N
N

N

HAL

open science

Payment Channel Networks with Resource-constrained
Devices
Gabriel Antonio Fontes Rebello

» To cite this version:

Gabriel Antonio Fontes Rebello. Payment Channel Networks with Resource-constrained Devices.
Modeling and Simulation. Sorbonne Université; Universidade federal do Rio de Janeiro, 2023. English.

NNT: 2023SORUS254 . tel-04247845

HAL Id: tel-04247845
https://theses.hal.science/tel-04247845
Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04247845
https://hal.archives-ouvertes.fr

N\ SORBONNE

UNIVERSITE . COPPE

CREATEURS DE FUTURS b
DEPUIS 1257 Instituto Alberto Luiz Coimbra de U FRJ

Pés-Graduagao e Pesquisa de Engenharia

Sorbonne Université

Universidade Federal do Rio de Janeiro

EDITE de Paris - COPPE/UFRJ
LIP6/NPA - PEE/GTA

Payment Channel Networks with

Resource-constrained Devices

Par Gabriel Antonio FONTES REBELLO

These de doctorat de Informatique

Dirigée par Maria POTOP-BUTUCARU, Marcelo DIAS DE AMORIM et
Luis Henrique MACIEL KOSMALSKI COSTA

Présentée et soutenue publiquement le 12 juillet 2023

Devant un jury composé de :

Prof. Yacine GHAMRI-DOUDANE, Rapporteur (La Rochelle Université)

Prof. Fabiola GONCALVES PEREIRA GREVE, Rapporteuse (UFBA)

Prof. Augusto QUADROS TEIXEIRA, Examinateur (IMPA)

Prof. Célio Vinicius NEVES DE ALBUQUERQUE, Examinateur (UFF)

Prof. Miguel Elias MITRE CAMPISTA, Examinateur (UFRJ)

Prof. Maria POTOP-BUTUCARU, Directeure de thése (Sorbonne Université)
Prof. Marcelo DIAS DE AMORIM, Co-directeur de thése (CNRS)

Prof. Luis Henrique MACIEL KOSMALSKI COSTA, Directeur de these (UFRJ)

v

To my friends and family.

Thanks

First of all, I thank my parents, Gabriel and Katia, for always encouraging and
striving for my academic education. I thank my sister, Mariana, for all the years of
sincere companionship. Without them, this thesis would never exist.

I thank my advisors, Luis Henrique M. K. Costa, Maria Potop-Butucaru and
Marcelo Dias de Amorim for agreeing to supervise this thesis. In particular, I thank
them for the great effort put into making this cotutelle possible even in the face
of numerous unforeseen circumstances. I thank Prof. Otto Carlos M. B. Duarte,
wherever he is, for the countless life lessons and for all the loud laughs we had.

I thank my colleagues from Grupo de Teleinformatica e Automagao (GTA), who
were fundamental to this work and to my formation as a professional. I especially
thank my friends Gustavo Camilo, Lucas Airam de Souza, Lucas Chagas, Igor
Alvarenga, Igor Sanz, Martin Andreoni, Diogo Mattos, Fernando Molano, and many
others with whom I had the privilege of learning daily at the lab. I thank the
professors from GTA, Luis, Miguel, Rodrigo, Pedro Cruz and Pedro Velloso, for all
the lessons learned. GTA is and will continue to be like a home to me.

I thank all the people who have positively impacted my personal life along this
path. My companions from France, Thais Pansani, Claudio Vasconcelos, Thaysa
Oliveira, Maria Claudia, the Geranios group, my friends from Maison du Brésil, and
my dear greek friends Frosso Papanastasiou and Marilena Moustaka. Thank you for
all the intense moments and I hope you are all well. Similarly, I thank my friends
from Brazil, too numerous to name, for all the good times we lived here during
these years. Finally, I thank my life partner, Larissa Mello, for all the support and
companionship during the most challenging stage of this thesis. Life is surely better
lived with you.

I thank CNPq, CAPES, FAPESP, and FAPERJ for making this work possible
and for continuously promoting high-level research in Brazil. I thank Universidade
Federal do Rio de Janeiro and Sorbonne Université for agreeing to establish this
cotutelle. I thank GTA and LIP6 for hosting me, respectively, during the periods I
was in Brazil and France.

None of this would be possible without any of the aforementioned people. This
thesis is dedicated to them and to the memory of prof. Otto Carlos M. B. Duarte.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.) and to EDITE de Paris as
a partial fulfillment of the requirements for the degree of Doctor (Dr.).

PAYMENT CHANNEL NETWORKS WITH RESOURCE-CONSTRAINED
DEVICES

Gabriel Antonio Fontes Rebello

July /2023

Advisors: Luis Henrique Maciel Kosmalski Costa
Maria Potop-Butucaru

Marcelo Dias de Amorim

Department: Electrical Engineering

Payment-channel networks (PCN) represent the leading solution to scale
blockchain-based payments to the performance levels of centralized payment systems.
However, current PCNs require nodes to stay permanently online and have enough
resources to execute payment security mechanisms. Such assumptions are difficult
to guarantee in battery-powered devices with intermittent connectivity patterns,
such as mobile phones, smart objects, and sensors. In this thesis, we address the
case of PCNs with resource-constrained devices on several fronts. First, we for-
malize a hybrid PCN model that considers light nodes and propose a mechanism
to protect payment channels with resource-constrained devices. Our experiments
show that the proposed mechanism is efficient for devices with high and medium
availability in mobile broadband connections. Next, we propose PCNsim, a simulator
that replicates the main functionalities of a PCN in the OMNeT++ framework.
PCNsim allows researchers to experiment with payments under custom networking
conditions representing resource-constrained devices’ connections. PCNsim’s demon-
strations show that it correctly reproduces the behavior of a PCN over unreliable
communication channels. Finally, we address the problem of routing payments from
resource-constrained devices. We present a payment scheme that anticipates payment
confirmations for time-sensitive applications and two routing algorithms that route
payments considering application-specific constraints. The results show that our
routing algorithms are efficient both for single-path and multi-path payments and
reach their top performance when the problem’s constraints are tight.

vil

Contents

List of Figures xi
List of Tables xvi
1 Introduction 1
1.1 Storyline and Problem Statement 2
1.2 Contributions 4
1.3 Thesis Outline 6

2 Blockchain Scalability and Layer-Two Protocols 8
2.1 Blockchains and Consensus 8
2.2 The Blockchain Scalability Trilemma 9
2.3 The Trade-off of Consensus Protocols 11
2.4 Off-chain Protocols 13
2.4.1 Defining Layer Two 14

2.5 SUMMATY oo 15

3 Payment Channel Networks 16
3.1 Overview of Payment Channels 16
3.2 Channel State Updates 18
3.2.1 One-way Payment Channels (Spillman Channels) 18

3.2.2 Bidirectional Payment Channels (1/2): Limited Duration Model 19

3.2.3 Bidirectional Payment Channels (2/2): Standard Model 20

3.3 Payment Channel Networks 23
3.3.1 Securing Payments with Hashed Timelock Contracts 23

3.3.2 Payments vs. Transactions 26

3.4 PCNs: The Lightning Network 27
3.5 PCNs: Other Networks, 29
3.6 Summary 31

4 Payment Channel Networks with Resource-Constrained Devices 33

4.1 The Challenges of PCNs with Light Nodes 33

viil

4.2 Hybrid Payment Channel Networks (HPCNs)
4.3 The Coin Theft Problem in HPCNs
4.4 Defining a Minimum Time Window
4.5 Proof-of-Concept Analysis

4.5.1 Evaluation Setup

4.5.2 Discussiono
4.6 Related Work

4.7 Summary

PCNSim: Payment Channel Network Simulation

5.1 The Need for a PCN Simulator

5.2 PCNsim’s Architecture
5.2.1 Topology Generator
5.2.2 Workload Generator
5.2.3 Core Simulator o
5.2.4 Result Visualizer and Storage

5.3 A Demonstration of PCNsim
5.3.1 Comparison of Payment Routing Methods
5.3.2 Payments Over Generic Communication Channels
5.3.3 Payments Over IEEE 802.11g Channels

54 Related Worko

5.5 SUMMATY

Payment Routing with Resource-Constrained Devices

6.1 Background on Payment Routing in PCNs
6.1.1 Channel Capacities, Balances, and Liquidities
6.1.2 Uncertainty of Channel Liquidities
6.1.3 Routing Payments through Minimum-cost Flows
6.1.4 Liquidity Updates and Channel Probing

6.2 Routing Payments from Light Nodes

6.3 Accelerating Payment Confirmations
6.3.1 Delayed Payments with Reduced Confirmation Latency
6.3.2 Payment Security and Adversary Model

6.4 Finding Constrained Optimal Flows
6.4.1 The Generalized Pulse Algorithm
6.4.2 The Multipath Pulse Algorithm

6.5 Proof-of-Concept Evaluation
6.5.1 Evaluation Setup
6.5.2 GenPulse’s Performance
6.5.3 MultiPulse’s Performance

1X

45
45
46
47
47
48
52
23
23
54
26
o7
29

6.6 Summary 95

7 Conclusion and Future Perspectives 97
7.1 Open Challenges and Opportunities 98
7.1.1 Short-term Challenges 98

7.1.2 Mid-term Challenges 99

7.1.3 Long-term Challenges 100

7.2 Final Remarks 100
References 101
A Deferred Proofs 119
A.1 Flow Decomposition, 119
A.2 Flow Differences 120
A.3 Negative Cycle Optimality 120
A.4 Optimality of MultiPulse 121

B List of Publications 122

List of Figures

1.1

2.1

2.2

2.3

24

2.5

A payment-channel network (PCN) composed of bidirectional payment
channels with limited capacity. Users can route payments through

intermediaries to reach their destinations.

Data structure of a blockchain, in which each block is linked to the

previous block through a cryptographic hash function. The replication

of such structure in independent nodes provides transaction immutability.

The validation of a block using a generic consensus protocol. On each
round, the consensus leader proposes a new block that changes its
local state from S to S” and broadcasts it to the network. The other
participants independently verify and add the proposed block to the
blockchain, replicating the state S’ consistently.
[lustration of the trilemma observed in blockchain-based systems.
The trilemma states that no consensus protocol can simultaneously
provide security, scalability (measured in transaction throughput), and
decentralization (measured in the number of nodes participating in
consensus). Graphically, all blockchains correspond to a point inside
the trilemma triangle.o Lo
Comparison between the main consensus protocols of blockchain-
based systems. The observed trade-off between performance and
decentralization makes it difficult to propose a scalable protocol that
is tolerant of collusion attacks.
Layered stack of blockchain systems, adapted from Gudgeon et al. [1].
The right side of the figure names a few scalability solutions that focus
on the corresponding layer. Off-chain protocols operate on top of the

blockchain and consensus layer.

x1

9

3.1

3.2

3.3

3.4

3.5

4.1

Payment channel operation. Users Alice and Bob contribute 5 coins
each to issue the funding transaction and create a payment channel.
After the channel is open, Alice and Bob can exchange coins by issuing
private commitment transactions that rewrite their balances in the
channel. For example, Alice sends 2 coins to Bob by signing the first
commitment transaction, which changes her balance to 3. Alice or
Bob can publish the commitment transaction containing the most
up-to-date balances to close the channel and claim the coins on-chain.
An example of state revocation in payment channels. Alice closes the
channel with C1A, in which she had a higher balance than the current
state, and then attempts to withdraw the coins with a revocable
delivery transaction. Bob detects the attack and issues the penalty
transaction within W blocks as a response, revoking Alice’s delivery
and transferring her coins to his address. He can still claim his rightful
coins with a common delivery transaction.
Example of payment in a PCN. To send Charlie 5 coins, Alice uses the
existing channel with Bob, who forwards the coins to the destination.
The payment modifies the balance of the channels involved in the
payment path.
Steps involved in a multi-hop payment in an example PCN. 1) Charlie,
the recipient, generates a preimage and sends the hash of this preimage
to Alice, the sender. 2) Alice establishes a Hashed Timelock Contract
(HTLC) with Bob promising she will deliver 1.1 BTC (Bitcoin) if he
reveals the preimage x within 9 blocks time. 3) Bob performs the
same procedure with Charlie, slightly reducing the value and time
limit. 4) Charlie reveals the preimage to Bob and claims the money
Bob promised. 5) Bob reveals Charlie’s preimage to Alice, claiming

the money she promised and finishing the payment.

17

25

Evolution of the Lightning Network from January 2020 to August 2021. 28

An example of a hybrid payment channel network. The light nodes
(LN) represent wireless resource-constrained devices, and the full nodes
(FN) represent capable nodes that store a copy of the blockchain. Light
nodes establish TCP/IP connections to multiple full nodes to verify

the states of their channels in the blockchain.

x1i

4.2

4.3

4.4

5.1

0.2

9.3

0.4

2.5

5.6

5.7

An example of the coin theft vulnerability in HPCNs. On the left,
a continuous amount of € coin flows from buyer b to seller s until it
depletes the channel between r, and s. Then, on the right, s becomes
highly vulnerable if it disconnects because ry has nothing to lose by
closing the channel with a previous state. 37
Normalized bias p of payment channels in the Lightning Network.
60% of channels present over 95% bias towards one party, and the
average bias is 81%, which indicates a heavily asymmetric behavior of
payment flows. 41
Lock time window sizes for all levels of availability with 6-block
confirmation. When the availability is high, the distance d between
the 50% and 95% thresholds remains below one block time, which
indicates a small window is safe for most users. For medium and low
availability, the distance increases significantly and forces the user to

select a time window that better fits his/her security and delay needs. 42

PCNsim’s architecture. Users can easily customize topologies and
workloads via configuration files. 46
Topology generator. Users can create n-sized PCNs from random
network models or a snapshot of the Lightning Network [2].. 47
Workload generator. Users can create workloads of n_payments with
random or sampled values from built-in data sets. 48
Sequence diagram of the channel update protocol implemented in
PCNsim. The protocol follows the Lightning Network BOLT specifi-
cations [3]. Nodes start an internal timer when they receive the first
HTLC change and trigger a new state commit when the timer expires. 49
Sequence diagram of payments from a user A to a user C as imple-
mented in the PCNsim simulator. We omit channel update messages
for simplicity. The example shows a case where A only sends payment
2 after payment 1 to clarify the figure, but in reality (and in the
simulator), payments can be sent concurrently. 51
A graphical example of a PCN in our core simulator. The simulator
displays logs for each node and channel in the network. 52
An example of PCNsim’s result visualizer being used to monitor

channel balances over time. 53

xiil

2.8

5.9

5.10

6.1

6.2

6.3

6.4

Payment success rate in our simulated PCN for several payment
values (Py) and routing methods (Rys). The results demonstrate that
Dijkstra’s shortest path approach with channel capacities as weights is
more effective than the Lightning Network’s fee minimization approach
forall cases.
An analysis of two simulated transport protocols in PCNsim. On the
left, the payment success rate degrades when sending payments over
a UDP-like protocol that does not retransmit packets. On the right is
the payment latency versus packet loss rate when adopting a TCP-like
protocol that attempts to retransmit packets. The results show that
unreliable communication channels impact the efficiency of payment
channels.
Payment success rate and latency of payments from resource-
constrained devices connected via 802.11g wireless channels with
different bitrates in Mb/s. When frame retransmission is deactivated,
the success rate decreases with the distance from the entry node due
to higher bit error rates. With retransmission, the average payment

latency increases with the distance from the entry node.

The graph structures involved in payment routing. The numbers
represent edge capacities. Each node n; transforms the public channel
graph into a local liquidity graph that estimates the actual liquidities
in the network.
The messages involved in our proposed payment scheme. The payment
recipient, t, receives an anticipated confirmation from the payment
sender, s, before receiving the payment. The confirmation allows
actions to be performed before the payment completes, reducing the

application’s latency. The messages involved in the scheme are piggy-

backed into Lightning’s peer-to-peer messages defined in BOLT#2 [3].

An example of a time-sensitive electronic toll collection application
that adopts the proposed payment scheme. The application leverages
the reduced confirmation latency to open the toll gate without stopping
thecar.
An example of constrained shortest path problem with three metrics:
routing fees (¢), HTLC-resolution delays (A), and delivery probabil-
ities (p). For clarity, we show the original probabilities instead of
their negative logarithms, yielding a lower bound instead of an upper
bound. The optimal solution is the path that minimizes the main

metric while not violating any bounds.o

Xiv

72

6.5

6.6

6.7

6.8

Al

Distributions of routing fees (¢;;), HTLC-resolution delays (A;;), and
channel capacities (u;;) in the Lightning Network snapshot. The peaks
in A;; correspond to the default values of the main Lightning Network
implementations [4-6]. oL
Performance of the GenPulse algorithm for several graph sizes and
1 values in a randomly-generated scale-free network and a Lightning
Network snapshot. The markers indicate a constrained shortest path
has been found. The results demonstrate that the tightness of side
constraints significantly impacts the algorithm’s performance.
Comparison between MultiPulse and other pathfinding algorithms in
the literature considering known liquidities.
Comparison between MultiPulse and other pathfinding algorithms in

the literature considering unknown liquidities.

An illustration of the difference between two equal-value feasible flows
f/and f (adapted from [7]). The difference cancels the flow out of s

and into t, creating a circulation composed of at least one cycle.

XV

. 120

List of Tables

5.1 Comparison between the existing PCN simulators in the literature.

6.1 Summary of recurrent notations used in this chapter.

6.2 Summary of the networks we use in our experiments.

Xvi

60

Chapter 1
Introduction

Blockchain technology has revolutionized the transfer of digital assets by moving
transaction processing from a central entity to a decentralized network of validators |2,
8, 9]. However, the consensus protocols validating transactions in such networks still
need to improve the performance if they are to effectively replace standard payment
methods. Publishing a transaction in Bitcoin |8| takes approximately one hour, can
incur over $20 fees, and spends an amount of energy equivalent to the consumption
of a US average household over 50 days [10]. Bitcoin’s and Ethereums’ throughput
of approximately 7 tx/s and 15 tx/s, respectively, are orders of magnitude smaller
than the average 6,000 tx/s achieved by large credit card companies [11]. Such
performance issues are known in the literature as the blockchain scalability problem*,
which, if solved, has the potential to enable a worldwide adoption of blockchain
systems in the life of ordinary citizens.

Payment-channel networks (PCNs) represent the leading solution to solve the
blockchain scalability problem regarding payments. In PCNs, two users wishing
to transact continuously can transfer some of their coins to a joint address in the
blockchain. This process creates a payment channel between them in which the
locked coins can be transferred immediately. It suffices to reallocate the channel
funds through off-chain private transactions. The collection of payment channels
between users forms a peer-to-peer payment channel network in which payments can
be routed like packets.

Figure 1.1 depicts an example of a PCN. In the example, Alice has a payment
channel of 12 coins with Bob, of which 10 are on her side. This means she can send
up to 10 coins to Bob in one or more transactions without validating the transactions

in the blockchain. She can also send coins to Charlie through a multi-hop payment.

1Scalability here refers to Buterin’s concept of scalability, i.e., the ability to process more
transactions per second [12]. This contrasts with the notion of scalability in distributed computing,
which is the ability to maintain performance when the number of nodes in the system increases.
We discuss such notions in Section 2.2.

10 7

Elvis Diana

Figure 1.1: A payment-channel network (PCN) composed of bidirectional payment
channels with limited capacity. Users can route payments through intermediaries to
reach their destinations.

In this case, she sends the coins in her channel with Bob, and Bob relays them to
Charlie. The routing process happens in a few seconds, even if Alice and Charlie do
not share a direct payment channel. To ensure Bob cannot steal Alice’s coins while
forwarding them, a hash-based fund-locking mechanism puts Bob’s coins in custody
until he proves he forwarded the payment. We detail this process in Chapter 3.
PCNs reduce transaction latency from minutes to, at most, a few seconds and
yield near-zero transaction costs, which significantly improves the efficiency of
blockchains [13-18]. The ability to execute fast and secure payments without con-
sensus validation narrows the gap between cryptocurrencies and real-life payments,
enhancing the use of blockchain systems. For instance, PCNs have played a crucial

role in the recent adoption of Bitcoin as an official currency in El Salvador [19].

1.1 Storyline and Problem Statement

Despite efficiently scaling blockchains, current PCN implementations present a
significant limitation: they rely on powerful nodes to work. Specifically, they require
that nodes stay online at all times and have enough resources to execute the security
mechanisms involved in a payment. For example, Bitcoin’s Lightning Network [2]
and Ethereum’s Raiden Network [20] assume that nodes maintain an updated view
of the network topology, that they can verify channels in the blockchain whenever
needed and that all nodes adopt onion routing [21] as the only payment forwarding
mechanism to guarantee privacy [22]. This implies that nodes must have high
availability to keep the topology up-to-date, enough bandwidth and storage capacity
to download and maintain blocks, and strong computational power to encrypt onion
packets. Furthermore, PCNs often assume connections between nodes are reliable so
that payments are never dropped.

Such assumptions may be reasonable for servers or desktops but are difficult to
guarantee in battery-powered devices with intermittent connectivity patterns, such as

mobile phones, smart objects, and IoT sensors. These devices typically have limited

resources and communicate through lossy wireless connections that do not provide
the required reliability to send payments. Furthermore, it is unrealistic to assume
light nodes? will maintain updated topologies or execute security mechanisms that
spend most of their energy reserve.

Surprisingly, very few works consider PCNs in which users send or route payments
from light nodes through wireless connections [23-26|. This thesis aims to fill this
gap in the literature by analyzing what challenges arise when we include resource-
constrained devices into a PCN. Specifically, we identify four main challenges to

overcome:

e Challenge #1 (Architecture): Define a PCN architecture considering
resource-constrained devices. We need a network model in which not all
nodes can store a copy of the blockchain and verify channel states. Apart from
payment channels, this model should consider direct communication between

nodes used to request blocks or efficiently update the network graph on demand.

e Challenge #2 (Channel Security): Adapt channel security mecha-
nisms to the needs of resource-constrained devices. Attack prevention
through constant blockchain monitoring is infeasible for resource-constrained
devices that disconnect frequently. We should provide a simple yet effective

way to secure payments from such devices while they are offline.

e Challenge #3 (Simulation): Provide a way to observe payments from
resource-constrained devices in unfavorable networking conditions.
Resource-constrained devices often operate under unreliable networking con-
ditions that can lead to interruptions or delays in the payment process when
the signal is lost. We should provide a way to simulate these conditions to

understand how unfavorable scenarios affect payments.

e Challenge #4 (Routing): Provide a payment scheme to route pay-
ments from resource-constrained devices with low latency. Resource-
constrained devices cannot be assumed to have the same computing power
as common nodes. Therefore, finding paths and finalizing payments in these
nodes can be too slow for some applications. We need a payment scheme that

considers such limitations and speeds up payments from light nodes.

Besides introducing interesting research challenges, developing efficient mecha-
nisms for resource-constrained devices in PCNs would extend the benefits of PCNs
to over 13 billion mobile devices that already account for over half of all the traffic

on the Internet [27, 28|. In this thesis, we expect to provide meaningful insights

2This thesis considers the terms “resource-constrained devices” and “light nodes” interchangeable.

that will help develop new PCN-based applications for light nodes. We highlight
that Challenge #4 represents an exciting challenge for readers familiar with classical
pathfinding algorithms and flow allocation methods, as payment routing borrows

many concepts from transportation networks.

1.2 Contributions

Our work starts with the goal of analyzing the blockchain scalability problem.
We compare several state-of-the-art consensus protocols to understand their main
advantages and drawbacks, providing a direction on which protocol we should adopt
for each use case. We analyze quorum-based protocols, in which a committee of
nodes decides what blocks go into the blockchain, and proof-based protocols, in
which any node can propose a block if it proves it has the right to do so. This initial

work yielded two main publications (see Appendix B for the full list of publications):

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., Souza, L. A. C.,
Duarte, O. C. M. B. - “Security and Performance Analysis of Quorum-based
Blockchain Consensus Protocols”; in 6th Cyber Security in Networking Confer-
ence (CSNet’22) - Rio de Janeiro, Brazil, October 2022.

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., de Souza, L. A. C.,
Thomaz, G. A., Duarte, O. C. M. B. - “A Security and Performance Analysis
of Proof-based Consensus Protocols”, in Annals of Telecommunications, no. 7,

pp. 517-537, 2021.

The discoveries from this analysis concluded that consensus, regardless of type,
is the main bottleneck for transaction processing in blockchains. Hence, we move to
consensus-free approaches such as payment channel networks. The first contribution
of this thesis is a survey about such approaches, which are formally called off-chain

or layer-two protocols:

Contribution 1: A survey on layer-two protocols for blockchains. We
provide a survey on the recent efforts to improve the scalability of blockchains,
focusing on layer-two protocols such as payment channel networks and rollups.
These technologies process computations off-chain and only use consensus for
solving disputes. A large portion of the work addresses the open challenges of
payment channel networks, such as payment routing, channel rebalancing, network

design strategies, security and privacy, payment scheduling, congestion control,

simulators, and support for light nodes.

The survey has been submitted to an international journal and is currently under

revision:

e Rebello, G. A. F., Camilo, G. F., Souza, L. A. C., Potop-Butucaru, M., Amorim,
M. D., Campista, M. E. M., Costa, L. H. M. K. - “A Survey on Layer-Two
Protocols for Blockchains”, submitted to IEEE Communications Surveys &
Tutorials in April 2023.

As we prepared the survey, we noticed that PCNs have their own challenges,
especially regarding resource-constrained devices. The main problem is that the
security of channel funds is only guaranteed if both channel parties are online, which

cannot be assumed for light nodes. Thus, we propose the following contribution:

Contribution 2: A mechanism to secure channels with light nodes. We
formalize the concept of hybrid PCNs, i.e., PCNs with capable nodes and wireless
resource-constrained devices, and address the coin theft problem, a vulnerability
that affects nodes with intermittent connectivity. We propose a countermeasure
based on minimum time windows that lock funds whenever a user disconnects. The

duration of the window is proportional to the mean time to recovery (MTTR) of

devices, which gives them enough time to reconnect and contest attacks.

This work adapted the default dispute periods of existing PCNs to accommodate
light devices |2, 20]. We evaluated our proposal with real channels from Bitcoin’s
Lightning Network [2] and estimated the MTTR of devices using data from 3G/4G

mobile broadband connections [29, 30]. The work resulted in another publication:

e Rebello, G. A. F., Potop-Butucaru, M., Amorim, M. D., Duarte, O. C. M. B.
- “Securing Wireless Payment-Channel Networks With Minimum Lock Time
Windows”, IEEE International Conference on Communications (ICC 2022),

Seoul, South Korea, May 2022.

Experimenting with mobile connections showed that its often difficult to predict
the behavior of payment channels when they operate under unstable networking
conditions. Besides, we missed an automated tool that would accurately simulate
payment channel networks with several network topologies and communication

protocols. This need generated our second contribution:

Contribution 3: PCNsim. PCNsim is an open-source payment channel network
simulator that reproduces the state machine of the Lightning Network on top of the
OMNeT++ framework [31]. The simulator allows users to model channel parameters
such as channel capacity and routing fees and to test routing protocols on real
data obtained from payment datasets. Because OMNeT-++ offers a wide range of
communication protocols through the INET library?®, PCNSim also supports testing

PCNs with different networking protocols in lower layers. PCNsim is available to

the scientific community at https://github.com /gfrebello/pcnsim.

We published the details of PCNsim and some simulations of payment routing

protocols:

e Rebello, G. A. F., Camilo, G. F., Potop-Butucaru, M., Campista, M. E. M.,
Amorim, M. D., Costa, L. H. M. K. - “PCNsim: A Flexible and Modular
Simulator for Payment Channel Networks”, IEEE International Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Virtual
Conference, May 2022.

Our simulations with PCNsim helped us realize that routing payments efficiently
is the most interesting part of dealing with resource-constrained devices in PCNss.
Particularly, routing payments from light nodes can be too slow for applications
requiring minimum payment latency to work, such as stock markets, cross-chain

trades, and electronic toll collection. We contribute to this direction:

Contribution 4: A payment scheme for payments from light nodes. We
propose a special payment scheme that reduces confirmation latency when issuing
payments from resource-constrained devices. The payment scheme securely offloads
payments to gateway nodes which compute routes and forward payments as a

service. This saves energy, speeds up payments, and allows light nodes to remain

offline most of the time at the expense of a small service fee.

Finally, we also propose new routing algorithms for gateways to route payments

considering side constraints:

Contribution 5: GenPulse and MultiPulse. We develop two optimal payment
routing algorithms that consider application-specific needs when computing paths.
The Generalized Pulse (GenPulse) algorithm finds a constrained shortest path
in the graph, i.e., a path that minimizes a routing metric while keeping some
side constraints. Multipath Pulse (MultiPulse) extends GenPulse to issue optimal
multipath payments via successive flow allocation. GenPulse and MultiPulse can
be used in PCNs, for instance, to minimize the routing costs of a payment that is

subject to a maximum payment latency or network resource consumption.

Note that despite being proposed for PCNs with light devices, GenPulse and
MultiPulse can be used in traditional PCNs. We are currently writing a paper that

includes these contributions.

1.3 Thesis Outline

This thesis contains two main parts. In the first part, we present the background

needed to understand the challenges of payment channels with resource-constrained

devices. Chapter 2 presents the blockchain scalability problem and our main findings
regarding the limitations of consensus protocols. We present the technical concepts
of payment channel networks in Chapter 3, including the mechanisms that guarantee
the security of payments. The same chapter briefly overviews the main PCN
implementations.

In the second part, we answer the research challenges presented in Section 1.1.
We address Challenges #1 and #2 in Chapter 4. The chapter formalizes a key
vulnerability of PCNs with resource-constrained devices and proposes a countermea-
sure to avoid fund losses. Chapter 5 addresses Challenge #3 and presents PCNSim,
our proposed PCN simulation platform. We provide some demonstrations of the
simulator’s capabilities. We address Challenge#4 in Chapter 6, which discusses
payment routing in PCNs with resource-constrained devices. The chapter presents
the rationale behind our proposed payment scheme and the details of the GenPulse
and MultiPulse payment routing algorithms. Finally, Chapter 7 concludes the work,

presenting future perspectives for resource-constrained devices in PCNs.

Chapter 2

Blockchain Scalability and Layer-Two

Protocols

Despite providing disruptive and innovative features, blockchains still present signifi-
cant latency, power consumption, and transaction throughput issues. The collection
of such issues is known as the “blockchain scalability problem” in the literature
and is today one of the most important research topics on blockchain technol-
ogy [15, 18, 32, 33|. In this chapter, we introduce the proper background needed to
understand the problem and formalize it through the enunciation of the blockchain
scalability trilemma. The chapter elucidates the main reasons why layer-two protocols

exist.

2.1 Blockchains and Consensus

A blockchain system is a distributed ledger technology (DLT) that leverages indepen-
dent validator nodes to record, share, and synchronize transactions in a decentralized
peer-to-peer network. Each node in the network stores a local copy of the blockchain,
which can verify any transaction since the creation of the system. The blockchain
data structure is a chained list of signed transactions batched into blocks. Each
block contains a header with the hash of the predecessor block and a content section
that stores transactions, as shown in Figure 2.1. A transaction represents an atomic
action that transfers assets between a sender and a receiver. To transfer assets, the
sender must sign a transaction that transfers the ownership of the assets he/she owns
to the receiver and send it to a subset of nodes called validators. The transaction
is confirmed once it appears in a block, meaning that it has been selected by a
validator node and approved by the others. The combination of signed transactions,
linked blocks, and replication of the complete data structure provides immutability

to any data stored in a blockchain, creating an incorruptible and distributed log of

Block 0 (Genesis) Block 1 Block 2 Block N

| | <—-| Hash(Block 0)| <—-| Hash(Block 1)| -]

Transactions Transactions Transactions Transactions

Figure 2.1: Data structure of a blockchain, in which each block is linked to the
previous block through a cryptographic hash function. The replication of such
structure in independent nodes provides transaction immutability.

transactions.

Consensus in blockchain systems is the process by which the independent valida-
tors in the network decide, collectively, whether to accept or refuse the addition of
a new block into the blockchain. A blockchain consensus protocol is a distributed
algorithm that ensures consensus evolves correctly, adding one new block at a time.
Figure 2.2 illustrates how a generic blockchain consensus protocol works. We assume
every validator starts at a previously-validated state S. In each round, the consensus
leader, i.e., the validator with the right to propose a block, aggregates the received
transactions into a block and broadcasts it on the network to be verified locally by
the other validators. Upon receiving the proposed block, each validator evaluates it
independently and, if approved, adds it to their blockchain, locally reaching the new
S’ state. When enough validators reach the new state locally, the protocol considers
that there has been consensus and that the system as a whole has validated the new
block. Hence, S’ becomes the current global state of the blockchain that all nodes
must synchronize with, regardless of their opinion on previous rounds.

Proposing, broadcasting, and verifying the block consume time and energy
proportional to the number of validators. A mechanism for defining the consensus
leader on each round is also needed. Such procedures and leader-election mechanisms
define how fast a block is considered valid and consequently impact the performance
of the blockchain. As many works have shown, the core of the blockchain scalability
problem lies in the efficiency of consensus protocols, which must ensure the system
adds blocks to the ledger in a safe manner [17, 34, 35]. As a reference, the proof-of-
work [8] consensus protocol from Bitcoin proposes a block every 10 minutes, yielding 7
transactions per second. This is due to the costly mathematical challenge of deciding

who has the right to propose a block.

2.2 The Blockchain Scalability Trilemma

The blockchain scalability problem is a generic umbrella term that encompasses the
challenges of improving blockchain performance. For the purposes of this paper, it

helps to narrow down such concept to a more specific definition based on the blockchain

Node P, - Nod
m_ 322 Blockchain (S) ‘ e Blockchain (S")
Ingl]

Node Node

o) I (229 > =, >
82— | ‘ —@ !afv‘ !»r'!
Blockchain (S) Blockchain (S)

Blockchain (S') Blockchain (S')

Block
Tl

T2
!f! @ CN\—[H |,
bl L

Node Blockchain (S")i Blockchain (S')

2, fi
=
W

Blockchain (S) Node

~BLEE X
Node Node Blockchain (S')

LD
Node
Blockchain (S) Blockchain (S')

>

Time

Figure 2.2: The validation of a block using a generic consensus protocol. On each
round, the consensus leader proposes a new block that changes its local state from S
to S and broadcasts it to the network. The other participants independently verify
and add the proposed block to the blockchain, replicating the state S’ consistently.

scalability trilemma', a term coined by Ethereum’s founder Vitalik Buterin [12]:

Definition 1. (The blockchain scalability trilemma) [12]. Given the following
properties of blockchains:
e Scalability: the capacity to process transactions at high throughput,
e Decentralization: the capacity to process transactions without relying on
trusted parties or small groups,
e Security: the capacity to successfully resist collusion attacks,
the blockchain scalability trilemma is a conjecture that states that no blockchain

system can provide all properties simultaneously. Consequently, every blockchain

forfeits at least one property at any given time.

We highlight that the trilemma refers to Vitalik Buterin’s notion of scalability
instead of the classical concept of scalability in distributed computing. The latter
concept, which in blockchains corresponds to the ability of the consensus protocol to
maintain throughput even when the number of validators significantly increases, is
captured by the decentralization property. Henceforth, we adopt the term “scalabil-
ity” to refer to Buterin’s concept and “decentralization” to refer to the concept of
distributed computing.

We illustrate the trilemma in Figure 2.3. The rationale behind it stems from the
observation that the validation of transactions in a blockchain system occurs, by
definition, through the agreement between the validators of the system. On the one

hand, the more nodes participate in consensus decisions, i.e., the more decentralized

1Some authors refer to the blockchain scalability trilemma as simply “the blockchain trilemma”
or “the scalability trilemma” [13-15, 36].

10

Security

Blockchain
Trilemma

Scalability Decentralization

Figure 2.3: Hlustration of the trilemma observed in blockchain-based systems. The
trilemma states that no consensus protocol can simultaneously provide security,
scalability (measured in transaction throughput), and decentralization (measured
in the number of nodes participating in consensus). Graphically, all blockchains
correspond to a point inside the trilemma triangle.

the system becomes, the more complex and time-consuming the decision-making and
broadcasting of messages in the network. On the other hand, reducing the number
of validators to improve throughput concentrates the decision power on fewer agents,
reducing the level of decentralization and increasing the financial monopoly of the
network. Some protocols try to provide high throughput with many validators by
allowing multiple parallel blocks to be approved at the same time [37, 38|. This
event is known as a fork in the blockchain and compromises security since conflicting
transactions in different branches could be considered valid. Most protocols solve
forks by finalizing a block and discarding the others, but this process also takes time.
Besides, transactions in discarded blocks are rolled back and become untraceable,
meaning that the security of a transaction is only guaranteed when its block is
finalized. Despite being a conjecture based on empirical observations, the trilemma

consistently occurs in all significant known blockchain systems [1, 39, 40].

2.3 The Trade-off of Consensus Protocols

As security is essential in blockchains, in practice, the trilemma becomes a dilemma
for consensus protocols: the protocol needs to choose between scalability, measured in
the number of transactions processed per second, and decentralization, measured in
the number of consensus validators. This choice is the primary separator of consensus
protocol types, which can be categorized into proof-based protocols, committee-based
(or quorum-based) protocols, and hybrid protocols.

Proof-based protocols adopt decentralized mechanisms to define who has the right

to propose a block, allowing any user to participate in the process. However, these

11

Desired zone

=) .
5 B Comittee-based protocols
54 Proof-based protocols \)
é B Hybrid protocols RN \ ,’l
z [Dumbo-NG
s | T !
2 isDumbo} i
é 10%}) -- T @Ergbol_____ \\ /
5 (pErT HoneyBadgerBF 1)
B —_—] AN !
= PoET! RECA,
g 103 oo == [Tendermin®] oo
& PoA
< o4
2l ESoE Algorand
2 HotStuff) g
(2otSTull | I
g 102 S EO S IO Bitcoin-NG_
E
>3 Proof of stake
:; 10 Proof of work (Ethereum)
;: Proof of work (Bitcoin)
S Low (~10) High (~10%)

Decentralization (number of nodes in consensus)

Figure 2.4: Comparison between the main consensus protocols of blockchain-based
systems. The observed trade-off between performance and decentralization makes it
difficult to propose a scalable protocol that is tolerant of collusion attacks.

protocols achieve low transaction throughput because they need to introduce spam
control tools to mitigate forks in the blockchain and solve forks that occur. Thus,
proof-based protocols are challenging to scale but very decentralized, making them
more suited to public systems with many users [39, 41, 42]. The main systems that
use this type of consensus are cryptocurrencies, such as Bitcoin [8], Ethereum [9], or
IOTA, [37].

Conversely, committee-based protocols elect a group of special validators that
propose blocks through direct communication [43-50]. The choice of who participates
in the committee can be made in several ways, such as random selection or an
election based on the number of coins each user invested. The selection of a committee
sacrifices decentralization, as only some users participate in the decision, but increases
the number of transactions processed per second since decisions are independent of
time-consuming computational mechanisms and spam control. Committee-based
protocols work better in systems that already expect some level of centralization, such

as consortia of companies, banks, and governments. The prominent representatives
of this type of system are Hyperledger Fabric [51], Hyperledger Sawtooth [52], and
Ripple (RPCA) [53]. The design of committee-based protocols must include security
mechanisms to avoid collusion and denial-of-service attacks.

Several consensus protocols try to solve scalability through hybrid solutions
combining the best proof-based and committee-based consensus approaches [54-57].

The main objective of such protocols is to provide each property at a specific phase of

12

The focus of this thesis

: Layer 2:

: Off-chain M Payment Channel

protocols Networks (PCN) :

NN NN NN N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NNNENEENENENEEEEEEEEEEEEEEEEEnms”
Layer 1:

Blockchain @ $ $ Alternative consensus
and consensus protocols

Layer O: .
Message compression
Peer-to-peer
and relay networks
network

Layer HW: E::E Hardware acceleration
Hardware and FPGAs
J

(T —

Figure 2.5: Layered stack of blockchain systems, adapted from Gudgeon et al. [1].
The right side of the figure names a few scalability solutions that focus on the
corresponding layer. Off-chain protocols operate on top of the blockchain and
consensus layer.

consensus, leveraging extra-consensus mechanisms to mitigate possible vulnerabilities.
However, the hybrid approach suffers from the same trade-off between scalability and
decentralization of other approaches, reaching intermediate levels in both aspects for
its main representatives, EOS.I0 [54] and Tendermint [55].

We can represent the scalability-decentralization trade-off graphically by com-
paring the main blockchain consensus protocols shown in Figure 2.4. Despite the
efforts on blockchain research over the years, no consensus protocol consistently
provides a throughput of thousands of transactions per second with high decentraliza-
tion [39, 40, 58|. With consensus-based solutions so far, the desired “ideal zone” that
would allow scaling blockchain systems without compromising their decentralization

seems unachievable.

2.4 Off-chain Protocols

The limitations of consensus-based approaches induced an orthogonal research area for
improving blockchain scalability, which consists of so-called off-chain protocols [13—
15, 59, 60]. Off-chain protocols are also named layer-two protocols as they are
primarily built on top of the blockchain stack depicted in Figure 2.5. Their prominent
representatives are payment channel networks, which we present in Chapter 3.
Although proposals for lower layers are out of the scope of this thesis, such
proposals receive less attention from the community because they involve modifica-

tions that are difficult to implement. For instance, improvements in the hardware

13

layer imply acquiring equipment that is often unaffordable for common users [61-63].
Changes to the peer-to-peer communication protocols can cause soft forks? or even
hard forks® in the blockchain, which take time to be accepted by the cryptocurrency
community |64, 65]. Improvements in layer one are even more radical as they involve
building new consensus protocols or altering the blockchain structure itself, creating
whole new systems [37, 54, 56].

Layer-two scalability solutions, on the other hand, do not modify blockchain
systems at all. They leverage blockchain core functionalities, such as scripts and smart
contracts, to implement security mechanisms that validate off-chain transactions.
Such validation mechanisms are invisible to the blockchain, which sees transactions
from a layer-two service as ordinary transactions. Besides, off-chain protocols only
publish transactions when needed, avoiding the cost and latency of consensus most of
the time. This simple but powerful characteristic made layer-two proposals emerge in
recent years as a solution with great potential to break the scalability-decentralization

trade-off without causing significant impacts to end users [13-15, 59, 60].

2.4.1 Defining Layer Two

Before proceeding into payment channel networks, we highlight that the definition
of layer two is still under discussion. For some authors, any mechanism that avoids
publishing transactions in the main blockchain is layer two, as such solutions neither
rely on the primary consensus protocol to process transactions nor make all trans-
action data publicly available [13-18]. This perspective categorizes proposals that
validate transactions through faster secondary blockchains, such as sidechains, as
layer-two protocols. Conversely, other authors define layer-two protocols as protocols
implementing their own off-chain consensus-free validation rules |1, 36, 59, 66]. Under
this definition, layer-two protocols only rely on consensus to settle disputes that
could not be solved via off-chain validation.

We adopt the latter concept as it enhances the innovation of off-chain validation.
Besides, associating consensus with layer one provides a more precise separation
between layers. In particular, we adopt the definition of layer-two protocols as

proposed by Gudgeon et al. [1]:

2Soft forks are forward-compatible modifications that do not compromise the functionality of
old software versions.

3Hard forks are backward-incompatible modifications to the blockchain which force all nodes to
update their software.

14

Definition 2. (Layer-two protocols). A layer-two protocol is a protocol that allows
transactions between users through the exchange of authenticated messages via
a medium that is outside of but linked to a layer-one blockchain. Authenticated
assertions are submitted to the main chain only in cases of a dispute, with the main
chain deciding the outcome of the dispute. Security and non-custodial properties of

a layer-two protocol rely on the consensus protocol of the main chain.

Hence, we consider proposals that modify consensus or use consensus as the
default validation mechanism as layer one, including sidechains and cross-chain
protocols. To the best of our knowledge, payment channel networks |2, 20|, optimistic
rollups |67], and zero-knowledge rollups [68, 69] are the only currently known layer-
two protocols for blockchain scalability. In the next section, we dedicate much of this
work to presenting payment channel networks, the most popular layer-two protocol
for exchanging assets efficiently in cryptocurrencies. The payment channel network
use case covers most of the characteristics of layer-two protocols, so the reader should
understand how the main off-chain functionalities work even though rollups are out

of the scope of the thesis.

2.5 Summary

The blockchain scalability problem is the main reason blockchains struggle to sub-
stitute centralized payment methods like credit cards. In this chapter, we showed
that the leading cause of the problem is the scalability-decentralization trade-off
of consensus protocols, which can only provide high throughput with centralizing
decisions. Consequently, no consensus protocol provides the necessary levels of
scalability and decentralization to address the needs of payments globally. Layer-two
protocols are a promising solution to this problem, as they implement off-chain

validation procedures that offload consensus and enable fast payments at a low cost.

15

Chapter 3
Payment Channel Networks

Payment channel networks are a solution to the blockchain scalability problem
presented in the previous chapter. This technology operates in layer two, establishing
off-chain communication channels where users can freely send payments without
validating them through a consensus protocol. Such characteristic reduces the latency
of payments, which now depends mainly on communication latency between users.
Payment channels are a particular case of state channels in which the traded assets

are coins [70].

3.1 Overview of Payment Channels

The main idea of payment channels is only to publish transactions in the blockchain
when needed. The blockchain becomes a security service that provides a secure
starting point for the payment channel and possibly settles disputes involving users.

Figure 3.1 shows a payment channel’s default three-phase life cycle. In the channel
creation phase, two users, Alice and Bob, issue a funding transaction, agreeing to
transfer some of their coins to a joint address they cooperatively control. These coins
can be used to issue transactions inside the channel but become unavailable for other
transfers in the blockchain for the entire existence of the channel. Bob and Alice also
agree on a timelock window W that either user must wait in case he/she unilaterally
closes the channel (we explain why we need a timelock window in Section 3.2.3).
Then, when the channel is open, the users continuously update their balances in the
channel via private commitment transactions. Commitment transactions are not
published in the blockchain and, consequently, produce low-latency payments. At
any time, either user can decide to trigger the channel closing phase by publishing
the latest commitment transaction, which contains the latest channel state, into
the blockchain. Once validated, this transaction creates an Unspent Transaction
Output (UTXO) in the blockchain that transfers the coins to their respective parties

on-chain. Thus, the blockchain only sees the channel-opening and channel-closing

16

transactions and regards them as standard transactions. Consequently, these are
the only transactions that go through consensus validation and are subject to high

latency and transaction fees.

Blockchain
24 [HEH HH H HH
Publish " Y Publish

Funding Tx .-~ “Closing Tx

Commitment transaction

Balance: Alice = 3, Bob =7
Funding transaction)

Balance: Alice = 5, Bob =5

Closing transaction
(last commitment transaction)

Commitment transaction Balance: Alice = 1, Bob = 9
Balance: Alice = 4, Bob =6
@ W = 10 blocks v

Commitment transaction
Balance: Alice =1, Bob =9

Channel creation Channel established Channel closing

time

Figure 3.1: Payment channel operation. Users Alice and Bob contribute 5 coins each
to issue the funding transaction and create a payment channel. After the channel is
open, Alice and Bob can exchange coins by issuing private commitment transactions
that rewrite their balances in the channel. For example, Alice sends 2 coins to Bob
by signing the first commitment transaction, which changes her balance to 3. Alice
or Bob can publish the commitment transaction containing the most up-to-date
balances to close the channel and claim the coins on-chain.

Payment channels, like blockchains, presume no mutual trust between parties.
Therefore, there must be a secure mechanism to ensure coins remain safely in
possession of their respective owners. The system accomplished coin security with
multi-signature (or multisig) payment schemes [71]. In a multi-signature scheme,
multiple users need to sign a transaction for it to be valid; otherwise, the coins
remain locked. A multi-signature scheme in which at least n out of m pre-defined
users need to sign the transaction is called an n-of-m multisig policy.

When establishing a channel, the funding transaction contains a 2-of-2 multi-
signature payment policy, i.e., each new transaction that wishes to spend its coins must
contain the signature of both users involved in the channel. To issue a commitment
transaction within the channel, Alice creates a transaction that spends coins from
the funding transaction, signs it, and transfers the signed transaction to Bob. The
signed transaction guarantees to Bob that Alice agrees with the current channel
balances. Bob can then sign and publish the transaction in the blockchain to redeem
his funds. Bob or Alice cannot steal coins from the channel with this scheme, as any
published transaction would need the other party’s consent.

However, locking coins in a transaction requiring both participants’ signatures

introduces a vulnerability: if Bob refuses to sign transactions or disconnects, he can

17

lock Alice’s coins forever. Payment channels avoid this by forcing Alice and Bob to
generate a transaction that spends the funding transaction with the initial balances.
Users create and exchange this refund transaction before the funding transaction
is published. Thus, Bob has a refund transaction signed by Alice, and Alice has
a refund transaction signed by Bob before the channel is open. In case one of the
parties becomes unresponsive, the other party can issue the refund transaction on

the blockchain and reclaim their rightful coins.

3.2 Channel State Updates

The refund transaction serves as an initial guarantee but must be replaced with other
transactions that reallocate balances in the payment channel. For this substitution
to occur safely, the system must correctly revoke the latest transaction and introduce
a new one, updating the channel state. Therefore, an essential aspect of payment
channel security is channel state updates [1, 2|.

If channel updates are incorrectly performed, a malicious user can publish an
old state that benefits him. For example, users perform three off-chain commitment
transactions in Figure 3.1. First, Alice issues a transaction, T' X7, sending 2 coins to
Bob. Then, Bob issues the second transaction, T'X5, sending 1 coin back to Alice.
If Bob is an attacker, at this point, he can try to close the channel with the first
transaction, which guarantees him a balance of 7 coins instead of the 6 coins he
has in the current state. Finally, Alice issues the last transaction, T X3, sending 3
coins to Bob. Now, Alice could send the refund transaction (not shown in the figure)
to the blockchain, claiming the 5 coins she initially had instead of the 1 coin she
currently has.

This vulnerability happens because the blockchain does not keep track of off-chain
transactions. Therefore, it must be made aware of which transaction contains the
most recent state. Payment channels, however, do not need to maintain a complete
ordering of off-chain transactions like blockchains; it suffices to keep track of the
latest state. In the example, it is enough to enforce that only 7' X35 is valid, i.e., there
must be a safe way to revoke T'X; and T'X5. We explain below several proposals to

solve the problem of state updates in payment channels |2, 72, 73].

3.2.1 One-way Payment Channels (Spillman Channels)

In 2013, Spillman |72, 74| proposed one of the first state update mechanisms for

BitcoinJ! payment channels, which only work for one-way payments. This mechanism

BitcoinJ is a Java implementation of the Bitcoin protocol. Available at https://bitcoinj.org/

18

imposes conditions to claim coins using the programming language of Bitcoin, the
Bitcoin script [75].

In Spillman channels, users A and B generate a refund transaction that contains
the following conditions to close the channel: (i) the locked coins can be redeemed
after time ¢t counted from the publication of the funding transaction, or (ii) the coins
can be redeemed immediately if the two parties agree with the refund. The first
condition guarantees that coins cannot be locked in the channel forever. In contrast,
the second condition guarantees that the two users will receive a refund immediately
if both sign a transaction, proving they cooperated. After the channel is open, user
A starts to send coins by issuing commitment transactions to user B, who can sign
and publish the transactions in the blockchain if needed.

This channel design works only as a one-way channel. While user B receives
transactions signed by A, the same does not happen in the opposite direction.
Furthermore, even if user B returns a coin to user A, there is no guarantee that B
will not publish an old transaction on the blockchain in which he had a higher balance.
The correction of state replacement is unilateral and incentive-based since the user
who receives the coins can only lose funds by publishing an old transaction. Any
rational user who receives payments will always post the latest state as it benefits
them the most [1].

The creation of a payment channel that works only in one direction, however,
restricts the potential applications of this technology. Most day-to-day applications
require payments in both directions, e.g., refunds for purchases or cashback applica-
tions. Furthermore, two users who share a payment channel can take on independent
roles, buying and selling products to each other. In this case, one-way channels
eliminate the possibility of safely sending payments in opposite directions. Users who
want to reverse the roles of sender and recipient would have to create one channel in
each way, which implies more locked coins, more transaction fees, and more time to
establish the channels.

3.2.2 Bidirectional Payment Channels (1/2): Limited Dura-
tion Model

One of the early ideas to secure bidirectional channels was to create time lock policies
that discourage users from issuing old transactions [73]. In this model, all off-chain
transactions have a time lock, i.e., if published, the coins in the transaction can only
be spent after a time window W counted from its publication in the blockchain. The
model adopts the blockchain as a reference to guarantee synchronization, with the
time window defined in the number of elapsed blocks. The time window decrements

each time the payment direction reverses. Thus, in a channel between two users

19

A and B, user A can issue a transaction T'X; to B with a 30-minute time lock,
approximately 3 blocks on the Bitcoin blockchain (recall that one block takes on
average 10 minutes, see Section 2.1). If B wants to pay A, B issues T' X, with a time
lock of 20 minutes, approximately 2 blocks in the Bitcoin network. That way, if B
publishes the previous transaction, 7' Xy, in the blockchain, user A can issue T X,
and redeem the coins before B since T'X5 has a shorter time lock.

Despite safely ensuring state replacement, this model has two disadvantages: (i)
user A must be online and constantly checking the blockchain to monitor the actions
of B, and (ii) the size of W defines the duration of the channel. The definition of W,
done by the two users before they open the channel, represents a trade-off. A high
value for W allows for more state updates but locks coins for a longer time when
a user closes the payment channel. A low value of W allows few channel updates,
reducing the channel expiration date. Besides, users must define W without knowing

how many payments will traverse the channel.

3.2.3 Bidirectional Payment Channels (2/2): Standard Model

Poon and Dryja [2] proposed a state substitution model that has become the standard
for payment channels. The model creates bidirectional channels while discouraging
malicious behavior through financial punishment. If it is proven that a user published
an old state in the blockchain, the channel counterpart can contest the state and
redeem all the coins in the channel, including the attackers.

In Poon and Dryja’s model, each direct payment generates a pair of asymmetric
commitment transactions: user A obtains a commitment transaction signed by user
B, and user B obtains a commitment transaction signed by user A. The transactions
have an associated secret and the following condition: if the counterpart reveals
this transaction’s secret within a period of W blocks counted from the transaction
publication, all the coins in the channel go to him/her. To issue new payments on
the channel, users change the state by exchanging signatures and revealing the secret
associated with the previous transaction. Thus, if any user publishes an old state,
the other user can immediately claim all the coins using the previously-revealed
secret. The user who closed the channel can only redeem coins after W blocks. In
practice, the transaction secret is a private key that can transfer the commitment
transaction outputs to the address of the user who contested the transaction. The
key verification is done automatically using Bitcoin script as a root of trust, public
to both participants.

The procedure for replacing states in this model executes as follows. Assume a
channel between Alice and Bob in which, initially, each user has 5 coins, and Alice

wants to send 1 coin to Bob. To send the payment, Alice generates an asymmetric

20

key pair (PK4(s), SKa(s)), where PK 4(s) represents Alice’s public key and SK 4(s)
represents Alice’s secret key for the channel state s. Bob performs the same procedure,
generating a key pair (PKp(s), SKp(s)). The two parties exchange their public keys.

Then, Alice creates a commitment transaction containing the following conditions:

(i) If this transaction is published, Alice can claim 4 coins immediately;

(ii) If this transaction is published, Bob can claim 6 coins after a period W or

immediately if Alice authorized it;

(iii) If this transaction is published, Alice can claim 10 coins if she proves she
knows Bob’s secret SKp(s) in time t; < W. Alice hard-codes PKp(s) into
the transaction so she can prove knowledge of SKp(s) through asymmetric

encryption.

Next, Alice signs the transaction and sends it to Bob with her secret key of the
previous state, SK4(s — 1). Bob concurrently performs the same procedure as Alice,

generating the transaction with the following conditions:

(i) If this transaction is published, Bob can claim 6 coins immediately;

(ii) If this transaction is published, Bob can claim 4 coins after a period W or

immediately if Bob authorized it;

(iii) If this transaction is published, Bob can claim 10 coins if she proves she
knows Alice’s secret SK4(s) in time ¢; < W. Bob hard-codes PK4(s) into
the transaction so he can prove knowledge of SK(s) through asymmetric

encryption.

Bob signs the transaction, sends it to Alice, and reveals his secret key for the
previous state, SKp(s—1). This secret-revealing protocol ensures that only conditions
(i) and (ii) can be triggered if both parties act honestly since SK(s) and SKp(s)
are shared in the next state update. However, if either Alice or Bob publishes an old
state, the other party can immediately trigger condition (iii) with the previous secret
keys {SKa(1),..., SKa(s—1)} and {SKp(1),..., SKp(s—1)} that have already been
revealed. Because they allow canceling old transactions through financial punishment,
the key pairs generated per state are called revocation keys. Transaction outputs
that can be revoked with revocation keys are called revocable deliveries.

Payment channels create revocable deliveries through Revocable Sequence Matu-
rity Contracts (RSMC) [2]. RSMCs are simple if-then-else conditions that create two
possible paths for a revocable transaction. We illustrate with an RSMC example

written in Bitcoin script:

21

Funding Tx

Published in the blockchain Outputs:
------ Signed by Bob (Alice can publish) 0: 10 — 2-0f-2
-- Signed by Alice (Bob can publish) Alice&Bob Multisig

Delivery Tx

! a'u'tl;;t's """ ‘: Commitment Tx 1A (ClA) _Commitment Tx 1B (C1B)

: 0: 5 — Bob i Outputs Y | Outputs i
0 5 — RSMC Alice&Bob 4—6 . 0: 5 — Alice !
£ 1:5— Bob : I 1: 5 — RSMC Alice&Bob |

' Commitment Tx 24 (C2A) _Commitment Tx 2B (C2B)
Outputs 5 l Outputs: i

; | 0:4 — RSMC Alice&Bob —L—i 0: 4 — Alice i

| Outputs: : 1: 6 > Bob - | 1: 6 — RSMC Alice&Bob |

| 0: 5 — Bob :‘ - I

Figure 3.2: An example of state revocation in payment channels. Alice closes the
channel with C1A, in which she had a higher balance than the current state, and
then attempts to withdraw the coins with a revocable delivery transaction. Bob
detects the attack and issues the penalty transaction within W blocks as a response,
revoking Alice’s delivery and transferring her coins to his address. He can still claim
his rightful coins with a common delivery transaction.

1 0OP_IF

2 # Penalty transaction path

3 <RevocationPubKey> # Push revocation pubkey into the stack
4+ OP_ELSE

5 # Revocable delivery transaction path

6 W # Push W into the stack

7 OP_CHECKSEQUENCEVERIFY # Stop if the current block < W

8 OP_DROP # Remove W from the stack

9 <LocalPubKey> # Push the local public key into the stack
10 OP_ENDIF

11 OP_CHECKSIG # Compare signature with the key in the stack

In this example, any user that provides the transaction’s revocation key can claim
the payment immediately by triggering the penalty transaction path. Else, if enough
time passes, the user who published the transaction can claim the coins through the
revocable delivery path. The RSMC protocol imposes no limits on the channel’s
lifetime. However, it guarantees that any party can close the channel unilaterally if
needed, with the drawback of waiting for a dispute period of W blocks. The time
window W that sets the duration of the dispute period is called to_self_delay in
the Lightning Network [2, 76].

Finally, we illustrate an example where Alice publishes a revoked state and gets

22

punished by Bob in Figure 3.2. Note that the protocol implies Alice and Bob must
store all revocation keys since the channel’s opening and generate a new key pair per
transaction. Alice and Bob must also be online and read the blockchain to verify if
the other party tried to cheat. Requiring constant monitoring can be an issue for

use cases where Alice or Bob need to disconnect, as discussed in Chapter 4.

3.3 Payment Channel Networks

Despite providing fast and secure payments, a payment channel works for a pair of
users. This solution alone does not solve the blockchain scalability problem as it
would require users to establish channels to every payment destination [2|. For users
who need to transact with multiple destinations, this means: (i) having many coins
locked in the blockchain to allocate funds across multiple channels and (ii) paying
a transaction fee and waiting for the consensus delay for each funding transaction.
Such requirements hinder using payment channels alone for cases where payments
must reach multiple entities.

The solution which actually helps to improve scalability in blockchains is a

payment channel network (PCN):

Definition 3. (Payment Channel Network). A payment channel network is the
interconnection of the payment channels created by users. PCNs enable multi-hop
payments that traverse payment channels, eliminating the need to create a channel

per destination. Multi-hop payments allow users to transact with each other quickly

with low fees, even if they do not share a direct channel.

Figure 3.3 shows an example of a PCN with 5 participants. In the picture, Alice
wants to transfer 5 coins to Charlie, with whom she does not have a payment channel.
Alice, however, has a channel with Bob, who has a channel with Charlie. Hence,
Alice can transfer 5 coins in her channel with Bob, who then transfers 5 coins in
his channel with Charlie, completing Alice’s payment. Note that payment channels
are independent, meaning that Bob cannot transfer the coins from his channel with
Alice to the channel with Charlie. He receives Alice’s commitment transaction on
his channel with Alice and generates a commitment transaction of equal value for
Charlie. Note that this implies Bob has at least 5 coins of balance in his channel

with Charlie, or he cannot forward Alice’s payment.

3.3.1 Securing Payments with Hashed Timelock Contracts

An obvious concern when sending payments through untrusted intermediaries is how

to guarantee the payment will reach its destination. For example, in Figure 3.3, Bob

23

Elvis Diana ! Elvis Diana

Time

Figure 3.3: Example of payment in a PCN. To send Charlie 5 coins, Alice uses the
existing channel with Bob, who forwards the coins to the destination. The payment
modifies the balance of the channels involved in the payment path.

could easily steal Alice’s coins if he decides not to forward the coins on his channel
with Charlie. Since PCNs assume no nodes in the network can be trusted, there
must be a secure and scalable payment scheme that prevents intermediaries from
stealing payments.

PCNs prevent payment stealing with a special type of contract called a Hashed
Timelock Contract (HTLC). An HTLC is a coin-locking mechanism that enables
conditional payments in a channel. HTLCs are said to be locked by hash and time

because they impose the following conditions to a payment [2, 77|:

1. Secret disclosure. The payment has an associated arbitrary hash value. If

Bob reveals the secret? that generated this hash, he can claim the payment;

2. Timeout. If a long time passes, the previous condition is considered null.

Alice can assume Bob gave up the payment and claim the coins back.

Thus, HTLCs guarantee that each payment can only be claimed by revealing the
payment preimage or releasing the locked coins after a timeout. This mechanism
establishes trust among users involved in a multi-hop payment. For instance, assume
Alice wants to send a conditional payment to Charlie using Bob as an intermediary in
Figure 3.4. First, Charlie generates a random value x, calculates its hash, y = H(z),
using some known hash function, and sends y to Alice. Alice then establishes an
HTLC of 1.1 BTC (Bitcoins) with Bob, informs Bob that Charlie is the next hop, and
promises to deliver the money to Bob if Bob reveals = within 9 blocks (approximately
90 minutes in Bitcoin). Bob then generates an HTLC with the same conditions
but a slightly lower value (1.0 BTC) to Charlie, setting its timeout to 8 blocks
(approximately 80 minutes in Bitcoin). Charlie, who generated the x value, reveals

x within 8 blocks to Bob and claims his payment. Bob, in turn, reveals x within 9

2The payment secret is also called a payment preimage |2, 76]. We henceforth adopt this name
to avoid confusion with transaction secret keys.

24

HTLC HTLC

1.1 BTC 1.0 BTC
9 blocks 8 blocks
>/ T -

Charlie
y = H(z)
T = secret

Figure 3.4: Steps involved in a multi-hop payment in an example PCN. 1) Charlie,
the recipient, generates a preimage and sends the hash of this preimage to Alice,
the sender. 2) Alice establishes a Hashed Timelock Contract (HTLC) with Bob
promising she will deliver 1.1 BTC (Bitcoin) if he reveals the preimage x within 9
blocks time. 3) Bob performs the same procedure with Charlie, slightly reducing the
value and time limit. 4) Charlie reveals the preimage to Bob and claims the money
Bob promised. 5) Bob reveals Charlie’s preimage to Alice, claiming the money she
promised and finishing the payment.

blocks to Alice to claim his payment in the channel with Alice. Bob’s claim finalizes
the payment, guaranteeing all channel balances were correctly updated.

Note that Bob promised a slightly lower value to Charlie than Alice promised him.
This difference in HTLC values is a routing fee® charged by Bob to forward Alice’s
payment in his channel with Charlie. Routing fees serve as a financial incentive to
forward payments correctly. They are always equal to the difference between the
incoming HTLC’s and outgoing HTLC’s values (respectively, the HTLC from Alice
to Bob and the HTLC from Bob to Charlie in the figure).

Nodes announce their routing fees per channel through gossip messages in the

network. Senders pay fees by setting the value of the first HTLC as

HTLCy =Py + Y oy (3.1)

(i,5)em

where Py is the payment’s value and ¢;; are the routing fees charged for forwarding the
payment in each channel (7, j) of the payment path © = ((s,41), (i1,42), ..., (in, 1)) €
R™. Then, the following HTLCs subtract the routing fees per hop. Routing fees
ensure that every intermediary that acts honestly will receive more than they have
forwarded.

In addition, each intermediary in the payment path must set a timeout shorter

than the timeout of the previous hop. This difference ensures that all intermediaries

3Routing or payment fees are off-chain fees charged by intermediaries to forward payments. They
should not be confused with the transaction fees needed to publish a transaction in the blockchain.

25

will have enough time to redeem coins. Thus, if Alice generates an HTLC with
timeout 7" with Bob, Bob must generate an HTLC with timeout 7" < T with Charlie;
otherwise, Bob risks losing funds. Similar to routing fees, the payment sender must
set the timeout of the first HTLC as

HTLCr=Pr+ Y _ Ay (3.2)
(i,9)em

where Pr is the desired payment timeout and A;; is the minimum difference between
the timeouts of any incoming HTLC and an outgoing HTLC in channel (4, 7). This
minimum timeout difference ensures there is enough time for the intermediary to
claim his/her coins when he/she receives the payment preimage in channel (7, 7).
Nodes announce the time differences per channel as with routing fees. The timeout of
the payment, Pr, and the per-channel timeout differences, A;;, are respectively called
cltv_expiry and cltv_expiry_delta in the Lightning Network [3, 76]. The names
come from the CheckLockTimeVerify operation in Bitcoin script, which verifies
HTLC timeouts [78].

We highlight that locking payments through HTLCs differs from locking funds
in funding transactions; instead of locking coins in the blockchain, HTLCs lock
part of the coins already in the channel, reducing the channel’s available balance.
Consequently, the number of coins the node previously allocated in the payment
channel bounds the maximum amount of coins a node can forward in an HTLC. In
the example of Figure 3.3, Bob could not forward payments of more than 10 coins in
the channel with Charlie.

Despite being called contracts, the mechanism of HTLCs follows a simple logic
that can be implemented even in systems that do not support smart contracts. This
easiness of implementation increases the applicability of payment channel networks,
which work in any blockchain system. For example, HTLCs in Bitcoin are simple
if-then-else clauses inside the script of commitment transactions [2]. HTLCs are the

core enabler of multi-hop payments, which, in turn, make PCNs scalable.

3.3.2 Payments vs. Transactions

Now that we have presented the concept of HTLCs, it helps to define the concept of

an off-chain payment precisely:

Definition 4. (Off-chain payment). An off-chain payment, or simply a payment,
is the off-chain transfer of assets between a sender and a recipient through the
channels of a payment channel network. If the payment is multi-hop, it establishes

a sequence of HTLCs, called a payment chain, in the channels of the payment path.

The respective channel parties can claim each HTLC on-chain.

26

Such a payment definition is needed to clarify the difference between payments
and transactions, which we omitted in the previous sections for simplicity. On the
one hand, a transaction is the signed data exchanged between two parties that can
be published to transfer assets on-chain, e.g., the commitment transactions in a
channel. This definition is equivalent to a direct off-chain payment. On the other
hand, a multi-hop payment is an off-chain transfer that needs an end-to-end sequence
of HTLCs to occur. Because HTLCs reside inside commitment transactions on each
channel, we say that a multi-hop payment involves one transaction per channel in
the payment path. Henceforth, we refer to this definition whenever we mention the

terms “payment” or “off-chain payment”.

3.4 PCNs: The Lightning Network

The Lightning Network, proposed by Poon and Dryja |2| for Bitcoin in 2016, is the
first large-scale implementation of a PCN. The system issued its first channel-opening
transaction in 2017 and since then has become the most significant known PCN,
with more than 16,000 nodes and 80,000 payment channels distributed around the
world [15, 66, 79]. Besides, the recent topological analysis illustrated in Figure 3.5
indicates the network is still rapidly growing, with the number of nodes and channels
tripling from January 2020 to August 2021 [80]. The graph is built with data from
gossip messages exchanged inside Lightning [81]. Due to its size and importance,
the Lightning Network is the reference model of a PCN today, providing real-time
digital payments for several applications [82|. The development of the Lightning
Network is even a critical factor for adopting Bitcoin as an official payment method
in El Salvador [19].

Lightning has a strong focus on providing user anonymity, just like Bitcoin. As
such, it implements several privacy-preserving mechanisms, such as user identification
through public keys only. Payments use onion routing [83], a protocol that encrypts
packets once per hop and is mainly known for its privacy guarantees in the Tor
network implementation [84]. Onion routing ensures that payment intermediaries
only know the next hop in the payment path.

The network implements bidirectional payment channels precisely as described in
Section 3.2.3 [2]. However, users can publicly announce their channels or keep them
private to ensure privacy. The disclosure of channels in the network occurs through
channel announcement messages that the network broadcasts in a gossip fashion |3].
The nodes in Lightning build a graph from the received messages containing the active
channels with their respective participants, fees, and capacities. Private channels are
not advertised and do not appear in the graph. Thus, the known number of channels

is a lower bound for the actual number of channels in the network. Regardless of

27

(%]

(]

©

2

< 10000

o

—

(]

Q

€ 5000

=2

(%]

< 60000 1

C

C

©

S

« 40000 1

o

—

[}

Q

E 20000 —F—+7++—+—"++—"+"F"++—F—+—"+——F—"+—"——"+—"——""+—

=2 [slelolelolololelololejolololololololelolololole ol Pl el s isbsbisisbsbsisbsbsbsbsbsbs
NI OO OO ONON O NN NN NN NN NN NN NN N NN NN NN NN NN N NN NN NN
COO00O0O000000O00O000O000000O0O000O0O0O0000O0O0O00O0O0OOO000
NN NN ANV NNV NG NN NNV NN NN YN NN QY
SOANANMNMNSETNNOONSSNOO0NNOOFAFANNHANNMMMSETNNWOONSNS0 0W
QC 00 PR2000000000000HAHHNHO00009990000209000
v—lg OMNETONOOIME AT OANOMSNOTONINONONOOMN~NHNONOOMMSH
™~ HOAMANANONONOAOANANANONOAOAOAMANANONONOAM

Figure 3.5: Evolution of the Lightning Network from January 2020 to August 2021.

channel status, channel balances are known only to the channel parties. The privacy
of channel balances prevents external observers from tracking payments through
channel balance monitoring. On the other hand, unknown balances challenge routing
algorithms, which must find paths with sufficient funds to complete payments.
Intermediaries in Lightning charge two types of routing fees when forwarding
payments: a base fee and a proportional fee? [85]. Base fees are a fixed amount
charged to each forwarded payment. This fee financially stimulates nodes to route
payments regardless of the payment value. Proportional fees, on the other hand, are
charged as a percent of the amount to be forwarded. They are an extra incentive
to route large payments, which lock more coins in the channel. The combination of

both types of fees yields a unified routing fee defined as:

¢ij = aij + B HT' LCy, (3.3)

where o and [are, respectively, the base fee and the proportional fee of channel
(1,7), and HT'LCY, is the value of the HTLC to be forwarded. Despite featuring two
types of routing fees, Lightning’s fees are orders of magnitude lower than the fees
charged for publishing a transaction on Bitcoin, making it especially attractive for
real-time micropayments [86].

Lightning standardizes the message formats and protocols used in the network
through the Basis of Lightning Technology (BOLT) [76]. BOLTs are documents
inspired by Internet Requests For Comments (RFCs) that formally describe how
developers should implement the network. Currently, the Lightning Network provides

11 BOLTs, which specify the format and exchange of messages for opening and closing

4The proportional fee is also named “fee rate” in the documentation of Lightning [76].

28

channels, payment encoding, routing protocols, and other specifications. The main
Lightning Network implementations, Lightning Network Daemon (Ind) [4], Core
Lightning (c-lightning) [5], and eclair [6], all follow BOLT specifications to ensure
inter-platform compatibility.

Several works observe that the Lightning Network is centralized. Seres et al. [87]
analyzed the topology of the Lightning Network in January 2019 and discovered
a strong centralization tendency, with few nodes concentrating most channels in
the network. The authors also analyze the robustness of the network, simulating
attacks against the nodes with the highest degrees. They show that removing the
top 37 nodes reduces the network capacity by half. Similarly, Lin et al. [88] assess
the income concentration in the Lightning Network from January 2018 to July 2019.
The authors verify a tendency of centralization around the higher degree nodes,
forming core-periphery structures in which the core contains hubs and the periphery
presents star-like substructures. The results show that removing the hubs partitions
the network into multiple components, making it vulnerable to topology-based

attacks [89].

3.5 PCNs: Other Networks

Although the Lightning Network is the default model of payment channel networks,
other works have proposed PCNs with some differences to Lightning [20, 90, 91]. We
highlight the most popular ones below.

Raiden. The most relevant alternative to the Lightning Network is Raiden, an off-
chain payment channel network framework for the Ethereum blockchain [20]. Raiden,
defined by its developers as “Ethereum’s version of Bitcoin’s Lightning Network”,
implements operations that are very similar to Lightning’s. Firstly, the users must
provide balance proofs, locking funds publicly in the blockchain. The assets to be
locked are deposited in a smart contract that handles the Raiden transaction logic.
After this phase, users can send payments for as long as they have sufficient funds.
The payments are secured by an HTLC, as in Lightning. However, an advantage
of Raiden over Lightning is the support for trading generic assets instead of only
coins. It is possible, for example, to create a Raiden network per cryptocurrency or
non-fungible token (NFT) that operates on top of Ethereum. There are nearly 15
thousand addresses that hold Raiden tokens, accounting for a total of $3.71M [92, 93].
Today’s largest Raiden network is still under development and contains 128 nodes

and 148 channels [94].

Sprites. Sprites [90] is a PCN and state channels proposal (recall that state channels

are a generalization of payment channels) that differs from Lightning in two aspects:

29

(i) it proposes a coin-locking mechanism that replaces HTLCs, and (ii) it introduces
partial withdrawals/deposits to/from payment channels. The new coin-locking
mechanism of Sprites provides constant timeouts for coins locked along the payment
chain, which speeds up coin unlocking in case some user needs to cancel the payment.
The difference is that Lightning serially resolves HTLCs, one channel at a time, while
the smart contract of Sprites can do this procedure concurrently. The notion of
partial withdrawals/deposits in a channel allows users to allocate or remove funds
on the fly without closing the channel. Thus, it reduces the need for costly on-chain

operations. This feature is also possible due to the smart contract logic.

Pisa Sprites. Pisa improves Sprites by introducing a custodian service that allows
users to disconnect for long periods without risking losing funds [95]. The custodian
is similar to a watchtower service in Lightning, which we briefly explain in Section 4.4.
Custodians alleviate the assumption that parties must always be online to guarantee
security in the final state channel result. Despite providing interesting improvements
compared with Lightning, Sprites and Pisa Sprites were not as influential in practice
because they need complex smart contracts to implement the channel logic. The
need for smart contracts restricts implementation to the Ethereum blockchain or
other blockchains that support Turing-complete programming. The proposals also

lack a large-scale implementation backed by the cryptocurrency community.

Teechain. Teechain [63, 96] is a PCN that leverages Trusted Execution Environments
(TEE) to provide security for off-chain payments. Teechain allows disputes to be
solved asynchronously instead of during a dispute period. To accomplish this,
Teechain moves the root of trust from the blockchain to the TEE, ensuring that
the nodes always act honestly. The architecture uses special CPU instructions
provided by Intel’s Software Guard Extensions (SGX) to create memory enclaves
isolated from the operating system. In the proposed system, the client application
maintains deposits within enclaves and updates the balances of the deposits when
receiving or sending transactions through payment channels. The application with
enclaves only interacts with the blockchain at deposit creation and completion.
Before creating a deposit, the user must utilize an Intel attestation mechanism to
ensure that the application runs in a genuinely trusted environment and will honestly
follow the protocol. Furthermore, the system replicates data between device enclaves
participating in a committee to prevent a single point of failure.

Teechain is compatible with the Bitcoin network but locks funds in the TEE
instead of using HTLCs to transfer assets in the PCN. The remaining operations
are similar to Lightning. The main drawback of Teechain is that it needs specific
hardware. Thus, like proposals on the hardware layer, the adoption of this payment

channel network is limited to use cases in which users can afford TEE-enabled devices.

30

Blind Off-chain Lightweight Transactions. BOLT [97] is a PCN proposed
to guarantee anonymous payments, designed for ZCash [98] and other anonymous
cryptocurrencies. Technologies such as pseudo-random functions and non-interactive
zero-knowledge proofs enforce anonymity. BOLT has three types of channels: uni-
directional, bidirectional, and indirect. Unidirectional channels allow consumers to
pay with recurrence to a merchant, as in Spillman channels. Bidirectional channels
enable recurrent payments between two parties but use zero-knowledge proofs instead
of exchanging signed transactions. Finally, indirect channels are the abstraction
for recurrent multi-hop payments between users that do not share a direct chan-
nel. In this case, users send payments through untrusted intermediaries using a
revocation scheme similar to commitment transactions on Lightning but leveraging
zero-knowledge proofs to hide the payment balance. Like other PCN alternatives,
assessing BOLT’s advantages and drawbacks in practice is challenging as there is no

large-scale implementation for it.

Tumblebit. TumbleBit [99] is a unidirectional payment channel hub compatible
with the Bitcoin protocol. TumbleBit maintains user privacy using an intermediary
called Tumbler, which cannot link the payments between the parties involved in
transactions. The Tumbler is a special user that mixes the received transactions
with cryptographic techniques to ensure that the blockchain will not record any
information about transactions between other users. Users can also use Tumblebit
as a mixer to ensure privacy in non-recurrent transactions. Tumblebit is centralized

and does not support payment forwarding through generic untrusted intermediaries.

3.6 Summary

Payment channels accelerate recurring transactions between a pair of users through
direct rebalancing of previously-escrowed coins in the blockchain. Off-chain validation
rules that provide valid state revocation and financial punishment for cheating parties
that deviate from the protocol guarantee the security of payment channels. The
detection of an attack is accomplished with constant monitoring of the blockchain to
check if either party published an invalid balance. Constant monitoring implies that
both parties must be online and have access to the blockchain while the channel is
open.

Payment channel networks connect direct payment channels between users. A net-
work of connected payment channels enables multi-hop payments through untrusted
intermediaries, allowing users to send payments to destinations they cannot reach
directly. Hashed Timelock Contracts ensure intermediaries cannot steal payments

while the payments are in flight. Each intermediary in the payment path charges

31

a small routing fee as an incentive to route the payment honestly. Routing fees
usually represent a tiny fraction of the payment value. Despite involving path-finding
algorithms and routing fees, multi-hop off-chain payments are orders of magnitude
faster and cheaper than payments in the blockchain.

Despite the existence of many PCN proposals, the Lightning Network is by far
the most widely adopted and has become the default PCN. Other PCN proposals
often lack large-scale implementations and community validation, hindering their
adoption and gain of market share. The Lightning Network often incorporates several
ideas from alternative PCNs, centralizing the development of a standard PCN model.
Hence, many of the mechanisms involved in a PCN directly derive their functionalities

from Lightning.

32

Chapter 4

Payment Channel Networks with

Resource-Constrained Devices

In previous chapters, we hinted that some mechanisms of PCNs have limitations
for specific use cases. This chapter shows how these limitations affect resource-
constrained devices that often struggle to execute payment-securing procedures. The
chapter aims to answer our first research challenges, Challenge #1 (Architecture)
and Challenge #2 (Channel Security), by proposing an adapted PCN architecture
and analyzing a critical vulnerability in payment channels formed by light nodes.

We propose a countermeasure to the problem using minimum lock-time windows.

4.1 The Challenges of PCNs with Light Nodes

Recall from Section 3.2.3 that the security of a payment channel depends on mutual
monitoring of the blockchain by channel parties. Also, recall that most PCN
implementations adopt onion routing as the default payment transport protocol and
that pathfinding algorithms need an updated graph topology to find paths [2, 20,
97]. Despite being fundamental to guarantee security and privacy to users, these

mechanisms require nodes in a PCN to have the following:

1. High availability. Nodes need to stay online while the payment channel is
open. They cannot disconnect for long periods, as this allows the other party
to publish revoked channel states. Besides, they must constantly update the

graph with the latest gossip messages.

2. Enough bandwidth, storage, and computing capacities. As users detect
attacks through blockchain monitoring, the nodes must continuously download,
store and verify blocks, which takes different resources. Besides, pathfinding
and onion routing often involve computationally-heavy tasks that spend energy

and must complete in reasonable times.

33

Nevertheless, resource-constrained mobile phones, smart objects, sensors, and
others often lack both properties. These devices have low computing capabilities and
can disconnect for days. Worse, executing heavy tasks can rapidly deplete the energy
of battery-powered devices, pruning them from the network for an undetermined
period. Hence, PCNs must adapt their procedures to support payments from light

nodes with lossy connections and limited blockchain access.

4.2 Hybrid Payment Channel Networks (HPCNs)

We propose a hybrid PCN architecture composed of a reliable core and peripheral
unreliable light devices with limited resources and wireless connections. We argue
that a hybrid topology is the most impactful as it is the standard model for IoT
platforms and mobile device architectures that rely on gateways and edge computing.
Figure 4.1 depicts the topology of our network architecture. We consider two types

of nodes:

e Full nodes (FIN), which compose the core network and act as payment routers.
Full nodes may represent service companies, telcos, or any node with computing
power to store a full copy of the blockchain. Full nodes are online with high
probability and communicate via a reliable transport protocol. Although churn
can occur in the core network, the probability that a full node quits the network

without closing its payment channels is negligible compared with light nodes.

e Light nodes (LN), which are resource-constrained devices that connect to
the network via lossy wireless connections. Light nodes may represent mobile
phones, sensors, smart objects, or IoT devices with limited computing and
storage capacities. We assume light nodes can disconnect anytime without
adequately closing the payment channel due to battery depletion, hardware
malfunction, environmental conditions, or other reasons. We assume light nodes
establish unreliable connections to send/receive blockchain transactions and
request channel state verification. We also assume they can perform public-key

cryptography to sign transactions but cannot store blocks.

We consider that full nodes connect to other full nodes via payment channels
with a large capacity to route payments. Light nodes connect to one or more full
nodes via minor and possibly unidirectional payment channels!. Henceforth we refer
to channels between full nodes as core payment channels and between a light node

and a full node as edge payment channels. We do not consider payment channels

Note that “unidirectional channel” here means a bidirectional channel model in which all the
balance is on one side, which prevents transactions from the other end. Not to be confused with
one-way (Spillman) channels.

34

— Core payment channel
— Edge payment channel
—————— TCP/IP connection for transaction verification

Figure 4.1: An example of a hybrid payment channel network. The light nodes (LN)
represent wireless resource-constrained devices, and the full nodes (FN) represent
capable nodes that store a copy of the blockchain. Light nodes establish TCP/IP
connections to multiple full nodes to verify the states of their channels in the
blockchain.

between light nodes as it would be unlikely for two resource-constrained devices
to transact with each other for an extended period continuously. Entry nodes are
the full nodes a light node selects to establish channels. Light nodes also establish
TCP/IP connections to other full nodes to verify the states of their channels and
avoid eclipse attacks. We name this architecture Hybrid Payment Channel Networks
(HPCN) and define it below [100]:

35

Definition 3. (Hybrid Payment Channel Network (HPCN)). A hybrid payment
channel network is a time-varying directed graph G(t) = (V(t), E(t)), where V (t) is
the set of devices in the network at time ¢ and E(t) is the set of payment channels
that are open at time ¢. Any device u € G(t) can alter the set E(t) of edges via

three possible operations:

e openChannel((s, j), (B;, Bj), W) opens a payment channel (4, j) with initial bal-
ances B; and B;. The window W defines a lock-time window where neither
party can claim the coins if the channel is closed unilaterally. The operation

publishes a transaction in the blockchain that must be signed by ¢ and j;

e closeChannel((s,j),TX(t)) closes the payment channel (i, j) with commitment
transaction T°X (¢), which contains the latest balance that has been signed
at time ¢ by both parties and publishes it in the blockchain. This operation
can be issued cooperatively by having both signatures or unilaterally by some
party. If the channel is closed unilaterally, the party that closed the channel

can only claim his/her coins after the predefined time window W;

e pay((s,t),m, Py) transfers a value of Py coins from source s to target ¢ via path
7= ((s,11),(r1,72), ..., (T, 1)) € R". We assume the path 7 is defined by s
before issuing the operation. Every hop from s to ¢ will decrease its capacity
by Py coins in the direction of the payment’s recipient if the whole path
has enough capacity. Otherwise, the operation fails, and all channels remain

unaltered.

4.3 The Coin Theft Problem in HPCNs

Current PCN implementations like Lightning [2] and Raiden [20] assume that any
node transacting in the network remains online while the channel is open. This
assumption mitigates the coin theft problem, in which one party publishes an old state
to recover his/her sent coins as soon as the other party disconnects. As explained in
Section 3.2.3, the system punishes attackers by allowing the victim to spend all coins
in the channel if it recovers during the lock-time window. Hence, it is only worth
attempting the attack if the attacker can guarantee that the victim will not verify the
blockchain until the time window expires.

In our network architecture, however, light nodes can naturally disconnect for
long periods or indefinitely. Device downtime is particularly challenging for use cases
where the trend of payments is biased towards a light node, such as when a seller

uses his/her device to receive transactions from multiple buyers or when a buyer uses

36

Q>a>f The link between ro and s

becomes vulnerable

Figure 4.2: An example of the coin theft vulnerability in HPCNs. On the left, a
continuous amount of € coin flows from buyer b to seller s until it depletes the channel
between 75 and s. Then, on the right, s becomes highly vulnerable if it disconnects
because 75 has nothing to lose by closing the channel with a previous state.

his/her device to buy services from multiple sellers. We formulate the problem and
demonstrate how imbalanced channels in resource-constrained environments enhance
the probability of malicious behavior.

Let two resource-constrained devices, b and s, represent devices from a buyer and
a seller, respectively, and be connected to entry nodes r; and ry via unidirectional
payment channels as shown in Figure 4.2. Each payment channel (7,j) has an
associated balance pair B;;(t) = (B;(t), B;(t)), where B;(t) and B;(t) are the balances
of nodes i and j at time t, respectively. For edge payment channels between buyers
and entry nodes, e.g., (b, 71), we assume an initial balance of By, (0) = («, 0), where «
is the number of coins that buyer b reserves for payments in the channel. Conversely,
the initial balance of edge payment channels between sellers and entry nodes, e.g.,
(re,s), is By,s(0) = (B,0) where § is the number of coins the entry node 75 reserves
for routing payments to the seller s. We assume for simplicity and w.l.o.g. that s
and b only participate in a single payment channel.

Once payment pay((b, s),{b,r1,r2, s}, €) occurs from b to s in this configuration,
ro and s sign a commitment transaction 7°X (1) containing the new balance of
channel B,,(1) = (8 —¢€,¢€). If s disconnects at this moment, r5 can close the channel
with the operation closeChannel((ry,s), 7X(0)) and recover € coins. Doing so is
risky because r, would lose § — € coins if s recovers before the lock-time window
expires. However, as s receives more payments, the balance in (79, s) will converge
to B,,s(t) = (0,). Once this happens, 7 has nothing to lose by closing the channel
with a previous transaction even if s recovers on time. Thus, attacking is the optimal
strategy for any rational entry node once an edge payment channel to a seller is
depleted. The seller is prone to coin theft even without actual malicious nodes.
Malicious nodes may also attack intermediary cases once the victim disconnects if
they expect a good risk-benefit ratio.

Note that the coin theft problem is unlikely to occur to senders because the other
party can only lose coins by publishing an outdated state. For a generic situation in

which light nodes act as senders and recipients, every light node becomes vulnerable

37

as soon as it receives coins. The efficiency of coin theft attacks also depends on
the time window W set during channel-opening operations, which determines the

maximum time a victim has to recover from the attack.

4.4 Defining a Minimum Time Window

One solution to the coin theft problem is to hire “watchtower” nodes to constantly
verify the blockchain aiming to detect channels that have been improperly closed |2,
20, 101]. Watchtowers would receive the latest punishment transactions from the
channels they monitor and charge a fee to issue them in the blockchain if needed.
The solution, however, assumes watchtowers will act honestly, and it only works if
the victim manages to send the punishment transaction to the watchtower before
disconnecting. This cannot be guaranteed with wireless resource-constrained devices.
Another countermeasure could be to create a reputation system for full nodes that
identifies malicious agents. Reputation-based detection, however, is less efficient in
anonymous environments such as PCNs. Besides, reputation is prone to centralization
and attack vectors that are difficult to handle in decentralized environments [102].
Instead of adopting watchtowers or creating a reputation system, we propose
a simple statistical approach: discover a lock-time window W that minimizes the
chance of attacks. Since most PCNs already adopt default lock-time windows as a
security measure |2, 20, 103], we believe this approach is the easiest to implement as it
would require no modifications to PCN protocols. To the best of our knowledge, this
is the first work to propose attack prevention through minimum time-lock windows.
Our contribution also applies to traditional PCNs as a guideline for users to select

the best window parameters based on their expected connectivity patterns.

Window size trade-off. The lock-time window, W, defines the time the closing
party must wait until it can recover the coins. In other words, if a node on a channel
disconnects and a coin theft attack occurs, the victim has W blocks to recover, verify
the blockchain, and punish the attacker. Hence, the larger the size of W, the more
secure the channel becomes. On the other hand, setting a W that is too large can
create bottlenecks in routing and punish honest nodes that wish to close the channel
correctly after the other party disconnects. In such cases, W should be as small as
possible to improve coin liquidity and overall throughput. Therefore, W represents
a trade-off between security and efficiency, and our goal is to minimize W while
guaranteeing a minimum level of security.

Let s be a resource-constrained device. We propose a four-parameter methodology

to estimate a minimum W:

(1) Tof, a random variable that models the time s remains disconnected from the

38

system, which can occur due to device failure or temporary signal loss. T,g can
either be modeled through a continuous random distribution or be estimated

with empirical data;

(i1) Dget, a random variable that models the delay for s to detect the attack. Dget

follows a Poisson distribution with an expected value bound by the equation

E[Dyet] = L [Z:‘)ff] (% + v) , (4.1)

where n is the number of full nodes from which s requests blocks, E[T.g] is the
average downtime of s, b; is the block time?, b, is the average block size, d is

the average download rate of s, v is the average time it takes for s to verify all

E[T,g]

G0 represents the number of lost

transactions in a block. In this equation,

blocks;

(iii) Dpun, @ random variable that models the delay for s to punish malicious
behavior after detecting it. As punishment incurs publishing a transaction in
the blockchain, the distribution of Dy, follows the Poisson distribution found

by Nakamoto [8] with expected value
E[Dpun) = ncby, (4.2)

where n. is the number of blockchain confirmations it takes for a transaction

to be considered valid, and b; is the block time;

(iv) p, a random variable that estimates the relative bias of each payment channel
in the network. For empirical data, we calculate the bias of each channel in the

dataset using the equation

Bi(0) — B;(0)

where B;(0) and B;(0) are the initial balances of each party in channel (i, j).
Although the balances can arbitrarily change during channel operation, the
bias p;; estimates how payments will flow since payments are more likely to

occur from nodes with more capacity to nodes with less capacity.

Finally, each parameter composes the equation of W:

W = (Tog + Daet + Dpun) (1 +). (4.4)

2The block time is the average time it takes for the consensus protocol to produce a block.

39

The rationale behind our definition is that the lock-time window must be at least
W = Tog + Dget + Dpun; otherwise, the victim cannot recover and punish the attacker
on time. Then, we proportionally increase the lock-time window by u to improve
the security of biased channels as we expect them to be more vulnerable. Note that
because Tog, Daet, Dpun, and g are either model distributions or real statistical data,
W also yields a random distribution. The actual window size to be selected by a
user depends on what level of security he/she wishes to adopt for his/her use case.
Users who invest heavily in the channel should select higher thresholds to avoid great
losses, and users who are willing to risk can select smaller thresholds to provide coin

liquidity:.

4.5 Proof-of-Concept Analysis

We use real data from the Lightning Network [2] and from mobile broadband connec-
tions [29, 30] in our prototype since they are the most widely adopted technologies
for PCNs and light nodes [101, 104]. However, our proposed methodology is ag-
nostic to blockchains, communication protocols, and PCN topologies. It suffices to
estimate the parameters described in Section 4.4 to find a safe time-window value
that addresses any specific use case. We provide the code of our implementation on
GitHub?.

4.5.1 Evaluation Setup

We create three scenarios based on real availability measurements of mobile broadband
(MBB) devices to estimate the distribution of Tog. For the high-availability case, we
use the downtime and packet loss distributions of MBB connections as measured
by Elmokashfi et al. [30]. In their work, more than 90% of the connections use 4G
technology, and the average downtime of a connection is 86.4s per day. The work
from Baltrunas et al. [29] is a reference for the medium-availability case. The work
measures the availability of mobile broadband connections that use 3G technology
and shows that the downtime can last a few hours daily. Lastly, we simulate a low-
availability scenario by shifting the medium-availability downtime distribution to the
right by the average distance between the high-availability and medium-availability
downtime distributions. This process yields an average downtime of about one week.
By simulating three roughly symmetrical scenarios based on real data, we can predict
how different levels of availability impact the minimum lock-time window. We could
extend this approach to real-world device data of any kind.

For the detection delay Dge, we set the parameters as n = 3, by = 600s, and

3 Available at https://github.com/gfrebello/pcn-time-window.

40

0.5 .

i
0.4 1 E[u] =81.6%
0.3 L
o
0.2 /
0.1 40th percentile line =95% i :

O ’ v . v . r r - ;
0 10 20 30 40 50 60 70 80 90 100
Normalized bias (%)

Figure 4.3: Normalized bias i of payment channels in the Lightning Network. 60%
of channels present over 95% bias towards one party, and the average bias is 81%,
which indicates a heavily asymmetric behavior of payment flows.

bs = 10Mb/s. n = 3 represents the minimum number of different nodes to request
blocks to in case one node is faulty. b, and b, follow Bitcoin’s average block time and
block size, respectively. F[T,g] is calculated according to the corresponding scenario,
and the download rate d is set using previous MBB evaluations: d = 30Mb/s
for high availability, d = 2Mb/s for medium availability, and d = 1Mb/s for low
availability [29]. The average number of confirmations n. = 6 for the punishment
delay Dy, follows the 6-confirmation rule proposed by Nakamoto in Bitcoin [8].

We extract the values of y from LNChannels*, an open-source tool that offers
a data set of the Lightning Network. We download the channel balances from all
closed channels since the beginning of the network and calculate the normalized bias
(t;; of each channel according to Equation 4.3. Figure 4.3 depicts the p distribution.

Firstly, we observe a heavily asymmetric trend of payment flows, which confirms
that the coin theft problem is not exclusive to HPCNs. Hence, adopting minimum
lock-time windows that depend on channel bias may fit various PCN implementations.
Secondly, the Lightning Network implementation causes a gap around the 99%
percentile because it defines a minimum payment amount dust_limit_satoshis
that, if not met, converts the transaction into channel fees [3|. This amount prevents
parties from paying when the channel is almost empty.

Finally, we evaluate W through thresholds corresponding to the necessary value
for a device to punish an attacker. A user that adopts W (p) obtains p probability of
recovering and assumes (1 — p) probability of being attacked successfully. We use
W (50%) as a reference for an unsafe threshold and W (95%) for a safe threshold and
measure the W’s trade-off by calculating the distance d between the two thresholds.

4 Available at https://In.fiatjaf.com/

41

High availability Medium availability Low availability

1.0 1.0 1.0
W(95%) = 7406s x W(95%) = 28471s x W(95%) = 2258058s x
(~12 blocks) | (~47 blocks)] (~3763 blocks)]
1 1 1
0.8 1| 0.8 ! 0.8 !
1 1 1
1 1 1
i i i
0.6 H 0.6 (W(500) =89465 P | 06 i
' W(50%) = 7096s : ' (~15 blocks) ! 7 |W(50%) = 250449s !
(~12 blocks) !] (~417 blocks)]
0.4 1 il 04 e i
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0.2 1 1l 021 A 0.2 !
H d = 33 blocks d = 3346 blocks,
d = < 1 block <->i : S 3 :
0.0 T T T ~—L 0.0 T T T T —1 0.0 T T T —L—
4000 5000 6000 7000 0 5000 1000015000200002500030000 0.0 0.5 1.0 15 20 25 3.0

Minimum window size (s) le6

Figure 4.4: Lock time window sizes for all levels of availability with 6-block confir-
mation. When the availability is high, the distance d between the 50% and 95%
thresholds remains below one block time, which indicates a small window is safe for
most users. For medium and low availability, the distance increases significantly and
forces the user to select a time window that better fits his/her security and delay
needs.

Short distances mean no significant gain from adopting a smaller window size, while
long distances mean the user should carefully select the value of W according to
his/her needs. Figure 4.4 depicts the cumulative density functions for the minimum
window sizes in all scenarios. The thresholds W (p) are equivalent to the percentiles
of the distribution of W.

4.5.2 Discussion

In the high-availability scenario of Figure 4.4, 4G connectivity allows devices to
be safe from attacks even with short time windows. The distance of less than one
block between W (50%) and W (95%) demonstrates that increasing W to a secure
level generates no significant delay, so devices with good connectivity should adopt
the safest W possible. The result also confirms that assuming good connectivity
mitigates coin theft in traditional PCNs.

The trade-off between security and efficiency becomes significant in the medium-
availability scenario. The safe threshold, W (95%), yields a dispute period of 28471s
or approximately 8 hours. The distance of 33 blocks between W (50%) and W (95%)
corresponds to an increase of 5.5 hours in return delays for the party that closes the
channel, which happens because T,g is now the dominant parameter in Equation 4.4.
The results indicate that a user with 3G connectivity should define minimum lock-
time windows of at least a few hours to reduce the probability of attacks; otherwise,
attackers with better connectivity can easily exploit them.

The low-availability scenario demonstrates that users with low connectivity should

42

either select W values in the range of weeks or use the blockchain directly to transact.
Delays in such order of magnitude may be economically worthwhile if the fees to
publish transactions in the blockchain are too expensive for the user. However,
considering only time, more than 550 on-chain transactions could be sequentially
published within the distance of 3346 blocks. This result indicates that the time
window W may not be efficient for devices that plan to stay offline for extremely long
periods. Instead, these devices should force-close their channels before disconnecting

if possible and establish new channels when they reconnect.

4.6 Related Work

Several works propose adaptations of PCNs to include light nodes. Kurt et al. [105]
propose LNGate, a lightweight protocol for IoT devices to use the Lightning Net-
work [2] via untrusted gateways. Hannon et al. [25] propose a similar protocol and
demonstrate its security and fairness using game theory. Robert et al. [26] propose
an integration of the Lightning Network with existing large-scale IoT ecosystems.
Mercan et al. [106] present alternative lightweight PCN implementations that focus
on reducing the computational needs of mobile devices. Although some overlapping
might occur, these works focus on adapting the Lightning Network to IoT scenarios
while we propose a security mechanism agnostic to PCN implementations. Besides,
we consider a simple PCN design that applies to any existing PCN.

Other works analyze the security of traditional PCNs, i.e., PCNs that require
availability and resources from nodes. Tochner et al. formulate topology-based
attacks that aim to disrupt the routing protocol of traditional PCNs [107]|. Erdin
et al. compare the security and privacy of several PCN implementations and
identify emerging attack vectors [101]. The works neither discuss attacks in PCNs
with resource-constrained devices nor present efficient countermeasures for wireless
environments. To the best of our knowledge, our work is the first to propose an
architecture for PCNs with resource-constrained devices, formulate the coin theft

attack and propose a time window analysis as an efficient countermeasure.

4.7 Summary

In this chapter, we proposed a hybrid architecture that allows resource-constrained
wireless nodes to issue off-chain transactions and analyzed the impact of the coin
theft problem in such environments. Our main findings show that the problem is
not exclusive to hybrid PCNs and that our solution may also work with traditional
PCNs. A countermeasure based on minimum lock-time windows is efficient when the

devices present high to medium availability. For devices with low availability, the

43

minimum lock-time window becomes so large that it may be better to close channels

and publish the transactions directly in the blockchain.

44

Chapter 5

PCNSim: Payment Channel Network

Simulation

Experiments with many devices and network topologies in real environments are
often challenging to implement and analyze. A more practical approach is to test
proposals through discrete-event simulations that provide controlled environments
before deploying them into live networks [31, 108]. This chapter presents PCNsim, an
open-source PCN simulator that creates and benchmarks payment channel networks
under custom networking settings. PCNsim addresses Challenge #3 (Simulation)
of the thesis, providing a realistic platform to simulate payments with different
communication scenarios. PCNsim is available to the community at https://
github.com/gfrebello/pcnsim. We compare PCNSim with the alternatives in the

litetature in Section 5.4.

5.1 The Need for a PCN Simulator

Payment channel networks present open challenges regarding resource-constrained
devices and other aspects that are difficult to address efficiently without flexible
simulators [13-15, 59, 60]. For instance, comparing payment routing protocols usually
involves benchmarking with numerous network topologies, payment sizes, and channel
capacities. Analyzing traffic congestion requires sending numerous payments from
different sources while monitoring channel balances. Measuring the minimum end-
to-end latency of a payment demands no interference from other payments. Like
datagram networks, these conditions are difficult to reproduce in practice but easy
for discrete-event simulators [31, 108].

The absence of an automated tool that builds and analyzes PCNs forces researchers
to adapt real PCN implementations to their specific use cases, which imposes several

limitations. First, experiments must occur in small testnet topologies instead of

45

PCNsim | Simulation cfg.
Yy

Topology cfg.| | Topology |Topology Core Result
Generator §§3 Simulator /@; Visualizer =

Workload cfg.| [Workload |Workload | OMNeT++) "> [Result S
Generator 1 B Storage

\

\4

Figure 5.1: PCNsim’s architecture. Users can easily customize topologies and
workloads via configuration files.

large customized networks representing real instances. Second, payments cannot
be sent from nodes the researcher does not control. Third, researchers cannot set
channel capacities, and channel balances are private. Fourth, experimenting with
resource-constrained devices is difficult since the default PCN software releases run
full blockchain nodes that download the complete history of on-chain transactions.
Finally, some implementations, such as the Lightning Network Daemon (LND) [4],
are not optimized for high throughput, leading to high-latency transactions even in
small networks [109]. The limitations above create the need for a platform that can

simulate PCNs programmatically.

PCNsim. We propose PCNsim, a flexible, lightweight, and modular open-source pay-
ment channel network simulator. PCNsim includes topology and workload generator
modules that allow researchers to automate their experiments on different scenar-
ios through simple commands. The core of PCNsim extends the OMNeT++ [31]
network simulator to reproduce the behavior of a PCN. As PCNsim runs on top
of OMNeT++, the simulator also supports OMNeT -+ extensions like INET [110]
to build payment channels on top of wireless communication protocols and mobile
networks. PCNSim follows the message format defined in the Lightning Network set
of specifications [3] and allows users to model channel parameters, such as capacity

and fees, based on real data collected from the Lightning Network [2].

5.2 PCNsim’s Architecture

PCNsim is a simulator written in C++ language and OMNeT++- files, except for the
generators, which we write in Python. It comprises five separate modules: (i) topology
generator, (ii) workload generator, (iii) core simulator, (iv) result visualizer, and
(v) result storage. We show PCNsim’s architecture in Figure 5.1 and detail the main

functionalities of each module below.

46

gabriel@localhost:~/opt/pcnsim/scripts$ python generate_topology_workload.py genTopo --help
Usage: generate_topology_workload.py genTopo [OPTIONS]

Generates a topology for the simulation
Options:

-t, --topology [scale-free|barabasi-albert|watts-strogatz]
Topology used in the simulation

-n, --nodes INTEGER Number of nodes in the topology

--alpha FLOAT Alpha parameter for scale-free topology

--beta FLOAT Beta parameter for scale-free topology

--gamma FLOAT Gamma parameter for scale-free topology

-k INTEGER K parameter for Watts-Strogatz graph

-p FLOAT P parameter for Watts-Strogatz graph

-m INTEGER M parameter for Barabasi-Albert graph

--1ightning Channel capacities are modeled following
real-world lightning network channels

--help Show this message and exit.
gabriel@localhost:~/opt/pcnsim/scripts$ D

Figure 5.2: Topology generator. Users can create n-sized PCNs from random network
models or a snapshot of the Lightning Network [2].

5.2.1 Topology Generator

The topology generator provides the network descriptor of a simulation round. It
consists of a Python script that automatically generates a topology in the format
the core simulator expects. The topology can be easily configured using user-set
parameters from the command line, as shown in Figure 5.2. The module allows
users to set the size of the graph and decide which network model to use for
building payment channels. The current version of PCNsim supports parametrized
random graph generation with Watts-Strogatz [111], Barabasi-Albert [112], and
scale-free [113] models. The topology generator also supports modeling channel
capacities and fees with random sampling from a real snapshot of the Lightning

Network, which provides a realistic test environment.

5.2.2 Workload Generator

The workload generator creates a set of simulated payments. A payment in the
simulations is a 4-tuple (s,t, Py,Ts), where s is the payment’s source, ¢ is the
payment’s target, Py is the payment value, and T’ is the payment’s timestamp (at
what time the simulator should issue it). The workload generator randomly samples
s and t from a predefined graph’s set of end hosts to create payment sets.

PCNsim supports two modes for workload generation. In predefined mode, the
generator samples payment values randomly from a predefined range [Py min, Pvmaz]-
In dataset mode, it samples payment values from real-world datasets containing
credit-card and e-commerce payments, which yields realistic results. Users can also
define a limit for payment timestamps, forcing all payments to occur within a time

window. Limiting the time is valuable, for example, to measure congestion in the

47

gabriel@localhost:~/opt/pcnsim/scripts$ python generate_topology_workload.py genWork --help
Usage: generate_topology_workload.py genWork [OPTIONS] FILE_LOC

Generates a payment workload for the simulation

Options:
--n_payments INTEGER Number of payments in th network simulation
--min_payment INTEGER Minimum value of a payment in the network
--max_payment INTEGER Maximum value of a payment in the network
--time_window INTEGER Time window in ms

--any_node Transactions are issued by any node in the network,
not only end hosts

--credit_card Transactions are modeled following a credit card
dataset

--e_commerce Transactions are modeled following a e-commerce
dataset

-help Show this message and exit.

gabriel@localhost:~/opt/pcnsim/scriptss

Figure 5.3: Workload generator. Users can create workloads of n_payments with
random or sampled values from built-in data sets.

network. As with the topology generator, we provide a helper command containing

brief descriptions of parameters, depicted in Figure 5.3.

5.2.3 Core Simulator

PCNsim’s core simulator is the main component that replicates the behavior of
a payment channel network and gathers user-set statistics. It implements the
specifications of the Lightning Network’s Basis of Lightning Technology (BOLTS) |76]
into the OMNeT++ simulator [31], including the peer-to-peer messages involved in
HTLC establishment and payment forwarding. Specifically, PCNsim implements the
complete state machine of a standard channel operation using the message types
defined in BOLT#3 [85]:

e UPDATE_ADD_HTLC: requests an HTLC with the target node;

e UPDATE_FULFILL_HTLC: claims an HTLC from the target node with a payment

preimage;

e UPDATE_FAIL_HTLC: cancels an HTLC from the target node after an HTLC

timeout or route failure;

e COMMITMENT_SIGNED: issues a new commitment transaction to the target node,

requesting an update to the channel state;

e REVOKE_AND_ACK: acknowledges a received commitment transaction and signals

revocation of the previous state.

The channel update protocol in PCNsim (and in LN) works in a 2-phase commit
fashion to guarantee atomicity of state updates. A standard round of the protocol

works as depicted in Figure 5.4. We detail each phase of the protocol below.

48

Channel state

H;| In-flight
Channel state 1 ?g
H,| In-flight Hy| In-flight
H,| In-flight Timeout
Pending: Hj Channel state

Hj| In-flight

Channel state Hy| In-flight

c B

H3| In-flight } REVOk Pending: H;
E\AND\ ACk (i,

Channel state

Hjz| In-flight

—

Figure 5.4: Sequence diagram of the channel update protocol implemented in PCNsim.
The protocol follows the Lightning Network BOLT specifications [3|. Nodes start
an internal timer when they receive the first HTLC change and trigger a new state
commit when the timer expires.

To initiate or forward a payment with hash H, in the channel (A, B), a node
A crafts an HTLC which locks some coins in the channel and sends it within an
UPDATE_ADD_HTLC message to B. A keeps the requested HTLC in memory with a
pending state. Meanwhile, A can also request other state changes that cancel or claim
an in-flight HTLC! through UPDATE_FAIL_HTLC or UPDATE_FULFILL_HTLC messages.
Upon receiving an HTLC update message, B learns that A wants to update the state
channel and places the HTLC in memory in a pending state. After a user-defined
timeout, B crafts a new commitment transaction containing the pending HTLC
changes, signs it and sends it to A through a COMMITMENT_SIGNED message. Note,
however, that B does not update its channel state yet because it does not have a
commitment transaction signed by A (recall from Section 3.2.3 that channel states
should only be revoked with a commitment transaction signed by the other party).
The COMMITMENT_SIGNED transaction contains B’s revocation key for the current
state. After verifying the message, A can safely commit the changes and update its
channel state since it has a signed commitment transaction and a revocation key
from B. Finally, A crafts a commitment transaction containing the new channel
state and sends it to A with its key from the recently-revoked state. This message is
named REVOKE_AND_ACK because it proves to B that A revoked the previous state
and acknowledged the new one. Upon receiving REVOKE_AND_ACK, B can finally

update its state, synchronizing it with the state in A and finishing the process.

'An in-flight HTLC is an HTLC that has been committed to the channel state and is waiting to
be claimed or canceled.

49

We highlight that the above process follows precisely channel state updates in
the Lightning Network. Thus, we can use it to model the expected latency of an
HTLC confirmation. Let (i,j) be a payment channel, ¢ be the node that requests the
addition of an HTLC, and X € [0,7}] be a random variable that models the time an
HTLC waits in a pending state before the node sends the commitment transaction,
given an internal timeout 7} set by j. We can model the delay between the sending

of an HTLC request and its commit to the channel state on both nodes as

8 = LERTT,; + E[X], (5.1)

where RT'T;; is the round-trip time of the channel as measured by ¢ and E[X] is
the expected time HTLCs wait before the timeout. Note that this model assumes
no messages are lost and that the time to construct the messages is negligible. For
reference, the default timeout values in Core Lightning [5] and LND [4], two major
lightning implementations, are 20 ms and 50 ms, respectively.

Apart from the messages involved in the channel update protocol, PCNsim adds

two messages that help implement end-to-end payments:

e INVOICE: sends an invoice to the target node;

e PAYMENT_REFUSED: signals refusal to forward an HTLC;

The simulator uses INVOICE messages to transfer invoices from payment targets
to payment sources. An invoice contains the payment hash H, generated by the
target, the target’s address in the network, and hidden routes in case the target is
behind private channels. When a payment source receives an INVOICE message, it
computes a path to the destination and triggers the payment forwarding chain by
requesting an HTLC with the first hop in the path. PAYMENT_REFUSED messages
cancel pending HTLCs before committing to a new channel state. Nodes issue them
immediately to the previous node in the payment path whenever they refuse to
forward a payment.

Figure 5.5 depicts the peer-to-peer messages involved in a payment process.
The process works as follows. The payment target, C', sends an INVOICE message
containing one or more invoices to the payment source, A. A computes the payment
path and sends UPDATE_ADD_HTLC to the first hop, B. B forwards the HTLC with
another UPDATE_ADD_HTLC message in its channel with C'. Note that if the payment
had more than one hop, this would be done for each hop in the path until the HTLC
reaches C'. When the last UPDATE_ADD_HTLC message reaches C, C triggers the
unlocking process by issuing an UPDATE_FULFILL_HTLC to the last hop, B. The hops
propagate UPDATE_FULFILL_HTLC to the corresponding previous nodes, claiming the
established HTLCs. The payment finishes when the last UPDATE_FULFILL_HTLC

20

[4] 2] [c]

INVOICE (H; Hp)
|
UPDATE
\ADD‘HTLC (H))
UPDAT
E‘ADD‘HTLC (H))
Payment 1 F]LL,HTLC (Hy)

- completed UPDATE,FUL
A" uppATE_FULFILL HTLC (Hy)

Ul

PDATE‘ADD_HTLC (H,)
Payment 2 Insufficient balance
failed

o X on channel B,0)
' LC (Hy)

UPDATEJA{L,HT

Figure 5.5: Sequence diagram of payments from a user A to a user C as implemented
in the PCNsim simulator. We omit channel update messages for simplicity. The
example shows a case where A only sends payment 2 after payment 1 to clarify the
figure, but in reality (and in the simulator), payments can be sent concurrently.

reaches A, and the channel update is committed. If the payment fails during any
step, a reverse sequence of UPDATE_FAIL_HTLC messages is triggered until all HTLCs
are canceled.

We highlight that each HTLC in the above process involves channel state updates
that must be committed. Moreover, an HTLC is only forwarded when committed
in the previous channel [3|. For clarity, we omit these channel update messages in
the figure, but they contribute to the end-to-end payment latency. Given a payment
path ™ = ((s,11), (i1,2), ..., (in, t)) € R"™ where s, t, and the i’s are, respectively, the
payment sender, the payment target and the intermediaries, the end-to-end latency

of a payment that traverses m can be expressed by

L=06u,+ Y 0 (5.2)
(i,)em

where ¢;; are the per-channel confirmation delays defined in Equation 5.1. The
rationale for this model is that, for a payment to reach its destination, it must
commit a sequence of HTLCs along the path, plus the target must unlock the last
HTLC, claiming its coins. The rest of the unlocking process does not affect the
payment latency, as the target already received what was due. Furthermore, the

model assumes intermediaries take little time to forward HTLCs.
PCNsim’s core simulator keeps HTLCs and channel states in memory rather

than on disk, which enables fast payment processing and high-throughput payment

51

>0

ana@ RS RS

10000000.0

9

b
ndfe

node7
100000000 RO
10000000
10 no
500¢

nod

300900 200
1500000 5003900 .
i Todeo
1900007 40000000
3 e
nodes —rS o u

Q)‘___mao«o—comrrmri smuzu e
o5

10000000 25000000.0
mn 0.0 _ADD |
o

Figure 5.6: A graphical example of a PCN in our core simulator. The simulator
displays logs for each node and channel in the network.

e, 1d-24) on selfmsg (BaseMessage, id=43)
paynent nodes-to-node8; value:1.0

Generated pre inage with hash
es (Fu "

nodes
LI Zoom:2.86x .

routing. We implement all messages in the application layer of OMNeT++ [31].
Developing a simulator that works in OMNeT-++ removes the need for running a
full blockchain node and provides lightweight software to experiment with. Besides,
PCNsim allows users to implement PCN nodes as hosts with complete TCP/IP
protocol stacks. The simulator supports OMNeT++ extensions like INET [110] that
allow users to build payment channels on top of wireless communication protocols and
mobile networks. The core simulator also provides simple debugging and monitoring
of payment channels through log messages. We show a picture of PCNsim’s graphical

interface in Figure 5.6.

5.2.4 Result Visualizer and Storage

The result visualizer displays system statistics as gathered by the core simulator. It
allows researchers to quickly analyze the impact of their proposals via automatically-
generated results and graphs. The visualizer leverages built-in OMNeT-++ tools
to track PCN-related statistics, such as channel balances, payment latency, and
average payment success rate. We illustrate an example where the visualizer is used
to measure channel balance changes over time in Figure 5.7. Users can utilize the
associated result storage module to persist the generated results into files in the disk

for further analysis.

52

B NetBuilder.ned

B FullNode.cpp B globals.h & packet-loss-... # num-payments... # *packet-loss... D omnetpp.ini & plrdist-dro... B “LAT-10000,1... X & = B8

[Line Chart on Separate Axes with Matplotlib] A S0 %% Aae=»> S0 BRo A

Outgoing channel capacities (noded)

=500 4
—— node4-to-node2

—1000
75000 o

74800 4

74600 node4-to-node5

o == T T T T T T T T

—200 1

—400 1 —— nodea-to-nodes
P T T T T T T T T T

=200 +

—400 1 —— node4-to-node9

T T T T T T T T T
400 600 800 1000 1200 1400 1600 1800 2000

seData Charts [Line Chart on Separate Axes with Matplotlib] X

Figure 5.7: An example of PCNsim’s result visualizer being used to monitor channel
balances over time.

5.3 A Demonstration of PCNsim

We perform a few experiments in PCNsim to demonstrate how it can simulate
several PCN attributes. Unless stated otherwise, our experiments simulate a 1,000-
node scale-free network with channel capacities and routing fees sampled from the
Lightning Network dataset [81]. We process a workload of 1,000 payments between

random end hosts in the network.

5.3.1 Comparison of Payment Routing Methods

First, we compare two payment routing methods (Ry):

e fee: Lightning Network’s fee-minimization algorithm, which is a Dijkstra’s

shortest path algorithm with routing fees as weights;

e cap: a variation of Dijsktra’s shortest path algorithm in which the edge weights
are the inverse of the channel capacities. The goal of cap is to maximize the
chance that the payment will reach its destination by routing payments through

high-capacity channels.

We compare the methods for different payment values (Py): (i) small payments
(Py = 10€), (ii) large payments (P, = 200€), and (iii) real credit-card payments?
(average P, = 88.3€). The objective of the comparison is to determine if routing

methods that consider channel capacities provide a higher payment success rate,
defined as

2Dataset available at https://www.kaggle.com/mlg-ulb/creditcardfraud.

93

—%—Py, =10, Ry = cap - %Py = 200, Ry = cap Py=cc,Ry=cap
—4—Py =10, Ry =fee --A--Py, =200, Ry = fee Py =cc,Ry = fee

1,0- REHHANNSIRBDIOMONHIOCOIINBOSO > GLOEINGOIOREIEK

e @
»© o
y

Payment success rate
=]
~J

1000 2000 3000 4000 5000 6000
Time (s)

Figure 5.8: Payment success rate in our simulated PCN for several payment values
(Py) and routing methods (Rjs). The results demonstrate that Dijkstra’s shortest
path approach with channel capacities as weights is more effective than the Lightning
Network’s fee minimization approach for all cases.

PSR=—"_
ny+ns

(5.3)
where ng is the amount of successfully-delivered payments, and ny is the amount of
payments that failed.

Figure 5.8 shows a time series of the payment success rates for all scenarios as
measured by a random end-host. We observe two interesting findings. First, increasing
the payment value impacts the payment success rate because large payments have
a higher chance of failing when traversing a channel with a low balance in the
path. Second, the capacity-based variation of Dijkstra’s algorithm, cap, yields a
higher payment success rate in all cases. It even compensates for the difference in
payment values between credit-card payments and small payments. Hence, although

minimizing fees reduces the cost for the end host, it incurs a higher chance of not

completing the payment.

5.3.2 Payments Over Generic Communication Channels

Next, we send payments over a network where messages can be dropped. Specifically,
we simulate a Hybrid Payment Channel Network, defined in Section 4.2, with resource-
constrained devices as end-hosts. In this case, the communication channels between
light nodes and their respective entry nodes are unreliable. We simulate payments

between light nodes. Each payment traverses two unreliable edge payment channels:

o4

1.0 =T T
1 %
L 081 1]
g z
17}) 104
1%} Q
§ 0.6 1 §
g =z
E = .
g 041 § 64 :
> i
13 g |
-9 41 :
021 :
’ L
.| & & 4 3
0.0 4 3 2 = 0 0 4 3 =) = 0
10 10 10 10 10 10 10 ° 10 10 10
Packet loss rate Packet loss rate

Figure 5.9: An analysis of two simulated transport protocols in PCNsim. On the left,
the payment success rate degrades when sending payments over a UDP-like protocol
that does not retransmit packets. On the right is the payment latency versus packet
loss rate when adopting a TCP-like protocol that attempts to retransmit packets.
The results show that unreliable communication channels impact the efficiency of
payment channels.

one between the payment source and the first hop and another between the last hop
and the payment target. Otherwise, the payment traverses the core network in which
we assume payments cannot be dropped. We set the payment values to a minimum to
guarantee payments fail exclusively due to packet drops in communication channels.
For simplicity, we consider one payment is equivalent to one packet.

We analyze two scenarios corresponding to different transport protocols operating
over unreliable communication channels. First, we simulate a UDP-like transport
protocol that does not perform packet retransmission. In this case, packet drops
immediately cause payment failures. Second, we simulate a TCP-like protocol that
retransmits lost packets. We set the retransmission timeout to two round-trip times
(RTT) and the maximum number of retries to 15, corresponding to the default values
for TCP implementations in Linux distributions [114].

Figure 5.9 depicts the results for both scenarios. On the left, we show the impact
of the packet loss rate on the payment success rate for the UDP-like protocol. The
results demonstrate an evident degradation of the payment success rate when packet
drop rates are significantly high. Likewise, the graph on the right demonstrates
that packet drops cause extra retransmission delays in the TCP-like protocol. The
end-to-end payment latency increases proportionally to the number of packet drops
until it reaches a maximum value corresponding to the maximum number of retries.
Both results illustrate that PCNsim can simulate payments and measure payment

statistics under custom networking setups.

95

10— ; E — : ;
Y, 9 [
\ \ 121 —- 12 | ,l
----- 18 ;
L 081 \\ Lo S I " | i
g : 2101 - 5% | !
2 | i P 48 | I|
8 0.6 I i RS — | i
2 | i R | i
= | | g i
2041 | ! g 1' i
z |- | !) | [
=V I] [
PO | \ | l i
—= 36 | I 2] j
18 \ j
ol “ \\ : : ! . / i
~0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Distance (m) Distance (m)

Figure 5.10: Payment success rate and latency of payments from resource-constrained
devices connected via 802.11g wireless channels with different bitrates in Mb/s. When
frame retransmission is deactivated, the success rate decreases with the distance
from the entry node due to higher bit error rates. With retransmission, the average
payment latency increases with the distance from the entry node.

5.3.3 Payments Over IEEE 802.11g Channels

Finally, we simulate payments over wireless connections with different bitrates [115,
116]. Payments, in this case, occur between two resource-constrained devices operat-
ing in 802.11g channels [117]. The devices are connected to their respective entry
nodes in 802.11g ad-hoc mode at 10 mW transmission power. The bitrates of 6, 9,
12, 18, 24, 36, 48, and 54 Mb/s correspond to the Extended Rate Physical-layer
(ERP) modes in 802.11g. Each bitrate yields a packet loss rate that varies with the
distance from the device to the entry node. We analyze distances between 10 and 350
meters in 5-meter steps. As in the previous experiment, we consider one payment is
equivalent to one packet.

In each simulation run, the payment source sends a single 56-byte payment to the
entry node, which results in a 120-byte frame on the link layer. The same happens in
the payment’s last hop, except the packet goes from the entry node to the payment’s
target. At packet reception, OMNeT++’s error model computes the bit error rate
from the signal-to-noise-plus-interference ratio, then calculates the corresponding
packet loss rate. To make the model more realistic, the propagation model considers
multipath propagation using two-ray ground reflections on flat ground. The devices
are 1.5 meters above the ground. The simulation assumes isotropic background noise
of -86 dBm. Similar to the experiment with transport protocols, here we consider
the case where frame retransmission is deactivated and the default case where the
protocol attempts to retransmit data frames at most 7 times.

Figure 5.10 shows the results. We omit the error bars to make the visualization
clearer. The results show that the bit error rates increase with the distance between

the device and the entry node, causing payment success rates to decrease for all

o6

bitrates when retransmission is deactivated. Similarly, the average payment latency
increases proportionally to the distance from the entry node when the protocol
retransmits frames after a failure. The results also demonstrate that PCNsim
correctly replicates 802.11g’s rapid throughput loss when nodes transmit frames at a
significant distance. The result is consistent with several previous works that analyze

802.11’s performance in real environments [118-120)].

5.4 Related Work

Payment channel networks are an emerging technology that needs large-scale deploy-
ment on real-world applications. As a consequence, there is a need for simulators that
can effectively mimic the behavior of a PCN while allowing researchers to experiment
with environments that represent potential applications. The absence of simulation
tools for PCNs is a notorious issue that has been partially covered by other works,
which we present below [109, 121-127].

CLoTH. CLoTH is a PCN simulator that produces performance measures such
as the probability of payment success and the average payment latency [121]. Like
PCNSim, CloTH aims to mimic the behavior of the Lightning Network according
to its documented specifications. The current version of the simulator implements
LN’s default payment state machine, Dijkstra’s shortest path routing protocols, and
multipath payments. The main difference between CLoTH and PCNSim is that
CLoTH simulates the Lightning Network in pure C language, whereas PCNSim oper-
ates on top of the OMNeT++ environment. Although this difference is insignificant
regarding the implementation of Lightning Network functions, CLoTH’s simulation
is restricted to the application layer, while PCNSim can simulate the underlying

communication network.

Spider. Spider [109], besides proposing a routing protocol, develops an event-based
simulator for payment channel networks. The simulator extends the OMNeT++
simulation framework to model a PCN with Spider routers, providing the congestion
control functionalities proposed in the paper. The code is open-source, and the
authors use the simulator to extract statistics and compare their proposal with other
routing protocols. The authors prove their simulation is sound by comparing the
payment success rate of the simulator with a real Lightning Network implementation.
The simulation, however, mainly focuses on Spider’s routing protocol proposal while
simplifying the core functionalities of PCNs, such as payment state control messages
and HTLCs. Thus, using Spider as a generic simulator to test other payment

strategies is difficult.

o7

Blyskavka, LNSim, and LNTrafficSimulator. Other proposals implement
simplifications of the Lightning Network. Piatkivskyi and Nowostawski [122] develop
Blyskavka, a Lightning Network simulator in Java, to evaluate the impact of payment
splitting when routing. Blyskavka simulates the Lightning Network operation rather
than the Lightning Network itself, meaning it does not implement its specific messages
and states. It also simplifies HTLC simulation by only blocking and releasing
payments on the path after a short delay. Stasi et al. [123| develop LNSim, an LN
simulator, to evaluate a novel fee definition and a multipath routing heuristic. Their
open-source simulator can simulate the network at the LN protocol level but does
not implement HTLCs. Beres et al. [124] develop LNTrafficSimulator, a Lightning
Network traffic simulator based on LN public data, to analyze the economic and
privacy implications of payments. Their work focuses on single-hop payments and

simplifies other PCN functionalities.

Simulators for specific PCN functionalities. Several other proposals implement
simple simulators for specific purposes. Kappos et al. [125] develop a PCN simulator
in Python to evaluate whether an on-path adversary can successfully identify the
payment sender. Their simulator uses publicly available Lightning Network snapshots
and information published by central node owners, but the simulation code is yet to
be published. CoinExpress [108, 126] develop a PCN simulation tool to test their
routing proposal on top of the ns-3 discrete-event network simulator. The simulator
creates a random Watts-Strogatz network with random payments between users.
The paper, however, does not clearly describe the simulator functionalities, and
no source code is available. Papadis and Tassiulas [127] develop a discrete event
simulator of a payment channel with support for transaction buffers. Their simulator
alms to evaluate the impact of several single-hop payment forwarding strategies.
Consequently, the simulator focuses on scheduling policies instead of providing a

complete simulation of PCN functionalities.

Comparison of PCN Simulators. We highlight the main differences between the
discussed simulators and ours in Table 5.1. Besides CoinExpress, Blyskavka, and
Kappos et al., all simulators provide open-source code. Most simulators implement a
version of the Lighting Network, with PCNSim and CLoTH being the only simulators
that fully reproduce the phases involved in a payment process. However, to the best
of our knowledge, PCNsim is the only simulator that provides a way to test PCNs

with different underlying communication protocols.

o8

5.5 Summary

Payment channel networks still present many open challenges that must be addressed
through PCN simulation tools. We propose PCNsim, a PCN simulator that allows
researchers to test new ideas intuitively and flexibly. Our demonstration shows that
we can use the proposed system to efficiently compare different routing methods
and measure their impact on the behavior of nodes and channels in a PCN. We also
show that PCNsim can be used to send payments over unreliable communication
channels that simulate wireless connections between resource-constrained devices

and full nodes.

99

Table 5.1: Comparison between the existing PCN simulators in the litera

Source code

Main features

Reference Language
CoinExpress [126] C++/Python
LNSim [123] CH++
Blyskavka [122] Java

Spider [109] C++/Python

LNTrafficSimulator [124] Python
CLoTH [121] C/Python
Kappos et al. [125] Python
Papadis and
Tassiulas [127] Python
PCNSim [128] C++/Python

Unpublished

https://github.com/gdistasi/LNSim

Unpublished

https://github.com/spider-pen/spider _omnet

https://github.com/ferencberes/LNTrafficSimulator

https://github.com /marcono/cloth

Unpublished

https://github.com /npapadis/payment-channel-scheduling

https://github.com/gfrebello/pensim

- Based on the ns-3 network simulator
- Implements several routing algorithms

- Simulates a simplified version of the LI
- Generates networks via input or rando

- Simulates a simplified version of the LI
- Uses MASON as a simulation engine

- Based on the OMNeT++ network sin
- Implements routers with congestion co
- Implements several routing algorithms
- Generates networks via input or rando
- Simulates a simplified version of the LI
- Generates traffic automatically based ¢
LN snapshots

- Generates networks via input or rando:
- Accurately reproduces the LN
specifications and code functions

- Implements multi-path payments

- Simulates a simplified version of the LI
- Focuses on PCN privacy guarantees
- Supports graph inputs from LN snapsl

- Implements payment queues/buffers
- Supports several single-hop payment
scheduling policies

- Based on the OMNeT++ network sim
- Accurately reproduces the LN
specifications and code functions

Chapter 6

Payment Routing with

Resource-Constrained Devices

Despite being the most extensively studied topic of payment channel networks, pay-
ment routing still presents open challenges and opportunities for research, especially
regarding support for light devices such as mobile phones, smart objects, and [oT
sensors. In this chapter, we briefly introduce the background knowledge needed to
understand the general problem of payment routing in PCNs, and then proceed
to address the specific problem of routing with resource-constrained devices. We
highlight that the chapter addresses Challenge #4 (Routing) and presents two main
contributions: (i) a payment scheme that accelerates payment confirmations for light
nodes, and (ii) an efficient pathfinding algorithm that considers application-specific

constraints when computing paths.

6.1 Background on Payment Routing in PCNs

We mention in Section 3.3 that PCNs enable multi-hop payments that can be routed
through a path using Hashed Timelock Contracts (HTLC). In a sense, this is similar
to packets or messages being routed in a communication network. However, how
PCNs deliver payments poses unique challenges that do not appear in classical
datagram routing. We describe them in the following sections. Table 6.1 summarizes

the most recurrent notations we use throughout this chapter.

6.1.1 Channel Capacities, Balances, and Liquidities

First, forwarding payments in a payment channel moves coins from the source to
the destination, which reduces the source’s ability to send new payments. Therefore,
a channel’s “forwarding capacity” depends on its initial fund distribution and how

many payments have already traversed a specific direction. This particularity is

61

Table 6.1: Summary of recurrent notations used in this chapter.

Notation Description

N (i) Set of i’s neighbors.

Su (i) Set of i’s nearest neighbors sorted by metric w.
w Set of metrics.
PCA Path-cost-amount 3-tuple set.
G, Estimated liquidity network.
Ry Residual network of flow f.
bij Routing fee of arc (i, j).
JAVY HTLC-resolution delay of arc (i, j).
Dij Probability of arc (i, 7).
lij Liquidity (arc capacity) of arc (i, 7).
lpee Upper bound for the liquidity estimate in arc (i, 7).
ZZ”" Lower bound for the liquidity estimate in arc (4, j).
Uij Capacity of (undirected) payment channel (i, 7).
i Path of a payment.
7 Shortest path w.r.t. metric w.
fij Flow on arc (i, 7).
I Flow on path 7.
Cij Cost of arc (7, 7) (single metric).
ci Cost of arc (7,7) w.r.t. metric w.
Gij Cost vector of arc (i, j).
cy Cost of path m w.r.t. metric w.
Cr Cost vector of path 7.
c(f) Total cost of flow f.
B Upper bound for metric w.
B Bound vector.
dist(i, j,w) Distance from ¢ to j w.r.t. metric w.
o Main metric.
(] Constraint tightness.

the main difference of routing in PCNs compared to datagram networks, in which
forwarding packets reduces the link’s capacity only while packets are in transit. For
instance, a 1 Gb/s link forwarding packets at 200 Mb/s in a packet-switched network
has its capacity temporarily reduced to approximately 800 Mb/s, but the capacity
returns to its original value once all the packets are delivered. In contrast, if a node
A with a balance of 1,000 coins in a payment channel forwards 200 coins to a node
B, the “forwarding capacity” in the direction from A to B is reduced to 800 coins
indefinitely unless there is a payment from B to A. This characteristic highlights
the need to keep channels balanced while routing or to adopt proactive channel
rebalancing methods that attempt to stabilize channels when some party is running
low on funds [129-131].

To formalize the problem, we replace the term “forwarding capacity” with the three
concepts that precisely describe a channel’s ability to forward payments: capacity,
balance, and liquidity. The capacity of a channel is the aggregate amount put by the

two parties into the 2-of-2 on-chain multisig address when they open the channel. It

62

represents the undirected maximum amount of value held in the channel by both

parties and can be defined as:

Definition 5. (Channel capacity). The capacity wu;; of a payment channel (¢, j)
is the aggregate of the balances of the two channel parties, b; and b;, such that
uij = bz -+ bj.

Note that the capacity u;; of a channel is constant regardless of the current
amounts held by each party inside the channel. In contrast to capacities, which are
given per channel, channel balances are given per party and represent the maximum

amount of coins that a party can send to the other end:

Definition 6. (Channel balances). The channel balances b, and b; of a payment

channel (i, 7) are, respectively, the amounts of coins held by i and j in the latest

committed channel state.

Finally, the liquidities of a channel are the portions of channel balances that
can actually be sent to the other party, given the current amount of escrowed coins.
They take into account the in-flight HTLCs! in the channel, as they are supposed to

modify channel balances when settled:

Definition 7. (Channel liquidities). Let n;; and n;; be, respectively, the total value
of in-flight HTLCs from ¢ to j and from j to ¢ in channel (4, j). The liquidities /;;
and [j; of the channel are, respectively, the available amounts that can be sent in

the directions 7 — j and j — 7:, such that lij = bl — MNij and lji = bj — Nji-

The liquidities? in PCNs are the equivalent of a directed arc capacity in classical
flow networks, which causes traditional max-flow approaches to inspire several
payment routing protocols [132-134]. The main goal of such protocols is to select
paths that have enough liquidity and are optimal according to some metric. Note
that [;; < b; < u;; and that capacities, balances, and liquidities are non-negative

integer units because they represent coins, i.e., l;;, b;, u;; € No.

6.1.2 Uncertainty of Channel Liquidities

Another unique feature of PCNs is that only channel capacities are publicly available
in the network [135]. Balances are not advertised systematically, and consequently,
neither are channel liquidities. This preserves privacy and scalability in the system.
First, announcing liquidities would allow payments to be tracked by statistical analysis

of liquidity changes, compromising user privacy. Second, advertising liquidity updates

!Recall from the previous chapter that in-flight HTLCs are established but not yet claimed.
2We purposefully ignore Lightning’s channel reserves in our liquidity definition as they are not
standard in all PCNs [20, 63, 90].

63

for every channel and every state change would flood the network with messages,
leading to scalability issues. Instead, channel balances and channel liquidities are
kept private to the parties involved in the channel unless either party decides to
disclose the channel state in an off-protocol manner.

The privacy of channel liquidities creates a significant challenge for payment
routing: routing algorithms must compute paths based only on the information they
know, which may yield paths that do not have enough liquidity to transport the
payment. The efficiency of the routing protocol depends on its ability to estimate
liquidities in the network correctly and to adapt to any liquidity information it may
receive quickly. If this is incorrectly done, the algorithm selects supposedly feasible
paths that fail when sending the payment. Then, the payment must be retried,
increasing the user’s latency and reducing the system’s efficiency. In protocols that
split the payment into multiple paths, a failure also compromises the atomicity of
the payment. Failures in multipath payments can lead to situations where the buyer
correctly pays n coins for a product, but the seller only receives n — x coins, where x
is the sum of the values of the failed payment parts.

Routing in PCNs involves, thus, a particular type of transportation problem in
which arc capacities (channel liquidities) are uncertain [134, 135|. The liquidities can
be in the interval [;; € [0, u;;] and must be estimated each time a path needs to be

found. Namely, to start the process of pathfinding, a payment sender s must:

1. Build an undirected capacitated channel graph G = (V, E) in which V and E
are, respectively, the set of nodes and payment channels publicly announced in
the PCN’s peer-to-peer gossip protocol. The capacity of each edge (7,7) € E'is

the channel’s advertised capacity u;;;

2. Build a directed capacitated liquidity graph G, = (V, A) from G containing its
complete node set V' and replace each channel (i, 7) € G with a pair of directed
arcs {(i,7), (4,7)} € A, such that |A| = 2|E];

3. For each forward arc® (i,j) € A, estimate the liquidity /;; of (i,7) as a random

variable Zij ~ D[llf’j“'”7 [73%*], where D is some discrete probability distribution,

lg”” > 0 is a lower bound of the arc’s liquidity, and [[7" < w;; is an upper

bound of the arc’s liquidity;

4. For each backward arc (j,i) € A, set the estimated liquidity of (j,7) to

~

lji = uij — ll]

3We define the “forward” direction as the direction from the party who initiated the channel to
the party who accepted the channel-initialization request. This information can be inferred from
the fund distribution of the channel-opening transaction or be randomly set with a coin flip.

64

Liquidity graph Liquidity graph
(estimated by n,) (actual)

Channel graph

Omu®
10 6 8 2

Figure 6.1: The graph structures involved in payment routing. The numbers represent
edge capacities. Each node n; transforms the public channel graph into a local
liquidity graph that estimates the actual liquidities in the network.

Typically, the channel graph is built once at node start-up and updated every
time a new node or channel announcement message is received. Thus, nodes must
constantly listen for messages to keep the graph up-to-date. The estimated liquidity
graph G, is built once with arbitrary guesses at node start-up and updated every
time the node obtains new information about channel liquidities (we explain how
liquidity updates happen in Section 6.1.4). G represents a guess by the node of the
liquidity graph G, which contains the actual liquidity distribution in the network
and cannot be obtained. Note that the node does not have to guess the liquidities of
channels in which it participates. We illustrate the difference between the channel

graph, the estimated liquidity graph, and the actual liquidity graph in Figure 6.1.

6.1.3 Routing Payments through Minimum-cost Flows

As in many transportation problems, each arc in a liquidity graph has an associated
weight w;; that defines how much it costs to traverse it. Depending on how the
graph is built, the weight can either be a scalar or a multidimensional tuple w;; € R",
where each dimension represents a different type of cost. For instance, arc weights
in the Lightning network can be seen as 3-dimensional tuples w;; = (¢ij, Aij, pis),
where ¢;;, A;j, and p;; are, respectively, the routing fee, the minimum timeout delta,
and the a priori probability? of arc (i, j).

The cost of an arc, ¢;j, can be computed with a cost function f : R" — R that
maps arc weights into a scalar value such that ¢;; = f(w;;). In the simplest case,
the arc costs are ¢;; = w;; if w;; is a scalar or ¢;; = wfj if w;; is a vector, where

k

complex as long as they are convex, to allow payment routing protocols to select

represents the k-th dimension of w;;. However, cost functions can be arbitrarily

paths based on cost-minimization algorithms [134]. As an example, the cost function
in Lightning’s default routing protocol is ¢;; = ¢;; + p1Ai; + pgpi_jl, where p; and po

are user-set parameters that bias the cost towards a preferred metric.

4The a priori probability of an arc in Lightning is a guess of how likely a payment is to
successfully traverse the arc before any attempt. It accounts for liquidity uncertainties.

65

With a defined cost for each arc, the problem of sending payments in a PCN
becomes a single-source single-sink instance of the minimum-cost flow®(MCF) prob-
lem in transportation networks. In this problem, we must transport a demand d
from a source s to a sink ¢ while minimizing the total cost of some feasible flow.
The demand d corresponds to the payment value mentioned in previous chapters.
Furthermore, flows in PCNs are integer because coins are indivisible units. We can

formally define a feasible integer flow as:

Definition 8. (Feasible integer flow). A feasible integer flow between a source s
and a sink ¢ in a graph G; = (V, A) with liquidities [;; € Ny V(7,j) € A is a function
f: A — Ny such that:

1. 0< f(i,75) <l;; V(i,j) € A (capacity constraint),

2. X ipeal(i9) =2 nea f(U,1) =0 Vie V\{s,t} (flow conservation).

A feasible flow in a transportation network represents a mapping that allocates
a portion of the demand into each arc (7,j). Each allocation must respect the
arc’s capacity (liquidity) and yields a per-arc cost given by the cost function c¢;;.
Note that, because of the flow conservation constraint, we can dissect a flow into
separate paths that transport, each one, a fraction of the demand (see a proof for
this statement in Appendix A.1). Thus, a flow f can always be rewritten as a 2-tuple
set f={(m, fr) | fr <d Vke{l,..,n}}, where n is the number of paths in the
flow and 7, is the k-th path, which transports f; flow units from s to . The cost of
a feasible flow can be expressed per path as c(f) = > ;c(fx, 71), where c(fy, m)
is the cost of sending fj flow units through path 7.
Generalized flows. We highlight that the flow model used in this formulation is
a conservative flow, i.e., a flow in which the demand sent at the source s equals
the demand received at the sink t¢. It ignores that nodes take a small fraction of
the demand as a fee when routing payments (recall how HTLCs are chained in
Section 3.3.1). A generalized flow model in which flows can be lossy better describes

this behavior. The model replaces the flow conservation constraint by

S (M=ei)flij)— > f(Gi)=0 VieV\{st}, (6.1)
(1,5)€A (Ji1)eA
where ¢;; is the routing fee charged by i to forward the demand on arc (7,7). In
the generalized flow formulation, d units of flow sent along an edge (i, j) become
d(1 — ¢;;) units of flow when they arrive at node j.

The generalized flow model precisely reflects how payments traverse channels in a

5Also known as a maximum flow with minimum cost.

66

PCN. However, the computational effort needed to solve minimum-cost flow problems
with lossy flows is high and yields little benefit since routing fees typically represent an
insignificant fraction of the demand. Instead, most routing proposals prefer to model
the problem with conservative flows and add the routing fees to the demand before
routing, which provides a good approximation of the generalized minimum-cost flow
problem [4, 132-134, 136, 137]. Though we recognize that this is an approximation,
we adopt the same approach as it yields good results in practice [103, 132, 134, 137—
140]. Henceforth, we treat the problem of payment routing as a minimum-cost flow
problem with flows as defined in Definition 8.

The goal of the MCF problem with conservative flows is to provide a feasible flow
with the minimum total cost as measured by the cost function. As we can separate

flows into paths, the objective function of the problem can be expressed by

min ¢(f) = min Z c(fry), (6.2)
f Tk
TEf
where ¢(f) is the cost of a flow f and c(fx, 7x) is the cost of sending f; units along
path 7 € f. Assuming the path costs ¢(fi,) are computed using additive metrics,
e, c(fe,) = Z(m)@rk ¢ij fij, where f;; is the flow on edge (i, j) and ¢;; is the cost
of arc (i, j), we can define the per-arc formulation of the MCF problem with integer

flows for some liquidity network G, = (V, A):

Definition 9. (Minimum-cost flow problem). Given a transportation network
G, = (V, A) with liquidities l;; V(i, j) € A, arc costs ¢;; V(i,7) € A and a demand
d to be transferred from a source node s to a sink node ¢, the (integer) minimum

cost-flow problem is an optimization problem in the form:

fglelll\llo Z Cijfijy (63&)
(i,5)€eA
subject to: 0 < fi; <1y V(i,j) € A, (6.3b)
d,ifi=s

Zfij—z,fji: —d,ifi =1 VieV. (6.3¢)

Sea eA '
(e b 0, otherwise

Because the minimum-cost flow problem is well-known in the literature [141],
formulating the pathfinding problem for payments as an MCF instance allows us
to use general-purpose solvers and classical optimization algorithms to compute
payment paths [142, 143|. Note that the objective function in Equation 6.3a can be

rewritten as

67

ffleiﬁoz Y cifus (6.4)

mrEf (3.5)Emy
which indicates that the MCF problem can be solved by selecting a sequence of paths
that can transport as many units as possible at a minimum cost. Thus, when all
the demand fits in a single path, the problem reduces to the shortest pathfinding
problem, which can be solved using classical techniques. This is the main reason
why most payment routing algorithms adopt some variation of Dijkstra’s [144] or
Bellman-Ford’s [145] pathfinding algorithms [4-6, 20].

6.1.4 Liquidity Updates and Channel Probing

We mentioned in Section 6.1.2 that payment routing involves finding paths in a graph
of uncertain liquidities. Routing algorithms must update the estimated liquidity
network as best as possible before attempting to solve the MCF problem. Fortunately,
this does not need to be done with purely-blind guesses because each payment attempt
returns some information about channel liquidities.

Let a single-path payment attempt be a 4-tuple (s, t,d, w) that transfers d coins
from source s to sink ¢ through a path 7. Payment attempts yield the following

information when executed:

e If the payment fails to traverse an arc (7,7) € m %, we can update the upper
bound of (i, j)’s liquidity to [j7%* = d, such that lAij € [0,d]. We can also update
the lower bounds of all arcs (u, v) before (i, 7) in 7 to ™" = d as the payment

would have traversed them if it had not failed in (7, 5);

e If the payment successfully reaches ¢, we can update the upper bounds for each
arc (i,7) € m to [[}** = [[7%® — d as we know the liquidity moved to the opposite

arc;

e For each updated arc (4, j), we can recompute the estimates of the opposite arcs
(7,1) using the channel’s capacity like we did when first building the liquidity

graph: ZAji = Ujj — l”

Consequently, each payment attempt in PCNs improves the accuracy of liquidity
estimates. A straightforward implication of this statement is that the more payments
a node attempts to make, the more it knows about the current liquidity payment
channels in the payment path. Moreover, the accuracy of liquidity estimates degrades

with time because payments from other nodes are likely to happen. Some routing

5The information of which arc failed is given by default in all major PCN implementations [4-6].

68

proposals adopt age functions that adjust liquidity estimates according to the elapsed
time since the last update [4, 132, 136].

Finding a suitable path in PCNs is, thus, not a single instance of the MCF
problem; instead, it involves a trial-and-error approach that generates several MCF
instances. At each payment attempt, the routing algorithm solves an MCF problem
in the estimated liquidity graph, attempts to send the payment through the minimum-
cost paths, and adjusts liquidity estimates according to the results. If a payment part
(or the whole payment) fails, the algorithm can abandon it or try again, considering
the newly obtained information. Some proposals proactively probe payment channels
to provide an accurate estimate of liquidities when computing paths as a way to
reduce the extra latency caused by payment retries [132, 136, 146]. In fact, as the
payment source computes paths, any node can quickly disclose the liquidity of a
target channel by sending fake payments to itself that include the channel into the
payment’s path [147-149|.

6.2 Routing Payments from Light Nodes

Apart from the challenges of payment routing in general, resource-constrained devices
such as mobile phones, smart objects, and sensors present additional limitations
that hinder the adoption of common payment routing algorithms. First, these
devices may disconnect frequently or for long periods, which affects their ability to
update the channel graph and, consequently, to send and receive payments. Second,
resource-constrained devices cannot store many blocks, forcing them to rely on full
nodes to confirm channel updates. Finally, a resource-constrained device may not
have enough computational power to execute complex pathfinding algorithms, which
can affect the efficiency and accuracy of payment routing.

The state-of-the-art on routing algorithms for PCNs often ignores the limitations
of light nodes. For instance, most routing proposals assume nodes always listen to
channel update messages to synchronize and store a copy of the channel graph [109,
132-134, 138]. The main implementations of the Lightning Network and the Raiden
Network further require nodes to store blocks to verify channel states and adopt
onion routing to provide payment privacy at the expense of extra computational
costs |2, 20, 22|. Such assumptions make it difficult for devices with limited resources
and intermittent connectivity patterns to route payments as full nodes would, and
little research has been done to change this scenario even though resource-constrained
devices account for over half of all the traffic on the Internet [27, 150, 151].

Besides, many payment applications need minimum latency to work properly
or consider it desirable. Namely, real-time payments are critical for stock mar-

kets [152], cross-chain trades [153], and other applications that operate under strict

69

time frames [154-156]. Sending payments from light nodes can be especially chal-
lenging in such cases, as the scarcity of resources adds extra latency to the payment
process. Using normal payment schemes, devices that stay offline most of the time
must download the latest link states whenever they want to send a payment or risk
sending it with an outdated network view. These limitations create the need for a
novel payment scheme that reduces confirmation latency and computational efforts
when issuing payments from resource-constrained devices.

In the previous section, we focused on the problem of finding paths in a liquidity
network. However, payment delivery in PCNs depends on multiple phases that we

detail now to explain the rationale behind our approach:

1. Invoice generation and forwarding. The payment recipient generates an
invoice containing the number of coins to be paid and their address in the
network. It forwards the invoice to the payment sender using some arbitrary

communication channel.

2. Pathfinding. The sender receives the invoice and attempts to find one or more
feasible paths to the payment destination. Pathfinding typically uses classical
shortest pathfinders or minimum-cost flow solvers on top of the estimated

liquidity network.

3. Route locking. With a defined path (or path set), the sender establishes
the first HTLC, triggering the sequential locking of the required funds along
the route. Each intermediary establishes an HTLC with the next hop in the
route after receiving an HTLC from the previous hop. The locking process
stops when the last HTLC reaches the recipient. This process can be done
via onion packets that only reveal the payment value and the next hop to any

intermediary in the path.

4. Route unlocking or payment settling. When the last HTLC along the
path is established, the recipient redeems it and starts the backward unlocking
of the path. Each intermediary redeems the established HTLCs with the
corresponding previous hop. The payment finishes when the first intermediary
redeems the initial HTLC, which the sender established.

During invoice generation and transmission, all processing occurs on the recipient
side while the sender waits. Route locking/unlocking follows a decentralized process
that depends on the processing speeds and communication latency of hops along the
route. The only actions a payment sender must perform in these phases are receiving
the invoice and establishing the first HTLC along each route. On the other hand,

pathfinding can be computationally expensive for the sender as it involves computing

70

a feasible path over a large graph. Moreover, keeping the network topology up-to-date
requires constant connectivity to receive gossip messages from other nodes. This
is easy for powerful servers or desktops but can become extremely costly and slow
for nodes with low resources. Light nodes that disconnect for long periods cannot
maintain the graph efficiently, and even if they had good availability, it would require
extensive memory and battery usage.

In light of the characteristics above, we identify a clear direction for providing
payments from resource-constrained devices in time-sensitive applications: offload
pathfinding to capable servers while accelerating the other phases as much as possible.
By doing so, not only do we alleviate the burden of light nodes, but we also reduce
the amount of time they need to stay connected. Besides, this approach permits
separating the problem into two sub-challenges: (i) how to speed up payment
confirmation for light-node payments, and (ii) how to efficiently find paths in full
nodes under application-specific constraints. We address each challenge separately

in the following sections.

6.3 Accelerating Payment Confirmations

The first part of the problem is to ensure the recipient obtains a payment confirmation
as soon as possible. Suppose the payment follows the normal process described in
the previous section. In that case, payment confirmation happens when the last
HTLC in the payment path is committed, which guarantees to the recipient that
the sender found a feasible path and all HTLCs were successfully established. As
payment confirmations occur per path, the recipient must wait for the confirmation
of the last HTLC on each path in a multipath payment. We can quantify the
confirmation latency of a payment part k that traverses a predefined path m, =

((s,i1), (i1,142), ..., (in, t)) € R™ from source s to destination ¢ as:

M= > b (6.5)

(4.9)€m
where J;; are the per-channel state update delays as defined in Equation 5.1. The
confirmation latency of a payment part is similar to the end-to-end single-path
payment latency defined in Equation 5.2, except that it does not include the target’s
claim of the last HTLC. The confirmation latency of a multipath payment f composed
of single-path payment parts k, can thus be expressed by:

A(f) = Ninw + Avicr + max()\k Vk € f), (66)

where \;,, is the time it takes to transfer the payment’s invoice from the recipient ¢ to

71

[ew |
RS\RE

COMmy TMEN(%U;ST/
SIG
Payment NED (H)
confirmation
latency RESPONSE /

S)
RE\IROKE,AND’A ot

pAYMENT_PROOE
L

Figure 6.2: The messages involved in our proposed payment scheme. The payment
recipient, ¢, receives an anticipated confirmation from the payment sender, s, before
receiving the payment. The confirmation allows actions to be performed before
the payment completes, reducing the application’s latency. The messages involved

in the scheme are piggy-backed into Lightning’s peer-to-peer messages defined in
BOLT#2 [3].

the sender s, A\yscr is the time it takes to solve the minimum-cost flow problem and A,
are the confirmation latencies for the payment parts as defined by Equation 6.5. This
definition captures the fact that, in a regular payment operation, the confirmation
latency of a multipath payment depends on the confirmation latency of the slowest
payment part. Also, it shows that the capacity to solve the minimum-cost flow

problem directly impacts payment confirmations.

6.3.1 Delayed Payments with Reduced Confirmation Latency

Having a confirmation latency that depends on the slowest path and a fast solution to
the MCF problem can be prohibitive for time-sensitive applications, especially if the
minimum-cost flow is to be computed by resource-constrained devices. Instead, we
propose a payment scheme that anticipates payment confirmations while delegating
path computations to a capable entry node. This scheme yields a delayed payment
that is confirmed immediately but routed later. We depict the proposed confirmation
scheme in Figure 6.2 and describe it below.

To begin a delayed payment after receiving an invoice from a destination ¢, the
light node s sends an RS_REQUEST (RS,.,) message to the entry node i containing
the following fields:

RSreq = <Type‘PKt’H>Usa (67>

where T'ype = 0 (request) is a message type identifier, PK; is the public key of ¢,

72

which corresponds to its address in the PCN, H is the payment hash and o, denotes
all the message fields are signed by s. The RS,., message signals a routing service
request from s to ¢, indicating that ¢ should compute paths and deliver the payment
to t. The message is piggy-backed into a COMMITMENT_SIGNED message that contains
a new commitment transaction signed by s. The commitment transaction, in turn,
includes the first HTLC of the payment chain. In this case, we skip the UPDATE_ADD_-
HTLC message and place the HTLC directly into the COMMITMENT_SIGNED message
to minimize latency.

Upon receiving the routing service request, the entry node i evaluates it and

responds with a signed RS_RESPONSE (RS, .s,) message containing the following fields:

RSresp = (Type|Resp|RSTeq>gi, (68)

where T'ype = 1 (response) is the message type identifier, Resp is i’s response (0 if
refused, 1 if accepted), RS,., is the routing service request to which the response
refers to, and o; denotes i’s signature over the message fields. If ¢ accepts the
request, it commits the received HTLC and piggy-backs the RS,.s, message into a
REVOKE_AND_ACK message to s, signaling the HTLC has been committed.

When the routing service response reaches s, it constructs a PAYMENT_PROOF

(Pproof) message

Poroof = (T'ype| RSyesp| CommitT X), , (6.9)

where T'ype = 2 (proof) is the message type identifier, RS,s, is the routing service
response message to which the proof refers, and CommitTX is the commitment
transaction signed by ¢ that committed the first HTLC of the payment into the
channel state. Including the commitment transaction into the payment proof message
ensures s cannot lie about the current status of the HTLC, with the downside of
revealing the state of channel (s,4) to t. We decide to disclose the channel state
because we consider ¢ can obtain it using targeted probing techniques, so preserving
channel state secrecy does not yield strong privacy guarantees [147, 148]. We plan
to adopt lightweight zero-knowledge proofs in future versions of our scheme [157].

The payment is confirmed once t receives the payment proof. The reduced
confirmation latency of a delayed payment in the proposed scheme can thus be
defined as

Ared(f) =)\inv + /\Rsreq +)\RSTESP + >\Pp (610)

roof?

where Ainy; ARS,cp> ARS,espr AP are the propagation delays of the invoice, routing

proof
service request, routing service response, and payment proof messages, respectively.
Considering the messages do not transmit significant amounts of data, and that

propagation delays are roughly symmetrical, we can approximate the delays using

73

t+1: t+2

Entry node Entry node Entry node
=) = — Compute
° — —" g
= E payment path

)

e 0 :
G/ e %

Figure 6.3: An example of a time-sensitive electronic toll collection application
that adopts the proposed payment scheme. The application leverages the reduced
confirmation latency to open the toll gate without stopping the car.

()

(<)

round-trip times, which yields

Avea(f) = RTTy + RTT,; (6.11)

where RT'T,; and RT'T,; are, respectively, the round-trip times of the communication
channel between s and ¢ and s and i. Note that A,eq(f) < A(f) as Aqeq(f) depends
only on the propagation delays of two channels while A(f) depends on the propagation
delays of all channels in the payment’s path.

We present a use case to illustrate how anticipated confirmations and delayed
payments work in our proposed scheme in Figure 6.3. In the example, a car or a
device in a car needs to connect to a wireless toll collector and pay the toll without
stopping. With a default payment scheme, the first three phases of the regular
payment process (invoice forwarding, pathfinding, and route locking) must finalize
before the car leaves the communication range of the toll collector. The process
yields a latency of A(f), as modeled in Equation 6.6, which will likely stop the car
until the payment is delivered. However, in our payment scheme, the gate can be
opened quickly since the car confirms the payment as soon as it establishes the first
HTLC with an entry node. If the car does not have an active connection when it
traverses the toll system, we assume it can use the toll booth’s antenna as an access
point to communicate with the entry node.

Our proposed payment scheme requires two modifications to the default Lightning
protocol described in the BOLTs [3, 76, 85|. First, the COMMITMENT_SIGNED message
is modified to contain a previously-unseen HTLC. This modification eliminates the
delays in sending UPDATE_ADD_HTLC messages and waiting for node timeouts at the
expense of a larger COMMITMENT _SIGNED message. Second, the new routing service
messages, [RSy¢q, RSresp, must be piggy-backed with the messages of Lightning’s
channel state update protocol, defined in BOLT#2 [3|. As the Lightning BOLTs
explicitly support custom message types and lengths, both modifications can be

implemented as an add-on feature for channels with resource-constrained devices on

74

Lightning implementations [4-6].

6.3.2 Payment Security and Adversary Model

Anticipating payment confirmation incurs a cost to payment security. While in a
regular payment, the payment confirmation represents an irrevocable guarantee that
the recipient can redeem its coins, an anticipated confirmation only proves that the
payment sender initiated the payment. The delayed payment may still not reach
the recipient due to route failures or unexpected behavior by the entry node that is
supposed to route the payment. In particular, malicious entry nodes represent the
main vulnerability in our scheme, as they can easily prevent the payment from being
forwarded to the correct destination.

We assume all messages are signed, and the communication channels between
light devices and entry nodes are secure so that no message can be eavesdropped.
Regarding entry nodes, we consider an adversary model in which malicious entities

can perform the following actions:

1. Attempt to steal coins from channels with light nodes by publishing revoked

channel states;
2. Route payments to the wrong destination;

3. Accept a routing service request and not route the payment.

We mitigate the threats as mentioned earlier as follows. First, we assume
payment recipients close their payment channels before disconnecting or adopt a
coin-theft protection mechanism such as watchtowers |25, 158] or minimum lock-time
windows [159]. This assumption prevents entry nodes from publishing revoked states
without getting punished, as discussed in Section 4.3. Payment senders do not need
protection mechanisms since publishing revoked states, in this case, incurs fund
losses to the entry node. Second, we add a routing budget to payments as a financial
incentive for entry nodes to route the payments honestly. Entry nodes gain the
routing budget if and only if the payment is delivered to its correct destination,
mitigating malicious behavior. We detail how these budgets work in Section 6.4.

An important assumption we make is that entry nodes cannot collude with
payment senders. Otherwise, the sender can provide a payment proof issued by an
adversary entry node who intentionally refuses to forward the payment afterward
until the HTLC expires. Routing budgets do not mitigate this behavior because it
is more financially advantageous for the entry node to split the entire payment’s
value with the sender after the HTLC times out than to gain the routing budget

for honesty. Worse, if the same entity controls the entry node and the sender, that

75

entity can issue fake payments for free. Mitigating this threat systematically involves
setting a reputation system for entry nodes, such that payment proofs are only
accepted if they come from nodes with enough reputation. As reputation systems are
currently under development in the Lightning Network [160], we believe a systematic
reputation-based solution for entry nodes will soon appear.

For the purposes of this work, we assume entry nodes are selected from a list of
nodes that the recipient trusts. The list does not need to be an allowlist; instead,
payment recipients can adopt an optimistic approach in which proofs are refused if
they come from a node previously identified as malicious. Adopting allowlists can be
especially useful for small payments, which incur less financial losses if embezzled.
However, the payment recipient should decide to adopt an allowlist or a denylist at
their discretion, case by case. If the sender connects only to entry nodes the recipient
considers malicious, it can compute partial paths and use trampoline routing [151]
to send the payment to a trusted node securely. This involves computing a partial
path over a small graph, which could be better but is feasible given the exceptional

circumstances.

6.4 Finding Constrained Optimal Flows

The second part of the routing problem with payments from resource-constrained
devices involves effectively routing a payment after it is relayed to some entry node.
This problem is similar to the minimum-cost flow problem enunciated in Definition 9,
except it considers metrics that reflect the specific requirements of applications with
resource-constrained devices. This work considers three metrics: routing budgets,

HTLC-resolution delays, and delivery probabilities.

Routing budgets. Routing budgets represent an extra cost that resource-
constrained senders must pay in return for the routing service provided by some
entry node. The budget incentivizes entry nodes to provide correct routes to delayed
payments, reducing the risk of payment losses. We name them “budgets” because
they define an upper bound to the routing fees that can be paid when routing a

payment:

Rp > Z Z ij fij» (6.12)

TLES (1,5)Emk
where f is the flow composed of all payment paths m, f;; is the amount of flow in
arc (7,7), and ¢;; is the arc’s routing fee. When given a routing budget Rp, the goal

of an entry node is to maximize its profit, expressed by:

76

T=Rp—Y_ > ¢ify (6.13)

€S (i,5)€m
or, in words, entry nodes receive the difference between the given routing budget
and the fees charged for routing the payment. Consequently, rational entry nodes
will attempt to find a set of feasible paths that minimizes the total cost of routing
fees. This behavior yields a version of the minimum-cost flow problem presented in

Equation 6.4 in which the arc costs are routing fees:

min Yo bl (6.14)

Payment senders incorporate routing budgets into the value of the first HTLC
in the payment path such that HT'LCy = Rp + Py, where Py is the value of the
payment (the amount that reaches the recipient after all intermediaries subtract
routing fees). Payment recipients should set the price of routing budgets as they are
the entity at risk in a delayed payment. Rp values must be high enough to make the
payment feasible and profitable for entry nodes. On the other hand, values of Rp
that are too high may scare customers since they incur extra fees that are not part of
the product’s value. Hence, the choice of Rp represents a trade-off between payment
security and product attractiveness: if Rg is too high, the payment is likely to be
delivered, but the customer may give up paying for the product at all; if Rp is too
low, the product becomes cheap, but the risk of payment loss is high. In practice, the
choice of Rp depends entirely on the structure of the network, the payment value,
the product, and the risk the recipient is willing to take. After selecting a value for

Rp, recipients pass the desired routing budget along the invoice message to senders.

HTLC-resolution delays. Apart from routing budgets, payments from light nodes
must also set HTLC timeouts that match the connectivity patterns of resource-
constrained devices. Else, the entry node may decide to close the channel with the
payment source in case the source temporarily disconnects. We clarify this behavior
with an example below.

Let s be a resource-constrained device that sends a payment to a destination ¢ and
HTLC;;j(V,T) denote an HTLC from ¢ to j with value V' and timeout 7. Assume s
establishes HT LCy;(Rp + Py, T) with the entry node ¢ using the delayed payment
scheme and disconnects. Also, assume the payment is single-path for simplicity.
After s establishes the first HTLC, the entry node routes the payment to ¢, and then
t triggers the unlocking phase, in which each intermediary claims the HTLCs in the
path until the process eventually reaches channel (s,4). At this point, ¢ cannot claim
HTLC,; off-chain because s is disconnected and consequently incapable of updating

the channel state. Thus, ¢ must decide: wait for s to reconnect or close the payment

77

channel and claim its funds on-chain. In the best-case scenario, 7 decides to wait, s
reconnects quickly, and the payment finishes before it times out. In the worst case,
¢ claims the HTLC on-chain before the timeout 71" expires; otherwise, s can cancel
the HTLC when it reconnects. Recall that claiming an HTLC on-chain involves
publishing the channel-closing transaction, which causes i to pay transaction fees
and wait a long period until the transaction appears in the blockchain.

As T is defined by s, the goal of 7 is to maximize this “grace period” in which
it waits for s to reconnect, avoiding channel closures. If we ignore block validation

times for simplicity, the grace period can is

Gp=T— Z Aij, (6.15)
(i,7) €

where A;; are the maximum HTLC-resolution delays accepted by each arc (i,)
(recall from Section 3.3.1 that nodes enforce a minimum timeout difference per arc
so they have enough time to claim HTLCs after receiving the payment preimage).
Thus, the sum of A;;’s should be as low as possible to enlarge the grace period and
reduce the chance of forced channel closures. Maximizing the grace period for all
paths in a multipath payment yields a fixed-cost MCF problem in which the arc
costs are the HTLC-resolution delays A,;:

me€f (i,5)Em
Like routing budgets, the timeout 7" of the first HTLC represents an upper bound
on the time it takes to finalize a payment in the worst case. Note, however, that the
value of the grace period does not impact payment latency when all nodes in the

path are responsive.

Delivery probabilities. The last challenge of payment routing with resource-
constrained devices is dealing with packet losses and the uncertain channel liquidities
presented in Section 6.1.2. These two elements cause HTLCs to be refused or lost,
which in turn causes payment failures. The possibility of failures introduces a per-arc
probability metric that quantifies how likely an HTLC is to be established in the arc
or, equivalently, how likely a payment is to traverse the arc. The success probability

of an arc (i, 7) is

pij = P(fij < lij) x (1 — Plei;)), (6.17)

where P(f;; <;;) is the probability that the arc has enough liquidity to forward f;;
coins and P(¢;;) represents the probability of HTLC errors due to packet losses or

unresponsive nodes. Note that p;; = P(fi; < l;;) if the underlying communication

78

channel is fully reliable and nodes are always online. Using p;;, we can compute the

probability that a single-path payment part £ is delivered as

H Dijs (6.18)

(i,j)Emk
where 7, is the payment’s path. Delivery probabilities directly impact the efficiency of
payment routing algorithms, as payment parts that fail must be retried or abandoned.
Thus, another goal for routing nodes is to maximize the probability of payment
deliveries so that payments are complete in the least amount of attempts. To make
the problem linear, we can use the negative natural logarithm of probabilities p;;,

such that we obtain another fixed-cost MCF problem for multipath payments:

ijrg{i&} Z Z (i) fij- (6.19)

meCf (4,5)€mk
We highlight that negative logarithms transform delivery probabilities into an
additive metric that can be computed per path using shortest path algorithms [144,
145].

Combining metrics into a single MCF problem. As we hinted in the previous
sections, routing payments implies minimizing a metric, which can be routing fees,
HTLC-resolution delays, delivery probabilities, or any other metric that might be
important for an application. However, we generally cannot provide a single optimal
solution concerning all metrics, as such a solution is likely to not exist. Instead,
we can: (i) combine the multiple independent metrics into a single mixed-metric
(SMM) such that this new metric can be minimized or (ii) select a preferred metric to
minimize and set constraints to the secondary metrics such that we prune solutions
that violate predefined budgets.

Although several payment routing proposals adopt SMM approaches [133, 134,
161], we argue that choosing a main metric while constraining the others is the
best option for PCNs. First, almost all routing proposals consider routing fees
as the only metric in the problem, which demonstrates a clear bias towards this
metric [100, 103, 126, 132, 136-140|. This preference makes perfect sense since
minimizing routing fees directly impacts how much money users spend to send
payments. Second, optimizing one of the other metrics mentioned in this work
does not give an equally important advantage to payments in general. For instance,
minimizing HTLC-resolution delays is only critical when nodes are expected to
disconnect for long periods. Maximizing payment delivery probabilities is mostly
fit for applications that need to avoid payment retries. Although we recognize that
these metrics might be essential in some use cases, we usually want to minimize

routing fees subject to minimal levels of grace periods and delivery probabilities for

79

payments with resource-constrained devices. In other words, we want “the cheapest
path that will likely allow us to deliver the payment and prevent channel closures
in case the payment source disconnects”. Lastly, SMM-based approaches raise the
problem of combining metrics in different scales, such as routing fees (¢;; € [0, o0])
and delivery probabilities (p;; € [0, 1]), and the problem of how to weight each metric
in the metric-mixing equation [134].

Choosing a main metric allows us to reformulate the MCF problem presented in
Definition 9 as a constrained problem in which the side constraints set bounds to

the secondary metrics:

Definition 10. (Constrained minimum-cost flow problem). Given a transportation
network G; = (V, A) with liquidities [;; V(7,j) € A, a metric set W = {wy, ..., w, },
and a demand d to be transferred from a source node s to a sink node ¢, the

constrained minimum cost-flow problem is an optimization problem in the form:

min Z i figs (6.20a)

fi;€No (if)eA
subject to: 0<fi; <l V(i,j) € A, (6.20b)
d,if 1 = s
S fi= > fi = —difi=t VieV, (6.20c)

i)EA ii)EA .
(IS ()€ 0, otherwise

Z Cily>0 < BY Yw e W\ o, (6.20d)
(i,5)€eA

where ¢f; is the cost of arc (7, j) w.r.t. the main metric o € W, ¢} are the costs of
arc (7,7) w.r.t. the secondary metrics w € W\ o, B" are the upper bounds of each

secondary metric, and 1y, o is an indicator function that outputs 1 if a non-zero

flow traverses arc (4, j), i.e., if f;; > 0.

A constrained minimum-flow (CMCF) problem differs from the MCF formulation
presented in Definition 9 in two aspects. First, the arc costs c;; are replaced by
costs ¢f; to denote that they refer to a user-set main metric o. Second, the problem
includes one extra constraint per secondary metric w. The extra constraints ensure
the optimal solution w.r.t. the main metric does not violate predefined upper bounds
on any secondary metric. Note that the costs ¢} form a per-arc cost vector ¢;; € R™,
and that we minimize the cost of the main metric in this vector while constraining
the other costs. In contrast, an SMM approach would combine all costs into a single
cost ¢;; using a convex cost function and solve the MCF problem normally.

Similar to flows in the MCF problem, we can dissect constrained flows into

constrained paths. Each constrained path 7 has an associated cost vector ¢; € R"

80

Bounds: (50, 50, 0.8)
Main metric: ¢

Solutions
Path Costs
(s,1,t)| (2,60,0.81)
(s,J,t) | (4,20,0.81)
(s, k, t)| (2,20,0.01)

Optimal constrained path

Figure 6.4: An example of constrained shortest path problem with three metrics:
routing fees (¢), HTLC-resolution delays (A), and delivery probabilities (p). For
clarity, we show the original probabilities instead of their negative logarithms, yielding
a lower bound instead of an upper bound. The optimal solution is the path that
minimizes the main metric while not violating any bounds.

expressed by

g = CEN N (6.21)

and constrained by the bound vector B = (B*1, ..., B¥") such that ¢ < BY Yw € W.

To find the constrained minimum-cost flow, we can push as much flow as possible
through the constrained paths with minimum cost w.r.t. the main metric o. Finding
minimal-cost paths subject to side constraints is known as the constrained shortest
path (CSP) in the literature [162, 163]. We show an example of such a problem
with multidimensional arc costs in Figure 6.4. In the example, we want to minimize
routing fees subject to time differences and delivery probabilities constraints. Note
that, despite providing fewer routing fees, paths (s,i,t) and (s, k,t) violate the
bounds for the secondary metrics and are not selected.

This work proposes two routing algorithms that route payments optimally through
constrained shortest paths. The first algorithm is Generalized Pulse (GenPulse) which
provides constrained shortest paths for single-path payments considering an arbitrary
number of metrics. Next, we propose Multipath Pulse (MultiPulse), a multipath
algorithm that solves the CMCF problem through sequential flow allocations along
the constrained shortest paths provided by GenPulse. MultiPulse is inspired by the
classical Successive Shortest Path algorithm for MCF problems 164, 165]. GenPulse
and MultiPulse are named after the Pulse algorithm [162], a state-of-the-art method
for solving CSP problems with one side constraint. We describe GenPulse and

MultiPulse in the following sections.

81

6.4.1 The Generalized Pulse Algorithm

The Generalized Pulse (GenPulse) algorithm is a pathfinding algorithm that solves
the constrained shortest path problem in a generic graph with multiple constraints.
The algorithm is based on pulses propagating through a network from a source s
to a destination t. Pulses are like particles that start at s and traverse the network
from node to node, building partial paths 7’ with the visited nodes. Each partial
path has a cost vector ¢ as defined in Equation 6.21. When a pulse reaches the
destination ¢, it contains a feasible constrained path 7 from s to t. The GenPulse
algorithm represents a generalization of the Pulse algorithm [162] for an arbitrary
number of metrics.

When pulses propagate aimlessly, GenPulse enumerates all possible paths from s
to t, ensuring that the optimal path 7* is inside the candidate path set. However, as
enumerating all paths is prohibitively costly, the algorithm adopts pruning strategies
to reduce the solution set so that it finds the optimal path 7* in a reasonable time.
This idea is similar to traditional branch-and-bound algorithms, which perform
solution enumeration and then prune sub-optimal candidate solutions. Pulses in
GenPulse are checked at execution time, saving computational effort whenever a
candidate path is pruned. Consequently, the strength of GenPulse lies in the efficiency
of its pruning strategies.

Let G = (V, A) be a directed graph with arc costs ¢; € R™ V(i,j) € A and
B € R" be a bound vector containing the upper bounds for each metric in the
problem. We can prune pulses that propagate through G using two criteria: bound

violations or path dominance.

Pruning by bound violations. The idea of bound-based pruning is to interrupt
pulses as soon as we observe they cannot reach the destination without violating
some side constraint. To accomplish this, the algorithm must first compute the
minimum costs needed to go from any node ¢ in the graph to the destination ¢ w.r.t.
every metric w. During initialization, we reverse the arcs in G, creating a reversed
graph G, = (V, A’) where A" = {(j,4)|(i, j) € A} and c}; = c}f. Next, the algorithm
runs n one-to-all shortest path algorithms to find the distances dist(t, i, w) from t to
every node ¢ w.r.t. metric w in the reverse graph. The reverse distances represent
the minimum costs needed to reach ¢ from any node 4 in the original graph G”. Then,
using the pre-computed reverse distances, the algorithm can check if a partial path
7 ={(s,u), ..., (v,7)} yields a cost ¢¥ > B" — dist(t,7,w) for any metric w. If the
check for a metric w is positive, pulses propagating from ¢ will violate constraint B"

upon reaching t. Thus, the algorithm can prune such pulses. Furthermore, we can

"We could also obtain the minimum costs by running a shortest path algorithm from every node
to the destination ¢. However, this approach is way slower in practice.

82

Algorithm 1: The Generalized Pulse (GenPulse) algorithm.
Input: G, s,t, g,a
Output: Optimal constrained path 7; and its cost vector ¢«
/* Generate graph with reversed edges x/

1 Gheyp < reverse(QG)

/* Pre-compute distance matrix D containing the distances between t and

all nodes in the reverse graph for each metric */
D e R™Y « 0
for w € W do
LforiEva do

(S B

L Dy + dist(t, i, w)

/* Sort neighborhoods by the main metric o x/
6 for i € G do
7 L S, (i) + sort(N(i), o)

/* Initialize path and cost vector x/
8 Mo 0
9 Cry €ER" <0

/* Call GenPulse routine with initial parameters x/

—

10 GenPulseRoutine(s, 7y, Cr,, B)
* —
11 return 7y, Cr»

update the bound B? for the main metric every time a pulse reaches ¢, ensuring we

prune worse paths than the current best solution.

Pruning by path dominance. We can define dominance relationships between
partial paths as a way to prune pulses that we know are sub-optimal. Let 74 and
7 be two partial paths to a node . If ¢ < ¢, Vw € W, then we say 74 strongly
dominates 7p since it has lower costs w.r.t. every metric. Similarly, if ¢/, < ¢
for some metric w and ¢, < c7 . for any metric x other than w, we say 74 weakly
dominates wg. Given these relations, we can store the cost vectors of the most
dominant partial paths that traverse each node . By default, GenPulse stores the
cost vectors of the best paths w.r.t. each metric w, as this yields the most efficient
pruning results in the original Pulse paper [162]. Then, we compare the costs of new
partial paths against the stored costs and prune the new path if it is dominated by a
partial path already traversed ¢. Note that the optimal solution is always dominant
as it provides the minimum cost w.r.t. the main metric.

We provide GenPulse’s pseudo-code in Algorithm 1 and Algorithm 2. First, the
algorithm reverses the graph G and computes the reverse distance matrix D € R™*V
using Dijkstra’s algorithm with the metrics as arc weights. Then, it sorts the
neighbors of each node ¢ by the main metric ¢ so we explore the nearest neighbors
first during the algorithm’s execution. Next, we initialize the partial path my as an

empty set and the costs ¢, as an all-zero vector and call GenPulse’s recursive routine.

83

Algorithm 2: GenPulse routine.

Input: i,7r,5ﬂ,§
Output: void
1 if i =t then

/* If we reached the target t, we found a new best (feasible) path.
Save it and update the current bound for the main metric o. x/
2 T, <= T
3 Crx < Cr
4 B« ¢
5 return
/* Obtain a new cost vector for every neighbor j of i (sorted by o) */
6 for j € S,(i) do
7 57r/ — E;r + E;‘j
/* Check if any bounds will be violated and check if we already know a
path that dominates this x/
8 if checkBounds(j, ¢y, D, é) and checkDominance(j, /) then
9 ' 7mU(i,])
10 L GenPulseRoutine(, W',Eﬂ/,é)

GenPulse’s routine propagates pulses along nodes and prunes them according to
bound violations and path dominances. When the algorithm finishes, it returns the
shortest constrained path w.r.t. the main metric, 7}, and its cost vector, Cr:.
Finally, we highlight that GenPulse presents a few differences compared to the
original Pulse algorithm [162]. First, Pulse only supports single-metric graphs
with a single side constraint, while GenPulse supports multi-metric graphs with
unlimited side constraints. Second, GenPulse’s bound-pruning strategy unifies Pulse’s
bound and feasibility-pruning strategies into a single strategy. Lastly, we implement

GenPulse in Python language®, while Pulse is implemented in Java®.

6.4.2 The Multipath Pulse Algorithm

Multipath Pulse (MultiPulse) is a multipath routing algorithm that leverages Gen-
Pulse’s constrained shortest paths to find constrained minimum-cost flows. The
algorithm is inspired by the classical Successive Shortest Paths (SSP) algorithm [164],
a method for solving minimum-cost flow problems based on consecutive flow pushes
along the k-shortest paths between two nodes in a graph. The SSP algorithm provides
an exact solution to the MCF problem when arc capacities are known [165|. Like

SSP, MultiPulse relies on the concept of residual networks to push flows:

8 Available at https://github.com /gfrebello/wpcn-routing/blob /main /multipath /genpulse.py
9 Available at https://github.com/dukduque/jPulseBase

84

Definition 11. (Residual network). Given a capacitated transportation network
G = (V, A), replace each arc (i,7) € A by two arcs (i,7) and (j,7). The arc (i,)
has cost ¢;; and residual capacity 7;; = [;; — fi;, where [;; is the arc’s original
capacity and f;; is the flow on (7, j). The arc (j,4) has cost ¢;; = —¢;; and residual
capacity rj; = fi;. Remove arcs with zero residual capacity. The resulting network
is a residual network Ry = (V, A’), which represents the result of pushing a flow f
through G.

The MultiPulse algorithm works by iteratively augmenting a flow through feasible
paths until it obtains a maximum flow. This common strategy leverages the well-
known max-flow min-cut theorem [166] to obtain maximum flows by removing arcs
in a residual network. However, because we aim for the constrained minimum-cost
flow instead of any maximum flow, we augment the flow along the constrained
shortest paths instead of those with the largest capacities. Furthermore, we limit
the maximum flow by introducing additional arcs that act as a bottleneck for the
problem.

Let G = (V. A) be a directed graph with arc costs ¢;; € R* V(i,j) € A and
capacities [;; V(i,j) € A. Let d be a demand to be transported from source s to sink

t. The actions MultiPulse executes to find a constrained minimum-cost flow are:

1. Initialize the flow f to a zero-amount flow;
2. Initialize the residual network to Ry = G since no flow is pushed;

3. Add two arcs, (5',s) and (¢,t'), to Ry with all-zero cost vectors Cys = G =

(0,...,0) € R™ and residual capacities rys = 1y = d;

4. Find the constrained shortest path 7} from s’ to ¢’ w.r.t. the main metric o in

Ry using the GenPulse algorithm. Obtain the corresponding cost vector ¢;

5. Push as much flow as possible along 7. The maximum flow that can be pushed

is f(m%) = min(l;; V(i,j) € 7). Save 7., Cr=, and f(7});
6. Update the residual network R as described in Definition 11;

7. Repeat steps 4, 5, and 6 until there is no path from s’ to t/;

We provide the pseudo-code of MultiPulse in Algorithm 3. In each round of the
algorithm, we obtain the path-cost-amount 3-tuple PC' Ay, = (7}, Cr=, f(7})), where 7
is the shortest path between s" and ¢’ w.r.t. o, ;= is the cost vector of 7}, and f(7}) is
the amount of flow the algorithm successfully pushed through 7% in the k-th iteration.
We represent thus the optimal flow f* as a set PCA = {PCA; | k € {1,...,K}}

containing all the 3-tuples found during the algorithm’s execution. The MultiPulse

85

algorithm is guaranteed to converge to the optimal solution for the constrained
minimum cost flow problem. We provide a formal proof for this statement in
Appendix A.4.

Algorithm 3: The Multipath Pulse (MultiPulse) algorithm.

Input: G,s,t,d, é,a
Output: Path-cost-amount 3-tuple set PC.A

/* Initialize empty 3-tuple set */
1 PCA<«+

/* Initialize residual graph R */
2 R+ G

/* Add arcs to limit the maximum amount to the demand d */

3 Add arc (¢, s) with capacity lys = d and cost vector ¢ys =0 to R

4 Add arc (t,t") with capacity I,y = d and cost vector ¢y =0 to R

5 while 3 a path from s’ to ¢’ in R do

/* Obtain shortest constrained path through GenPulse x/
6 T, Crx <— GenPulseAlgorithm(R, s’ ¥, B, o)

/* Augment flow along 7;. PushFlow returns the amount of flow pushed

through 7}, f(7%), and the resulting residual graph */
7 R, f(m%) < PushFlow(R, 7}, 0)
/* Update 3-tuple set x/

8 | PCA<« PCAU (r},Crs, [(72))
9 return PCA

6.5 Proof-of-Concept Evaluation

We implement a prototype of GenPulse and MultiPulse in Python language!® using
the networkx library''. Our prototypes consider a CMCF problem with three metrics:
the routing fees, HTLC-resolution delays, and delivery probabilities discussed in
previous sections. We adopt routing fees as the main metric.

To facilitate result visualization, we introduce an auxiliary variable 1 that quanti-
fies the tightness of side constraints in the CSP (recall that the efficiency of GenPulse
depends on bound-based pruning strategies). Given a set of metrics w € W, we

define the tightness of each constraint as

BY — dist(s,t,w)

22
Bw) (6)

wwzl_

where dist(s,t,w) is the cost of the shortest path between s and ¢ w.r.t. metric w

and B" is the upper bound of w. A high value of v, indicates the constraint for

10 Available at https://github.com /gfrebello/wpcn-routing
1 Available at https://networkx.org/

86

Table 6.2: Summary of the networks we use in our experiments.

Parameter Scale-free PCN LN snapshot
n {512, 1024, 2048, 4096, 8192} {512, 1024, 2048, 4096, 8192} (snowball-sampled)
bij U{0,100} From dataset (see Fig. 6.5).
Ay U{50, 1000} From dataset (see Fig. 6.5).
i; U0.8,1] U0.8, 1]
li; U{0,10°} From dataset (see Fig. 6.5 and description in the text).

metric w is tight, whereas a low value indicates the constraint is loose. 1, yields a
value in the interval [0, 1] regardless of w’s domain, which allows us to compute an

overall tightness measure for the problem instance as

1
== tu, (6.23)

weEW\o
where ¢ is the main metric and n is the number of metrics. Assuming, for simplicity,
that the bounds for all secondary metrics are equally tight, we can derive bound

vectors for GenPulse from v values as

- 1
B = E (dist(s, tywy), ..., dist(s, t,wn)> e R". (6.24)

Hence, in the experiments, we obtain a bound vector B for each displayed value
of 1) and use it to model constraints. Similar to 1,,, high values of 1 indicate the

bound vector is tight, whereas low values of v indicate the bound vector is loose.

6.5.1 Evaluation Setup

We analyze the performance of GenPulse and MultiPulse in a 24-core Intel Xeon
Silver 4310 CPU server with 32 GB of RAM. Unless explicitly stated otherwise, we
repeat each experiment 30 times to account for statistical variations, and each error
bar indicates a 95% confidence interval. We run experiments in the two types of
payment channel networks described below. Table 6.2 summarizes the parameters

we use in each network.

Scale-free PCN. The topology of the first PCN is generated randomly using a scale-
free network model. We choose the scale-free model because it is the random model
that best captures the structure of the Lightning Network [87, 124]. Furthermore,
we set the power-law exponent of the model to v = 2.1387 as this is the value that
yields the maximum-likelihood fitting of empirical Lightning data [87]. We sample
the values of the routing fees ¢;;, HTLC-resolution delays A}, delivery probabilities
pij, and arc liquidities /;; from uniform (U) distributions, such that ¢;; € {0, ..., 100},
Ay € {50, ...,1000}, p;; € [0.8,1], and I;; € {0,...,10°}. The intervals were defined

87

0.401 0.84
o 0.351 o 0.7
]]
£ 0.301 2 0.6 Ind (default Aj; = 40)
3 3
Q Q
20251 2051 —
=] =]
2 0.201 2 0.41
=] =]
= 0151 = 034 eclair (default Ay = 144)
= 010 = 0.2 c-lightning (default A;; = 34)
0058 0.1 /
,-..LL._LL_-__._,._.__'_L,.__._._,__.__ |k |
0.00 0.0 " - . - .
0 20 40 60 80 100 20 40 60 80 100 120 140 160
Routing fees (@) Timeout differences (Aj)
le-6
1.61
1.4
o
g
g 1.2
=
g 1.0
et
s | |
= 0.8
=3
I |
=06 I | I
~
N INNER
0.2 i
0.0
0.0 0.2 04 0.6 0.8 1.0

Channel capacities (Uj5) 1e7

Figure 6.5: Distributions of routing fees (¢;;), HTLC-resolution delays (A,;), and
channel capacities (u;;) in the Lightning Network snapshot. The peaks in Aj;
correspond to the default values of the main Lightning Network implementations [4-
6].

to reflect realistic values in PCNs. We build 5 scale-free topologies with sizes
n € {512,1024, 2048, 4096, 8192}.

Lightning Network (LIN) snapshot. The second PCN is a snapshot of the Light-
ning Network built using a dataset of gossip messages'? collected by the developers
of the Core Lightning implementation [5, 81|. All messages in the dataset have a
timestamp, which allows us to replay them in order and reconstruct the network
topology at any given time. We reconstruct the topology as it was on the 1st of
July 2022 and recover missing arc information using LN explorers, which yields a
snapshot of approximately 14,000 nodes and 80,000 edges'®. The routing fees ¢;;, the
HTLC-resolution delays A;;, and the channel capacities u;; are obtained directly from
the snapshot, as these are advertised in gossip messages. We show their distributions
in Figure 6.5. The delivery probabilities are modeled like in the scale-free PCN; i.e.,

pij € [0.8,1]. For arc liquidities, we adopt two approaches: if the channel connects

12 Available at https://github.com /Inresearch/topology.
13We reconstructed LN topologies for other moments using the same method. We make all
reconstructed topologies available at https://gta.ufrj.br/ gabriel/files/In-graphs.tar.gz.

88

2
lj; = u;; — l;5. Otherwise, we assume channel liquidities are heavily biased towards

two central nodes', we set ;; = %], and set the liquidity of the opposite arc to
some node. We flip a coin to decide which node was the channel initiator i and
set the liquidities to l;; = 0.99 x u;; and [j; = u;; — [;;. We adopt this approach to
reflect that central-central channels tend to be balanced while central-peripherical
and peripheral-peripheral channels tend to be highly imbalanced [159]'5. Then, we
simulate 50,000 payments between random nodes using PCNSim and the credit
card payment dataset presented in Section 5.3.1 to recreate a realistic liquidity
distribution. Finally, we snowball-sample [167] the graph from the most central node
to create snapshots of sizes n € {512,1024, 2048, 4096, 8192} for comparisons with

the scale-free graphs.

6.5.2 GenPulse’s Performance

First, we aim to analyze how long it takes for GenPulse to find a constrained shortest
path in a network if such a path exists. To accomplish this, we select 50 random (s, t)
pairs from the scale-free PCN and the Lightning Network snapshot and compute the
average execution time of GenPulse for each graph. Note that among the (s,t) pairs,
pairs can be close to each other so that pulses arrive quickly regardless of how tight
the bounds are and pairs that are far away, such that many pulses propagate aimlessly
unless we have tight bounds. By selecting 50 random pairs, we expect both effects
will be covered, yielding a result that reflects the expected performance of GenPulse
for some random (s,t) in the graph. We run the experiment for ¢ € {0.05,0.1,...,1}
and all graph sizes n € {512,1024, 2048, 4096, 8192}.

Figure 6.6 depicts the performance results for GenPulse on both the scale-free
PCN and the Lightning Network snapshot. We observe three main findings. First,
increases in the network size cause a proportional increase in GenPulse’s execution
time for all ¢ values. This increase likely occurs because larger networks imply
more paths exist between s and ¢, which causes more pulses to propagate [80].
Similarly, an increase in the network size causes the CSP problem to be unsolvable
for high values of . This phenomenon occurs because the shortest paths tend to be
longer in large networks, yielding higher costs that are more likely to violate some
bound. Finally, for both networks, we observe that the tightness of the bound vector
significantly impacts GenPulse’s performance. This result confirms the assumption
that the pruning strategies represent the main strength of GenPulse: the tighter the

bounds, the more efficiently GenPulse directs pulses toward the constrained shortest

14Central nodes are nodes with high out-degree. We treat any node with degree deg™ > 20 as a
central node.

15This happens because most channels are unilaterally funded in LN [4-6]. In central-central
channels, however, this imbalance is corrected with rebalancing techniques to ensure the channel
can route transactions efficiently.

89

Scale-free PCN Lightning Network snapshot

4.0 - -
Graph size 51 Graph size
35 —f= 512] 4096 —+= 512] 4096
1024 -} 8192 1024 -} 8192
3.01 - 2048 1 —]- 2048

}

Execution time (s)
5] 5]
(=} W
—
—_
—_—
— s
—_
—_
i
—l
s
Execution time (s)
[38) w
—e-—

—
(=]
!

_
W
) : s

[=}

W

"

s -
b L e

+ B

+

+

1 i FEEFF

=
-
+

—

I ‘ \{» 3.
ASEEIECEH G
O.Oo'o 02 0.4 1.0 0.0 02 0.4 0.6 08 1.0

1 w

Figure 6.6: Performance of the GenPulse algorithm for several graph sizes and
1 values in a randomly-generated scale-free network and a Lightning Network
snapshot. The markers indicate a constrained shortest path has been found. The
results demonstrate that the tightness of side constraints significantly impacts the
algorithm’s performance.

path. The result is consistent with Pulse’s original results for a single constraint
constraint [162]. Thus, GenPulse should be used primarily to find payment paths in
use cases in which the entry node needs tight constraints, e.g., when nodes disconnect
for long periods and when the probability of HTLC loss is high.

A result not shown in the figure is that some rare executions of the algorithm
for the Lightning Network take an outstanding amount of time to finish when) is
very low. Besides the obvious reason that a low 1 causes high execution times, we
believe this behavior occurs specifically in the Lightning Network snapshot because
the distribution of routing fees is not uniform. Instead, most routing fees in the
Lightning Network snapshot fall into a small interval, which creates several shortest
paths with equal costs. Since GenPulse cannot know whether any path is optimal
until it verifies all feasible paths, it will keep iterating until it finds the last shortest
path. To avoid this case, we introduce an optional user-set timeout into GenPulse
that forces the algorithm to return the current best solution if the timeout expires.
Although the outputted path is not guaranteed to be optimal, we observe in practice
that it usually is given a reasonable timeout. Besides, the user can leverage timeout

expiration to increase ¢ and find constrained shortest paths more efficiently.

6.5.3 MultiPulse’s Performance

In our second analysis, we compare the performance of MultiPulse against several
flow allocation algorithms in the literature [134, 161, 164]. The comparison consists
of sending 100 payments (flows) of value P, € {10,100, ..., 10} in the network using
different algorithms. We adopt a Lightning Network snapshot with n = 512 nodes

and uniformly sample a set of 100 (s,¢) pairs to act as the source and sink nodes of

90

each payment, respectively. The (s,t) pair set is the same across all runs. We repeat
the experiment 30 times for each (s,t) pair to account for statistical variations. Our
performance metrics are the average execution time to deliver a payment and the

payment success rate expressed by:

Dy

PSR: P—V,

pPcpP

(6.25)

where P is a payment from s to ¢ with value Py, Dy is the delivered value (the
number of coins that successfully reach t), and P is the 100-payment set. Note
that we redefined the payment success rate of Equation 5.3 such that now PSR
measures the fraction of successfully delivered coins. The new definition accounts for
non-atomic multipath payments in which some payment parts reach their destination
while others fail. We consider a payment part k fails if: (i) any arc (4,j) € 7 has
insufficient liquidity to forward k, where 7, is the payment part’s path; or (ii) sending
k through 7 yields a cost vector ¢, that violates any side constraint.

We compare MultiPulse against three flow algorithms: Successive Shortest
Paths (SSP) [164], Lightning Multipath Payments (MPP) [161], and Pickhardt
Payments [134]. We provide a brief description of each algorithm below.

Successive Shortest Paths (SSP). The successive shortest paths algorithm is
optimal for solving the minimum-cost flow problem [164]. It iteratively augments a
flow f along the shortest paths in a residual network Ry, such that f is a maximum
flow with minimum cost when no path between s and ¢ exists in Rs. As SSP inspires
MultiPulse, the algorithms are very similar, except that MultiPulse augments flows
along the constrained shortest paths provided by GenPulse while SSP augments
flows along the (unconstrained) shortest paths provided by some classical shortest
path algorithm. In this analysis, we consider a version of SSP that finds shortest
paths using Dijkstra’s algorithm [144| (spp-dijkstra) and a version that finds
shortest paths using the Bellman-Ford algorithm [145] (spp-bf). For both versions,
the objective function the algorithm attempts to minimize is ¢(f) = Z(i, iea i fijs
which is the default objective function of the MCF problem with ¢;; = ¢;;.

Lightning Multipath Payments (MPP). Lightning MPP is the default multipath
payment routing algorithm for the Lightning Network. The algorithm attempts to
push all the flow through the shortest path in the network and splits the payment into
two parts if this attempt fails. Then, it tries to push one of the parts along the path.
It does this consecutively until a part is delivered. When this happens, MPP removes
the path from the network and attempts to send the remaining parts following the
same process as before until all parts are delivered, or there is no path from s to ¢.

The arc costs in MPP are a combination of routing fees, HTLC-resolution delays,

91

and delivery probabilities, such that ¢;; = ¢;; + M A;; +)\gp[jl, where A\; and \,
are user-set parameters that bias the cost towards some metric. This characteristic
categorizes MPP as a single mixed metric (SMM) algorithm. Besides, we can easily
see that MPP is sub-optimal as it does not allocate the maximum amount of flow on
each path. This behavior is intentional, as MPP privileges low execution times over
flow optimality [161]. We set \; = 1 and Ay = ¢;; for this work as these approximate
the default parameters of MPP in the most popular Lightning implementation [4].
Similar to the SSP algorithm, we compare MultiPulse with a version of MPP that
obtains shortest paths using Dijkstra’s algorithm (mpp-dijkstra) and another that
uses the Bellman-Ford algorithm (mpp-bf).

Pickhardt Payments. Pickhardt payments are a nickname for payments routed
using the algorithm proposed by René Pickhardt and Stefan Richter [134]|. This
algorithm uses a Lagrangian relaxation method [141, 168] to move the side constraints
of the CMCF problem into the objective function, effectively generating a variation of
the MCF problem. The relaxation permits solving the problem with general-purpose
MCF solvers [142, 143|, which are presumably fast, with the downside of possibly
yielding a sub-optimal solution w.r.t. the original CMCF problem. The objective
function of this variation is c(f) = 32, ;yea —In(pij) + i fij, where p is a user-set
parameter that biases the cost towards routing fees. The algorithm does not consider
HTLC-resolution delays. We set © = 100 in our experiments so that we optimize

mostly for routing fees.

Scenario 1: Known liquidities. In the first comparison, we consider channel
liquidities are known to all routing algorithms, so there is no uncertainty about arc
capacities. We use this scenario both to provide insights on how each algorithm
would behave if channel liquidities could be disclosed (for example, with channel
probing techniques) and to analyze the maximum efficiency of each algorithm given
a value of 1.

Figure 6.7 shows the obtained results, from which we draw the following obser-
vations. First, large payments increase the execution time and reduce the payment
success rate for all algorithms. This result is expected, as large payments cause
algorithms to search for more paths that can carry the flow. Second, the tightness of
the constraints drastically improves the performance of MultiPulse in terms of execu-
tion time to the point where it is comparable to the time performance of Lightning
MPP without giving up flow optimality. Finally, MultiPulse outperforms the other
algorithms in terms of payment success rates for all cases. As with GenPulse, these
results confirm that MultiPulse achieves its top performance when the constraints of
the CMCF problem are tight.

Scenario 2: Unknown liquidities. In our second comparison, we consider channel

92

Known liquidities (¢ = 0.2)

1.0

multipulse
- ssp-dijkstra
ssp-bf

mpp-dijkstra
mpp-bf
pickhardt

Payment success rate

0.0+ g g g T T - . +
10 100 100 10t 10’ 10° 10 100 10
Payment size
Known liquidities (¢ = 0.4)

1.04
—— multipulse

- ssp-dijkstra
ssp-bf
- mpp-dijkstra

mpp-bf
pickhardt

Payment success rate

10 100 100 10t 100 10° 10 100 10
Payment size
Known liquidities (¢ = 0.6)
1.0
—— multipulse
~==- ssp-dijkstra
0.8 —-— ssp-bf

------- mpp-dijkstra

mpp-bf

0 .6
6 pickhardt

Payment success rate

Payment size

Known liquidities (¢ = 0.8)

1.0

—— multipulse

-=-- ssp-dijkstra
0.8 1 —-— ssp-bf

mpp-dijkstra
-bf

0.61 o

— — pickhardt

Payment success rate

1 2 3 104

10°
Payment size

Execution time (s)

Execution time (s)

Execution time (s)

Execution time (s)

Known liquidities (¢ = 0.2)

1.21 —F— multipulse
--- ssp-dijkstra
1.04 —{— ssp-bf
' -} mpp-dijkstra Vi -
081 -} mpp-bf /|
| =} pickhardt V.
/Y. -
0.6 ; ‘?
0.4+
021 B
100 100 100 10t 10" 10° 107 100 10’
Payment size
Known liquidities (¢ = 0.4)
—}— multipulse
1.0 -J-- ssp-dijkstra —“I
—]— ssp-bf //
4+ mpp-dijkstra
0.8]. mpp-bf
pickhardt | 4.7 L
0.61
0.4+
0.2
10 100 100 10t 100 10° 10 100 10
Payment size
Known liquidities (¢ = 0.6)
—+ multipulse
1.04 —-- ssp-dijkstra /l'__
—]= ssp-bf //
-} mpp-dijkstra /
0.8 1.
mpp-bf /-
-} pickhardt /,//4 -

Payment size

Known liquidities (= 0.8)

—}— multipulse
1.04 ~ -~ ssp-dijkstra

—]— ssp-bf

]+ mpp-dijkstra
0.8 1]. mpp-bf

— | pickhardt

Payment size

Figure 6.7: Comparison between MultiPulse and other pathfinding algorithms in the

literature considering known liquidities.

93

Unknown liquidities (¢ = 0.2) Unknown liquidities (¢ = 0.2)

—— multipulse 2.59 — multipulse
~--- ssp-dijkstra --- ssp-dijkstra
° —-— ssp-bf 2.0 —{— ssp-bf
s [T NN N e mpp-dijkstra o) ' -} mpp-dijkstra
% mpp-bf g wof mpp-bf
§ — — pickhardt *: 1.57 =} pickhardt
2 oracle S
5 E
g L T e e I - B S
*
< (s I R 5 S PPN TE s S
=%} S
0.5 = prid
——— — 4 — —} —"
N B e s s = S at T- - A
0.0~ 2 3 4 s 6 i TS—_ 9 1 2 3 4 "5 6 i i "9
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Payment size Payment size
Unknown liquidities (¢ = 0.4) Unknown liquidities (¢ = 0.4)

multipulse 1.6 4 —— multipulse
ssp-dijkstra -J-- ssp-dijkstra
° ssp-bf 144 —]— ssp-bf o
s mpp-dijkstra =124 I+ mpp-dijkstra
% mpp-bf E e mpp-bf
§ pickhardt = 1.0 pickhardt
2 oracle =] P Y S A N SN2 A S
= = 0.
o |31
g %
2 =
a

10 10° ¥
Payment size Payment size
Unknown liquidities (¢ = 0.6) Unknown liquidities (¢ = 0.6)
1.0
—— multipulse 1.61 1+ multipulse
~--- ssp-dijkstra --- ssp-dijkstra
° ssp-bf L4+ —]= ssp-bf VAR N
K] mpp-dijkstra Z 124 I+ mpp-dijkstra / i
% mpp-bf g -} mpp-bf /I/
3 pickhardt 5 1.07 =} pickhardt - :]
3 z) —
2 g ;
= oracle 20581 //,j'_____;i
é 3 i
% 0.6 /s
S 5 0.6 /f 2
10° 10’ 10 100 100 10t 10’ 10° 10 10° 10
Payment size Payment size
Unknown liquidities (¢ = 0.8) Unknown liquidities (¢ = 0.8)
1.0 1.6
—— multipulse —}— multipulse
-==- ssp-dijkstra 1.49 - ssp-dijkstra
o 087 —-— ssp-bf —]= ssp-bf ~
= mpp-diik 2127 3 _dii 7
s pp-dijkstra) mpp-dijkstra
™ oyt 2 1o b oo X
§ 06 — — pickhardt ;";' -} pickhardt V2 PP St
2 T S~ —=— oracle .2 0.8 Jermeg ==
5 E
15 Q
E 2 0.6
3 5 0
~
0.4+
— —
0.2
10 10° 10 100 100 10t 100 10* 10 10t 10’

Payment size Payment size

Figure 6.8: Comparison between MultiPulse and other pathfinding algorithms in the
literature considering unknown liquidities.

94

liquidities are unknown. Unknown channel liquidities represent a realistic PCN
scenario in which payment routing algorithms must estimate liquidities using an
initial guess and then update the estimates according to payment results (we detailed
this process in Sections 6.1.2 and 6.1.4). Thus, in each experiment, each algorithm
builds an estimated liquidity network G, such that the liquidities /;; are sampled using
a uniform distribution U|0, u;;], where w;; is the capacity of the payment channel,
and the corresponding opposite liquidities, [j;, are set to lj; = u;; — l;;. Then, the
algorithm finds a feasible flow f in G, for the first payment in the 100-payment set,
attempts to send it, and updates the network according to the results of each path
7, € f. This process repeats until the algorithm attempts all payments. Moreover,
we include an optimal “oracle” algorithm that knows the actual liquidities of each arc,
causing its attempts never to fail. The oracle serves as a guide to analyze how distant
each algorithm’s payment success rate is from the network’s maximum achievable
payment success rate.

Figure 6.8 shows the results. The payment success rates follow a similar pattern
as in the experiment with known liquidities, with MultiPulse outperforming the
other algorithms. The difference is that all algorithms, including MultiPulse, lose
performance compared to the oracle. This result is a straightforward consequence of
liquidity estimation errors. Moreover, we observe a subtle performance degradation
concerning average execution times and standard deviations for all algorithms. This
behavior is likely caused by the extra time it takes to update liquidity estimates
and possibly by natural statistical variations, as the (s,t) pairs are not the same
across both experiments. Like before, MultiPulse’s time performance improves
proportionally to the tightness of the constraints and becomes comparable to the

performance of Lightning MPP when) is high.

6.6 Summary

In this chapter, we addressed the problem of routing payments in PCNs. We showed
that the general problem of payment routing can be modeled as a minimum-cost flow
(MCF) problem in a network of uncertain liquidities/arc capacities. Then, for the case
in which payments come from resource-constrained devices, it can be separated into
two sub-problems: (i) how to accelerate payment confirmations for light nodes, and
(ii) how to route payments efficiently given a set of application-specific constraints. In
the first sub-problem, we propose a secure payment scheme that confirms payments
immediately and routes them later using routing services provided by capable nodes.
In the second sub-problem, we show that the problem of payment routing with
application-specific restrictions can be modeled as a constrained minimum-cost flow

(CMCF) problem. We propose two payment routing algorithms, GenPulse and

95

MultiPulse, that solve the CMCF problem to find optimal constrained flows. The
results indicate that both GenPulse and MultiPulse are efficient and achieve their

best performances when the problem’s constraints are tight.

96

Chapter 7
Conclusion and Future Perspectives

Current PCNs depend on capable nodes to work. Specifically, they require nodes
to stay online at all times and assume nodes have enough bandwidth, storage, and
computing capacities to execute the security mechanisms involved in a payment.
Such assumptions are unrealistic for battery-powered devices with intermittent
connectivity patterns and limited resources, which typically communicate through
lossy wireless connections. Therefore, PCNs need to adapt their mechanisms to
consider these devices without compromising the network’s security and quality
of service. The literature on this topic is relatively scarce, with only a few works
proposing mechanisms that consider resource-constrained devices in their PCN
model |23, 25, 105, 106].

In this thesis, we provided several contributions that, we hope, help to improve
the state-of-the-art on PCNs for resource-constrained devices. Namely, we addressed

the four research challenges presented in the introduction in the following ways:

e Challenge #1 (Architecture): We proposed a hybrid PCN architecture
composed of a reliable core and peripheral unreliable light devices with lim-
ited resources. The architecture considers full nodes that perform the most
computationally-intensive tasks and store blockchain copies. In contrast, light
nodes communicate with them using TCP/IP connections to verify channel
states on demand. The architecture reflects IoT architectures that rely on

gateways and edge computing to offload tasks from resource-constrained devices.

e Challenge #2 (Channel Security): We proposed a simple mechanism based
on minimum lock-time windows to guarantee the security of payment channels
with resource-constrained devices. The mechanism considers the expected
downtime and download rates of mobile broadband connections. Our main
findings showed that the mechanism is most effective when the devices present

high to medium availability.

97

e Challenge #3 (Simulation): We proposed PCNsim, a lightweight PCN
simulator based on OMNeT—++ that allows researchers to simulate payments
under custom networking conditions. Our demonstrations show that PCNsim
can compare routing methods and send payments over unreliable communication
channels that mimic lossy wireless links between resource-constrained devices

and full nodes.

e Challenge #4 (Routing): We proposed a payment scheme that can accelerate
payment confirmations for time-sensitive applications with resource-constrained
devices and proposed two pathfinding algorithms, GenPulse and MultiPulse,
that can route payments optimally given application-specific constraints. The
performance results of GenPulse and MultiPulse indicate that both algorithms
are efficient and achieve their best performances when the problem’s constraints

are tight.

7.1 Open Challenges and Opportunities

Despite the recent advances, we note that PCNs are a new technology that needs
to be extensively studied. Apart from the challenges explicitly addressed in this
thesis, we identify several open opportunities for future researchers in the broad
topic of PCNs and the specific topic of PCNs with resource-constrained devices.
We provide a brief description of each opportunity below, separated into categories:
i) short-term, which contains challenges that are urgent and already being addressed
in the PCN community, ii) mid-term, which contains challenges which we expect will
be addressed in the next couple of years, and iii)long-term, which contains challenges

that are crucial to the popularization of PCNs in the future.

7.1.1 Short-term Challenges

Channel balancing. The channel liquidity distribution directly influences its
capacity to forward payments and overall payment success rates. Thus, keeping
channels balanced is a key concern in PCNs, whether they include light nodes or
not. However, as resource-constrained devices are most likely in the network’s
periphery, they can hardly ever adopt common rebalancing techniques that rely on
fee adjustments or circular payments [129, 130]. The usual solution is to close the
channel and reopen it, which incurs transaction fees and long waiting times. Some

recent proposals aim to reduce these costs in the Lightning Network {169, 170].

Node reputation systems. As we identified in Section 6.3.2, node anonymity is

fundamental in PCNs and blockchains in general, but it also has the drawback of

98

enabling attacks that cannot be prevented without some minimal level of trust. Thus,
a key challenge in PCNs is proposing an efficient node reputation system so that
some nodes can be considered more trustworthy than others. Reputation systems
have been proposed in a few works to prevent attacks [160, 171], but no large-scale
implementation has been tested so far. For instance, a node reputation system would
help improve the security of the anticipated payment confirmations we proposed for

resource-constrained devices in Section 6.3.

Autopilots and network design. As PCNs rapidly grow, the research community
is studying the best strategies of where to create a channel and how much to allocate
to it [172-176]. Such choices are crucial both to new nodes that want to have a
profitable channel and to the network as a whole, as they define how the topology
will evolve [175]. Some works have used game theory to predict what network designs
might emerge from such strategies and how efficient they are compared to an optimal
design! [172-174]. However, current PCN implementations usually offer autopilots
that create channels without considering such notions. Besides, this area is still
incipient regarding lack large-scale studies that could help determine the actual

distribution of channel-creation strategies.

7.1.2 Mid-term Challenges

Long disconnections. The minimum time-lock security mechanism against coin
theft that we propose becomes inefficient for cases where the resource-constrained
device disconnects for long periods (weeks or more). Besides, watchtower-based
security [158], the main alternative to our approach, only works if the node can
transmit a punishment transaction to the watchtower before disconnecting. Thus,
we know no efficient security mechanism that can protect nodes that disconnect for

long periods without warning.

Congestion control. PCNs face some challenges that are similar to traditional
packet-switched networks. For example, when multiple payments traverse the same
hops simultaneously, some channels may become congested or even exhausted. Con-
current payments can be especially troublesome for entry nodes connected to multiple
resource-constrained devices. Since payments have a deadline to fulfill and channels
might run out of capacity under heavy loads, PCNs should intelligently control
the channel load to provide quality service. This topic has received little attention
from the research community so far [109, 127] and thus represents a good research

direction.

!This problem is known as “the price of anarchy” in game theory.

99

7.1.3 Long-term Challenges

Delay-tolerant local PCNs. As PCN nodes only ever need to interact with the
blockchain for channel opening and closing, off-chain payments do not necessarily
need an Internet connection to occur; it suffices that all nodes interconnect. This char-
acteristic makes it possible to propose local PCNs that enable payments between light
devices inside isolated communities, similar to delay-tolerant local blockchains [177].
These local PCNs would establish and close channels synchronously when the com-

munity connects to the Internet and perform off-chain payments anytime.

Resource-constrained core nodes. In many types of networks, e.g., mobile ad-hoc
networks, vehicular ad-hoc networks, and wireless sensor networks, the resource-
constrained devices act as routers for datagrams. If a PCN operates on top of these
networks, the PCN’s core is also composed of devices with limited resources and
unreliable connections. Then, new challenges arise, such as proposing a lightweight
routing protocol that considers resource consumption metrics when routing and

dealing with heavy churn in the network.

7.2 Final Remarks

Given the proposals and the open challenges mentioned above, we conclude that PCNs
represent an incipient area with vast research opportunities, especially concerning
devices with limited resources. The results of this thesis demonstrate that this gap
can and is slowly being closed so that we will see the true potential of PCNs in a few
years. We hope that our studies and proposals will provide a solid foundation for
future research, helping to popularize the use of cryptocurrency in the life of ordinary
citizens. In future works, we intend to improve the privacy of the payment proofs in
our payment scheme and to implement GenPulse and MultiPulse inside PCNsim, so

we can test them under networking conditions that correspond to real environments.

100

References

[1] GUDGEON, L., MORENO-SANCHEZ, P., ROOS, S., et al. “SoK: Layer-two
Blockchain Protocols”. In: International Conference on Financial Cryptog-

raphy and Data Security, pp. 201-226. Springer, 2020.

[2] POON, J., DRYJA, T. “The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments”. 2016.

[3] RUSSELL, R., OTHERS. “BOLT #2: Peer Protocol for Channel Manage-
ment”. https://github.com/lightningnetwork/lightning-rfc/blob/
master/02-peer-protocol.md, 2022. Last access: Mar. 6th 2023.

[4] LIGHTNING LABS. “Lightning Network Daemon”. Available at https://github.
com/lightningnetwork/1nd, 2017. Last access: Mar. 6th 2023.

[5] ELEMENTS PROJECT. “Core Lightning (CLN): A specification compliant
Lightning Network implementation in C”. Available at https://github.
com/lightningnetwork/1nd, 2018. Last access: Mar. 6th 2023.

[6] ACINQ. “Eclair: A Scala implementation of the Lightning Network”. Available at
https://github.com/ACINQ/eclair, 2017. Last access: Mar. 6th 2023.

[7] ANDERSON, D., WOODRUFF, D. “Lecture #11: Network Flows III". Available
at https://www.cs.cmu.edu/~15451-£22/lectures/lec13-flow3.pdf,
2022. Last access: Mar. 6th 2023.

[8] NAKAMOTO, S. “Bitcoin: A peer-to-peer electronic cash system”. 2008.

[9] WOOD, G. “Ethereum: A Secure Decentralised Generalised Transaction Ledger”.
2014. Available at <http://bitcoinaffiliatelist.com/wp-content/
uploads/ethereum.pdf >.

[10] BLOCKCHAIN.COM. “Blockchain Charts”. 2022. Available at <https://www.
blockchain.com/charts>. Last access: Mar. 6th 2023.

[11] VISA INC. “Visa Annual Report”. 2022. Available at <https:
//s29.q94cdn.com/385744025/files/doc_downloads/2022/

101

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21

Visa-Inc-Fiscal-2022-Annual-Report.pdf>. Last access: Mar.
6th 2023.

BUTERIN, V. “Why sharding is great: demystifying the technical proper-
ties”. 2021. Available at <https://vitalik.ca/general/2021/04/07/
sharding.html>. Last access: Mar. 6th 2023.

HAFID, A., HAFID, A. S., SAMIH, M. “Scaling Blockchains: A Comprehensive
Survey”, IEEE Access, v. 8, pp. 125244-125262, 2020. ISSN: 2169-3536.
doi:10.1109/ACCESS.2020.3007251. Conference Name: IEEE Access.

SGUANCI, C., SPATAFORA, R., VERGANI, A. M. “Layer 2 Blockchain Scaling:
a Survey”. jul. 2021. Available at <http://arxiv.org/abs/2107.10881>.
arXiv:2107.10881 [cs.

GANGWAL, A., GANGAVALLI, H. R., THIRUPATHI, A. “A Survey of Layer-
Two Blockchain Protocols”. jul. 2022. Available at <http://arxiv.org/
abs/2204.08032>. arXiv:2204.08032 [cs|.

YANG, D., LONG, C., XU, H., et al. “A Review on Scalability of Blockchain”. In:
Proceedings of the 2020 The 2nd International Conference on Blockchain
Technology, pp. 1-6, 2020.

ZHOU, Q., HUANG, H., ZHENG, Z., et al. “Solutions to Scalability of
Blockchain: A Survey”, IEEE Access, v. 8, pp. 16440-16455, 2020.

SANKA, A. 1., CHEUNG, R. C. C. “A systematic review of blockchain scal-
ability: Issues, solutions, analysis and future research”, Journal of Net-
work and Computer Applications, v. 195, pp. 103232, dez. 2021. ISSN:
1084-8045. d0i:10.1016/j.jnca.2021.103232. Available at <https://www.
sciencedirect.com/science/article/pii/S1084804521002307 >.

CLOUDTWEAKS. “How Bitcoin Brought The Lightning Net-
work To El Salvador”. https://cloudtweaks.com/2021/07/
how-bitcoin-brought-lightning-network-el-salvador/, 2021.

Last access: Mar. 6th 2023.

BRAINBOT LABS EST. “The Raiden Network: Fast, cheap, scalable token
transfers for Ethereum”. 2020. Available at <https://raiden.network/>.
Available at: https://raiden.network/. Last access: Mar. 6th 2023.

REED, M. G., SYVERSON, P. F., GOLDSCHLAG, D. M. “Anonymous
connections and onion routing”, IEEE Journal on Selected areas in Com-
munications, v. 16, n. 4, pp. 482-494, 1998.

102

[22] ERDIN, E., MERCAN, S.; AKKAYA, K. “An Evaluation of Cryptocurrency
Payment Channel Networks and Their Privacy Implications”. fev. 2021.
Available at <http://arxiv.org/abs/2102.02659>. arXiv:2102.02659

[cs].

[23] KURT, A., AKKAYA, K., YILMAZ, S., et al. “LNGate?: Secure Bidirectional
IoT Micro-payments using Bitcoin’s Lightning Network and Threshold
Cryptography”. jun. 2022. Available at <http://arxiv.org/abs/2206.
02248>. arXiv:2206.02248 |cs].

[24] MERCAN, S., ERDIN, E., AKKAYA, K. “Improving Transaction Suc-
cess Rate via Smart Gateway Selection in Cryptocurrency Pay-
ment Channel Networks”. In: 2020 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pp. 1-3, maio 2020.
doi:10.1109/ICBC48266.2020.9169458.

[25] HANNON, C., JIN, D. “Bitcoin payment-channels for resource limited IoT
devices”. In: IEEE COINS, pp. 50-57, 2019.

[26] ROBERT, J., KUBLER, S., GHATPANDE, S. “Enhanced Lightning Network
(off-chain)-based micropayment in IoT ecosystems”, Future Generation
Computer Systems, v. 112, pp. 283-296, 2020.

[27] CISCO. “Cisco Annual Internet Report (2018-2023) White Pa-
per”. 2020. Available at <cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.pdf >. Last access: Mar. 6th 2023.

[28] GEISSLER, S., WAMSER, F., BAUER, W., et al. “Signaling Traffic in Internet-
of-Things Mobile Networks”. Tn: 2021 IFIP/IEEE IM, pp. 452458, 2021.

[29] BALTRUNAS, D., ELMOKASHFI, A., KVALBEIN, A. “Measuring the reli-
ability of mobile broadband networks”. In: 14th ACM IMC, pp. 45-58,
2014.

[30] ELMOKASHFI, A., ZHOU, D., BALTRUNAS, D. “Adding the next nine: An
investigation of mobile broadband networks availability”. In: 23rd ACM
MobiCom, pp. 88-100, 2017.

[31] OMNET++. “OMNeT++ Discrete Event Simulator”. Available at https:
//omnetpp.org/., 2023. Last access: Mar. 6th 2023.

[32] NGUYEN, G.-T., KIM, K. “A Survey about Consensus Algorithms Used in

Blockchain”, Journal of Information Processing Systems, v. 14, n. 1,

103

pp. 101-128, 2018. ISSN: 1976-913X. doi:10.3745/JIPS.01.0024. Avail-
able at <https://koreascience.kr/article/JAK0201810256452304.

page>. Publisher: Korea Information Processing Society.

[33] NASIR, M. H., ARSHAD, J., KHAN, M. M. et al “Scalable
blockchains — A systematic review”, Future Generation Com-
puter Systems, v. 126, pp. 136-162, jan. 2022. ISSN: 0167-
739X. doi:10.1016/j.future.2021.07.035. Available at <https://www.
sciencedirect.com/science/article/pii/S0167739X21002971>.

[34] KIM, S., KWON, Y., CHO, S. “A Survey of Scalability Solutions on Blockchain”.
In: 2018 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 1204-1207, 2018.

[35] XIE, J., YU, F. R.,, HUANG, T\, et al. “A Survey on the Scalability of Blockchain
Systems”, IEEE Network, v. 33, n. 5, pp. 166173, 2019.

[36] KHAN, D., JUNG, L. T., HASHMANI, M. A. “Systematic Literature Review
of Challenges in Blockchain Scalability”, Applied Sciences, v. 11, n. 20,
pp. 9372, jan. 2021. ISSN: 2076-3417. doi:10.3390/app11209372. Avail-
able at <https://www.mdpi.com/2076-3417/11/20/9372>. Number: 20
Publisher: Multidisciplinary Digital Publishing Institute.

[37] POPOV, 8. “The Tangle”, cit. on, p. 131, 2017. https:
//assets.ctfassets.net/rldrévzfxhev/2t4uxvsIqkOEUaubg2swig/
45eae33637ca92f85dd9f4a3a218elec/iotal_4_3.pdf. Last access:
Mar. 6th 2023.

[38] BAIRD, L., LUYKX, A. “The Hashgraph Protocol: Efficient Asynchronous
BFT for High-Throughput Distributed Ledgers”. In: 2020 International
Conference on Omni-layer Intelligent Systems (COINS), pp. 1-7, 2020.
d0i:10.1109/COINS49042.2020.9191430.

[39] XTAO, Y., ZHANG, N., LOU, W, et al. “A Survey of Distributed Consensus
Protocols for Blockchain Networks”, IEEE Communications Surveys &
Tutorials, v. 22, n. 2, pp. 1432-1465, 2020.

[40] REBELLO, G. A. F., CAMILO, G. F., GUIMARAES, L. C., et al. “A security
and performance analysis of proof-based consensus protocols”, Annals of

Telecommunications, pp. 1-21, 2021.

[41] CHEN, J., MICALI, S. “Algorand: A Secure and Efficient Distributed Ledger”,
Theoretical Computer Science, v. 777, pp. 155183, 2019.

104

[42] EYAL, 1., GENCER, A. E., SIRER, E. G., et al. “{Bitcoin-NG}: A scalable
blockchain protocol”. In: 15th USENIX symposium on networked systems
design and implementation (NSDI 16), pp. 45-59, 2016.

[43] CASTRO, M., LISKOV, B. “Practical Byzantine Fault Tolerance”. In: Pro-
ceedings of the Third Symposium on Operating Systems Design and Im-
plementation, OSDI '99, pp. 173-186, Berkeley, CA, USA, 1999. USENIX
Association. ISBN: 1-880446-39-1.

[44] YIN, M., MALKHI, D., REITER, M. K., et al. “Hotstuff: Bft consensus with
linearity and responsiveness”. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 347-356, 2019.

[45] ANGELIS, S. D., ANIELLO, L., BALDONI, R., et al. “PBFT vs proof-of-
authority: applying the CAP theorem to permissioned blockchain”. In:
Italian Conference on Cyber Security (06/02/18), January 2018. Available
at <https://eprints.soton.ac.uk/415083/>.

[46] THE HYPERLEDGER FOUNDATION. “Hyperledger Sawtooth”. Available
at https://sawtooth.hyperledger.org/, 2022. Last access: Mar. 6th
2023.

[47] MILLER, A., XIA, Y., CROMAN, K., et al. “The Honey Badger of BFT Proto-
cols.” In: ACM Conference on Computer and Communications Security,
pp. 31-42. ACM, 2016. doi:10.1145/2976749.2978399.

[48] GUO, B., LU, Z., TANG, Q., et al. “Dumbo: Faster asynchronous bft protocols”.
In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 803-818, 2020.

[49] GUO, B., LU, Y., LU, Z., et al. “Speeding dumbo: Pushing asynchronous bft
closer to practice”, Cryptology ePrint Archive, 2022.

[50] GAO, Y., LU, Y., LU, Z., et al. “Dumbo-NG: Fast asynchronous bft consensus
with throughput-oblivious latency”. In: Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security, pp. 1187—
1201, 2022.

[51] ANDROULAKI, E., OTHERS. “Hyperledger Fabric: a distributed operating
system for permissioned blockchains”. In: 13th FuroSys Conference, p. 30,
2018.

105

[52] CHEN, L., XU, L., SHAH, N., et al. “On security analysis of proof-of-elapsed-
time (poet)”. In: International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pp. 282-297. Springer, 2017.

[53] SCHWARTZ, D., YOUNGS, N., BRITTO, A. “The Ripple pro-
tocol consensus algorithm”, Ripple Labs Inc White Paper, 2014.
https:/ /ripple.com/files /ripple consensus_whitepaper.pdf.

[54] LARIMER, D. “EOS.IO White Paper”. 2017. Available at
https://developers.eos.io/-welcome/latest /protocol /consensus_ pro-
tocol. Last access: Mar. 6th 2023.

[55] AMOUSSOU-GUENOU, Y., DEL POZZO, A., POTOP-BUTUCARU, M.,
et al. “Dissecting tendermint”. In: International Conference on Networked
Systems, pp. 166-182. Springer, 2019.

[56] BUCHMAN, E. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Tese de Doutorado, University of Guelph, 2016.

[57] YANG, F., ZHOU, W., WU, Q., et al. “Delegated Proof of Stake with Downgrade:
A Secure and Efficient Blockchain Consensus Algorithm with Downgrade
Mechanism”, IEEE Access, v. 7, pp. 118541-118555, 2019.

[58] XU, J., WANG, C., JIA, X. “A Survey of Blockchain Consensus Protocols”,
ACM Computing Surveys, 2023.

[59] PAPADIS, N., TASSIULAS, L. “Blockchain-Based Payment Channel Networks:
Challenges and Recent Advances”, IEEE Access, v. 8, pp. 227596-227609,
2020. ISSN: 2169-3536. do0i:10.1109/ACCESS.2020.3046020. Conference
Name: IEEE Access.

[60] KHOJASTEH, H., TABATABAEI, H. “A Survey and Taxonomy of Blockchain-
based Payment Channel Networks” In: 2021 [IEEE High Perfor-
mance FExtreme Computing Conference (HPEC), pp. 1-8, set. 2021.
doi:10.1109/HPEC49654.2021.9622868. ISSN: 2643-1971.

[61] SAKAKIBARA, Y., MORISHIMA, S., NAKAMURA, K., et al. “A Hardware-
based Caching System on FPGA NIC for Blockchain”, IEICE Transactions
on Information and Systems, v. 101, n. 5, pp. 1350-1360, 2018.

[62] JAVAID, H., YANG, J., SANTOSO, N, et al. “Blockchain machine: A network-
attached hardware accelerator for hyperledger fabric”, arXiv preprint

arXiv:2104.06968, 2021.

106

[63] LIND, J., NAOR, O., EYAL, L., et al. “Teechain: A Secure Payment Network
with Asynchronous Blockchain Access”. In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 19, p. 63-79, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN:
9781450368735. doi:10.1145/3341301.3359627. Available at <https://
doi.org/10.1145/3341301.3359627 >.

[64] WUILLE, P., NICK, J., TOWNS, A. “Taproot: SegWit Version 1 Spending
Rules”. Available at https://github.com/bitcoin/bips/blob/master/
bip-0341.mediawiki, 2020. Last access: Mar. 6th 2023.

[65] LOMBROZO, E., LAU, J., WUILLE, P. “BIP 141: Segregated Witness
(Consensus Layer)”. Available at https://www.omgwiki.org/dido/doku.
php?id=dido:public:ra:xapend:xapend.b_stds:defact:bitcoin:
bips:bip_0141, 2015. Last access: Mar. 6th 2023.

[66] JOURENKO, M., KURAZAMI, K., LARANGEIRA, M., et al. “SoK: A Taxon-
omy for Layer-2 Scalability Related Protocols for Cryptocurrencies”. 2019.
Available at <https://eprint.iacr.org/2019/352>. Report Number:
352.

[67] TEIXEIRA, A., NEHAB, D. “The core of cartesi”, Whitepaper, Cartesi, 2018.

[68] BITANSKY, N., CANETTI, R., CHIESA, A., et al. “From Extractable Col-
lision Resistance to Succinct Non-Interactive Arguments of Knowledge,
and Back Again”. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS 12, p. 326-349, New York, NY,
USA, 2012. Association for Computing Machinery. ISBN: 9781450311151.
doi:10.1145,/2090236.2090263. Available at <https://doi.org/10.1145/
2090236.2090263>.

[69] BEN-SASSON, E., BENTOV, I., HORESH, Y., et al. “Scalable, transparent, and
post-quantum secure computational integrity”. Cryptology ePrint Archive,
Paper 2018/046, 2018. Available at <https://eprint.iacr.org/2018/
046>. https://eprint.iacr.org/2018/046.

[70] DZIEMBOWSKI, S., FAUST, S., HOSTAKOVA, K. “General State Chan-
nel Networks”. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS "18, p. 949-966, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN:
9781450356930. doi:10.1145/3243734.3243856. Available at <https:
//doi.org/10.1145/3243734.3243856>.

107

[71] BITCOIN WIKI. “Multi-signature”. Available at https://en.bitcoin.it/
wiki/Multi-signature, 2021. Last access: Mar. 6th 2023.

[72] SPILMAN, J. “|Bitcoin-development| Anti DoS for tx Replace-
ment”. Available at https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2013-April/002433.html, 2013.

[73] DECKER, C., WATTENHOFER, R. “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels”. In: Pelc, A., Schwarzmann,
A. A. (Eds.), Stabilization, Safety, and Security of Distributed Systems,
pp- 3-18, Cham, 2015. Springer International Publishing. ISBN: 978-3-
319-21741-3.

[74] BITCOINJ.ORG. “bitcoinj”. Available at https://bitcoinj.org/., 2022.

[75] BITCOINWIKI. “Script - Bitcoin Wiki”. Available at https://en.bitcoin.
it/wiki/Script, 2021.

[76] TOWNS, A., OTHERS. “BOLT #0: Introduction and Index”. https://github.
com/lightning/bolts/blob/master/00-introduction.md, 2022. Last
access: Mar. 6th 2023.

[77] BITCOIN WIKI. “Hash Time Locked Contracts”. Available at https://
en.bitcoin.it/wiki/Hash_Time_Locked_Contracts, 2021. Last access:
Mar. 6th 2023.

[78] TODD, P. “OP _CHECKLOCKTIMEVERIFY”. Available at https://github.
com/bitcoin/bips/blob/master/bip-0065.mediawiki, 2014. Last ac-
cess: Mar. 6th 2023.

[79] ZHAO, Z., ZHOU, L., SU, C. “Systematic Research on Technology
and Challenges of Lightning Network” In: 2021 IEEE Conference
on Dependable and Secure Computing (DSC), pp. 1-8, jan. 2021.
doi:10.1109/DSC49826.2021.9346275.

[80] CAMILO, G. F., REBELLO, G. A. F., SOUZA, L. A., et al. “Topological
Evolution Analysis of Payment Channels in the Lightning Network”. In:
IEEFE Latin-American Conference on Communications (LATINCOM),
2022.

[81] DECKER, C. “Lightning Network Research; Topology Datasets”. https://
github.com/lnresearch/topology, 2021. Last access: Mar. 6th 2023.

[82] LIGHTNING NETWORK DEVELOPERS. “Lightning App Directory”. Avail-
able at https://dev.lightning.community/lapps/, 2022.

108

33

[84]

[85]

[36]

[87]

38

[89]

[90]

[91]

DINGLEDINE, R., MATHEWSON, N., SYVERSON, P. “Tor:
The Second-Generation Onion Router”. In: 13th USENIX Se-
curity Symposium (USENIX Security 04), San Diego, CA,
ago. 2004. USENIX Association. Available at <https://www.
usenix.org/conference/13th-usenix-security-symposium/

tor-second-generation-onion-router>.

MCCOY, D., BAUER, K., GRUNWALD, D., et al. “Shining light in dark places:
Understanding the Tor network”. In: Privacy Enhancing Technologies: Sth
International Symposium, PETS 2008 Leuven, Belgium, July 23-25, 2008
Proceedings 8, pp. 63-76. Springer, 2008.

RUSSELL, R., OTHERS. “BOLT +#3: Bitcoin Transaction and
Script Formats”. https://github.com/lightning/bolts/blob/master/
03-transactions.md#fees, 2022. Last access: Mar. 6th 2023.

ZABKA, P., FORSTER, K.-T., SCHMID, S., et al. “Node Classification and
Geographical Analysis of the Lightning Cryptocurrency Network”. In: In-
ternational Conference on Distributed Computing and Networking 2021,
ICDCN 21, p. 126-135, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN: 9781450389334. doi:10.1145/3427796.3427837.
Available at <https://doi.org/10.1145/3427796.3427837>.

SERES, 1. A., GULYAS, L., NAGY, D. A, et al. “Topological analysis of
bitcoin’s lightning network”. In: Mathematical Research for Blockchain

Economy, pp. 1-12. Springer, 2020.

LIN, J.-H., PRIMICERIO, K., SQUARTINI, T., et al. “Lightning Network: a
second path towards centralisation of the Bitcoin economy”, New Journal
of Physics, v. 22, n. 8, pp. 083022, 2020.

ROHRER, E., MALLIARIS, J., TSCHORSCH, F. “Discharged Payment Chan-
nels: Quantifying the Lightning Network’s Resilience to Topology-Based At-
tacks”. In: 2019 IEEFE Furopean Symposium on Security and Privacy Work-
shops (EuroS PW), pp. 347-356, 2019. doi:10.1109/EuroSPW.2019.00045.

MILLER, A., BENTOV, I., KUMARESAN, R., et al. “Sprites and State
Channels: Payment Networks that Go Faster than Lightning”. 2017.

TRINITY. “Trinity White Paper: Universal Off-chain Scaling Solution”. 2018.
Available at <https://www.trinity.tech/#/writepaper>. Last access:
Mar. 6th 2023.

109

92|

93]

[94]

[95]

[96]

[97]

198

[99]

INTOTHEBLOCK. “Raiden Network Statistics”. 2022. Available at
<https://app.intotheblock.com/coin/RDN/deep-dive?group=
network&chart=all>. Last access: Mar. 6th 2023.

MESSARI. “Raiden Network Market Data”. 2022. Available at <https://
messari.io/asset/raiden-network/metrics/all>. Last access: Mar.
6th 2023.

BRAINBOT LABS EST. “Raiden Explorer”. 2022. Available at <https:
//explorer.raiden.network/tokens>. Last access: Mar. 6th 2023.

MCCORRY, P., BAKSHI, S., BENTOV, 1., et al. “Pisa: Arbitration Outsourc-
ing for State Channels”. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 16-30, 2019.

LIND, J., EYAL, 1., KELBERT, F., et al. “Teechain: Scalable Blockchain
Payments using Trusted Execution Environments”, arXiw preprint
arXw:1707.05454, 2017.

GREEN, M., MIERS, I. “BOLT: Anonymous Payment Channels for Decentral-
ized Currencies”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 473-489, 2017.

HOPWOOD, D., BOWE, S., HORNBY, T., et al. “Zcash protocol specification”,
GitHub: San Francisco, CA, USA, v. 4, pp. 220, 2016.

HEILMAN, E., ALSHENIBR, L., BALDIMTSI, F., et al. “TumbleBit: An
Untrusted Bitcoin-Compatible Anonymous Payment Hub”. In: PRoceedings
of the Network and Distributed System Securty Symposium (NDSS), 2017.

[100] MALAVOLTA, G., MORENO-SANCHEZ, P., KATE, A., et al. “Concurrency

and Privacy with Payment-Channel Networks”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017.

[101] ERDIN, E., MERCAN, S., AKKAYA, K. “An Evaluation of Cryptocur-

rency Payment Channel Networks and Their Privacy Implications”, arXiv
preprint arXiw:2102.02659, 2021.

[102] CAMILO, G. F., REBELLO, G. A. F., DE SOUZA, L. A. C., et al. “A

Secure Personal-Data Trading System Based on Blockchain, Trust, and
Reputation”. In: 2020 IEEE International Conference on Blockchain, pp.
379-384, 2020.

110

[103] ROOS, S., MORENO-SANCHEZ, P., KATE, A., et al. “Settling Payments Fast
and Private: Efficient Decentralized Routing for Path-Based Transactions”.
In: Proceedings of the 2018 Network and Distributed System Security
Symposium. Internet Society, 2018. Available at <http://arxiv.org/
abs/1709.05748>. arXiv: 1709.05748.

[104] OECD. “Mobile broadband subscriptions indicator”. 2021. Available at <https:
//doi.org/10.1787/1277ddc6-en>. Last access: Mar. 6th 2023.

[105] KURT, A., MERCAN, S., SHLOMOVITS, O., et al. “LNGate: Powering
[oT with Next Generation Lightning Micro-Payments using Threshold
Cryptography”. In: Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec '21, pp. 117-128,
New York, NY, USA, jun. 2021. Association for Computing Machinery.
ISBN: 978-1-4503-8349-3. do0i:10.1145/3448300.3467833. Available at
<https://doi.org/10.1145/3448300.3467833>.

[106] MERCAN, S., ERDIN, E., AKKAYA, K. “Improving sustainability of cryptocur-
rency payment networks for IoT applications”. In: IEEE ICC Workshops,
pp. 1-6. IEEE, 2020.

[107] TOCHNER, S., ZOHAR, A., SCHMID, S. “Route Hijacking and DoS in Off-
chain Networks”. In: Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, pp. 228-240, 2020.

[108] RILEY, G. F., HENDERSON, T. R. “The ns-3 Network Simulator”. In:
Wehrle, K., Giineg, M., Gross, J. (Eds.), Modeling and Tools for Network
Simulation, Springer, pp. 15-34, Berlin, Heidelberg, 2010. ISBN: 978-
3-642-12331-3. doi:10.1007/978-3-642-12331-3 2. Available at <https:
//doi.org/10.1007/978-3-642-12331-3_2>.

[109] SIVARAMAN, V., VENKATAKRISHNAN, S. B., RUAN, K., et al. “High
Throughput Cryptocurrency Routing in Payment Channel Networks”.
In: 17th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 20), pp. 777-796, 2020. ISBN: 978-1-939133-
13-7. Available at <https://www.usenix.org/conference/nsdi20/

presentation/sivaraman>.

[110] OMNET++. “INET framework”. Available at https://inet.omnetpp.org/.,
2023. Last access: Mar. 6th 2023.

[111] WATTS, D. J., STROGATZ, S. H. “Collective dynamics of ‘small-
world networks”, nature, v. 393, n. 6684, pp. 440442, 1998.

111

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

ALBERT, R., BARABASI, A.-L. “Statistical mechanics of complex networks”,
Reviews of modern physics, v. 74, n. 1, pp. 47, 2002.

BARABASI, A.-L., BONABEAU, E. “Scale-free networks”, Scientific american,
v. 288, n. 5, pp. 60-69, 2003.

PRACUCCI, M. “Linux TCP_RTO_MIN, TCP RTO MAX and
the tcp retries2 sysctl”. Available at https://pracucci.com/
linux-tcp-rto-min-max-and-tcp-retries2.html., 2023. Last
access: Mar. 6th 2023.

INET FRAMEWORK. “Packet Loss vs. Distance Using Various WiFi
Bitrates”. Available at https://inet.omnetpp.org/docs/showcases/
wireless/errorrate/doc/index.html., 2023. Last access: Mar. 6th
2023.

LAKSHMINARAYANAN, K., SESHAN, S., STEENKISTE, P. “Understanding
802.11 performance in heterogeneous environments”. In: Proceedings of the
2nd ACM SIGCOMM workshop on Home networks, pp. 4348, 2011.

IEEE. “802.11¢g-2003 - IEEE Standard for Information technology— Local and
metropolitan area networks— Specific requirements— Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Further Higher Data Rate Extension in the 2.4 GHz Band”, IEEE Std
802.11g-2003, pp. 1-104, 2003. doi:10.1109/TEEESTD.2003.94282.

HO, M.-J., WANG, J., SHELBY, K., et al. “IEEE 802.11 g OFDM WLAN
throughput performance”. In: 2003 IEEE 58th Vehicular Technology Con-
ference. VT'C 2005-Fall (IEEE Cat. No. 03CH37484), v. 4, pp. 2252-2256.
IEEE, 2003.

DAO, N. T., MALANEY, R. A. “Throughput performance of saturated 802.11
g networks”. In: The 2nd International Conference on Wireless Broadband
and Ultra Wideband Communications (AusWireless 2007), pp. 31-31. IEEE,
2007.

DOEFEXI, A., ARMOUR, S., LEE, B.-S., et al. “An evaluation of the
performance of IEEE 802.11 a and 802.11 g wireless local area networks
in a corporate office environment”. In: IEEFE International Conference on
Communications, 2003. ICC’03., v. 2, pp. 1196-1200. IEEE, 2003.

CONOSCENTI, M., VETRO, A., DE MARTIN, J. C. “CLoTH: A Light-
ning Network Simulator”, SoftwareX, v. 15, pp. 100717, jul. 2021. ISSN:

112

2352-7110. doi:10.1016/j.s0ftx.2021.100717. Available at <https://www.
sciencedirect.com/science/article/pii/S2352711021000613>.

[122] PIATKIVSKYI, D., NOWOSTAWSKI, M. “Split Payments in Payment
Networks”. In: Garcia-Alfaro, J., Herrera-Joancomarti, J., Livraga,
G., et al. (Eds.), Data Privacy Management, Cryptocurrencies and
Blockchain Technology, Lecture Notes in Computer Science, pp. 67-75,
Cham, 2018. Springer International Publishing. ISBN: 978-3-030-00305-0.
doi:10.1007/978-3-030-00305-0 5.

[123] DI STASI, G., AVALLONE, S., CANONICO, R., et al. “Routing Payments
on the Lightning Network”. In: 2018 IEEFE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 1161-1170, jul. 2018.
doi:10.1109/Cybermatics 2018.2018.00209.

[124] BERES, F., SERES, I. A., BENCZUR, A. A. A Cryptoeconomic Traffic Anal-
ysis of Bitcoin’s Lightning Network. Relatério Técnico arXiv:1911.09432,
arXiv, jul. 2020. Available at <http://arxiv.org/abs/1911.09432>.
arXiv:1911.09432 [cs| type: article.

[125] KAPPOS, G., YOUSAF, H., PIOTROWSKA, A., et al. “An Empirical Analysis
of Privacy in the Lightning Network”. In: Borisov, N., Diaz, C. (Eds.),
Financial Cryptography and Data Security, Lecture Notes in Computer
Science, pp. 167-186, Berlin, Heidelberg, 2021. Springer. ISBN: 978-3-662-
64322-8. d0i:10.1007/978-3-662-64322-8 8.

[126] YU, R., XUE, G., KILARI, V. T., et al. “CoinExpress: A Fast Payment
Routing Mechanism in Blockchain-Based Payment Channel Networks”.
In: 2018 27th International Conference on Computer Communication and
Networks (ICCCN), pp. 1-9, jul. 2018. doi:10.1109/ICCCN.2018.8487351.
ISSN: 1095-2055.

[127] PAPADIS, N., TASSIULAS, L. “Payment Channel Networks: Single-Hop
Scheduling for Throughput Maximization”. In: IEEE INFOCOM 2022 -

IEEE Conference on Computer Communications, pp. 900-909, maio 2022.
doi:10.1109/INFOCOM48880.2022.9796862. ISSN: 2641-9874.

[128] REBELLO, G. A. F., CAMILO, G. F., POTOP-BUTUCARU, M., et al.
“PCNsim: A Flexible and Modular Simulator for Payment Channel Net-
works”. In: IEEE INFOCOM 2022 - IEEE Conference on Computer

113

Communications Workshops (INFOCOM WKSHPS), pp. 1-2, maio 2022.
doi:10.1109/INFOCOMWKSHPS54753.2022.9798003.

[129] AWATHARE, N., SURAJ, AKASH, et al. “REBAL: Channel Balancing for Pay-
ment Channel Networks”. In: 2021 29th International Symposium on Model-

ing, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 1-8, 2021. doi:10.1109/MASCOTS53633.2021.9614304.

[130] PICKHARDT, R., NOWOSTAWSKI, M. “Imbalance measure and proactive
channel rebalancing algorithm for the Lightning Network”. In: 2020 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pp.
1-5. IEEE, 2020.

[131] AVARIKIOTI, Z., PIETRZAK, K., SALEM, L, et al. “HIDE & SEEK: Privacy-
Preserving Rebalancing on Payment Channel Networks”. Cryptology ePrint
Archive, Paper 2021/1401, 2021. Available at <https://eprint.iacr.
org/2021/1401>. https://eprint.iacr.org/2021/1401.

[132] WANG, P., XU, H., JIN, X., et al. “Flash: Efficient Dynamic Rout-
ing for Off-chain Networks”. In: Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies, pp.
370-381, Orlando Florida, dez. 2019. ACM. ISBN: 978-1-4503-6998-5.
doi:10.1145/3359989.3365411. Available at <https://dl.acm.org/doi/
10.1145/3359989.3365411>.

[133] OSUNTOKUN, O. “[|Lightning-dev] AMP: Atomic Multi-Path Payments
over Lightning”. Available at https://lists.linuxfoundation.org/
pipermail/lightning-dev/2018-February/000993.html, 2018. Last
access: Mar. 6th 2023.

[134] PICKHARDT, R., RICHTER, S. “Optimally Reliable & Cheap Payment Flows
on the Lightning Network”, arXiv:2107.05322 [cs], jul. 2021. Available at
<http://arxiv.org/abs/2107.05322>. arXiv: 2107.05322.

[135] ANTONOPOULOS, A. M., OSUNTOKUN, O., PICKHARDT, R. Mastering
the Lightning Network. O’Reilly Media, Inc., 2021.

[136] PRIHODKO, P., ZHIGULIN, S., SAHNO, M., et al. “Flare: An Approach to
Routing in Lightning Network”, Last access: Mar. 6th 2023, 2016.

[137] MAZUMDAR, S., RUJ, S., SINGH, R. G., et al “HushRelay:
A Privacy-Preserving, Efficient, and Scalable Routing Algorithm
for Off-Chain Payments”. In: 2020 IEEE International Conference

114

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

on Blockchain and Cryptocurrency (ICBC), pp. 1-5, maio 2020.
doi:10.1109/1CBC48266.2020.9169405.

LIN, C., MA, N., WANG, X., et al. “Rapido: Scaling blockchain with multi-path
payment channels”, Neurocomputing, v. 406, pp. 322-332, 2020.

ZHANG, Y., YANG, D., XUE, G. “CheaPay: An Optimal Algorithm for Fee
Minimization in Blockchain-Based Payment Channel Networks”. In: ICC
2019 - 2019 IEEE International Conference on Communications (ICC),
pp. 1-6, maio 2019. doi:10.1109/1CC.2019.8761804. ISSN: 1938-1883.

ZHANG, Y., YANG, D. “RobustPay+: Robust Payment Routing With Ap-
proximation Guarantee in Blockchain-Based Payment Channel Networks”,
IEEE/ACM Transactions on Networking, v. 29, n. 4, pp. 1676-1686, ago.
2021. ISSN: 1558-2566. doi:10.1109/TNET.2021.3069725. Conference
Name: IEEE/ACM Transactions on Networking.

AHUJA, R. K., MAGNANTI, T. L., ORLIN, J. B. Network flows. Prentice-Hall,
Inc., 1993.

HAGBERG, A., SWART, P., S CHULT, D. Exploring network structure,
dynamics, and function using NetworkX. Relatorio técnico, Los Alamos

National Lab.(LANL), Los Alamos, NM (United States), 2008.

BLIEK1U, C., BONAMI, P., LODI, A. “Solving mixed-integer quadratic pro-
gramming problems with IBM-CPLEX: a progress report”. In: Proceedings
of the twenty-sizth RAMP symposium, pp. 16-17, 2014.

DIJKSTRA, E. W. “A note on two problems in connexion with graphs”,
Numerische mathematik, v. 1, n. 1, pp. 269-271, 1959.

BELLMAN, R. “On a routing problem”, Quarterly of Applied Mathe-
matics, v. 16, n. 1, pp. 87-90, 1958. ISSN: 0033-569X, 1552-4485.
doi:10.1090/qam/102435. Available at <https://www.ams.org/qam/
1958-16-01/50033-569X-1958-0102435-2/>.

LIN, C., MA, N., WANG, X., et al. “Rapido: Scaling blockchain with multi-path
payment channels”, Neurocomputing, v. 406, pp. 322-332, set. 2020. ISSN:
0925-2312. doi:10.1016/j.neucom.2019.09.114. Available at <https://www.
sciencedirect.com/science/article/pii/S0925231220305452>.

HERRERA-JOANCOMARTI, J., NAVARRO-ARRIBAS, G., RANCHAL-
PEDROSA, A., et al. “On the Difficulty of Hiding the Balance of Lightning

115

[148]

[149]

[150]

[151]

[152]

[153)]

[154]

[155]

[156]

[157]

Network Channels”. In: Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, pp. 602612, 2019.

PICKHARDT, R., TIKHOMIROV, S., BIRYUKOV, A., et al. Security and
Privacy of Lightning Network Payments with Uncertain Channel Balances.
Relatorio Técnico arXiv:2103.08576, arXiv, mar. 2021. Available at <http:
//arxiv.org/abs/2103.08576>. arXiv:2103.08576 [cs| type: article.

TIKHOMIROV, S., PICKHARDT, R., BIRYUKOV, A., et al. “Probing channel
balances in the lightning network”, arXiv preprint arXiv:2004.00333, 2020.

GEISSLER, S., WAMSER, F., BAUER, W., et al. “Signaling Traffic in
Internet-of-Things Mobile Networks”. In: 2021 IFIP/IEEFE International

Symposium on Integrated Network Management (IM), pp. 452-458, maio
2021. ISSN: 1573-0077.

TEINTURIER, B. “Trampoline Routing”. 2021. Available at <https://
github.com/lightning/bolts/pull/829>. Last access: Mar. 6th 2023.

HASBROUCK, J., SAAR, G. “Low-latency trading”, Journal of Financial
Markets, v. 16, n. 4, pp. 646-679, 2013.

HAN, P., YAN, Z., DING, W., et al. “A Survey on Cross-chain Technologies”,
Distributed Ledger Technologies: Research and Practice, 2023.

SIDDIQI, M. A., YU, H., JOUNG, J. “6G ultra-reliable low-latency communi-
cation implementation challenges and operational issues with IoT devices”,
Electronics, v. 8, n. 9, pp. 981, 2019.

ZHU, G., WANG, Y., HUANG, K. “Broadband analog aggregation for low-
latency federated edge learning”, IEEE Transactions on Wireless Commu-
nications, v. 19, n. 1, pp. 491-506, 2019.

SHE, C., SUN, C., GU, Z., et al. “A tutorial on ultrareliable and low-latency
communications in 6G: Integrating domain knowledge into deep learning”,
Proceedings of the IEEE, v. 109, n. 3, pp. 204-246, 2021.

XIE, T., ZHANG, J., ZHANG, Y., et al. “Libra: Succinct zero-knowledge proofs
with optimal prover computation”. In: Advances in Cryptology—CRYPTO
2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part III 39, pp. 733-764.
Springer, 2019.

116

158

[159]

160

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

ION LIGHTNING NETWORK WIKI. “Watchtowers”. 2021. Available at:
https://wiki.ion.radar.tech /tech /research /watchtowers. Last access: Mar.
6th 2023.

REBELLO, G. A. F., POTOP-BUTUCARU, M., DE AMORIM, M. D., et al.
“Securing Wireless Payment-Channel Networks With Minimum Lock Time
Windows”. In: ICC 2022 - IEEE International Conference on Communi-
cations, pp. 2297-2302, maio 2022. doi:10.1109/ICC45855.2022.9839064.
ISSN: 1938-1883.

SHIKHELMAN, C., TIKHOMIROV, S. “Unjamming Lightning: A Systematic
Approach”, Cryptology ePrint Archive, 2022.

LABS, L. “Multi-Path Payments in LND: Making Channel Bal-
ances Add Up”. Available at https://lightning.engineering/posts/
2020-05-07-mpp/, 2020. Last access: Mar. 6th 2023.

LOZANO, L., MEDAGLIA, A. L. “On an exact method for the
constrained shortest path problem”, Computers € Operations Re-
search, v. 40, n. 1, pp. 378-384, jan. 2013. ISSN: 0305-
0548. doi:10.1016/j.cor.2012.07.008. Available at <https://www.
sciencedirect.com/science/article/pii/S0305054812001530>.

PUGLIESE, L. D. P., GUERRIERO, F. “A survey of resource constrained
shortest path problems: Exact solution approaches”, Networks, v. 62, n. 3,
pp. 183-200, 2013.

ENGQUIST, M. “A successive shortest path algorithm for the assignment
problem”, INFOR: Information Systems and Operational Research, v. 20,
n. 4, pp. 370-384, 1982.

BRUNSCH, T., CORNELISSEN, K., MANTHEY, B., et al. “Smoothed analysis
of the successive shortest path algorithm”, SIAM Journal on Computing,
v. 44, n. 6, pp. 1798-1819, 2015.

DANTZIG, G., FULKERSON, D. R. “On the max flow min cut theorem
of networks”, Linear inequalities and related systems, v. 38, pp. 225231,
2003.

HU, P., LAU, W. C. “A survey and taxonomy of graph sampling”, arXiv
preprint arXiw:1308.5865, 2013.

JUTTNER, A., SZVIATOVSKI, B., MECS, 1., et al. “Lagrange relaxation
based method for the QoS routing problem”. In: Proceedings IEEE

117

169

[170]

[171]

[172]

[173]

[174]

175

[176]

177]

[178]

INFOCOM 2001. Conference on Computer Communications. Twenti-
eth Annual Joint Conference of the IEEE Computer and Communica-
tions Society (Cat. No.01CH37213), v. 2, pp. 859-868 vol.2, abr. 2001.
doi:10.1109/INFCOM.2001.916277. ISSN: 0743-166X.

“Splicing. |Lightning-dev] Channel top-up”. Available at https://lists.
linuxfoundation.org/pipermail/lightning-dev/2017-May/000696.
html, 2017. Last access: Mar. 6th 2023.

LIGHTNING LABS. “Lightning Loop”. 2022. Last access: Mar. 6th 2023.

POPOV, S., MOOG, H., CAMARGO, D., et al. “The Coordicide”. 2020. Avail-
able at <https://files.iota.org/papers/20200120_Coordicide_WP.
pdf>. Last access: Mar. 6th 2023.

AVARIKIOTI, Z., HEIMBACH, L., WANG, Y., et al. “Ride the lightning;:
The game theory of payment channels”. In: International Conference on

Financial Cryptography and Data Security, pp. 264-283. Springer, 2020.

AVARIKIOTI, G., SCHEUNER, R., WATTENHOFER, R. “Payment Networks
as Creation Games”. 2019. Available at <https://arxiv.org/abs/1908.
00436>.

WANG, X., GU, H., LI, Z., et al. “Why Riding the Lightning? Equi-
librium Analysis for Payment Hub Pricing”. In: ICC 2022 - IEEE
International Conference on Communications, pp. 5409-5414, 2022.
doi:10.1109/1CC45855.2022.9839171.

LANGE, K., ROHRER, E., TSCHORSCH, F. “On the Impact of At-
tachment Strategies for Payment Channel Networks”, arXiv preprint
arXiw:2102.09256, 2021.

LI, P., MIYAZAKI, T., ZHOU, W. “Secure Balance Planning of Off-
Blockchain Payment Channel Networks”. In: IFEE INFOCOM 2020 -
IEEE Conference on Computer Communications, pp. 1728-1737, 2020.
doi:10.1109/INFOCOM41043.2020.9155375.

HU, Y., MANZOOR, A., EKPARINYA, P.; et al. “A delay-tolerant payment
scheme based on the ethereum blockchain”, IEEE Access, v. 7, pp. 33159—
33172, 2019.

BALAKRISHNAN, V. Network optimization. CRC Press, 2019.

118

Appendix A

Deferred Proofs

This appendix contains proofs for statements that we present throughout the text.
Most proofs are adaptations of proofs we find in the literature [141, 178]. When this
is the case, we indicate the corresponding original proof at the end of the adapted

proof.

A.1 Flow Decomposition

Theorem 1 (Flow Decomposition). Every non-negative flow f can be represented

as a set of paths ™ and cycles w that transport non-negative flows.

Proof. The proof is algorithmic. Let s be a deficit node, i.e., a node that sends a
demand d, and t be an excess node, i.e., a node that absorbs the demand. Then,
at least one arc (s,7;) carries positive flow. Start at s and visit ;. If iy # ¢, the
flow conservation constraint imposes that at least one arc (iy,72) carries positive
flow. Keep traversing positive-flow arcs until we reach t or a visited node i,. If we
reached t, we traversed a path m = {(s,41), ..., (i, 1)} that delivers some positive flow
from s to t. Save the path, reassign d to d — l,;,, where l,,,;,, = min(l;;V(¢,5) €) is
the bottleneck capacity of the path, and reassign l;; to lij — i V(4,j) € m. If we
reached a visited node, we traversed a cycle w = (iy,1y), ..., (iw, i) that cycles some
positive flow. Save the cycle and reassign l;; to l;; — i V(4, j) € w, where l,,,;;, is the
bottleneck capacity of the cycle. Whenever a path or a cycle is found, restart the
process at s until d = 0. When the algorithm stops, we have a set of paths and cycles
that correspond to the original f when summed. This proof is based on Theorem
3.5 of [141]. m

119

- fr So -

/”
O:EELO)
\\
\\
~

Figure A.1: An illustration of the difference between two equal-value feasible flows
f" and f (adapted from [7]). The difference cancels the flow out of s and into ¢,
creating a circulation composed of at least one cycle.

A.2 Flow Differences

Lemma 1 (Flow Differences). Let the difference ' — f between two flows of
equal value be a flow 0 such that 6;; = f/; — fi; if fi; — fi; > 0 and 5 = fi; — f]

ij
if fi; — fij < 0. The difference ¢ yields a circulation composed of at least one

augmenting cycle w in the residual graph Ry.

Proof. From the definition of §, there are two possible outcomes for any arc (i, j) € Ry
that has positive flow w.r.t. f": have its flow reduced to fi; — fi; if fi; > fi; or be
;i Af fi; < fij. As fand f are feasible
flows, they satisfy the flow conservation property, and hence their difference ¢ also

reversed into an arc (j,7) with f;; = fi; —

satisfies the flow conservation property for any node j in the network. For any 7, this
implies that if some incoming arc (4, 7) is reduced or inverted, then some outgoing
arc (j, k) will surely suffer a similar process to conserve the flow. Moreover, because
f" and f are equally valued by assumption, the net flow ' — f going out of the
source s and into the sink ¢ must be zero. Consequently, any non-zero flows going
out of a node j other than s and ¢ must eventually come back into j, creating a
circulation of augmenting cycles. We illustrate this process graphically in Figure A.1.
This proof is based on Theorem 2 of [7].

O

A.3 Negative Cycle Optimality

Theorem 2 (Negative Cycle Optimality). Let w be a negative-cost cycle with
net cost c(w) = Z(m)ew ci; < 0. A flow f* is a minimum-cost flow if and only if no

w exists in the residual graph Ry.

Proof. Suppose that f is a feasible flow and that R contains a negative-cost cycle
w. Then, f is not optimal as we can obtain a flow f* with lower cost by augmenting
f along w. Therefore, if f* is an optimal cost flow, Ry« cannot contain negative-cost
cycles. Now, suppose that f* is a feasible flow such that R~ contains no negative-cost

cycles and let a flow f’ # f* be the optimal cost flow. The flow difference lemma

120

(Lemma 1) shows that we can represent the difference f* — f’ as a set of augmenting
cycles in Ry« and that the sum of the costs of such cycles is ¢(f") — ¢(f*). As there
are no negative-cost cycles in Ry-, then c(f’) —c(f*) > 0, or ¢(f") > ¢(f*). Moreover,
because f’ is optimal by assumption, c¢(f’) < ¢(f*). Thus, ¢(f") = ¢(f*), proving
that f* is also optimal. This proof is based on Theorem 9.1 of [141]. O]

A.4 Optimality of MultiPulse

Proposition 1 (Optimality of MultiPulse). The MultiPulse algorithm provides

an optimal solution f* to the constrained minimum-cost flow problem.

Proof. Let Ry be the resulting residual network after a flow f is pushed through a
transportation network G' and 7, be the shortest path in R w.r.t. the main metric
o in some iteration. We aim to prove that no negative cost cycles are created in Ry
during MultiPulse’s execution, as this is a criterion of optimality in transportation
networks (Theorem 2). When the current flow has zero value, R contains no negative
cost cycles by definition since we assume this of G. Now, suppose that in some
iteration of MultiPulse, the algorithm creates a negative cost cycle w after pushing an
amount through 7. This implies that some arc (¢, 7) € 7% closed the cycle w when
reversed and that such reversed arc (j,) yields a negative cost c¢;; that compensates

for all the other (positive) costs of in the cycle, i.e., ¢j; + Z(Jew Cuv < 0. However,

u,v

we can see that if such an arc (7, j) exists, then the shortest path would not traverse it

since traversing the other arcs in the cycle would yield a lower cost Z(uw) cw Cuv < Cij
in the first place. This contradicts the assumption that 7 is the shortest path, proving
that w could never be created if 7} is indeed optimal. Furthermore, because the
paths 7} are constrained shortest paths provided by GenPulse, it is also guaranteed
that side constraints are never violated. Consequently, the solution f* given by the
last iteration of MultiPulse is an optimal solution to the constrained minimum-cost

flow problem. O

121

Appendix B

List of Publications

The following works were published during the elaboration of this thesis:

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., Souza, L. A. C.,
Duarte, O. C. M. B., “On the Security and Performance of Proof-based Con-
sensus Protocols”, in 4th Conference on Cloud and Internet of Things (CloT
2020), Niterdi, Brazil, October 2020.

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., Souza, L. A. C.,
Duarte, O. C. M. B., “Seguranca e Desempenho de Protocolos de Consenso
Baseados em Prova para Corrente de Blocos”, in XX Simposio Brasileiro

em Seguranga da Informagao e de Sistemas Computacionais (SBSeg 2020),
Petropolis, Brazil, October 2020.

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., de Souza, L. A. C.,
Thomaz, G. A., Duarte, O. C. M. B. — “A Security and Performance Analysis
of Proof-based Consensus Protocols”, in Annals of Telecommunications, no. 7,

pp. 517-537, 2021.

e Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B., Souza, L. A. C.,
Duarte, O. C. M. B. - “Security and Performance Analysis of Quorum-based
Blockchain Consensus Protocols”; in 6th Cyber Security in Networking Confer-
ence (CSNet’22) - Rio de Janeiro, Brazil, October 2022.

e Rebello, G. A. F., Camilo, G. F.; Souza, L. A. C., Potop-Butucaru, M.,
Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. - “A Survey on
Layer-Two Protocols for Blockchains”, submitted to IEEE Communications
Surveys & Tutorials in April 2023.

e Rebello, G. A. F., Potop-Butucaru, M., Amorim, M. D., Duarte, O. C. M. B.

— “Protegendo Redes de Canais de Pagamento Sem Fio com Janelas de Tempo

122

de Bloqueio Minimas”, XXI Simpésio Brasileiro de Seguranca da Informagao
e de Sistemas Computacionais (SBSeg 2021), Belém, Brazil, October 2021.

Honorable mention.

Rebello, G. A. F., Potop-Butucaru, M., Amorim, M. D., Duarte, O. C. M. B.
- “Securing Wireless Payment-Channel Networks With Minimum Lock Time
Windows”, IEEE International Conference on Communications (ICC 2022),

Seoul, South Korea, May 2022.

Rebello, G. A. F. Potop-Butucaru, M., de Amorim, M. D., Duarte, O.
C. M. B. “Sécurisation des réseaux de canaux de paiement sans fil avec des
fenétres de temps de verrouillage réduites”. In CORES 2022-7éme Rencontres
Francophones sur la Conception de Protocoles, 'Evaluation de Performance et

I’Expérimentation des Réseaux de Communication.

Rebello, G. A. F., Camilo, G. F., Potop-Butucaru, M., Campista, M. E.
M., Amorim, M. D., Costa, L. H. M. K. - “PCNsim: A Flexible and Modular
Simulator for Payment Channel Networks”, IEEE International Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Virtual
Conference, May 2022.

Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Campista, M. E. M.,
Costa, L. H. M. K. — “Posicionamento Lucrativo de Nos e Criagao de Rotas
de Baixo Custo na Rede Relampago”, in XLI Simpésio Brasileiro de Redes de
Computadores e Sistemas Distribuidos (SBRC 2023), Brasilia, DF, Brazil, May

2023. Honorable mention.

de Souza, L. A. C., Rebello, G. A. F., Camilo, G. F., Campista, M. E.
M., Costa, L. H. M. K. — “GITI-CB: Gestao de Identidade com Troca de
Informacoes entre Correntes de Blocos”, in VI Workshop Blockchain: Teoria,
Tecnologia e Aplicagoes (Wblockchain 2023), Brasilia, DF, Brazil, May 2023.

de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Sammarco M., Campista,
M. E. M., Costa, L. H. M. K. - “ATHENA-FL: Evitando a Heterogeneidade

Estatistica através do Um-contra-Todos no Aprendizado Federado”, in VII
Workshop de Computagao Urbana (CoUrb), Brasilia, DF, Brazil, May 2023.

Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Thomaz, G. A.,
Potop-Butucaru, M., Amorim, M. D., Campista, M. E. M., Costa, L. M. K. —
“Redes de Canais de Pagamento: Provendo Escalabilidade para Pagamentos
em Criptomoedas”, in Minicursos do XL Simpésio Brasileiro de Redes de
Computadores e Sistemas Distribuidos (SBRC 2022), Fortaleza, Brazil, May
2022.

123

Camilo, G. F., Rebello, G. A. F. de Souza, L. A. C., Potop-Butucaru,
M., Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. — “Anélise da
Evolucao Topologica da Rede Lightning de Canais de Pagamento”, in XXII
Simposio Brasileiro de Seguranca da Informacao e de Sistemas Computacionais
(SBSeg 2022), Santa Maria, Brazil, September 2022.

Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Campista, M. E. M.,
Costa, L. H. M. K. — “Posicionamento Lucrativo de Nos e Criagao de Rotas
de Baixo Custo na Rede Relampago”, in XLI Simpoésio Brasileiro de Redes de
Computadores e Sistemas Distribuidos (SBRC 2023), Brasilia, DF, Brazil, May

2023. Honorable mention.

de Souza, L. A. C., Rebello, G. A. F., Camilo, G. F., Campista, M. E.
M., Costa, L. H. M. K. — “GITI-CB: Gestao de Identidade com Troca de
Informacgoes entre Correntes de Blocos”, in VI Workshop Blockchain: Teoria,
Tecnologia e Aplicagoes (Wblockchain 2023), Brasilia, DF, Brazil, May 2023.

de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Sammarco M., Campista,
M. E. M., Costa, L. H. M. K. - “ATHENA-FL: Evitando a Heterogeneidade

Estatistica através do Um-contra-Todos no Aprendizado Federado”, in VII
Workshop de Computagao Urbana (CoUrb), Brasilia, DF, Brazil, May 2023.

Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Thomaz, G. A.,
Potop-Butucaru, M., Amorim, M. D., Campista, M. E. M., Costa, L. M. K. —
“Redes de Canais de Pagamento: Provendo Escalabilidade para Pagamentos
em Criptomoedas”, in Minicursos do XL Simpésio Brasileiro de Redes de
Computadores e Sistemas Distribuidos (SBRC 2022), Fortaleza, Brazil, May
2022.

Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Potop-Butucaru,
M., Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. — “Anélise da
Evolucao Topologica da Rede Lightning de Canais de Pagamento”, in XXII

Simposio Brasileiro de Seguranca da Informacgao e de Sistemas Computacionais
(SBSeg 2022), Santa Maria, Brazil, September 2022.

Rebello, G. A. F., Hu, Y., Thilakarathna, K., Batista, G. E. A. P. A_,
Seneviratne, A., and Duarte, O. C. M. B. — “Melhorando a Acuracia da
Detecgao de Lavagem de Dinheiro na Rede Bitcoin”, in XXXVIII Simposio
Brasileiro de Redes de Computadores e Sistemas Distribuidos (SBRC 2020),
Rio de Janeiro, Brazil, December 2020.

Camilo, G. F., Rebello, G. A. F., Souza, L. A. C., Duarte, O. C. M. B.,
“A Secure Personal-Data Trading System Based on Blockchain, Trust, and

124

Reputation”, in 3rd IEEE International Conference on Blockchain (Blockchain-
2020), Rhodes Island, Greece, November 2020.

Camilo, G. F., Rebello, G. A. F., Souza, L. A. C., Duarte, O. C. M. B. —
“AutAvailChain: Disponibilizagao Segura, Controlada e Automatica de Dados
[oT usando Corrente de Blocos”, in III Workshop em Blockchain: Teoria,
Tecnologias e Aplicagdes (WBlockchain SBRC 2020), Rio de Janeiro, Brazil,

December 2020. Honorable mention.

Souza, L. A. C., Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C. B.,
Duarte, O. C. M. B., “DFedForest: Decentralized Federated Forest”, in 3rd
IEEE International Conference on Blockchain (Blockchain-2020), Rhodes Island,
Greece, November 2020.

Camilo, G. F., Rebello, G. A. F., Souza, L. A. C.; Duarte, O. C. M. B.,
“Um Sistema Seguro de Comercializacao de Dados Pessoais Sensiveis baseado
em Reputagao, Confianca e Corrente de Blocos”, in XX Simpésio Brasileiro
em Seguranga da Informagao e de Sistemas Computacionais (SBSeg 2020),
Petropolis, Brazil, October 2020.

125

