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“Theory is when you know everything and
nothing works. Practice is when everything works,

and no one knows why.
Here we have brought together theory and practice:

Nothing works ... and no one knows why!”

Albert Einstein
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Abstract — Industry 4.0 (I4.0) corresponds to a new way of planning, organizing, and
optimizing production. Therefore, the increasing exploitation of production systems through
the presence of many Internets of Things (IoT) devices, and digital transformation offers new
opportunities to make factories intelligent and do smart manufacturing. However, there are
many challenges in realizing the potential of these new technologies. One approach to ad-
dressing these challenges is introducing more automation throughout the production process.
This increases the availability, profitability, effectiveness, and environmental responsibility or
sustainability of the plant. This thesis focuses on factory automation via the development
of decision-making tools based on data-driven and physics AI models. Besides, the theoret-
ical aspects, the contribution, and the originality of our study consist in developing hybrid,
explainable and generalizable models for Predictive Maintenance (PdM) by using Deep Learn-
ing (DL) coupled with explainable techniques. Thus, we have developed two approaches to
explaining the DL model: By extracting the local and global knowledge from the learning
processes to support more transparent decision-making rules through Explainable Artificial
Intelligence (XAI) and by introducing knowledge or physical laws to inform and guide the
DL model. For this purpose, our research will focus on three main points:

Firstly, we will provide a state of the art of anomalies detection and PdM 4.0 approaches in
I4.0. Thus, we will exploit an advanced bibliometric analysis to retrieve and analyze relevant
documents from the scientific database Web of Science (WoS).This analysis gives us some
useful guidelines to help researchers and practitioners to understand the main challenges and
the most relevant scientific issues related to AI and PdM. Secondly, we have developed two
frameworks, based on Deep Neural Networks (DNNs). The first framework is formed by two
modules such as DNN and Deep SHapley Additive exPlanations (DeepSHAP). DNN module
consists to address the unbalanced multi-class classification tasks applied to the hydraulic
system conditions. Despite their performance, some questions arise about the reliability of
DNN as a "black-box" model for decision-making and the possible ethical, impacts on stake-
holders. To address these issues, a second module based on DeepSHAP is being developed
for the model’s explainability. DeepSHAP shows the importance and contribution of each
feature in the decision-making by the models. In addition, it promotes the understanding of
the process and guides humans to better understand, interpret, and trusts the AI models.

The second hybrid framework is known as Physical-Informed Deep Neural Networks
(PINN) for regression tasks. This aims to predict the states of Friction Stir Welding. PINN
consists of introducing the explicit knowledge or physical constraint into the learning algo-
rithm. This provides better knowledge and forces the model to follow the process topology.
Once trained, the PINN can substitute the numerical simulation of the FSW process which is
computationally time-consuming. In summary, this work opens new and promising perspec-
tives on the explainability of AI models applied to PdM 4.0. In particular, the exploitation of
these frameworks contributes to more accurate knowledge about of the investigated system.

Keywords: Industry 4.0 (I4.0), Predictive Maintenance (PdM), Friction Stir Welding
(FSW), Anomaly detection, Physical Informed Neural Networks (PINN), Trustful AI, eX-
plainable Artificial Intelligence (XAI)



Résumé— L’industrie 4.0 (I4.0) correspond à une nouvelle façon de planifier, d’organiser,
et d’optimiser les systèmes de production. Par conséquent, l’exploitation croissante de ces sys-
tèmes grâce à la présence de nombreux objets connectés, et la transformation digitale offrent
de nouvelles opportunités pour rendre les usines intelligentes et faire du smart manufacturing.
Cependant, ces technologies se heurtent à de nombre défis. Une façon de leurs d’appréhender
consiste à automatiser les processus. Cela permet d’augmenter la disponibilité, la rentabilité,
l’efficacité et de l’usine. Cette thèse porte donc sur l’automatisation de l’I4.0 via le développe-
ment des outils d’aide à la décision basés sur des modèles d’IA guidés par les données et par
la physique. Au-delà des aspects théoriques, la contribution et l’originalité de notre étude
consistent à implémenter des modèles hybrides, explicable et généralisables pour la Mainte-
nance Prédictive (PdM). Pour ce motif, nous avons développé deux approches pour expliquer
les modèles: En extrayant les connaissances locales et globales des processus d’apprentissage
pour mettre en lumière les règles de prise de décision via la technique l’intelligence artificielle
explicable (XAI) et en introduisant des connaissances ou des lois physiques pour informer ou
guider le modèle. À cette fin, notre étude se concentrera sur trois principaux points :

Premièrement, nous présenterons un état de l’art des techniques de détection d’anomalies
et de PdM4.0. Nous exploiterons l’analyse bibliométrique pour extraire et analyser des infor-
mations pertinentes provenant de la base de données Web of Science. Ces analyses fournissent
des lignes directrices utiles pouvant aider les chercheurs et les praticiens à comprendre les
principaux défis et les questions scientifiques les plus pertinentes liées à l’IA et la PdM. Deux-
ièmement, nous avons développé deux frameworks qui sont basés sur des réseaux de neurones
profonds (DNN). Le premier est formé de deux modules à savoir un DNN et un Deep SHap-
ley Additive exPlanations (DeepSHAP). Le module DNN est utilisé pour ressoudre les tâches
de classification multi-classes déséquilibrées des états du système hydraulique. Malgré leurs
performances, certaines questions subsistent quant à la fiabilité et la transparence des DNNs
en tant que modèle à "boîte noire". Pour répondre à cette question, nous avons développé un
second module nommé DeepSHAP. Ce dernier montrant l’importance et la contribution de
chaque variable dans la prise de décision de l’algorithme. En outre, elle favorise la compréhen-
sion du processus et guide les humains à mieux comprendre, interpréter et faire confiance aux
modèles d’IA. Le deuxième framework hybride est connu sous le nom de Physical-Informed
Deep Neural Networks (PINN). Ce modèle est utilisé pour prédire les états du processus de
soudage par friction malaxage. Le PINN consiste à introduire des connaissances explicites
ou des contraintes physiques dans l’algorithme d’apprentissage. Cette contrainte fournit une
meilleure connaissance et oblige le modèle à suivre la topologie du processus. Une fois formés,
les PINNs peuvent remplacer les simulations numériques qui demandent beaucoup de temps
de calcul. En résumé, ce travail ouvre des perspectives nouvelles et prometteuses domaine
de l’explicabilité des modèles d’AI appliqués aux problématiques de PdM 4.0. En particulier,
l’exploitation de ces framework contribuent à une connaissance plus précise du système.

Mots clés: Industrie 4.0, Maintenance Predictive, Soudage par r friction-malaxage, Dé-
tection d’anomalies, Réseaux de neurones informés par la physique, IA fiable, Intelligence
Artificielle Explicable



Chapter 1

General Introduction
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1.1 Context and Motivations

1.1.1 Industrial Revolution

At the beginning of the 2000s, the manufacturing industry underwent a major change due to
new market expectations and the introduction of various technologies to control production
activities. Prior to any development, we thought it appropriate to give a brief reminder of the
main revolutions that this industry has undergone (Figure 1.1). The first industrial revolu-
tion (Industry 1.0) occurred with the development of mechanics, the exploitation of coal, and
the introduction of the steam engine. The second industrial revolution or Industry 2.0 has
introduced electricity, transport development, and mass production at a reduced cost. The
third revolution (Industry 3.0) is identified through the exploitation of new information tech-
nologies, such as electronics and telecommunications. Finally, the fourth revolution (Industry
4.0) was presented for the first time at the Hannover Fair in 2013. In the next subsection, we
will give more details including the highlights and challenges of this last industrial revolution.
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Figure 1.1: Main industrial revolutions [1]

1.1.2 Industry 4.0 and Keys Technologies

In recent years, Industry 4.0 (I4.0) has contributed to addressing new challenges in the organi-
zation of customized production means. Industrialists have to deal with increasing worldwide
market competition and demands on different strategies. The definition of I4.0 depends on
the application context and the research domain [2]. The German digital association Bitkom
reports that there are more than 100 relevant explanations for the term Industry 4.0 [3].
Although there is strong agreement on the principles, providing a uniform definition of I4.0
is not easy. for example, articles [4], [5] describe Industry 4.0 as a combination of terms and
interconnected digital technologies. We have given our own definition of this context. Thus,
I4.0 can be considered as the combination of some technologies that contribute to developing,
automating decision tools, and exchanging real-time data in the process. In other words,
Factory 4.0 can be seen as a dynamic and integrated system that controls all the value chains
of a product’s life cycle. This can be identified as a new way of scheduling and organizing re-
sources. I4.0 has aroused remarkable interest among stakeholders, including researchers, due
to the emergence of new technological advances (e.g., Big Data, massive data collection, and
application of advanced data science techniques). In addition, the rise in processing power,
the exploitation of AI models for monitoring systems, assisted PdM, and the widespread use
of distributed control systems have contributed significantly to the spread and development
of I4.0. However, the industry must respond to many challenges; it should be environmen-
tally responsible, and economical in energy and raw materials [6]. To make the factory more
competitive and sustainable, financial strategies (optimizing production costs and increas-
ing financial gains) have to be instituted [7]. Moreover, the factory must respect social,
and ethical constraints, and political regulations [8]. To address these new challenges, it is
necessary to digitalize the production plant by integrating automation into the entire manu-
facturing process [1], [9], and [10]. This automation can be achieved through cyber-physical
systems, communicating sensors, and intelligent and autonomous robots. These technologies
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contribute to increasing the productivity, availability, quality, and innovation of the prod-
ucts [11]. However, the opportunities provided by these new technologies raise a number of
challenges. Figure 1.2 shows the different key components or technological advances which
characterize the I4.0.

(a) Big Data and Analytics: The increasing volume of the data generated by numer-
ous heterogeneous and different sources (interconnected machines or pieces of equipment, and
production systems) are at the essence of the newly emerging research issues in I4.0. There-
fore, a detailed analysis of the given data using data mining techniques is used to deploy the
decision-making support tools. The benefits of these tools are numerous, such as optimizing
manufacturing reducing the number of product failures, reducing production line downtime,
and increasing the life of the equipment.

(b) Autonomous Robots: In the manufacturing industry, robots can interact or col-
laborate with each other (Machine-Machine) and with humans (Human-Machine). The ex-
ponential exploitation of these interconnected, autonomous, flexible, and cooperative robots
has become a requirement. Robots contribute significantly to the production process and can
be more efficient and autonomous than humans. For example, these robots help in the exe-
cution of complex and repetitive tasks by adapting to several situations (e.g., assembling and
packaging products). In addition, its have the ability to automatically learn certain actions
or tasks (e.g., part recognition).

(c) Simulation: It is used intensively in a wide spectrum of industrial operations. For
example, it is possible to operate virtual machines which can simulate or reproduce the
physical world in real-time (e.g., machining a part). The virtual machine exploits the data
from the physical machines. Industrialists can increase performance by implementing this
technique, the costs and production times are reduced, and the processes are optimized.

(d) Horizontal and Vertical System Integration: This technology facilitates the
integration of the several components that constitute the ecosystem of I4.0, including the
automation of processes. In addition, System Integration contributes to more coherence and
collaboration between all the actors (e.g. customers and suppliers), functions (e.g. workers
and production managers), production processes and products (raw materials, semi-finished
and final products), and autonomous robots.

(e) Industrial Internet of Things: I4.0 increasingly exploits embedded systems and
interconnected technologies such as IoT, sensors, databases, big data infrastructures, robots,
and machines. This promotes communication and interaction between the devices. In addi-
tion, analyses and decision-making frameworks are based on the data collected through the
IoT or sensors.

(f) Cybersecurity: The deployment of interconnected technologies can be subject to
multiple cyber risks like spamming or malware. Consequently, it is advisable to secure critical
industrial systems and production lines against these attacks. In order to address these
vulnerabilities, it is indispensable to equip the industry with sophisticated and advanced
systems having secure and reliable communication protocols.
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(g) Cloud: The industry is increasingly using cloud-based applications to share informa-
tion or data between various cloud-based software and other entities in the companies. The
performance of clouds is advancing, with their connection capabilities and their responsive-
ness being below a few milliseconds. This advanced technology facilitates the deployment of
systems for the collection of data. We can note that these data contain the machine settings
and the systems which monitor and control the processes.

(h) Additive Manufacturing: Industrialists use additive manufacturing (for example 3-
D printing) to improve the production processes and reduce the costs of fabrication and design
of pieces (light and complex shapes). In addition, it offers advantages for the construction of
prototypes in small batches and customized designs.

(i) Augmented-reality-based: For the purpose of decision-making, systems based on
augmented reality have an important function in the optimization of the industry. In ad-
dition, its operation provides real-time information that will help users to take appropriate
actions to ensure continuous production. Furthermore, they can receive feedback on the spe-
cific configurations, operational parameters, and maintenance instructions that they have to
monitor to solve a given task.

Figure 1.2: The main pillars or keys components that characterize the fourth Industrial
Revolution [5]

In order to ensure interaction or communication in real-time, industrial companies use
these components to connect the entire production system. This builds a new virtual world
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from which we can drive the physical world. There have been several studies to highlight the
different aspects, key points, and importance of these pillars in I4.0 [4], [12], [13]. We focus
mainly on the data analysis and simulation components. These components are necessary to
develop decision-making tools for industrial maintenance strategies such as PdM4.0.

1.1.3 Maintenance Strategies

As outlined in the first section, I4.0 must respond to new issues and opportunities such as
profits, profit maximization, mass, and specialized production. These challenges are driven
by technical imperatives (e.g., minimizing machine downtime and maximizing component
life). These technical factors have an impact on economic questions such as the reduction of
production and maintenance costs. In addition, the quality and reliability of products, and
the safety of assets and services are key requirements for I4.0. In order to meet these new
requirements, we use information or data that characterizes the machines/equipment. Very
often, this information describes failures, breakdowns, or anomalies that occur randomly over
time. If countermeasures are not anticipated, the production lines may not work or may
work abnormally. To anticipate these possible failures, we can implement innovative and
sophisticated diagnostic strategies and tools in industrial maintenance operations. Industrial
maintenance is considered a combination of actions and management techniques that can be
applied to ensure the performance of equipment over time. It is important to note that these
strategies are very often periodic and do not always depend on the state of the equipment.
Maintenance strategies can be classified into several categories (see figure 1.3).

• Corrective maintenance consists in performing actions when a machine has some defects
or breaks down. In this case, the equipment and production line impacted will cease to
operate until the failure is repaired.

• Preventive maintenance aims to reduce the probability of failure of industrial compo-
nents or devices. It is performed at specific frequencies or periods. However, it does not
guarantee the continuous functioning of the equipment.

• We will discuss the predictive maintenance approach, in particular on Condition Mon-
itoring (CM) in the next section. PdM is a technique that supports the optimal func-
tioning of all equipment and machines by eliminating or reducing the occurrence of
breakdowns and optimizing the planning of maintenance work according to the techni-
cal situation. The CM approach exploits sensor data to monitor the condition of the
equipment over time while in operation.

1.1.4 Predictive Maintenance (PdM)

In industrial processes, productivity decreases are often due to anomalies associated with
equipment degradations, mainly when identified at an early stage. Thus, manufacturers are
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Figure 1.3: Maintenance strategies in the industry.

increasingly adopting automated predictive maintenance in their operations and processes.
PdM4.0 is driven by IoTs and AI frameworks, thus, it uses information from the produc-
tion process to train the algorithm able to optimize flows or supply chains. In addition, its
algorithms can detect a failure at an early stage and propose appropriate actions or coun-
termeasures to be implemented to ensure the continuous operation of the process. In addi-
tion, PdM can adapt to maintenance routines and user needs. In particular, it can perform
computer-aided design instructions without additional system programming. PdM 4.0 can
also integrate modules that allow monitoring of its own condition, decision-making process
components, sensors, and machines. In addition, it is necessary to ensure that the tools do
not interfere with the proper functioning of other machines or components.

1.2 Decision Support Tools Implementation

Figure 1.4 shows the process of implementing PdM technologies which are composed of several
steps : (a) Collect heterogeneous and massive data, and store them in an accessible and
secure database system. (b) Identify critical assets via formalized techniques for creative and
collective problem solving such as brainstorming. (c) Explore and analyze historical data by
using advanced data mining techniques. (d) Develop AI-based models to predict the failures of
critical systems. (e) Combine business knowledge and prediction results for optimal decision-
making. (d) Deploy and validate the tool on the mentioned systems. The resulting models
provide information to anticipate failure points and possible mechanical failures. They thus
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facilitate the decision-making process for maintenance activities in order to avoid downtime.
In this context, the industry can be transformed into a predictive industry [14]. In addition,
these innovative technologies combined with machine Condition Monitoring systems offer new
possibilities for management [15], control, efficiency improvement and reliability of industrial
systems [16].

Figure 1.4: Main steps in the implementation of decision-making tools

The decision-making tool is based on a Deep Learning (DL) known as a "black-box"
model having the internal structure unknown. Furthermore, the decision rules and the choice
of feature variables that participate in the models are also unknown. In some cases, the
collected data are unrepresentative; these anomalies involve data that are incorrectly or par-
tially labeled and contain missing values and noise. To address the issues of data quality and
quantity, several approaches have been proposed: Transfer learning, numerical simulation,
generate fake data by AI approaches. Furthermore, to predict the failures of a system or a
component, we can use different approaches that could depend on the nature of the data or
problem: knowledge-based modeling [17]–[19], system physics-based modeling [20]–[22], data-
based modeling [23]–[25] and the hybrid approach [26]–[28]. In this research, we will focus on
the last two approaches. In particular, we will exploit Deep Neural Networks (DNN) to solve
supervised learning tasks such as classification and regression.
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DNNs are "black-box" models, involving a combination of powerful learning algorithms
with many hyper-parameters and layers of varying depth. Despite their many applications
and performances, the lack of transparency and explanation of the decision-making rules can
be a major obstacle to their exploitation. In addition, there are questions about the large-
scale application of tools based on AI techniques and their ethical impact, transparency, trust,
fairness, or privacy rules. In addition, practitioners are interested in the explanation paradigm
of complex AI algorithms. The integration of explanatory approaches is important for the
understanding of "black-box" models. The main objective of the explanatory paradigm of
algorithms is to provide answers to the different expectations, interests, goals, and needs of
all stakeholders, including citizens, regulators, governments, and experts in the domain.

1.3 Objectives and Research Questions

1.3.1 Objectives

PdM4.0 offers new opportunities for the optimization of production chains. In this thesis,
we focus on the modeling of two complex processes: the FSW process and the hydraulic
system. The main objective of our research work is to develop decision-making tools based
on DL models. To satisfy performance, reliability, and confidence criteria, we will show that
the developed models are robust, generalizable (accuracy, simplicity, and consistency), and
explainable. We highlight explainable methods and hybrid models that are guided by the
data and the law of the physical process.

1.3.2 Research Questions

This thesis addresses the following Research Questions (RQ)

(A) Artificial Intelligence and Real-Time Predictive Maintenance in Industry
4.0: A Bibliometric Analysis (State of the Art)

• What are the contributions of AI-based decision support tools to I4.0?

• What are the main trends and AI models applied to PdM?

• What are the performances and limits of these technologies?

• What are the key challenges, issues identified, and future research directions in AI
techniques applied to PdM4.0?

• What are the potential ethical impact rules of using AI techniques for PdM 4.0?

• What are the consequences of a loss of control of AI?
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• What are the influences on human welfare and integrity? The last three questions have
led to the ethical issues of AI that have proliferated in the literature over the past
decades.

B) Health condition monitoring of a complex hydraulic system using Deep
Neural Network (DNN) and DeepSHAP Explainable XAI.

In the literature, the most common traditional AI model used to perform predictive main-
tenance tasks on continuous data are DNN. These models have several advantages includ-
ing their performance in classification and prediction tasks and their applications in many
industries. Despite these benefits, we cannot explain the results obtained from "black box"
models. Moreover, the decision-making rules used by the algorithm are of interest to decision-
makers. In addition to explainability, another issue concerns the generalization of traditional
approaches. Industrialists are interested in models that can be generalized and adapted to
several processes. These models are required to be adapted for the purpose of capturing
both local and global patterns. We present a detailed framework for Condition Monitoring
(CM) based on hydraulic systems and multi-sensor data. Although autonomous systems or
decision support tools using DL approaches are interesting, there are questions that require
the attention of the users in their decision-making rules:

• How to predict the conditions of the components of a hydraulic system?

• What sensors need to be monitored in order to ensure the correct functioning of the
system?

• What is the importance of each sensor in characterizing the state of the system?

• Is it possible to explain the results of "black-box" models or to highlight the decision
rules taken by the algorithm?

• How to explain the decision-making process by the "black-box" models in a way that
engenders faith in their reliability?

• How to explain the results of a Deep Learning algorithm?

• To what extent can it identify the contexts in which it is correct and fair and those in
which it is not?

(C) Physical-Informed Neural Networks (PINN) and Numerical Simulation of
Thermomechanical Process: Application to the Friction Stir Welding (FSW)

Considering that the FSW process is very computationally and time-consuming. It is
difficult or impossible to simulate the whole physical time of the process or to reach the
stationary regime. In addition, the framework must be able to learn the process in the
transient regime only (the very beginning of the process). Furthermore, it has to be capable
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of predicting the whole process duration (transient and stationary regime). Furthermore, it
has to be capable of predicting the whole process duration. In this context, we are addressing a
solid mechanics problem where the viscosity in the Navier-Stokes Equation (NSE) is expressed
by the Norton-Hoff law which depends on the deformation rate. This is known as the modified
NSE. This equation is much more complex and requires higher-order differentiation. Since
the data of this process are difficult to obtain, a numerical simulation was performed taking
into account several assumptions about the tool and process parameters.

• What are the approaches to simulate the Friction Stir Welding (FSW) process?

• How do determine the optimal parameters of the FSW process?

• What are the characteristics of the developed approach?

• How to introduce physical knowledge in the developed model?

• How describe the loss function?

• Why regularize or penalize the loss function through physical constraints or laws?

• The developed framework can be used to perform anomaly detection tasks?

1.3.3 Collection of Data

To address the issues of this research we have exploited 3 main data sources.

• Data Set for bibliometric analysis: The first data source is a textual and structured
data set extracted from the Web of Science (WoS) scientific database. We retrieved
4064 scientific documents by exploiting a query that contained a set of keywords. Each
document represents a record or row in the dataset. This row eventually contains
information related to the author/co-author’s name, the title of the article, the name
of the organization, the keywords, the name of the journal, the publication date, the
volume, the pages, the International Standard Serial Number (ISSN), the Digital Object
Identifier (DOI), the Uniform Resource Locator (URL), and the abstract. In addition
to the article information, we can also get statistics on the institutions/universities, the
countries, the sources/journals, the authors, and the collaborations.

• Condition Monitoring of hydraulic systems Dataset: This is an experimental
data set obtained via a hydraulic test bench. The sensors take the measurements of
the process cyclically (once a minute). The measured values are pressures, volume
flows, and temperatures. In addition, the components to be monitored are the cooler,
valve, pump, and accumulator. We, therefore, have a set of 18 separate files containing
multivariate data. Each file represents the data collected by a single sensor. These files
contain respectively 2205 instances and 43680 attributes (numeric data). The last file
represents the information (categorical data) about the conditions of degradation of the
components of the system.
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• Dataset for the analysis of the thermodynamic FSW process: The data used for
the analysis is obtained through a numerical simulation performed by the FVM method.
The Computational Fluid Dynamics (CFD) simulation software used is named Ansys
Fluent. During this simulation, the constraints and the values of the tool parameters
were fixed. In addition, we consider the entire welding process phase (dynamic and
stationary phase). Furthermore, we assume that the friction coefficient is a constant,
and we neglect the influence of the velocity on the friction coefficient. The resulting file
is a concatenation of several files that contain 225230 rows and 7 columns (cell, 2-zone,
x-coordinates, y-coordinates, x-velocity, y-velocity, and pressure).

1.3.4 Research Scope and Contributions

In this subsection, we will briefly present our contributions. To address the first objectives
(see Sub-section 1.3.2 point (A)), we exploit a data mining technique known as bibliometric
analysis. This method is used to study the state of the art of AI models applied to PdM4.0
and anomaly detection methods. Thus, it uses data analysis and visualization tools such
as Biblioshiny, VOSviewer, and Power BI. To collect the data (4065 documents) we used
a specific query applied to the Web of Science database. In addition, the query considers
the publication years, title, abstract, and author/indexing keywords of the articles. This
data mining technique allows us to quantify the most important concepts, application areas,
scientific contributions of the methods, and thematic and main trends of AI applied to PdM4.0
and anomaly detection. The results of the analysis highlight the technological and scientific
progress in the exponential exploitation of decision support tools based on machine learning
models such as Deep Neural Networks. In addition, it highlights the characteristics of these
approaches including their limitations and possible challenges.

Regarding the purposes of the second point (see Sub-section 1.3.2 point (B)) we exploit
the main results of the bibliometric analysis. Thus, we have developed a hybrid framework
consisting of two main modules. These modules are applied to the multi-sensor data fitted to
the hydraulic system. The seventeen sensors collect various data such as pressure, tempera-
ture, engine power, volume, and cooling power. In this instance the problem addressed is a
multi-class classification task where the data is unbalanced. To predict the different condi-
tions of degradation of the hydraulic system components, the first module focus on a DNN
model whose loss function has been regularized with a Dropout function. The resulting model
is robust and efficient in predicting the component conditions (cooler, internal pump leakage,
valve, condition of the hydraulic accumulator) and global conditions (the stable flag)

Despite the performance of the model DNN, we have to explain the role of each sensor
(measurement variations) in the decision-making of the model DNN. For this purpose, the
novelty of the second module based on an explanatory XAI method (DeepShap) coupled with
the DNN results has been developed. This module highlights the mathematical decisions made
by models in their training phases. Thus, the integration of explanatory approaches allows for
the extraction of local or global knowledge from the DNN. For example, in this practical case,
the DeepShap explainable model shows that the cooling condition of the hydraulic system is
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most probably conditioned by the quantity of cooling pumped, the pressure, the power of the
engine, and the temperature of the cooler to maintain the pump at a normal temperature.
In addition, this approach changes the perception and confidence that we have with regard
to AI models applied to industrial systems. In that respect, explainable models address
several issues of ethics, transparency, partiality, and reliability of AI models, including their
large-scale application.

Concerning the last point (see Sub-section 1.3.2 point (C)), we propose an optimal hybrid
model based on neural networks informed by constraints or physical laws. This model is known
as a Physical-Informed Neural Network (PINNs), where the problem is a regression task. The
data used to train the PINN model is obtained from the results of a numerical simulation.
This simulation was performed using the Finite Volume Method (FVM) with some constraints
on the tools. To predict the process parameters we introduced the governing equations such
as the modified Navier-Stokes Equation (NSE) directly into the neural network (NN) using
automatic differentiation. The novelty is the ability of the framework to learn the FSW
process at the very beginning of the transient regime and predict the whole duration of the
transient and stationary regime.

In contrast to the previous method where we extracted the knowledge from the model, in
this case, the physical knowledge is added to guide or inform the model. This knowledge force
the model to respect certain constraints and to follow the topology of the system during the
learning stages. Thus, the loss function is penalized via the physical constraints or regulariza-
tion function (NSE, Dropout). By including these regularization terms, we obtain a compound
loss function. which respects the properties of a classic loss function. The main results of
this framework have shown that once trained, the PINN model can be a valid substitute for
numerical models of thermomechanical processes to make rapid predictions. Consequently,
it is also able to study various process parameters. The PINN model reduces the large com-
putational time due to its memory effect and allows us to find an approximate solution to
analytically unsolvable PDEs. The model can predict the velocity and total pressure fields
and the results are in agreement with the solution of the numerical simulation. By regulating
the combined loss function, we demonstrate that the resulting model is generalizable.

1.4 Organization of the Manuscript

The organization of this thesis is presented in figure 1.5. After the general introduction (see
chapter 1), we will answer the research questions of this study. Thus, in chapter 2 we provide
a bibliometric analysis of the application of Artificial Intelligence in Predictive Maintenance in
Industry 4.0. Chapter 3 proposes a hybrid framework for predicting the operating conditions
of the hydraulic system. In addition, this framework includes a model to explain or extract
knowledge about the predictive model. Chapter 4 presents the Physical-Informed Neural
Network (PINN) by the Navier-Stokes Equation. This model aims to predict the optimal
parameters of the thermomechanical FSW process. Finally, chapter 5 is dedicated to the
conclusion or review of the contributions proposed during this thesis and the future works.

14



Figure 1.5: General diagram of the organization of the manuscript

1.5 Publications

This section presents the scientific articles published or under review. Furthermore, these
articles constitute part of the results of this thesis.

• A. Keleko & al. Artificial intelligence and real-time predictive maintenance in industry
4.0: a bibliometric analysis. AI & Ethics (2022). https://doi.org/10.1007/s43681-021-
00132-6 (Published on 10 March 2022)

• A. Keleko & al. Health condition monitoring of a complex hydraulic system using
Deep Neural Network and DeepSHAP Explainable XAI Advances in Engineering Soft-
ware Journal (2022). https://doi.org/10.1016/j.advengsoft.2022.103339 (Published on
15 November 2022).

• Physical-Informed Deep Neural Networks and Numerical Simulation of Thermomechan-
ical Process: Application to the Friction Stir Welding Submitted in Neural Computing
and Applications Journal (Under review)
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Abstract

The purpose of this chapter consists to study the issues of industrial maintenance. Mainte-
nance is considered one of the most important and critical drivers of Industry 4.0 (I4.0). It has
contributed to the emergence of new industrial challenges. In this context, Predictive Main-
tenance 4.0 (PdM4.0) has seen significant progress, providing several potential advantages.
These include increased productivity, through improved availability and quality. It guaran-
tees cost reduction through automated processes and monitoring of production systems. In
addition, it provides the ability to detect failures at an early stage, reduce machine downtime
and predict the life of the equipment. Even though most of the exploited articles focus on AI
techniques applied to PdM4.0, they do not include PdM practices and their organization. In
the research work, we focused on bibliometric analysis to provide beneficial guidelines. This
may help researchers and practitioners to understand the key challenges and the most insight-
ful scientific issues that characterize a successful application of Artificial Intelligence (AI) to
PdM4.0. To perform the analyses and visualize the results we used the R Biblioshiny frame-
work, VOSviewer, and Power BI tools. These analyses highlight the most important concepts,
application areas, methods, and trends of AI applied to PdM4.0. Therefore, we studied the
current state of research on these new technologies, their associated methods, and related
roles or impacts in developing I4.0. The result shows the most common productive sources,
institutes, papers, countries, authors, and their collaborative networks. In this light, emerging
topics such as Machine Learning (ML) and Deep Learning (DL) also significantly impacted
PdM4.0 development. In addition, American and Chinese institutes dominate the scientific
debate, while the number of publications in I4.0 and PdM4.0 is exponentially growing. This
is particularly relevant in the field of data-driven, hybrid models, and digital twin frameworks
applied for prognostic diagnostic or anomaly detection. Subsequently, we analyzed factors
that may hinder the successful use of AI-based systems in I4.0. This includes the data col-
lection process, the potential influence of ethics, socio-economic issues, and transparency for
all stakeholders. Finally, we suggested our definition of trustful AI for I4.0.

Keywords: Bibliometrics, Industry 4.0, Predictive maintenance, Anomaly detection,
Prognostics, Condition monitoring, Artificial intelligence, Machine learning, Deep learning,
Ethic, Trustful AI
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2.1 Introduction

Nowadays, manufacturers are facing increasing global competition on various strategies, and
requirements such as reduction of production costs, ensuring quality and innovation of prod-
ucts [11]. Consequently, these manufacturers need to resort to Industry 4.0 in order to remain
competitive and meet its new challenges. According to [4], the 4th Industrial Revolution can
be defined as a set of interconnected digital assets, and technologies that contribute to devel-
oping, automating, integrating, and exchanging real-time data in the manufacturing process.
The author of [29] defines it as the integration of several technologies such as sensors, cloud
computing, cybersecurity, simulation, Artificial Intelligence (AI), Internet of Things (IoT),
Big data, or robotics. This new industry, therefore, meets the new requirements such as the
digitalization of factories using cyber-physical systems, or communicating sensors [30]; the
flexibility of the factory and the production customization [31]; the use of logistics tools that
favor, and optimize the exchange of information [32]; the use of simulation techniques for
configuring the production system, and making the scheduling of activities more flexible [33].
The factory must be energy, and raw material-efficient [6], and must respect some constraints
such as socio-economic, ecological, and political [8]. Also, I4.0 promotes the training of the
different actors [34], and the implementation of an economic strategy to be more competi-
tive [7]. According to [1], [9], [10], the factory must be digitized to meet its new challenges.
Thus, the increasing exploitation of industrial production systems, thanks to the presence
of IoT, sensors, cloud computing, the widespread use of distributed control systems, and AI
techniques have greatly contributed to the spread, and development of I4.0 [35]. Paper [1]
shows that big data and data mining have an essential role in this development. At the same
time, according to [1], [4], there are nine main pillars of technological progress that form the
foundation of I4.0. Within the broad research fields related to the works mentioned above, we
focus mainly on Predictive Maintenance in the context of I4.0. Predictive Maintenance 4.0
(PdM4.0) is the study of trends, behavior patterns, and correlations using some models, and
real-time analysis. PdM4.0 is based on three fundamental steps (i) exploiting data collected;
(ii) modeling, using different approaches among which data-driven, model-based, or a hybrid
approach which combines the two previous ones; (iii) exploitation of knowledge for decision-
making, and control of the physical phenomenon studied. Therefore, the resulting models
allow extracting insights to anticipate breaking points and possible mechanical failures. They
thus favor the decision-making process for maintenance activities in order to avoid downtime
[36]. In this context, the industry can be transformed into a predictive industry [14]. Further-
more, its innovative technologies combined with machine condition monitoring systems offer
new management opportunities [15], control, improvement of the efficiency, and reliability of
industrial systems [16]. It should be noted that in most cases, productivity decreases are often
due to anomalies or machine degradation, especially when they have not been detected. To
that end, PdM4.0, machine condition monitoring, and AI has therefore become an important
research area in I4.0 [37], which constitutes the focus of the present research study.

The rest of this chapter is organized as follows: section 2.2 deals with the contributions,
objectives, and main issues of the study. Section 2.3 shows a brief description of the Industrial
Revolution, different approaches to solving predictive maintenance challenges, and potential
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ethical impacts related to the use of AI technologies, for PdM in industry 4.0. The most
common predictive models used, especially AI-based modeling applied in Industry 4.0, is
detailed in the section 2.4. Section 2.5 describes the research methodology used, and the
process of collecting scientific publications for the analyzes conducted. A detailed and in-depth
bibliometric analysis is carried out and presented in section 2.6, followed by the discussion
and main contributions of the research work in section 3.7. Finally, the conclusion of the
study, the limitations, and the future research envisaged are described in section 4.7.

2.2 Contributions and Research Objectives of the Chapter

Industry 4.0 and Predictive Maintenance have impacts on most aspects of the business value.
In that respect, several bibliometric studies have been carried out in order to analyze these
impacts. For example, several reviews concentrate on the impact of digitalization in specific
sectors such as management, economics, or ecology in the literature. While [38] focuses on
the different approaches and main topics related to I4.0, the author of [39] address decision-
making based on system reliability in the context of I4.0. Furthermore, [40] shows the current
trends of I4.0 via a comparative study with WoS and Scopus databases. The authors [41],
[42] explore the elements surrounding I4.0, and their developments in the socio-economic,
service industry, and management context. Also, [43] presents the challenges, and raises
the relationships between sustainability, and I4.0. The authors [44], [45] focus on emerging
techniques, and trends in equipment maintenance systems, while [46] presents the evolution of
AI. Article [47] describes a literature review on Machine Learning for industrial applications.
Authors of [48], carry out a bibliometric study mainly focused on the detection of bearing
defects when using AI.

The field of industrial maintenance is vast and includes several subfamilies’ maintenance
methods or approaches. In our opinion, few bibliometrics studies deal with real-time predictive
maintenance in the context of I4.0, which is the main focus of the present work. This targeted
field of research allows us to identify potential anomalies in production to reduce machine
downtime (among several other objectives). However, the development and performance of
PdM4.0 systems can be hindered by several factors that we consider in our study. This
chapter provides a bibliometric analysis of the different AI techniques applied to PdM for
that purpose. Furthermore, the article asks questions such as: What are the current trends
of the AI models, methods, or architectures used in PdM4.0? What are the impacts, the
characteristics, the performances, and the possible limitations of its approaches? What are
the major challenges related to the application of their method at large scales? The main
contribution is to investigate which current models, methods, or techniques of AI are mostly
used in the context of PdM for I4.0. We consider the following action scheme: A detailed
bibliometric analysis applied to scientific papers collected on the WoS database that deals with
fault detection and predictive maintenance for I4.0 was first performed. Associated analyzes
and visualizations were carried out using the Bibliometrix R tool [49], VOSviewer [50], and
Power BI software. We then highlighted the main trends, challenges in industrial maintenance,
and the relevant methods that support conditional monitoring, fault detection, prognostic,
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and diagnosis in real-time prediction. We also showed the trends in the publication of indexed
documents over time. Next, we studied the current state of research on these research works
considered and their roles in developing I4.0. In that regard, we identified some insightful
indicators such as the most productive authors, and the leading universities (with the most
cited articles), and extracted and analyzed the most frequent keywords, including the different
emerging themes or technologies related to PdM4.0. We also identified the socio-economic
impacts caused by the intensive use of AI-based systems applied to PdM in the industry, the
issues identified key challenges and future research direction related to I4.0 for PdM4.0.

Finally, by answering the detailed above Researches Questions (RQs), we can provide a
helpful guideline for researchers to better understand the research topic, the current state-of-
the-art, challenges, and future directions of AI models applied to the PdM4.0.

RQ1: What are the main means of scientific publications and their frequency in the
context of the study?

RQ2: What are the most productive, impact, and source growth dynamics?

RQ3: What are the most important or popular authors, journals, universities, and
countries?

RQ4: What are the most common technologies or tools used in industrial maintenance,
their performances, and their limits?

RQ5: What are the research trends in industry 4.0 and industrial maintenance 4.0?

RQ6: What are the potential ethical impact rules using AI techniques for predictive
maintenance in I4.0?

RQ7: What are the key challenges, issues identified, and future research directions in
AI techniques applied to PdM4.0?

2.3 Overview of the Industrial Revolution and Maintenance
Strategies

2.3.1 Revolution of Industry

The industry has experienced four main revolutions [51]–[53]. The 1st Industrial Revolution
(Industry 1.0) took place between 1780, and 1860 with the creation of mechanics, the ex-
ploitation of coal, and the development of the steam engine. The 2nd revolution (Industry
2.0) for the first time brought mass production at a lower cost with the introduction of elec-
tricity and the development of transport. Industry 3.0 occurred between 1970, and 2010. It
highlights new information technologies, electronics, and telecommunications. Finally, the
fourth revolution (Industry 4.0) was presented for the first time at the Hanover Fair in 2013
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[11]. According to [2] the definition of Industry 4.0 depends on the field of application, and
research. Figure 2.1 shows the main industrial revolutions and their related inspection or
control techniques.

2.3.2 Industrial Maintenance Strategies

According to the European standards [54], maintenance is a combination of actions and man-
agement techniques that can be applied to ensure the correct performance of the machine
over time. Figure 2.2 represents the classification strategies of maintenance; each method
is described in [55]. Corrective maintenance (CM) is the action performed when a machine
has faults or breaks down. Thus, there is no work until the failure is repaired. However,
preventive maintenance (PM) aims to reduce the probability of failure of components. It
is performed at well-defined frequencies or periods. Recently, the predictive maintenance
(PdM) and Condition-Based Maintenance (CBM) strategies have attracted more attention
from manufacturers [55]. Predictive maintenance is a technique to predict the future point of
failure, or the lifetime of a machine component before it fails [56]. We can exploit the masses
of data to train AI algorithms to optimize the production system. According to [16], [56],
[57], its algorithms can detect patterns correlated with faults, failures, or detect degradation
at an early stage in order to implement adequate countermeasures.

2.3.3 Types of Control in Industrial Maintenance

In industrial maintenance, there are four main types of inspection of mechanical production
systems [58]. The first type which is visual inspection consists of carrying out a physical, or
periodic checkup of the system (Industry 1.0). The second type is instrument inspections,
which is a combination of visual inspections, and the frequent use of instruments to monitor
the system’s condition (Industry 2.0). Real-time condition monitoring consisting of continuous
monitoring by allowing experts to give their opinions on the system status or health (Industry
3.0) is the third type of inspection. Finally, the last type is predictive maintenance which
allows experts, and data scientists to exploit the data collected in order to predict the state
of life of the machines.

2.3.4 Potential Ethical Impact of the use of AI for PdM in I4.0

It is widely acknowledged that AI is invading our lives. AI is creeping everywhere, from in-
telligent personal assistants to robotics (among the most common usages). Within the frame
of PdM4.0, it can assist in cognitive tasks by providing a wide range of solutions to prevent
downtime and equipment failure and even enable a system to reconfigure itself. In fact, a vital
difference between the 4th Industrial Revolution from its predecessor is that we are now deal-
ing with autonomous systems, not only automation [59]. Although fascinating, autonomous
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Figure 2.1: Historical perspective of Industrial Revolutions and their associated inspection or
monitoring techniques.

systems are worrying: to what extent is the AI algorithm’s development, outcome, and impact
correct and fair? To what extent can it identify the contexts in which it is right and fair and
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Figure 2.2: Different types of techniques or approaches for monitoring or maintenance in the
context of Industry 4.0. (Adapted to [55]).

those in which it is not? What are the consequences of a loss of AI control? What are the
influences on human welfare and integrity? These questions have led to the ethical issues of
AI that have increased in the literature in recent decades.

As a study of what is morally wrong or right, by its very essence, following its etymology
("study of behaviors"), ethical questions define the practical principles of action. Different
approaches have been developed to address the related issues, depending on the direction we
give to our actions: either we act according to some moral values (virtue ethics), according
to the beneficial consequences they generate (consequentialist ethics), or according to their
conformity to a principle regarding some obligations, duties or rights (deontological ethics).
In some cases, our actions may be subject to conflicting ethical choices, leading to ethical
dilemmas [60]. The Moral Machine from the Massachusetts Institute of Technology (MIT)
illustrates such a context in which an autonomous vehicle may have to choose among ethical
dilemmas: saving more lives, protecting passengers, upholding the law, avoiding intervention,
gender or age or species preference, social value preference as mentioned in [61]. The authors
claim that exploring ethical dilemmas should be the first step to building ethical systems.
Besides, while making an automated decision, [62] noted that a virtual agent could make a
judgment on its ethics (individual ethical decision) or take into consideration those of other
agents (within the same decision process) which may have their ethics (collective ethical deci-
sion). More recently, [63], who studied trust in AI within the field of production management,
identified possible antecedent variables related to trust and which were evaluated in human-AI
interaction scenarios. Their study proposed design guidelines for socially sustainable human-
machine cooperation in future production management. The proposed framework is based
on the SOR (Stimulus-Organism-Response) model, using decision situation characteristics as
stimulus variables (predictability, error costs), AI characteristics (perceived ability, perceived
comprehensibility), and human characteristics (digital affinity, expert status) as organism
variables. They constructed a structural equation model in which implementation showed
that AI characteristics and decision situation ones have a significant positive effect on the
response, i.e., trust; for the human characteristics, they found that only one variable was
statistically significant (i.e. digital affinity). Above all, following these studies and others on
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ethics in AI, we believe that addressing ethical AI is a moral obligation and a duty of AI
developers for PdM4.0. Therefore, we consider that ethics applied to PdM4.0 would make
it possible to be proactive, support innovation positively, and not stifle its potential. Other-
wise, the design of AI algorithms used in PdM4.0 may remain opaque. It can generate biases,
discrimination, and worldviews without us always opening the ’black box’ that makes them
ethical and trustworthy.

2.4 Most common AI techniques used in Predictive Mainte-
nance 4.0

2.4.1 Main Modeling Techniques

The main approach for anomaly detection, prognostic and diagnostic in PdM is represented
in table 2.1. Knowledge-based modeling is an approach that is focused on knowledge and
reasoning to solve complex problems [64]. Furthermore, this approach is based both on the
conditional ’If-Then’ rule, and on the knowledge known as ’Past’ or ’previous’ carried out in
the process, also it is particularly useful to reduce the complexity of a physical model. In
practice, it is often combined with other approaches as a hybrid method [65], [66]. Knowledge-
based modeling can be classified into three sub-groups: rule-based [17], case-based [19], and
fuzzy knowledge-based approach [18]. However, this approach is ineffective in the sense that
it is impossible to apply the rules without having experience, or precise knowledge of the
process being studied.
(a) Physics-based modeling requires the construction of a dynamic model by integrating var-
ious constraints, defects, or degradation linked to the non-stationary process [67], [68]. This
approach has some advantages especially, since the model parameters are directly related to
the physical quantities, as degradation or deformation of the phenomenon can be explained
by the variations of its parameters. The results can be easily interpreted. Although the
physics-based approach helps to better understand the physical universe compared to data-
driven models; it is limited in its ability to extract knowledge directly from data that is mostly
based on available physics. Sometimes, the models generated are often too complex leading
to incorrect results [69], [70].
(b) Data-driven, or Data science modeling approach exploits both sensor data, to extract
knowledge, or patterns useful for characterizing the condition of the system studied. It is
based on statistical techniques, stochastic models [71], neural networks models [72], [73], data
mining, and machine learning [74]. In addition, this approach is the most widely used in PdM
and is a compromise between the application, and the accuracy of the model [75]. However,
this method becomes unusable and loses all interest, or use when the model is no longer capa-
ble of capturing new changes associated with the process. Moreover, it does not characterize
the law, or physics of the industrial process.
(c) Hybrid and digital twin modeling are a combination of a physical model, a data-driven
model [76], [77], or a Knowledge-based model. Also, this approach continuously adapts to
operational changes based on collected data, and online information [28], [78], [79]. Fur-
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thermore, Hybrid models provide better results, especially in terms of interpretability, and
understanding of physics knowledge. However, they can be costly in terms of computing time,
and in some contexts, the modeling of physics can be challenging or impossible.

Table 2.1: Modeling approaches for fault detection, and diagnosis in predictive maintenance.

Modeling Approaches Some sub-model

Physics-based modeling Kalman Filters [20], Markov models [21], Monitor-based [22],
Fault trees [80]

Knowledge-based modeling Bayesian Decision [20], Expert Systems [81], Binary Trees [82]
Data-driven modeling Genetic Algorithms [25], RF [83], Data mining [23], CNN [84]
Hybrid modeling SAE & SVM [85], SVM & Naive Bayes [86], RF & LSTM [87]

2.4.2 AI Models Applied for PdM in I4.0

In the industrial context, AI is aimed at supporting decision-making. There are three main
levels of support: descriptive, predictive, and prescriptive AI. At the first level, AI consists
of providing a reliable synthesis of the massive information that is available in the form
of dashboards or Key Performance Indicators (KPIs). The second level is based on a set
of rules and probabilistic or statistical approaches to provide forward-looking projections
in order to better predict possible risks regarding the state of the system’s degradation.
In addition, to providing predictive insights, prescriptive AI proposes recommendations or
feedback for facilitating and optimizing maintenance operations. The models used to perform
these operations can be divided into two families: Machine Learning (ML) and Deep Learning
(DL). Note that depending on the nature of the explanatory data and the target variables,
approaches can be classified as supervised, semi-supervised, unsupervised, and reinforcement-
based learning.

2.4.2.1 Machine Learning Techniques

The Decision Tree (DT) model is an approach to represent information in the form of a
tree structure with recursive partitions on the data space. DT is based on the principle
of "divide and conquer", which means, the tree is built from a data set, and then it has
decomposed on different subsets or branches until it reaches the last node or decision leaf
(which can represent the limit of the division). Its subsets are obtained through divisions
according to the Gini index. Moreover, DT is mainly composed of the main node named
"root" (best predictor) among all subsets (less important predictors). The algorithm can
be exploited to solve classification or regression tasks and can be used in several industry
applications [88], [89]. Decision rules or results produced by the algorithm are simple and
easy to understand. However, the algorithm can generate very complex trees resulting in
the overfitting problem. Furthermore, DTs suffer from instability and poor performance,
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compared to other ML algorithms that will be presented later.

Random Forest (RF) model has been developed by the author [90]. RF is based on com-
binations and aggregation (voting) of a set of random trees so that each node is evaluated
independently. Furthermore, the RF model is an improvement of decision trees, particularly
in the correction of the instability and the variance reduction. In addition, RF offers the pos-
sibility of extracting the significant variables involved in model construction. The parameters
of the model are easy to be calibrated, robust to noise, and can be parallelized. RF is used in
several applications, especially for classification or regression problems [83], [91], [92]. They
are often used as a benchmark in ML competition. However, learning can be difficult (latency
of the algorithm) as far as a large amount of data and a significant occurrence of missing data
are concerned.

Support Vector Machine (SVM) model is developed by the author [93]. SVM deals with a
generalized linear model using the hypothesis space of a linear function in a high-dimensional
feature space by creating an optimal partition hyperplane (maximum distance between the
bridge margins and the nearest data). Optimization problems in this constrained setting
provide convex solutions. Moreover, SVM has become more popular for its applications in
image classification, and face and handwriting analysis. Particularly, the authors [83], [94]
apply SVM for conditional monitoring of mechanical or electronic machines. In addition,
SVM uses a kernel function to guarantee better discrimination, and the regularization of the
hyperparameters of the model helps to avoid overfitting problems. Some versions of hybrid
SVM algorithms have been presented in [95], generally, they give higher performance than
the classical SVM model. However, kernel models can be sensitive to noise data or noisy
classes, to overfitting problems when selecting the optimal model. Also, the estimation of the
optimal parameters can be greatly challenging since an explicit model of nonlinear kernels
does not exist. Finally, the computing time or the GPU memory is important when the data
to process are increasing.

K-Nearest Neighbor (K-NN) model is a non-parametric classification algorithm. Its ob-
jective is based on the classification of new sample classes with higher similarity, in this case,
the K-instances nearest to the reference set are computed on a Euclidean distance metric
[96]. K-NNs are very often used in industrial applications, for pattern recognition problems
or recommendation systems. This approach does not require any hypothesis on the data;
Furthermore, they are simple, efficient, and easy to perform. The authors [88] exploit an
improved version named WKNN for fault detection and isolation tasks of complex systems.
Besides, the distance-weighted k-nearest neighbors (WKNNs) are more efficient than K-NNs
when the classes are separated. Nevertheless, K-NN can be inefficient because of the choice
of the method of computing the distance and the number of K-nearest neighbors. Moreover,
K-NNs can be inefficient due to their choice of distance computation method and the number
of K-nearest neighbors. When we use a large amount of data, the algorithm becomes much
slower, this is a real obstacle to applying K-NN in real-time predictive systems.

In addition to the models discussed previously, there are several classes of ML models,
in particular Naïve Bayes, Discriminant Regression (LDA, QDA), penalized models (Ridge,
Lasso, Elastic net), or ensemble models (Bagging, eXtreme Gradient Boosting "XGBoost").
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Despite their various benefits and applications, these approaches can become unstable and in-
efficient (high-dimensional learning and overfitting problems) in the following cases: high data
volume, complex equipment data, unbalanced classes, and missing and noisy data. Today,
scientific, and technological advances have allowed deep neural network learning to emerge as
a real improvement over the traditional machine learning algorithms mentioned above.

2.4.2.2 Deep Learning Techniques

Convolutional neural networks (CNN) [97] are acyclic deep learning networks, composed
principally of two types of artificial neural cells: processing (convolutional) and pooling.
Concerning information or feature extraction on all input samples, CNNs are based on more
convolution kernels named feature extractors. To reduce the number of parameters, these ker-
nels and weights are distributed over the entire bidirectional input matrix. CNN has shown its
efficiency in various applications such as pattern recognition or signal processing. Moreover,
they required very few pre-processing, since they perform their own filters during training,
which explains their robustness to noisy data. However, the design of this architecture remains
a major challenge for researchers. Several variants of optimized algorithms and architectures
have been proposed in the literature. The AlexNet and its variant [98] is composed of five
convolutional layers and three fully connected layers combined with regularization methods
(data augmentation, dropout, and Norm L1, or L2). The Network AlexNet has won many
competitions, however, it has limitations related to the image’s fixed resolution, thus, the SPP
network has been developed to overcome this problem. The Visual Geometry Group (VGG)
network increases the depth of the network by convolutional layers with very small convolu-
tional filters. There are other architectures such as GoogLeNet, RCNN (Regions with CNN
features), and FCN (Fully Convolutional Networks). Despite their many advantages, their
network (black box models) is complex, and the decision-making rules are not explainable.
Besides, the increasing number of hidden layers can have an impact on the performances of
the networks.

Auto-encoders (AE) are non-recurrent neural networks with hidden layers smaller than the
input layers. AE is formed by an encoder and a decoder. Its objective consists of representing
in an optimal way the input data. Thus, the algorithm tries to learn a new representation
(encoding) from the given input data set and to reduce its dimension. To predict an output
target value, the algorithm performs an optimization operation by minimizing the reconstruc-
tion error of its own inputs. Also, there are different architectures of AE. The sparse AE seeks
to extract sparse features on the raw data by penalizing both hidden unit bias and hidden
layer activation output. A variant named "low-density autoencoder" helps to detect objects
without a priori knowledge of the class labels, the resulting model is robust to translation
and rotation operations. The denoising and contractive AE have a similar network and the
ability to capture details about the data. Their network structures are based on the same
principle as the one shown in the previous model. Besides, denoising AE tends to introduce
noise in the training set and then selects the correct information on the input of a biased
model. While the "contractive" autoencoder adds explicit regularization (matrix norms such
as the Frobenius norm) to its reconstruction error function, the denoising network forces the
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model to learn a function that is robust to slight variations in input values. AE is efficient
and has many applications, such as anomaly detection, data denoising, transfer learning, or
random fake data generation. In particular, [99] use AE for the real-time remote sensing of
the degradation states of the machines. Moreover, a hybrid deep SAE-SVM model is used
by [85] for intelligent fault diagnosis in industry. However, the computing time of AE can be
important because the problem does not prevent their exploitation of online learning.

Generative Adversarial Networks (GAN) are unsupervised learning algorithms that can
generate "fake data" very similar to the original ones. The GAN algorithm is based on the
game theory, where two network generators (G) and discriminator (D) are in competition. The
first network is the generator of a fictitious image sample, and the second one takes the role of
an adversary, checking if the data is real or from the generator. If the last one is not satisfied
with the results, it returns it to the generator so that it can generate a new sample image. In
addition, GANs have been the purpose of several extensions as Wasserstein GAN (WGAN)
which uses the optimal transport plan to generate the data from noise, the discriminator
calculates the Wasserstein distance between the distribution of the generated and real data
[100]. WGAN is allowed to improve the stability of the optimization process like the search of
the model hyper-parameters. Other metrics have been applied to generate or discriminate the
data while improving the corresponding optimization problems, we can mention Lipschitz-
GAN (LGAN), WGAN with gradient penalty (WGAN-GP), Spectral Normalization for GAN
(SNGAN), First Order GAN (FOGAN), Vanilla and Least-Squares GAN. These approaches
contribute to the reduction of computing time, and they are used in many applications such
as pattern recognition, and generating or simulating data (texts, pictures, sounds, or videos).
However, GANs are limited by the instability of unsupervised learning algorithms, and the
generation of speech data is very complicated. Thus, it is not easy to turn the model training
process without losing accuracy.

Finally, there are also other architectures that we have not introduced in this chapter,
the Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) or the Restricted
Boltzmann Machine (RBM), which are applied to sequence processing problems such as time
series. However, all the approaches mentioned above are also known as "black-box" models,
and their decision-making rules are not systematically explained.

2.4.3 Characteristics and Techniques Classifications

The application of AI techniques in industries can be influenced by various characteristics,
including. We have the hardware and software infrastructure which provides security, the in-
terconnectivity of systems, and information processing abilities (Edge computing and Cloud).
Digital twins and decision-making help in testing the different scenarios virtually and making
decisions. In this case, decision-making is based on the level of trustworthiness, and effec-
tiveness of the model developed. Here, the evaluation and interpretation of uncertainties or
error rates do not have the same significance and thus depend on the targeted objectives.
In addition, an AI-based model is highly conditioned by the characteristics of the data (re-
liability, volume, variety, velocity, veracity, and availability). Furthermore, we could classify
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these models according to some aspects: a) Nature of the task such as supervised (regres-
sion, classification), unsupervised (clustering, association), reinforcement, or semi-supervised
learning. b) Type of variables to be analyzed (nominal, ordinal, discrete or continuous); c)
data structure (texts, pictures, signals, videos, images, sounds); d) data quantity and quality
(presence of missing, incomplete, mislabeled, noisy or biased data).

2.5 Methodology for the Study

2.5.1 Bibliometric Analysis

Bibliometric is considered the oldest bibliographic research method in information science.
According to [101], it can be defined as a method for evaluating, and visualizing scientific
research papers. According to [102] bibliometric analysis is a field of research that involves
analyzing trends in scientific research papers on a specific topic, subject, or area. Also, bib-
liometric is seen as a statistical analysis applied to a set of documents, or books. Note that
some organizations use this type of analysis as a distribution criterion to allocate financial
aid to researchers [101]. The objective is to provide motivation, and guidance for research,
or to highlight the trend, and the impact of the units. Finally, it provides motivation and
guidance for research. In bibliometrics, the units of analysis frequently used are journals,
documents, references, keywords, authors, and affiliations, universities, or countries and their
collaborations. Keywords can be selected in relation to titles, abstracts, documents, or bod-
ies. These keywords can be provided either by the original authors (author keywords) or
indexed against referenced bibliographic data sources also known as Keywords Plus. Words
represent the terms, or phrases most frequently used in the titles of the references of a scien-
tific document [103]. Besides, they are generated by algorithms that can deeply capture the
content of a document. Moreover, the authors [104] have made a comparative study between
the keywords author, and the keyword Plus. Unlike the keyword author, the keyword Plus is
more complex and does not necessarily appear in the title of the article. Therefore, for a bib-
liometric study, we can analyze several types of relations between the units, we have similarity
relations, co-occurrence relations, and direct links between the units. These relationships can
be represented as graphs or networks. Authors [105] present a taxonomy of the most used
bibliometric techniques. Bibliometrics analysis can be applied in many fields such as logistics
[106], economics, biology [107], and in industry 4.0 [40], [108]. In this article, we look for the
articles using the WoS search engine according to certain criteria to avoid possible sources of
error [109]. Furthermore, we evaluate the collected publications with some statistical met-
rics such as productivity, number of citations, frequency of citations, publications, impacts
measure, and hybrid measures.
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Figure 2.3: Methodology framework for bibliometric analysis. Each color corresponds to a
step of methodology. The different steps represent the methods or strategies used to perform
this study
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2.5.2 Recommended Workflow for Science Mapping

In this subsection, we propose the four-step workflow guideline for scientific mapping research
using bibliometric analysis [110]. The first step consists of defining the research questions and
selecting the appropriate bibliometric methods to answer them. The second step is focused
on data collection, the researchers must identify the databases in relation to the thematic
study. In addition, they must perform filtering, exclusion, and selection operations to extract
relevant publications. They must also consider the period to capture the evolution of the
case study over time. The third step is a bibliometric analysis, which can be carried out
using several statistical software [105]. The last step is data visualization, and interpretation
according to the results; there are several tools available to achieve this goal [49], [105].

2.5.3 Web of Science and Data Collection

To carry out a bibliographic study we can use several bibliographic databases [111], [112]
such as the web of science (WoS), Scopus, Springer, Google Scholar, or Science Direct. For
our case study, we focus on the WoS search engine, our motivations are the following: (a)
WoS is a bibliometric analysis tool that allows evaluating statistical indicators of publications;
(b) unlike Scopus, WoS contains more multidisciplinary publications with a high impact in
each field [113]; (c) in contrast to Scopus, WoS contains more multidisciplinary publications
with high impact in each field, also, we exclude Scopus to avoid duplicate documents, and
Google Scholar for the reduced performance compared to the quality of the search obtained.
In fine, we also exclude IEEE, Science Direct, and Springer because they only index their own
publications [111].

2.5.3.1 Scanning and Keywords Search

To identify important publication keywords in bibliometrics, there are several approaches
[114], [115]. We applied a variant of the TF-inverse document frequency (TF-IDF) method
described by [116], that helps in the identification of an important term by combining their
popularity and their discrimination. This approach has several advantages, for example, TF-
IDF weights are more relevant for keyword frequency than TF-KAI weights [117]. According
to this index. We found that keywords such as AI, real-time, and PdM are the most im-
portant and correlated (significant increase) to productivity on I4.0. To define the relevant
publication sample, we used these keywords to perform several queries on the WoS engine.
The search also considers the years of publication, the title, the abstract, and the author/in-
dexed keywords of the articles. We performed the search on 10th March 2021 in the WoS
database. The research produces the bibliographical data for indexed documents (4065) in-
cluding some information about papers such as titles, type of article, author publications,
affiliations, countries, keywords, abstracts, number of citations, source conference, publisher
name, address, years of publication, volume, issue number, and a list of cited references.
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(Fourth Industrial Revolution OR Industry 4.0 OR
Mechanic* OR Real-Time) AND (Artificial Intel-
ligence OR Machine Learning OR Deep Learning
OR Artificial Neural Network) AND (Predictive
maintenance OR Decision making OR Diagnostic
OR Prognostic OR Monitoring) AND (Time span:
2000-2021)

2.6 Analysis, and Results

In this section, we focus on the main bibliometric analysis metrics [49]. Its metrics can be
obtained on several levels such as sources, articles, authors, references, keywords, universities,
or countries. We can, therefore, classify these elements by their impacts, productivity, their
frequency of citations, and network collaboration. We can also visualize co-occurrence net-
works, the theme, and the trend of keywords. These analyzes provide new information and
thus help to improve knowledge about scientific research.

2.6.1 Main Information About the Collection

Table 2.2 shows the main information about 4065 collected publications obtained on the
WoS search engine according to the criteria. We have a total of 11268 keywords, and more
than 450.000 authors (Author 14108, Author Appearance 18681, Author of single-authored
documents 140, Author of multi-authored documents 13968, and single-authored documents
145). Also, we have 2308 source conferences, and more than 124771 references.

Figure 2.4: Pie Chart: The graphic represents the types of retrieved documents over the last
20 years
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The pie chart (Fig. 2.4) shows the distribution of retrieved documents over the last 20
years. Firstly, we can see that articles are more representative with 2464 (60.62%) docu-
ments, secondly, and thirdly we have respectively the proceeding papers 137 (33.83%), and
the reviews 204 (5%).

Table 2.2: Main information and statistics regarding the collection published between 2000,
and 2021 on WoS.

Description Results & Statistics

Article (2463)

- Articles (2291)
- Book chapter (10)
- Proceedings paper (70)
- Article data paper (4)

Review (204) - Classic review (198)
- Early access (6)

Proceeding paper 1375
Editorial material 16
Meeting abstract 5
Editorial material 16

Period Years (2000-2021)

Document contents - Keyword Plus (5170)
- Author’s keyword (11268)

Author publication

- Author (14108)
- Author appearances (18681)
- Single-authored doc. (140)
- Multi-authored doc. (13968)

Author collaboration - Single-authored doc. (145)
Source conference 2308
References 124771

Average year
of publication 3.76

Average citations
per document 8.363

Average citations
per year per document 1.752

Collaboration Index 3.56
Co-Authors per Documents 4.6
Documents per Author 0.288
Author per Documents 3.47
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2.6.2 Annual Scientific Publication Trend

In this subsection, we answer the question RQ1. We defined scientific productivity as a
metric that measures the frequency of publication, or author’s impact on a specific discipline.
Figure 2.5 shows that over the last 20 years, there is an exponential increase in the number of
publications. Furthermore, table 2.3 shows the evolution reaches its peak in 2020 with more
than 1095 papers published (25, 96%) compared with the previous year. At the end of the
first quarter of the year 2021, we record about 175 indexed documents.

Figure 2.5: Annual scientific production published in WoS journals over the last 20 years.

2.6.3 Most Productive, Impact and Source Growth Dynamics

To answer RQ2, we analyze the documents, their impacts, growth, productivity, number of
citations, and network collaboration. We have 2295 conferences, table 2.4 shows the most
productive journals according to the Number of Publications (NP), Total of Citations (TC),
and impact (h-index, or Hirsch index). We can note that H-index gives the number of publica-
tions by which the author has received at least h citations. When we focus on the NP metric,
we can see that the most relevant, and productive source is the IEEE Access conference
with a score of 143 (6%) papers. This journal publishes scientific papers related to electrical
engineering, electronics, and computer technology. In the 2nd, and 3rd rank, we have respec-
tively the Sensors applied Sciences-Basel (119), and Remote Sensing journals (47). However,
the most productive source is not necessarily the most cited, and vice-versa. For example,
Sensors-Basel is most cited than IEEE Access, even though, it is less productive than Mea-
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Table 2.3: Productivity: Annual number of published articles between 2000-2021 on WoS.
ND is number of the documents, and ND (%) is a number of documents in percent.

Year ND ND (%) Year ND ND (%)
2000 14 0,33 2011 38 0,90
2001 16 0,38 2012 64 1,52
2002 22 0,52 2013 88 2,08
2003 22 0,52 2014 147 3,48
2004 24 0,57 2015 197 4,67
2005 27 0,64 2016 334 7,91
2006 28 0,66 2017 334 7,2
2007 48 1,14 2018 537 12,7
2008 38 0,90 2019 868 20,58
2009 53 1,26 2020 1095 25,95
2010 49 1,16 2021 175 4,14

surement journal. Regarding the source network collaboration, we consider only conferences
with more than 5 publications. Finally, figure 2.6 shows the network visualization for the
most productive journal, this network showed 113 conferences distributed in 16 clusters.

Figure 2.6: Network visualization for most productive journal.
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Table 2.4: Most productive journal sorted by the publication number (NP), most impact’s
document (h-index), and most cited journals (TC).

Source journal NP h-index TC
IEEE Access 143 14 814
Sensors 119 14 119
Applied Sciences-Basel 47 7 148
Remote Sensing 34 8 297
IEEE Sensors Journal 32 8 172
Computer & Electr. in Agriculture 26 8 291
Advanced manufacturing Techno. 26 6 124
Energies 21 5 142
Scientific Reports 21 6 114
Electronics 18 4 20
Measurement 18 17 303
Neural Computing and Applications 17 7 70
Plos One 17 5 166
Computer in Industry 15 7 370
Expert Systems with application 15 9 227
Intelligent manufacturing 14 7 242
Computer in Industry 15 7 370
Expert Systems with Application 15 9 227
IEEE Trans.on Instr. & Measurement 113 15 41
Multimedia tools and Application 15 4 41
IEEE Internet 0F Things Journal 14 4 132
Journal of Intelligent Manufacturing 14 7 242

2.6.4 Most productive authors, universities and countries

To answer the question RQ3, we exploit several axes of research, and we perform analyses
to describe some elements such as authors, references, universities, countries, and continents.

2.6.4.1 Most Productive and Highly Cited Authors

Table 2.5 shows the most cited authors based on the TC index, Bellini, Filippetti, and Tassoni
(694 total citations) are the most cited authors with the same score although they have
published only one article. They have received remarkable attention from the community for
their publication. However, if we focus on the TC index (Table 2.5), we can note the most
cited authors are not necessarily the most productive. Furthermore, figure 2.7 represents the
network collaboration between the authors. In this network, the distance between two authors
indicates the relationship between them in terms of co-citation links. Also additionally, the
link is stronger when the distance is high, or the relationship is strong. The spheres dimension
is proportional to the frequency of collaboration, and the connections indicate the presence
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of collaboration. We have 24 clusters, 1st cluster (Gupta, Naizi and Varma), 2nd cluster
(Massaro, and Galiano), and 3rd cluster (He, Tiwari, and Wang). Ultimately, the most co-
cited authors are respectively Lecun (343), Breiman (250), He (218), Hinton (171), Lee (168),
and Hochreiber (165).

Table 2.5: Most cited authors: Authors are ordered by a Total of Citations (TC) index

Authors TC NP h-index ND (%)
Bellini A. 694 1 1 0,23
Filippetti F. 694 1 1 0,23
Tassoni CA. 694 1 1 0,23
Lin J. 502 3 4 0.92
Jia F. 487 4 4 0.92
Liu C. 477 8 21 0.46
Xu X. 467 8 15 3.44
Zheng Y. 461 4 8 2.29
Lei Y. 452 2 2 5.33
Dinx SX. 419 1 1 0,23
Ozcana A. 340 4 5 1.15
Zhang Y. 390 10 18 4.20
Liu F. 383 3 4 0.92
Wang C. 381 4 13 3,74
Liu H. 378 6 19 5.01
Li Z. 363 7 18 4.20
Hsieh HP. 355 1 1 0,23
Bao Z. 349 1 1 0,23

2.6.4.2 Most Productive and Cited Affiliations

Table 2.6 shows the list of the most productive institutions. In the 1st rank, we have the
University of Illinois with 81 publications, in the 2nd, and 3rd, we have respectively the Uni-
versity of Shanghai Jiao Tong (74 publications), and California Los Angeles (71 publications).
Table 2.7 shows the most cited organizations. Moreover, when we look at the collaborative
network organization (Figure 2.8), we notice that the University of Chinese academy sciences
(green cluster) is the most collaborative with 49 publications, and 684 citations, followed by
Shanghai Jiao Tong University (24 publications, and 420 citations) and Georgian Institute
Technology (23 publications, 410 articles). We can conclude that organizations from the USA,
and China globally dominate the research in the field of study.

38



Figure 2.7: Network visualization for Publication highly Co-authorship. Each cluster is rep-
resented by a color. To interpret the results, and the color of the legends in this figure, the
reader can refer to the Web version of this manuscript.

Figure 2.8: Network visualization for international collaboration affiliation. Each group is
represented by a color.
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Table 2.6: Most relevant affiliations ordered by a number of articles.

Affiliations N Articles
University Illinois 81
Shanghai Jiao Tong University 74
University California Los Angeles 71
Nayang Technology University 66
Tsinghua University 65
Zhe Jiang University 65
Stanford University 61
Huazhong University Science and Technology 59
Xi and Jiao Tong University 51
Northwest University 47
University Michigan 46
Seoul National University 45
Yonsei University 43
King Saud University 43
University California Irvine 43
Emory University 41
Imperial College London 39
Northeastern University 39
University California San Diego 39

2.6.4.3 Scientific Productivity by Country and Continent

Regarding the country’s scientific production, table 2.8 and figure 2.9 show that the USA
and China are the most productive countries. We have already observed this trend when
we study the most important institutes (subsection 2.6.4.2). We can, therefore, deduce that
the underdeveloped countries are not representative, for example, Oceania and Africa have
respectively (399) 3%, and the African continent (212) 2% publications. This trend implies
that these continents are lagging even though research activities are dispersed on a global
scale.

In addition, figure 2.10 illustrates the network collaboration between countries confirming
that these countries are behind in research in the study field. These low productivity trends
of the universities, or institutions belonging to developing, or Third World countries can be
partly explained by the low collaboration between authors from developing countries. Also,
the lack of infrastructure, access to digital services such as the internet, energy, and the rep-
utation of the institution in the scientific community are factors hindering this development.
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Table 2.7: The most cited organizations ordered by TC index.

Affiliations Total of Citations (TC)
University California Los Angeles 822
Xi Jiao Tong University 791
University Bologna 770
University Modena and Reggio Emilia 713
University of the Chinese Academy of Sciences 684
University of the Chinese Academy of Sciences 684
Stanford University 631
Georgia Institute Technology 489
London’s Global University 475
University California San Diego 442
University Michigan 439
Massachusetts Institute of Technology 420
Tsinghua University 419
Northeastern University 394
University Pittsburgh 392
University Cincinnati 347
Qatar University 339
Hong Kong University 330
University of Southern Queensland 316
Los Alamos National Laboratory 309

2.6.4.4 Most Global Cited Papers and References

Table 2.9 globally shows the most cited documents published in the WoS database over the last
20 years. In particular, paper [118] published in the IEEE Trans Ind Electron conference is the
most cited (694 citations). Here, the authors are working on AI, and decision-making models
are applied to the fault detection, diagnosis, and condition monitoring of electrical machines.
Paper [119] has 419 citations, the authors present the application of regularized sparse filtering
model for intelligent fault diagnosis under large speed fluctuations. Furthermore, the scientific
article [120] is cited 355 times, and it was published at the conference on knowledge data
mining.

In addition, authors Lecun [97], Breiman [90], and He [135] are the 3 most cited refer-
ences (199, 169, and 156 frequency co-citations). Furthermore, Figure 2.11, shows 6 clusters
of co-citations network reference. Breimman, Lecun, and He is the most representative for
each cluster. In detail, the first cluster is formed by (Lecun, Hinton, and Schmidhuber), the
second, third, and fourth clusters are respectively (Breiman, Bishop, Pedregosa), (Hochre-
iter, Kingma, and Goodfellow), and (He, Ren, Redmon). In this regard, we see that authors
LeCun (644), He (596), and Krizhevsky (591) have the highest link collaboration. Finally, we
can conclude that most of these articles presented in table 2.9, deal with topics related to the
digitalization of industry, use of sensor data, IoT, big data, condition monitoring, anomalies

41



Table 2.8: Most productive and cited countries ordered by the frequency publication, or
productivity (years: 2000-2021).

Region Frequency Average article citations
USA 3072 11,6
China 2977 8,1
India 1019 9.7
UK 639 8,7
South Korea 627 10.5
Italy 552 11,4
Germany 498 7,6
Spain 432 13,1
Canada 428 8,41
Australia 355 8,4
France 326 6,8
Japan 248 8,9
Brazil 243 6,6
Singapore 152 9,6
Malaysia 139 8,4
Switzerland 136 10,9

Figure 2.9: World map of the country-level scientific productivity, for documents collected
on WoS over the last 20 years. The color scale is given by the number of articles, dark blue:
high productivity, light blue: low productivity.

detection, ML, and DL modeling applied in PdM4.0.
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Figure 2.10: Network visualization for international collaboration.

Table 2.9: Most globally cited scientific publications.

Paper Frequency TC/year Year
Bellini A. [118] 694 49.57 2008
Lei Y. [119] 419 69.83 2016
Zheng Y. [120] 355 39.44 2018
Benight SJ. [121] 349 38.77 2013
Mueller Kr. [122] 253 18.20 2008
Abdeljaber O. [123] 249 49.80 2017
Bigio IJ. [124] 237 10.77 2000
Verrelst J. [125] 231 15.20 2012
Khan S. [126] 225 56.25 2018
Yaseen ZM. [127] 203 67.66 2010
Berg B. [128] 190 28.42 2015
Oresko JJ. [129] 197 16.41 2015
Jing L. [130] 196 39.20 2010
Gonzaga JCB. [131] 191 14.69 2009
He J. [132] 191 38.00 2017
Michie S. [133] 190 38.20 2017
Botu V. [134] 170 24.28 2015
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Figure 2.11: Network visualization for Co-citations. Cluster 1: yellow color, cluster 2: red
color, Cluster 3: green color, and Cluster 4: blue color.

2.6.5 Most common technologies or models used in Predictive Mainte-
nance

2.6.5.1 Most Frequent Keywords and Co-occurrence Analysis

In this section, we focus on the question RQ4. We first analyze the most frequent keywords
and their co-occurrence networks. The co-occurrence network keyword is a relational biblio-
metric metric frequency of scientific knowledge. So, the node represents a keyword, and its
size is proportional to the frequency of co-occurrence of the word. While the color determines
the cluster to which the element belongs. Thus, its clusters provide a global view of divergent
research areas and group words according to the scientific field of research. Moreover, two
keywords tend to be relatively close when they appear more frequently in the same articles.
Furthermore, the distance between two nodes in the figure is determined by the density. To
improve the analysis, we considered the most frequent keywords in each group and the key-
words that appear at least three times in the abstract. Table 2.10 presents the list of the most
frequent author keywords in the publications. We can see that the most frequent author’s
words are machine learning with 792 occurrences followed by deep learning, artificial intelli-
gence, and monitoring with respectively 479, 286, 220, and 177 occurrences. Finally, the 2.12
shows the density of the author keywords co-occurrence, and table 2.11 represents their word
clustering. This illustrates the most important keywords, machine learning, fault, diagnostic,
intelligent systems, data science, CNN, ANN, computer vision, network monitoring, or on-line

44



monitoring, have a great impact or importance for I4.0 and Pd4.0. In particular, DL and ML
approaches have a major role in solving PdM problems in I4.0.

Table 2.10: Top 20 of the most frequent authors’ keywords.

Author’s Keyword N occurrences
Machine learning 792
Deep learning 479
Artificial intelligence 286
Monitoring 220
Artificial neutral networks 177
Learning 166
Machine 108
Internet of things 792
Classification 479
Fault diagnosis 88
Feature extraction 85
Sensors 83
Big data 82
CNN 78
Industry 4.0 75
IoT 71
Condition monitoring 66
Predictive maintenance 64
Anomaly detection 62
Real-time 55

Table 2.11: Cluster of co-occurrence network author’s keyword

N cluster Node

Cluster 1 Deep learning, CNN, structural health, neural networks, computer vision
ANN, object detectors, LSTM, real-times, monitoring, transfer learning

Cluster 2 Monitoring, fault diagnosis, sensors condition monitoring, real-time systems,
Signal processing, forecasting training

Cluster 3
Machine learning, IA, IoT, Big Data, data mining, pattern recognition
classification, I4.0, anomalies detection, RF, predictive maintenance
Health monitoring, edge computing,

Cluster 4 Support vector machine, remote sensing, neural networks, image processing
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Figure 2.12: Density visualization map of the most frequently related terms in retrieved
articles on WoS. The frequent terms were visualized using VOSviewer.

2.6.5.2 Keywords Conceptual Structure Map

Secondly, we use Multiple Correspondence Analysis MCA to analyze the keyword conceptual
structure Map. MCA approach is an exploratory multivariate technique for the analysis of
multivariate categorical data [49], [136]. We can explain the importance of the keywords in
relation to their positions on the map, and on the main axes. Also, the proximity between
two keywords implies that they have a similar distribution. Figure 2.13 shows the distribution
of the most common keywords with the minimum number of documents (10) grouped into
two groups. We can notice that keyword such as big data, sensors, diagnosis, systems, or
simulation is located on the same plane and are very close. Furthermore, keywords such as
IoT, and the internet belong to the second axis. These keywords are, therefore, associated
with the most common technologies applied to the PdM in I4.0. Lastly, the performance and
limitations of these models have been described in section 2.4.2.

2.6.6 Research Trends in Industrial Predictive Maintenance

2.6.6.1 Keywords Dynamics Analysis and Trend Topics

Regarding the question RQ5 we analyze several elements. Initially, we investigate the key-
word evolution associated with the topic study (Figure 2.14). From 2014, we note a real
emergence of the use of approaches such as AI model-based (DL, ML) applied to monitoring,
diagnostic technique, and PdM4.0. When we focus on keyword plus, we have terms like clas-
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Figure 2.13: Conceptual Map, and keywords clusters (minimum number of documents is 5,
and method is MCA. Each cluster is represented by a distinct color (Cluster 1: red color, and
cluster 2: blue color).

sification, systems, data, real-time analysis, prediction, identification, and diagnostics that
are important to develop anomaly detection, condition monitoring, and PdM4.0 systems.

Furthermore, figure 2.15 shows the topic trend of the collected documents over the last 20
years. From 2018 we observe an increasing use of several technologies and models approaches
such as sensors, fault detection, condition, health monitoring, data, IoT, and data-Based
Modeling that support the rise of PdM4.0 and I4.0. Also, we have observed this evolution
and development in figure 2.14.

2.6.6.2 Thematic Map and Thematic Evolution

An additional element that guides us to answer the question RQ5 is to use a co-word for
analyzing the evolution or trend of the most significant research thematic. Regarding the
co-word analysis, each cluster represents the different conceptual themes developed in the
domain and the research period. Thus, authors [137] defined a strategic diagram by Callon’s
centrality metric, which measures the degree of relationship, or links between each cluster.
In addition, the strength, and the number of links imply a major relationship between the
research problems in the scientific community. Indeed, Callon’s density measures the strength
of the links between the keywords of each cluster or evaluates their impact over time in the
network. Lastly, the volume of the spheres is proportional to the frequency of publications
associated with each research theme. Figure 2.16 shows a strategy graph that represents the
search sub-clusters in a bidirectional space.
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Figure 2.14: Word dynamics for the keyword plus

Figure 2.15: Topic trend analysis of the collected documents over the last 20 years.

Regarding the results, we consider the 200 most frequent keywords described in relation
to author keywords. Figure 2.17 represents the strategic maps of the main thematic and
trends topic. According to this figure, we have six main thematic (Industry 4.0, artificial
neural networks, monitoring, deep learning, and machine learning) for the author keywords.
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Figure 2.16: Strategic diagram (adapted from [137])

However, when we focus on keywords Plus, we mainly have four themes (the internet, neutral
networks, system, classification, and networks). Moreover, the keyword abstract or keyword
titles extracted from the article’s contents give three major thematics (monitoring, real-time,
and data), and (times, learning, and monitoring). Furthermore, table 2.12 shows the main
emerging and motor topics related to the study case as well as their corresponding subgroups
topics. We can deduce that I4.0 is an emerging or crossroad topic while monitoring technique,
ML, and DL approaches are the principal or motor topics. Finally, we can deduce that in
recent years scientific research has focused mainly on these cited subjects or topics.

2.6.7 Analyzes of Ethical Impact of the use of AI Techniques for PdM
system

Ethical issues were initially not mentioned in the constitution of the initial query presented
to the subsection 2.6.7. By performing a sub-query with the following keywords: "Ethical",
"Artificial Intelligence", and "Industry 4.0" on the set of 4065 papers initially collected, we
found a subset of 37 papers that address the ethics and trust based on AI models. Regard-
ing the answering to the question RQ6, we exploited the results of this sub-query and the
probable impact presented in the subsection 3.3.2. We can therefore show that AI systems
and the industry’s robotization will probably have several impacts on ethics, confidentiality,
privacy rules, transparency, and human-robot collaboration. Furthermore, industrialization
may involve social-economic issues, particularly the increase in the unemployment rate, re-
duction of the workforce, and the evolution of the disparity between developed and Third
World countries.
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Table 2.12: Strategic Map author’s keywords. Each cluster is represented by the main theme
and its positioning in relation to the current literature.

Author’s Keywords Position
Cluster 1: Industry 4.0

RF, IA, Monitoring, PdM, System, Cyber-physical
object detectors, real-time, Condition monitoring

Crossroads
(Emerging theme)

Cluster 2: Artificial Intelligent
Neural networks, Recognition, Prediction, Diagnostics,
Image & signal processing, Genetic algorithm

Crossroads
(Motor theme)

Cluster 3: Monitoring
Sensors, Real-time, System,
Forecasting, Neutral networks

Principal
(Motor theme)

Cluster 4: Deep Learning
LSTM, Feature extraction, CNN, ANN, Fault,
Health monitoring, Computer vision

Principal
(Motor theme)

Cluster 5: Machine Learning
IoT, Big Data, Data mining, Remote,
Anomalies detection, SVM, RF

Principal
(Motor theme)

Figure 2.17: Strategic map of the author’s keyword. To interpret the results, and the color
of the legends keyword in this figure, the reader is referred to the color.
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2.6.8 Issues Identified, Key Challenges and Future Research Directions in
PdM and I4.0

To answer the question RQ7, we showed the challenges associated with the deployment of
AI Systems in I4.0 can be associated with several factors such as operational, organizational,
technical, data collection or processing, cybersecurity, interpretability, trust, privacy, and
ethical rules.

(a) Operational and organizational: The growth and industrialization of the factory gen-
erally lead to reforms and changes in the human, operational, management and organizational
levels [138]. These operators must be able to interact with professionals from other fields (mul-
tidisciplinary). Besides, companies must surround themselves with specialists (data scientists
or experts) in the fields in which the solutions will be applied.

(b) Machine-to-machine and human-to-machine interactions: It is essential to ensure that
AI systems do not affect the functioning of other equipment or interconnected machines in
the production process. Thus, the industry should ensure that AI systems can interact or
communicate with other devices while maintaining their behavior. Furthermore, workers must
be trained or adapted to communicate and interact with these new technologies.

(c) Cybersecurity and privacy: The exponential exploitation of interconnected technolo-
gies or storage systems such as IoT, sensors, databases, or big data infrastructure (local or
cloud) can expose AI systems to cyberattacks notably through spamming or malicious soft-
ware classification [139]. However, considerable efforts are being made to enforce ecosystem
standards and guidelines such as the ISO/IEC 29180:2012 standards for sensor networks.
Nowadays, there is really no standard or reliable process to ensure the security of AI models
against attacks. Further questions are raised about the General Data Protection Regulation
(GDPR).

(d) Real-time data collection: Data is a key element in PdM, these data must be massive,
secure, available, accessible, and qualitative to perform a generalizable PdM system. Data
collection is therefore a major challenge for companies since the sensors or machines do not
often generate representative data on their conditions, deterioration, or configurations. In
so doing, a possible solution is to label all the raw data although this operation can be
time-consuming, fastidious, and requires the knowledge of an expert. Furthermore, labeling
operation involves risks of errors and considerable economic and operational costs. Indeed,
to address data quality issues, several approaches have been proposed, such as artificial re-
sampling, interpolations techniques, semi-supervised learning, or data augmentation. Thus,
when data are scarce, it is also possible to use the GAN model to simulate reliable data
[100], or transfer learning (different working conditions and machines) for the transfer of
knowledge from one system to another [140]. Approaches cited are not systematically efficient,
the data simulation process is sometimes not adapted to the real conditions of a machine’s
operation since the imposed scenarios do not represent the complexity of the system (machine
degradation or failure).

(e) Adaptability of prescriptive and hybrid modeling in real time: it is important to
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develop prescriptive and hybrid models as a recommendation system for diagnosis, prognosis,
and anomaly detection of machines in real-time. Furthermore, hybrid models [141] have the
benefit of integrating both physical and numerical knowledge or constraints of the system
combined with data-driven modeling. Furthermore, an AI system must be able to adapt
to the whole system while maintaining its performance. Adding new equipment (machines)
should not be an obstacle or a constraint that may impact the model’s quality.

(f) Using computer vision, multimodal prediction, images, video processing, texts, and
sound data in the PdM: Data are collected from heterogeneous systems and are of diverse
nature. The challenges of PdM are to combine all these data to perform a multimodal
prediction.

(g) Explainability XAI-model: We have shown that some AI black box models such as
CNN, or RF have a real interest in PdM problems. However, they are not easy to interpret
and are neither intuitive for all stakeholders. In this context explainability is an important
factor for the acceptance of AI solutions. Furthermore, a new trend of AI is focused on XAI
explainability model-agnostic methods [142] such as Shapley Additive exPlanations (SHAP)
[143] or Local Interpretable Model-Agnostic Explanations (LIME) [144] that are designed
to explain and understand the "black-box" model decision-making, and make it easily inter-
pretable, comprehensible and user-friendly for all stakeholders. Indeed, AI systems should
not substitute humans, but support them in taking over low-level thinking tasks. In this
regard, experts must collaborate with these new technologies to ensure productivity.

2.7 Discussion

This article focuses attention on a detailed bibliometric analysis based on using AI tech-
niques for PdM in I4.0. The main objective is to highlight the evolution, impact, and current
state-of-the-art scientific research related to the exploitation of these technologies for anomaly
detection, diagnosis, and PdM4.0. The results obtained give us a detailed analysis to address
all the questions initially formulated. Furthermore, these results show a relative description
of several metrics, including the publication trend, most productive journals, documents, au-
thors, co-authors, references, affiliations, countries as well as network collaboration between
authors or institutions. We have represented the most important keywords, conceptual, intel-
lectual, and social structure of the research, including all past, principal, and emerging themes.
Furthermore, we present the potential ethical impact rules using this AI system. Besides, we
discuss the main challenges, and future research directions in AI applied to PdM4.0.

We analyzed the main information about the 4065 collected documents according to their
dynamics, productivity, total citation, impact on the community, and network collaborations.
We have observed an exponential increase in the number of papers published in the last 20
years. We have 2308 source journals, however, the most productive are respectively IEEE
Access (143), Sensors (119), and Applied Sciences-Basel (47). Indeed, we have shown that
these journals are not necessarily the most cited. To have a high profile, and reputation in the
scientific community, its journals are also open access, making it easy to view articles online.
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Concerning most cited, co-cited authors, as well as their collaboration network, and their
impacts (subsection 2.6.4.1), we noted that Bellini, Filippetti, and Tassoni (694) are the most
cited authors with the same TC metric. Furthermore, we analyzed affiliations, based on their
productivity, impact, and collaboration. The most productive universities are respectively
Illinois (81), Shanghai Jiao Tong (74), and California Los Angeles (71) university. As far
as an international collaboration between authors, or institutions, is concerned, institutions
belonging to developing countries are not representative, notably Oceania with 399 articles
(3%), and the African continent with 212 (2%) of the published articles. This trend of low
productivity of universities, or institutions in Third World countries can be partly explained
by the fact that they are lagging in scientific research due to the lack of infrastructure, access
to digital services such as the internet, energy, and the reputation of institutions in the
scientific community. We can conclude that the institution in the USA, and China globally
dominate the research on the topic.

Regarding the most cited, and productive articles, we have the following papers: [87],
[118], [119], [145]. In particular, article [118] has been cited 694 times, the authors exploit
AI models for monitoring and detection of electrical and mechanical defects. Article [119]
which has been cited 419 times, exploits sensor data, and DL technique for the intelligent
diagnosis of failures via regularized neural networks. Author [145] uses wavelet analysis and
ANN models to predict the weld quality in friction stir welding. Paper [87], presents a hybrid
model (RF combined with LSTM) for real-time monitoring, and corrective adjustment. In
fact, the topic described in these papers deals with subjects related to the digitization of
industry by using the IA system. Moreover, the most cited references include [97], [135],
[146], [147].

To identify the most discussed topics and common technologies used in PdM, we extracted
more than 11268 authors’ keywords. Thus, we have analyzed these words including their co-
occurrence networks. We can deduce that words such as ML, DL, AI, monitoring, artificial
neural networks, data science, I4.0, IoT, sensors, big data, fault diagnosis, feature extraction,
CNN, condition monitoring, predictive maintenance, anomaly detection, real-time are the
most frequent keywords. Moreover, the evolution of its keywords is associated with the
main theme of the study. We mainly have 6 topics; however, the principal and emerging
themes are respectively monitoring, I4.0, DL, and ML techniques. Besides, we have a real
emergence of these approaches applied to monitoring, diagnostic technique, and PdM4.0.
Indeed, the analyzes suggest that the heterogeneity and the link between these keywords
reflect the importance of AI techniques in PdM4.0.

Additionally, we have observed that industrialization and automated systems probably
have an impact on the whole ecosystem of the industry. AI models applied to PdM systems
have some benefits, maintenance cost, and energy consumption reduction. Furthermore, they
help to improve quality, to optimize, and increase the efficiency or flexibility of production
processes. On the human side, these models’ impacts can be organizational, operational, secu-
rity, trust, socio-economic, or legal. Indeed, authors [148] show that AI systems will increase
the workload of employees and create a need for adaptation and dependence on new tech-
nologies, particularly the challenge concerning transparency, and human-robot collaboration
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raises ethical issues. In fact, [149] demonstrated that the transition to robotization of manu-
facturing systems is going to involve social-economic problems (generalized social exclusion)
and a reduction of the human workforce (massive unemployment). Also, the operators will
have to re-adapt, be formed, and specialize in these new challenges or operational changes.
Therefore, if the public authority does not adopt actions, industrial automation and AI system
use will contribute to increasing the gap disparity between technologically advanced countries
and under-developed countries.

2.8 Conclusion, Limitation and Future Works Orientations

The contribution of this chapter is to provide a useful state-of-the-art basis for the literature
search on the use of AI techniques applied to PdM in Industry 4.0. To address the re-
search problem (RQ1 - RQ7), we have performed a bibliometrics analysis using Biblioshiny,
VOSviewer, and Power BI tools. This detailed analysis is based on 4096 scientific documents
collected between 2000, and 2021 from the WoS Database. We focus on some metrics, includ-
ing the publication trend, most productive sources, papers, authors, co-authors, references,
affiliations, and countries as well as network collaboration between authors or institutions.
Furthermore, we analyze the most important keywords and the principal or motor theme
associated with this study. We also analyze the benefits of AI models in the industry, their
particularities, applications, impacts, and major results or performances. Particularly, we
were also interested in ethical, trust, transparency, and socio-economic impacts that could be
caused when using these models. We give our definition of trustful AI for I4.0 and its effects.
Finally, the potential limitations, key challenges, and future research directions of AI systems
are presented.

The results obtained showed a progressive increase in the frequency of publications over the
last 20 years. Regarding the sources, we have shown that the IEEE (Institute of Electrical and
Electronics Engineers) access is the most productive and cited journal. Moreover, the most
productive universities are respectively Illinois, and Shanghai Jiao Tong University. The USA
and China are the countries with a major impact on scientific research related to the study
topics. Indeed, the collaboration between developed and Third World countries is very weak,
while the international collaboration among developed countries is strengthened. For the
author’s analysis, we have observed that the most cited author and reference are respectively
Bellini and Lei. Furthermore, the analysis of the collaboration networks shows that some
authors tend to work in small groups (three collaborators by group), which implies a large
number of groups or clusters of authors. According to the author’s keyword analysis, we show
that the most important theoretical knowledge and research theme on PdM4.0 are mainly in
the areas of machine learning, and deep learning, including their sub-models. Moreover, we
have 6 main topics among which the emerging themes are DL, ML, and monitoring. These
different results clearly show a wide field of applications (monitoring, diagnosis, prognostic,
anomalies detection) or different situations, especially for supervised, unsupervised, or semi-
supervised learning problems.
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We have described the most common predictive models used in PdM 4.0. Despite their
performance and application in many industrial cases, in practice, we have shown that some
predictive models have several limitations, especially on their instability and overfitting in
a situation for missing or noisy data, high volume, complex and unbalanced classes. In
addition, they can have complex architectures, resulting in a significant requirement for GPU,
and computing time, in the estimation of these parameters. real-time or online analyzes can
become very complicated due to the high computing time and complexity of these models.
Moreover, these models can interfere with the correct functioning of the system. Besides, most
of these "black-box" models are not explainable, i.e., the algorithm decision-making process
is unknown. This can be a real issue for their generalization in the industry.

Finally, using AI technologies in the industry can also be confronted with some challenges
such as operational, organizational, adaptability, machine-to-machine, human-to-machine in-
teractions, cybersecurity (risk attacks), analysis online, real-time data collection, and data
quality. Also, we have challenges concerning prescriptive, hybrid, and multimodal modeling,
visual reasoning, socio-economic, Explainability XAI, interpretability, trust, privacy, GDPR
data protection statements, and ethical impacts.

2.8.1 Limitations

Concerning the main limitations, we performed a search with selected keywords according to
the study context. However, we cannot guarantee that these keywords and the scientific doc-
uments collected cover the whole research area. Moreover, we use an open-access journal WoS
database which does not contain all the publications. Also, the scope of this research is limited
to English documents collected from WoS and we used a traditional bibliometric approach to
perform analyzes, therefore, by combining the different methods we can considerably improve
the results.

2.8.2 Future Works Orientations

In order to improve the results, we can refine the query by including more accurate keywords.
The exploitation of several bibliographic databases such as Scopus, Springer, Google scholar,
Science Direct, and IEEE, as well as the selection of documents supplementary by including
books, notes, and thesis, will also be applied to retrieve all documents covering the field
of study and improve the quality of analysis. We will also consider contributions written in
languages such as French, Chinese, Italian, Spanish, or German. Another area of improvement
is to use a combination of several bibliometric analysis methods to strengthen the result.

In the following two chapters, we exploit the traditional AI models extracted from this
literature review. The most commonly exploited models for solving predictive maintenance
tasks with continuous data are deep neural networks. These networks have the ability to
extract information via their hidden layers. Moreover, they are generally performing well in
solving classification and prediction tasks. Despite their considerable success in industrial
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applications, we can not fully explain the obtained results. This disadvantage is also impor-
tant for people interested in understanding the choices of algorithms to discard one feature
over another (decision rules). Another problem concerns the generalization of these models.
Manufacturers are interested in efficient models that can be adapted to several processes.
Moreover, these models must have the ability to capture both local and global phenomena.
To address the issues of traditional AI approaches such as DNN, we develop hybrid models,
which are usually composed of several models.

To address the first issue related to "black box" models we will integrate further knowledge
to explain the results of the prediction model. This approach consists in introducing an
explainable XAI framework combined with the prediction model. The framework explains
the decision rules when training the developed model. This knowledge has the advantage of
modifying our perception of the results of intelligence models. In addition, the XAI method
can be used to respond to feature selection operations. This makes the predictive model more
robust and accurate. We will give more details about this hybrid model in chapter 3.

Regarding the second challenge, we will develop a hybrid and generalizable model via the
integration of the topology knowledge of the process. In contrast to the previous case where
we extract the knowledge, in this case of the PINN model we add the knowledge to train the
model. This forces the model to follow conditions well-defined by the laws or constraints of
physics. This physics constraint modifies the loss function. The optimization of this new
combined loss function promotes or guarantees robust and accurate results. This model and
these key values will be presented in detail in chapter 4.
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Chapter 3

Health Condition Monitoring of a
Complex Hydraulic System using

Deep Neural Network and
DeepSHAP Explainable XAI
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Abstract

This chapter presents a detailed framework for Condition Monitoring (CM) based on hy-
draulic systems and multi-sensor data. Nowadays, the CM technique is increasingly deployed
to optimize quality and manufacturing processes. It is used as a decision-making support
tool in maintenance operations or activities. In this environment, the diagnosis, prognosis,
and monitoring of interconnected machines have become crucial issues for improving the cost-
effectiveness of manufacturing industries. Some models are available to monitor or predict
the degradation of elements within a hydraulic system, such as coolers, valves, internal pump
leakage, or the condition of the hydraulic accumulator. In this case, we have focused on a data-
driven approach, concentrating on the Deep Neural Networks (DNN) multi-class classification
for unbalanced data adapted to predict the actual operating states of the system. Despite their
performance, questions remain concerning the reliability of the DNN as a "black-box" model
when used in complex applications, notably regarding the decision-making processes and the
possible ethical, socioeconomic, and transparency impacts on stakeholders. Regarding the ex-
planation approach, we have exploited the Deep SHapley Additive exPlanations (DeepSHAP)
methodologies to provide reliable results and to explain the importance (weight) or role that
each sensor plays and its contribution to the classifier algorithm’s decision-making. The ob-
tained framework based on two principal modules illustrates that the DNN classifier model
when evaluated by Accuracy, F1-Score, Recall, and Precision metrics, are robust and per-
form efficiently. Finally, using the DeepSHAP technique explains the results of the developed
model. It helps humans to understand, interpret and trust the model, with an associated
increase in the support or the stimulation of Artificial Intelligence (AI) models applications
on large-scale problems including industrial sectors.

Keywords: Hydraulic system, Deep Neural Networks (DNN), Faults Classification, Sen-
sors, Condition Monitoring (CM), Anomaly detection, Diagnosis, eXplainable Artificial In-
telligence (XAI), DeepSHAP, Ethics

3.1 Introduction

Hydraulic systems are important, due to their various applications in the industry, espe-
cially in the aeronautics, aerospace, and energy sectors [150]. These systems are generally
composed of multiple interconnected machines, equipment, the Internet of Things (IoT), or
sensors. Sometimes, their failures may occur randomly over time, if some countermeasures
are not adopted in anticipation, these machines can fail to work properly or operate in an
abnormal way. The maintenance strategies are very often periodical and do not really de-
pend on the machine conditions [151]. This consideration is increasingly pertinent regarding
security, reliability, performance requirements, and the provision of fairness. Moreover, in
an increasingly competitive market, Industry 4.0 (I4.0) must respond to new challenges or
opportunities related to profit, gain maximization, and mass or specialized production. These
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challenges are driven by technical imperatives (e.g., minimization of machine downtime and
maximization of a component lifetime) impacting economic issues such as the potential for
production and maintenance cost reduction [11]. To meet these new demands, several tech-
niques have been developed, including Condition Monitoring (CM) systems. In recent years,
the CM approach has emerged as a key element in the management strategy and processes of
industrial systems. Furthermore, emerging technologies such as smart and connected sensors,
IoT, cloud computing, augmented reality, simulation tools, big data, and Artificial Intelligence
(AI) techniques have contributed to the development and application of the CM system in the
fourth Industrial Revolution [37], [152], [153]. More often, the CM technique has significantly
improved its performance over other traditional maintenance methodologies including correc-
tive, preventative, and time-based maintenance [154]. The most important task in performing
CM concerns the monitoring of the machine components, sensors, and CM framework itself.
Notably, the systems monitored can be subjected to potential failures (e.g., the alteration or
breakage of the sensors) related to operating conditions or the effects of aging [155]–[157].
This approach tends to overlook the continuous changes based on the data collected online, re-
sulting in an incapacity to detect abnormal values or to accurately predict the actual system’s
state. In addition, it is also necessary to be sure that the models developed do not interfere
with the correct functioning of the other machines or components. For modeling condition
monitoring or predictive maintenance tasks, different approaches have been developed [151]
[158], [159]. These approaches can be classified into three categories: Knowledge-Based mod-
eling [17]–[19], Physics-Based modeling [20]–[22] and Data-Driven or Data Science modeling
[23]–[25]. Several papers have highlighted the performance of the data-driven technique, in
particular, the robustness and performance of Deep Neural Networks (DNN) models in solving
complex problems (e.g., fault detection, diagnosis), including non-linearity [160]–[163]. The
DNNs models are a class of AI techniques named "black-box" models, which involve a combi-
nation of powerful learning algorithms with numerous parameters (thousands of parameters
and layers) in the modeling space.

Despite their many applications and performances, the absence of transparency and expla-
nation of the decision-making algorithms can constitute a major obstacle to their exploitation.
Deep learning models are mostly presented as "black box" models. This is due to the fact
that their internal predictive functions are not easy to explain or interpret by humans [164].
In addition to this, there are some questions regarding the large-scale application of the CM
system based on AI techniques and the ethical impact such as transparency, trust, fairness, or
privacy rules. Furthermore, Practitioners are interested in the explanatory paradigm of the
complex AI algorithms [165]–[168]. The embedding of explanatory approaches to "black-box"
modeling is an important requirement for the real-world experience of AI-based models. The
main purpose of these methods is to address the different expectations, interests, goals, and
needs of all stakeholders including citizens, regulators, governments, domain experts, or sys-
tem developers [168]. Thus, the absence of an explanatory framework can have a significant
impact on the fairness, ethics, transparency, responsibilities, and trust towards the outcomes
of these models and their implementation on a large scale in organizations [169]. The key
question must therefore be "how to explain the decision-making process by the "black-box"
models in a way that engenders faith in their reliability?" In this context, it is necessary to
improve both the accuracy, the performance, and the understanding of the decision logic or
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mathematical rules used by these algorithms during the training stages. In addition, we must
create a balance between explanation, interpretation, and accuracy, since explanation can as-
sist us in the detection and correction of bias in the learning set (unbiased decision-making).

The main issue addressed in this chapter is the development of a detailed framework based
on hydraulic systems and multi-sensor data. The framework has two principal modules; the
first module addresses the prediction of the different degradation states of the hydraulic sys-
tem components, whilst the second module concerns the explanation of the model’s decision
rules. This methodology provides an explanation or better understanding of the decisions of
the model developed, while also characterizing their strengths and weaknesses in the decision-
making process. We have focused on the DNN multi-class classification model for unbalanced
classes, combined with the DeepSHAP approaches for the explanation of the model developed.
To ensure robust performance and reduce the possibility of overfitting issues, we use cross-
validation combined with a data resampling technique. Firstly, the developed framework is
adapted to predict or classify the conditions of the hydraulic system, including the cooler,
valve, internal pump leakage, or hydraulic accumulator. Secondly, the framework provides
an explanation of the local and global importance (weight), or role played by each feature
in the decision-making process. This facilitates the human comprehension of the mystery of
Deep Learning (DL) algorithms and improves the interpretation of the results generated. It
also encourages expert confidence in the use of AI techniques. According to our knowledge
and the state of the art, very few studies are developing a hybrid framework for a hydraulic
system. This framework combines two models: forecasting and an explanation XAI model.
The first model is based on deep neural networks applied to unbalanced classes. The sec-
ond model exploits the predicted classes by highlighting the advantages of the DeepSHAP
approach. This model favors the implementation of "black box" models in industrial appli-
cations, including the conditional monitoring of a complex system in the context of Industry
4.0, from a methodological and operational point of view.

The rest of this study is organized as follows: Section 3.2 presents the literature review on
the condition-based monitoring applied to hydraulic systems. Section 3.3 presents a robust
DNN classification model, its characteristics, applications including the ethical impacts, and
the reliability of the use in the condition monitoring systems. Furthermore, we introduce
an overview of Explainable Artificial Intelligence approaches, and we describe their main
concepts, definitions, and goals. We demonstrate that the exportation of the DeepSHAP
technique for the DL model interpretation discriminates and explains more effectively the
prediction performed by the DNN model. In addition, it is more adapted to human intu-
itions compared to other approaches. Section 3.4 shows a detailed description of the research
methodology and the framework developed based mainly on two modules. The description of
the hydraulic system including their available conditions and the data collected by the sen-
sors are presented in section 3.5. Detailed results of the developed framework with in-depth
predictive and explainable analysis are given in section 3.6. The major contributions and
the discussion are presented in section 3.7. Finally, the conclusion, limitations, and future
research are described in the last section of this chapter.
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3.2 Literature Review of Condition Monitoring Applied to
Hydraulic Systems

According to European Standards, maintenance is a combination of actions and management
techniques that can be used to ensure the correct performance of the machine over time. We
have three main stages for industrial maintenance: The first stage consists of identifying the
faults and their characteristic if any. The second stage is the diagnosis phase which helps
to identify the intrinsic location of the defects. The last phase named prognosis is based on
the collected data and can be used to predict the operating states or Remaining Useful Life
(RUL) of the machine. Hydraulic systems are also concerned by these maintenance strategies
because such systems can be exposed to multiple conditions of fatigue, or failure. These causes
are not necessarily recognized or identified. To explore them, the probabilities of occurrence,
and to anticipate the deterioration levels in the hydraulic system condition, various models,
or techniques have been proposed in recent literature [170]. Some papers have focused on
monitoring the single component of the system, for example, the authors of [171], [172] have
developed a hybrid prediction method based on the Empirical Mode Decomposition (EMD)
and Support Vector Machine (SVM) to monitor the condition of a hydraulic transmission
system with an axial piston pump. The authors of [173] focus on hybrid modeling based
on adaptive neuro-fuzzy inference for pump state classification. Paper [170] investigates the
behavior of a valve in a hydraulic system. In the following cases, the authors concentrate on
several components of the system at the same time. The authors of [174] propose a statistical
conditional maintenance approach based on Linear Discriminant Analysis (LDA) to predict
typical defects related to some of the hydraulic components. Paper [175] exploits the hybrid
approach as a combination of K-Nearest Neighbors (K-NN) and SVM models based on the
multivariate time series for multi-class classification of the condition of the pump, valve, and
accumulator. The authors of [176]] use Adaptive Linear Approximation (ALA) to extract
local features in combination with the time-frequency wavelet decomposition analysis based
on the signals. Papers [175], [176] propose a Kalman filter decomposition to perform the same
analysis as the previous paper. In addition to this, paper [177] addresses a state-of-the-art
overview of the conditional or predictive maintenance techniques for hydraulic cylinders. The
authors highlight the major components of the system to monitor and their main potential
failure factors such as water contamination, metallic debris, fluid fatigue, high temperatures,
wear debris, sealing, and extrusion defects. In order to anticipate these defects, several
approaches have been proposed [178], notably Electrical (magnetic) methods [178], [179],
Optical methods [180], [181], Physical and chemical methods [182]. The Electrical approach,
in particular, has been performed for the monitoring of the leak state in the cylinder. We can
also mention other approaches such as the use of pressure sensors [183], [184], accelerometer
sensors [185], [186], acoustic emission sensors [187] friction torque sensors [188], [189] and the
Data-driven approaches [190], [191] which can be applied to drive many industrial systems.
Most of these approaches are based on signal analysis, namely, on the time domain, frequency
domain and frequency-time domain processed by Fourier transforms, Kalman, Hilbert filters,
or wavelets decomposition. Paper [192] explains a numerical approach that aims to predict
the RUL of an aviation hydraulic pump. In this case, the physical phenomena (wear debris
characteristics) are simulated by the Monte Carlo sampling technique, and the RUL prediction
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is based on the Partition-Integration method. This hybrid framework provides better results
when compared to other simulation methods such as the Finite Element Method (FEM).
Paper [174] uses the sensor data collected from the hydraulic system. Table 3.1 provides
a summary of the models and strategies used in related work on this dataset. Especially,
paper [174] uses the sensor data collected from the hydraulic system. These data are used
to train some methods such as Support Vector Machine (SVM) Linear Discriminant Analysis
(LDA) and Artificial Neural Networks (ANN). In addition, authors [193] used the method of
feature selection or extraction. These features are used to train and validate several models
like Logistic Regression (LR), Neural Network (NN), Decision Forest (DF), and SVM via
benchmarks. To investigate the fatigue strength of hydraulic turbines and to reduce the
probability of accidents or unplanned shutdowns (fatigue cracks in the impeller, or guidelines),
the author of [194] proposes a useful and powerful intelligent maintenance system based on
a statistical approach named Predictive Analytics System (PAS). It promotes the transition
between scheduled maintenance and conditional maintenance by determining the optimal
RUL of the system components. The authors of [195] introduce real-time monitoring of the
condition of hydraulic oil, named the Impedance Detection System. This provides a prediction
of premature equipment failures based on information that reflects the wear of the system.
The approach has several advantages, it can be used for oil detection in the laboratory, or as
a portable oil detection device for machine health monitoring.

In fact, we observe that most of the presented cited papers use Machine Learning (ML),
Statistical, or Physics-based techniques. In addition to this, the data are frequently decom-
posed or approximated with the signal processing methods, or alternatively, the data are sum-
marized as time series which requires several pre-processing and approximations operations.
Despite their numerous applications and benefits, these approaches can also become less ro-
bust, unstable, and inefficient (overfitting problems) in the following cases: high-dimensional
data, complex systems or machines, unbalanced classes, and missing and noisy data. More-
over, these models do not capture the causal relationship or the correlation between the
descriptive and the predicted variables. Finally, the data decomposition techniques do not
consider the local information combined with the temporal multivariate features. These lim-
itations can significantly degrade the models and make them unusable. To overcome these
challenges, the authors of [196] propose the Convolutional Neural Networks (CNN) to predict
the condition of the hydraulic systems. The authors of [197] provide the data augmentation
technique to improve the performance of CNN models when the data are not sufficiently
representative. However, increasing the hidden layers have a degrading impact on network
performance. Furthermore, the estimation of the model parameters may require a high-
computing time or Graphics Processing Unit (GPU) memory.

In this chapter, we propose the multi-class classification method using the fully connected
DNN model applied to the unbalanced classes which operate directly on data without any
explicit selection or extraction of features. The aim is to explain the contribution of each
explanatory variable by enhancing the work done by the authors of [196] which uses the
CNNs models, and the local approach based on the Heat Map visualization technique. We
have used DeepSHAP to explain the local and global importance of each sensor in learning
states, to support all stakeholders in the decision-making process.
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Table 3.1: Summary of work related to monitoring conditions applied to sensor data collected
from the hydraulic system.

Reference Feature
Representation Features Classifier Model

Paper [174] Engineered

Signal shape features +
(slope of linear fit and
position of maximum value)
Distribution density
(variance, skewness
and kurtosis)

LDA, SVM, ANN

Paper [198] Engineered Distribution density: Median RF and NB

Paper [193] Engineered

Signal shape features +
Distribution density
(variance, skewness, and
kurtosis)

ANN, SVM, LR, and DF

Paper [199] Raw feature subset Correlation and Redundancy-aware
Feature Selection (CRFS) LSTM-AE

paper [200] Raw feature subset PCA XGBoost

Paper [196] Raw sequence data Encodings of the
convolution layers

Fully connected CNN +
Sensitivity Maps

Our proposed
approach Raw sequence data Encodings of the

Deep layers
Fully connected DNN +
Explainable DeepSHAP

3.3 Deep Neural Network for Fault Classification and Shapley
Additive exPlanations approach for Explain the Model

In this section, we present the multi-class classification approach based on a DNN model. Fur-
thermore, we describe their architecture and internal structures such as the layer activation
function, the number of neurons, the number of hidden layers, and the optimization func-
tion. Also, we discuss the potential ethical impacts of using AI-based modeling, notably the
transparency, trust, fairness, and privacy rules. Moreover, we have discussed the paradigm
for the most relevant explainable techniques of AI algorithms which are mainly based on the
additive feature allocation methods. We analyze the contribution or the importance of each
feature on the prediction of the DNN model. In other words, we show how each extracted
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feature can influence the model. Thus allowing a local and global analysis of the data set and
the problem to be solved. We can specify that the aim of this approach is not to evaluate the
prediction quality or itself.

3.3.1 Deep Neural Network For Faults Classification

In this subsection, we focus on the data-driven module that consists of predicting the health
conditions of a system by learning its behavior from historical data. We exploit the DNN
model which is one of the most important architectures in AI-based modeling. This network
has been developed and is used in many industrial applications [97], such as Computer Vision
[201], Natural Language Processing [202], or Anomaly detection [203]. For our case study,
we use a fully connected DNN model to classify the conditions of the hydraulic components
such as the Cooler, Valve, Internal pump leak, Hydraulic accumulator condition, and Stable
flag. Generally, this model improves the performance of traditional Machine Learning (ML)
techniques with a better ability to generalize algorithms by mechanisms that rely on the
regularity forms of the underlying learning functions. Moreover, DNN is a type of Artificial
Neural Network (ANN) formed by several layers including an input and output layer and
one or more fully connected hidden layers. The main objective of the DNN model consists
of automatically extracting relevant features or patterns from collected data using networks
with multiple hidden layers and nodes. Each layer of the network is composed of one or more
interconnected artificial neurons. The information is processed in feed-forward mode (starting
from the input layer and arriving at the output layers through the hidden layers). Thus, the
expression of the input layer i is given by the vector X = [x1, x2, ..., xi]. The hidden layer
helps to extract features from the input layer xi using the following equation:

hj =
n∑

i=0
wijxi + bj (3.1)

where i = 1, 2, 3, .., n, j = 1, 2, 3, .., k is the number of hidden units. wij represents the
kernel, bj is the bias coefficients, xi indicates a feature of previous layers. The inputs are
multiplied by weights and the bias is added to the sum of the product obtained.

3.3.1.1 Layer Activation Functions

In the literature there are several families of activation functions classified into linear and
non-linear functions [204]. To activate the hidden layers, we focus on the Rectified Linear
Unit (ReLU) function [205]. This function is very often used for its simplicity, its ability
to capture interactions, and its nonlinearity. Moreover, the application of the function of
the hidden layers facilitates the gradient descent and promotes rapid training compared to
other functions such as the sigmoid or hyperbolic tangent known as tanh, while being lighter
and easier to calculate. It can learn reliably even when the number of layers increases. The
monotonous function is just the max function (negative weights get flattened to 0), where the
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relation is described by the following equation:

fReLU (x) = max {0, x} (3.2)

Concerning the DNN models, the activation function enables the set of neurons to be
excited. The result is then converted into a signal indicating the state of neuron excitation.
Thus, when we apply the ReLU function to activate the hidden layers, the result is presented
by the following function:

h = f(hj) where f(hj) = ReLU(hj) (3.3)

However, to activate the output layers, we have two cases: when the variable to predict is
binary, we use the sigmoid activation function. But if the variable has more than two classes
(the model is a multi-class classifier), we apply the Softmax function (normalized exponential)
which computes the probabilities of each subclass. The advantage of using these functions as
the activation function for output layers is the fact that it is differentiable and compatible
with the gradient algorithm. In addition, the Softmax function is a logistic function that takes
as input a vector of j elements and as output a vector containing the normalized probabilities
for each class whose sum is equal to 1. This function is defined by the following equation:

P (y = j|xj) = exT wj∑K
k=1 exT wj

(3.4)

3.3.1.2 Loss Function and Optimizer

In this subsection, we introduce the general form of the loss function L for the multi-class
classification model defined by the following equation:

L = 1
N

N∑
i=1

C∑
c=1

tilog yi,c (3.5)

where N is the number of samples, C represents the number of classes, and ti ∈ (0, 1) with
t = 1 for the correct class of the 1st and 0 elsewhere. We use the Cross-Entropy function
(CE) since the learning speed is faster than Mean Squared Errors (MSE). However, the DNN
model’s performance is often significantly affected by several hyper-parameters including the
Learning Rate (LR). In order to minimize these errors, it is necessary to develop a neural
network with an optimal architecture. In this context, we exploit the Adaptive Moment
Estimation (Adam) method to compute this issue [206]. Thus, to adapt the learning rate,
Adam’s algorithm is based on the statistics moments including the first (mean) and second
(variance) moments of the gradients. In addition to the CE function, we use Adam’s algorithm
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as an optimizer which is a process to find the optimal parameters through a learning stage
by minimizing the L loss function.

3.3.1.3 Model Architecture

We have developed a fully connected DNN for Multi-Class Classification that solves tasks such
as the prediction of degradation with multiple states in the hydraulic system’s components.
These components include the cooler, valve, internal pump leak, and the condition of the
hydraulic accumulator. Figure 3.1 shows the architecture of the DNN model with one input
layer, four hidden layers, and one output layer with nine nodes for each hidden layer.

Figure 3.1: Architecture of the fully connected Deep Neural Network Multi-class classification
model with four hidden layers, each layer contains nine neurons.

3.3.2 Potential Ethical Impact of using AI-based Modeling

We have highlighted that the AI-based models, particularly DNN, are important for industrial
applications including the CM framework. Despite their numerous benefits, these models
can lead to social-economic challenges, ethical impacts, or transparency issues concerning
stakeholders. Thus, these issues can constitute a major obstacle to the large-scale application
of AI technologies. The users are interested in the following aspects: how to explain the
decisions made by the algorithms in order to have confidence in them? Do intelligent systems
have a level of responsibility in the moral or legal framework? How do we control the algorithm
intelligence when they drift away from their target functions? Research has been undertaken
to highlight these challenging questions. Paper [207] shows that ethical principles and AI-
based systems are connected at several levels, especially in ethics by design, ethics in design,
and ethics for design. In particular, the authors [208], [209] argue that autonomous systems
based on AI approaches are designed, deployed, and evaluated by humans. In addition,
these systems are mainly based on theories, methodologies, or algorithms that incorporate
principles or fundamental values such as transparency, legality, morality, and sociocultural
fairness to ensure human flourishing and well-being. Furthermore, the authors [210], have
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shown the necessity to ensure that the behavior of AI systems is beneficial to humanity. If
the ethical principles are clearly and consistently defined for humans, the AI model itself
will have the ability to make decisions based on these principles. In the efforts to make the
system less biased in its decision-making, several approaches are possible. The first approach
consists of generated scenarios that will help to challenge the system with virtual cases used
in a simulated world, rather than in the real world. A second possibility is a formal approach
that describes the automatic computation rules of a model and explains how a decision is or
is not ethically acceptable. Moreover, to generalize the exploitation of the AI techniques, the
stakeholders must have a common vision of their usage and objectives [151], [211].

3.3.3 EXplainable Artificial Intelligence (XAI) Modeling

3.3.3.1 Definition of some Concepts

In this subsection, we give some important concepts, definitions, and principles regarding
XAI techniques. Interpretability is a passive characteristic of the models; it can determine if
these models are meaningful or transparent for all users. Unlikely, explainable concept is an
active characteristic, which means the capacity of the models to provide comprehensibly, and
decision-making rules that can be analyzed by a human being. Moreover, trustworthiness is
the confidence that an expert has in a model, i.e., the capacity of the model to produce the ex-
pected results [212]. However, reliable models do not completely conform to the requirements
of explanation [213]. Causality is a principle to explain the causal relationship between the
different input variables. Transferability is the understanding of the internal model relation-
ships that facilitates implementation and usage while facilitating the transfer of knowledge
to other problems. Fairness is the principle that any AI-based model must provide fair and
equitable decisions without favoring any set of input data. In this sense, the XAI methods
must respect the fairness constraints [214]. There are some additional associated principles
to the XAI approaches, including bias, accessibility, and interactivity [215], [216].

3.3.3.2 Why Do We Use Explanations in AI?

To understand the use or importance of XAI approaches, we can provide the following ques-
tions; How does a model work? What is driving decisions? Can we trust the model? In
this regard, the agnostic models for AI solutions are designed to be flexible and independent
of the model parameters or intrinsic structure. The most common DL models provide re-
sults that are often incomprehensible or difficult to explain. Furthermore, we must be able
to understand the decision-making rules generated by these models to guarantee trust and
improve their performance. Therefore, the ability to interpret and understand the results of
AI-based models is highly important. Figure 3.2 shows the comparison between the "black-
box" AI models as a decision recommendation framework and explainable AI models as a set
of explanation, feedback, and decision-making framework [217].
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Figure 3.2: Framework of the "Black-Box" AI compared with the explainable XAI approaches.

3.3.3.3 What are XAI’s Goals and their Main Target Audience?

We introduce the eXplainable Artificial Intelligence (XAI) methodologies as a sub-domain
of AI techniques that provides a set of approaches or algorithms. The main objectives are
to produce results that are easy to explain, and intuitive for all concerned, and that can
also help to understand the internal functioning or structure of the AI models. In addition,
this approach improves confidence among practitioners, insight into how the model can be
improved, and understanding of the process being modeled. The XAI methods can be used
in different contexts (See Figure 3.3). For example, data scientists use them to understand or
to ameliorate the performance of the models, since they can help to improve and debug the
models during the test and validation phase. In addition, manufacturers exploit it to check
the robustness of the model and the impact on the production process. The explanation is
therefore a helpful technique to provide transparency regarding how decisions are made and
how they can potentially affect the users. Finally, these techniques address some concerns
relating to the models, such as accuracy, robustness, bias, and transferability [165].

3.3.3.4 Levels of Transparency in XAI

In this subsection, we introduce the notion of transparency as the set of factors that facil-
itate the understanding and internal functioning of models including fidelity, accuracy, and
generality. All elements of the decision-making process of the model must be able to be fully
simulated by humans and an illustration is provided by models such as decision trees. A fur-
ther property of the models is decomposability and algorithmic transparency; it is necessary
to understand and analyze the set of procedures or mathematical rules followed by the model
to generate their results. In this context, models such as DNN have a complex learning regime
based on the optimization of a loss function, which is obtained through an approximation.
Apart from this, their deep architectures do not necessarily meet the transparency rules.
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Figure 3.3: The interests of all stakeholders in the use and importance of the XAI approaches.

3.3.4 Overview of XAI Explanation Methods

The XAI explanation has three main family approaches: the local, global, and hybrid method-
ologies. The local explanation method expresses the contribution of each X input data in-
stance in the decision-making to get a Y output in the training stage. This approach focuses
on single input data to extract information about the explanation g by using the various
characteristics of these data. The global XAI approaches provide insight into the set of
decision-making rules applied by the model. In that case, we observe all features for the
comprehensibility of the model. This approach is important for analyzing the global behavior
of an AI model on all input variables. The last approach is the hybrid XAI explanation which
combines the above-mentioned approaches. To address the problem of How to explain the
results of a Deep Learning algorithm? we present the most popular explainable XAI methods
developed in recent literature.

3.3.4.1 Activation Maximization

The activation maximization method is based on an input that maximizes the activation of a
given hidden unit [218]. Its main purpose is to solve an optimization problem by maximizing
the activation of a unit represented by the equation:

x∗ = argmax
x s.t. ||x||=ρ

zij (θ, xi) (3.6)

where θ, zij (θ, xi) are respectively the parameter, and the activation of an individual unit
i from the layer j. By fixing the parameter θ, we can obtain an explanation map. To resolve
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the problem of explanation, we have several solutions that provide an overview of the features
and their respective importance in each input layer. Firstly, the arithmetic mean of minimal
values can be calculated. Secondly, the minimum value that maximizes the activation when
the function converges is selected.

3.3.4.2 Layer-Wise Relevance Back-Propagation

The Layer-wise Relevance Back-Propagation (LRP) approach is developed by [219]. The
authors of [220] have shown the importance of LRP approaches to explain the behavior of
DL models. In addition, this method computes the most relevant scores on the input data
characteristics by performing the decomposition of the obtained predictions. To explain the
aim of this method, we consider a DNN model with an input x, a linear output y, and an
activation output h, with a linear function yj = ∑

i wijxi + bj and hj = f(yi). We note that
the output neurons yj are a function of the input neurons and the parameters of the fully
connected layers. The relevance score R(x) of the corresponding input variable x is given by
the equation:

R(x) =
∑

j

Ri←j with Ri←j =
∑

j

R(hj) xiwij

yj + ϵ|yj |
(3.7)

where R(hj) is the relevance of the activation output j and Ri←j is the Relevance or message
of all nodes i that contribute to neuron j in the layer. In practice, if we apply this method
in the CNN outcomes, the relevance score is back-propagated layer by layer. However, if the
models are RNN, these scores are retro-propagated to the hidden states and the memory cell.

3.3.4.3 Saliency Map Visualization

Saliency Map Visualization (SMV) is introduced by [221], it is an explainable model using
visualization to provide a gradient of the class output on a given input image. We can
obtain an accurate summary of the input image y by viewing the positive gradients that have
significant weight in the model output. Moreover, the visualization models allow us to find a
class score function that approximates the score Sc defined by the following equation:

Sc(I) ≈ wT x + b (3.8)

where x is the input image with a label class c which is a first order Taylor expansion, w

represents the derivative of the score function Sc at a given point x0 on the x input model
and b is the bias coefficient of the model.

3.3.4.4 Deep Learning Important Features

Deep Learning Important FeaTures (DeepLIFT) is an additive feature attribution method
that satisfies the local precision and recursively explains the results of the DNN model [222].

70



This method uses the linear composition method to linearize the non-linear elements of the
"black-box" model [223]. Furthermore, DeepLIFT assigns a C(∆xi ,∆O) value to the individual
xi input variables. These values describe the effects of a fixed input at a reference value
relative to the original one. We introduce the function x = hx(x′) ∈ (0, 1) and we note
that this method uses a "Summation-to-delta" property that is represented by the following
equation:

n∑
i=1

C(∆xi ,∆O) = ∆O (3.9)

where C(∆xi ,∆O) represent the contribution of the neuron x to the neuron y, O = f(x)
represents the output of the neurons, ∆O = f(x)−f(r), ∆x = xi−r(i), and r is the reference
input.

3.3.4.5 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-Agnostic Explanations (LIME) is an additive feature attribution,
which aims to explain the prediction of a given AI-based model, by substituting it with a
locally faithful explanation surrogate model [144]. LIME attempts to faithfully explain the
predictions of the models by learning a locally interpretable model that is close to the predic-
tion. Furthermore, this approach is a versatile explainer capable of processing various data
types and models. Thus, the LIME algorithm is a local XAI approach that explains the
prediction of a variable when analyzing its neighborhood. Let g be a class of possibly inter-
pretable G family models such that g ∈ G, and Ω(g) represent a measure of the complexity
of the interpretable model. The distance between two instances (x and z) around x is given
by the measure πx(z). We introduce the function L(f, g, πx) that is a faithfulness index of g

approximating f in the locality as defined by π(x). Thus, the explanation ξ(x) for an input
x is given by the following equation:

ξ(x) = argmax
g∈G

L(f, g, πx) + Ω(g) (3.10)

In the practical case, LIME optimizes only the loss part function using Penalized Linear
Regression (PLR) technique. To determine the appropriate model complexity, it is possible to
select the maximum number of features that the model can use during a training stage. Being
an agnostic model, it is applicable to any "black-box" model. Furthermore, it has been used
in several analyses including text and image processing. LIME allows a better qualitative
understanding of the influence of each input variable on the output predictions. However,
this approach has some limitations related to its local explicability, it does not generalize local
interpretability results to a global level. Moreover, LIME provides unsatisfactory results in
the case of tabular data and when the explanatory variables are of a continuous or categorical
type. Several LIMEs approaches have been developed to address these issues, such as the
Sound-LIME (SLIME) approach [224], which helps to identify the temporal-frequential re-
gions having a major impact on the decision-making model. In this way, temporal descriptions
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or decisions that are less intuitive are transformed into more insightful spectral information.
In addition, the explanations generated provide a deeper understanding of the behavior of
the classifier in order to determine an unreliable and non-generalizable. Kullback-Leibler
LIME (KL-LIME) is a combination of LIME and the principle of Bayesian projection predic-
tive feature selection methods, for explaining the model CNN predictions [225]. Furthermore,
KL-LIME represents the compromise between the faithfulness of the explanation and its com-
plexity. The quadratic LIME (QLIME) approach rescales LIME’s linary relationships to a
quadratic relationship, with improvements in the accuracy of feature interpretations and min-
imizes the Root Mean Square Error (RMSE) of the predictive model [226]. Finally, Modified
Perturbed Sampling for LIME (MPS-LIME) approach is based on a perturbed sample method
where instances are being generated from a uniform distribution, which ignores complex cor-
relations between different features [227]. The MPS-LIMEs can address the limitations of the
classical LIME sampling operations.

3.3.4.6 SHapley Additive ExPlanations

Shapley Additive exPlanations (SHAP) is based on the Shapley values, combining both the
game theory and the local explanation methods [228]. The SHAP approach is more efficient
since it allows a complete explanation. Furthermore, it is possible to compute the global mea-
sure by means of aggregating the local feature importance for each observation. In addition
to these mathematical properties, the authors of [228] prove that SHAP has three further
properties including local accuracy, the loss of constraint features, and consistency. To pre-
dict an event, we use the Shapley values to determine the importance of local features for
each observation. We can approximate Shapley values as additive feature assignments. These
values determine the effects of each variable characteristic of a predictive model. Moreover,
these values show how the set of features impacts the predicted outputs of a given "black-
box" model. This explanation approach also provides the ability to determine and visualize
the attribute characteristics defined by the "force" or Shapley values. Let z

′ be the "Coali-
tion vector" and g the explanation model represented by the equation of the additive feature
attribution methods:

g(z′) = ϕ0 +
M∑

j=1
z

′
jϕj (3.11)

where ϕ0 is the base value, the "coalition vector" z ∈ (0, 1)M , with z
′
j = 1 if the value of

the corresponding characteristic is "present" and z
′
j = 0 when the value is "absent". So,

M represents the maximum coalition size or the number of simplified input features, ϕj ∈
R is the feature attribution for j, and g(z′) is the sum of the contributions of the biases
and the individual characteristics or the value predicted by the model for this instance. To
determine the Shapley value or the feature importance of the model predictions, we exploit the
cooperative game theory results. The classic Shapley value estimation has more forms such
as the Shapley regression values, and the Shapley sampling values [228]. Shapley regression
values ϕj are usually applied for linear models in presence of multicollinearity. These values
represent a unique solution to the additive agnostic interpretability problem of the "black-box"
model. Furthermore, the values satisfied some properties including accuracy, missingness, and
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consistency [228], [229]. The expression of ϕj is given by the following equation:

ϕj =
n∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |!

[
fSU{j}(xSU{j})− fS(xs)

]
(3.12)

where S ⊆ F is the subsets features F represents the entire set of features, and SU{j} is
the union of the subset S for feature j. The Shapley regression values are usually used as
feature attributions, these values can be considered as a weighted average of all the possible
differences. Shapley’s sample value is based on re-training a model on all subset’s features
[228]. It allocates to each feature an importance value or an effect of the inclusion of this
feature on the predicted model. Subsequently, both models (fSU{j}, and fS) are then respec-
tively trained with the present and withheld features. Then the results of both models are
compared on the current input fSU{j}(xSU{j}) − fs(xS) where xS is the value of the input
features in the set S. Shapley sampling values consist of applying the sampling approxima-
tions to equation 3.12. This estimation method combines a sample of the training data set
to approximate the effect of removing variables from the model. In addition, the approach
has several advantages, it is unnecessary to re-train the model, thus significantly reducing
the number of errors and the computational time. Therefore, we use Shapley sampling values
because it applies to all models and has more advantages than Shapley regression values. To
analyze the aggregated or global importance features that are explained by the DeepSHAP
method, we use the Shapley mean absolute value described by the following equation:

1
N

Vj =
n∑

i=1
|ϕ(i)

j | (3.13)

The SHAP approach is an additive feature attribution method, thus, the prediction can
be expressed as the sum of the different effects of the explanatory variables. In the presence
of massive data, this approach has a high memory cost and usually requires an exponential
time to compute all Shapley values which can generate some delays in the estimation of the
predictive model and the real-time interpretation process. To avoid these inconveniences,
several alternative approaches have been proposed [228], [230]–[232]. The first approach is
the TreeSHAP, which is a specific implementation of Shapley’s explanations based on the
Decision Tree (DT) model theory [230]. This approach provides a consistent and complete
explanation of the decision-making rules made by the DL models or ensemble algorithms
including the Random Forest (RF). However, for certain models such as Extreme Gradient
Boosting (XGBoost), the TreeShap can be locally inaccurate and suffers from irregularities
due to the instability of the DT models.

The second methodology is named KernelSHAP, which is a linear combination of LIME
and Shapley values. KernelSHAP can be applied to some ML and DL models. Algorithm 1
shows the pseudo-code of the method, it has mainly five main steps [224], [233]. The purpose of
this algorithm consists of performing an additive feature attribution through random sampling
of the coalition vectors, by extracting features from the input data and making a linearization
of the model influence using SHAP kernels. However, the accurate estimation of the Shapley
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values can require significant computational time since the method needs a combination of
all values of each variable in the considered model on the whole data set. This algorithm is
composed of several functions. The function SampleByRemovingFeature(x) aims to compute
the features; it can be decomposed in two stages. The first stage consists of applying sampling
approximations to equation 3.12 and the second one is to approximate the effect of removing
the variable on the model by including the training data set samples. Thus, the feature
hx ∈ (0, 1) can be mapped to the original input space, where hx = 1 means that the input is
included in the model, otherwise, it is excluded from the model. Each feature value extracted
(simplified input mapping hx) is reshaped to a similar input size, and then saved in the list
zk. Furthermore, we used the simplified input mapping hx to compute the function g(zk).
To compute the associated weights Wx of the coalition vectors, we apply the function SHAP
(g, zk, yk) that aims to build the local explanation model and to obtain the Shapley values.
The function is represented by the given relation gx(zk) = g(hx(zk)) where S represents the set
of non-zero indexes in z and zS is the missing value for the features that are not included in the
set S. Since most models are not able to support arbitrary patterns of missing input values,
we use an approximation g(zS) with E[g(z)|zS ] to compute the additive feature contribution.

gx(zk) = g(hx(zk)) = E[g(z)|zS ] (3.14)
= Ezs̄|zS

[g(z)] (3.15)
≈ Ezs̄ [g(z)] (3.16)
≈ g([zS , E[zs̄]]) (3.17)

where s̄ is the set of features not in S, and E[g(z)] represents the base value. The equalities
of the equations (14 and 15) represent respectively the SHAP explanation model simplified
input mapping and expectation over zs̄|zS . The approximation (16 and 17) assumes notable
feature independence and model linearity. In the practical case, The SHAP(.) computes the
Shapley value by using the average of ϕj . The result of this step is a two-dimensional list
Wx, where each row is the most important Shapley value for one feature from the list. The
function Model(Wx).fit() is used to explain the model’s predictions restricted to the feature
space S applied to xs. Finally, the function Model.coefficients() builds and returns all the
coefficients of the explained model.

Algorithm 1: KernelSHAP approach for the Local Explanations
Input Classifier g, input sample x
Output Explainable coefficients from the model

1: zk ← SampleByRemovingFeature(x)
2: zk ← hx(zk) ▷ hx is a feature transformation to reshape to x
3: yk ← g(zk)
4: Wx ← SHAP (g, zk, yk)
5: Model(Wx).fit()
6: Return Model.coefficients()

The last approach is the DeepSHAP which is considered a mixture of DeepLIFT and
Shapley values. The authors of [228] demonstrate that under the linearity assumptions on
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the DL parameters and the independence between the input variables, the Shapley values are
close to those of the DeepLIFT. Moreover, the local precision and the property verification
(e.g., presence or absence of an object) of DeepLIFT combined with the coherence and the
desirable properties (e.g., efficiency or symmetry) of Shapley values motivate the adaptation
of the DeepLIFT to approximate the Shapley values, resulting in the DeepSHAP model. This
explainable approach has several advantages including the local and global explanation of the
contributions of each input variable. It also exploits the DL features to improve computational
performances and extract deep information.

3.4 Developed Framework

Figure 3.4 illustrates the proposed framework which has mainly two purposes and three stages.
The first aim is to perform the data pre-processing (first stage), subsequently, the data are
used for training and validating the DNN model (second stage). The resulting model is a DNN
optimal classification model which predicts the state of the hydraulic system. The second goal
of the approach consists of using the output of the resulting model as input for the explainable
XAI technique (local or global). This explainable model named DeepSHAP is performed
to explain, visualize, and identify the most important feature’s contribution of each sensor
in the model decision-making rules. In this context, the combination of these two models
provides robust high-performance for the CM strategies, enabling the classification results
to be evaluated, interpreted, or explained. Moreover, we can note that these advantages
encourage the use of AI-based modeling and CMs strategies in the autonomous systems
industries. In the following sub-section, we give a detailed description of each block of the
proposed methodology.

3.4.1 Sensor Data and Data Preparation

The first two blocks of the diagram represent respectively the database and the set of data
preparation. A detailed description of the used data sets which describe the hydraulic system
including their operating conditions is illustrated in section 3.5. These structured data contain
both categorical (see table 3.3) and numerical data (see table 3.2). To perform the model,
we need to perform several pre-processing operations on the data and subsequently used it as
inputs to train and validate the model. Thus, the classic data pre-processing is the formatting
of any raw data, the data normalization, and the One-Hot-Encoding applied to change the
target categorical to numerical data.

(a) Min-Max Normalization: The normalization operator is applied to numerical data;
this technique is required when the features have widely differing ranges. the operation limits
the effect of the size of each feature during the learning stage. In our case study, we apply
the Min-Max normalization technique defined by the following equation:
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XNorm = Xi −Xmin

Xmax −Xmin
where XNorm ∈ (0, 1) (3.18)

(b) One-Hot-Encoding: The One-Hot-Encoding technique is a simple and efficient opera-
tion usually applied to categorical data pre-processing in AI tasks. This processing operator
consists of converting the values of a multi-state variable on 1 bit (number of the state as-
sumed by the variable) and keeping other elements to 0. For example, the cooler conditions
have three distinct states, using this operator, we can convert the cooler states as follows:
’Close to total failure’ is encoded as (1, 0, 0), ’Reduced efficiency’ is encoded as (0, 1, 0), and
’Full efficiency’ is encoded (0, 0, 1). Furthermore, this strategy is also applied to all states or
classes of the target variables including valve, internal pump leakage, hydraulic accumulator
conditions, and stale flag.

3.4.2 Data Analysis, Data Sampling, and Cross-Validation

The third block shows all the descriptive analyses including the summary statistics performed
on the normalized and non-normalized data. These analyses provide insights and help to cap-
ture possible trends, patterns, or anomalies in the data. We note that some output variables
(classes) are unbalanced and in addition, there are not any missing values. The main results
are illustrated in sub-section 3.6.1.

3.4.3 Development of optimal multi-class classification model

The block named DNN classifier model consists of a fine-tuning process and a prediction
principle. The prediction is based on an algorithm that trains a historical dataset and ap-
plies to new data when estimating the likelihood of a specific outcome. In this setting, the
prediction concerns the conditions of the hydraulic system. To achieve this goal, we develop
a fully connected neural network that considers as input several explicative variables and as
output, we have the predicted variables. We note that these variables have been transformed
in different processes (see block 2). During the training process of the DNN model, the pa-
rameters of the layers are randomly initialized, via the re-sampling procedure combined with
the stratified k-fold cross-validation technique. This process is then repeated m times; thus,
the resulting model is considered the best model of cross-validation. The comparison between
all the generated models is performed by choosing the highest precision or F1 score values.
Regarding the data sampling and division, we applied the Cross-Validation coupled with the
re-sampling technique (see the fourth block of diagram 3.4). Usually, to train any AI-based
model, it is possible to split the data randomly into a training set (70%) and a test set (30%).
The first set is used for training, while the second one helps to validate the model. However,
this approach can lead to overfitting problems, since not all the samples are tested equally. To
avoid this problem by assuring a generalized DNN, we use stratified K-fold cross-validation
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algorithms with k divisions and m repetitions which integrate the sampling techniques. This
operation preserves the distribution of each fold to ensure optimal training of the data set.

(a) If the best model obtained in the previous step does not satisfy the evaluation criterion
then this model is not performing. We, therefore, return to the training step. So, we repeat
the fine-tuning process by using the same data and by exploiting the weights of this model to
initialize a new model. Like the model training stage, the backpropagation algorithm is used
to update the gradients of all outputs. In other words, the fine-tuning consists of adjusting
the hyperparameters, by evaluating the model with several learning rates and a number of
epochs. This phase is then repeated as long as the model has not satisfied the performance
requirement.

(b) However, if the obtained model performs efficiently, then it will be considered a po-
tential candidate optimal model. To validate this model, we exploit new data which did not
participate in the model training. A detailed description of the training configurations and
selecting the optimal DNN Classifier model is described in the subsection (3.6.2).

3.4.4 Evaluation and Performance Metrics

To evaluate the performance of the developed DNN model, we use metrics including Accuracy,
F1-Score, Precision, and Recall. The Accuracy metric measures the proportion between the
‘True’ predicted values and the total number of sample data. However, this metric ignores
‘False’ predicted values. Therefore, to address this issue we can perform the precision or the
recall metrics. The Precision metric provides a measure of the number of correct classifications
versus the number of incorrect classifications states. The Recall metric measures the number
of ‘True’ classifications with the number of ‘False’ entries. Often it is necessary to investigate
additional metrics to confirm that a given model is valid, in this case, we can use F1-Score.
This metric attempts to stabilize the precision and recall metrics by performing the harmonic
mean between them. The equations for each metric are described as follows:

Accuracy = Number of correct predictions

Total Number of Predictions
(3.19a)

Precision = True Positives

True Positives + False Positives
(3.19b)

Recall = True Positives

True Positives + False Negatives
(3.19c)

F1 Score = 2 × Precision×Recall

Precision + Recall
(3.19d)

where the True Positives (TP ) represents the number of samples classified correctly, False
Positives (FP ) is the number of samples classified incorrectly, True Negatives (TN) is the
number of samples classified correctly as a normal class and False Negatives (FN) is the
number of samples classified correctly as a normal class for each target variable. During the
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Figure 3.4: Diagram of the proposed framework. The workflow has two principal modules:
(a) The DNN multi-class classification module aims to predict the different conditions for
failure of the hydraulic system components. (b) The explainable DeepSHAP module provides
insight into the decision-making process of the classifier model.

fine-tuning process, the best predictive DNN classifier model can be selected according to the
highest Accuracy and F1-Score value metric.
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3.4.5 XAI and Interpretation Blocks

The last two blocks (XAI model and Interpretation) deal with the second objective which
consists in explaining the outcomes of the developed multi-classification model and supporting
humans to understand and interpret the mechanisms of this model. Thus, the XAI like
DeepShap takes as input the predicted values of the optimal DNN classifier model and explains
the output of the used DL model. The main idea is to evaluate the average impact of a variable
for all possible combinations of variables. Moreover, by averaging the absolute values of the
Shap values for each variable, we can trace the overall contribution or importance of the
variables (see section 3.6.4)

3.5 Hydraulic System and Sensor Data Description

Hydraulic systems have many industrial applications and interests [234], [235] such as power
energy production, the ability to drive heavy charges, or multiple machines. However, these
systems can be subjected to several failure risks (e.g., due to high pressure or leaks that can
impact their efficiency). Therefore, to anticipate these anomalies, it is crucial to control or
monitor the operating conditions of the system. The monitoring operation can intervene at
several levels in different components such as the valve, internal pumps, cooler or hydraulic
accumulators [236]. Figure 3.5 shows the investigate hydraulic system [174], [237] and the
sensor data are available at the UCI Machine Learning Repository website 1. These data
were collected through an experimental study of the hydraulic test rig [236], the data set is
composed of 43, 680 features (Distributions: 1Hz → 8×60 = 480, 10Hz → 2×600 = 1200 and
100Hz → 7 × 6000 = 42000). In addition, the frequency acquisition of 17 sensors (physical
and virtual types) installed on the circuit is around 60 seconds. The multisensor dataset are
described in tables 3.2 and 3.3. In particular, table 3.2 shows the description of quantitative
data such as pressure, speed, flow, power, temperature, or vibration measurements. Table 3.3
describes the target variables and the states concerning each component deterioration, such
as pressure leak in the accumulator, internal of the pump, delay in the switching of the valve,
reduction of the cooling efficiency, and volume flows. We can note that the target variables
(predicted variable) such as Cooler, Valve, Internal pump leakage and Hydraulic accumulator
conditions have more than two states and the Stable flag has a binary state.

1https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems
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Table 3.2: Physical data (quantitative data) collected by the sensor.

Number Sensors Physical Quantity Sampling Rate Unit
#1 PS1 Pressure 100 Bar
#2 PS2 Pressure 100 Bar
#3 PS3 Pressure 100 Bar
#4 PS4 Pressure 100 Bar
#5 PS5 Pressure 100 Bar
#6 PS6 Pressure 100 Bar
#7 TS1 Temperature 1 ◦C

#8 TS2 Temperature 1 ◦C

#9 TS3 Temperature 1 ◦C

#10 TS4 Temperature 1 ◦C

#11 VS1 Vibration 1 mm/s
#12 SE Efficiency factor 1 %
#13 EPS1 Motor power 100 W
#14 FS1 Volume flow 10 L/min
#15 FS2 Volume flow 10 L/min
#16 CE Cooling efficiency 1 %
#17 CP Cooling power 1 W

3.6 Results of Developed Framework

3.6.1 Descriptive analysis

The analysis was conducted with Jupyter notebook, and we used Python modules such as
TensorFlow, Scikit-Learn, Keras, and Shap. As with any AI model analysis, some data pre-
processing operations were necessary and included formatting, Min-Max normalization, and
the One-Hot-Encoding technique applied to the target variables. The histogram represented
by figure 3.6 shows the frequency distributions of the 17 features contained in the data set.
These variables are distributed between (−1, 1), so we can observe that the explanatory
variables do not fit with any distribution including the Gaussian distribution. Moreover,
it is impossible to deduce any information about the existence of the outliers. To address
the automatic classification problem in Deep Learning (DL), it is important to perform an
analysis of the unbalanced classes. We observe that some sub-classes of the target variables are
unbalanced, which may be due to the scarcity of the collected data. These sub-classes reflect
the various cases of correct functioning or failure of the system. The cooler condition subclass
is perfectly balanced (33%). However, the valve conditions sub-classes are unbalanced since
the state 100 (Optimal switching behavior) is unbalanced compared with the remaining three
states. In addition, for the condition of the hydraulic accumulator, all the sub-classes are
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Table 3.3: Monitored parameters: Categorical data of the hydraulic test bench. Each variable
represents a system operating multi-state.

Condition Variable State Cases Number Target Value

Cooler Condition (%)
- Close to total failure
- Reduced efficiency
- Full efficiency

732
732
741

3
20
100

Valve Condition (%)

- Optimal switching behavior
- Small lag
- Severe lag
- Close to total failure

1125
360
360
360

100
90
800
73

Internal Pump Leakage
- No leakage
- Weak leakage
- Severe leakage

1221
492
492

0
1
2

Hydraulic Accumulator

- Optimal pressure
- Slightly reduced pressure
-Severely reduced pressure
- Close to total failure

599
399
399
808

130
115
100
90

Stable Flag
- Conditions were stable
- Static conditions might
not have been reached yet

1449
56

0
1

unbalanced.

In this study, we will show that the model obtained performs well and is more robust
when dealing with the effects of unbalanced classes. Moreover, the DNN does not require a
high computing time to generate the prediction results. The distribution of each target or
predicted variable is the following:

1. Cooler Condition

• Class=3, Count=732, Percentage=33.19%
• Class=100, Count=741, Percentage=33.60%
• Class=20, Count=732, Percentage=33.19%

2. Valve Condition

• Class=100, Count=1125, Percentage=51.02%
• Class=73, Count=360, Percentage=16.32%
• Class=80, Count=360, Percentage=16.32%
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Figure 3.6: Frequency distribution of the sensors data: The histogram represents an average
of each data cycle.

• Class=90, Count=360, Percentage=16.32%

3. Internal Pump Leak

• Class=0, Count=1221, Percentage=55.37%
• Class=2, Count=492, Percentage=22.31%
• Class=1, Count=492, Percentage=22.31%

4. Hydraulic Accumulator

• Class=130, Count=599, Percentage=27.16%
• Class=115, Count=399, Percentage=18.09%
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• Class=100, Count=399, Percentage=18.09%
• Class=90, Count=808, Percentage=36.64%

5. Stable Flag

• Class=1, Count=756, Percentage=34.28%
• Class=0, Count=1449, Percentage=65.71%

3.6.2 Training Configurations and Selecting the Final Optimal DNN Clas-
sifier Model

Feed-forward network development is driven by the selection of fine-tuned hyperparameters,
especially the number of hidden layers, neurons per layer, epoch, learning rate, optimization,
and layer activation function. In this case, we use Adam optimizer as the optimization
function, ReLU for the activation layer, and Softmax for the hidden layer activation function.
To improve the model performance, several steps are necessary such as training, optimization,
fine-tuning, and validation of the model. Regarding the network training through stacked
layers, the parameters of those layers including the output layers are randomly initialized.
During this stage, we use re-sampling combined with the stratified and repeated k-fold cross-
validation technique to train and challenge the DNN model since some of the target variables
have slightly unbalanced classes. To obtain the validation data, we split the data set into
k-folds (k = 5, 10, 15, 20, 25, and 30). This technique helps to avoid the overfitting effects
and (k − 1) folds are exploited to train the model and the remaining data are used to test
the model. This process is then repeated m times where m = 4, and the obtained result is
considered the result of cross-validation. The aim of the fine-tuning procedure of the entire
network is to modify the weights of a trained neural network. We, therefore, exploit these
weights to initialize a newly trained model using the same data. As for the training case, this
process uses the back-propagation algorithm which updates the gradients of all layers (from
the lowest to the highest). To build a powerful model, we also adjust the hyperparameters and
thus evaluate the model with several learning rates (1e0, 1e−1, 1e−2, 1e−3, 1e−4 and 1e−5) and
epochs number (50, 150, 200, and 250). Furthermore, we exploit a lower learning rate than that
used during the model training, and we repeat the experiment several times. The comparison
between several models generated is performed by choosing the highest Accuracy or F1 Score
values (see Table 3.4). In summary, the approach consists in training the DNN classifier,
then optimizing it thanks to the Adam optimizer, fine-tuning it, and finally evaluating the
proposed model by using the cross-validation technique.

The proposed optimal Fully Connected Neural Network (FCNN) has the following archi-
tecture and parameters.

• Input layer shape: (2205× 17)
• Number of hidden layers: 9
• Number of nodes for each hidden layer: 25× 8
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Table 3.4: Table shows the performance of the DNN classifier model for Cooler conditions.
We use several values of learning rate to train the DNN. The best model selection is chosen
according to the highest Accuracy value.

Values of lr Accuracy (%) Precision (%) Recall (%) F1-Score (%)
0.1 47.89 52.26 51.69 50.65
0.01 99.87 99.84 99.84 99.84
0.001 99.87 99.39 99.39 99.38
0.0001 99.87 99.69 99.69 99.69
0.00001 82.76 70.68 70.90 71.75

• Learning rate: 0.01
• Number of learning iterations: 250
• Initial learning weight diameter: 0.1
• Momentum: 0.01
• Type of normalizer: Min-Max Normalizer
• Metric: Accuracy
• Optimization algorithm: Adam
• Loss function: CrossEntropy
• Training algorithm: Back-propagation
• Activation functions: ReLU and Softmax
• Output layer shape: (2205× n), where n represents the number of the target variables’

sub-classes. In fact, we have n equal to three for the cooler condition and internal pump
leakage variable. Regarding the valve conditions and hydraulic accumulator variable,
the number of states is four, and the unique variable with two states is the Stable flag.

The best parameters for training the performing DNN classifier model are as follows: The
number of k-Folds is 20, the random state is 10, the batch size is 16 and the number of
epochs is 250. Consequently, the final model’s validated network structure and the number
of hyperparameters are presented in table 3.5. This table shows the best-developed model
summary, including the shape of each output layer, their weights, and the total number of
parameters (5, 535) that must be estimated when training the DNN classifier model.

3.6.3 Deep Neural Network Multi-class Classification Results

In this subsection, we present the major results of DNN models including their performance
metrics and Misclassification errors. The fine-tuning of the hyper-parameters model provides
optimal predicted results. To test and validate the forecast results, we consider the best DNN
multi-class classification model obtained through the fine-tuning stage. We then check again
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Table 3.5: Summary and parameters numbers of the best DNN classifier model.

Layer (Type) Output Shape Param #
Dense1 (None, 20) 360
Dense2 (None, 25) 525
Dense3 (None, 25) 650
Dense4 (None, 25) 650
Dense5 (None, 25) 650
Dense6 (None, 25) 650
Dense7 (None, 25) 650
Dense8 (None, 25) 650
Dense9 (None, 25) 650
Total parameters: 5,535

the best model performance according to the Accuracy metric which allows us to evaluate
the model results. Accordingly, the best prediction results are presented in table 3.6. This
table shows the model’s performance in relation to the classification rates of each target vari-
able. According to the metrics defined by the equations (3.19a), (3.19b), (3.19c), and (3.19d),
we can conclude that the quality of the classifier model is globally efficient and robust for
automatic prediction of each state of the hydraulic components system. In particular, table
3.6 shows the Accuracy metric for the cooler condition is equal to 99.87%, valve conditions
(99.60%), internal pump lake (99.09%), hydraulic accumulator (88.60%) and stable flag tar-
gets (94.17%). According to these results, the developed model is powerful in learning the
failure states of the hydraulic system.

Table 3.6: Performance result of the proposed DNN multi-class classification model

TargetVariables Accuracy (%) F1-Score (%) Recall (%) Precision (%)
Cooler Condition 99.87 99.84 99.84 99.84
Valve Condition 99.60 90.40 99.16 91.69
Internal Pump Leakage 99.09 96.48 96.63 97.43
Hydraulic Accumulator 88.60 73.17 77.23 79.45
Stable Flag 94.17 90.91 90.00 92.44
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(e)

Figure 3.7: Confusion Matrices for the DNN Multi-classification module. Each matrix repre-
sents the frequency of the misclassification and their relative types of errors. Sub-figures (a),
(b), (c), and (d) represent respectively the confusion matrix of the Cooler Condition, Internal
Pump Leak, Hydraulic Accumulator, Valve Condition, and Stable Flag87



An alternative method to evaluate the model’s performance consists of analyzing the con-
fusion matrix, which is the summary of the predicted model. These matrices (see Figure 3.7)
show the frequency of misclassification errors of the models and their types for each hydraulic
component condition. These types of classification errors compare the real classes with the
predicted ones. Table 3.7 shows performance statistics, and by evaluating these tables, we can
notice a difference between the accuracy of each subclass and the global classification accuracy
of the target variable. In fact, when we focus on the condition of the hydraulic accumulator
(Table 3.7(d)), we can deduce that the accuracy is not entirely sufficient. In particular, the
slightly reduced pressure and severely reduced pressure state have respectively precision equal
to 59% and 71%. Thus, it can be interesting to show that the degradation levels of these
states are confused with each other. This refers to the states that are semantically linked
among themselves, for example, the classes of slightly reduced pressure and severely reduced
pressure are close. We have performed a performance comparison between the classification
results of the DNN and the approach proposed by [196] which exploits a CNN. We can deduce
that both models perform well and provide the same results globally. However, the significant
difference between the two solutions is related to the explicability methods of the "black-box"
models.

Table 3.7: DNN classifier model results for the multi-class classification of degradation levels
of each state of the hydraulic system.

(a) Cooler Condition
Precision Recall F1-Score

Close to total failure 1.00 1.00 1.00
Reduced efficiency 1.00 1.00 1.00
Full efficiency 1.00 1.00 1.00

Accuracy 1.00
Macro avg 1.00 1.00 1.00
Weighted avg 1.00 1.00 1.00

(b) Valve Condition
Precision Recall F1-Score

Optimal switching behavior 0.97 0.94 0.95
Small lag 0.90 0.89 0.89
Severe lag 0.82 0.83 0.82
Close to total failure 0.92 0.92 0.92

Accuracy 0.92
Macro avg 0.91 0.90 0.90
Weighted avg 0.92 0.92 0.92
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Table 3.8: DNN classifier model results for the multi-class classification of degradation levels
of each state of the hydraulic system.

(c) Internal Pump Leakage
Precision Recall F1-Score

No leakage 1.00 0.99 1.00
Weak leakage 0.92 0.97 0.95
Severe leakage 0.97 0.93 0.95

Accuracy 0.97
Macro avg 0.96 0.97 0.96
Weighted avg 0.98 0.97 0.97

(d) Hydraulic Accumulator
Precision Recall F1-Score

Optimal pressure 0.84 0.85 0.85
Slightly reduced pressure 0.59 0.63 0.61
Severely reduced pressure 0.76 0.71 0.74
Close to total failure 0.91 0.89 0.90

Accuracy 0.79
Macro avg 0.78 0.77 0.77
Weighted avg 0.80 0.79 0.80

(e) State Flag
Precision Recall F1-Score

Conditions were stable 0.92 0.97 0.95
Static conditions might
not have been reached yet 0.92 0.83 0.87

Accuracy 0.92
Macro avg 0.92 0.90 0.91
Weighted avg 0.92 0.92 0.92

3.6.4 Deep SHapley Additive exPlanations Results

In this subsection, we focus on the main results related to the model’s explanation. To
highlight the importance, or the force of each xi input variable, and to explain their role in
the DNN decision-making, we applied the DeepSHAP approach to the developed model. As
mentioned in the subsection (3.3.4.6), this approach attributes to each feature an importance
value for a specific prediction. Furthermore, the Shapley value is indicated by an arrow that
influences the prediction, thus, the positive Shapley value tends to increase the prediction,
otherwise, the prediction decreases. However, these forces are expected to be balanced in the
relevant prediction of the data instance. To illustrate the role of the features, we can observe
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the Force Plot (Figure 3.8). In fact, sub-figures 3.8 (a) and (b) respectively show the local
contribution of each ith and jth element at a given point of the prediction stages concerning
the valve conditions. For the first Force Plot, we note that the base value is 43.08, and the
predicted value is 43.06. Moreover, the feature PS4 contributes negatively and the features
SE1, TS2, TS2, and TS1 positively contribute to predicting the variable state. Considering
the second Force Plot, the base value remains the same, but the predicted value is 43.29. The
features involved in the decision-making are subsequently P1, CE1, TS2, SE1, PS2 (positive
contributions), and TS1, PS1 (negative contributions). Finally, a similar analysis will be
conducted for additional target variables (Figures 3.9, 3.10, 3.11, 3.12) in section 3.7.

(a)

(b)

Figure 3.8: Force Plot and local interpretation for the valve conditions: This plot describes the
function’s output using the sum of these effects. Furthermore, the importance of the force of
each feature is explained at different moments during the model training and decision-making.
Thus, the features with a positive impact (contributing to the prediction being higher than
the baseline value) are highlighted in red. In contrast, the features with a negative effect
(contributing to the prediction being lower than the baseline value) are in blue. Sub-figures
(a) and (b) represent respectively the local explanation of the ith and jth element in the
decision-making process of the DNN.

In addition to the local explanation, we can highlight that the purpose of the DeepSHAP
approach is also to provide a global explanation of the features. It contributes to the choice
of the model for predicting the states of each target variable. In this case, Figure 3.13 shows
the global importance of features with arrows indicating their respective influence on the
prediction. Thus, the summary Bar Plot (sub-figure 3.13 (a)) and the Summary Plot (Figure
3.13 (b)) respectively provide descriptions of the absolute average and the Shapley values of
the force of each feature when predicting the target variable cooler condition. Furthermore,
a positive Shapley value reflects a gain in the prediction, while a negative Shapley value
indicates a loss in the prediction. Hence, they are revalued and updated in accordance with
prediction requirements. Globally the most important feature contributing to the predicted
operating conditions of the cooler state (‘close to total failure’, ‘reduced efficiency’, and ‘full
efficiency’), are the mean power motor (EPS1), cooling efficiency (CE1), temperature (TS3,
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(a)

(b)

Figure 3.9: Force Plot describes the local interpretation) for the cooler condition classifica-
tion state obtained from the DeepSHAP method module. Sub-figures (a) and (b) represent
respectively the local explanation of the ith and jth element in the decision-making process
of the DNN.

(a)

(b)

Figure 3.10: Force Plot shows the local interpretation for the internal pump leakage classi-
fication state obtained from the DeepSHAP method. In particular, sub-figures (a) and (b)
represent respectively the local explanation of the ith and jth element in the decision-making
process of the DNN.

TS4), and pressure (PS1). As a result, the DNN multi-class classification model is trained
only with these six features to predict the cooler state. The explainable module is, therefore,
found to be an effective approach to performing the feature selection task.
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(a)

(b)

Figure 3.11: Force Plot is the local interpretation for the hydraulic accumulator classification
state obtained from the DeepSHAP approach. Sub-figures (a) and (b) represent respectively
the local explanation of the ith and jth element in the decision-making process of the DNN.

(a)

(b)

Figure 3.12: Force Plot represents the local interpretation for the stable flag classification
state obtained from the DeepSHAP method. Sub-figures (a) and (b) represent respectively
the local explanation of the ith and jth element in the decision-making process of the DNN.

3.7 Discussion

This chapter focuses on the condition monitoring of the hydraulic system. The aim is to
create a framework that consists of developing a multi-class classification task combined with
an Interpretable AI, the method applied to the hydraulic conditions. This can increase users’
trust, or confidence in the performance, equity, or fairness of the "black-box" model. The
input variables are described by the seventeen multi-sensor data and the target outputs are
notably the cooler, internal pump leakage, valve, condition of the hydraulic accumulator, and
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(a) (b)

Figure 3.13: Summary Plot (global interpretation) for the Cooler condition classification.
The high Shapley values are in red dots, and the lower ones are in blue. The figures show
the global importance of the variables. In Particular, sub-figure (a) illustrates the absolute
average of the Shapley values, and sub-figure (b) shows the Shapley values of each feature
according to their order of importance.

stable flag. To respond to this purpose, we have proposed a detailed framework composed
of two modules: the fully connected DNN classifier model and the DeepSHAP explainable
approach. Data pre-processing operations of formatting, Min-Max normalization, and One-
Hot-Encoding applied to the target variables have been considered. Since some of the target
variables have slightly unbalanced classes, we use the re-sampling and Cross-Validation tech-
niques. Regarding the descriptive analysis, there are no existing missing data in the considered
data sets. Furthermore, the histogram (Figure 3.6) shows that the input features do not fit
with any distribution, thus, we cannot make any assumptions about the possible presence of
outliers on the data sets. The performance of the classification model is evaluated according
to the confusion matrix (Figure 3.7) and metrics such as Accuracy, F1-Score, Recall, and
Precision (tables 3.6 and 3.7). The main DeepSHAP results are presented by the local contri-
butions or Force Plot (figures 3.8, 3.9, 3.11, 3.10 and 3.12) and the Summary Plot or global
contributions (see figures 3.13, and 3.15).

Regarding the classification result, table (3.6) presents the qualitative classification re-
sults, notably the accuracy for each classification of target variables. The cooling condition
(99.87%), valve conditions (99.60%), pump leak (99.09%), and stable flag (94.17%) have a
classification performance rate near 100%. However, the result of the hydraulic accumulator
(88.60%) is less accurate and more difficult to obtain. To improve the understanding of these
results, we analyze the misclassification rate and the explainer model for each target variable
with their respective sub-classes. The first hydraulic state is the cooling condition, which is an
important issue for the performance of the hydraulic system [174]. The results obtained show
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(a) (b)

(c) (d)

Figure 3.14: Summary Bar Plot represents the global importance of each component of the
hydraulic conditions. In particular, sub-figures (a), (b), (c), and (d) show respectively the
global importance feature or contribution of each sensor in the decision-making models for
the components of the hydraulic system (Valve conditions, Hydraulic accumulator, Internal
pump leak and Stable flag)

that the model has an accuracy rate equal to 99.87% and each subclass is perfectly classified.
Despite these satisfactory results, we exploit DeepShap to explain the impact of each input
variable in the decision rule of the model. In this regard, we undertake an in-depth analysis of
the local (Figure 3.9), and the global contributions (Figure 3.13) for each feature. Considering
the local explanation, we can observe that each sensor contributes differently to the learning
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(a) (b)

(c) (d)

Figure 3.15: Summary plot: Sub-figures (a), (b), (c) and (d) show respectively the global
importance or contribution for each sensor/feature contribution to the decision-making DNN
model.

process according to their weights or Shapley values (f(x) = 29.85, f(x) = 30.23). However,
the baseline value (30.34) does not change. Furthermore, if we consider a given moment of
the model’s learning process (sub-figure 3.9 (b)), we can observe that the cooling efficiency
sensor (CE1) has a negative contribution while the cooling power P1 (mean value of the motor
power EPS1), pressures (PS4, PS1, PS3), temperature (TS3) of sensors have a positive con-
tribution. However, these contributions could be different compared to the previous moment
of the model’s learning process (sub-figure 3.9 (b)). Considering the local explanation, we
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can observe that each sensor differently contributes to the learning process according to their
weights or Shapley values (f(x) = 29.85, f(x) = 30.23), however, the baseline value (30.34)
does not change.

Regarding the global contribution (Figure 3.13), it is noticeable that the sensors P1, CE1,
TS3, TS4, PS1, PS2, and PS4 have a major impact on the model decision-making. These
findings demonstrate that the hydraulic system cooling condition is most probably conditioned
by the quantity of cooling pumped, pressure, power of the motor, and temperature of the
cooler to maintain the pump at a normal temperature. The second hydraulic state is the
valve condition. As for the previous case, the accuracy rate of the classification model is near
to 100%. In addition, the subclass precision rates such as ’Optimal switching behavior’, ’Small
lag, severe lag’ and ’Total failure’ are respectively 97.87%, 90.87%, 82.87%, and 92.87%. Sub-
figures 3.8 (a) and (b) represent the local explanation and we observe that the first force
plot illustrates that the sensor (PS4) has a positive force, whilst sensors (P1, SE1, TS1, TS2,
TS3) have a negative force. On the other hand, when we focus on the second Force Plot,
the following couple of sensors (TS1, PS1) have a negative force, whilst (P1, CE1, TS2, SE1,
PS2) have a positive force on the decision-making of the algorithms. In addition, based on
Summary Plot (sub-figure 3.14 (a)), we show the most important sensors (P1, TS1, CE1, TS4,
TS3, SE1, TS2) have global importance in the model training. Finally, we can also conclude
that the operating states of the valve conditions are strongly conditioned by the volume flow,
power motor, temperature, and pressure measured by the following sensors (P1, TS1, CE1,
TS4, TS3, SE1, and TS2). Moreover, the valve commutation performance can affect the flow
of the hydraulic fluid.

The internal pump leakage is the third hydraulic state, the results of the model give an
accuracy rate equal to 99.09%. However, when we observe the misclassification result of each
subclass (’No leakage’, ’Weak leakage’, and ’Severe leakage’) we find 100%, 92%, and 97%
respectively, so, this demonstrates that the results globally remain significant. We are also
interested in analyzing the local explanation. Figure 3.10 (a) represents the Force plot where
the sensors (TS4, CE1, TS3, P1), and TS1, therefore, have a negative and a positive force at
the given learning moment. However, the contribution changes when we focus on sub-figure
3.10 (b), so the sensors P1 and TS4 have an opposite contribution. In terms of the global
contribution, Summary Plot (figures 3.14 (c) and 3.15 (c)) shows the list of sensors (P1, CE1,
TS4, TS1, TS2, TS3, and SE1) classified in order of their importance. As in the case of the
valve condition, the volume flow rate is important, because if there is a leak in the pump,
this anomaly can have a negative effect on the flow rate of the hydraulic fluid. In addition,
the efficiency factor is important, thus, a large leak could affect the general efficiency of the
system.

Classifying the condition of the hydraulic accumulator conditions is more challenging,
as, its accuracy rate (88.60%) is less than other hydraulic system states. Nevertheless, by
observing table 3.7(d), the misclassification of the ‘Optimal pressure’ and the ‘Close to total
failure states’ are respectively 84% and 91%. If we concentrate on the precision rate of the
‘Slightly reduced pressure’ (59%) and the ’Severely reduced pressure’ states (71%), we can
note that their precision is not satisfactory. Consequently, it is interesting to show that
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during the learning process, the model tends to confuse these two sub-classes, since they are
semantically close. The reasons for this weak performance may be related to the quality of
the data.

In general, the data collection process represents a major industrial challenge. This can
be explained by the fact that the sensors or machinery may not generate qualitative or
quantitative data to identify the real state of the system deterioration. This problem may also
be related to the accuracy of sensor measurements between consecutive degradation states. To
address this issue, the manual labeling of raw data can be performed by an expert. However,
this process can be time-consuming with additional operational, and economic costs. It may
also be subjected to mislabeling risks. Alternative strategies have been proposed in [151] such
as performing artificial re-sampling, data augmentation, clustering, and simulation of trusted
or fake data using Generative Adversarial Network (GA) and Transfer Learning approaches.

Concerning the DeepSHAP results, figure 3.11 and sub-figure 3.14 (b) respectively rep-
resent the local and global contribution of each sensor to the prediction of the hydraulic
accumulator’s condition. In addition, sub-figure 3.11 (a), shows the local explanation or the
Force Plot for the prediction of this target variable obtained. Thus, the base value is 65.51,
and the value of the function f(x) is equal to 68.73. We can notice that the sensors (CE1,
SE1, and PS4), have a positive contribution and that P1 has a negative contribution to the
model classification. However, if we capture a further moment during the decision-making of
the algorithm (Figure 3.11 (b)), we observe that the contribution is not the same as in the
preceding case. So, the sensors (TS1, P1), and (TS4, TS3) respectively have a positive and
a negative contribution. However, for the global contribution (see sub-figures 3.14 (b), and
3.15 (b)), we note that the most important features are P1, TS4, SE1, TS1, CE1, TS3, and
TS2. We have mentioned that the prediction of this target variable is more challenging. It is
partly related to the distribution of their sub-classes that are often semantically confused with
each other. To solve this issue, we have challenged several approaches to optimize the DNN
classification model. The first method consists of making a model more complex by increasing
the number of hidden layers or epochs. However, this approach had no significant results,
and the accuracy rate remained the same as before. The second approach was to exploit the
information provided by the importance of the global feature of the explainer DeepSHAP
module. This consists of using the most important sensors to select features (PS4, FS1, FS2,
TS1, TS2, and TS3) for retraining the DNN classifier model. Thus, we achieve excellent
results, the accuracy rate (66%) of the ’Slightly reduced pressure’ state increases and it is
an improvement on the previous case. Although this result remains relatively low, there has
been a real improvement in the use of the new approach. Finally, the results obtained are
still considered satisfactory when they are compared to those provided by the previous paper
[174].

The last hydraulic system state is the Stable flag condition. In this case, we have the
unique target variable for which the classification is binary. The most important result shows
that the accuracy rate is equal to 94.17%. Globally the precision of the ‘Conditions were
stable’ and the ‘Static conditions might not have been reached yet state’ is equal to 92%.
In addition, the global explanation (see sub-figure 3.15 (d)) indicates that the most relevant
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sensors on decision-making models are notably P1, CE1, TS3, TS2, PS3, TS4, T1, and PS1.

3.8 Conclusions and Future Work

This chapter presented a detailed framework for condition monitoring based on hydraulic
systems and multi-sensor data. The main finding addressed is the prediction of the hy-
draulic conditions, and the explanation of the model developed. To investigate this issue, we
have developed two main modules: A multi-class DNN classification model combined with a
DeepSHAP XAI approach. The resulting model of the first module is efficient and robust for
the classification of the hydraulic system conditions such as the cooler, valve, internal pump
leakage, condition of the hydraulic accumulator, and stable flag. In addition, the second mod-
ule named DeepSHAP provides further information about the local and global importance or
contribution of each feature to the model’s decision-making. The main contribution of our
proposed approach compared to other studies is the capacity of the DNN classifier model
to operate directly on the data without performing the features selection techniques, while
still capturing the deep aspects of the features. Furthermore, in comparison to other XAI
techniques, the DeepSHAP discriminates more effectively in the network model outputs and
provides both local and global explanations.

The DNN classifier model has been evaluated using several metrics such as Accuracy, F1-
Score, Precision, Recall, confusion matrices, and misclassification which are more robust in
dealing with prediction problems with the unbalanced classes. Using the above metrics, the
results demonstrate that the classification rate of each target variable is efficient, in particular
cooler conditions (99.87%), valve conditions (99.60%), internal pump leakage (99.09%), and
stage flag (94.17%), with except for the hydraulic accumulator conditions (88.60%). To under-
stand the cases for which the model is not accurate, we have exploited the confusion matrices.
We observe that the algorithm is less efficient when the deterioration state levels labeling are
too fine or are semantically similar. To address this issue of data quality, several solutions are
available including manual data labeling, artificial re-sampling, data augmentation, clustering
technique, fake reliable data simulation, or transfer learning.

We have also focused on the explanation of deep learning reasoning using the DeepSHAP
approach. The main result of the explanation approach shows the local and global con-
tribution or importance of each sensor in the decision-making process of the DNN model.
Furthermore, this approach provides a better explanation of the classes of the model output.
We use these results to optimize the prediction model. The DeepSHAP module is more in
line with human intuition since it provides means for improving the understanding and in-
terpretation of practitioners about predictive reasoning. Initially, we built the DNN model
on the complete set of sensors, and the DeepSHAP approach assisted us in the selection of
the most relevant sensors to retrain the model. We found that by reducing the number of
features from 17 to 6 the accuracy of the hydraulic state increases. This suggests that not
all sensors are necessary to understand hydraulic accumulator conditions. In addition to the
high-performance classification, this framework helps to support all stakeholders in their un-
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derstanding of the decision-making process. This can promote trust or increase confidence in
the use of Condition Monitoring applications based on Artificial Intelligent models.

Limitations and Future Work Orientation

A limitation of the developed approach is the fact that the DNN model does not consider
sensor failures or incomplete data. For future studies, it will be interesting to investigate the
robustness of DNN models for missing or noising data. Moreover, we must ensure that our
data management and predictive models have the opportunity to consider abnormal sensor
behaviors such as aging or mislabeled data. In addition, we will perform a classification model
using more data, such as air, oil, and water contamination data, which are one of the main
causes or factors of hydraulic system failure. Regarding the explanation of the model, the
combination of several eXplainable Artificial Intelligence approaches likely to provide the best
results should be considered. Moreover, it would be necessary to confirm the results of the
framework with domain experts.

In addition to the explanation framework, there is additional interest in the generaliza-
tion of traditional methods. After providing more detailed information on explanatory ap-
proaches, we will develop Physics-Informed Neural Networks. This chapter illustrates how to
extract knowledge (decision-making rules) via an explainable model. However, in the follow-
ing chapter, we will introduce knowledge or constraints during neural network training. This
knowledge helps to guide or inform the NN to follow the process topology. The PINN model
is designed to be adaptable to a variety of processes and to capture local and global infor-
mation. The resulting hybrid framework is generalizable, robust, and accurate in predicting
optimal model parameters and output data.
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Chapter 4

Physical-Informed Neural Networks
and Numerical Simulation of
Thermomechanical Process:

Application to the Friction Stir
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abstract

In recent years, Artificial Intelligence (AI) techniques have seen a significant rise in popularity
through their performance. These techniques are used in many industrial applications such as
modeling, identification, optimization, prediction, and control of complex systems. AI-based
models are also developed in wide applications related to thermomechanical Friction Stir
Welding (FSW). This chapter focuses on a new class of Neural Networks (NNs), that combines
automatic Learning and physical laws known as Physics Informed Neural Networks (PINN).
A numerical simulation of the FSW process has been developed using the Finite Volume
Method (FVM) and the industry-leading computational fluid dynamics (CFD) simulation
software called Ansys Fluent”. The simulation results are used as data for training and
validating the hybrid model that we have developed using the Pytorch library. The FSW
process is a highly computationally time-consuming process. In addition, it can be difficult or
impossible to simulate the whole physical duration of the process or to reach the stationary
regime. Moreover, in the literature PINNS models are often used to address problems in
fluid mechanics and to resolve nonlinear Partial Differential Equations (PDEs). We develop
a Fully Connected Neural Network (FCNN) informed by the physical law that addresses a
solid mechanics problem where the viscosity expressed by the modified NSE represents the
strain rate of the material which depends on both the loading intensity and the loading rate.
However, this NSE is more complex and requires higher-order differentiation. The obtained
PINN is a supervised learning task while satisfying a given physical law described by NSE.
In addition, the model aims to learn the transient phase of the process. By including the
knowledge of the physical constraint or the regularization terms, we obtain a composed loss
function. This knowledge aims to understand the process and forces the model to follow the
defined conditions imposed by the physical constraint, so the obtained model is generalizable.
The major results of this framework have shown that once trained the PINN model can be
a valid substitute for the numerical models, thus allowing big time-saving thanks to their
memory effect and making it possible to find an approximate solution to the PDEs which is
impossible to solve analytically. Using the Root Mean Square Error (RMSE), we conclude
that the proposed framework is more robust and has a high ability to predict the whole process
duration (transient and stationary) than the traditional Artificial Intelligent (AI) approaches.

Keywords: Physics constraints, Physical Informed Neural Networks (PINN), Loss func-
tion, Hybrid modeling, Friction Stir Welding (FSW), Numerical simulation, Regularization
Approach, Fluid mechanics, Partial Differential Equations (PDEs), Navier-Stokes equation.
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4.1 Introduction

In recent decades the mechanical engineering industry has increased the use of composite
materials in the field of transport or aircraft manufacturing [238]. However, the difficulty of
assembling these materials by using conventional liquid-phase welding techniques remains a
crucial and challenging problem. To overcome these issues, the Friction Stir Welding (FSW)
technique has been introduced in 1991 by the Welding Institute in England [239]. This solid
phase process offers several advantages in addition to the quality and robustness of the joints,
the process is energy-efficient, environmentally friendly, and versatile. This process involves
complex local thermomechanical phenomena in the vicinity of the welding tool which are not
visible to monitoring cameras (high-speed cameras, infrared cameras). Handling these local
phenomena allows for avoiding FSW defects like the flash, surface seizure, vacuum bonding,
kissing bonds, and onion rings [240]–[242]. The experimental study of this process requires
heavy investments or expensive services. To anticipate these anomalies several studies have
shown that process monitoring is prominent for better optimization of the production line
[243], [244]. Optimization is important in the engineering industry in reducing production
costs and time consumption. Thus, the significant void defects can be implicitly detected
by observing monitored forces, however, most of the monitoring systems focus on the global
variables (i.e., machines’ power consumption, forces in more directions). Furthermore, the
quality of the welded parts is related to local phenomena which are complex to be monitored
and detected. In addition to this, the transition phase where various parameters are involved
is difficult to model. In addition, the experimental study of this process requires heavy
investments or expensive services. To understand the process such as the role of parameters,
the impact of the high variations of the velocities, pressure to the torque or the forces, the
welding conditions, and the temperature distribution we can use the numerical simulation
approaches [245], and Artificial Intelligence (AI) techniques [246]. The quality of FSW joints
is greatly influenced by a number of parameters. In this study, we focus on the impacts of
Rotation velocity (rev/ min), Velocity of advance (mm/min), Number of mesh nodes, and
Time step (millisecond) and the variables to be predicted are respectively the velocities and
pressure.

The numerical simulation technique has become an important and popular area of research
[239], [247]–[250]. It helps to better understand the physical phenomena related to the com-
plex process. It allows the estimation of different process parameters (geometry, tool speeds,
etc.). The numerical modeling techniques have been exploited to explain and predict impor-
tant features of the physics of the processes involved in the FSW process [245]. The technique
presents significant results, in particular, it has been used to model the different profiles and
spindle speeds [251]. In addition, it was deployed for modeling heat transfer [252], for mod-
eling metal flows [253], and for coupled modeling between viscoplastic flow and heat transfer
(predicting temperature and residual stress distributions), [254]. The numerical solution can
be time-consuming and requires a high GPU (Graphics Processing Unit) or CPU (Central
Processing Unit) memory [239], [247], [248]. In the process, a strong thermomechanical gra-
dient at high speed operates, which requires fine mesh elements and small time increments
[255]. This constraint facilitates a better simulation and leads to an increased dramatically
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memory cost. Thus, the simulation is repetitive and straightforward involving the repeated
approximation of large systems. To improve computational efficiency, several approaches have
been proposed. The authors of [249], [256] have used the transient simulation to limit the
number of experimental case studies and computational time. However, simulation is not
an easy task since the FSW process is a very complex process. It involves the interaction
of several strongly coupled and non-linear thermal and mechanical phenomena (i.e., plastic
deformation, material flow, heat generation, surface interaction between tool and workpiece).
This process is difficult to simulate due to the high deformations generated by the different
parameters during the mixing stage of the transient regime (interpolation of the velocity fields
and complexity of the tool parameterization). In addition to this, the technique requires the
use of advanced multi-physics solvers to estimate the parameter. Furthermore, as real or
quasi-real-time simulation data are required for process monitoring, numerical simulations
cannot be used directly.

In practice, the estimation or identification of the optimal parameters of the process re-
quires a large number of simulations, which is costly. An alternative approach is to develop
AI-based models. In recent years, AI has dramatically changed the manufacturing and ma-
terials industries [151]. It is used in many industrial applications like image classification,
handwriting recognition, speech recognition and translation, and computer vision. It can be
applied to address issues of the optimization, quality control, and prediction of failure modes
[257]. Figure 4.1 shows the different applications of AI.

Figure 4.1: Illustration of the number of possible ways in which AI can be performed [246].

Paper [258] highlights the applications of AI models for predicting FSW weld states, while
SVMs are used to predict the maximum temperature of a weld [259]. Authors [260] combine
SVMs and ANNs to classify and locate defects in the weld. Papers [260] and [258] present
respectively a convolution neural network (CNN) for defect detection and an artificial neural
network (ANN) for monitoring fracture failure. Paper [261] presents a Theory-Guided Data
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Science model for approximating the PDEs using a parametric function or a regularized loss
function. When the model is sufficiently trained, the approximate solution of the PDE can
be obtained whatever the input variables are used in the analysis. However, their accuracy
is highly dependent on the ability to simulate a large and highly reliable amount of training
data that represents the phenomenology of the physical system. We observe that the proposed
solutions do not address the issues of the numerical simulation models which require significant
computational time and an important memory to estimate the model parameters. In addition
to this, the calibration of these parameters can affect the performance and quality of the
model. Despite the numerous uses of AI techniques in the industry, ANN can often generate
complex models that do not fully explain the investigated physical phenomenons with a
significant generalization error.

Despite the performance of ANNs, hybrid models trained with ANNs tend to perform
better and more accurately. In this perspective, we introduce a new paradigm known as
the Physics-Informed Neural Network (PINN). This framework has been developed to train
the FCNN with the known equations that govern the physics of a system. The training
of the FCNN is performed with a cost function penalized by constraints, and initial and
boundary conditions. A traditional application of PINNs is to solve systems of Ordinary
Differential Equations (ODEs) and partial differential equations (PDEs) by estimating their
various parameters. In this case. The approach is used to provide a better insight into the
FWS process, and to estimate the optimal parameters. In the next section, we provide more
details about AI-based approaches, focusing on PINN models and their applications.

Objectives of the Study

In recent literature, PINNs models are often applied to fluid mechanics problems. How-
ever, the proposed PINN model addresses a solid mechanics problem where the viscosity is
expressed by the NSE. This equation is much more complex and requires higher-order dif-
ferentiation. Knowing that FSW is a computationally time-consuming process, it is difficult,
or even impossible to simulate the whole physical duration of the process or to reach the
stationary regime. The model developed aims to learn the process including their transient
regime. In addition, it should be able to predict the whole process duration like transient and
stationary regimes. We train and validate the framework on the synthetic data generated by
the FVM method. The dataset contains the input variables are the spacial coordinate (x, y)
and time t while the output variable is velocities (vx, vy) and total pressure p. These data
satisfy the governing equations with a different level of accuracy, and the error can be viewed
as white noise in the data. Moreover, when the data are preprocessed correctly, the PINN
training converges quickly to the optimal solution and parameters. This result is valid for
the case where the data are generated by the FVM method with coarse mesh. This result
shows the robustness and generalization of this approach. Furthermore, by adding physical
constraints in the loss function, the training model converges on very sparse data. Lastly, the
developed framework must be able to substitute the numerical simulation models of thermo-
mechanical processes. This aims to provide rapid predictions and investigate various process
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parameters. The rest of this chapter is organized as follows: section 4.2 addresses the overview
of the modeling approaches including the numerical simulation models and AI-based models.
The description of the FSW process is presented in section 4.3. In section 4.4, we focus on
the theory of the numerical simulation of the thermomechanical problem. Furthermore, sec-
tion 4.5 presents the research methodology and the key contributions. We explain the most
important results and discussion in section 4.6. We make conclusions in section 4.7

4.2 Overview of the Process Modeling Techniques

4.2.1 Numerical Simulations Approaches

Although FSW welding has emerged as the state-of-the-art joining process, the welds require
special inspection [243], [250]. The microstructure of the joints reveals elements that are
indicators of weld quality. The FSW numerical simulation is a popular area of research
because the physics of the process is complex and requires the use of advanced multi-physics
solvers. This method has several advantages, such as its simplicity, and large application areas.
There are several approaches that help the numerical analysis models for FSW, including, the
Finite Difference Method (FDM) [250], the Finite Element Method (FEM), and Lagrangian-
based FEM [262] are used to develop in the numerical simulation model for the heat transfer,
temperature, and distribution. In particular, the FEM method consists in determining local
fields to be assigned to each element so that the global field obtained by juxtaposing these
local fields is close to the solution to the initial problem, however, these methods suffer from
major distortions. The authors of [263] exploit the finite volume method (FVM) with the
Eulerian approach to analyze and simulate the flow of matter, but it does not make it possible
to follow the evolution of each material point. The Arbitrary Lagrangian-Eulerian (ALE) is
a mesh simulation method that includes material advection from the Lagrangian mesh into
an Eulerian mesh. This approach helps to simulate the higher levels of plastic deformations.
However, ALE suffers from certain drawbacks, thus, the simulation of the FSW process is time-
consuming and is subject to precision errors. There are also measles simulation methods such
as Smoothed Particle Hydrodynamics (SPH) [264] that help to follow the whole FSW process
with very low plastic deformation and mesh distortion, however, it is expensive in terms of
computing time. The authors of [265] have shown that this time can be improved with the
use of parallelization and graphics processing unit (GPU) methods to considerably improve
computing time. In addition to this the authors of [255], have shown that to understand the
process and obtain correct results, it is essential to use a numerical simulation by the fine mesh
method. They assume that the size of the elements is less than or equal to one-tenth of the
feed per revolution of the tool lobes. This last requirement explodes the calculation times and
makes this process not simulated by means available today. To overcome the computational
time problems, numerous studies have developed AI-based models [250], [266], [267].
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4.2.2 AI-based models

In recent years, AI approaches have become very popular in light of their technological
progress and numerous applications including complex mechanical systems [76], [268], [269].
Thus, in the literature, there are several frameworks or approaches for modeling these sys-
tems [151]. Figure 4.2 presents these approaches. Physics-based modeling focuses on the
exploitation of physical constraints or knowledge. This knowledge represents the main source
of information while the use of data is marginal. The data-driven modeling highlights the use
of data (the main source of information is the data) and the axis regarding the exploitation
of physical constraints or knowledge is insignificant). Hybrid modeling uses both data and
physical knowledge. Thus, it extracts information from both information sources. In the rest
of this sub-section, we provide detailed descriptions of these approaches.

Figure 4.2: Schematic representation of the approaches used to address predictive tasks on a
complex system.

(a) The first model is known as physics-based modeling, this approach requires the con-
struction of a dynamic model by integrating various constraints or degradation linked to the
physical processes [67], [68], [270]. This model can be divided into two groups; (i) Physics-
based equations [271] that represent the relationships between different physical variables.
This method helps to validate the data simulation process and to understand the effect of
various physical components [272]. For example, these components are profiles, the tool spin-
dle shapes on temperature, the stirring zone, and the power consumed by the welding. (ii)
The numerical simulation model (see subsection 4.2.1) is presented in the form of PDEs which
is based on the physical laws (i.e., Burgers’, NSE, Wave, Laplace’s, or Poisson’s equation).
The resolution of these equations is obtained via numerical simulation methods [250], [262].
The main advantages of the physics-based approach are related to the model parameters,
the degradation or the deformation of the process can be explained and associated with the

107



variations of these parameters. Moreover, the results can be easily interpreted. However,
physics-based modeling is limited to its ability to extract knowledge or insights directly from
data that is mostly based on available physics. Furthermore, the models generated are of-
ten too complex leading to incorrect results. In the case of similar processes, the solutions
obtained are very often proved to be not generalizable, or transposable [69], [70]. In addi-
tion to this, the approach requires a high computational time and significant memory GPU.
Furthermore, for parameter estimation, the calibration of the model parameters is a difficult
task due to the combinatorial nature of the search space.

b) The second approach is known as Data-Driven modeling. This framework uses heteroge-
neous data to extract some relevant features, knowledge, or patterns useful for characterizing
the system. It is applied in many applications [273]–[276] such as anomalies detection, com-
puter vision, image processing or natural language processing [201], [202]. It can be classified
into several approaches: Machine Learning (ML), Statistical, Stochastic, or Deep Learning
(DL) models. We can exploit the possibility to develop an FCNN with many hidden layers,
this is efficient for non-linear problems and complex relationships. In addition, the model
helps to extract some relevant features that facilitate the process compression, due to ar-
ticulated architectures of different transformations. The authors of [268], [277] propose a
regression model to explain the direct relationship between the temperature, velocities state
of the tool, and its forces. However, this model does not provide a good performance due
to the relationship between these variables is always non-linear. In addition to this, the
approach suffers from several issues, such as the model instability based on incomplete or
noisy data [278], large-scale learning problems [279], the curse of dimensionality, and the
overfitting phenomenon [280]. To address these issues, the researchers have developed some
powerful frameworks [281]–[284] such as Convolutional Neural Networks (CNN), Restricted
Boltzmann Machine (RBM), Artificial Neural Networks (ANN) Auto Encoders network (AE)
and Generative Adversarial Networks (GANs). The authors of [267], [285], [286] have de-
veloped an ANN to predict the FSW parameters of aluminum plates and their mechanical
properties. Papers [287] present a conditional GAN (cGAN) for the prediction of the optimal
temperature distribution.

Unlike physics-based modeling, this approach is faster and can be used for real-time
prediction. Despite their performances, the models are limited to global observation and
cannot predict small local void defects in the weld seam. In some situations, this approach
model loses interest mainly due to its instability and capacity to capture new changes related
to the process. This can be caused by the collected data that does not automatically represent
all the process states or in presence of noisy data [288]. The estimation of the network
parameters can be difficult because the learning complexity lies in the disappearance of the
gradients with the increase of the number of hidden layers. An optimal architecture and a
number of parameters must be determined to avoid the problem of overfitting. In addition to
this, when the data are biased or low-dimensional, the efficiency of these models can be limited,
as they can lead to not sufficiently robust and non-generalizable results. (c) The last approach
is a new paradigm known as hybrid modeling. This approach is a combination of knowledge-
based or physics-based or data-driven modeling [289]. Author [290] use a hybrid model
called Cellular Automata Finite Element (CAFE) combined with Artificial Neural Network
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(ANN), to predict the evolution of grain size and yield strength during FSW. To address the
limitations of the previous approaches we introduce any form of prior knowledge about the
physics of the problem in the learning algorithm. This knowledge is also included in the data
simulation, to provide a kind of "training guide". This is performed by using an expanded
loss function; thus, the network output is constrained to satisfy a system of PDEs using a
regularization function. In this regard, the algorithm imposes a penalty to force the process
solutions to converge as fast as possible to the correct solution. In this case, the model adapts
continuously to the operational changes based on the collected data according to the physical
process [28], [78], [79]. The PINN model exploits the data and the physical knowledge to guide
the model [76]. The physical constraints are directly integrated into the initial loss function
by penalizing the deviations from the target values. The use of PINNs allows identification
to be performed simultaneously with the fitting of the FCNN model to a dataset generated
with different parameters and conditions. This model exploits the automatic differentiation to
generate every differential operator. Moreover, the model considers and captures the complex
phenomena of structural locals void defects and deformations which characterize the quality
of FSW welding. Unlike the physics-driven approaches, the hybrid approach helps to better
understand the system of the physical relationship between the different components of the
process. In addition to their computational performance, PINNs prove to be more robust,
accurate, and generalizable than the traditional AI model. However, the PINN can suffer from
several computational problems, mainly for the parameter estimation of multi-scale processes
and the convergence of the loss function. Generally, the minimization of the total loss function
represents a major issue for the PINNs including the traditional ANNs. Moreover, when the
model is too complex (i.e., neural networks having several hidden layers) the approach can
be inefficient and the estimated parameters may be ineffective for the investigated problem.
Table 4.1 shows the PINNs approaches and their extension.

Table 4.1: Some applications of PINN models and their extensions.

Papers Some applications of the PINNs and their variants

[291] Active training of PINN to aggregate and interpolate
parametric solutions to the NSE equations

[292] PINN for the incompressible Navier-Stokes equations
[293] Automating PINNs with error approximations
[294] PINNs for fluid mechanics
[295] PINNs for fluid mechanics Metamaterial Design
[296] PINN for heat transfer problems
[297] B-PINNs for forward and inverse PDE problems
[298] Sparse PINN (SPINN) and interpretable NN for PDEs
[299] Fractional PINN (FPINN)
[300] Solving PDEs using DL and Physical Constraints
[301] PINNs modeling of turbulent natural convection
[302] Ultrasound computed tomography using PINN
[303] Physics-informed model in wind turbine response prediction
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4.3 Thermomechanical Process: Friction Stir Welding (FSW)

4.3.1 Principle and Operating Mode

Friction Stir Welding is a solid-state welding process that aims to assemble several similar or
dissimilar materials with varying physical properties using a rotating and a translating tool
mounted on the spindle of the machine [248]. This process is operated in several applications,
and it is different from traditional welding processes like inert gas tungsten or laser welding.
The materials to be joined are mechanically mixed, melted, and then solidified with a non-
consumable rotating tool [248], [304]. The tool (see fig. 4.6) is composed of a shoulder that
generates a major part of the heat for the welded materials softening and the pin which
stirred the interface of the work-pieces. In fact, this piece is clamped on the bench of the
welding machine. Furthermore, in the welding phase, the various parts to be joined are placed
on the bench of a machine that has a forward movement in a vertical direction. The solid-
state material flows occur due to interactions between the pin and shoulder workpieces. The
authors of [305] show that the interaction between the tool and the part to be welded occurs
in four main phases (see figure 4.3).

• Plunge Phase: During the first phase, the rotating tool is plugged directly into the joint
line until the shoulder makes contact with the workpieces and plastics deform them.

• Dwelling phase: For this phase, the rotating tool stops translating in order to heat up
the workpieces at a convenient temperature in the vicinity of the tool.

• Welding phase: In the welding phase, the rotating tool moves along the interface of the
workpieces.

• Retracting phase: During this last phase, the material is driven periodically from the
front to the back. At the end of the assembly process, the tool finally withdraws from
the parts.

Figure 4.3: Scheme of the main phases of the thermomechanical Friction Stir Welding.
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4.3.2 Parameters and Main Defects of the Process

This process is simple and highly efficient and is applicable to various industries. However, the
mechanisms that govern the process and the deformation of the material around the tool can
be very complex. Thus, the deformations in the welded area depend on several factors [241]
such as the parameters of the welding process and the characteristics of the tools. In fact, some
parameters can affect the quality of the resulting joints. We have mainly rotational velocity
(rpm), welding velocity (mm/s), axial force (kn), tool shoulder diameter (mm), pin diameter
(mm), pin length (mm), tool inclined angle (°), included angle of taper pin (°), pitch (mm),
and the shoulder deepness inserted into the surface of base metal (mm) parameters. The
authors of [240], [242] show that the defects are often dimensional (distortions and residual
stresses) due to several factors including a poor calibration of the axial force, feed, rotation
velocity, tool selection, and poorly retained parts. Paper [256] has demonstrated that the
welding force keeps the tool pressed into the material, thus, the decrease of this force can lead
to the training of a tunnel defect at the back of the pin. However, the high force can cause
the tool to sink and the temperature of the material to rise. In addition to this, the defects
due to the tool design are related to the incorrect combination of the tool and the workpiece
to be welded or to the incorrect combination of the workpiece and the material of the support
plate. Finally, we have other defects related to insufficient heat such as flash, surface seizure,
vacuum bonding, kissing bonds, and onion rings.

4.4 Theories of the Numerical Simulation of the Thermome-
chanical Problem

4.4.1 Conditions of the model

In this study, we consider the model set up based on the work [255], including some conditions.
We focus on all the phases of the process like the transition and fusion phases have a very
short response time compared to the time of the whole process. We consider that the friction
coefficient is constant, and we neglect the influence of the velocity of the friction coefficient.
In addition, we select the plane in the middle of the part and the displacement is vertical.
Also, to make high simulation accuracy, we need at least five layers of elements between two
adjacent welding strips. Finally, we do not include the boundary conditions [306] in hybrid
models.

4.4.2 Geometrical modeling

The numerical model is two-dimensional, but one can use three-dimensional models easily
without any big changes. The foundations of two-dimensional modeling of FSW processes
are detailed by [255]. The geometry of the model showing the tool and the model domain
sizes are given in Figure 4.4. The model considers a small rectangular zone of size 12mm ×6
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mm around the tool. As the welding tool pin is trigonal, 2D models plane crossing the pin
exhibited and three curved sides of radius 5 mm whereas the tool maximal radius is 2.5 mm.

Figure 4.4: Model geometry of the thermomechanical Friction Stir Welding

4.4.3 Meshing and boundary conditions

The simulation of the friction stir welding process is a complex task, because during the
non-stationary phase, several elements are involved, such as mechanics, heat transfer, or
deformations around the tool axis. The meshed domain is Eulerian, the material is not fixed
to the grid. As the meshed domain shape should fit the rotation tool shape, the blue zone of
the mesh (see figure 4.5) rotates with the tool, and data are interpolated to the new position
of the mesh at each time increment. This technique, known as " moving mesh ", has been
used by [307] for CFD simulation of the FSW process. The model is compared to a Solid
Mechanic FSW model in the work conducted by [308]. CFD method is an approach that helps
to study the quantitative thermomechanical conditions of the fusion welding processes, such
as the temperature and deformation field of the material. In the literature, several studies
show that this approach is commonly used for modeling the FSW process [306].

Figure 4.5: Model meshing and boundary conditions
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The process requires that the finite element mesh is very fine to recover the history of
the strong thermomechanical gradients undergone by the material. We are also interested in
several elements such as fluid mechanics, the power of plastic deformation, and the "Finite
Volumes" method with meshing based on the partial derivative equations of Navier-Stokes
and Cauchy. The results of [309] show that to reproduce real welding behaviors concerning
materials, temperatures, and deformation rates, the viscosity must be very low. Several
studies have been realized in the boundary conditions [306]. In addition, we consider the
following conditions: the tool does not mesh and its interaction with the material is modeled
by applying sticking boundary conditions with shear limits of 300 MPa at the internal wall
of the blue zone. The material enters the mesh domain at the inlet within the process feed
velocity Vf . The sliding boundary condition is applied to the sides of the meshed domain
whereas outlet pressure is set to atmospheric.

Figure 4.6: Diagram of the Friction Stir Welding process: The blue arrows represent the
rotation velocity imposed on the pin, while the advancing velocity is replaced by a velocity
imposed on the plates in the opposite direction (red arrows) [308].

4.4.4 Governing equations

The governing equations are represented by the PDEs, these equations are differential equa-
tions composed of multivariate functions and partial derivatives. PDEs can be applied in
many areas, regarding the meteorology industries they can apply to charas, the flow of water
in a pipe, and other phenomena involving the flow of various fluids. In the mechanics and
energy sectors, NSE aims to design the means of transport including airplanes, automobiles,
trains, and electrical power plants. In this case, the PDEs (incompressible NSE) describe
the physical constraints [76]. A general form of the function u(X, t) can be defined in the
following form:

f (X, t, û, ∂xû, ∂t, ..., λ) = 0, X ∈ Ω, t ∈ [0, T ] (4.1)
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Where the function f describes the residual of the equation, X = (x, y) ∈ Rd is the
network inputs or the features (partial coordinates are space and t is the time). The param-
eters of the PDE are described by the differential operators like [∂xû, ∂tû, ...]; the parameters
λ = [λ1, λ1, .., λn] and their solution is given by û(X, t). In practice, this equation can be
solved by an approximate solution using some numerical methods (FVM), or Deep Learning
(DL). The material flow during the welding phases is calculated by solving the NSE and
Cauchy partial differential equations under the constraint that the viscosity does not depend
on the deformation rate. Also, the governing equations can be derived from Cauchy momen-
tum equations under some assumptions. The general convective form of Cauchy momentum
equations is given by:

−→
∇ . σ + ρ−→g = ρ

D−→v
Dt

(4.2)

Where σ is the Cauchy stress tensor, ρ the density, −→g the body accelerations (gravity,
inertial accelerations, or electrostatic acceleration), −→v the material flow velocity and t the
time. Using σ = τ − pI, where τ is the deviation stress, p the hydrostatic pressure and I the
second order identity tensor, equation (4.2) can be rewritten as follows:

−→
∇ .τ −

−→
∇p + ρ−→g = ρ

D−→v
Dt

(4.3)

−→
∇ .τ −

−→
∇p + ρ−→g = ρ

∂−→v
∂t

+ D−→v
Dt

(4.4)

In addition, the mass conservation, or the equilibrium condition of the NSE equation will
be assumed:

∂ρ

∂t
+∇(ρ−→v ) = 0 (4.5)

Furthermore, we consider that the gravity g = 0, and by assuming mass conservation, we
obtained the conservative form of Cauchy stress:

∂

∂t
(ρ−→v ) +−→∇ .(ρ−→v ⊗−→v ) = −−→∇p +∇ τ + ρ−→g (4.6)

In general, for modeling Severe Plastic Deformation (SPD) process as FSW with CFD,
incompressible Navier-Stokes equations are used as plastic deformation is incompressible.
Considering incompressibility, the conservative Cauchy stress is given by the equation (4.6).
The Navier Stokes Equation in a vector form is as follows:
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ρ
∂−→v
∂
−→
t

+ ρ(−→v ∇)−→v = −→F −∇P + µ

ρ
∇2−→v (4.7)

4.4.5 Parameters and Mechanical properties

Table 4.2 shows the mechanical properties of the material for the numerical model simulation.
The material properties have been defined by a coefficient k, the behavior law is made by
the coefficients strip thickness n, the viscosity µ is defined by the relation µ = Kγn−1Pa the
density is ρ and the tool radius is R.

Table 4.2: Mechanical properties of material

Variables Description Values
U Rotation velocity 2000 rev/ min
V Velocity of advance 600 mm/min
N Number of mesh nodes 825 nodes
T Time step simulation 0.0125 sec
k Consistency 1.5 e8kg.sm−2

n Strip thickness 0.014
ρ Density 2710kg.m−3

µmin Minimum viscosity 1000kg/m/s

µmax Maximum viscosity 5e10kg/m/s

ϵmin - 0.01
shear Shear limit at the tool material 300e10kg/m/s

R Tool radius 2 mm
L Length field 12 mm
l Width field 6 mm

4.5 Proposed Methodology

In this work, we propose a framework that has several objectives. The developed model ad-
dresses a solid mechanics problem where the viscosity is NSE. It aims to learn the process of the
transient regime, furthermore, it predicts the parameters during the whole process (transient
and stationary regime). PINNs have several advantages such as (a) the choice of network
architecture since we can impose governing equations on the FCNN inputs, thus having a
considerable impact on the FCNN outputs; (b) Exploiting sophisticated automatic differen-
tiation algorithms for accurate differentiation of FCNN functionals and for back-propagation
of errors. (c) Exploitation of advanced machine learning software with parallel processing ca-
pacities by CPU and GPU, and TensorFlow and Pytorch. Figure 4.7 describes the workflow
for the proposed methodology that is based on two main modules. This graphic is composed
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of several blocks. The first module focuses on the numerical simulation of the FSW Process.
This block aims to generate real by using the FVM method and commercial code Ansys/Flu-
ent. For the simulation, we fixed values on some parameters or the mechanical properties of
the tool (see table 4.2). The second block represents the result of the simulation. The output
data is a set of spatial coordinates, velocities, pressure, and time. The third block consists
of analyzing the data and providing a summary or descriptive statistics. This analysis helps
to improve the insight and identify any missing values or potential outliers in the data. The
fourth block performs some pre-processing techniques, such as the Min-Max normalization
(see equation 4.8) and the re-sampling technique. Normalization is the process of eliminating
the effect of size between data or changing the values in the data set to use a common scale,
without distorting them.

The fifth block is represented by figure 4.10, this is the key contribution of this chapter.
The PINN model is an extension of the FCNN that does not require the use of high-fidelity
of simulated data. Thus, the model optimal helps to identify, and predict several parameters
of the process. In fact, to estimate the optimal parameters, we exploit the physical prior
knowledge in the form of PDEs to regularize the loss function. The PDEs are computed
using automatic differentiation. The regularization technique improves the generalization
performance and guarantees that the solutions are consistent with the physics laws. By
training an FCNN we are interested in optimizing the combined loss function (see equation
4.21). We will provide more details when presenting the Schematic of PINN. The last block
consists of visualizing, validating, and interpreting the estimated values and parameters. We,
therefore, validate the model through the RMSE.

4.5.1 Data Pre-Processing

To train the developed model, we performed several pre-processing operations including the
data Min-Max Normalization. This operator is used to limit the size effect of each feature.
The min-max normalization is represented by the following equation:

XNorm = Xi −Xmin

Xmax −Xmin
where XNorm ∈ (0, 1) (4.8)

4.5.2 Type of Layer Activation Functions of the Feed-forward Neutral
Networks

In this section, we provide an answer to the following questions: why does FCNN need a
specific activation function? How to choose the right activation function? To answer these
questions, we introduce the formal neuron (see figure 4.8) which is an algebraic parametric
and nonlinear function with bound values. The activation functions have an important con-
tribution to the training of FCNNs, in fact, the function assists to learn the input information
and making sense of the non-linear mappings between the neurons’ inputs and outputs. More-
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Figure 4.7: Detailed flow chart of the developed methodology. This methodology is mainly
based on two modules, namely the numerical simulation module and the PINN approach
applied to 2D data.

over, the activation functions help to make a dynamic network, thus improving the ability to
extract complex information from data generated by nonlinear systems. In other words, the
activation functions are exploited to transform an input into an output signal. This signal is
then used as an input signal to the next layer. Furthermore, the function brings the nonlin-
earity of the system. The inputs x and outputs y of the activation function respectively are
presented by the following equations:
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x = φ

 w0 +
n∑

j=1
xjwj

 = φ
n∑

j=0
xjwj (4.9)

y = f(x) = f

φ
n∑

j=0
xjwj

 (4.10)

where wj , is the neuron’s synaptic weight matrix, w0 the bias vector of 0 input set to 1,
and φ describes a type of function applied to an artificial neuron’s output function.

Figure 4.8: Formal neuron represented by xn inputs, output y and a given activation function.

In the literature, there are various types of activation functions that are commonly used in
neural network approaches [310]. The choice and the property of this function can significantly
impact or influence the precision result of the model. When we use a linear function like
"Identity", the global computation performed by the network will also be linear, then it will
be useless to use several neurons because a single neuron will give equivalent results. If the
function is polynomial, this may increase the computational time necessary to estimate the
model parameters. However, in some contexts, it is also important to ensure that the network
outputs are not limited or bounded. In this case, it is preferable to use a "linear" function
instead of a "Sigmoid" type function which is bounded (it helps to accelerate the derivative
computation time and to reduce the computational time required to train the neural network)
[311]. Furthermore, for the "Piecewise Linear" type, we can show that these functions do not
have a certain form of regularity and it not differentiable on singular points. In fact, it is not
possible to compute the gradient of the error of the model on these points. The regularity
of the activation function favors the learning because to compute the Hessian matrix, it is
necessary that the function is twice derivable. The most used functions are mentioned in the
following list:

• Identity: φ(x) = x

• Logistic, Sigmoid: φ(x) = 1
1+e−x .

• Hyperbolic tangent (Tanh) φ(x) = tanh(x) = ex−e−x

ex+e−x

• Function Sign: φ(x) = x
1−|x|
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• Rectified Linear Unit (ReLU): φ(x) = max{0, x}

• Leaky ReLU: φ(x) = 0.01x if x < 0 and x if x ≥ 0

• Gaussian: φ(x) = ex2

• Softmax: φ(x) = exi∑J

j=1 exj
, where j = 1, 2, ..., J

In this case study, we focus on the ReLU function [312]. This monotonous function is very
often used in NN for its simplicity and ability to capture interactions and non-linearity. In
fact, Relu is the most common choice for feed-forward neural network regression because it is
not subject to the explosiveness or disappearance of the gradients [313] and their derivative
is equal to 1. Sometimes, the Leakage ReLU function is used in the context of functions
with zero derivatives. In addition, ReLU is applied to the hidden layers to facilitate the
convergence of the gradient descent and thus, encourage faster learning compared to the
Sigmoid and Tanh functions. Moreover, it can learn reliably even when the number of layers
increases. The aim of this function consists of enabling the neuron set to be excited. Then
the inputs are multiplied by weights and the bias is added to the sum of the product obtained.
The result is then converted into a signal indicating the state of neuron excitation. The ReLU
function must be used only in the hidden layers and not the outer layer. Furthermore, the
hidden layers help to extract features from the input xi data using the following equation:

hj = RELU

(
n∑

i=0
xiwij + bi

)
(4.11)

where yj is the jth output data, wij is the kernel, bj is the bias coefficient, the coefficient x

and b are biases updated in the same way. and xi is a feature of previous layers. The output
vectors for the kth hidden is given by:

hk
i = ReLU

∑
j

w
(k−1)
ij h

(k−1)
j + b

(k)
i



where k = 1, 2..., h(k) is the output of the kth layer, wk
ij and b

(k)
i are respectively the weight

and the bias of the kth layer.

4.5.3 Regularization and Physics-based Loss function

To train the model and to estimate the optimal parameters we use the common optimizer like
the Stochastic Gradient Descent (SGD) [314]. In this case, we focus on the Adam algorithm
that helps to find an optimal solution to the learning problem. Furthermore, Adam allows to
gradually correct the parameters in order to minimize a continuous and differential function
named Loss function (L). Along the same lines, the network learns to approximate the

119



differential equations by finding the parameter θ or to estimate a predictor function Ŷ through
the minimization of the loss function. The equations of the traditional loss function L(θ) and
the optimization problem P are respectively defined by the following:

L(θ) = 1
n

n∑
1

l(f(xi; θ), yi) (4.12)

P : θ = arg min
θ
L(θ) (4.13)

Where f(xi; θ) describes a given model. Despite their advantages, the FCNN-based models
are often subject to the overfitting problem in the training stage, which can result in a high
variance in the test data. To address this issue and obtain a more robust and generalizable
model (accuracy, simplicity, and consistency), we develop the PINN models, that exploit
a fully connected feed-forward neural network, which is formed by multiple hidden layers.
This approach is based on the combined loss function, in addition, it is a new contribution
compared to the classical models. The regularization methods consist of penalizing the weights
of neurons; thus, the resulting model must have an optimal prediction (minimum error) on
all sets of training data. In this respect, several approaches have been developed to fit the
model and then find a compromise between the bias and the variance. The first method
is to determine the optimal number of hidden layers and neurons. However, the author
of [315] demonstrates that this theoretical method to reduce the number of neurons during
training has limitations mainly when the training data includes few samples. By investigating
different architectures for solving regression problems, the bias and variance do not necessarily
evolve in opposite directions when the number of hidden neurons increases or decreases. An
alternative approach is to investigate the possibilities of obtaining estimators with reduced
amplitudes, i.e., to accept a slightly increased bias in order to reduce the variance more
than proportionally. Regularization provides this type of insight, furthermore, it is one of
the key techniques of the AI framework that aims to limit the overfitting issue and achieve
better performance. There are several regularization techniques classified as passive or active
methods.

4.5.3.1 Passive Regularization techniques based on data

The most popular passive method consists of using a validation database to evaluate the
performance of the model. This approach is efficient for regression tasks because the network
tends to fit the data on the whole space. Furthermore, the variation of the loss function on the
validation database is easier to detect. If the model is not adjusted excessively to the data,
the loss function associated with the validation and learning databases decreases together.
When the generalization error increases, the cost function on the learning base continues to
decrease, while the validation one tends to increase. However, this method requires a high
amount of data to train, test, and validate the model.
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4.5.3.2 Active Regularization techniques based on data

To address the challenges of the passive method, we introduce the most important used
active regularization approaches in the AI framework. Early Stopping is an approach that
consists of stopping the iterations of the optimization algorithm before it convergences. If this
convergence is not achieved, the model does not fit the training data properly, thus limiting
the overfitting effects. To apply this method, it is necessary to determine the optimal number
of iterations to be used during the training step. So, a basic method consists of following
the cost function evolution on a validation basis and stopping the iterations when the cost
calculated on this basis is increasing. However, the early stopping method can be inapplicable,
in some situations, because it can be difficult to determine with exactitude the moment to
stop the training since the performances on the validation base does not degrade significantly.
Penalizing the parameter weight technique is based on the limitation of the model’s capacity,
by adding a parametric norm penalty to the loss function [261], [316], [317]. There are different
types of regularization according to the norm or distance metric applied to the weight. (i)
The Weight Decay is based on the L2 norm parameters like the Ridge regression model, the
function is described by the following relation:

L(θ) = 1
2 ||w||

2
2 = 1

2

n∑
i=1

w2
i (4.14)

When the weights of the network are high in absolute value, the hidden neurons’ sigmoid is
saturated, so the modeled functions can have abrupt variations. To obtain regular functions,
we need to work with the linear part of the sigmoid, which implies having weights whose
absolute value is small [318]. We can add a penalty to the cost function that depends on
the magnitude of the weights that link the neurons together. Thus, the weights wi are
approximated towards the origin by adding the regularization term in the loss function. (ii)
The Sparse representation has the same properties as the LASSO regression method. This
approach is based on the L1 norm that directly penalizes the activation of a neuron, instead of
its weight. Thus, the sparse representation performs the feature selection task which produces
sparse solutions whose weights wi are set to 0 for λ large enough. The Sparse representation
is defined by the following relation:

L(θ) = 1
2 ||w||

1
1 =

n∑
i=1
|wi| (4.15)

However, this approach has its limitation since the derivative form is unknown, so it is
based on an approximation of the derivation. (iii) The dropout regularization is based on the
constraint of the maximum norm, but it is limited to the absolute norm of the neuron weights
( ||w||2 < c where c > 0). This method prevents the neural network from "exploding" and
anticipates the problem of overfitting [319].

The term "Dropout" refers to the temporary suppression of the neurons (both hidden
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and visible neurons). Figure 4.9 shows that the neural network is randomly cut off a part
of its neurons during all the n iterations of the training phase. However, during the model
validation phase, these neurons are reactivated (p factors). The dropout is more robust than
other regularization methods such as L2 regularization since the dropout training process
helps to explore different regions of the parameter space that it would not have found during
a regular training [319]. In the general case, the dropout method applied to the units produces
the following random variables:

Sh
i =

∑
i<h

∑
j

δl
iw

hI
ij .Sl

j (4.16)

By assuming that the dropout process is independent of the activities of the weights, when
the dropout is applied to the units, we obtain the following relation:

E(Sh
i ) = Sh

i =
∑
i<h

∑
j

δl
iw

hI
ij .E(Sl

j) for h > 0 (4.17)

where S0
j = Ij and δl

i is the random variable of the type Bernoulli selector, which sup-
presses the influence of weight wi with the probability P (δi = 0) = qi. The equation (4.17)
can be applied recursively (backpropagation) to the entire network, including the input layer.
Furthermore, by assuming that the Bernoulli random variables (δl

i, δl
′

i′ ) are independent of
(Sl

i, Sl
′

i′ ), when i ̸= i
′ and l ̸= l

′ , we deduce that the probabilities P (δi = 1) = 1 − qi = pi,
E(δl

i, δl
′

j′ ) = P l
j , P l

′

j′ and E(δl
j , δl

j ) = P l
j . Finally, we obtain the following equation:

E(Sh
i ) = Sh

i =
∑
i<h

∑
j

P hl
ij whI

ij .E(Sl
j) for h > 0 (4.18)

In order to obtain models that are not overfitted the authors of [320] have shown that the
value of the weights is more important than their number.

Figure 4.9: Dropout regularization method applied to the weight of the Neural Network.
Figure (a) shows the initial state of the network, and figure (b) indicates the momentary
suppression of the neurons during the network training.
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4.5.3.3 Regularization Approaches based on the Physical Constraints

Let’s introduce the functions f and F that respectively represent the function that determines
the problem data and the parametrized PDE equation expressed in the most general system
as:

F(u(X, t); λ) = f(X, t) X in Ω, t ∈ [0, T ] (4.19)

The model F(u, p) is defined in the spatial domain Ω ⊂ R. By assuming F(u, p) = 0, we
obtain the following equation:

∇.u = 0
∂u
∂t + (u.∇)u + 1

ρ∇p− v∇2u + bf = 0
(4.20)

where F(u, p) = f(û, ∂tû, ∂xû, ..., λ) = 0, X ∈ Rd represents ,the spacial coordinate t is
the time. f describes the residual of the PDE containing the differential operator such as
û, ∂tû, ∂xû, ..., and λ = [λ1, λ2..., ] ∈ Rd are the PDE parameters. The aim of this problem is to
obtain the function u for each z, with parameters λ that modify the weight of the constraints,
the solution of the equation is described by û(X, t). We enforce explicit regularization LF (θ)
terms to provide effective control and insight into the complexity of the PINN model at the
fine-tuning stage. Furthermore, this approach consists of driving the model to follow the
physical process or topology. The regularization function related to the physical constraints
penalizes the residual of the governing equations and it is defined by the following relation:

LF (θ) = f(û, ∂tû, ∂xû, ..., λ)

By adding the dropout regularization and the Physical constraints terms to the initial
loss function (see equation 4.13), we obtain the total loss function L(θ) which is a linear
combination of some losses from data and PDE residuals.

L(θ) = λdLdata(θ) + λDLDropout(θ) + λFLF (θ) (4.21)

In this context, the network must learn to approximate the PDEs by finding the parameter
θ that minimizes the loss function. The equation of the estimated parameter θ̂ is:

θ̂ = arg min
θ

(λdLdata(θ) + λDLDropout(θ) + λFLF (θ)) (4.22)

We note that the function Ldata(θ) concerns the errors in the description of the initial state
loss function. LF(θ) is the loss function produced by a mismatch with the governing differential
equations (NSE). This function applies the differential equation F to the collocation points,
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which can be chosen on the domain Ω. In addition, by using the PDE constraints through the
penalty term LF (θ), the corresponding weight λF can be applied to address the accuracy of
the PDE model. Furthermore, the hyper-parameters λd, λD and λF are to be tuned and their
purposes are to influence or measure the importance of the regularization function weights.
The penalty coefficient related to the data Ld(θ) denotes the error based on the observation
data or the validation of known data points. The coefficient penalty λD(θ) is the term related
to the regularization of the model’s parameter. The coefficient of the Physical constraints
λF is the term that fits the effects of the physics inconsistency on the empirical loss function
and the model complexity. By considering the weight λF = 0, we lose knowledge about
the physical process. In this respect, the traditional FCNNs models are trained without any
insight into the dynamics of the physical phenomenon. We can therefore infer that the penalty
terms aim to guide the model, in order to follow the physical structure of the process.

4.5.4 Observations about the Combined Loss Function

For our case study, the PINN model is applied as a supervised learning task. The PINN
framework has (X, t)N = {(xi, yi, ti)}Ni=1 as the inputs and Y N = {(ui, vi, pi)}Ni=1 as the
output variable where ui, vi, and pi respectively provide descriptions of the velocities and
total pressure. The optimization problem described by the equation 4.13 can be addressed
by applying the algorithm Adam, which minimizes the combined loss function. On the other
hand, by using this Adam, the parameters of the model are estimated by minimizing the
difference between the observed outputs and the model’s predictions. This minimization is
performed in several steps: (a) The spatial coordinates of the collocation points and the
training data are substituted into the loss function. (b) The spatial and temporal derivatives
with respect to weight and bias are performed on the loss function. These derivatives are
accurately and efficiently calculated using automatic differentiation (AD). The AD does not
suffer from truncation or rounding errors, which results in much higher accuracy. Furthermore,
the algorithm avoids bad local minima and improves the speed of convergence it combines
adaptive learning rate and momentum methods. (c) Using the gradient descent to update the
w and b vector. The values ŷi are the variable to be predicted for the value of ith the index
of a training example, yi the true value of the ith samples. For the purpose of regression,
there are several forms of the loss function to evaluate the performance of the NNs. We can
mention the Root Mean Squared Error, Squared Error, Absolute Error, and Huber Error. In
this case study, we use a Root Mean Squared Error that has the following form:

RMSE =

√√√√ 1
n

N∑
1

(yi − ŷi)2 (4.23)

where ŷi = (ûi, v̂i, p̂i) respectively are the vectors of the target and variable to be predicted.
To obtain the optimal parameters of the PINN, we minimize the following mean square error:

RMSE(total) = RMSE(data) + RMSE(dropout) + RMSE(F) (4.24)
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where RMSE(total) represents the combined mean square error generated by the developed
PINN model and each term is written as:

• RMSE(data) = Ldata is a sum-of-square error function between the target output, yi

and the predicted output ŷi. This function is based on the observation data of the initial
condition.

RMSE(data) = 1
Nu

∑Nu
i=1 ||u(Xi, ti)− ûi)||22

+ 1
Nv

∑Nv
i=1 ||v(Xi, ti)− v̂i||22

+ 1
Np

∑Nv
i=1 ||p(Xi, ti)− p̂i||22

• RMSE(dropout) = LDropout(θ) = 1
Nd

∑Nd
i=1 ||Si

k||22

• RMSE(F) = LF (θ) is the function based on the physical constraints of the PDE and
mass conservation.

RMSE(F) = 1
NF

∑NF
i=1 ||F(u, p)||22 = 1

NF

∑NF
i=1 ||∂u

∂t + (u.∇)u + 1
ρ∇p − v∇2u + bf ||22 +

1
NF

∑NF
i=1 ||∇u||22

where RMSE(F) is the N-S equation, and the Mass conservation. We can notice that
Nu = Nv = Nd and NF are the number of training examples in the training set. To minimize
the cost function (see equation 4.24), we exploit an adaptive gradient-based algorithm named
Adaptive Moment Estimation (Adam) which facilitates SGD convergence by combining both
an adaptive learning rate and a momentum method [321]. In other words, the PINNs mod-
els, solve a PDE system (See equation 4.21), and the model converts the equation into an
optimization problem by updating iteratively the parameter θ in order to minimize the final
loss function. To obtain a higher learning rate and to estimate the optimal hyper-parameters
including the model regularization coefficients we investigate an optimal FCNN architecture.

Figure 4.10 shows the zoom-in or more detailed information of block five of figure 4.7.
Specifically, figure 4.10 represents the schematic of a physics-informed neural network. This
framework is the most common problem in fluid mechanics, where the PDE considered in
our application is the approximation of the nonlinear NSE. In addition, minimizing the com-
bined loss function, also allows us to identify and estimate the optimal parameters of the
process. The key components are respectively the Fully-Connected Neural Network (FCNN),
Automatic Differentiation (AD), the governing equations, and the combined loss function (see
equation 4.21). By using the chain rule, the AD can compute the partial derivatives of the
outputs according to the inputs directly in the computational graph via a combination of the
derivatives based on a sequence of operations. Unlike conventional numerical methods, the
AD approach performs the computation of the partial derivatives via an explicit expression,
thus avoiding the introduction of discretization and truncation errors. However, we can note
that there are generalization and optimization errors that depend respectively on the training
data and the optimizer used.
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4.6 Results and Discussions

4.6.1 Result of the Numerical Simulation of the 2D Data

In this subsection, we present the main results of the developed framework including the
numerical solution of the FSW process and the PINN module. The first step consists to
simulated the 2D data using the FVM approach and CFD software Fluent. We have consid-
ered all the phases of the thermomechanical process. In addition, we have a two-dimensional
model with plane stress of the union between two plates. Our model is composed of 850 nodes,
furthermore, we assume that the axis rotates at 2000 rev/min and advances at 600mm/sec.
The time increment is 0.0125 sec, the strip thickness is equal to 0.014, and the tool radius,
length field, and width field are respectively equal to 2mm, 12mm, and 6mm. In addition,
we consider the geometric parameters defined in the sub-section 4.4.2. These data are repre-
sented by the the spatial coordinate (x, y), time step t, 2 − zone, the velocities (vx, vy) and
the total pressure (p). We have randomly chosen some points that correspond to time steps t

equal to 0.0060, 0.0765, and 0.150 sec. Figures 4.11 represent the contours plot or evolution
of the components (velocities, and pressure) at different time steps. Specifically, the plots
(sub-figures 4.11 (a), (b), and (c)) represent respectively the evolution of the velocities, and
the pressure field during the beginning, middle, and end of the process.

(a) (b) (c)

Figure 4.11: Simulation results of the 2D process (Contour plots): Contour plots represent
the evolution of the velocities and pressure subsequently at the beginning, middle, and end of
the process. For each step, the time steps are respectively equal to 0.0060, 0.0765, and 0.150
sec).

4.6.2 Physics-Informed Neural Networks Trained on the FVM Solution

In the second step, we train and validate the PINN model of the thermal-fluid model that
uses a Fully Connected Neural Network (FCNN). The network is governed by physic law
imposed in the loss function. The model is a valid substitute for the numerical solution.
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The purpose of the hybrid approach is to perform both prediction and validation of the
simulated data. To illustrate the application of the proposed approach, we use the simulated
synthetic data to estimate the hyper-parameters and predict the output data. Furthermore,
the model is tested and tuned through different scenarios or configurations (see table 4.3).
This provides some highlights on the performance of the proposed method. The robustness
of the model is influenced by various parameters. We can mention the hidden layers, the
number of neurons, the training methods, the activation function, batch size, the number
of epochs, the optimization algorithm, and the loss function. PINN modules can reduce
the approximation error while increasing the trainability of the network. In addition, it can
also provide a large generalization error, thus hyperparameters, such as the learning rate,
or the number of iterations can be adjusted to control and improve the overfitting problem.
Concerning the development of the model, we select the training data randomly from the
generated date set, furthermore, we exploit a fully connected neural network with some hidden
layers. To activate each layer, we use the Relu function, in the fine-tuning phase we operate
with the Adam optimizer to perform the optimization up to convergence. This, algorithm
help to ensure global convergence and accelerate the process of convergence. Subsequently,
the optimal parameters θ and λ are computed by minimizing the sum of the loss function
(see equation 4.24) iteratively until it satisfies the stop criteria.

Table 4.3: Variations of the hyper-parameters of the PINN model

Parameters Different values

Learning rate 1e1, 1e−1, 1e−2, 1e−3, 1e−4, 1e−5

Training data (%) 50, 55, 60, 65, 70, 75, 80, 85, 90, 95

Number of Epochs
50, 100, 150, 200, 250, 300, 350
400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 1000

Number of Layers 4, 8, 12, 10, 12, 14, 16, 18, 20,
22, 24, 26, 28, 30, 40, 50

Number of neurons 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60

Dropout coefficient 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1
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(a) (b) (c)

(d) (e)

Figure 4.12: Losses functions: Each figure (a), (b), (c) and (d) respectively represents the
loss function related to the variable u, v, p and the derivatives for the NSE. Furthermore,
sub-figure (e) show the combined loss function defined by the equation 4.21, with respect to
the number of training epochs

Figures 4.12 (a), (b), (c), and (d) show the learning performance (loss) curves of the
algorithm as a function of the number of epochs. These curves can be regarded as a potential
tool for diagnosis and to evaluate the quality of the training algorithm when updating the
parameters. In fact, each figure shows respectively the loss value relative to the output data
and physical constraint like NSE. We can deduce that the loss functions related to the variable
(u, v) and the physical constraints (NSE) have a fast decay. Concerning the loss function
related to the variable p, we have applied the logarithm to favor or accelerate the convergence
of the function. sub-Figure 4.12 (e) shows the combined loss function including the dropout
regularization function that converges much faster and more regularly. The performance
obtained with this novel approach is remarkable and the total loss is significantly lower when
the training is completed. The selection of the optimal network is performed according to
the lowest value of the RMSE. Thus, the architecture of the optimal model is composed of
8 hidden layers, and 5 neurons by layers. In addition, the network is trained during 1000
epochs with a learning rate equal to 0.1 and the coefficient of dropout regularization is 0.3.
The RMSE computed through the optimal model is 1.93, when we remove the variable p

from the model the RMSE decreases this value decrease to 5.84. Despite the logarithmic
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transformation of the loss function, the model suffers in the presence of this variable. Figure
4.13 represents the contour plots of the 2D FSW process at the beginning of the process.
Sub-figures 4.13 (a, and b) represent the real data simulation, sub-figures (c), and (d) show
the predicted values obtained with test data equal to 5% at different times steps.

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: A comparison of the results of the 2D data at beginning of the process. Sub-
figures (a) and (b) represent the realistic simulation of the contour plot. Then, sub-figures (c)
and (d) are the predicted values with less than 20% of the training set. Finally, sub-figures
(e) and (f) show the best result obtained with more than 70% of the training set.
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However, if we consider the test data higher than 20% then we can observe that the model
performs significantly better (see sub-figures 4.13 (c, and d). In this case, the prediction values
are close to the values of the simulated data. This refers to the comparison between the two
figures with the same time steps 4.13 (a, and c) and 4.13 (b, and f). The results show in all
cases a globally good qualitative agreement with the results carried out by the FVM simulation
approach. Overall, the results obtained show that the PINN approach can accurately predict
or estimate the velocity fields and the unknown parameters of the PDE. Furthermore, this
supports the effectiveness of the method such that FCNN informed by the NSE can be a valid
candidate to substitute the numerical solution obtained by the FVM method which simulates
the FSW process.

(a) (b)

(c) (d)

Figure 4.14: A comparison of the results of the 2D data at the middle and end of the process.
The first two contours plots (a) and (b) represent the data realistic simulation and the last
two contours plot (c) and (d) represent the best result obtained

131



4.6.3 Discussions

In this study, we focused on the resolution of PDEs by the PINN model using the data from
numerical simulation methods this is a supervised learning task. In fact, the objective is to
perform a solution that can be replaced a numerical model. Given the characteristics of the
Navier-Stokes Equation, a PINN is formed and trained on the simulated data. Furthermore,
we investigate the performance of the model through the RMSE, and the following discussion
is presented.

• PINN is the network that provides the ability to encode model equations, such as PDE,
as part of the FCNN itself.

• The principal aim of the PINN model is to integrate an adequate regularization of the
physical knowledge into the FCNN. To improve the learning of the solutions of the PDEs,
we inject the physical constraints in the network, which guides the model to the optimal
solutions from limited information. The regularization of the physical information is
performed through the automatic differentiation of the Pytorch framework. This is
approximated because the NSE does not have a known solution.

• The regularization has an important role in the PINN, besides, the regularization related
to the physics constraints we have also developed the dropout regularization. In future
works, it will be interesting to explore other methods of regularization such as the
L1 or L2 norm. In particular, the L1 norm approach is robust to the interference of
anomalous or biased data. These approaches improve the knowledge of the methods
related to PINNs.

• For the purpose of PINNs training, the simulated 2D data are randomly selected in
the space-time domain. In addition, traditional numerical methods such as FVMs re-
quire the discretization of the PDEs while PINNs can directly learn the solutions of
these equations from a small amount of data without the necessity of this discretiza-
tion. Moreover, PINNs can be developed and adapted to solve other problems that
consider the discretization of the equations (i.e., numerical weather prediction models).
Consequently, this model favors the implementation of several case studies, especially
the development of computational fluid dynamics and scientific computing.

• The proposed framework has several advantages, such as the fact that it does not con-
sider the discretization of the PDEs, where the solutions are computed by automatic
differentiation. Moreover, the introduction of the regularization process allows to guide
or constrain the model to follow the phenomenology of the system, which reduces the
risks of overfitting, thus improving the generalization performances and guaranteeing
solutions that are consistent with the considered systems. However, PINNs are con-
fronted with various difficulties, such as the resolution of PDEs via FCNNs being highly
dependent on the training data, which often requires a long training time when the
quality of the data is poor. In addition, the performance of the model can also depend
on the hyperparameters of the model. To address these issues, it is important to use
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high-quality data to reduce training time and to exploit methods for the automatic
selection of regularization parameters.

• PINNs allow the choice of network architecture, automatic differentiation algorithm,
and advanced machine learning software with parallel processing capabilities by CPU
and GPU.

• In order to improve the PINNs model, we will study the behavior and the weight of the
pressure (p) during the training of the model. Despite a logarithmic transformation of
the loss function related to this variable, we found that the problem is not completely
solved. This has a significant impact on the combined loss function. Furthermore, in
future works, it is important to include the boundary conditions in the PINN model.
This factor contributes more knowledge about the model, especially about the conditions
related to the tool.

• We study 2D-dimensional PDE problems, but in future works, the method should be
applied to 3-dimensional simulation problems where the spatial coordinates are in the
x-axis, y-axis, and z-axis

4.7 Conclusion

In this chapter, we propose an efficient and robust computational framework named PINN.
The developed neural network addresses a solid mechanics problem where the viscosity is
expressed by the Navier-Stokes equation which depends on the strain rate. In addition, the
neural network aims to learn the process in the transient regime and it is able to predict the
whole process from the beginning to the end of the regime (stationary). Our approach is
composed of two major modules, the first one is based on the numerical simulation method
known as the FVM. This module is based on the simulation of the realistic data of the FSW
process with respect to the conditions of the tool parameters. The second module called PINN
is composed of several blocks in particular the FCNNs, the combined loss function based on
the physical model automatic differentiation, and the feedback mechanism. To inform the
model, the physical laws or constraints included in the PDEs are introduced to the FCNNs in
the form of regularization. In addition, dropout regularization is used to reduce or attenuate
the noise factor related to the data.

Compared to the traditional NNs, this method allows the model to be trained from a
small number of observations. Moreover, by informing the model with the NSE, the solutions
of the PDEs can be learned better. This effectively reduces the search field of the algorithm
and guides it to an optimal solution. The PINN is considered a new method of solving
PDEs by NNs that combines physical information and data where the PDE solutions are
calculated by automatic differentiation. In addition, the results obtained are robust and
generalizable due to the ability to approximate the functions of the NNs and the NSE. To
evaluate the performance of the model when predicting the velocities and pressure of material
deformation during the welding process, we used the RMSE which is based on the combined
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loss function. This metric allows us to find the optimal network for the estimation of the
hyper-parameters in the fine-tuning phase. According to the obtained experimental results
and the state-of-the-art developed on PINNs, we expect that PINNs can substitute numerical
simulation solutions that require considerable computational time and memory. Moreover,
they will considerably impact the study of PDEs resolution and thus support the development
of scientific computing.

However, there are still many challenges and improvements related to PINNs, including,
the questions related to the PINNS theories which remain to be solved. In particular, we will
focus on the introduction of boundary conditions in NNs and we will perform a comparative
analysis (accuracy and computational time) of the performance differences between PINN-
based methods and FVM methods.
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Chapter 5

General Conclusions and Futures
works
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In this last chapter, we will briefly present the summaries, suggestions, limitations, and
future work concerning the development of sophisticated decision-support tools. Prior to
any development, we thought it appropriate to present the different industrial revolutions,
their main characteristics, and specificities. It emerges that Industry 4.0 contributes signifi-
cantly to the new challenges in the organization of customized production resources. Thus,
it is identified as a new way of planning and organizing all resources of the factory. This is
environmentally responsible and saves energy and raw materials. We have noted that man-
ufacturers are confronted with several challenges in an increasingly competitive market. To
meet these new challenges, an approach consists of digitalizing or automating the industry
with the introduction of cyber-physical systems, communicating sensors, and intelligent and
autonomous robots. Beyond these challenges, we have presented the nine pillars or technolo-
gies that constitute the foundation of the Factory of the Future.

In particular, we focused on a combination of these technologies to highlight the ap-
proaches or strategies of industrial maintenance. We mention that corrective and preven-
tive maintenance does not fully address the issues related to I4.0. This is because scheduled
maintenance or corrective maintenance does not ensure the continuing operation of the equip-
ment. Consequently, we have focused on the predictive maintenance strategy which consists
of anticipating anomalies, possible machine malfunctions, or computing the life duration of a
component. This strategy can be used as a recommended or feedback system. We have also
shown the main steps for the implementation of this strategy of maintenance.
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To predict the failures of a system several approaches can be exploited. We have focused
on data-driven and hybrid approaches. These frameworks have an important function in
resolving the tasks in PdM 4.0 activities. In particular, PdM 4.0 and AI-based systems offer
new opportunities for optimizing production processes and reducing maintenance costs. These
maintenance costs are very often due to equipment that suffers from deterioration without
being identified in advance. A sudden shutdown of the machines can also lead to huge losses
in the production system.

To address the objectives and research questions of the study, several methods and frame-
works were developed, including data mining and Deep Learning techniques. In particular,
we have developed decision support tools based on deep learning models. We explored DNN
models, hybrid models combined with explanation approaches, and models informed by phys-
ical laws.

5.1 Summary of Contributions

5.1.1 Artificial Intelligence and Real-Time Predictive Maintenance in In-
dustry 4.0: A Bibliometric Analysis

Firstly, we have performed a state-of-the-art study about AI techniques applied to PdM in
I4.0. To address the main questions related to industrial-based systems, we exploited the
data mining technique named Bibliometrics. The bibliometric analysis was achieved using
the processing and analysis tools Biblioshiny, and data visualization tools such as VOSviewer
and Power BI. We collected 4096 scientific documents published between 2000 and 2021 in
the scientific database WoS. This bibliometric study provides an overview of the most impor-
tant concepts, topics, and application areas of AI. In addition, the analyses highlight the AI
methods, their particularities, the main trends, results, or performances. Furthermore, the
descriptive analyses focus on the publication trends, sources, articles, authors, co-authors, ref-
erences, affiliations, and most productive countries. In addition, we have visualized networks
or clusters of collaboration between authors and institutions. We have highlighted the ethical,
trusting, transparent, and socio-economic impacts of using these models. We also presented
the potential, the main challenges, and the future research directions of AI systems.

The most important results show an exponential use of AI techniques in Industry 4.0,
especially in PdM and anomaly detection. We observe that the gap between developed and
third countries is increasing in terms of research and industrialization. However, we showed
that the emerging themes in AI are DL, and ML techniques. In addition, the most commonly
used models in surveillance, diagnosis, prognosis, anomaly detection, data denoising, pattern
recognition or signal processing, transfer learning or random fake data generations are mainly
CNN, DNN, ANN, LSTM, AE, and GAN. Their models can be used for modeling, identifi-
cation, optimization, prediction, and control of complex systems. Despite their performances
and their numerous applications, the models have limitations in practical cases. For exam-
ple, the real-time prediction, and the dependence of some models on the quality of the data.
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Problems of instability and over-fitting in the presence of missing or biased data models or in
the presence of complex, unbalanced, or mislabeled classes. Models such as CNNs and DNNs
have complex architectures, which can require significant GPU and computational resources
to estimate the parameters. In this context, real-time or online analyses can become very
complicated due to the high computation time and complexity of these models.

These models are known as "black box" models, which means that the internal structure
and decision rules are unknown or not explicable. This lack of explicability can be a real
problem for the generalization of these models in the industry. The use of AI technologies
could face some challenges such as operation, organization, adaptability, machine-machine
interactions, human-machine interactions, cybersecurity (risky attacks), online analysis, real-
time data collection, and data quality. New trends in AI approaches have the following:
development of hybrid multimodal models, visual reasoning, XAI explainability, and feature
selection for real-time predictive maintenance in the industry.

5.1.2 Health condition monitoring of a complex hydraulic system using
Deep Neural Network and DeepSHAP Explainable

Following a detailed analysis of traditional AI models applied to PdM. We have developed a
decision support tool to improve maintenance operations or activities. The resulting tool is a
hybrid framework that addresses the condition monitoring (CM) tasks of a hydraulic system
based on multi-sensor data. In addition, this tool aims to monitor and predict the different
component conditions (coolers, valves, internal pump leaks, or the state of the hydraulic
accumulator).

Prior to any development, we have provided answers to the problem of data quality the
proposed solutions are the following; Manual data labeling, artificial resampling data, data
augmentation by using DL, clustering technique, simulation of "fake" or realistic data, and
generation of data or features by using transfer learning (TL) technique. Furthermore, we
presented the benefits and strategies of maintenance such as manufacturing process opti-
mization, diagnosis, prognosis, and monitoring of interconnected machines. In particular, we
have shown the different tasks that can be covered by CM techniques (monitoring of machine
components, sensors, and the CM framework itself). To perform the prediction or monitor-
ing tasks, we have studied the different approaches. For our case study, we focused on the
data-driven approach. The model used is a DNN which can be applied to several tasks (fault
classification, diagnosis, and non-linear problem solving). Furthermore, the model is robust
to learning unbalanced multi-class classification tasks and noisy data.

We have developed a hybrid framework consisting of two main modules: a multi-class
DNN classification model with unbalanced classes combined with a DeepSHAP explainable
model. We have shown that the classification model can be directly applied to the data in
order to capture or extract deep features. In this case, a feature selection operation is not
necessary. We evaluated the performance of the model via Accuracy, F1-Score, Precision,
Recall, confusion matrices, and classification errors. The model training performs well in
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the presence of unbalanced data because we regularized the loss function and we applied
the cross-validation technique. In particular, the results show that the classification rate for
each target variable or component of the hydraulic system is close to 100% including cooler
conditions (99.87%), valve conditions (99.60%), pump internal leakage (99.09%), and stable
state (94.17%), and hydraulic accumulator conditions (88.60%).

Although DNNs are powerful, their reliability as "black box" models remains problematic
because we are not able to explain the decision rules. To address this explainability paradigm,
we focused on deep learning reasoning using the XAI explanation approach called DeepSHAP.
This approach provides an explanation of the DNN results. In addition, DeepSHAP discrim-
inates the model outputs more efficiently by providing both local and global explanations.
The extracted knowledge provides additional information on the local and global importance
or contribution of each variable in the DNN model decision process. This knowledge is then
used to optimize the prediction model. The DeepSHap results show that global monitoring
of the sensors is not necessary. As an example, for the monitoring of the internal pump and
hydraulic accumulator we may only monitor respectively seven sensors (P1, CE1, TS4, TS1,
TS2, TS3, and SE) and seven sensors (P1, TS4, SE1, TS1, CE1, TS3, and TS2). These
results show that the DeepSHAP approach can perform the role of feature selection in the
context of machine learning. In this context, we are monitoring a reduced number of sensors
(6 instead of 17), which probably reduces the cost of monitoring industrial systems.

Additionally, explainability can also suggest possible indicators to be monitored. As an
example, the cooling condition of the hydraulic system is most likely conditioned by the
quantity of cooling pumped, the pressure, the engine power, and the temperature of the
cooler to maintain the pump at a normal temperature. The explanation framework helps to
improve the decision-makers understanding and interpretation of the IA algorithms and their
decision-making rule. This can support implementation and confidence in these models in
maintenance applications.

5.1.3 Physical-Informed Neural Networks and Numerical Simulation of
Thermomechanical Process: Application to the Friction Stir Welding

In the preceding sub-section, we highlighted the explanatory methods for extracting knowl-
edge related to the DNN model prediction rules. In this conclusion, we will address another
important topic of this thesis, which is to introduce the knowledge of the process during the
training of the neural network. We have shown that AI models can be applied to the FSW
process. We have developed a hybrid model called Physics Informed Neural Network (PINN)
that is applied to simulated data. This framework addresses a solid mechanics problem where
the viscosity in the Navier-Stokes equation is expressed by the Norton-Hoff law which de-
pends on the strain rate. The resulting framework is composed of two modules: Numerical
simulation and PINN model. We have reviewed the state-of-the-art numerical simulation
methods and have focused on the Finite Volume Method (FVM). This approach consists in
determining the local fields to be assigned to each element so that the global field obtained
by juxtaposing these local fields is close to the solution to the initial problem. Although the
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considered fields may be distorted, these fields are close to the solution to the initial problem.
The realistic data used to train the PINN model is therefore obtained from this numerical
simulation. Considering that FSW is a computationally intensive process, we proposed a
second module that consists of a fully connected neural network (FCNN) informed by the
physical law. By informing the model with NSE, the solutions of the DPEs can be better
trained. This effectively reduces the search space of the algorithm and guides it toward an
optimal solution. The PINN is therefore considered a new method for solving PDEs and the
solutions are computed by automatic differentiation. The model obtained helps to learn the
transient phase of the process.

By including knowledge that is physically constrained or regularisation terms, when train-
ing the model we obtain a compound loss function. In addition, dropout regularisation is used
to reduce or attenuate the noise factor associated with the data. To evaluate the performance
of the network model in predicting material strain rates, velocities, and pressure during the
welding process, we used the RMSE. This metric helps to find the optimal network for the
estimation of hyperparameters in the fine-tuning phase. Based on the experimental results
obtained, we consider that PINNs can replace numerical simulation solutions that require con-
siderable computation time and memory. Thus, Finally, modeling with PIN models should
yield significant time saving due to its memory effect.

5.2 Limitations of the Proposed Approaches

Regarding the bibliometric analysis, we have developed our query using keywords related to
the contexts of the study. However, we cannot guarantee that all the documents collected
take into account all the research fields of IA applied to PdM. This observation could be neg-
ligible if we had considered multiple databases or writing languages. Furthermore, combining
bibliometric approaches might be necessary to improve the results. Furthermore, we men-
tioned that the maintenance framework can cover several tasks. However, the DNN classifier
that we have developed does not take into account possible sensor failures, incomplete data,
and multi-modal data (images, texts, etc..). In addition, we have not considered the physical
aspects of the system (the case of the hydraulic system). However, the explanation approach
provides additional information that contributes to a better understanding of the processes.

In addition, there are still many challenges and improvements related to PINNs, including
questions about the PINNS theories that remain to be resolved. Moreover, when training the
model we did not take into account the initial and boundary conditions. In summary, we
have proposed two hybrid frameworks. The first framework extracts knowledge from the
prediction model. The second one informs the prediction model with the understanding of
the process. This knowledge facilitates the training of the models, thus, the obtained models
are performing robustly and are generalizable.
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5.3 Suggestions for Future Works

Concerning the bibliometric analysis, we can improve the results by refining the initial query
or by adding other keywords to the query. To collect more documents, we will also exploit
several scientific databases (Scopus, Springer, Google scholar, Science Direct, and IEEE ). To
further improve our analysis, we will also take into account documents (articles, thesis, books,
etc.) written in languages other than English. Finally, we will also exploit a combination of
several traditional bibliometric methods to improve the accuracy of the results.

Regarding condition monitoring, we will study the robustness of the DNN to missing
or mislabelled data. In addition, we will integrate information related to the lifetime of
the sensors in the framework by considering the abnormal operation (aging) of the sensor.
In addition, we will explore and integrate data related to air, oil, and water pollution into
the classification model. These variables could contain information related to the failure of
hydraulic systems. Finally, we will be able to combine several explanatory AI approaches.
Concerning the applicability, we will validate or confirm the obtained results by industrial
experts.

To improve the PINNs model, we will study the behavior and weight of the pressure
during the training of the model and propose further transformations of the loss function
related to this variable. In addition, we will include the initial and boundary conditions when
training the PINNs. These factors will provide more knowledge about the model, in particular
regarding the tool conditions. We will evaluate the training of PINNs on three-dimensional
data where the spatial coordinates are in the x-axis, y-axis, and z-axis.

140



Appendix A

Appendix - Some results of PINN
Module
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Results of realistic data (simulation of the 2D FSW process). Contour plot
represent the evolution of the velocities and pressure subsequently at the beginning. The
time steps are respectively equal to 0.00, 0.0015, 0.0030, 0.0060, 0.0720, and 0.07350 sec).
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Results of realistic data (simulation of the 2D FSW process). Contour plot
represent the evolution of the velocities and pressure subsequently at the middle of the process.
The time steps are respectively equal to 0.0750, 0.0765, 0.14550, 0.1470, 0.14850, and 0.150
sec). 144



(a) (b)

(c) (d)

(e) (f)

Figure A.3: Predicted values at the beginning of the process with less than 20% of the training
set. The time steps are equal o 0.00, 0.0015, 0.0030, 0.0060, 0.0720, and 0.07350 sec.
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Predicted values at the beginning of the process with less than 20% of the training
set. The time steps are equal 0.0750, 0.0765, 0.14550, 0.1470, 0.14850, and 0.150 sec).
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: The best result obtained with more than 70% of the training set. Predicted
values at the beging of the process. The time steps are equal to 0.00, 0.0015, 0.0030, 0.0060,
0.0720, and 0.07350 sec
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: The best result obtained with more than 70% of the training set. Predicted
values at the end of the process. The time steps are equal to 0.0750, 0.0765, 0.14550, 0.1470,
0.14850, and 0.150 sec
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