, 152, 157, 176, 259

Translational Semantics For an executable computer language, a specification of the
semantics of the language as a translation to another language with already well-
defined semantics. See pages viii, xiii, 28, 175, 181, 183, 191, 194, 199

Unified Modeling Language (UML) Specification by the OMG of a general-purpose mod-
eling language that intends to provide a standard way to capture the design of a
system. See pages 2, 5, 20, 28, 37, 90, 185
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e Summar Y —

Language-Oriented Programming (LOP) advocates designing eXecutable Domain-Specific
Modeling Languages (xDSMLs) to facilitate the design, development, verification and vali-
dation of modern software-intensive and highly-concurrent systems. These systems place
their needs of rich concurrency constructs at the heart of modern software engineering
processes. To ease their development, theoretical computer science has studied the use
of dedicated paradigms for the specification of concurrent systems, called Models of Con-
currency (MoCs). They enable the use of concurrency-aware analyses such as detecting
deadlocks or starvation situations, but are complex to understand and master.

In this thesis, we develop and extend an approach that aims at reconciling LOP and
MoCs by designing so-called Concurrency-aware xDSMLs. In these languages, the system-
atic use of a MoC is specified at the language level, removing from the end-user the burden
of understanding or using MoCs. It also allows the refinement of the language for specific

execution platforms, and enables the use of concurrency-aware analyses on the systems.

| Ré Sumé -

La programmation orientée langage (Language-Oriented Programming — LOP) préconise
I'utilisation de langages de modélisation dédiés exécutables (eXecutable Domain-Specific
Modeling Languages — xDSMLs) pour la conception, le développement, la vérification et la
validation de systemes hautement concurrents. De tels systemes placent I'expression de
la concurrence dans les langages informatiques au coeur du processus d’ingénierie logi-
cielle, par exemple a I'aide de formalismes dédiés appelés modeles de concurrence (Models
of Concurrency — MoCs). Ceux-ci permettent une analyse poussée du comportement des
systémes durant les phases de vérification et de validation, mais demeurent complexes a
comprendre, utiliser, et maitriser.

Dans cette thése, nous développons et étendons une approche qui vise a faire collaborer
I’approche LOP et les MoCs a travers le développement de xDSMLs dans lesquels la concur-
rence est spécifiée de facon explicite (Concurrency-aware xDSMLs). Dans de tels langages,
on spécifie I'utilisation systématique d’'un MoC au niveau de la sémantique d’exécution du
langage, facilitant I’expérience pour I'utilisateur final qui n’a alors pas besoin d’appréhender
et de maitriser l'utilisation du MoC choisi. Un tel langage peut étre raffiné lors de la phase
de déploiement, pour s’adapter a la plateforme utilisée, et les systemes décrits peuvent étre

analysés sur la base du MoC utilisé.
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