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Introduction

Real algebraic varieties are complex algebraic varieties endowed with an anti-holomorphic invo-
lution. The early study of the topological properties of this involution dates back at least to A.
Harnack and F. Klein in 1876 [12, 22] and is now better known as "topology of real algebraic
varieties". D. Hilbert formulated one of the main questions of this topic in the 16th of his
famous 23 problems in 1900. Tropical geometry is a way more recent subject and studies piece-
wise a�ne objects called tropical varieties. One of the principal ideas of tropical geometry is
that these tropical varieties encode combinatorially certain important data of classical algebraic
varieties. In fact, some interesting geometric and topological properties of algebraic varieties
can be described on their tropical analogs.

There are two complementary approaches to the study of topology of real algebraic varieties:
�nding topological restrictions and constructing examples with prescribed topological proper-
ties. Introduced in the late 1970's, Viro's patchworking method [38] has established itself as
the preeminent approach for constructing real algebraic varieties with prescribed topology. O.
Viro notably applied his method to complete the classi�cation of topological types in the real
projective plane, realizable by non-singular real curves of degree 7. Viro's method is intimately
connected to tropical geometry. In particular, the simplest case of this method, called "prim-
itive combinatorial patchworking", is based on combinatorial data that are partially dual to a
non-singular tropical variety. The primitive case of combinatorial patchworking is very restric-
tive in terms of topology of real algebraic varieties [14, 6, 34], however, this method has the
advantage of being much easier to manipulate than the general case, while already producing
some interesting examples. Therefore, in order to study a topological property of real algebraic
varieties, a �rst attempt is to try to understand what happens in the case of real algebraic
varieties obtained by primitive combinatorial patchworking. This is the approach adopted in
this text.

The property we want to study is the type of real algebraic surfaces, together with the as-
sociated complex orientations, as introduced by O. Viro in the 1980's [39]. The notion of type
(I or II) for real algebraic curves dates back to F. Klein [22]. The type of a real algebraic
surface is a generalization of this notion. A real algebraic curve of type I admits so-called
complex orientations on its real locus, which give rise to additional restrictions, when the curve
is embedded in a real algebraic surface. For instance, Rokhlin's complex orientations formula
provides a topological restriction for the non-singular real curves of type I in the real projective
plane. More recently, S. Orevkov found algebraically unrealizable complex orientations on real
plane pseudo-holomorphic curves of type I [31]. Returning to patchworking and tropical geom-
etry, the real structures arising from a primitive combinatorial patchworking were described by
B. Haas in his Ph.D. thesis [11], more than twenty-�ve years ago. This description is given in
terms of twisted edges on a non-singular tropical curve and provides a very simple combinatorial
criterion for the curves of type I. More importantly, B. Haas found a combinatorial criterion
for theM -curves, that is, maximal curves in the sense of the Harnack inequality. An interesting
approach to Haas's theorem has been proposed more recently by B. Bertrand, E. Brugallé and
A. Renaudineau in [7]. This new point of view emphasizes that the results are not speci�c to an
embedding in the projective plane or any other toric surface, but rather rely on the decomposi-
tion into pairs-of-pants of the curve. The combinatorics of this decomposition is encoded by a
non-singular tropical curve. Their approach depends decisively on the lifting of tropical cycles
in the tropical curve, to homology classes of the curve decomposed into pairs-of-pants. The
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authors notably mention that they hope that this new point of view is easier to generalize to
higher dimensions than B. Haas's original approach. This is exactly what is done in this thesis.

The results of this text are proven in the context of phase tropical surfaces (SX , X), playing
the role of real algebraic surfaces obtained by primitive combinatorial patchworking, forgetting
about the embedding in a toric variety of dimension 3. The tropical surface X is assumed
to be hypersmooth and have a polyhderal combinatorial strati�cation. Brie�y, a phase tropical
surface (SX , X) is then de�ned as a topological manifold admitting a decomposition into higher-
dimensional pairs-of-pants and the combinatorics of the gluings is encoded by the tropical surface
X. The main results of the text are as follows. First, we exhibit local restrictions for real
structures of phase tropical surfaces (Propositions 3.9, 3.10 and 3.11). We then describe a
particular class of real structures of a phase tropical surface and show that, up to certain
isomorphisms, they form a Z2-a�ne space, whose direction is the �rst tropical cohomology
group of the wave space H1

cell (X;WZ), quotiented by the even elements (Theorem 3.3). By
lifting tropical cycles, we construct morphisms from the tropical homology groups of the tropical
surface X to the homology of SX . We show that the successive images of these morphisms
induce a �ltration of the homology of SX with Z2-coe�cients (Equation 4.2). Using the above
results on real structures of a phase tropical surface (SX , X) and the lifting of tropical cycles,
we formulate a necessary criterion for the maximality of the surface SX , endowed with a real
structure (Corollary 5.2). This criterion is formulated in tropical terms as the vanishing of a
certain tropical homology class and is local, in the sense that a representative of this homology
class has support contained in a single topological surface embedded in the tropical surface. We
also formulate a necessary and su�cient criterion for the type I of SX (and more generally for
the type Iwu) (Proposition 5.5 and Corollary 5.4). As for the previous criterion, this latter one
is local, however it is not yet formulated in purely tropical data. In fact, it depends on the
value of the intersection product between the lift of an orientable topological surface with the
real locus of SX . We then give a value for this intersection product and this value depends only
on the combinatorics of the tropical surface and on the set of twisted edges of the orientable
topological surface which is lifted (Proposition 5.7). By combining the two previous results, we
obtain a local combinatorial criterion for the type Iwu of a phase tropical surface endowed with
a real structure.

The text is composed of �ve chapters. Chapter 1 reviews some basics of topology of real
algebraic varieties and presents the notion of real algebraic surfaces of type I (Section 1.2), as
introduced by O. Viro in [39]. At the end of this chapter we brie�y describe a new perspective
on the type of real algebraic surfaces, using real pencils of curves (Section 1.3).

Chapter 2 recalls some classical and less classical de�nitions of tropical geometry. We also
introduce new de�nitions relative to our setup (e.g hypersmooth tropical manifolds in Section
2.1.3). Among the tools that we recall, tropical homology as well as cohomology reveal crucial
in this work (Section 2.2). Tropical homology was introduced by I. Itenberg, L Katzarkov, G.
Mikhalkin and I. Zharkov in [15], as the homology of the multi-tangent space de�ning a cosheaf
on the tropical surface X. We also use the cohomology of a sheaf, called wave space (Section
2.2.2). The wave space was introduced by G. Mikhalkin and I. Zharkov in [26]. The tropical
homology of a tropical manifold comes with a tropical intersection theory, as introduced and
studied by K. Shaw in [36] (Section 2.3). Using a Poincaré isomorphism proven by P. Jell, J.
Rau and K. Shaw in [16], we show that this tropical intersection form is non-degenerate with
Z2-coe�cients (Section 2.3.3).

Chapter 3 is the core of our work. We begin with some context and motivation by brie�y
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presenting results of G. Mikhalkin in [27] on the decomposition of algebraic hypersurfaces in
toric varieties into pairs-of-pants (Section 4.1.1). We then introduce the central notion, in this
text, of phase tropical manifold (Section 3.1.2). We try to �nd a balance in the de�nition
between assumptions easy to satisfy and not too technical proofs in the following. The main
idea is that all the properties required for a phase tropical hypersurface are satis�ed by the
strati�ed �bration constructed in [27]. As a warm-up, we specialize our approach to the case of
the dimension 1, which coincides with the setup of B. Bertrand, E. Brugallé and A. Renaudineau
(Section 3.2). We recall the already existing results and we present a slightly di�erent point
of view, which generalizes better for our purpose to dimension 2. In Section 3.3, we study the
intrinsic properties of a real structure of a phase tropical surface. More precisely, in Section
3.3.1, we deal with the restrictions along an edge of the tropical surface X and we show that
the behavior of a real structure along an edge of X is constrained by the combinatorics of the
tropical surface. In particular, we introduce the notion of twisted edges along a pair of adjacent
faces. We then study the behavior of the real structure along a face of the tropical surface
and we �nd some cellular co-cycle condition, with coe�cients in the wave space WZ2

. To the
contrary of the previous section, in Section 3.4 the real structure is not �xed anymore and we
study the di�erence between two real structures. We show that a certain class of real structures
of a phase tropical surface form a Z2-a�ne space whose direction is the �rst tropical cohomology
group of the wave space H1

cell (X;WZ). A similar result has been announced by D. Matessi and
A. Renaudineau in an ongoing work.

Chapter 4 makes a connection between tropical and classical homology by lifting the tropical
cycles to the phase tropical surface in Section 4.1. In particular, Section 4.1.3 uses in a crucial
way the results of Section 3.4 concerning the a�ne space of real structures, in order to lift
singular tropical (0, 2)-cycles. We also show that the lifting of tropical cycles is compatible, in
some sense, with the tropical and classical intersection products. We then show that the lifting
morphisms are injective, using the non-degeneracy of the tropical intersection form, allowing us
to �ltrate the Z2-homology of the phase tropical surface in Section 4.2.

Finally, Chapter 5 contains applications of the results of Chapters 3 and 4 in order to �nd
tropical descriptions of topological properties of real structures of a phase tropical surface. By
studying the action of the conjugation on the �ltered Z2-homology in Section 5.1, we prove a local
obstruction to the maximality of a phase tropical surface endowed with a real structure. Note
that ongoing work by E. Brugallé, A. Renaudineau and K. Shaw also gives local obstructions to
the maximality of a real algebraic surface obtained by primitive combinatorial patchworking. By
studying the intersection number of the real part of the phase tropical surface with the �ltered
Z2-homology and the self intersection of lifts of tropical cycles, we are able to obtain a necessary
and su�cient criterion for the type Iwu of a phase tropical surface endowed with a real structure
in Section 5.2.
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1 Complex Orientations: from Curves to Surfaces

1.1 Some basics on Topology of Real Algebraic Varieties

In this �rst section, we review some classical facts about topology of real algebraic varieties. We
refer to [21] for a more complete exposure and to [40] for a less complete but more self-contained
exposure. In this text, we restrict to projective varieties for simplicity. A real projective sub-
variety of Pn is a proper homogeneous ideal of the ring R [x0, . . . , xn] of homogeneous poly-
nomials in n variables with real coe�cients, where n is a non-negative integer. Since the ring
R [x0, x1, . . . , xn] is Noetherian, a projective subvariety can be written as a �nitely generated
ideal (f1, . . . , fk), where k is a positive integer. Given a real projective subvariety V of Pn,
we denote by RV the real locus of V , that is, the the set of points x = [x0 : . . . : xn] in the
real projective space RPn such that f (x0, . . . , xn) = 0 for all homogeneous polynomials f ∈ V .
Similarly, the complex locus is the set of points z = [z0 : . . . : zn] in the complex projective
space CPn such that f (z0, . . . , zn) = 0 for all homogeneous polynomial f ∈ V . The complex
and real loci are endowed with the topology of complex and real analytic spaces, respectively.
We say that a real projective variety V is non-singular if the complex locus CV is a complex
manifold. If V is non-singular, then the complex conjugation acts on the complex locus CV as
an anti-holomorphic involution. The real locus RV coincides with the set of �xed points of this
involution and is a di�erentiable manifold of dimension dim(RV ) = dimC(CV ) (if the real locus
is non-empty). One of the main problems in topology of real algebraic varieties is to classify
the possible topologies realizable by a non-singular real algebraic hypersurface V of degree d in
the projective space Pn+1. In that case, the real projective variety V is given by a single homo-
geneous polynomial with real coe�cients of degree d in the n + 2 homogeneous coordinates of
Pn+1. The word "topologies" is voluntary vague, and can refer to several topological questions.
The simplest question is to classify, up to homeomorphism, the topology of the real locus RV .
In dimension n = 1, the real locus RV is homeomorphic to a disjoint union of circles, so the
problem boils down to know how many connected components does the real locus have. This
problem was solved in 1876 by A. Harnack.

Theorem 1.1. [12] Let C be a non-singular real curve of degree d ∈ Z>0 in P2. The real locus
RC has at most 1

2 (d − 1)(d − 2) + 1 connected components. Moreover, if the degree d is even,
then every integer number between 0 and 1

2 (d − 1)(d − 2) + 1 is realizable as the number of
connected components of a non-singular real curve of degree d in P2. If the degree d is odd, then
every integer number between 1 and 1

2 (d− 1)(d− 2) + 1 is realizable as the number of connected
components of a non-singular real curve of degree d in P2.

Note that in the theorem above, the quantity 1
2 (d − 1)(d − 2) corresponds to the genus of

the Riemann surface de�ned by the complex locus of the curve C. As a consequence, every
non-singular real curve C of degree d in P2 satis�es the so-called Harnack inequality

dimH0 (RC;Z2) ≤ 1

2
dimH1 (CC;Z2) + 1, (1.1)

where Z2 is the �eld with two elements. Equation (1.1) above is a particular case of the more
general Smith-Thom inequality below (see for instance [40], Corollary A2).
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Theorem 1.2. Let c be a continuous cellular involution on a �nite CW -complex X. Then, one
has ∑

i≥0

dimHi (Fix(c);Z2) ≤
∑
i≥0

dimHi (X;Z2) . (1.2)

Moreover, the di�erence
∑
i dimHi (X;Z2) −

∑
i dimHi (Fix(c);Z2) is even and if Equation

(1.2) is an equality, then c∗ acts trivially on Hi (X;Z2) for all non-negative integers i.

This very general restriction applies in particular to real projective varieties. We say that
(X, c) is maximal if Equation (1.2) is an equality. When X is a di�erentiable manifold, we
say that X is an M -manifold if (X, c) is maximal. More generally, we say that (X, c) is an
(M − k)-manifold if the di�erence dimH∗ (X;Z2)− dimH∗ (Fix(c);Z2) is equal to 2k, where k
is a non-negative integer.

In dimension n = 2, the question of the topology of the real locus RV of a real surface V of
degree d in P3 is much harder to tackle than the n = 1 case. When the degree is at most 3 the
question is relatively easy and well understood. In degree 4, the complex locus is a K3-surface
and the topology of the real locus is also well understood. An interesting phenomenon occurs
in degree 4: there are three di�erent topological types for the real locus RV , such that CV is
an M -manifold for the complex conjugation. Already in degree d = 5 the classi�cation of the
possible topologies of the real locus RV of a non-singular real surface of degree d in P3 is still
open. Since the complex locus of a real algebraic surface V in P3 is a compact Kähler manifold
of complex dimension 2, a lot of tools can be used in order to obtain topological restrictions on
the real locus. One of them is the intersection form on the second homology group H2(CV ;R)
of CV . This intersection form is symmetric and non-degenerate, because CV is a compact
orientable manifold of dimension 4, so one can consider the signature of this form, denoted
by σ(CV ). If M is a compact orientable manifold of dimension 4m, we denote by a ◦ b the
intersection product of two homology classes a and b in the homology group H2m (CV ;R). In
order to obtain information about the complex conjugation, one can consider the form of the
complex conjugation as de�ned below.

De�nition 1.1. Let m be a positive integer and let M be a compact orientable 4m-manifold
endowed with a continuous involution c. The form of the involution c is de�ned on H2m (M ;R)×
H2m (M ;R) by

(a, b) 7→ a ◦ (c∗b).

This new form is a symmetric bilinear form and we call its signature the signature of the
involution.

If M is a compact orientable manifold of dimension 2n and F is a smooth submanifold of
dimension n, one can consider a section s : F → NM (F ) of the normal bundle NM (F ) of F in
M , intersecting transversally the zero section s0 : F → NM (F ) of F . Since the corestriction
of the section s : F → s(F ) is a homeomorphism, a local orientation of F at x induces a
local orientation of the image s(F ) at s(x). In the same way, a local orientation of F at the
point x induces a local orientation of the image of the zero section s0(F ) at (x, 0). Note also
that the orientation of M induces an orientation of the normal bundle NM (F ). One can then
count the number of zeros x of the section s, with a positive sign if the concatenation of local
orientations of s0(F ) and s(F ) at the point (x, 0), induced by a same local orientation of F
at x, yields the orientation of M and a negative sign otherwise. Note that the sign does not
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depend on the chosen local orientations. The self-intersection of F in M is de�ned as the
signed count of the zeros of any section of NF (M), intersecting transversally the zero section
s0 : F → NM (F ). If the submanifold F is orientable, then the self-intersection of F in M
coincides with the self-intersection [F ] ◦ [F ] of the homology class [F ] ∈ Hn (M ;R). We denote
by F ◦ F the self-intersection of F in M , even if F is not orientable. By convention, if F is
empty, the self-intersection F ◦F is zero. The form of an involution contains a lot of information
about the involution. The following theorem shows that already the signature of the involution
is interesting. It can be obtained as an application of the much more general Atiyah�Singer
index theorem (see [5], Proposition (6.15)) or by a more self-contained proof (see [18]).

Theorem 1.3 (Atiyah, Singer). [5, 18] Let m be a positive integer, let M be a compact al-
most complex manifold of dimension 4m, and let c be conjugation on M . The signature of the
involution c is the self-intersection F ◦ F of the �xed locus F of c.

As mentioned at the beginning of the section, by de�nition, the complex locus of a non-
singular real projective variety is a complex manifold. In particular, the tangent bundle is a
complex vector bundle, so that the multiplication by i in the tangent bundle de�nes an almost
complex structure J , that is, an endomorphism J of the tangent bundle satisfying J2 = −1.

De�nition 1.2. LetM be a compact orientable manifold of dimension 2n with an almost complex
structure J ∈ End(TM). A smooth orientation preserving involution c : M → M is a conju-
gation on M if it satis�es c∗J = −Jc∗. In this situation, c is also called an anti-holomorphic
involution.

There is a nice feature about the normal bundle of the �xed locus Fix(c) of a conjugation
c in an almost complex manifold M of (real) dimension 2n: the multiplication by i yields an
isomorphism between the normal and tangent bundles of the �xed locus. This isomorphism
preserves the orientation if and only if 1

2n(n − 1) is even (recall that, as an almost complex
manifold, M is naturally oriented by bases of the form (x1, Jx1, . . . , xn, Jxn)). Since the self-
intersection number Fix(c)◦Fix(c) can be computed as the number of zeros (counted with signs)
of a section of the normal bundle of Fix(c), and the Euler characteristic of Fix(c) is equal to the
number of zeros (counted with signs) of a section of the tangent bundle of Fix(c), both sections
intersecting transversally the zero section, we obtain a proof of the following classical lemma.

Lemma 1.1. Let n be a positive integer, let M be an almost complex manifold of (real) dimen-
sion 2n and let c be a conjugation on M . The self-intersection number of the �xed locus Fix(c)
is equal, up to a sign, to the Euler characteristic of Fix(c), more precisely

Fix(c) ◦ Fix(c) = (−1)
1
2n(n−1)χ (Fix(c)) . (1.3)

Combining Theorem 1.3 with Lemma 1.1 above, one obtains that the signature of a conju-
gation on an almost complex manifold is equal, up to a sign, to the Euler characteristic of the
�xed locus. In the case where the almost-complex manifold is an M -manifold, one can obtain
the following theorem, due to V. Rokhlin (we refer to [40], Theorem 3.3, for the proof).

Theorem 1.4 (Rokhlin). Let m be a positive integer, let M be a compact almost-complex
manifold of dimension 4m and let c be a conjugation on M . If (M, c) is maximal, then one has

χ(Fix(c)) = σ(M) mod 16.
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The theorem above applies to any non-singular real surface V of degree d in P3 and gives
an important restriction for the possible maximal topological types. In fact, the signature of
the complex locus depends only on the degree d and is equal to σ(CV ) = d

3 (4 − d2) (more
generally, the complex loci of two non-singular real algebraic surfaces of the same degree in
P3 are isotopic, so in particular they share the same topological invariants). This restriction
helps us to understand the topology of the real locus of V , and one can read [40] and [21] for
many other results about the topology of the real locus. However, this restriction does not give
any information on the embedding RV ⊂ RP 3. The classi�cation of the possible embeddings
RV ⊂ RPn+1, where V is a non-singular real hypersurface of degree d in Pn+1, is the other
meaning of the word "topologies" in the question we stated at the beginning of this section.
The main question about this embedding is to classify the possible pairs (RPn+1,RV ), up to
homeomorphism. Of course, one can ask about �ner classi�cation, e.g up to rigid isotopy, that
is, up to isotopy in the class of non-singular real projective hypersurfaces, but the classi�cation
up to homeomorphism is already a di�cult problem. We refer to the survey [21] for more on
rigid isotopy classi�cation. Even in the case n = 1 of real algebraic curves in P2, the problem of
the classi�cation of the topological pairs (RP 2,RV ) is still open in degree 8. For degree 6, the
classi�cation was completed by D. Gudkov in 1969 and in degree 7 by O. Viro in 1979. One of
the tools that can be used to obtain informations on the embedding RV ⊂ RP 2 is, when they
exist, the complex orientations of the curve.

De�nition 1.3. Let C be a non-singular real curve in P2. The curve C is said to be of type I, or
dividing, or separating, if the real locus RC cuts the complex locus into two halves. Otherwise,
CC \ RC is connected and the curve C is said to be of type II.

De�nition 1.4. Let C be a non-singular real curve in P2 of type I. The complex orientations
are the orientations of the (non-empty) real locus RC of the curve, induced as a boundary
orientation, by the choice of one of the connected components of C \ RC, endowed with the
orientation induced by the complex curve CC, naturally oriented by the bases of the form
(x, ix).

Remark 1.1. The de�nitions above make sense for any almost-complex manifold of (real) di-
mension 2, endowed with a conjugation c. They also make sense in the singular case, as long as
the singular points do not lie on the �xed locus Fix(c) of the involution.

Remark 1.2. There is always a pair of opposite complex orientations on the real locus of a curve
C of type I. They come from the two possible choices of a component of CC\RC. Note also that
both connected components are images of one another by the conjugation. As a consequence,
these connected components are homeomorphic.

Example 1.1. A real projective line is of type I. A non-singular real projective conic has at most
one connected component in its real locus (Harnack inequality) and is of type I if and only if
the real part is non-empty. A non-singular real projective cubic has either 1 or 2 components
in its real locus and is of type I if and only if the number of connected components is 2.

Proposition 1.1. Let C be a non-singular real curve in P2. If the curve C is maximal, then C
is of type I.

One can �nd an elementary proof of the proposition above in [37] (see Section 2.6). The
converse of the statement is false: many curves of type I are not maximal (see for instance
Example 1.2 of the maximally-nested curves). The complex orientations on the real locus are
not particularly interesting, when one considers them inside the complex locus of the curve.
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However, the idea is to compare them via the embedding RC ⊂ RS, when C is a curve in a non-
singular real projective surface S (e.g P2). One of the main topological restrictions that we can
obtain is known as Rokhlin's complex orientations formula. Let us introduce some terminology
before stating this formula.

De�nition 1.5. Let C be a non-singular real curve in P2. A connected component l of the
real locus RC is called an oval if the homology class of l is zero in H1

(
RP 2;Z

)
. When the

homology class of l is the (only) non-zero element of H1

(
RP 2;Z

)
, we say that the component l

is a pseudo-line. An oval cuts the real projective plane into two connected components. One of
them is homeomorphic to a disk and is called the interior of the oval, while the complement of
the interior is homeomorphic to a Möbius band and is called the exterior of the oval. A pair of
ovals (l, l′) is injective if l is contained in the interior of l′.

Remark 1.3. Note that curves of even degree do not have any pseudo-line, while the curves of
odd degree always have exactly one.

De�nition 1.6. Let C be a non-singular real curve in P2 and of type I. An injective pair (l, l′) is
said to be positive if the complex orientations on l ∪ l′ coincide with the boundary orientations
coming from the cylinder in RP 2 bounded by l and l′. Otherwise, the injective pair is said to
be negative.

Theorem 1.5 (Rokhlin). Let C be a non-singular real curve of even degree d in P2 and of type
I. Denoting by L the number of ovals of C, by Π+ the number of positive injective pairs and by
Π− the number of negative injective pairs, one has

2 (Π+ −Π−) = L− d2

4
.

Remark 1.4. The statement above should be slightly modi�ed in odd degree. The di�erence with
even degree is that in odd degree, one needs additionally to compare the complex orientations of
an oval and the pseudo-line. See the introductory text [37], Section 2.7, for a complete statement
and a nice proof using the intersection form on H2

(
CP 2;Z

)
.

Let us now present an alternative point of view on the type of a non-singular real algebraic
curve.

De�nition 1.7. Let C be a non-singular real curve in P2. We say that a real morphism f : C → P1

(i.e equivariant under complex conjugation) is separating if f−1
(
RP 1

)
⊂ RC.

Proposition 1.2. Let C be a non-singular real curve in P2. The curve C is of type I if and
only if C admits a separating morphism f : C → P1.

Remark 1.5. One of the implications of the above equivalence is straightforward: if f : C → P1

is a separating morphism, then CC \RC = f−1
(
CP 1 \ RP 1

)
and the result follows. The other

implication is not easy to obtain. As explained in [23], the result above is a consequence of
chapter 4.2 in [1]. A more recent and elementary proof can be found in [10] (Theorem 7.1,
text in french). This point of view provides a nice proof for one the simplest examples of real
algebraic plane curves of type I: the curves with a nest of maximal depth.

Example 1.2. A nest of depth k ∈ Z>0 is a sequence (l1, . . . , lk) of ovals, such that (lj , lj+1)
forms an injective pair for all j ∈ {1, . . . , k − 1}. By Bézout's theorem, a nest of a non-singular
real curve of degree d in P2 has depth at most bd2c, where b

d
2c is the greatest integer smaller
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Figure 1.1: Real locus of a non-singular real projective curve of degree 6, with a nest of depth
3 and one of the two complex orientations in red.

than or equal to d
2 (consider a line passing through a point in the interior of the deepest oval).

Moreover, a non-singular real curve C of degree d in P2, with a nest of maximal depth k = bd2c,
does not have any other oval and is of type I. Indeed, take a point x in the interior of the
deepest oval of the nest. Consider the pencil of lines (Dt)t∈CP 1 passing through the point x. For
every point y ∈ CC, there is exactly one value t ∈ CP 1, denoted by f(y), such that y lies in the
complex locus CDf(y). This map de�nes a morphism C → P1, which is real because the base
point of the pencil of lines is real. For any t ∈ RP 1, the real locus of the line Dt intersects the
real locus RC in d real points (2k points on the ovals of the nest and one on the pseudo-line if d
is odd). Thus, the inverse image f−1(t) is contained in the real locus RC, so the real morphism
f is separating. Therefore, the curve C is of type I by the easy implication of Proposition 1.2.
Using Rokhlin's complex orientations formula (Theorem 1.5), one can show that the complex
orientations on the ovals are such that all the injective pairs are negative (see Figure 1.1).

1.2 Complex Orientations of Surfaces

In the previous section, we mention two points of view on the type of non-singular real algebraic
curves. The �rst condition for type I (see De�nition 1.4) is topological and can be stated
as [RC] = 0 ∈ H1 (CC;Z2) and RC is non-empty. The second one (see Proposition 1.2), is
algebraic and asks for the existence of a separating real morphism C → P1. Both points of view
are interesting. For instance, S. Orevkov in [31], successfully combines the second point of view
with Abel-Jacobi theorem, in order to prove that some speci�c complex orientations on a real
plane pseudo-holomorphic curve cannot be realized in the same degree by real plane projective
curves. In the text, we adopt a topological point of view and we consider a generalization of the
notion of type I introduced by O. Viro in [39]. Our references for this section are [39], [9] and

16



the survey [21].

De�nition 1.8. Let c be a continuous involution on a compact manifold M of dimension 2n.
The Z2-form of the involution c is de�ned as

Hn (M ;Z2)×Hn (M ;Z2)→ Z2

α, β 7→ α ◦ c∗β.

De�nition 1.9. Let V be a �nite-dimensional Z2-vector space. The characteristic element of a
non-degenerate symmetric bilinear form b : V × V → Z2 is the vector r ∈ V , such that for any
v ∈ V , one has

b(v, v) = b(v, r).

Lemma 1.2. [4] Let M be an almost complex compact manifold of dimension 2n and let c be a
conjugation on M such that the �xed locus of c is non-empty. Then the �xed locus of c realizes
the characteristic element of the Z2-form of the involution c.

De�nition 1.10. LetM be an almost complex manifold of dimension 2n and let c be a conjugation
on M such that the real locus is non-empty. We say that (M, c) is of type I if

[Fix(c)] = 0 ∈ Hn (M ;Z2) .

More generally, for any u ∈ Hn (M ;Z2), we say that (M, c) is of type Iu, or of type I relatively
to u, if

[Fix(c)] = u ∈ Hn (M ;Z2) .

There are several interesting homology classes that the �xed locus can realize in the group
Hn (M ;Z2). In particular, in the case whereM is the complex locus of a real projective surface,
the classes of the complex loci of curves yield orientations on RS \ RC. More precisely, given
a non-singular real algebraic surface S which satis�es H1 (CS;Z2) = 0, and of type I[CC], O.
Viro constructed a pair of opposite orientations on RS \ RC. O. Viro presented two equivalent
constructions in [39]: the �rst one relies on the existence of a double covering of CS rami�ed
along RS∪CC and the second one uses linking numbers with the 2-chain RS+CC. We present
here the one with linking numbers, which has the advantage not to require to work in any other
space than the complex locus CS. The assumption that H1 (CS;Z2) = 0 is reasonable since
it holds for any non-singular real surface in P3. Indeed, it is a consequence of the Lefschetz
hyperplane theorem that for any non-singular real surface, the �rst homology group of the
complex locus with Z-coe�cients vanishes, hence the result with Z2-coe�cients.

Construction 1.1. Let us assume that S is a non-singular real projective surface such that
H1(CS;Z2) = 0. Consider a real curve C in S such that S is of type I[CC]. The 2-cycle
RS+CC with Z2-coe�cients is homologous to zero, so there exists a 3-chain η in CS such that
∂η = RS∪CC. Since the �rst Z2-homology groupH1 (CS;Z2) of the complex locus CS vanishes,
the Z2-linking number of any 1-cycle α with RS+CC is well de�ned as the number of intersection
points in CS between η and α (one can always perturb α so that the intersections are transverse).
Now consider two points x and x′ in RS \RC and �x local orientations of RS \RC at x and x′.
Consider a tubular neighborhood of RS in CS. Since a tubular neighborhood of RS in CS is
homeomorphic to the normal bundle of RS in the complex locus CS, one can always assume that
the �bers of that tubular neighborhood are stable by the conjugation conj. Consider now two
�bers D and D′ of this tubular neighborhood at the points x and x′ respectively. The boundaries
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of D and D′ are circles, denoted respectively by ∂D and ∂D′, on which the conjugation acts as
−id. Choose two points y and y′ on the circles ∂D and ∂D′ respectively. Note that the local
orientations of RS at x and x′ induce, by multiplication by i, orientations of the �bers D and D′.
One can then consider two paths u : [0, 1] → ∂D and u′ : [0, 1] → ∂D′ following the boundary
orientation on ∂D and ∂D′, and connecting respectively the point y to conj(y) and the point y′

to the point conj(y′). Now, since RS ∪CC is a �nite union of manifolds of codimension at least
2, the complement CS \ (RS ∪ CC) is connected. Thus, there exists a path s connecting y to y′

in CS \ (RS ∪ CC). This construction yields a 1-cycle, depending on the local orientations at x
and x′ and de�ned by the concatenation of paths

αx
′

x := su′ (conj ◦ s)−1
u−1.

The linking number of the 1-cycle αx
′

x with the 2-cycle RS ∪CC does not depend on the chosen
path s. In fact, if t is another path from y to to y′ in CS \(RS ∪ CC), then there exists a 2-chain
B in C2 (CS;Z2), bounding the 1-cycle s+t. The sum of the 1-cycles αx

′

x and tu′ (conj ◦ t)−1
u−1

is thus equal to B+ conj∗B, so that by choosing the 2-chain B to be transverse to RS∪CC, the
sum of the corresponding linking numbers is equal to the number of intersection points between
B + conj∗B and RS ∪ CC. This number of points is even because RS ∪ CC is stable by the
conjugation conj. We then de�ne the complex orientations of S modulo the curve C as the pair
of opposite orientations on RS \ RC, such that for any pairs of points x and x′ in RS \ RC,
the local orientations at the points x and x′, given by one of the complex orientations, yield a
1-cycle αx

′

x whose linking number with RS ∪ CC is zero.

As in the case of curves, the M-surfaces are of a speci�c type, but not necessary of type I.
In the case of a real algebraic surface in P3, it depends on the parity of the degree as stated by
the proposition below (see Theorems 2.2.F and 4.1.B in [39]).

Proposition 1.3. [39] Let S be a non-singular real surface of degree d in P3 and such that
(CS, conj) is maximal. If the degree d is even, then S is of type I, while if the degree is odd, the
surface is of type Ihp, that is, the type relative to the complex locus of a plane section of S.

In order to conclude this section, let us mention a topological restriction on almost-complex
4 manifolds (M, c) of type Iwu, meaning that [Fix(c)] = wu(M), where wu(M) ∈ H2 (M ;Z2) is
the Wu-class of M , that is, the characteristic element of the intersection form on H2 (M ;Z2).

Proposition 1.4 (Generalized Arnold's congruence). [21] Let (M, c) be an almost complex
4-manifold endowed with a conjugation c of type Iwu. One has

χ(Fix(c)) = σ(M) mod 8.

Remark 1.6. This statement applies to the complex locus CS of a non-singular real projective
surface S endowed with the complex conjugation (the statement is formulated in this way in
[21], Result 2.7.2). In the case where S is of type I, the statement is also mentioned in [39] as
Kharlamov's congruence (Theorem 3.3.A). An almost-complex 4-manifold (M, c) is of type Iwu
if and only if the characteristic element of the Z2-form of the involution c is also a characteristic
element of the usual Z2-intersection form. In particular, if (M, c) is maximal, then (M, c) is of
type Iwu. This statement is a direct corollary of the fact that for maximal (M, c) the involution
c acts trivially on the Z2-homology. From that perspective, Proposition 1.3 is a consequence of
the fact that the Wu-class of a non-singular real surface of degree d in P3 is equal to 0 if d is
even and to the class of the hyperplane section if d is odd.
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In the case of a maximal non-singular real surface S of degree d in P3, one �nds back the
statement of Theorem 1.4, but only with a congruence modulo 8 instead of 16. This result is
interesting, but it gives no information about the topology of the pair (RP 3,RS). The next
result, proved by O. Viro in [39] (Theorem 4.2.B), provides a better understanding of the complex
orientations of a real algebraic surface modulo a curve.

Theorem 1.6. [39] Let S be a real projective surface of type I[CC], where C is a real algebraic
curve in S. If the real locus RC is non-empty, then a complex orientation on RS \RC does not
extend to an orientation of RS.

From the theorem above, O. Viro deduces the following result about the topology of the pair
(RP 3,RS), where S is a non-singular real projective surface of even degree.

Corollary 1.1. Let S be a non-singular real projective surface of type Ihp and of even degree
in P3. Then, the real locus of RS is contractible in P3.

Proof. By contradiction, assume that the real locus RS is not contractible, hence the existence
of a non-contractible loop l in RS. Consider a real projective plane P in P3. The homology
class of l realizes the non-zero element of H1

(
RP 3;Z2

)
, so there is an odd number of points of

intersection of the loop l with RP . Since S is of type Ihp, one can choose a complex orientation
on RS \ R (P ∩ S). This orientation induces local orientations at x for all points x in l \ RP .
Since the local orientations changes to their opposite an odd number of times among l (at each
point of l ∩ RP ), the restriction of the tangent bundle of RS to l is non-orientable, so RS is
non-orientable. Yet, the non-singular real projective surface S is of even degree so the real locus
RS is orientable.

Example 1.3. A non-singular real surface of degree 2, whose real part is homeomorphic to a
sphere, is of type Ihp. One can �nd a proof in [39]. We give a more geometric point of view
using pencils of plane sections in Example 1.6.

1.3 Investigating Complex Orientations with Pencils of Curves

We already made use of a pencil of lines in Example 1.2 in order to determine the type of a
maximally nested real algebraic curve in P2. Pencils of lines seem, in fact, to have more general
connection with complex orientations as suggested by Fiedler's alternation of orientations (see
[37]). So it should not be surprising that pencils also show up for the type of a non-singular
real projective surface. Let S be a non-singular real projective surface. Given a morphism
f : S → P1, one can consider the family of curves (Ct)t∈CP 1 , where for all t ∈ CP 1, the complex
locus CCt is equal to the �ber f−1(t). A family arising in this way is called a pencil of curves
on S and if the morphism f is real, then the pencil of curves is said to be real. Let (Ct)t be a
real pencil of curves, such that for every t ∈ RP 1, the real locus RCt is non-singular and the
curve Ct is of type I. In particular, for any t ∈ RP 1, one can choose a complex orientation
on the real locus RCt, corresponding to one of the two connected components ηt of CCt \ RCt.
Let us denote by 0 the point [0 : 1] ∈ RP 1. Note that the choice of complex orientations on
RCt for t ∈ RP 1 induces a choice of complex orientations on the real loci RCs for s in a small
neighborhood of t. Since RP 1\{0} is contractible, one can make a choice of complex orientations
on the real loci RCt for t ∈ RP 1 \ {0}, such that the complex orientation on RCt induces the
complex orientations on RCs for any t ∈ RP 1 \ {0} and s in a neighborhood of t in RP 1 \ {0}.

19



We call such a choice of complex orientations coherent complex orientations relative to C0 on
the real pencil (Ct)t. There are now two complex orientations that one can consider on the real
locus RC0: the one induced by the curves RCs for s ∈ R>0 and the one induced by the curves
RCs for s ∈ R<0, where we identi�ed the connected components of RP 1 \ {[0 : 1], [1 : 0]} with
R>0 and R<0. The question is now whether or not these orientations coincide. If they coincide,
we say that the real pencil (Ct)t is of type I, while if they coincide with the opposite orientation,
we say that the real pencil is of type Irel.

Proposition 1.5. Let S be a non-singular real projective surface. Assume that S admits a real
pencil (Ct)t∈CP 1 , such that for every t ∈ RP 1, the real locus RCt is non-singular and the curve
Ct is of type I. If the pencil is of type I, then the real projective surface S is of type I, while if
the pencil is of type Irel, then the real projective surface if of type I[CC0].

Proof. Let us �x coherent complex orientations relatively to C0 on the pencil (Ct)t. For every
t ∈ RP 1\{0}, let us denote by ηt the half of CCt\RCt inducing the chosen complex orientations.
Denote by η+

0 and η−0 the halves of CC0\RC0 inducing the same complex orientations on RC0 as
the real loci RCs of the pencil, for s in R>0 and R<0 respectively. The union for all t ∈ RP 1\{0}
of the 2-chains ηt with the 2-chains η±0 form a 3-chain with Z2-coe�cients, denoted by η. By
coherence of the orientations, the boundary of η is equal to RS + η+

0 + η−0 . Yet, the pencil is of
type I if and only if η+

0 + η−0 = 0, hence the result.

Remark 1.7. This proposition is stated in a more geometric way than the de�nition of the type
of a non-singular real projective surface. In fact, with the assumptions of the proposition, one
can obtain a separating real morphism f : S \C0 → A1, where A1 is the real a�ne line, so that
this result seems connected to both points of view on the type of curves, presented in Section
1.1.

Example 1.4. The real projective plane is an M -surface, so we already know by Remark 1.6
that the real projective plane is of type Iwu. The Wu-class wu(CP 2) is the homology class of
the complex locus of a line. Indeed, the only non-zero element of the Z2-space H2

(
CP 2;Z2

)
is

the class of the complex locus of a line, and the self intersection of this element is 1 by Bézout's
theorem. The proposition above o�ers a more geometric proof. Take any point x in RP 2 and
consider the real pencil of lines (Dt)t∈CP 1 passing through x. A real projective line is a non-
singular real curve and is of type I. As illustrated by Figure 1.2, the real pencil (Ct)t is of type
Irel. In order to prove that the pencil is e�ectively of type Irel, one just has to consider the real
loci of the lines of the pencil in a neighborhood of the point x and to notice that the orientation
on a line is reversed by a rotation of angle π.

Example 1.5. A non-singular real surface S of degree 2 in P3, whose real locus is homeomorphic
to a 2-dimensional torus is of type I. We already know it because S is an M -surface. Let us
illustrate this statement using Proposition 1.5. Take a real line D in P3 which does not intersect
the hyperboloid RS and consider the real pencil of planes (Pt)t containing the line D. De�ne
the curve Ct on S as the plane section of S by the plane Pt, for all t ∈ CP 1. The curves (Ct)t
then form a real pencil of curves. For any t ∈ RP 1, the real curve Ct is a conic in the plane
Pt and the real locus is non-empty (and non-singular), so the curve Ct is of type I. Coherent
complex orientations on the pencil (Ct)t glue together at C0, since we already know that the
surface is of type I, as illustrated by Figure 1.3.
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RC0

RCt+

RCt−

Figure 1.2: A real pencil of lines of type Irel in the real projective plane and a choice of coherent
complex orientations.

RC0

RCt+

RCt−

Figure 1.3: A real pencil of type I in a real quadric in P3 whose real locus is a hyperboloid
and a choice of coherent complex orientations.
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RC0

RCt+RCt+

RCt−

x+

x−

Figure 1.4: A real pencil of type Irel in a real quadric in P3 whose real locus is a sphere and a
choice of coherent complex orientations.

Example 1.6. A non-singular real surface of degree 2 in P3, whose real locus is homeomorphic
to a sphere, is of type Ihp. Take a real line D in P3 which intersects RS in two real points, x+

and x−, and consider the real pencil of planes (Pt)t containing the line D. De�ne the curve Ct
on S as the plane section of S by the plane Pt, for all t ∈ CP 1. The curves (Ct)t then form
a real pencil of curves. For any t ∈ RP 1, the real curve Ct is a conic in Pt and the real locus
is non-empty (and non-singular), so the curve Ct is of type I. In a neighborhood of x+, the
situation is the same as in a neighborhood of a the point x in Example 1.4. The situation is
shown in Figure 1.4

We see that exhibiting pencils of type I and type Irel o�ers a more geometric point of view
on the type of non-singular real projective surfaces. This point of view also provides us with
new examples of families of real algebraic surfaces of arbitrarily high degree and speci�c type.

De�nition 1.11. Let S be a non-singular real projective surface in P3 and let k be a positive
integer. We say that k spherical components Σ1, . . . ,Σk of the real locus RS form a nest of
spheres of depth k, if for all j ∈ {1, . . . , k}, the spheres Σ1, . . . ,Σj−1 are contained in the
contractible component of RP 3 \Σj . We say that k hyperboloids (that is, non-contractible tori
of dimension 2) Σ1, . . . ,Σk form a nest of hyperboloids of depth k, if for all j ∈ {1, . . . , k}, the
hyperboloids Σ1, . . . ,Σj−1 are contained in a same component of RP 3 \ Σj (note that in this
case, we are not able to distinguish between the two components of the complementary).

Remark 1.8. By Bézout's theorem, one can show that nests of spheres and nests of hyperboloids
have depth at most bd2c, where d is the degree of the surface.

Proposition 1.6. Let d be an even positive integer. A non-singular real surface S of degree d

in P3, whose real locus is homeomorphic to
d

2
nested hyperboloids, is of type I.

Proof. Let us denote by Σ1, . . . ,Σ d
2
the hyperboloids of the nest. Take a lineD in the component
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of RP 3 \ Σ1 which does not contain any hyperboloids of the nest. Consider the real pencil of
planes (Pt)t containing that line. The intersections of the planes Pt of the pencil with the real
surface S, for t ∈ CP 1, yield a real pencil of curves (Ct)t on S. For any t ∈ RP 1, the curve Ct is
a real curve of degree d in the plane Pt and the real locus RCt is a (non-singular) nest of depth
d
2 , implying that the curve Ct is of type I. One can then choose coherent complex orientations
relatively to C0. Since the chosen orientation on any hyperboloid Σj for j ∈ {1, . . . , k} is the
same as in Example 1.5 for a real surface of degree 2, the pencil is of type I. By Proposition
1.5, the real surface S is then of type I.

Proposition 1.6 above describes a family of non-singular real surfaces of arbitrary high even
degree d in P3, which are of type I but not maximal for d ≥ 4. In fact, one can obtain a non-
singular real surface of degree d in P3 having a nest of d2 hyperboloids, by multiplying and then
slightly perturbing the de�ning polynomials of d

2 real surfaces S1, . . . , S d
2
of degree 2, whose

real locus RS1, . . . ,RS d
2
are hyperboloids such that for all k ∈ {2, . . . , d2}, the hyperboloids

RS1, . . . ,RSk−1, are contained in a same component of RP 3 \ (RSk).

Proposition 1.7. Let d be an even positive integer. A non-singular surface S of degree d in

P3, whose real part is homeomorphic to
d

2
nested spheres, is of type Ihp.

Proof. Let us denote by Σ1, . . . ,Σ d
2
the spheres of the nest. Take a line D intersecting the

spheres Σj in two points xj±, for all j ∈ {1, . . . , k}. Consider the real pencil of planes (Pt)t
containing that line D. The intersections of the pencil Pt with the real surface S yield a real
pencil of curves (Ct)t on S. For any t ∈ RP 1, the curve Ct is a real curve of degree d in the
plane Pt and the real locus RCt is a (non-singular) nest of depth d

2 , implying that the curve
Ct is of type I. One can then choose coherent complex orientations relatively to C0. Since the
chosen orientation on any sphere Σj for j ∈ {1, . . . , k} is the same as in Example 1.6 for a real
surface of degree 2, the pencil is of type Irel. By Proposition 1.5, the real surface S is then of
type I[CC0], in other words, of type Ihp.

Similarly to Proposition 1.6, Proposition 1.7 above describes a family of non-singular real
surfaces of arbitrary high even degree d in P3, which are of type Ihp. Using a similar pencil
as in the proof above, one obtains a family of non-singular real surfaces of arbitrarily high odd
degree in P3, which are of type Ihp, but not maximal for d ≥ 5.

Proposition 1.8. Let d be an odd positive integer. A non-singular real surface S of degree

d in P3, whose real part is homeomorphic to the disjoint union of
d− 1

2
nested spheres and a

component homeomorphic to a real projective plane, is of type Ihp.

Proof. One can use similar pencil and arguments to the ones of the proof of Proposition 1.8.

In general, a non-singular real projective surface does not have real pencils of type I or Irel,
however, such a pencil sometimes does exist on speci�c examples and can be used in order to
help us understand the behavior of complex orientations of surfaces.
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2 Tropical Geometry

2.1 Tropical Varieties and Tropical Manifolds

In the �rst part of this chapter, we recall some basics of tropical geometry and de�ne the tropical
spaces that we are going to work with in the following chapters. These spaces are de�ned as a
speci�c kind of 2-dimensional tropical manifolds and they naturally arise as non-singular tropical
surfaces in tropical toric varieties of dimension 3.

2.1.1 Tropical Polynomials and Tropical Subvarieties of the tropical torus

We de�ne the tropical semi-�eld as the set T = R ∪ {−∞} endowed with the tropical addition
”a + b” = max(a, b) and the tropical multiplication ”a · b” = a + b. We consider the euclidean
topology on R and extend it on T with the open sets of the form [−∞, a) for a ∈ R, so that
T is homeomorphic to an interval [0, 1). The neutral element for the tropical addition is −∞,
and for the tropical multiplication it is 0. Therefore, the tropical torus of dimension n ≥ 0 is
(T \ {−∞})n = Rn, and this torus is dense in Tn for the product topology.

A tropical polynomial in n variables is given by P ∈ T[x1, . . . , xn], and we write P =
”

∑
k∈(Z≥0)n

akx
k”, with only a �nite number of ak ∈ R and ”xk” = ”xk1

1 . . . xknn ”. If P is non-

trivial, meaning it has at least one coe�cient di�erent from −∞, it de�nes a convex piecewise

a�ne function fP : Rn → R, given by fP (x) = max
k∈(Z≥0)n

(
ak +

∑
i

kixi

)
. As for a polynomial

over any �eld, there is a variety associated with a tropical polynomial. However, this variety it
is not de�ned as the zero locus of the polynomial, but rather as the corner-locus of the function
fP : Rn → R that it de�nes. In fact, the tropical zero being −∞, one can immediately see that
f−1
P (−∞) is empty, as soon as P is non-trivial.
Given a non-trivial tropical polynomial P = ”

∑
k∈(Z≥0)n

akx
k, the domains where fP : Rn → R

is a�ne, yield the n-cells of a polyhedral decomposition of Rn, such as in �gure 2.1, for the
tropical conic ”x2 +1xy+y2 +x+y+(−2)”. The corner-locus of fP is the set of all points where
fP is not di�erentiable. This corner-locus is the (n−1)-skeleton of the polyhedral decomposition
of Rn given by P . In particular, the corner-locus is a polyhedral complex, that is, a union of
polyhedral domains ∪

D
D, such that Di ∩Dj is either empty or a face of both Di and Dj . One

can show that this polyhedral complex is pure dimensional of dimension n − 1, meaning that
the maximal faces for inclusion, called facets, are all of the same dimension n − 1. Moreover,
each n-cell corresponds to a unique monomial ”akx

k” of P , which satis�es, for every x in this
n-cell, the equality fP (x) = ”akx

k” = ak + k · x.
The example ”0 + x + x2” = ”0 + x2” shows that not every monomial of the tropical

polynomial induces an n-cell. However, one can show that the extremal monomials, meaning
the ones that are not convex combinations of other monomials, always appear. In fact, the above
polyhedral decomposition of Rn is dual to a subdivision of the Newton polytope ∆(P ) of P , where
∆(P ) := Conv ({k ∈ (Z≥0)n|ak 6= −∞}). Let F be a cell of this polyhedral decomposition. We
de�ne the dual cell ∆F ⊂ ∆(P ) by ∆F := Conv

(
{k ∈ (Z≥0)n|fP (x) = ”akx

k”}
)
for any x ∈ F .

These cells ∆F yield a polyhedral decomposition of the Newton polytope of P , called the dual
sudivision. This terminology is justi�ed by the following proposition.

Proposition 2.1. [8] One has
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Figure 2.1: Polyhedral subdivision of R2 arising from the tropical conic ”x2 + 1xy + y2 + x +
y + (−2)” and the dual subdivision of its Newton polytope.

� ∆(P ) =
⋃
F

∆F , where the union is taken over all cells F of the polyhedral subdivision of

Rn induced by P ;

� dimF = codim∆F , for every cell F of the polyhedral subdivision;

� F and ∆F are orthogonal, in the sense that the directions of their a�ne spans are orthog-
onal, for every cell F of the polyhedral subdivision;

� F ⊂ F ′ if and only if ∆F ′ ⊂ ∆F and in that case, ∆′F is a face of ∆F ;

� F is unbounded if and only if ∆F ⊂ ∂∆(P ), for every cell F of the polyhedral subdivision.

The above proposition enables us to associate a weight to every (n−1)-cell of the polyhedral
subdivision of Rn (recall that they are top-dimensional cell of the corner-locus). Such a cell F ,
is in fact dual to an edge ∆F of the dual subdivision of ∆(P ). The weight of F , denoted by
w(F ) is de�ned as the number of integer points in ∆F minus 1, that is

w(F ) := Card (∆F ∩ (Z≥0)n)− 1.

De�nition 2.1. For P = ”
∑
k∈Zn

akx
k” a tropical polynomial, the tropical hypersurface, (V (P ), w),

associated with P , is the corner-locus of fP : Rn → R, denoted by V (P ), endowed with the
weight function w de�ned above.

Remark 2.1. The corner-locus V (P ) alone is often referred to as the tropical hypersurface by
other references (see for instance [29, 24]). In the next sections, all weights are equal to one, so
it does not make any di�erence here.

Example 2.1. The tropical curve associated with ”x2+1xy+y2+x+y+(−2)” has only weights 1
on its edges. The tropical polynomial ”0 +x2” in one variable de�nes a tropical variety reduced
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(0,−1)

(0, 0)

(1, 1)

(−1, 0)

Figure 2.2: The standard tropical line in R2 given by ”0 + x+ y”. The primitive directions of
the rays are in red.

to the point 0, but with multiplicity 2. The linear tropical polynomial ”0 + x1 + · · · + xn”
has the standard n-simplex as Newton polytope and the associated tropical hypersurface is the
(n− 1)-skeleton of the normal fan to this polytope. We call V (”0 +x1 + · · ·+xn”) the standard
tropical hyperplane in Rn (see �gures 2.2 and 2.3 for a standard tropical line and a standard
tropical plane).

The above de�nition introduces tropical hypersurfaces as pure-dimensional weighted polyhe-
dral complexes. These complexes satisfy two additional properties. Firstly, the tangent vector
spaces to the faces are de�ned by equations with rational coe�cients (implying they can be re-
formulated with integer coe�cients). We say that these complexes are rational. Secondly, they
satisfy the so-called balancing-condition. Let σ be a codimension 1 face of a rational polyhedral
complex, with l ∈ Z>0 adjacent facets (i.e faces of maximal dimension), denoted by F1, . . . , Fl.
For any j ∈ {1, . . . , l}, the tangent vector space of σ, denoted by Tσ, is a codimension 1 subspace
of the tangent vector space of Fj , therefore, the quotient space TFj/Tσ is of dimension 1. More-
over, the rationality hypothesis implies that the quotient lattice TZFj/TZσ is a 1-dimensional
lattice of TFj/Tσ. Recall that a vector v ∈ Zn is said to be primitive if v = λṽ with λ ∈ Z
and ṽ ∈ Zn, implies that λ = ±1. The balancing condition is satis�ed at σ if, for any primitive
vectors v1, . . . , vl, such that for any j ∈ {1 . . . , l}, the vector vj generates the quotient lattice
TZFj/TZσ, one has ∑

j

w(Fj)vj ∈ Tσ.

A pure-dimensional rational weighted polyhedral complex is said to be balanced, if all its
codimension 1 faces satisfy the balancing condition.

Proposition 2.2. [8] Tropical hypersurfaces in Rn are balanced (n − 1)-dimensional weighted
rational polyhedral complexes.

There is a lot to say about tropical hypersurfaces and we refer to [25] for more detailed
exposures. The rest of this work mainly focuses on non-singular tropical hypersurfaces, de�ned
below.
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(0, 0,−1)

Figure 2.3: The standard tropical plane in R3 given by ”0 +x+y+ z”. The primitive directions
of the rays are in red.
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De�nition 2.2. Let ∆ ⊂ Rn be a polytope of dimension n, with integer vertices. A rectilinear
triangulation of ∆ with integer vertices, is said to be primitive, if every n-simplex of the trian-

gulation is of minimal possible volume
1

n!
. A tropical hypersurface is said to be non-singular, if

the dual subdivision is primitive.

Non-singular tropical hypersurfaces appear as a special kind of tropical manifolds, as we
introduce them in Section 2.1.3. It is a direct consequence of the de�nition that a non-singular
tropical hypersurface has only weights equal to 1. Therefore, it is equivalent to speak of a non-
singular tropical hypersurface or of the corner-locus of a de�ning tropical polynomial. Moreover,
a neighborhood of a vertex of a non-singular hypersurface always looks like the normal fan of a
standard n-simplex, because the dual cell is a standard n-simplex, up to an action of GLn(Z).
This statement is precised with the forecoming de�nition of tropical manifold in Section 2.1.3.

Example 2.2. The tropical curve V (”x2+1xy+y2+x+y+(−2)”) of Example 2.1 is non-singular.
As every non-singular tropical curve in R2, the underlying topological space is a trivalent graph
with some unbounded edges. The tropical hyperplane V (”1 + x1 + . . .+ xn) a non-singular
tropical hypersurface in Rn. Figures 2.2 and 2.3 show a tropical line in R2 and a tropical plane
in R3. The tropical hypersurface arising from such a linear polynomial is a �rst occurrence of
fan tropical linear space.

There is an equivalence between (n−1)-dimensional weighted rational polyhedral complexes
in Rn and tropical hypersurfaces (see for instance [30] or [25]). Therefore, a d-dimensional
tropical subvariety of Rn is de�ned as a d-dimensional weighted rational polyhedral complex.

Example 2.3. In Rn, the one-dimensional fan with edges R≥0(−e1), . . . ,R≥0(−en) and R≥0e0

de�nes a tropical line. One can view it as the 1-skeleton of the standard hyperplane (see Section
2.1.2 for the de�nition of a (rational) fan and Section 2.1.3 for more details about tropical
subvarieties coinciding with fan in Rn).

2.1.2 Tropical Toric Varieties

As mentioned in the previous section, Rn can be seen as the tropical torus. We present the
construction of tropical toric varieties only in the smooth case, that is to say the ones constructed
with unimodular fans. These varieties are obtained in the same way as in the classical case,
gluing a�ne patches together. We follow the exposure and the notations of [30] (section 3.2).
The construction of tropical toric varieties, not necessarily smooth is also mentioned there, and
is brie�y detailed for instance in [2].

The �rst two smooth toric tropical varieties are of course the tropical torus Rn and the
tropical a�ne space Tn. The patches that are glued together are a�ne, so one needs �rst to
understand these patches in Tn. One crucial di�erence between the classical a�ne spaces and
the tropical ones, is that, in the tropical case, all points do not behave topologically in the same
way. In fact, a point (x1, . . . , xn) ∈ Tn can have some of its coordinates equal to −∞. These
points are on the boundary of the topological manifold Tn, so there are some directions along
which they are not able to move freely. That is why they are called sedentary points. We denote
by [n] the set {1, . . . , n}.
De�nition 2.3. Let x = (x1, . . . , xn) ∈ Tn. The sedentarity of x is the subset sed(x) ⊆ [n]
de�ned by the integers i ∈ [n] such that xi = −∞. The order of sedentarity of x is the cardinal
|sed(x)| of the sedentarity of x.
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Given a subset I ⊆ [n], one can de�ne the subset of points of Tn having sedentarity I. We
denote this subset by RI := {x ∈ Tn|sed(x) = I}. The closure of RI in Tn is denoted by TI
and equals the subset of points which contains I in their sedentarity. Note that, forgetting
the sedentary coordinates produces a homeomorphism RI ' Rn−|I|. There is then a natural
strati�cation of Tn by

Tn =
⊔
I⊆[n]

RI .

As in the classical case, the gluing maps used for toric varieties are monomial transformations.
The tropical monomial transformations x 7→ (”xaj”)j with aj ∈ Zn for all j ∈ [n], are integer
linear maps, since ”xaj” =

∑
i aijxi with aj = (aij)i∈[n]. How do they act on Tn and on the

strata RI ? These maps are always well de�ned on R∅ = Rn, but not necessarily on the other
strata of Tn. In fact, it is possible to de�ne ”(−∞)a” = a × (−∞) as −∞ if a > 0 or 0 if
a = 0, but not as +∞ when a < 0, because T does not contain +∞. Therefore, given a tropical
monomial map x → Ax with A = (aij)ij ∈ Mn(Z), it can be extended from Rn to

⊔
I⊆I(A)

RI ,

where I(A) is de�ned as the subset of all integers i ∈ [n] such that for all j ∈ [n], one has
aij ≥ 0.

Now, let us brie�y recall some basics on rational polyhedrons, cones and fans in Rn. In the
following, a rational polyhedron in Rn is the intersection of a �nite number of subsets of the form
Hκ = κ−1 (R≤0), where κ : Rn → R is an a�ne map, whose linear part has integer coe�cients
(or equivalently rational coe�cients). A face of a polyhedron σ is the intersection of σ with
κ−1({0}), where κ is an a�ne map such that σ ⊂ Hκ. The boundary ∂σ of a rational polyhedron
is the union of all proper faces of σ. It coincides with the relative boundary of σ for the topology
on σ induced by the euclidean topology on Rn. A rational cone is a rational polyhedron where
the de�ning equations κ are linear. In particular, a rational cone always contains 0 ∈ Rn. The
span of a cone σ is denoted by L(σ) and is the smallest vector subspace of Rn containing σ,
and the dimension dim(σ) of σ is the dimension of L(σ). We say that a rational cone σ is
generated by a family of vectors (v1, . . . , vN ) of Rn, for some N ≥ 0, if σ is equal to the set of
non-negative linear combinations of the vectors vi. Finally, we put LZ(σ) := L(σ)∩Zn. Because
the coe�cients of the de�ning equations are integer, it is possible to �nd a generating family of
σ by integer vectors which also generate LZ(σ) as a lattice.

A rational fan in Rn is a collection of rational cones, closed by intersection and taking faces.
A rational fan Ξ is unimodular, if every cone σ ∈ Ξ admits a generating family of cardinal dimσ,
which forms a lattice basis of LZ(σ). Finally, if ∆ ⊂ Rn is a convex polytope with non-empty
interior, the normal fan of ∆ is de�ned in the following way. For each (n− 1)-dimensional face
F , denote by σF the half-line of vectors normal to F and pointing outwards the polytope ∆.
For each lower dimensional face G, denote by σG the convex hull of all the rays σF such that
G ⊂ F . The normal fan of ∆, denoted by Ξ(∆), is the union of the cones σG for all faces G of
the polytope ∆. It is a complete fan, that is, the union of all its cones is Rn.

Let us now construct a smooth tropical variety (e.g a tropical manifold whose De�nition is
introduced in Section 2.1.3) from a unimodular fan Ξ. For every σ ∈ Ξ of dimension k ∈ Z≥0,
choose a basis (eσi )1≤i≤n of Zn, such that σ is generated by (−eσi )1≤i≤k. Put Uσ := Tk ×Rn−k.
The sets Uσ are the patches of our tropical toric variety. Let us de�ne the gluing morphisms.
For two cones σ, σ′ ∈ Ξ, let Aσ,σ

′ ∈ GLn(Z) be the coordinate change matrix from (eσ
′

i )i to
(eσi )i. The associated linear map φσ,σ′ is a tropical linear map and goes from Rn to itself.
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The following lemma explains when this map can be extended to some other strata of Tn. By
convention, e{0} is the canonical basis of Rn.
Lemma 2.1. [30] If τ is a face of σ ∈ Ξ, then the map φσ,τ extends to an open embedding
φσ,τ : Uτ → Uσ. Its image is denoted by Uτσ . If τ is a common face of σ and σ′, then φσ′,σ extends
to a homeomorphism Uτσ ' Uτσ′ . Moreover, when it is de�ned, one has φσ,σ′ ◦ φσ′,σ′′ = φσ,σ′′ .

The above lemma makes sure that the gluing morphisms φσ,σ′ de�ne an equivalence relation,
denoted by ∼, on

⊔
σ∈Ξ

Uσ, by x ∼ φσ,σ′(x) whenever it is de�ned.

De�nition 2.4. The smooth tropical toric variety associated with a unimodular fan Ξ of Rn is
de�ned as the quotient space

XΞ :=
⊔
σ∈Ξ

Uσ/ ∼ .

The dimension of XΞ is n.

Example 2.4. As mentioned before, Rn and Tn are smooth tropical toric varieties of dimension
n. In fact, for every I ⊂ [n], the union

⊔
J⊆I
RJ is a smooth tropical toric variety. In order to see

this, one can consider the fan in Rn, whose k-dimensional cones are generated by k vectors of
the family (−ei)i∈I .
Example 2.5. The tropical projective space TPn is a smooth tropical toric variety of dimension n.
It can be de�ned using the same complete fan as in the classical case, that is to say the complete
fan, whose 1-dimensional cones are R≥0(−e1), . . . ,R≥0(−en) and R≥0e0 where e0 =

∑
1≤i≤n ei.

One can also de�ne TPn as

TPn :=
(
Tn+1 \ {−∞, . . . ,−∞}

)
/R,

where R acts by simultaneous addition (i.e tropical multiplication) on each coordinate. Topo-
logically, TPn is homeomorphic to an n-simplex.

Every smooth tropical toric variety X is endowed with a natural open dense embedding of
Rn = U{0}. Let P be a non-trivial tropical polynomial in n variables. Since the corner-locus
V (P ) of the function fP is a subset of Rn ⊂ X, one can de�ne VX(P ) as the closure of V (P ) in
X. Thus, it makes sense to speak about tropical subvarieties of a smooth tropical toric variety.
Since X is de�ned by gluing maps, it may not have a sense to speak of the sedentarity of a point
in terms of some subset I ⊂ [n], but the order of sedentarity of a point of a smooth tropical
toric subvariety still makes sense, since this is preserved by a�ne integer invertible maps. We
also extend the notion order of sedentarity to any cell of a tropical hypersurface VX(P ) in a
smooth tropical toric variety X. The order of sedentarity of a cell σ in VX(P ), is the order
of sedentarity of any point in the relative interior of σ inside VX(P ). Note that the balancing
condition holds only for codimension 1 faces of sedentarity 0.

2.1.3 Tropical Manifolds

As usual when de�ning an object such as a manifold, we need to specify what are the local
models. The local models of a tropical manifold are fan tropical linear spaces. A nice reference
for the de�nitions and lemma of this section is K. Shaw's PhD thesis [36].

There are several equivalent ways of de�ning matroids, all of them being equivalent. Here
we de�ne matroids via their rank function. Our use of matroids is limited to the de�nition of a
tropical manifold.
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De�nition 2.5. A matroid M is given by the data of a �nite set E equipped with a rank function
r : P(E) → Z≥0, where P(E) is the set of all subsets of E. The rank function r has to satisfy
the two followings properties:

� for all A,B ∈ P(E), such that A ⊂ B one has r(A) ≤ r(B) ≤ Card(B);

� for all A,B ∈ P(E), one has r(A ∪B) ≤ r(A) + r(B).

If M = (E, r) is a matroid, a subset F ∈ P(E) is called a �at, if for every e ∈ E, one
has r(F ) < r (F ∪ {e}). Endowed with the inclusion of subsets, the �ats of M form a partially
ordered set known as the lattice of �ats. This meaning of "lattice" is only used in this section. In
all the other sections of this text, the word lattice is to be understood as lattice group. In order
to de�ne tropical manifolds, we restrict to loopless matroids without double points. An element
e ∈ E is a loop in M , if r(e) = 0, and a couple {e, f} ⊂ E is a double point if r({e, f}) = 1. One
associates a polyhedral fan to a loopless matroid without double points, in the following way.

De�nition 2.6. Let M = (E, r) be a loopless matroid without double points. For simplicity of
notations, assume that E = {1, . . . , n}, also denoted by [n]. Let vi = −ei for i ∈ [n], where
(ei)i is the canonical basis of Rn, and v0 =

∑
i ei. For any subset I ⊂ [n], we set vI =

∑
i∈I vi.

Then, for every maximal (meaning longest) chain of �ats ∅ 6= F1 ⊂ . . . ⊂ Fk 6= [n], one de�nes
the cone generated by the family (vF1 , . . . , vFk). The union of all these cones, indexed on the
maximal chains of �ats, is denoted by B(M), and is called the Bergman fan of M .

Lemma 2.2. Let M be a loopless matroid without double points. Then B(M) is a tropical
subvariety of Rn of dimension r(M).

De�nition 2.7. A fan tropical linear space in a smooth tropical toric variety X, is the closure of
B(M) for some matroid M .

Example 2.6. Any k-skeleton of the normal fan of a primitive n-simplex in Rn is a k-dimensional
fan tropical linear space.

De�nition 2.8. A Hausdor� topological space X is a tropical manifold of dimension n, if X is
equipped with an atlas of charts φα : Uα → Vα ⊆ TNα such that the following three conditions
hold:

� for every α, the map φα is an open embedding and Vα ⊂ TNα is a fan tropical linear space
of dimension n;

� the overlapping maps φα ◦ (φβ)−1 : φβ(Uα ∩ Uβ) → TNα are induced by (extensions of)
a�ne integer maps (as in Section 2.1.2);

� there exists a �nite open cover {Wi} of X, such that for every i, there exists α such that
Wi ⊂ Uα and φα(Wi) ⊂ Vα.

Example 2.7. Smooth tropical toric varieties are tropical manifolds with charts φα : Uα → Vα =
TNα , such that RNα ⊂ φα(Uα). Therefore, it makes sense to speak of tropical toric manifold.

Remark 2.2. The charts used in the de�nition of tropical manifold can only have value in a fan
tropical linear space V . We sometimes refer to more general charts φ : U → TN . It means that
U is an open set of X and that φ is an (extension of) a�ne integer map seen via any chart of
tropical manifold as in De�nition 2.8.
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As in the case of smooth tropical toric manifolds, it makes sense to de�ne the order of
sedentarity of a point of a tropical manifold X and this order is denoted by |sed(x)|. The
boundary of X, denoted by ∂X, is de�ned as the points x such that |sed(x)| ≥ 1. We denote
by Xo = X \ ∂X the interior of X, which are precisely the points of sedentarity 0. The points
of Xo are also called mobile points. There is much more to say about tropical manifolds and
their relationship with matroids and hyperplane arrangements, and we refer to [30] and [36] for
a more in-depth exposure. Tropical manifolds are also referred to as smooth tropical varieties.
The adjective smooth is attributed to a notion of abstract tropical variety, de�ned for instance
in [30]. In one word, tropical varieties are built on local models, among which fan tropical linear
spaces correspond to the smooth ones. It can happen that some of these smooth local models
are tropical hypersurfaces of Tn. It explains the name given for the following de�nition.

De�nition 2.9. A tropical manifold X is called a hypersmooth tropical variety if for every point
x ∈ X there exists a chart U → V such that x ∈ U and V = V (”1 +

∑
i xi”) ⊂ Y where Y is a

tropical toric manifold and the image φ(U) ⊂ V contains the vertex of empty sedentarity of V .
In particular, one can talk of hypersmooth tropical curve or surface when X is of dimension is
1 or 2.

Remark 2.3. Another possibility, to de�ne hypersmooth tropical varieties, is to modify De�nition
2.8, by asking for the local models to be of the form V (”1 +

∑
i xi”), and for the image φα(Uα)

to contain the point 0. One can view hypersmooth tropical varieties and smooth tropical toric
varieties as the cases k = 1 and k = 0 of a special kind of tropical manifolds modeled on
codimension k fan tropical linear spaces. To be more precise, smooth tropical toric varieties
would only be a special case of the case k = 0. In fact, as mentioned in Example 2.7, for a
smooth tropical toric variety, the images φα(Uα) of the charts contain all mobile points of the
fan Vα. This condition is not required by the above de�nition and it is possible to construct
many examples which satisfy the case k = 0 of De�nition 2.9, but are not toric. For instance, a
topological circle can be endowed with an atlas of tropical manifold but is not a smooth tropical
toric variety (see [26]). More generally, any topological manifold X (in the usual sense), endowed
with an atlas of tropical manifold would satisfy the case k = 0 of the de�nition. Yet, as long
as the interior of X is not homeomorphic to an open ball, the atlas of tropical manifold on X
cannot de�ne a smooth tropical toric variety.

Example 2.8. Any non-singular tropical hypersurface X in a tropical toric manifold, as men-
tioned for instance in [36]. Moreover, it is a hypersmooth tropical variety. In fact, one can cover
Xo with the open stars of vertices of sedentarity 0. We denote by Uoα the open sets of this cover,
and put Uα = Uoα ∪

(
Uoα ∩ ∂X

)
. The non-singular tropical hypersurface X is covered by the Uα.

Furthermore, each of them is homeomorphic, by a translation, to a relatively open set Vα, in
the normal fan of a primitive n-simplex, compacti�ed in TPn. There is no di�culty in checking
that the overlapping maps are integer a�ne, since they are induced by translations.

2.2 Tropical Homology and Cohomology

2.2.1 Wave Space

The notion of wave space has been introduced in [26] by G. Mikhalkin and I. Zharkov. We
follow their de�nition. It exists for tropical spaces in general, but here, we restrict ourselves
to tropical manifolds. Let V ⊂ TN be a fan tropical linear space and let F be a face of V of
sedentarity I ⊂ [N ], that is, the relative interior of F , denoted by F o, is contained in RI . The
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parent face to F is the face G of sedentarity 0, such that G ∩ RI = F o. Let y ∈ F o be a point
in the relative interior of F . We denote by Σ(y) the cone of RI ∼= RN−|I| consisting of vectors
u such that for ε > 0 small enough, y + εu ∈ V ∩ RI . We denote by W ′(y) ⊂ Σ(y) the vector
subspace contained in Σ(y) and maximal for inclusion. A nearby mobile point to y is de�ned as
a point in the relative interior of the parent face G.

De�nition 2.10. We de�ne the tangent space T (y) as the linear span of Σ(y) in RI . The wave
space W (y) is W ′(ym), where ym is a nearby mobile point to y.

De�nition 2.11. Let X be a tropical manifold and x ∈ X. Given a chart φα : Uα → Vα, such
that x ∈ Uoα, we de�ned above the tangent space and the wave space of φα(x) in Vα. The
di�erentials of the overlapping maps allow us to identify all the cones coming from di�erent
charts, and thus to de�ne T (x), respectively W (x), as T (φα(x)), respectively W (φα(x)), for any
chart, under the identi�cations by the di�erentials of the overlapping maps.

One �rst thing to say about the wave spaceW (x) of a point x ∈ X, is that it does not see the
sedentarity, since it is always computed at a mobile point. This is the contrary for the tangent
space, which loses one dimension when the order of sedentarity drops by one. We denote their
intersection with ZN (in any chart) by TZ(x) and WZ(x), respectively. Similarly, we denote by
W ′Z(x) the intersection of W ′(x) with ZN . These group lattices are well de�ned because the
di�erentials of the overlapping maps are constant to a linear map with integral coe�cients. The
wave space combined with the order of sedentarity allow us to de�ne the following combinatorial
strati�cation on a tropical manifold.

De�nition 2.12. Let X be a tropical manifold. Two points x, y ∈ X are combinatorially equiv-
alent if there exists a path from x to y such that the dimension of W (z) and the order of
sedentarity |sed(z)| stay constant for any point z in this path. The combinatorial strata of X
are the maximal subsets for inclusion, such that all points of the subset are combinatorially
equivalent. Note that a combinatorial stratum E is always relatively open inside X. We denote
by E the closure of E in X and call E a closed combinatorial stratum.

For a combinatorial stratum E and two points x and y in E, one can canonically identify
T (x) = T (y) =: T (E) (see [26] for more details) as well as W (x) = W (y) =: W (E). Moreover
if F ⊂ E is another combinatorial stratum, then there exist three maps ι : T (E) → T (F ),
ρ′ : W ′(F ) → W ′(E) and ρ : W (F ) → W (E). The construction is as follows. Consider two
points x and y respectively in the relative interior of E and F , such that x and y lie in a same
chart φ : U → V . Since Σ(φ(x)) ⊂ Σ(φ(y)), the smallest vector subspace contained in Σ(φ(y))
is included in the smallest one contained in Σ(φ(x)). That is to say, W ′(φ(y)) ⊂ W ′(φ(x)).
Moreover, this inclusion commute with the di�erentials of the overlapping maps, thus there is an
induced map from W ′(y) to W ′(x), denoted by ρ′. The morphism ρ : W (y)→W (x) is given by
the morphism ρ′ : W ′(E′)→W ′(E′) for the parent faces F ′ of F and E′ of E. Now, to construct
ι, �rst assume that E and F have the same order of sedentarity, thus sed(φ(y)) = sed(φ(x))
and there is an inclusion from the cone Σ(φ(x)) to Σ(φ(y)). The induced inclusion between
the linear spans commutes with the di�erentials of the overlapping maps and ι is induced by
this inclusion. If sed(φ(y))  sed(φ(x)), then there is a map from Σ(φ(x)) to Σ(φ(y)) induced
by the divisorial projection from Rsed(φ(x)) to Rsed(φ(y)), sending every coordinate xi to −∞
for i ∈ sed(φ(x)) \ sed(φ(y)). This map induces one between the linear spans of the cones,
which commutes with the di�erential of the overlapping maps, and it induces ρ. One can check
that, ρ′, ρ and ι are compatible with the lattice structure that is they restrict to morphisms
ρ′ : W ′Z(y)→W ′Z(x), ρ : WZ(y)→WZ(x) and ι : TZ(x)→ TZ(y).
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Example 2.9. For a non-singular tropical hypersurface of Tn, the strata are exactly the (open)
cells described in section 2.1.1 for the ones of sedentarity 0, and the intersections of these cells
with RI for the combinatorial stratum of sedentarity I. In particular, these cells are (open)
polyhedral domains of some Rn.

Polyhedral cells have very nice properties, including being homeomorphic to a ball of the
same dimension. This latter fact is particularly convenient, since it makes the use of cellular
homology and cohomology possible. However, note that in general, a tropical manifold can have
combinatorial strata that are not homeomorphic to open balls. An example is given in [26],
with a topological circle endowed with a structure of tropical manifold. The circle is itself a
combinatorial stratum, where the order of sedentarity is 0 and the wave space has dimension 1,
but it is clearly not a polyhedron, even with an extended de�nition. Since a polyhedral structure
often reveals useful, we introduce the following de�nition.

De�nition 2.13. [26] A tropical manifold X is said to have a polyhedral structure C, if there
exists a �nite number of closed subsets ∆j ⊂ X, indexed by a �nite set J , such that

�
⋃
j∈J

∆j = X;

� for any j ∈ J , there exists a chart φ : U → Y ⊂ TN , where Y is a tropical subvariety of
TN , such that ∆j ⊂ U and φ(∆j) is a facet σj of Y ; then a face Γ of ∆j is de�ned as the
inverse image φ−1(σ) of a face σ of σj ;

� for any j ∈ J and any subset I ⊂ J , the intersection of the facets ∆i for i ∈ I is a face of
∆j .

For any non-negative-integer k, the faces of dimension k of ∆j are denoted by Ck(∆j). The
union for all j ∈ J of the Ck(∆j), is denoted by Ck(X). Sometimes, we do not want to precise
the dimension and we simply write C(∆j) and C(X). For Γ,Γ′ ∈ C(X), we also write Γ′ ≺ Γ, if
Γ′ is a face of Γ of dimension strictly less than the dimension of Γ.

Remark 2.4. The notion of polyhedral structures applies in a much broader context than tropical
manifolds in [26] and [16]. Note also that in [16], this notion is called "rational polyhedral
structure".

As discussed after De�nition 2.12 of combinatorial strata, it can happen that the open strata
of the combinatorial strati�cation are not polyhedral. An important case, where these strata
are open polyhedral cells, is when the tropical manifold is a smooth tropical subvariety of a
tropical toric manifold. Moreover, the closed combinatorial strata form polyhedral structure on
X. In general, if the closed combinatorial strata of X form a polyhedral structure, we say that
X has a polyhedral combinatorial strati�cation. From Section 3.2 to the end of the text, the
tropical manifolds considered are all compact hypersmooth tropical surfaces, with a polyhedral
combinatorial strati�cation.

Remark 2.5. One can show, without too much trouble, that the combinatorial strati�cation
of a hypersmooth curve is polyhedral, but it is not true for higher dimensions, especially for
surfaces, which is the case that is dealt with in the next chapters. To construct a counterexample
in the case of surfaces, it is enough to construct a hypersmooth tropical surface with a strata of
dimension 2 that is not homeomorphic to an open disk. For instance, consider a non-singular
tropical hypersurface V ⊂ TP 3. Consider a face F of V and x a point in the relative interior of
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F . Then V \ {x} is also a hypersmooth tropical surface. However, V \ {x} admits F o \ {x} as
a combinatorial stratum of sedentarity 0 and with dimension of the wave space equal to 2. Yet,
this stratum is homeomorphic to a cylinder.

Example 2.10. The main example of hypersmooth tropical surfaces with polyhedral combinato-
rial strati�cation are non-singular tropical surfaces in the tropical projective space TP 3. Note,
however, that our de�nition of having a polyhedral combinatorial strati�cation may seem quite
restrictive, since, for example, the tropical projective plane does not satisfy it. However, the
tropical projective plane is not a hypersmooth tropical surface since it does not contain a vertex
of order 0, so in this case the condition of having a polyhedral combinatorial strati�cation does
not introduce any new restriction.

Remark 2.6. Since our main objects of interest admit a natural polyhedral structure, in order
to simplify de�nitions and notations, we often assume that X is endowed with a polyhedral
structure, even when this is not necessary. This is the case in the next two sections 2.2.2 and
2.2.3.

As explained in [26], one of the points of the combinatorial strati�cation, compared to a
polyhedral structure is that it always exists and is unique. However, when possible, it is much
more convenient to use a polyhedral structure. One of the nice features of a polyhedral structure
C on a tropical manifold X, is that we can construct a �rst barycentric subdivision D of C, as
explained in the construction below.

Construction 2.1 (�rst barycentric subdivision). For simplicity, we restrict ourselves to the case
where X is compact. Let us introduce some standard notations. Let q be a non-negative integer
and denote by ∆q = [i0, . . . , iq] the standard q-simplex, where i0, . . . , iq are the vertices of ∆q.
Given 0 ≤ k ≤ q and k + 1 points j0, . . . , jk among i0, . . . , iq, we denote by [j0, . . . , jk] the face
of ∆q of dimension k de�ned as the convex hull of the points {j0, . . . , jk} and oriented such
that (j1 − j0, . . . , jk − j0) forms a positively oriented basis. For any polyhedral cell Γ ∈ C(X),
take a point xΓ in the relative interior of Γ and call it barycenter of Γ. Given q + 1 points
y0, . . . , yq in a convex subset K, one can de�ne the singular q-chain [y0, . . . , yq] : ∆q → K, by
sending ij to yj ∈ K, for every j, and requiring [y0, . . . , yq] to be the restriction of an a�ne
map. Given q + 1 points x0, . . . , xq in a n-cell Γ ∈ Cn(X), one can de�ne a singular q-simplex
[x0, . . . , xq] =

(
φ−1

)
∗ ([φ(x0), . . . , φ(xq)]), where φ : U → Y is a chart as in the second point

of De�nition 2.13 of a polyhedral structure. We denote by Dq(X) the set of all simplices of
the form [xΓ0

, . . . , xΓq ], for any �ag Γ0 ≺ . . . ≺ Γq of polyhedral faces of C(X). The union of
all the Dq(X), denoted by D(X), forms a simplicial subdivision of X, called a �rst barycentric
subdivision of C. We often drop the word "�rst" because this is the only kind of barycentric
subdivision that we consider in this text.

Let C be a polyhedral structure of X with a �xed barycentric subdivision D. Let ∆ ∈ Cn(X)
and φ∆ : U → Y a corresponding chart given by De�nition 2.13. For any integer 0 ≤ q ≤ n and
any (n− q)-simplex δ ∈ Dn−q(∆), the simplex (φ∆)∗δ is a�ne from ∆n−q to φ(∆). We denote
by T∆δ the vector space parallel to (φ∆)∗δ. When δ = [xΓq , . . . , xΓn ] corresponds to the �ag
Γq ≺ . . . ≺ Γn = ∆, the orientation of δ induces a positively oriented basis on T∆δ. This basis
is
(
φ(xΓq+1

)− φ(xΓq ), . . . , φ(xΓn−q )− φ(xΓq )
)
. In the same way, we put Γ = Γq and we denote

by T∆Γ the vector space parallel to φ(Γ). Any choice of orientation on Γ induces an orientation
on T∆Γ. Note that the tangent space T∆[xΓq , . . . , xΓn ] is in direct sum with T∆Γ and the only
point of intersection of Γ with [xΓq , . . . , xΓn ] is xΓ. This justi�es the following de�nition.
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De�nition 2.14. Let C be a polyhedral structure of X with a �xed barycentric subdivision D.
Fix arbitrary orientations of the cells of C(X). We put εΓq,...,Γn

Γ⊂∆ = +1, if the concatenation of a
positively oriented basis of T∆Γ and T∆[xΓq , . . . , xΓn ] yields a positively oriented basis of T∆∆.

If not, εΓq,...,Γn
Γ⊂∆ = −1. The dual cell of Γ inside ∆ is denoted by Γ∗∆ and de�ned by

Γ∗∆ =
∑

Γ=Γq≺...≺Γn=∆

ε
Γq,...,Γn
Γ⊂∆ [xΓq , . . . , xΓn ].

Remark 2.7. One can show that the boundary of the dual cell of Γ inside ∆ is supported on the
boundary of ∆DΓ , de�ned as the union of all the simplices ∆′ ∈ Dn(∆) such that Γ ∩ ∆′ 6= ∅.
These dual cells come out in the proof of the non-degeneracy of the tropical intersection form
at the end of this chapter (Section 2.3.3).

To conclude this section, since hypersmooth tropical surfaces are our main objects of interest,
we are going to precise what combinatorial strata these surfaces can have. Since a hypersmooth
tropical surface is modeled on fan tropical linear surfaces of the form V = V (”1 + x + y + z”)
in T3, it is enough to look at the combinatorial strata of this fan, which are the intersections of
the closed polyhedral cells of V with the RI , for I ⊂ {1, 2, 3}. They are open polyhedral cells
of V . An open polyhedral cell of V has in total 6 possible values for the couple (dimW, |sed|).
The dimension of the wave space ranges from 0 to 2 and the order of sedentarity from 0 to the
dimension of the wave space. Here is a summary of the possibilities for a polyhedral cell σ of V .

� If σ is a face, then it has to be of empty sedentarity and WZ(σ) = TZ(σ) ∼= Z2.

� If σ is an edge, then there are two possibilities.

� The order of sedentarity of σ can be 0, thenWZ(σ) = Z ·~σ ∼= Z, where ~σ is a primitive
vector parallel to σ. In that case, σ is adjacent to 3 faces. The edges of (order of)
sedentarity 0 are represented in cyan in Figure 2.4.

� The sedentarity of σ can be of order 1, then σ is the intersection of a face F with
Rsed(σ), thus WZ(σ) = WZ(F ) ∼= Z2. In that case, σ is adjacent to only 1 face. The
edges of sedentarity 1 are represented in blue in Figure 2.4.

� If σ is a vertex, then there are three possibilities.

� The sedentarity of σ can be empty, then WZ(σ) = {0}. In that case, σ is adjacent to
4 edges, all of empty sedentarity. The vertex of sedentarity 0 is represented in cyan
in Figure 2.4.

� The sedentarity of σ can be of order 1, then σ is the intersection of an edge e of
empty sedentarity with Rsed(σ), and thus WZ(σ) = WZ(e) ∼= Z. In that case, σ is
also adjacent to 4 vertices, but only one of them is of empty sedentarity. This edge
of empty sedentarity is the parent face e of σ. The vertices of sedentarity 1 are
represented in blue in Figure 2.4.

� The sedentarity of σ can be of order 2, then σ is the intersection of a face F of empty
sedentarity with Rsed(σ), and thus WZ(σ) = WZ(F ) ∼= Z2. In that case, σ is adjacent
to 2 edges, both of them being of order of sedentarity 1. The vertices of sedentarity
2 are represented in violet in Figure 2.4.
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Figure 2.4: The standard tropical plane in T3, with coloration of the combinatorial strata of
dimension 0 and 1, depending on the order of sedentarity.
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2.2.2 Multi-Tangent Space and Tropical Homology

In this section, X is a compact tropical manifold with a polyhedral structure C. The multi-
tangent space has been introduced in [15], in order to de�ne singular tropical homology and
cohomology. We brie�y recall the de�nitions.

De�nition 2.15. Let X be a tropical manifold, x ∈ X and p ∈ Z≥0. Consider a chart φ :
U → V such that x ∈ U . For every y, such that φ(y) lies in an adjacent facet, the morphism
ι : TZ(y)→ TZ(x) is well de�ned. Note that, if φ(x) itself lies in the relative interior of a facet,
then ι = id. The p-multi-tangent space FZ

p (x) is the subgroup of ΛpTZ(x) generated by the
products ι(v1)∧ . . .∧ ι(vp), where for all i ∈ [p], vi ∈ TZ(y) and y ∈ U is such that φ(y) lies in an
adjacent facet (or the facet of φ(x) itself, in that case ι = id). The dual space Hom

(
FZ
p (x),Z

)
is

denoted by FpZ(x). For any abelian group G, by tensoring by G, on obtains the p-multi-tangent
space with coe�cients in G, denoted by FGp (x), and the dual, denoted by FpG(x).

The p-multi-tangent space is of course constant along any combinatorial stratum E, and we
denote by FZ

p (E) ⊂ ΛpTZ(E) the p-multi-tangent space of E de�ned by FZ
p (E) := FZ

p (x) for
any x ∈ E. In the same way, we de�ne FpZ(E) = Hom (FpZ(E),Z). For a stratum F ⊂ E, the
map ι : TZ(E) → TZ(F ) induces a map from ΛpTZ(E) to ΛpTZ(F ), which then restricts to a
map from FZ

p (E) to FZ
p (F ). As long as E and F have the same order of sedentarity, this map

is an inclusion. As for the order of sedentarity and the wave space, we give a summary of the
possible values of FZ

p (σ) for an open polyhedral cell of the fan V (”0+x+y+z”) and p ∈ {1, 2}.
Note that for p = 0, one has FZ

0 (σ) = Λ0TZ(σ) = Z and for p ≥ 3, FZ
p (σ) = {0}.

� If σ is a face, then FZ
p (σ) = ΛpTZ(σ) ∼= ΛpZ2.

� If σ is an edge, then there are two possibilities.

� If the sedentarity of σ is empty, then FZ
1 (σ) = TZ(σ) = Z3 and FZ

2 (σ) = Z · ~σ.
� If the sedentarity of σ is of order 1, then FZ

1 (σ) = TZ(σ) = Z·~σ ∼= Z and FZ
2 (σ) = {0}.

� If σ is a vertex, then there are three possibilities.

� If the sedentarity of σ is empty, then FZ
1 (σ) = TZ(σ) = Z3 and FZ

2 (σ) = Λ2TZ(σ) ∼=
Z2.

� If the sedentarity of σ is of order 1, then FZ
1 (σ) = TZ(σ) = Rsed(σ) ∩ Z2 ∼= Z2 and

FZ
2 (σ) = {0}

� If the sedentarity of σ is of order 2, then FZ
p (σ) = 0 for p ≥ 1.

De�nition 2.16. Let σ ∈ C(X) and q ≥ 0 be a non-negative integer. Recall the notations intro-
duced in the previous section, used for constructing a barycentric subdivision (see Construction
2.1). Then a singular q-simplex α : ∆q → σ is C-strati�ed, if it satis�es

� for each face ∆′ ⊂ ∆q, there exists a face τ ∈ C(σ) such that α(relint(∆′)) ⊂ relint(τ),
where relint(∆′) is the relative interior of ∆′ in ∆q and relint(τ) is the relative interior of
τ in X;

� if φ : U → V is a chart such that α(∆q) ⊂ U , then one has

sed (φ(α(iq))) ⊂ . . . ⊂ sed (φ(α(i0)) .
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The free group generated by the C-strati�ed q-simplices is denoted by Cq(σ). The dual group
Hom (Cq(σ),Z) is denoted by Cq(σ).

De�nition 2.17. Let G be an abelian group and p, q be two non-negative integers. A FGp -framed
singular q-simplex is a product of the form α ⊗ v ∈ Cq(σ) ⊗ FGp (σ), where α is C-strati�ed.
The vector v is called the framing. We denote by Cp,q(σ;G) the group Cq(σ) ⊗ FGp (σ), whose
elements are called tropical singular (p, q)-chains. The dual group Cq(σ)⊗FpG(σ) is denoted by
Cp,q(σ;G), and its elements are called tropical singular (p, q)-co-chains.

De�nition 2.18. Let G be an abelian group, p and q be two non-negative integers. We de�ne
the group of tropical singular (p, q)-chains in X by

Cp,q(X;G) =
⊕

σ∈C(X)

Cp,q(σ;G).

We de�ne the tropical boundary operator ∂ : Cp,q(X;G)→ Cp,q−1(X;G) by

∂ (α⊗ v) =
∑

0≤j≤q

(−1)jα|∆j
q
⊗ ι(v),

where ∆j
q = [i0, . . . , ij−1, ij+1, . . . , iq] (see Construction 2.1 for the notations about simplices).

This operator satis�es ∂2 = 0. The qth homology group of the chain complex (Cp,•(X;G), ∂)
is denoted by Hp,q(X;G) and is called the singular tropical (p, q)-homology group of X, with
coe�cients in G. The group of singular tropical (p, q)-cycles is de�ned as Ker(∂) ⊂ Cp,q(X;G)
and is denoted by Zp,q(X;G). The dual complex is denoted by (Cp,•(X;G), d). The group
Cp,q(X;G) is called the group of tropical singular (p, q)-co-chains inX and d is called the tropical
co-boundary operator. The qth cohomology group of the complex (Cp,•(X;G), d) is denoted by
Hp,q(X;G) and is called the singular tropical (p, q)-cohomology group of X, with coe�cients
in G. The group of singular tropical (p, q)-co-cycles is de�ned as Ker(D) ⊂ Cp,q(X;G) and is
denoted by Zp,q(X;G).

Remark 2.8. As usual for an object endowed with a structure de�ned via charts, the singular
tropical homology and cohomology groups of X depend a priori on a chosen atlas. Here, these
groups also depend on the choice a of a polyhedral structure. However, as mentioned for example
in [26] or [16], choosing a di�erent atlas or a di�erent polyhedral structure yields canonically
isomorphic homology and cohomology groups.

Example 2.11. Any tropical subvariety Y of dimension k of a compact smooth tropical toric
variety X, yields a singular tropical (k, k)-cycle with Z coe�cients. In fact, for any polyhedral
facet ∆ of Y , �x an orientation on ∆ and consider a basis v1, . . . , vk of the tangent space T∆
of determinant 1. Using the compactness assumption and the balancing condition for Y , one
can then show that

∑
∆ w(∆)∆ ⊗ (v1 ∧ . . . ∧ vk) is a tropical (k, k)-cycle. The map from k-

dimensional tropical subvarieties to tropical (k, k)-cycles is usually called the cycle class map. It
is an important topic of tropical homology and we refer to [36] or [16] for a detailed expository.
Let us just precise that the image of the cycle class map is the tropical analog to algebraic cycles
in the complex algebraic setting. This remark plays a role in the interpretation of the results of
the last chapter 5, regarding complex orientations modulo a curve.

Remark 2.9. In general, a tropical cycle does not look like a classical cycle, when we forget the
framings. In fact, these tropical cycles satisfy a condition analogous to the balancing condition
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for tropical subvarieties. However, in the case p = 0, the groups FG0 are constant to G, for
any abelian group G. Thus, tropical (0, q)-cycles are classical q-cycles (by forgetting the trivial
framing) and it yields an isomorphism H0,q(X;G) ∼= Hq(X;G).

2.2.3 Cellular Tropical Homology and Cohomology

In this section, X is a compact tropical manifold of dimension n, with a polyhedral structure C.
The polyhedral cells of C(X) form the objects of a category with a morphism τ → σ if τ ⊂ σ.
This category is still denoted by C(X). The category of abelian groups is denoted by Ab.

De�nition 2.19. A cellular co-sheaf of abelian groups on X is a contravariant functor F :
C(X) → Ab. Then, for an inclusion of faces τ ⊂ σ, there is a corresponding morphism of
abelian groups F(τ ⊂ σ) : F(σ)→ F(τ). A cellular sheaf of abelian groups on X is a covariant
functor F : C(X) → Ab. Then, for an inclusion of faces τ ⊂ σ, there is a corresponding
morphism of abelian groups F(τ ⊂ σ) : F(τ)→ F(σ).

Example 2.12. The tangent space and the multi-tangent spaces induce cellular co-sheaves on
X, where the inclusions between faces are sent to the maps ι of Sections 2.2.1 and 2.2.2. The
wave space induces a cellular sheaf, where the inclusions between faces are sent to the maps ρ
of Section 2.2.1 .

Let us �x an arbitrary orientation on the cells of X. For two cells τ, σ ∈ C(X), respectively
of dimension q − 1 and q, we denote by ε(σ, τ) the number which is 0 if τ is not a face of σ, +1
if the orientation of τ coincide with the boundary orientation induced by σ and −1 if they do
not.

De�nition 2.20. For any cellular co-sheaf F on X, the cellular chain complex of F is denoted
by (C•(X;F), ∂), where for all q ∈ Z≥0,

Ccellq (X;F) =
⊕

dimσ=q

F(σ).

The boundary operator is given on the component vσ along a q-cell σ by

∂vσ =
∑

dim τ=q−1

ε(σ, τ)F(τ ⊂ σ)(vσ).

The corresponding homology Hcell
• (X;F) is called the cellular homology of F . The same de�-

nition applies for a polyhedral sub-complex A ⊂ X, so that we can also compute Hcell
• (A;F).

Cellular chain complexes are useful in order to compute homology groups. For an abelian
group G and p ∈ Z≥0, one can view the elements of Cq(X;FGp ) as framed singular q-cells.
Thus, there is a map of chain complexes Ccell• (X;FGp )→ Cp,•(X;G). As expected, the cellular
homology of the co-sheaf FGp and the singular tropical homology coincide.

Proposition 2.3. ([26], Proposition 2.2) For any non-negative integer p, the map Ccell• (X;FGp )→
Cp,•(X;G) is a quasi-isomorphism. In particular, for any non-negative integer q, the cellular
tropical homology group Hcell

q (X;FGp ) is isomorphic to the singular tropical homology group
Hp,q(X;G).
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Remark 2.10. As in the case of singular tropical homology, the cellular homology of the co-sheaf
FGp depends a priori of the polyhedral structure C. However, the above proposition makes sure
that it is not the case, since cellular homology of FGp and singular tropical homology coincide
and that the latter is independant of C (see Remark 2.8).

We now give the de�nition for the cohomology of a cellular sheaf. In this text, the cohomology
of a cellular sheaf is used only for the cohomology of the wave spaceWG, withG = Z andG = Z2.

De�nition 2.21. For any cellular sheaf F on X, the cellular co-chain complex of F is denoted
by (C•cell(X;F), d), where for all q ∈ (Z≥0),

Cqcell(X;F) =
⊕

dimσ=q

Hom (Z,F(σ)) .

The co-boundary operator d is given on the component wσ : Z→ F(σ), along a q-cell σ, by

dwσ =
∑

dim τ=q+1

ε(τ, σ)F(σ ⊂ τ)∗wσ.

The corresponding cohomology H•cell(X;F) is called the cellular homology of F . The same
de�nition applies for a sub-polyhedral complex A ⊂ X, so that we can also compute H•cell(A;F).

2.3 Tropical Intersection Theory and Poincaré Duality

2.3.1 Intersecting Tropical Chains

In this section, we recall the de�nition of the intersection product of transversal tropical cycles as
introduced in [36]. Many of the results of the next chapters rely on the intersection of homological
classes in a di�erentiable manifold, as well as on the intersection of tropical homology classes in
a tropical manifold. That is why this concept is of primary importance here. In order to de�ne
the intersection product of singular tropical chains in a tropical manifold, one �rst needs to
de�ne it on local models. For the rest of this section, we sometimes forget the word "singular",
since all tropical chains considered are singular. Let V be a fan tropical linear space.

De�nition 2.22. Let a =
∑
α α ⊗ vα be a tropical (p, q)-chain in V . The support of a is the

union supp(a) =
⋃
α α(∆q) of the images of the q-simplex ∆q by all the singular q-simplices α.

The support of a tropical chain has no reason to be smooth in the classical sense, even
if we ask for the C-strati�ed simplices to be di�erentiable. Consider for instance the tropical
line V (”0 + x + y”) in TP 2. As explained in Example 2.11, it de�nes a tropical (1, 1)-cycle.
The support of this cycle is not even a topological manifold as can be seen by looking at a
neighborhood of the point (0, 0). The set of points where these singularities can occur for
a tropical (p, q)-cycle

∑
α α ⊗ vα is the union

⋃
α α (∂(∆q)). Furthermore, in order to speak

about transverse intersection, one needs a smooth ambient space. That is why, we consider
intersections occurring in open facets of a fan tropical linear space V of dimension n. These are
exactly the subsets where V is smooth in the classical sense, since it is locally an a�ne space of
dimension n.

De�nition 2.23. Let a = α⊗ vα be a FZ
p -framed q-simplex of V and b = β ⊗ vβ a FZ

n−p-framed
(n− q)-simplex. Let x ∈ supp(a)∩ supp(b) be a point the relative interior of a facet F of V . We
say that a and b intersect transversally at x if α and β are smooth at x and intersect transversally
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in the classical sense in the ambient space F . That is to say, Txα(∆q)⊕ Txβ(∆n−q) = TxF . In
that case, one can de�ne their intersection product at x. Fix an orientation of F . The classical
intersection product at x of the singular chains α and β, is given by (α ◦ β)x, which is +1 if
the concatenation of positively oriented bases of Txα(∆q) and Txβ(∆n−q) yields a positively
oriented basis of TxF . Otherwise, the intersection product at x has value (α ◦ β)x = −1. Write
vα = v1

α ∧ . . .∧ vpα and vβ = vp+1
β ∧ . . .∧ vnβ . The intersection product of a and b at x is given by

(a ◦ b)x = (α ◦ β)x det (vα ∧ vβ) ,

where det (vα ∧ vβ) = det
(
v1
α, . . . , v

p
α, v

p+1
β , . . . , vnβ

)
.

Remark 2.11. In the previous de�nition, the chosen orientation of the facet F does not matter,
because changing the orientation would multiply both factors (α · β)x and det (vα ∧ vβ) by −1.

De�nition 2.24. Let a =
∑
α α ⊗ vα ∈ Cp,q(V ;Z) and b =

∑
β β ⊗ vβ ∈ Cn−p,n−q(V ;Z). They

are said to intersect transversally, if for all α and β, the framed singular chains α ⊗ vα and
β ⊗ vβ intersect transversally at all points in supp(α) ∩ supp(β). In that case, the intersection
product a ◦ b is de�ned by linearity from the intersection product de�ned on framed simplices
in De�nition 2.23. This de�nition extends as usual to tropical chains in a tropical manifold X.

2.3.2 Intersection Pairing on a Smooth Tropical Surface

Let X be a tropical manifold of dimension n. In [36], K. Shaw showed that, in the case of
surfaces, the intersection product of transversally intersecting tropical (1, 1)-cycles in X, de-
scends to a symmetric bilinear form on H1,1(X;Z). This was generalized by G. Mikhalkin and
I. Zharkov to any tropical manifold X of dimension n in [26], as a pairing between Hp,q(X;Z)
and Hn−p,n−q(X;Z). In both [36] and [26], the method is similar to the classical case. First,
one has to make sure that all (p, q)-cycles and (n − p, n − q)-cycles are homologous to tropical
cycles intersecting in a "nice way" and then one shows, that the intersection product with a
tropical cycle in the image of the tropical boundary operator is zero. However, in the classical
case, "nice way" means only transversal intersections. While in the tropical case, one has to be
a little more careful, since all points of X are not equivalent. More precisely, they can lie on
di�erent combinatorial strata. That is why we need the following de�nition, generalizing the
one of a tropical (1, 1)-cycle intersecting transversally the skeleton of a smooth tropical surface,
introduced in [36]. By face of a simplex α : ∆→ X, we mean the restriction of α to a face of ∆.

De�nition 2.25. [26] A tropical (p, q)-chain a =
∑
α α ⊗ vα is said to be transversal to the

combinatorial strati�cation of X, if for any α and any face α′ of α of codimension k the support
of the relative interior of α′ is contained in strata of dimension at least n− k.
Remark 2.12. There is a second condition stated in terms of "divisorial directions" in [26], but
we do not need this condition in this text.

De�nition 2.26. [26] Two (p, q)- and (p′, q′)-chains
∑
α α⊗vα and

∑
β β⊗vβ both transversal to

the combinatorial strati�cation form a transversal pair, if the following holds. For any singular
simplices α, β in a same combinatorial stratum and for any of their faces α′, β′, the relative
interiors of α′ and β′ are contained in the same combinatorial stratum and intersect transversally
in this stratum.

Lemma 2.3. [26] Let X be a compact tropical manifold of dimension n and G an abelian group.
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� Every class in Hp,q(X;G) admits a representative transversal to the combinatorial strati-
�cation.

� Every pair of classes in Hp,q(X;G)×Hn−p,n−q(X;G) can be represented by a transversal
pair of cycles.

� If moreover two (p, q)-cycles, denoted by a and a′, transversal to the combinatorial strati�-
cation are homologous and both form a transversal pair with a (n−p, n− q)-cycle, denoted
by b, then the intersection product de�ned in the previous section 2.3.1 does not depend
on the transversal pair in the sense that a ◦ b = a′ ◦ b.

Lemma 2.3, whose proof can be found in [26] (Corollary 6.11), allows us to write the following
de�nition.

De�nition 2.27. Given a pair ([a], [b]) ∈ Hp,q(X;G)×Hn−p,n−q(X;G), their intersection product
[a] ◦ [b], is de�ned by taking the intersection product, from De�nition 2.24, of a transversal pair
of cycles representing ([a], [b]).

Remark 2.13. Lemma 2.3 is stated only for G = R in [26]. However, the proof uses only local
arguments about tropical (p, q)-chains in a fan tropical linear space V . Therefore, the proof
carries over to any abelian group G, by simply changing the R-coe�cients to coe�cients in G.
Another important fact mentioned in this article, is that the perturbation of the tropical (p, q)-
cycles can be done locally (see Lemma 6.8 from [26]). More precisely, if two tropical cycles a, b
have supports intersecting only transversally in top-dimensional combinatorial strata, then, they
are homologous to a transversal pair (ã, b̃), which has supports intersecting at the same points
and with the same intersection product at these points (see De�nition 2.23), as the original pair
(a, b). In particular, the intersection number of (a, b) can be directly computed as the sum of the
(a◦ b)x for all x in the intersection of the supports of a and b, even if a and b are not transversal
to the combinatorial strati�cation.

Remark 2.14. When n = 2k is even and p = q = n, the intersection product de�nes a bilinear
form on Hk,k(X;G), called the intersection form. This intersection form is symmetric. It is
enough to notice it for the intersection product at a point x of two FZ

k -framed k-simplices
intersecting transversally at x.

The question is now the following. Is this intersection pairing non-degenerate ? That is to say,
given an abelian group G, are the induced morphisms Hp,q(X;G)→ Hom (Hn−p,n−q(X;G), G)
injective ? Still in [26], G. Mikhalkin and I. Zharkov conjectured that this is the case for any
compact tropical manifold in the case of G = R coe�cients. Moreover, K. Shaw proved that it
is the case with Z coe�cients in the case of (smooth) �oor decomposed tropical surfaces. As in
the classical case, one cannot expect the form to be non-degenerate with Z coe�cients, when
the tropical homology groups are not torsion-free. However, �oor decomposed surfaces are a
special case of non-singular tropical hypersurfaces in a smooth tropical toric variety, which do
not admit torsion in their tropical homology groups with Z coe�cients. This is a result of C.
Arnal, A. Renaudineau and K. Shaw proved in [3]. It also appears in C. Arnal's PhD thesis [2].

In order to �ltrate the second Z2-homology group of a phase tropical surface, by lifting
tropical cycles, in Section 4.2, the non-degeneracy is needed with Z2 coe�cients. The non-
degeneracy obviously relies on some form of Poincaré isomorphism with integer coe�cients, as
we precise in the next section. Fortunately, it turns out that such a duality exists for tropical
manifold and that the non-degeneracy can be deduced from it. That is the point of the last
section of this chapter.
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2.3.3 Poincaré Duality

There exist at least two versions of Poincaré Duality for tropical manifolds. The �rst one has
been proved in [17] by P. Jell, K. Shaw and J. Smaka and gives an isomorphism Hp,q(X;R) ∼=
Hn−p,n−q(X;R)∗. It is based on a non-degenerate pairing given by integration of superforms.
However, we are more interested here in the second version proven in [16], by P. Jell, J. Rau and
K. Shaw. They give a Poincaré isomorphism Hp,q(X;Z) ∼= Hn−p,n−q(X;Z), induced by the cap
product with the fundamental class (see De�nition 2.29) of tropical cycles. This latter version
of a Poincaré isomorphism is better suited to our purpose of showing the non-degeneracy of the
intersection form for two reasons. The �rst one, is that it is de�ned directly on singular/simplicial
co-cycles and cycles. The second one is that it holds for Z coe�cients, so that we can derive the
duality for Z2 coe�cients.

De�nition 2.28. LetX be a tropical manifold of dimension n. It is endowed with a combinatorial
strati�cation C. A C-strati�ed simplicial structure D is a usual simplicial structure such that
for any ∆ ∈ Dk, there exists Γ ∈ Ck such that ∆ ⊂ Γ.

Example 2.13. A �rst barycentric subdivision of C (see Construction 2.1) is a C-strati�ed sim-
plicial structure. Note that the condition about the inclusions of the sedentarities in De�nition
2.16 is satis�ed, because the order of the vertices in [xΓ0

, . . . , xΓk ] respects the order of the �ag
Γ0 ≺ . . . ≺ Γk.

Recall that for any n-dimensional vector space V and integers n ≥ p ≥ p′ ≥ 0, there exists a

contraction map
(

Λp
′
V
)∗
×ΛpV → Λp−p

′
V , denoted by 〈 ; 〉, following [16]. In the case p = n,

given α ∈
(

Λp
′
V
)∗
, Λ ∈ ΛnV , and β ∈ Λn−p

′
V , one has

det (〈α; Λ〉 ∧ β) = (−1)n−p
′
α(β) det(Λ), (2.1)

The above equation is the only property of the contraction map that we are using, so we do
not precise a de�nition for cases di�erent than p = n.

De�nition 2.29. [16] Let X be a tropical manifold of dimension n. It can be endowed with a
C-strati�ed simplicial structure D (see [26, 16]). The cap product with the fundamental class is
given on any (p, q)-cochain α by

α ∩ [X] =
∑

[i0,...,in]∈Dn

[iq, . . . , in]⊗
〈
α([i0, . . . , iq]); Λ[i0,...,in]

〉
,

where Λ[i0,...,in] ∈ Fn([i0, . . . , in]) ∼= Z is the wedge product of the elements of a positively ori-
ented basis of the tangent space Tx[i0, . . . , in] at any point x in the relative interior of [i0, . . . , in].

The Poincaré isomorphism for tropical manifolds proven by P. Jell, J. Rau and K. Shaw (in
[16], Theorem 5.3), which can be stated as follows.

Theorem 2.1 (Tropical Poincaré Duality). [16] The cap product with the fundamental class
descends to an isomorphism

Hp,q(X;Z) ∼= Hn−p,n−q(X;Z).

This induced isomorphism does not depend on the C-strati�ed simplicial structure D chosen to
compute the cap-product.
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Remark 2.15. Tensoring the de�nition of the cap product by G, as well as the proofs of [16],
yields an isomorphism Hp,q(X;G) ∼= Hn−p,n−q(X;G), for any abelian group G.

In order to prove the non-degeneracy, one has to prove that the below diagram of Lemma
2.4 commutes. The left arrow is given by the pairing on chain level between simplicial cy-
cles and co-cycles. Given ([a], [b]) ∈ Hp,q (X;G) × Hp,q (X;G), this pairing is de�ned by
([a], [b]) = (a, b) = a(b). The upper arrow is given by the cap-product with the fundamen-
tal class for the �rst component and the second component is induced by the quasi-isomorphism
Ccellp,q (X;Z)→ Cp,q(X;Z). The right arrow is the intersection product. Finally, the map G→ G
is the multiplication by (−1)n−p−q. In particular, both the upper and the lower arrows are
isomorphisms.

Lemma 2.4. For any abelian group G, the below diagram commutes.

Hp,q(X;G)×Hcell
p,q (X;G) Hn−p,n−q(X;G)×Hp,q(X;G)

G G

Theorem 2.2 below is a straightforward consequence of the commutativity of the diagram of
Lemma 2.4. The core of the proof of this result is the Poincaré duality proved in [16], which
makes sure that the upper morphism of the diagram is an isomorphism.

Theorem 2.2. For any abelian group G and for any 0 ≤ p, q ≤ n, the tropical intersec-
tion product Hn−p,n−q(X;G) × Hp,q(X;G) → G is non-degenerate if and only if the pairing
Hp,q(X;G)×Hp,q(X;G)→ G is non-degenerate.

Since Z2 is a �eld, the pairing Hp,q(X;Z2) × Hp,q(X;Z2) → Z2 is non-degenerate. For
instance, one can see it as a consequence of the universal coe�cients formula for cohomology,
applied to the chain complex Cp,•(X;Z2). Therefore, we can state the following result, which
reveals crucial in order to �ltrate the homology of a phase tropical surface in Chapter 4.

Theorem 2.3. The tropical intersection product with Z2 coe�cients on X is non-degenerate.

Proof of Lemma 2.4. Fix an arbitrary orientation on the cells of C(X). Let a ∈ Cp,q(X;Z) and
b ∈ Ccellp,q (X;Z). By de�nition, one can write b =

∑
Γ∈Cq(X) Γ ⊗ βΓ. The left arrow of the

diagram gives

(a, b) =
∑

Γ∈Cq(X)

a(Γ)(βΓ). (2.2)

Now, let us compute the upper arrow. Since X is compact and admits a polyhedral structure
C, one can de�ne a �rst barycentric subdivision (see Construction 2.1) of C, denoted by D. Since
the simplicial subdivision D is C-strati�ed, one can use it to compute the cap-product with the
fundamental class. Recall that the elements of Dn(X) are given by the n-simplices [xΓ0

, . . . , xΓn ]
for all �ags of cells Γ0 ≺ . . . ≺ Γn in C(X), so that we can write

a ∩ [X] =
∑

Γ0≺...≺Γn

[
xΓq , . . . , xΓn

]
⊗
〈
a
(
[xΓ0 , . . . , xΓq ]

)
; Λ[xΓ0 ,...,xΓn ]

〉
,
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a ∩ [X] =
∑

Γq∈Cq(X)

∑
Γq≺...≺Γn

[
xΓq , . . . , xΓn

]
⊗

 ∑
Γ0≺...≺Γq

〈
a
(
[xΓ0

, . . . , xΓq ]
)

; Λ[xΓ0
,...,xΓn ]

〉 .

Let us �x a �ag of cells Γq ≺ . . . ≺ Γn with Γk ∈ Cq(X) for q ≤ k ≤ n. We put Γ = Γq
and ∆ = Γn. For all �ags of cells Γ0 ≺ . . . ≺ Γq, we denote by ε

Γ0,...,Γn
∆ the number such that

Λ∆ = εΓ0,...,Γn
∆ Λ[xΓ0 ,...,xΓn ] and ε

Γ0,...,Γq
Γ the number which is +1 if the orientation of Γ induces

(by restriction) the orientation of [xΓ0
, . . . , xΓq ] and −1 otherwise. Recall also De�nition 2.14 of

dual cell, where we introduced the number εΓq,...,Γn
Γ⊂∆ . Then, one has εΓ0,...,Γn

∆ = ε
Γq,...,Γn
Γ⊂∆ ε

Γ0,...,Γq
Γ ,

and Γ =
∑

Γ0≺...≺Γq
ε

Γ0,...,Γq
Γ [xΓ0

, . . . , xΓq ], with orientation. Therefore, one has

a ∩ [X] =
∑

Γq∈Cq(X)

∑
∆∈CΓ

n(X)

 ∑
Γq≺...≺Γn=∆

ε
Γq,...,Γn
Γ⊂∆

[
xΓq , . . . , xΓn

]⊗ 〈a(Γ); Λ∆〉 ,

where for any Γ, we denote by CΓ
n(X) the n-cells in Cn(X) that are adjacent to Γ. We recognize

the de�nition of the dual cell of Γ inside ∆, so one has

a ∩ [X] =
∑

Γ∈Cq(X)

∑
∆∈CΓ

n(X)

Γ∗∆ ⊗ 〈a(Γ); Λ∆〉 .

Finally, let us deal with the right arrow, that is to say the intersection product. By de�nition
of Fp(Γ), there exists a decomposition βΓ =

∑
∆∈CΓ

n(X) ι
(
βΓ

∆

)
, where βΓ

∆ ∈ FZ
p (∆). Note that

this decomposition does not have to be unique and that ι = id if Γ is a n-cell. The image of b by
the quasi-isomorphism Ccellp,q (X)→ Cp,q(X) is still denoted by b. Fix ∆ ∈ Cn(X) and Γ ∈ Cq(∆).
Now, we want to perturb Γ so that it intersects transversally Γ∗∆ inside the relative interior of
∆. We denote by ∆DΓ the union of all simplices ∆′ ∈ Dn(∆), such that dim (∆′ ∩ Γ) = dim(Γ).
The idea is to keep the perturbation inside ∆DΓ , so that there is no intersection with a dual
cell coming from another pair of cells Γ′ ⊂ ∆′ in C(X). Let φ : U → Y ⊂ TN be a chart
such that ∆ ⊂ U as in De�nition 2.13 of a polyhedral structure. For all Σ ∈ C(∆), we put
yΣ = φ(xΣ). Let us �x a �ag Γ = Γq ≺ . . . ≺ Γn = ∆. To distinguish from the addition of
chains denoted by +, we denote by ⊕ and 	 the addition and the substraction in the vector
space RN ⊂ TN . We denote by σ the (n − q)-simplex

[
yΓq , . . . , yΓn

]
and by yσ the convex

combination yΓ ⊕
⊕

q+1≤i≤n

yΓi 	 yΓ

n− q + 1
. This point yσ is the barycenter of σ and thus lies in the

relative interior of σ, which is contained in the relative interior of ∆DΓ . Therefore, there exists
a small enough open neighborhood VΓ of yΓ inside Γ, such that VΓ ⊕ (0, yσ 	 yΓ] is contained
in the relative interior of ∆Dσ , de�ned as the union of all simplices of D(∆) containing σ. By
concatenating the orientation of [0, yσ 	 yΓ] with the one of Γ, one can view VΓ ⊕ [0, yσ 	 yΓ] as
a singular q + 1-chain denoted by cΓ∆. We want to compute the intersection of the dual cell Γ∗∆
with the perturbation Γ + ∂cΓ∆. Since for any other �ag Γ = Γ′q ≺ . . . ≺ Γ′n = ∆, the simplex[
yΓ′q

, . . . , yΓ′n

]
does not intersect the relative interior of ∆Dσ , nor does it intersect VΓ⊕(0, yσ	yΓ]

either. Moreover, the intersection of the simplex
[
yΓ′q

, . . . , yΓ′n

]
with VΓ is made of the single
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point yΓ, thus it does not intersect the boundary ∂VΓ. This implies that the intersection of Γ∗∆
with the chain Γ + ∂

(
cΓ∆
)

= (Γ− VΓ) + (∂VΓ ⊕ [0, yσ 	 yΓ]) + (VΓ ⊕ (yσ 	 yΓ)) is contained in
σ. Since yσ 	 yΓ is parallel to σ and ∂VΓ does not intersect σ, the component ∂VΓ⊕ [0, yσ 	 yΓ]
does not intersect σ. Therefore, the intersection of φ∗Γ∗∆ with φ∗Γ + ∂cΓ∆ is supported at the
point yσ. This intersection is transverse and the concatenation of a positively oriented basis of
the tangent space T∆σ of φ∗σ with a positively oriented basis of T∆Γ gives a positively oriented
basis of T∆∆, up to multiplication by (−1)q of one of the vectors. Hence, by pushing forward
by φ−1, one has Γ∗∆ ◦

(
Γ +

(
φ−1

)
∗ ∂c

Γ
∆

)
= (−1)q.

Now, by summing on all cells Γ ∈ Cq(X) fo dimension q and on all cells ∆ ∈ CΓ
n(X) and by

tensoring by the framings βΓ
∆, one obtains

([a] ∩ [X]) ◦ [b] = (−1)q
∑

Γ∈Cq(X)

∑
∆∈CΓ

n(X)

det
(
〈a(Γ); Λ∆〉 ∧ βΓ

∆

)
.

Yet, by Equation (2.1), one has det
(
〈a(Γ); Λ∆〉 ∧ βΓ

∆

)
= (−1)n−pa(Γ)

(
βΓ

∆

)
. Therefore, one

can �nally deduce

([a] ∩ [X]) ◦ [b] = (−1)n−p+q
∑

Γ∈Cq(X)

∑
∆∈CΓ

n(X)

a(Γ)
(
βΓ

∆

)
= (−1)n−p−q

∑
Γ∈Cq(X)

a(Γ)(βΓ),

which coincides with (−1)n−p−q(a, b), by Equation (2.2).

Corollary 2.1. Let 0 ≤ p, q ≤ n. The Z2-vector spaces Hp,q(X;Z2) and Hn−p,n−q(X;Z2) have
the same dimension.

Remark 2.16. The compactness assumption cannot be removed. Consider for instance the
tropical torus R ⊂ T. One has H0,1(R;Z2) ∼= H1(R;Z2) = 0, thus the intersection product
between an element of H0,1(R;Z2) and an element of H1,0(R;Z2) is always zero. However, for
any x ∈ R the framed point x⊗ v, represents a non-zero tropical homology class, where v is the
non-zero element of FZ2

1 (x). Therefore, the intersection product has to be degenerate (otherwise,
it would contradict Corollary 2.1 above).
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3 Real Structures of Phase Tropical Surfaces

3.1 Phase Tropical Surfaces

3.1.1 Pairs-of-Pants Decomposition

In this section, we give a brief summary of [27] by G. Mikhalkin. The main result is the
existence of a pairs-of-pants decomposition of any non-singular hypersurface in a smooth toric
variety (over C). Here, we focus mainly on the pairs-of-pants decomposition of a generic element
of a 1-parameter family of hypersurfaces. Let n be a positive integer. Given a polynomial P in
n variables with complex coe�cients, the zero set of P inside (C∗)n, is denoted by V(C∗)n(P ).
For any t > 1, we consider the following map

Logt :

{
(C∗)n → Rn
(z1, . . . , zn) 7→ (logt |z1|, . . . , logt |zn|)

De�nition 3.1. Let P be a polynomial in n variables with coe�cients in C. For any t > 1, the
image Logt

(
V(C∗)n(P )

)
is called the Logt-ameoba of P .

Now, consider a 1-parameter family of Laurent polynomials (Pt)t>1 in n variables, where for
any positive real number t > 1, the polynomial Pt is of the form

Pt(z) =
∑

k∈∆∩Zn
akt
−ν(k)zk, (3.1)

where ak ∈ R for any k ∈ ∆∩Zn, the map ν : ∆∩Zn → R is any function and ∆ is the common
Newton polytope of the polynomials of the family.

Remark 3.1. A polynomial of the above family is called a patchworking polynomial in [27]. This
designation refers to Viro's Patchworking method (see [38]). It is important to ask for the
coe�cients ak to be real if we want to be able to speak of real structure as in the property (2)
of Theorem 3.2.

De�nition 3.2. The tropicalisation of the family (Pt)t>1 is a tropical polynomial de�ned as

Trop(Pt)(x1, . . . , xn) = ”
∑

k∈∆∩Zn
(−ν(k)) · xk”.

Remark 3.2. The tropicalisation of a 1-parameter family of Laurent polynomials with complex
coe�cients can be seen in the broader context of the tropicalisation of a polynomial over a
valued �eld (see [25]). One needs to be careful to the fact that D. Maclagan and B. Sturmfels
use the "min convention" for tropical geometry in [25]. It means that the tropical semi-�eld is
not R∪ {−∞} as in Chapter 2, but rather R∪ {+∞} and the tropical addition of two numbers
is not their maximum, but their minimum. In the above de�nition, up to the change of the
convention from "min" to "max", the �eld considered for the tropicalisation of Pt is the �eld of
locally convergent Puiseux series with coe�cients in C, and the valuation corresponds to taking
the lowest exponent.

Theorem 3.1 (Theorem 5 [27]). Let (Pt)t>1 be a 1-parameter family of Laurent polynomi-
als in n variables, with complex coe�cients of the same form as 3.1. Then the Logt-amoeba
Logt

(
V(C∗)n(Pt)

)
converges, when t → +∞, with respect to the Hausdor� distance for closed

sets in Rn, to the tropical hypersurface V (Trop(Pt)).
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De�nition 3.3. Let Y be a non-singular tropical hypersurface, of dimension n, in a smooth
tropical toric variety X, and let V and F be smooth (di�erentiable) manifolds. A smooth
(di�erentiable) map λ : V → X is a F -strati�ed �bration if the two conditions below hold.

� The restriction of λ to the relative interior of any n-cell σ ∈ C(Y ) is a trivial �bration with
�ber F .

� For any non-negative integers k, s, there exist a smooth (di�erentiable) manifold, of dimen-
sion n, denoted by Vk,s, and a a smooth model map λk,s : Vk,s → Rk×Vn−k−s× [0,+∞)s,
where Vn−k−s is the standard tropical hyperplane in Rn−k−s+1 from Example 2.1. For
any cell σ ∈ Ck,s(Y ) of dimension k and order of sedentarity s and for any point x in the
relative interior of σ, there exists an open neighborhood U of x inside V , such that the
restriction of λ to the inverse image λ−1(U) is di�eomorphic to λk,s.

De�nition 3.4. Let Y be a non-singular tropical hypersurface, of dimension n, in a smooth
tropical toric variety X. The primitive pieces of Y are the connected components of Y o \ |Y ∗|,
where |Y ∗| is the union of all the simplices of the (n− 1)-simplicial sub-complex Y ∗ of the �rst
barycentric subdivision, de�ned in the following way. The vertices of Y ∗ are the barycenters of
the closed cells σ ∈ C(Y ) of positive dimension, such that the sedentarity of any point x ∈ σ is
equal to the sedentarity of σ. The simplices of Y ∗ are then the simplices of the �rst barycentric
subdivision of Y , with vertices in Y ∗.

Let (Pt)t>0 be a 1-parameter family of the form of Equation (3.1). Recall that these poly-
nomials come with their Newton polytope ∆ ⊂ Rn. We assume that the (rational) normal fan
Ξ(∆) is unimodular (see Section 2.1.2). This assumption is equivalent to asking that, at any
vertex v of ∆, the primitive directions of the edges of ∆ adjacent to v form a Z-basis of Zn. We
denote by T∆ the smooth tropical toric variety XΞ(∆). Recall also, that one can associate to
any unimodular rational fan Ξ, a smooth toric variety over C, denoted by XC

Ξ , using the same
construction as in Section 2.1.2, but with (complex) monomial transformations (C∗)n → (C∗)n
of the form z 7→ (zaj ))j , instead of x 7→ (”xaj”)j . We denote by C∆ the smooth tropical toric
variety XC

Ξ(∆), and given any polynomial P in n variables with coe�cients in C, we denote by
VC∆(P ) the closure of V(C∗)n(P ) in C∆.

Using Theorem 3.1 and a projection along a well-suited singular foliation of Rn, G. Mikhalkin
was able to construct a strati�ed Tn-�bration λt : VC∆(Pt) → VT∆ (Trop(Pt)) for any small
enough t > 0 (see [27], section 4.3). This strati�ed �bration can be seen as a higher-dimensional
pairs-of-pants decomposition, whose combinatorics for the gluing maps is encoded by the tropical
hypersurface Trop(Pt). Let us precise this last sentence with Theorem 3.2 below. The statement
of this theorem is a reformulation of the statements of Theorems 4.1′ and 4.2 in [27]. One of
the main di�erence in the formulation is that we use some tropical vocabulary. Here, an (open)
pair-of-pants of dimension n is the complementary of n + 2 hyperplanes, in generic position in
CPn. We denote by Tn = Rn/ (2πZn) the n-dimensional torus, and by Sn the n-dimensional
sphere.

Theorem 3.2. [27] For any small enough t > 0, there exists a Tn-strati�ed �bration λt :
VC∆(Pt)→ VT∆ (Trop(Pt)) satisfying the following properties.

(1) For any primitive piece U of VT∆ (Trop(Pt)), the inverse image λ−1(U) is di�eomorphic
to an open pair-of-pants. More generally, for any non-negative integers k, s,, the smooth
manifold Vk,s is di�eomorphic to (C∗)k × Pn−k−s × Cs, where Pn−k−s is a (n − k − s)-
dimensional pair-of-pants.
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(2) The strati�ed �bration preserves the real structure, that is, λ ◦ conj = λ, where conj is
induced by the standard conjugation on (C∗)n ⊂ C∆.

Remark 3.3. Theorems 4.1′ and 4.1 in [28] focus on a particular choice of real coe�cients ak for
the tropical polynomials Pt, in order to be able to lift tropical (0, n)-cycles in VT∆ (Trop(Pt)) as
Lagrangian spheres in VC∆(Pt). The lifting of (n, 0)-cycles is also mentioned, but in that case it
does not depend on a particular choice of real coe�cients ak. In Section 4.1, we lift (n, 0)- and
(0, n)-cycles in the case n = 2, but also the (1, 1)-cycles, in order to obtain a �ltration of the
second homology group of a phase tropical surface. It is worth mentioning that G. Mikhalkin
obtained the Lagrangian spheres as components of the real part of VC∆(Pt), which is also the
way that we lift tropical (0, 2)-cycles to a phase tropical surface in Section 4.1.3, except that we
have to modify our original real structure.

3.1.2 Phase Tropical Manifolds

The goal of this section is to introduce the concept of phase tropical manifold, in order to
generalize the strati�ed �brations over non-singular tropical hypersurfaces of Section 3.1.1. The
main inspiration for our setup is [7] by B. Bertrand, E. Brugallé and A. Renaudineau. A �rst
di�erence with the previous section is that we consider only standard pairs-of-pants, as de�ned
in [20].

De�nition 3.5. The n-dimensional standard pair-of-pants, denoted by Pn, is the zero set of
∑
i zi

in CPn+1 \
⋃
i{zi = 0}, where z0, . . . , zn are the homogeneous coordinates of CPn. We often

drop the word "standard".

The pair-of-pants as de�ned above, is non-compact. It is more convenient to work with
compact pairs-of-pants as in [7]. To compactify Pn, we de�ne a homeomorphism CPn+1 \⋃
i{zi = 0} →

o

∆n+1 ×
(
Tn+2/T

)
as in [20], where ∆n+1 =

{
(xi)i ∈ (R≥0)n+1|

∑
i xi = 1

}
is

the standard n-dimensional simplex, and Tn is the n-dimensional torus with T = R/(2πZ). The
quotient by T is taken for the simultaneous additive action on Tn+2. This homeomorphism is
given by the moment map

M : [z0, . . . , zn+1] 7→
((

|z0|
|z0|+ . . .+ |zn+1|

, . . . ,
|zn+1|

|z0|+ . . .+ |zn+1|

)
, (arg(z0), . . . , arg(zn+1))

)
.

De�nition 3.6. The n-dimensional compacti�ed pair-of-pants, denoted by P
n
, is the closure in

∆n+1 × (Tn+2/T ) of M(Pn).

Example 3.1. The 0-dimensional pair-of-pants is a point (compacti�ed or not). The compacti�ed
pair-of-pants of dimension 1 is homeomorphic to a 2-sphere minus 3 open (non-intersecting)
disks. The boundary of the one-dimensional pair-of-pants is composed of 3 disjoint circles.
Each of them is the intersection of P

1
with {xi = 0}×T 3/T where x1, x2, x3 are the coordinates

of R3.

The following lemma generalizes the observation from the example above. Given a subset J of

{0, . . . , n+1}, putBnJ := P
n∩
(⋂

j∈J{xj = 0} × (Tn+2/T )
)
. In particular, one hasBn∅ = P

n
and

BnJ = ∅ for any subset J ⊂ {0, . . . , n+1} of cardinal greater than or equal to n+1. Given a subset
J ⊂ {0, . . . , n + 1} of cardinal k, the projection ∆n+1 ×

(
Tn+2/T

)
→ ∆n+1−k ×

(
Tn+2−k/T

)
,
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which forgets the coordinates indexed by J , is denoted by pJ . The coordinates of pJ(x, θ) for
(x, θ) ∈ ∆n+1 ×

(
Tn+2/T

)
are denoted by (xJ , θJ).

Lemma 3.1. Let n ∈ Z≥0 and J ⊂ {0, . . . , n+1} of cardinal k. The projection pJ restricts to a

trivial �bration BnJ → P
n−k

, with �ber homeomorphic to T k. In particular, BnJ is homeomorphic

to P
n−k × T k.

Proof. The restriction of pJ to BnJ → ∆n+1−k ×
(
Tn+2−k/T

)
is still denoted by pJ . The image

of pJ is then equal to pJ(BnJ ) = P
n−k

. In fact, any (x, θ) ∈ BnJ , is in the closure of M(Pn),
so it satis�es

∑
j∈{0,...,n+1}

xj exp(iθj) = 0. Since it also satis�es xj = 0, for all j ∈ J , we have∑
j∈{0,...,n+1}\J

xj exp(iθj) = 0. Thus, one has pJ(BnJ ) ⊂ Pn−k. Let us consider (y, ϑ) ∈ Pn−k and

denote by (y0, ϑ0) ∈ ∆n+1×
(
Tn+2/T

)
the completion of (y, ϑ) by 0's for the coordinates indexed

by i /∈ J . Then, one has pJ(y0, ϑ0) = (y, ϑ). Finally, given (x, θ) ∈ BnJ , the �ber of pJ over
pJ(x, θ) is equal to {x}×

(
θ + T J

)
/T where T J is the subset of Tn+2, such that all coordinates

θj with j /∈ J , are equal. Therefore, one has an homeomorphism BnJ → P
n−k × T J/T given by

(x, θ) 7→
(
pJ(x, θ), θ − θ0

J

)
. Noticing that T J/T is homeomorphic to T k ends the proof.

Remark 3.4. A compacti�ed pair-of-pants is a di�erentiable manifold with corners, as men-
tioned in [20]. The strati�cation of the standard simplex ∆n+1 by the relative interior of the

subsets ∆J
n+1 =

⋂
j∈J{xj = 0} induces a strati�cation of P

n
=
⋃
J

o

BnJ (the upperscript o

corresponds to taking the relative interior). Then the topological boundary of P
n
is equal to

∂P
n

=
⋃

Card(J)≥1

o

BnJ . The di�erentiable boundary is exactly
⋃

Card(J)=1

o

BnJ . More precisely,
the points whose di�erentiable charts are of the form U → Rn−k × (R≥0)k are the points in⋃

Card(J)=k

o

BnJ .

The cohomology of a (non-central) hyperplane arrangement is well understood and is known
to be equal to the Orlik-Solomon algebra of the matroid associated with the hyperplane ar-
rangement, as exposed in [32]. Here, we focus only on the case of a generic arrangement of
n+ 2 hyperplanes in Pn. The following proposition gives the value of the groups Hk(Pn;Z) as
a special case of the much more general Theorem 5.89 of [32].

Proposition 3.1. For any k > n, Hk(Pn;Z) = 0 and for k ≤ n−1 there exists an isomorphism
of graded algebra Hk(Pn;Z) ∼= ΛkZn+1. In de Rham cohomology, a system of generators of the

algebra H∗dR(Pn) is given by the
dzj

2iπzj
, for the homogeneous coordinates zj of CPn+1.

In the following, we are not directly interested with the cohomology of the standard pair-of-
pants, but rather with its homology. Since Pn and P

n
have the same homotopy type, they share

the same cohomology groups. Moreover, since there is no torsion in these cohomology groups,
the universal coe�cients theorem (for cohomology) states that they are dual to the homology
groups of P

n
. In particular, there is no torsion in the homology groups. Therefore, the universal

coe�cient theorem (for homology this time) also tells us that for any abelian group G, one has
Hk(P

n
;Z)⊗G ∼= Hk(P

n
;G).

Corollary 3.1. Let G be an abelian group. For any integer k > n, one has Hk(P
n
;G) = 0 and

for k ≤ n− 1 there exists an isomorphism of group Hk(P
n
;G) ∼=

(
ΛkZn+1

)
⊗G.
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For any index j ∈ {0, . . . , n + 1}, denote by pj the projection p{j} : Bn{j} → P
n−1

from

Lemma 3.1. For any z ∈ Pn−1
, arbitrarily orienting the �ber (pj)

−1(z) yields a 1-cycle in P
n

with Z coe�cients. One can then consider the homology class of this cycle in P
n
and send it into

the 1st homology group of Pn by the inverse of the morphism induced by the inclusion Pn ⊂ Pn.
The evaluation of the de Rham cohomology class of

dzj
2iπzj

on this homology class (seen with

coe�cients in R) is either +1 or −1, depending on the orientation. We de�ne βnj ∈ H1

(
P
n
;Z
)

as the homology class of the �ber (pj)
−1(z), for any z ∈ Pn−1

, oriented such that the evaluation

of
dzj

2iπzj
on the image of βnj in H1

(
P
n
;R
)
is +1. For any subset J ⊂ {0, . . . , n+ 1} of cardinal

k, we similarly de�ne βnJ ∈ Hk

(
P
n
;Z
)
as the homology class of the �ber (pJ)−1(z) for any

z ∈ Pn−k and oriented so that the evaluation of the de Rham cohomology class of
∧
j∈J

dzj
2iπzj

(where the order on J is induced by the order 0 < . . . < n+1), on the image of βnJ in Hk (Pn;R),
is +1. Therefore, one can interpret the homology classes βnj for j ∈ {0, . . . , n+1}, as a system of

generators for the graded algebra structure on H∗
(
P
n
;Z
)
, dual to the one on H∗ (Pn;Z). The

product on H∗
(
P
n
;Z
)
is also denoted by ∧, and given two subsets J, J ′ ⊂ {0, . . . , n + 1} this

product is de�ned as βnJ ∧ βnJ′ = εJ,J ′β
n
J∪J′ , where εJ,J ′ ∈ {−1, 0, 1} is de�ned by the equation(∧

j∈J
dzj

2iπzj

)
∧
(∧

j∈J′
dzj

2iπzj

)
= εJ,J ′

∧
j∈J∪J′

dzj
2iπzj

. This discussion about the homology

H∗(P
k
;Z) of the k-dimensional compacti�ed pair-of-pants, yields the following lemma.

Lemma 3.2. Let k ∈ Z≥0 be a non-negative integer. For any subset J ⊂ {0, . . . , k + 1}, one
has

βkJ =
∧
j∈J

βkj ∈ Hp

(
P
k
;Z
)
.

For the rest of this section, we consider X to be a hypersmooth tropical variety of dimension
n, with a polyhedral combinatorial strati�cation. Recall that C(X) is the set of the closed cells
of the combinatorial strati�cation C. Let k and s be two non-negative integers. We denote
by Ck,s(X) the (closed) cells of X of dimension k and of order of sedentarity s. For each cell
σ ∈ Ck,s(X), we denote by Cσk+1,s(X), the cells of Ck+1,s(X) that contain σ. It turns out that the
number of elements in Cσk+1,s(X) depends only on the pair (k, s), as stated by the lemma and
the implied corollary below. Recall that for any non-negative integer k, the standard tropical
hyperplane in Rk+1 is denoted by Vk.

Lemma 3.3. A point x ∈ X, lying in the relative interior of a cell σ ∈ Ck,s(X) has an open
neighborhood U ⊂ X, homeomorphic to Rk × Vn−k−s × [0,+∞)s.

Proof. If X is a non-singular tropical hypersurface in a smooth tropical toric variety, this is the
statement of Proposition 2.14 in [27]. Since the statement is local, it implies the result for any
hypersmooth tropical variety.

Corollary 3.2. Let k and s be two non-negative integers, and let τ ∈ Ck,s(X). One has two
possibilities for the number of cells of Cτk+1,s(X), depending on the value of nτ := n − dim τ −
|sed(τ)|.
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� If nτ = 0, then Cτk+1,s(X) is empty.

� If nτ > 0, then Cτk+1,s(X) has nτ + 2 elements.

Moreover, there is exactly one face σ ∈ Ck+s,0(X) containing τ . It is the parent face of τ .

Proof. By Lemma 3.3, the number of elements in Cτk+1,s(X) is the number of rays in the fan
tropical linear space Vn−k−s.

Since for any vertex v of sedentarity s of X, the building-block Sv is a (n − s)-dimensional
compacti�ed pair-of-pants, we obtain the following lemma.

Lemma 3.4. Let G be an abelian group, and let v ∈ C0,s(X) be a vertex of sedentarity s ∈
Z≥0. Any one-to-one correspondence e↔ j(e) between Cv1,s and the homogeneous coordinates of
CPn−s+1 yields an isomorphism of graded algebra

Lv• : FG• (v)→ H• (Sv;G) ,

satisfying
Lvp (~e1 ∧ . . . ∧ ~ep) = βkj(e1) ∧ . . . ∧ β

k
j(ep) ∈ Hp (Sv;G) ,

for any non-negative integer p, where for all j ∈ J , the edge ej is in Cv1,s(X) and the integer
vector ~ej is primitive, parallel to the edge ej and directed outwards v.

Given a cell σ ∈ C(X), recall the de�nition of the vector space W ′(σ) from Section 2.2.1.
We de�ne a (dimσ)-dimensional torus by Tσ := W ′(σ)/ (2πW ′Z(σ)). If τ ∈ Ck,s(X), and σ ∈
Cτk+1,s(X), then there is an injection T τ → Tσ induced by the inclusion W ′(τ) ⊂W ′(σ).

De�nition 3.7. The building-block associated with σ ∈ C(X) is de�ned by

Sσ := σ × Tσ × Pnσ .

We denote by (x, θ, z) the elements of Sσ. For any (closed) cell τ ⊂ σ contained in σ, we
de�ne the restriction of Sσ to τ by

Sτσ := τ × Tσ × Pnσ ⊂ Sσ.

The projection on the �rst coordinate in σ is denoted by λ : Sσ → σ and the composition of the
projections on the third coordinate Sσ → P

nσ with the projection on the simplex P
nσ → ∆nσ+1

is denoted by pr∆nσ+1
.

The (real) dimension of the building-block associated with a cell σ ∈ C(X) is equal to
2(dimσ + nσ) = 2(n − |sed(σ)|). Let us give a brief description of the homology of Sσ. Recall
that for any non-negative integers l and k, the lth-homology group of a k-dimensional torus
T k is isomorphic to Hl

(
T k;Z

) ∼= Z(kl). Since for any cell σ ∈ C(X), there is no torsion in the
homology groups with integer coe�cients of Sσ, Tσ or P

nσ , one obtains the following lemma by
Künneth's formula.

Lemma 3.5. Let p be a non-negative integer. The pth homology group of the building block Sσ,
associated with cell σ ∈ Ck,s(X) is given by

Hp (Sσ;Z) ∼=
⊕

0≤l≤p

Hl (T
σ;Z)⊗Hp−l

(
P
nσ

;Z
)
.
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Given a cell σ ∈ C(X), and an integer primitive vector v ∈ W ′Z(σ), we denote by Lσ1 (v) the
homological class in H1 (Sσ;Z) of a cycle {∗}×Rv/Zv×{∗}, oriented according to v. We extend
Lσ1 linearly to a morphism of abelian group Lσ1 : W ′Z(σ) → H1 (Sσ;Z). Using the fact that the
homology of a k-dimensional torus T k can be obtained via Künneth formula, one can show

that the morphism Lσ1 is injective and has for image the subgroup H1 (Tσ;Z)⊗H0

(
P
nσ

;Z
)
∼=

H1 (Tσ;Z). This morphism is called a lifting morphism. If e ∈ C1,s(X) is a cell of dimension 1
and order of sedentarity s ∈ Z≥0, the case p = 1 of Lemma 3.5 can be written as

H1 (Se;Z) ∼= Z · Le1(~e)⊕H1

(
P
n−1

;Z
)
,

where ~e is a primitive integer vector in W ′Z(e) as in Lemma 3.4. We also introduce the notation
v~e for the primitive integer vector, parallel to the edge e, and directed outwards v, for any vertex
v adjacent to e.

De�nition 3.8. A phase tropical manifold over X consists in the following data:

(1) for all τ ∈ Ck,s(X), there is a bijection σ 7→ j(σ) between the cells of Cτk+1,s(X) and the
indices of the nτ + 2 homogeneous coordinates of CPnτ+1; recalling the notation BnJ from
Lemma 3.1, we put Sστ := τ × T τ ×Bnτ{j(σ)} ⊂ Sτ ;

(2) for all τ ∈ Ck,s(X) and σ ∈ Cτk+1,s(X), there is a homeomorphism φστ : Sστ → Sτσ and a
map θστ : τ ×Bnτ{j(σ)} → Tσ, satisfying for all (x, θ, z) ∈ Sστ

(φστ ) (x, θ, z) =
(
x, ρ′(θ) + θστ (x, z), pj(σ) (z)

)
; (3.2)

(3) for any vertex v ∈ C0,s(X) of order of sedentarity s ∈ Z≥0, for any edge e ∈ Cv1,s(X), the
following homological equation is satis�ed

(φev)∗ (βnj(e)) = Le1( v~e); (3.3)

(4) for all τ ∈ Ck,s(X), denoting by σ ∈ Ck+s,0(X) the unique (k + s)-cell of zero sedentarity
containing τ (which exists by Lemma 3.3), there is a continuous map φτσ : Sτσ → Sστ ,
acting coordinates by coordinates, which restricts to the identity on the �rst and third
coordinates and restricts to the projection Tσ → T τ , induced by the quotient by the
divisorial directions, on the second coordinate;

(5) for any cells σ ⊂ τ ⊂ % and σ ⊂ τ ′ ⊂ % in C(X), one has φτσ ◦φ%τ = φτ
′

σ ◦φ
%
τ ′ , and we denote

both of the compositions by φ%σ.

One de�nes a topological 2n-manifold (see Lemma 3.6 below) by

SX =

 ⊔
σ∈C(X)

Sσ

 / ∼ ,

where ∼ identi�es x and φτσ(x) whenever it is well de�ned. For short, we write that (SX , X) is
a phase tropical manifold. A phase tropical manifold (SX , X) comes with a strati�ed �bration
λ : SX → X, given on a building-block Sσ by the projection on the �rst coordinate Sσ → σ, for
every σ ∈ C(X).
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Remark 3.5. The homological Equation 3.3 is always true when tensored by Z2, as long as we
require for φστ to be a a homeomorphism. In fact, one can show that any homeomorphism of

P
n−1 × T 1 preserves, up to the sign, the homological class of the cycle {∗} × T 1. Therefore,

this condition could probably be replaced by some orientability condition. In [27] (section 5),
in order to reconstruct the complex hypersurface from the non-singular tropical hypersurface,
two pairs-of-pants associated with two vertices connected by an edge in the tropical surface,
are glued by an identi�cation of the form [z0 : . . . : zn : zn+1] 7→ [z0 : . . . : zn : zn+1] along
zn+1 = −Rn, for some Rn ∈ R>0. This identi�cation is consistent with Equation (3.3).

Remark 3.6. The condition (2) of the previous de�nition is quite restrictive and in particular,
it implies the following equations

pr∆nτ+1
= pr∆nσ+1

◦ φστ ,

λ = λ ◦ φστ .

Since the map θστ : τ × Bnτj(σ) → Tσ does not depend on θ ∈ T τ , one also gets the following
homological equation

(φστ )∗ (Lτ1(v)) = Lσ1 (ρ′(v)) . (3.4)

Remark 3.7. We want to think of the building blocks Sσ for σ ∈ C(X), as subsets of SX . When
the cell σ is bounded, meaning σ does not intersect the boundary ∂X of the hypersmooth tropical
surface, then the equivalence relation ∼ from De�nition 3.8, does not identify two distinct points
in Sσ. Therefore, one has the inclusion Sσ ⊂ SX . However, when σ is adjacent to a cell τ of
higher sedentarity, there is no inclusion Sσ ⊂ SX , because the quotient by the equivalence
relation ∼ identi�es distinct points in Sτσ . That is why we denote by S̃σ the image of Sσ by
the projection

⊔
σ∈C(X)

Sσ → SX . In the case where σ does not admit an adjacent cell of higher

sedentarity (e.g σ is bounded or σ is a vertex), we can speak indi�erently of the building block
Sσ or its image S̃σ in SX .

Lemma 3.6. Let (SX , X) be a phase tropical manifold. Then SX is a topological 2n-manifold.

Proof. First, let us show that the inverse image of the mobile points λ−1(Xo), is indeed a
topological manifold. Let v be a vertex of zero sedentarity of X, J ⊂ {0, . . . , n+ 1} be a subset
of cardinality n and (v, z) ∈ {v}×BnJ . The point (v, z) is at the intersection of 2n building-blocks,
more precisely, this point is contained in

(
n
k

)
building blocks of k-dimensional cells (of sedentarity

zero). We want to prove that (v, z) admits an open neighborhood in SX homeomorphic to a ball.
This is enough to show that any point in the inverse image λ−1(Xo) admits such a neighborhood,
because all possible type of points in λ−1(Xo) are contained in an open neighborhood of (v, z),
meaning the points in λ−1 (Xo), which are contained in 2m building blocks, with 0 ≤ m ≤ n.
Let σ ∈ Ck,0(X) be a cell such that the associated building-block Sσ contains (v, z). Since the

cell σ is of sedentarity zero, one has Sσ = σ×Tσ ×Pn−dimσ
, and we denote by (v, θσ(z), zσ(z))

the coordinates of the point (v, z) in Sσ. Since the subset J is of cardinal n, the coordinate zσ(z)

of (v, z) in Sσ, is contained in a component Bn−dimσ
Jσ

of the boundary of P
n−dimσ

, where Jσ is of
cardinal n−dimσ. Now, recall that Sσ ⊂ σ×Tσ×

(
∆n−dimσ+1 × (Tn−dimσ+2/T )

)
and denote

by (v, θσ(z), (xσ(z), ϑσ(z)) the coordinates of (v, z). The coordinate xσ(z) is located at the
intersection of n− dimσ facets of the simplex ∆n−dimσ+1, thus xσ(z) is the middle point of an
edge of ∆n−dimσ+1. As a consequence, all points (v, z′) ∈ {v} × BnJ have the same coordinate
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xσ(z′) = xσ in Sσ. This discussion shows that the n-dimensional torus (pJ)−1 (pJ(v, z)) is
contained in {v} × Tσ ×

(
{xσ} × Tn−dimσ+2/T

)
. We denote by T Jv this n-dimensional torus,

which is the intersection of all the building blocks containing the point (v, z) ∈ SX . Consider
an open ball UJv (z) in T Jv , containing (v, z). For any cell σ such that Sσ contains (v, z), denote
by ∆σ

n+1 a copy of ∆n−dimσ+1. By points (1) and (5) of De�nition 3.8 and by Remark 3.6
concerning the point (2), there is a one-to-one correspondence between the copies ∆σ

n+1's and
the (closed) faces of ∆v

n+1 containing xv, sending xσ to xv. Consider an open neighborhood of
the point xv ∈ ∆n+1, denoted by Uv(xv), homeomorphic to (R≥0)n+1. One can then consider
the intersection of this neighborhood with the face ∆σ

n+1 of ∆v
n+1. We denote this intersection

by Uσ(xσ) := Uv(xv)∩∆σ
n+1. Now consider F ∈ Cn,0(X) the unique facet whose building-block

SF contains (v, z) and consider an open neighborhood UF of the vertex v inside the facet F . For
any cell σ containing v, denote by Uσ the intersection of UF with σ. Note that this is an open
neighborhood of v inside σ and it is homeomorphic to (R≥0)dimσ. Finally, denote by Uσ(v, z)

the intersection
(
Uσ(xσ)× UJv (z)

)
∩Pn and notice that that the intersection is homeomorphic to

(R≥0)n−dimσ×Rn. One has then that for any cell σ ∈ C(X) such that (v, z) ∈ Sσ, the Cartesian
product Uσ × Uσ(v, z), is an open neighborhood of (v, z) inside Sσ and is homeomorphic to
(R≥0)n × Rn. Because of the commutativity with the projection on the simplex from point (3)
of De�nition 3.8, for another cell τ ⊂ σ, the Cartesian products Uσ×Uσ(v, z) and Uτ ×Uτ (v, z)
intersect along Uτ × Uσ(v, z) which is homeomorphic to (R≥0)n−dimσ+dim τ × Rn. Therefore,
the union of these 2n sets forms an open neighborhood of (v, z) inside Sσ and is homeomorphic
to Rn.

When v is a vertex of sedentarity s ∈ Z>0, the description of an open neighborhood is similar.
In fact, as in the previous case, it is enough to consider z ∈ BnJ , where J has a maximal number
of elements, that is to say n − 1 − s elements. The point (v, z) is then at the intersection of
2n−s building-blocks of sedentarity s. For each of the building-block Sσ containing (v, z) and
such that |sed(σ)| = s, one can consider the parent face σpar of dimension s+ dimσ. One can
restrict the phase tropical surface (SX , X) to (SXv , X

v), where Xv is the union of all cells of
sedentarity s of X, containing the vertex v. By noticing that (SXv , X

v) is a phase tropical
manifold of dimension n− s, in which v is a vertex of sedentarity 0, one can construct the same
products Uσ×Uσ(v, z), as in the sedentarity 0 case, for all cells σ of sedentarity s and such that
Sσ contains (v, z). Denote by F the unique cell of sedentarity s and of dimension n − s such
that Sσ contains (v, z). We then consider an open neighborhood UFpar of v in the parent cell
Fpar of F , such that UFpar is homeomorphic to (R≥0)

n and intersects the cell F exactly along
the neighborhood UF of v inside F . We denote by T div the s-dimensional torus inside T vpar ,
generated by the divisorial directions of v inside vpar. For any cell σ of sedentarity s, such that
Sσ contains (v, z), the intersection of UFpar with the parent face σpar of σ is homeomorphic to

(R≥0)
dim(σpar). Then we consider the union of the product of the form Uσpar ×T÷×Uσ(v, z) for

all cells σ of sedentarity s such that Sσ contains (v, z). Taking the image by the quotient map⋃
σ∈C(X) Sσ → SX yields an open neighborhood of (x, v), which is homeomorphic to a ball.

Remark 3.8. One should be careful when reading about "phase tropical objects" in the literature.
To the knowledge of the author, the �rst occurrence of the term "phase" associated with a
tropical object is by G. Mikhalkin in [28]. It was introduced to answer the question of the
realisability of a plane tropical curve as a limit of a family of plane algebraic curves in the sense
of Theorem 3.1. A phase is described as a lift of the neighborhood of a vertex in (C∗)2, that
is, a constant family of lines in (C∗)2 which degenerates to the neighborhood of the vertex.
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Then, the question of the realisability of the whole tropical curve depends on the possibility to
glue the phases over vertices together. More recently, G. Kerr and I. Zharkov in [20] de�ned
phase tropical hypersurfaces as gluing of coamoebas, which does not quite coincide with our
point of view in De�nition 3.8. However, they do show that a phase tropical hypersurface (with
their de�nition) is homeomorphic to an topological manifold decomposed into pairs-of-pants like
ours, so it seems acceptable that we call the objects of De�nition 3.8 "phase tropical manifolds".
Finally, as mentioned at the beginning of this section, in the case of curves the closest de�nition
to ours is the one of [7], even if the authors do not call it "phase tropical curve".

Let us describe the building-blocks of a phase tropical surface, that is, the case n = 2 of
De�nition 3.8.

� If v is a vertex of sedentarity 0, then Sv = {v} × P 2
is of dimension 4.

� If v is a vertex of sedentarity 1, then Sv = {v} × P 1
of dimension 2.

� If v is a vertex of sedentarity 2, then Sv = {v} is a point.

� If e is an edge of sedentarity 0, then Se = e × T e × P
1
and Se is of dimension 4 and

homeomorphic to e× T 1 × P 1
.

� If e is an edge of sedentarity 1, then Se = e×T e is of dimension 2 homeomorphic to e×T 1.

� If F is a face, then SF = F × TF is of dimension 4 and homeomorphic to F × T 2.

We are now going to see a crucial point of view for tropical homology in the case of phase
tropical manifold, allowing us to use equivalently the pth-homology of the building-blocks and
the cosheaf Fp, as a system of local coe�cients for tropical homology. Let G be an abelian
group. For all non-negative integers p, one can associates to any cell σ ∈ C(X), the group
Hp (Sσ;G). Moreover, to any pair of cells τ ⊂ σ one can consider the composition of the
morphism (φτσ)∗ : Hp (Sτσ ;G) → Hp (Sσ;G), with the isomorphism Hp (Sσ;G) ∼= Hp (Sτσ ;G),
given by the inverse of the morphism induced by the inclusion Sτσ ⊂ Sσ. We also denote
by (φτσ)∗ : Hp (Sσ;G) → Hp (Sτ ;G) this composition, despite the slight abuse of notation.
One has then a cellular co-sheaf of abelian groups on X, denoted by Hp (S•;G). For any facet
F ∈ Cn,0(X), there is an isomorphism of abelian group LFp : FZ

p (F )→ Hp (SF ;Z) constructed in
the following way. For all primitive integer vectors v = v1∧ . . .∧vp ∈ FZ

p (F ), we de�ne LFp (v) by
the homological class inHp (SF ;Z) of the cycle {∗}×(VectR{v1, . . . , vp}/ (2πVectZ{v1, . . . , vp})),
oriented according the basis (v1, . . . , vp) of VectR(v1, . . . , vp). We then extend LFp linearly to a
morphism of abelian groups. The pth homology group Hp (SF ;Z) is generated by the classes
of cycles of the from {∗} × (V/2π (V ∩W ′Z(F ))), so the morphism LFp is surjective. Moreover,
both the target and the source of LFp are free Z-modules of rank

(
n
p

)
, thus the morphism LFp is

an isomorphism.

Lemma 3.7. Let (SX , X) be a phase tropical manifold. Let σ ∈ C(X) be a cell of X, adjacent
to k ∈ Z≥0 facets denoted by F1, . . . , Fk and let p be a non-negative integer. For all j ∈
{1, . . . , k}, consider an integer vector vj ∈ FZ

p (Fj). If
∑
j ι(vj) = 0 ∈ FZ

p (σ), then one has∑
j

(
φσFj

)
∗
L
Fj
p (vj) = 0.
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Proof. Let v be a vertex adjacent to σ and of same sedentarity. The existence of such a cell is
given by the fact that the tropical manifold X is hypersmooth. Applying the map FZ

p (σ) →
FZ
p (v) to the equality

∑
j ι(vj) = 0 ∈ FZ

p (σ), yields
∑
j ι(vj) = 0 ∈ FZ

p (v). Recalling the
isomorphism from Lemma 3.4, one has then that

∑
j L

v
p (ι(vj)) = 0 ∈ Hp (Sv;Z). Moreover, one

can show that for all j ∈ {1, . . . , k}, one has
(
φvFj

)
∗
L
Fj
p (vj) = Lvp(ι(vj)). In fact, it is enough

to prove it for vj = v~e1 ∧ . . .∧ v~ep, where the edges ej are adjacent to both v and Fj , since these
elements form a Z-basis of FZ

p (Fj). Yet, one has L
Fj
p (v~e1 ∧ . . . ∧ v~ep) = L

Fj
1 (v~e1)∧ . . .∧LFj1 (v~ep)

and after applying
(
φvFj

)
∗
, one gets(

φvFj

)
∗
LFjp (v~e1 ∧ . . . ∧ v~ep) =

(
φvFj

)
∗
L
Fj
1 (v~e1) ∧ . . . ∧

(
φvFj

)
∗
L
Fj
1 (v~ep).

By Equation (3.3), for any 1 ≤ l ≤ p, one has
(
φvFj

)
∗
L
Fj
1 (v~el) =

(
φvel
)
∗ L

el
1 (v~el) and then the

equality
(
φvFj

)
∗
L
Fj
1 (v~el) = βnσ1 = Lv1(v~el) follows from Equation (3.4), where, for simplicity,

we assume that for all l, the index l ∈ {0, . . . , nσ + 1} of the coordinates of CPnσ+1, cor-
responds to the edge el, by the bijection from the �rst point of De�nition 3.8. One has then(
φvFj

)
∗
L
Fj
p (v~e1 ∧ . . . ∧ v~ep) = Lvp (v~e1 ∧ . . . ∧ v~ep). We deduce from the relation

(
φvFj

)
∗
L
Fj
p (vj) =

Lvp(ι(vj)) that
∑
j

(
φvFj

)
∗
L
Fj
p (vj) = 0 ∈ Hp (Sv;Z). Applying the isomorphism (φσv )∗ and using

the last point of De�nition 3.8, one gets the equation of the statement.

Lemma 3.6 above makes the following de�nition possible.

De�nition 3.9. Let (SX , X) be a phase tropical manifold. Let p be a non-negative integer
and σ ∈ C(X) be a cell of X. The p-lifting isomorphism is the morphism of abelian group
Lσp : FZ

p → Hp (Sσ;Z) de�ned on any element ι(v), for v ∈ FZ
p (F ), and F an adjacent facet to

σ, by
Lσp (ι(v)) := (φσF )∗

(
LFp (v)

)
.

Note that, because of Equation (3.4), the de�nition of Lσp in the case p = 1, agrees with the
previously de�ned lifting morphism Lσ1 on W ′Z(σ). The following lemma justi�es the denomina-
tion "isomorphism" for Lσp . Recall the notation B

n
J ⊂ P

n
used in Lemma 3.1.

Lemma 3.8. Let (SX , X) be a phase tropical surface. Let p ∈ Z≥0 be a non-negative integer and
σ ∈ C(X) be a cell of X. The p-lifting isomorphism Lσp is an isomorphism. Moreover, for any two
non-negative integers k and l such that k+l = p, for any integer vectors vσ ∈ ΛkW ′Z(σ) and vF ∈
Fp(F ), where F is an adjacent facet, the image Lσp (vσ ∧ ι(vF )) is in Hk (Tσ;Z)⊗Hl

(
BnσJ(F );Z

)
,

from decomposition of Lemma 3.5, where J(F ) ⊂ {0, . . . , nσ + 1} is the subset of indices of
coordinates of CPnσ+1 corresponding to the faces of dimension dimσ+ 1, which are adjacent to
both σ and the facet F .

Proof. The second part of the statement is a consequence of the fact that the image of φσF is
included in SFσ := σ×Tσ×BnσJ(F ). One is left to show that, restricted to the sub-group generated
by the vectors of the form vσ ∧ vF like in the statement, the morphism Lσp is an isomorphism

onto Hk (Tσ;Z) ⊗ Hl

(
BnσJ(F );Z

)
. Yet, evaluated on a wedge product of this form, by de�ni-

tion, Lσp (vσ ∧ ι(vF )) is equal to (φσF )∗ L
F
p (vσ ∧ ι(vF )). Consider the parent face σpar ∈ Cσ0,s(X)
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the parent face of σ, where s = |sed(σ)|. Since the kernel of ι : FZ
1 (σpar) → FZ

1 (σ) is com-
posed of vectors sent to zero by the divisorial projection σpar → σ, it does not intersect
the subspace W ′Z(σ) outside {0}. Therefore, one can consider a (n − s)-dimensional supple-
mentary subspace EσF ⊂ W ′Z(F ) = FZ

1 (F ) of the kernel Ker
(
ι : FZ

1 (F )→ FZ
1 (σ)

)
, such that

W ′Z(σ) ⊂ EσF . Then one can consider a nσ-dimensional supplementary subspace ẼσF of W ′Z(σ)
inside EσF . By adding some element of Ker

(
ι : FZ

1 (F )→ FZ
1 (σ)

)∧
FZ
k−1 to the vector vF and

then adding an element of ΛkW ′Z(σ), one can write vσ ∧ ι(vF ) = vσ ∧ ι(v′F ), where v′F ∈ ΛkẼσF .
Moreover, notice that since F is a facet, the boundary component BnσJ(F ) of P

nσ is a dimσ-

dimensional torus, so that both
(
ΛkW ′Z(σ)

)∧
ι
(

ΛlẼσF

)
and Hk (Tσ;Z) ⊗ Hl

(
BnσJ(F );Z

)
are

free Z-modules of rank
(

dimσ
k

)
·
(
nσ
l

)
. Finally, using the fourth point of De�nition 3.8, one

gets that the morphism
(
φσσpar

)
∗
is an isomorphism onto Hp (Sσ;Z), when restricted to the

subgroup Hp

(
σ × Tσ × Pnσ ;Z

)
⊂ Hp

(
Sσpar ;Z

)
. in particular, this morphism is also an

isomorphism onto Hk (Tσ;Z) ⊗ Hl

(
BnσJ(F );Z

)
⊂ Hp (Sσ;Z), when restricted to Hk (Tσ;Z) ⊗

Hl

(
BnσJ(F );Z

)
⊂ Hp

(
Sσpar

)
. Yet, φσparF : SσF → SFσpar is a homeomorphism because F and σpar

are both of sedentarity zero. Thus, the composition (φσF )∗ =
(
φσσpar

)
∗

(
φ
σpar
F

)
∗ is surjective onto

Hk (Tσ;Z) ⊗ Hl

(
BnσJ(F );Z

)
⊂ Hp (Sσ;Z). Since the lifting morphism LFp is an isomorphism

(because F is a facet), it implies the surjectivity of (φσF )∗ ◦ L
F
p :

(
ΛkW ′Z(σ)

)∧
ι
(

ΛlẼσF

)
→

Hk (Tσ;Z) ⊗Hl

(
BnσJ(F );Z

)
. It implies the desired bijectivity, since a surjective morphism be-

tween free abelian groups of same rank is an isomorphism.

Proposition 3.2. Let (SX , X) be a phase tropical manifold and G an abelian group. There is
an isomorphism of (cellular) co-sheaves L•p : Hp(S•;G) ∼= FGp .

Proof. The isomorphism Hp(Sσ;Z) ∼= FZp (σ) for all cells σ ∈ C(X) is the �rst part of the
statement of Lemma 3.8. For another cell τ ⊂ σ, the commutativity of the diagram

FZ
p (σ) FZ

p (τ)

Hp (Sσ;Z) Hp (Sσ;Z)

ι

Lσp Lτp

(φτσ)∗

is true by de�nition of the p-lifting isomorphism. Tensoring the de�nition of the p-lifting mor-
phism Lp by the abelian group G yields the result.

Proposition 3.2 allows us to compute the cellular tropical homology groups Hcell
q (X;FGp ) as

Hcell
q (X;Hp(S•;G)). This point of view was mentioned in the case of a limit of a 1-parameter

family of the form of Equation (3.1) in [2]. In particular, one can use the Leray-Serre spectral
sequence associated with the strati�ed �bration λ : SX → X, in order to obtain the following
result.
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Proposition 3.3. Let (SX , X) be a phase tropical manifold. For any k ∈ Z≥0, we have the
inequality

dimHk(SX ;Z2) ≤
∑
p+q=k

dimHp,q(X;Z2).

Proof. The strati�ed �bration λ : SX → X induces a �ltration of the singular chain complex
C∗ (SX ;Z2) by:

0 ⊂ C∗
(
λ−1

(
X0
)

;Z2

)
⊂ · · · ⊂ C∗

(
λ−1 (Xn) ;Z2

)
= C∗ (X;Z2) ,

where Xk denote the k-skeleton of X. This �ltration induces a Leray-Serre spectral sequence
with Z2-coe�cients associated with the strati�ed �bration SX → X. This spectral sequence
has for second page E2

q,p = Hcell
q (X;Hp(•;Z2)). Moreover, it degenerates (SX is a �nite CW -

complex) and converges to the graded homology FpH∗ (SX ;Z2), where FpH∗ (SX ;Z2) is the
subset of all a ∈ H∗ (SX ;Z2) such that there exists α ∈ C∗

(
λ−1 (Xp) ;Z2

)
representing a. As

a result, one has that dim
(∑

p+q=k E
∞
q,p

)
= dimHk(SX ;Z2). The rank formula for Z2-vector

spaces implies that for all p, q, one has dimE2
q,p ≥ dimE∞q,p. Summing over all p + q = k and

applying Proposition 2.3 yields the result.

This result is quite easy to obtain thanks to the e�ciency of the spectral sequence. One
may ask whether this inequality is an equality. This question is answered in the a�rmative in
Chapter 4.

3.1.3 Real Structure of a Phase Tropical Manifold

Let (SX , X) be a phase tropical manifold of dimension n. We denote by λ : SX → X the
associated strati�ed �bration.

De�nition 3.10. Let σ ∈ C(X) be a cell of X. The standard conjugation on the building block
Sσ, denoted by conjσ : Sσ → Sσ, is de�ned on (x, θ, (y, ϑ)) ∈ Sσ ⊂ σ×Tσ×

(
∆n+1 ×

(
Tn+2/T

))
by

conjσ ((x, θ, (y, ϑ)) = (x,−θ, (y,−ϑ)) .

De�nition 3.11. A real structure of (SX , X) is a continuous involution c : SX → SX , which is
�ber-preserving, i.e λ ◦ c = λ, and such that

� for any vertex v of sedentarity 0, the restriction of the involution c to the building-block
Sv = S̃v acts as the standard conjugation on Sv, that is, c|Sv = conjv;

� for any cell σ ∈ C(X), the restriction of the involution c to the relative interior
o

Sσ =
o

S̃σ

of the building-block Sσ acts as the standard conjugation on
o

Sσ, up to a homeomorphism
of Sσ, which restricts to the identity of {v} × Tσ × Pnσ , for all vertices v of σ (whatever
their sedentarity).

Consider a cell σ of X and a real structure c of (SX , X). By De�nition 3.11 of a real
structure, the restriction on the �ber λ−1(

o
σ) over the relative interior of σ, acts as the standard

conjugation up to a automorphism of Sσ, which �xes the components (∂σ) × Tσ × Pnσ . This
restriction can then be extended by continuity to an involution on Sσ and we denote by cσ this
involution. In particular, the involution cσ is the identity when restricted to {v} × Tσ × Pnσ ,
for any vertex v of the cell σ.
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De�nition 3.12. Let σ be a cell of X. A local real structure of (Sσ, σ) is an involution cσ, coming
from the restriction of a real structure of (SX , X) as above.

De�nition 3.13. Two real structures c and c′ of (SX , X) are said to be isomorphic if there exists
a homeomorphism ϕ : SX → SX such that ϕ ◦ c ◦ ϕ−1 = c′. They are said to be X-isomorphic
if this homeomorphism is �ber-preserving and restricts to the identity of the �bers Sv for all
vertices v of sedentarity 0 of X.

Remark 3.9. J. Rau, A Renaudineau and K. Shaw recently introduced the notion of real phase
structure on a matroid fan in [33]. As explained in Section 2.1.3, matroid fans are local models
for tropical manifolds and the de�nition of real phase structure can be extended to a tropical
manifold X in a smooth tropical toric variety of dimension N . Brie�y, a real phase structure
can be described as the assignment for any cell σ of X of a dimσ-dimensional Z2-a�ne space
in ZN2 , parallel to σ. Given a phase tropical manifold (SX , X), endowed with a real structure
c, one could recover a real phase structure on X by considering only the �xed locus of c in SX .
This emphasizes one of the main di�erences between the two de�nitions: a real phase structure
does not remember the data of an embedding of the �xed locus inside the complex locus, but
only remembers the �xed locus.

3.2 Real Structures of Phase Tropical Curves

In this section, we present the approach and results of [7] by B. Bertrand, E. Brugallé and A.
Renaudineau, translated into our setting, which is slightly di�erent. Moreover, we rewrite the
results so that their formulation generalizes to the case of phase tropical surfaces, in particular
for the description of real structures. The approach of [7] develops a new point of view on Haas's
Theorem (see [11]). Brie�y, Haas's theorem is a description of the unimodular (a.k.a primitive)
patchworking giving an M-curve.

Let Γ be a compact hypersmooth tropical curve and let (SΓ,Γ) be a phase tropical curve
(see De�nition 3.8). As mentioned in Remark 2.5, the curve Γ has a polyhedral combinatorial
strati�cation, denoted by C. Note that the edges of Γ are all of sedentarity 0 and compact
because Γ is compact. Since the vertices of a standard tropical line in T2 are of sedentarity less
than or equal to 1, the vertices of the hypersmooth tropical curve Γ are also of sedentarity less
than or equal to 1. The vertices of sedentarity 0 are 3-valent, meaning they are adjacent to 3
edges, while the vertices of sedentarity 1 are 1-valent.

Remark 3.10. The authors of [7] work with an abstract topological graph Γ and require that the
vertices are either 1-valent or 3-valent. This makes no di�erence with our setting, except that
our formulation extends directly to higher dimensions. However, they work in a more general
setting by endowing Γ with an involution, continuous for the usual graph topology and whose
restriction to the relative interior of an edge has either no �xed point or is the identity. Here,
we completely forget about this involution, that is, we focus on the case where this involution
is the identity. Another di�erence is the building-blocks over cells with positive sedentarity. In
[7], the building-block over a vertex of sedentarity 1 is a disk of dimension 2. We could use
the same approach by taking the product of a disk of dimension 2s for the building-block over
a cell of sedentarity s. The nice aspects with this point of view is that one can view every
building-block as a �ber inside the phase tropical surface SX and all the building-blocks have
the same dimension. The downside, However, is that an involution cσ does not have to restrict
to the identity of {v} × Tσ × Pnσ for vertices of positive sedentarity. This would make many
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v
e

g

f

bgev

begv

bfgv

Figure 3.1: Labeling of the components of the real part of the �ber Sv over a trivalent vertex
v.

de�nitions in Section 3.4 more di�cult. Another disadvantage would also be that we would have
to modify the real structures on the �bers over cells of positive sedentarity, while in Section 3.4,
we only have to twist the real structures over cells of sedentarity 0.

3.2.1 A�ne Space of Real Structures

In the case where (SΓ,Γ) is obtained as a degeneration of a 1-parameter family of plane real
algebraic curves (Ct)t>0, one can describe the resulting real structure of (SΓ,Γ) in terms of
twisted edges (see [8], section 3). This description makes possible a nice formulation for Haas'
Theorem. Moreover, the real curve SΓ is of type I if and only if for every topological cycle
Σ ⊂ Γ, there is an even number of twisted edges contained in Σ (see [8], Proposition 3.11). This
notion of twisted edge has even a geometric visualization when looking at the boundary of the
amoeba (see e.g [8]). However, it depends on the embedding inside the plane. That is why, for
an edge e of Γ and a topological cycle Σ ⊂ Γ containing e, we introduce the notion of being
twisted along Σ for the edge e.

Given a 3-valent vertex v of Γ, each of the 3 components of RSv intersects exactly 2 com-
ponents of the boundary of Sv. Given two edges e and f , adjacent to v, we denote by befv the
component of RSv which intersects Sev and Sfv . This notation is illustrated by Figure 3.1.

De�nition 3.14. Let e be a bounded edge of Γ. Denote by u and v the adjacent vertices to e,
by fu and gu the two other adjacent edges to u, and similarly for fv and gv. The edge e is said
to be twisted along f = (fu, fv) if RSe connects befuu and begvv . Otherwise, the edge e is said to
be untwisted along f .

Remark 3.11. The order in the above de�nition does not matter, that is, being twisted along
(fu, fv) is equivalent to being twisted along (fv, fu). Note also that being twisted along g =
(gu, gv) is equivalent to being twisted along f = (fu, fv), which is also equivalent to being
untwisted along (fu, gv).

De�nition 3.15. Let Σ ⊂ Γ be a topological circle, and let e be an edge of Γ contained in Σ.
The edge e is said to be twisted along Σ if e is twisted along (f, g), where f and g are the edges
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e

u v

fu

gu

fv

gv

Figure 3.2: Edge e untwisted along f = (fu, fv). In red, the real part RSΓ of SΓ.

e

u v

fu

gu

fv

gv

Figure 3.3: Edge e twisted along f = (fu, fv). In red, the real part RSΓ of SΓ.
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of Σ adjacent to e. Otherwise, the edge e is said to be untwisted along Σ. We denote by Tc(Σ)
the subset of the edges of Σ, which are twisted along Σ.

Now, let us notice that the real structures of (SΓ,Γ) admit a description in terms of the
(cellular) cohomology of the wave spaceWZ2

. Note that any 1-co-chain is a co-boundary because
Γ is of dimension 1. Note also that the image of the cellular tropical co-boundary map d :
C0
cell(Γ;WZ2) → C1

cell(Γ;WZ2) is the subspace of the 1-co-chains with support in the union
of the unbounded edges of Γ. This is a consequence of the fact that for any 3-valent vertex
v ∈ C0(Γ), one has WZ2

(v) = 0. One obtains the following lemma.

Lemma 3.9. One has
H1
cell (Γ;WZ2

) =
⊕

e∈C0
1(Γ)

Z2e,

where C0
1(Γ) is the subset of the bounded edges of Γ.

We denote by Π (SΓ,Γ) the set of Γ-isomorphism classes of real structures. Given two real
structures c and c′ of (SΓ,Γ) and a bounded edge e of Γ, the homeomorphism given by the
composition of this restriction to the building-block Se = S̃e, is isotopic to a certain power of a
Dehn twist on (Se, e) (see De�nition 3.23 for a precise de�nition). This power does not depend
on the representative of the Γ-isomorphism classes of the real structures c and c′ and the parity
of this power is denoted by te(c′, c) ∈ Z2. We call this parity twist from c to c′ at the edge e.
Therefore, given a real structure c of (SΓ,Γ), we obtain a map from Π (SΓ,Γ) to the Z2-vector
space

⊕
e∈C0

1(Γ)

Z2e by associating to any Γ-isomorphism class of a real structure c′, the vector

whose coordinate labeled by the bounded edge e, is the twist te(c′, c). One can then interpret
Π(SΓ,Γ) as a Z2-a�ne space.

Proposition 3.4 (Proposition 2.11 [7]). The set Π(SΓ,Γ) is a Z2-a�ne space with direction

−→
ΠΓ =

⊕
e∈C0

1(Γ)

Z2e = H1
cell (Γ;WZ2

) .

Remark 3.12. In [7], only the left equality of the above proposition is written. The identi�ca-
tion between

⊕
e∈C0

1(Γ)

Z2e and H1
cell

(
Γ;WZ2

)
is a better point of view in order to generalize the

description of the a�ne space of real structures to phase tropical surfaces. This is the point of
Section 3.4 and more precisely of Theorem 3.3. Finally, notice that we deliberately forget the
dependence on the phase tropical curve (SΓ,Γ) in the direction

−→
ΠΓ, since this direction depends

only on the tropical curve Γ.

3.2.2 Lifting Tropical Cycles

Let G be an abelian group. We are interested in lifting singular tropical (1, 0) and (0, 1)-cycles
of Γ to 1-cycles of SΓ. Let e ∈ C(X) and x ⊗ v ∈ o

e ⊗ FZ
1 (e) be a framed point. We put

L1,0(x⊗ v) = x× (Rv/(2πZv)) ∈ C1(SΓ;Z). Extending L1,0 by linearity and tensoring by G, it
de�nes a morphism C1,0(Γ;G) → C1(SΓ;G). The induced morphism H1,0(Γ;G) → H1(SΓ;G)
is also denoted by L1,0. Notice that in the previous construction, there is no need to lift (1, 0)-
cycles whose support intersect vertices of sedentarity 0, thanks to Lemma 2.3. We denote by
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H1,0(SΓ;G) := ImL1,0 the image of the morphism L1,0. Now, let Σ ⊂ Γ be a topological
circle embedded in the tropical curve Γ. As proved in [7], the homology class of a lift of
Γ in SΓ is well-de�ned, up to an element of H1,0(SΓ;G) (done only in the case G = Z2 in
[7], but there is no restriction to extend the proof for any abelian group G). The image of
the homology class of this lift in the quotient group H1 (SΓ;G) / (H1,0 (SΓ;G)), is denoted by
L0,1 ([Σ]), where [Σ] ∈ H0,1 (Γ;G) is the tropical homology class of Σ. We extend L0,1 by
linearity to a morphism of abelian groups L0,1 : H0,1(Γ;G) → H1(SΓ;G)/H1,0(SΓ;G). We
denote by H0,1 (SΓ;G) the subgroup of H1 (SΓ;G) whose elements are sent to ImL0,1 by the
projection to the quotient H1 (SΓ;G) /H1,0 (SΓ;G). We now have two morphisms, called (1, 0)-
and (0, 1)-lifting morphisms:

L1,0 : H1,0(Γ;G)→ H1(SΓ;G),

L0,1 : H0,1(Γ;G)→ H1(SΓ;G)/H1,0(SΓ;G).

Proposition 3.5. [7] The lifting morphisms L1,0 and L0,1 are injective.

Remark 3.13. The proof proposed in [7] uses the intersection form on H1(SΓ;G). Although it
is not mentioned there, it relies on the fact that the lifting morphisms push forward the tropical
pairing on H1,0(Γ;G) × H0,1(Γ;G) to the intersection form on H1(SΓ;G). More precisely, for
[a], [b] ∈ H1,0(Γ;G)×H0,1(Γ;G) one has L1,0([a]) ◦ L0,1([b]) = [a] ◦ [b].

Corollary 3.3. For G = Z2, one has the following �ltration

0 ⊂ H1,0(SΓ;Z2) ⊂ H0,1 (SΓ;Z2) = H1 (SΓ;Z2) .

Proof. It is done in [7], but in our text, it is a consequence of Propositions 3.3 and 3.5.

Now, let us see consider a way of lifting tropical (0, 1)-cycles, using the �xed locus of a real
structure c of (SX , X). Let c be a real structure of (SX , X).

Lemma 3.10. Let Σ ⊂ Γ be a topological circle embedded in Γ. This circle can be lifted as a
component of Fix(c) if and only if all the edges of Σ are untwisted along Σ.

Proof. A lift of Σ by a real component has to contain the component bfgv of RSv, for any vertex v
of Σ, where f and g are the adjacent edges to v contained in Σ. By de�nition, these components
bfgv are connected by the real part RSe of the building-block Se associated with the edges e of
Σ if and only if none of these edges is twisted along Σ.

Lemma 3.11. Let c and c′ be two real structures of (SΓ,Γ). Let e be a bounded edge of Γ,
adjacent to the vertices u and v. Denote by fu, gu the other edges adjacent to u and by fv, gv
the other edges adjacent to v. The following statements are equivalent.

� The edge e is either untwisted along f = (fu, fv) for both c and c′, or twisted along f for
both c and c′.

� The twist from c to c′ at the edge e is te(c′, c) = 0.
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Proof. By Proposition 3.4, one can assume that c′ = Dt
e, where De is the Dehn twist on (Se, e)

and t is an integer congruent to te(c′, c). Let us work in the coordinates of Se where the local real
structure ce acts as the standard conjugation conje. The edge e is then untwisted along f for c
if and only if {u}×{0} intersects befuu and {v}×{0} intersects befvv . The component of the �xed
locus of the real local structure c′e containing {u}× {0} has the expression {(x, tπx) |x ∈ [0, 1]}.
This component also contains the point {v}×{0} if and only if t is even. The result follows.

Proposition 3.6. Let Σ ⊂ Γ be a topological circle embedded inside Γ. There exists a real
structure c′ of (SX , X) such that Σ lifts as a component of Fix(c′). Moreover, for any edge
e ∈ C0

1(Γ), the twist from c to c′ at the edge e is given by te(c, c′) = 1 ∈ Z2 if and only if
e ∈ Tc (Σ).

Proof. All the edges of Σ are bounded, because both of their vertices are at least 2-valent. By
Proposition 3.4, there exists a real structure c′ such that the twist from c to c′ at e satis�es the
second part of the statement. By Lemma 3.11, the edges of Γ are untwisted along Σ for the real
structure c′, so by Lemma 3.10, the circle Σ lifts as a connected component of Fix(c′).

3.2.3 Type and Maximality of a Phase Tropical Curve

Let c be a real structure of the phase tropical curve (SΓ,Γ). In order to obtain a criterion for
the type with our point of view, there is one key observation, namely that there are always
two �xed points by c in a toric �ber λ−1(x) for a point x in the relative interior of an edge e.
Therefore, one has the following lemma.

Lemma 3.12. The �xed locus c is orthogonal to the group H1,0 (SΓ;Z2) for the intersection
product.

Thanks to this lemma, the intersection product of the �xed locus Fix(c) with an element in
ImL0,1 is well de�ned.

Proposition 3.7. Let c be a real structure of (SΓ,Γ) and let Σ ⊂ Γ be a topological cycle. One
has

L0,1 ([Σ]) ◦ [Fix(c)] = Card (Tc(Σ)) .

Proof. Denote by sΣ the �xed component by the real structure c′ of Proposition 3.6, such that
sΣ is a lift of Σ. In particular, one has L0,1 ([Σ]) ◦ Fix(c) = [sΣ] ◦ Fix(c). By Lemma 1.2, one
obtains L0,1 ([sΣ])◦Fix(c) = [sΣ]◦ c∗ [sΣ]. By Lemma 1.1, one has [sΣ]◦ [sΣ] = χ(σ) = 0. Hence
the equality L0,1 ([sΣ]) ◦ Fix(c) = [sΣ] ◦ (c∗ [sΣ] + [sΣ]) = [sΣ] ◦ ([sΣ + c∗sΣ]). Yet sΣ + c∗sΣ

is contained in the union of the building-blocks Se for the edges e, twisted along Σ. In fact,
elsewhere, the involutions c and c′ coincide. More precisely, the cycle realized in Se = e × T e
by sΣ + c∗sΣ is equal, in the coordinates of Se where c acts as the standard conjugation on Se,
to {(x, πx) |x ∈ e} + {(x,−πx) |x ∈ e}. Therefore, the cycle Se ∩ (sΣ + c∗sΣ) is homologous to
L0,1 (xe ⊗ ~e), where xe is the barycenter of the edge e and ~e ∈ WZ2

(e) is the non-zero element.

Finally, it implies that L0,1 ([sΣ]) ◦ Fix(c) = [sΣ] ◦
(∑

e∈Tc(Σ) L0,1 (xe ⊗ ~e)
)

=
∑
e∈Tc(Σ) 1 =

Card (Tc(Σ)) (mod 2).

Corollary 3.4. The phase tropical curve (SΓ,Γ) endowed with a real structure c is of type I
if and only if, for every embedded topological circle Σ ⊂ Γ, there is an even number of edges
twisted along Σ.
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Remark 3.14. Although the statement seems similar to the one of [8], proposition 3.11 (at-
tributed to B. Haas in his thesis [11]), the notion of twisted edges is not the same, so the two
statements are di�erent.

In order to obtain a criterion for the maximality, one has to understand the action of the
real structure c∗ on the lifts of tropical cycles. The action on H1,0 (Γ;Z2) is trivial because the
elements of this subgroup can be represented by �bers λ−1(x) for x in the relative interior of an
edge, and c∗λ−1(x) = λ−1(x) by De�nition 3.11. About the action on H0,1 (Γ;Z2), one needs to
understand [sΣ] + c∗[sΣ] for a lift sΣ of a topological circle Σ. We already proved in the proof
of Proposition 3.7, that

[sΣ] + c∗[sΣ] =
∑

e∈Tc(Σ)

L1,0 (xe ⊗ ~e) .

Remark 3.15. In particular, one can see that the morphism 1 + c∗ decreases the index by one
in the �ltration of Corollary 3.3.

One can then formulate, using the injectivity of the lifting morphism L1,0, the following
criterion for the maximality of (SΓ,Γ) endowed with a real structure c. This criterion depends
only on the data of the twisted edges along the cycles and of the combinatorics of the tropical
curve Γ.

Proposition 3.8. The phase tropical curve (SΓ,Γ), endowed with a real structure c, is maximal
if and only if for all topological circle Σ contained in Γ one has∑

e∈Tc(Σ)

[xe ⊗ ~e] = 0 ∈ H1,0 (Γ;Z2) .

Proof. As mentioned in [7], in the case of a phase tropical curve, there is an equivalence between
being maximal and that the action of the conjugation on the Z2-homology is trivial. The
conjugation acts trivially on H0 (SΓ;Z2) and H2 (SΓ;Z2) because SΓ is connected. Therefore,
SΓ is maximal if and only if the conjugation acts trivially on H1 (SΓ;Z2). The statement is then
a consequence of the formula

(1 + c∗)[sΣ] =
∑

e∈Tc(Σ)

L1,0 (xe ⊗ ~e) ,

and of the injectivity of the 1-lifting isomorphism.

3.3 First properties of a Real Structure

3.3.1 Real structure along an edge

Let us �x a hypersmooth tropical surface X with a polyhedral combinatorial strati�cation and
a phase tropical surface (SX , X). Assume that (SX , X) admits a real structure c. Since there
is no other real structure than c in this section, we denote by RSσ the �xed locus of c on every
building-block Sσ. The goal of this section is to study the di�erent topological possibilities of the
real part RSe of the building block of an edge e of X. The most interesting case is of course the
one of non-sedentary edges, and more particularly, of bounded edges, that is, edges connecting
two vertices of sedentarity 0.
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Figure 3.4: Real part of a compacti�ed pair-of-pants.
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Let v be a vertex of X of sedentarity 0. The real part of Sv has 7 connected components, each

of them corresponding (via the moment map) to the intersection of the plane
{∑

0≤i≤3 zi = 0
}

with one of the 8 orthants of (R∗)3 in the trivialisation z0 = 1, except for the positive orthant
(R>0)

3. Let us introduce some vocabulary, borrowed to the one of the anatomy of a leaf.

De�nition 3.16. We call these components of RSv leaves. All the leaves are homeomorphic to
closed disks. The intersection of a leaf with {xj = 0} × T 4/T for any j ∈ {0, . . . , 4} is called
a margin. The margins are homeomorphic to closed segments. The intersection of a leaf with
({xj = 0} ∩ {xk = 0})×T 4/T for any j, k ∈ {0, . . . , 4}, with j 6= k, is called an apex. The apices
(plural of apex) are points, whose projection on ∆3 is the middle point of one of the 4 edges of
∆3.

A leaf can have either 3 or 4 margins. There are exactly 4 leaves with 3 margins and 3
leaves with 4 margins. More precisely, one can check that the leaves with 3 margins are the
ones corresponding to an orthant of (R∗)3 having an odd number of negative coordinates, in
the trivialization z0 = 1 previously mentioned. There are exactly 6 · 4 = 12 apices. In fact, if x
is the middle point of one of the 6 edges of ∆3, there are 4 points in the inverse image of x by
the projection RP 3 → ∆3. There are 4 · 3 · 2 = 24 margins. In fact, the projection of a margin
on ∆3 is a segment joining the middle points of two edges of a same face of ∆3 and for a point
x in the relative interior of this segment, there are 2 points in the inverse image of x by the
projection RP 3 → ∆3.

De�nition 3.17. Two leaves which both admit a margin projecting onto a same segment of ∆3,
are said to be adjacent leaves.

Two adjacent leaves correspond, in the trivialization z0 = 1 to two orthants in (R∗)3 which
are images of one another by a symmetry xi 7→ −xi for i ∈ {1, 2, 3}. In particular, the number
of negative coordinates of these two orthants have distinct parity and therefore, two adjacent
leaves have di�erent number of margins. All of this discussion is illustrated by Figure 3.4, where
the real part of the compacti�ed pair-of-pants is represented, in red, as the complementary of
open neighborhoods of 4 lines in generic position, which are drawn in black, one of the lines
being represented at in�nity.

Remark 3.16. The projection on the tetrahedron ∆3 of a leaf is always convex, as one can
notice from the de�nition of the moment map M in Section 3.1.2, and from the convexity of
the real components of the pair-of-pants P2. A leaf l, with 3 margins also contains 3 apices
and thus the projections of the leaf l on ∆3 is the convex hull between 3 middle points of edges
of ∆3, which are the projection of the apices contained in l. Since l has only 3 margins, the
projection pr∆3

(l) does not intersect one of the faces of ∆3, which has for equation xi = 0, for
some i ∈ {0, . . . , 3}. It is then an easy observation, that the projection of l has for equation

pr∆3
(l) =

{
xi = 1

2

}
and is contained in the boundary of pr∆3

(
P

2
)
. To the contrary, a leaf l′

with 4 margins is the convex hull of 4 middle points of edges of ∆3, which are the projections of
the apices contained in l′ and pr∆3

(l′) intersects all the faces of ∆3. This remark is illustrated
by Figure 3.5, where the projection of two leaves are represented, one with 3 margins in light red
and one with 4 margins in light orange. The projection of the leaves share a common segment,
implying that the corresponding leaves are adjacent. This point of view illustrates well the fact
that two adjacent leaves have a di�erent number of margins.

Now, let us study how does the real structure vary along an edge e of X. Let us focus on
the case where e is of sedentarity 0. Let us denote by F,G and H the adjacent faces to the
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Figure 3.5: Projection on ∆3 of a leaf with 3 margins and a leaf with 4 margins.

edge e and by u and v the adjacent vertices. Then the real part of the building-block Se is
homeomorphic to

RSe ' e× RT e × RP
1

= e× {0, π~e} × RP 1
,

where ~e is a primitive direction of the edge e. We do not need to specify the orientation of ~e,
since it does not change the value of π~e ∈ T e. This surface RSe has 6 connected components.
Each of these real components of RSe connects one of the components of RSeu = RSue to one of
the components of RSev = RSve . In the case where the vertex v is of sedentarity 0, the connected
components of RSev are margins of RSv. We can distinguish between three pairs of margins,
denoted by mFG(v),mGH(v) and mHF (v), where mFG(v) corresponds to the margins of RSev
which intersect both SFe and SGe . One can further distinguish between the two margins of the

pair mFG(v). In fact, the projection P
2 → ∆3 sends the margins of the pair mFG(v) to the

segment joining the points xF and xG, where xF and xG are the images of SFu and SGu by the
projection on ∆3. Therefore, the leaves containing the margins of mFG(v) are adjacent and
thus, they are bordered by a di�erent number of margins. We denote by mk

FG(v) the margin of
mFG(v) which borders a leaf having k margins, for k ∈ {3, 4}. We denote by av,kG (F ) the only
apex of intersection between mk

FG(v) and SFv . Sometimes, we also denote by mFG(v) the union
of the two components of mFG(v), we hope it should be clear from context what sense is meant.
Finally we introduce the homeomorphism ϕu→v : Sue → Sve de�ned by

ϕu→v : {u} × T
e × P 1 → {v} × T e × P 1

(u, θ, z) 7→ (v, θ, z)
.

Contrary to the case of curves, there are some restrictions on the bijection between the

71



components of RSve and RSve . The �rst one is given by Lemma 3.13 below. Before stating the
lemma, we introduce more notations. Recall that the bijection from the �rst point of De�nition
3.8, induces a one-to-one correspondence between the boundary components of P

1
and the 3

faces adjacent to the edge e. We denote by BFe the boundary component corresponding to F ,
for the bijection associated with the edge e. One has then SFe = e× T e ×BFe . Moreover, given
an edge e of X we denote by ~e the non-zero element of the Z2-line W ′Z2

(e) and if F is a face
adjacent to the edge e, then the image of ~e in WZ2

(F ) is also denoted by ~e. Note that it makes
sens to write π~e ∈ T e because T e is de�ned by W ′Z(e)/ (2πW ′Z(e)).

Lemma 3.13. Let e be a bounded edge of X connecting two vertices u and v, and F,G be two
adjacent faces to e. Then one has ϕu→v (mFG(u)) = mFG(v).

Proof. Only two of the components of RSe intersect simultaneously RSFe and RSGe . These are
the two components of e×{0, π~e}×m, where m is the connected component of RP 1

connecting
BFe and BGe . The equality (∂e)× {0, π~e} ×m = mFG(u) tmFG(v) implies the result.

De�nition 3.18. Let e be a bounded edge of X and let F,G and H be the three adjacent faces.
The edge e is said to be twisted along FG if ϕu→v

(
m3
FG(u)

)
= m4

FG(v). Otherwise, the edge
e is said to be untwisted along FG and one has ϕu→v

(
mk
FG(u)

)
= mk

FG(v) for k ∈ {3, 4}. The
edge e is said to be asymmetrical along F if either the edge e is twisted along FG and untwisted
along FH, or the edge e is untwisted along FG and twisted along FH. Otherwise, the edge e
is said to be symmetrical along F .

The following proposition gives a characterization of symmetrical edges along a face F of
the hypersmooth tropical surface X. An interesting feature is that this characterization does
not depend on the real structure c, but only on the directions, modulo 2, of the adjacent edges
to e in the face F , compared in the wave space WZ2

(F ).

Proposition 3.9. Let e be a bounded edge of X, adjacent to two vertices u and v (of sedentarity
0). Let F be a face adjacent to the edge e. Denote by eu the edge of F intersecting the edge e
at the vertex u and by ev the edge of F intersecting the edge e at the vertex v. The edge e is
symmetrical along F if and only if one has

~eu = ~ev ∈WZ2
(F ).

Proof. We work in the trivialization SF = F × TF , in which the local real structure cF acts
as standard conjugation. One has two privileged cycles representing the lift Le1(u ⊗ ~eu) of
the tropical cycle u ⊗ ~eu. These cycles are the two components of {u} × T eu × RBFeu ⊂ SFeu .
We denote by γ+(eu) and γ−(eu) these cycles. Both of them contain a pair of apices, and
these pairs are of empty intersection since the cycles γ+(eu) and γ−(eu) do not intersect either.
Moreover, a component of {u}×T e×RBFeu ⊂ S

F
e connects the margins of the pair mFG(u) if the

corresponding point in RBFeu is connected to BGe by a component of RP 1
. Since the directions ~e

and γ±(eu) form a Z2-basis ofWZ2
(F ), they are not equal and thus the cycles ~eu cannot connect

two margins of a same pair mFG(u) or mFH(u). Therefore, one of the cycles γ±(eu) has the
apices au,3G (F ) and au,4H (F ) as real points, while the other one connects the apices au,3H (F ) and
au,4G (F ). In the same way, we obtain two cycles γ±(ev) representing the lift Le1(v ⊗ ~ev), such
that the cycle γ+(ev) connects the apices a

v,3
G (F ) and av,4H (F ), while the cycle γ−(ev) connects

the apices av,3H (F ) and av,4G (F ).

72



The core of our proof is the computation of an intersection number in the homology group
H1 (SF ;Z2), de�ned as the intersection number in H1

(
TF ;Z2

)
, pulled-back by the retraction

F×TF → F . Notice, that a cycle in Sev and its image by (φu→v)∗ are homologous in Se and thus,
they are also homologous in SF . In particular, the cycle (φu→v)∗ γ

±(eu) is homologous to γ±(eu)
and therefore, a perturbation of (φu→v)∗ γ

±(eu) intersecting the cycle γ+(ev) transversally,
intersects γ+(ev) in Le1(u⊗~eu)◦Le1(v⊗~ev points (modulo 2). Let us parametrize (φu→v)∗ γ

±(eu)
by α± : T 1 → SFv so that the images of the real points 0 and π are in RSFv . Now, we perturb
α± on (0, π) ⊂ T 1, �xing the images of 0 and π, so that the the resulting perturbation intersect
transversally the cycle γ+(ev). Then we perturb α± on (π, 0) ⊂ T 1 as the image by the involution
c of the perturbation on (π, 0). The �nal perturbation is denoted by α̃±. By construction, the
cycles α± and γ+(ev) intersect transversally and the set of their intersection points is stable
by the involution c so the number of real points of intersection between these cycles, is equal,
modulo 2, to the total number of points of intersection. Hence, denoting by R (α± ∩ γ+(ev)) =
R ((φu→v)∗ γ

±(eu) ∩ γ+(ev)) their real points of intersection, one has

Card
(
R
(
(φu→v)∗ γ

±(eu) ∩ γ+(ev)
))

= Le1(u⊗ ~eu) ◦ Le1(v ⊗ ~ev). (3.5)

Up to inverting γ+(eu) and γ−(eu), one may assume that the cycles (φu→v)∗ γ
+(eu) and γ+(ev)

intersect (at least) at the apex av,3G (F ). First, let us assume that the edge e is untwisted

along FG, that is to say, ϕu→v
(
au,3G (F )

)
= av,3G (F ). By the discussion at the beginning of

the proof, we know that γ+(eu) ∩mFG(u) contains only one apex, either au,3G (F ) or au,4G (F ).
Moreover, by Lemma 3.13, the image of this apex ϕu→v (γ+(eu) ∩mFG(u)) is an apex contained
in one of the margins of mFG(v), so this apex is either av,3G (F ) or av,4G (F ). Yet, the cycle
ϕu→v (γ+(eu)) cannot contained both of the apices av,3G (F ) and av,4G (F ), because it would imply
that the Z2-homology class of the cycle ϕu→v (γ+(eu)) is parallel to Le1(v ⊗ ~e), which would
contradict the fact that Le1(u ⊗ ~eu) and Le1(v ⊗ ~e) form a Z2-basis of H1 (SF ;Z2). Hence, one
has γ+(eu) ∩ mFG(u) = au,3G (F ). By the discussion at the beginning of the proof, it implies
that γ+(eu) ∩ mFH(u) = au,4H (F ) and thus, the edge e is untwisted along FH if and only
if ϕu→v (γ+(eu) ∩mFH(u)) = av,4H (F ) = γ+(ev) ∩ mFH(v). As a consequence, the edge e is
untwisted along FH if and only if ϕu→v (γ+(eu)) and γ+(ev) have both apices av,3G (F ) and
av,4H (F ) as real point of intersection, which is equivalent by Equation (3.5) to Le1(u⊗~eu)◦Le1(v⊗
~ev) = 0 (mod 2), as illustrated in the twisted case by Figure 3.6. Since two elements of the group
H1 (SF ;Z2) are equal if and only if their intersection number is 0, modulo 2, one deduces that
the edge e is twisted along FH if and only if Le1(u⊗ ~eu) = Le1(v ⊗ ~ev) ∈ H1 (SF ;Z2). Recalling
that Le1 is an isomorphism by Lemma 3.8, one obtains the desired statement in the case where
the edge e is untwisted along FG. Symmetrical arguments apply to the case where the edge e
is twisted along FG.

In light of Proposition 3.9, we introduce a new de�nition for symmetrical and asymmetrical
edges along a face, extending De�nition 3.18 to all the edges of X, including the unbounded
edges and the edges of sedentarity 1.

De�nition 3.19. Let F be an edge of X and let e be an edge of F . Denote by f and g the two
edges of F which intersect e. The edge e is said to be symmetrical along F if ~f = ~g ∈WZ2

(F ).
Otherwise, the edge e is said to be asymmetrical.
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LF
1 (v ⊗ ~ev)

LF
1 (v ⊗ ~e)

(ϕu→v)∗ L
F
1 (u⊗ ~eu)

av,3FGav,4FH

av,4FGav,3FH

Figure 3.6: Illustration of the proof of Proposition 3.9 in the asymmetrical case.
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3.3.2 Real Structure along a Face

As in the previous section, let us �x a hypersmooth tropical surface X and a phase tropical
surface (SX , X). Assume that it admits a real structure c. In this section, we present some
restrictions for the real structure along a face. The �rst restriction is a condition on the sum of
the directions of the asymmetrical edges along a face. Let us denote by A(F ) the subset of the
edges of F which are asymmetrical along F .

Proposition 3.10. Let F be a face of X. One has∑
e∈A(F )

~e = 0 ∈WZ2(F )

Proof. Let us index the edges of F by i ∈ Zn, where n is the number of edges of F , and denote
the edges by e0, . . . , en−1, so that ei and ei+1 share one common vertex for all i ∈ Zn. Using
De�nition 3.19, one can show that for any i ∈ Zn, the edge ei is asymmetrical along F if and
only if ~ei = ~ei−1 + ~ei+1 and ei is symmetrical along F if and only if ~ei−1 + ~ei+1 = 0. In fact,
if the edge ei is symmetrical along F , then ~ei−1 = ~ei+1, so ~ei−1 + ~ei+1 = 0, while if the edge
ei is asymmetrical along F , the three vectors ~ei−1, ~ei+1 and ~ei are all distinct and non-zero so
their sum is zero in WZ2

(F ) ∼= (Z2)
2. Therefore, the sum of the statement

∑
e∈A(F ) ~e can be

rewritten as
∑
i∈Zn (~ei−1 + ~ei+1). Each term ~ei, for i ∈ Zn, appears twice in this sum and thus,

the sum is equal to
∑
i∈Zn (~ei−1 + ~ei+1) = 2 ·

∑
i ~ei = 0 (mod 2).

Note that the previous condition relies on a relatively simple algebraic proof, and holds for
any face of X, bounded or not. Now, we �x a face F and we assume that F is bounded. In
particular, all the edges of F are of sedentarity 0. As in the proof of Proposition 3.10, we
index the edges of F by i ∈ Zn and denote them by e0, . . . , en−1, so that ei and ei+1 share
one common vertex for all i ∈ Zn. Each of the edges of F is adjacent to two other faces than
F . Let G0 and H0 be the faces adjacent to the edge e0. Now, de�ne by recursion the faces Gi
and Hi for i ∈ {1, . . . , n − 1}, such that Gi−1 and Gi have one common edge, or equivalently,
Gi−1 and Hi have no common edge. Now, there are two possibilities. Either the faces Gn−1

and G0 have a common edge and so the topological space
⋃
i∈Zn (Gi ∪Hi) is homeomorphic to

a cylinder, or the faces Gn−1 and G0 do not have an edge in common and so the topological
space

⋃
i∈Zn (Gi ∪Hi) is homeomorphic to a Möbius band.

De�nition 3.20. Let F be a bounded face of X. The band of the face F , denoted by R(F ) (the
letter R stands for "ruban' in french), is

⋃
i∈Zn (Gi ∪Hi), using the notation from the discussion

above.

If the band of F is orientable, then the topological space R(F ) \F consists of two connected
components

⋃
i∈Zn (Gi \ F ) and

⋃
i∈Zn (Hi \ F ), both of which are homeomorphic to a cylinder.

Let us denote by G the set of all faces Gi, for i ∈ Zn. We also denote by TG(F ) the set of all
edges ei for i ∈ Zn, which are twisted along FGi. We say that an edge of TG(F ) is twisted along
FG.

Proposition 3.11. Let F be a bounded face with an orientable band. One has∑
e∈TG(F )

~e = 0 ∈WZ2
(F ).
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Remark 3.17. One could use Proposition 3.11 to �nd back the equality of Proposition 3.10
about the same sum over asymmetrical edges, by summing the equations

∑
e∈TG(F ) ~e = 0 and∑

e∈TH(F ) ~e = 0. The drawbacks are that it only works for bounded faces with an orientable
band, but also that the proof of Proposition 3.11 is much more technical than the simple proof
of Proposition 3.11.

Let �x a bounded face F , with an orientable band R(F ), so that for all i ∈ Zn, with the
notations from De�nition 3.20, the faces Gi and Gi+1 share a common edge denoted by gi and
the faces Hi and Hi+1 share a common edge denoted by hi. In order to prove Proposition
3.11, we need to be able to follow the path of the apices associated with the face F , along the
boundary of F . We make the last sentence precise by Lemmas 3.14 and 3.15. Denoting by vi
the common vertex to ei and ei−1, there are two ways to look at the apices of the real �ber
RSFvi . One can write them as avi,kGi

(F ) and avi,kHi
(F ) for k = 3, 4, or as avi,kGi−1

(F ) and avi,kHi−1
(F )

for k = 3, 4. Lemma 3.14 connects these two points of view.

Lemma 3.14. With the same notations as above and as De�nition 3.20, for any i ∈ Zn one
has,

avi,3Gi
(F ) = avi,3Gi−1

(F ),

avi,4Gi
(F ) = avi,4Hi−1

(F ).

Proof. For K a face adjacent to the vertex vi, denote by xK the projection on ∆3 of SKvi =

Svi ∩ SK . With these notations, the apex av,3Gi (F ) is contained in a leaf l, which is sent by the
projection pr∆3

to a triangle containing xF and xGi for vertices. The point xF is the intersection
of the faces of ∆3 corresponding to the edges ei and ei−1 and the point xGi is the intersection of
the faces of ∆3 corresponding to the edges ei and gi. Since the triangle pr∆3

(l) has only three
vertices, the last vertex of the triangle is the intersection of the faces corresponding to the edges
ei−1 and gi, which is xGi−1 (see Figure 3.7). Since the leaf l has 3 margins and the projection
pr∆3

(l) contains the segment
[
xF , xGi−1

]
= pr∆3

(
mFGi−1(vi)

)
, the leaf l contains the margin

m3
FGi−1

and thus avi,3Gi
(F ) = m3

FGi−1
∩ SFvi , that is, a

vi,3
Gi

(F ) = avi,3Gi−1
(F ).

Similarly, the apex avi,4Gi
(F ) is contained in a leaf l′, which is sent by the projection pr∆3

to a quadrangle containing xF and xGi for vertices. By the same reasoning as for the apex
av,3Gi (F ), the two remaining vertices of the rectangle pr∆3

(l′) have to intersect the face of ∆3

corresponding to the edge ei−1 for one of them and the face corresponding to the edge gi for
the other one. Thus, each of these vertices is given by the intersection of one of these faces
of ∆3 with the face corresponding to the edge hi (the only remaining face). Therefore, the
vertices of pr∆3

(l′) are xF , xGi , xI and xHi−1 (see Figure 3.7), where I is the face spanned by
the edges gi and hi. As in the �rst case of the proof, it implies that the leaf l′ contains the
margin m4

FHi−1
(vi) and that the apices avi,4Gi

(F ) and avi,4Hi−1
(F ) are equal.

Now, recall the homeomorphism ϕu→v from Section 3.3.1. For any i ∈ Zn, the homeomor-
phism ϕvi→vi+1

restricts to a bijection from the set of all four apices avi,kKi
(F ) for k = 3, 4 and

K = G,H to the set of all apices avi+1,k
Ki+1

(F ) for k = 3, 4 and K = G,H. By identifying the

apex avi,kKi
(F ) with the apex avi+1,k

Ki+1
(F ) and denoting both of them as akK , the homeomorphism

ϕvi→vi+1
induces a permutation of the set {a3

G, a
4
G, a

3
H , a

4
H}, for all i ∈ Zn. This permutation

is denoted by ϕi, for all i ∈ Zn. Our notations for permutations of a �nite set are as follows.
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xHi

xGixGi−1

xHi−1

xF

Figure 3.7: Illustration of Lemma 3.14.

Given a set of N elements a1, . . . aN , for i1, . . . il ∈ {1, . . . , N}, we denote by (ai1 . . . ail) the
cycle of length 1 ≤ l ≤ l, sending aij to aij+1

for j ∈ {1, . . . , l} and sending ail to ai1 .

Lemma 3.15. Let i ∈ Zn. The permutation ϕi depends only on the twisting of the edge ei
along FGi and FHi. More precisely, one has four distinct possibilities.

� If ei is untwisted along both FGi and FHi, then ϕi =
(
a4
G a

4
H

)
.

� If ei is twisted along FGi and untwisted along FHi, then ϕi =
(
a4
H a

4
G a

3
G

)
.

� If ei is untwisted along FGi and twisted along FHi, then ϕi =
(
a4
G a

4
H a

3
H

)
.

� If ei is twisted along both FGi and FHi, then ϕi =
(
a4
H a

3
H a

4
G a

3
G

)
.

Proof. Let us deal with the �rst case. If the edge ei is untwisted along both FGi and FHi,
then for k = 3, 4 and K = G,H we have avi,kKi

(F ) = a
vi+1,k
Ki

(F ). Using Lemma 3.14, we get
avi,3Ki+1

(F ) = avi,3Ki+1
(F ) for K = G,H (so a3

G and a3
H are �xed), avi,4Gi+1

(F ) = avi,4Hi+1
(F ) and

avi,4Hi+1
(F ) = avi,4Gi+1

(F ) (so a4
G and a4

H are swapped by ϕi). The induced permutation ϕi is indeed
equal to

(
a4
G a

4
H

)
. Now, if the edge ei is twisted along FGi and untwisted along FHi, then one

has one has avi,3Gi
(F ) = a

vi+1,4
Gi

(F ) and avi,4Gi
(F ) = a

vi+1,4
Gi

(F ), but also avi,kHi
(F ) = a

vi+1,k
Hi

(F ), for

k = 3, 4. Applying Lemma 3.15 yields avi,3Hi
(F ) = a

vi+1,3
Hi+1

(F ) (so a3
H is �xed by ϕi), a

vi,3
Gi

(F ) =

a
vi+1,4
Hi+1

(F ) (so φi(a3
G) = a4

H), a
vi,4
Hi

(F ) = a
vi+1,4
Gi+1

(F ) (so φi(a4
H) = a4

G) and a
vi,4
Gi

(F ) = a
vi+1,3
Gi+1

(F )

(so φi(a4
G) = a4

G). The third case is obtained from the second one by inverting Gi and Hi. The
remaining case can be treated exactly in the same way as the �rst two.
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The composition ϕn−1 . . . ϕ0 is equal to the identity. It is a consequence of the triviality
of the �bration λ : RSF → F , restricted, to the boundary of F . One then gets the following
corollary (but it is in no way necessary for the proof of Proposition 3.11).

Corollary 3.5. Let F be a bounded edge. The number of symmetrical edges along F is even.

Proof. We use the notations from Lemma 3.15. One can notice that the edge ei is asymmetrical
along the face F if and only if the signature of ϕi is −1, for all i ∈ Zn. Since the composition of
all ϕi, for i ∈ Zn, is equal to the identity, it has signature 1. Since the signature of a permutation
is a morphism of group, there can only be an even number of asymmetrical edges for the product
of the signatures to be equal to 1.

Proof of Proposition 3.11. We work in the trivialization SF = F × TF , where the involution c
acts as the standard conjugation on SF . We denote by r : TF ×F → TF the natural retraction.
We parametrize TF by α : T 2 → TF so that the real points (0, 0), (0, π), (π, 0) and (π, π) are
sent to the �xed points by c in TF . We denote by TF+ the image of the square [0, π]2 by α,
inside TF . For any i ∈ Zn, there exists a unique segment in TF+ , denoted by g(ei), connecting

the real points r
(
avi,3Gi

(F )
)
and r

(
avi,4Gi

(F )
)
. Since, the boundary of g(ei) is invariant by the

conjugation c, the 1-chain g(ei) + c∗g(ei) is a Z2-cycle in TF . By the same technique as in
the proof of Proposition 3.9, one can compute the intersection number of r∗

(
LF1 (vi ⊗ ~ei)

)
and

[g(ei) + c∗g(ei)] in H1

(
TF ;Z2

)
. The result is equal to 0, which implies the equality

r∗
(
LF1 (vi ⊗ ~ei)

)
= [g(ei) + c∗g(ei)] .

Let us now denote by τ0, . . . , τk−1 the edges of F , twisted along FG, indexed by Zk, so that
the cyclic order on the edges τ1, . . . , τk is induced by the cyclic order on the edges e1, . . . , en.
Also denote by u(ei) the vertex vi, by v(ei) the vertex vi+1 and by Gei the face Gi, for all
i ∈ Zn. With these new notations, for any j ∈ Zk, the edge τi is twisted along FGτj so one has

r
(
a
u(τj),4
Gτj

(F )
)

= r
(
a
v(τj),3
Gτj

(F )
)
. (3.6)

Moreover, for i ∈ Zn, if ei is an edge untwisted along FGei , then by Lemma 3.15, one obtains

r
(
a
v(ei−1),3
Gei

(F )
)

= r
(
a
u(ei+1),3
Gei+1

(F )
)
. For any j ∈ Zk, since there are only untwisted edges along

FG between τj and τj+1, the previous equality yields

r
(
a
v(τj),3
Gτj

(F )
)

= r
(
a
u(τj+1),3
Gτj+1

(F )
)
. (3.7)

Hence, by combining Equations 3.6 and 3.7 one obtains

∂ (g(τj) + c∗g(τj+1)) =r
(
a
u(τj),3
Gτj

(F )
)

+ r
(
a
u(τj),4
Gτj

(F )
)

+ r
(
a
u(τj+1),3
Gτj+1

(F )
)

+ r
(
a
u(τj+1),4
Gτj+1

(F )
)
,

∂ (g(τj) + c∗g(τj+1)) =r
(
a
u(τj),3
Gτj

(F )
)

+ r
(
a
u(τj+1),4
Gτj+1

(F )
)
.

By summing over all j ∈ Zk, it follows that ∂
(∑

j∈Zk g(τj)
)

= 0. We now have a 1-cycle∑
e∈TFG(F ) g(e), contained in TF+ . Since TF+ is contractile, the homology class of the cycle
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∑
e∈TFG(F ) g(e) is equal to zero in H1

(
TF ;Z2

)
. Finally, the following computation gives us the

value of the sum
∑
e∈TFG(F ) L

F
1 (u(e)⊗ ~e).

r∗

 ∑
e∈TFG(F )

LF1 (u(e)⊗ ~e)

 =
∑

e∈TFG(F )

(g(e) + c∗g(e))

=

 ∑
e∈TFG(F )

g(e)

+ c∗

 ∑
e∈TFG(F )

g(e)


r∗

 ∑
e∈TFG(F )

LF1 (u(e)⊗ ~e)

 =0

Yet, the map r∗ induced by the retraction r is an isomorphism so
∑
e∈TFG(F ) L

F
1 (u(e)⊗ ~e) =

0 and by Lemma 3.8, LF1 is also an isomorphism, so one obtains the equation of the statement
of the proposition.

3.4 A�ne Space of Real Structures

Let us �x a compact hypersmooth tropical surface X with a polyhedral combinatorial strati-
�cation and a phase tropical surface (SX , X). In Section 3.3, we �xed a real structure of the
phase tropical surface and we obtained some inherent properties of the real structure, such as
Propositions 3.9 and 3.10. In this section, we study the properties of real structures of the
phase tropical surface (SX , X) relatively to one another. We start by considering the local real
structure of a building block (Se, e) associated with an edge e of X.

Given an edge e of sedentarity 0 of X, we introduce the quotient of the building-block
Se = e×T e×P 1

by identifying the two points of (∂e)×{θ}×{z} for all θ ∈ T e and z ∈ P 1
. The

quotient space is denoted by Se and the quotient map Se → Se is denoted by p. The topological
space Se is homeomorphic to T 1×T e×P 1

, so a basis of its �rst homology group can be described
as follows. Fix two oriented 1-cycles b1 and b2 in P

1
, such that their homology classes form

a Z-basis of H1

(
P

1
;Z
)
. We denote by βi the homology class of the cycle {∗} × {∗} × bi, for

i = 1, 2. Let us �x an arbitrary orientation on the edge e and denote the oriented edge by r~e. In
particular, r~e×{∗}×{∗} is a 1-chain in Se whose endpoints have the same image by the quotient
map p, so one can consider the homology class of the 1-cycle p∗ (r~e × {∗} × {∗}) in H1

(
Se;Z

)
.

We denote by αe this homology class. We also consider ~e ∈ WZ (e) to be the primitive element
of WZ (e), directed according to the chosen orientation of the edge e. One can then consider the
lift γe := Le1 (~e) ∈ H1 (Se;Z). We now have a basis of H1

(
Se;Z

)
formed by p∗γe, αe, p∗β1, p∗β2.

We denote this basis by Be. Given two local real structures ce and c′e of (Se, e), one can consider
their composition c′e ◦ ce. Since two real structures coincide on the �bers Sv over any vertex v

of X, the composition c′e ◦ ce acts as the identity on (∂e) × T e × P 1
, so one can consider the

induced map c′e ◦ ce on the quotient Se.

Lemma 3.16. Let e be an edge of sedentarity 0 of X. Let ce and c′e be two local real structures
of (Se, e). There exists an integer t ∈ Z such that, in the basis Be de�ned above, the matrix of
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the morphism
(
c′e ◦ ce

)
∗ is equal to 

1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Proof. On the image p
(

(∂e)× T e × P 1
)
, the map c′e ◦ ce acts as the identity. Since the classes

p∗γe, p∗β1 and p∗β2 can be represented by cycles living inside p
(

(∂e)× T e × P 1
)
, the induced

map
(
c′e ◦ ce

)
∗ acts as the identity on these classes. We can then assume that bi is taken to

be a cycle contained in the boundary component B2
{i}. Now, as a representative of α, one can

then consider the cycle p∗ (r~e × {∗} × {zi}), with zi ∈ B2
{i} for i = 1, 2. Since, the map c′e ◦ ce

preserves e × T e × B2
{i}, it shows that the image

(
c′e ◦ ce

)
∗ αe is contained in the sub-group

generated by p∗γe, αe and p∗βi, for i = 1, 2. Thus,
(
c′e ◦ ce

)
∗ αe is contained in the intersection

of these sub-groups, that is, in the sub-group generated only by αe and p∗γe. Using the fact
that c′e ◦ ce is an orientation preserving homeomorphism, one obtains that the determinant of
the matrix in the base Be is 1. The result follows.

The previous lemma allows us to make the following de�nition.

De�nition 3.21. Let e be an edge of sedentarity 0 of X. Let c and c′ be two real structures of
(SX , X). The twist from c to c′ at the edge e is de�ned as the only integer te(c′, c) such that,
using the notations of Lemma 3.16, one has(

c′e ◦ ce
)
∗ αe = αe + te(c

′, c) · p∗γe.

Remark 3.18. The sign of the twist from c to c′ at the edge e does not depend on the chosen
orientation of e. In fact, changing this orientation would change the signs of both αe and γe.
Note also that the homology class te(c′, c)γe ∈ H1 (Se;Z) is equal to the lift Le1 (te(c

′, c)~e), where
~e is a primitive vector in WZ(e) ⊂ FZ

1 (e) directed according to the orientation of the edge e.

There is another way to obtain the twist from one real structure to another at an edge e of
sedentarity 0 of X, without passing to the quotient Se.

Lemma 3.17. Let e be an edge of sedentarity 0 of X. Let ce and c′e be two local real structures
of (Se, e). For any oriented lift r of the edge e in the �xed locus Fix(ce), the 1-chain (c′e)∗r − r
is a cycle whose homology class satis�es

[(c′e)∗r − r] = te(c
′, c)γe.

Proof. The chain (c′e)∗r − r is a cycle because the local real structures ce and c′e coincide on

(∂e) × T e × P 1
. Now, taking the image of this cycle by the map p∗ yields p∗ [(c′e)∗r − r] =

[p∗(c
′
e)∗r]− [p∗r]. Yet, by de�nition, one has [p∗r] = αe and since r is invariant by ce, one gets

[p∗(c
′
e)∗r] = [p∗(c

′
e ◦ ce)∗r] =

(
c′e ◦ ce

)
∗ [p∗r] = αe + te(c

′, c)p∗γe. The only element of H1 (Se,Z)
that maps to p∗γe, is γe, so the desired result follows.

Given an edge e of sedentarity 0 of a face F of X, Lemma 3.17, shows that the twist from
a real structure c to another real structure c′, can be computed in SeF ⊂ SF , by taking for the
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component r, one of the four connected components of SeF = e × TF �xed by the real local
structure cF on (SF , F ). From this point of view there seems to be no di�erence between edges
of sedentarity 0 and of sedentarity 1, since for any edge e of F , one has SeF = e × TF and one
can compute the homology class [(c′e)∗r − r] ∈ H1 (SF ;Z). There is one di�erence though. We
have no guarantee that the homology class computed at an edge of sedentarity 1, is a lift of an
element of W ′Z(e). In fact, it could be a lift of any element in the wave space WZ(e) = WZ(F ).
Therefore, we adopt a new point of view for the twist from c to c′ at an edge e, of any sedentarity,
by viewing it as an element of the wave space WZ(e), instead of an integer.

De�nition 3.22. The twist wave from c to c′ is the cellular tropical 1-co-chain with coe�cients
in the sheaf WZ de�ned on any oriented edge e of X by

w(c′, c) · e =
(
LF1
)−1

[(c′F )∗r − r] ∈WZ(e),

where F is any face adjacent to e and r is any �xed component by cF in SeF .

Remark 3.19. Let us consider an edge e of sedentarity 0. By Lemma 3.17, the value w(c′, c) · e
does not depend on the chosen adjacent face F , nor on the choice of the �xed component r.
The previous de�nition also claims that the value w(c′, c) · e is in WZ(e). It is a consequence of
Lemmas 3.16 and 3.17. Moreover, the de�nition also claims that for an edge e of sedentarity 1,
the value w(c′, c) ·e does not depend on the �xed component r chosen. This assertion is justi�ed
by Lemma 3.18.

Let e be an edge of sedentarity 1, let u and v be the adjacent vertices, and let F be the
parent face of e. As for an edge of sedentarity 0, one can consider the quotient space S

e

F :=
SeF / ∼, where ∼ identi�es the points {u} × {θ} and {v} × {θ} for all θ ∈ TF . We denote by
p : SeF → S

e

F the quotient map and by αe the homology class of the cycle p∗ (e× {∗}). Fix a
Z-basis w1, w2 of WZ(F ). One can view the lifts LF1 (w1) and LF1 (w2) to be in H1 (SeF ;Z) under
the isomorphism induced by the injection SeF ⊂ SF . By setting µi = p∗L

F
1 (wi), one has then a

basis Be = (αe, µ1, µ2), of the �rst homology group H1

(
S
e

F ;Z
)
of the quotient space S

e

F . Given

two local real structures cF and c′F on (SF , F ), we also denote by cF and c′F their restriction on
SeF and by c′F ◦ cF the involution on S

e

F induced by c′F ◦ cF .

Lemma 3.18. Let e be an edge of sedentarity 1 of a face F of X. Let cF and c′F be two local

real structures of (SF , F ). In the basis Be as above, the matrix of the isomorphism
(
c′F ◦ cF

)
∗
,

is equal to 1 0 t1
0 1 t2
0 0 1

 ,

where t1, t2 are the integers such that w(c′, c) · e = t1w1 + t2w2.

Proof. As in the proof of Lemma 3.16, the automorphism c′F ◦ cF acts as identity on the image
p
(
(∂e)× TF

)
. Therefore, the induced map in homology acts as the identity on µ1 and µ2. By

assumption, and by applying successively the lifting morphism LF1 and the induced map p∗, one
has p∗LF1 (w(c′, c) · e) = t1µ1 + t2µ2. Yet, by De�nition 3.22, one also has p∗LF1 (w(c′, c) · e) =
p∗ [(c′e)∗r − r], where r is a �xed component by cF of SeF . In a similar manner to the proof of
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Lemma 3.17, one gets p∗ [(c′F )∗r − r] = [p∗(c
′
F ◦ cF )∗r]− [p∗r] =

(
c′F ◦ cF

)
∗
αe−αe. Combining

the two preceding equations, one obtains
(
c′F ◦ cF

)
∗
αe = αe + t1µ1 + t2µ2.

There are now two points of view on the twist wave from a real structure c to another real
structure c′ of (SX , X). The �rst point of view is the one of De�nition 3.21 and Lemma 3.18,
where one looks at the action of the composition of the local real structures on the homology
of Se or S

e

F . The second one is the point of view of Lemma 3.17 and De�nition 3.22, where
one looks at the action of the local real structures of c′ on �xed components by c. The �rst
point of view shows that the second one does not depend on the chosen real component, but
also makes it easier to prove Proposition 3.12 below. The second point of view, makes the proof
of Proposition 3.13 quite easy.

Proposition 3.12. Let c, c′ and c′′ be three real structures of the phase tropical surface (SX , X).
One has

w(c′′, c) = w(c′′, c′) + w(c′, c).

Proof. Let e be an edge ofX. Let us �rst assume that e is of sedentarity 0. We write c′′e ◦ce as the
composition (c′′e ◦c′e)◦ (c′e ◦ce). Passing to the quotient in Se yields c′′e ◦ ce =

(
c′′e ◦ c′e

)
◦
(
c′e ◦ ce

)
.

One only has to consider the induced maps on the �rst homology group of Se in the basis of
Lemma 3.16 and then, obtaining the equation of the statement boils down to a multiplication of
two upper triangular matrices (the ones obtained in Lemma 3.16). Now, let us assume that the
edge e is of order of sedentarity 1. The proof works in the same way as for the non-sedentary
case. Write c′′F ◦ cF as the composition (c′′F ◦ c′F ) ◦ (c′F ◦ cF ) and the result also boils down
to the multiplication of two upper triangular matrices (this time, the ones obtained in Lemma
3.18).

Proposition 3.13. Let c and c′ be two real structure of the phase tropical surface (SX , X). The
twist wave from c to c′ is a (cellular) co-cycle in Z1

cell (X;WZ).

Proof. Let F be an oriented face of X. To prove the statement, we need to show that dw(c′, c) ·
F = 0, that ,

∑
e∈C1(F ) w(c′, c) · e = 0, where the edges e are oriented according to the bound-

ary orientation of ∂F , induced by F . The �xed locus of the local real structure cF in SF is
made of four distinct components, all contractile in SF . As lifts of the oriented face F to the
corresponding building-block SF , one can orient these components according to F . Denote by
r the oriented boundary of one of these components, and for any edge e of F denote by re the
intersection r ∩ Se. In particular, the homology class [r] is equal to zero in H1 (SF ;Z). By
Lemma 3.17 and De�nition 3.22, one has for any edge e of F

LF1 (w(c′, c) · e) = [(c′F )∗re − re] .

By summing over all edges of F one obtains∑
e∈C1(F )

LF1 (w(c′, c) · e) = (c′F )∗ [r]− [r] = 0.

From the injectivity of the lifting isomorphism LF1 one deduces the co-cycle condition

dw(c′, c) · F = 0 ∈WZ(F ).
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Given a real structure c of the phase tropical surface (SX , X), one has then a map from the
real structures of (SX , X) to the (cellular) co-cycles group Z1

cell (X;WZ) de�ned by w(•, c). In
light of this new perspective on the real structures of a phase tropical surface, there are three
main questions that can be asked.

(1) Is the map w(•, c) surjective onto Z1
cell (X;WZ) ?

(2) What are the equivalence classes of the real structures of the phase tropical surface (SX , X)
de�ned by the inverse images of the elements of Z1

cell (X;WZ) ?

(3) What are the images of the isomorphism classes of the real structures of the phase tropical
surface (SX , X) ?

We are able answer the �rst question in an a�rmative way. Given any tropical wave w ∈
Z1
cell (X;WZ), we provide, using composition by Dehn twist, an explicit real structure c′ such

that w = w(c′, c). This is the statement of Proposition 3.14. The second and third questions
however, are more di�cult to tackle. In the case of curves, the authors of [7] consider real
structures, up to composition by a homeomorphism �xing the �bers Sv over the vertices of
sedentarity 0 (see Section 2.2.1). There is a nice and simple result used in this article, which is
the fact that an orientation preserving automorphism of a cylinder, restricting to the identity
on the boundary, is isotopic to a certain power of a Dehn twist. In other words, the mapping
class group of the 2-dimensional torus T 2, in the topological category, is isomorphic to the group
GL2(Z). Thanks to this result, in the case of a phase tropical curve (SΓ,Γ), it is possible to
describe the real structures of (SΓ,Γ), up to isomorphism, as a Z2-a�ne space with direction
H1
cell (Γ;WZ2) (see Proposition 3.4). The author is not able to provide such a nice description

in the case of phase tropical surfaces for several reasons. First, it is not even clear that there
always exist a real structure of the phase tropical surface (SX , X), so we decide to restrict to
the case where a real structure is already given. Second, the author does not know of a similar
result to the orientation preserving automorphisms on a cylinder being isotopic to powers of
Dehn twist, on manifolds of the from [0, 1]×T 1×P 1

. It should actually boils down to knowing

the mapping class group, in the topological category, of the space T 2 × P 1
. The author is not

familiar with mapping class group of tori in higher dimensions, but it seems that they can get
more complicated than just looking at the action on the homology. For n ≥ 5, the mapping class
group of the n-dimensional torus Tn is not isomorphic to GLn(Z) (see Theorem 4.1 in [13]).
Finally, even with a description of the isotopy classes of the automorphisms of the building-block
Se, �xing (∂a)× T e × P 1

, one would still have to understand how these automorphisms can be
glued together along the building-block SF of faces F of X.

The discussion above leads us to focus on a simpler class of real structures, namely the real
structures obtained by Dehn twists (see De�nition 3.25), from a real structure c, already existing
on (SX , X). Of course, this is not completely satisfactory, but it is enough to lift tropical
(0, 2)-cycles as �xed components of another real structure c′ (see Chapter 4).

De�nition 3.23. Let e be an edge of X, and let us denote by u and v the two adjacent vertices.
Orient the edge from u to v and parametrize e by x ∈ [0, 1], so that every element of e is written

as (1− x)u+ xv. We de�ne the Dehn twist on Se = e× T e × P 1−|sed(e)|
by

De(x, θ, z) := (x, θ + 2πx~e, z),
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where ~e is the primitive integer vector in W ′Z(e), directed according to the orientation of the
edge e.

Remark 3.20. Notice that the above de�nition does not depend on the chosen orientation of the
edge e, since reversing the orientation changes the vector ~e to −~e, but also x to (1− x) and one
has 2πx~e = 2π(1− x)(−~e) ∈ T e.

This de�nition of a Dehn twist is classical. Up to the product by the pair-of-pants P
ne , this

de�nition is exactly the same one as in [7]. Given a real structure c of (SX , X), the idea to prove
the surjectivity of w(•, c′) is to compose the local real structure ce of (Se, e), by a certain power
of the Dehn twist on Se, for every edge e of sedentarity 0. If we look for a real structure c′ such
that w(c′, c) = w, where w is a given 1-co-cycle in Z1

cell (X;Z), the Dehn twist on Se should be
raised to the power w(c′, c) · e. This assertion is justi�ed by the following lemma.

Lemma 3.19. Let e be an edge of sedentarity 0 of X. Let ce be a local real structure of (Se, e).
For any t ∈ Z, the homeomorphism (De)

t ◦ ce acts as the standard conjugation conje, up to
conjugation by a homeomorphism of Se. Moreover, for any local real structure c′e such that
c′e = (De)

t ◦ ce, one has
te (c′, c) = t.

Proof. Let us work in the coordinates of Se = e×T e×P 1
, where the local real structure ce acts

as the standard conjugation conje. The �rst part of the statement is then a consequence of the
fact that for any t′ ∈ R, one has Dt′

e ◦conje = conje ◦D−t
′

e , where Dt′

e (x, θ, z) = (x, θ + 2πt′x, z).

In particular, for any t′ ∈ Z, one has Dt′

e = (De)
t′ , so one can deduce (De)

t ◦ conje =
(
D
−t
2
e

)
◦

((De)
t ◦ conje)◦

(
D

t
2
e

)
, which implies the �rst part of the statement. Regarding the second part

of the statement, let us consider the component r = e× {0} × {z} of Se �xed by the local real

structure ce, where z ∈ RP
1
. The image of r by c′e = (De)

t ◦ ce is given by {(x, 2πtx, z)|x ∈ e}.
Therefore, the 1-cycle (c′e)∗ r − r is homologous to t times the homology class γe ∈ H1 (Se;Z),
which implies the result by Lemma 3.17.

In the case of phase tropical curves, we would have already found our real structure c′ thanks
to the lemma above. In the case of surfaces, however, we also need to modify our real structures
on the building-blocks associated with the faces of X. In fact, consider a face F of X and an
edge e, of sedentarity 0 of F . Let us post-compose the local real structure ce by a Dehn twist
to the appropriate power te and denote the result by c′e. If we want c′e to be the local real
structure of (Se, e) coming from a real structure c′ of (SX , X), then the local real structure c′F ,
de�ned on SF has to coincide with c′e on S

e
F = SFe . More precisely, restricted to SeF , the real

local structure cF must satisfy

φeF ◦ c′F ◦ (φeF )
−1

(x, θ, z) = (x,−θ + 2πx~e, z) ,

where φeF is the gluing homeomorphism of De�nition 3.8. Yet, by Equation (3.2), the above
equation is equivalent to

c′F (x, θ, z) = (x,−θ + 2πx~e, z) . (3.8)

Recall that F admits a barycenter xF (the combinatorial strati�cation of X is polyhedral).
Given an edge e of F , de�ne the triangle ΓeF = conv (e, xF ). One can then write F as the union
F =

⋃
e∈C1(F ) ΓeF . We parametrize the triangle ΓeF by the map (ξ, x) 7→ (ξx+ (1− ξ)xF )) ∈ ΓeF ,

for (ξ, x) ∈ ([0, 1]× e) / ∼, where ∼ identi�es all the points in {0} × e.
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De�nition 3.24. Let F be an oriented face of X and let e be an edge of F . Let w be a 1-co-
cycle in Z1

cell (F ;WZ). Let us label the edges of F by e0, . . . , en−1, such that the e0 = e and
the cyclic order is induced by the boundary orientation of ∂F . For any i ∈ Zn, we work in
the parametrization of the triangle ΓeiF , mentioned in the discussion above, where ei is oriented
according to the boundary orientation of ∂F . We de�ne the w-twist on SF starting at the edge
e, denoted by De

w, by de�ning it on any product ΓeiF × TF , for i ∈ Zn, by

De
w(ξ, x, θ) :=

ξ, x, θ + 2πξ

x(w · ei) +
∑

0≤j≤i−1

(w · ej)

 . (3.9)

Lemma 3.20. Let F be an oriented face of X. The w-twist De
w, starting at the edge e on SF ,

is well de�ned. Moreover, De
w is a homeomorphism whose restriction on SfF , for any edge f of

the face F of sedentarity 0, coincides with the restriction of the Dehn twist on Sf , raised to the
power tf ∈ Z, where the integer tf is such that w · f = tf ~f .

Proof. First of all, let us notice that, since dw · F = 0, one has
∑
j∈Zn w · ej = 0, so that for

any i ∈ Zn, the sum
∑

0≤j≤i−1 w · ej is well de�ned. By substituting ξ = 0 into Equation (3.9),
one immediately gets that the maps De

w are well de�ned on the product ΓeF ×TF and that they
all coincide at the �ber {xF } × TF . Now, for any i ∈ Zn, denoting by vi the vertex common
to ei and ei+1, the w-twist Dei

w coincides with D
ei+1
w at all (ξ, vi, θ), simply by substituting

x = 1 on the right hand side of Equation (3.9) for Dei
w and x = 0, for Dei+1

w . The map Dw is
obviously continuous and it has a continuous inverse given by the (−w)-twist starting at the
edge e. Therefore, the map De

w is a homeomorphism. Now, denote by e0, . . . , en−1 the edges of
F as in De�nition 3.24. Substituting ξ = 1 into Equation (3.9), one obtains for every x ∈ [0, 1]
and θ ∈ TF ,

De
w(1, x, θ) := (1, x, θ + 2π (x(w · ei))) ,

because the sum
∑

0≤j≤i−1(w · ej) is an integer. By Equation (3.2) of De�nition 3.8, this
expression coincides with the one of the Dehn twist on Sei , in restriction to SFei = Sei ∩SF .

Lemma 3.20 above shows that given a cellular 1-co-cycle w ∈ Z1
cell (X;WZ), using the w-

twist on SF for all faces F , we can glue together all Dehn twists to the power te one Se, where
w · e = te~e ∈ WZ(e) for all edges of sedentarity 0. In fact, let us choose an arbitrary edge
eF ∈ C1(F ) and an arbitrary orientation of F for each face F of X, and let us denote by te ∈ Z
the integer such that w · e = te~e ∈ WZ(e), for any oriented edge e of sedentarity 0. Then we
de�ne a global w-twist Dw by the homeomorphism of SX , which acts as the identity on Sv for
any vertex v of X, acts as (De)

te on Se for any edge of sedentarity 0 and acts as the w-twist on
SF starting at the edge eF for any face F of X. Note that a di�erent choice of edge eF yields a
di�erent global w-twist Dw, even if our notation does not emphasize this dependence.

Proposition 3.14. Let c be a real structure of (SX , X) and let w ∈ Z1
cell (X;WZ). Let also Dw

be a global w-twist on SX . The involution c′ = Dw ◦ c is a real structure of (SX , X), satisfying

w (Dw ◦ c, c) = w.

Proof. Let e be an edge of sedentarity 0 of X. Let us denote by c′e the restriction of c′ to the �ber
Se. By de�nition of c′, one has c′e = (De)

te ◦ ce, where te is the integer such that w · e = te~e. By
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Lemma 3.19, the restriction c′e acts like the standard conjugation on Se, up to the conjugation
by a homeomorphism of Se. Let F be an edge of X and eF be the edge of F at which the w-twist
Dw starts. Denoting by c′F the restriction of c′ to SF , one has c′F = Dw ◦ cF . Working in the
coordinates of SF , where the real local structure cF acts as the standard conjugation conjF on

SF , one obtains that c′F = D
1
2
w ◦ cF ◦

(
D

1
2
w

)−1

, where D
1
2
w is a homeomorphism of SF de�ned by

D
1
2
w(ξ, x, θ) =

ξ, x, θ + πξ

x(w · ei) +
∑

0≤j≤i−1

w · ej

 ,

using the notations of De�nition 3.24.

De�nition 3.25. Let us �x an arbitrary orientation of every face F of X together with an
arbitrary choice of an edge eF of sedentarity 0 of the face F . The real structures obtained by
Dehn twists from c are real structures of the form Dw ◦ c, where w ∈ Z1

cell (X;WZ) and Dw is a
global w-twist on (SX , X) such that, for any face F of X, the restriction of Dw on SF starts at
the edge eF . The set of all real structures obtained by Dehn twist from c, up to X-isomorphism,
is denoted by Πc (SX , X). Although the notation does not underline it, this set depends on the
orientation of F and on the arbitrary choice of the edge eF , for each face F of X.

Remark 3.21. The author was not able to get rid of the dependency on the choice of the edge
eF for each face F . A statement that would enable us to get rid of this dependency would be
that, given a face F of X and a 1-co-cycle w ∈ Z1

cell (F ;WZ), if D(1)
w and D(2)

w are w-twists on
SF , starting at di�erent edges, then there exists a homeomorphism D of SF , restricting to the
identity on the boundary (∂F )× TF , such that D(1)

w ◦ conjF = D ◦D(2)
w ◦ conjF ◦D−1.

Let us now state and prove three lemmas before stating the main result of this section,
Theorem 3.3.

Lemma 3.21. Let c be a real structure of (SX , X) and c′ ∈ Πc (SX , X) be a real structure
obtained by Dehn twist from c. If the twist wave w(c′, c) is a co-boundary, then c and c′ are
X-isomorphic.

Proof. The image of the co-boundary operator d : C0
cell (X;WZ) → C1

cell (X;WZ) is, by de�ni-
tion, generated by the elements of the form d(v ⊗w), where v is a vertex of X and w ∈WZ(v).
Therefore, one can assume that w(c′, c) = d(v ⊗ w). If v is a vertex of sedentarity 0, then
WZ(v) = 0 so there is nothing to show. We are left with the case where the vertex v is of order
of sedentarity 1 and the case where v is of order of sedentarity 2.

If v is of order of sedentarity 1 then the parent face of the vertex v is an edge e and the wave
space WZ(v) = WZ(e) is generated by ~e, a primitive integer vector parallel to the edge e. We
denote by u the other vertex adjacent to e. Thus, there exists t ∈ Z, such that w · e = t~e. Let us
orient e from u to v and parametrize the edge e by a map [0, 1]→ e sending x to xv + (1− x)u

(as in De�nition 3.23). The Dehn twist De on Se can then be written De =
(
D

1
2
e

)2

, where

D
1
2
e (x, θ, z) = (x, θ + πx~e, z). In particular, the homeomorphism D

1
2
e is the identity on Sue . Now,

for each of the three faces F of X, adjacent to the edge e, we orient the boundary of F , such
that the restricted orientation to e is the orientation from the vertex u to v. We also denote
by e0, . . . , en−1 the edges of F in cyclic order, such that one has De0

w ◦ cF = c′F . Let i ∈ Zn be
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the index such that ei = e, so that ei+1 is the other edge of F adjacent to v. In particular, the
edge ei+1 is of sedentarity 1. Thus, by De�nition 3.25, one has e0 6= ei+1. It implies that for
any j ∈ Zn \ {i, i + 1}, the sum

∑
0≤k≤j−1 w · ek is zero. As a consequence, one can consider

the same homeomorphism D
1
2
w as in the proof of Proposition 3.14, which here, restricts to the

identity on all products Γ
ej
F × TF , for j /∈ {i, i + 1}. Moreover, it coincides with (De)

te(c
′,c)

on SeiF = SeF . Finally, we have constructed a �ber-preserving homeomorphism D : SX → SX ,
which restricts to the identity on the �bers Sv for all vertices v of sedentarity 0 and satisfying
c′ = D ◦ c ◦ D−1, which implies by de�nition that c and c′ are X-isomorphic. More precisely,
this homeomorphism is given by the identity outside λ−1 (F ∪G ∪H), where F,G and H are

the faces adjacent to the edge e, it restricts to the power of the Dehn twist
(
D

1
2
e

)te(c′,c)
to the

relative interior of Se and it restricts to D
1
2
w on the relative interior of the building blocks SF ,

SG and SH .
If v is a vertex of order of sedentarity 2, then, denoting by F the parent face of v, and by e and

f the adjacent edges to v, which are of order of sedentarity 1, one can construct a �ber-preserving
homeomorphism D : SX → SX , in a similar way. This time this homeomorphism restricts to

the identity to λ−1 (X \ F ) and it restricts to D
1
2
w to the relative interior of the building-block

SF . As for the case of a vertex of sedentarity 1, one can check that the homeomorphism D
1
2
w

restricts to the identity outside λ−1
(

ΓeF ∪ ΓfF

)
, using the fact that the edge eF where the w-

twist starts, is of sedentarity 0, combined with the fact that the combinatorial strati�cation is
polyhedral.

Lemma 3.22. Let c be a real structure of (SX , X) and c′ ∈ Πc (SX , X) be a real structure
obtained by Dehn twist. If the twist wave w(c′, c) is even, then c and c′ are X-isomorphic.

Proof. Since w is even, for any edge e of sedentarity 0 of X, the twist te(c′, c) from c to c′ is

even and thus the homeomorphism
(
D

1
2
e

)te(c′,c)
= (De)

te(c′,c)
2 restricts to the identity to Sve

for all vertices v adjacent to the edge e. Similarly, for any face F of X, the homeomorphism

D
1
2
w = Dw

2
also restricts to the identity to SvF for all adjacent vertices v. Therefore, one obtains a

�ber-preserving homeomorphism D : SX → SX , which restricts to the identity on any �ber Sv,
with v a vertex of sedentarity 0 and satisfying c′ = D ◦ c ◦D−1. More precisely, the restriction
of D to the relative interior of a building block SF is equal to Dw

2
and the restriction to the

relative interior of an edge of sedentarity 0 is equal to (De)
te(c′,c)

2 .

The next and third lemma is not only useful in order to prove Theorem 3.3, but also gives a
connection between the twist from a real structure to another one and the twist along a pair of
faces of De�nition 3.18. One can see this lemma as a generalisation to the case n = 2 of Lemma
3.11.

Lemma 3.23. Let e be an edge of X of sedentarity 0. Let F and G be two faces adjacent to e.
Let ce and c′e be two local real structures of (Se, e). The following statements are equivalent to
each other.

� The edge e is untwisted along FG for both real structures c and c′, or the edge e is twisted
along FG for both real structures c and c′.
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� The twist from c to c′ at the edge e is even.

Proof. Let us set t := te(c
′, c) and let us work in the coordinates of Se, where the local real

structure ce acts as the standard conjugation conje on Se. We denote by u and v the adjacent
vertices (of sedentarity 0) to the edge e. By assumption, one has c′e = Dt

e ◦ c. Let us denote by
BF and by BG the boundary components of P

1
corresponding the the faces F and G for the

bijection of point (1) of De�nition 3.8, associated with the edge e. There is only one component

b of RP 1
, which connects the boundary components BF and BG. Let us denote by z the

intersection point of the real component b with the boundary component BF . Since the real
structures coincide with the standard conjugation on the �bers Su and Sv, they de�ne the same
leaves. Therefore, the fact that the edge e is untwisted along FG is equivalent to saying that
the the �xed component of c′e containing the point (u, 0, z) also contains the point (v, 0, z). Yet,
this component is given by {(xu+ (1− x)v, πtx, z) |x ∈ [0, 1]} and so this component contains
the point (v, 0, z) if and only if the twist t is even.

Theorem 3.3. Let c be a real structure of (SX , X). The set Πc (SX , X) of real structures of
(SX , X), obtained by Dehn twists from c and up to X-isomorphism, is a Z2-a�ne space of
direction −→

ΠX = H1
cell (X;WZ) /2 ·H1

cell (X;WZ) .

Proof. Let c′ be a real structure X-isomorphic to the real structure c. Let us show that the
cohomology class of w(c′, c) is even. Since, c and c′ are X-isomorphic, they have the same
twisted and untwisted edges of sedentarity 0 along pair of faces. Therefore, by Lemma 3.23, one
has w(c′, c) · e ∈ 2WZ(e). Since the wave space of an edge of sedentarity 1 is equal to the wave
space of the parent face, one can check that any co-chain satisfying the co-cycle relation for all
bounded faces, can be transformed into a co-cycle by setting the appropriate values on the edge
of sedentarity 1. Thus, one can add an even co-cycle 2w′ to w(c′, c) such that w(c′, c) + 2w′

has support contained in the edges of sedentarity 1. Denoting by w̃ the co-cycle w(c′, c) + 2w′,
we are left with proving that w̃ is in the image of the tropical co-boundary operator (up to
an even co-cycle). Recall that X admits a polyhedral combinatorial strati�cation. Therefore,
every unbounded face of X is contained in a single chart with values in TN for some integer
N > 1. Using the fact that the vertices of F are of order of sedentarity at most 2 (because X
is hypersmooth), one can show that the face F has either only one edge of sedentarity 1 or two
edges of sedentarity 1 intersecting at a vertex of sedentarity 2. Consider an edge e of sedentarity
1. If e is the only edge of sedentarity 1 in its parent face F , then the co-cycle condition at the
face F yields w̃ · e = 0. If e intersects another edge f sedentarity 1 at a vertex v of sedentarity
2, then the co-cycle condition yields w̃ · e+ w̃ · f = 0, where e is oriented towards the vertex v
and the edge f is oriented outwards the vertex v. Hence, one has (w̃ + d (v ⊗ (w̃ · e))) ·e = 2w̃ ·e
and (w̃ + d (v ⊗ (w̃ · e))) · f = 0. It follows that the cohomology class of w(c′, c) is even. We
have shown that the map w(•, c) induces on the quotient Πc (SX , X) the map

[w(•, c′)]2 : Πc (SX , X)→ H1
cell (X;WZ) /2 ·H1

cell (X;WZ) .

By Proposition 3.14, this map is surjective, and by Lemmas 3.21 and 3.22, the map [w(•, c′)]2
is injective.

88



4 Filtration of the Homology of a Phase Tropical Surface

4.1 Lifting Tropical Cycles

Let X be a hypersmooth tropical surface with a polyhedral combinatorial strati�cation, and let
(SX , X) be a phase tropical surface. Let G be an abelian group. The goal of this section is to
de�ne the following three lifting morphisms:

L2,0 : H2,0 (X;G)→ H2 (SX ;G) ;

L1,1 : H1,1 (X;G)→ H2 (SX ;G) /H2,0 (SX ;G) ;

L0,2 : H0,2 (X;G)→ H2 (SX ;G) /H1,1 (SX ;G) .

The group H2,0 (SX ;G) is de�ned as the image of the lifting morphism L2,0 and the group
H1,1 (SX ;G) is de�ned by the homology classes which are sent to the image of L1,1 by the
quotient map H2 (SX ;G)→ H2 (SX ;G) /H2,0 (SX ;G). The idea is to generalize the approach of
[7] to phase tropical surfaces. Concerning tropical (2, 0)- and (1, 1)-cycles, there is a "natural"
way to de�ne their liftings, as was done in [7] and summarized in Section 3.2.2 for tropical
(1, 0)- and (0, 1)-cycles in a hypersmooth tropical curve (see Sections 4.1.1 and 4.1.2). The main
di�culty is to lift tropical (0, 2)-cycles, which boils down to lift topological surfaces embedded
in X. Under the assumption that the phase tropical surface (SX , X) admits a real structure,
we present a way to explicitly lift orientable topological surfaces embedded in X to the 4-
dimensional manifold SX in Section 4.1.3. The key property of these lifting morphisms, in order
to obtain a �ltration of the second homology group H2 (SX ;Z2), is that they commute with the
intersection product in a sense that is precised in Section 4.2. This property is brie�y referred
to in Remark 3.13 in the case of curves.

4.1.1 Lifting (2,0)-cycles

The aim of this section is to de�ne the lifting morphism

L2,0 : H2,0 (X;G)→ H2 (SX ;G) .

Consider a framed point x ⊗ v, where x is a point in the relative interior of a cell σ of X and
v ∈ FG2 (σ). Recall the de�nition of the lifting isomorphism Lσ2 (De�nition 3.9). Under the map
induced by the inclusion of the relative interior of the building block Sσ inside SX , one can view
the image of Lσ2 inside the homology group H2 (SX ;G). We then de�ne the lift of the framed
point x⊗ v by

L2,0 (x⊗ v) := Lσ2 (v) ∈ H2 (SX ;G) .

We extend the morphism L2,0 linearly to any sum of FG2 -framed points, in other words, we
extend L2,0 to any tropical singular (2, 0)-cycle of X.

Lemma 4.1. Let a be a tropical singular (1, 2)-chain of X. The lift of the tropical boundary ∂a
is zero, that is,

L2,0 (∂a) = 0 ∈ H2 (SX ;G) .

Proof. Recalling De�nitions 2.16, 2.17 and 2.18, one can write the tropical singular chain a as
a sum a =

∑
α α ⊗ vα, where every singular simplex α indexing the sum is C-strati�ed. In

particular, for any (singular) simplex α, the image α([0, 1]) is contained in a single cell σα and
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the framing vα is an element of the 2-multi-tangent space FG2 (σα). Thus, the lift Lσα2 (vα) of the
framing vα is equal to a homology class µα[{∗}× να], where µα ∈ G and να is an oriented cycle
in Tσα ×Pnσα (so that {∗}×να is an oriented cycle in the building-block Sσα). We then lift the
framed simplex α⊗ vα by de�ning the singular 3-chain lα := µαα ([0, 1])× να, with coe�cients
in the abelian group G and with the product orientation coming from the orientation of να and
the orientation from 0 to 1 on the segment [0, 1]. For j = 0, 1, we denote by σjα the cell of
X, such that α(j) lies in the relative interior of σjα. The boundary of the lift lα is then equal

to µα
((
φ
σ1
α
σα

)
∗

(α(1)× να)−
(
φ
σ0
α
σα

)
∗

(α(0)× να)
)
. Yet, by de�nition of the lifting isomorphism

L
σjα
2 , one has for j = 0, 1 that,

L
σjα
2 (ι(vα)) = µα

(
φ
σjα
σα

)
∗

(α(j)⊗ να) .

Hence, by summing over all singular 1-simplices α, one obtains that a representative of the
lift L2,0 (∂α) is given by the boundary ∂ (

∑
α lα), whose homology class is by de�nition 0 ∈

H2 (SX ;G).

The above lemma allows us to consider the map H2,0 (X;G)→ H2 (SX ;G) induced by L2,0.

De�nition 4.1. The resulting map from Lemma 4.1 above is still denoted by L2,0. We call this
map the (2, 0)-lifting morphism

L2,0 : H2,0 (X;G)→ H2 (SX ;G) .

The image of the (2, 0)-lifting morphism is denoted by H2,0 (SX ;G).

We conclude this section with an easy observation about the intersection form onH2 (SX ;Z2).
Recall that we denote by l ◦ l′ the intersection product between two homology classes l and l′

in H2 (SX ;Z2). Two elements in the sub-group H2,0 (SX ;Z2) always have a trivial intersection
number. In fact, they can always be represented as 2-cycles, whose projections on the hyper-
smooth tropical surface X do not intersect each other. This observation is summarized in the
following lemma.

Lemma 4.2. The intersection form on H2 (SX ;Z2) vanishes when restricted to the subspace
H2,0 (SX ;Z2).

Proof. Let a and b be two non-singular tropical (2, 0)-cycles. We want to show that their lifts
L2,0([a]) and L2,0([b]) do not intersect. By Lemma 2.3, the tropical (2, 0)-cycle a is homologous
to a tropical (2, 0)-cycle a′ =

∑
x x ⊗ vx, whose support is contained in the relative interiors

of the faces of X, that is, for every point x appearing in the sum de�ning a′, the point x is
contained in the relative interior of a face Fx of X and vx is the only non-zero element of the
multi-tangent space FZ2

2 (Fx) ∼= (Z2)
2. Since the support of the tropical (2, 0)-cycle b is a �nite

set of points, if a point x lies in the intersection of the support of a′ and a, there exists a point
x′ in Fx such that x′ does not lie in the support of b. Thus, one can add the boundary of
the tropical (2, 1)-chain [x, x′] ⊗ vx to a′ and the result is homologous to a′. We denote by
a′′ the (2, 0)-cycle homologous to a′ obtained by adding all the boundaries of the (2, 1)-chains
[x, x′]⊗ vx for every point x in the intersection of the supports of a′ and b. The support of a′′

does not intersect the support of b, so the lifts L2,0(a′′) and L2,0(b) are represented by 2-cycles
whose supports do not intersect, since their images by λ do not intersect. Hence the equality
L2,0(a′′) ◦ L2,0(b) = 0 and by Lemma 4.1, one obtains L2,0([a]) ◦ L2,0([b]) = 0.
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4.1.2 Lifting (1,1)-cycles

The aim of this section is to de�ne the lifting morphism

L1,1 : H1,1 (X;G)→ H2 (SX ;G) /H2,0 (SX ;G) .

The following construction de�nes the lift of a tropical singular (1, 1)-cycle with coe�cients in
the abelian group G.

Construction 4.1. Consider a singular tropical (1, 1)-cycle a of X with coe�cients in G. As in
the proof of Lemma 4.1, we write a as the �nite sum a =

∑
α α⊗ vα, where the relative interior

of the image α([0, 1]) is contained in the relative interior of a cell σα of X and vα ∈ FZ
1 (σα)

for every C-strati�ed 1-simplex α indexing the sum. Similarly to the proof of Lemma 4.1, the
lift of the framing vα can be written Lσα1 (vα) = µα [{∗} × να], where µα ∈ G and να is an
oriented cycle in Tσα × Pσα . Still in a similar way to the proof of Lemma 4.1, one can lift the
FG1 (σα)-framed 1-simplex α⊗vα by de�ning lα = µαα([0, 1])×να, with the orientation given by
the product of the orientation from 0 to 1 and the orientation of να. Notice that the boundary
of the 2-chain

∑
α lα is contained in the inverse image, by the strati�ed �bration λ, of the �nite

set of points Y (a) :=
⋃
α (α(1) ∪ α(0)). Consider a point y ∈ Y (a) and denote by α1, . . . αk the

C-strati�ed simplices among the α's appearing in the sum de�ning the tropical (1, 1)-cycle a,
such that y is either αj(1) or αj(0) for all j ∈ {1, . . . , k} and k is a positive integer. Also denote
by σy the cell such that y lies in the relative interior of σy. For any j ∈ {1, . . . , k}, up to the
multiplication of the framing vαj by −1, one can assume that y = αj(1). Since a is a cycle, one
has

∑
1≤j≤k ι

(
vαj
)

= 0, where for every integer j between 1 and k, the morphism ι goes from

FG1
(
σαj
)
to FG1 (σy). Thus, one has Lσy1

(∑
1≤j≤k ι

(
vαj
))

= 0. Yet, the homology class of

the lift Lσy1

(∑
1≤j≤k ι

(
vαj
))

= 0 is represented by the cycle
∑

1≤j≤k µαj

(
φ
σy
σαj

)
∗

(
{y} × ναj

)
.

Hence the existence of a 2-chain βy in Sσy such that

∂βy =
∑

1≤j≤k

µαj

(
φσyσαj

)
∗

(
{y} × ναj

)
. (4.1)

By construction, the singular 2-chain la = (
∑
α lα) +

∑
y∈Y (a) βy is a cycle. We de�ne the lift of

the tropical singular (1, 1)-cycle a as the homology class of la, modulo the subgroupH2,0 (SX ;G),
and we denote it by

L1,1(a) := [la] ∈ H2 (SX ;G) /H2,0 (SX ;G) .

This construction seems quite natural, but it depends a priori on the choices of the cycles
να but also on the choices of the two 3-chains βy for the tropical singular (1, 1)-cycle a and
y ∈ Y (a). Lemma 4.3 shows that the lift of a singular tropical (1, 1)-cycle does not depend on
the choices of the cycles να, even without passing to the quotient by the subgroup H2,0 (SX ;G).
However, still in the proof of Lemma 4.3, we see that the reason why the lift L1,1(a) does not
depend on the choices of the 2-chains βy for y ∈ Y (a) is precisely because we consider the class
of the lift L1,1(a) in the quotient by the subgroup H2,0 (SX ;G).

Lemma 4.3. Let a be a tropical singular (1, 1)-cycle. The lift L1,1(a) ∈ H2 (SX ;G) /H2,0 (SX ;G)
does not depend on the choices of the of the cycles να, nor on the choices of the 2-chains βy for
y ∈ Y (a).

91



Proof. First, let us show that the lift L1,1(a) does not depend on the choices of the 1-cycles να.
As in Construction 4.1 we write a =

∑
α α⊗ vα α and we �x one of the C-strati�ed simplices α

indexing the sum, which we denote by α0. Consider two 1-cycles να0 and ν′α0
in Tσα0 × Pnσα0

such that the homology classes [{∗} × να0
] and

[
{∗} × ν′α0

]
are both equal to the lift L

σα0
1 (vα0

).
Denote by L1,1(a) the lift of a obtained with the choice of the 1-cycle να0

and L′1,1(a) the lift
obtained with the choice of ν′α0

. We assume that all other choices of 1-cycles να for α 6= α0,
as well as the choices of the 2-chains βy for y ∈ Y (a), are identical. The di�erence of the lifts
L1,1(a)−L′1,1(a) is thus represented by the cycle α0([0, 1])×να0−α0([0, 1])×ν′α0

. Yet, the cycles
να0 and ν′α0

being homologous, there exists a 2-chain ξα0 in Tσα0 × Pnσα0 whose boundary is
equal to ∂ξα0

= να0
− ν′α0

. The boundary of the 3-chain α0([0, 1]) × ξα0
is thus equal to the

cycle α0([0, 1])×να0
−α0([0, 1])×ν′α0

, which represents the di�erence of the lifts. The homology
classes of these cycles are then equal, by de�nition, and so are their classes in the quotient by
the sub-group H2,0 (SX ;G). To summarize, one has L1,1(a) = L′1,1(a) and as a consequence the
lift L1,1(a) does not depend on the choices of the 1-cycles να0 .

Now, let us show that the lift L1,1(a) does not depend on the choices of the 2-chains βy.
Let y ∈ Y (a). Using the notations from Construction 4.1, we assume that βy and β′y are

two 2-chains in Sσy whose boundaries are both equal to
∑

1≤j≤k µαj

(
φ
σy
Fαj

)
∗

(
{y} × ναj

)
as in

Equation (4.1). Denote by L1,1(a) the lift of a obtained with the choice of the 2-chain βy and
by L′1,1(a) the lift of a obtained with the choice of the 2-chain β′y. We assume that for any other
point x ∈ Y (a), the choices of the 2-chain βx are identical for the lifts L1,1(a) and L′1,1(a) and
we also assume that the choices of the 1-cycles να are identical for every C-strati�ed simplex
α indexing the sum

∑
α α ⊗ vα. The di�erence L1,1(a) − L′1,1(a) is then represented by the

cycle βy − β′y. Yet, the homology class of the cycle βy − β′y admits an inverse by the 2-lifting
isomorphism L

σy
2 , denoted by vy. Therefore, the di�erence L1,1(a) − L′1,1(a) is represented by

the lift of the tropical singular (2, 0)-cycle y ⊗ vy, and by de�nition this lift L2,0(y ⊗ vy) lies in
the subgroup H2,0 (SX ;G).

Lemma 4.4. Let b be a tropical singular (1, 2)-cycle of X. The lift of the tropical boundary of
b is zero, that is,

L1,1(∂b) = 0 ∈ H2(SX ;G)/H2,0(SX ;G).

Proof. As in the proof of Lemma 4.1, we can decompose the tropical singular (1, 2)-cycle b as
the sum b =

∑
β β ⊗ vβ , where every C-strati�ed 2-simplex β indexing the sum has its image

contained in a cell σβ and the framing vβ is a vector of the 1-multi-tangent space FG1 (σβ). One
can write the homology class of the lift of vβ as Lσβ1 (vβ) = µβ [{∗} × νβ ] ∈ H1

(
Sσβ ;G

)
, where

µβ ∈ G and νβ is an oriented 1-cycle in Tσβ × Pnσβ . We can then de�ne a lift of the framed
simplex β⊗ vβ by de�ning lβ := β(∆2)× νβ . The boundary ∂(lβ) of this lift is of course a cycle
representing the lift L1,1 (∂(β ⊗ vβ)). Hence, one has L1,1 (∂(β ⊗ vβ)) = 0 and by summing over
all β, one obtains L1,1 (∂(b)) = 0.

The above Lemma 4.4 allows us to consider the mapH1,1 (X;G)→ H2 (SX ;G) /H2,0 (SX ;G)
induced by L1,1.

De�nition 4.2. The resulting map from Lemma 4.4 is still denoted by L1,1 and we name this
map the (1, 1)-lifting morphism

L1,1 : H1,1 (X;G)→ H2 (SX ;G) /H2,0 (SX ;G) .
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We de�ne the subgroup H1,1 (SX ;G) ⊂ H2 (SX ;G) as the subgroup of the elements sent
to the image Im (L1,1) of the (1, 1)-lifting morphism, by the quotient map H2 (SX ;G) →
H2 (SX ;G) /H2,0 (SX ;G).

As in Section 4.1.1, we end this section with some considerations on the intersection form
of H2 (SX ;Z2) evaluated at a pair of lifts of singular tropical (1, 1)-cycles. But �rst, let us
show that the intersection product between any element of the Z2-space H1,1 (SX ;Z2) and any
element of H2,0 (SX ;Z2) is always zero.

Lemma 4.5. Let a be a tropical (1, 1)-cycle and b be a tropical (2, 0)-cycle, both with with
Z2-coe�cients. For any representative L̃1,1(a) ∈ H1,1 (SX ;Z2) of the lift L1,1 (a), one has

L̃1,1(a) ◦ L2,0(b) = 0.

Proof. By Lemma 4.2, the intersection product L̃1,1(a) ◦ L2,0(b) = 0 does not depend on the
representative L̃1,1(a) of the lift L1,1 (a). Thus, we can take L̃1,1(a) to be the homology class
obtained by Construction 4.1. By Lemma 2.3, the tropical (2, 0)-cycle b is homologous to a
tropical (2, 0)-cycle b′ =

∑
x x ⊗ vx, whose support is contained in the relative interiors of the

faces of X, that is, for every point x appearing in the sum de�ning b′, the point x is contained in
the relative interior of a face Fx of X and vx is the only non-zero element of the multi-tangent
space FZ2

2 (Fx). Since the intersection of the support of the tropical (1, 1)-cycle a with a face F of
X is a union of submanifolds of codimension 1, if a point x lies in the intersection of the support
of a and b′, there exists a point x′ in Fx, such that the segment [x, x′] intersects the support
of a only at the point x. One can add the boundary of the tropical (2, 1)-chain [x, x′] ⊗ vx to
b′ and the result is homologous to b′. We denote by b′′ the tropical (2, 0)-cycle homologous to
b′ obtained by adding all the boundaries of the (2, 1)-chains [x, x′] ⊗ vx for all points x in the
intersection of the supports of a and b′. The support of b′′ does not intersect the support of a, so
the lift L2,0(b′′) and the homology class L̃1,1(a) are represented by 2-cycles whose supports do
not intersect since their images by λ do not intersect. Hence the equality L1,1(a) ◦L2,0(b′′) = 0
and by Lemma 4.3, one obtains L1,1([a]) ◦ L2,0([b]) = 0.

Proposition 4.1. Let a(1) and a(2) be a transversal pair of singular tropical (1, 1)-cycles in X
with coe�cients in Z2. For any homology classes L̃1,1(a(1)) and L̃1,1(a(2)) representing the lifts
L1,1(a(1)) and L1,1(a(2)) respectively, the intersection product of the homology classes L̃1,1(a(1))

and L̃1,1(a(2)) in H2 (SX ;Z2) is equal to the tropical intersection product of the corresponding
tropical (1, 1)-cycles, that is,

L̃1,1(a(1)) ◦ L̃1,1(a(2)) = a(1) ◦ a(2).

Proof. Since the (1, 1)-cycles a(1) and a(2) form a transversal pair, the points of intersection
between their supports supp(a(1)) and supp(a(2)) only occur in the relative interior of the
faces of X. Moreover decomposing a(1) and a(2) as the sums a(1) =

∑
α(1) α(1) ⊗ vα(1) and

a(2) =
∑
α(1) α(2) ⊗ vα(2) , a point x in the intersection supp(a(1))∩ supp(a(2)) is at the intersec-

tion of only one C-strati�ed simplex α(1)
x and one C-strati�ed simplex α(2)

x . Up to the subdivision
of the simplices α(1)

x and α(2)
x , one can always assume that x is the only point of intersection of

α
(1)
x with supp(a(2)) and the only point of intersection of supp(a(1)) with α(2)

x . Since the point x
lies in the relative interior of a face Fx, the framings v

α
(1)
x

can be written as v
α

(1)
x

= µ
α

(1)
x
· ṽ
α

(1)
x
,

where µ
α

(1)
x
∈ Z2 and ṽ

α
(1)
x

is a primitive vector of W ′Z (Fx) = FZ
1 (Fx), so that the lift of the
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framing v
α

(1)
x

is equal to LFx1

(
v
α

(1)
x

)
= µ

α
(1)
x

[
{∗} ×

(
Rṽ

α
(1)
x
/2πZṽ

α
(1)
x

)]
∈ H1 (SFx ;Z2). Simi-

larly, the lift of the framing v
α

(2)
x

is equal to LFx1

(
v
α

(2)
x

)
= µ

α
(2)
x

[
{∗} ×

(
Rṽ

α
(2)
x
/2πZṽ

α
(2)
x

)]
∈

H1 (SFx ;Z2), where µ
α

(2)
x
∈ G and the vector ṽ

α
(2)
x
∈ W ′Z(Fx) is primitive. Since the vector

space W ′(Fx) is of dimension 2, there exists a vector w
α

(1)
x

in W ′(Fx) \
(
Rṽ

α
(1)
x

)
and such

that this vector w
α

(1)
x

is not an integer multiple of 2πw̃ for w ∈ W ′Z(Fx). We then denote by

ν
α

(1)
x

= Rṽ
α

(1)
x
/2πZṽ

α
(1)
x

and by ν
α

(2)
x

= w
α

(1)
x

+
(
Rṽ

α
(2)
x
/2πZṽ

α
(2)
x

)
the cycles in TFx used to

lift α(1)
x and α(2)

x as in Construction 4.1. Thus, we have a lift lα(1)x := µ
α

(1)
x
α

(1)
x ([0, 1]) × ν

α
(1)
x

of the framed simplex α(1)
x ⊗ vα(1)

x
and a lift l

α
(2)
x

:= µ
α

(2)
x
α

(2)
x ([0, 1]) × ν

α
(2)
x

of the framed sim-

plex α(2)
x ⊗ vα(2)

x
. Since we added the vector w

α
(1)
x

to the cycle Rṽ
α

(2)
x
/2πZṽ

α
(2)
x
, the singular

2-chains l
α

(1)
x

and l
α

(2)
x

intersect if and only if the framings v
α

(1)
x

and v
α

(2)
x

are non-colinear
vectors. Moreover, if these vectors are non-colinear, then the chains l

α
(1)
x

and l
α

(2)
x

intersect
transversally at a single point (x, θ) ∈ SFx and their intersection product at x is equal to

µ
α

(1)
x
· µ

α
(2)
x
·
(
α

(1)
x ◦ α(2)

x

)
x

det
(
ṽ
α

(1)
x
, ṽ
α

(2)
x

)
, where

(
α

(1)
x ◦ α(2)

x

)
x
is the intersection number of

the singular simplices α(1) and α(2) at x (see De�nition 2.23). We recognize the tropical in-
tersection number at x of the framed simplices α(1)

x ⊗ vα(1)
x

and α(2)
x ⊗ vα(2)

x
with coe�cients in

Z2. By summing over all points x ∈ supp(a(1)) ∩ supp(a(2)), using the facts that the image of
the singular simplex α(1)

x intersects supp(a(2)) only at x and that the image of α(2)
x intersects

supp(a(1)) only at x, one obtains the equality of the intersection numbers ∑
x∈supp(a(1))∩supp(a(2))

l
α

(1)
x

 ◦
 ∑
x∈supp(a(1))∩supp(a(2))

l
α

(2)
x

 = a(1) ◦ a(2).

One can then add all the remaining lifts l(1)
α to the 2-chain

(∑
x∈supp(a(1))∩supp(a(2)) lα(1)

x

)
without

changing the intersection product with
(∑

x∈supp(a(1))∩supp(a(2)) lα(2)
x

)
, because the remaining

singular simplices α(1) do not intersect the support supp(a(2)) of a(1). For the same reason, one
can also add the 2-chains β(1)

y (i.e the 2-chains βy of Construction 4.1 associated with the (1, 1)-
cycle a(1)) to the 2-chain

∑
α(1) lα(1) without modifying the intersection product with the 2-chain(∑

x∈supp(a(1))∩supp(a(2)) lα(2)
x

)
. For the same reason, one can also add the remaining lifts lα(2)

as well as the 2-chains β(2)
y to the 2-chain

∑
x∈supp(a(1))∩supp(a(2)) lα(2)

x
without modifying the

intersection product. In conclusion, we have constructed two representatives of the homology
classes L̃1,1(a(1)) and L̃1,1(a(2)) which have an intersection number equal to a(1) ◦ a(2) points,
which implies the result by passing to the homology classes.

Remark 4.1. As for Lemma 4.2, we are only concerned with the intersection form on H2 (SX ;Z2)
but not on H2 (SX ;G) for G 6= Z2. If we had �xed an orientation on SX , the above result should
hold up to the sign with G = Z, and the same proof should work, although it would require
some care to obtain the right sign.
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4.1.3 Lifting (0-2)-cycles

The aim of this section is to de�ne the lifting morphism

L0,2 : H0,2 (X;G)→ H2 (SX ;G) /H1,1 (SX ;G) .

Let Σ be an orientable topological surface embedded (topologically) inside X. The surface Σ
then de�nes a tropical singular (0, 2)-cycle in X. Let us notice that Σ induces a sub-complex of
the (polyhedral) combinatorial strati�cation C. Therefore, as explained at the end of De�nition
2.21, one can consider the cellular tropical cohomology group H1

cell (Σ;F) of Σ, for any cellular
sheaf F on X. In particular, we use it for the sheaves WZ2 and WZ. Let us also notice that
every edge of Σ is adjacent to two faces in Σ, so it cannot be of sedentarity 1, and thus it is of
sedentarity 0. The vertices of Σ are then adjacent to three edges of sedentarity 0 and thus they
are also of sedentarity 0. In particular, the faces of Σ are all bounded.

In order to lift this tropical singular (0, 2)-cycle we want to �nd a lift sΣ of Σ in SX , in the
sense that sΣ is a 2-cycle in SX and λ∗(sΣ) = Σ. As explained at the beginning of this chapter,
we assume that the phase tropical surface (SX , X) admits a real structure c. The method we
want to use is similar to the one at the end of Section 3.2.2, where we lift topological circles
in the hypersmooth tropical curve Γ as a component of the �xed locus of a new real structure
obtained from c by twisting along some appropriate edges. Recall De�nition 3.18 about edges
of sedentarity 0 twisted along a pair of faces. The following de�nition is the counterpart of
De�nition 3.15, in the case of phase tropical surfaces with a real structure.

De�nition 4.3. Let e be an edge of Σ. The edge e is said to be twisted along Σ if e is twisted
along FG, where F and G are the faces of Σ adjacent to e. Otherwise, we say that the edge e
is untwisted along Σ. The set of edges of Σ twisted along Σ for the real structure c is denoted
by Tc(Σ).

The next lemma is the counterpart of Lemma 3.10 in the case of phase tropical surfaces and
the proof works in a similar way.

Lemma 4.6. The topological surface Σ lifts to SX as a �xed component of c if and only if all
the edges of Σ are untwisted along Σ.

Proof. For any vertex v of Σ, adjacent to the three edges e, f and g of Σ, a �xed component
sΣ lifting Σ has to intersect the �ber Sv exactly at the leaf in RSv with three margins, each
of them lying in one of the intersection Sev , S

f
v or Sgv . Let us denote by lv this leaf in the �ber

Sv. Now, if the topological surface Σ lifts as a component �xed by c, then the �xed locus of c
in the �ber Se, of an edge e connecting two vertices u and v, has to connect the leaves lu and
lv. Since both lu and lv have three margins, it means that the edge e is untwisted along Σ.
Therefore it is a necessary condition that the edges of Σ are untwisted along Σ. This condition is
in fact su�cient. If we assume that all edges are indeed untwisted along Σ, then by the previous

discussion, one obtains a �xed component s̃ in the inverse image λ−1

(
Σ \

(⊔
F∈C2(Σ)

o

F

))
,

which is sent to Σ \
(⊔

F∈C2(Σ)

o

F

)
. Yet for any face F of Σ, the intersection of s̃ with the �ber

SF is a cycle sF , �xed by c in SF . Since the �xed locus of the real structure c in the �ber SF is
homeomorphic to 4 disjoint disks, one of the �xed components has as boundary the cycle sF and
we denote this �xed component by dF . By taking the sum of s̃ with

∑
F∈C2(Σ) dF , we obtain a
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2-cycle lifting Σ. By �xing an orientation of Σ and orienting each of the disks dF accordingly to
the orientation of the face F , obtained by restricting the orientation of Σ, we obtain an oriented
2-cycle sΣ in Σ such that λ∗sΣ = Σ, taking into account the orientations of the 2-chains sΣ and
Σ.

De�nition 4.4. We de�ne the twist wave along Σ of the real structure c as the cellular tropical
1-co-chain wΣ(c) ∈ C1

cell (Σ;WZ2
) such that

wΣ(c) : e 7→
{
~e ∈WZ2

(e) , if e is twisted along Σ;
0 ∈WZ2

(e) , if e is untwisted along Σ.

Remark 4.2. Let us insist on the fact that the twist wave along Σ is de�ned only on the edges
of Σ, so it does not de�ne a co-chain on X. Moreover, this point of view might seem confusing
because we are talking about a co-chain de�ned only on edges of Σ, while the wave-space sheaf
WZ2

is de�ned on the whole of X. In this text, we consider only hypersmooth tropical surfaces,
but one could also consider tropical surfaces which also happen to be topological surface. In
particular, the topological surface Σ could be endowed with an atlas of tropical manifold of
dimension 2. We should be careful to the fact that the restriction of the wave space sheaf on
X to the cells of Σ does not coincide at all with the wave space sheaf that could be de�ned by
endowing the topological surface Σ with an atlas of topological manifold, especially at the edges
and at the vertices of Σ.

Lemma 4.7. The twist wave wΣ(c) of the real structure c along Σ is a co-cycle in Z1
cell (Σ;WZ2),

that is,
dwΣ(c) = 0.

Proof. Let F be a face of Σ. As mentioned at the beginning of this section, the face F is bounded.
Moreover the band R(F ) of F is orientable, because the union of all the faces adjacent to Σ is a
cylinder, and thus must be one of the two orientable halves of the orientable band of F . Hence,
one can apply Proposition 3.11, so that we obtain the co-cycle condition dwΣ(c) · F = 0.

We now have a co-cycle wΣ(c) de�ning a cohomology class inH1
cell (Σ;WZ2). We would like to

be able to extend this co-cycle to a co-cycle in Z1
cell (X;WZ2), because then we would be able to

�nd an inverse image w in the cohomology group H1
cell (X;WZ) by the reduction modulo 2 map

(assuming that there is no 2-torsion in the cohomology group H1
cell (X;WZ)). The point would

be to use Theorem 3.3 to obtain a real structure c′ such that w(c′, c) = w, so that the topological
surface Σ has only untwisted edges along Σ for the real structure c′. Then we could take the
�xed component of c′ lifting Σ to de�ne the image of our (0, 2)-lifting morphism L0,2 (Σ). The
author was not able to extend any twist wave to a co-cycle in Z1

cell (X;WZ). However, we can
still use our results from Section 3.4, in order to lift the orientable topological surface Σ as a
�xed component of an involution that is locally a real structure, but does not necessarily extend
to a real structure on the phase tropical surface (SX , X). Let us de�ne SΣ = λ−1 (Σ) ⊂ SX .
Note that we cannot consider (SΣ,Σ) as a phase tropical surface because Σ is not a hypersmooth
tropical surface. We say that c′Σ is a real structure of (SΣ,Σ) if it satis�es the axioms of De�nition
3.11 of a real structure, in restriction to SΣ. In particular, the restriction of c to SΣ, denoted
by cΣ, is a real structure of (SΣ,Σ). If c′Σ is a real structure of (SΣ,Σ), one can de�ne the twist
wave from cΣ to c′Σ along Σ as a co-chain wΣ(c′Σ, cΣ) ∈ C1

cell (Σ;WZ), with the same de�nition
for wΣ(c′Σ, cΣ) · e as De�nition 3.21. Proposition 4.2 allows us to lift the orientable topological
surface Σ, in the case where Σ can be embedded in a tropical toric variety, of any dimension.
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De�nition 4.5. Let A ⊂ X, where X is a tropical manifold. A tropical embedding of A inside a
tropical toric variety Y is a map j : A→ Y such that j is integer a�ne (that is to say an integer
a�ne map in any chart) and is a homoeomorphism onto its image.

Proposition 4.2. If there exists a tropical embedding Σ
j
↪→ RN , for N ≥ 3, then there exists a

real structure c′Σ of (SΣ,Σ) such that Σ lifts as a �xed component of c′Σ in SΣ.

In order to prove this proposition, we �rst need Lemma 4.8 below.

Lemma 4.8. Assume that there exists a tropical embedding Σ
j
↪→ RN , for N ≥ 3. Then

the group H2
cell(Σ;WZ) is isomorphic to Z3 as an abelian group. As a consequence, the group

H2
cell(Σ;WZ) is torsion-free.

Proof. Choose an arbitrary orientation of Σ. For any face F ∈ C2(Σ), we orient F according to
the orientation induced by Σ. Since j(Σ) ⊂ RN , for any face F ∈ C2(Σ), the integer lattice TZF
is naturally a sublattice of ZN (all points are of empty sedentarity) and therefore we have an
inclusion of the wave space WZ(F ) ⊂ ZN . Let f : C2

cell(Σ;WZ)→ ZN be a morphism of abelian
groups de�ned by

f

 ∑
F∈C2(Σ)

F ⊗ vF

 =
∑
F

j∗(vF ).

The key remark is that f descends to cohomology, yielding a injective morphism H2
cell(Σ;WZ)→

ZN . Since ZN is free, it implies that H2
cell(Σ;WZ) has no torsion. S all that remains is to check,

that any 2-co-chain in the image of the tropical co-boundary operator is in the kernel of f , and
then that the induced morphism is injective. Let e be an oriented cell of Σ and let v ∈ WZ(e).
The edge e is adjacent to two faces F and G of Σ. Only one of them is endowed with an
orientation that induces the orientation of e. Therefore, we have d(e⊗ v) = ± (F ⊗ v −G⊗ v),
and we deduce f (d(e⊗ v)) = 0 ∈ ZN . Thus, f descends to co-homology and we still denote
by f the induced morphism f : H2

cell(Σ;WZ) → ZN . Now, let us prove that f is injective.
Fix a vertex v of Σ. There are three edges adjacent to v in Σ and we denote them by e1, e2

and e3, where the indices are in Z3. The edges ei are oriented outwards v for i ∈ Z3. For
any i ∈ Z3, we denote by Fi the face of Σ spanned by ei and ei+1, oriented such that the
boundary orientation on ei+1 coincides with the previously chosen orientation of ei+1 (recall
that the orientation of Fi was �xed at the beginning of the proof). For every i ∈ Z3 denote
by wi = Fi ⊗ vi+1, where vi+1 is the primitive vector in WZ ((ei+1) oriented according to the
orientation of the edge ei+1. The cohomology classes of the cocycles w1, w2 and w3 form a
generating family of the group H2

cell(Σ;WZ). Indeed, for any i ∈ Z3, if w = Fi ⊗ v, where
v ∈WZ(Fi), by decomposing the vector v as v = kiei+ki+1ei+1, where ki and ki+1 are integers,
one can express the cohomology class of w as a integer linear combination of the cohomology
classes of wi−1 and wi. By induction, one can then show that any cohomology class of a cocycle
of the form w = F ⊗ v is an integer linear combination of the cohomology classes of w1, w2 and
w3. Yet, for any i ∈ Z3 one has f(wi) = j∗vi+1 and since j is an injective a�ne integer map,
the family of vectors (j∗v1, j∗v2, j∗v3) is free, so that f : H2

cell(Σ;WZ)→ ZN is injective.

Remark 4.3. In the hypothesis of the previous statement, N is required to be at least 3 only
because otherwise there cannot be such an embedding of Σ into RN . We ask that the embedding
be in RN , but since a tropical embedding preserves the order of sedentarity, Σ is actually a subset
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of Xo. Thus, any embedding of Σ in a tropical variety Y of dimension N yields an embedding
in Y ∅ = RN .

Proof of Proposition 4.2. By Lemma 4.8, the cohomology group H2
cell(Σ;WZ) has no torsion.

Thus, the reduction modulo 2 morphism H1
cell (Σ;WZ) → H1

cell (Σ;WZ2) is surjective, and so
there exists a cohomology class [w] ∈ H1

cell (X;WZ) such that [w] = [wΣ(c)] (mod 2). Yet, by
restricting the statement of Proposition 3.14 to SΣ, one can �nd a real structure c′Σ of (SΣ,Σ),
obtained by Dehn twist from cΣ such that the twist wave wΣ(c′, c) along Σ has for cohomology
class [wΣ(c′, c)] = [w], so that the reduction modulo 2 of [wΣ(c′, c)] is also equal to [wΣ(c)].
Recalling that all edges of Σ are of sedentarity 0, one can apply Lemma 3.23 in order to obtain
that all edges of Σ are untwisted, or equivalently that the twist wave wΣ(c′) of c′ along Σ is zero.
By Lemma 4.6, the orientable topological surface Σ lifts a �xed component of c′Σ in SΣ.

Let us assume that for every topological surface Σ′ ⊂ X, the surface Σ′ is orientable and the
cohomology group H2 (Σ′;WZ) has no 2-torsion. In particular, if X is a tropical subvariety of a
tropical toric variety of dimension 3, then this assumption is satis�ed by Lemma 4.8 and because
a topological surface embedded in R3 is orientable. In particular, there is no torsion in H1 (X;Z)
and thus one has H2 (X;G) ∼= Gb2(X), where b2(X) = rank (H2 (X;Z2)). We are now ready to
de�ne the lifting morphism for (0, 2)-cycles inX. To that end, we �x b2(X) = dimZ2

(H2 (X;Z2))
orientable topological surfaces in X, denoted by Σ1, . . . ,Σb2(X), such that their homology classes
form a base of the homology group H2 (X;G) ∼= H0,2 (X;G).

De�nition 4.6. Let G be an abelian group. With the above assumption, any homology class in
H2 (X;G) is of the form

∑
j µj [Σj ], where µ1, . . . , µb2(X) are in G. We de�ne the (0, 2)-lifting

morphism L0,2 : H2 (X;G)→ H2 (SX ;G) /H1,1 (SX ;G) by

L0,2

 ∑
1≤j≤b2(X)

µj [Σj ]

 =
∑

1≤j≤b2(X)

µj [Σj ] (modH1,1 (SX ;G)) ,

where sΣj is the lift of Σj obtained by Proposition 4.2 for all j in {1, . . . , b2(X)}. The elements
of H2 (SX ;G) which are projected onto the image Im (L0,2) of the lifting morphism L0,2, by the
projectionH2 (SX ;G)→ H2 (SX ;G) /H1,1 (SX ;G), form a sub-group denoted byH0,2 (SX ;G) ⊂
H2 (SX ;G).

For now, note that the (0, 2)-lifting morphism evaluated on µ ·Σ depends on the choice of the
real structure c′Σ, obtained by Dehn twist from cΣ, used in order to lift the orientable topological
surface Σ. In fact, this real structure depends �rst on the co-cycle w we choose in the proof of
Proposition 4.2, which is well de�ned up to an even co-cycle in Z1

cell (Σ;WZ), but also depends
on the choice, for each face F of Σ, of the edge eF at which the w-twist on SF starts. The lifting
morphism L0,2 also depends on the choices of the orientation of the faces F of Σ, but it seems
quite natural to orient the faces for the orientation induced by the orientation of Σ. In the rest
of this section, we assume that for any orientable topological surface in X, the co-cycles w and
the edges eF are �xed. More importantly, this lifting morphism depends on the choice of a basis
[Σ1] , . . . ,

[
Σb2(X)

]
of H2 (X;G). We show in Section 4.2 that the lift L0,2(µΣ) does not depend

on these choices, but only in the case where G = Z2.

Remark 4.4. Notice that in the case where G = Z2, although there is no need for an orientation
on the topological surface Σ in order to make it a (0, 2)-cycle with coe�cients in Z2, we still
need to require that the topological surface Σ be orientable, in order to be able to lift it.
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As in Sections 4.1.1 and 4.1.2, we end this section with a comparison between the tropical
intersection product and the intersection product in SX .

Proposition 4.3. Let a and b be tropical singular respectively (2, 0)- and (0, 2)-cycles with Z2-
coe�cients, forming a transversal pair. The tropical intersection product of a and b is equal to
the intersection product between the lift L2,0 (a) and L̃0,2(b) in H2 (SX ,Z2), where L̃0,2(b) is any
representative of the lift L0,2(b), that is to say

L2,0(a) ◦ L̃0,2(b) = a ◦ b.

Proof. Is is enough to prove the result for a = x ⊗ v (where x lies in the relative interior of a
face F , because a intersects transversally the combinatorial strati�cation and v ∈ FZ2

2 (F )) and
for b = µ ·Σj , where µ = 1 ∈ Z2 and j ∈ {1, . . . , b2(X)} (see De�nition 4.6). By Lemma 4.5, the
result of the intersection product L2,0(a)◦ L̃0,2(b) does not depend on the representative L̃0,2(b)

of the lift L0,2(b), so let us take L̃0,2(b) = µ
[
sΣj

]
∈ H2 (SX ;Z2), where sΣj is a �xed component

of a real structure c′Σj of (SΣj ,Σj), obtained by Dehn twist from cΣj (see Proposition 4.2). In
the �ber λ−1(x) there are four �xed points by c′Σj and only one of them lies in the lift sΣj (it is
the point corresponding to the disk dF in the proof of Lemma 4.6). Therefore, the intersection
product L2,0(a) ◦ L̃0,2(b) is equal to 1 = µ = a ◦ b.

4.2 Obtaining a Filtration

In this section, (SX , X) is a phase tropical surface, endowed with a real structure c and such
that for any topological surface Σ in X, the cohomology group H2

(
Σ;W 1

Z
)
has no 2-torsion and

the surface Σ is orientable. The goal of this section is to show that we have a �ltration

0 ⊂ H2,0 (SX ;Z2) ⊂ H1,1 (SX ;Z2) ⊂ H0,2 (SX ;Z2) = H2 (SX ;Z2) . (4.2)

Remark 4.5. This �ltration is a generalization of the �ltration obtained in [7] (see Section 3.2.1).
In a di�erent context, namely torus �brations over integral a�ne manifolds, the lifting of tropical
cycles also leads to a very similar �ltration (see for example [35]).

Note that in this section we only work with Z2-coe�cients. Also note that for now, the
sub-group H0,2 (SX ;Z2) ⊂ H2 (SX ;Z2) depends on some choices we have to make in the proof
of Proposition 4.2 and on the choice of a basis [Σ1] , . . . ,

[
Σb2(X)

]
of H2 (X;Z2).

Proposition 4.4. The (p, q)-lifting morphisms Lp,q (with coe�cients in Z2) are injective for
all non-negative integers p and q such that p+ q = 2.

Proof. Let us begin with p = 2 and q = 0. Let [a] ∈ H2,0 (X;Z2) such that L2,0([a]) = 0.
In particular, it implies that the intersection product of L2,0([a]) with any element L̃0,2(b),
representing a lift L0,2(b) of a tropical singular (0, 2)-cycle b, is zero. By Proposition 4.3, it
implies that the tropical intersection product of [a] with any element of H0,2 (X;Z2) is also
0. By the non-degeneracy of the tropical intersection form with Z2 coe�cients (see Theorem
2.3), we obtain [a] = 0, so the (2, 0)-lifting morphism is injective. With very similar arguments,
the injectivity of the (0, 2)-lifting morphism L0,2 is also as consequence of Proposition 4.3 and
Theorem 2.3, while the injectivity of the (1, 1)-lifting morphism is a consequence of Proposition
4.1 and Theorem 2.3.
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Proposition 4.5. The (0, 2)-lifting morphism is surjective onto H2 (SX ;Z2) /H1,1 (SX ;Z2),
that is, H0,2 (SX ;Z2) = H2 (SX ;Z2).

Proof. By Proposition 4.4 above, one has dimHp,q (X;Z2) = dim (ImLp,q), for all non-negative
integers p and q such that p+ q = 2. Thus by summing over p+ q = 2 one obtains∑

p+q=2

dimHp,q (X;Z2) = dimH0,2 (SX ;Z2) .

Yet, by Proposition 3.3 one has∑
p+q=2

dimHp,q (X;Z2) ≥ dimH2 (SX ;Z2) .

Therefore, the dimension of the Z2 vector sub-space H0,2 (SX ;Z2) ⊂ H2 (SX ;Z2) is equal to
the dimension of the ambient vector space H2 (SX ;Z2), hence the equality H0,2 (SX ;Z2) =
H2 (SX ;Z2).

Corollary 4.1. The lifting morphism L0,2 does not depend on the choice of the real structure c′Σ
of (SΣ,Σ) made in the proof of Proposition 4.2 nor on the choice of the basis [Σ1] , . . . ,

[
Σb2(X)

]
of H2 (X;Z2).

Proof. Since L0,2 is surjective, an element in H2 (SX ;Z2) /H1,1 (SX ;Z2) = ImL0,2 is uniquely
determined by its intersection products with the elements ofH2,0 (SX ;Z2), by the non-degeneracy
of the tropical intersection form. Yet, these intersection products depend only on the homology
class of the (0, 2)-tropical cycle Σ, hence the statement of the corollary.
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5 Type and Maximality of a Real Structure of a Phase
Tropical Surface

In this chapter, (SX , X) is a phase tropical surface, endowed with a real structure c and such
that for any topological surface in X, the cohomology group H2 (Σ;WZ) has no 2-torsion and
the surface Σ is orientable. In particular, we may apply the result of the previous chapter about
the lifting of tropical (0, 2)-cycles and we have the �ltration (4.2) of the second Z2-homology
group H2 (SX ;Z2).

5.1 Action of the Conjugation on the �ltered Homology

In this section we compute the action of the conjugation on the sub-groups Hp,q (SX ;Z2) of the
�ltration (4.2). The action on the sub-group H2,0 (SX ;Z2) is trivial (Proposition 5.1). We also
manage to compute the action of 1 + c∗ on the lifts of (orientable) topological surfaces Σ ⊂ X
as some tropical (1, 1)-cycle dual to the twist wave wΣ(c) of c along Σ (see Proposition 5.3).
The author did not manage to �nd an expression for the action of 1 + c∗ on the lift of tropical
(1, 1)-cycles. However, we show that (1 + c)∗ (H1,1 (SX ;Z2)) ⊂ H2,0 (SX ;Z2) (Proposition 5.2).

Proposition 5.1. The involution acts trivially on the lifts of singular tropical (2, 0)-cycles, that
is,

(1 + c∗) (H2,0 (SX ;Z2)) = 0.

Proof. By Lemma 2.3, a tropical (2, 0)-cycle is homologous to a tropical (2, 0)-cycle whose
support is contained in the relative interior of the faces of X (i.e it itersects transversally the
combinatorial strati�cation). The lift of such a (2, 0)-cycle x⊗v, where x is in the relative interior
of a face F of X, is given by the homology class L2,0 (x⊗ v)

[
λ−1 ({x})

]
(if v 6= 0). Yet, the real

structure c acts �ber-wise on SF and is a homeomorphism so c∗L2,0 (x⊗ v) = L2,0 (x⊗ v).

Proposition 5.2. One has

(1 + c∗) (H1,1 (SX ;Z2)) ⊂ H2,0 (SX ;Z2) .

Proof. Let us consider [a] ∈ H1,1 (SX ;Z2). By Lemma 2.3, we can take the tropical (1, 1)-cycle
a to be intersecting transversally the combinatorial strati�cation of X. So one can decompose
a as the sum a =

∑
α α ⊗ vα, where for any singular 1-chain α, the relative interior of the

image α ([0, 1]) is contained in the relative interior of a face Fα of X. Recalling the notations
of Construction 4.1, one can then choose να := Rṽα/2πZṽα ⊂ TFα for the cycle να, where ṽα
is a primitive integer vector in W ′Z(Fα) = WZ(Fα), whose reduction modulo 2 coincides with
vα ∈ W ′Z2

(Fα). The lift lα = α([0, 1]) × να of the framed simplex α ⊗ vα, is then invariant by
c∗. Therefore, one has

(1 + c∗)

(∑
α

lα

)
+

∑
y∈Y (a)

βy

 =
∑

y∈Y (a)

(1 + c∗)(βy), (5.1)

where Y (a) and βy are the notations from Construction 4.1. Since the βy represent lifts of
tropical (2, 0)-cycles for every y ∈ Y (a), the homology class of the left hand-side term of Equation
(5.1), which represents the lift L1,1(a), is in the sub-group H2,0 (SX ;Z2).
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De�nition 5.1. Let Σ ⊂ X be an orientable topological surface and w ∈ Z1
cell (Σ;WZ2). We

de�ne the dual (1, 1)-cycle to w by

w∗ =
∑

F∈C2(Σ)

∑
e∈C1(F)

[xF , xe]⊗ (w · e).

Lemma 5.1. Let Σ ⊂ X be an orientable topological surface and w ∈ Z1
cell (Σ;WZ2). The dual

(1, 1)-cycle w∗ is indeed a tropical cycle.

Proof. There are two types of points where we have to check that the image ∂w∗ of w∗ by the
tropical boundary operator ∂ is zero: the middle points of the edges and the barycenters of the
faces. Let e be an edge of Σ. There are two singular 1-chains of w∗ having xe in their boundary:
[xG, xe]⊗ (w · e) and [xH , xe]⊗ (w · e), where G and H are the faces of Σ adjacent to the edge
e. The tropical (1, 0)-chain ∂w∗ restricts to w · e+w · e = 0 at the point xe (implying xe is not
in the support of ∂w∗). Now, let F be a face of X. There are Card (C1(F )) singular 1-chains
of w∗ having the barycenter xF in their boundary: all the [xF , xe]⊗ (w · e) for e an edge of F .
The vanishing of the tropical (1, 0)-chain ∂w∗ at the point xF is exactly given by the co-cycle
condition dw · F = 0.

Proposition 5.3. Let Σ ⊂ X be an orientable topological surface. Let L̃0,2(Σ) ∈ H2 (SX ;Z2)
be a homology class representing the lift L0,2(Σ). One has

(1 + c∗) L̃0,2(Σ) = L1,1 (w∗Σ(c)) mod (H2,0 (SX ;Z2)) ,

where w∗Σ(c) is the dual cycle to wΣ(c).

Proof. Let us choose a real structure c′Σ of (SΣ,Σ) obtained by Dehn twists from c, such that Σ
lifts as a �xed component sΣ of Fix(c′Σ). First of all, recall that c and c′Σ coincide on the �bers

Sv for all vertices v of Σ. Therefore, the 2-chain (1 + c∗)sΣ is contained in SΣ \
(⋃

v∈C0(Σ)

o

Sv

)
.

Denote by w ∈ Z1
cell (Σ;WZ) the co-cycle used to construct the w-twists in order to obtain

the real structure c′Σ. Let F be a face of Σ. Denote by eF the edge of F , at which the
chosen w-twist Dw on SF starts. As in De�nition 3.23, denote by e0, . . . , en−1 the edges of F ,
such that eF = e0. Recall the notation ΓeiF = conv (ei, xF ) introduced in De�nition 3.24. In
the coordinates of SF where the local real structure cF acts as the standard conjugation, the
intersection

(
ΓeiF × TF

)
∩ sΣ, for i ∈ Zn, is given by

sΣ ∩
(
ΓeiF × T

F
)

=


ξ, x, θF + πξ

x(w · ei) +
∑

0≤j≤i−1

(w · ej)

 |ξ ∈ [0, 1], x ∈ [0, 1]

 ,

where θF ∈ TF is a �xed point by the conjugation θ 7→ −θ. Now, consider the 3-chain ηeiF
de�ned by

ηeiF :=


ξ, x, θF + π ((1− t) + tξ)

x(w · ei) +
∑

0≤j≤i−1

w · ej

 | (ξ, x, t) ∈ [0, 1]
3

 .
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When adding the boundary of ηeiF to the 2-chain sΣ ∩ ΓeiF × TF , one obtains

sΣ ∩
(
ΓeiF × T

F
)

+∂ (ηeiF ) =


ξ, x, θF + πx(w · ei) + π

∑
0≤j≤i−1

(w · ej)

 | (ξ, xi) ∈ [0, 1]
2


+


ξ, 0, θF + π ((1− t) + tξ)

∑
0≤j≤i−1

w · ej

 |(ξ, t) ∈ [0, 1]
2


+


ξ, 1, θF + π ((1− t) + tξ)

∑
0≤j≤i

w · ej

 |(ξ, t) ∈ [0, 1]
2


+


0, x, θF + π (1− t)

x(w · ei) +
∑

0≤j≤i−1

w · ej

 | (x, t) ∈ [0, 1]
2

 ,

Note that on the right hand-side of the above equation, we have 4 terms of the boundary of the
3-chain ηeiF : the one with t = 0, followed by the ones with x = 0 and with x = 1, and �nally
the one with ξ = 0. The boundary term with t = 1 is equal to the 2-chain sΣ ∩

(
ΓeiF × TF

)
and the one with ξ = 1 has a 1-dimensional image so it does not appear (more precisely it is
contained in the terms with t = 0 and t = 1). We put θeiF := θF + π

∑
0≤j≤i−1(w · ej), which

is also invariant by θ 7→ −θ, because the sum
∑

0≤j≤i−1(w · ej) is in the integer lattice W ′Z(F ).
We also put

βeiF :=


0, x, θF + π (1− t)

x(w · ei) +
∑

0≤j≤i−1

w · ej

 | (x, t) ∈ [0, 1]
2

 . (5.2)

By summing over all i ∈ Zn, one gets

sΣ ∩ SF + ∂ηF =
∑
i∈Zn

{
(ξ, xi, θ

ei
F + πxi(w · ei)) | (ξ, xi) ∈ [0, 1]

2
}

+ βF ,

where we put ηF :=
∑
i∈Zn η

ei
F and βF :=

∑
i∈Zn β

ei
F . Now, for all i ∈ Zn, de�ne the 3-chain νeiF

in ΓeiF × TF by

νeiF :=

{(
ξ, txi +

1− t
2

, θeiF + πxi(w · ei)
)
| (ξ, xi, t) ∈ [0, 1]

3

}
.

For all edges e of the topological surface Σ, one can write, in the coordinates of Se where the
local real structure ce acts as the standard conjugation, the intersection of the lift sΣ with the
building-block Se as

sΣ ∩ Se = {(x, θe + πx(w · e)) |x ∈ [0, 1]} × be,

where be ⊂ P
1
is one of the three �xed components by the standard conjugation of the com-

pacti�ed pair-of-pants P
1
and θe ∈ T e is a �xed element by the involution θ 7→ −θ. Similarly

103



to the de�nition of the 3-chains νeiF , for all edges e of Σ, let us consider the 3-chain νe in Se
de�ned by

νe :=

{(
tx+

1− t
2

, θe + πx(w · e)
)
| (x, t) ∈ [0, 1]

2

}
× be.

We now add the boundary (1 + c∗) ∂
(∑

e∈C1(Σ) νe +
∑
F∈C2(Σ)

∑
e∈C1(F ) ν

e
F

)
to the 2-cycle

(1 + c∗)
(
sΣ +

∑
F∈C2(Σ) ∂ηF

)
(which is homologous to (1 + c∗)sΣ). The resulting 2-cycle, de-

noted by s∗Σ is a 2-chain whose projection by λ is contained in the support of (1, 1)-cycle w∗Σ (c).
More precisely, the 2-cycle s∗Σ can be written as a sum

s∗Σ =
∑

F∈C2(Σ)

∑
e∈C1(F )

te[xF , xe]× (θeF + Rve/2πZve) +
∑

F∈C2(Σ)

(1 + c∗)βF +
∑

e∈C1(Σ)

βe,

where ve is a primitive vector in W ′Z(e), te is the reduction modulo 2 of the twist te(c′Σ, c) (in
particular one has w · e = teve (mod 2)) and the 2-chains (1 + c∗)βF and βe are contained
respectively in the �bers over the barycenters λ−1(xF ) and λ−1(xe) for every face F and for
every edge e of Σ. Indeed, by Equation (5.2), the 2-chain (1 + c∗)βF is sent on the barycenter
xF by λ and the 2-chain βe is equal to

βe = te{xe} × (θe + Rve/2πZve)× be. (5.3)

Therefore, the homology class of s∗Σ in H2 (SX ;Z2) represents the lift L1,1 (w∗Σ(c)) of the singular
tropical (1, 1)-cycle w∗Σ(c) in the quotient group H2 (SX ;Z2) /H2,0 (SX ;Z2).

Corollary 5.1. One has

(1 + c∗) (H0,2 (SX ;Z2)) ⊂ H1,1 (SX ;Z2) .

Another interesting corollary, is a tropical necessary criterion for the maximality of (SX , c).
Let us recall that the statement below is proved only under the assumptions made at the
beginning of the chapter.

Corollary 5.2. If (SX , c) is maximal, then for all topological surfaces Σ ⊂ X the dual (1, 1)-
cycle to the twist wave w∗Σ(c) of the real structure c, is homologous to zero, that is,

[w∗Σ(c)] = 0 ∈ H1,1 (X;Z2) .

Proof. It is a direct consequence of Proposition 5.3 and the fact that in the maximal case, the
conjugation acts trivially on the homology of SX with coe�cients in Z2 (see Theorem 1.2).

Example 5.1. The situation depicted in Figure 5.1 is a local obstruction to being maximal. We
represent the topological sphere Σ as embedded in R3 where the 6 vertices have coordinates
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1) and (0, 1, 1). The twisted edges are the vertical ones
(in red). The dual (1, 1)-cycle to the twist wave of the real structure c along Σ is non-zero, as one
can see by �nding another tropical (1, 1)-cycle having an odd tropical intersection number with
w∗Σ(c). We do not give a precise expression, but this tropical (1, 1)-cycle is depicted in green
in Figure 5.2, where only the framings on the vertical edges are represented. Moreover, such a
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Figure 5.1: Topological sphere Σ in a hypersmooth tropical surface, with edges twisted along
Σ in red, and the dual (1, 1)-cycle w∗Σ(c) in blue.

situation can arise in the case of primitive combinatorial patchworking. For instance, consider
any integer point (x, y, z) ∈ Z3 in the relative interior of a lattice polytope ∆ ⊂ R3. Assume that
there are 6 (primitive) tetrahedrons of the triangulation of ∆ containing (x, y, z) as a vertex and
having the following form. Each of the tetrahedra has for base one of the three horizontal tri-
angles conv ((x, y, z), (x− 1, y, z), (x, y − 1, z)), conv ((x, y, z), (x− 1, y, z), (x+ 1, y + 1, z)) and
conv ((x, y, z), (x, y − 1, z), (x+ 1, y + 1, z)), while the fourth vertex is either (x, y, z − 1) or
(x, y, z + 1). Then the topological sphere Σ arises as the boundary of the dual cell to the
vertex (x, y, z). In order to have the appropriate twisting of the edges along the topological
sphere Σ, one can, for example, take all the three vertices in the horizontal plane having height
equal to z and di�erent from (x, y, z), to have a sign opposite to the sign of the vertex (x, y, z).
Regarding the signs of the vertices (x, y, z ± 1) we take them to be opposite to one another.

5.2 A Combinatorial criterion for Type I

In this section, we compute the intersection number of the real part RSX with homology classes
of the di�erent sub-groups of the �ltration 4.2, where by RSX we mean the �xed locus of the
real structure c. The intersection with any element of the sub-group H2,0 (SX ;Z2) is always
zero (Proposition 5.4). As a consequence, the intersection number of the real part with a
representative of the lift of a (1, 1)-cycle does not depend on the representative and we give
a formula for this intersection number, which has the property of not depending on the real
structure c (Proposition 5.5).

Proposition 5.4. The real part intersects the lifts of tropical (2, 0)-cycles in an even number
of points, that is,

[RSX ] ∈ (H2,0 (SX ;Z2))
⊥
.

Proof. By Lemma 2.3, one can assume that the support of the (2, 0)-cycle is contained in the
relative interior of faces of X. The result then follows from the fact that there are always 4
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Figure 5.2: Topological sphere Σ in a hypersmooth tropical surface, with two (1, 1)-cycles
having an odd tropical number of intersection.

points in a toric �ber λ−1(x) for any point x in the relative interior of a face. So the intersection
number [RSX ] ◦

[
λ−1(x)

]
in Z2 is zero.

Proposition 5.5. Let a be singular tropical (1, 1)-cycle of X. The intersection of the real part
RSX of SX with a homology class L̃1,1(a), which represents the lift L1,1(a), is equal to the
tropical self-intersection number of a, that is

[RSX ] ◦ L̃1,1(a) = a ◦ a.

Proof. By Lemma 1.2, one has [RSX ]◦L̃1,1(a) = L̃1,1(a)◦c∗L̃1,1(a). By Proposition 5.2, one has
c∗L̃1,1(a) = L̃1,1(a) + β, where β ∈ H2,0 (SX ;Z2), hence the fact that c∗L̃1,1(a) ∈ H2 (SX ;Z2)
is also a representative of the lift L1,1(a). By Proposition 4.1, one deduces the result.

Corollary 5.3. If the phase tropical surface (SX , X) endowed with the real structure c is of
type I, then the the Z2-tropical intersection form on H1,1 (X;Z2) is even.

Remark 5.1. As mentioned at the beginning of this section, the intersection product [RSX ] ◦
L̃1,1(a) does not depend on the real structure c, but only on the tropical (1, 1)-cycle a.

In order to compute the self-intersection number of the lift of an orientable topological
surface Σ, we need an additional assumption: an almost complex structure on SX , such that c
is a conjugation (in the sense of De�nition 1.2). Note that an almost complex structure comes
with a structure of (orientable) di�erentiable manifold. We have not yet �xed a di�erentiable
structure on SX . However, each building-block Sσ = σ×Tσ×Pnσ , for every cell σ of sedentarity
zero, is a di�erentiable manifold with corners as a product of di�erentiable manifolds with
corners and at a point (x, θ, z) in the relative interior of Sσ, the tangent space to Sσ is equal to
Txσ⊕TθTσ⊕TzM (Pnσ ) and thus can be identi�ed with W ′(σ)⊕W ′(σ)⊕M∗P , where P is the
plane in C3 of equation 1 + z1 + z2 + z3 = 0, and the di�erential M∗ of the moment map M (see
Section 3.1.2) are taken in the trivialization z0 = 1 of CP 3. Thus the tangent space of the relative
interior of Sσ can be written as the trivial vector bundle Sσ × (W ′(σ)⊕W ′(σ)⊕M∗ (P )). We
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call this di�erentiable structure on the relative interior of the building-block Sσ, the standard

di�erentiable structure on
o

Sσ. Given a di�erentiable structure on SX , which restricts to the
standard di�erentiable structure on the relative interior of the building-block Sσ for any cell σ
of sedentarity 0, we say that an almost complex structure J ∈ End(SX) on SX is an X-almost
complex structure on SX , if for any cell σ and any point x in the relative interior of σ, the
restriction of J to the tangent space λ−1(x) × (W ′(σ)⊕W ′(σ)⊕M∗ (P )) is constant to an
endomorphism jx of W ′(σ)⊕W ′(σ)⊕ P .

Lemma 5.2. Assume that there exists an X-almost complex structure on SX such that c is a
conjugation. Then, for any real structure c′ of (SX , X) obtained by Dehn twist from c, there
exists an almost complex structure J ′ on the inverse image λ−1 (Xo) of the interior Xo = X\∂X,
such that c′ is a conjugation for J ′.

Proof. Denote by J an X-almost complex structure for which the involution c is a conjugation.
By assumption, there exists a homeomorphism D : SX → SX such that c′ = D ◦ c. The
homeomorphism D acts �berwise and we denote by Dσ the restriction of D to the building-
block Sσ, for any cell σ of sedentarity 0. If v is a vertex of sedentarity 0, then Dv = id. If

σ is an edge or a face, there exists a homeomorphism D
1
2
σ of Sσ such that

(
D

1
2
σ

)2

= Dσ and

D
1
2
σ ◦ c ◦D

1
2
σ = c (see the proof of Lemma 3.19 if σ is an edge and the proof of Proposition 3.14

if σ is a face). For any cell σ of sedentarity 0 of X, we de�ne a new almost complex structure

J ′σ on the relative interior of Sσ by J ′σ :=
(
D

1
2
σ

)
∗
J
(
D

1
2
σ

)−1

∗
. Since the local real structure c′σ is

equal to c′σ = Dσcσ = D
1
2
σ ◦ c ◦

(
D

1
2
σ

)−1

, the local real structure c′σ is a conjugation for J ′σ. Now

it remains to show that the J ′σ extend to an almost complex structure on λ−1 (Xo). Therefore,
we �rst need to precise the di�erentiable structure at a point (x, θ, z) in the intersection Sσ∩Sτ ,
where σ ⊂ τ are two adjacent cells of sedentarity 0. The key observation is that one can check,

from the expression of D
1
2
σ and D

1
2
τ from the proofs of Lemma 3.19 and Proposition 3.14, that

both homeomorphisms, in restriction to the intersection Sσ ∩ Sτ , di�er by a homeomorphism
of the form Dw

σ,τ : (x, θ, z) 7→ (x, θ + πw, z), where w ∈ W ′Z(τ). Now let us describe the
charts of our new di�erentiable structure in the case where σ = e is an edge, τ = F is a

face (both of sedentarity 0) and D
1
2
e (x, θ, z) ∈ e × T e × P

1
is a point lying in the relative

interior of the intersection Se ∩ SF (written in the coordinates of Se). Denote by w the vector

such that D
1
2
e = Dw

e,F ◦ D
1
2

F in restriction to the intersection Se ∩ SF . We denote by D
1
2

e,F

the homeomorphism SF ∪ Se → SF ∪ Se given by D
1
2
e on Se and by Dw

F ◦ D
1
2

F on SF , where
Dw
F is a homeomorphism of SF = F × TF de�ned as Dw

F (x, θ) = (x, θ + πw). Consider a chart
φU : U → VU for the original di�erentiable structure of SX such that the point (x, θ, z) lies in the
open set U ⊂ SX , then we de�ne a chart of our new di�erentiable structure in a neighborhood

of D
1
2
e (x, θ, z) by

φU ◦
(
D

1
2

e,F

)−1

:
(
D

1
2

e,F

)
(U)→ VU .

The transition maps with the charts of the original di�erentiable structure contained in the

relative interiors of Se and SF are di�erentiable because D
1
2
e and D

1
2
e are di�erentiable in the

relative interiors of Se and SF , respectively. This new di�erentiable structure makes of D
1
2

e,F a
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di�eomorphism of the relative interior of the union SF ∪Se and the di�erential of D
1
2

e,F in the rel-

ative interior of Se coincide with the one of D
1
2
e because they are equal and thus, in restriction to

the tangent space of the relative interior of Se, one has
(
D

1
2

e,F

)
∗
J
(
D

1
2

e,F

)−1

∗
= J ′e. In restriction

to the tangent space of the relative interior of SF , one also obtains
(
D

1
2

e,F

)
∗
J
(
D

1
2

e,F

)−1

∗
= J ′F ,

using the fact J is constant to jx on λ−1(x) × (W ′(σ)⊕W ′σ ⊕M∗ (P )) for any point x in

the relative interior of F and that the di�erential
(
D

1
2

F

)
∗
acts on the second component of

λ−1(x)× (W ′(σ)⊕W ′σ ⊕M∗ (P )) independently on the point (x, θ) in the �ber λ−1(x). There-
fore, we can extend J ′e and J

′
F to an almost complex structure (for the new structure of di�er-

entiable manifold on SX) on the relative interior of the union SF ∪ Se by
(
D

1
2

e,F

)
∗
J
(
D

1
2

e,F

)−1

∗
.

The same arguments work as well when we consider the intersection between a building block
Sv of a vertex of sedentarity 0 and a building block Se of an edge e of sedentarity 0 or the
intersection between 4 building blocks, that is, one building block Sv of a vertex of sedentarity
zero, two building-blocks Se and Sf of edges of sedentarity 0 and one building block SF of a
face. The new almost complex structure J ′, together with the new di�erentiable structure we
de�ned, satis�es the statement of the lemma.

Proposition 5.6 (Criterion for Type Iwu). Let (SX , X) be a phase tropical surface endowed
with a real structure c which is a conjugation for an X-almost complex structure on SX . The
surface (SX , c) is of type Iwu if and only if for every orientable topological surfaces Σ ⊂ X, the
intersection between the homology class [sΣ] of a lift of Σ and [RSX ] is even.

Proof. We have to show that the �xed locus of RSX realizes the characteristic element wu(SX)
(see De�nition 1.9) of the intersection form on H2 (SX ;Z2) if and only if for all topological
surfaces Σ, the intersection product [sΣ] ◦ [RSX ] is even. By Lemma 4.2, the self intersection
of an element [a] in H2,0 (SX ;Z2) is zero and thus is equal to [a] ◦ c∗[a] = 0. By Propositions
and 4.1 and 5.5 the self intersection [a]2 of an element [a] in H1,1 (SX ;Z2) is equal to the
intersection [a] ◦ c∗[a]. Therefore, we see that the Z2-intersection form and the Z2-form of the
involution (see De�nition 1.8) yield the same self-intersections for the elements of the sub-group
H1,1 (SX ;Z2). Fix a basis B of the tropical homology group H0,2 (X;Z2), where the elements of
B are homology classes of orientable topological surfaces in X. The homology classes of the lifts
[sΣ] ∈ H2 (SX ;Z2) span a Z2-subspace of H2 (SX ;Z2), complementary to H1,1 (SX ;Z2). Thus,
the characteristic elements of the Z2-intersection form and the Z2-form of the involution c are
equal if and only if the self-intersection [sΣ]◦[sΣ] are equal to [sΣ]◦c∗[sΣ] = [sΣ]◦[RSX ] (mod 2)
(note that we only need to compare the squares because the coe�cients are Z2 so one has
(a+ b)2 = a2 + b2). Yet, for every topological surface Σ ⊂ X, the self-intersection of the lift [sΣ]
is equal to χ (sΣ) = 0 (mod 2) by Lemma 1.2 and because the real structure c′Σ of (SΣ,Σ) used
to lift Σ is a conjugation by Lemma 5.2. The equivalence of the statement follows.

We can specialize Proposition 5.6 to the case where the Wu-class wu(SX) vanishes and obtain
a criterion speci�c to type I.

Corollary 5.4. Let (SX , X) be a phase tropical surface endowed with a real structure c which
is a conjugation for an X-almost complex structure on SX . The surface (SX , c) is of type I if
and only if
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(1) the Z2-tropical intersection form on H1,1 (X;Z2) is even and,

(2) for all topological surfaces Σ ⊂ X, the intersection number [sΣ] ◦ [RSX ] is even.

In order to obtain a useful criterion for type Iwu we need to compute the intersection number
[sΣ] ◦ [RSX ], where Σ is an orientable topological surface. Let e0, . . . , en−1 be the cyclically
ordered edges of a face F of Σ and let w ∈ H1

cell (Σ;WZ) (note that the co-homology group
H1
cell (Σ;WZ) is equal to the group of cellular co-cycles because all the vertices of Σ are of

sedentarity 0, so C0
cell (Σ;WZ) = 0). The vectors w · e0, . . . , w · en−1 form a polygonal chain in

W (F ) with Z2 coe�cients de�ned as

Pw(F ) :=
∑
i∈Zn

 ∑
0≤j≤i−1

w · ej ,
∑

0≤j≤i

w · ej

 , (5.4)

where the edges e0, . . . , en−1 are oriented according to the boundary orientation of F . This
chain is closed because of the co-cycle condition dw · F = 0. We denote by Bw(F ) the 2-chain
in C2 (W (F );Z2) which has for boundary ∂Bw(F ) = Pw(F ). Note that the 2-chain βF from the
proof of Proposition 5.3 is equal to θF + (pπ)∗ (Bw(F )), where we denote by pπ the composition
of the multiplication by π in W (F ) with the projection W (F )→ TF .

De�nition 5.2. Let Σ ⊂ X be an orientable topological surface, let w ∈ H1
cell (Σ;WZ), and let

F be a face of Σ. As in the discussion above, the face F is oriented and the edges of F are
labeled by i ∈ Zn. We denote by κ(w) the number of integer vectors lying in the polygonal
cycle Pw(F ) with even coordinates in WZ(F ). For every i ∈ Zn such that the edge ei is twisted
along Σ, we denote by θ̃eiF ∈W (F ) an arbitrarily small vector such that the base (θ̃eiF , w · ei) is
a positively oriented basis of W (F ) (for the orientation of F ). We denote by qw(ei) the number

of points of intersection between the segment
[
0, π

(
1
2w · ei +

∑
0≤j≤i−1 w · ej

)]
and the cycle

R~ei/ (2πZ~ei) + π
∑

0≤j≤i−1 w · ej , where ~ei ∈WZ(ei) is a primitive integer vector. We say that
F is w-twisted along Σ if the sum

κ(w) +
∑

e∈Tc(Σ)

qw(e)

is odd. We denote by Tw(Σ) the set of w-twisted faces along Σ.

Remark 5.2. The above de�nition depends a priori on the order of the edges of the face F .
However, the quantity κ(w) +

∑
e∈Tc(Σ) q(e) appears in the proof of Proposition 5.7 as the

number of points of intersection between a lift sΣ and a 2-cycle s̃∗Σ homologous to s∗Σ in the
relative interior of TF × F ⊂ SΣ. The order of the edges of F corresponds to the choice of a
starting edge for the w-twist Dw used to lift the topological surface Σ above the face F . It can
be shown that the parity of the number of intersection points in F ×TF does not depend on the
choice of the starting edge for Dw, so that the de�nition 5.2 does not depend on the order of the
edges of F either. However, there is surely a less complicated and more convincing argument to
show this independence, and maybe even a simpler de�nition.

Example 5.2. Consider a triangle F in the plane R2 with vertices (0, 0), (1, 0) and (0, 1). We
orient F so that ((1, 0), (0, 1)) is a positively oriented basis of W (F ). If F is contained in
a topological surface Σ with all three edges twisted along Σ and the cellular co-cycle w ∈
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0

π
(
1
2
w · e1 + w · e0

)
R~e1/ (2π~e1) + π(w · e0)
R~e1/ (2π~e1) + π(w · e0) + θ̃e1

F

θ̃e1
F

π(w · e0)

Figure 5.3: Illustration of the computation of qw(e1) in Example 5.2. The opposite edges of
the black square are identi�ed in the usual way to obtain a torus.

H1
cell (Σ;WZ) is such that for any oriented edge e of F , one has w · e = ~e, where ~e ∈ WZ(e)

is the primitive integer vector whose sign is induced by the orientation of the edge e, then
the face F is w-twisted along Σ. In fact, denoting by e0, e1 and e2 the edges [(0, 0), (1, 0)],
[(1, 0), (0, 1)] and [(0, 1), (0, 0)], respectively, there here is only one vector in the polygonal
cycle Pw(F ) with even coordinates so κ(w) = 1. Moreover, one has qw(e0) = qw(e2) = 0

because for i = 0 or 2 the segment
[
0, π

(
1
2w · ei +

∑
0≤j≤i−1 w · ej

)]
is parallel to the cycle

R~ei/ (2πZ~ei) +π
∑

0≤j≤i−1 w · ej , so after adding θ̃
ei
F to the cycle they do not intersect. We also

have qw(e1) = 0 because adding the vector θ̃e1F to the cycle R~e1/ (2πZ~e1) translates it outwards
the 2-chain Bw(F ) (see Figure 5.4). Therefore we have κ(w) + qw(e0) + qw(e1) + qw(e2) = 1.

Example 5.3. Let F be a square in R2 with vertices (0, 0), (1, 0), (1, 1) and (0, 1). We orient
F so that ((1, 0), (0, 1)) is a positively oriented basis of W (F ). Denote by e0, e1, e2 and e3 the
edges [(0, 0), (1, 0)], [(1, 0), (1, 1)], [(1, 1), (0, 1)] and [(0, 1), (0, 0)], respectively. Assume that F
is contained in a topological surface Σ with the two edges e0 and e2 twisted along Σ and the
two other edges e1 and e3 untwisted along Σ. If w ∈ H1

cell (Σ;WZ) is a cellular co-cycle such
that w · e0 = ~e0, w · e2 = ~e2 and w · e1 = w · e3 = 0, then the face F is w-twisted along Σ.
In fact the polygonal cycle has two edges, namely [0, w · e0] and [w · e0, 0]. There is only one
integer point in Pw(F ) with even coordinates, that is the point (0, 0), so one has κ(w) = 1.
Moreover one has qw(e0) = qw(e2) = 0 because the edges

[
(0, 0), (π2 , 0)

]
and

[
(π2 , 0), (0, 0)

]
are

both parallel to the cycle R~e0/ (2πZ~e0). If w ∈ H1
cell (Σ;WZ) is a cellular co-cycle such that

w · e0 = ~e0, w · e2 = ~e2, w · e1 = 2~e1 and w · e3 = 2~e3, then the face F is also w-twisted
along Σ. In this case, the polygonal cycle Pw(F ) consists of 4 edges [(0, 0), (1, 0)], [(1, 0), (1, 2)],
[(1, 2), (0, 2)] and [(0, 2), (0, 0)], so one has κ(w) = 2. One also has qw(e0) = 0, because the
segment

[
(0, 0), (π2 , 0)

]
is parallel to the cycle R~e0/ (2πZ~e0), but qw(e2) = 1, as one can see in

Figure 5.4.

Given a face F of the hypersmooth tropical surface X, the associated building-block SF =
F × TF is canonically oriented as for a complex manifold. In fact the tangent space at a point
(x, θ) ∈ F × TF , where the point x is in the relative interior of the face F , can be identi�ed
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0

π
(
1
2
w · e2 + w · e0 + w · e0

)

R~e2/ (2π~e2)
R~e2/ (2π~e2) + θ̃e2

F

θ̃e2
F

π (w · e0 + w · e1)

Figure 5.4: Illustration of the computation of qw(e2) in Example 5.3 in the torus TF . The
opposite edges of the black square are identi�ed in the usual way to obtain a torus.

with W (F )⊕W (F ) (recall that the wave space W (F ) is the tangent space at x of the face F ).
The tangent space T(x,θ)SF is thus canonically oriented by bases of the form (~u, l~u, ~v, l~v), for any
basis (~u,~v) of W (F ), where we denote by l~u a copy of the vector ~u ∈W (F )⊕ 0 in 0⊕W (F ).

De�nition 5.3. If the phase tropical surface (SX , X) is such that SX is orientable and the
canonical orientations of the building-blocks SF associated with the faces F of X are coherent,
we say that SX is X-oriented.

Remark 5.3. The above de�nition is ad hoc for the proof of Proposition 5.7. The author hopes
that the corresponding assumption in the statement of Proposition 5.7 can be removed with a
little more work.

Proposition 5.7. Let (SX , X) be a phase tropical surface endowed with a real structure c which
is a conjugation for an X-almost complex structure on SX and such that SX is X-oriented. Let
Σ ⊂ X be an orientable topological surface and let sΣ be a lift of Σ as obtained by Proposition
4.2 with a 1-co-cycle w ∈ H1

cell (Σ;WZ). The intersection number of the real part RSX with sΣ

is equal to the (parity of) the sum of the number of twisted edges along Σ with the number of
w-twisted faces along Σ, that is,

[RSX ] ◦ [sΣ] = Card (Tc (Σ)) + Card (Tw(Σ)) (mod 2).

Proof. The lift sΣ of Σ is obtained using for every face F of Σ, the Dw twist starting at an
arbitrary edge, denoted by eF and de�ned with the orientation of F induced by a �xed choice of
an orientation of Σ (see De�nition 3.24). By Lemma 1.2, one has [RSX ]◦ [sΣ] = [sΣ]◦c∗ [sΣ]. By
Lemma 5.2 the real structure c′Σ of (SΣ,Σ) used to lift Σ is a conjugation, and so by Lemma 1.1
the self-intersection number [sΣ] ◦ [sΣ] is congruent modulo 2 to the Euler characteristic χ(Σ).
Yet Σ is orientable, so one deduces [sΣ] ◦ [sΣ] = 0 and thus

[RSX ] ◦ [sΣ] = [sΣ] ◦ ([sΣ] + c∗ [sΣ]) . (5.5)
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Recall the notations of the proof of Proposition 5.3 and the expression found for the 2-cycle
s∗Σ homologous to (1 + c∗)sΣ. In particular, by Equation (5.5) above, one has

[RSX ] ◦ [sΣ] = [sΣ] ◦ [s∗Σ] .

Recall that the intersection of s∗Σ with the building-block Se associated with an edge e of Σ is
equal to the 2-chain βe with Z2 coe�cients whose expression is given by Equation (5.3). We
perturb the 2-chain βe so that it intersects transversally sΣ in te points modulo 2 (where te ∈ Z2

is introduced in Equation (5.3)). This perturbation β̃e is equal to

β̃e = te (θe + Rve/2πZve)× b̃e,

where b̃e is a perturbation of be in P
1
de�ned in the following way. Denote by F and G the faces

adjacent to the edge e in Σ and denote by BF and BG the respective corresponding boundary
components of P

1
. The component be connects the boundary components BF and BG. All

the points of the boundary component BF are sent to a same point yF of ∆2 and similarly for
BG which is mapped to a point yG by the projection pr∆2

. With these notations, the �xed
component be is equal to [yF , yG] × {ϑe}, where ϑe ∈ T 3/T is a �xed point by the involution
ϑ 7→ −ϑ. Now, parametrize the segment [yF , yG] by y(s) = syF + (1 − s)yG for s ∈ [0, 1] and
de�ne the vector �eld ((y(s), ϑe), τ(s)) on b, where

τ(s) =

(
y(s)− 1

2
(yF + yG), 0

)
∈ Ty(s)∆2 ⊕ Tϑe

(
T 3/T

)
. (5.6)

Multiplying the vector �eld ((y(s), ϑe), τ(s)) by the almost complex structure (y, ϑ) 7→
(y,−ϑ) yields a normal vector �eld ~ne : be → N

P
1be to be in P

1
which has only one zero.

This zero is the middle point
(

1
2 (yF + yG), ϑe

)
. By identifying a tubular neighborhood of be in

P
1
and the normal bundle N

P
1be of be in P

1
, the normal vector �eld ~ne induces a perturbation

b̃e of be in P
1
, which is also parametrized by s ∈ [0, 1] and such that b̃e and be intersect only

at the middle point
(

1
2 (yF + yG), ϑe

)
. Furthermore, the perturbation b̃e intersects the bound-

ary of the building-block Se at the points (yF , ϑF ) and (yG, ϑG) for ϑF ∈
(
pr∆2

)−1
(yF ) and

ϑG ∈
(
pr∆2

)−1
(yG). Note that if ~o1 and ~o0 are tangent vectors to P

1
pointing outwards P

1
at

the points (y(1), ϑe) and (y(0), ϑe) respectively, the bases (~o1, ~ne (y(1), ϑe)) and (~o0, ~ne (y(0), ϑe))
de�ne the same orientation of the 1-dimensional compacti�ed pair-of-pants.

Now, we parametrize the cycle (Rve/2πZve) ⊂ T e by the continuous map ue : [0, 1] → T e.
In the coordinates of SF , the intersection of the 2-chain β̃e with SeF is equal to

β̃e ∩ SeF = te{xe} ×
{
θeF + ue(t) + θ̃eF (t)|t ∈ [0, 1]

}
,

where θeF ∈ TF is as in the proof of Proposition 5.3 and the map θ̃eF : [0, 1]→ TF is continuous
and its image is contained in V \ (Rve/2πZve), where V is an arbitrarily small neighborhood of
0 ∈ TF (we can take the normal vector �eld ne to be arbitrarily small). For any t ∈ [0, 1], one
can consider the lift of the vector θ̃eF (t) in W (F ) lying in a neighborhood of 0 ∈W (F ). We still
denote this lift by θ̃eF (t). Denote by ~e a non-zero vector of W (e) and by l~e a copy of this vector
as, in the discussion above De�nition 5.3. Denote also by ~oF ∈ W (F ) and ~oG ∈ W (G) vectors
pointing inwards F and G, respectively, from the barycenter xe of the edge e, and denote by l~oF
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and l~oG copies of these vectors as previously. Since SX is X-oriented, the bases (~e, l~e, ~oF , l~oF )
and (~e, l~e, ~oG, l~oG) de�ne the same orientation of the 4-dimensional manifold SX (see De�nition
5.3). Yet for any t, t′ ∈ [0, 1], the bases (~e, l~e, ~oF , θ̃

e
F (t)) and (~e, l~e, ~oG, θ̃

e
G(t′)) de�ne the same

orientation of the building-block Se (because of the remark above about the tangent vectors ~o1

and ~o0 of P
1
) so they de�ne the same orientation of SX . Thus, the base

(
θ̃eF (t), l~e

)
induces the

same orientation of the copy of W (F ) as the base (l~oF , l~e) and the base
(
θ̃eG(t), l~e

)
induces the

same orientation of the copy of W (G) as the base (l~oG , l~e). Up to the multiplication by −1 of
the normal vector �eld used in the construction of the perturbation b̃e, we can assume that the

bases
(
θ̃eF (t), lw·e

)
and

(
θ̃eG(t), lw·e

)
are positively oriented bases for the orientations of W (F )

and W (G) induced by the surface Σ. As a consequence, we have a 2-cycle s̃∗Σ homologous to s∗Σ
given by

∑
e∈C1(Σ)

β̃e +
∑

F∈C2(Σ)

β̃F +
∑

F∈C2(Σ)

∑
e∈C1(F )

(
[xF , xe]×

{
θeF + ue(t) + θ̃eF (t)|t ∈ [0, 1]

})
,

where for every face F of Σ, in the torus TF , one has

β̃F = (1 + c∗)βF +
∑

e∈Tc(Σ)∩C1(F )

{
θF + ue(t) + sθ̃eF (t)|(t, s) ∈ [0, 1]2

}
.

In the relative interior of a face F there can be points of intersection between sΣ and s̃∗Σ
either in the �ber {xF } × TF or in the inverse image of the relative interior of the segment
[xF , xe] for every edge e of F . We denote by e0, . . . , en−1 the edges of F labeled in the cyclic
order induced by the orientation of F , where e0 = eF is the starting edge of the w-twist Dw

used to lift the topological surface Σ. We begin with the intersection in the �ber {xF } × TF .
The intersection of the lift sΣ with this �ber consists in a single point {xF } × {θF }, while the
intersection of the 2-chain s̃∗Σ with this �ber is equal to the perturbation β̃F of (1 + c∗)βF .

Let us show that for any face F of Σ, the 2-chain β̃F intersects {xF } × TF transversally
and the intersection number is the number κ(w) of De�nition 5.2. Recall that one has βF =
θF + (pπ)∗ (Bw(F )) (see the discussion above De�nition 5.2 for the de�nition of the projection
pπ : W (F ) → TF ). For every edge e of F twisted along Σ, we denote by m(e) the 2-chain{
θF + ue(t) + sθ̃eF (t)|(t, s) ∈ [0, 1]2

}
. For every edge e of F , untwisted along Σ and such that

w ·e 6= 0, we denote by θ̃eF an arbitrary small vector inW (F ) such that
(
w · e, θ̃eF

)
is a positively

oriented basis of W (F ) (for the orientation induced by F ). We denote by m(e) the 2-chain{
θF + t (w · e) + sθ̃eF |(t, s) ∈ [0, 1]2

}
in C2

(
TF ;Z2

)
. We also denote by θ̃eF : [0, 1]→ W (F ) the

constant map equal to θ̃eF .
Let u ∈ WZ(F ) be an integer vector with even coordinates lying in the the polygonal cycle

Pw(F ). In particular, one has pπ(u) = 0 ∈ TF . If the vector u is in the relative interior

of an edge
[∑

0≤j≤i−1 w · ej ,
∑

0≤j≤i w · ej
]
for i ∈ Zn, then the intersection of Bw(F ) with

a su�ciently small neighborhood U of the point u in W (F ) is equal to the intersection of U
with a half-plane whose boundary is the a�ne line R(w · ei) + u. As a consequence, the 2-
chain θF + (1 + c∗) (pπ)∗ (Bw(F ) ∩ U) = θF + (pπ)∗ ((Bw(F ) + 2u−Bw(F )) ∩ U), contains a
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neighborhood of θF in the torus TF , so the intersection is transverse and contributes 1 to the
total intersection number sΣ ◦ s̃∗Σ ∈ Z2. If u is not in the relative interior of an edge of the
polygonal cycle Pw(F ), then the vector u is equal to the sum u =

∑
0≤j≤i−1 w · ej for i ∈ Zn.

It can happen that w · ei−1 or w · ei are equal to 0. If for any edge e of F , one has w · e = 0,
then the 2-chain s̃∗Σ does not intersect the building block SF , so there is trivially no points of
intersection with the lift sΣ in this building-block. As a consequence we restrict to the case
where there exists at least one edge such that w · e = 0, so we can always assume that the edge
ei−1 is such that w · ei−1 6= 0. We denote by k ∈ Zn the index such that w · ek 6= 0 and for any
i ≤ j ≤ k − 1 (for the cyclic order of Zn induced by the orientation of the boundary ∂F ) one
has w · ej = 0.

If the vectors w·ek and w·ei−1 are colinear of same sign, then the 2-chainsm (ei−1) andm(ek)
are equal in restriction to a su�ciently enough neighborhood of θF because for any t ∈ [0, 1], the

bases
(
w · ei−1, θ̃

ei−1

F (t)
)
and

(
w · ek, θ̃ekF (t)

)
de�ne the same orientation of W (F ). Moreover,

the intersection of the 2-chain Bw(F ) with a su�ciently small neighborhood U of the point u
in W (F ) is either equal to the intersection of U with a half-plane whose boundary is the a�ne
line R(w · ei−1) + u or is equal to the intersection with the a�ne line Rw · ei−1 + u. The second
possibility cannot happen because Bw(F ) has the polygonal cycle Pw(w) as a boundary so it
would imply the existence of an edge e of F such that w · e is non-zero and colinear with w · ei−1

and w · ek, which would contradict the convexity of the face F (F would have 3 parallel edges).
Thus the intersection of the 2-chain Bw(F ) with U is equal to the intersection of U with a
half-plane whose boundary is the a�ne line R(w ·ei−1)+u and by arguments similar to the case
where the vector u lies in the relative interior of an edge, one can show that the 2-chain

(1 + c∗) (pπ) ∗ (Bw(F ) ∩ U) + (m (ei−1) +m (ek)) ∩ pπ(U)

intersects transversally {θF } and contributes 1 to the total intersection number sΣ ◦ s̃∗Σ ∈ Z2.
Now we have to deal with the case where the vectors w ·ek and w ·ei−1 are not colinear of the

same sign. In that case, the intersection of the 2-chain Bw(F ) with a su�ciently small neighbor-
hood U of the point u inW (F ) is equal to Bw(F )∩U = (Ci + u)∩U , where Ci is the rational cone
generated by the family (w · ek,−w · ei−1). Since for any t ∈ [0, 1], the bases

(
θ̃
ei−1

F (t), w · ei−1

)
and

(
θ̃ekF (t), w · ek

)
form positively oriented bases of W (F ), if the neighborhood U is small

enough, the 2-chain (pπ)∗ (Bw(F ) ∩ U) + (mi−1 +mk) ∩ pπ (U) is equal to pπ (U \ (−Ci + v)).
Thus by adding the 2-chain c∗ (pπ)∗ (Bw(F ) ∩ U) = (pπ)∗ ((−Bw(F ) + 2πu) ∩ U), one gets that
the 2-chain

(1 + c∗) (pπ)∗ (Bw(F ) ∩ U) + (mi−1 +mk) ∩ pπ(U)

intersects transversally {θF } and contributes 1 to the total intersection number sΣ ◦ s̃∗Σ ∈ Z2.
We sum over all the vectors u with even coordinates lying in the the polygonal cycle Pw(F )

and we obtain that the intersection number β̃F ◦{θF } is equal to κ(w) (see De�nition 5.2). Note
that for every edge e untwisted along Σ such that w · e 6= 0, the 2-chain m(e) appears twice
in the sum because the vertices u0 and u1 of the edge e have coordinates of the same parity
so pπ(u0) = pπ(u1). The only other contributions can come from vectors u ∈ WZ(F ) which
have even coordinates and are inside the 2-chain Bw(F ). These terms cancel out because for
every vector u in the interior of Bw(F ), the opposite vector −u ∈ W (F ) lies in the interior
of the 2-chain Bw(F ), so after projecting on TF one gets two 2-chains that are images of one
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another by c∗ and intersecting transversally {θF }. These 2-chains both contribute 1 to the total
intersection number, so their sum contributes 0 to the total intersection number.

Now, let us prove that for any face F of Σ and for any edge e of F twisted along Σ, the

intersection number between the lift sΣ and [xF , xe] ×
(
θeF + ue(t) + θ̃eF (t)

)
is equal to the

number qw(e) of De�nition 5.3. Denoting by i ∈ Zn the the index such that ei = e, the
intersection of the lift sΣ with [xF , xei ]× TF is equal to

sΣ ∩
(
(xF , xei)× TF

)
=


ξ, 1

2
, θF + πξ

1

2
w · ei +

∑
0≤j≤i−1

w · ej

 |ξ ∈ [0, 1]

 .

So the points of intersection of the 2-cycle s̃∗Σ with sΣ∩
(
[xF , xei ]× TF

)
correspond to the points

of intersection of the 1-cycle
{
θeF + ue(t) + θ̃eF (t)|t ∈ [0, 1]

}
with the intervalθF + πξ

1

2
w · ei +

∑
0≤j≤i−1

w · ej

 |ξ ∈ [0, 1]


in TF . Yet, one has θei−1

F = θF +π
∑

0≤j≤i−1 w·ej and one can assume that the map t 7→ θ̃eiF (t) is

constant to an arbitrary small vector θ̃eiF forming a positively oriented basis
(
θ̃eiF , w · ei

)
ofW (F )

without modifying the number of points of intersection. So this number of points of intersection

is equal to the number of points of intersection of the 1-cycle
{
θeF + ue(t) + θ̃eF (t)|t ∈ [0, 1]

}
with the interval 0, π

1

2
w · ei +

∑
0≤j≤i−1

w · ej


in TF , that is, qw(ei) by De�nition 5.3.

As a conclusion, for any face F of Σ, the number of points of intersection between the lift
sΣ and the 2-chain s̃∗Σ in the building-block SF is equal to

κ(w) +
∑

e∈Tc(Σ)∩C1(F )

qw(e).

Thus, this number of points of intersection is equal to 1 ∈ Z2 if and only if the face F is w-
twisted along Σ. Since for any edge e of Σ, there is a point of intersection in the building-block
Se if and only if the edge e is twisted along Σ, by summing over all faces F and all edges e of
Σ one obtains the equation of the statement.

Example 5.4. Coming back to Example 5.1, under the hypotheses of Proposition 5.7, the situa-
tion represented in Figure 5.1 is not local obstruction to type I, since there are an odd number
of twisted edges along the topological sphere Σ, but also an odd number of w-twisted faces for
the following choice of co-cycle w ∈ H1

cell (Σ;WZ). For any oriented edge untwisted along Σ, we
set w · e = 0 and for any oriented edge twisted along Σ, we set w · e = ~e, where ~e is the prim-
itive vector in WZ(e) whose sign coincides with the orientation of the edge e. In fact, the two
horizontal triangles are trivially not w-twisted along Σ, because they do not have any twisted
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Figure 5.5: Local obstruction to type Iwu is true. The twisted edges are in red and the dual
(1, 1)-cycle is in blue.

edge along Σ, and the three vertical edge are w-twisted along Σ by the �rst case of Example
5.3. In particular, this example shows that non-maximal surfaces of degree 4 in P3 of type I can
be realized by primitive combinatorial patchworking. In fact, one only needs to insert the dual
triangulation described in Example 5.1, as the star of the vertex (x, y, z) = (1, 1, 1), complete it
to a primitive triangulation of the tetrahedron ∆ = conv ({((0, 0, 0), (4, 0, 0), (0, 4, 0), (0, 0, 4)})
and then choose arbitrary signs on the remaining vertices of ∆ ∩ Z3.

Example 5.5. Let us describe an example of a surface of degree 4 in P3 constructed by primitive
patchworking, neither of type I nor maximal. We consider the same topological sphere as in
Examples 5.1 and 5.3, but with a a di�erent set of twisted edges, the complementary set to be
precise. The sphere Σ is depicted in Figure 5.5 with the twisted edges in red and the dual (1, 1)-
cycle in blue. There are 6 twisted edges and 5 w-twisted faces along Σ for the following choice
of co-cycle w ∈ H1

cell (Σ;WZ). For any oriented edge untwisted along Σ, we set w · e = 0, and
for any oriented edge twisted along Σ, we set w · e = ~e, where ~e is the primitive vector in WZ(e)
whose sign coincides with the orientation of the edge e. In fact, the two horizontal triangles
are w-twisted along Σ by Example 5.2, and the three vertical squares are also w-twisted by the
�rst case of Example 5.3. Thus, by Proposition 5.7, the intersection number [sΣ] ◦ [RSX ] is
odd and by Proposition 5.6, a phase tropical surface containing Σ with a real structure yielding
this set of twisted edges cannot be of type Iwu. This situation may also arise in the primitive
combinatorial patchwork. We consider the same triangulation as in Example 5.1 but the signs
of the vertices are di�erent in order to get the appropriate set of twisted edges. Take the points
(x, y, z ± 1) to have the same sign and take all the signs of the vertices in the horizontal plane
of height z to be equal.

To conclude this chapter, let us discuss some of the directions in which this work could be
carried further. First, we should write a complete proof that our results actually apply to the case
of primitive combinatorial patchworking (as claimed in Examples 5.4 and 5.5). Second, we could
try to obtain a better formulation for Proposition 5.7, so that the criterion for type Iwu would be
easier to apply. In particular, we should try to get rid of some hypotheses in Propositions 5.6 and
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5.7. The next step would be to determine exactly which orientable topological surfaces (seen as
embedded in a hypersmooth tropical surface with polyhedral combinatorial strati�cation) with a
set of twisted edges (satisfying the co-cycle condition of Proposition 3.11) are local obstruction
to type Iwu. Another interesting question is whether any set of twisted edges satisfying the
co-cycle condition is realizable or not. An interesting case is when the tropical surface X is
embedded in a smooth tropical toric variety of dimension 3. In this case there are surely some
additional restrictions, similar to the notion of twist admissible set in the case of curves in the
plane (see [8]). Another direction would be to try to �nd a criterion for maximality, similar to
the proof of Haas's theorem in [7]. A promising approach is to study the connections between
Chapter 3 with Kalinin spectral sequence (see for example [19]) and A. Renaudineau and K.
Shaw's spectral sequence (see [34]). An intermediate step in this process is to better understand
the action of the conjugation on the lifts of tropical (1, 1)-cycles. Finally, it would be interesting
to know which results can be carried over to higher dimensions.
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