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Abstract 
Green energy or sources with zero-carbon emissions plays a leading role in the worldwide 

electrification. Electric machinery field is a subject of attention leading to the green 

technology. These machines contribute mainly in the context of industrial applications as 

electric or hybrid cars. Avoiding the issue and price of rare-earth magnets, potential researches 

contribute particularly to non-rare-earth machines. For that reasons, this thesis studies the 

ferrite motor through the ‘Spoke Type Axial Flux Permanent Magnet’ (STAFPM) topology. 

One from the main interesting properties of this motor is the capability of the no-load magnetic 

flux concentration in its airgap. 

The properties of this motor with ferromagnetic poles in the rotor are not so-well known. 

The present thesis focuses on studying its performances. Achieving this goal, consists firstly 

by doing a review on the analytical and numerical sizing approaches applied for radial and 

axial flux machines based on the magnetic field models and as well as, a review on the 

experimental test benchmark for salient-pole machines which provide us the identification and 

computation of the electromechanical parameters. Finally, a revision takes place on the 3D 

magnetic field modeling for sizing purposes. Thus the first section is partially devoted to 

review the application of the 3D finite difference method for axial machines which is a main 

objective in this thesis. 

Afterwards, using a 1D analytical model, a performance comparison takes place between 

a single stator-single rotor STAFPM motor and a reference Surface Mounted Axial Flux 

Permanent Magnet (SMAFPM) motor. This comparison is made on the electromagnetic 

torque and at unified parameters. Consequently, new STAFPM prototype is sized by a 

consideration of some magnetic constraints. This prototype takes place on a test bench. An 

original method of the experimental identification of the parameters of the lumped parameter 

electromechanical model is developed. This method is based on the static torque measurement 

as a function of the rotor position. 

A 3D numerical magnetic field model of the STAFPM motor is proposed. This tool studies 

the no-load magnetic field as well as the armature reaction fields. An original flux calculation 

method in the framework of the magnetic scalar potential formulation is developed. This 

method allows the quick calculation of the parameters of the lumped electromechanical model. 

The calculated parameters are compared to the experimentally identified parameters. 
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Résumé 
L'énergie renouvelable ou les sources à zéro émission de carbone jouent un rôle de premier 

plan dans l'électrification mondiale. Le domaine des machines électriques fait l'objet d'une 

attention particulière dans le cadre de la technologie verte. Ces machines y contribuent 

principalement dans le contexte des applications industrielles comme des voitures électriques 

ou hybrides. Pour éviter les problèmes d’approvisionnement et de coût des aimants terres-

rares, des recherches sont effectuées sur des machines sans aimants terres-rares. Pour ces 

raisons, cette thèse étudie le moteur à basé d’aimants ferrite. La topologie est celle du moteur 

à aimants permanents à flux axial avec concentration de flux, appelé en anglais « Spoke-Type 

Axial Flux Permanent Magnet » (STAFPM). L'une des principales propriétés intéressantes de 

ce moteur est la capacité de concentration du flux magnétique à vide dans son entrefer. 

Les propriétés de ce moteur avec la présence de pièce ferromagnétiques au rotor ne sont 

pas aussi bien connues. La présente thèse se concentre donc sur l'étude de ses performances. 

Pour atteindre ce but, tout d'abord un état de l’art des approches de dimensionnement 

appliquées aux machines à flux radial et axial basées sur les modèles analytiques de champ 

magnétique est effectué. De même les états de l’art sur les tests expérimentaux des machines 

à pôles saillants permettant d'identifier les paramètres statiques et la modélisation 3D du 

champ magnétique à des fins de dimensionnement sont remis à jour. La première section est 

aussi partiellement consacrée à une revue de l'application de la méthode des différences finies 

3D pour les machines axiales qui est un objectif principal de cette thèse. 

Dans cette thèse, via un modèle analytique 1D, une comparaison des performances est faite 

entre un moteur mono-entrefer « STAFPM » et un moteur axial à aimants montés en surface, 

pris comme référence nommé en anglais « Surface Mounted Axial Flux Permanent Magnet » 

(SMAFPM). Cette comparaison est effectuée sur la base du couple électromagnétique. En 

conséquence, le nouveau prototype STAFPM est dimensionné en tenant compte de certaines 

contraintes magnétiques. Ce prototype prend place sur un banc d'essais. Une méthode 

originale de détermination des paramètres statiques du modèle électromécanique à constante 

localisées en anglais « lumped parameter electromechanical model » est mise au point. Cette 

détermination est basée sur la mesure du calcul du couple statique en fonction de la position 

du rotor.  

Un modèle numérique 3D du champ magnétique dans le moteur STAFPM est proposé. Cet 

outil permet d'étudier le champ magnétique à vide ainsi que les champs de réaction de l'induit. 

Une méthode originale de calcul du flux magnétique dans le cadre d’une formulation en 

potentiel scalaire magnétique est développée. Cette méthode permet de calculer de manière 

très rapide les paramètres statiques du modèle électromécanique. Les paramètres calculés sont 

comparés aux paramètres identifiés expérimentalement. 
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General Introduction 
 

This thesis is intended to be a collaboration between LAPLACE and the Lebanese 

International University in Beirut. For two years it was the case, until the advent of a massive 

explosion in Beirut in August 2020. From this date the thesis took place only in LAPLACE. 

This thesis follows two theses in LAPLACE on Axial Flux Permanent Magnet (AFPM) 

motors. The first one is on IronLess Axial Flux Permanent Magnet (ILAFPM) motors and the 

second one on Surface Mounted Axial Flux Permanent Magnet (SMAFPM) motors. The main 

goal of these two theses is the 3D Magnetic Field model for sizing purpose. This thesis 

continues the effort of these two theses but it concerns Spoke Type Axial Flux Permanent 

Magnet (STAFPM) motors. 

Neodymium iron boron (NdFeB) constitutes one of the main source of magnetic field in 

permanent magnet motors. NdFeB magnets are the most common rare earth magnets. Due to 

rare earth magnets, permanent magnet motors are applied in different industrial sectors and 

mainly in transport like electric vehicles (EV) or hybrid electric vehicles (HEV). One of the 

main drawbacks of rare earth magnets is the risk concerning the volatility of their prices. Many 

researches are undertaken in the world to reduce or eliminate their use in electric motors. One 

of the types of motor that can eliminate the use of rare earth magnet is STAFPM motor. 

Indeed, the topology of STAFPM motor concentrates the magnetic flux produced by the 

permanent magnets in the airgap. The magnetic flux concentration in the airgap allows the use 

of permanent magnets with low remanent flux density like Ferrite magnets. Additional torque 

may be achieved by higher saliency ratio which is another interesting characteristic of 

STAFPM motor.  

This thesis does not search new topologies of STAFPM motor. It focuses on 3D magnetic 

field models to be associated to sizing equations in a design procedure. 

Chapter 1 presents the state of the art for the sizing methods of axial flux machines based on 

magnetic field model. Sizing methods based on analytical magnetic field models for Surface 

Mounted Radial Flux Permanent Magnet (SMRFPM) motors and their extension to the 

SMAFPM motors are reviewed. The electromechanical properties of STAFPM motor are not 

so-well known, thus experimental studies are undertaken in chapter 3. In the second part of 

chapter 1, the experimental methods for electric motors are reviewed. The last part of the 

chapter is dedicated to 3D numerical magnetic field model for axial flux motors.  

In Chapter 2, by means of unidimensional magnetic field models associated to sizing 

equations, SMAFPM and STAFPM motors are sized and compared. These two motors have 

the same stator. An existing SMAFPM motor with Ferrite magnet is reused. Modifications of 

the stator and the rotor of this motor allow to obtain a STAFPM motor dedicated to the 

experimental studies in Chapter 3. 
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In Chapter 3, the experimental studies on the STAFPM prototype are detailed. Two types of 

measurement are performed: with and without permanent magnets. A general 

electromechanical lumped parameter model is presented to guide these studies. Original 

identification methods of the parameters of this model are set up. This general 

electromechanical model provides quick and detailed static torque simulations. The results of 

these simulations allow to specify the goals of the 3D numerical magnetic field model. 

In Chapter 4, the magnetostatic field problem that governs static operations of STAFPM 

motors is presented. A focus on the representation of the stator is done. The magnetic scalar 

potential formulation is detailed: equation in medium, continuity conditions on interfaces and 

boundary conditions. Strong assumptions are made to reduce the computation times. Two 

types of magnetic field problems are solved: open-circuit magnetic field problem and armature 

reaction magnetic field problems. An original method of flux calculation in the framework of 

3D finite difference method is presented. This method allows to calculate the main electrical 

parameters of the STAFPM prototype that can be compared to some parameters deduced from 

the measurements performed in Chapter 3.  
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Chapter 1  

State of the art 

1.1 Introduction 

The aim of this work is to propose a sizing model for ‘Spoke Type Axial Flux Permanent 

Magnet’ (STAFPM) motor. This chapter concerns the state of the art of the sizing of axial flux 

motors (AFM) based on magnetic field models. Indeed, the use of magnetic field model allows 

to make accurate evaluations of the electromechanical quantities of interest like the magnetic 

flux in the phases of the winding and the torque. For slotless surface mounted permanent 

magnet machine radial flux motor, one uses 2D analytical model of magnetic field. In [1], a 

magnetic vector potential formulation is used jointly with the method of separation of 

variables. Two kind of magnetic sources are considered: permanent magnets and the currents 

in the phase of the stator winding. In the same manner as in [2], the currents are modeled with 

volume current density in the media. In [3], the analytical model is extended to axial flux 

machines by using magnetic scalar potential. As the stator is slotted, instead of using the 

volume current density, the surface current density is used to model armature reaction field.  

In this chapter, a state of the art of sizing method of axial flux machines based on magnetic 

field model is presented first and a specific section is dedicated to the surface current density 

wave.  

It is not easy to extend the 3D hybrid model developed in [3] for ‘Surface Mounted Axial 

Flux Permanent Magnet’ (SMAFPM) motor to STAFPM motor due to the ferromagnetic poles 

in the rotor. For SMAFPM motor, such sizing methods based on magnetic field model have 

been developed in the past years because the behavior of these machines is well-known. To 

better understand the electromechanical behavior of STAFPM motor, experimental studies are 

proposed in Chapter 3. In this chapter, a state of the art of experimental studies on synchronous 

salient pole motors is presented in a second part. 

As simple analytical magnetic field models seem to be difficult to set up for STAFPM 

motor, sizing methods based on numerical magnetic field model is proposed in Chapter 4. 3D 

finite element methods have been developed a lot to simulate the magnetic field inside 

electrical machines. These methods are the reference and very well-known to make very 

accurate simulations but they are very time consuming. In Chapter 4, 3D finite difference 

method is instead proposed. In the third part of this chapter, a state of the art on 3D finite 

difference method developed for electrical machines is presented. 

 

 



 20 

1.2 Sizing methods and magnetic field models 

The first sizing methods are based exclusively on sizing equations as the one given in 

[4,5,6] for ‘Surface Mounted Radial Flux Permanent Magnet’ (SMRFPM) motors and in 

[7,8,9] for SMAFPM motors.  

For surface mounted permanent magnet, the torque is proportional to the airgap magnetic 

shear stress which can be expressed as [10]: 

𝜎 = 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠                                                            (1.1) 

The three terms in (1.1) constitute the main loads that allow to size by hands surface 

mounted permanent magnet synchronous motors: 𝐵𝑟𝑚𝑠 is the rms value of the open circuit 

airgap magnetic flux density wave and 𝐾𝑟𝑚𝑠 is the rms value of the surface current density on 

the stator bore. Generally, the two waves are in phase and (1.1) is correct. If it is not the case, 

the expression should be multiplied by the cosine of the phase shift between the two waves 

[11]. The value of 𝐾𝑟𝑚𝑠 is generally fixed by the cooling system [12,13]. So the quality of the 

evaluation of the torque depends on the accuracy of the model used to calculate the open 

circuit airgap magnetic flux density [14].  

Most of the time, in a sizing approach, sizing equations are associated to a magnetic field 

model. Generally, for surface mounted permanent magnet, the magnetic field model is used 

to evaluate the open circuit airgap magnetic flux density.  Except, curiously in [15], where the 

armature reaction field is evaluated and equivalent current densities on magnets are calculated 

from permanent magnet geometry and physical parameters. 

1.2.1 Quick sizing and simple analytical open circuit field model 

To quickly size a motor, designers prefer to use very simple analytical magnetic field model 

to evaluate the open circuit airgap magnetic field as the one for a SMAFPM motor in [16].  

The radial flux and axial flux motors with Ferrite magnets have been sometimes compared 

as for traction application in [17]. Rarely SMAFPM and STAFPM motors with Ferrite 

magnets are compared. Most of the time one affirms that STAFPM motors have better 

performances due to their flux concentration capabilities. In Chapter 2, simple analytical open 

circuit models associated with classical sizing equations of this kind are used to size SMAFPM 

and STAFPM motors for comparison purpose. In this comparison the two motors have the 

same stator. 

1.2.2 Analytical open circuit field models 

To have better accuracy, analytical models of the magnetic field [1,2] are preferred. Such 

sizing approaches have been developed for SMRFPM motors [11,13] and extended to 

SMAFPM motors [3,18].  

For slotless SMRFPM motor, the magnetic vector potential formulation is generally used 

jointly with the volume current density wave to solve magnetic field problems [1,2,15].  
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The use of the volume current density wave is mandatory in slotless stator due to the 

thickness of the winding [18].  

For slotted motor, to simplify the model, the stator is smoothed by using Carter’s 

coefficient and the armature reaction is modeled by surface current density wave [18]. For 

slotted SMRFPM motor, in [11], a potential vector formulation is used to solve open circuit 

field problem and surface current density wave is used to represent the armature reaction.  

To size SMAFPM motor, the magnetic field must be modeled in 3D if one wants accurate 

results. So, it is better to use magnetic scalar potential formulation. Using magnetic scalar 

potential is natural for magnetic problem with permanent magnets and without volume current 

density [3,18].  

Due to the ferromagnetic poles on its rotor, the 3D analytical model of the open circuit 

magnetic field developed in [3] and [18] for SMAFPM motor cannot be applied easily to 

STAFPM motor. To model the open circuit magnetic field of a flux concentrating axial flux 

machines, an equivalent SMAFPM motor is defined. A mean radius 2D analytical model of 

this equivalent linear motor is developed in [19]. To calculate the open circuit magnetic field 

of an axial flux spoke type Vernier machine, an analytical model using the product of the 

permeance and MMF functions calculated at the mean radius of the airgap is developed in 

[20] and a 2D FEM model is needed to assess final results. A Magnetic Equivalent Circuit 

(MEC) has been developed for axial-flux interior permanent magnet machine [21,22]. The 

aim of this MEC model is to speed up the total magnetic field computation and calculate the 

torque by a step-by-step method as in numerical simulation by 3D finite element approach.   

1.2.3 Numerical magnetic field models for sizing purpose 

As 3D analytical models of the open circuit magnetic field of STAFPM motor seem to be 

difficult to set up, a 3D numerical model is proposed in Chapter 4 for sizing purpose. The 

model uses magnetic scalar potential formulation associated to 3D finite difference method. 

To precise the goal of this numerical model, experimental studies on STAFPM motor are 

undertaken in Chapter 3. The following section is focused on the state of the art on 

experimental bench dedicated to motors with saliency like STAFPM motors. 

1.3 Experimental bench for salient pole machines 

STAFPM motors have ferromagnetic poles on their rotor. The poles may contribute to very 

high torque ripples and saliency torque. Generally, one wants to reduce torque ripples and to 

use the saliency effect to obtain additional torque.  

To control the saliency effect, the self and mutual inductances in function of the rotor 

position must be known. The computation by finite element analysis (FEA) or by 

measurement technics of these inductances are based on the general electric model of 

electrical machines which may be called by ‘Coupled Circuit Model’ [23]: 

𝑽 = 𝑹𝑰 +
𝑑

𝑑𝑡
𝜱 = 𝑹𝑰 +

𝑑

𝑑𝑡
(𝜱𝒗(𝜃𝑅

𝑚) + 𝑳(𝜃𝑅
𝑚)𝑰)                            (1.2) 
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The no-load flux and the inductances in function of the mechanical rotor position 𝜃𝑅
𝑚 are 

the parameters of the model that must be identified by FEA or measurements. The inductances 

are measured at different rotor positions by blocking the rotor at each position. The 

inductances are obtained from the method of flux linkage measurement which have been 

developed for switch reluctance (SR) motor [24,25]. At a locked position of the rotor 𝜃𝑅
𝑚, if 

phase 1 is supplied by a DC voltage 𝑈, the current reaches its steady state  value 𝐼  in 

𝑡𝐼 seconds and the flux, according to (1.2), is given by: 

1(𝜃𝑅
𝑚, 𝐼) = 0 + ∫ (𝑈 − 𝑅𝑖(𝑡))

𝑡𝐼

0
𝑑𝑡 = 0 + 𝐿1(𝜃𝑅

𝑚)𝐼                         (1.3) 

If there are no permanent magnets, the constant 0 is null. AC voltage may also be used. 

In both methods, DC or AC, eddy current or hysteresis phenomena may induce errors in the 

final flux values [26].   In [27], the harmonics of the measured self and mutual inductances in 

function of the rotor position are evaluated. These harmonics are used to evaluate the 

parameters of an extended DQ model specific to motors with non-sinusoidal waveforms. At 

the final step, these parameters are applied to elaborate control method for these motors. 

Self and mutual inductances in function of the rotor are most of the times computed by 

FEA. In case of saturation, the frozen permeability method may be used [28]. To calculate the 

torque due to saliency during dynamical simulations, the derivatives of these inductances have 

to be known. The direct numerical derivatives of these inductances with respect to the rotor 

position may induce noises and errors. In the framework of finite element analysis to avoid 

these noises and errors, the inductances derivatives may be identified via the computation of 

torques by means of the Maxwell Stress Tensor [29]. The phases are supplied by DC currents 

while the rotor is moving at constant speed. Different DC current supplies are performed: 

single phase supply or double phase supply [30]. This approach is mainly based on the general 

electromechanical lumped parameter model for which the torque of a permanent magnet 

motor is the sum of the cogging torque 𝐶𝑑(𝜃𝑅
𝑚), the saliency torque which is the second term 

of (1.4) and the electromagnetic torque, the last term [31]: 

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚) +
1

2
𝑰(𝜃𝑅

𝑚)𝑇
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 𝑰(𝜃𝑅

𝑚) + 𝑰(𝜃𝑅
𝑚)𝑇

𝑑𝜱𝒗(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚               (1.4) 

Indeed, in self-driven synchronous motor, the currents 𝑰(𝜃𝑅
𝑚) are function of the rotor 

position. 

Instead of using FEA, the method proposed by [29] and [30] may be transposed to 

measurement techniques. For SR motor, at a locked position of the rotor 𝜃𝑅
𝑚, if the phase 1 is 

supplied by a DC voltage 𝑈, the current reaches its steady state value 𝐼, according to (1.4) the 

measured torque is 𝐶1(𝜃𝑅
𝑚, 𝐼) and  the derivative of the self-inductance is: 

𝜕𝐿1(𝜃𝑅
𝑚,𝐼)

𝜕𝜃𝑅
𝑚 = 2

𝐶1(𝜃𝑅
𝑚,𝐼)

𝐼2
                                              (1.5) 

For that, one must have a test bench that allows accurate torque measurements in function 

of the rotor position. Torque measurement is not easy at all due mainly to mechanical 

problems such as resonance frequencies. Static torque measurements by means of force 

sensors located on the stator are proposed to measure torque ripples of SMRFPM motor 
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[32,33]. These sensors measure reaction torque.  Song et al have identify the flux linkage 

characteristics of a SR motor and validated these identifications by measuring static torque 

characteristics [34]. In Chapter 3, the derivatives of the self and mutual inductances of the 

STAFPM motor are identified from static torque measurements on a LAPLACE’s test bench. 

Other static electromagnetic characteristics of this motor are also measured. These static 

characteristics allow to simulate the electromechanical behavior of the motor. The 

specifications of the 3D numerical magnetic field model that can be associated to sizing 

equations are defined at the end of Chapter 3. 

1.4 3D numerical magnetic model for sizing purpose 

For SMAFPM motors, an analytical magnetic field model associated to sizing equations 

has been developed [18]. For STAFPM motors, two types of magnetic field problems must be 

solved: 

- Open circuit magnetic field problem to take into account the airgap flux concentration, 

- Armature reaction field problem to take into account saliency effects. 

To solve open circuit magnetic field problems in SMAFPM motors, a 3D finite difference 

method using magnetic scalar potential formulation has been developed [16]. The 3D code 

has not been exploited at all by the author. For SMAFPM motor, the author prefers to use a 

2D finite difference mean radius model which is available in the software DIFIMEDI [35]. 

Even in SMAFPM motors, the no-load airgap magnetic flux density may depends on the radial 

position [36]. 

For STAFPM motors, 3D Finite Element magnetic field model can be used for sizing 

purposes, but most of 3D FEA need a lot of time to compute the magnetic field inside such 

motor. To speed up the solving of the open circuit and armature reaction magnetic field 

problems, assumptions must be made. As for SMAFPM motors, the stator is represented only 

by a boundary condition on the stator bore surface. In open circuit problem, as in [18], the 

magnetic flux density is normal to this surface. In armature reaction field problem, the 

armature reaction field is modeled by surface current density waves [18]. 

1.4.1  3D finite difference method 

Finite difference method is based on numerical differentiations that transform partial 

derivative equation (PDE) in finite difference equation (FDE) [37,38]. To solve Laplacian’s 

or Poisson’s equation, one may use high order finite difference approximation scheme [39]. 

Second order finite difference approximation may be sufficient to solve Poisson’s equation in 

cylindrical coordinates [40]. Using magnetic scalar potential formulation, the magnetic field 

problems to be solved for STAFPM motors can be reduced to Laplacian’s or Poisson’s 

equation. A second order finite difference approximation scheme on irregular grid is chosen 

for both types of problem.  

For a scalar function at a point 𝑃 of coordinates (𝑥, 𝑦, 𝑧), its value is given by 𝑓(𝑥, 𝑦, 𝑧). 

At a particular point 𝑃0  of coordinates (𝑥0, 𝑦0, 𝑧0) its value is: 
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𝑓0 = 𝑓(𝑥0, 𝑦0, 𝑧0)                                                  (1.6) 

The first and second order partial derivatives of 𝑓with respect to 𝑥 at point 𝑃0 are noted: 

{
(
𝜕𝑓

𝜕𝑥
)
0
=

𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0, 𝑧0)     

(
𝜕2𝑓

𝜕𝑥2
)
0
=

𝜕2𝑓

𝜕𝑥2
(𝑥0, 𝑦0, 𝑧0)

                                      (1.7) 

In the neighborhood of point 𝑃0 the values of the function can be evaluated with a second 

order approximation using Taylor’s development at order two: 

{
𝑓1 = 𝑓(𝑥0 + ℎ1, 𝑦0, 𝑧0) = 𝑓0 + ℎ1 (

𝜕𝑓

𝜕𝑥
)
0
+
ℎ1
2

2
(
𝜕2𝑓

𝜕𝑥2
)
0
+ 𝑜(ℎ1

2)

𝑓3 = 𝑓(𝑥0 − ℎ3, 𝑦0, 𝑧0) = 𝑓0 − ℎ3 (
𝜕𝑓

𝜕𝑥
)
0
+
ℎ3
2

2
(
𝜕2𝑓

𝜕𝑥2
)
0
+ 𝑜(ℎ3

2)
         (1.8) 

Inversely, knowing the values of the function at a point 𝑃0 and at its neighborhood allows to 

approximate the partial derivatives [3,54]:  

{
(
𝜕𝑓

𝜕𝑥
)
0
≈

ℎ1−ℎ3

ℎ1ℎ3
𝑓0 +

ℎ3

ℎ1(ℎ1+ℎ3)
𝑓1 −

ℎ1

ℎ3(ℎ1+ℎ3)
𝑓3   

(
𝜕2𝑓

𝜕𝑥2
)
0
≈ −

2

ℎ1ℎ3
𝑓0 +

2

ℎ1(ℎ1+ℎ3)
𝑓1 +

2

ℎ3(ℎ1+ℎ3)
𝑓3

                     (1.9) 

These expressions are used in Chapter 4 to transform Laplace’s equation of the magnetic 

scalar potential into a system of finite difference equations. 

1.4.2 Specific boundary conditions 

For the open circuit magnetic field problem, the boundary conditions are the classical 

tangential magnetic field or normal magnetic flux density. 

 For armature reaction magnetic field problem, there is a specific boundary condition on 

the surface of the stator bore. The tangential component of the magnetic field intensity is equal 

to the surface current density [18]. The boundary condition on the surface of the stator bore is 

given by: 

𝐻⃗⃗ 𝑒𝑧⃗⃗  ⃗ = 𝐾⃗⃗ = 𝐾(𝑟, 𝜃, 𝑡)𝑒𝑟⃗⃗  ⃗                                             (1.10) 

The surface current density wave is the sum, over all phases of the stator winding, of the 

product of the linear distribution function of the conductors 𝐶𝑘(𝜃) of phase 𝑘 and the current 

𝐼𝑘(𝑡) feeding this phase [11,13].  

1.4.3 Distribution function of conductors 

A surface distribution function of conductors 𝐶𝑘(𝜃) of phase 𝑘 has been defined for slotless 

radial flux machine in [2,41] which lead to volume current density wave  𝑗(𝜃, 𝑡): 

𝑗(𝜃, 𝑡) = ∑ 𝐶𝑘(𝜃)
𝑞
𝑘=1 𝐼𝑘(𝑡)                                        (1.11) 

The distribution function of conductors 𝐶𝑘(𝜃) can be decomposed in Fourier series which 

components are calculated from the winding characteristics [1]. Some authors prefer to use 

the term “winding functions” from which are obtained the magneto motive force wave of each 

phase around the stator and the distribution functions of conductors are the “winding function 

derivatives” [42]. Winding theory is classically based on “winding functions” [42]. An attempt 
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to use the “distribution functions of conductors” as basics of winding theory is done in [11] 

and [13]. Indeed, the winding coefficients may be calculated from the harmonics of the 

distribution functions of conductors [11]. 

For radial flux motor with slotted stator, the linear distribution function of conductors 

𝐶𝑘(𝜃) of phase 𝑘 depends only on the azimuthal position 𝜃 and the surface current density 

wave 𝐾(𝜃, 𝑡) is given by [11]: 

𝐾(𝜃, 𝑡) = ∑ 𝐶𝑘(𝜃)
𝑞
𝑘=1 𝐼𝑘(𝑡)                                        (1.12.a) 

For axial flux motor, the dependency with the radial position must be taken into account [3]: 

𝐾(𝑟, 𝜃, 𝑡) = ∑ 𝐶𝑘(𝑟, 𝜃)
𝑞
𝑘=1 𝐼𝑘(𝑡)                                        (1.12.b) 

1.4.4 Electric parameters calculation 

Once the magnetic field in the study domain is obtained by 3D finite difference method, 

the parameters of the electric model must be calculated.  

1.4.4.1 Magnetic energy method  

The inductances may be identified from the calculation of the magnetic energy. The use of 

magnetic potential vector 𝐴  may speed up the calculation of energy because, in this case, the 

integration is done only over the winding region 𝑉𝑤𝑖𝑛𝑑 and not over all the study domain. 

Using the volume current density 𝐽 , the energy is given by the integral [43]: 

𝑊 =∭ 𝐴 𝐽 𝑑𝑉
𝑉𝑤𝑖𝑛𝑑

                                                  (1.13) 

When the magnetic circuit is not saturated, the energy of SR motor can be also expressed as: 

𝑊(𝜃𝑅
𝑚) =

1

2
𝑰(𝜃𝑅

𝑚)𝑇𝑳(𝜃𝑅
𝑚)𝑰(𝜃𝑅

𝑚)                          (1.14) 

If only the phase 1 is supplied by a current 𝐼, its inductance at the rotor position 𝜃𝑅
𝑚 is 

identified as:  

𝐿1(𝜃𝑅
𝑚) = 2

𝑊(𝜃𝑅
𝑚)

𝐼2
                                              (1.15) 

In a sizing procedure, this method can be hardly used for axial flux machine because it may 

be very time consuming.  

1.4.4.2 Magnetic flux method  

For radial flux motor, a 2D model can be used with the magnetic vector potential formulation: 

𝐴 = 𝐴𝑧(𝑟, 𝜃, 𝑡)𝑒𝑧⃗⃗  ⃗                                                (1.16) 

Considering the invariance by translation along an axial line parallel to 𝑒𝑧⃗⃗  ⃗, the radial 

component of the magnetic flux density is: 

𝐵𝑟(𝑟, 𝜃, 𝑡) =
1

𝑟

𝜕𝐴𝑧(𝑟,𝜃,𝑡)

𝜕𝜃
                                  (1.17) 

A surface 𝑆(𝜃) is defined on the stator bore of radial position 𝑟0 with an axial length 𝐿 and 

with an angular width  
𝜋

𝑝
  situated between two angular positions,  𝜃 −

𝜋

𝑝
  and 𝜃, on the stator 

bore. The magnetic flux, 𝜑(𝜃, 𝑡), crossing this surface is given by: 



 26 

𝜑(𝜃, 𝑡) = ∬ 𝐵⃗ . 𝑑𝑆⃗⃗⃗⃗ 
𝑆(𝜃)

= 𝐿 𝑟0 ∫ 𝐵𝑟(𝑟0, 𝜃, 𝑡)𝑑𝜃
𝜃

𝜃−
𝜋

𝑝

                                 (1.18) 

According to (1.17), the last integral is put in the form: 

∫ 𝐵𝑟(𝑟0, 𝜃, 𝑡)𝑑𝜃 =
1

𝑟0
∫

𝜕𝐴𝑧(𝑟0,𝜃,𝑡)

𝜕𝜃
𝑑𝜃

𝜃

𝜃−
𝜋

𝑝

𝜃

𝜃−
𝜋

𝑝

=
1

𝑟0
(𝐴𝑧(𝑟0, 𝜃, 𝑡) − 𝐴𝑧 (𝑟0, 𝜃 −

𝜋

𝑝
, 𝑡))      (1.19) 

The flux crossing 𝑆(𝜃) is [1]: 

𝜑(𝜃, 𝑡) = 𝐿 (𝐴𝑧(𝑟0, 𝜃, 𝑡) − 𝐴𝑧 (𝑟0, 𝜃 −
𝜋

𝑝
, 𝑡))                                 (1.20) 

All the conductors of a phase 𝑘 are located inside a surface 𝑆𝑘 of the study domain. The flux 

per unit length in the phase 𝑘 is easily calculated by means of the distribution function of 

conductors 𝐶𝑘(𝜃) [1,2,41]: 

𝑘(𝑡) = ∬ 𝐴𝑧(𝑟, 𝜃, 𝑡)𝐶𝑘(𝜃)𝑟𝑑𝑟𝑑𝜃𝑆𝑘
                           (1.21) 

This expression of flux can be adapted to axial flux machine. If we consider, fictively, for a 

while, that the one component magnetic potential vector formulation can be used for axial flux 

machine, the magnetic potential vector would have been [44]: 

𝐴 = 𝐴𝑟(𝜃, 𝑧, 𝑡)𝑒𝑟⃗⃗  ⃗                                                (1.22) 

Considering the supposed invariance by translation along a radial line parallel to 𝑒𝑟⃗⃗  ⃗, the 2D 

problem would have been solved at a given radius 𝑟𝑚 [36,44]. The axial component of the 

magnetic flux density would have been: 

𝐵𝑧(𝜃, 𝑧, 𝑡) =
1

𝑟𝑚

𝜕𝐴𝑟(𝜃,𝑧,𝑡)

𝜕𝜃
                                  (1.23) 

A surface 𝑆(𝜃) is defined on the stator bore of axial position 𝑧0 with a radial length 𝛿𝑟 and 

with an angular width  
𝜋

𝑝
  situated between two angular positions,  𝜃 −

𝜋

𝑝
  and 𝜃, on the stator 

bore. The magnetic flux, 𝜑(𝜃, 𝑡), crossing this surface would have been given by: 

𝜑(𝜃, 𝑡) = ∬ 𝐵⃗ . 𝑑𝑆⃗⃗⃗⃗ 
𝑆(𝜃)

= 𝛿𝑟 𝑟𝑚 ∫ 𝐵𝑧(𝜃, 𝑧0, 𝑡)𝑑𝜃
𝜃

𝜃−
𝜋

𝑝

                                 (1.24) 

According to (1.23), the last integral could have been put in the form: 

∫ 𝐵𝑧(𝜃, 𝑧0, 𝑡)𝑑𝜃 =
1

𝑟𝑚
∫

𝜕𝐴𝑟(𝜃,𝑧0,𝑡)

𝜕𝜃
𝑑𝜃

𝜃

𝜃−
𝜋

𝑝

𝜃

𝜃−
𝜋

𝑝

=
1

𝑟𝑚
(𝐴𝑟(𝜃, 𝑧0, 𝑡) − 𝐴𝑟 (𝜃 −

𝜋

𝑝
, 𝑧0, 𝑡))      (1.25) 

The flux crossing 𝑆(𝜃) would have been: 

𝜑(𝜃, 𝑡) = 𝛿𝑟 (𝐴𝑟(𝜃, 𝑧0, 𝑡) − 𝐴𝑟 (𝜃 −
𝜋

𝑝
, 𝑧0, 𝑡))                                 (1.26) 

To model axial flux machine in 3D, in chapter 4, a magnetic scalar potential is used. The 

similarity of the flux expressions (1.20) and (1.26) suggests that expression (1.24) may be 

useful. Instead of having finite length 𝛿𝑟, the elemental surface 𝑆(𝜃) should have an 

infinitesimal length 𝑑𝑟 and the expression (1.24) would define a flux derivative with respect 

to radial position: 

𝑑𝜑

𝑑𝑟
(𝑟, 𝜃, 𝑧0, 𝑡) = 𝑟 ∫ 𝐵𝑧(𝑟, 𝜃, 𝑧0, 𝑡)𝑑𝜃

𝜃

𝜃−
𝜋

𝑝

                      (1.27) 
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In chapter 4, with the help of this expression, an original model of the magnetic flux in the 

phases of the stator winding is developed in the framework of the 3D Finite Difference Method 

combined with the magnetic scalar potential formulation. 

 

1.5 Conclusion 

This chapter sets the main contexts in which this work intends to contribute.  

The first main context is the development of magnetic field model associated to sizing 

equations. In chapter 2, quick sizing associated to simple analytical model of the open circuit 

field are used to compare SMAFPM and STAFPM motors having the same stator. 

For surface mounted permanent magnet motor, the sizing equations could have been 

associated to analytical magnetic field model because they are very well known. For STAFPM 

motor, the ferromagnetic poles in the rotor do not facilitate the setting up of 3D analytical 

magnetic field models that can be easily associated to sizing equations. Instead a 3D numerical 

magnetic field model is proposed. 

To know the goals of this numerical field model, experimental studies are undertaken in 

chapter 3 to better know the electromechanical behavior of STAFPM motor. The second main 

context is the experimental identification of the parameters of the general electromechanical 

model of an electric motor from static torque measurements. The identification of these 

parameters in chapter 3 allows to make quick and detailed simulations of a STAFPM motor 

specially sized for these experimental studies. The obtained results allow to specify the goals 

of the numerical magnetic field model. 

The last main context in which this work contributes is the flux calculation in the 

framework of 3D finite difference method associated to magnetic scalar potential formulation. 
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Chapter 2  

Spoke Type Permanent Magnet Axial Flux Motor 

Prototype Sizing 

2.1 Introduction 

The sizing procedure of surface mounted permanent synchronous motor (SMPMSM) is 

well established. The loadability properties of non-salient synchronous motor are very well 

known [12]. From these properties, an accurate analytical sizing model has been developed 

for radial flux surface mounted permanent magnet synchronous motor [10,13]. This analytical 

sizing model has been extended to surface mounted permanent magnet axial flux machines 

[3,18]. 

The extension of this type of analytical model to salient permanent magnet motors is 

difficult. It is in part due to the fact that the loadability concepts established so far do not take 

specifically into account the effects of saliency because these motors are not so well-known 

as SMPMSM. In order to better know this kind of motor, experimental studies on a spoke-

type motor are undertaken in chapter 3. The main goal of this chapter is to size the spoke type 

axial flux permanent magnet (STAFPM) prototype for these experimental studies. 

The fabrication of laminated ferromagnetic material for the stator is extremely difficult for 

axial flux machines [45]. In order to avoid this difficulty, an existing axial flux motor in the 

LAPLACE laboratory is reused. The great advantage of this motor is that the ferromagnetic 

part of the stator is already laminated [16].This motor is a single rotor-single stator axial flux 

topology with theoretically surface mounted and axially polarized  ferrite permanent magnets.  

 One of the main properties of spoke-type motor is the no-load magnetic flux concentration 

in the airgap. Thus, the stator and rotor of the existing motor must be modified to fulfill this 

important property. In order to make the best use of the stator, thermal and magnetic loads of 

the existing motor are theoretically evaluated first. The results of this theoretical evaluation 

are the basis for sizing the new STAFPM prototype. 

The no-load magnetic flux concentration in the airgap is better fulfill by a high number of 

poles. Thus the number of poles is increased. The fabrication of a rotor containing 

ferromagnetic poles, Ferrite permanent magnets and no ferromagnetic yoke is not common at 

all and may be difficult for an academic laboratory. To reduce this difficulty, the axial airgap 

length is increased. This increase of the airgap allows reducing the axial attractive force that 

may applied on ferromagnetic pole or magnets.  

To show the benefits of concentrating magnetic flux in the airgap, a comparative sizing of 

surface mounted axial flux permanent magnet (SMAFPM) motor and STAFPM motor is 

proposed with the same conditions:  same number of poles and airgap. This comparative sizing 

is done after the evaluation of thermal and magnetic loads of the existing motor. The results 

of this evaluation are used to make the specifications of the two motors. Their specific torque 

is one of the criteria to compare the two motors.  

After the comparison of the performances of these two motors, the choice of the prototype 

for experimental study is done. 
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2.2 General description of the existing axial flux motor 

The existing axial flux motor is a three-phase motor with four pole pairs (Figure 2-1 and 

Figure 2-4). The stator has two slots per pole and per phase.  

 

Figure 2-1: A photography of the stator of the existing SMAFPM 

In each slot there are 95 conductors and in each phase all conductors are in series [16]. The 

number of slots 𝑛𝑒 and the number of turns per phase 𝑛𝑠 are deduced from the expression 

(2-1): 

{

𝑛𝑒 = 2𝑝𝑞𝑛𝑒𝑝𝑝               

𝑛𝑠 =
𝑛𝑒𝑛𝑐
2𝑞

= 𝑝𝑛𝑒𝑝𝑝𝑛𝑐
 (2-1) 

The main parameters are reported in TABLE 2-I. 

TABLE 2-I : Main SMAFPM motor parameters 

Number of phases, 𝑞 3 

Number of pairs of poles, 𝑝 4 

Number of slots per pole and per phase, 𝑛𝑒𝑝𝑝 2 

Number of conductors per slot, 𝑛𝑐 95 

Number of slots, 𝑛𝑒 48 

Number of turns, 𝑛𝑠 760 

Copper filling factor, 𝑘𝑓𝑖𝑙𝑙 0.3 

Air gap thickness, 𝑒𝑔(𝑚𝑚) 1.0 

2.2.1 Stator 

The ferromagnetic material of stator is made of non-oriented grain electrical steel and 

approximated by the alloy Iron-Silicium (FeSi) “M235-35A” with 0.35 mm sheet thickness 

[46]. Figure 2-2 presents its B(H) curve. 
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Figure 2-2: B(H) curve of the electrical steel M235-35A 

The slots are rectangular which means that their azimuthal width is independent of the 

radial position 𝑟. The main geometrical parameters are summarized in TABLE 2-II. 

TABLE 2-II: Main  geometrical parameters of the stator 

Internal radius, 𝑅1(𝑚𝑚) 100.0 

External radius, 𝑅2(𝑚𝑚) 150.0 

Slot axial height, ℎ𝑒(𝑚𝑚) 12.5 

Slot azimuthal width, 𝑤𝑒(𝑚𝑚) 8.0 

Azimuthal width of slot opening, 𝑜𝑒(𝑚𝑚) 4.8 

Axial height of slot opening, ℎ𝑜(𝑚𝑚) 1.0 

Stator yoke axial thickness, ℎ𝑐𝑠(𝑚𝑚) 8.0 

Conductor diameter, 𝑑𝑐(𝑚𝑚) 0.63 

 

Indeed, Figure 2-3 shows some geometrical parameters of this stator. 

 

Figure 2-3:Slot geometric parameters 
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2.2.2 Rotor 

Figure 2-4 shows a photography of the rotor of the existing SMAFPM motor. The 

parallelepiped Ferrite permanent magnets are axially polarized and buried between 

ferromagnetic parts. The measured geometrical parameters are summarized in TABLE 2-III. 

Furthermore, Table 2-IV gives the values of 𝐵 and 𝐻 on the intrinsic recoil curve.  

TABLE 2-III:Main geometrical parameters of the rotor 

Number of pairs of pole, 𝑝 4 

PM internal radius, 𝑅𝑖𝑛𝑡 91.50 𝑚𝑚 

PM external radius, 𝑅𝑒𝑥𝑡 160.0 𝑚𝑚 

Axial thickness of the rotor yoke, ℎ𝑐𝑟 8.0 𝑚𝑚 

PM axial thickness, ℎ𝑚 5.0 𝑚𝑚 

PM azimuthal width at the mean radius, 𝐿𝑚 65.45 𝑚𝑚 

PM radial length, 𝑙𝑎 50.0 𝑚𝑚 

 

Figure 2-4: A photography of the existing SMAFPM rotor 

Figure 2-5 shows the intrinsic recoil curve of the magnets mounted on the rotor surface: 

𝐵(𝐻) = 𝐽 + 𝜇0𝜇𝑟𝑎𝐻 (2-2) 

 

TABLE 2-IV:B-H values of the intrinsic recoil curve of  Ferrite magnet 

𝐵(𝑇) 𝐻(𝑘𝐴.𝑚−1) 𝜇𝑟𝑎 

0.37 0.0  

0.305 -50 1.03 

0.30 -55 1.01 

0.245 -100 1.0 

0.2 -135 1.0 

0.18 -150 1.0 

0.15 -175 1.0 

0.12 -200 1.0 

0.1 -215 1.0 
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Figure 2-5: Intrinsic recoil curve 𝐵(𝐻) of Ferrite magnet 

The axial polarization 𝐽, relative magnetic permeability 𝜇𝑟𝑎 and the optimal magnetic flux 

density 𝐵𝑜𝑝𝑡 where the 𝐵𝐻 product is maximal are shown in (2-3). 

{

𝐽 = 0.37 𝑇
𝜇𝑟𝑎 = 1.0

𝐵𝑜𝑝𝑡 =
𝐽

2
= 0.185 𝑇

 (2-3) 

The ferromagnetic material of the rotor is the electrical steel XC12. Figure 2-6 presents its 

B(H) curve. 

 
Figure 2-6: B(H) curve of the electrical steel XC12 

 

 



 34 

2.3 Evaluation of the magnetic loads of the existing motor 

The no-load magnetic flux densities in the airgap, in the yokes and teeth of the existing 

motor are theoretically evaluated in this section. This evaluation is done according to the 

sizing approach developed in [10][13] based on loadability concepts. To guarantee the best 

use of the stator in a magnetic point of view, these values of magnetic loads chosen in [16] 

are kept and used to size the new STPMAFM prototype.  

2.3.1 No-load magnetic flux density in the airgap 

To calculate the no-load magnetic flux density, the motor is assimilated to a linear motor 

developed at the mean radius: 

𝑅𝑚 =
𝑅1 + 𝑅2

2
= 125.0 𝑚𝑚 (2-4) 

The permanent magnets which are parallelepipeds are approximated by sectorial magnets 

whose arc pole coefficient 𝛽 is equal to [16]: 

𝛽 =
2

3
 

They are axially polarized and supposed to be surface mounted and not buried. The following 

assumptions are made: 

 The magnetic fields in the magnet and airgap are axial; 

 The magnetic field does not depend on the radial position 𝑟 (1D mean radius model);  

 Iron permeability is infinite; 

 The slot effects on the magnetic field are neglected. 

 

The geometrical parameters are given in TABLE 2-II and TABLE 2-III. The study domain at 

the mean radius 𝑅𝑚 with smoothed stator is presented on Figure 2-7. The azimuthal length of 

one pole at the mean radius is 𝐿𝑝 and 𝐿𝑚 is the azimuthal length of one magnet. Due to the 

assumptions, only the magnetic field in the permanent magnets and the air gap are involved 

and the material properties of these media are given by the following equations: 

 

{
𝐵𝑎⃗⃗ ⃗⃗ = 𝜇𝑎𝐻𝑎⃗⃗⃗⃗  ⃗ + 𝐽 

𝐵𝑔⃗⃗⃗⃗ = 𝜇0𝐻𝑔⃗⃗ ⃗⃗         
                                                        (2-5) 

 

Figure 2-7: Study domain for the evaluation of the air gap flux density 

  



 35 

The Ampere’s law is applied on the closed path shown in Figure 2-8. 

 
Figure 2-8: Closed path to apply Ampere’s law 

The axial magnetic field  intensities in the permanent magnet (𝐻𝑧𝑎) and in the air gap 

(𝐻𝑧𝑔) are linked by the following equation (2-6). 

𝐻𝑧𝑎ℎ𝑚 +𝐻𝑧𝑔𝑒𝑔 = 0 (2-6) 

Magnetic flux conservation law is applied using surfaces  𝑆𝑔 and 𝑆𝑚 on Figure 2-9. 

 

Figure 2-9: Flux conservation law applied on airgap and magnet surfaces 𝑆𝑔 and  𝑆𝑚 

As the two surfaces are equal and due to the assumptions, the axial magnetic flux densities in 

the airgap (𝐵𝑧𝑔) and the magnet (𝐵𝑧𝑎) are equal too. Equations (2-5) and (2-6) lead to the 

expression of the axial flux density written in (2-7). 

𝐵𝑧𝑔 = 𝐵𝑧𝑎 =
𝐽ℎ𝑚

ℎ𝑚 + 𝜇𝑟𝑎𝑒𝑔
= 0.31 𝑇 (2-7) 

The magnetic flux density in the magnet is thus higher than the optimal magnetic flux density 

in the magnet (2-3). According to the assumptions, the airgap magnetic flux density has a 

rectangular waveform. For surface mounted permanent magnet machine with sinusoidal 

current waveforms, the main magnetic load is the magnitude of the fundamental of airgap 

magnetic flux density. Its value, for a rectangular wave form, is given by the following 

expression: 

𝐵𝑚 =
4𝐵𝑧𝑔𝑠𝑖𝑛 (𝛽

𝜋
2)

𝜋
= 0.34 𝑇 (2-8) 
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Therefore, it’s ‘rms’ value is: 

𝐵𝑟𝑚𝑠 =
𝐵𝑚

√2
= 0.24 𝑇 (2-9) 

2.3.2 No-load magnetic flux density in the stator iron 

As the SMAFPM existing motor has six teeth per pole, according to the assumptions, the 

magnetic flux on one pole has the pattern shown on Figure 2-10. From Figure 2-9 and Figure 

2-10, the no-load airgap flux per pole 𝜑𝑝 is given by: 

𝜑𝑝 = 𝐵𝑧𝑔𝑆𝑔 (2-10) 

According to Figure 2-10, the magnetic flux conservation law gives the expression of the 

azimuthal magnetic flux density  𝐵𝑡𝑦𝑠 in the stator yoke and 𝐵𝑡𝑦𝑟 in the rotor yoke and its 

numerical value: 

𝐵𝑡𝑦𝑠 = 𝐵𝑡𝑦𝑟 =
𝐿𝑚𝐵𝑧𝑔

2ℎ𝑐𝑠
= 1.26 𝑇 (2-11) 

At the mean radius, the tooth pitch and the width of a tooth are expressed in (2-12). 

{
𝑝𝑑 =       

2𝜋𝑅𝑚
𝑛𝑒

  = 16.36 𝑚      

𝑤𝑑 = 𝑝𝑑 −𝑤𝑒    = 8.36 𝑚𝑚     

 (2-12) 

The no-load axial magnetic flux density in teeth are thus given by(2-13). 

𝐵𝑧𝑑 =
𝐿𝑚𝐵𝑧𝑔

4𝑤𝑑
= 0.6 𝑇 (2-13) 

 

Figure 2-10: Magnetic flux pattern on one pole of the existing motor 
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These estimated values of the no-load magnetic flux density in yokes and teeth are compatible 

with the 𝐵(𝐻) curves of the ferromagnetic media in the stator and the rotor (Figure 2-2 and 

Figure 2-6). These values guarantee that even with a strong armature reaction the values of 

magnetic flux density in the ferromagnetic media will stay in the linear zone of  𝐵(𝐻) curves. 

2.4 Characterization of the armature reaction 

The armature reaction is characterized by the thermal loads which are the ‘rms’ values of 

the current density 𝑗𝑟𝑚𝑠 in the conductors of the stator and the linear current density 𝐴𝑟𝑚𝑠 
around the stator bore. These two values have a great effect on thermal behavior of the motor 

because their product are proportional to the Joule loss in the stator winding [2]-[5].  
The armature reaction is also characterized by the ‘rms’ value of the surface current density 

waveform 𝐾𝑟𝑚𝑠 around the stator bore. It is worth recalling that the electromagnetic torque is 

proportional to the shear stress 𝜎 [12]: 

𝜎 = 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠 (2-14) 

2.4.1 Thermal loads 

The ‘rms’ value of the current density chosen in [16] is: 

𝑗𝑟𝑚𝑠 = 5.0 𝐴.𝑚𝑚
−2 (2-15) 

Knowing the filling factor (TABLE 2-I) and the sizes (TABLE 2-II) of each slot leads to the 

slot Ampere Turns: 

𝐴𝑇𝑒 = 𝑘𝑓𝑖𝑙𝑙𝑆𝑒𝑗𝑟𝑚𝑠 (2-16) 

The ‘rms’ value of the rated current is then: 

𝐼𝑟𝑚𝑠 =
𝐴𝑇𝑒
𝑛𝑐

= 1.5 𝐴 (2-17) 

The expression of the linear current density at the mean radius is: 

𝐴𝑟𝑚𝑠 =
𝑛𝑒𝐴𝑇𝑒
2𝜋𝑅𝑚

 (2-18) 

The thermal behavior of the motor is characterized by the thermal loads which are the 

current density, the linear current density and their product [12]: 

{

𝑗𝑟𝑚𝑠 = 5.0 𝐴.𝑚𝑚−2

𝐴𝑟𝑚𝑠 = 8727 𝐴.𝑚−1

𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠 = 4.36 10
10𝐴2. 𝑚−3

 (2-19) 

These values correspond to the thermal behavior of an electric motor cooled by natural 

convection. 
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2.4.2 Surface current density 

The distribution of conductors of the phase 1 along the stator bore at the mean radius is 

shown on Figure 2-11. 

 

Figure 2-11: Distribution of the conductors of phase 1 along stator bore at mean radius 

  

Figure 2-12 shows the linear distribution of conductors of phase 1 [11], 𝐶1(𝜃)and its 

fundamental: 

𝐶1𝑓(𝜃) = 𝐶𝑓𝑚𝑐𝑜𝑠(𝑝𝜃) (2-20) 

 

Figure 2-12: Linear distribution of conductors or distribution function of conductors 
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The magnitude of the fundamental of the current distribution function is given by [11]: 

𝐶𝑓𝑚 =
4𝑛𝑐
𝜋𝑅𝑚𝛼

𝑠𝑖𝑛 (
𝑝𝛼

2
)
𝑠𝑖𝑛 (

1
2𝑛𝑒𝑝𝑝𝑝𝜃𝑑)

𝑠𝑖𝑛 (
1
2 𝑝𝜃𝑑)

 (2-21) 

where 𝛼 is the azimuthal angular width of the slot opening and  𝜃𝑑 azimuthal angular width 

of the tooth pitch. With the numerical values of the parameters involved in this expression the 

magnitude is: 

𝐶𝑓𝑚 = 3734.8 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠/𝑚 

The magnitude of the surface current density wave is given by [11,13]: 

𝐾𝑚 =
3

2
𝐼𝑚𝐶𝑓𝑚 (2-22) 

Its ‘rms’ value is: 

𝐾𝑟𝑚𝑠 = 8421 𝐴.𝑚−1 

The electromagnetic torque for sinusoidal currents is given by [3,18]: 

𝐶𝑒𝑚 = 2𝜋(𝑅2 − 𝑅1)𝑅𝑚
2 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠 (2-23) 

With the numerical data of the parameters in this expression, the value of torque is: 

𝐶𝑒𝑚 = 9.94 𝑁.𝑚 

The loads characterizing the electromagnetic performances of the motor are: 

{

𝐵𝑟𝑚𝑠 = 0.24 𝑇                                        

𝐾𝑟𝑚𝑠 = 8421 𝐴.𝑚−1                             

𝜎 = 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠 = 2024 𝑁.𝑚
−2

 (2-24) 

With the geometrical parameters of the motor, the theoretical active mass of the existing 

motor, its total axial height and its specific torque can be evaluated. The results of this 

evaluation are summarized in (TABLE 2-V). 

TABLE 2-V: Mass of the active parts and the theoretical specific torque 

Mass of permanent magnets,  𝑀𝐴𝑃(𝑘𝑔) 0.65 

Mass of rotor yoke,  𝑀𝐶𝑅(𝑘𝑔) 2.45 

Theoretical active mass of the rotor , 𝑀𝑅𝑜𝑡(𝑘𝑔) 3.10 

Theoretical active mass of the stator, 𝑀𝑆𝑡𝑎𝑡(𝑘𝑔) 6.6 

Theoretical active mass of the motor, 𝑀𝑀𝑜𝑡(𝑘𝑔) 9.7 

Theoretical specific torque, 𝑆𝑇(𝑁.𝑚. 𝑘𝑔−1) 1.024 

Total axial height, ℎ𝑟𝑒𝑓(𝑚𝑚) 34.5 𝑚𝑚 

2.5 Synthesis of the evaluation of the existing motor 

The goal of this first theoretical study is to evaluate the thermal and magnetic loads 

characterizing the performances of the existing motor.  

The values characterizing its no-load magnetic behavior are summarized in TABLE 2-VI. 
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TABLE 2-VI: Characterization of the no-load magnetic behavior 

Magnetic flux density in yoke, 𝐵𝑡𝑦(𝑇) 1.26 

Magnetic flux density in teeth, 𝐵𝑧𝑑(𝑇) 0.6 

 

The value characterizing its thermal behavior is summarized in TABLE 2-VII. 

 

TABLE 2-VII: Characterization of the thermal behavior 

RMS value of current density,  𝑗𝑟𝑚𝑠(𝐴.𝑚𝑚
−2) 5.0 

RMS value of the linear current density,  𝐴𝑟𝑚𝑠(𝐴.𝑚
−1) 8727.0 

Product, 𝐴𝑟𝑚𝑠𝑗𝑟𝑚𝑠(𝐴
2. 𝑚−3) 4.36 1010 

 

The values that characterize the electromagnetic performance are summarized in TABLE 

2-VIII. 

TABLE 2-VIII: Characterization of the electromagnetic performance 

RMS value of the no-load airgap magnetic flux density,  𝐵𝑟𝑚𝑠(𝑇) 0.24 

RMS value of the surface current density ,  𝐾𝑟𝑚𝑠(𝐴.𝑚
−1) 8421.0 

Shear stress, 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠(𝑁.𝑚
−2) 2024.0 

 

These values are used to modify the stator and size the rotor of the STAFPM prototype. As 

the existing motor was sized to have a minimal axial height, it is recalled as a reference height 

for the followings: 

ℎ𝑟𝑒𝑓 = 34.5 𝑚𝑚 

2.6 Specifications for the new STAFPM prototype 

The existing motor has four pairs of poles and its airgap thickness is 1.0 𝑚𝑚. To keep an 

integer distributed winding, the number of pairs of poles for the new prototype is increased to 

eight. Thus the number of slots per pole and per phase is unity. The airgap is doubled to 2 𝑚𝑚 

in order to reduce the axial attractive magnetic force between stator and rotor. This reduce 

constraints of the fabrication of the rotor. The main parameters  are summarized in TABLE 

2-IX. 

TABLE 2-IX: Main parameters for the new prototype 

Number of phases, 𝑞 3 

Number of pairs of poles, 𝑝 8 

Number of slots per pole per phase, 𝑛𝑒𝑝𝑝 1 

Number of conductors per slot, 𝑛𝑐 95 

Number of slots, 𝑛𝑒 48 

Number of turns, 𝑛𝑠 760 

Copper filling factor, 𝑘𝑓𝑖𝑙𝑙 0.3 

Air gap thickness, 𝑒𝑔(𝑚𝑚) 2.0 
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The winding of the stator is changed but all the others parameters like geometrical parameters 

of the stator are unchanged. The loads for thermal behavior are kept (TABLE 2-VII). For the 

magnetic load only the no-load magnetic flux density in the yoke 𝐵𝑡𝑦 in TABLE 2-VI is kept . 

The other loads and the other parameters like the geometrical parameters of the rotor are to be 

calculated. 

2.7 Joint sizing of SMAFPM and STAFPM for comparison 

To show the benefits of the magnetic flux concentration in the airgap, joint sizing of 

SMAFPM and STAFPM is done in this section. The two motors have the same specifications 

and the permanent magnet are Ferrite magnets. For the STAFPM prototype, the Ferrite 

magnets used are ‘FERRAM 27/23’  with 𝜇𝑟𝑎 = 1.0 and 𝐽 = 0.37 𝑇 [47]. These properties are 

very close to the Ferrite magnets used in the existing SMAFPM motor [16]. Both motors are 

sized by considering only the electromagnetic torque. The torque due to the saliency of the 

STAFPM is not taken into account. At first order approximation, the no-load magnetic flux 

concentration have no effect on this torque. Saliency torque is studied in Chapter 3. 

Furthermore, the sizing approach at our disposal is mainly based on the loadability concepts 

and do not take into account saliency. 

2.7.1 Arc pole coefficient 

The azimuthal angular width 𝜃𝑎𝑟𝑐𝑝𝑜𝑙 of the arc pole of both motors is assumed to be 

independent of the radial position 𝑟 and it’s defined by the arc pole coefficient 𝛽: 

𝜃𝑎𝑟𝑐𝑝𝑜𝑙 = 𝛽
𝜋

𝑝
 (2-25) 

To simplify equations, the half of this coefficient is noted by 𝛾: 

𝛾 =
𝛽

2
 

The waveform of the no-load magnetic flux density in airgap is rectangular as shown on 

Figure 2-13. 

 

 
Figure 2-13: Airgap magnetic flux density waveform 

If 𝜃 is the angular azimuthal position, the magnetic flux density in the airgap 𝐵𝑔(𝜃) is the 

function: 
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{
  
 

  
 𝐵𝑔(𝜃) = 𝐵𝑧𝑔   ,    |

𝜋

2𝑝
− 𝜃| ≤ 𝛾

𝜋

𝑝
                                

𝐵𝑔(𝜃) = −𝐵𝑧𝑔   ,    |
3𝜋

2𝑝
− 𝜃| ≤ 𝛾

𝜋

𝑝
                             

𝐵𝑔(𝜃) = 0  ,    |
𝜋

2𝑝
− 𝜃| > 𝛾

𝜋

𝑝
   ∩  |

3𝜋

2𝑝
−| > 𝛾

𝜋

𝑝

 (2-26) 

The rectangular signal can be decomposed in its harmonics: 

𝐵𝑔(𝜃) = ∑
4

𝜋

𝐵𝑧𝑔

𝑛
sin(𝑛

𝜋

2
) sin(𝑛𝛾𝜋) sin(𝑛𝑝𝜃)

∞

𝑛=1,3,5…

= ∑ 𝐵𝑠𝑛𝑠𝑖𝑛(𝑛𝑝𝜃)

∞

𝑛=1,3,5…

 (2-27) 

Figure 2-14 shows the fundamental magnitude 𝐵𝑠1 as a function of the arc pole coefficient. 

 

Figure 2-14: Magnitude of the fundamental of 𝐵𝑔(𝜃) versus 𝛽 for 𝐵𝑧𝑔 = 1.0 𝑇 

The Inverse Total Harmonic Distortion 𝜏𝐹 can be defined as: 

𝜏𝐹 = 100
𝐵𝑠1

√∑ 𝐵𝑆2𝑘−1
2∞

𝑘=1

 
(2-28) 

It can quantify the fundamental ratio in the signal. Figure 2-14 shows 𝜏𝐹 as a function of 

the arc pole coefficient. Figure 2-15 shows that the fundamental ratio is maximal at 97% for 

an arc pole coefficient of 0.74. The fundamental ratio exceeds 94% for an arc pole coefficient 

lying between 0.6 and 0.9. In the following, the performances of the two motors are calculated 

in function of the arc pole coefficient with: 

0.6 ≤ 𝛽 ≤ 0.9 
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Figure 2-15: Inverse Total Harmonic Distortion  𝜏𝐹 versus 𝛽  

2.7.2 Armature reaction 

The number of poles has changed but the thermal loads on TABLE 2-VII and the fill factor 

did not change. Hence the ‘rms’ value of the current 𝐼𝑟𝑚𝑠 does not change. But the linear 

distribution function changes because the number of slots per pole and per phase already 

changed in (2-19) the new value of the fundamental component is: 

𝐶𝑓𝑚 =
4𝑛𝑐
𝜋𝑅𝑚𝛼

𝑠𝑖𝑛 (
𝑝𝛼

2
) =3854 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟𝑠/𝑚 (2-29) 

 

From (2-22), the new ‘rms’ value of the surface current density is: 

𝐾𝑟𝑚𝑠 = 8690𝐴.𝑚−1 

2.7.3 No-load magnetic flux density in the stator and the airgap 

To best use magnetically the ferromagnetic circuit of the stator, the maximal value of the 

magnetic flux density in the yoke must not exceed the value chosen in [16] and evaluated 

previously: 

𝐵𝑡𝑦 ≤ 1.26𝑇 

The magnetic flux conservation law allows to calculate the new value of the axial airgap 

flux density 𝐵𝑧𝑔 which depends on the arc pole coefficient 𝛽: 

𝐵𝑧𝑔 =
2ℎ𝑐𝑠𝐵𝑡𝑦

𝐿𝑚
=
2ℎ𝑐𝑠𝐵𝑡𝑦

𝛽𝑅𝑚
𝜋
𝑝

 (2-30) 

The axial magnetic flux density in the teeth is also evaluated by means of the conservation 

law (see Figure 2.10 where the flux passes only in two teeth in front of one magnet). 

𝐵𝑧𝑑 =
𝐿𝑚𝐵𝑧𝑔
2𝑤𝑑

=
ℎ𝑐𝑠𝐵𝑡𝑦

𝑤𝑑
 (2-31) 
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2.7.4 Sizing the SMAFPM rotor 

The SMAFPM motor is sized only for the purpose of comparison. The sizing model for 

this motor has been quickly described during the evaluation of the performances of the 

existing motor. It is now presented in a more formal manner.  

The geometrical parameters involved in the sizing model of SMAFPM are summarized in 

TABLE 2-X. 

TABLE 2-X: SMAFPM geometrical parameters 

Azimuthal length of one pole at mean radius, 𝐿𝑝 𝐿𝑝 = 𝑅𝑚
𝜋

𝑝
 

Azimuthal length of one magnet at mean radius, 𝐿𝑚 𝐿𝑚 = 𝛽𝐿𝑝 

Axial thickness of airgap, 𝑒𝑔 𝑒𝑔 = 2.0 𝑚𝑚 

Permanent magnet axial thickness, ℎ𝑚 ℎ𝑚 (to be calculated) 

 

The magnetic quantities involved in the sizing model of SMAFPM are summarized in 

TABLE 2-XI. 

TABLE 2-XI: SMAFPM magnetic quantities 

Airgap axial magnetic flux density 𝐵𝑧𝑔 

Permanent magnet axial magnetic flux density 𝐵𝑧𝑎 

Airgap axial magnetic field intensity 𝐻𝑧𝑔 

Permanent magnet axial magnetic field intensity 𝐻𝑧𝑎 

Permanent magnet axial magnetic polarization 𝐽 = 0.37 𝑇 

Permanent magnet magnetic relative permeability 𝜇𝑟𝑎 = 1.0 

The magnetic equations in the 1D analytical mean radius model of the airgap magnet field 

are summarized in TABLE 2-XII. 

TABLE 2-XII: SMAFPM magnetic equations 

Magnetic media law in airgap 𝐵𝑧𝑔 = 𝜇0𝐻𝑧𝑔 

Magnetic media law in permanent magnet 𝐵𝑧𝑎 = 𝜇0𝜇𝑟𝑎𝐻𝑧𝑎 + 𝐽 
Ampere’s law (Figure 2-7) 𝐻𝑧𝑎ℎ𝑚 +𝐻𝑧𝑔𝑒𝑔 = 0 

Magnetic flux conservation law (Figure 2-8) 𝐵𝑧𝑔 = 𝐵𝑧𝑎 

 

Constraint related to the axial permanent magnet thickness 

From TABLE 2-XII, the permanent magnet axial thickness, ℎ𝑚, is given by: 

ℎ𝑚 = 𝜇𝑟𝑎
𝐵𝑧𝑔

𝐽 − 𝐵𝑧𝑔
𝑒𝑔 (2-32) 

As the permanent magnet thickness is strictly positive, the airgap magnetic flux density must 

be strictly less than the magnet polarization: 

𝐵𝑧𝑔 =
2ℎ𝑐𝑠𝐵𝑡𝑦

𝐿𝑚
< 𝐽 (2-33) 
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This strict inequality defines a maximum value of the yoke magnetic flux density: 

𝐵𝑡𝑦 < (𝐵𝑡𝑦)𝑚𝑎𝑥 =
𝐽𝛽𝐿𝑝
2ℎ𝑐𝑠

 (2-34) 

Figure 2-16 shows (𝐵𝑡𝑦)𝑚𝑥 in function of arc pole coefficient 𝛽. It can be seen that 

(𝐵𝑡𝑦)𝑚𝑎𝑥 is always less than 1.26 𝑇 which is the value chosen to best use the stator. 

 

Figure 2-16: (𝐵𝑡𝑦)𝑚𝑎𝑥 versus 𝛽 for SMAFPM motor 

To fix the value of the magnetic flux density in the yoke, a safety coefficient 𝑐𝑠𝑚𝑝𝑚 is 

introduced: 

𝐵𝑡𝑦 = 𝑐𝑠𝑚𝑝𝑚(𝐵𝑡𝑦)𝑚𝑎𝑥 (2-35) 

For the existing motor, this coefficient is equal to: 

𝑐𝑠𝑚𝑝𝑚𝑟𝑒𝑓
=

𝐵𝑡𝑦

(𝐵𝑡𝑦)𝑚𝑎𝑥

=
1.26𝑇

1.51𝑇
= 0.83 

For the sake of comparison with STAFPM motor, the value chosen is: 

𝑐𝑠𝑚𝑝𝑚 = 0.9 

Knowing the relation between 𝐵𝑧𝑔 and 𝐵𝑡𝑦, leads to simplify the expression of the axial 

flux density in airgap: 

𝐵𝑧𝑔 = 𝑐𝑠𝑚𝑝𝑚 𝐽 (2-36) 

Due to magnetic conservation law, 𝐵𝑧𝑎 is equal to 𝐵𝑧𝑔, so with the value chosen for the safety 

coefficient, the no-load magnet flux density in permanent magnet is always higher than 𝐵𝑜𝑝𝑡. 

The permanent magnet axial thickness is then given by: 

ℎ𝑚 = 𝜇𝑟𝑎
𝑐𝑠𝑚𝑝𝑚

1 − 𝑐𝑠𝑚𝑝𝑚
𝑒𝑔 (2-37) 

The ‘rms’ value of the fundamental of the airgap magnetic flux density is calculated from 

(2-8). The torque is given by [3,18]:  

𝐶𝑒𝑚 = 2𝜋(𝑅2 − 𝑅1)𝑅𝑚
2 𝐵𝑟𝑚𝑠𝐾𝑟𝑚𝑠 (2-38) 
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Eventually as for the existing motor, the axial thickness of the rotor yoke is equal to the 

axial thickness of the stator yoke. The flow chart to calculate the axial thickness of magnets 

and the electromagnetic torque is given in Figure 2-17. 

 

Figure 2-17: Flow-chart to calculate the main sizes of the rotor of SMAFPM motor and the 

electromagnetic torque versus the arc pole coefficient 𝛽 

2.7.5 Sizing the STAFPM rotor 

The STAFPM motor has the same stator as the SMAFPM motor. The armature reaction 

quantities such as 𝑗𝑟𝑚𝑠, 𝐴𝑟𝑚𝑠, 𝐼𝑟𝑚𝑠 and 𝐾𝑟𝑚𝑠 have the same values as those of the SMAFPM 

motor. Same remarks are done considering the relations between 𝐵𝑧𝑔, 𝐵𝑧𝑑 and 𝐵𝑡𝑦. 

The geometrical parameters involved in the sizing model of STAFPM are defined on 

Figure 2-18 an reported in TABLE 2-XIII. 

 
Figure 2-18: Geometric parameters for one pair of poles for STAFPM 
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TABLE 2-XIII: STAFPM geometrical parameters 

Azimuthal length of one pole piece at mean radius, 𝐿𝑝𝑝 𝐿𝑝𝑝 = 𝛽𝐿𝑝 

Azimuthal length of one magnet at mean radius, 𝐿𝑚 𝐿𝑚 = (1 − 𝛽)𝐿𝑝 

Axial thickness of airgap, 𝑒𝑔 𝑒𝑔 = 2.0 𝑚𝑚 

Permanent magnet radial thickness, ℎ𝑚 ℎ𝑚 (to be calculated) 

 

The study domain at the mean radius 𝑅𝑚 with smoothed stator is presented on Figure 2-

19. The azimuthal length of one pole piece at the mean radius is 𝐿𝑝𝑝 and 𝐿𝑚 is the azimuthal 

length of a magnet. Due to the assumptions, only the magnetic fields in the permanent magnets 

and the airgap are involved and the material properties of these media are given by the 

following equations: 

{
𝐵𝑎⃗⃗ ⃗⃗ = 𝜇𝑎𝐻𝑎⃗⃗⃗⃗  ⃗ + 𝐽 

𝐵𝑔⃗⃗⃗⃗ = 𝜇0𝐻𝑔⃗⃗ ⃗⃗         
                                                       (2-39) 

 
Figure 2-19: Study domain for the evaluation of the airgap flux density 

 

The Ampere’s law is applied on the closed path shown in Figure 2-. 

 
Figure 2-20: Closed path to apply Ampere’s law 

The azimuthal magnetic field intensities in the permanent magnet (𝐻𝑡𝑎) and in the axial 

magnetic field intensity in the airgap (𝐻𝑧𝑔) are linked by the following equation (2-40). 

𝐻𝑡𝑎𝐿𝑚 + 2𝐻𝑧𝑔𝑒𝑔 = 0 (2-40) 

Magnetic flux conservation law is applied using surfaces 𝑆𝑔 and 𝑆𝑚 on Figure 2-21. 
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Figure 2-21: Flux conservation law on airgap half surface 𝑆𝑔 and magnet surface 𝑆𝑚 

The azimuthal magnetic flux density in the permanent magnet (𝐵𝑡𝑎) and the axial magnetic 

flux density in the airgap (𝐵𝑧𝑔) are linked by the flux conservation law: 

𝐵𝑡𝑎𝑆𝑚 = 𝐵𝑧𝑔𝑆𝑔 (2-41) 

 

The following relation is deduced: 

2ℎ𝑚𝐵𝑡𝑎 = 𝐿𝑝𝑝𝐵𝑧𝑔 (2-42) 

The magnetic quantities involved in the sizing model of STAFPM are summarized TABLE 

2-XIV. 

TABLE 2-XIV: STAFPM magnetic quantities 

Airgap axial magnetic flux density 𝐵𝑧𝑔 

Permanent magnet azimuthal magnetic flux density 𝐵𝑡𝑎 

Airgap axial magnetic field intensity 𝐻𝑧𝑔 

Permanent magnet azimuthal magnetic field intensity 𝐻𝑡𝑎 

Permanent magnet azimuthal magnetic polarization 𝐽 = 0.37 𝑇 

The magnetic equations in the 1D analytical mean radius model of the airgap magnet field 

are summarized in TABLE 2-XV. 

TABLE 2-XV: STAFPM magnetic equations 

Magnetic media law in airgap 𝐵𝑧𝑔 = 𝜇0𝐻𝑧𝑔 

Magnetic media law in permanent magnet 𝐵𝑡𝑎 = 𝜇0𝜇𝑟𝑎𝐻𝑡𝑎 + 𝐽 

Ampere’s law (Figure 2-20) 𝐻𝑡𝑎𝐿𝑚 + 2𝐻𝑧𝑔𝑒𝑔 = 0 

Magnetic flux conservation law (Figure 2-21) 2ℎ𝑚𝐵𝑡𝑎 = 𝐿𝑝𝑝𝐵𝑧𝑔 

 

Constraint related to the axial permanent magnet thickness 

From TABLE 2-XV, the permanent magnet axial thickness, ℎ𝑚, is given by: 

ℎ𝑚 =
𝐿𝑚𝐿𝑝𝑝𝐵𝑧𝑔

2𝐽𝐿𝑚 − 4𝐵𝑧𝑔𝑒𝑔𝜇𝑟𝑎
 (2-43) 

As the thickness must be always strictly positive, this leads to the inequality (2-44). 

𝐵𝑧𝑔 =
2ℎ𝑐𝑠𝐵𝑡𝑦

𝐿𝑝𝑝
<

𝐽𝐿𝑚
2𝑒𝑔𝜇𝑟𝑎

 (2-44) 
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To guarantee this inequality, the magnetic flux density in the yoke must be less than a maximal 

value: 

𝐵𝑡𝑦 < (𝐵𝑡𝑦)𝑚𝑎𝑥 =
𝐿𝑚𝐿𝑝𝑝𝐽

4ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎
 (2-45) 

To best use the stator, the magnetic flux density in the yoke must also be less than 1.26𝑇. 

According to the numerical values of the parameters involved in the expression (2-45), Figure 

2-22 shows the value of (𝐵𝑡𝑦)𝑚𝑎𝑥 in function of arc pole coefficient 𝛽. 

 

Figure 2-22: (𝐵𝑡𝑦)𝑚𝑎𝑥 versus 𝛽 for STAFPM motor 

Figure 2-22 shows that (𝐵𝑡𝑦)𝑚𝑎𝑥 is always higher than 1.26 T. So, for STAFPM motor, the 

magnetic flux density in stator yoke is fixed at: 

𝐵𝑡𝑦 = 1.26 𝑇 

Constraint related to the magnetic flux density in permanent magnet 

From TABLE 2-XV, the azimuthal magnetic flux density in permanent magnet is given by: 

𝐵𝑡𝑎 =
𝐽𝐿𝑚𝐿𝑝𝑝 − 4𝐵𝑡𝑦ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎

𝐿𝑝𝑝𝐿𝑚
 (2-46) 

The permanent magnet must not be demagnetized by a strong armature reaction. For that, the 

no-load magnetic flux density in permanent magnet must be higher than the optimal magnetic 

flux density in permanent magnet: 

𝐵𝑡𝑎 > 𝐵𝑜𝑝𝑡 =
𝐽

2
 (2-47) 

This constraint leads to the inequality: 

𝐽𝐿𝑚 𝐿𝑝𝑝 − 𝐵𝑜𝑝𝑡𝐿𝑝𝑝𝐿𝑚 > 4𝐵𝑡𝑦ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎 (2-48) 

From TABLE 2-XIII, the arc pole coefficient is submitted to the constraint: 

(1 − 𝛽)𝛽 >
8𝐵𝑡𝑦ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎

𝐽𝐿𝑝
2  (2-49) 
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The function defined 𝑦(𝛽) is introduced: 

𝑦(𝛽) = 𝛽2 − 𝛽 +
8𝐵𝑡𝑦ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎

𝐽𝐿𝑝2
 (2-50) 

This function must always be negative for: 

0.6 ≤ 𝛽 ≤ 0.9  

The function 𝑦(𝛽) can be put in the form: 

𝑦(𝛽) = (𝛽 − 𝛽1)(𝛽 − 𝛽2) (2-51) 

 

The discriminant of the equation 𝑦(𝛽) = 0 is: 

∆= 1 −
32𝐵𝑡𝑦ℎ𝑐𝑠𝑒𝑔𝜇𝑟𝑎

𝐽𝐿𝑝
2 = 0.204 

And: 

{
 
 

 
 
𝛽1 =

1 − √∆

2
= 0.274

𝛽2 =
1 + √∆

2
= 0.7259

 (2-52) 

It can be shown that: 

∀𝛽, 𝑚𝑎𝑥(0.6, 𝛽1) < 𝛽 < 𝑚𝑖𝑛(0.9, 𝛽2), 𝑦(𝛽) < 0 

Then for the STAFPM motor the valid arc pole coefficient values are: 

0.6 < 𝛽 < 0.7259 (2-53) 

 

The flow chart to calculate the axial thickness of magnets and the electromagnetic torque is 

given in Figure 2-23. 

 

Figure 2-23: Flow-chart to calculate the main sizes of the rotor and the electromagnetic 

torque versus the arc pole coefficient 𝛽 
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2.7.6 Comparison of The SMAFPM and STAFPM motors 

By respecting the choice of thermal (𝑗𝑟𝑚𝑠, 𝐴𝑟𝑚𝑠) and magnetic (𝐵𝑡𝑦) loads made in [16], 

the comparison of the electromagnetic torque of the two motors in function of the arc pole 

coefficient is shown in Figure 2-24. The torque of the STAFPM is much higher. 

 

Figure 2-24: Comparison of electromagnetic torque 𝐶𝑒𝑚(𝛽) 

 

The performances of the STAFPM is calculated on a shorter interval of the arc pole 

coefficient because outside this interval (2-53) the magnetic flux density in magnet is less than 

the optimal magnetic flux density in the magnet. Figure 2-25 shows that SMAFPM motor 

offers more resistance to demagnetization than STAFPM motor. 

 

Figure 2-25: Comparison of magnetic flux density in permanent magnet 
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Figure 2-26 shows that the specific torque of STAFPM motor for an arc pole coefficient 𝛽  

in the interval [0.6 , 0.7] is always higher than the one of SMAFPM for any value of 𝛽 

 

Figure 2-26: Comparison of the specific torque 𝑆𝑇(𝛽) 

To characterize the concentration of the no-load magnetic flux in the airgap, the ratio 

between the no-load magnetic flux density in the airgap and the Ferrite magnet polarization 

may be used: 

𝜏𝐵𝐽 =
𝐵𝑧𝑔

𝐽
 

Figure 2-27 shows that this ratio is less than unity for SMAFPM motor. For STAFPM 

motor this ratio is decreasing but is always higher than unity. This result shows that the 

structure in ‘spoke-type’ allows to concentrate the magnetic flux in the airgap. This is 

confirmed by the comparison of the magnitude of the fundamental of the no-load flux density 

in the airgap shown on Figure 2-28. 

 

Figure 2-27: Comparison of the ratio 𝜏𝐵𝐽(𝛽) 
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Figure 28: Comparison of the magnitude of the airgap flux density fundamental  𝐵𝑚(𝛽) 

These results show that the electromagnetic and the specific torques of STAFPM motor is 

higher than those of SMAFPM motor. The effort done to best use the magnetic circuit of the 

stator is attested by Figure 2-29 which shows the magnetic flux density in yoke. The structure 

in ‘spoke-type’ uses all the magnetic possibility offers by the existing stator. The SMAFPM 

motor under use the magnetic circuit of the stator. 

 

 

Figure 2-29: Comparison of magnetic flux density in the yoke 𝐵𝑡𝑦(𝛽) 

 

The good performances of STAFPM motor are affected by the total axial thickness of the 

motor which is at least one and a half the SMAFPM one as shown on Figure 2-30. 
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Figure 2-30: Comparison of the total axial thickness ℎ𝑡𝑜𝑡(𝛽) 

 

2.7.7 Conclusion of the comparative study 

The comparative study between the SMAFPM and STAFPM motors with the same stator, 

has been performed by respecting the magnetic and thermal loads chosen in [16].  

For a general conclusion on the comparison of SMAFPM and STAFPM motors, it can be 

deduced that, the STAFPM motor can concentrate the no-load magnetic flux density with very 

high rate for arc pole coefficient between 0.6 and 0.7. The electromagnetic torque of the 

STAFPM motor can be much higher, almost twice than the one of the SMAFPM motor. The 

specific torque of the STAFPM motor can be higher than the one of the SMAFPM motor. The 

good performances of the STAFPM motor is affected by its axial thickness which is at least 

one and a half higher than the one of SMAFPM motor. 

For a specific conclusion on the new STAFPM motor, dedicated to the experimental study 

presented in chapter 3, an arc pole coefficient between 0.6 and 0.7 is chosen. In this interval, 

its specific torque is always higher than the one of SMAFPM motor. However, the no-load 

magnetic flux density in the yoke must be reduced in order to decrease its axial thickness at 

the same level as the one of the existing SMAFPM motor (ℎ𝑟𝑒𝑓 = 34.5𝑚𝑚). We know that 

the existing motor can be handled on the test bench of the LAPLACE laboratory. It is much 

difficult to handle a motor of much higher thickness. 

2.8 Choice of the new STAFPM prototype 

To reduce the total axial thickness of the new prototype, the no-load magnetic flux density 

in the yoke (𝐵𝑡𝑦) is reduced at a value less than 1.26 𝑇. After several tries, the yoke flux 

density is taken 0.76 𝑇. This value takes care that the STAFPM specific torque is higher than 

the maximal specific torque of SMAFPM motor shown on Figure 2-26 (1.05 𝑁𝑚. 𝑘𝑔−1). 

Figure 2-31 shows that the magnetic circuit of the stator is misused because the no-load 

magnetic flux density in the yoke of the new STAFPM motor is now lower than 1.26 T. 
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Figure 2-31: New comparison of magnetic flux density in the yoke 𝐵𝑡𝑦(𝛽) 

 

Figure 2-32 shows the new total axial thickness. The total axial thickness of the STAFPM 

motor is now lower than the one of the SMAFPM motor while its specific torque is higher for 

arc pole coefficient between 0.6 and 0.68(Figure 2-33). The maximal specific torque 

1.14 𝑁𝑚. 𝑘𝑔−1 is reach for 𝛽 = 0.6 

 

Figure 2-32: New comparison of the total axial thickness ℎ𝑡𝑜𝑡(𝛽) 

 

Figure 2-33: New comparison of the specific torque 𝑆𝑇(𝛽) 
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Figure 2-34 shows that for 𝛽 = 0.6 the theoretical electromagnetic torque of STAFPM motor 

is higher than the one of SMAFPM motor for any valid 𝛽. 

Figure 2-35 shows that the permanent magnet of the new prototype is better protected against 

strong demagnetizing armature reaction because the magnetic flux density in permanent 

magnet is now much higher than 𝐵𝑜𝑝𝑡. 

 

 

Figure 2-34: New comparison of electromagnetic torque 𝐶𝑒𝑚(𝛽) 

 

 

Figure 2-35: New comparison of magnetic flux density in permanent magnet 
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Figure 2-36 shows that there is still magnetic flux concentration but it has been considerably 

reduced. 

 

Figure 2-36: New comparison of the ratio 𝜏𝐵𝐽(𝛽) 

2.9 Conclusion 

In this chapter, the loads of the existing motor have been theoretically evaluated. The results 

of this evaluation allow to specify the performances of the new prototype. 

Before sizing the new prototype, the comparison of SMAFPM and STAFPM motors has been 

done on electromagnetic torque basis. The comparison shows that, even if the torque due to 

saliency is neglected, the STAFPM motor can achieved a high rate of no-load magnetic flux 

concentration in the airgap and a higher specific torque. 

To have a STAFPM motor that can be handled on the test bench of the LAPLACE laboratory, 

the axial thickness of the STAFPM motor has to be reduced at a level near the one of the 

existing motor.  

The reduction of the axial thickness has been obtained by reducing the no-load magnetic flux 

density in the yoke which means that the stator magnetic circuit is underused. Nevertheless, 

this reduction has been performed by keeping the overall performances of the STAFPM motor 

higher than those of SMAFPM motor. 

To conclude TABLE 2-XVI.a and TABLE 2-XVII.b give all the data needed for the fabrication 

of the new STAFPM prototype. Indeed, Figure 2-37 and Figure 2-38 show the new realized 

stator and the sized rotor with its main geometrical parameters. 

TABLE 2-XVI.a: Main STAFPM new prototype stator parameters 

Number of phases, 𝑞 3 

Number of pairs of poles, 𝑝 8 

Number of slots per pole and per phase, 𝑛𝑒𝑝𝑝 1 

Number of conductors per slot, 𝑛𝑐 95 

Number of slots, 𝑛𝑒 48 

Number of turns, 𝑛𝑠 760 

Copper filling factor, 𝑘𝑓𝑖𝑙𝑙 0.3 

Air gap thickness, 𝑒𝑔(𝑚𝑚) 2.0 
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TABLE 2-XVII.b :Main geometrical parameters of the STAFPM new rotor 

PM internal radius, 𝑅𝑖𝑛𝑡 100.0 𝑚𝑚 

PM external radius, 𝑅𝑒𝑥𝑡 150.0 𝑚𝑚 

PM axial thickness, ℎ𝑚 23.8 𝑚𝑚 

PM azimuthal width at the mean radius, 𝐿𝑚 19.6 𝑚𝑚 

PM radial length, 𝑙𝑎 50.0 𝑚𝑚 

 

 

Figure 2-37: New stator realization 

 

Figure 2-38: STAFPM realized rotor 
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Chapter 3  

Experimental Studies of the STAFPM prototype  

3.1 Introduction 

In the preceding chapter, the Spoke-Type Axial Flux Permanent Magnet (STAFPM) motor 

is sized. The motor is fabricated. This chapter is devoted to the experimental studies of this 

motor to better know its electromechanical behavior. 

First, the STAFPM prototype is presented. To guide the experimental studies, the principles 

of the general electromechanical lumped parameter model is recalled. Physical symmetries of 

the motor are exploited to deduce some properties of the electromechanical parameters such 

as the no-load magnetic flux, self and mutual inductances. These properties allow to set up 

the identification methods of all the parameters of the electromechanical model. 

As most of the parameters can be deduced from static torques, an experimental test bench 

at disposal in the LAPLACE laboratory is presented. This test bench allows to measure static 

torque in function of the rotor position. In chapter two, the performances of the STAFPM 

motor has been voluntarily limited in order to facilitate the handling of the motor to be 

mounted on this test bench. 

The measurement set up of this test bench has some imperfections. The measured signals 

are not perfect and must be treated numerically before their exploitation. The numerical 

treatments applied on the measured signals are presented. 

The motor was received first without permanent magnets. It was an opportunity that has 

been sized. This opportunity allows to propose an original method to identify some of the 

parameters of the electromechanical model. Prior to the identification of these parameters a 

qualitative study based on 2D finite element analysis (FEA) is performed to precise the 

equilibrium positions of the rotor when the permanent magnets are removed and when the 

phases of the motor are supplied by DC currents. The numerical treatment to remove signal 

imperfections, the methods of identification and the identified parameters are validated by 

additional measurements on the test bench. 

When all the parameters of the electromechanical model are identified and validated, a 

general model of STAFPM motor is at disposal. This model allows to reproduce with high 

fidelity some important phenomena as torque ripples. Eventually the three phase sinusoidal 

supplies of this motor are studied by the help of this model. To guide these studies, the 

parameters of the DQ model of the motor are calculated. Some properties of these parameters 

are put in light. The optimal torque of the motor may be assessed. Conclusions are made about 

the sizing model of this type of motor. 
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3.2 STAFPM prototype 

The STAFPM prototype is a three phase axial flux motor and has a single stator and a 

single rotor. It has eight pole pairs and 48 slots. Each pole of the rotor is made of a Ferrite 

permanent magnet azimuthally polarized and a ferromagnetic polar piece that concentrate the 

no-load magnetic flux in the airgap. Chapter two shows that the rate of concentration is not so 

strong because the total axial thickness is voluntarily limited to facilitate the handling of the 

prototype. Figure 3-1 shows a photography of the stator and the rotor.  

 

 

Figure 3-1: Photography of the stator and the rotor 

The stator has an integer distributed winding (IDW) topology with one slot per pole and 

per phase and ninety-five conductors per slot. All the conductors of a phase are all in series, 

the number of turns is 760. Figure 3-2 shows the winding diagram on two pole pairs. 

 

Figure 3-2: Three-phase integer winding developed on two pole pairs  
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A top view of the stator is shown in Figure 3-3 (a). The distribution of the conductors by the 

phase numeration is presented in Figure 3-3 (b). 

 

(a) 

 

(b) 

Figure 3-3: STPMAFM (a) prototype realization, (b) winding distributions 

 

3.3 Electromechanical lumped parameter model 

The goal of this chapter is to make experimental studies on the STAFPM to know better 

some of its properties. The DQ model is the most used model in the studies of electric motors 

[48]. But this model failed to take into account the phenomena related to the geometry of the 

magnetic circuit like torque ripples. To guide the experimental studies, a general 

electromechanical model of electric motors is used. The experimental studies are mainly static 

studies, so the effects of eddy currents can be neglected. The most general electromechanical 

model of electric motor is the lumped parameter model [31]. In this section, the principles of 

electromechanical lumped parameter model are recalled. 
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3.3.1 Electrical and mechanical quantities 

The electromechanical behavior of a rotating electric motor involves electrical quantities 

𝑋𝑘 such as voltages, currents and fluxes. For a three-phase motor, these quantities are 

represented by a vector or column matrix whose transpose is expressed by (3-1): 

𝑿𝑇 = {𝑋}𝑇 = {𝑋1,  𝑋2,  𝑋3 } (3-1) 

3.3.2 Electrical equations 

A receiver convention is chosen. The instantaneous phase voltages 𝑽, imposed by the 

electric supply of the motor, are linked to the feeding currents 𝑰 and induced fluxes 𝜱 by the 

following general electrical equation  (3-2). 

𝑽 = 𝑹𝑰 +
𝑑

𝑑𝑡
𝜱 (3-2) 

 

The matrix of resistances 𝑹 is a diagonal matrix  (3-4). The resistance of a phase is 𝑅𝑠. 

𝑹 = [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

] (3-3) 

3.3.3 Flux-current relation 

Let 𝜃𝑅
𝑒 be the electrical angular position of the rotor axis with respect to the stator ‘phase 

1’ axis (Figure 3-4). If the effects of the saturation of the motor magnetic circuit can be 

neglected [48], for a permanent magnet synchronous motor (PMSM), the currents and fluxes 

are linked by the relationship (3-4). 

𝜱(𝜃𝑅
𝑒) = 𝜱𝒗(𝜃𝑅

𝑒) + 𝑳(𝜃𝑅
𝑒)𝑰 (3-4) 

The term 𝜱𝒗(𝜃𝑅
𝑒) represents the no-load fluxes in the phases due to the magnetic field 

produced by the permanent magnets. The inductance matrix 𝑳(𝜃𝑅
𝑒) is a symmetric matrix of 

the form (3-5).  

[𝑳(𝜃𝑅
𝑒)] = [

𝐿1(𝜃𝑅
𝑒) 𝐿12(𝜃𝑅

𝑒) 𝐿13(𝜃𝑅
𝑒)

𝐿12(𝜃𝑅
𝑒) 𝐿2(𝜃𝑅

𝑒) 𝐿23(𝜃𝑅
𝑒)

𝐿13(𝜃𝑅
𝑒) 𝐿23(𝜃𝑅

𝑒) 𝐿3(𝜃𝑅
𝑒)
] (3-5) 

3.3.4 Mechanical equations 

Let 𝑝 be the number of pairs of poles. The position of the rotor is described by its 

mechanical angular position 𝜃𝑅
𝑚 which is related to its electrical angular position 𝜃𝑅

𝑒 (3-6): 

𝜃𝑅
𝑒 = 𝑝𝜃𝑅

𝑚 (3-6) 
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The rotor speed is given by (3-7): 

Ω =
𝑑𝜃𝑅

𝑚

𝑑𝑡
 (3-7) 

The rotor movement is described by the mechanical equation (3-8) : 

𝐽
𝑑Ω

𝑑𝑡
= 𝐶𝑚𝑜𝑡 − 𝐶𝑟𝑒𝑠(Ω) (3-8) 

The resistive torque 𝐶𝑟𝑒𝑠(Ω) takes into account the torque imposed by the mechanical load 

and the various frictional torques exerted on the rotor. This torque generally depends on the 

rotational speed Ω. The torque developed by the motor 𝐶𝑚𝑜𝑡 is the sum of the cogging torque 

𝐶𝑑(𝜃𝑅
𝑚), the saliency torque 𝐶𝑠𝑎𝑖𝑙 (𝜃𝑅

𝑚)and the electromagnetic torque 𝐶𝑒𝑚 (𝜃𝑅
𝑚) as shown in 

(3-9). 

 

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚) +
1

2
𝑰𝑇
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 𝑰 + 𝑰𝑇

𝑑𝜱𝒗(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚  (3-9) 

3.3.5 System of electromechanical equations 

The electromechanical behavior of the motor is represented by the following system of 

differential equations in (3-10). 

{
 
 
 

 
 
 𝑽 = 𝑹𝑰 +

𝑑

𝑑𝑡
𝜱

𝜱(𝜃𝑅
𝑚) = 𝜱𝒗(𝜃𝑅

𝑚) + 𝑳(𝜃𝑅
𝑚)𝑰

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚) +
1

2
𝑰𝑇
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 𝑰 + 𝑰𝑇

𝑑𝜱𝒗(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝐽
𝑑2𝜃𝑅

𝑚

𝑑𝑡2
= 𝐶𝑚𝑜𝑡 − 𝐶𝑟𝑒𝑠(

𝑑𝜃𝑅
𝑚

𝑑𝑡
)

 (3-10) 

In this set of differential equations, the parameters, inputs and outputs are decomposed as: 

- Motor parameters: 𝑹, 𝜱𝒗(𝜃𝑅
𝑚), 𝑳(𝜃𝑅

𝑚) and 𝐶𝑑(𝜃𝑅
𝑚) 

- Mechanical parameters: moment of inertia 𝐽(𝑘𝑔 ∙ 𝑚2) 
- Electrical input data: 𝑽 

- Input mechanical data: 𝐶𝑟𝑒𝑠(Ω) 
- Output data : 𝑰, 𝜱 and 𝜃𝑅

𝑚 

3.4 Symmetrical motor 

The motor geometry and physical properties of a synchronous motor with 𝑝 pole pairs 

present an angular periodicity equal to 
2𝜋

𝑝
. This is why most of the parameters and the physical 

quantities are function of the electrical angular position 𝜃𝑅
𝑒. Figure 3-4 shows the so called 

electrical domain and the definition of 𝜃𝑅
𝑒. The cross labeled by 𝐺𝑘 mention the position the 

position of the ‘go’ conductors of phase 𝑘 and the arrow labeled 𝑅𝑗 the ‘return’ conductors’ 

of phase 𝑗. The followings general symmetrical properties are deduced from the theory of 

salient pole machine when the effects of magnetic circuit saturation are neglected [48]. 
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3.4.1 Symmetries of the no-load flux 

As the number of slots per pole and per phase is an integer, the axis of ‘phase 1’, called 

also the horizontal axis (Figure 3-4), is an axis of symmetry for the no-load flux of ‘phase 1’ 


𝑣1
(𝜃𝑅

𝑒) = 
𝑣1
(−𝜃𝑅

𝑒)                                                          (3-11) 

So the no-load flux of phase 1 can decomposed in harmonics of the form: 


𝑣1
(𝜃𝑅

𝑒) = ∑𝑓𝑛𝑐𝑜𝑠(𝑛𝜃𝑅
𝑒)

∞

𝑛=1

 

It can be expressed also in function of the mechanical angular position: 


𝑣1
(𝜃𝑅

𝑚) = ∑ 𝑓𝑛𝑐𝑜𝑠(𝑛𝑝𝜃𝑅
𝑚)∞

𝑛=1                                                   (3.12) 

 

 

Figure 3-4: Definition of 𝜃𝑅
𝑒 in the electrical domain 

The no-load flux of ‘phase k’ is: 


𝑣𝑘
(𝜃𝑅

𝑚) = 
𝑣1
(𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
) = ∑ 𝑓𝑛𝑐𝑜𝑠 (𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))∞

𝑛=1  (3.13) 

3.4.2 Symmetries of the self-inductances 

The self-inductance of phase 1 has a periodicity of 
𝜋

𝑝
 and the horizontal axis constitutes for 

it an axis of symmetry: 

𝐿1(𝜃𝑅
𝑒) = 𝐿1(−𝜃𝑅

𝑒) 

So it could be expressed by its harmonics in the form: 
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𝐿1(𝜃𝑅
𝑚) = 𝐿𝑠 +∑ 𝑙𝑛𝑐𝑜𝑠(2𝑛𝑝𝜃𝑅

𝑚)

∞

𝑛=1

 

The self-inductance of ‘phase k’ is: 

𝐿𝑘(𝜃𝑅
𝑚) = 𝐿1 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
) = 𝐿𝑠 + ∑ 𝑙𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))∞

𝑛=1  (3.14) 

3.4.3 Symmetries of the mutual inductances 

The mutual inductance between phase 2 and phase 3 has the same symmetry and periodicity 

as the self-inductance of phase 1. So it can be expresses by its harmonics in the form: 

𝐿23(𝜃𝑅
𝑚) = 𝑀𝑠 + ∑ 𝑚𝑛𝑐𝑜𝑠(2𝑛𝑝𝜃𝑅

𝑚)∞
𝑛=1                                     (3.15) 

The other mutual inductances are: 

{
𝐿31(𝜃𝑅

𝑚) = 𝑀𝑠 +∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅
𝑚 −

2𝜋

3
))∞

𝑛=1

𝐿12(𝜃𝑅
𝑚) = 𝑀𝑠 + ∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅

𝑚 −
4𝜋

3
))∞

𝑛=1

                     (3.16) 

Let’s note: 

{

𝑀1(𝜃𝑅
𝑚) = 𝐿23(𝜃𝑅

𝑚)

𝑀2(𝜃𝑅
𝑚) = 𝐿31(𝜃𝑅

𝑚)

𝑀3(𝜃𝑅
𝑚) = 𝐿12(𝜃𝑅

𝑚)
                                                               (3.17) 

It can be written: 

𝑀𝑘(𝜃𝑅
𝑚) = 𝑀𝑠 + ∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))∞

𝑛=1               (3.18) 

3.5 Identification method of the torque model parameters 

The electromechanical model contains a torque model that allows to calculate the torque if 

the position of the rotor 𝜃𝑅
𝑚 and the phase currents 𝐼𝑘(𝜃𝑅

𝑚) considered as functions of the rotor 

position are known. This model is: 

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚) +
1

2
𝑰𝑇

𝑑𝑳(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 𝑰 + 𝑰𝑇

𝑑𝜱𝒗(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚                          (3.19) 

The parameters of this model are: 

- 𝐶𝑑(𝜃𝑅
𝑚) : the cogging torque in function of rotor position; 

- 
𝑑𝜱𝒗(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚  : the derivative of the no-load flux in function of the rotor position; 

- 
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚  : the derivative of the matrix inductance in function of the rotor position. 

This section is dedicated to the identification methods of the torque model parameters. 
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3.5.1 Identification of the derivative of the matrix inductance 

The ferromagnetic polar pieces are mounted first on the rotor. Figure 3-5 shows a 

photography of the rotor without permanent magnets. If the rotor is free of permanent 

magnets, the cogging torque 𝐶𝑑(𝜃𝑅
𝑚) and the electromagnetic torque 𝐶𝑒𝑚 (𝜃𝑅

𝑚) are null. The 

torque of the motor is equal to the saliency torque (3-20): 

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) =

1

2
𝑰𝑇
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 𝑰 (3-20) 

If it is possible to measure the torque 𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) in function of the position of the rotor 𝜃𝑅

𝑚, 

the derivative of the self-inductances 
𝑑𝐿𝑘(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚  and the derivative of mutual inductances 

𝑑𝐿𝑖𝑗(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚  

can be identified experimentally. 

 

 

Figure 3-5: The rotor before permanent magnet mounting on the rotor 

Assuming that only ‘phase k’ is supplied by a DC current 𝐼𝑐 while the rotor change position 

at a very low speed, its current is: 

𝐼𝑘(𝜃𝑅
𝑚) = 𝐼𝑐 

The torque is then given by: 

𝐶𝑅𝑘(𝜃𝑅
𝑚) =

1

2

𝑑𝐿𝑘(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 𝐼𝑐

2 (3-21) 

Thus the derivative of the self-inductance of  each phase as a function of the rotor position 

𝜃𝑅
𝑚 is identified by: 
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𝑑𝐿𝑘(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

2𝐶𝑅𝑘(𝜃𝑅
𝑚)

𝐼𝑐2
 (3-22) 

Assuming that ‘phase 2’ and ‘phase 3’ are supplied in anti-series connection by a DC current 

𝐼𝑐, their currents are: 

{

𝐼1(𝜃𝑅
𝑚) = 0

𝐼2(𝜃𝑅
𝑚) = 𝐼𝑐

𝐼3(𝜃𝑅
𝑚) = −𝐼𝑐

 

The torque is then given by (3-23): 

𝐶𝑅23(𝜃𝑅
𝑚) =

1

2
(
𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 − 2

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 ) 𝐼𝑐

2 (3-23) 

Thus the derivative of the mutual inductance 
𝑑𝐿23(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚  is: 

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

𝑑𝐿23(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

1

2
(
𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 − 2

𝐶𝑅23(𝜃𝑅
𝑚)

𝐼𝑐2
) 

 

(3-24) 

3.5.2 Identification method of the cogging torque 

When the permanent magnet are mounted between ferromagnetic polar pieces on the rotor 

like on Figure 3-1 and if it is possible to measure the torque 𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) in function of the 

position of the rotor 𝜃𝑅
𝑚, the cogging torque is measured when all current are null : 

𝐶𝑚𝑜𝑡(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚)                                          (3.25) 

3.5.3 Identification method of the derivative of no-load flux 

The no-load e.m.f. of the phase 𝑘, 𝑒𝑣𝑘 can be measured when all current are with voltmeter 

and is linked to derivative of no-load flux: 

𝑒𝑣𝑘(𝑡) =
𝑑𝑣𝑘

𝑑𝑡
=

𝑑𝜃𝑅
𝑚

𝑑𝑡

𝑑𝑣𝑘

𝑑𝜃𝑅
𝑚 = Ω

𝑑𝑣𝑘

𝑑𝜃𝑅
𝑚                                      (3.26) 

During measurement, the speed of the rotor Ω is constant so it is easy to change variables: 

𝑑𝑣𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚) =
1

Ω
𝑒𝑣𝑘(𝜃𝑅

𝑚)                                              (3.27) 

3.6 Identification of the flux model parameters 

The electromechanical model contains also a flux model that allows to calculate the flux 


𝑘
(𝜃𝑅

𝑚) in each phase 𝑘 if the position of the rotor 𝜃𝑅
𝑚 and all the phase currents 𝐼𝑗(𝜃𝑅

𝑚) 

considered as functions of the rotor position are known. This model is: 


𝑘
(𝜃𝑅

𝑚) = 
𝑣𝑘
(𝜃𝑅

𝑚) + ∑ 𝐿𝑘𝑗(𝜃𝑅
𝑚)𝐼𝑗(𝜃𝑅

𝑚)3
𝑗=1                                     (3.28) 



 68 

The parameters of this model are: 

- 
𝑣𝑘
(𝜃𝑅

𝑚) : the no-load flux of phase 𝑘 in function of rotor position; 

- 𝐿𝑘(𝜃𝑅
𝑚) = 𝐿𝑘𝑘(𝜃𝑅

𝑚) : the self-inductance of phase 𝑘 in function of the rotor position; 

- 𝐿𝑘𝑗(𝜃𝑅
𝑚) : the mutual inductance of phase 𝑘 with a different phase 𝑗 in function of the 

rotor position. 

This section is dedicated to the identification methods of the flux model parameters. 

3.6.1 Identification method of the no-load flux 

According to the expression of the no-load flux of phase 𝑘 (3.13) in function of the position 

of the rotor 𝜃𝑅
𝑚, its derivative can be expressed with its harmonics as: 

𝑑𝜙𝑣𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚) = ∑ 𝑑𝑓𝑛 𝑠𝑖𝑛 (𝑛 (𝑝𝜃𝑅
𝑚 − (𝑘 − 1)

2𝜋

3
))𝑛ℎ

𝑛=1                              (3.29) 

The term 𝑑𝑓𝑛 is the harmonic of rank 𝑛 deduced from measurement and the harmonic of the 

no-load flux is given by: 

𝑓𝑛 = −
𝑑𝑓𝑛

𝑛𝑝
                                                           (3.30) 

3.6.2 Identification method of the self-inductances 

According to the expressions of the self-inductance 𝐿𝑘(𝜃𝑅
𝑚) in (3.14) in function of the 

position of the rotor, its derivative can be expressed with its harmonics as: 

𝑑𝐿𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚) = ∑ 𝑑𝑙𝑛 𝑠𝑖𝑛 (2𝑛 (𝑝𝜃𝑅
𝑚 − (𝑘 − 1)

2𝜋

3
))𝑛ℎ

𝑛=1                (3.31) 

The term 𝑑𝑙𝑛 is the harmonic of rank 𝑛 deduced from measurement and the harmonic of the 

self-inductance is given by: 

𝑙𝑛 = −
𝑑𝑙𝑛

2𝑛𝑝
                                                           (3.32) 

The value of the self-inductance 𝐿1(𝜃𝑅
𝐿) is measured by classical electrical test for a particular 

rotor position 𝜃𝑅
𝐿 then the mean value 𝐿𝑠 of the self-inductance is given by: 

𝐿𝑠 = 𝐿1(𝜃𝑅
𝐿) − ∑ 𝑙𝑛𝑐𝑜𝑠(2𝑛𝑝𝜃𝑅

𝐿)∞
𝑛=1                    (3.33) 

The particular rotor position 𝜃𝑅
𝐿 is chosen latter. 

3.6.3 Identification method of the mutual inductances 

According to the expressions of the mutual inductance 𝑀𝑘(𝜃𝑅
𝑚) in (3.18) in function of the 

position of the rotor, its derivative can be expressed with its harmonics as: 

𝑑𝑀𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚) = ∑ 𝑑𝑚𝑛 𝑠𝑖𝑛 (2𝑛 (𝑝𝜃𝑅
𝑚 − (𝑘 − 1)

2𝜋

3
))𝑛ℎ

𝑛=1                (3.34) 
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The term 𝑑𝑚𝑛is the harmonic of rank 𝑛 deduced from measurement and the harmonic of 

the self-inductance is given by: 

𝑚𝑛 = −
𝑑𝑚𝑛

2𝑛𝑝
                                                           (3.35) 

The value of the mutual inductance 𝑀𝑘(𝜃𝑅
𝑚) is measured by classical electrical test for a 

particular rotor position 𝜃𝑅
𝑚. Then the mean value 𝑀𝑠 of the mutual inductance is given by: 

𝑀𝑠 = 𝑀𝑘(𝜃𝑅
𝑚) − ∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))∞

𝑛=1                    (3.36) 

The particular rotor position 𝜃𝑅
𝑚 is chosen latter. 

3.7 Experimental test bench 

To measure the torque of the motor in function of the rotor position, an experimental test 

bench has been set up. Figure 3-6 shows a general view of the test bench.  

 

Figure 3-6: A general view of the experimental test bench 

The rotor is driven at a constant speed by a motor. The speed is adjusted at the beginning 

of a test. The phases of the stator winding are supplied by a DC current source. Three types 

of supply can be performed easily by connecting adequately the phases as shown on TABLE 

3-I. The stator is mounted on the bench free to rotate around its bearing. Then a force sensor 

is fixed on the stator to measure any tangential force 𝐹𝑇
𝑆 exerted on the stator. The point of 
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application of the force sensor is located near the external edge of the stator whose distance 

to the rotor axis is: 

𝑟𝐹𝑆 = 134.7 𝑚𝑚                                                           (3.37) 

The force sensor delivers a voltage 𝑉𝐹 proportional to the tangential force 𝐹𝑇
𝑆 with a 

coefficient: 

𝐹𝑇
𝑆 = 𝑐𝐹𝑉𝑉𝐹 

The voltage 𝑉𝐹 is measured by voltage meter and the torque applied on the stator is given 

by: 

𝐶𝑆𝑡𝑎𝑡 = 𝑟𝐹𝑆𝑐𝐹𝑉𝑉𝐹 

Due to action reaction principle, the torque applied on the rotor is: 

𝐶𝑅𝑜𝑡 = −𝐶𝑆𝑡𝑎𝑡 = −𝑟𝐹𝑆𝑐𝐹𝑉𝑉𝐹                                    (3.38) 

Figure 3-7 shows more details around the motor. The white cable linking the force sensor 

to the voltage meter is noticeable. 

 

Figure 3-7: Detailed view around the motor 

TABLE 3-I: Types of supply and phases connections 

Single phase supply Double phase supply Three phase supply 

  
 

𝐼1 = 𝐼𝐶
𝐼2 = 0
𝐼3 = 0

 

𝐼1 = 0
𝐼2 = 𝐼𝑐
𝐼3 = −𝐼𝑐

 

𝐼1 = 𝐼𝐶
𝐼2 = −0.5 𝐼𝑐
𝐼3 = −0.5 𝐼𝑐
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3.8 Numerical treatments of the results of measurements 

The output voltage of the force sensor is measured in function of time and displayed on a 

scope. Due to different reasons the delivered signal is not perfect and must be treated 

numerically. The numerical treatments performed for each measurement is presented by the 

help of an example. 

 Figure 3-8 gives an example of the output voltage in function of time which is the image 

of the torque applied on the stator. 

 

Figure 3-8: Example of the output voltage delivered by the force sensor 

Figure 3-9 shows the torque applied on the rotor corresponding to the output voltage on 

Figure 3-8 and according to equation (3.37). 

 

Figure 3-9: Example of the torque applied on the rotor corresponding to Figure 3-8 

The first imperfection that is observed is that the measured torque has parasitic noise which 

should be filtered. As the sampling step 𝛿𝑡 is constant, a Moving-Average filter is used to 
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filter the measured signal. A window of length 𝑛𝑓 is slided along the signal and the average 

of the signal within the window is calculated: 

𝐶𝑅𝑜𝑡
𝑓 (𝑡𝑛) =

1

𝑛𝑓
∑ 𝐶𝑅𝑜𝑡(𝑡𝑛 + (𝑖 − 1)𝛿𝑡)
𝑛𝑓
𝑖=1

                              (3.39) 

 

Figure 3-10: Filtered measured torque 

Figure 3-10 shows the signal of the filtered measured torque. But there are imperfections 

left. The measured torque is not symmetric along the vertical axis: the maximal value of torque 

is not the opposite of the minimal value of torque. It is not also symmetric along horizontal 

axis: over a period, the duration of positive torque is not equal to the duration of negative 

torque. 

Firstly, an offset is applied to put the horizontal axis at the zero torque level (Figure 3-11): 

𝐶𝑅𝑜𝑡
𝑂𝑓𝑓𝑠𝑒𝑡(𝑡𝑛) = 𝐶𝑅𝑜𝑡

𝑓 (𝑡𝑛) − 𝑂𝑓𝑓𝑠𝑒𝑡                                              (3.40) 

 

Figure 3-11: An offset is applied on the filtered measured torque 
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To equalize along the vertical and the horizontal axis, the symmetric of the signal versus 

at the point (
𝑇

2
, 0) located on the horizontal axis is calculated first: 

𝐶𝑅𝑜𝑡
𝑆𝑦𝑚(𝑡𝑛) = −𝐶𝑅𝑜𝑡

𝑂𝑓𝑓𝑠𝑒𝑡(𝑇 − 𝑡 )                                         (3.41) 

The ultimate signal is the average of the two signals:  

𝐶𝑅𝑜𝑡
𝑂𝐾 (𝑡𝑛) =

1

2
(𝐶𝑅𝑜𝑡

𝑂𝑓𝑓𝑠𝑒𝑡(𝑡𝑛) + 𝐶𝑅𝑜𝑡
𝑆𝑦𝑚(𝑡𝑛))                                                   (3.42) 

Figure 3-12 shows the results of these last treatments. 

 

Figure 3-12: Results of the last treatment along horizontal and vertical axis 

As the rotor speed is known the rotor position 𝜃𝑅
𝑚 is given by: 

𝜃𝑅
𝑚(𝑡) = Ω𝑡 

The torque can then be plotted in function of the rotor position (Figure 3-13). In the 

followings, all these treatments are no more presented only the ultimate result is presented. 

 

Figure 3-13: Torque over one period in function of rotor position 
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3.9 Static torque measurements without permanent magnets 

In this section, the permanent magnets are not mounted on the rotor. It is worth to recall 

that on spoke-type structure, the yoke of the rotor is not ferromagnetic but is made of non-

magnetic material where the ferromagnetic polar pieces are fixed. The prototype without 

permanent magnets on the test bench is shown in Figure 3-14. 

 

Figure 3-14: Prototype without permanent magnets on the test bench 

3.9.1 First experimental observations 

Without permanent magnets, when only one phase is supplied, the symmetry conditions 

show that the rotor has only two equilibrium positions: 

 Case 1: The iron pole is facing the conductors of the supplied phase; 

 Case 2: The iron pole is facing the axis of the supplied phase.  

A priori one expects case (2) as the equilibrium position. The first experimental 

observations on the new prototype show that, when only one phase is fed, the rotor goes into 

a stable equilibrium position corresponding to case (1) where the iron pole is facing the 

conductors of the supplied phase and not as expected in the position where the iron pole is 

facing the phase axis. To understand these first experimental observations, a qualitative study 

of the torque is done by means of a 2D finite element analysis (FEA). In 2D FEA, the axial 

flux machine is assimilated as a linear motor. Without permanent magnets, only one phase, 

the phase 3 here, is supplied by a DC current 𝐼𝐶. The torque is calculated around the two 

equilibrium positions. 
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Study around the position: 𝑹𝟑 aligned with the iron pole 

Figure 3-15 represents the first studied case. The study is made around the position where 

the iron pole is facing the 𝑅3 ‘return’ conductors of the supplied phase. 

 

Figure 3-15: Iron pole facing the 𝑅3 return conductors of  the supplied phase (phase 3) 

The electrical position of the rotor axis (D axis) is shown in Figure 3-16. 

 

Figure 3-16: Case 1 electric domain: aligned rotor axis with the 𝑅3 return conductors 
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The magnetic field lines are shown in Figure 3-17. 

 

Figure 3-17: Magnetic field lines due to the DC supply of phase 3 

In this case, the torque is given by:  

𝐶𝑟𝑜𝑡 =
1

2

𝜕𝐿3
𝜕𝑥

𝐼𝑐
2 (3-43) 

Figure 3-18 presents the torque variation around the studied position (𝑥 = 0). 

 

Figure 3-18: Static torque variation around the studied position for 𝐼𝑐 = 2.12 𝐴 

Figure 3-18 shows that this position is a stable equilibrium position because when the rotor 

is moved away from the position (𝑥 = 0) the sign of the torque shows that it brings the rotor 

back to this position. 



 77 

Study around the position: 𝑹𝟑 facing the magnet  

Figure 3-19 represents the second studied case. The study is made around the position 

where the permanent magnet is facing the return conductors 𝑅3. Only ‘phase-3’ is supplied 

with a direct current and permanent magnets are removed. 

 

Figure 3-19: Location of permanent magnet facing the 𝑅3 return conductors of phase 3 

As the permanent magnet locations are facing the conductors of phase 3, thus the rotor axis is 

aligned with the phase 3 axis. Hence the electrical position of the rotor axis is shown in the 

electrical domain in Figure 3-20. 

 

Figure 3-20: Case 2 electric domain: the rotor axis is aligned with the phase 3 axis 
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The magnetic field lines due to the supply of ‘Phase-3’ are presented in Figure 3-21. 

 

Figure 3-21: Case 2 magnetic field lines due to the DC supply of phase 3 

In this case, the torque is given by: 

𝐶𝑟𝑜𝑡 =
1

2

𝜕𝐿3
𝜕𝑥

𝐼𝑐
2 (3-44) 

Figure 3-22 presents the torque variation around the studied position (𝑥 = 0). 

 

Figure 3-22: Static torque variation around the case 2 studied position for 𝐼𝑐 = 2.12 𝐴 

Figure 3-22 shows that this position is an unstable equilibrium position because when the 

rotor is moved away from the position (𝑥 = 0.0 𝑚), the sign of the torque shows that it moves 

the rotor away from the equilibrium position. 
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As a conclusion, the preliminary studies shows that, when only one phase is supplied without 

permanent magnets, the two positions studied are equilibrium positions because the torque is 

null. The expected stable equilibrium position, is the position where the iron pole is facing the 

axis of the supplied phase. The preliminary studies demonstrate that this expected position is 

an unstable equilibrium position and the stable equilibrium position corresponds to the first 

case studied where the rotor axis is facing the conductors of the supplied phase. This fact can 

be explained by the fact that the rotor yoke is a non-magnetic material. 

3.9.2 Single phase supply 

The permanent magnets are removed. Only the first phase is fed. The phase connections 

and the supply currents are given on TABLE 3-I first column. The rotor is driven at a very 

low speed (0.29 𝑟𝑝𝑚). After the numerical treatments described in section 3.8, the static 

torque in function of the mechanical angle 𝜃𝑅
𝑚 is presented in Figure 3-23. 

 

Figure 3-23: Torque in function of rotor angular position 𝜃𝑅
𝑚 

 

At the origin (𝜃𝑅
𝑚 = 0°), in Figure 3-23, the axis of the rotor is facing the axis of phase 1which 

is the supplied phase. In reference to Figure 3-22, the origin is identified as the unstable 

equilibrium position.  Figure 3-24 shows the static torque curves without permanent magnets 

for different values of the current supply. 
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Figure 3-24: Saliency torque due to different current values 

Using the electromechanical model, the derivatives of the inductance with respect to the 

mechanical angular position of the rotor is given by (3.45). 

𝑑𝐿1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

2𝐶𝑅1(𝜃𝑅
𝑚)

𝐼𝑐
2                                                                   (3.45) 

Figure 3-25 gives the derivatives of the self-inductance of the supplied phase for the different 

values of current. 

 

Figure 3-25: Self-inductances variations for different current values 

Figure 3-25 shows that the derivative of the self-inductance as a function of the rotor position 

does not depend of the value of the current. This shows that, in the absence of permanent 

magnets, the magnetic circuit is not saturated. The torque as a function of the rotor position 

can be decomposed into harmonics. Taking into account the symmetry with respect to the 

origin and its periodicity, the torque expression can be written as in (3.46). 



 81 

𝐶𝑅1(𝜃𝑅
𝑚) = ∑𝑠𝑛 𝑠𝑖𝑛(2𝑛𝑝𝜃𝑅

𝑚)

𝑛ℎ

𝑛=1

 (3-46) 

Table 3-II gives the values of the first five harmonics of the derivative of the inductance for 

different current values. The values of harmonics do not vary much with the current. 

TABLE 3-II: The first five harmonics of the self-inductances derivatives 

 
2

𝐼𝑐2
𝑠1 

2

𝐼𝑐2
𝑠2 

2

𝐼𝑐2
𝑠3 

2

𝐼𝑐2
𝑠4 

2

𝐼𝑐2
𝑠5 

𝐼𝑐 = 2𝐴 0.2027 -0.0564 -0.0441 0.0041 0.0160 

𝐼𝑐 = 3𝐴 0.2038 -0.0582 -0.0448 0.0054 0.0141 

𝐼𝑐 = 4𝐴 0.2084 -0.0596 -0.0494 0.0054 0.0179 

𝐼𝑐 = 5𝐴 0.2068 -0.0552 0.0501 0.0044 0.0179 

The derivatives of the inductances with respect to the mechanical angular position of the rotor 

can be reconstructed from the harmonics (3.47). 

𝑑𝐿1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

2

𝐼𝑐
2∑ 𝑠𝑛 𝑠𝑖𝑛(2𝑛𝑝𝜃𝑅

𝑚)𝑛ℎ
𝑛=1                                        (3.47) 

From (3.30), the harmonics of the derivative of the self-inductances are: 

𝑑𝑙𝑛 =
2

𝐼𝑐
2 𝑠𝑛                                                                    (3.48) 

Figure 3-26 shows the reconstruction of the derivative of the self-inductance of each phase 

from (3.30) and (3.48). 

 

Figure 3-26: Derivatives of the self-inductances reconstituted from harmonics 
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3.9.3  Double phase supply 

The permanent magnets are removed. Only phase 2 and phase 3 are fed. The phase 

connections and the supply currents are given on TABLE 3-I 2nd column. The rotor is driven 

at a very low speed (0.29 𝑟𝑝𝑚). After the numerical treatments described in section 3.8, the 

static torque in function of the mechanical angle 𝜃𝑅
𝑚 is presented in Figure 3-27. 

 

Figure 3-27: Static torque without permanent magnet and double phase supply 

From Figure 3-27 it can be noticed that, at the origin, the rotor is in the stable equilibrium 

position. This initial position corresponds to the rotor position in the electrical domain shown 

in Figure 3-28 where it is aligned with ‘phase-1’ axis.  

 

 

Figure 3-28: Electric domain the rotor axis is aligned with the phase 1 axis 
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This is a stable equilibrium position if phases 2 and 3 are supplied in anti-series. 

{
𝐼1 = 0
𝐼2 = 𝐼𝐶
𝐼3 = −𝐼𝐶

 (3-49) 

Indeed, in this case, the ferromagnetic polar pieces are facing the conductors of the active 

phases. Figure 3-29 presents the static torque curves without permanent magnets and with 

double phase supply for DC current of 2 𝐴 and 3 𝐴 respectively. 

 

Figure 3-29: Static torques for double phase supply for two different values of the current 

Using the electromechanical model, the torque is expressed by: 

𝐶𝑅23(𝜃𝑅
𝑚) =

1

2
(
𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 − 2

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 ) 𝐼𝑐

2 (3-50) 

Figure 3-30  presents 
2𝐶𝑅23(𝜃𝑅

𝑚)

𝐼𝑐
2  for two values of the supply currents. Indeed, it shows that the 

current has a very few effect on the obtained results. The torque as a function of the rotor 

position 𝜃𝑅
𝑚 can be expressed in terms of its harmonics. 
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Figure 3-30: 
2𝐶𝑅23(𝜃𝑅

𝑚)

𝐼𝑐
2  for two different values of current 

Given the symmetry with respect to the origin and its periodicity, the torque expression can 

be written by (3.51). 

𝐶𝑅23(𝜃𝑅
𝑚) = ∑ 𝑠𝑎𝑛 𝑠𝑖𝑛(2𝑛𝑝𝜃𝑅

𝑚)

𝑛ℎ

𝑛=1

 (3-51) 

TABLE 3-III gives the values of the first five harmonics of 
2𝐶𝑅23(𝜃𝑅

𝑚)

𝐼𝑐
2  for the two values of 

current. The values of harmonics do not vary much with the supply current. 

TABLE 3-III: The first five harmonics of  
2𝐶𝑅23(𝜃𝑅

𝑚)

𝐼𝑐
2  for 2.0 and 3.0 A 

 
2

𝐼𝑐2
𝑠𝑎1 

2

𝐼𝑐2
𝑠𝑎2 

2

𝐼𝑐2
𝑠𝑎3 

2

𝐼𝑐2
𝑠𝑎4 

2

𝐼𝑐2
𝑠𝑎5 

𝐼𝑐 = 2𝐴 -0.2123 -0.0958 -0.1400 -0.0232 -0.0116 

𝐼𝑐 = 3𝐴 -0.2128 -0.0933 -0.1401 -0.0205 -0.0104 

The derivative of the mutual inductance between phase 2 and phase 3 is given by (3.52). 

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

𝑑𝐿23(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

1

2
(
𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 − 2

𝐶𝑅23(𝜃𝑅
𝑚)

𝐼𝑐
2

) (3-52) 

The derivatives of the self-inductances can be expressed in terms of the harmonics 𝑠𝑛 of the 

static torques due to one phase 𝐶𝑅𝑘 as written in (3.53).  

{
 
 

 
 𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 = 2

𝐶𝑅2(𝜃𝑅
𝑚)

𝐼𝑐2
=
2

𝐼𝑐2
∑𝑠𝑛 𝑠𝑖𝑛 (2𝑛 (𝑝𝜃𝑅

𝑚 −
2𝜋

3
))

𝑛ℎ

𝑛=1

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 = 2

𝐶𝑅3(𝜃𝑅
𝑚)

𝐼𝑐2
=
2

𝐼𝑐2
∑𝑠𝑛 𝑠𝑖𝑛 (2𝑛 (𝑝𝜃𝑅

𝑚 −
4𝜋

3
))

𝑛ℎ

𝑛=1

 (3-53) 
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Then, 

𝑑𝐿2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

2

𝐼𝑐
2∑ 𝑠𝑛 (𝑠𝑖𝑛 (2𝑛𝑝𝜃𝑅

𝑚 − 𝑛
2𝜋

3
) + 𝑠𝑖𝑛 (2𝑛𝑝𝜃𝑅

𝑚 − 𝑛
4𝜋

3
))𝑛ℎ

𝑛=1   (3.54) 

It can be written as: 

𝑑𝐿2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

2

𝐼𝑐
2∑ 𝑠𝑛 (𝑠𝑖𝑛 (2𝑛𝑝𝜃𝑅

𝑚 − 𝑛
2𝜋

3
) + 𝑠𝑖𝑛 (2𝑛𝑝𝜃𝑅

𝑚 + 𝑛
2𝜋

3
))𝑛ℎ

𝑛=1    (3.55) 

Hence: 

𝑑𝐿2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

4

𝐼𝑐
2∑ 𝑠𝑛 sin(2𝑛𝑝𝜃𝑅

𝑚) cos (𝑛
2𝜋

3
)𝑛ℎ

𝑛=1          (3.56) 

The derivative of the mutual inductance is then given by:  

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

1

2
(
4

𝐼𝑐
2∑ 𝑠𝑛 𝑠𝑖𝑛(2𝑛𝑝𝜃𝑅

𝑚) 𝑐𝑜𝑠 (𝑛
2𝜋

3
)𝑛ℎ

𝑛=1 −
2

𝐼𝑐
2∑ 𝑠𝑎𝑛 𝑠𝑖𝑛(2𝑛𝑝𝜃𝑅

𝑚)𝑛ℎ
𝑛=1 )         (3.57) 

The final expressions can be written in the following form and extended to all mutual: 

𝑑𝑀𝑘(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

1

𝐼𝑐
2∑ (2𝑠𝑛 𝑐𝑜𝑠 (𝑛

2𝜋

3
) − 𝑠𝑎𝑛) 𝑠𝑖𝑛 (2𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))𝑛ℎ

𝑛=1        (3.58a)  

From (3.58a), the harmonics of the derivative of the mutual inductances are: 

𝑑𝑚𝑛 =
2

𝐼𝑐
2 (2𝑠𝑛 𝑐𝑜𝑠 (𝑛

2𝜋

3
) − 𝑠𝑎𝑛)                                 (3.58b) 

Now, as the derivatives regarding the self and mutual inductances variations are written in 

function of the harmonics of the single phase static torque (3.45) and the harmonics of the 

double phase static torque (3.52), the derivative of the matrix inductance is identified: 

𝑑𝑳(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 =

[
 
 
 
 
 
 
𝑑𝐿1(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝐿2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 ]

 
 
 
 
 
 

 (3-59) 

3.9.4 Conclusion of the tests without permanent magnets 

The tests without permanent magnets allow to measure the static torque of single phase or 

double phase supply in function of the position of the rotor. These two static torques allow to 

identify the harmonics of the derivatives of self and mutual inductances. These are the 

parameters of the torque model that allow to calculate the saliency torque in function of the 

rotor position and the current in each phase. These parameters are validated in section 3.11. 

3.10 Measurements with permanent magnets 

3.10.1 Cogging torque 

When the permanent magnets are mounted on the rotor and the currents are null, the 

measured torque is the so known cogging torque. After the numerical treatments, the obtained 

cogging torque is presented in Figure 3-31. 
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Figure 3-31: The measured cogging torque 

The period of the cogging torque is equal to one tooth pitch, thus the expression of the 

cogging torque as a function of the angular position of the rotor is given by (3-60). 

𝐶𝑑(𝜃𝑅
𝑚) = ∑ 𝑠𝑑𝑛 𝑠𝑖𝑛(𝑛𝑛𝑒𝜃𝑅

𝑚)

𝑛ℎ

𝑛=1

 (3-60) 

Where 𝑠𝑑𝑛 is the cogging torque harmonics of rank 𝑛, 𝑛𝑒 is the number of slots. Indeed, at 

the horizontal axis origin, due the definition of  𝜃𝑅
𝑚, the rotor axis is facing a tooth. The origin 

is a stable equilibrium position. Figure 3-32 presents the reconstruction of the cogging torque 

with the first 5 harmonics. 

 

Figure 3-32: Original and reconstituted cogging torques 

 

Table 3-IV gives the values of the first five harmonics 𝑠𝑑𝑛 of 𝐶𝑑(𝜃𝑅
𝑚). 

TABLE 3-IV: The first five harmonics of 𝐶𝑑(𝜃𝑅
𝑚) 

𝑠𝑑1 𝑠𝑑2 𝑠𝑑3 𝑠𝑑4 𝑠𝑑5 

-0.7418 -0.4526 -0.0527 0.0176 0.0135 
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3.10.2 Derivative of the no-load flux 

The permanent magnets are mounted on the rotor and the currents are null. The rotor is driven 

by another motor at a speed of 400 𝑟𝑝𝑚. The measured voltages at the terminals of each phase 

are the no-load back electromotive force (e.m.f). The three measured no-load e.m.f. are 

presented in Figure 3-33. The peak value of each is 𝑉𝑝𝑒𝑎𝑘 = 152 𝑉. 

 

Figure 3-33: Measured e.m.f at rotational speed 400 𝑟𝑝𝑚 

The derivatives of the no-load fluxes with respect to the rotor position 𝜃𝑅
𝑚 can be obtained 

from (3.26) shown in Figure 3-34 in function of the rotor position. 

 

Figure 3-34: No-load fluxes derivatives function of rotor position 

The period of the flux derivative is equal to one pair of poles. The expression for the no-load 

flux derivatives in terms of its harmonics as a function of rotor position is given in (3-28). 

Figure 3-35 presents the reconstruction of the derivative of the ‘phase-1’ flux from the first 

11 harmonics. 
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Figure 3-35: No-load fluxes derivatives reconstitution from its harmonics 

Table 3-V gives the values of the first eleven harmonics 𝑑𝑓𝑛 of 
𝑑𝜙𝑣𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅 ). 

TABLE 3-V: The first eleven harmonics of  
𝑑𝜙𝑣𝑘

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚) 

𝑑𝑓1 𝑑𝑓2 𝑑𝑓3 𝑑𝑓4 𝑑𝑓5 𝑑𝑓6 𝑑𝑓7 𝑑𝑓8 𝑑𝑓9 𝑑𝑓10 𝑑𝑓11 

-3.7012 -0.0031 -0.1698 -0.0023 -0.5455 0.0 -0.0155 0.0 0.0025 0.0 -0.0452 

3.10.3 Conclusion 

With the permanent magnets mounted on the rotor and null currents, the tests allow to 

determine the harmonics of the cogging torque and the no-load fluxes. These harmonics 

constitutes the parameters of the torque model that allows to calculate the electromagnetic 

torque and the cogging torque in function of the rotor position and the current in each phase. 

Now all the parameters of the torque model are identified. These identified parameters are 

validated in section 3.11. 

3.11 Validation of the identified torque model parameters 

3.11.1 Without permanent magnets and three phase supply 

The permanent magnets are removed. The three phases are fed by DC currents. The phase 

connections and the supply currents are given on TABLE 3-I 3rd column. To validate the 

identified parameters that allow to calculate the saliency torque, the torque is measured on the 

test bench and calculated from the saliency torque model for two different values of the DC 

current. The saliency model applied to the test is given by (3.61): 
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𝐶𝑅(𝜃𝑅
𝑚) =

1

2
{𝐼𝐶 −

𝐼𝐶

2
−
𝐼𝐶

2
}

[
 
 
 
 
 
𝑑𝐿1(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝐿2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀2(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 ]

 
 
 
 
 

{

𝐼𝐶

−
1

2
𝐼𝐶

−
1

2
𝐼𝐶

}                (3.61) 

The derivatives of the self and mutual inductances are calculated by their harmonics using 

(3.31), (3.47) and (3.58). These harmonics are identified using single phase and double phase 

supplies with a current value of 2A. 

For 𝐼𝐶 = 2𝐴, the measured and calculated torques for a three phase supply are presented on 

Figure 3.36. 

 

Figure 3-36: Measured and calculated saliency torque for 𝐼𝐶 = 2𝐴 

Figure 3.36 shows that the calculated torque form the saliency model are in a very good 

accordance with the measured torque. This validates the identified parameters but also the 

numerical treatments applied on the measured torques. 

For 𝐼𝐶 = 4𝐴, the measured torque and the calculated torque are presented on Figure 3.37. 

 

Figure 3-37: Measured and calculated saliency torque for 𝐼𝐶 = 4𝐴 
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When the current is doubled the saliency model still gives very good results even if the 

parameters where identified during tests with a supply current of 2A. 

3.11.2 With permanent magnets and single phase supply 

The permanent magnets are mounted on the rotor. Only the first phase is fed. The phase 

connections and the supply currents are given on TABLE 3-I first column. To validate the 

identified parameters that allow to calculate the saliency torque, the electromagnetic torque 

and the detent torque, the torque is measured on the test bench and calculated from the torque 

model for a single phase supply. The torque model applied to the test is given by (3.62) 

𝐶𝑅(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚) + {𝐼𝐶 0 0}

{
 
 

 
 
𝑑𝑣1

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚)

𝑑𝑣2

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚)

𝑑𝑣3

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚)
}
 
 

 
 

+
1

2
{𝐼𝐶 0 0}

𝑑𝑳(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 {

𝐼𝐶
0
−0
}                (3.62) 

By developing the matrix products, the torque for a single phase supply is given by: 

𝐶𝑅(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚
)+ 𝐼𝐶

𝑑𝑣1
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
)+

1

2

𝑑𝐿1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 𝐼𝑐

2
                        (3.63) 

For 𝐼𝐶 = 0.6𝐴, the measured and calculated torques are presented on Figure 3.38 and for 𝐼𝐶 =
1.0𝐴, on Figure 3.39. 

 

Figure 3-38: Single phase supply: measured and calculated  torques for 𝐼𝐶 = 0.6𝐴 
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Figure 3-39: Single phase supply: measured and calculated  torques for 𝐼𝐶 = 1.0𝐴 

Figure 3.38 and Figure 3.39 show that the static torque, for low current, has relatively large 

ripples but the torque model succeeds in reproducing them with a very good fidelity. 

For 𝐼𝐶 = 3.6𝐴, the measured  and calculated torques are presented on Figure 3.40. 

 

Figure 3-40: Single phase supply: measured and calculated  torques for 𝐼𝐶 = 3.6 𝐴 

Figure 3.40 shows that the static torque, for higher current, has relatively less ripples. The 

torque model result presents relatively more differences with the measurement result but the 

calculated torque is still acceptable. 

3.11.3 With permanent magnets and double phase supply 

The permanent magnets are mounted on the rotor. Only the second and third phases are fed. 

The phase connections and the supply currents are given on TABLE 3-I second column. To 

validate the identified parameters, the torque is measured on the test bench and calculated 

from the torque model for a double phase supply. The torque for a double phase supply is 

given by (3.62): 
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𝐶𝑅(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚
)+ 𝐼𝐶 (

𝑑𝑣2
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
)−

𝑑𝑣3
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
))+

1

2
(
𝑑𝐿2(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 +

𝑑𝐿3(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 − 2

𝑑𝑀1(𝜃𝑅
𝑚)

𝑑𝜃𝑅
𝑚 ) 𝐼𝑐

2
   (3.62)   

For 𝐼𝐶 = 1.0𝐴, the measured torque and the calculated torque are presented on Figure 3.41 

and for 𝐼𝐶 = 2.0𝐴, on Figure 3.42. 

Figure 3.41 and Figure 3.42 show that the torque model produce results that are still 

acceptable compared to the measured torque.  

 

Figure 3-41: Double phase supply: measured and calculated  torques for 𝐼𝐶 = 1.0 𝐴 

 

Figure 3-42: Double phase supply: measured and calculated  torques for 𝐼𝐶 = 2.0 𝐴 

3.11.4 With permanent magnets and three phase supply 

The permanent magnets are mounted on the rotor. The three phases are fed. The phase 

connections and the supply currents are given on TABLE 3-I third column. To validate the 

identified parameters, the torque is measured on the test bench and calculated from the torque 
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model for a three phase supply. The expression is left in matrix form because for a three phase 

supply the development may be very long (3.63): 

𝐶𝑅(𝜃𝑅
𝑚) = 𝐶𝑑(𝜃𝑅

𝑚
)+ {𝐼𝐶 −

𝐼𝐶

2
−
𝐼𝐶

2
}

{
 
 

 
 
𝑑𝑣1
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
)

𝑑𝑣2
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
)

𝑑𝑣3
𝑑𝜃𝑅

𝑚 (𝜃𝑅
𝑚
)}
 
 

 
 

+
1

2
{𝐼𝐶 −

𝐼𝐶

2
−
𝐼𝐶

2
}
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 {

𝐼𝐶

−
𝐼𝐶

2

−
𝐼𝐶

2

}   (3.63)   

For 𝐼𝐶 = 0.6𝐴, the measured calculated torques are presented on Figure 3.43 and for 𝐼𝐶 =

2.6𝐴, on Figure 3.44. 

 

Figure 3-43: Three phase supply: measured and calculated  torques for 𝐼𝐶 = 0.6𝐴 

 

Figure 3-44: Three phase supply: measured and calculated  torque for 𝐼𝐶 = 2.6𝐴 

Figure 3.43 and Figure 3.44 are the last measurements that validate the torque model and the 

proposed numerical treatment of experimental results. The three phase supply for 𝐼𝐶 = 2.6𝐴 

can be assimilated to a point of a three phase sinusoidal supply with a r.m.s value of current 

equal to 𝐼𝑟𝑚𝑠 = 1.84𝐴  which is higher than the rated value of current given in chapter two of  

𝐼𝑟𝑚𝑠 = 1.5𝐴. 
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3.12 Electrical measurements 

The parameters of the torque model are identified by static torque measurements and the 

back e.m.f measurements. The identified parameters are validated in the previous section. In 

this section the flux model parameters, defined in section 3.6, are identified. 

3.12.1 No-load flux 

The harmonics 𝑑𝑓𝑛 of the no-load flux derivatives (3.28) has been identified by e.m.f 

measurements in section 3.10.2. The harmonics 𝑓𝑛 of the no-load flux (3.13) are given by 

(3.29). Figure 3-45 shows the no-load flux obtained from its harmonics. 

 

 

Figure 3-45: No-load flux calculated from their harmonics 

Table 3-VI gives the values of the first five harmonics 𝑓𝑛 of 𝜙𝑣𝑘(𝜃𝑅
𝑚). 

 

TABLE 3-VI: The first five harmonics of 𝜙𝑣𝑘(𝜃𝑅
𝑚) 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

0.4625 0.0 0.0071 0.0 -0.0136 

3.12.2 Self and mutual inductances 

The harmonics 𝑑𝑙𝑛 and 𝑑𝑚𝑛 of the self and mutual inductance derivatives have been identified 

in section 3.9 by (3.47) and (3.56b) respectively. The expressions of the self and mutual 

inductances (3.14) and (3.18) show that their mean values 𝐿𝑠 and 𝑀𝑠 have to be identified. 

According to expressions (3.32) and (3.35) additional measurements have to be done. These 

measurements are electrical measurements performed at particular rotor positions 𝜃𝑅
𝐿 and 𝜃𝑅

𝑀. 

Knowing 𝐿1(𝜃𝑅
𝐿) at 𝜃𝑅

𝐿 and the mutual inductance 𝑀𝑘(𝜃𝑅
𝑀) at 𝜃𝑅

𝑀, the values of mean self and 

mutual inductances are given by (3.32) and (3.35). 

These electrical measurements are not performed on the torque test bench but at blocked 

positions of the rotor when the permanent magnets are removed. It is natural to choose 𝜃𝑅
𝐿 and 

𝜃𝑅
𝑀 among the equilibrium positions of the rotor. Several equilibrium positions have been 
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tested to perform electrical measurements and eventually the origin position 𝜃𝑅
𝑚 = 0 has been 

chosen to make the measurements: 

𝜃𝑅
𝐿 = 𝜃𝑅

𝑀 = 0                                              (3.64) 

 When phase 1 is supplied, the origin position is an equilibrium position but it is unstable. So 

during the measurement the rotor is blocked. The phase 1 is supplied by a sinusoidal current 

at 50 Hz with rms value equal to 1A. The other phases are not supplied. The voltage on all 

phases are measured. The active and reactive powers are measured as well. These 

measurements are repeated for phase 2 and phase 3. From these measurements, the identified 

parameters are summarized in the TABLE 3-VII. 

TABLE 3-VII: Main electrical parameters for different current values at the unstable 

equilibrium position 

 Phase 1 supplied Phase 2 supplied Phase 3 supplied 

Resistance, 𝑅𝑠(Ω) 13.10 13.30 12.90 

Self-inductance, 𝐿𝑠(𝑚𝐻) 38.20 37.90 37.90 

Mutual inductance, 𝑀𝑥(𝑚𝐻) -6.20 -6.00 -9.60 

Mutual inductance, 𝑀𝑦(𝑚𝐻) -9.90 -10.00 -10.00 

Measurements with the phase 1 supplied with sinusoidal current of different rms values are 

summarized in the TABLE 3-VIII. 

TABLE 3-VIII: Main electrical parameters for different rms current values 

 1.00 𝐴 2.00 𝐴 3.00 𝐴 

Resistance, 𝑅𝑠(Ω) 15.80 13.75 14.00 

Self-inductance, 𝐿𝑠(𝑚𝐻) 42.60 37.10 37.10 

Mutual inductance, 𝑀𝑥(𝑚𝐻) -6.70 -6.30 -6.30 

Mutual inductance, 𝑀𝑦(𝑚𝐻) -10.4 -9.70 -9.50 

From the electrical measurements, the value of self and mutual inductance for the unstable 

equilibrium position are deduced. 

{
𝐿1(0) = 𝐿1(𝜃𝑅

𝐿) = 38.0 𝑚𝐻

𝐿12(0) = 𝑀3(0) = −6.1𝑚𝐻
                                                 (3.65) 

Eventually the mean values of the self and mutual inductance are given by: 

{
𝐿𝑠 = 𝐿1(𝜃𝑅

𝐿) − ∑ 𝑙𝑛𝑐𝑜𝑠(2𝑛𝑝𝜃𝑅
𝐿)∞

𝑛=1 = 𝐿1(0) − ∑ 𝑙𝑛
∞
𝑛=1                                                    

𝑀𝑠 = 𝑀3(𝜃𝑅
𝑀) − ∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛 (𝑝𝜃𝑅

𝑀 −
4𝜋

3
))∞

𝑛=1 = 𝑀3(0) − ∑ 𝑚𝑛𝑐𝑜𝑠 (2𝑛
4𝜋

3
)∞

𝑛=1

(3.66) 
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Figure 3-46 shows self and mutual inductances obtained from expressions (3.14) and (3.18). 

 

 

Figure 3-46: Self and mutual inductances calculated from harmonics and mean values 

3.12.3 Conclusion 

The identification of the flux model parameters closes the identification of all the parameters 

of torque and flux models of lumped parameter model of the spoke type axial flux permanent 

magnet motor. By the way the stator resistance too has been identified in TABLE 3-VI. The 

validity has been demonstrated even for higher current than the rated current determined in 

Chapter 2.  

3.13 Study of three phase sinusoidal supplies 

The torque and flux models are used to study the behavior of the spoke type axial flux 

permanent magnet (STAFPM) motor. To guide the study, the DQ0 model is used.  

3.13.1 DQ0 Model 

To calculate the parameter of the DQ0 model the Park’s transformation is used. The matrix 

of the Park’s transformation depends on the electric angular position of the rotor 𝜃𝑅
𝑒: 

𝑷(𝜃𝑅
𝑒) = √

2

3

[
 
 
 
 cos(𝜃𝑅

𝑒)   cos(𝜃𝑅
𝑒 −

2𝜋

3
)   cos (𝜃𝑅

𝑒 +
2𝜋

3
)  

− sin(𝜃𝑅
𝑒) − sin(𝜃𝑅

𝑒 −
2𝜋

3
) − sin(𝜃𝑅

𝑒 +
2𝜋

3
)

1

√2
             

1

√2
                       

1

√2
                       ]

 
 
 
 

                          (3.67) 

The Park’s component of an electric quantities is given by the transpose of the one column 

matrix 𝒙 : 

𝒙𝑻 = {𝑥}𝑇 = {𝑥𝐷 , 𝑥𝑄 , 𝑥0}                                                                  (3.68) 
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This matrix is related to the one column matrix of an electric quantity 𝑿 by: 

𝒙 = 𝑷(𝜃𝑅
𝑒)𝑿                                                                             (3.69) 

For instance, the DQ0 component of the no-load flux matrix is given by: 

{
𝑣𝐷
, 
𝑣𝑄
, 
𝑣0
}
𝑇

= 𝑷(𝜃𝑅
𝑒){

𝑣1
, 
𝑣2
, 
𝑣3
}
𝑇

                                                  (3.70) 

Figure 3-47 shows the DQ0 components of no-load flux in function of rotor position obtained 

by Park’s transformation. 

 

 

Figure 3-47: DQ0 components of no-load flux calculated 

As expected the mean values of the quadrature and homopolar components of the no-load flux 

are null. The mean value of the direct component of the no-load flux is: 

(
𝑣𝐷
)
𝑚𝑒𝑎𝑛

= 0.57 𝑊𝑏                                                       (3.71) 

For a self-driven synchronous motor, the currents can be defined as sinusoidal functions of 

the rotor position knowing its magnitude 𝐼𝑚 and its phase shift 𝛼 from the rotor position: 

𝑰(𝜃𝑅
𝑚) = {

𝐼1(𝜃𝑅
𝑚) 

𝐼2(𝜃𝑅
𝑚)

𝐼3(𝜃𝑅
𝑚)
} =

{
 

 
𝐼𝑚𝑐𝑜𝑠(𝑝𝜃𝑅

𝑚 + 𝛼)           

𝐼𝑚𝑐𝑜𝑠 (𝑝𝜃𝑅
𝑚 + 𝛼 −

2𝜋

3
)

𝐼𝑚𝑐𝑜𝑠 (𝑝𝜃𝑅
𝑚 + 𝛼 −

4𝜋

3
)}
 

 

                                (3.72) 
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Figure 3.48 shows the definition of the phase shift 𝛼 in the electric domain. 

 

 

Figure 3-48: Definition of the phase shift 𝛼 in the electric domain 

If the permanent magnets are removed, the flux are given by: 

𝜱(𝜃𝑅
𝑚) = 𝑳(𝜃𝑅

𝑚)𝑰                                                        (3.73) 

The current magnitude 𝐼𝑚 is the rated current defined in Chapter 2 whose rms value is: 

𝐼𝑟𝑚𝑠 =
𝐼𝑚

√2
= 1.5 𝐴 

For different values of the phase shift 𝛼, the flux without permanent magnets are calculated 

in function of the rotor position. The corresponding DQ0 components of the flux and current 

are calculated from Park’s transformation. For each phase the direct inductance 𝐿𝐷(𝜃𝑅
𝑚) and 

the quadrature inductance 𝐿𝑄(𝜃𝑅
𝑚) is calculated in function of the rotor position by the 

relations: 

{
 
 

 
 𝐿𝐷(𝜃𝑅

𝑚) =

𝐷
(𝜃𝑅

𝑚)

𝐼𝐷(𝜃𝑅
𝑚)

𝐿𝑄(𝜃𝑅
𝑚) =


𝑄
(𝜃𝑅

𝑚)

𝐼𝑄(𝜃𝑅
𝑚)

 

For 𝛼 = 30°, the direct inductance 𝐿𝐷(𝜃𝑅
𝑚) and the quadrature inductance 𝐿𝑄(𝜃𝑅

𝑚) are 

presented on Figure 3.49 and for 𝛼 = 120°, on Figure 3.50. 
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Figure 3-49: Direct inductance 𝐿𝐷(𝜃𝑅
𝑚) and the quadrature inductance 𝐿𝑄(𝜃𝑅

𝑚) for 𝛼 = 30° 

 

Figure 3-50: Direct inductance 𝐿𝐷(𝜃𝑅
𝑚) and quadrature inductance 𝐿𝑄(𝜃𝑅

𝑚) for 𝛼 = 120° 

Figure 3.49 and Figure 3.50 show that the direct inductance 𝐿𝐷(𝜃𝑅
𝑚) and the quadrature 

inductance 𝐿𝑄(𝜃𝑅
𝑚) have ripples that depends on the phase shift 𝛼 but the mean values of these 

inductances do not depend on the phase shift. The mean values are equal to: 

{
(𝐿𝐷)𝑚𝑒𝑎𝑛 = 48.9𝑚𝐻 

(𝐿𝑄)𝑚𝑒𝑎𝑛 = 61.5𝑚𝐻
                                                                   (3.74) 

3.13.2 Optimal torque per Ampere by the DQ0 model 

In this section, the direct no-load flux ripples and those of the direct and quadrature 

inductances are neglected. Thus the DQ0 model has the following parameters: 

{


𝑣𝐷
= 0.57 𝑊𝑏

𝐿𝐷 = 48.9𝑚𝐻 
𝐿𝑄 = 61.5𝑚𝐻

                                                                (3.75) 

The torque given by the DQ0 model is: 
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𝐶𝑚𝑜𝑡 = 𝑝𝛷𝑣𝐷𝑖𝑄 + 𝑝(𝐿𝐷 − 𝐿𝑄)𝑖𝐷𝑖𝑄                                                  (3.76) 

From this model it is possible to calculate the optimal torque given the magnitude 𝐼𝑚 of 

the sinusoidal currents (3.72). The current 𝐼𝑏 is defined as: 

𝐼𝑏 =
𝑣𝐷

𝐿𝑄−𝐿𝐷
= 45.24 𝐴                                                            (3.77) 

The norm 𝐼𝑛𝑜𝑟𝑚 of the rated current in the DQ0 model is: 

𝐼𝑛𝑜𝑟𝑚 = √3𝐼𝑟𝑚𝑠 = 2.6𝐴                                                         (3.78) 

The DQ components of the optimal current are: 

{

𝐼𝐷
𝑂𝑝𝑡 =

1

4
(𝐼𝑏 −√𝐼𝑏

2 + 8𝐼𝑛𝑜𝑟𝑚2 )

𝐼𝑄
𝑂𝑝𝑡 = √𝐼𝑛𝑜𝑟𝑚2 − (𝐼𝐷

𝑂𝑝𝑡)
2
          

                                                     (3.79) 

The optimal phase shift 𝛼𝑂𝑝𝑡 is given by: 

𝛼𝑂𝑝𝑡 = 𝑎𝑡𝑎𝑛2(𝐼𝑄
𝑂𝑝𝑡, 𝐼𝐷

𝑂𝑝𝑡) = 93.3°                                               (3.80) 

The optimal torque per Ampere for the rated current is: 

𝐶𝑂𝑝𝑡 = 𝑝𝛷𝑣𝐷𝐼𝑄
𝑂𝑝𝑡 + 𝑝(𝐿𝐷 − 𝐿𝑄)𝐼𝐷

𝑂𝑝𝑡𝐼𝑄
𝑂𝑝𝑡 = 11.87 𝑁.𝑚                             (3.81) 

For the rated current, the torque, given by (3.76), in function of the phase shift 𝛼 is plotted 

in Figure 3.51. It is compared to the electromagnetic torque given by (3.82): 

𝐶𝑒𝑚 = 𝑝𝛷𝑣𝐷𝑖𝑄                                                                (3.82) 

As expected the optimal electromagnetic torque is obtained for 𝛼 = 90° and the optimal 

torque is obtained for 𝛼 = 𝛼𝑂𝑝𝑡 = 93.3°.  

 

Figure 3-51: Torque and electromagnetic torque versus 𝛼 
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3.13.3 Optimal torque per Ampere by the lumped parameter model 

In this section, for the rated current, the torque calculated by the lumped parameter model 

is calculated in function of the phase shift 𝛼. The currents are given by (3.72) in function of 

the rotor position and the torque is calculated by: 

𝐶𝑅(𝜃𝑅
𝑚) =

{
 
 
 
 
 

 
 
 
 
 

𝐶𝑑(𝜃𝑅
𝑚
)+ {𝐼1(𝜃𝑅

𝑚) 𝐼2(𝜃𝑅
𝑚) 𝐼3(𝜃𝑅

𝑚)}

{
 
 
 

 
 
 
𝑑

𝑣1

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚
)

𝑑
𝑣2

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚
)

𝑑
𝑣3

𝑑𝜃𝑅
𝑚 (𝜃𝑅

𝑚
)
}
 
 
 

 
 
 

+
1

2
{𝐼1(𝜃𝑅

𝑚) 𝐼2(𝜃𝑅
𝑚) 𝐼3(𝜃𝑅

𝑚)}
𝑑𝑳(𝜃𝑅

𝑚)

𝑑𝜃𝑅
𝑚 {

𝐼1(𝜃𝑅
𝑚)

𝐼2(𝜃𝑅
𝑚)

𝐼3(𝜃𝑅
𝑚)
}

 (3.83) 

Figure 3.52 to Figure 3.54 plotted the torque in function of the rotor position for three values 

of the phase shift around the optimal phase shift. 

 

Figure 3-52: 𝐶𝑅(𝜃𝑅
𝑚) for 𝛼 = 87° 

 

Figure 3-53: 𝐶𝑅(𝜃𝑅
𝑚) for 𝛼 = 𝛼𝑂𝑝𝑡 = 93.3° 
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Figure 3-54: 𝐶𝑅(𝜃𝑅
𝑚) for 𝛼 = 100.0° 

Figure 3.52 to Figure 3.54 shows that the torque has ripples. TABLE 3-IX compares the 

mean torque obtained by the lumped parameter model (3.63) to the torque obtained by the DQ 

model (3.76) 

TABLE 3-IX: Comparison of the mean torque from the lumped parameter model and DQ 

model 

𝛼 = 87 (𝐶𝑅(𝜃𝑅
𝑚))

𝑚𝑒𝑎𝑛
= 11.78 𝑁.𝑚 𝐶𝑚𝑜𝑡 = 11.79 𝑁.𝑚 

𝛼 = 𝛼𝑂𝑝𝑡 (𝐶𝑅(𝜃𝑅
𝑚))

𝑚𝑒𝑎𝑛
= 11.85 𝑁.𝑚 𝐶𝑚𝑜𝑡 = 11.87 𝑁.𝑚 

𝛼 = 100.0° (𝐶𝑅(𝜃𝑅
𝑚))

𝑚𝑒𝑎𝑛
= 11.77 𝑁.𝑚 𝐶𝑚𝑜𝑡 = 11.78 𝑁.𝑚 

TABLE 3-VIII shows that the DQ model gives very good results compared to those from 

the lumped parameter model. It means that to size the STAFPM motor it is sufficient to have 

a model that calculates accurately the DQ model parameters: 
𝑣𝐷

, 𝐿𝐷 and 𝐿𝑄. A 3D numerical 

sizing model based on finite difference method is proposed in Chapter 4. 

To evaluate the torque ripples two solutions are proposed. If the motor has not been 

fabricated, one may use 3D finite element analysis but this method has very high computing 

time. If the motor is fabricated, the proposed experimental studies show how to identify all 

the parameters of the general electromechanical lumped model. This method may be very fast, 

but need a test bench that allows to measure static torques. 

3.14 Conclusion 

In this chapter, an experimental test bench allows to measure the static torque of an electric 

motor in function of the rotor position. An original method to identify, from static torque 

measurements, most of the parameters of the electromechanical lumped parameter model of 

an electric motor is proposed. 

Additional static torque measurements are performed for DC single, double or three phase 

supplies. The measurements allow to validate the proposed numerical treatment to remove 

imperfections on signals, the proposed identification methods and the identified parameters. 
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When all the parameters are identified, the general electromechanical model allows to 

perform very fine and quick studies of the motor. The torque ripples for instance are quickly 

reproduced with a high fidelity.  

The results obtained show the drawbacks and the advantages of the most used model of 

electric motor, the DQ model, which cannot reproduce torque ripples but can accurately 

calculate the mean torque. The proposed general model validates the capacity of the DQ model 

to calculate the optimal torque per Ampere of STAFPM motors. So to size STAFPM motors, 

one need a sizing model that can accurately and quickly calculates the DQ model parameters. 

Chapter 4 proposes a numerical sizing model based on 3D finite difference method. 
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Chapter 4  

3D NUMERICAL SIZING MODEL of STAFPM 

MOTOR 

4.1 Introduction 

This chapter is dedicated to the sizing model of STAFPM motor. The common analytical 

sizing model based on magnetic field calculation cannot be applied to STAFPM motor due to 

the ferromagnetic polar pieces on the rotor. Chapter 3 shows that the classical DQ model 

allows to calculate the mean optimal torque per Ampere. This chapter proposes a sizing model 

that allows to quickly calculate the parameters of the DQ model: no-load flux, the direct and 

quadrature inductances. This sizing model is based on static model of the magnetic field in 

STAFPM motor. As analytical models of the magnetic field cannot be applied to STAFPM 

motor, a numerical model is proposed. This numerical model is based on the 3D finite 

difference method. 

To reduce the time computation strong assumptions are done. As the main target is the 

mean torque, the model does not have to calculate the ripples due to slots. So the STAFPM 

motor considered are with slotless stator. The ferromagnetic part of the stator is considered to 

have infinite permeability. The stator is considered only by the wave of surface current density 

on stator bore as in [13].  

To reduce more the study domain, all the symmetries of the geometry and the physical 

properties of the rotor are taken into account. To be able to take into account all the 

symmetries, the magnetic field calculation is done in three steps: first the open-circuit 

magnetic field is calculated, then the direct armature reaction magnetic field and at the end 

the quadrature magnetic field. For each of these three magnetic field problems, the study 

domain can be reduced to only the half pole. But for each problem, the magnetic field sources 

and the boundary conditions are specific. 

First the general magnetostatic field problem is recalled. In the framework of cylindrical 

coordinates, the general problem is developed inside the appropriate study domain for 

STAFPM motor. Eventually the formulation in scalar magnetic potential is developed for each 

problem. 

The finite difference method is applied to solve the three magnetic field problems. The 

finite difference scheme is developed inside volume, at the interfaces and on boundary 

conditions. 

An original flux calculation in the framework of magnetic scalar potential is developed. 

This method of flux calculation allows to calculate the no-load magnetic flux from the open 
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circuit magnetic field problem, the direct inductance from the direct armature reaction 

magnetic field and the quadrature inductance from the quadrature armature reaction magnetic 

field. The final results are compared to the one obtained from the experimental studies. 

4.2 Nomenclature 

In the following, the variable names in TABLE 4.I are used. 

 

TABLE 4-I: NOMENCLATURE 

Magnetic flux density 𝐵 

Magnetic field intensity 𝐻 

Permanent magnet magnetization 𝑀 

Magnetic scalar potential  

Free space permeability 𝜇0 

Permanent magnet permeability 𝜇𝑃𝑀 

Iron permeability 𝜇𝐹𝑒 

Number of poles pairs 𝑝 

Internal radius of motor 𝑅𝑖𝑛𝑡 

External radius of motor 𝑅𝑒𝑥𝑡 

Radial thickness of internal non-magnetic region 𝐿𝑖𝑛𝑡 

Radial thickness of external non-magnetic region 𝐿𝑒𝑥𝑡 

Length of the magnet region 𝐿𝑚 

Angular width of half magnet pole 𝑡𝑎 

Angular width of half iron pole 𝑡𝑖𝑝 

Axial thickness of non-magnetic region ℎ𝑛𝑚 

Axial thickness of permanent magnet region ℎ𝑚 

Axial thickness of air gap 𝑔 
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4.3 Magnetostatic field problem 

The STAFPM motor is presented in Figure 4.1 which shows the rotor and stator 

geometry.  

 

Figure 4-1: Full 3D view for the STAFPM geometry 

The study domain is made of 𝑚 magnetic media: 

Ω = ⋃ Ω𝑛
𝑚
𝑛=1                                                           (4.1) 

The different magnetic media are shown on the one pole view on Figure 4.2. The slot 

effects are neglected and the permeability of stator is assumed to be infinite. So the stator is 

not part of the study domain. 

 

Figure 4-2: Different magnetic media of the STAFPM motor on one pole 

In Figure 4.2 each medium is numbered with the index 𝑘 from 1 to 7 and noted 

mathematically as Ω𝑘. A magnetic medium has two magnetic properties which are: 

- The relative magnetic permeability 𝜇𝑟𝑘 or magnetic permeability 𝜇𝑘 = 𝜇𝑟𝑘𝜇0; 

- The vector polarization 𝐽𝑘⃗⃗  ⃗. 
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      Inside medium Ω𝑘, the  magnetic flux density vector 𝐵𝑘⃗⃗ ⃗⃗  and the magnetic field intensity 

vector 𝐻𝑘⃗⃗⃗⃗  ⃗ are linked by the constitutive law: 

𝐵𝑘⃗⃗ ⃗⃗ = 𝜇𝑘𝐻𝑘⃗⃗⃗⃗  ⃗ + 𝐽𝑘⃗⃗  ⃗ = 𝜇𝑟𝑘𝜇0𝐻𝑘⃗⃗⃗⃗  ⃗ + 𝐽𝑘⃗⃗  ⃗                                                (4.2) 

As armature reactions are taken into account by appropriate boundary conditions on stator 

bore, there are no volume current density inside the considered media. Ampere’s theorem and 

magnetic conservative law are expressed by: 

{
𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ (𝐻𝑘⃗⃗⃗⃗  ⃗) = 0⃗ 

𝑑𝑖𝑣(𝐵𝑘⃗⃗ ⃗⃗ ) = 0 
                                                                          (4.3) 

The interface 𝑘𝑙 between two media Ω𝑘 and Ω𝑙 is defined by: 

𝑘𝑙 = Ω𝑘 ∩ Ω𝑙                                                                         (4.4) 

The unit vector 𝑛⃗  on the interface is directed from Ω𝑘  to Ω𝑙. There are no surface current 

density and surface charge density on interfaces. The Ampere’s theorem and conservation law 

applied on    𝑘𝑙 lead to: 

{
(𝐵𝑙⃗⃗  ⃗ − 𝐵𝑘⃗⃗ ⃗⃗ ). 𝑛⃗ = 0

(𝐻𝑙⃗⃗⃗⃗ − 𝐻𝑘⃗⃗⃗⃗  ⃗)𝑛⃗ = 0
                                                                      (4.5) 

At boundary limiting the study domain Ω, as the magnetic field exterior to Ω is neglected and 

assumed to be null, the normal flux density is null: 

𝐵⃗  . 𝑛⃗ = 𝐵𝑛 = 0                                                                     (4.6a) 

At surfaces of symmetry, two cases may happen: 

- if the magnetic flux density is tangential, the boundary condition (4.6a) is applied; 

- if the magnetic field intensity is normal, the boundary condition (4.6b) is applied: 

𝐻⃗⃗ 𝑛⃗ = 0                                                                          (4.6b) 

The stator is taken into account by boundary conditions on stator bore. For the open circuit 

magnetic field problem, there are no magnetic source on stator bore and boundary condition 

(4.5) is applied. In the armature reaction magnetic field problems, the armature reaction is 

replaced by a surface current density wave on the stator bore and boundary condition (4.6c) 

is applied: 

 𝐻⃗⃗ 𝑛⃗ = 𝐾⃗⃗                                                                           (4.6c) 

Considering all the geometrical and physical property symmetries, to reduce the computation 

for each magnetic field problem, the study domain is reduced to a half pole as shown in Figure 

4-3. 
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Figure 4-3: Reduced study domain and the parametrization of the geometry 

4.4 Modeling the stator 

The stator is not modeled as a volume made of different media like iron and winding. In 

[13], a sizing model of radial flux surface mounted permanent magnet synchronous motor 

based on 2D analytical field model has been developed. The stator is taken into account by 

the conductor distribution function along the stator bore. This approach has been extended to 

axial flux surface mounted permanent magnet synchronous motor in [18]. This approach is 

applied to STAFPM motor.  

4.4.1 Linear conductor distribution function 

The stator has 𝑛𝑐 conductors per slot. In axial flux motor, the slot opening angular width  𝜃𝑠𝑜(𝑟) 

depends on the radial position 𝑟. The linear width 𝑤𝑠𝑜(𝑟) of the slot opening in the azimuthal 

direction is: 

𝑤𝑠𝑜(𝑟) = 𝑟𝜃𝑠𝑜(𝑟)                                                                    (4.7) 

The number of conductors per meter 𝐶𝑀(𝑟) along each slot opening depends on the radial 

position and is expressed by: 

𝐶𝑀(𝑟) =
𝑛𝑐

𝑤𝑠𝑜(𝑟)
                                                                              (4.8) 

Elsewhere on the stator bore surface, the number of conductors per meter is null. For example 

for a stator with three slots per pole and per phase, the linear distribution function of conductor 

𝐶1(𝑟, 𝜃) of phase 1 at radial position 𝑟 looks like the one shown on Figure 4.4. A positive 

value reveals a slot with ‘go’ conductors and negative value, a slot with ‘return’ conductors. 
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Figure 4-4: Example of the linear distribution function of conductor 𝐶1(𝑟, 𝜃) at radial 

position 𝑟 

 

For the sake of simplicity, only integer distributed windings are considered: the number of 

slots per pole and per phase 𝑛𝑒𝑝𝑝 is an integer. For a motor with 𝑝 pole pairs and 𝑞 phases the 

number of slots is: 

𝑛𝑒 = 2𝑝𝑞𝑛𝑒𝑝𝑝                                                                (4.9) 

The angular width of tooth pitch is: 

𝜃𝑑 =
2𝜋

𝑛𝑒
                                                                    (4.10) 

Thus, the linear conductor distribution function 𝐶1(𝑟, 𝜃) of phase 1 is expressed as: 

𝐶1(𝑟, 𝜃) = ∑
4𝐶𝑀(𝑟)

𝜋

𝑠𝑖𝑛((2𝑛−1)𝑝
𝜃𝑠𝑜(𝑟)

2
)

(2𝑛−1)

𝑠𝑖𝑛(𝑛𝑒𝑝𝑝
(2𝑛−1)𝑝 𝜃𝑑

2
)

𝑠𝑖𝑛(
(2𝑛−1)𝑝 𝜃𝑑

2
)
𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)∞

𝑛=1         (4.11) 

For with only one slot per pole and per phase, the linear conductor distribution function is: 

𝐶1(𝑟, 𝜃) = ∑
4𝐶𝑀(𝑟)

𝜋

𝑠𝑖𝑛((2𝑛−1)𝑝
𝜃𝑠𝑜(𝑟)

2
)

(2𝑛−1)
𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)∞

𝑛=1                         (4.12) 

Figure 4.5 shows the linear conductor distribution function of phase 1 for the existing 

surface mounted permanent magnet axial flux (SMPMAF) initial prototype at three different 

radial positions. This prototype has two slots per pole and per phase and 95 conductors per 

slots. For this motor, the slot opening linear width 𝑤𝑠𝑜 does not depend on the radial position, 

so the angular width is given by: 

𝜃𝑠𝑜(𝑟) =
𝑤𝑠𝑜

𝑟
                                                                    (4.13) 

𝐶1(𝑟, 𝜃) is reconstructed from its harmonics given by (4.11). 
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Figure 4-5: 𝐶1(𝑟, 𝜃) at three different radius for the SMPMAF for the initial prototype 

Figure 4.6 shows the linear conductor distribution function of the STAFPM prototype 

studied in Chapter 3. 𝐶1(𝑟, 𝜃) is reconstructed from its harmonics given by (4.12) and viewed 

as a surface. 

 

Figure 4-6: 𝐶1(𝑟, 𝜃) viewed as a surface for the STAFPM prototype studied in chapter 3 

The linear conductor distribution function for a phase 𝑘 is given by: 

𝐶𝑘(𝑟, 𝜃) = 𝐶𝑘(𝑟, 𝑝𝜃) = 𝐶1 (𝑟, 𝜃 − (𝑘 − 1)
2𝜋

𝑝3
) = 𝐶1 (𝑟, 𝑝𝜃 − (𝑘 − 1)

2𝜋

3
)          (4.14) 

It can be expressed in the form: 

𝐶𝑘(𝑟, 𝑝𝜃) = ∑ 𝑎𝑛(𝑟)
∞
𝑛=1 𝑐𝑜𝑠 ((2𝑛 − 1) (𝑝𝜃 − (𝑘 − 1)

2𝜋

3
))                        (4.15) 

4.4.2 Surface current density wave 

Each phase is supplied by a sinusoidal current.  If 𝑝𝜃𝑅
𝑚 is the electric angular position  of 

the rotor according to (3.72) the current in phase 𝑘 is in the form: 

𝐼𝑘(𝜃𝑅
𝑚) = 𝐼𝐶𝑐𝑜𝑠 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
) + 𝐼𝑆𝑠𝑖𝑛 (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
)                      (4.16) 

 If 𝛼 is the phase shift of the current from the rotor position and 𝐼𝑚, the magnitude of the 

currents, the cosine and sine components of the currents may be written: 
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{
𝐼𝐶 = 𝐼𝑚𝑐𝑜𝑠(𝛼)

𝐼𝑆 = −𝐼𝑚𝑠𝑖𝑛(𝛼)
                                                                  (4.17) 

The surface current density wave is given by: 

𝐾𝑆(𝑟, 𝑝𝜃, 𝜃𝑅
𝑚) = ∑ 𝐶𝑘(𝑟, 𝑝𝜃) 𝑘(𝜃𝑅

𝑚)3
𝑘=1                                                (4.18) 

After development, from (4.18) and (4.15), it can be put in the form: 

𝐾𝑆(𝑟, 𝜃, 𝜃𝑅
𝑚) =

3

2
𝑎1(𝑟)(𝐼𝐶𝑐𝑜𝑠(𝑝𝜃𝑅

𝑚 − 𝑝𝜃) + 𝐼𝑆𝑠𝑖𝑛(𝑝𝜃𝑅
𝑚 − 𝑝𝜃)) +

3

2
(∑ 𝑎3𝑚(𝑟)(𝐼𝐶𝑐𝑜𝑠(𝑝𝜃𝑅

𝑚 + (6𝑚 − 1)𝑝𝜃) + 𝐼𝑆𝑠𝑖𝑛(𝑝𝜃𝑅
𝑚 + (6𝑚 − 1)𝑝𝜃)) +∞

𝑚=1

𝑎3𝑚+1(𝑟)(𝐼𝐶𝑐𝑜𝑠(𝑝𝜃𝑅
𝑚 − (6𝑚 + 1)𝑝𝜃) + 𝐼𝑆𝑠𝑖𝑛(𝑝𝜃𝑅

𝑚 − (6𝑚 + 1)𝑝𝜃)))     (4.19) 

4.4.3 Surface current density distribution for armature reaction field problems 

For the STAFPM motor, the chosen distribution of conductors of the reference phase, phase 

1, is given on Figure 4.5 and the chosen rotor position is given by Figure 4.2 or Figure 4.3. 

The angular position of the rotor is then: 

𝜃𝑅
𝑚 = 0                                                    (4.20) 

At the origin of time (𝑡 = 0), the armature reaction field is in the direct axis and the phase 

shift 𝛼 is null and the current in phase 𝑘 is: 

𝐼𝑘(0) = 𝐼𝑚𝑐𝑜𝑠 ((𝑘 − 1)
2𝜋

3
)                                            (4.21) 

From (4.17) and (4.19), the distribution of surface current density along the stator for the 

direct armature reaction field problem is then given by: 

𝐾𝐷(𝑟, 𝜃) = 𝐾𝑆(𝑟, 𝜃, 0) =
3

2
𝑎1(𝑟)𝐼𝑚𝑐𝑜𝑠(𝑝𝜃) +

3

2
(∑ 𝑎3𝑚(𝑟)𝐼𝑚𝑐𝑜𝑠((6𝑚 − 1)𝑝𝜃)  +∞

𝑚=1

𝑎3𝑚+1(𝑟)𝐼𝑚𝑐𝑜𝑠(6𝑚 + 1)𝑝𝜃)   (4.22) 

In the same manner, the quadrature armature reaction field in the quadrature axis and the 

phase shift 𝛼 is equal to 
𝜋

2
 and the current in phase 𝑘 is: 

𝐼𝑘(0) = −𝐼𝑚𝑠𝑖𝑛 ((𝑘 − 1)
2𝜋

3
)                                            (4.23) 

From (4.19) and (4.22), the distribution of surface current density along the stator for the 

quadrature armature reaction field problem is then given by: 

𝐾𝑄(𝑟, 𝜃) = 𝐾𝑆(𝑟, 𝜃, 0) =
3

2
𝑎1(𝑟)𝐼𝑚𝑠𝑖𝑛(𝑝𝜃) +

3

2
(∑ −𝑎3𝑚(𝑟)𝐼𝑚𝑠𝑖𝑛((6𝑚 − 1)𝑝𝜃) +∞

𝑚=1

𝑎3𝑚+1(𝑟)𝐼𝑚𝑠𝑖𝑛((6𝑚 + 1)𝑝𝜃))                (4.24) 

Figure 4.7 and Figure 4.8 show the distribution of the surface current density along the stator 

respectively for the direct and quadrature armature reaction field problems. 
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Figure 4-7: Distribution of 𝐾𝐷(𝑟, 𝜃) on the stator bore for the direct reaction field problem 

 

Figure 4-8: Distribution of 𝐾𝑄(𝑟, 𝜃) on the stator bore for the quadrature reaction field 

problem 

4.5 Magnetic scalar potential formulation 

As there are no volume current inside the study domain Ω, due to the first equation of (4.3), 

magnetic scalar potential  can be introduced: 

𝐻𝑘⃗⃗⃗⃗  ⃗ = −∇⃗⃗ (𝑘)                                                                (4.25) 

The magnetic scalar potential formulation is developed in cylindrical coordinates: 

𝐻𝑘⃗⃗⃗⃗  ⃗ = −
𝜕𝑘

𝜕𝑟
𝑒𝑟⃗⃗  ⃗ −

1

𝑟

𝜕𝑘

𝜕𝜃
𝑒𝜃⃗⃗⃗⃗ −

𝜕𝑘

𝜕𝑧
𝑒𝑧⃗⃗  ⃗                                                                (4.26) 

To simplify equation expressions, the magnetization vector is introduced: 

𝑀𝑘
⃗⃗ ⃗⃗  ⃗ =

𝐽𝑘⃗⃗⃗⃗ 

𝜇𝑘
                                                                        (4.27) 
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In each medium Ω𝑘, the second equation of (4.3) and (4.2) lead to: 

∇⃗⃗ . ∇⃗⃗ (
𝑘
) = ∇⃗⃗ .𝑀𝑘

⃗⃗ ⃗⃗  ⃗                                                               (4.28) 

For STAFPM motor the vector magnetization is azimuthal and its magnitude is uniform inside 

each medium: 

𝑀𝑘
⃗⃗ ⃗⃗  ⃗ = 𝑀𝑘𝑒𝜃⃗⃗⃗⃗                                                                      (4.29) 

So the magnetization in each medium is divergence free and the magnetic scalar potential 

equation is Laplacian equation: 

∆(
𝑘
) =

𝜕2𝑘

𝜕𝑟2
+
1

𝑟

𝜕𝑘

𝜕𝑟
+

1

𝑟2

𝜕2𝑘

𝜕𝜃2
+
𝜕2𝑘

𝜕𝑧2
= 0                                  (4.30) 

For the three magnetic field problems, there are no surface current density between the 

different media defined on Figure 4.2 or Figure 4.3. According to (4.5), on each interface the 

tangential components of the magnetic field intensity are continuous. As the tangential 

components of the magnetic field intensity are the tangential derivatives of magnetic scalar 

potential, the simplest way to guarantee their continuity is that, at each interface, the scalar 

potential is continuous. This means that only one magnetic scalar potential is considered over 

all the study domain: 


𝑘
(𝑟, 𝜃, 𝑧) = (𝑟, 𝜃, 𝑧)                                                      (4.31) 

In the study domain, the equation is: 

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜃2
+
𝜕2

𝜕𝑧2
= 0                                                      (4.32) 

In each media, the magnetic field intensity is given by: 

𝐻⃗⃗ (𝑟, 𝜃, 𝑧) = −
𝜕

𝜕𝑟
𝑒𝑟⃗⃗  ⃗ −

1

𝑟

𝜕

𝜕𝜃
𝑒𝜃⃗⃗⃗⃗ −

𝜕

𝜕𝑧
𝑒𝑧⃗⃗  ⃗                                            (4.33) 

According to Figure 4.3, the media limits are defined TABLE 4.II 

TABLE 4-II: Study domain media limits 

Radial limits of media Azimuthal limits Axial limits 

{

𝑅𝐿1 = 𝑅𝑖𝑛𝑡             
𝑅𝐿2 = 𝑅𝑖𝑛𝑡 + 𝐿𝑖𝑛𝑡
𝑅𝐿3 = 𝑅𝐿2 + 𝐿𝑚
𝑅𝐿4 = 𝑅𝐿3 + 𝐿𝑒𝑥𝑡

 {

𝜃𝐿1 = 0                        
𝜃𝐿2 = 𝑡𝑎                      

𝜃𝐿3 = 𝑡𝑎 + 𝑡𝑖𝑝 =
𝜋

2𝑝

 {

𝑍𝐿1 = −ℎ𝑛𝑚                  
𝑍𝐿2 = 𝑍𝐿1 + ℎ𝑛𝑚 = 0  
𝑍𝐿3 = 𝑍𝐿2 + ℎ𝑚 = ℎ𝑚 
𝑍𝐿4 = 𝑍𝐿3 + 𝑔               

 

 

Using Arabic instead of Roman numeration, the magnetic scalar formulation in each medium 

is developed in the following sections. 

4.5.1 Airgap 

The airgap is the medium Ω1 defined by the limits: 

{

𝑅𝐿1 < 𝑟 < 𝑅𝐿4
𝜃𝐿1 < 𝜃 < 𝜃𝐿3
𝑍𝐿3 < 𝑧 < 𝑍𝐿4

                                                     (4.34) 
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The medium constitutive law is: 

𝐵1⃗⃗⃗⃗ (𝑟, 𝜃, 𝑧) = 𝜇0𝐻1⃗⃗ ⃗⃗ (𝑟, 𝜃, 𝑧)                                          (4.35) 

 

4.5.2 Permanent magnet 

The permanent magnet is the medium Ω2 defined by the limits: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿1 < 𝜃 < 𝜃𝐿2
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                   (4.36) 

The medium constitutive law is: 

𝐵2⃗⃗⃗⃗ (𝑟, 𝜃, 𝑧) = 𝜇𝑃𝑀(𝐻2⃗⃗ ⃗⃗  (𝑟, 𝜃, 𝑧) + 𝑀2
⃗⃗ ⃗⃗  ⃗)                                          (4.37) 

4.5.3 Ferromagnetic pole 

The ferromagnetic pole is the medium Ω3 defined by the limits: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿2 < 𝜃 < 𝜃𝐿3
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                   (4.38) 

The medium constitutive law is: 

𝐵3⃗⃗⃗⃗ (𝑟, 𝜃, 𝑧) = 𝜇𝐹𝑒𝐻3⃗⃗ ⃗⃗  (𝑟, 𝜃, 𝑧)                                          (4.39) 

4.5.4 Nonmagnetic media 

The other media are the interior media Ω4: 

{

𝑅𝐿1 < 𝑟 < 𝑅𝐿2
𝜃𝐿1 < 𝜃 < 𝜃𝐿3
𝑍𝐿2 ≤ 𝑧 < 𝑍𝐿3

                                                                   (4.40) 

 the exterior region Ω6: 

{

𝑅𝐿3 < 𝑟 < 𝑅𝐿4
𝜃𝐿1 < 𝜃 < 𝜃𝐿3
𝑍𝐿2 ≤ 𝑧 < 𝑍𝐿3

                                                                   (4.41) 

and the bottom medium Ω7 : 

{

𝑅𝐿1 < 𝑟 < 𝑅𝐿4
𝜃𝐿1 < 𝜃 < 𝜃𝐿3
𝑍𝐿1 < 𝑧 < 𝑍𝐿2

                                                                   (4.42) 

They are nonmagnetic as the airgap. 

 

4.6 Continuity conditions with the ferromagnetic pole 

The continuity of the tangential components of the magnetic field intensity at interfaces are 

fulfilled by the continuity of the magnetic scalar potential. Only the continuity of the normal 

component of the magnetic flux density is considered in this section and the following one. 

The interface of the ferromagnetic pole and the airgap, 31 = Ω3 ∩ Ω1, is defined by: 
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{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿2 < 𝜃 < 𝜃𝐿3
𝑧 = 𝑍𝐿3

                                                                  (4.43) 

The continuity of the normal component, 𝐵𝑧(𝑟, 𝜃, 𝑍𝐿3), is: 

𝜇𝐹𝑒
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

− ) − 𝜇0
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

+ ) = 0                                              (4.44) 

The interface of the ferromagnetic pole and the nonmagnetic bottom region, 37 = Ω3 ∩ Ω7, 

is defined by: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿2 < 𝜃 < 𝜃𝐿3
𝑧 = 𝑍𝐿2

                                                                  (4.45) 

The continuity of the normal component, 𝐵𝑧(𝑟, 𝜃, 𝑍𝐿2), is: 

𝜇𝐹𝑒
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

+ ) − 𝜇0
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

− ) = 0                                              (4.46) 

 

The interface of the ferromagnetic pole and the nonmagnetic interior medium, 34 = Ω3 ∩ 

Ω4, is defined by: 

{

𝑟 = 𝑅𝐿2               
𝜃𝐿2 < 𝜃 < 𝜃𝐿3
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                  (4.47) 

The continuity of the normal component, 𝐵𝑟(𝑅𝐿2, 𝜃, 𝑧), is: 

𝜇𝐹𝑒
𝜕

𝜕𝑟
(𝑅𝐿2

+ , 𝜃, 𝑧) − 𝜇0
𝜕

𝜕𝑟
(𝑅𝐿2

− , 𝜃, 𝑧) = 0                                              (4.48) 

The interface of the ferromagnetic pole and the nonmagnetic exterior medium, 36 = Ω3 ∩ 

Ω6, is defined by: 

{

𝑟 = 𝑅𝐿3               
𝜃𝐿2 < 𝜃 < 𝜃𝐿3
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                  (4.49) 

The continuity of the normal component, 𝐵𝑟(𝑅𝐿3, 𝜃, 𝑧), is: 

𝜇𝐹𝑒
𝜕

𝜕𝑟
(𝑅𝐿3

− , 𝜃, 𝑧) − 𝜇0
𝜕

𝜕𝑟
(𝑅𝐿3

+ , 𝜃, 𝑧) = 0                                              (4.50) 

4.7 Continuity conditions with the permanent magnet 

The interface of the permanent magnet and the ferromagnetic pole, 23 = Ω2 ∩ Ω3, is defined 

by: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃 = 𝜃𝐿2

𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                  (4.51) 

The continuity of the normal component, 𝐵𝜃(𝑟, 𝜃𝐿2, 𝑧), is: 

𝜇𝐹𝑒
𝜕

𝜕𝜃
(𝑟, 𝜃𝐿2

+ , 𝑧)−𝜇𝑃𝑀
𝜕

𝜕𝜃
(𝑟, 𝜃𝐿2

− , 𝑧) + 𝜇𝑃𝑀𝑟𝑀 = 0                                              (4.52) 

The interface of the permanent magnet and the airgap, 21 = Ω2 ∩ Ω1, is defined by: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿1 < 𝜃 < 𝜃𝐿2
𝑧 = 𝑍𝐿3

                                                                  (4.53) 



 117 

The continuity of the normal component, 𝐵𝑧(𝑟, 𝜃, 𝑍𝐿3), is: 

𝜇𝑃𝑀
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

− ) − 𝜇0
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

+ ) = 0                                              (4.54) 

The interface of the permanent magnet and the nonmagnetic bottom medium, 27 = Ω2 ∩ Ω7, 

is defined by: 

{

𝑅𝐿2 < 𝑟 < 𝑅𝐿3
𝜃𝐿1 < 𝜃 < 𝜃𝐿2
𝑧 = 𝑍𝐿2

                                                                  (4.55) 

The continuity of the normal component, 𝐵𝑧(𝑟, 𝜃, 𝑍𝐿2), is: 

𝜇𝑃𝑀
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

+ ) − 𝜇0
𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

− ) = 0                                              (4.56) 

The interface of the permanent magnet and the nonmagnetic interior medium, 24 = Ω2 ∩ Ω4, 

is defined by: 

{

𝑟 = 𝑅𝐿2               
𝜃𝐿1 < 𝜃 < 𝜃𝐿2
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                  (4.57) 

The continuity of the normal component, 𝐵𝑟(𝑅𝐿2, 𝜃, 𝑧), is: 

𝜇𝑃𝑀
𝜕

𝜕𝑟
(𝑅𝐿2

+ , 𝜃, 𝑧) − 𝜇0
𝜕

𝜕𝑟
(𝑅𝐿2

− , 𝜃, 𝑧) = 0                                              (4.58) 

The interface of the permanent magnet and the nonmagnetic exterior medium, 26 = Ω2 ∩ 

Ω6, is defined by: 

{

𝑟 = 𝑅𝐿3               
𝜃𝐿1 < 𝜃 < 𝜃𝐿2
𝑍𝐿2 < 𝑧 < 𝑍𝐿3

                                                                  (4.59) 

The continuity of the normal component, 𝐵𝑟(𝑅𝐿3, 𝜃, 𝑧), is: 

𝜇𝑃𝑀
𝜕

𝜕𝑟
(𝑅𝐿3

− , 𝜃, 𝑧) − 𝜇0
𝜕

𝜕𝑟
(𝑅𝐿3

+ , 𝜃, 𝑧) = 0                                              (4.60) 

4.8 Boundary without magnetic sources 

There are three boundary surfaces without sources. The medium around them is nonmagnetic. 

The boundary conditions on them do no depend on the magnetic field problem.  

The internal surface boundary is defined by equation: 

𝑟 = 𝑅𝐿1                                                                 (4.61) 

On this boundary, the magnetic field is tangential to the boundary: 

𝐵𝑟(𝑅𝐿1, 𝜃, 𝑧) = 0 

As the medium is nonmagnetic: 

𝜕

𝜕𝑟
(𝑅𝐿1, 𝜃, 𝑧) = 0                                                          (4.62) 

The external surface boundary is defined by equation: 

𝑟 = 𝑅𝐿4                                                                 (4.63) 

On this boundary, the magnetic field is tangential to the boundary: 

𝐵𝑟(𝑅𝐿4, 𝜃, 𝑧) = 0 

As the medium is nonmagnetic: 

𝜕

𝜕𝑟
(𝑅𝐿4, 𝜃, 𝑧) = 0                                                   (4.64) 
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The bottom surface boundary is defined by equation: 

𝑧 = 𝑍𝐿1                                                                 (4.65) 

On this boundary, the magnetic field is tangential to the boundary: 

𝐵𝑧(𝑟, 𝜃, 𝑍𝐿1) = 0 

As the medium is nonmagnetic: 

𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿1) = 0                                                   (4.66) 

4.9 Finite Difference Grid  

A 3D grid is applied on the study domain Ω (Figure 4.3). This grid is constituted by lines 

that are parallel to the lines of coordinates. Some of the lines of grid must pass over the lines 

of boundaries and on the edges of the interfaces of media. The coarsest grid of the study 

domain is shown on Figure 4.9. It contains lines of boundary defined on TABLE 4.II. 

 

Figure 4-9: Lines of the coarsest grid passing over lines of boundaries and interfaces 

By increasing the number of grid lines, the grid like the one shown on Figure 4.10 is 

obtained. 
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Figure 4-10: Example of grid obtained by increasing the line of the coarsest grid 

 

The lines of the grid of the example on Figure 4.10 pass through surfaces that are 

orthogonal to the lines of coordinates. The grid has 𝑖𝑚 surfaces orthogonal to the radial lines 

of coordinates, 𝑗𝑚 surfaces orthogonal  to the lines of azimuthal coordinates and 𝑘𝑚 surfaces 

orthogonal  to the lines of axial coordinates. These surface have the following equation: 

{

𝑟 = 𝑟𝑖   𝑓𝑜𝑟 𝑖 = 1, … , 𝑖𝑚
𝜃 = 𝜃𝑗    𝑓𝑜𝑟 𝑗 = 1,… , 𝑗𝑚
𝑧 = 𝑧𝑘   𝑓𝑜𝑟 𝑘 = 1,… , 𝑘𝑚

                                              (4.67) 

For the coarsest grid the surface equations are (see TABLE 4.II): 

{

𝑟 = 𝑅𝐿𝑖   𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 4
𝜃 = 𝜃𝐿𝑗    𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 3

𝑧 = 𝑍𝐿𝑘   𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 4

                                                  (4.68) 

The grid is also characterized by the distance between two neighboring surfaces: 

{

ℎ𝑟𝑖 = 𝑟𝑖+1 − 𝑟𝑖   𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑟;     𝑤ℎ𝑒𝑟𝑒 𝑛𝑟 = 𝑖𝑚 − 1
ℎ𝜃𝑗 = 𝜃𝑗+1 − 𝜃𝑗    𝑓𝑜𝑟 𝑗 = 1,… , 𝑛𝜃;   𝑤ℎ𝑒𝑟𝑒 𝑛𝜃 = 𝑗𝑚 − 1

ℎ𝑧𝑘 = 𝑧𝑘+1 − 𝑧𝑘   𝑓𝑜𝑟 𝑘 = 1,… , 𝑛𝑘;  𝑤ℎ𝑒𝑟𝑒 𝑛𝑧 = 𝑘𝑚 − 1

                      (4.69) 

In indicial numbering, a node is referenced by its indices. The node 𝑃𝑖,𝑗,𝑘 is the intersection 

of three orthogonal surfaces defined by its indices and its Cartesian coordinates are: 

𝑂𝑃𝑖,𝑗𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑟𝑖𝑐𝑜𝑠(𝜃𝑗)𝑒𝑥⃗⃗  ⃗ + 𝑟𝑖𝑠𝑖𝑛(𝜃𝑗)𝑒𝑦⃗⃗⃗⃗ + 𝑧𝑘𝑒𝑧⃗⃗  ⃗                                         (4.70) 

The neighboring of node 𝑃𝑖,𝑗,𝑘 is illustrated on Figure 4.11. To simplify the figure legends, 

the following notation is adopted: 

{

ℎ𝑖 = ℎ𝑟𝑖
ℎ𝑗 = ℎ𝜃𝑗
ℎ𝑘 = ℎ𝑧𝑘

                                                             (4.71) 
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Figure 4-11: Indicial numbering: neighboring of node 𝑃𝑖,𝑗,𝑘 

To develop the finite difference scheme, for the discretization of the Laplacian equation 

(4.32), a local numbering around the node 𝑃𝑖,𝑗,𝑘 is defined [49]. TABLE 4-III gives the 

correspondence between the local numbering illustrated on Figure 4.12 and the global or 

indicial numbering on Figure 4.11. 

 

TABLE 4-III: Local numbering  

Local numbering Indicial numbering 

0 (𝑖, 𝑗, 𝑘) 

1 (𝑖, 𝑗 + 1, 𝑘) 

2 (𝑖 + 1, 𝑗, 𝑘) 

3 (𝑖, 𝑗 − 1, 𝑘) 

4 (𝑖 − 1, 𝑗, 𝑘) 

5 (𝑖, 𝑗, 𝑘 − 1) 

6 (𝑖, 𝑗, 𝑘 + 1) 

 

 

Figure 4-12: Local numbering: neighboring of node 𝑃0 = 𝑃𝑖,𝑗,𝑘 
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4.10 Finite difference equations 

The magnetic field equation in media, the continuity conditions on interfaces and the 

boundary conditions are expressed by partial derivative equations (PDE). In this section, these 

PDE are discretized using the finite difference method based on Taylor’s development 

scheme. The obtained equations are called finite difference equations (FDE). 

4.10.1 FDE in interior nodes 

In this section, the node of interest 𝑃𝑖,𝑗,𝑘 is neither on an interface nor on a boundary surface. 

Using (4.69) and the local numbering on Figure 4.12, the distances between the neighboring 

nodes and the interior node 𝑃0 are defined in [ ]. 

{
  
 

  
 
ℎ1 = 𝜃𝑗+1 − 𝜃𝑗
ℎ2 = 𝑟𝑖+1 − 𝑟𝑖
ℎ3 = 𝜃𝑗 − 𝜃𝑗−1
ℎ4 = 𝑟𝑖 − 𝑟𝑖−1
ℎ5 = 𝑧𝑘 − 𝑧𝑘−1
ℎ6 = 𝑧𝑘+1 − 𝑧𝑘

                                                          (4.72) 

Using Taylor’s development at order two [50], the potential 
1
 on node 𝑃1 or in indicial 

numbering 𝑃𝑖,𝑗+1,𝑘 can be approached by: 


1
= 

0
+ ℎ1 (

𝜕

𝜕𝜃
)
0
+
ℎ1
2

2
(
𝜕2

𝜕𝜃2
)
0
                                               (4.73) 

In the same manner, the potential on node 𝑃3 is: 


3
= 

0
− ℎ3 (

𝜕

𝜕𝜃
)
0
+
ℎ3
2

2
(
𝜕2

𝜕𝜃2
)
0
                                               (4.74) 

From (4.53) and (4.54) one may deduce the partial derivatives with respect to 𝜃 at 𝑃0 of the 

potential: 

{
(
𝜕

𝜕𝜃
)
0
=

ℎ1−ℎ3

ℎ1ℎ3

0
+

ℎ3

ℎ1(ℎ1+ℎ3)

1
−

ℎ1

ℎ3(ℎ1+ℎ3)

3
   

(
𝜕2

𝜕𝜃2
)
0
= −

2

ℎ1ℎ3

0
+

2

ℎ1(ℎ1+ℎ3)

1
+

2

ℎ3(ℎ1+ℎ3)

3

                     (4.75) 

In the same manner, the partial derivatives with respect to 𝑟 at 𝑃0  of the potential are: 

{
(
𝜕

𝜕𝑟
)
0
=

ℎ2−ℎ4

ℎ2ℎ4

0
+

ℎ4

ℎ2(ℎ2+ℎ4)

2
−

ℎ2

ℎ4(ℎ2+ℎ4)

4
   

(
𝜕2

𝜕𝑟2
)
0
= −

2

ℎ2ℎ4

0
+

2

ℎ2(ℎ2+ℎ4)

2
+

2

ℎ4(ℎ2+ℎ4)

4

                     (4.76) 

and the partial derivatives with respect to 𝑧 at 𝑃0 of the potential are: 

{
(
𝜕

𝜕𝑧
)
0
=

ℎ6−ℎ5

ℎ6ℎ5

0
−

ℎ6

ℎ6(ℎ6+ℎ5)

5
   +

ℎ5

ℎ6(ℎ6+ℎ5)

6

(
𝜕2

𝜕𝑧2
)
0
= −

2

ℎ6ℎ5

0
+

2

ℎ5(ℎ6+ℎ5)

5
+

2

ℎ6(ℎ5+ℎ6)

6

                     (4.77) 

The FDE at node 𝑃0, whose radial position is 𝑟0, of PDE (4.32) is : 
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(−
2

ℎ2ℎ4
+

1

𝑟0

ℎ2−ℎ4

ℎ2ℎ4
−

1

𝑟0
2

2

ℎ1ℎ3
−

2

ℎ5ℎ6
)

0
+

1

𝑟0
2

2

ℎ1(ℎ1+ℎ3)

1
+ (

2

ℎ2(ℎ2+ℎ4)
+

1

𝑟0

ℎ4

ℎ2(ℎ2+ℎ4)
)

2
+

1

𝑟0
2

2

ℎ3(ℎ1+ℎ3)

3
+ (

2

ℎ4(ℎ2+ℎ4)
−

1

𝑟0

ℎ2

ℎ4(ℎ2+ℎ4)
)

4
+

2

ℎ5(ℎ6+ℎ5)

5
+

2

ℎ6(ℎ5+ℎ6)

6
= 0             (4.78) 

4.10.2 FDE on interfaces with the ferromagnetic pole 

The node 𝑃0 is on an interface of the ferromagnetic pole with another medium.  

The continuity conditions on the interface of the ferromagnetic pole and the airgap is given 

by (4.44). In the ferromagnetic pole side, the neighboring node of 𝑃0 is 𝑃5. Using the Taylor’s 

development at first order, the potential at 𝑃5 is given by: 


5
= 

0
− ℎ5 (

𝜕

𝜕𝑧
)
0

−

                                                                        (4.79) 

The derivative with respect to 𝑧 in the ferromagnetic side is then: 

𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

− ) = (
𝜕

𝜕𝑧
)
0

−

=
0−5

ℎ5
                                                      (4.80) 

In the same manner, the derivative with respect to 𝑧 in the airgap side is given by: 

𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿3

+ ) = (
𝜕

𝜕𝑧
)
0

+

=
6−0

ℎ6
                                                      (4.81) 

The finite difference equation at node 𝑃0 of the continuity condition at the interface 

ferromagnetic pole and the airgap is: 

(
𝜇𝐹𝑒

ℎ5
+
𝜇0

ℎ6
)

0
−
𝜇𝐹𝑒

ℎ5

5
−
𝜇0

ℎ6

6
= 0                                                (4.82) 

The continuity conditions on the interface of the ferromagnetic pole and the nonmagnetic 

bottom medium is given by (4.46). Using the previous procedure, the derivative with respect 

to 𝑧 in the ferromagnetic side is: 

𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

+ ) = (
𝜕

𝜕𝑧
)
0

+

=
6−0

ℎ6
                                                      (4.83) 

And in the bottom medium side: 

𝜕

𝜕𝑧
(𝑟, 𝜃, 𝑍𝐿2

− ) = (
𝜕

𝜕𝑧
)
0

−

=
0−5

ℎ5
                                                      (4.84) 

The finite difference equation at node 𝑃0 of the continuity condition at the interface 

ferromagnetic pole and the bottom medium is: 

(
𝜇𝐹𝑒

ℎ6
+
𝜇0

ℎ5
)

0
−
𝜇0

ℎ5

5
−
𝜇𝐹𝑒

ℎ6

6
= 0                                                (4.85) 

The finite difference equation at node 𝑃0 of the continuity condition (4.48) at the interface 

ferromagnetic pole and the interior nonmagnetic medium is: 

(
𝜇𝐹𝑒

ℎ2
+
𝜇0

ℎ4
)

0
−
𝜇𝐹𝑒

ℎ2

2
−
𝜇0

ℎ4

4
= 0                                                (4.86) 

The finite difference equation at node 𝑃0 of the continuity condition (4.50) at the interface 

ferromagnetic pole and the exterior nonmagnetic medium is: 

(
𝜇𝐹𝑒

ℎ4
+
𝜇0

ℎ2
)

0
−
𝜇0

ℎ2

2
−
𝜇𝐹𝑒

ℎ4

4
= 0                                                (4.87) 
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4.10.3 FDE on interfaces with the permanent magnet 

The finite difference equation at node 𝑃0 of the continuity condition (4.52) at the interface 

permanent magnet and the ferromagnetic pole is: 

(
𝜇𝐹𝑒

ℎ1
+
𝜇𝑃𝑀

ℎ3
)

0
−
𝜇𝐹𝑒

ℎ1

1
−
𝜇𝑃𝑀

ℎ3

3
= 𝜇𝑃𝑀𝑟0𝑀                                 (4.88) 

The finite difference equation at node 𝑃0 of the continuity condition (4.54) at the interface 

permanent magnet and the airgap is: 

(
𝜇0

ℎ6
+
𝜇𝑃𝑀

ℎ5
)

0
−
𝜇𝑃𝑀

ℎ5

5
−
𝜇0

ℎ6

6
= 0                                                (4.89) 

The finite difference equation at node 𝑃0 of the continuity condition (4.56) at the interface 

permanent magnet and the nonmagnetic bottom medium is: 

(
𝜇𝑃𝑀

ℎ6
+
𝜇0

ℎ5
)

0
−
𝜇0

ℎ5

5
−
𝜇𝑃𝑀

ℎ6

6
= 0                                                (4.90) 

The finite difference equation at node 𝑃0 of the continuity condition (4.58) at the interface 

permanent magnet and the nonmagnetic interior medium is: 

(
𝜇𝑃𝑀

ℎ2
+
𝜇0

ℎ4
)

0
−
𝜇𝑃𝑀

ℎ2

2
−
𝜇0

ℎ4

4
= 0                                                (4.91) 

The finite difference equation at node 𝑃0 of the continuity condition (4.60) at the interface 

permanent magnet and the nonmagnetic exterior medium is: 

(
𝜇𝑃𝑀

ℎ4
+
𝜇0

ℎ2
)

0
−
𝜇0

ℎ2

2
−
𝜇𝑃𝑀

ℎ4

4
= 0                                                (4.92) 

4.10.4 FDE on boundaries without magnetic sources 

The node 𝑃0 is on a surface boundary without magnetic sources.  

At the internal surface boundary defined by equation (4.61), the magnetic field is tangential. 

The derivative with respect to 𝑟 at point 𝑃0 is approached by: 

𝜕

𝜕𝑟
(𝑅𝐿1, 𝜃, 𝑧) = (

𝜕

𝜕𝑟
)
0

+

=
2−0

ℎ2
                                                          (4.93) 

The boundary condition (4.62) gives the following finite difference equation: 


2
− 

0
= 0                                                                   (4.94) 

In the same way, the boundary condition (4.64) on the external surface defined by (4.63) gives 

the following finite difference equation: 


4
− 

0
= 0                                                                   (4.95) 

The boundary condition (4.66) on the bottom surface defined by (4.64) gives the following 

finite difference equation: 


6
− 

0
= 0                                                                   (4.96) 

On the other surface boundary, the boundary conditions depend on the magnetic field 

problem: open circuit field problem, direct armature reaction field problem or quadrature 

armature reaction field problem. 
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4.11 Open circuit magnetic field problem 

In the open circuit magnetic field problem, the currents in the winding are null. There are no 

magnetic sources except the permanent magnets. The study domain can be reduced to a half 

pole as shown on Figure 4.3. All the FDE are as previously presented. This section concerns 

the boundary conditions on three surfaces. 

4.11.1 FDE on stator bore 

The internal stator bore is defined by equation: 

𝑧 = 𝑍𝐿4                                                                     (4.97) 

As the current are null, there are no surface current density wave on this boundary. The 

magnetic field is normal to the boundary, so the stator bore is an equipotential surface. On the 

node 𝑃0 on this surface, the potential is null: 


0
= 0                                                                     (4.98) 

4.11.2 FDE on eastern boundary surface 

The eastern boundary surface is defined by equation: 

𝜃 = 𝜃𝐿1 = 0                                                                (4.99) 

This surface is a surface of symmetry for the geometry and physical properties. The only 

magnetic source is the permanent magnet whose magnetization is normal to the surface. So 

the magnetic field is also normal to this boundary. It is also an equipotential surface. As it has 

an intersection with the stator bore, the potential is also null and boundary condition (4.98) is 

applied. 

4.11.3 FDE on western boundary surface 

The western boundary surface is defined by equation: 

𝜃 = 𝜃𝐿3 =
𝜋

2𝑝
                                                                     (4.100) 

This surface is a surface of symmetry for the geometry and physical properties. With respect 

to this surface, the magnetic sources are antisymmetric. So the magnetic field is tangential to 

this boundary: 

𝜕

𝜕𝜃
(𝑟, 𝜃𝐿3

− , 𝑧) = 0                                                            (4.101) 

As the partial derivative with respect to 𝜃 at node 𝑃0 is: 

𝜕

𝜕𝜃
(𝑟, 𝜃𝐿3

− , 𝑧) = (
𝜕

𝜕𝜃
)
0

−

=
0−3

ℎ3
                                              (4.102) 

the FDE is: 


3
− 

0
= 0                                                                 (4.103) 
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4.12 Direct armature reaction magnetic field problem 

In the direct armature magnetic field problem, the magnetizations of permanent magnet are 

annulled. There are no magnetic sources except the currents in the stator winding. These 

currents produced a magnetic field whose axis is parallel to the direct axis i.e. to the axis of 

the open circuit magnetic field. The study domain can be reduced to a half pole as shown on 

Figure 4.3. All the FDE are as previously presented except that the magnetization 𝑀 is null 

in equation (4.88). This section concerns the boundary conditions on three surfaces. 

4.12.1 FDE on stator bore 

The internal stator bore is defined by equation (4.97). As the current are not null, there is a 

surface current density wave on this boundary. At the time where the rotor is in the position 

defined by Figure 4.3, the surface current density distribution along the stator bore is of the 

form: 

𝐾𝐷⃗⃗⃗⃗  ⃗(𝑟, 𝜃) = 𝐾𝐷(𝑟, 𝜃)𝑒𝑟⃗⃗  ⃗                                                          (4.104) 

 The surface current density distribution 𝐾𝐷(𝑟, 𝜃) is given by (4.22) and shown on Figure 

4.6. 

The boundary condition on stator bore is given by (4.6c) which can be expressed with the 

partial derivative of the magnetic scalar potential: 

𝜕

𝜕𝜃
(𝑟, 𝜃, 𝑍𝐿4) = 𝑟𝐾𝐷(𝑟, 𝜃)                                               (4.105) 

As the partial derivative with respect to 𝜃 at node 𝑃0 is: 

𝜕

𝜕𝜃
(𝑟, 𝜃, 𝑍𝐿4) = (

𝜕

𝜕𝜃
)
0
=

ℎ1−ℎ3

ℎ1ℎ3

0
+

ℎ3

ℎ1(ℎ1+ℎ3)

1
−

ℎ1

ℎ3(ℎ1+ℎ3)

3
              (4.106) 

On the node 𝑃0  on this surface, the FDE is: 

ℎ1−ℎ3

ℎ1ℎ3

0
+

ℎ3

ℎ1(ℎ1+ℎ3)

1
−

ℎ1

ℎ3(ℎ1+ℎ3)

3
= 𝑟0𝐾𝐷0                                          (4.107) 

The radial position of 𝑃0 is 𝑟0 and the value of 𝐾𝐷(𝑟, 𝜃) at this node is 𝐾𝐷0. 

4.12.2 FDE on eastern boundary surface 

As for the open circuit magnetic field problem, the eastern boundary surface is a surface of 

symmetry and the magnetic field is normal to it. It is an equipotential surface and the potential 

is null. 

4.12.3 FDE on western boundary surface 

As for the open circuit magnetic field problem, the western surface is an antisymmetric surface 

and FDE (4.103) is applied. 

4.13 Quadrature armature reaction magnetic field problem 

In the quadrature armature magnetic field problem, the magnetizations of permanent magnets 

are annulled. The currents produce a magnetic field whose axis is parallel to the quadrature 
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axis which is materialized by the eastern surface. The study domain can be reduced to a half 

pole as shown on Figure 4.3. All the FDE are as previously presented except that the 

magnetization 𝑀 is null in equation (4.88). This section concerns the boundary conditions on 

three surfaces. 

4.13.1 FDE on stator bore 

The internal stator bore is defined by equation (4.97). As the current are not null, there is a 

surface current density wave on this boundary. At the time where the rotor is in the position 

defined by Figure 4.3, the surface current density distribution along the stator bore is of the 

form: 

𝐾𝑄⃗⃗⃗⃗  ⃗(𝑟, 𝜃) = 𝐾𝑄(𝑟, 𝜃)𝑒𝑟⃗⃗  ⃗                                                          (4.108) 

 The surface current density distribution 𝐾𝑄(𝑟, 𝜃) is given by (4.23) and shown on Figure 

4.7. The boundary condition on stator bore is given by (4.6c) which can be expressed with the 

partial derivative of the magnetic scalar potential: 

𝜕

𝜕𝜃
(𝑟, 𝜃, 𝑍𝐿4) = 𝑟𝐾𝑄(𝑟, 𝜃)                                               (4.109) 

On the node 𝑃0  on this surface the FDE is: 

ℎ1−ℎ3

ℎ1ℎ3

0
+

ℎ3

ℎ1(ℎ1+ℎ3)

1
−

ℎ1

ℎ3(ℎ1+ℎ3)

3
= 𝑟0𝐾𝑄0                                          (4.110) 

The radial position of 𝑃0 is 𝑟0 and the value of 𝐾𝑄(𝑟, 𝜃) at this node is 𝐾𝑄0. 

4.13.2 FDE on eastern boundary surface 

The eastern boundary surface is an antisymmetric surface and the magnetic field is tangential 

to it: 

𝜕

𝜕𝜃
(𝑟, 𝜃𝐿1

+ , 𝑧) = 0                                                       (4.111) 

The FDE is: 


1
− 

0
= 0                                                           (4.112) 

4.13.3 FDE on western boundary surface 

The western surface is a symmetric surface. The magnetic field is normal to it. It is an 

equipotential surface and the potential is null on it. 

4.14 3DFDM4STAFPM software 

A software has been implemented in Matlab framework by appropriate scripts. The 

software is called 3D Finite Difference Method for Spoke-Type Axial Flux Permanent Magnet 

motor (3DFDM4STAFPM). The software is dedicated to one stator-one rotor STAFPM 

motor. The flowchart of the software is shown on Figure 4.13. 
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Figure 4-13: Flowchart of the 3DFDM4STAFPM software 

 

4.14.1 Input data 

The input data are the data that define the motor and the grid. There are three types of data. 

The first type of data are the material properties shown in TABLE 4.IV 
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TABLE 4-IV: Material properties 

Permanent magnet polarization 𝐽(𝑇) 

Permanent magnet relative permeability 𝜇𝑟𝑃𝑀 

Permanent magnet permeability 𝜇𝑃𝑀 = 𝜇𝑟𝑃𝑀𝜇0 

North permanent magnet magnetization 
𝑀(𝐴.𝑚−1) =

𝐽

𝜇𝑃𝑀
 

Ferromagnetic pole relative permeability 𝜇𝑟𝐹𝑒 

Ferromagnetic pole permeability 𝜇𝐹𝑒 = 𝜇𝑟𝐹𝑒𝜇0 

The second type of data are the geometry parameters of the study domain (TABLE 4.IV.a, 

b, c). 

TABLE 4-V.a: Radial geometry parameters 

Internal radius of the study domain 𝑅𝑖𝑛𝑡(𝑚) 

Radial thickness of nonmagnetic internal medium 𝐿𝑖𝑛𝑡(𝑚) 

Radial thickness of permanent magnet  𝐿𝑚(𝑚) 

Radial thickness of nonmagnetic external medium 𝐿𝑒𝑥𝑡(𝑚) 

TABLE 4-V.b: Azimuthal geometry parameters 

Number of poles pairs 𝑝 

East limit of the study domain 𝑡𝐸 = 0° 

Angular width of one pole  
𝑡𝑝 =

180°

𝑝
 

West limit of the study domain 
𝑡𝑊 =

𝑡𝑝

2
 

Half angular width of a permanent magnet 𝑡𝑎(°) 

TABLE 4-V.c: Axial geometry parameters 

Nonmagnetic bottom medium height ℎ𝑛𝑚(𝑚) 

Permanent magnet height  ℎ𝑚(𝑚) 

Airgap height 𝑔(𝑚) 

 

The third type of data concerns the grid. As at the interface between two media a first order 

Taylor’s development is applied, the medium near the interface need to be discretized densely. 

For that, each medium is divided in three zones along each axis: the zone near the interior 

limit, the central zone and the zone near the exterior limit. The thickness of the interior and 

exterior zones is twenty percent of the total thickness along each axis. The step of 

discretization of the interior and exterior zones are much less than the one of the central zone. 

It may be seen on Figure 4.10. 
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4.14.2 Pre-processor  

The pre-processor processes the input data. The output data are mainly grid data. Visualization 

tools are at disposal to control the obtained grid. An example of visualization is shown on 

Figure 4.9 which shows the coarsest grid made only of the limits of each media along each 

coordinate axis. An overall 3D view is given on Figure 4.10. There are also tools that visualize 

the grid on surfaces perpendicular to the lines of coordinates. Figure 4.14 shows a 2D view 

of the grid in a surface inside the airgap  and perpendicular to the 𝑧 coordinate axis. The traces 

of the limits of media are in red and blue. It can be seen that near the media limits or near the 

boundary the grid lines are densified. 

 

Figure 4-14: 2D view of the grid on a surface inside the airgap 

4.14.3 Processor  

From the input data and the grid data, the processor unit transforms the partial differential 

equation into an algebraic system composed by the finite difference equation (FDE) obtained 

on each node of the grid. It is done for each magnetic field problem: open circuit field problem, 

direct armature reaction field problem and quadrature reaction field problem (Figure 4.13). 

The obtained algebraic systems are solved with the simplest Matlab common linear solver as 

the well-known left division operator ({𝑥} = [𝐴]\{𝑏}). The solution obtained is a column 

matrix that contains the magnetic scalar potential value on each node. 

4.14.4 Post-processor  

When the value of the magnetic scalar potential is known on each node, it is possible to 

calculate the local quantities such as the components of the magnetic field intensity 𝐻⃗⃗ , those 

of the magnetic flux density 𝐵⃗  or the global quantities of the magnetic flux through a surface 

or the phases of the winding. For the sake of simplicity, only the calculations of the local 
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quantities are presented in this section. The calculation of the flux in the phases of the winding 

is presented in next section. 

The component of the magnetic field intensity can be obtained from second order Taylor’s 

development on interior nodes. On these nodes the first derivatives of the magnetic scalar 

potential with respect to each coordinates are given by (4.56), (4.57) and (4.58). From (4.8), 

the component of the magnetic field intensity 𝐻0⃗⃗ ⃗⃗   on an interior node 𝑃0 is given by: 

𝐻0⃗⃗ ⃗⃗  = − (
𝜕

𝜕𝑟
)
0
𝑒𝑟⃗⃗  ⃗ −

1

𝑟
(
𝜕

𝜕𝜃
)
0
𝑒𝜃⃗⃗⃗⃗ − (

𝜕

𝜕𝑧
)
0
𝑒𝑧⃗⃗  ⃗                            (4.113) 

In each media, the magnetic flux density on interior nodes is calculated using the constitutive 

law (4.2). The distribution of the local quantities may be visualized inside the study domain. 

The distribution of magnetic flux density inside all the study domain of the open circuit 

magnetic field problem is shown on Figure 4.15. It can be seen that the main flow of the 

magnetic flux goes from the eastern boundary to the stator bore and crossing the permanent 

magnet. 

 

Figure 4-15: Distribution of the open circuit magnetic flux density inside the all study 

domain 

To qualitatively control the armature reaction fields, the magnetic flux densities of the direct 

and quadrature reaction fields on surface with constant radial position are shown respectively 

on Figure 4.16 and Figure 4.17. The surface is taken in the middle radial position of the 

permanent magnet. 
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Figure 4-16: Distribution of the direct armature reaction magnetic flux density inside a 

surface 

On Figure 4.16 it can be seen that the main flow of the magnetic flux goes from the eastern 

boundary to the stator bore as for the open circuit field and on Figure 4.17, the main flow goes 

from western boundary to the stator bore but does not cross the permanent magnet. 

 

Figure 4-17: Distribution of the quadrature armature reaction magnetic flux density inside 

a surface 

4.15 Flux model of integer distributed winding 

The experimental studies undertaken in Chapter 3 have shown that the torque, the direct 

no-load flux density, the direct and quadrature armature reaction inductances in function of 

the rotor position have ripples. The mean values of the direct no-load flux density, the direct 

and quadrature armature reaction inductances give the mean torque following the DQ model. 
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In the 3D Finite Difference Sizing Model presented in this chapter many assumptions and 

simplifications have been adopted in order to speed up the calculation of the no-load magnetic 

field and the armature reaction magnetic fields. In this section, an original method of 

calculation of the magnetic flux in the phases of the winding stator is presented followed by 

the DQ model parameters which are compared to those deduced from measurement for the 

STAFPM prototype. 

4.15.1 Elementary flux 

According to the assumptions of the sizing model, the no-load and direct armature reaction 

magnetic flux density on the stator bore surface is axial:  

𝐵⃗ (𝑟, 𝜃) = 𝐵𝑧(𝑟, 𝜃)𝑒𝑧⃗⃗  ⃗                                             (4.114) 

The linear distribution conductor function is expressed by (4.15) for phase 𝑘. 

An elemental surface 𝑑𝑆(𝑟, 𝜃) is defined with a radial length 𝑑𝑟 and with an angular width  
𝜋

𝑝
  situated between two angular positions,  𝜃 −

𝜋

𝑝
  and 𝜃, on the stator bore as shown in Figure 

4.18. 

 

Figure 4-18: Elementary surface on the stator bore 

The elementary magnetic flux, 𝑑𝜑(𝑟, 𝜃), crossing the elemental surface is given by: 

𝑑𝜑(𝑟, 𝜃) = ∬ 𝐵⃗ . 𝑑𝑆⃗⃗⃗⃗ 
𝑑𝑆(𝑟,𝜃)

= ∬ 𝐵𝑧 . 𝑟𝑑𝑟𝑑𝜃𝑑𝑆(𝑟,𝜃)
                                 (4.115) 

It is convenient, for the following, to define the derivative: 

𝑑𝜑

𝑑𝑟
(𝑟, 𝜃) = 𝑟 ∫ 𝐵𝑧(𝑟, 𝜃)𝑑𝜃

𝜃

𝜃−
𝜋

𝑝

                                                         (4.116) 
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4.15.2 Flux in one phase 

As shown from Figure 4.18 and [52], the number of “return” conductors at specific position 

(𝑟, 𝜃) is given by: 

𝑑𝑛(𝑟, 𝜃) = −𝐶𝑘(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃                                           (4.117a) 

and at the position (𝑟, 𝜃 −
𝜋

𝑝
) the number of “go” conductors is : 

𝑑𝑛 (𝑟, 𝜃 −
𝜋

𝑝
) = 𝐶𝑘(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃                                      (4.117b) 

The elementary flux captured by one phase is thus: 

𝑑𝜑𝑣𝑘 = 𝐶𝑘(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃                                         (4.118) 

By summing up the elementary fluxes all over phase 𝑘, the total flux is:  

𝜑𝑘 = 𝑝∫ ∫ 𝐶𝑘(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃

𝜋

2𝑝
−𝜋

2𝑝

𝑅𝐿2

𝑅𝐿1
                               (4.119) 

4.15.3 No-load and direct armature flux  

The angular position 𝜃𝑅
𝑚of the rotor in the study domain (Figure 4.3) is the reference 

position because the axis of the rotor, axis ‘D’, is facing the axis of phase 1: 

𝜃𝑅
𝑚 = 0 

According to symmetries of the study domain defined in Figure 4.3, in this rotor position, 

the axial flux density for the no-load and direct armature reaction can be decomposed in 

Fourier series, of the form: 

𝐵𝑧(𝑟, 𝜃, 0) = ∑ 𝑏𝑚(𝑟) 𝑠𝑖𝑛((2𝑚 − 1)𝑝𝜃)∞
𝑚=1                              (4.120) 

If the rotor is moving at another position different from the reference position, the axial 

flux density is: 

𝐵𝑧(𝑟, 𝜃, 𝜃𝑅
𝑚) = 𝐵𝑧(𝑟, 𝜃 − 𝜃𝑅

𝑚, 0) = ∑ 𝑏𝑚(𝑟) 𝑠𝑖𝑛((2𝑚 − 1)𝑝(𝜃 − 𝜃𝑅
𝑚))∞

𝑚=1           (4.121) 

From (4.116) and (4.121), the elementary flux depends also on the rotor position: 

𝑑𝜑

𝑑𝑟
(𝑟, 𝜃, 𝜃𝑅

𝑚) = ∑ −
2𝑟𝑏𝑚(𝑟)

(2𝑚−1)𝑝
𝑐𝑜𝑠((2𝑚 − 1)𝑝(𝜃 − 𝜃𝑅

𝑚))∞
𝑚=1                 (4.122) 

From (4.15) and (4.121), for phase 1, the product in the flux (4.119) becomes: 

∫ 𝐶1(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃)

𝜋

2𝑝

−
𝜋

2𝑝

𝑟𝑑𝜃 = ∑ ∑
−2𝑟2𝑏𝑚(𝑟)𝑎𝑛(𝑟)

(2𝑚−1)𝑝
∫ 𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)𝑐𝑜𝑠((2𝑚 −

𝜋

2𝑝

−
𝜋

2𝑝

∞
𝑛=1

∞
𝑚=1

1)𝑝(𝜃 − 𝜃𝑅
𝑚))𝑑𝜃   (4.123) 

The integral in the second member of (4.123) is decomposed in two integrals: 

∫ 𝑐𝑜𝑠((2𝑚 − 1)𝑝(𝜃 − 𝜃𝑅
𝑚))𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)𝑑𝜃

𝜋

2𝑝

−
𝜋

2𝑝

=
1

2
(∫ 𝑐𝑜𝑠(2(𝑚 + 𝑛 − 1)𝑝𝜃 −

𝜋

2𝑝

−
𝜋

2𝑝

(2𝑚 − 1)𝑝𝜃𝑅
𝑚)𝑑𝜃 + ∫ 𝑐𝑜𝑠(2(𝑚 − 𝑛)𝑝𝜃 − (2𝑚 − 1)𝑝𝜃𝑅

𝑚)𝑑𝜃

𝜋

2𝑝

−
𝜋

2𝑝

)          (4.124) 

The first integral of the second member of (4.124) is null, the second is not null if 𝑚 = 𝑛 : 

∫ 𝐶1(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃, 𝜃𝑅

𝑚)𝑟𝑑𝜃

𝜋

2𝑝
−𝜋

2𝑝

= ∑ −
2𝑟2𝑎𝑛(𝑟)𝑏𝑛(𝑟)

(2𝑛−1)𝑝

𝜋

2𝑝
𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃𝑅

𝑚)∞
𝑛=1        (4.125) 
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From (4.119) and (4.125), for the no-load and direct armature reaction fields, the magnetic 

flux  of phase 𝑘 in function of the rotor position is given by:  

𝜑𝑘(𝜃𝑅) = ∑ −𝑐𝑜𝑠 ((2𝑛 − 1) (𝑝𝜃𝑅
𝑚 − (𝑘 − 1)

2𝜋

3
))∫

𝑎𝑛(𝑟)𝑏𝑛(𝑟)𝑟
2

(2𝑛−1)

𝜋

𝑝
𝑑𝑟

𝑅𝐿2

𝑅𝐿1

∞
𝑛=1        (4.126) 

4.15.4 Quadrature armature reaction flux 

According to symmetries of the study domain defined in Figure 4.3, in this rotor position, 

the axial flux density for the quadrature armature reaction can be decomposed in Fourier 

series, of the form: 

𝐵𝑧(𝑟, 𝜃, 0) = ∑ 𝑏𝑚(𝑟) 𝑐𝑜𝑠((2𝑚 − 1)𝑝𝜃)∞
𝑚=1                              (4.127) 

If the rotor is moving at another position different from the reference position, the axial 

flux density is: 

𝐵𝑧(𝑟, 𝜃, 𝜃𝑅
𝑚) = 𝐵𝑧(𝑟, 𝜃 − 𝜃𝑅

𝑚, 0) = ∑ 𝑏𝑚(𝑟) 𝑐𝑜𝑠((2𝑚 − 1)𝑝(𝜃 − 𝜃𝑅
𝑚))∞

𝑚=1           (4.128) 

 

From (4.128), for phase 1, the product in the flux (4.119) becomes: 

∫ 𝐶1(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃)

𝜋

2𝑝

−
𝜋

2𝑝

𝑟𝑑𝜃 = ∑ ∑
2𝑟2𝑏𝑚(𝑟)𝑎𝑛(𝑟)

(2𝑚−1)𝑝
∫ 𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)𝑠𝑖𝑛((2𝑚 −

𝜋

2𝑝

−
𝜋

2𝑝

∞
𝑛=1

∞
𝑚=1

1)𝑝(𝜃 − 𝜃𝑅
𝑚))𝑑𝜃     (4.129) 

The integral in the second member of (4.129) is decomposed in two integrals: 

∫ 𝑠𝑖𝑛((2𝑚 − 1)𝑝(𝜃 − 𝜃𝑅
𝑚))𝑐𝑜𝑠((2𝑛 − 1)𝑝𝜃)𝑑𝜃

𝜋

2𝑝

−
𝜋

2𝑝

=
1

2
(∫ 𝑠𝑖𝑛(2(𝑚 + 𝑛 − 1)𝑝𝜃 −

𝜋

2𝑝

−
𝜋

2𝑝

(2𝑚 − 1)𝑝𝜃𝑅
𝑚)𝑑𝜃 + ∫ 𝑠𝑖𝑛(2(𝑚 − 𝑛)𝑝𝜃 − (2𝑚 − 1)𝑝𝜃𝑅

𝑚)𝑑𝜃

𝜋

2𝑝

−
𝜋

2𝑝

)          (4.130) 

The first integral of the second member of (4.97) is null, the second is not null if 𝑚 = 𝑛 : 

∫ 𝐶1(𝑟, 𝜃)
𝑑𝜑

𝑑𝑟
(𝑟, 𝜃, 𝜃𝑅

𝑚)𝑟𝑑𝜃

𝜋

2𝑝
−𝜋

2𝑝

= ∑
2𝑟2𝑎𝑛(𝑟)𝑏𝑛(𝑟)

(2𝑛−1)𝑝

𝜋

2𝑝
𝑠𝑖𝑛((2𝑛 − 1)𝑝𝜃𝑅

𝑚)∞
𝑛=1        (4.131) 

From (4.131) and (4.119), for the quadrature armature reaction fields, the magnetic flux  of 

phase 𝑘 in function of the rotor position is given by:  

𝜑𝑘(𝜃𝑅
𝑚) = ∑ 𝑠𝑖𝑛 ((2𝑛 − 1) (𝑝𝜃𝑅

𝑚 − (𝑘 − 1)
2𝜋

3
))∫

𝑎𝑛(𝑟)𝑏𝑛(𝑟)𝑟
2

(2𝑛−1)

𝜋

𝑝
𝑑𝑟

𝑅𝐿2

𝑅𝐿1

∞
𝑛=1        (4.132) 

4.16 DQ model parameters 

For the three magnetic field problems, the following steps are needed to calculate DQ 

model parameters with the 3DFDM4STAFPM software: 

- Calculate the distribution of the axial magnetic flux density on the stator bore 

- Calculate the flux in the three phases in function of the rotor position 

- Use Park’s transformation to calculate the DQ model parameters 
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4.16.1 Distribution of the axial magnetic flux density on stator bore 

The 3DFDM4STAFPM software calculate the field on a reduced domain. The distribution of 

the axial magnetic flux density on the stator (half pole) for the no-load field is shown on Figure 

4.19. 

 

Figure 4-19: 𝐵𝑧(𝑟, 𝜃, 𝑧 = ℎ𝑚 + 𝑔) on the stator for the no-load magnetic flux problem 

For the armature reaction field problems, the distribution of the surface current density is first 

calculated. Its distribution on the stator bore across one pair of poles is shown on Figure 4.7 

and Figure 4.8. To calculate the magnetic field, these distributions must be applied on the 

stator bore of the reduced and discretized study domain shown in Figure 4.20. The azimuthal 

axis is discretized in 27 irregular intervals on half pole. Spanning on one pair of poles, there 

are 108 intervals. As the distributions of the surface current density have sharp fronts (Figure 

4.7 and   Figure 4.8), applying Shannon’s rule, only 18 azimuthal odd harmonics are taken 

into account to avoid noises. With 18 harmonics, the direct and quadrature armature surface 

current density distributions on half pole of the stator bore are shown on Figure 4.20 and 

Figure 4.21 respectively. 

 

Figure 4-20: Distribution of the direct armature surface current density on the reduced 

domain 
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Figure 4-21: Distribution of the quadrature armature surface current density on the reduced 

domain 

The distributions of the armature axial flux densities on the stator bore of the reduced domain 

are shown on Figure 4.22 and Figure 4.23. 

 

Figure 4-22: Direct armature axial flux density distribution on the reduced domain stator 

bore 
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Figure 4-23: Quadrature armature axial flux density distribution on the reduced stator bore 

Before computing the harmonics of these two distributions [51], they have to be spanned along 

one pair of poles as shown in (Figure 4.24 and Figure 4.25). 

 

Figure 4-24: Spanning on pair of poles the direct armature axial flux density distribution 

 

Figure 4-25: Spanning on pair of poles the quadrature armature axial flux density 

distribution 
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4.16.2 Flux in function of the rotor position 

According to section 4.15, the harmonics of the axial flux densities (4.120) and (4.127) are 

calculated. The flux in function of the rotor position are shown on Figure 4.26 to Figure 4.28 

for the no-load field, direct and quadrature armature reaction fields respectively. 

 

Figure 4-26: Flux in function of the rotor position from the no-load magnetic field 

The no-load magnetic flux should be compared to Figure 3-43 of Chapter 3 which shows the 

no-load magnetic flux deduced from the measurements. The waveforms of the calculated and 

measured magnetic flux are very similar. The relative error on the magnitude is quite 

acceptable during the sizing procedure. 

 

Figure 4-27: Flux in function of the rotor position from the direct armature reaction 

magnetic field 
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Figure 4-28: Flux in function of the rotor position from the quadrature armature reaction 

magnetic field 

Direct and quadrature armature flux deduced from measurements are not shown but they have 

been calculated. The waveforms and the levels of the measured reaction flux are very different 

from those of the calculated reaction flux. This huge difference can be explained by the fact 

the model of flux does not take into account slot and head winding inductances. 

4.16.3 Park’s transformation 

Park’s transformation in section (3.70) has been applied to the calculated flux. The results 

are shown on Figure 4.29 to Figure 4.31. 

 

Figure 4-29: DQ components of the no-load flux in function of the rotor position 
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Figure 4-30: DQ components of the direct armature reaction flux in function of the rotor 

position 

 

Figure 4-31: DQ components of the quadrature armature reaction flux in function of the 

rotor position 

From the mean value of the DQ components of the fluxes, the DQ model parameters are 

calculated and compared to the ones deduced from measurements in TABLE 4.V 

TABLE 4-VI: Comparison of the DQ model parameters 

 Calculated Measured Relative error (%) 

Direct no-load flux, 𝑣𝐷(𝑊𝑏) 0.54 0.57 5.3 

Direct inductance, 𝐿𝐷(𝑚𝐻) 20.9 48.5 56.9 

Quadrature inductance, 

𝐿𝑄(𝑚𝐻) 
36.1 61.9 41.9 

𝐿𝑄 − 𝐿𝐷(𝑚𝐻) 15.2 13.4 13.4 

 

From TABLE 4. V, it can be seen that the no-load flux density is calculated with very small 

error. The values of the calculated inductances differ a lot from the values deduced from 

measurements. The relative error of the difference between the quadrature and direct 
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inductances is acceptable in a sizing procedure. It is important as the torque is given by (3.76) 

in Chapter 3.  

The procedure to calculate the optimal torque from the DQ model parameters is presented in 

Chapter 3 section 3.13.2. Figure 4.32 shows the mean torque in function of the phase shift 𝛼 

between the current and the rotor. 

 

Figure 4-32: Torque versus phase shift 𝛼 

The calculated value of the optimal torque is 11.25 N.m. The relative error from the value 

deduced from measurements is six percent which is quite acceptable in a sizing procedure. 
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4.17 Conclusion 

In this chapter, a sizing model of STAFPM based on 3D magnetic field is proposed. Due 

to ferromagnetic poles, simple analytical models of the magnetic field do not exist up to now. 

A 3D numerical model of the magnetic field based on finite difference method is chosen. To 

speed up the computation all the symmetries of the motor have been taken into account and 

the study domain is reduced to a half pole. As for the analytical models of RFM and AFM 

surface mounted permanent magnet motor, the stator is taken into account by the distribution 

function of conductors and the distribution of surface current density along the stator bore. 

Three magnetic field problems are solved: open circuit magnetic field problem, direct and 

quadrature reaction magnetic field problems. To solve these problems a magnetic scalar 

potential formulation is chosen. 

An original method of calculation of the fluxes is developed. This method fits well with 

the magnetic scalar potential formulation. This method allows to calculate the flux in function 

of the rotor position for the three magnetic field problems. The open-circuit flux waveforms 

and magnitudes fit well with the ones deduced from measurements. Due to several 

assumptions done in the calculation of the armature reaction fields, the direct and quadrature 

flux waveforms do not match the ones deduced from measurements. These remarks apply also 

when Park’s transformation is used to deduce the DQ model parameters from the flux 

waveforms. 

The value of torque deduced from the calculated DQ model parameters is nevertheless 

quite acceptable. The relative error is six percent which is quite acceptable in a sizing 

procedure. 
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General conclusion 
 

Spoke Type Axial Flux Permanent Magnet (STAFPM) motors are interesting due to their 

potentiality to concentrate the no-load magnetic flux produced by magnets in the airgap. This 

feature allows the use of Ferrite magnets instead of rare earth based magnets.  The work is 

devoted to develop 3D magnetic field models to be associated to sizing procedure of Spoke 

Type Axial Flux Permanent Magnet (STAFPM) motor. 

 

In the first chapter, a bibliographical study reviews the analytical magnetic field models for 

Surface Mounted Radial Flux Permanent Magnet (SMRFPM) and Surface Mounted Axial 

Flux Permanent Magnet (SMAFPM) motors. Taking into account the difficulties to adapt 

these analytical models to salient pole motors, 3D numerical magnetic field models to be 

associated to sizing equations are proposed for STAFPM motor. Then a state of the art on the 

test benchmarks, for salient pole motors, leads to propose the experimental identifications of 

the parameters of the general electromechanical model of electric motors from static torque 

measurements. 

 

The second chapter is focused on the sizing approach to realize a STAFPM prototype. First a 

1D mean radius analytical model of the magnetic field associated to sizing equations helps to 

calculate the thermal and magnetic theoretical loads of an existing SMAFPM motor. These 

loads are taken as references for the STAFPM prototype. The sizing procedure is also applied 

to compare, on the electromagnetic torque basis, SMAFPM and STAFPM motors which have 

the same stator. At our knowledge, it is the first time that surface mounted and spoke type 

permanent magnet motors are compared on the same basis. Indeed, it is often taken for granted 

that it is better to use spoke type Ferrite magnet motor than surface mounted Ferrite magnet 

motor. The comparison shows that it is not so simple. From the conclusions of this comparison 

and taking into account experimental constraints, a STAFPM prototype for the experimental 

studies in Chapter 3 is sized. 

 

In Chapter 3, an original method to identify, in function of the rotor position, the main 

parameters of the general electromechanical model of electric motors is explained. These 

identifications are based on the measurements of static torques in function of the rotor 

position. Once the parameters identified, the electromechanical model provides quick 

computations of the static torque of the motor. These computations reproduce accurately in 

details the static torque waveforms measured on the test bench for different types of supply 

currents. Eventually, from the identified parameters, the DQ model parameters are calculated 

in function of the rotor position. It is shown that these parameters do have ripples. Their mean 

values allow to obtain the mean torque when the motor is supplied by sinusoidal currents. 

 

In Chapter 4, a tool, based on 3D finite difference method, is developed in the MATLAB 

environment. This tool is entitled “3DFDM4STAFPM”. This tool solves the open-circuit 

magnetic field problem, direct and quadrature armature reaction magnetic field problems by 

means of the magnetic scalar potential formulation. To speed up the calculation times needed 

to solve these problems, the study domain is reduced to a half pole.  

The stator is modeled by the distribution function of conductors and the surface current 

densities. An original method for the calculations of the magnetic flux is set up.  Indeed, the 

context of 3D finite difference method associated to the magnetic scalar potential formulation 

and the representation of stator by the distribution functions of conductors and surface current 

density is new. The state of art does not provide any available flux calculation method. By the 
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help of the flux calculation method, it is possible to calculate the no-load magnetic flux 

waveforms in function of the rotor position, the direct and quadrature armature reaction 

inductances of the DQ model. The no-load flux waveforms agree very well with those deduced 

from e.m.f measurements performed in Chapter 3. The values of the direct and quadrature 

inductances are very different from the mean values of these inductances deduced from the 

static torque measurements. These differences can be explained by the fact that the numerical 

magnetic field model takes only into account the airgap inductances. The inductances due to 

slots and to the winding heads must be added to the airgap inductances. The calculation of slot 

and winding head inductances are very well known. Nevertheless, the mean torque obtained 

from the DQ model using the calculated parameters is very close to the mean torque deduced 

from measurements. Furthermore, the optimal torques per ampere calculated from model and 

measurement results agree very well. 

The good matching of the calculation and measurement results proofs the validity of the 

developed 3D numerical tool. Indeed, this tool seems to be very efficient considering the 

strong assumptions that have been taken to reduce the computation time. 

 

The tool as it is, can take into account single rotor single stator topology but also double rotor 

and single stator topology.  

A second version of the tool considering the double stator ‘STAFPM’ topology is very easy 

to set up. The study domain of a double stator single rotor topology is less complex because 

the air region at the bottom of the rotor can be removed and replaced by a simple boundary 

condition. A comparative study can then be performed between the single stator single rotor, 

double rotor single stator and double stator single rotor topologies. 

The measurement results show that the torques do have ripples. Knowing the parameters of 

the general electromechanical model of the STAFPM motors, it is possible to optimize the 

supply currents to reduce or eliminate these ripples. 

The developed tool can be applied to optimize the saliency and electromagnetic torques. This 

is possible because the difference between the quadrature and direct inductances is calculated 

with enough accuracy by the tool. 
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