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Chapter 1 
Introduction and objectives 

 

The population of commensal microorganisms in and on living things was largely unknown for 

years. So much so that the microorganisms as a whole were considered a black box. However, 

this has changed and it is now well known as a community called microbiome that has a crucial 

impact o

sequencing technologies and bioinformatics tools allow for us to unveil a microscopic world of 

which little was known until a few years ago. This new look at the microbiome as a crucial 

element of the host, no longer as a black box, is well represented by what Blaser (2014) calls 

the microbiome revolution. And this is where the concept proposed by Margulis (1993) of 

holobiont fits in, as the term that allows for assemble the host with its microbiome community, 

to consider it as a single unit. 

Animal breeding is not left out of this microbiome revolution, and in the last ten years has 

moved in the direction of evaluating the potential use of digestive microbiome information for 

system-level decision making. The gut microbiome has been shown to influence many disease-

associated pathways in humans and animals, and studies of association to zootechnical traits 

are increasing in livestock species such as pigs, poultry and ruminants. Microbiota would serve 

as a tool to increase knowledge and improve prediction of complex traits, which are difficult 

and costly to measure, as well as those traits most closely associated with the microbial 

composition. In ruminants, the presence of symbiotic microorganisms in the rumen is closely 

related to productive traits (Difford et al., 2018; Xue et al., 2018; Matthews et al., 2019). 

Therefore, this thesis will focus on dairy traits that are directly associated with rumen 

microbiota through volatile fatty acids and proteins produced by it. Milk is the basis of the 

for which an annual growth rate of 1.7% (to 981 megatons 

by 2028) is faster than most other main agricultural commodities (OECD/FAO, 2022). The 

main marketable product is fluid milk, followed by cheese, where sheep systems, mainly in 

Asia and Europe aim to produce high quality cheese. 
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Based on this context, the hypotheses of this project are the rumen microbiota influence milk 

composition and udder health traits, and there is a host genetic control over its rumen 

microbiota. To address these hypotheses, this thesis aims to integrate the relationship between 

the host genome and ruminal metagenome in the modeling of the variability of dairy production 

and udder health traits in ewes. In that way, this thesis will contribute to a precise physiological 

characterization of animals in a population, through the use of high-dimensional data, which 

will improve the robustness of animals and the efficiency of breeding in the context of the 

sustainability of agricultural systems. In particular, through the ruminal microbiota it will allow 

for select animals according to their bacterial composition, and/or to improve the phenotype 

(health, welfare or performances) by means of a control based on ruminal microbiota via feed. 

First of all, Chapter 2 presents the scientific background that supports the objective of this 

thesis, as well as the missing information in terms of the holobiont and the links between the 

three key elements that compose it: the host genome, microbiome and phenotype. Chapter 3 

describes the scientific project, the experimentation and the data processing used to address the 

hypotheses. The results are presented from Chapter 4 to Chapter 6, through four original 

scientific publications and two congress communications.  

The first step before answering any biological question, is a technical one: how to work properly 

with microbial abundances? In Chapter 4, a workflow to be applied on microbiome data is 

proposed and tested on a real dataset with the objective of discriminating genetic lines and 

estimating associations between rumen bacterial abundance and dairy traits. In addition, to 

assess the consistency of microbial composition data and the results of associations between 

microbiota and phenotypes over a short period of time, the stability of rumen bacterial 

abundance from one week to the next and the impact of this on the phenotypic association with 

milk and rumen fatty acids was determined. Finally, the proposed compositional workflow was 

compared with different data processing methods through the estimation of genetic parameters 

for rumen bacterial abundances.  

The results in Chapter 5 contribute to answer the biological question: what is the host genetic 

control over its rumen microbial composition? Then, the objectives were first to quantify the 

host genetic effect on rumen bacterial abundance, then to estimate genetic correlations with 

milk and udder health traits and to identify possible genomic regions in common between 

microbial abundances and dairy traits. In Chapter 6, the objectives were to disentangle the 

genetic effects on dairy traits mediated and non-mediated by rumen microbial abundances, to 
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answer the question: what genetic control does the host have over the phenotype through the 

microbiota?  

Chapter 7 integrates the main results to understand the impact of the rumen microbiota on the 

phenotype, the degree of host genetic control over the microbial composition, and how to 

implement the holobiont concept in the animal breeding, while objectifying methodological 

limitations of this work. A general conclusion and perspectives are developed in Chapter 8.
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Chapter 2 

Scientific background 
 

This chapter presents a synthesis of the available literature on the holobiont concept and its 

potential integration into quantitative genetics theory. For this purpose, the three key elements 

that make up the genome-microbiome-phenotype system are presented. First, the host genome 

and microbiome are described, with special emphasis on ruminants and the rumen ecosystem, 

composition and measurement, followed by the phenotype represented by milk traits.  

Before starting, it is necessary to define some terms based on Marchesi and Ravel (2015) that 

are used throughout this text: 

- The word microbiome is of ancient Greek origin, from micro ( , small) and biome, 

derived from the Greek word bios ( , life). The microbiome refers to a microbial 

community occupying a reasonable, well-defined habitat that has distinct physiochemical 

properties and includes the microbes and their theater of activity (Whipps et al., 1988). 

- The word microbiota is of ancient Greek origin, from micro ( , small) and biota 

( , the living organisms of an ecosystem). The microbiota consists of all the living 

members that make up the microbiome and belong to different kingdoms.  

- The metagenome is all the genetic information contained in the microbes that are members 

of the microbiota. 

2.1 Holobionts 

All animals establish symbiotic relationships with microorganisms. Thus, the animal is no 

longer conceived as an autonomous entity but as a holobiont that includes the host plus all its 

numerous associated microorganisms (Zilber-Rosenberg and Rosenberg, 2021). The relevance 

of symbiotic microbes in the life is well known, as they affect almost every aspect of the 

host, such as reproduction, health, fitness, and production traits in livestock species. These 

impacts could occur through influencing individual performance by enhancing fitness or 

expanding the range of environments in which the host can adapt and compete successfully 

(Henry et al., 2021). However, a holobiont can also be considered a polygenomic entity that 
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includes the host genome and metagenome, i.e., the hologenome as defined by Zilber-

Rosenberg and Rosenberg (2008). The holobiont concept is especially relevant because 

phenotypic variation in a holobiont can be subject to selection operating through the 

transmission of the best combination of genes and/or microbes to the next generation.  

However, how is this holobiont be transmitted to the next generation? The mechanism of 

transmission of the genome and metagenome will be detailed later; briefly, the host genome is 

inherited following Mendelian laws, and the metagenome is inherited mainly by physical 

transmission from parents to offspring and from the environment. Microbiota transmission is a 

relevant aspect because, with a high transmission fidelity, the beneficial associations between 

the host and its microbiome are maintained through generations by increasing the production 

(increasing the phenotypic mean) but with a low fidelity, the loss of these associations could be 

helpful under changing environmental conditions (increasing phenotypic variance) (Bruijning 

et al., 2022). Thus, animal selection and evolution can no longer be considered separately from 

the microbes, necessitating analysis of the holobiont that includes the host, microorganisms and 

their interactions. For this purpose, quantitative genetics theory can be adapted to integrate the 

holobiont into genetic models. 

2.2 Integrating the holobiont in quantitative genetics 

In quantitative genetics, the most common genetic models are designed to be used with metric 

characters that show a continuous expression (e.g., birth weight, milk yield, litter size, etc.). In 

animal production, this phenotypic expression is supposed to be explained by the simultaneous 

effect of many genes with a small effect as well as variation arising from nongenetic causes, 

i.e., environmental effects (Falconer, 1986). However, for certain traits, major genes have been 

identified that explain a large part of the phenotypic variance, such as the suppressor of cytokine 

signaling 2 (Socs2) gene that is mainly associated with somatic cell count (SCC), which 

explains 12% of the phenotypic variance, but also with milk yield, size and weight in dairy 

sheep (Rupp et al., 2015). 

According to the classic genetic theory proposed by Fisher in 1919, the measure of performance 

of a trait in an individual, i.e., phenotypic value ( ) is explained by an overall mean ( ), its 

genotypic value ( ) and an error term ( ): 

  (1) 
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The genotypic value of an individual is equal to the sum of the additive ( ), dominance ( ) 

and epistatic effects ( ), as defined Falconer (1986): 

  (2) 

However, in general, the genotypic value is equal to the additive effect due to the small 

magnitude of the dominance and epistatic effects. Then, Equation 1 becomes: 

  (3) 

where  is the breeding value of the  individual. The breeding value represents only the part 

of the genotypic value of an individual that can be transmitted to its progeny. However, since 

it cannot be observed, it is estimated by genetic evaluation using the phenotype, genealogy and, 

more recently, genomics from polymorphisms identified in the genome. 

The advent of next-generation sequencing (NGS) technologies after the 2000s made panels of 

thousands of single-nucleotide polymorphisms (SNPs) available that, together with the study 

by Meuwissen et al. (2001), encouraged the use of genomic information for genetic evaluations. 

Given the large number of SNPs in the panels and their known positions in the animal genome, 

some are expected to be tightly and nonrandomly associated, i.e., in linkage disequilibrium 

(LD) with quantitative trait loci (QTL) that largely affect the phenotypic variance of a trait. 

Then, genomic evaluation consists of predicting the breeding values of individuals based on the 

LD between SNPs and casual loci and the genomic relatedness between observed and 

unobserved individuals (Meuwissen et al., 2001). 
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Figure 1. Multi-omics system from the genome to phenome (through intermediate omics: 

transcriptome, proteome and metabolome) and metagenome.  

More recently, NGS technologies have made it possible to combine high-dimensional 

multiomics data, e.g., transcriptomics, proteomics, and metabolomics, as predictor variables for 

a more comprehensive modeling of phenotypes. In addition, modeling the complexity of and 

relationships between multiomics data improves the understanding of the mechanism or causal 

relationship of complex trait architecture (Ritchie et al., 2015). All of the abovementioned 

omics measurements are considered intermediates between deoxyribonucleic acid (DNA) 

action and phenotype expression, as shown in Figure 1. However, metagenomics, i.e., microbial 

genome information, is not a strictly intermediate omics measurement because, from a 

biological point of view, it has complex interactions with the phenotype, host genome (Figure 

1) and environment. The relevance of the metagenome is given by its capacity to expand the 

host genetic repertoire and influence the proportion of phenotypic variance explained by genetic 

effects, classically referred to as heritability. Thus for example, the gut microbiome is 

considered to contribute to the total heritability of a trait (Sandoval-Motta et al., 2017; Henry 

et al., 2021).  

The first implementation of metagenomics for phenotype prediction in livestock species was 

described by Ross et al. (2013) to predict methane production in cows. Since then, the use of 

multiomics data has been expanded to predict complex phenotypes in animals and plants 

(Riedelsheimer et al., 2012; Guo et al., 2016; Z. Li et al., 2019; Morgante et al., 2020) as well 

as improve the accuracy of the estimated breeding values (EBVs) (Hayes et al., 2017; Weishaar 

et al., 2020; Christensen et al., 2021; Zhao et al., 2022). These models for genomic prediction 
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must consider the genetic and microbiota effects on phenotype in addition to the genetic control 

on the microbial composition. Therefore, more complex models that include the interactions 

between each element of the genome (G)  microbiome (M)  phenotype (P) system should be 

considered.   

 
Figure 2. Models including gut microbial data. Host genome (G), microbiome (M), and 

phenotype (P). A red arrow from G to P indicates that there is a subset of SNPs that impact on 

P. A black arrow from M to P indicates there is a subset of microbial abundances that influence 

P, when this arrow is violet it is because the subset of microbial abundances is controlled by 

host genetics, if it is not controlled by host genetics but it is transmissible it is a blue arrow from 

M to P. A yellow arrow from G to M indicates that there is a subset of G that influences a subset 

of abundances in M. 

Three models incorporating gut microbial data are presented in Figure 2. Model A considers 

that the host genome and microbiota impact the phenotype with no interaction between them. 

This is the most widely used model for phenotype predictions, typically including gut 

microbiome data (Camarinha-Silva et al., 2017; Difford et al., 2018; Rothschild et al., 2018). 

Model B considers that the host genome and microbiota influence the phenotype and the host 

genome has a control over a subset of microbial abundances. This model was recently proposed 

to estimate the genetic effect on phenotypes mediated by the gut microbiome (Weishaar et al., 

2020; Tiezzi et al., 2021) and intermediate omics measurements (Christensen et al., 2021). 

Finally, Model C is similar to Model B but considers that the impact of the microbiota on the 

phenotype is explained by subsets of microbial abundances with and without host genetic 

control.  
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2.2.1 Host genome  

The phenotype is classically explained by the genotype and environmental effects. The 

expression of a phenotype is determined by the action of many genes with small effects as well 

as by the intermediate steps shown in Figure 1, such as gene expression, protein expression and 

posttranslational modifications, which are between the gene action and the phenotype (Ritchie 

et al., 2015). However, until a few years ago, animal models included genetic effects only 

without the intermediate factors. 

In quantitative genetics, the contribution of the host genome to the phenotype is estimated as 

the heritability. Heritability in the broad sense is the proportion of phenotypic variance of a 

given trait in a given population that is due to genetic differences among individuals and, in a 

narrow sense, it expresses the extent to which phenotypes are determined by the genes passed 

on by the parents (Falconer, 1986). Then, as heritability is an estimation of the strength of the 

relationship between a phenotype and breeding values, when the heritability is high (e.g., in 

sheep: carcass and growth traits, milk fat and protein contents), there is a strong relationship 

between the phenotype and breeding values; however, when the heritability is low (e.g., in 

sheep: calving interval and fertility), the phenotype and breeding values have little bearing on 

each other (Bourdon, 2000). 

2.2.2 Microbiota  

Microorganisms in symbiosis with their host will contribute to the phenotype through microbial 

functions that are crucial for phenotype expression; the presence and/or abundance of microbes 

in the ecosystem will provide information about its relevance to the host (Sandoval-Motta et 

al., 2017). In the literature, the host-associated microbiome is known to influence phenotypes, 

from health traits in humans and animals (Gebreyesus et al., 2020; Rothschild et al., 2022) to 

production traits in livestock species (Difford et al., 2018; Buitenhuis et al., 2019; Hess et al., 

2020; Vollmar et al., 2020; Khanal et al., 2021; He et al., 2022). However, for most traits, the 

biological mechanism through which the microbes affect the phenotype is not known and 

sometimes does not have a direct effect on the expression of the phenotype. 

In quantitative genetics, the microbiota is considered not only as a trait for which we could 

estimate host genetic variability but also complementary information contributing to the 

phenotype. The latter led evolutionary biologists to propose the concept of general heritability 

(Danchin et al., 2011). In this regard, to make a parallelism with heritability, Difford et al. 

(2018) defined the contribution of microbiota composition to the phenotype variability as 
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microbiability, which is the proportion of phenotypic variance due to the gut microbial 

composition. In addition, to identify the microbes that contribute the most to the phenotype, as 

in a genome-wide association study (GWAS) using the host genome, the use of the microbial 

ecosystem through a microbiome-wide association study (MWAS) was proposed (Wang and 

Jia, 2016).  

2.2.3 Host genome on microbiota  

The host genetic control over the microbiota could be estimated by each individual microbial 

abundance or by the microbial community as a whole. 

Host genetic control over individual microbial abundance 

Following the classic 

same with the microbial abundance as the phenotype determining the proportion of 

microorganisms whose abundances are genetically controlled by the host ( M) and then 

evaluate whether these microbes have an effect on the phenotype of interest (M ). In 

livestock species, the literature showed a small group of microbes under host genetic control 

(<16% total microbial community), with low to moderate heritability depending on the species 

and sequencing technologies used (Camarinha-Silva et al., 2017; Difford et al., 2018; Wen et 

al., 2019; Grieneisen et al., 2021). However, there are no reported results for the microbial 

effect on phenotype using separately microbiota genetically controlled and nongenetically 

controlled by the host.   

Model C considers that the impact of the microbiota 

subsets of microbial abundances that are genetically and not genetically controlled by the host. 

As mentioned, a low proportion of microbes are commonly under host genetic control due to 

imperfect transmission measured by the transmission fidelity, colonization from the 

environment and the number of microbial generations within one host generation (Bruijning et 

al., 2022). In that scenario, Model C, which includes the different transmission modes of the 

microbiota, could improve the understanding of the genome-microbiome-phenotype system. 

The microbiota is characterized by vertical transmission from parents to offspring, which in 

livestock species is mainly transmitted from the mother, and by horizontal transmission from 

the group of comates sharing the same environment. The proposed Model C is inspired by the 

transmissibility model presented by David and Ricard (2019), which estimates the transmissible 

value accounting for all inheritance sources, such as additive genetic effects and nongenetic 

effects (e.g., epigenetics, gut microbiota, cultural effects). In that way, genetic selection 
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classically based on EBVs could include genetic and nongenetic effects and become a selection 

on transmissible values, which allows for us to obtain maximal progress on selection. 

Host genetic control over the microbial community 

Another way to estimate the host genetic control over the microbiota is to use all microbial 

abundance data. Recently, models such as Model B have been proposed to quantify the impact 

of the indirect genetic effect on the phenotype mediated by the gut microbiome (Weishaar et 

al., 2020) or intermediate omics (Christensen et al., 2021). Using these models, unlike what is 

presented for each individual abundance, we first estimate the effect of the microbiota on the 

 by host 

genetics ( M). A recent study estimated microbiabilities for milk yield and volatile fatty 

acids (VFAs) in cows and calculated the contribution to the phenotype of rumen bacteria 

controlled and not controlled by host genetics (Zang et al., 2022). The authors determined a 

greater contribution from genetically controlled bacteria than nongenetically controlled 

bacteria, but this could be associated with the calculation of an average microbial effect based 

on the number of bacteria in each subset. To date, there are no results reported in livestock 

species using the methodology proposed by Christensen et al. (2021). 

Having described the general concepts, the following three sections present each element of the 

genome-microbiome-phenotype system in detail. 

2.3 Host genome (G) 

Most of the references used in these paragraphs are taken from Bourdon (2000) and Falconer 

(1986). 

The host genome is all the genetic information of an organism contained in long strands of 

DNA called chromosomes. In livestock, the hosts are commonly higher organisms, which are 

diploids with two copies of each chromosome, one chromosome inherited from the father and 

the other from the mother. In each chromosome, there are genes, and segments of DNA that are 

transcribed into ribonucleic acids (RNAs) to encode proteins, located at specific chromosomal 

sites called loci. At each locus is a pair of genes, one gene on the paternal chromosome and one 

on the maternal chromosome. The genes could have alternative forms called alleles. The 

combination of alleles at a single locus or at a number of loci is called genotype. Therefore, a 

genotype that has identical alleles is called a homozygote, while it is heterozygote if the alleles 

are different. 
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In sexual populations, individuals do not necessarily produce offspring whose genotypes match 

their own.  of inheritance, prior to reproduction, sexual individuals 

produce haploid gametes with a single copy of the chromosome by cell division called meiosis, 

which is known as the first Mendelian  Then, the second Mendelian law 

refers to genes that assort independently during meiosis if all possible gametes are formed in 

equal proportions. However, there is an exception to M second law that it is caused by 

the linkage. Two loci that are closed in the same chromosome are linked and thus have a greater 

chance of segregating together during meiosis unless recombination occurs. The diploid state 

is restored when gametes from two parents fuse to form a zygote. Therefore, each animal 

receives half of its genes from its father and half from its mother. However, as shown in Figure 

3, it is not possible to predict which half of the genes are passed on to the offspring. This is a 

chance factor, also called Mendelian sampling, which refers to the random sampling of parental 

genes. 

 
Figure 3. Family of sheep illustrating how offspring receive their genes from each of their 

parents. 

Mendel  principles are explained at the individual level, but in animal breeding, the focus is 

on populations. How can the genetic content of the genome in a population be described? We 
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can do this through allele frequencies, which are the relative frequency of a particular allele in 

a population, and genotypic frequencies, which are the relative frequency of a particular 

genotype at a locus. Allele frequencies can change in a predictable direction and amount 

through systematic processes, such as selection, mutation and migration; they can also change 

in a predictable amount through a dispersive process, such as random drift arising in small 

populations due to the effect of sampling. However, it is generally well known that there is a 

predictable relationship between allele and genotypic frequencies over generations based on the 

Hardy-Weinberg equilibrium that occurs in a large population in which selection, mutation and 

migration do not act. 

Selection is a process that determines which individuals become parents, how many offspring 

they produce, and how long they remain in the population. The objective of selection is to 

increase the frequency of favorable alleles of genes associated with the phenotype of interest. 

Migration is the introduction of individuals from another population with different genetic 

compositions, which produces a change in the allele frequency. Mutation is a process that alters 

DNA and generates new alleles. Mutation is rare, but if persistent during successive 

generations, it can produce important effects on the population. Then, the genetic diversity of a 

population is a balance between selection and random drift, which eliminates variation and 

renews through mutation and migration.  

In summary, the genome is all the genetic information contained in chromosomes and 

transmitted to the next generation during sexual reproduction, based on Mendel  laws. Is the 

genetic content of microorganisms in symbiotic communities determined by the same processes 

as in the host genome? In what way is the metagenome transmitted? 

2.4 Microbiome (M) 

2.4.1 Metagenome 

In general, microbial genetic information is contained in a single circular chromosome as a 

haploid organism, and microbes have generational intervals shorter than that of their host 

(Bruijning et al., 2022). The enormous diversity of microbial genes, ~1000 times greater than 

in the human genome, enriches the host genome, giving the holobiont enormous genetic 

potential to adapt to changing environmental conditions. However, the microorganisms that 

compose the host microbial communities represent only a very low proportion (less than 30%) 

of the global species diversity in different ecosystems (Zilber-Rosenberg and Rosenberg, 2021). 

The considerable individual variation in gut microbiota composition is caused by the great 
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diversity of existing species as well as numerous external factors (e.g., diet, age, host genetics). 

The large variation in microbial composition imposes relevance to the identified group of 

microbes present in most individuals, which could be associated with animal fitness. The core 

microbiome is commonly defined as a group of microbial taxa or genes that are shared by the 

majority of individuals in a population (Shapira, 2016). In addition, the core microorganisms 

have genes that could be involved in common keystone functions to maintain the symbiotic 

relationship with their host (Zilber-Rosenberg and Rosenberg, 2021). However, noncore 

microbes are also relevant to host possibilities for variation and adaptation to new 

environments. 

Genetic diversity in host microbial communities is based on the presence/abundance of a 

multitude of microbial species with or without differences in their gene content. This microbial 

genetic diversity varies independently of its host through different processes, such as 

recombination and mutation, particularly by, as proposed Zilber-Rosenberg and Rosenberg 

(2021) by: 

1) Acquisition of novel microbes from the surrounding environment. 

2) Increase or decrease in the number of specific microbial groups. This is based on the 

dynamic nature of the microbiota and their multiplication or decrease as a function of 

local conditions.  

3) The transmission of genes between microorganisms, i.e., horizontal gene transfer, 

mediated by transposons, plasmids, genomic islands and bacteriophages.      

To make use of this metagenomic diversity and transmit it to subsequent generations, it is 

necessary to know the mechanisms by which the microbiota are transmitted. In general, 

microbial communities have complex inheritance processes that can be vertical and/or 

horizontal (Danchin et al., 2011; Sandoval-Motta et al., 2017). Figure 4 illustrates the most 

common methods of transmission in ruminants. As is well known, vertical transmission consists 

of the passage of microorganisms from one generation to the next (e.g., parents to offspring). 

Vertical transmission was shown in ruminants during parturition and/or the suckling period 

(Sandoval-Motta et al., 2017), as the mother has direct physical contact with the newborn 

through the genital tract or by licking, and through contact with the udder skin during the 

lactation period. However, horizontal transmission is also possible between animals of the same 

generation through physical contact and/or contamination of the shared environment through 

feces and sputum (Dehority, 2004). 
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Figure 4. Main vectors of transmission for genetic (red arrow) and microbial (blue arrow) 

inheritance within generation (n) and between generations (n and n+1). 

These concepts apply to all symbiotic communities of different hosts but are exemplified in 

ruminants here since this work focuses on them and their symbiotic community located in the 

digestive tract, more precisely in the rumen. The following sections are devoted to presenting 

the particularities of the rumen microbial community and how microbial genetic information 

can be obtained with sequencing technologies. 

2.4.2 Digestive ecosystem of ruminants 

Ruminants are holobionts because of the symbiosis between the host and its ruminal microbiota, 

where both parts are very beneficial. The host provides necessary living conditions for 

microbial growth, and the microbiota is responsible for the digestion of food, especially fibers, 

and nutrient synthesis through enzymes not produced by any higher animal species (Mazza 

Rodrigues, 2016). 

Ruminants are polygastric herbivores with three aglandular forestomaches and a glandular 

stomach. Thus, in ruminants, the feed first goes into the forestomaches to be available for 

microbes, which digest most of the dietary components, and is then subjected to the action of 

enzymes produced by the digestive tube and attached glands. The main feature that allows for 
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fiber fermentation is a voluminous fermentative chamber represented by the rumen, inhabited 

by a wide microorganism population that ferments organic matter, mainly parietal 

carbohydrates. 

Forestomach biotope  

The ruminant digestive system consists of a long muscular tube that extends from the mouth to 

the anus and a group of glands attached to this digestive tube. In particular, the feed passes 

successively through three forestomaches: the rumen, reticulum and omasum, and finally 

through a glandular stomach called the abomasum. The proportions of digestive compartments 

in terms of volume in large ruminants, such as bovines, are 80% of rumen (120-300 liters), 5% 

of reticulum, 8% of omasum, and 7% abomasum; and in small ruminants, such as sheep, they 

are 75% of rumen (15 liters), 8% of reticulum, 4% omasum and 13% abomasum (Bertan 

Membrive, 2016). 

The digestion process starts when the animal ingests feed, the ruminants chew it very roughly, 

the food is soaked with saliva, and this poorly chewed feed is transported through the esophagus 

to the rumen where it mixes with the preexisting rumen content. Then, rumination allows for 

regurgitation and a second strong chewing of the large food particles, reducing the size of feed 

particles, producing saliva rich in buffer substances, and accelerating the feed passage through 

the reticulo-omasal orifice. Once returned to the rumen, the fragmented feed is digested by the 

microbes in the rumen with subsequent gas production (mainly methane and dioxide carbon). 

The contents of the rumen are heterogeneous, composed of a complex mass of digesta, which 

may float or sediment at the bottom depending on the density of the feed, a liquid fraction with 

microbial cells and fine feed particles, and a free gas cap at the top. In the rumen, two elements 

are crucial to fulfill its digestive functions: 1) its motor activity consisting of synchronized 

contractions of propulsive and mixing movements to perform functions of mixing, 

regurgitation, eructation of fermentative gases as well as moving the feed bowl to the next 

forestomach; and 2) its epithelial structure consisting of highly irrigated mucosal tissue that 

allows for the absorption of fermentative products, such as VFAs and ammonia, through the 

wall. In addition, the epithelial lining of the reticulum is raised into folds forming a honeycomb 

structure, while the rumen itself is lined with papillae of varying size and shape (Dehority, 

2004).  

The rumen is a large chamber in which ingested feed is subjected to microbial digestion. The 

rumen is an ideal microbial habitat because the conditions allow for the survival and growth of 

microorganisms. The normal conditions in the rumen based on Dehority (2004) are 1) a 



Chapter 2 Scientific background

18 
 

temperature of 38 to 40 °C; 2) a normal pH of 6.4 to 6.6, which is fairly well buffered between 

5.5 and 7.0; 3) osmotic pressure, hypotonic to blood plasma except shortly after feeding; 4) dry 

matter content that is relatively constant under most feeding conditions, generally in the range 

of 10 to 13%; and 6) reducing redox potential in connection with anaerobiosis, ranging from -

150 to -350mV. 

 
Figure 5. Rumen as a continuous fermentation chamber. VFAs Volatile fatty acids, CH3 
ammonia, CH4 methane, and CO2 carbon dioxide.  

The rumen ecosystem is similar to a continuous culture system that functions as a biological 

fermentation unit. As shown in Figure 5, the fermentation chamber has inputs such as the more 

or less continuous availability of feed and outputs that are the elimination of end products by 

absorption, the eructation of gases and the passage to the small intestine of degraded particles, 

microbial proteins and fatty acids (FAs) (Nagaraja, 2016). 

Ruminal microbiota 

The rumen is inhabited by a multitude of symbiotic microorganisms that colonize, grow, and 

live in harmony with the host. That microbial population in the rumen includes members of all 

three domains, Eubacteria or Bacteria, Archaea represented by Methanogens, and Eukarya 

represented by Protozoa and Fungi, and viruses as bacteriophages. The most abundant are 

bacteria (1010 to 1011/ml), representing 40-90% of the total microbial mass, followed by 

methanogenic archaea (106 to 108/ml), anaerobic fungi (105/ml) and ciliated protozoa (105/ml) 

(Nagaraja, 2016).  

Bacteria are not only the most abundant but also contribute the most to energy production from 

the fermentation of plant carbohydrates to VFAs, such as acetic acid (C2:0), propionic acid 

(C3:0) and butyric acid (C4:0). They also contribute to microbial protein synthesis and fat 

lipolysis followed by unsaturated fatty acid biohydrogenation, which influence the long-chain 
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fatty acid (LCFA) composition in the rumen (Hungate, 1966; Nagaraja, 2016). Methanogens, 

as members of Archaea, constitute approximately 2 to 4% of the total microbial biomass in the 

rumen, and most species can reduce carbon dioxide to form methane. Protozoa are anaerobic 

microbes with a low contribution to rumen fermentation but play a key role in maintaining the 

anaerobic condition in the rumen and in regulating bacterial populations. Finally, the fungal 

contribution in the rumen is not well known, and bacteriophages are viruses that infect bacteria; 

thus, they can control the bacterial population in the rumen (Nagaraja, 2016). 

Bacteria 
The main members of the rumen ecosystem are bacteria, which are unicellular prokaryotes, 

most of which are strict anaerobes. Bacteria that participate actively in the digestion of feedstuff 

in the rumen can be found free-floating in the rumen fluid (~30%) or attached to feed particles 

(~70%). This is relevant for sampling, since free-floating bacteria are part of the liquid fraction 

and bacteria attached to feed particles are part of the solid fraction of rumen samples. However, 

in practice, liquid rumen samples are composed of a liquid phase and small solid particles. 

Therefore, it represents the composition of the microbiota well (Ramos-Morales et al., 2014), 

even though sampling of the liquid fraction obtains ~30% of the total microbial biomass in the 

rumen, and some differences in proportions of the Prevotellaceae and Lachnospiraceae 

families were reported by Henderson et al. (2013). A very small fraction (~1%) of the bacteria 

is not reached by rumen sampling as it is attached to epithelial cells, and it is speculated that 

their function is to maintain anaerobic conditions in the rumen. 

Ruminal bacteria vary in their enzymatic specificity; however, most of them utilize monomers 

or oligomers, which are liberated from plant material by microbial enzymatic hydrolysis of 

polymers, including starch, pectin, cellulose, hemicellulose and lipids (Hobson and Stewart, 

1997). In the rumen, there are keystone functional groups of microorganisms, such as those 

based on the ability to hydrolyze polysaccharides: fibrolytic and amylolytic bacteria. Fibrolytic 

bacteria include 1) cellulolytic species that are able to hydrolyze cellulose, the most effective 

being Ruminococcus flavefaciens and R. albus, Fibrobacter succinogenes, and to a lesser extent 

Butyrivibrio fibrisolvens and Eubacterium celullosolvens; 2) hemicellulolytic species that are 

able to hydrolyze hemicellulose, including Butyrivibrio fibrisolvens but also Ruminococcus 

flavefaciens and R. albus; and 3) pectin-fermenting species, especially Butyrivibrio fibrisolvens. 

Amylolytic bacteria are starch digesters, such as Ruminobacter amylophilus or Succinomonas 

amylolytica. However, this distinction in terms of substrate utilization is relative because some 

bacteria are capable of using many polymers, such as Prevotella ruminicola which uses almost 
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all of them except cellulose and is generally classified as amylolytic. This redundancy of the 

rumen microbial community is based on the smaller number of functions than the microbial 

species involved. Weimer (2015) defined redundancy as the overlapping physiological 

capabilities of multiple microbial taxa, where a large number of species can contribute to the 

degradation of the same substrate and production of the same nutrient. 

Historically, much of the information on the composition and taxonomy of the ruminal bacterial 

community has been obtained by cultivation-based methods. However, less than 1% of bacteria 

are cultivable under laboratory conditions due to their anaerobic nature. This stimulated the 

development of high-throughput sequencing technologies, increasing the identification of 

bacterial species in ecosystems such as the rumen (Santos et al., 2020).  

2.4.3 Sequencing technologies for microbiome study 

Advances in sequencing technologies enable decoding of the DNA composition of biological 

life and the uncultured organisms of host-associated microbial communities. However, is has 

only been possible since the DNA structure was discovered by Watson and Crick in 1953. The 

sequencing methods consist of determining the order of the nucleotides adenine, thymine, 

cytosine, and guanine on a DNA strand from a sample.  

The first sequencing technology developed by Sanger et al. in 1977 was based on the addition 

of chain-terminating and radioactively or fluorescently labeled dideoxynucleotides to perform 

the sequencing of a DNA strand complementary to the interrogated template strand. However, 

given that only one sequencing reaction could be performed at a time, this methodology had 

limited throughput. To increase sequencing capabilities, new technologies known as NGS were 

introduced between 2004 and 2006. The major feature of NGS is the combination of high 

throughput and single-stranded DNA sequencing. These sequencing technologies involve 

massively parallel short-read sequencing, in which millions of individual sequencing reactions 

occur in parallel. However, due to the nature short-read technologies, the reassembly process 

of long stretches of DNA is challenging. Third-generation sequencing overcomes the 

limitations of short-read technologies, achieving read lengths upward of 10 kilobases (Hu et al., 

2021).  

The next sections provide an overview of the NGS classified into short- and long-reads, details 

about the benefits and limitations of each method, and descriptions of how these technologies 

are used in microbial community sequencing. 
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Short-read sequencing 

Short-read NGS, or second-generation sequencing, has the common feature of massive 

sequencing of short DNA fragments (75-700 base pairs (bp)), which are clonally amplified and 

sequenced in parallel. These technologies include two consecutive steps, clonal amplification 

and the sequencing. Clonal amplification consists of solid-phase amplification of DNA 

fragments to produce enough detectable signals during sequencing. Depending on the 

technology used, the amplification could be by polymerase chain reaction (PCR) emulsion (Ion 

Torrent and 454 pyrosequencing) or by bridging PCR (Illumina), generating millions of DNA 

fragments. The sequencing process consists of the detection of each of the nucleotides of the 

DNA chain, which can occur by ligation or synthesis. Short-read sequencing technologies are 

classified based on the sequencing process, such as sequencing by ligation (SBL) or sequencing 

by synthesis (SBS).  

SBL consists of DNA fragments being ligated to a fluorescent label, and the color emitted by 

the label is recorded. Then, from the color output, the DNA nucleotides are encoded. NGS that 

implements this approach includes sequencing by oligonucleotide ligation and detection 

(SOLiD) technology, with high accuracy of reads but relatively short reads and long run times 

(Table 1).  

However, SBS involves DNA polymerase-dependent nucleotide incorporation on the extended 

DNA chain, which produces a detected signal based on a fluorophore or an ionic concentration 

change. Three technologies implement the SBS approach: Ion Torrent, 454 pyrosequencing and 

Illumina. Ion Torrent and 454 pyrosequencing are based on single-nucleotide addition, which 

consists of a single signal to detect the incorporation of deoxynucleotides into the elongated 

DNA strand. However, the main difference between these two technologies is the way in which 

they detect nucleotide incorporation because 454 pyrosequencing is based on pyrophosphate 

release, and Ion Torrent is based on hydrogen ion release, which generates a change in pH in 

solution. Illumina technology is based on cyclic reversible termination using a terminator 

molecule to prevent elongation (Goodwin et al., 2016).  
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Figure 6. Illumina sequencing process. 1) Sample preparation, and 2-3) cluster generation and 

sequencing (Adapted from http://en.biomarker.com.cn/platforms/illumina). 

Illumina sequencing consists of three steps, as shown in Figure 6: 1) sample preparation, 2) 

cluster generation, and 3) sequencing and signal scanning. First, adapters are ligated to both 

ends of extracted single-stranded DNA fragments. Then, these adapters are fixed to the 

complementary adapters placed on a solid plate. Second, the single-stranded DNA fragments 

attached to the solid plate are amplified by PCR bridge amplification, which creates several 

identical copies of each DNA fragment by several cycles of strand synthesis and double-

stranded denaturation, generating a group of DNA fragments called clusters. Third, SBS uses 

four labeled reversible terminators, primers and DNA polymerases to progressively reconstitute 

the second DNA strand of each amplified single strand within a cluster. The nature and number 

of nucleotides used in each step are obtained by capturing the emitted fluorescence of the cluster 

excited by the laser. Finally, computer programs translate these signals into nucleotide 

sequences.  

NGS resolved most problems encountered in Sanger sequencing (Sanger et al., 1977), with 

high-throughput and clonal sequencing dominating the market. Illumina has become the 
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standard sequencing technology and is most applied in microbial community studies (Santos et 

al., 2020) due to its simplicity of use and the combination of read length with high accuracy 

(Goodwin et al., 2016), as shown in Table 1. However, short reads have limitations, such as the 

run time of analysis and assembly difficulties, that prevent the identification of specific 

structural variants (Hu et al., 2021). 

Table 1. Description of short- and long-read next generation sequencing technologies. 

 Read length (bp) Chemistry Error rate 

Short-read sequencing 

SOLiD 75 SBL ~0.1% 

Ion Torrent 400 SBL  SNA 1% 

454 pyrosequencing 700 SBS  SNA 1% 

Illumina 75-300 SBS  CRT 0.1  1% 

Single-molecule real-time long reads sequencing 

Pacific Bioscience 10  15 kb  15% 

Oxford Nanopore >200,000  12% 

SBL: sequencing by ligation, SBS: sequencing by synthesis, SNA: single nucleotide addition, CRT: 

cyclic reversible termination, bp: base pairs, kb: kilobase.  

Long-read sequencing 

Long-read NGS, or third-generation sequencing overcomes the limitations of second-

generation sequencing. Genomes are extremely complex, with many long repetitive elements, 

alterations and structural variations, which cannot be well covered by short-read NGS. The 

long-read sequencing of several kilobases, such as by Pacific Bioscience and Oxford Nanopore 

(Table 1), is able to obtain a better resolution of complex genomes (Goodwin et al., 2016). 

Currently, the most common long-read technologies are based on single-molecule real-time 

sequencing and do not require prior clonal amplification, which is an advantage in runtime 

compared with the short-read NGS. However, long-read technologies have some drawbacks, 
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such as higher error rates (~15%) and cost (750-1,000US$ per gigabase) than short-read 

technologies such as Illumina (45-300US$ per gigabase). 

Characterization of microbial communities 

Short- and long-read NGS are used to characterize microbial communities through three 

approaches: 1) amplicon sequencing, 2) shotgun sequencing, and 3) genotyping by sequencing 

(GBS). 

1) Amplicon sequencing: example of 16S rRNA gene 

The advances in sequencing technologies presented above were accompanied by the 

development of phylogenetic markers, such as the gene coding for the 16S rRNA of prokaryote 

ribosomes introduced by Woese and Fox in 1977. 

16S rRNA is part of the small ribosomal subunit (30S) present in all prokaryotic cells. The gene 

encoding this molecule has distinctive features that make it suitable for taxonomic profiling: it 

is relatively short, approximately 1,500 bp, and it is composed of ten conserved regions and 

nine hypervariable regions, which are good properties to design primers (conserved regions), 

while hypervariable regions allow for phylogenetic assignment. However, some limitations to 

bacterial identification were detected, such as the variable number of copies in bacterial 

genomes, the taxonomic assignment discrepancies based on different hypervariable regions 

used, and the low taxonomic resolution beyond the genus level (Poretsky et al., 2014). This 

limited taxonomic resolution is due to the analysis of short regions of 16S rRNA but can be 

improved by using long-read sequencing technologies that cover all regions of the gene (V1 to 

V9 region) (Santos et al., 2020; Callahan et al., 2021).  

2) Shotgun metagenomic sequencing 

Shotgun metagenomics is the untargeted (shotgun) sequencing of all microbial genomes present 

in a sample. This method is used to profile taxonomic composition, assess the functional 

potential of microbial communities and recover whole genome sequences. Shotgun sequencing 

consists of DNA extraction from all cells in a community, and all DNA is subsequently shared 

into tiny fragments that are independently sequenced with NGS. This results in DNA sequences 

that align to various genomic locations, including nonmicrobes, where some of the reads are 

sampled from taxonomically informative genomic regions (e.g., 16S) and others are sampled 

from coding sequences that provide insight into the biological functions (Quince et al., 2017). 

However, the application of this method has some limitations: it is expensive to sequence and 
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analyze a large number of samples, and the set of microbial genomes available as catalog 

references is biased toward pathogens and easily cultivable bacteria (Quince et al., 2017). 

3) Genotyping by sequencing 

GBS, or restriction enzyme-reduced representation sequencing, is a sequencing technique that 

reduces the genome complexity by digesting genomic DNA with restriction enzymes, followed 

by NGS of the resulting fragments. The principle of this method is that sequencing only a 

specific fraction of 0.5 to 1% of any microbial genome is sufficient to capture a large part of 

the information necessary to determine the composition and diversity of the microbial 

community. Compared with previous metagenomic sequencing, GBS is not limited to detecting 

microbes with a particular gene, as with 16S rRNA gene targeted sequencing; thus, this method 

can be applied to study a wider variety of organisms, such as hosts, viruses, and fungi (Hess et 

al., 2020). 

To summarize this section on the microbiome, the metagenome is all the genetic information 

contained in the symbiotic microorganism population, which is of special interest in ruminants 

because of its impact on productive traits. The rumen microbial composition is measured by the 

use of NGS technologies, which provide a good representation of the whole community. 

2.5 Phenotype (P) 

Previously, it was expressed that the genome and metagenome have an impact on the 

phenotypes of interest; however, this interest is defined by the production system under study. 

As this work is focuses on dairy sheep, the phenotype of interest are the milk composition traits. 

Milk is a complex biological fluid due to its multifaceted physical nature and the diversity of 

its molecular components, such as carbohydrates, lipids, proteins, vitamins and minerals. For 

this reason, milk , 

especially children. World milk production by species corresponds to cattle (81%), buffaloes 

(15%), goats (2%), sheep (1%) and camels (0.4%). Sheep milk is mainly produced in Asia 

(46%), followed by Europe (29%), Africa (24%) and North and South America (1%). The 

countries bordering the Mediterranean and Black Sea have a quarter of the ewes and produce 

half of the world  sheep  milk (FAOSTAT, 2020). , the milk 

 quantity. 

In France, dairy sheep production is considered a relevant agricultural activity developed in 

three traditional regions exploiting local breeds (Figure 7): south of the Central Massif with the 

Lacaune dairy breed, the western Pyrenees with the Basco-Béarnaise, Manech Tête Noire and 
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Manech Tête Rousse breeds, and Corsica Island with the Corse breed. Currently, the dairy sheep 

sector in France has 1.6 million dairy ewes (FAOSTAT, 2020), and the production systems are 

intended for the production of -certified cheese, which gives 

it a higher market value (e.g., the world famous Roquefort cheese produced with Lacaune milk) 

and, to a lesser extent, milk to produce a variety of other cheeses (Lagriffoul et al., 2016). 

 
Figure 7. Traditional dairy sheep production regions in France with their local breeds.  

Milk production in France increased significantly from 1970 onward, rising by 3.6% per year, 

from 57 to 275 million liters, explained by the increase in flock size and individual milk yield. 

However, the crucial points that produced this development were the implementation of 

mechanical milking, the improvement of animal nutrition, and the adoption of artificial 

insemination and selection schemes with genetic evaluations (Lagriffoul et al., 2016). In this 

section, the focus is on the last point: the genetic selection schemes. 

The selection scheme is based on a pyramidal structure. A nucleus of approximately 20% of 

the ewes is under official performance recording, and every year, a group of rams are evaluated 

through progeny testing. After the selection of rams for artificial insemination and natural 

service, they are distributed in the population outside the selection nucleus. The selection 

objectives for each breed have evolved depending on the production context of each traditional 
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region and the payment of milk to the farmers by the industry. The five local breeds presented 

are currently undergoing a genetic evaluation program, but the Lacaune breed includes the 

largest number of dairy traits in the selection index called ISOL (of Index 

Synthétique Ovin Lait ). The selection criteria included in the genetic evaluation of the Lacaune 

breed based on Lagriffoul et al. (2016) and Barillet et al. (2016) are detailed below. 

2.5.1 Milk quantity (1965-) 

Milk quantity was included as a selection criterion in genetic evaluations from 1965 to 1985. 

This initiated an easy-to-measure trait during the official performance control, which allowed 

for inclusion of as many animals as possible and fast genetic progress. Milk quantity is mainly 

determined by the quantity of lactose, which is the most abundant carbohydrate in milk and 

which induces mammary uptake of water and dilutes the solid components. This is because 

lactose is synthesized by the mammary gland from blood glucose and is responsible for 

maintaining the osmotic equilibrium between blood and the mammary gland. However, it is 

now well known that selection based only on milk quantity for a long time is not a good practice 

because it produces a decay in milk solid components such as fat and proteins. Therefore, the 

Lacaune scheme modified its selection objective by selecting for milk quantity based on the 

milk solid components.    

2.5.2 Fat and protein quantity and rate (1985-) 

of evaluating 

and including in the selection criteria the solid content composition of the milk, which is crucial 

for cheese yield and texture. However, it was not until 1985 that changes began to be 

implemented in the criteria with the progressive inclusion of the milk solids content. In the first 

step, through the use of a selection index, i.e., combining traits with different economic weights, 

the quantity of fat and protein was included to improve the cheese quantity. In a second step, 

the index was adapted to include the fat and protein rates, which allowed for simultaneous 

improvement of the cheese quantity and yield. That change in the ISOL index allowed for 

countering of the effect of selection for milk quantity alone and valuation of the milk in terms 

of cheese production and payment to the farmers. 

2.5.3 Somatic cell count, mammary morphology and scrapie disease (2005-) 

After years of effectively selecting for milk quantity and later for milk composition, in 1990 

there was a growing interest in including functional traits associated with udder health and 

morphology that were impaired by genetic selection. However, the health crisis due to scrapie 
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disease in sheep between 1990 and 2001 imposed a complete adaptation of selection objectives 

to rapidly eradicate this fatal disease from flocks in France. A major step in eradication was 

taken after identifying a prion protein or PrP gene associated with resistance to this disease. 

The selection schemes eliminated ewes with susceptible genotypes and use of only homozygous 

resistant rams. The most affected breed was Manech Tête Rousse in the western Pyrenees 

region, with an initial frequency of the resistant allele (ARR) of 16%, compared to 60% for the 

dairy breed Lacaune (Barillet et al., 2016). Once the eradication of the sensible allele (VRQ) of 

scrapie disease has been achieved, all rams of the five breeds commercialized in France should 

be homozygous resistant (ARR/ARR) for the PrP gene. 

Mastitis is an inflammation of the mammary gland, which in dairy sheep manifests itself mainly 

in a subclinical form without clinical signs, for which the only indicator is the increase in the 

somatic cell count in the milk. Thus, mastitis is not only a disease in the ewe but also impairs 

milk coagulation during cheese making. The incidence of mastitis in the flock can be decreased 

by reducing the number of infected animals (e.g., culling infected ewes), limiting new infections 

in the flock (e.g., hygiene in the milking process), and by genetic selection of mastitis-resistant 

animals. To select ewes for mastitis resistance, the criterion used is the milk SCC (transformed 

into the somatic cell score (SCS)) through lactation represented by the lactation somatic cell 

score (LSCS), for which there is evidence of efficacy after the use of divergent genetic lines 

selected for this trait in the INRAE Experimental Unit of La Fage (Rupp et al., 2009). In 2005, 

mastitis resistance and udder morphology were incorporated into the ISOL index of the Lacaune 

dairy breed. 

2.5.4 Fine milk composition 

The impact of the inclusion of fat and protein contents in selection led to further research in this 

direction for the identification of novel phenotypes that better represent the fine composition of 

milk. Currently, the ISOL index does not include the fine milk composition because the industry 

does not pay for differential milk composition, and more information is needed on the impact 

on other milk traits in order to include them.  

The following is a description of the traits that determine milk quality, such as milk FAs and 

proteins, based on Park et al. (2007), Léonil et al. (2013) and Raynal-Ljutovac et al. (2008).  

Fatty acids 

cow's milk, and highly variable according to the stage of lactation. Lipids are present in a 
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globular form in an emulsion state, called fat globules, composed of triacylglycerols and a 

membrane of lipoproteins and phospholipids. The fat content is made up of 98% 

triacylglycerols and less than 2% phospholipids, sterols and fat-soluble vitamins. 

Triacylglycerols are composed of three FAs and one molecule of glycerol. A fatty acid (FA) is 

a hydrocarbon chain, comprising single or double carbon-carbon bonds, and with two groups 

at its ends, one methyl (-CH3) and one carboxyl (-COOH). FAs can be classified by different 

criteria:  

 Based on the length of the carbon chain:  

o Short-chain FA (2 to 10 carbons)  

o Medium-chain FA (12 to 17 carbons) 

o Long-chain FA (18 or more carbons)  

 Based on the degree of saturation of the carbon chain:  

o Saturated FA (SFA) with no double bond  

o Monounsaturated FA (MUFA) with one double bond 

o Polyunsaturated FA (PUFA) with at least two double bonds 

 Based on the position of the first double bond on the carbon chain counting from the 

methyl end (-CH3): 

o Omega-3 (n-3) with a double bond at the 3rd carbon 

o Omega-6 (n-6) with a double bond at the 6th carbon 

 Based on the configuration of the double bond: the cis configuration characterizes the 

isomers whose priority groups are on the same side with respect to the plane formed by 

the double bond (most FAs), trans otherwise. 

In ruminants, milk FAs are derived from de novo synthesis in the mammary gland and 

absorption from the blood. New FA synthesis uses -hydroxybutyrate (10-15%) 

and propionate (<1%) as precursors and produces short- and medium-chain FAs. From the 

blood, it mainly takes up long-chain FAs, which can originate from diet or adipose tissue, part 

of which could be desaturated by the udder. In small ruminants, milk fat has a high SFA content 

(60%) represented mainly by short- and medium-chain FAs, while MUFAs (mainly oleic acids 

C18:1n-9) account for 20%, and PUFAs (mainly C18:2n-6 to C18:3n-3) account for 5% (Park 

et al., 2007). This fatty acid profile in milk is of great relevance to cheese quality because it is 

little affected by the cheese-making process. In addition, two characteristics, namely, the small 
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size of the fat globules and the high levels of short- and medium-chain FAs, provide sheep and 

goat cheese with beneficial effects on fat assimilation and energy supply for human 

consumption (Raynal-Ljutovac et al., 2008). 

Proteins 

Proteins in milk are of high quality with well-balanced amino acids. Eighty percent are caseins, 

which are phosphoproteins of four types: alpha-S1, alpha-S2, beta, and kappa, and the 

remaining 20% are soluble proteins or whey proteins, which are mainly beta-lactoglobulin, 

alpha-lactalbumin, immunoglobulin, serum albumin and lactoferrin. All caseins, beta-

lactoglobulin, and alpha-lactalbumin are synthesized by the mammary gland, and the other 

serum proteins are taken up from blood.  

Caseins have different properties that allow for them to be organized into a stable complex 

called micelles. The casein micelle is composed of 92% caseins (alpha-S1, alpha-S2, beta and 

kappa in relative proportions of 3:1:3:1) and 8% minerals (90% calcium phosphate and 10% 

magnesium and citrate ions). The structure of the micelle according to the model proposed by 

Ono and Obata (1989) is an aggregation of two types of submicelles of variable composition. 

One is composed of alpha-S (alpha-S1 and/or alpha-S2) and beta caseins, and the other is 

composed of alpha-S (alpha-S1 and/or alpha-S2) and kappa caseins. The submicelles with more 

kappa casein are preferably located on the surface of the micelle, playing an important role in 

the colloidal stability of the micelle. The destabilization of this colloidal structure, which can 

be induced by the acidification of the milk or the action of proteolytic enzymes, is the basic 

process by which milk is transformed into cheese. Soluble proteins may impair cheesemaking 

because they do not coagulate under the effect of proteolytic enzymes, but their amino acid 

profiles are of interest with a high level of essential amino acids. 

Sheep's milk is unique for its nutritional properties and has recently gained interest in human 

diets due to the presence of omega-3 and omega-6 essential FAs, as well as conjugated linoleic 

acid (CLA) (Collomb et al., 2008). In addition, it has a higher concentration of butyric acid 

than that of other ruminants and fully covers the requirement for all essential amino acids 

(Mohapatra et al., 2019). 

2.6 Conclusion 

In ruminants, the symbiotic microorganisms in the rumen play an important role in the life of 

the animals. However, to date, the holobiont concept has not been integrated into quantitative 

genetics. One reason is because the microbiome represents a type of high-dimensional data for 
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which there is no standard methodology of processing and analysis. On the other hand, there is 

little published information on the genetic control of the host on the rumen microbial 

composition and even less on the genetic associations between the rumen microbiota and 

phenotypes or the metabolic processes that explain the associations between them. Most of the 

work used cows and focused on complex traits such as methane emissions or feed efficiency. 

However, in sheep, there are no studies to date linking rumen microbiota and dairy traits. 

In this thesis, we proposed to investigate a methodological aspect, such as whether a single 

rumen sample obtained through a gastric tube is representative of the microbial composition in 

the rumen of adult animals. Based on this, two relevant biological hypotheses are proposed: 1) 

the rumen microbiota influences milk composition and udder health traits, and 2) there is host 

genetic control over rumen microbiota. 
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Chapter 3 

Materials and methods 
 

This thesis is based on the MicroGenOL project of which two scientific groups of INRAE-

GenPhySE, GeSPR (Genetics and Selection of Small Ruminants) and NED (Nutrition and 

Digestive Ecosystem), are part, which allow for work on the integration of the genome and 

metagenome. To fulfill the objectives proposed in this thesis and obtain the appropriate 

materials, the experimentation was carried out at the INRAE Experimental Unit (EU) of La 

Fage (UE 321 agreement A312031, Roquefort, France). 

3.1 Experimental Unit of La Fage 

The INRAE EU of La Fage is located in the Central Massif of France, in the Roquefort cheese 

production area. The EU of La Fage has two experimental flocks bred for different purposes. 

One flock of Romane sheep bred for meat production, under a purely open-air grazing system, 

and the other flock, on which this thesis is based, composed of milk-producing Lacaune ewes, 

under a mixed system of open-air grazing during the spring-summer months and stabling during 

the winter months. The Lacaune flock has been under selection for several years after its 

incorporation to the EU in 1990. The particularity of the La Fage flock is that ewes evaluated 

belonged to the two Lacaune populations selected by the genetic selection companies in France: 

Confédération Générale de Roquefort and Coopérative OVI-TEST. 
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Figure 8. Timeline with the most relevant scientific programs developed at the INRAE 

Experimental Unit of La Fage. 

Since the creation of the EU of La Fage in 1965, the objectives for which the dairy flock has 

been evaluated have evolved over time, adapting to new production requirements (Figure 8). 

The EU of La Fage was established in the Central Massif region not by chance, but at the request 

and effort of local dairy farmers who visualized the need for INRAE to work on local problems 

and improve milk production. Therefore, from 1970 to 1990, the main objectives were to 

produce animals that were adapted to indoors conditions and produce as much milk as possible. 

To this end, different dairy breeds and crossbreeds were compared, and the Lacaune breed 

selected as a purebred on the basis of milk quantity was chosen. However, after years of 

selection for milk quantity alone, the subclinical mastitis became evident through an increase 

in SCC in milk that impact cheese production. Therefore, starting in 2000, at the EU began to 

study and select for mastitis in sheep based on milk somatic cell score (SCS), but years later, 

the Socs2 gene was identified (Rupp et al., 2015) changing the way of genetic selection within 

the EU. The Socs2 is an important gene involved in the expression of SCS values, which 

resulted in starting to genotype animals and selecting based on the absence of the mutant allele 

in double copy. 

On the other hand, and considering the high feed costs involved in keeping animals indoors, 

after 1990, experimental works began to explore the genetic basis of feed efficiency of dairy 

ewes. But also, the high costs for farmers arise to cover the high energy needs when ewes have 

a very pronounced lactation peak, led the UE of La Fage since 2010 to start evaluating the 
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possible selection of ewes according to their lactation curve. That was the beginning of the 

divergently selection on milk persistency (PERS). Since this selection allows for obtain ewes 

that have flat lactation curves, thus, the same annual milk yield would be better distributed 

during lactation and feeding costs at the peak of lactation would be reduced. In turn, based on 

the preference to have only one milking per day, it was tested which of the two 

divergent lines in PERS is more adapted to it. Finally, due to the growing worldwide scientific 

interest in the role of rumen microbiota in production animals and the impact on the traits under 

study in the EU of La Fage, the project producing the data for this thesis was initiated in 2015.  

3.2 Experimental design 

3.2.1 Animals 

The experimental design of the MicroGenOL project consisted on 806 Lacaune dairy ewes from 

INRAE EU of La Fage, which were rumen sampled and measured from 2015 to 2019. The final 

number of animals analyzed were 795 ewes, after to remove those ewes without any phenotypic 

record. These 795 dairy ewes were part of two datasets, Dataset 1 composed by 795 ewes with 

one rumen sampling, and Dataset 2 composed by 118 ewes with repeated rumen sampling one 

week apart. 

The experiment included adult multiparous ewes with two or more lactations, where 83% of 

ewes (N= 664) were between 100 and 133 days in milk (DIM). The decision to include these 

categories of animals was made to reduce the experimental variability, given the differences in 

milk yield and rumen microbiota composition in the first lactation (Pitta et al., 2014), as well 

as the variation in milk composition of ewes during the period close to lambing. 

3.2.2 Feeding practices 

All ewes weighing mean of 77 ± 9 kg, were raised indoors and fed a mixed ration of on average 

90% meadow hay and silage plus 10% barley (on a gross matter basis) supplemented with 

approximately 150g of a commercial protein concentrate (38% of crude protein on dry matter 

basis) distributed in the milking parlor. The adjustment of the percentage of concentrates and 

forages was done each year according to the feeding value of the forages to cover the needs of 

the ewes, which therefore received the same amounts of nutrients over the five years. On 

average during this period, the ewes ingested 3.27kg of dry matter in total, comprising 16% of 

crude protein and 30% of crude fiber. 
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3.2.3 Genetic structure of the dairy flock 

The genetic structure of the dairy flock includes four independent divergent genetic lines, two 

selected for milk persistency (PERS: PERS+ and PERS-), and two selected for milk somatic 

cell score (SCS: SCS+ and SCS-), which will be replaced after 2018 by the selection based on 

the Socs2 genotype (Socs2: CC, CT and TT). The genetic lines SCS+ and SCS-, and PERS+ 

and PERS- showed differences greater than two genetic standard deviations. In addition, we 

also obtained clear differences between lines using the EBVs for each of the genetic lines 

(Figure 9). 

 

Figure 9. Distribution of ewes based on selection index of somatic cell score for SCS line 

(SCS+ and SCS-), and selection index of coefficient of variation of milk production for PERS 

line (PERS+ and PERS-). 

Genetic selection of SCS lines was based on the EBVs for milk SCS of sires of the whole 

Lacaune population and dams within the La Fage flock, and was initiated in 2003 (Rupp et al., 

2003). Two groups of ewes with extreme EBVs were created according to the log-transformed 

SCC, a high-SCS line (SCS+) and a low-SCS line (SCS-). This selection was demonstrated by 

Rupp et al. (2009) to produce ewes with susceptibility/resistance to natural clinical and sub-

clinical mastitis. But as was presented before, the selection for mastitis resistance changed after 
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the identification of the Socs2 gene. Then in the experiment, there are ewes selected for SCS 

index, but also genotyped for Socs2 gene (Rupp et al., 2015): the new selection objective is to 

increase the mutant allele frequency (T) in the experimental Lacaune population to investigate 

possible associations with other traits.  

Genetic selection of PERS lines was based on EBVs of Lacaune sires estimated relative to the 

whole Lacaune population based on the coefficient of variation in milk production on the testing 

day. The selection started in 2010, with extreme sires mated to produce the PERS divergent 

lines in the La Fage flock. Two extreme groups of ewes were created, one with high persistence 

(PERS+) and one with low persistence (PERS-) in milk production. 

In Table 2 is presented the total number of ewes in the experiment grouped by year, genetic line 

and if they have repeated rumen samples. 

Table 2. Total number of animals with records grouped by year and genetic lines (PERS, SCS 

or Socs2 genotype). 

 Lactation PERS+ PERS- SCS+ SCS- Total 

2015 Adults (L2+) 89/55 [30] 92/60 [29] 63/34 [29] 120/88 [30] 364/237 [118] 

2016 L2 24/22 25/23 18 39/33 106/96 

2017 L2 31 28 13 45/44 117/116 

2018 L2 26/25 34 53  113/59 

2019 L2 30/29 23 42  95/52 

Total  200 202 94 204 795/560 

L2+: second lactation or more, L2: second lactation, SCS+: high-SCS lines, SCS-: low-SCS line, 
PERS+: high-PERS line, PERS-: low-PERS line, Socs2 genotype. 
In bold the number of ewes with fine milk composition records from MIR spectra, and between brackets 
the number of ewes with repeated rumen samples one week apart. 

3.3 Animal  genotyping 

For all 795 ewes, blood samples were collected for DNA extraction and genotyping. Among 

795 ewes, 743 were genotyped using Illumina Ovine SNP50 BeadChip (54,241 SNPs), 314 at 
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LaboGenA (Jouy en Josas, France) and 429 at Aveyron-Labo (Rodez, France). The remaining 

52 ewes were genotyped using Illumina Ovine SNP15 (16,681 SNPs) at Neogen (Lansing, 

USA), followed by imputation to a medium-density SNP chip as part of the Lacaune dairy sheep 

genomic selection program (Larroque et al., 2017). Genotypes were subjected to quality 

control, including minimum call rates of 90% for SNPs and 95% for individuals and exclusion 

of SNPs with a minor allele frequency lower than 5%. The final dataset included 773 genotyped 

individuals and 35,492 autosomal SNPs, corresponding to the SNP used in genomic selection. 

Markers were positioned on 26 autosomal Ovis aries chromosomes and mapped to the Ovis 

aries genome assembly Oar_v3.1 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.1/). The SNP associated with the 

Socs2 gene mutation was included in the map on autosomal chromosome 3 (129,722,200 bp). 

3.4 Milk traits 

Every three weeks, ewes milk yield (MY) was quantified and sampled at the morning and 

afternoon milking. The milk fat content (FC), protein content (PC) and SCC were measured by 

Interprofessional Milk Analysis Laboratory (Agrolabs, Aurillac, France), which also produced 

the mid-infrared (MIR) spectra of milk. We analyzed only the milk records from the milk 

control closest to the rumen sampling and the associated MIR spectra. The SCC was 

transformed to SCS, with the following formula [SCS = 3 + log2(SCC/100,000)]. A description 

of the daily milk traits analyzed is presented in Table 3. For the ewes with repeated samples 

one week apart (Dataset 2), milk samples were additionally analyzed with gas chromatography. 
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Table 3. Description of milk traits and fine milk composition traits. 

 Trait Units Mean SD CV (%) 

Milk yield ml 1946 589 30.3 

Fat content g per 100ml  7.37 1.14 15.5 

Protein content g per 100ml  5.71 0.52 9.1 

Somatic cell score  3.11 1.91 61.4 

Saturated fatty acids 

Butyric acid (C4:0) g per 100ml  0.25 0.04 12.0 

Caproic acid (C6:0) g per 100ml  0.21 0.03 14.3 

Caprylic acid (C8:0) g per 100ml  0.20 0.03 15.0 

Capric acid (C10:0) g per 100ml  0.73 0.12 16.4 

Lauric acid (C12:0) g per 100ml  0.49 0.08 16.3 

Palmitic acid (C16:0) g per 100ml  1.96 0.37 18.9 

Unsaturated fatty acids 

Oleic acid (cis-9 C18:1) g per 100ml  0.80 0.31 38.7 

Rumenic acid (cis-9 trans-11 C18:2) g per 100ml  0.04 0.02 50.0 

Alpha-linolenic acid (C18:3n-3) g per 100ml  0.04 0.01 25.0 

Caseins 

Alpha-S1-casein g per 100ml  1.38 0.15 10.9 

Alpha-S2-casein g per 100ml  0.66 0.26 39.4 

Beta-casein g per 100ml  2.10 0.23 10.9 

Kappa-casein g per 100ml  0.45 0.05 8.9 

Soluble proteins 

Alpha-lactalbumin g per 100ml  0.14 0.01 7.7 

Beta-lactoglobulin g per 100ml  0.46 0.05 108.7 

SD: standard deviation, CV (%): coefficient of variation. 
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3.4.1 Fine milk composition predicted from MIR spectra 

We predicted by pre-established equations the fine profile of milk proteins and FAs from MIR 

spectra obtained with Milko-ScanTM FT6000 (Foss, Nanterre, France) (Figure 10). The 

prediction equations used in this study were characterized in Ferrand et al. (2012) for milk 

proteins, four caseins and two soluble proteins, and in Ferrand-Calmels et al. (2014) for FAs 

concentration, saturated and unsaturated FAs. 

 

Figure 10. Mid-infrared (MIR) spectra technique (adapted from Sanchez et al., 2019). 

3.4.2 Milk fatty acids quantified by gas chromatography 

For the morning milk samples of the 118 ewes with repeated samples one week apart, we 

measured long-chain fatty acid (LCFA) percentages in total FA methyl esters (FAME) by gas 

chromatography at the National Veterinary of Toulouse (Toulouse, France), following the same 

method as for the rumen samples. In total, we quantified 38 FAs with eight FAs measured only 

in milk samples (C6:0, C7:0, C8:0, C9:0, C10:0, C11:0, C14:1, C16:1) and 30 FAs measured 

in both milk and rumen samples (C4:0, C12:0, C13:0, anteiso-C13:0, iso-C13:0, C14:0, iso-

C14:0, C15:0, anteiso-C15:0, iso-C15:0, C16:0, C17:0, anteiso-C17:0, iso-C17:0, C18:0, cis-9 

C18:1, a mix of cis-11 C18:1 and trans-15 C18:1, cis-12 C18:1, cis-15 C18:1, a mix of trans-

6, trans-7, trans-8 C18:1, trans-9 C18:1, trans-10 C18:1, trans-11 C18:1, trans-12 C18:1, 

trans-16 C18:1, C18:2, cis-9 trans-11 C18:2, trans-11 cis-15 C18:2, C18:3n-3, C20:1).  



Chapter 3 Materials and methods

41 
 

3.5 Sampling and analysis of rumen samples 

Rumen sampling was performed according to a detailed protocol that received the approval of 

the Ministè érieur  (APAFIS#6292

2016080214271984 v8). The most relevant points of rumen sampling are shown in Figure 11 

and are detailed below.  

 

Figure 11. Rumen sampling process. 1- 

rumen sampling, 2- Rumen sampling with a gastric tube, 3- On-site laboratory process of the 

rumen samples, 4- Milking parlor. 

To avoid dilution of samples by feed or water, the animals did not have access to feed and water 

10 hours and two hours prior to sampling, respectively. The date and time of each sample were 

recorded. The animal is immobilized in a special cage adapted for ewes (Figure 11-1), and 

sampling is performed by competent staff (Figure 11-2). Rumen sampling is performed using 

a medical gastric tube that is introduce through the mouth until it reaches the rumen (Figure 11-

2), and a vacuum pump that allows for the sample to be extracted from the rumen through the 

gastric tube. On average, we collected rumen samples of 30ml with a liquid fraction and small 

solid particles. This rumen sampling method was chosen because of the ability to obtain 

representative samples of the rumen microbial community in a large number of animals 

(Henderson et al., 2013; Ramos-Morales et al., 2014). 

Immediately after sampling, the rumen samples are kept on ice (Figure 11-3) for less than five 

minutes until aliquots are taken directly, one sample for FAs composition and one sample for 

microbiota composition, both frozen and stored in liquid nitrogen at -80°C (Figure 11-3). The 

ewes, after rumen sampling, go directly to the milking parlor for milking (Figure 11-4), but 

milk samples analyzed were obtained at the closest milking control within three days of rumen 

sampling. 
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3.5.1 Rumen fatty acids 

The VFAs and LCFAs compositions were measured from rumen samples by two gas 

chromatography analyses at the National Veterinary of Toulouse (Toulouse, France). Six 

VFAs, C2:0, C3:0, C4:0, valeric acid (C5:0), isobutyric acid (iso-C4:0) and isovaleric acid (iso-

C5:0), were quantified using automated gas separation, according to the method of Playne 

(1985) and modified as follows. The rumen samples were first centrifuged at 2,880 × g for 

20min to separate the liquid phase. For protein removal, 1ml of supernatant was mixed with 

l of (25% v/v) metaphosphoric acid and further centrifuged at 20,000 × g for 15min. One 

hundred microliters of supernatant were l (0.2% v/v) of 4-methylvaleric acid as 

l of ultrapure water. One microliter of the mixture was then injected 

into a gas chromatograph (Hewlett Packard, Model 7890A) equipped with a DB-FFAP column 

(30m × 0.53mm i.d., 1

detector (Avondale, USA). Chromatograms were integrated using the Chromeleon software 

(Thermofisher Scientific, version 6.8, Whaltham, USA). The sum of the six VFAs 

concentration was defined as the total concentration and was used to obtain the molar 

proportions of each VFA. 

The LCFAs of rumen content were extracted and methylated in situ using the procedure of Park 

and Goins (1994), except that the solution of 14% of boron trifluoride in methanol was replaced 

by a solution of methanol-acetylchloride. Nonadecanoic acid was used as the internal standard 

at a dose of 0.8mg. The FAME were then quantified by gas chromatography (Agilent 6890N, 

Network GC System, equipped with a model 7,683 auto injector, Agilent Technologies, Palo 

Alto, USA) using a fused silica capillary column (100m × 0.25mm i.d., 0.20 m film thickness, 

CPSil88, Varian, Middelburg, the Netherlands) as described in Zened et al. (2011). Peaks were 

identified and quantified by comparison with commercial standards (Sigma Co., St Louis, 

USA), except for cis-9 C18:1, which were identified by the order of elution. Chromatograms 

were integrated using the Chromeleon software (Thermofisher Scientific, version 6.8, 

Whaltham, USA). Results were expressed as % of FA in total FAME. 

3.5.2 Rumen microbial composition 

The experimental design used to obtain and process the microbial composition from the sheep 

rumen samples is shown in Figure 12.  
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Figure 12. Experimental design to obtain and process rumen samples. (A) Rumen sampling, 

(B) DNA extraction and sequencing process, (C) bioinformatics process, (D) data analysis of 

rumen sample composition. 

DNA extraction and targeting 16S rRNA gene sequencing 

l of ruminal sample was extracted and purified using the QIAamp DNA 

Stool Mini Kit (Qiagen Ltd, West Sussex, UK) according to t

with a previous bead-beating step in a FastPrep instrument (MP Biomedicals, Illkirch, France). 

As this project aims to work with the composition of microbiota in the rumen, the decision to 

use 16S rRNA gene sequencing was based on obtaining an accurate taxonomic affiliation, as 

well as lower sequencing costs for a large number of animals. The V3-V4 regions of 16S rRNA 

gene were amplified (first PCR: 30 cycles) from purified genomic DNA with the primers F343 

(forward) and R784 (reverse). As Illumina MiSeq technology enables 250 bp paired-end reads, 

we obtained overlapped reads that generated extremely high-quality, full-length reads of the 

entire V3 and V4 regions in a single run. Single multiplexing was performed using a 6-bp index, 

which was added to R784 during a second round of PCR with 12 cycles using forward primer 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC) and reverse 

primer (CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGT). The 

resulting PCR products were purified and loaded onto an Illumina MiSeq cartridge (Illumina, 

San Diego, USA) at the Genomic and Transcriptomic Platform (INRAE, Toulouse, France) 
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and 2019, but in the first three years, the sequencing process was carried out at different times, 

so the samples were not sequenced in the same batch. 

Bioinformatics process 

The bioinformatics process of the DNA sequences was done using FROGS 3.0 pipeline 

(Escudié et al., 2018) with the procedure presented in Figure 13.  

 

Figure 13. Bioinformatics process of DNA sequences using FROGS 3.0 pipeline. 

The read demultiplexing is the first step of the bioinformatics process, and consisted of 

assigning each paired-end read to its sample on the basis of the previously integrated index. 

The second step consisted of read pre-processing, where we defined some parameters to remove 

sequences, such as the presence of primer mismatch, sequence length less than 300 bp or greater 

than 500 bp, or the presence of at least one ambiguous base. The third step is the chimaera 

removal defined in Figure 13, followed by the sequence clustering. In FROGS 3.0, de novo 

clustering is performed where sequences grouped according to pairwise distance measures. We 

used one sequence of difference between each of the three-aggregation step of clustering. The 

fifth step is the operational taxonomic unit (OTU) filtering. The Bokulich filter was the only 

one used in this work, which consists of remove OTUs with an abundance lower than 0.005% 

of the total sequences (Bokulich et al., 2013). The decision was based on the fact that a 

standardized mock community was not included in each sample for filtrate calibration, so the 

recommendation to apply a conservative filter at 0.005% was followed.  Finally the last step is 



Chapter 3 Materials and methods

45 
 

the OTU affiliation using the SILVA database (version 138) (Quast et al., 2012). It is an ideal 

reference due to their extensively curated taxonomy and the new non-redundant datasets. All 

the parameters, filters and values used for the bioinformatics process were based on support of 

the FROGS pipeline technical group of INRAE (Toulouse, France).   

As result of the independent bioinformatics process applied for the two datasets in this work, 

we retained around 47% of the initial DNA sequences and we obtained very similar final 

number of OTUs in abundance tables (Table 4). 

Table 4. Number of DNA sequences and OTUs along the bioinformatics process for datasets. 

 
Dataset 1  

N= 795 

Dataset 2  

N= 236 

Initial sequences 20,853,771 5,258,562 

Sequences with  18,484,436 4,863,246 

Sequences with  18,383,617 4,836,379 

Sequences with expected length 18,372,188 4,830,627 

Sequences without aberrant nucleotides 18,322,421 4,830,596 

Sequences without chimera 14,989,216 3,853,044 

Final sequences 9,536,442 2,500,763 

Number of OTUs 2,059 2,079 

N: number of samples, OTUs: operational taxonomic units. 

Analysis of microbial abundances 

For Dataset 1, the OTU abundance table had 795 samples (as rows) and 2,059 affiliated OTUs 

(as columns), represented by 750 to 168,617 sequences (median of 1,755 DNA sequences). 

Rumen samples contained in average 1,322 OTUs per sample. Rare OTUs were identified in 

the dataset represented by those with lesser than 2,034 sequences across all samples.  

For Dataset 2, the OTU abundance table had 236 samples and 2,079 affiliated OTUs, 

represented by 193 to 113,090 sequences (median of 453 DNA sequences). Rumen samples 

contained in average 1,406 OTUs per sample. In Table 5 is present the frequency of unknown 

taxonomic affiliation for OTUs in both datasets.  
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Table 5. Number of taxon and frequency of unknown affiliation per taxonomic level. 

Taxonomic level 

Dataset 1 (2,059 OTUs)  Dataset 2 (2,079 OTUs) 

N 
Unknown 

affiliation 

 
N 

Unknown 

affiliation 

Phylum 11 0%  10 0% 

Class 17 0%  15 0% 

Order 39 1%  34 0% 

Family 56 3%  56 4% 

Genus 112 20%  117 23% 

Species 70 94%  67 93% 

N: number of identified taxonomic affiliation, OTUs: operational taxonomic units. 

Using the abundance table of the Dataset 1, for each rumen sample, we calculated some 

microbial diversity indices which summarize the structure of a community: first of all, a basic 

measure of microbial richness as the number of OTUs observed in each sample, as well as three 

alpha-diversity indices that are measures of richness and evenness such as Shannon, inverse 

Simpson and Simpson. The Shannon index is a measure of the evenness of the species 

abundance distribution, Inverse Simpson index is the inverse probability that two sequences 

sampled at random come from the same species, and Simpson index is 1- probability that two 

sequences sampled at random come from the same species. Another common measure but of 

beta-diversity is the Bray-Curtis distance between samples, which gives information about 

similarities between communities. However, to calculate Bray-Curtis it is necessary to apply 

the rarefaction process for which there is clear evidence against it (McMurdie and Holmes, 

2014), so in this work we do not estimate this distance measure. 

Microbial abundance data is a random sample of the relative abundance of species in the 

sampled ecosystem. This is because the abundances are generated by high-throughput 

sequencing technologies, which have a fixed size, imposing a sampling constraint. The 

microbial abundance table is composed of counts (representing relative abundances) with 

always positive values that sum to a constant, so the relative abundances represent 

compositional data. 
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Compositional data analysis 

In compositional data the relevant information is not in the parts, but in the ratios between the 

parts of the composition (Aitchison, 1986). A composition is a vector of  parts 

, where each part is assumed positive. For example, in a microbial abundance 

table, each microbial sample is a row compositional vector and each part is the abundance of a 

specific OTU. Then, the group of real positive vectors closed to a constant is called the simplex 

of  parts (Eq. 4), 

  (4) 

where,  is the simplex space of  parts defined by a set of vectors  with  parts, each part 

 is strictly a positive real number, and the sum of all components is equal to a constant , 

which can be 1 (representing proportions), 100 (percentages), 106 (parts per million), and 109 

(parts per billion). This constraint in  to a constant  produces an interdependence between 

parts of a composition, where if one of the parts increases, some of the other parts must 

decrease. 

The compositional data, with thousands of variables (e.g., OTUs), should be analyze using 

multivariate methodologies which are based on the Euclidean space (a finite-dimensional vector 

space over the reals , with an inner product). However, as compositional data is on the simplex 

space, Aitchison (1986) proposed to project the simplex space to the real space, using functions 

that must be:  

1. Scale invariant, which means that no matter the value of the part, the results must be the 

same. 

2. Permutation invariant, which means that if the parts of the vector changes their order, 

the result will be equivalent (e.g., [OTU_1, OTU_2, OTU_3] and [OTU_2, OTU_1, 

OTU_3] have equivalent result). 

3. Sub-composition consistent, which means that if a sub-composition of the data is taken, 

the ratios between the parts will be the same as in the complete data.  

The logratio is the most common function which follows these three principles. A logratio 

transformation provides a one-to-one mapping on to the real space led to the use of a variety of 

these transformations, such as additive, centered and isometric logratio. In turn, these allowed 

for the use of unrestricted multivariate methods applied to the transformed data, with 

translatable inferences back into compositional statements. In this thesis, we used the centered 
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log-ratio (CLR) transformation, which is the most commonly used in animal microbiota data 

(Zhang et al., 2020; Pérez-Enciso et al., 2021; López-García et al., 2022).  

Since microbiota data are characterized by a high proportion of zeros, which poses a problem 

for using logarithms, zero values must be imputed before applying the CLR transformation. In 

compositional data, a zero value could be:  

a) Essential zeros, a value that was not measured, i.e., true zero in the data.  

b) Counting zeros, which appear in sampling studies involving counts (e.g., microbial 

data). 

c) Rounded zeros are data not be observed because their true value is below the maximum 

round-off error or detection limit (e.g., milk fatty acid concentrations).  

The most common zeros in microbial data are count zeros that refer to the non-presence in the 

sample of a specific OTU. The assumption about this zero is that this OTU may not be observed 

due to limited size of the sample or limited capacity of the sequencing instrument. That is, if 

the sample size increases, some OTUs will probably be observed, i.e., non-zero probability. 

Consequently, it seems logical to impute count zeros with non-zero values. In the literature, the 

most common methods used are two: the addition of a constant (e.g., 1) for all values, or the 

addition of a small value (e.g., 0.001) only for count zeros in the dataset. However, Martín-

Fernández et al. (2015) proposed an adapted replacement method for compositional data, called 

geometric Bayesian multiplicative (GBM). The GBM consists in imputing zero values using an 

informative prior distribution, and in a multiplicative modification of the non-zero values to 

preserve the ratios between parts.  

Let  denote a dataset formed by compositional vectors  with  parts ( ). When 

one wants to replace the count zeros in a vector , the parameters considered are: 

  (5) 

  (6) 

where,  is the prior information in  for  considering the other vectors  leaving out their 

own value ,  is the prior information  divided by the total sum of each row  in . 

Then, we should consider a new parameter  that regulates the importance of the prior estimate, 
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which in the GBM method corresponds to . The Equation 7 replaces the vector  by the 

vector : 

  (7) 

where,  was defined above,  is the prior information use to replace the zero values,  

is geometric mean of  and  is the number of observations. 

Once all zeros have been imputed, the logarithms could be used. The CLR transformation is 

symmetric in their parts, keeping the same number of parts (or OTUs). Thus, if a sample have 

 parts there are  logratios in the CLR set, using as denominator the geometric mean of the 

sample (Eq. 8). 

  (8) 

where  is the vector with replaced values of  of  parts,  is the neperian logarithm, and 

 is the geometric mean of the parts of As result of CLR transformation, 

microbial data are mapped in real space with all OTUs, which is relevant for community 

analysis. However, a limitation of CLR is that, although it expresses data in real space, it is not 

isometric. Although recently Greenacre et al. (2021) mention that it is so close to being 

isometric that, for practical purposes, the CLR is isometric. 

In this thesis, we used compositional data analysis not only for rumen bacterial abundance, 

following the workflow that will be proposed in Chapter 4, but also for the fine milk 

composition and rumen fatty acids detailed above. This was a decision considering the nature 

of microbial abundances (Gloor et al., 2017), and proteins and fatty acids (Graeve and 

Greenacre, 2020) whose values are constrained by the methodology used for their sampling. 

3.6 Statistical models 

The remaining sources of variation, then those considered in the experimental design of the 

project, were evaluated by ANOVA at a significance level of 5%. For the microbial abundances, 

in both datasets, the environmental factors included in the models were those significant for 

more than the 10% of the total number of OTUs in the abundance table. The threshold of 10% 

was defined on the basis that the most relevant effects for OTUs were generally above this 
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threshold, and those mainly biological effects of lesser effect on abundances presented 

percentages below 5% (approx. 103 OTUs). The mean R-squared of models for microbial 

abundances was 0.20, with a range from 0.04 to 0.77.  

The models used in this thesis were linear models for the correction of fixed effects of OTUs 

and milk traits, and mixed models for the genetic parameter estimations. In the first analysis, 

we used multiple traits models with a pedigree matrix to estimate the heritability of microbial 

abundance of Dataset 1 (2,059 OTUs) and genetic correlations between microbial abundances 

and dairy traits (Chapter 5). The inclusion of a pedigree matrix was due to convergence 

problems using the genomic matrix in models for 2,059 OTUs and 18 dairy traits. And, the use 

of multiple traits model was used to account the genetic structure of the population (Zhou and 

Stephens, 2014) with two genetic lines, SCS and PERS, for which selection traits such as LSCS 

and coefficient of variation of milk production were included as traits in the models. 

For the last analysis, we calculated the total heritability of dairy traits (Chapter 6) based on the 

method proposed by Christensen et al. (2021) with a joint model for omics and phenotypes. As 

an omics, we included microbiota through a microbial similarity matrix , but the authors called 

 (Difford et al., 2018; Weishaar et al., 2020). We constructed the matrix  in different ways 

that are described in the supplementary results of Chapter 6.  

3.7 Data availability 

The sequence read archive are publicly available on the National Library of Medicine repository 

under two NCBI BioProjects (https://www.ncbi.nlm.nih.gov/bioproject/): the first called 

Rumen microbiota of Lacaune dairy sheep from INRAE La Fage  (accession number 

PRJNA723543) with the 795 samples sequenced once, and the second called 

 (accession number PRJNA765197) with the 236 samples corresponding 

to 118 ewes sequenced twice. In addition, a Dataset called  is available 

in Data INRAE repository (https://doi.org/10.15454/IOET0P) including the 795 samples with 

environmental effects, and MY and milk composition traits. 

3.8 Conclusion 

The experimental data for this thesis consisted of 795 Lacaune dairy ewes from the 

Experimental Unit of La Fage. The adult multiparous ewes were reared under the same housing 

and feeding conditions during the five years of the experiment, allow for reduce the 

environmental variability between animals. The genetic structure of the population was 
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composed of two divergent genetic lines, SCS and PERS, and more recently the replacement 

of the SCS line by the selection by Socs2 genotype. All ewes have pedigree and genomic 

information, milk records and rumen microbial abundance from 16S rRNA gene sequencing 

analyzed using the compositional data workflow that is defined in Chapter 4. The compositional 

workflow was compared with other published methodologies to benchmark against other 

works, and to quantify the impact of the method used in genetic parameter estimations. In 

addition, a subgroup of animals had rumen samples repeated one week apart, which allowed 

for us to measure the stability of the microbial composition and to evaluate the conservation of 

associations between OTUs and phenotypes from one week to the next, which is also presented 

in Chapter 4.  

As a second part of this work, in the experimental design, rumen sampling was planned to be 

performed within no more than three days of milk recording and sampling, which enabled the 

correct linkage between rumen microbiota composition and daily milk traits. Thus, it was 

possible to estimate phenotypic and genetic correlations between rumen microbiota and milk 

traits, as presented in Chapters 4 and 5. Genetic determinism of microbiota composition was 

also investigated in Chapter 5. Finally, due to the availability for all animals of phenotype 

records, genomic and microbial information, it was possible to implement mixed models 

including two random effects (animal and microbiome) to explain the phenotype. Based on this, 

estimates of the direct genetic effect, and of the indirect genetic effect on the phenotype 

mediated by the rumen microbiota are presented in Chapter 6.
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Chapter 4 
Working with microbial 

abundances  
 

4.1 Introduction 

Microbial abundances are multivariate high dimensional data and constrained by a constant 

sum, then they should not be analyzed directly with the classical methodologies, as they could 

produce unreliable results, but should be preprocessed for analysis. However, there is no 

standard methodology for metagenomics, which, coupled with the enormous source of variation 

from sampling to data processing (e.g., biological, technical and computational factors) (Wang 

and LêCao, 2019), makes it difficult to compare the results obtained by different studies. (Gloor 

et al., 2016) defined this as the reproducibility problem of microbiome studies.   

In this thesis, in order to obtain reliable and reproducible results, we defined a workflow 

considering the compositional nature of the microbial data proposed by Gloor et al. (2017). 

This proposed compositional workflow was applied on a real dataset of dairy ewes, with the 

objectives of discriminating two divergent genetic lines using the rumen microbiota 

composition, and estimating associations between rumen microbial abundance and fine milk 

composition traits. However, given the identified sources of variation affecting the microbiota, 

could the bacterial composition and estimated associations with phenotypes be maintained over 

a short period of time? To answer this question, we evaluated the individual and community 

stability of the bacterial composition from one week to the next and the conservation of the 

associations between bacterial composition and milk and rumen FAs, using repeated 

measurements of a subset of one hundred dairy ewes. Finally, due to the difficulties encountered 

in comparing the results with the literature, we compared the proposed compositional workflow 

to different data processing methods used to estimate genetic variability of microbial 

abundances. 

The first results obtained for the compositional data workflow, discriminant analysis between 

genetic lines SCS and PERS, and phenotypic association between rumen microbiota and dairy 
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traits were presented as Oral presentation at the 71nd Annual Meeting of the European 

Federation of Animal Science (EAAP) in December 2020, and later published under the title 

 in PLOS ONE Journal in July 2021. In addition, the methodological pipeline 

developed in this study was applied on another dataset of rumen microbiota from meat sheep, 

resulting in a publication entitled 

modified in relation to their genetic potential for feed efficiency  published 

in Frontiers in Microbiology Journal in October 2021.  

In 2021 within the framework of a European Master , Solène Fresco, supervised by 

Christel Marie-Etancelin and myself, carried out the analyses and processed the results 

corresponding to the stability over a short-period of time of the ruminal bacteria composition 

and the associations between ruminal bacteria and milk and rumen FAs. One of the main 

objectives was to evaluate the possibility of minimizing rumen sampling, which is invasive for 

the animals and time-consuming. These results were published under the title 

 in Frontiers in 

Microbiology Journal in June 2022. 

Finally, the results obtained from the evaluation and comparison of data processing methods 

through the impact on the heritability estimates were presented under the title 

 in Poster format at the 72nd 

Annual Meeting of the European Federation of Animal Science (EAAP) in September 2021 in 

Davos (Switzerland).  

4.2 Compositional analysis of ruminal bacteria from ewes selected for somatic cell score 
and milk persistency 
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Abstract

Ruminants are dependent on their rumen microbiota to obtain energy from plants. The com-

position of the microbiome was well-known to be associated with health status, and produc-

tion traits, but published results are difficult to reproduce due to large sources of variation.

The objectives of this study were to evaluate the associations of ruminal microbiota and its

association with genetic lines selected by somatic cell score (SCS) or milk persistency

(PERS), as well as milk production, somatic cell score, fat and protein contents, and fatty

acids and proteins of milk, using the principles of compositional data. A large sample of 700

Lacaune dairy ewes from INRAE La Fage feeding the same diet and belonging to two diver-

gent genetic lines selected for SCS or PERS was used. The ruminal bacterial metagenome

was sequenced using the 16S rRNA gene, resulting in 2,059 operational taxonomic units

affiliated with 112 genera. The abundance data were centred log-transformed after the

replacement of zeros with the geometric Bayesian method. Discriminant analysis of the

SCS showed differences between SCS+ and SCS- ewes, while for PERS no difference was

obtained. Milk traits as fat content, protein content, saturated fatty acids and caseins of milk

were negatively associated with Prevotella (R = [-0.08;-0.16]), Suttonella (R = [-0.09;-0.16])

andRuminococcus (R = [-0.08;-0.16]), and positively associated with Lachnospiraceae (R =

[0.09;0.16]) and Christensenellaceae (R = [0.09;0.16]). Our findings provide an understand-

ing of the application of compositional data to microbiome analysis, and the potential associ-

ation of Prevotella, Suttonella, Ruminococcaceae and Lachnospiraceae with milk

production traits such as milk fatty acids and proteins in dairy sheep.

Introduction

Ruminants are able to obtain energy from plant fibre to produce foods for human consump-

tion. This is achieved through rumen symbiosis with colonizing microorganisms, such as bac-

teria, protozoa and fungi. Bacteria are the most abundant microorganisms in the rumen and
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make the greatest contribution to the digestion and conversion of feeds to short-chain fatty

acids, microbial proteins and vitamins [1]. Associations of the ruminal microbiota with sire

breed [2] and with different traits, such as feed efficiency [3], methane yield [4–6], and milk

composition [7–9], have been reported, mainly in cows. However, in sheep only a few studies

reported changes in the rumen bacteria with different diets [10–12], but no associations with

milk production traits in dairy ewes. Research on cows considered a few animals with a maxi-

mum sample size of 16 [7–9] and used phenotypic differences, not genetic selection.

The main problem in published studies concerning the association between the micro-

biome and production traits is reproducibility. In the general workflow of microbiome analy-

sis, the sources of variation, from sampling to statistical analysis, are almost infinite [13].

High-throughput sequencing technologies have made an important contribution to the knowl-

edge of ruminal microbiome diversity. However, technologies with a limited number of

sequencing reads obtained per sample, such as metabarcoding of the 16S rRNA gene, place a

constraint on microbial data. Thus, the observed read counts is a fixed-size random sample of

the relative abundance of the operational taxonomic units (OTUs) in the ecosystem. More-

over, the counts obtained are not related to the absolute value of the OTU, but to the probabil-

ity of counting the OTU [14].

This kind of data is referred to as compositional, and a statistical approach adapted to this

data must be applied. The term compositional data [15, 16] is used to describe a data set in

which the parts of each sample have an arbitrary or noninformative sum, such as 100 for per-

centages. As result, the data contain only information about the relationships between the dif-

ferent parts of the composition. Three principles should be fulfilled in any statistical analysis of

compositions: scale invariance, permutation invariance and sub-compositional coherence

[16]. To meet one of the most important principles, scale invariance, it was proposed to work

with the log-ratio, whose invariant form is called the log-contrast [15]. Compositional data are

represented in a non-Euclidean space called a simplex. The log-ratio transformations proposed

by Aitchison [15] and Egozcue et al. [17] allow observations to be represented in Euclidean

space, on which most association analyses are statistically based. Centred log-ratio (CLR) and

isometric log-ratio (ILR) transformations are the most widely used types of log-ratio transfor-

mations; both are isometric and allow correct operation in Euclidean space. However, only the

ILR is orthonormal, generating a complete set of independent transformed variables on an

orthonormal basis (as a coordinate system). Thus, the ILR works with balances [17], while the

CLR works with OTU abundance, which allows a simple interpretation of the results.

Zero values are slightly more problematic in compositional data analysis than in standard

multivariate statistical analysis because it is not possible to work with log-ratios if we have zero

values in the data set. Microbiome metabarcoding data represent the probabilities of counts

per OTU through a random sampling process [18], so some values in the data are true zero val-

ues due to true absence in the ecological environment, while others could arise randomly

because of the constraint generated by high-throughput sequencing technologies. In the litera-

ture, different ways of correcting these zero values are applied, from the use of arbitrary correc-

tions such as adding an offset of 1 to all values in the data set to the use of Bayesian models [18,

19].

Another procedure that must be considered when working with microbiome data, which

contributes to the reproducibility of the results, is adjusting the data according to the different

sources of experimental variation mentioned above. In the literature, these effects are known

as batch effects, and they can include technical factors such as sample collection and storage,

sample processing, and DNA sequencing; biological factors such as animal breed, health status

and environmental effects; and computational factors such as bioinformatic pipelines and the

statistical analysis used [20].
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Thus, to obtain robust and reproducible results when working with microbiome data, it is

crucial to use a compositional data approach, as stated by Gloor et al. [14] (“Microbiome data-

sets are compositional: and this is not optional”), and to adjust the data according to the princi-

pal sources of experimental variation.

The main purposes of this study are to present a conceptual framework for the composi-

tional data approach applied to metabarcoding data in a discriminant analysis of divergent

genetic lines of sheep selected on the basis of either somatic cell score (SCS) or milk persistency

(PERS) and to link ruminal bacteria with milk production and milk quality traits.

Materials andmethods

Animal handling and sampling

Data were obtained from the INRAE Experimental Unit of La Fage (UE 321 agreement

A312031, Roquefort, France) between 2015 and 2019. The animals under study were adult

Lacaune dairy ewes (weighing 77 kg on average) raised indoors and fed 93% meadow hay and

silage plus 7% of concentrates (on dry matter basis). The genetic structure of the INRAE La

Fage flock includes independent divergent genetic lines of Lacaune dairy ewes: two selected

for milk SCS and the other two for PERS. Divergent selection based on estimated breeding val-

ues (EBVs) for milk SCS of sires of the whole Lacaune population and dams within the La Fage

flock was initiated in 2003 [21]. Two groups of ewes with extreme EBVs were created accord-

ing to the log-transformed somatic cell count (SCC): a high-SCS line, represented as SCS+,

and a low-SCS line, represented as SCS-. This selection was demonstrated to produce ewes

with susceptibility/resistance to natural clinical and sub-clinical mastitis [22]. Estimated breed-

ing values of Lacaune sires were estimated relative to the whole Lacaune population based on

the coefficient of variation of milk production on the testing day. Starting in 2009, extreme

sires were mated to produce the PERS divergent lines in the La Fage flock. Two extreme

groups of ewes were generated, one with high persistence (PERS+) and one with low persis-

tence (PERS-) in the milk production curve.

Ruminal contents were sampled from each ewe using a vacuum pump and a medical gastric

tube, that allows a qualitative representation of the rumen microbial community in a large

number of animals [23]. To avoid dilution of samples by feed or water, the animals did not

have access to feed and water 10 hours and 2 hours prior to sampling, respectively. Immobili-

zation was performed with a special cage adapted for ewes, sampling was performed by com-

petent staff, and the gastric tube was thoroughly rinsed with clean water between animal

sampling to minimize cross-contamination. The rumen samples were directly aliquoted, fro-

zen and stored at -80˚C. This protocol received approval from the Ministere de l’Enseignement

Superieur de la Recherche et de l’Innovation–Animal ethics committee with the following

approval number: APAFIS#6292–2016080214271984 v8.

The experimental data consisted of 700 ruminal samples, including 94 from SCS+ ewes, 204

from SCS- ewes, 200 from PERS+ ewes and 202 from PERS- ewes. The genetic difference

within the SCS and PERS lines was obtained by estimating index differences between SCS

+/SCS- and PERS+/PERS- expressed in standard deviations of the indexes estimated for the

whole Lacaune dairy population.

16S rRNA gene amplicon sequencing

Total DNA from 80 μL of ruminal sample was extracted and purified using the QIAamp DNA

Stool Mini Kit (Qiagen Ltd, West Sussex, UK) according to the manufacturer’s instructions,

with a previous bead-beating step in a FastPrep instrument (MP Biomedicals, Illkirch, France).

The 16S rRNA V3-V4 regions of the extracted DNA strands were amplified (first PCR: 30
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cycles) from purified genomic DNA with the primers F343 (50–CTTTCCCTACACGACGCT
CTTCCGATCTACGGRAGGCAGCAG–30; [24]) and reverse R784 (50–GGAGTTCAGACG
TGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT–30; [25]). As Illumina MiSeq tech-

nology enables 250-bp reads, the ends of each read are overlapped and can be stitched together

to generate full-length reads of the entire V3 and V4 regions in a single run. Single multiplex-

ing was performed using a 6-bp index, which was added to R784 during a second PCR with 12

cycles using forward primer (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGAC) and reverse primer (CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGA
CGTGT). The PCR products were purified and loaded onto an Illumina MiSeq cartridge (Illu-

mina, San Diego, CA, USA) at the Genomic and Transcriptomic Platform (INRAE, Toulouse,

France) according to the manufacturer’s instructions. This process was repeated each year

between 2015 and 2019, but in the first three years, the sequencing process was carried out at

different times, so the samples were not sequenced in the same batch.

The sequences of the 700 samples were processed using the FROGS pipeline [26] by follow-

ing the FROGS workflow operational procedure: (i) read demultiplexing, i.e., assigning each

paired-end read to its sample on the basis of the previously integrated index; (ii) read pre-pro-

cessing, i.e., removing sequences presenting a primer mismatch, displaying an unexpected

length (>300 or<500 bp) or with at least one ambiguous base; (iii) chimaera removal; (iv)

sequence clustering with denoising and a defined difference of d = 1 between sequences in

each aggregation step of clustering; (v) cluster filtering, i.e., removing clusters with abundances

<0.005% of the total sequences [27]; and (vi) taxonomy assignment to OTUs using SILVA

database (version 138). OTU number refers to the identification of the OTU in the abundance

table.

Abundance data

The abundance table and taxonomy files were imported into R (v4.0.2). Zeros were imputed

under the assumption that the probability of occurrence of the OTUs in the multinomial

experiment was not zero. Therefore, the geometric Bayesian-multiplicative (GBM) method

[19] was used, where the zero values were replaced in each sample by the posterior probability

obtained from the Bayesian model, which considered all the available data, and weighted by

the geometric mean. To maintain the ratios between all the abundance values, the non-zero

values were multiplied by a value generated as a function of the posterior probability and the

geometric mean. The GBMmethod was performed with the following formula, through the

cmultRepl function of the zCompositions package [28] in R (v4.0.2):

rij ¼

m̂ ij

gi � ni þ 1
; if xij ¼ 0;

xij � 1�
Skjxik¼0

m̂ ik

gi � ni þ 1

� �

; if xij > 0:

ð1Þ

8

>

>

>

<

>

>

>

:

where rij is a vector of replacement abundance values defined as rij = (ri1,. . .,ri2059), m̂ij is the

prior probability estimate for each category j, gi is the geometric mean of the i-th row, and ni is

the number of samples.

The abundance table with no zero values was CLR transformed with the following formula

through the compositions package [29] in R (v4.0.2):
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where x is a row vector with abundances for the OTUs in the sample (x1 = OTU 1, x2 = OTU

2, to xD = OTU 2059), gðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
1
� x

2
� . . . � xDD

p
, is the geometric mean of x, and D is equal to

2,059.

The CLR-transformed bacterial abundances were adjusted with a unique general linear

model, performed with the sasLM package in R (v4.0.2), and the fixed effects that were signifi-

cant (P<0.05) for more than 10% of the OTUs were retained.

Finally, the model was:

y ¼ mþ a � DIM þ Nseqþ Year þ RunðYearÞ þ LactðYearÞ þ HourðYearÞ þ e ð3Þ

where y is the CLR-transformed traits of the OTUs, μ is the overall mean, DIM is the lactation

stage (from 28 to 133 days in milk) included as a covariable, Nseq is the number of sequences

per sample as a fixed effect (7 levels from<5,000 to>30,000 sequences), Year is the year fixed

effect (6 levels), Run(Year) is the fixed effect of run within year (5 levels), Lact(Year) is the

fixed effect of lactation number within year (3 levels),Hour(Year) is the fixed effect of the hour

of sampling in the morning/afternoon within year (8 levels), and e is the residual random

effect.

The genetic line effect represented by differences among SCS+, SCS-, PERS+ and PERS-

was not considered in the model since it was used as a discriminating factor in the multivariate

discriminant analysis.

Phenotypic data

Daily recordings of milk production, milk somatic cell count (SCC) quantified with a Fosso-

matic cell counter (Foss, Nanterre, France), and milk fat and protein contents (FC and PC)

were performed as part of the official milk recording of the flock. Ruminal samplings were per-

formed between 0 and 3 days after the milking recordings were made in the morning and

afternoon milkings. Two samples per animal were sent for analysis at the Interprofessional

Milk Analysis Laboratory (Agrolab’s Aurillac, France). Milk FC and PC were analysed with

mid-infrared (MIR) techniques with a Milko-ScanTM FT6000 instrument (Foss, Nanterre,

France). The daily milk production traits studied were daily milk yield (MP), daily FC and PC

(as weighted averages), and daily SCS [SCS = 3 + log2(SCC/100,000)].

Moreover, for these official milk recordings (with the exception of those made in 2016), the

MIR spectra were recovered in order to predict the fine profile of milk proteins and fatty acids.

Fresh milk samples were analysed using MIR spectrometry [30]. The spectral data of the indi-

vidual milk samples were obtained on a Milko-ScanTM FT6000 instrument (Foss, Nanterre,

France). The proteins included in the analysis were the 4 caseins (CNs) αs1-CN, αs2-CN, β-CN
and κ-CN and the 2 soluble proteins α-lactalbumin and β-lactoglobulin [31]. The saturated

fatty acids (SFAs), unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs)

included in the analysis were only the FAs used in ewe milk predictions [30], such as butyric

acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0),

palmitic acid (C16:0), oleic acid (cis-9 C18:1), conjugated linoleic acid (cis-9 trans-11 C18:2)

and α-linoleic acid (C18:3n-3). Milk proteins and fatty acids are expressed in g per 100 ml.

The daily FC and PC, milk proteins and milk FAs were CLR transformed to account for

their compositional nature, and all traits were adjusted using the sasLM package in R (v4.0.2)

according to:

y ¼ mþ a � DIM þ Year þ LactðYearÞ þ e ð4Þ

where y is the milk production traits; μ is the overall mean; DIM is the lactation stage (from 28

to 133 days in milk) included as a covariable; Year is the fixed effect of year (6 levels); Lact
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(Year) is the fixed effect of lactation number within year (3 levels); and e is the residual random

effect.

Multivariate analysis

The multivariate analysis was performed with the residuals obtained from Eq (3) for bacterial

abundances and Eq (4) for milk traits.

Two discriminant analyses were performed on OTU abundances to discriminate the diver-

gent lines (for SCS and PERS separately), using sparse partial least-squares discriminant analy-

sis (sPLS-DA). The number of components selected was based on principal component

analysis, from which the sum of components explained at least 60% of the variation. The num-

ber of variables was selected using the CLR-lasso penalty method considering the optimal

number as a function of the lambda value after 25-fold cross-validation. The loading values

indicate the weight of a subset of OTUs whose linear combination maximizes the differences

between genetic lines.

Regression analyses of the relationships of ruminal bacteria with milk production traits and

MIR-predicted traits performed on all divergent lines together, using sparse partial least-

squares (sPLS) analysis. A single sPLS analysis was carried out for milk production traits and

fine milk FA and protein compositions predicted with MIR. The analysis included 561 ewes

with information for all traits. As previously described, principal components analysis and the

CLR-lasso penalty method were used to define the numbers of components and variables for

the sPLS model. The multivariate analysis were implemented using mixOmics package [32] in

R (V4.0.2). A Pearson correlation matrix was calculated with only the OTUs selected according

to the first principal component (PC1) and second principal component (PC2) of the corre-

sponding sPLS analysis. Statistical significance was declared at a P value<0.05. Then, cluster-

ing of OTUs and traits was performed with the heatmaply function in R (v4.0.2).

The classification reliability corresponding to the discriminant analysis model was assessed

as a function of the maximum prediction distance between the overall misclassification error

rate and balanced error rate (BER) after fivefold cross-validation repeated 10 times. BER was

calculated as 1 –balanced accuracy.

Results

As a result of the bioinformatics analysis, 9,536,442 sequences were retained (63% of the initial

total DNA sequences). The abundance table included 2,059 affiliated OTUs, represented by

751 to 168,617 sequences (mean of 1,761 DNA sequences). Rare OTUs represented by fewer

than 2,034 sequences across all samples were excluded from the analysis. Genera were defined

as the finest taxonomic level due to an unknown species frequency of 94%.

Overall, the 2,059 OTUs from the 700 samples were attributed to 11 phyla and 112 genera.

Expressed as a percentage of total sequences for all samples, the most representative phyla

were Bacteroidetes (50.8%), Firmicutes (43.3%) and Proteobacteria (2.7%), and the most abun-

dant genera were Prevotella (34%), Lachnospiraceae NK3A20 group (6.4%), Ruminococcus

(5.8%), Christensenellaceae R-7 group (5.3%), Oscillospiraceae NK4A214 group (3.8%) and

Rikenellaceae RC9 gut (3.6%). The percentage of zero values in whole abundance table is

shown in Fig 1.

Discriminant analysis of SCS and PERS lines

Divergent selection created large differences between the lines: 2.19 units of SCS EBVs (i.e., 3.6

genetic SD) created between the 94 SCS+ and 204 SCS- ewes and 5.52 units of milk CV EBVs

(i.e., 2.1 genetic SD) created between the 200 PERS+ and 202 PERS- ewes.
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The discriminant model defined for SCS lines included 100 principal components (63% of

variance explained) and 17 variables. The SCS+ and SCS- ewes could be discriminated on the

basis of their ruminal bacteria (Fig 2). Table 1 includes the 34 OTUs most associated with the

SCS lines in each of the first 2 principal components. Only two OTUs were removed from the

abundance table because of zero values for all samples. The BER obtained from the model was

0.50, and the first two principal components explained 4% of the variance.

The Prevotella genus was well represented, with 11 OTUs associated with either the SCS

+ or the SCS- ewes, through components 1 and 2 (Table 1). Only OTU1145 was associated

with SCS- ewes for the two main components. The Christensenellaceae R-7 group genus

appeared to be associated with SCS- ewes in PC1, but in PC2, OTU285 and OTU382 belonging

to this same genus were associated with SCS+ ewes. The family Lachnospiraceae was well rep-

resented by Lachnospiraceae NK3A20 group, Lachnospiraceae NK4A136 group and Lachnospir-

aceae AC2044 group, which were associated with either SCS- or SCS+ ewes.

The discriminant model for PERS lines included 120 principal components (62% of vari-

ance explained) and 5 variables. The PERS+ and PERS- lines could not be discriminated

according to their ruminal bacteria (Fig 3). Table 2 includes the 10 OTUs most associated with

the PERS lines in each of the first 2 principal components. The BER obtained from the model

was 0.71, and the first two principal components explained 2% of the variance. The Prevotella

genus, represented by OTU1482 (PC1) and OTU1395 (PC2), was positively associated with

PERS- ewes. In addition, the PERS- line was associated withOscillospiraceae NK4A214, Blautia

and an unknown genus (order Clostridia UCG-014) through component 1 and with Strepto-

coccus through component 2. Thus, the genera Ruminococcus and Oscillospiraceae NK4A214

were associated with PERS+ ewes.

Fig 1. Percentage of zero values in data by genetic line. SCS+ and SCS- as somatic cell score lines susceptibility/
resistance, and PERS+ and PERS- as milk persistency line high/low persistence.

https://doi.org/10.1371/journal.pone.0254874.g001
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Regression analysis between ruminal bacterial abundance and milk traits

The sPLS regression model included 150 components and 9 variables. Fig 4 shows only the 17

most representative OTUs from PC1 and PC2 (OTU1593 was representative for both compo-

nents and all traits).

Daily milk production and SCS were each correlated with one OTU of the genus Prevotella

(Fig 4). Milk FC and PC had similar correlations with 5 common OTUs: they were negatively

correlated with 2 PrevotellaOTUs (R = [-0.11;-0.13], P< 0.01) and with Suttonella (R =

[-0.09;-0.12], P< [0.05;0.01]) and positively correlated with Lachnospiraceae NK4A136 group

(R = [0.10;0.15], P< [0.05;0.01]) and Christensenellaceae R-7 group (R = [0.09;0.11], P<

[0.05;0.01]). Moreover, PC was specifically correlated with Endomicrobium, while FC had

numerous correlations, such as positive correlations with Lachnospiraceae probable genus 10

and Christensenellaceae R-7 group, negative correlations with 2 RuminococcusOTUs and vari-

able correlations with 2 OTUs of theMuribaculaceae family (R = [0.12;-0.14], P< 0.01).

αs1-CN, κ-CN and β-lactoglobulin were positively correlated with Lachnospiraceae

NK4A136 group (R = [0.13;0.16], P< 0.01) and negatively correlated with Prevotella and Sutto-

nella (R = [-0.14;-0.16], P< 0.01). To a lesser extent, Christensenellaceae R-7 group and the

familyMuribaculaceae showed positive and negative correlations with αs1-CN and κ-CN,
respectively (Fig 4). αs2-CN and β-CN exhibited the same trend as the other caseins but with

weaker correlations: negative correlations with Suttonella and Prevotella and positive correla-

tions with Lachnospiraceae NK4A136 group. α-Lactalbumin was clearly different from the

other protein since it was positively correlated with Prevotella and with an unknown genus of

the familyMuribaculaceae (R = [0.15;0.18], P< 0.001), while the families Lachnospiraceae and

p-251-o5 showed negative correlations with this protein (R = -0.11, P< 0.01).

Fig 2. Sparse partial least squares discriminant analysis between divergent somatic cell score (SCS) lines. SCS+: ewes selected for high
somatic cell score i.e. susceptible to mastitis; SCS-: ewes selected for low somatic cell score i.e. resistant to mastitis.

https://doi.org/10.1371/journal.pone.0254874.g002
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The strongest correlations were observed with SFAs, which were negatively correlated with

all 4 PrevotellaOTUs selected by sPLS analysis and with Suttonella, particularly for C10:0 and

C12:0 (R = -0.16, P< 0.001). Some genera of the phylum Firmicutes were correlated with SFAs.

For example, 2 OTUs belonging to Christensenellaceae R-7 group were positively correlated

with SFAs, and 2 OTUs belonging to Ruminococcus were negatively correlated with SFAs. An

unknown genus of theMuribaculaceae and the p-251-o5 family showed the maximum correla-

tions of 0.20 (P< 0.001) with C10:0.

Compared to SFAs, MUFAs had fewer significant correlations with OTUs. As presented in

Fig 4, the MUFA cis-9 C18:1 was negatively associated with Endomicrobium and Prevotella,

while the PUFA C18:3n-3 was positively associated with Christensenellaceae R-7 group and

Probable genus 10 and negatively associated with Prevotella and an unknown genus ofMuriba-

culaceae. Finally, cis-9 trans-11 C18:2 was not correlated with any of the 17 OTUs selected by

sPLS analysis.

Discussion

Bacteroidetes, Firmicutes and Proteobacteria were the most dominant phyla in the rumen of

dairy ewes. The same phyla were reported by other authors studying sheep [11, 33] and dairy

cows [7–9, 34–37] with different rumen sampling methods and statistical analysis.

The analysis of microbiome abundance data with the commonly applied methodology [7–

9, 34, 37], i.e., data treatment with a normalization process, such as rarefaction, and using non-

metric distances (i.e., Bray Curtis), provides results that seem satisfactory, irrespective of the

compositional nature of the data. However, statistical knowledge since Pearson [38] has shown

that processing such data without considering them as compositional could lead to spurious

Table 1. Loading values per OTU with genus affiliation, associated genetic line and percentage of abundance, for the two first components from the somatic cell
score (SCS) line sparse partial least squares discriminant analysis.

Affiliated genus OTU PC1 Line Abundance (%) Affiliated genus OTU PC2 Line Abundance (%)

Prevotella 14 0.40 SCS+ 0.80 Prevotella 1064 0.35 SCS- 0.01

Ruminococcaceae/ unknown genus 501 0.34 SCS+ 0.04 Prevotella 1092 0.34 SCS- 0.05

Prevotella 819 0.27 SCS+ 0.01 Ruminococcus 657 0.32 SCS- 0.02

Prevotellaceae UCG-001 467 0.25 SCS+ 0.08 Prevotella 112 0.23 SCS+ 0.13

F082/unknown genus 3286 0.13 SCS+ 0.01 Lachnospiraceae NK4A136 group 2186 0.22 SCS- 0.01

Lachnospiraceae AC2044 group 230 0.08 SCS+ 0.08 Prevotellaceae YAB2003 group 517 0.17 SCS- 0.10

Prevotella 1486 0.08 SCS+ 0.01 Anaeroplasma 220 0.16 SCS- 0.06

Lachnospiraceae NK3A20 group 625 -0.06 SCS- 0.02 Prevotella 1145 0.11 SCS- 0.03

Clostridia UCG-014/ unknown genus 530 -0.09 SCS- 0.05 Christensenellaceae R-7 group 382 -0.02 SCS+ 0.19

Prevotella 1145 -0.12 SCS- 0.03 F082/unknown genus 2208 -0.03 SCS+ 0.01

Moryella 328 -0.15 SCS- 0.04 Pseudoramibacter 226 -0.08 SCS+ 0.04

Syntrophococcus 1739 -0.19 SCS- 0.01 Christensenellaceae R-7 group 285 -0.19 SCS+ 0.17

Fibrobacter 1640 -0.23 SCS- 0.02 Family XIII UCG-001 450 -0.24 SCS+ 0.04

F082/ unknown genus 175 -0.26 SCS- 0.08 Mogibacterium 79 -0.26 SCS- 0.17

Prevotella 367 -0.33 SCS- 0.05 Prevotella 443 -0.29 SCS+ 0.05

Prevotella 1842 -0.34 SCS- 0.01 Lachnospiraceae NK3A20 group 39 -0.31 SCS+ 0.27

Christensenellaceae R-7 group 2009 -0.36 SCS- 0.01 Oscillospiraceae/ unknown genus 538 -0.36 SCS+ 0.04

When the genus is unknown, the family affiliation is included before the backslash (/).

OTU, identification number of the operational taxonomic unit.

PC1, first principal component; PC2, second principal component.

Abundance (%), expressed as percentage of total sequences.

https://doi.org/10.1371/journal.pone.0254874.t001
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correlations. More recently, Gloor et al. [14] pointed out that the use of traditional methods to

analyse data without considering their compositional nature can lead to “misleading and

unpredictable” results [13, 14, 16].

Thus, this work aimed to apply compositional data analysis to the rumen bacterial metagen-

ome obtained by metabarcoding and to correct for technical and zootechnical effects in order

to obtain robust and reproducible results. The compositional workflow of the study consisted

of the following steps:

Fig 3. Sparse partial least squares discriminant analysis between divergent milk persistency (PERS) lines. PERS+: ewes selected for a
high milk persistence; PERS-: ewes selected for a low milk persistence.

https://doi.org/10.1371/journal.pone.0254874.g003

Table 2. Loading values per OTU with genus affiliation, associated genetic line and percentage of abundance, for the two first components from the milk persis-
tency (PERS) line sparse partial least squares discriminant analysis.

Affiliated genus OTU PC1 Line Abundance (%) Affiliated genus OTU PC2 Line Abundance (%)

Prevotella 1428 0.79 PERS- 0.01 [Eubacterium] coprostanoligenes group/ unknown
genus

1501 0.39 PERS+ 0.01

Clostridia UCG-014/ unknown
genus

411 -0.22 PERS- 0.04 Prevotella 1395 0.11 PERS- 0.01

Blautia 216 -0.29 PERS- 0.07 Streptococcus 634 -0.15 PERS- 0.04

Oscillospiraceae NK4A214 292 -0.34 PERS- 0.07 Anaerovoracaceae/ unknown genus 1131 -0.58 PERS+ 0.02

Ruminococcus 537 -0.36 PERS
+

0.05 Oscillospiraceae NK4A214 823 -0.69 PERS+ 0.02

When the genus is unknown, the family affiliation is included before the backslash (/).

OTU, identification number of the operational taxonomic unit.

PC1, first principal component; PC2, second principal component.

Abundance (%), expressed as percentage of total sequence.

https://doi.org/10.1371/journal.pone.0254874.t002

PLOS ONE Compositional analysis of ruminal bacteria from dairy sheep

PLOSONE | https://doi.org/10.1371/journal.pone.0254874 July 26, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0254874.g003
https://doi.org/10.1371/journal.pone.0254874.t002
https://doi.org/10.1371/journal.pone.0254874


1. Zero values were corrected with the GBMmethod [19]. Theoretically, this method is appro-

priate since it generates a minor distortion in the ratios between OTU abundances, based

on the correction of zero values and the multiplication of non-zero values. In addition, the

GBMmethod considers the multivariate nature of microbiome data through a Bayesian

model, where new values are generated on the basis of the posterior probabilities of zero

values in the raw data.

2. OTU abundance was CLR transformed. This transformation allows a simple interpretation of

the biological results, since each OTU in each sample is compared with the geometric mean of

the sample. The limit of CLR transformation is that OTUs remain dependent because of the use

of the geometric mean. Therefore, CLR transformation partially solves the problem identified

by Pearson in 1897 [38]. However, the statistically correct alternative to CLR transformation

proposed by Egozcue et al. [17], i.e., the ILR transformation, does not allow easy interpretation

of the results [39]. Indeed, ILR transformation works with balances (linear combinations of

OTUs) to achieve total independence among the OTUs, and it is currently not possible to back-

transform the results after multivariate analyses. Further work is needed in this sense.

3. The microbiome and phenotypic data were adjusted through linear models. These models

must include in their definition batch effects [20] which are any unwanted source of

Fig 4. A correlation matrix heatmap between bacterial taxa and milk traits.OTUs selected by the 2 first components of the sparse
least squares analysis; daily milk production (MP), somatic cell score (SCS), daily milk protein contents (PC), daily milk fat content
(FC), milk fatty acids (butyric acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), palmitic
acid (C16:0), oleic acid (cis-9 C18:1), conjugated linoleic acid (cis-9 trans-11 C18:2) and α-linoleic acid (C18:3n-3), expressed as % of
total fatty acids) and milk proteins, as casein (CN) (αs1-CN, αs2-CN, β-CN, κ-CN, expressed as % of total proteins), and soluble
proteins (α-lactalbumin and β-lactoglobulin, expressed as % of total proteins).

https://doi.org/10.1371/journal.pone.0254874.g004
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variation representing biological and technical effects. When the effects are balanced in the

experiment, linear models are an interesting method to correct for batch effects [20]. From

these models, the residual values (variation not explained by the included effects), which

are ultimately the input values for multivariate analyses, are obtained. However, the conse-

quence of using residual values for sPLS-DA and sPLS analyses is that the remaining varia-

tion in the residuals exploited by these regression models is reduced, as shown below.

In this way, we considered not only the nature of the available microbiome data to work in

the appropriate geometric space (Euclidean) but also the residuals to allow a more correct

analysis of the effect under study, i.e., the genetic lines based on SCS and PERS.

Discriminant analysis

Discriminant analysis for both the SCS and PERS lines showed low explained variance (Figs 2

and 3) for the first two principal components. Using residuals leads to a smaller variance of the

values and therefore affects the variance explained by the discriminant effect for the first com-

ponents. As a result, it is necessary to include a large number of components in the analysis.

Variable selection was performed through the CLR-lasso method and allowed some OTUs

with low abundance that carried irrelevant information to be excluded.

Since all ewes were Lacaune breed receiving the same diet and batch effects (except that of

line) were corrected for by the linear model, the remaining variation in the rumen bacteria

may be explained by the genetic lines. In spite of this, the variance among the genetic lines was

not explained by the composition of the host animal’s microbiome for PERS, and only slightly

for SCS. This is demonstrated by the BER obtained for the sPLS-DA analyses of 0.50 for SCS

and 0.71 for PERS. Nevertheless, Fig 2 shows a slight difference between the SCS+ and SCS-

lines, despite only 4% of the total variance being explained (for both components). Some

OTUs assigned to Prevotella, Christensenellaceae R-7 group and unknown genus of the family

Ruminococcaceae were the main discriminants for the first component (Table 1). Zhong et al.

[36] did not report differences in these three genera between the rumens of cows with pheno-

typically high and low SCCs; in this comparison, the authors noticed only enrichment of Pro-

teobacteria (especially an unclassified Succinivibrionaceae) in the ruminal microbiota of cows

with low SCCs. In our study, these OTUs were not significantly different according to SCS.

Therefore, the hypothesis of a link between selection on SCS and modifications in the rumen

microbial population was not rejected, but its validity remains unclear in terms of the bacteria

involved. The PERS line analysis revealed a complete absence of differences between PERS

+ and PERS- ewes, as shown in Fig 3. However, three OTUs presented loading values greater

than 0.5 (Table 2) along PC1 and PC2, and they belonged to Prevotella, Oscillospiraceae

NK4A214 and an unknown genus of Anaerovoracaceae. Nevertheless, there was no hypothesis

of a correlated response of ruminal microbiome abundance to PERS selection.

The results for both divergent lines suggest that genetic selection for zootechnical traits,

such as udder health and milk production curves, did not modify the abundance of rumen

bacteria and therefore the animals’ ability to digest their feed.

Links between ruminal bacteria and milk traits

Daily milk production was positively associated with a PrevotellaOTU, similar to the results

reported by Huang et al. [40]. This genus is known to have major metabolic activity in the pro-

duction of propionate [41], which is the main precursor for gluconeogenesis in the liver [1]

leading to lactose production. Some authors [9, 35] reported that some genera of the Lachnos-

piraceae family were positively correlated with daily milk yield, while we found that two OTUs
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affiliated with this family were weakly but negatively associated with daily milk production, as

reported by Huang et al. [40]. The results obtained in dairy cows can be considered as refer-

ences for dairy sheep, since as shown [42] the differences in terms of rumen microbiota

among species are smaller when the diet is based on a mixture of forage and concentrates.

The SCS was correlated with a PrevotellaOTU, but a possible association between this

genus and the SCC in milk has not been reported, and these results are in line with the diffi-

culty of differentiating the genetic lines selected for SCS. As expressed by Zhong et al. [36], the

bacterial communities in the rumen are stable in animals with different SCCs, and this is prob-

ably true of ewes, where mastitis is overwhelmingly sub-clinical. However, the main hypothesis

is a link between the intestinal microbiota and intramammary infection (i.e., clinical mastitis)

[43].

Concerning milk composition, we identified two groups of OTUs (Fig 4): group 1, with

negatively linked OTUs belonging to Prevotella, Suttonella, Ruminococcus and Endomicro-

bium, and group 2, with positively linked OTUs belonging Lachnospiraceae NKA136, probable

genus 10, Rikenellaceae RC9, Ruminococcaceae, Christensenellaceae and p-251-o5. Muribacula-

ceae was represented by one OTU in the two groups, and for α-lactalbumin and daily milk

production, the relation was reversed. Group 1 was represented mostly by propionic acid and

proteolytic bacteria such as Prevotella [41], Suttonella [44] and some Ruminococcus [45], char-

acterized by increasing milk production with a possible dilution of milk components. In con-

trast, group 2, with mostly butyric and acetic acid-producing bacteria such as Lachnospiraceae

[46], had less proteolytic activity [47, 48], leading to the opposite effect for the concentration

of milk components. These results are in accordance with other studies in dairy cows that also

found Prevotellaceae family negatively correlated with milk fat, and Lachnospiraceae positively

correlated with milk fat and protein contents [8, 37, 49].

In sheep [33] as well as in cows [50] a close relationship between the rumen microbiota

composition and short-chain fatty acids in rumen was reported that could influence the syn-

thesis of milk components. Therefore, the most likely hypothesis is that bacteria of group 2,

through butyric and acetic acid, promote the production of short- and medium-chain SFAs.

In conclusion, this study applying the compositional data approach to a significant sample

size of Lacaune dairy ewes revealed that rumen bacteria belonging to Prevotella, Suttonella,

Ruminococcaceae and Lachnospiraceae are associated with milk production traits such as milk

fatty acids and proteins. However, despite the large genetic differences between lines, ruminal

bacteria were able to only weakly discriminate between SCS lines and unable to discriminate

between PERS lines. Although dilution of the ruminal samples by saliva could be expected,

correction of the rumen microbiota for the number of sequences per sample could have

reduced this effect.

Since some abundant OTUs were correlated with milk composition traits, it would be inter-

esting to further investigate the mechanism by which rumen bacterial metabolites affect milk

composition traits in order to understand the relationships detected in this work.
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Conclusion of section 4.2 

The idea that microbiota data is compositional is not new, as far back as 2017 Gloor et al. stated 

that . However, in this work, 

a theoretical framework of compositional data theory is given, and a workflow is proposed 

which is tested with a real dataset. The compositional data workflow consists of: 

  

To conclude, microbiota data is compositional and methodologies must be adapted 
accordingly. The rumen microbiota abundances were not able to discriminate divergent 
genetic lines for mastitis resistance or for milk persistency. A small group of OTUs which 

contribute the most to the microbial community variance showed low phenotypic 
correlations with fine milk composition traits. 

 

4.3 Variation in rumen bacteria of Lacaune dairy ewes from one week to the next 
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Bacteria are the most abundant microorganisms in the rumen microbiota and play essential 

roles, mainly fermenting plant compounds that yield fatty acids. In this study, we aimed 

at assessing stability of both bacterial composition and of its associations with rumen 

and milk fatty acids phenotypes over a 1-week period. The study was performed using 

118 Lacaune dairy ewes from the INRAE Experimental Unit of La Fage. Rumen and milk 

samples were obtained from the ewes twice, 1 week apart, and microbiota composition, 

volatile and long-chain fatty acid concentrations were analyzed. Bacterial composition 

was assessed using 16S rRNA gene sequencing, and microbiota and fatty acids were 

analyzed as compositional data. As we worked with relative abundances expressed in a 

constrained space, the centered log-ratio transformation enabled to transform data to 

work with multivariate analyses in the Euclidian space. Bacterial composition differed 

between the 2 weeks of sampling, characterized by different proportions of the two main 

phyla, Bacteroidetes and Firmicutes. The repeatability of the operational taxonomic units 

(OTUs) was low, although it varied significantly. However, 66 of them presented a 

repeatability of over 0.50 and were particularly associated with fatty acid phenotypes. 

Even though the OTUs from the same bacterial families presented similar correlations to 

fatty acids in both weeks, only a few OTUs were conserved over the 2 weeks. We proved 

with the help of sequencing data that there is significant change in microbial composition 

over a week in terms of abundance of different families of bacteria. Further studies are 

required to determine the impact of bacterial composition alterations over 1 week, and 

the specificities of the highly repeatable OTUs.

Keywords: rumen bacteria, dairy sheep, fatty acids, compositional data, stability, repeatability

INTRODUCTION

Ruminant evolution resulted in adaptations to digest plant fiber efficiently through the development 
of multi-chamber stomachs hosting a microbiota composed of bacteria, archaea, protozoa, and 
fungi (Dehority, 2003). Among these organisms, bacteria are the most abundant and contribute 
the most to energy production, mainly volatile fatty acids (VFAs), from the fermentation of 
plant carbohydrates (Hungate, 1966). They are also involved in lipolysis and biohydrogenation 
(Hungate, 1966) and thus influence the long-chain fatty acid (LCFA) composition in the rumen, 



Frontiers in Microbiology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 848518

Fresco et al. Rumen Bacterial Variation in Ewes

which in turn greatly determines milk LCFA composition 
(Lourenço et al., 2010; Jami et al., 2014; Buitenhuis et al., 2019).

The rumen bacterial composition of adults can be influenced 
by biological factors, such as diet (Fernando et  al., 2010; 
Henderson et al., 2015), parity (Pitta et al., 2014), and genetics 
(Sasson et  al., 2017; Difford et  al., 2018). Technical and 
computational factors may induce bias in the observed bacterial 
composition (Wang and LêCao, 2020). Some of the main factors 
include sampling techniques (Geishauser and Gitzel, 1996; 
Lodge-Ivey et al., 2009; Henderson et al., 2013), the bioinformatics 
pipeline (Schloss, 2010), and the statistical approach, including 
normalization method and tests applied to the data (McMurdie 
and Holmes, 2014). A specific methodology must be  applied 
to microbiota data which is considered as compositional data 
(Gloor et al., 2017), as the only relevant information is contained 
in the ratios between the variables, and not in their 
numerical values.

Microbiota stability can be  defined as the conservation of 
bacterial proportions at different taxonomic levels over a period 
of time, or high repeatability of bacterial abundance. Studies 
have shown that during adulthood of ruminants, bacterial 
composition appears to vary over long periods (3–4 months; 
Bainbridge et  al., 2016; Zhu et  al., 2021), but to be  stable 
over shorter ones (3 days to 2 weeks; Skarlupka et  al., 2019; 
Huang et  al., 2020; Mamun et  al., 2020). However, few studies 
focused on the short period rumen bacterial stability, and 
small numbers of animals were used, varying from 5 to 12 
for above cited studies.

Assessing whether bacterial composition is stable over short 
periods of time is essential to confirm that phenotypic correlations 
between rumen microbiota and rumen and milk fatty acids 
are independent from sampling time and the influence of 
environmental factors (i.e., diet). The objective of this study 
was to answer the following two questions: Is the rumen 
bacterial composition of dairy ewes stable over a short period? 
Does it affect the correlations of bacteria with rumen and 
milk fatty acids?

MATERIALS AND METHODS

Animals and Experimental Design
Data were obtained from 118 Lacaune dairy ewes reared on 
the Experimental Unit La Fage (INRAE UE 321 agreement 
A312031, Roquefort, France). The genetic structure of the 
INRAE La Fage flock includes independent divergent genetic 
lines of Lacaune dairy ewes: two selected for milk SCS, based 
on estimated breeding values (EBVs) for milk SCS, and the 
other two for PERS, based on EBVs for the coefficient of 
variation of milk production on the testing day. Two groups 
of ewes with extreme EBVs were created according to the 
log-transformed somatic cell count (SCC): a high-SCS line 
(SCS+) and a low-SCS line (SCS−). And also, two extreme 
groups of ewes were generated, one with high persistence 
(PERS+) and one with low persistence (PERS-) in the milk 
production curve (Table  1). Ewes were in second (n = 67) or 
third lactation (n = 51), ranging from 119 to 133 days in milk, 

and were milked twice a day (8 a.m. and 5 p.m.) with an average 
daily production of 1.53 ± 0.30 kg. Ewes were fed with a total 
of 7 kg of a mixture composed of 72% grass silage, 21% hay, 
and 7% barley (on a DM basis) after morning and evening 
milkings. They were also supplied with 100 g of barley and 
100 g of a commercial protein-rich concentrate (Brebitanne®, 
RAGT, Albi) in the milking parlor. Ewes had free access to 
water and stayed indoors with no access to grazing.

Samples and Data Collection
Samples were collected on 2 days that were 1 week apart, 
following the same protocol. The animal was immobilized 
standing in a restraint cage, and a medical gastric tube introduced 
into the esophagus until reaching the rumen, the introduction 
depth being standardized by a graduation on the tube. The 
vacuum pump was turned on once the gastric tube in the 
rumen and turned off before removing it. The sample was 
placed in a cold storage box for transport to the lab, where 
three aliquots were collected: (1) the first aliquot of 2 ml for 
microbiota analysis; (2) the second aliquot of 5 ml of rumen 
fluid was mixed with 0.2 ml of sulfuric acid (25% v/v) for 
VFA analysis; and (3) the last aliquot of 40 ml for LCFA analysis. 
All three aliquots were frozen and stored at −20°C until analysis, 
except for those used for microbiota analysis, which were stored 
at −80°C. The gastric tube was cleaned with hot water after 
each collection.

Rumen samples were collected before milking from each 
animal. For both days of sampling, a first group of 60 animals 
were collected from 8:30 to 11:30 a.m. and a second group of 
60 animals were collected from 1:30 to 4:30 p.m. The same 
ewes were always sampled in the morning or the evening. To 
avoid dilution of samples by water, the ewes were denied access 
to water 2 h before sampling. Animals did not have access to 
feed from the previous evening (10:00 p.m.) for the group 
sampled in the morning, and from the early morning (7:00 a.m.) 
for the group sampled in the afternoon. Consequently, the 
number of hours of fasting varied from 6.5 to 13.5 depending 
on the order and moment of sampling.

For each of the 2 weeks, milk yields were recorded on the 
previous evening and the morning of the sampling day, and 
milk samples were collected and preserved with bronopol 
(Agrolab, Aurillac, France) for milk composition analysis or 
by immediate freezing for LCFA analysis. Somatic cell count 
and fat and protein contents analyses were performed on both 

TABLE 1 | Number of animals per genetic line and genotype.

Genetic lines1

Genotypes2 PERS+ PERS− SCS+ SCS−

CC 21 25 18 23

CT 9 4 10 7

TT 0 0 1 0

1Genetic lines selected for high (PERS+) and low (PERS−) milk persistency or high 

(SCS+) and low (SCS−) somatic cell score.
2C being the wild allele and T the mutant allele of the SOCS2 gene.
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the evening and the morning milk samples. LCFA analysis 
was performed on the morning milk samples only.

Bacterial DNA Extraction, PCR 
Amplification, and Sequencing
Total DNA from 80 μl of rumen samples was extracted and 
purified using the QIAamp DNA Stool Mini Kit (Qiagen Ltd., 
West Sussex, United Kingdom) according to the manufacturer’s 
instructions, with a bead-beating step in a FastPrep instrument 
(MP Biomedicals, Illkirch, France). The 16S rRNA V3–V4 
regions gene of the extracted DNA strands were amplified 
(first PCR: 30 cycles) with the primers F343 (5′-CTTT 
CCCTACACGACGCTCTTCCGATCTACGGRAGGCAGCAG-3′; 
Liu et  al., 2007) and R784 (5′-GGAGTTCAGACGTGTG 
CTCTTCCGATC TTACCAGGGTATCTAATCCT-3; Andersson 
et  al., 2008). As Illumina MiSeq technology enables 250 bp 
reads, the ends of each read were overlapped and stitched 
together to generate full-length reads of the entire V3 and 
V4 regions in a single run. Single multiplexing was performed 
using a 6 bp index, which was added to R784 during a second 
round of PCR with 12 cycles using the forward primer 
(AATGATACGGCGACCACCGAGATCTACACTCT TTCCCT 
ACACGAC) and reverse primer (CAAGCAGAAGACGGCA 
TACGAGATGTGACT GGAGTTCAGACGTGT). The PCR 
products were purified and loaded onto an Illumina MiSeq 
cartridge (Illumina, San Diego, CA, United  States) at the 
Genomic and Transcriptomic Platform (INRAE, Toulouse, 
France) according to the manufacturer’s instructions.

Sequence reads were demultiplexed, and each paired-end 
read was assigned to its sample based on the previously integrated 
index, and processed with the FROGS 3.0 pipeline (Escudié 
et  al., 2018). The procedure consisted of the following steps: 
(1) read pre-processing, removing sequences with primer 
mismatch, displaying unexpected length (<300 or >500 bp), or 
with ambiguous bases; (2) sequence clustering with denoising 
and one sequence difference between each of the three aggregation 
steps of clustering; (3) chimera removal; (4) cluster filtering 
with Bokulich filter (removing clusters with abundances <0.005%; 
Bokulich et al., 2013); and (5) taxonomy assignment to operational 
taxonomic units (OTUs) using the SILVA 138.16S pintail 100 
database. From this process, an abundance table containing 
the number of sequences per OTU and rumen sample 
was obtained.

Rumen Fatty Acids Composition Analyses
Two gas chromatography analyses were performed at the National 
Veterinary School of Toulouse (Toulouse, France) with rumen 
samples: one for VFAs and the other for LCFAs.

Six VFAs, acetic acid (C2:0), propionic acid (C3:0), butyric 
acid (C4:0), valeric acid (C5:0), isobutyric acid (iso-C4:0), and 
isovaleric acid (iso-C5:0), were quantified using automated gas 
separation, according to the method of Playne (1985) and 
modified as follows. The rumen samples were first centrifuged 
at 2,880 × g for 20 min to separate the liquid phase. For protein 
removal, 1 ml of supernatant was mixed with 200 μl of (25% 
v/v) metaphosphoric acid and further centrifuged at 20,000 × g 

for 15 min. Then, 100 μl of the supernatant was added to 75 μl 
(0.2% v/v) of 4-methylvaleric acid as an internal standard and 
900 μl of ultrapure water. From this mixture, 1 μl was then 
injected into a gas chromatograph (Hewlett Packard, Model 
7890A) equipped with a DB-FFAP column (30 m × 0.53 mm 
i.d., 1-μm film thickness, Agilent Technologies, Palo Alto, CA, 
United States) and an FID detector (Avondale, PA, United States). 
Chromatograms were integrated using Chromeleon software 
(Thermo Fisher Scientific, version 6.8, Waltham, MA, 
United  States). The sum of the six VFA concentrations was 
defined as the total concentration and was used to obtain the 
molar proportions of each VFA.

The LCFAs of rumen content were extracted and methylated 
in situ using the procedure described by Park and Goins (1994), 
except that the solution of 14% boron trifluoride in methanol 
was replaced by a solution of methanol–acetylchloride (10:1). 
Nonadecanoic acid (C19:0) was used as the internal standard 
at a dose of 0.8 mg. The fatty acid methyl esters (FAMEs) 
were then quantified by gas chromatography (Agilent 6890N, 
Network GC System, equipped with a model 7,683 auto injector, 
Agilent Technologies, Palo Alto, CA, United  States) using a 
fused silica capillary column (100 m × 0.25 mm i.d., 0.20 μm 
film thickness, CPSil 88, Varian, Middelburg, the Netherlands) 
as described by Zened et  al. (2011). Peaks were identified and 
quantified by comparison with commercial standards (Sigma 
Co., St Louis, MO, United  States), except for C18:1, C18:1 
trans-9, C18:1 trans-11, and C18:1 cis-9, which were identified 
by the order of elution. Chromatograms were integrated using 
the Peak Simple software (Peak Simple Data System, version 
2.83, SRI, Torrance, CA, United  States). Results are expressed 
as the percentage of total FAME. The 29 measured fatty acids 
(FAs) were: C12:0, C13:0, anteiso-C13:0, iso-C13:0, C14:0, iso-
C14:0, C15:0, anteiso-C15:0, iso-C15:0, C16:0, C17:0, 
anteiso-C17:0, iso-C17:0, C18:0, C18:1 cis-9, a mix of C18:1 
cis-11 and C18:1 trans-15, C18:1 cis-12, C18:1 cis-15, a mix 
of C18:1 trans-6, trans-7, trans-8, C18:1 trans-9, C18:1 trans-
10, C18:1 trans-11, C18:1 trans-12, C18:1 trans-16, C18:2, C18:2 
cis-9, trans-11, C18:2 trans-11, cis-15, C18:3, and C20:1.

Milk Composition Analyses
The four milk samples from each ewe were analyzed at Agrolab 
(Aurillac, France). Fat and protein contents were obtained using 
mid-infrared spectrometry (Milk-Scan™ FT 6000 instrument, 
Foss, Nanterre, France) and somatic cell count was quantified 
using a Fossomatic cell counter (Foss, Nanterre, France), to 
which a log-transformation was applied to obtain the SCS 
(Ali and Shook, 1980). The data were translated into daily 
variables. Daily milk yield was obtained by summing the 
morning and evening milk yields. Daily protein content, fat 
content, and SCS were computed as the average of the morning 
and evening values weighted by the corresponding milk yields.

Long-chain fatty acid percentages in total FAME were 
measured in the morning milk for the 2 weeks by gas 
chromatography at the National Veterinary School of Toulouse 
(Toulouse, France), following the same method as for the rumen 
samples. The 38 measured FAs included the 29 measured in 
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the rumen in addition to C4:0, C6:0, C7:0, C8:0, C9:0, C10:0, 
C11:0, C14:1, and C16:1.

Statistical Analysis
All analyses were performed using R software (R Core Team, 
2021)1. Statistical significance was set at p < 0.05.

Microbiota and fatty acids data are compositional data (Gloor 
et  al., 2017), meaning that the information is contained in 
the ratios between variables, not in the values themselves, due 
to the restrictions imposed by either the sequencing technology 
or the measurement unit (percentages). Thus, we  applied the 
compositional data approach proposed by Aitchison (1986) 
for the composition of OTUs and FAs. It consisted of imputing 
zero values in the data set to transform the counts into log-ratios 
using the centered log-ratio (CLR). Then, the multivariate 
analysis described in a previous study by Martinez Boggio 
et  al. (2021) was applied. Two approaches were applied to 
impute the zero values, considering their nature. In the bacterial 
abundance table, as zeros referred to a probability of count, 
geometric Bayesian multiplicative replacement was applied 
(cmultRepl function from the zCompositions package); in the 
LCFA datasets, the zero values reflected the detection limit of 
the chromatograph; thus, the expectation–maximization 
procedure was applied (lrEM function from the zCompositions 
package). Then, the CLR transformation was applied to OTUs, 
VFA, and LCFA data (clr function from the compositions  
package).

Table  2 presents the models used to correct the data for 
fixed effects and repeated measures (random animal effect) 
and the number of animals considered. Ewes were removed 
from OTUs models when one of their samples had a low 
sequencing quality (<500 OTUs). Ewes missing one of the 
two samples were removed from rumen and milk LCFA models. 
Ewes presenting values of VFAs under the detection limit of 
the gas chromatograph were removed. The fixed effects included 
in the models were: genetic lines (four levels: PERS−, PERS+, 

1 https://www.r-project.org/

SCS-, and SCS+), week of sampling (two levels: “week 1” and 
“week 2”), parity (two levels), SOCS2 genotype (two levels: 
“TT/CT” or “CC”), time after feeding (six levels of equal size), 
and number of sequences per sample (four levels of equal size).

The significance of the fixed effects was assessed using the 
ANOVA function from the sasLM package. For milk yield, 
fat and protein contents, SCS, and the six VFAs, the fixed 
effects were included in the model when they were significant. 
For OTUs, rumen, and milk LCFAs, fixed effects were retained 
in the models when they were significant for at least 10% of 
the variables. Linear mixed models were defined for each trait 
(one OTU being one trait), using the lmer function from the 
lmerTest package, and the corresponding variances of random 
animal and residual effects were obtained (VarCorr function 
from the lme4 package), allowing to compute the repeatability, 
defined as the animal variance divided by the total variance. 
Then, Spearman correlations were performed between the OTU 
repeatability values and their percentage of zeros or average  
abundance.

To perform multivariate analyses assessing the effect of the 
week, residuals of OTUs and FAs obtained from ANOVA were 
used without correcting for the week effect (Table  2). Sparse 
partial least square discriminant analyses (sPLS-DA) and sparse 
partial least square analyses (sPLS) were performed, to assess 
the influence of the week on bacterial composition and identify 
relationships between the OTUs and the FAs, respectively (spls 
and splsda functions from the mixOmics package). The sparse 
procedure allowed to reduce the number of components, i.e., 
the dimensionality of the analyses, and select only the most 
relevant variables, i.e., the OTUs, for each component. The 
number of components was previously chosen to explain 90% 
of the variance, using a principal component analysis. The 
number of variables retained by component was determined 
using the CLR lasso penalty method considering the penalization 
obtained with a 10-fold cross-validation (cv.glmnet and glmnet 
functions from the glmnet package).

The predictive ability of the sPLS-DA model was evaluated 
through the overall misclassification error rate after a 5-fold 
cross-validation repeated 10 times (perf function). For each 

TABLE 2 | Models for OTUs, VFAs, long-chain fatty acids (LCFAs) in the rumen, milk yield, fat and protein contents, somatic cell score, and LCFAs in the milk.

Variables Line SOCS21 Parity
Line x 

Parity2
Week

Line x 

Week2

Time after 

feeding

Number of 

sequences

Number of 

ewes

Rumen

OTUs ■ ■ ■ ■ ■ ■ 111

VFAs ♦ ♦ ♦ 116

LCFAs ■ ■ ■ ■ 116

Milk

LCFAs ♦ ♦ ♦ ♦ 117

Milk yield ♦ ♦ ♦ 118

Fat content ♦ ♦ ♦ 118

Protein content ♦ ♦ 118

Somatic cell score ♦ ♦ ♦ 118

1Genotype for the SOCS2 gene.
2x Represents the interaction between effects. 

■ Fixed effects selected while significant for at least 10% of the variable. 

♦ Fixed effects selected when significant for each variable.
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sPLS, the 20 OTUs presenting the highest association with 
the FAs were selected and Pearson correlations were computed. 
Only the FAs common in both weeks and having at least one 
significant correlation with the 20 selected OTUs were presented. 
Fisher exact tests were performed to estimate over- or under-
representation of specific phyla or highly repeatable OTUs 
among those selected for sPLS-DA and sPLS compared to 
all OTUs.

RESULTS

Rumen Bacterial Composition
A total of 2,500,763 sequences were obtained, with an average 
of 10,736 ± 3,745 reads per sample, grouped into 2,079 OTUs, 
with an average of 1,406 ± 211 OTUs per sample. Ten phyla 
were identified; the three major phyla, based on the percentage 
of sequences assigned to each phylum out of the total number 
of DNA sequences, were Bacteroidetes (53.5%), Firmicutes 
(35.4%), and Proteobacteria (6.2%). The other phyla were 
Fibrobacterota (2.7%), Spirochaetota (1.2%), Actinobacteria (0.5%), 
Patescibacteria (0.3%), and Desulfabacterota, Elusmicrobiota, and 
Campylobacterota, each lower than 0.2%. We  found that 81.2% 
of the DNA sequences enabled genus-level classification, resulting 
in the identification of 117 genera. The most important ones 
were Prevotella (30.78%), Lachnospiraceae_NK3A20_group (6.3%), 
Ruminococcus (5.3%), Christensenellaceae_R_7_group (4.7%), 
Sphingomonas (4.5%), and Rikenellaceae_RC9_gut_group (3.9%). 
The lowest taxonomic rank considered in this study was genus, 
as 92.7% of the reads were assigned to unknown species or 
were multi-affiliated species as expected with short 16S reads.

Fixed Effects and Repeatability
Operational taxonomic unit data were corrected by six effects 
that were significant for at least 10% of the OTUs: genetic 
lines (25.9%), week of sampling (16.2%), time after feeding 
(13.9%), number of sequences per sample (12.8%), parity 
(11.4%), and the interaction between the genetic line and parity 
(11.9%), with percentages in brackets indicating the percentage 
of OTUs for which the given factor was significant. The explained 
variance was estimated for all OTUs, resulting in an average 
of 0.12 ± 0.04, ranging from 0.03 to 0.50 according to OTUs.

Out of the 2,079 OTUs, 1,665 showed an estimated repeatability 
ranging from 0 to 0.93 with a median of 0.15 ± 0.14 (Figure 1). 
The remaining 414 OTUs had no estimate; linear models did 
not converge because of the small number of samples. Of the 
1,665 OTUs, 66 presented a repeatability of over 0.50, 
corresponding to a frequency of 4%. Spearman correlations 
were performed between the repeatability values of the OTUs 
and their percentage of zeros (R = −0.01, p = 0.50) and between 
the repeatability of the OTUs and their average abundance 
(R = 0.24, p < 0.001).

The repeatabilities ranged from 0.21 to 0.57 for VFAs, from 
0.05 to 0.50 for rumen LCFAs, and from 0.02 to 0.86 for 
milk LCFAs (Figure  1). The repeatability was 0.83 for milk 
yield, 0.74 for fat content, 0.77 for protein content, and 0.74 

for SCS. The models did not converge for the LCFAs C18:1 
trans-12 and C18:2 cis-9, trans-11  in the rumen and C20:1  in 
the milk.

Bacterial Composition Over One Week
The model of the sPLS-DA on bacterial composition over a 
week included 160 components and 57 variables per component. 
Based on OTU residual abundances, rumen samples were 
discriminated by the week of collection (Figure 2). The overall 
error rate of the model was 0.21. In the first component 
(Table  3), week 2 was characterized by a lower number of 
OTUs belonging to the phylum Firmicutes (p < 0.001) and a 
higher number of OTUs belonging to the phylum Bacteroidetes 
(p < 0.01) than when considering all OTUs. In the second 
component (Table  3), week 1 had a higher presence of OTUs 
from the phyla Firmicutes (p < 0.01) and a lower presence of 
OTUs from the phyla Bacteroidetes (p = 0.01) than when 
considering all OTUs.

In the first component, 49 OTUs among the 57 selected 
to discriminate week 1 and week 2 had a repeatability of less 
than 0.50 (Supplementary Table S1), three had a repeatability 
of over 0.50, and the remaining five OTUs did not have an 
estimated repeatability. In the second component (Supplementary  

Table S2), 44 OTUs of 57 had a repeatability of less than 
0.50, one had a repeatability of over 0.50, and the remaining 
12 OTUs had no estimated repeatability. The proportion of 
OTUs presenting repeatability values of less than 0.50 among 
the 57 selected for each component of the sPLS-DA was not 

FIGURE 1 | Repeatability values of the 1,599 operational taxonomic units 

(OTUs)* of the microbiota, the six volatile fatty acids (rumen VFAs), the 27 

rumen long-chain fatty acids* (rumen LCFAs), the 37 milk long-chain fatty 

acids* (milk LCFAs) and the traits milk yield, and fat content and protein 

content and somatic cell score (Milk yield & composition). Values indicate the 

median. *Repeatability values were estimated for the OTU and trait models 

that converged.
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significantly different from that considering all OTUs (p = 0.46 
and p = 0.47 for components 1 and 2, respectively).

Correlations Between Rumen Bacteria and 
Fatty Acid Phenotypes
Correlations Between Rumen Bacteria and VFAs

In both weeks 1 and 2, sPLS models for VFAs included 77 
components, with 152 variables retained per component in 
week 1 and 187  in week 2. For the two main components, 
the explained variance was 7 and 9% for weeks 1 and 2, 
respectively. The significant Pearson correlations between the 
20 most associated OTUs and iso-C4:0 and iso-C5:0 ranged 
from −0.49 to −0.19 and from 0.21 to 0.46 (Figure  3). Three 
OTUs were conserved between week 1 and week 2, and the 

corresponding correlations were of the same sign. For 
Lachnospiraceae and Rikenellaceae families, the sign of the 
correlation with a given VFA was the same for all the OTUs 
of the family on both weeks, while bacteria from Prevotellaceae 
family had both positive and negative correlations with the 
VFAs. Highly repeatable OTUs (> 0.50) were particularly selected 
by the sPLS on both weeks (p = 0.04 and p < 0.001 for weeks 
1 and 2, respectively).

Correlations Between Rumen Bacteria and 

Rumen LCFAs

For rumen LCFAs, sPLS models in both week 1 and week 2 
included 77 components, with 19 variables retained per component 
on week 1 and 15 on week 2. For the two main components, 
the explained variance was 7 and 8% for weeks 1 and 2, respectively. 
The significant Pearson correlations ranged from −0.51 to −0.19 
and from 0.19 to 0.48 for the 20 OTUs most associated with 
the five rumen LCFAs (Figure  4). Three OTUs appeared on 
both weeks, and the sign of their correlation was conserved. 
For Lachnospiraceae and Rikenellaceae families, the sign of the 
correlation with a given rumen LCFA was the same for all the 
OTUs of the family on both weeks, while bacteria from 
Prevotellaceae family had both positive and negative correlations 
with the rumen LCFAs. Highly repeatable OTUs (>0.50) were 
particularly selected by the sPLS on both weeks (p < 0.001).

Correlations Between Rumen Bacteria and Milk 

LCFAs

In both weeks 1 and 2, sPLS models for milk LCFAs included 
77 components, with 41 variables retained per component in 
week 1 and 54  in week 2. For the two main components, the 
explained variance was 6 and 9% for weeks 1 and 2, respectively. 
The significant Pearson correlations between the 20 most 
associated OTUs and C18:1 trans-11 and C18:2 trans-11, cis-15 
ranged from −0.39 to −0.22 and from 0.19 to 0.45 (Figure  5). 
Four OTUs were conserved between week 1 and week 2, two 
of which were also conserved in the VFA analysis (OTU_408 
and OTU_459), and the corresponding correlations were of 
the same sign. For Rikenellaceae and Ruminococcaceae families, 
the sign of the correlation with a given milk LCFA was the 
same for all the OTUs of the family on both weeks, while 
bacteria from Prevotellaceae family had both positive and 
negative correlations with the milk LCFAs. Highly repeatable 
OTUs (>0.50) were particularly selected by the sPLS on both 
weeks (p = 0.04 and p < 0.001 for weeks 1 and 2, respectively).

DISCUSSION

Biological, Technical, and Computational 
Effects
Bacteroidetes, Firmicutes, and Proteobacteria were the three main 
phyla observed in the rumen of adult dairy ewes fed a mixed 
diet of forages and concentrates, in accordance with that observed 
in sheep (Belanche et  al., 2019; Liu et  al., 2020) and cows 
(Bainbridge et  al., 2016; Plaizier et  al., 2017). However, the 

FIGURE 2 | Sparse partial least square discriminant analysis of the rumen 

bacterial composition between the 2 weeks of sampling. First component 

(Comp1) plotted against second component (Comp2) presenting the largest 

explained variance between weeks.

TABLE 3 | Number of OTUs belonging to the phyla Firmicutes and Bacteroidetes 

considering the 2,079 OTUs or the OTUs selected on the two main components 

for the sPLS-DA associated with each of the 2 weeks.

Total number of 

OTUs

Number of 

OTUs from the 

phyla Firmicutes

Number of OTUs 

from the phyla 

Bacteroidetes

All OTUs 2,079 880 1,026

Component 1

  week 1 25 12 8

  week 2 32 4 24

Component 2

  week 1 32 6 23

  week 2 25 8 15
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rumen bacterial composition is affected by various factors, 
mainly biological ones. The most known is the diet composition, 
often represented by the forage/concentrate ratio that can influence 
family and genus abundances (Henderson et al., 2015). Another 
one is the feeding time, influencing diurnal variations in bacterial 
concentrations in sheep fed once daily (Warner, 1966), with 
the abundance of families belonging to the phylum Firmicutes 
increasing with time after feeding (de Assis Lage et al., 2020). 
In addition, both parity and lactation stage affect bacterial 
composition by modifying the abundance of phyla and genera 
(Pitta et  al., 2014; Bainbridge et  al., 2016; Xue et  al., 2018). 
Although many authors have found some bacterial taxa to 
be common in all the animals in their study (Jami and Mizrahi, 
2012; Xue et  al., 2018; Huang et  al., 2021), interindividual 
variations in bacterial composition were observed, and evidence 
of genetic determinism of abundance of some bacteria has been 
raised by Sasson et  al. (2017) and Difford et  al. (2018).

Technical and bioinformatics processing factors are also 
known to greatly influence the observed bacterial abundance 
(Pollock et  al., 2018; Wang and LêCao, 2020). Diversity and 

relative abundances vary depending on the type of sampling 
(de Assis Lage et  al., 2020) and DNA extraction methods 
(Henderson et  al., 2013; Gerasimidis et  al., 2016). Considering 
sequencing strategies, the choice of primers influences the 
estimation of bacterial abundances (Tremblay et al., 2015; Fouhy, 
2016) while the sequencing platform influences the read length 
and error rate (D’Amore et  al., 2016; Kchouk et  al., 2017). 
The number of observed OTUs depends on the chosen pipeline, 
in particular, the clustering and filtering steps (Schloss, 2010). 
As the sequencing depth is highly variable among the samples, 
at random or depending on the sequencing run, normalization 
is usually applied to the data (McMurdie and Holmes, 2014; 
Weiss et  al., 2017).

As the current objective was to determine if the bacterial 
composition was stable over time, the week was the factor of 
greatest interest in this study. To allow proper observation, 
breed, diet, and lactation stages were experimentally controlled. 
Moreover, the same DNA extraction method was used for the 
samples of both weeks, only one sequencing run was performed, 
and the bioinformatic analysis included all samples. The other 

FIGURE 3 | Pearson correlations between bacterial OTUs and VFAs on both weeks of sampling. Only the 20 more correlated OTUs and VFAs having at least one 

significant correlation in both weeks with them were presented. In bold and blue, OTUs conserved from week 1 to week 2.
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effects, including genetic lines, SOCS2 genotype, parity, time 
after feeding, and sequencing depth were corrected through 
linear models following the methodology used by Martinez 
Boggio et  al. (2021).

Instability of Bacterial Composition
Assessing the stability of the bacterial composition over a short 
period of time will support minimizing repeated sampling, as 
they are invasive for the animals and time-consuming. It is 
essential to know if the results obtained at one sampling are 
reliable, whether the conclusions are the same 1 week later. In 
this study, two criteria were used to assess the stability of the 
bacterial composition. In the first criterion, bacterial composition 
was defined as stable when phyla, genera, and OTU proportions 
were conserved from 1 week to the next for the same animal. 
In the literature, various methods have been used for assessing 
bacterial composition stability, such as two one-sided tests 
(Skarlupka et  al., 2019), principal coordinate analysis, and 
analysis of similarity (Huang et  al., 2020; Mamun et  al., 2020). 

In the current study, considering the compositional nature of 
the data, we used multivariate analyses (working in the Euclidian 
space), such as sPLS-DA and sPLS. In the second criterion, 
at the OTU level, the repeatability of the OTUs was used to 
determine their stability, ranging from 0 (completely unstable) 
to 1 (completely stable), with OTUs having a repeatability 
greater than 0.50 being defined as stable. Another method, 
the Lin’s concordance correlation coefficient, which is also 
conceptually similar, was used by Zhu et  al. (2021) to estimate 
OTU stability.

Although the week effect was the second largest in the 
ANOVA, it was significant for only 16% of OTUs. A clustering 
of the samples by week was observed in the sPLS-DA, mainly 
characterized by different proportions of Bacteroidetes and 
Firmicutes, but less than 6% of the variance was explained. 
Even if the results of these two analyses suggested bacterial 
composition instability, the high unexplained variance made 
them inconclusive. As explained previously, various factors 
influencing bacterial composition cannot be  controlled or 
corrected for. In our study, such factors impacted the variance 

FIGURE 4 | Pearson correlations between bacterial OTUs and rumen long-chain fatty acids on both weeks of sampling. Only the 20 more correlated OTUs and 

rumen LCFAs having at least one significant correlation in both weeks with them were presented. In bold and blue, OTUs conserved from week 1 to week 2.
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explained in the ANOVA and the sPLS-DA analyses. They 
could be unrecorded technical effects such as (1) contamination 
from the oral cavity or saliva (Lodge-Ivey et  al., 2009; Terré 
et  al., 2012), (2) multiple relocation of the gastric tube in the 
rumen (Geishauser and Gitzel, 1996), and (3) variable proportions 
of solid and liquid phases (Henderson et  al., 2013; Vaidya 
et  al., 2018); or biological effects such as the stress induced 
by handling before and during sampling (Yoshihara and 
Ogawa, 2021).

However, the repeatability of 96% of the OTUs was under 
0.5, and it was this large proportion of non-stable OTUs 
(median repeatability of 0.15) that allowed us to state bacterial 
composition instability. Similar results were obtained by Jewell 
et  al. (2015); Bainbridge et  al. (2016); and Zhu et  al. (2021) 
when working over long periods of 75–122 days, which was 
expected because of the numerous effects that could alter 
bacterial composition. The 96% of non-stable OTUs (96%) 
obtained is consistent with the 97% found by Zhu et al. (2021). 
Contrasting with our results, some authors obtained stability 
over short periods, from 3 days to 1 week using analyses 

comparable to ANOVA and sPLS-DA (Skarlupka et  al., 2019; 
Huang et  al., 2020; Mamun et  al., 2020). However, they did 
not consider the compositional nature of the data neither 
computed the OTU repeatability that demonstrated that most 
of them were moderately repeatable (<0.50). Moreover, the 
number of animals used in this study was larger than in the 
previous ones, allowing for revealing small differences between 
weeks covered up by uncontrolled alterations of the bacterial 
composition. Those three specificities of our study allowed 
to clearly reveal bacterial composition instability over short  
periods.

Instability of Correlations With Fatty Acid 
Phenotypes
The biological links between OTUs and FA phenotypes were 
compared between week 1 and week 2 to discuss functional 
ruminal bacterial stability over time. At the OTU level, only 
three or four OTUs were conserved from week 1 to week 2, 
with similar correlations to FA phenotypes (Figures  3–5). 

FIGURE 5 | Pearson correlations between bacterial OTUs and milk long-chain fatty acids on both weeks of sampling. Only the 20 more correlated OTUs and the 

milk LCFAs having at least one significant correlation in both weeks with them were presented. In bold and blue, OTUs conserved from week 1 to week 2.
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However, we  found that OTUs belonging to a same family 
presented all correlations of the same sign for a given FA. This 
phenomenon was observed for some of the most predominant 
families in the rumen, namely Lachnospiraceae, Rikenellaceae, 
and Ruminococcaceae, and may suggest functional redundancy 
(Wohl et  al., 2004; Weimer, 2015; Louca et  al., 2018). That is 
to say, different OTUs belonging to the same family may have 
the same function, allowing them to maintain the organism 
function despite a variable microbial composition. In addition, 
OTUs from Prevotellaceae family presented both positive and 
negative correlations with the FAs. The main hypothesis to 
explain this observation is the large genetic and functional 
diversity of this family (Stewart et  al., 1997; Matsui et  al., 
2000). Further investigation of these aspects is not possible 
with 16S rRNA gene sequencing, because as stated by Plummer 
and Twin (2015), it does not allow access to the species and 
strain classification necessary to investigate the function of the 
bacteria identified.

The OTUs generally presented low repeatability, with only 
4% of them defined as stable. It is notable that stable OTUs 
were overrepresented among the OTUs highly correlated with 
FA phenotypes in both weeks, ranging from 3 to 11 among 
20. If the stable OTUs are considered as those having high 
genetic determinism, it was not surprising to find them highly 
associated with FA phenotypes, for which a significant part 
of the variability is related to animal genetics. The correlations 
between bacteria and FA phenotypes from week 1 to week 2 
were not conserved, but OTUs related to FA phenotypes appeared 
to be  the most repeatable.

Week-to-week variation in the rumen bacterial composition 
of Lacaune dairy ewes was observed, with only 4% of the 
OTUs being stable, which seemed to alter the correlations 
between microbiota and FAs phenotypes, as only a few OTUs 
were conserved between 1 week and the next. Even if FA 
phenotypes were not linked to the same OTUs from 1 week 
to the next, it is noticeable that they were particularly associated 
with stable OTUs, possibly due to common genetic determinism 
of those traits and OTUs. In conclusion, we  proved with a 
large dataset of 188 dairy ewes that bacterial composition and 
its phenotypic correlations with fatty acids are not transposable 
from 1 week to the next. Further work is necessary to confirm 
those results, as very few studies were performed on microbiota 
stability over short periods of time, and none using compositional 
data approach. We  hope that our study will be  a first step in 
identifying microbiota members with high repeatability and 
thus potential heritability, to then consider the possibility of 
genetic selection.
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Conclusion of section 4.3 

We studied the stability of the bacterial composition as microbial community or as individual 

OTU. We also evaluated the conservation from one week to the next of the associations between 

ruminal bacteria and FAs in milk and rumen. Although repeatability was low for most OTUs, 

66 bacterial abundances were quite stable and associated with milk and rumen FAs. 

Associations between microbial abundances and FAs were more conserved working at higher 

taxonomic levels, such as the family level rather than the OTU level.  

To conclude, the rumen bacterial abundances were not stable from one week to the next, 

but some phenotypic association between bacterial family abundances and milk and 
rumen FAs were conserved. The instability of rumen bacteria needs to be considered for 

future interpretations. 

 

4.4 Ruminal bacteria heritabilities: which is the impact of data processing? 
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Among livestock species, ruminants such as sheep have the ability to digest the plant fiber, 
thanks to the main action of symbiotic ruminal bacteria. Some authors studied the link between 
the microbiota and different complex traits in cattle, and more recently in sheep. But what is 
the level of host impact on ruminal bacterial composition? The aim of this study is to estimate 
the heritability of Operational Taxonomic Units (OTUs) and bacterial genera in a population of 
Lacaune dairy ewes.  

The data corresponds to 800 dairy Lacaune ewes raised at the INRAE Experimental Farm of 
La Fage (France). These ewes were adult animals, mostly in their second lactation, feeding the 
same diet (TMR), and the rumen sampling was done between 2015 and 2019. Ruminal 
metagenome was sequenced using metabarcoding (V3-V4 of gene of 16S rRNA) with Illumina 
Miseq technology. The microbiota sequences were analyzed with FROGS pipeline to obtain 
the relative abundances of 2,059 OTUs, grouped in 112 genera. In the abundance table the zero 
values were replaced with the GBM method, to allow for Centered Log-Ratio (CLR) transform 
all values.  

The additive host genetic effects on the rumen bacteria abundance were estimated applying a 
linear mixed model. The general equation included the OTUs and genera abundance as response 
variable; fixed effects, such as stage of lactation (45 to 133 DIM), lactation number (2 up to 7 
lactations), genetic line (SCS+, SCS-, PERS+, PERS- and SOCS genotype), run sequencing 
effect, date and year of the rumen sampling; and the individual animal random additive genetic 

2
a

2
a  is the additive genetic variance and A is the pedigree relationship 

matrix. 

With these methodologies, we will estimate the heritability of OTUs and bacterial genera in a 
population of Lacaune dairy ewes. 
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Conclusion of section 4.4 

In general, the heritability estimates obtained with the six methodologies presented a similar 

distribution with the most OTUs having heritabilities closed to zero. However, methods showed 

differences in the number of OTUs that passed the threshold of significance ( > 0.09). In this 

regard, the method Z01 which only replace the zero values in data, is the one that shows the 

greatest difference, and from a theoretical point of view, it distorts the ratios between OTUs. 

CLR and log-transformation results were quite similar, depending on the imputation of zero 

values by GBM or C1, but in general CLR retained a higher number of OTUs. 

To conclude, the processing of microbiota data has an impact on the estimates of genetic 
parameter, and it is recommended to use the compositional data approach. 

 

4.5 Conclusion 

Due to advances in NGS technologies, it is now very common to work with high-dimensional 

data, such as metagenomics. This chapter emphasizes the importance of working correctly by 

applying the most appropriate methodologies available, considering the nature of the data 

studied. Since microbial abundances are compositional data, we defined a workflow adapted, 

applied and compared with other data processing methods in terms of phenotypic and genetic 

estimates. However, the instability of the microbial composition and, to a lesser extent, of their 

associations with phenotypes over a short period of time will allow for us to put our future 

results into perspective.
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Chapter 5 

Host genetic control on 
ruminal microbiota 

 

5.1 Introduction 

In ruminants, it is well known that milk yield and fine composition are derived from nutrients 

in the diet that are available through digestion by the rumen microbiota (Hungate, 1966). This 

phenotypic link between rumen microbiota and milk traits was evidenced in Chapter 4, where 

rumen bacterial abundances were associated mainly with milk composition and rumen FAs. 

However, the correlations obtained were low to moderate for a small group of bacteria. To go 

further in understanding of these associations between rumen microbiota and phenotypes, it is 

first necessary to know what genetic control the host has over both. In sheep, milk composition 

traits and LSCS were known to be under a moderate to high genetic control of the host. But, 

there is no information on the heritabilities of rumen bacteria, neither genetic correlations 

between rumen bacteria and milk traits, nor potential genomic regions that determine the 

expression of both traits simultaneously. This will be key to answering questions such as: 

whether the host is able to control the microbial composition? and what mechanisms account 

for this control as well as associations with dairy traits? And furthermore, what role does the 

microbiota play in the control of diseases such as mastitis? The objectives of this chapter are to 

quantify the host genetic effect on rumen bacterial abundances and the genetic correlations 

between rumen bacterial abundance and milk and udder health traits, as well as to identify QTLs 

simultaneously associated with bacterial abundances and milk and udder health traits. 

Results obtained for bacteria heritabilities, genetic correlations and GWASs for rumen bacterial 

abundances and dairy traits, were published under the title Host genetic control on rumen 
microbiota and its impact on dairy traits in sheep  in Genetic Selection Evolution Journal 

in November 2022. As supplementary results to the aforementioned publication, we included 
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the distribution of the heritabilities for rumen bacteria, and the estimations of heritability for 

alpha-diversity indices. Secondly, the results obtained for the genetic correlations between 

rumen bacterial abundance and LSCS and two-trait GWAS were presented under the title 

 in Poster format at the 12th World Congress on Genetics Applied to Livestock 

Production in July 2022 in Rotterdam (The Netherlands). 

5.2 Host genetic control on rumen microbiota and its impact on dairy traits in sheep 
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Host genetic control on rumen microbiota 
and its impact on dairy traits in sheep
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Abstract 

Background: Milk yield and fine composition in sheep depend on the volatile and long-chain fatty acids, microbial 
proteins, vitamins produced through feedstuff digestion by the rumen microbiota. In cattle, the host genome has 
been shown to have a low to moderate genetic control on rumen microbiota abundance but a high control on dairy 
traits with heritabilities higher than 0.30. There is little information on the genetic correlations and quantitative trait 
loci (QTL) that simultaneously affect rumen microbiota abundance and dairy traits in ruminants, especially in sheep. 
Thus, our aim was to quantify the effect of the host genetics on rumen bacterial abundance and the genetic correla-
tions between rumen bacterial abundance and several dairy traits, and to identify QTL that are associated with both 
rumen bacterial abundance and milk traits.

Results: Our results in Lacaune sheep show that the heritability of rumen bacterial abundance ranges from 0 to 0.29 
and that the heritability of 306 operational taxonomic units (OTU) is significantly different from 0. Of these 306 OTU, 
96 that belong mainly to the Prevotellaceae, Lachnospiraceae and Ruminococcaceae bacterial families show strong 
genetic correlations with milk fatty acids and proteins (absolute values ranging from 0.33 to 0.99). Genome-wide 
association studies revealed a QTL for alpha-lactalbumin concentration in milk on Ovis aries chromosome (OAR) 11, 
and six QTL for rumen bacterial abundances i.e., for two OTU belonging to the genera Prevotella (OAR3 and 5), Rikenel-

eaceae_RC9_gut_group (OAR5), Ruminococcus (OAR5), an unknown genus of order Clostridia UCG-014 (OAR10), and 
CAG-352 (OAR11). None of these detected regions are simultaneously associated with rumen bacterial abundance 
and dairy traits, but the bacterial families Prevotellaceae, Lachnospiraceae and F082 show colocalized signals on OAR3, 
5, 15 and 26.

Conclusions: In Lacaune dairy sheep, rumen microbiota abundance is partially controlled by the host genetics and 
is poorly genetically linked with milk protein and fatty acid compositions, and three main bacterial families, Prevotel-

laceae, Lachnospiraceae and F082, show specific associations with OAR3, 5, 15 and 26.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Ruminants can digest plant fiber thanks to the symbi-
otic microbiota in their rumen. This complex micro-
bial community is composed mainly of bacteria but also 
includes archaea, fungi and protozoa. Bacteria degrade 

and ferment fibrous feedstuffs to produce volatile fatty 
acids (FA), microbial proteins and vitamins and to trans-
form dietary lipids, all of which are used by the animal 
for maintenance, growth and lactation [1]. The rumen 
microbiota has been shown to be associated with pro-
duction traits in dairy cows [2–4] and, more recently, in 
dairy sheep [5]. Furthermore, some authors have demon-
strated that rumen microbiota abundance is under low to 
moderate control by the host genome [2, 4, 6], which may 
provide the opportunity to select animals with specific 
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microbial communities that are associated with dairy 
traits. However, to date, there are no published studies 
on the genetic association between the rumen microbiota 
and milk traits in sheep.

In dairy sheep, fine milk composition traits are 
extremely important for the production of high-quality 
cheese. The FA present in milk influence its texture and 
nutritional value, and the proteins influence its coagula-
tion capacity, which in turn affect its heat stability and 
the cheese yield [7]. Dairy traits in sheep have moderate 
to high heritabilities ( h2 ) ranging from 0.30 to 0.60 [7, 8], 
and numerous quantitative trait loci (QTL) and major 
genes associated with dairy traits have been identified in 
the ovine genome [7, 9–11]. The detection of QTL con-
tributes to the identification of potential candidate genes 
and of the underlying mechanisms that determine the 
genetic expression of these relevant traits. However, for 
rumen microbiota abundance, there is limited informa-
tion about possible associated genomic regions. Thus, the 
identification of QTL that are simultaneously associated 
with rumen bacterial abundance and milk traits can help 
reveal the basis of the genetic link and the shared meta-
bolic pathways between the rumen microbiota and dairy 
traits in sheep.

We hypothesised that, in Lacaune ewes, rumen micro-
biota abundance is affected by the host genetics and is 
genetically linked to dairy traits through shared meta-
bolic pathways. Thus, based on the use of the dataset that 
was previously described by Martinez Boggio et  al. [5], 
the objectives of the current study were to (1) quantify 
the effect of the host genetics on rumen bacterial abun-
dance by estimating its heritability, (2) identify and quan-
tify the genetic links between rumen bacteria and dairy 
traits by estimating the genetic correlations between the 
two, and (3) identify the QTL and potential underly-
ing mechanisms that determine the genetic variation in 
rumen bacterial abundance and in dairy traits by identi-
fying shared genomic regions between the two through 
genome-wide association studies (GWAS).

Methods
Data structure

Data were obtained from the INRAE Experimental 
Unit of La Fage (UE 321 agreement A312031, Roque-
fort, France) between 2015 and 2019. Multiparous 
Lacaune dairy ewes (mean weight of 77 ± 9  kg) were 
raised indoors and fed a mixed ration of on average 90% 
meadow hay and silage plus 10% barley (on a gross mat-
ter basis) supplemented with approximately 150  g of a 
commercial protein concentrate (38% of crude protein 
on a dry matter basis) distributed in the milking parlor. 
Adjustment of the percentage of concentrates and for-
ages was done each year according to the feeding value 

of the forages to cover the needs of the ewes, thus they 
received the same amount of nutrients during the 
5 years. On average during this period, the ewes ingested 
3.27  kg of dry matter that contained 16% of crude pro-
tein and 30% of crude fiber. The genetic structure of 
the INRAE La Fage flock consists of two independent 
groups of ewes, which were both divergently selected, as 
described by Martinez Boggio et  al. [5]. Briefly, genetic 
selection was based on the estimated breeding values 
(EBV) for milk somatic cell score (SCS) [8] or on the EBV 
for milk persistency (PERS), expressed as the coefficient 
of variation in milk production (CV milk). Ewes belong-
ing to each of these two lines were studied (N = 700). The 
genetic difference between the ewes from the divergent 
lines for SCS (SCS+ /SCS−) was 2.19 units of SCS EBV 
[i.e., a 3.60 genetic standard deviation (SD)], and that 
for PERS (PERS+/PERS−) was 5.52 units of CV milk 
EBV (i.e., a 2.10 genetic SD). Ninety-five additional ewes 
were included in the dataset, which were derived from 
the oldest SCS line but are currently selected to increase 
the frequency of the mutant allele (T) of the suppressor 

of cytokine signalling 2 (SOCS2) gene in the experimental 
Lacaune population to investigate possible associations 
with other traits. This allele corresponds to a mutation 
that was identified in 2015 [12] and explains 12% of the 
genetic variance in somatic cell count in Lacaune dairy 
sheep. Thus, the final experimental dataset consisted of 
data from 795 ewes, including 298 under SCS selection 
(94 SCS+ and 204 SCS−), 402 under PERS selection (200 
PERS+ and 202 PERS−), and 95 under selection for the 
SOCS2 mutation.

Rumen sampling and analysis of the bacterial community

Rumen sampling was performed within 3  days of milk 
recording. Ruminal contents were sampled from each 
ewe using a vacuum pump and a medical gastric tube. 
Then, DNA was extracted and purified from a ruminal 
sample of 80 μL using the QIAamp DNA Stool Mini Kit 
(Qiagen Ltd, West Sussex, UK) according to the manufac-
turer’s instructions, with a previous bead-beating step in 
a FastPrep instrument (MP Biomedicals, Illkirch, France). 
The 16S rRNA V3–V4 regions were amplified by a first 
round of PCR with 30 cycles using the following prim-
ers: forward F343 (5′-CTT TCC CTA CAC GAC GCT CTT 
CCG ATC TAC GGR AGG CAG CAG -3′; [13]) and reverse 
R784 (5′-GGA GTT CAG ACG TGT GCT CTT CCG ATC 
TTA CCA GGG TAT CTA ATCCT-3′; [14]). Since the Illu-
mina MiSeq technology results in 250-base paired-end 
reads, we obtained overlapping reads that generated 
extremely high-quality, full-length reads of the entire V3 
and V4 regions in a single run. Single multiplexing was 
performed using a 6-base pair (bp) index, which was 
added to the R784 primer, during a second round of PCR 
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with 12 cycles with home-made primers including also 
Illumina adapters: forward (AAT GAT ACG GCG ACC 
ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC) and 
reverse (CAA GCA GAA GAC GGC ATA CGA GAT GTG 
ACT GGA GTT CAG ACG TGT). The resulting PCR prod-
ucts were purified and loaded onto an Illumina MiSeq 
cartridge (Illumina, San Diego, CA, USA) at the Genomic 
and Transcriptomic Platform (INRAE, Toulouse, France) 
according to the manufacturer’s instructions. More 
details on rumen sampling, DNA extraction and ampli-
con sequencing are provided in Martinez Boggio et  al. 
[5]. The sequences of the 795 samples were processed 
using the FROGS 3.0 pipeline [15] as follows: (i) read pre-
processing, which consists in the removal of sequences 
that present a primer mismatch, display an unexpected 
length i.e., shorter than 300 bp or longer than 500 bp, or 
that contain at least one ambiguous base; (ii) removal of 
chimera; (iii) regrouping of sequences by clustering with 
Swarm in FROGS, and we chose the parameters for a dis-
tance equal to 1; (iv) cluster filtering, i.e., removal of the 
clusters with abundances lower than 0.005% [16]; and (v) 
taxonomic assignment to operational taxonomic units 
(OTU) using the SILVA database (version 138) [17] (see 
Additional file 1: Table S1). The abundance table and the 
taxonomy files were imported into R (v4.0.2) [18]. The 
core microbiome was quantified based on the occurrence 
of OTU across multiple samples, and the proportion of 
samples over which OTU must occur was set to 90% [19].

Analysis of dairy traits

Official daily records of milk yield (MY), milk somatic 
cell count as quantified with a Fossomatic cell counter 
(Foss, Nanterre, France), and milk fat and protein con-
tents (FC and PC, respectively) were obtained on the 795 
adult ewes between 28 and 133 days in milk (DIM). Two 
milk samples collected per animal during morning and 
afternoon milking were sent for analysis at the Interpro-
fessional Milk Analysis Laboratory (Agrolab’s Aurillac, 
France). Milk FC and PC were analyzed with mid-infra-
red (MIR) techniques on a Milko-Scan™ FT6000 instru-
ment (Foss, Nanterre, France). Thus, we analyzed MY, FC 
and PC, with FC and PC taken as averages weighted by 
morning and afternoon milk yield records.

From these official milk records, the MIR spectra for 
563 ewes were retrieved to predict the fine profile of the 
daily milk proteins, i.e., the four caseins: alpha-S1-casein 
(αs1-CN), alpha-S2-casein (αs2-CN), beta-casein (β-CN) 
and kappa-casein (κ-CN), and two whey proteins: alpha-
lactalbumin (α-lactalbumin) and beta-lactoglobulin 
(β-lactoglobulin), and of the FA, i.e., saturated FA (SFA), 
such as butyric acid (C4:0), caproic acid (C6:0), caprylic 
acid (C8:0), capric acid (C10:0), lauric acid (C12:0), and 
palmitic acid (C16:0), and unsaturated FA (UFA), such 

as oleic acid (cis-9 C18:1), rumenic acid (cis-9 trans-11 
C18:2) and alpha-linolenic acid (C18:3n-3). Milk pro-
teins and FA are expressed in g per 100 mL as averages 
weighted by morning and afternoon milk yield records. 
The MIR prediction accuracy, as estimated by the value 
of the coefficient of determination  (R2), were retrieved 
from Ferrand et  al. [20] and Ferrand-Calmels et  al. [21] 
for the milk proteins and FA, respectively. The  R2 for 
caseins are higher than 0.82, and for β-lactoglobulin and 
α-lactalbumin are equal to 0.77 and 0.26, respectively. 
The  R2 for the SFA and cis-9 C18:1 are higher than 0.93, 
and for cis-9 trans-11 C18:2 and C18:3n-3 are equal to 
0.91 and 0.74, respectively. Two additional traits, i.e., 
average lactation somatic cell score (LSCS) and CV milk 
were included in the analysis to account for the genetic 
structure of the population that is formed of two diver-
gent lines for SCS and PERS.

Genotyping

DNA extraction from blood samples and genotyping 
were performed for the 795 ewes. Of these 795 ewes, 
743 were genotyped using a medium-density single 
nucleotide polymorphism (SNP) chip (Illumina Ovine 
SNP50 BeadChip: 54,241 SNPs), 314 at the Laboratoire 
d’Analyses Génétiques pour les Espèces Animales (Jouy-
en-Josas, France) and 429 at Aveyron-Labo (Rodez, 
France). The remaining 52 ewes were genotyped with a 
low-density SNP chip (Illumina Ovine SNP15: 16,681 
SNPs) at Neogen (Lansing, USA), followed by imputation 
to a medium-density SNP chip within the framework of 
the Lacaune dairy sheep genomic selection programme 
[22]. Genotypes were subjected to quality control, based 
on minimum call rates of 90% for SNPs and 95% for indi-
viduals and on the exclusion of SNPs with a minor allele 
frequency lower than 5%. The final dataset included 
773 genotyped individuals and 35,492 autosomal SNPs. 
Markers were positioned on the 26 Ovis aries (OAR) 
autosomes and mapped to the Ovis aries genome assem-
bly Oar_v3.1 [23]. The SNP corresponding to the muta-
tion in the SOCS2 gene was included in the map of OAR3 
(129,722,200 bp).

Statistical analyses

Microbiota abundance data are compositional data [24]. 
The abundances of each sample are constrained to a total 
sum imposed by the sequencing technology used. There-
fore, the information is contained in the ratios between 
OTU abundances, and the raw counts are irrelevant. 
This produces an interdependence between abundances, 
and they need to be considered as compositional data 
[25]. Thus, we applied an approach based on composi-
tional data theory [26] which consisted in transform-
ing the counts into centered log-ratios. As zeros are not 
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compatible with the log-ratios transformation, the OTU 
abundance data were zero imputed with the geometric 
Bayesian-multiplicative method [27] through the cmul-
tRepl function of the zCompositions package [28] in R 
(v4.0.2) [18]. Then, they were centered log-ratio (CLR) 
transformed with the function clr of the compositions 
package [29] in R (v4.0.2) [18] and standardised to a 
variance equal to 1. Hereafter, OTU abundance refers to 
CLR-transformed abundance data.

Estimation of variance components

Environmental factors were tested by analyzing the vari-
ance of each trait. Statistical significance was defined 
at P < 0.05. Environmental factors that were significant 
for the abundance of more than 10% of the OTU were 
included in the model (Table  1). All traits were tested 
for the year of sampling (five levels: 2015 to 2019), the 

Table 1 Environmental effects included in the animal models for operational taxonomic units (OTU) and dairy traits

DIM days in milk, Year lactation number of lactation nested within year, Year run run of sequencing nested within year, Total sequences number of total sequences per 

DNA sample, Year time order sampling order nested in rumen sampling time and year, FA fatty acids, LSCS lactation somatic cell score, CV milk coefficient of variation in 

milk production

a Percentage of OTU with a significant effect

b Each model for milk protein and fatty acids includes at least one of the environmental effects

†: The effect is included in the model; ns: the effects are non-significant; blank cell: the effect is not tested

Trait DIM Year Year lactation Litter size Year run Total sequences Year time: order Test-day

OTUa ns 88% 23% ns 44% 15% 44%

Milk yield † † ns ns

Fat content † † † ns

Protein content † † ns †

Milk  proteinsb † † ns †

Milk  FAb † † † †

LSCS ns ns ns † †

CV milk ns † ns † †

number of lactations (three levels: 2, 3, and 4 or more lac-
tations) and litter size (two levels: 1 and 2 or more lambs) 
as fixed effects, and DIM (28 to 133 DIM) as a covariable. 
OTU abundances were also tested with the sequencing 
run for DNA samples (six levels), total sequence num-
ber per DNA sample (five levels: ≤ 5000; > 5000 and 
≤ 10,000; > 10,000 and ≤ 15,000; > 15,000 and ≤ 20,000; 
and > 20,000 sequences), time of rumen sampling (morn-
ing and afternoon) and the order in which the animal was 
rumen-sampled (eight levels) as fixed effects. For LSCS 

and CV milk, which are expressed on a lactation basis, 
the number of milk recording controls was included as a 
fixed effect (four levels: 4 to 6, 7, 8, and 9 test-days).

In this study, we accounted for the structure of the pop-
ulation under selection through the use of multiple-trait 
models [30], including the selected traits (LSCS and CV 
milk) as the first two traits in each model. Two multiple-
trait models were used. First, to estimate heritabilities, 
we used a three-trait model with the abundance of each 
OTU or a dairy trait as a third trait, and second, to esti-
mate the genetic correlations between OTU abundance 
and the dairy traits, we used a four-trait model with the 
abundance of each OTU and a dairy trait as third and 
fourth traits, respectively. Genetic correlations with 
absolute values higher than twice the standard error were 
considered to differ from zero.

The data were analyzed using the following multiple-
trait animal model:

where y1 , y2 , y3 , and y4 are the vectors of observations 
for LSCS, CV milk, OTU abundance or one dairy trait 
in the three-trait model, and OTU abundance and one 
dairy trait in the four-trait model; b1 , b2 , b3 , and b4 are 
the vectors of fixed effects described in Table 1 for each 
trait; a1 , a2 , a3 , and a4 are the vectors of additive genetic 
effects; and e1 , e2 , e3 , and e4 are the vectors of residual 
effects. X1 , X2 , X3 , and X4 are incidence matrices relat-
ing fixed effects to vectors y1 , y2 , y3 and y4 , respectively; 
W1 , W2 , W3 , and W4 are incidence matrices relating 
additive effects to vectors y1 , y2 , y3 and y4 , respectively. 
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The assumptions of the model are a ∼ N(0,A ⊗ P) and 
e ∼ N(0, I ⊗ R) , where ⊗ denotes the direct product 
between two matrices, A is the pedigree relationship 
matrix, I is an identity matrix, and P and R are the genetic 
and residual variance–covariance matrices for the ran-
dom additive and residual effects, respectively. The pedi-
gree of the Lacaune breed traced back to five generations 
of ancestors (N = 4296). The analyses were performed 
using the BLUPF90+ software with the OPTION method 
VCE [31] and by including 100 initial rounds of EM-
REML to obtain initial variance components. We used a 
convergence criterion of  1e−10 which is the value set by 
default in the BLUPF90 software.

To test the significance of the heritability estimates for 
the 2059 OTU, an empirical significance threshold for 
the null hypothesis of no genetic control was estimated. 
For OTU, the null hypothesis was obtained by randomly 
shuffling their abundances among the individuals. We 
selected two OTU (one with many and one with few 
zeros) and performed the random shuffling 10,000 times. 
For each permutation and OTU, we estimated the herit-
ability of OTU abundance using a three-trait model, as 
presented in Eq.  (1). To define an error rate of 5%, we 
arranged the heritability estimates by increasing order, 
and retained the lower value of the upper 5% yielding a 
significance threshold obtained for both OTU of 0.10.

In order to determine whether certain bacterial genera 
were over- or under-represented among the OTU that 
had a heritability significantly different from zero com-
pared to all the OTU, we tested the percentage of OTU of 
the same genus in both groups using a Fisher’s exact test 
at P < 0.05.

Genome-wide association studies

Genome-wide association studies (GWAS) of dairy traits 
and OTU abundances were performed using the single-
step genomic best linear unbiased prediction (ssGBLUP) 
approach [32]. The following single-trait model was used:

where y is the vector of observations for OTU abundance 
or a dairy trait, b is the vector of fixed effects described 
in Table 1, g is the vector of additive genetic effects, and 
e is the vector of residual effects. X and W are incidence 
matrices for b and g , respectively. The assumptions of the 
model are g ∼ N(0,Hσ

2
g) , where H is a matrix that com-

bines pedigree- and genome-based relationships [33] 
and σ2g is the additive variance, and e ∼ N(0, Iσ2e) , where 
I is an identity matrix and σ2e is the residual variance. The 
joint pedigree-genomic relationship matrix H was con-
structed as follows:

(2)y = Xb + Wg + e,

which projects genomic relationships G = ZZ
′

/2
∑

pi(1 − pi) 
[34] from genotyped animals (labelled as “2”) to non-gen-
otyped animals (labelled as “1”). The matrix 

A =

[

A11 A12

A21 A22

]

 is the pedigree-based relationship 

matrix, and the genomic relationship matrix G is con-
structed as G = (1 − α)

(

a + b ZZ
′

2
∑

piqi

)

+ αA22 , where a 

and b are chosen to equate average inbreeding and aver-
age relationships in G and A22 and α is a small value (0.05) 
[34–36]. The variance components were estimated using 
BLUPF90+ with the OPTION method VCE [31].

After solving the ssGBLUP model in Eq.  (2), we esti-
mated the SNP effects by back-solving the breeding value 
estimates as in Eq. (4) [32, 37] and the P value of each SNP 
as in Eq. (5) [38].

where â are the estimates of SNP effects, âi is the estimate 
for each SNP i , ĝ are estimates of breeding values, and 
the Cu2u2 matrix contains the prediction error covariance 
of EBV for genotyped animals. The SNP effects and P val-
ues were computed using BLUPF90+ and POSTGSF90 
[31].

We corrected for multiple testing by using the false 
discovery rate (FDR) in the p.adjust package in R 
(v4.0.2) [18]. A genome-wide SNP significance thresh-
old of P < 0.10 and a suggestive threshold of P < 0.30 were 
applied to each trait. After identification of the lead SNP 
in a given region, significant SNPs that were located 
less than 1000 mega base pairs (Mbp) apart and were 
included in the upper third of the peak were grouped 
within the same QTL region. The CMplot package in R 
(v4.0.2) [18] was used to generate Manhattan plots show-
ing the −  log10(P value) on the y-axis.

We estimated the allele substitution effect for signifi-
cant SNPs that were detected on the same chromosome 
and at the same position. The following single-trait model 
was used:

(3)
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(
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−1

22
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22
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−1ĝ2,

Pvaluei = 2

(
1 − �

(∣∣∣∣
âi
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where y is the vector of observations for OTU abun-
dance, SNP is the significant SNP detected for y as a 
fixed effect, coded as 0, 1, 2 when the SNP is homozy-
gous for the first allele, heterozygous, and homozygous 
for the second allele, respectively, b is the vector of fixed 
effects described in Table 1 for OTU abundance, a is the 
vector of additive genetic effects, and e is the vector of 
residual effects. X and W are incidence matrices for b 
and a , respectively. The assumptions of the model are 
a ∼ N(0,A) and e ∼ N(0, I) , where A is the pedigree-
based relationship matrix, and I is an identity matrix.

Linkage disequilibrium (LD) along the genome was 
calculated as the squared correlation of allele counts for 
two SNPs on each chromosome. The proportion of phe-
notypic variance explained was calculated for each SNP 
by defining a window variance of 20 adjacent SNPs and 
for each QTL region defined in this study. The LD and 
variance explained were calculated using POSTGSF90 
[31].

Genes that were identified for the significant SNPs 
were retrieved from the Ensembl database using the 
BioMart web interface based on the Ovis aries genome 
assembly Oar_v3.1 [39]. Then the DAVID functional 
annotation tool [40] was used to analyse the overrepre-
sented Gene Ontology (GO) biological terms, including 
biological processes, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways [41].

Results
After bioinformatic analysis, 63% of the 9,552,103 initial 
DNA sequences obtained from the rumen samples of the 
795 ewes were retained. The abundance table included 
2059 affiliated OTU, represented by 751 to 168,785 
sequences, with a median of 1761 DNA sequences per 
OTU. The finest taxonomic level was the genus level due 
to an unknown species frequency of 95%.

Overall, the 2059 OTU from the 795 rumen samples 
were attributed to 11 phyla, 56 families and 112 genera. 
Expressed as a percentage of the total sequences for all 
samples, the most representative phyla were Bacteroi-

dota (51%), Firmicutes (44%), and Proteobacteria (3%). 
At the next taxonomic level, the most abundant fami-
lies were Prevotellaceae (38%) mainly represented by the 
Prevotella genus, Lachnospiraceae (18%) represented by 
40 genera, Ruminococcaceae (9%) mainly represented by 
the Ruminococcus genus, Oscillospiraceae (5%) repre-
sented mainly by the NK4A214_group, and three fami-
lies each represented by one genus: Christensenellaceae 
represented by Christensenellaceae_R-7_group (5%), and 

(6)y = SNP + Xb + Wa + e, Rikenellaceae represented by Rikenellaceae_RC9_gut_

group (4%). The average percentage of zeros (OTU not 
detected in the rumen sample) in the OTU abundance 
table was 37.5%.

Description of the dairy traits analyzed

The descriptive statistics for the dairy traits analyzed 
in our study are in Table  2. LSCS and CV milk were 
included to account for population genetic structure for 
the variance estimation of each OTU.

Rumen bacterial heritability

The heritability of rumen bacterial abundance ranged 
from 0 to 0.29 ± 0.07 with a mean of 0.04 ± 0.03 (see 
Additional file  2: Table  S2). Based on these heritability 
estimates, we found a group of 306 OTU that had a her-
itability significantly different from 0 ( h2 > 0.10, accord-
ing to the empirical threshold computed) and a mean of 
0.15 ± 0.04. Among these 306 OTU, expressed as a per-
centage of OTU, the main phyla were Bacteroidota (61%), 
Firmicutes (34%) and Spirochaetota (2%), and the 10 most 
represented genera are in Table 3.

The Prevotella genus was significantly overrepresented 
(92 of the 306 OTU) among the OTU with a significant 
heritability based on Fisher’s exact test (P > 0.05).

Genetic correlations between rumen bacteria and dairy 

traits

We estimated the genetic correlation between each of 
the 306 OTU and each of the 18 dairy traits included 
in this study. We obtained 5508 genetic correlations of 
which 301 (i.e., 5%) were significant (i.e., those that were 
greater than twice the standard error). This corresponds 
to 96 OTU abundances that had a significant genetic cor-
relation with one or several dairy traits: 81 OTU were 
correlated with FC and milk FA (see Additional file  3: 
Table S3), and 56 OTU were correlated with PC and milk 
proteins (see Additional file 4: Table S4), and 41 of these 
96 OTU were correlated with both groups of traits. For 
MY, we did not find significant genetic correlations with 
ruminal bacteria.

Genetic correlations with milk fat content and fatty acids

Daily fat content and milk FA showed significant genetic 
correlations with OTU from 26 genera belonging to 17 
families. The bacterial families that shared the largest 
number of significant genetic correlations were Prevotel-

laceae, Lachnospiraceae and Ruminococcaceae (Fig.  1). 
The significant genetic correlations ranged from − 0.97 
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to − 0.34 and from 0.35 to 0.99. Milk SFA shared many 
more correlated OTU than milk UFA, however C18:3n-3 
was the FA that correlated with the largest number of 
OTU (42 OTU).

Milk SFA (C4:0 to C16:0) correlated with 41 OTU, of 
which 26 OTU were positively correlated with at least 
one SFA. Five OTU were linked with all SFA, with vari-
able genetic correlations, and a closely clustered group 

Table 2 Descriptive statistics and heritability ( h2 ) of dairy traits in Lacaune ewes

SD standard deviation, CV (%) coefficient of variation expressed in percentage, SE standard error

a Milk proteins and fatty acids given in g per 100 mL

b Mean heritability of LSCS and CV milk estimated for each three-trait model

Mean SD CV (%) h
2 SE h2

Traits expressed on a daily  basisa

 Milk yield (mL) 1946 589 30.3 0.28 0.06

 Fat content (g/100 mL) 7.37 1.14 15.5 0.59 0.06

 Protein content (g/100 mL) 5.71 0.52 9.1 0.57 0.06

 Alpha-S1-casein 1.38 0.15 10.9 0.54 0.08

 Alpha-S2-casein 0.66 0.26 39.4 0.68 0.07

 Beta-casein 2.10 0.23 10.9 0.41 0.08

 Kappa-casein 0.45 0.04 8.9 0.50 0.08

 Alpha-lactalbumin 0.13 0.01 7.7 0.36 0.08

 Beta-lactoglobulin 0.46 0.50 108.7 0.44 0.08

 Butyric acid (C4:0) 0.25 0.03 12.0 0.50 0.08

 Caproic acid (C6:0) 0.21 0.03 14.3 0.53 0.07

 Caprylic acid (C8:0) 0.20 0.03 15.0 0.55 0.08

 Capric acid (C10:0) 0.73 0.12 16.4 0.58 0.07

 Lauric acid (C12:0) 0.49 0.08 16.3 0.60 0.07

 Palmitic acid (C16:0) 1.96 0.37 18.9 0.54 0.08

 Oleic acid (cis-9 C18:1) 0.80 0.31 38.7 0.44 0.08

 Rumenic acid (cis-9 trans-11 C18:2) 0.04 0.02 50.0 0.45 0.08

 Alpha-linolenic acid (C18:3n-3) 0.04 0.01 25.0 0.38 0.08

Traits expressed on a lactation basis

 Lactation somatic cell score (LSCS) 3.29 1.50 45.6 0.33 to 0.41b 0.07 to 0.09

 CV milk 53.93 12.18 22.6 0.19 to 0.26b 0.07 to 0.09

Table 3 Mean and maximum heritability, and genus representativeness levels over the operational taxonomic units (OTU)

N number of OTU grouped in each genus, SD standard deviation, G1(%) genus representativeness levels over OTU with a significant heritability, G2(%) genus 

representativeness levels over all OTU

*(P < 0.05) Fisher’s exact test

Genus N Heritability G1 (%) G2 (%)

Mean SD Max

Prevotella 92 0.15 0.04 0.27 30* 22

Christensenellaceae_R-7_group 21 0.13 0.03 0.21 7 8

F082/unknown_genus 21 0.15 0.05 0.26 7* 4

Rikenellaceae_RC9_gut_group 21 0.17 0.05 0.29 7 5

Prevotellaceae_UCG-001 15 0.14 0.03 0.20 5* 3

Ruminococcus 11 0.15 0.06 0.26 4 6*

Muribaculaceae/unknown_genus 8 0.15 0.04 0.21 3 3

Acetitomaculum 7 0.15 0.04 0.22 2 2

Treponema 7 0.13 0.04 0.19 2 1

Ruminococcaceae/unknown_genus 6 0.14 0.02 0.17 2 1
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consisting of C8:0, C10:0 and C12:0 shared positive cor-
relations with 12 OTU from the Prevotellaceae, Lach-

nospiraceae and Oscilllospiraceae families (Fig.  1). Milk 
UFA (cis-9 C18:1, cis-9 trans-11 C18:2 and C18:3n-3) 
correlated with 62 OTU, half of which belonged to the 
Prevotellaceae and Rikenellaceae families. Two OTU 
from the Prevotellaceae family correlated with all the 
UFA but showed opposite correlation signs.

Genetic correlations with milk protein content and proteins

The daily protein content and milk proteins showed 
significant genetic correlations with OTU from 23 gen-
era belonging to 17 families. The bacterial families that 
shared the largest number of significant genetic correla-
tions were Prevotellaceae and Lachnospiraceae (Fig. 2). 
The significant genetic correlations ranged from − 0.99 
to − 0.33 and from 0.36 to 0.98. Figure  2 shows two 

Fig. 1 Genetic correlation network between operational taxonomic units (OTU) and fat content (FC) and milk fatty acids, namely, butyric acid 
(C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), palmitic acid (C16:0), oleic acid (c9-C18:1), rumenic acid 
(c9t11-C18:2) and alpha-linolenic acid (C18:3n-3). The nodes represent OTU (in colors associated to the corresponding families where rare families 
with one OTU are not represented) and dairy traits (in white). The diameter of the nodes is proportional to the number of genetic correlations, and 
the thickness and color of the edges represent values (− 0.97 to − 0.34 and 0.35 to 0.99) and signs (in green positive and in red negative ones) of 
the genetic correlation, respectively
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groups of traits: one represented by alpha-lactalbumin, 
which correlated exclusively with 20 OTU, and a group 
of caseins (αs1-CN, αs2-CN, β-CN, and κ-CN) and beta-
lactoglobulin, which correlated mostly negatively with 
OTU.

All caseins were correlated with 30 OTU, of which five 
were negatively correlated with three or more CN. Leifso-

nia OTU1479 belonging to the Microbacteriaceae family 

showed negative correlations with all CN, and four OTU 
from the Lachnospiraceae and Prevotellaceae families 
were also correlated with two CN (αs2-CN and κ-CN). 
The whey proteins (α-lactalbumin and β-lactoglobulin) 
correlated with 47 OTU, of which eight were in common. 
Four OTU from the Prevotellaceae, Lachnospiraceae and 
Muribaculaceae families showed the same correlation 
sign with α-lactalbumin and β-lactoglobulin.

Fig. 2 Genetic correlation network between operational taxonomic units (OTU) and milk proteins, namely, alpha-S1-casein (aS1-CN), 
alpha-S2-casein (aS2-CN), beta-casein (b-CN), kappa-casein (k-CN), alpha-lactalbumin (a-LAC), beta-lactoglobulin (b-LG). The nodes represent OTU 
(in colors associated to the corresponding families where rare families with one OTU are not represented) and dairy traits (in white). The diameter of 
the nodes is proportional to the number of genetic correlations, and the thickness and color of the edges represent values (− 0.99 to − 0.33; 0.36 to 
0.98) and signs (in green positive and in red negative ones) of the genetic correlation, respectively
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Core microbiome

The core microbiome was represented by 275 
OTU, which represent 13% of all OTU, belong-
ing to the most abundant genera, such as Prevotella, 
Christensenellaceae_R-7_group and Ruminococcus. In 
the core microbiome, 44 OTU showed a significant herit-
ability ( h2 > 0.10), which represented 14% of the heritable 
OTU, and 13 OTU were genetically correlated with dairy 
traits.

GWAS of dairy traits and rumen bacteria

GWAS of dairy traits

A GWAS was performed for each of the 18 dairy traits 
included in this study. The GWAS results are in Table 4, 
which shows that 22 significant SNPs (FDR < 0.10) were 
detected for milk yield, alpha-lactalbumin, alpha-S2-ca-
sein, caproic acid (C6:0) and caprylic acid (C8:0) concen-
trations in milk.

The largest number of significant SNPs was detected 
for alpha-lactalbumin on seven chromosomes, with a 
QTL on OAR11 (Fig.  3). This QTL on OAR11 includes 
eight significant SNPs that were located in the genomic 
region between 32.6 and 34.2 Mbp, with an LD score 

ranging from 0.24 to 0.52. The QTL region explained 
2.5% of the phenotypic variance, with a lead SNP 
(rs402411249) showing the maximum −  log10(P value) of 
5.77. On OAR6, we detected one significant SNP and one 
suggestive SNP in the region between 100.1 and 101.3 
Mbp with an LD score of 0.56.

For alpha-S2-casein, we detected a significant SNP 
(rs423428584) on OAR6, with the highest P value 
(−  log10(P value) of 8.18) obtained in this study for all 
dairy traits.

For the SFA C6:0 and C8:0, we detected the same 
significant SNP (rs405420878) on OAR17 (Table  4). 
Another significant SNP (rs410355614) was detected for 
C6:0 and as a suggestive SNP for C4:0 with a −  log10(P 
value) of 5.52 (Fig.  4). However, the LD score between 
these SNPs was lower than 0.10. For C8:0, a significant 
SNP (rs415371608) was found on OAR2, which was also 
identified as a suggestive SNP for C10:0 with a −  log10(P 
value) of 5.25.

For milk yield, we detected a significant SNP on 
OAR15, but we did not identify any signal on OAR3, 
which included the SNP corresponding to the mutation 
in the SOCS2 gene.

Table 4 Significant SNPs from the genome-wide association studies of dairy traits

SNPs that are located in a quantitative trait locus region are in bold characters

OAR Ovis aries autosome, Var (%) phenotypic variance explained for a window of 20 adjacent SNPs

Trait SNP name OAR Position (bp) Var (%) −  log10(P value)

α-Lactalbumin rs426734075 1 147,595,299 0.06 4.79

α-Lactalbumin rs400013895 2 25,181,840 0.11 4.41

α-Lactalbumin rs421261402 2 58,918,403 0.23 4.63

C8:0 rs415371608 2 117,736,662 0.03 5.67

α-Lactalbumin rs418593908 5 103,652,938 0.04 5.03

αS2-CN rs423428584 6 81,218,896 0.20 8.18

α-Lactalbumin rs409523937 6 100,115,861 0.22 5.94

α-Lactalbumin rs399440927 11 32,011,837 0.46 4.43

α-Lactalbumin rs429602859 11 32,652,804 1.05 5.12

α-Lactalbumin rs412766461 11 32,783,984 1.03 4.89

α-Lactalbumin rs410865757 11 33,302,950 1.97 5.40

α-Lactalbumin rs402411249 11 33,379,161 1.75 5.77

α-Lactalbumin rs401296484 11 33,733,902 0.97 5.51

α-Lactalbumin rs425950097 11 34,091,412 0.98 4.43

α-Lactalbumin rs420633999 11 34,146,282 0.88 5.38

α-Lactalbumin rs424294429 11 34,239,169 0.58 4.53

Milk yield rs402677421 15 7,078,006 0.14 5.82

C8:0 rs405420878 17 51,422,515 0.24 5.79

C6:0 rs405420878 17 51,422,515 0.27 5.60

C6:0 rs410355614 17 52,959,387 0.28 5.30

α-Lactalbumin rs426375102 20 21,580,756 0.05 4.75

α-Lactalbumin rs409395180 24 6,819,203 0.07 4.39
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GWAS of rumen bacteria

A GWAS was performed for each of the 306 OTU abun-
dances that had a heritability significantly different from 
0. We detected 94 significant SNPs (FDR < 0.10) that were 
distributed across 22 chromosomes for 56 OTU (see 
Additional file 5: Table S5). For the 94 SNPs detected, we 
recovered 42 potential candidate genes that are involved 
in various GO biological processes and KEGG pathways 
(see Additional file 6: Table S6). In addition, as shown in 
Table 5, six QTL were identified on OAR3, 5, 10 and 11.

The group of 56 OTU with significant SNPs belonged 
to three phyla, 11 families, and 23 genera. Expressed as 
a percentage of OTU, the Prevotellaceae family was the 
most represented, with 23 OTU (41%) of which 19 were 
Prevotella OTU, followed by Lachnospiraceae (20%) and 
Ruminococcaceae (9%).

For the 94 significant SNPs detected in the host 
genome and associated with rumen bacterial abun-
dance, several genomic regions showed QTL and sig-
nificant SNPs for OTU abundance and dairy traits 
(Table 5).

OAR3

On OAR3, we detected a QTL for Prevotella OTU196 
that includes two significant SNPs in high LD (LD 
score of 0.67). The SNP rs419358934 presented a 

colocalized signal with Prevotellaceae_UCG-001 
OTU906, and the allele substitution effect for that 
SNP varied in the same direction for both Prevotel-

laceae OTU. In addition, for each OTU, we detected 
two other significant SNPs that were located outside of 
the QTL for which two candidate genes were identified 
(Table  5): (1) the cytotoxic granule-associated RNA 

binding protein (TIA1) gene that is involved in the neg-
ative regulation of cytokines (GO:0001818), negative 
regulation of translation (GO:0017148) and regulation 
of mRNA splicing (GO:0048024), and (2) the interleu-

kin 18 receptor (IL18R1) gene that has a role in natural 
killer cell activation (GO:0030101), positive regulation 
of interferon-gamma production (GO:0032729) and 
cell signalling and inflammatory processes (KEGG: 
oas04060).

OAR5

On OAR5, we detected three QTL for Prevo-

tella OTU1843, Rikenellaceae_RC9_gut_group 
OTU546 and Ruminococcus OTU1191. The QTL for 
OTU1843 includes two significant SNPs, of which one 
(rs402307868) showed a colocalized signal with the 
Possible_genus_sk018 OTU1631. The allele substitu-
tion effects for the SNP with colocalized signals showed 
contrasting signs for the Prevotella and Possible_genus_

sk018 OTU. The QTL for Rikenellaceae_RC9_gut_group 

Fig. 3 Manhattan plot for the genome-wide association study of alpha-lactalbumin. The horizontal red line and grey dashed line show the false 
discovery rate thresholds of 0.10 and 0.30, respectively. Orange dots indicate SNPs in the QTL region
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Fig. 4 Manhattan plots for the genome-wide association studies of butyric acid (C4:0), caproic acid (C6:0) and caprylic acid (C8:0). The horizontal 
red line and grey dashed line show the false discovery rate thresholds of 0.10 and 0.30, respectively. Green dots indicate SNPs in common between 
traits
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Table 5 Significant SNPs from the genome-wide association studies of the rumen bacteria on chromosomes that colocalized with 
dairy traits

SNPs that are in a quantitative trait locus region are in bold characters

OAR Ovis aries chromosome, Var (%) phenotypic variance explained for a window of 20 adjacent SNPs, uF unknown family, uG unknown genus

a SNP shared between different OTU

Genus OTU name SNP name OAR Position (bp) Var (%) −  log10 (P 

value)

Gene name

Lachnospiraceae_NK4A136_group OTU2186 rs422351583 3 5,668,047 0.13 6.09

[Eubacterium]_coprostanoligenes_group /uG OTU2438 rs420593841 3 8,693,890 0.05 5.37 GARNL3

[Eubacterium]_ventriosum_group OTU355 rs415665472 3 27,430,018 0.14 5.95

Prevotella OTU196 rs399829503 3 38,048,434 0.09 5.09 TIA1

Clostridia UCG-014/uF/uG OTU2515 rs417512713 3 82,810,037 0.14 5.79

Prevotella OTU196 rs407226710 3 87,932,154 0.37 5.07

Prevotellaceae_UCG-001 OTU906 rs419358934a 3 89,802,120 0.33 6.24

Prevotella OTU196 rs419358934a 3 89,802,120 0.18 5.32

Prevotella OTU196 rs430243701 3 89,808,523 0.14 6.78

Prevotellaceae_UCG-001 OTU906 rs424849255 3 99,246,368 0.09 5.25 IL18R1

Prevotellaceae_UCG-001 OTU906 rs404566475 3 112,090,102 0.23 5.92

Syntrophococcus OTU509 rs409660427 3 138,657,389 0.14 5.27 ENDOU

Prevotella OTU427 rs402872469 3 221,603,160 0.16 5.40

Possible_genus_Sk018 OTU1631 rs402307868a 5 31,467,389 0.03 5.76

Prevotella OTU1843 rs402307868a 5 31,467,389 0.11 5.11

Prevotella OTU1843 rs413547561 5 31,477,570 0.10 5.99

Fibrobacter OTU1335 rs405557393 5 59,933,921 0.06 6.10 ANXA6

Rikenellaceae_RC9_gut_group OTU546 rs410315179 5 72,275,014 0.38 6.75

Rikenellaceae_RC9_gut_group OTU546 rs429334236 5 72,324,510 0.24 5.81

Fibrobacter OTU1335 rs398177414 5 79,732,944 0.18 6.56

Ruminococcus OTU1191 rs411645323 5 83,683,348 0.20 5.30

Ruminococcus OTU1191 rs418870684 5 83,724,689 0.12 5.29 ENSOARG00000025325

Lachnospiraceae_UCG-008 OTU655 rs403619685 6 28,689,782 0.08 5.92

Lachnospiraceae_XPB1014_group OTU947 rs400970883 6 36,655,091 0.05 6.20 SPP1

Prevotella OTU1843 rs416815759 6 45,906,622 1.43 5.59 TBC1D19

Prevotella OTU440 rs406261149 6 50,058,344 0.20 5.30

Acetitomaculum OTU612 rs430647780 6 75,425,021 0.20 5.58

Acetitomaculum OTU612 rs415319007 6 85,637,777 0.29 5.51

Prevotella OTU399 rs428296445 10 16,139,981 0.33 5.57 W5PCY9_SHEEP

Clostridia UCG-014/uF/uG OTU1386 rs423990418 10 16,216,118 0.21 6.28 W5PCZ6_SHEEP

Clostridia UCG-014/uF/uG OTU1386 rs404163943 10 16,222,665 0.10 6.28 W5PCZ6_SHEEP

Prevotella OTU13 rs408448649 10 46,573,078 0.25 5.58 DACH1

Muribaculaceae/uG OTU803 rs403822645 10 80,687,261 0.08 4.87 ENSOARG00000026327

Ruminococcaceae/uG OTU155 rs408532009 10 84,678,999 0.35 6.41 ANKRD10

Ruminococcaceae/uG OTU501 rs422890024 11 7,826,874 0.04 5.40 MSI2

Christensenellaceae_R-7_group OTU596 rs414408260 11 58,151,039 0.14 5.63

CAG-352 OTU304 rs421085019 11 61,946,606 0.23 5.48

CAG-352 OTU304 rs429659626 11 62,034,261 0.04 5.48 HELZ

Prevotella OTU943 rs412819070 15 5,606,060 0.13 5.71 MMP20

Prevotella OTU423 rs409362751a 15 37,553,506 0.18 6.97 PDE3B

Prevotella OTU80 rs409362751a 15 37,553,506 0.16 5.84 PDE3B

Prevotella OTU399 rs409362751a 15 37,553,506 0.19 5.52 PDE3B

Prevotella OTU399 rs426932216 15 44,445,054 0.14 5.13 LOC101105776

Blautia OTU1025 rs425070593 15 80,043,367 0.20 5.34 TCN1

F082/uG OTU167 rs412496804a 26 28,316,180 0.31 6.06

Prevotella OTU1336 rs412496804a 26 28,316,180 0.20 5.98

Prevotellaceae_UCG-001 OTU906 rs412496804a 26 28,316,180 0.20 5.20
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OTU546 includes two significant SNPs in high LD (LD 
score of 0.74). The QTL for Ruminococcus OTU1191 
includes two significant SNPs separated by 0.04 Mbp, 
but the LD score was very low in that region (< 0.10). 
The SNP rs418870684 was associated with the novel 
gene ENSOARG00000025325.

OAR6

On OAR6, we detected six significant SNPs for five 
OTU but no QTL. In the region where a significant 
SNP was detected for alpha-S2-casein (81.2  Mbp), we 
identified two significant SNPs for Acetitomaculum 
OTU612, however, the LD score was low (< 0.20), and 
no shared SNPs were detected for these two traits.

OAR10

On OAR10, we detected a QTL with two significant 
SNPs at 16.2 Mbp for OTU1386 belonging to the order 
Clostridia UCG-014. The two significant SNPs were 
located in a region in high LD (LD score of 0.78), and 
the same gene, E3 ubiquitin-protein ligase (W5PCZ6_

SHEEP), was detected. The W5PCZ6_SHEEP gene is 
involved in the ubiquitin-dependent protein catabolic 

process (GO:0006511), multicellular organism develop-
ment (GO:0007275) and regulation of protein stability 
(GO:0031647).

OAR11

On OAR11, we detected a QTL with two significant 
SNPs in complete LD for CAG-352 OTU304 belong-
ing to the Ruminococcaceae family. However, this QTL 
for OTU304 was located far from the QTL detected for 
alpha-lactalbumin on OAR11 (32.6 to 34.2  Mbp). The 
candidate gene helicase with zinc finger (HELZ), that 
was located in this QTL, was not associated with any 
GO biological process or KEGG pathway.

OAR15

On OAR15, we detected the same significant SNP, 
rs409362751, for three Prevotella OTU (Table  5), and 
the allele substitution effects varied in the same way 
for the three Prevotella OTU. For this SNP, we identi-
fied the candidate gene phosphodiesterase 3B (PDE3B), 
which is involved in the negative regulation of cell 
adhesion (GO:0007162), negative regulation of lipid 

Fig. 5 Manhattan plots for the genome-wide association studies of rumen bacterial abundance showing quantitative trait loci (QTL) on 
chromosomes 3, 5, 10 and 11. The horizontal red line shows the false discovery rate threshold of 0.10. Operational taxonomic units (OTU): Prevotella 
OTU196, Prevotella OTU1843, Rikenellaceae_RC9_gut_group OTU546, Ruminococcus OTU1191, Clostridia UCG-014/unknown family/unknown genus 
OTU1386, and CAG-352 OTU304
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catabolic process (GO:0050995), and metabolic path-
ways (KEGG: oas01100).

OAR26

On OAR26, we detected the same significant SNP, 
rs412469804, for Prevotella OTU1336, Prevotellaceae_

UCG-001 OTU906 and OTU167 that belongs to the 
F082 family. The allele substitution effects for the two 
Prevotellaceae OTU varied in the same direction, but in 
opposite directions for F082 OTU167.

As presented above, four SNPs on OAR3, 5, 15 and 26 
simultaneously affected the rumen abundance of OTU 
belonging to the Prevotellaceae, F082, and Lachno-

spiraceae families (Fig. 5). However, no shared genomic 
regions were detected with the 18 dairy traits included 
in our study.

Discussion
In this study, we hypothesised that, at least in part, the 
rumen microbiota abundance of Lacaune dairy ewes 
is under the control of the host genome and genetically 
linked with dairy traits through shared genomic regions 
coding for common metabolic pathways.

Heritability of rumen bacteria and dairy traits

Our results obtained in Lacaune dairy ewes demonstrate 
that rumen bacterial abundance is partially controlled 
by the host genetics. The OTU heritabilities showed an 
asymmetric distribution with most values close to 0, but 
with 15% of the OTU (306 of 2059 OTU) having a low 
to moderate heritability (0.10 to 0.29), which is similar 
to the results reported for rumen bacteria in other rumi-
nants [2, 4, 6, 42, 43]. However, there are some differ-
ences in the heritability range and in the percentage of 
OTU with a significant heritability. For example, Difford 
et al. [2] and Zhang et al. [6], using the same dataset of 
750 dairy cows, obtained significant heritability estimates 
for 5 to 10% of genera, with heritabilities ranging from 
0.17 to 0.25, and 2 to 6% of OTU with heritabilities rang-
ing from 0.16 to 0.44. These results, which were based on 
16S rRNA gene sequencing data, are similar to the range 
of heritabilities that we found for OTU, but the authors 
obtained a lower percentage of OTU with a significant 
heritability. It is also relevant to highlight the differences 
that were observed by working at different taxonomic 
levels, i.e., these authors reported lower heritabilities at 
the genus level. However, Martínez-Álvaro et  al. [43], 
using untargeted “shotgun” sequencing, obtained signifi-
cant heritabilities for 16% of genera and a range of higher 
heritabilities, with a maximum heritability of 0.60.

The group of 306 heritable OTU belonged to the most 
abundant phyla, such as Bacteroidota and Firmicutes, as 

reported by Li et  al. [4], Wallace et  al. [42] and Zhang 
et al. [6]. Furthermore, in terms of genus representation, 
Prevotella, which was overrepresented among the OTU 
with a significant heritability and showed an average 
estimate of 0.15 ± 0.04, is considered as a highly herit-
able genus in the literature [4, 42]. The main differences 
in terms of affiliation of the heritable rumen bacteria 
are with the results presented by Martínez-Álvaro et al. 
[43], with Proteobacteria, Actinobacteria and Firmicutes 
being the main represented phyla, but these differences 
could be due to the “shotgun” sequencing technique that 
reveals all the microbial genomes within a sample.

In general, the differences in gut bacteria observed 
between studies can be due to several factors: (1) the 
sequencing technology used, which does not give enough 
information to obtain affiliations at lower taxonomic 
levels (e.g., species), meaning that most studies report 
results at the genus level [2, 4, 6, 42] and rarely at the 
OTU level as we have in our study; (2) bioinformatic pro-
cessing of DNA sequences and the subsequent analyses 
that have an impact on the total number of OTU to be 
analyzed and their taxonomic affiliations (e.g., Difford 
et al. [2] and Li et al. [4] amplified the V1–V3 region of 
16S rRNA gene, meaning that some of their OTU were 
not obtained in our study because we amplified the V3–
V4 region); (3) the number of individuals included in the 
analyses, which usually affects the accuracies of herit-
ability estimates and explains the differences with stud-
ies that analyze fewer animals [43]; and (4) the animal 
species (bovine vs. sheep) investigated, which have dif-
ferential bacterial abundances, as evidenced by Hender-
son et  al. [44]. Notably, and in spite of the differences 
observed with other studies in ruminants, we report the 
highest percentage of bacterial OTU that are genetically 
controlled by the host.

However, a core microbiome cannot be declared 
based on these heritable OTU only, as was done by Wal-
lace et  al. [42], because we obtained only 44 of the 306 
OTU present in most animals, and the same percent-
age of OTU with a significant heritability was observed 
in the core and total microbiotas. This result is expected 
because the core microbiome consists of microbes that 
are stable between animals in the same environment, 
which implies potential horizontal transmission of 
microbes between them. Therefore, our finding that only 
14% of the host-genetically controlled OTU were part of 
the core microbiome means that most microbes come 
repeatedly from the environment and much less by verti-
cal transmission from their parents.

To the best of our knowledge, our study is the first to 
estimate the genetic parameters of rumen bacteria from 
approximately 800 dairy ewes from the same farm under 
the same housing conditions.
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For daily milk traits, we obtained moderate to high her-
itabilities, with values of 0.28 ± 0.06 for MY, 0.57 ± 0.06 
for PC and 0.59 ± 0.06 for FC. Compared to two previous 
studies [7, 8] that include larger populations of Lacaune 
ewes in their first lactation, our estimates were similar to 
those of Rupp et al. [8] for MY (0.28) and PC (0.51) but 
higher for FC (0.41) on an annual basis, and to those of 
Boichard et al. [7] (PC 0.39 and FC 0.29) on a daily basis.

For the milk composition traits, milk FA presented 
moderate to high heritabilities, as reported by Boichard 
et  al. [7] in Lacaune ewes. In addition, SFA had higher 
heritabilities than UFA, as reported by Boichard et  al. 
[7] and by Buitenhuis et  al. [3] who measured milk FA 
by accepted wet-lab methodologies in dairy cows. Milk 
proteins showed moderate (0.36 ± 0.08 for alpha-lactal-
bumin) to high (0.68 ± 0.07 for alpha-S2-casein) herit-
abilities, and were slightly higher than those reported in 
Lacaune ewes [7]. The heritability estimate for alpha-lac-
talbumin was low, as in Boichard et al. [7], which may be 
due to the low accuracy of this trait based on MIR spec-
trum prediction, with an  R2 of 0.26 [20]. Thus, the results 
for alpha-lactalbumin should be interpreted with caution.

Genetic correlations between rumen bacteria and dairy 

traits

Rumen bacteria are undeniably of crucial importance to 
their host, providing FA and microbial amino acids that 
contribute to milk fat and protein production [45]. How-
ever, only 96 heritable OTU from the most abundant 
families Prevotellaceae, Lachnospiraceae and Ruminococ-

caceae were moderately to highly genetically correlated 
(absolute values ranging from 0.33 to 0.99) with one or 
more milk FA and proteins. The overall quantification of 
these correlations is of interest to understand the rela-
tionship between rumen microbiota and phenotypes, in 
spite of the limitations of our study due to the low pre-
cision of 16S rRNA gene sequencing at the species level 
and the large number of estimated genetic correlations 
(more than 5500) based on a small dataset of 800 ewes, 
which, even if those with large standard errors are dis-
carded, may lead to some spurious correlations.

The impact of the heritable OTU on the dairy traits was 
weak, as evidenced by the small number of significant 
genetic correlations obtained in our study (on average 
301), i.e., only 5% of the total estimates. This figure was 
even smaller when we evaluated the number of OTU that 
were significantly associated with dairy traits in the core 
microbiome since only 13 of 96 OTU were genetically 
linked. However, interestingly, some of these OTU might 
have host-relevant functions since they are part of the 
core microbiome. Although the number of genetic corre-
lations between rumen bacteria and milk traits was small, 

their values were moderate to high, which suggests that it 
could be useful to include microbiota composition in the 
genetic models, when the objective is to determine how 
the genetic effect impacts the phenotype not directly but 
with an indirect effect through microbiota abundance. In 
this regard, some authors have proposed methodologies 
to account for this indirect genetic effect mediated by the 
microbiota [46–48].

Our results show that most of the heritable OTU 
do not impact dairy traits. For this reason, the genetic 
associations that are observed mainly with milk FA and 
proteins can be difficult to use as selection criterion to 
improve fine milk composition traits, but this does not 
limit their inclusion in genetic models as an additional 
source of information to estimate the indirect genetic 
effect on those phenotypes of interest.

GWAS of dairy traits and rumen bacteria

After having demonstrated that a group of heritable OTU 
was genetically linked to milk composition traits, we 
performed GWAS to identify host genomic regions that 
simultaneously affect rumen bacterial abundance and 
dairy traits. In the GWAS of dairy traits, we detected 22 
significant SNPs that were distributed across nine chro-
mosomes. Among these regions, two on OAR6 showed 
associations with alpha-lactalbumin and alpha-S2-casein. 
The SNP rs423428574 detected for alpha-S2-casein was 
located in the region of OAR6 where the major gene 
CSN1S2 was reported in the literature on caseins [10, 
11, 49]. In addition, in Lacaune sheep, Boichard et  al. 
[7] detected a QTL on OAR6 for alpha-S2-casein, but 
without reporting a position. We have found no publica-
tions of QTL detected on OAR6 for alpha-lactalbumin 
in dairy ewes. On OAR11, we detected a QTL for alpha-
lactalbumin with eight significant SNPs (Fig.  3), where 
a significant region for caseins and beta-lactoglobulin 
was also reported [7]. Although the major gene LALBA, 
which encodes alpha-lactalbumin in sheep, was identi-
fied on OAR3 [11], we found no significant SNPs for this 
whey protein in our study. Significant SNPs detected for 
alpha-lactalbumin on OAR2 and 20 were close to those 
that García-Gámez et  al. [11] reported to be associ-
ated with protein and fat yields for dairy sheep. For the 
milk SFA C6:0 and C8:0, we detected the same SNP on 
OAR17, where one suggestive SNP was also identified for 
C4:0. García-Gámez et al. [11] reported a significant SNP 
(58.8 Mbp) on OAR17 that was associated with fat per-
centage, and Carta et al. [9] detected a QTL in the back-
cross population of Lacaune sheep for C6:0 and C8:0 on 
OAR17 and one additional signal that we did not detect 
on OAR8. In addition, although we did not detect SNPs 
for milk FA on OAR11, Marina et al. [10] reported major 



Page 17 of 19Martinez Boggio et al. Genetics Selection Evolution           (2022) 54:77  

genes for milk fat synthesis (ACACA  and FASN) on this 
chromosome.

In the GWAS of rumen bacterial abundances, we 
detected signals that were distributed across the host 
genome, as reported by Li et  al. [4], Abbas et  al. [50] 
and Zhang et  al. [6]. However, we detected three main 
regions on OAR3, 15 and 26 with signals for Prevotel-

laceae OTU that colocalized with the same SNP, i.e., 
colocalizations for Prevotellaceae and Lachnospiraceae 
OTU on OAR5, and colocalizations for Prevotellaceae 
and F082 OTU on OAR26. This suggests that some 
regions of the host genome are associated with rumen 
bacterial abundance, but given the limitations raised 
by Pérez-Enciso et  al. [51] about the difficulty in iden-
tifying causative SNPs for microbiota abundance, the 
results should be confirmed with a larger dataset. From 
the genomic regions in which QTL were detected for 
OTU abundances, we recovered several potential candi-
date genes, such as TIA1, IL18R1, W5PCZ6_SHEEP and 
PDE3B, which are involved in host immune system pro-
cesses, regulation and catabolic processes, as reported 
by Abbas et al. [50]. However, it was not possible to iden-
tify shared metabolic pathways between OTU and dairy 
traits because we did not detect genomic regions where 
pleiotropic or closely-related QTL affected both traits 
simultaneously. One explanation may be that although 
the dataset is large for a microbial analysis, the number 
of records is too small for the detection of genome-asso-
ciated regions and pleiotropic effects compared to other 
studies [52, 53].

Conclusions
Our findings, based on a large and unique microbiome 
database, demonstrate that a small proportion of the total 
bacterial abundance in the rumen of Lacaune ewes is 
partially controlled by the host genome, for both the total 
and core microbiome, and that a few of the bacteria are 
associated with specific genomic regions on OAR3, 5, 15 
and 26. Only very few of the genetic correlations between 
milk fine composition and rumen bacteria were signifi-
cant, and it was not possible to identify genomic regions 
and metabolic pathways shared between rumen bacte-
rial abundance and dairy traits. The use of 16S rRNA 
gene sequencing in this study did not allow for species-
level affiliation, and additional work is needed to identify 
which microbial functions are involved and to associate 
the functions with milk traits. Then, it will be possible 
to consider the incorporation of microbiota abundance 
and microbial functions into genetic evaluation mod-
els to account for indirect genetic effects through the 
microbiota.
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somatic cell score and the coefficient of variation in milk production.

Additional file 3: Table S3. Genetic correlations between fat content 
(FC), milk fatty acids and operational taxonomic units (OTU). Genetic cor-
relations between OTU abundances, fat content and milk fatty acids, such 
as butyric acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid 
(C10:0), lauric acid (C12:0), and palmitic acid (C16:0), oleic acid (cis-9 C18:1), 
rumenic acid (cis-9 trans-11 C18:2) and alpha-linolenic acid (C18:3n-3).

Additional file 4: Table S4. Genetic correlations between protein content 
(PC), milk proteins and operational taxonomic units (OTU). Genetic correla-
tions between OTU abundances, protein content and milk proteins, such 
as alpha-S1-casein, alpha-S2-casein, beta-casein, kappa-casein, alpha-
lactalbumin and beta-lactoglobulin.

Additional file 5: Table S5. Significant SNPs from GWAS of operational 
taxonomic units (OTU). Significant SNPs from GWAS of operational taxo-
nomic units with candidate genes detected for each SNP.

Additional file 6: Table S6. Functional annotation for gene IDs recovered 
from detected SNPs for microbiome GWAS. Description of the functional 
annotations for genes recovered from Ensembl platform and metabolic 
processes and KEGG pathways from DAVID platform.
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5.2.1 Supplementary results 

Distribution of OTUs heritabilities 

The distribution of heritabilities for each of 2,059 OTUs was positively skewed, with a median 

of 0.02 and a mean of 0.04 ± 0.03, as shown in Figure 14. The most part (85%) of the rumen 

bacterial OTUs showed a heritability lower than the threshold of significance (  of 0.10). The 

15% represented by 306 OTUs showed a heritability between 0.10 to 0.29 (mean of 0.15 ± 

0.04), considering them OTUs with a heritability different from zero. 

 

Figure 14. Frequency distribution of OTU heritabilities. In pink, OTUs with heritability non-

significantly different from zero and in sky-blue, OTUs with significant heritability 

significantly different from zero (threshold of significance defined at 0.10). 

Alpha-diversity heritability 

As additional results of that presented in the chapter, heritability was estimated for the number 

of observed OTUs and three alpha-diversity indices, such as Inverse Simpson, Shannon and 

Simpson. The three alpha-diversity indices expressed the mean species diversity in a sample, 

but whatever the trait, heritabilities were zero (Table 6).  
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Table 6. Alpha-diversity indices and their heritabilities estimates. 

 Observed OTUs Inverse Simpson Shannon Simpson 

Value ± SD 1322 ± 238 198 ± 73 6.17 ± 0.43 0.99 ± 0.04 

 ± SE 0.003 ± 0.002 0.003 ± 0.008 0.004 ± 0.001 0.003 ± 0.001 

 SD: standard deviation, : heritability, SE: standard error. 

 

 

Conclusion of section 5.2 

A small proportion (15%) of bacterial abundances in the rumen of Lacaune dairy ewes is 

partially controlled by host genetics and some of the bacteria were associated with specific 

genomic regions on chromosomes 3, 5, 10 and 11. OTUs belonging to the core microbiome 

were not more heritable than other OTUs. In addition, only 96 OTUs were significantly 

genetically correlated with fine milk composition, and it was not possible to identify genomic 

regions and metabolic pathways shared between rumen bacterial abundance and dairy traits. 

To conclude, we have demonstrated host genetic control over a fraction of rumen 
bacterial abundance, rather polygenic due to the weakness of the few QTL identified. A 
small part of these OTUs were genetically linked to fine milk composition traits. However, 

future work is needed to assess the relevance of incorporating microbiota data into 
genetic evaluation. 
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5.3 Evidence of genetic links between rumen bacteria and milk somatic cell score in 
Lacaune dairy sheep 
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Abstract 

Mastitis is a high prevalence infectious disease in dairy sheep. Even if selection by milk somatic 

cell score (SCS) has been implemented to increase mastitis resistance, we wonder if rumen 

bacteria could influence udder inflammatory response. The objectives are to estimate genetic 

correlations between rumen bacteria and average SCS over lactation (LSCS), and to identify 

underlying mechanism between traits. 795 Lacaune ewes were studied using metabarcoding 

(16S rRNA gene) for rumen bacteria characterization and annual SCS records. Two-trait 

genomic models were used for the parameter estimation and GWAS. Results showed significant 

genetic correlations, and colocalized QTLs for LSCS and nine bacterial operational taxonomic 

units (OTUs) on chromosomes 3, 17, and 20. We found a genetic association between 

resistance/susceptibility to mastitis, using LSCS, and the ruminal bacteria abundance. These 

preliminary results pave the way for better understanding the biological basis and causalities of 

an intra-mammary inflammations in sheep. 

 

Introduction 

As in cattle, mastitis is one of the most important infectious diseases in small dairy ruminants, 

due to its high frequency and the price reduction paid to the farmer of up to 10% (95€ per 1,000 

litres of ewes’ milk). The selection was focused on the milk SCS, as a tool to decrease 

subclinical intra-mammary infections, which is the main problem in dairy sheep. The existence 

of a genetic basis for mastitis resistance has been demonstrated, and the underlying mechanisms 

involved such as the suppressor of cytokine signalling 2 (Socs2) gene (Rupp et al., 2015). 

Recently, the influence of the rumen microbiome on subclinical ketosis has been demonstrated 

in cows (Gebreyesus et al., 2020), but no work is available in sheep. Therefore, could rumen 

bacteria impact on intra-mammary inflammations in sheep? To address this, and after 

quantifying host control over rumen bacteria, we 1) estimated genetic correlations between 

rumen bacteria and LSCS, and 2) identified possible underlying mechanisms with genome-wide 

association analysis (GWAS). 

 

Materials & Methods 

Animals phenotyping. A total of 795 Lacaune dairy ewes were reared at INRAE Experimental 

Unit of La Fage (UE 321 agreement A312031, Roquefort, France), between 2015 to 2019. All 

ewes (weighing 77 kg on average) raised indoors, and fed 93% meadow hay and silage plus 7% 

of concentrates (on dry matter basis). The daily somatic cell count (SCC) was quantified with 

a Fossomatic cell counter (Nanterre, France), as part of the official milk recordings of the flock. 

Then, the average LSCS was calculated as log of somatic cell count, including at least four milk 

test-days. Rumen sampling of adult ewes between 28 to 133 days in milk was done once per 

ewe using a vacuum pump and a medical gastric tube. The protocol received approval from the 

French Ministry of Higher Education, Research and Innovation – Animal Ethics Committee 



(approval number: APAFIS#6292-2016080214271984 v8). The RNA sequences of the 795 

samples were processed with the FROGS 3.0 pipeline, and OTUs with abundances below 

0.005% were removed (Bokulich et al., 2013). The resulting abundance table included 2,059 

OTUs, but we focused on the 306 OTUs with heritability significantly different from zero 

(empirical significant threshold of 0.10 obtained after running 10,000 analyses where OTUs 

abundancies were shuffling randomly across individuals) using an additive relationship matrix. 

 

Animals genotyping. DNA extraction from blood samples and genotyping were performed for 

795 Lacaune ewes. From those ewes, 743 were genotyped using a medium-density SNP chip 

(Illumina Ovine SNP50 BeadChip, 54,241 SNPs). The remaining 52 ewes were genotyped with 

a low-density SNP chip (Illumina Ovine SNP15, 16,681 SNPs) and imputed to a medium-

density SNP chip genotypes in the framework of the Lacaune dairy sheep genomic selection 

program (Larroque et al., 2017). SNPs were removed using a call rate <0.99 for SNPs, and 

<0.95 for individuals, and minor allele frequency <0.05. In total, for the 26 ovis aries autosomal 

chromosomes (OAR), 35,496 SNPs remained for the analyses, plus one SNP corresponding to 

the Socs2 gene mutation (OAR3). 

 

Parameter estimation. To estimate the heritability of the 306 rumen OTUs and LSCS, and the 

genetic correlations between each OTU and LSCS, a two-trait animal model was used: [𝐲𝟏𝐲𝟐] = [𝐗𝟏 𝟎𝟎 𝐗𝟐] [𝐛𝟏𝐛𝟐] + [𝐙𝟏 𝟎𝟎 𝐙𝟐] [𝐚𝟏𝐚𝟐] + [𝐞𝟏𝐞𝟐]         (1) 

where y1 and y2 are the vectors of observations for LSCS and one OTU at a time, respectively; 

b1 and b2 are the vectors of fixed effects, b1 including for LSCS: litter size, number of milking 

test-day, and b2 for the OTUs: sampling year, total number of DNA sequences per sample, and 

three effects nested on year sampling: lactation number, sequencing run, and order-time of 

sampling; a1 and a2 are the vectors of random additive effects; and e1 and e2 are the vectors of 

residual effects. X1 and X2 are incidence matrices relating fixed effects to vector y1 and y2, 

respectively; Z1 and Z2 are incidences matrices relating the additive effects to vector y1 and y2, 

respectively. The distributional assumptions are 𝐚~N(0, 𝐆⊗𝐖), and 𝐞 ∼ N(0, 𝐈 ⊗ 𝐑); G is a 

genomic relationships matrix as 𝐆 = 𝐙𝐙′/2∑pi(1 − pi) (VanRaden, 2008); I is an identity 

matrix; W and R are the variance-covariance matrices for the random additive and residual 

effects, respectively. The heritability was estimated as h2 = σa2 σy2⁄ , and the genetic correlations 

as rg = σa12 √(σa12 σa22 )⁄ .  The variance components were estimated using AIREMLF90 

(Misztal et al., 2002). The significance was considered as genetic correlation value greater than 

the standard error.  

 

Genome-Wide Association. The GWAS was performed using the two-trait model presented in 

Equation 1. After solving the single step GBLUP model, all SNP effects were estimated back 

solving the breeding values estimates as proposed by Aguilar et al. (2019) using POSTGSF90 

(Misztal et al., 2002). To correct for multiple testing the false discovery rate (FDR) was used 

as implemented in the p.adjust package in R software. A SNP was considered significant at an 

FDR of P<0.10. 

 

Results 

The average heritability estimated for LSCS was 0.39 ± 0.07. Genetic parameters of the 14 

rumen bacteria having significant genetic correlations with LSCS are presented in Table 1.  

 



Table 1. Heritability (h2) and genetic correlations (rg) between lactation somatic cell 

score and ruminal bacteria abundance. 

Genus OTU name h2 (SE) rg (SE) 

Lachnospiraceae_NK3A20_group OTU506 0.10 (0.06)  0.68 (0.63) 

Prevotella OTU871 0.17 (0.07)  0.58 (0.43) 

Monoglobus OTU1066 0.13 (0.06)  0.51 (0.40) 

Leifsonia OTU1479 0.14 (0.07)  0.48 (0.43) 

Lachnospiraceae/unknown genus OTU309 0.15 (0.07)  0.47 (0.41) 

Mailhella OTU2331 0.15 (0.06)  0.39 (0.34) 

F082/unknown genus OTU1009 0.14 (0.06)  0.35 (0.29) 

Acetitomaculum OTU612 0.23 (0.07)  0.31 (0.21) 

Lachnospiraceae NK3A20 group OTU278 0.20 (0.07)  0.30 (0.24) 

Lachnospiraceae/unknown genus OTU1666 0.19 (0.07) -0.21 (0.20) 

Prevotella OTU1496 0.22 (0.07) -0.32 (0.24) 

Prevotella OTU196 0.16 (0.06) -0.35 (0.28) 

Prevotella OTU136 0.13 (0.06) -0.36 (0.34) 

F082/unknown_genus OTU2431 0.20 (0.07) -0.37 (0.22) 

SE= standard error. 

 

The GWAS for LSCS detected on OAR3 four significant QTLs: in decreasing order of 

significance, the SNP for Socs gene (129,722,200 bp), SNP rs412514556 (129,423,378 bp), 

SNP rs425386363 (23,336,791 bp) and SNP rs416770789 (133,977,235 bp). The microbiome 

GWAS detected 387 significant SNPs for 67 OTUs among the 306 OTUs with heritability 

significantly different from zero. SNPs were scattered on all chromosomes, with the highest p-

values and highest number of signals on OAR1, OAR2, OAR3, and OAR5. But, in this study 

we focus on the OTUs with significant signals located close to the LSCS QTLs on OAR3 (Table 

2). 

 

Table 2. Summary of the significant results obtained from the microbiome GWAS. 

Genus OTU name SNP Position (bp) 
-log10 

(P-value) 

Prevotella OTU1419 rs425386363 23,336,791 5.59 

Lachnospiraceae/unknown genus OTU16661 rs425386363 23,336,791 6.90 

Ruminococcus OTU602 Socs  129,722,200 5.70 
1 OTUs with significant genetic correlations with LSCS. 

 

Discussion 

The LSCS heritability was greater than the 0.15 reported by Rupp et al. (2009), using the whole 

Lacaune population. Even if the genetic correlations have a high standard error which can lead 

to spurious ones, most genetic correlations between LSCS and OTUs were positive, meaning 

that higher bacterial abundance is genetically associated with susceptibility to mastitis. There 

is also a higher variety of genera within the positive correlations than for the negative 

correlations where the most frequently associated is Prevotella, a bacteria belonging to the 

Bacteroidetes phylum. Zhong et al. (2018) obtained Bacteroidetes as the most abundant in the 

group with low SCC, even if they showed that the rumen microbiome in cows was globally 

stable at different SCC levels. The link between gut bacteria and mastitis is probably not direct 

but would be through bacterial metabolites absorbed by the host, and which would have pro- or 

anti-inflammatory properties (Hu et al., 2019). A QTL on OAR3 was detected for 



Ruminococcus OTU602 at the Socs gene position, and the Socs2 genotype known to have more 

LSCS in milk is associated with highest abundance of OTU602 (results not shown). In contrast, 

Chuang et al. (2021) found that Ruminococcus genus was phenotypically reduced in the rumen 

of cows with clinical mastitis. As well on OAR3, two QTLs were detected, one for Prevotella 

OTU1419 and one for Lachnospiraceae OTU1666. The SNP genotype associated with more 

LSCS in milk is linked with more Prevotella OTU1419 abundance, which is contrary with the 

main genetic correlations for this genus, but on others OTUs. The same SNP genotype 

associated with mastitis susceptibility is also linked with less Lachnospiraceae OTU1666 

abundance, which is consistent with the negative but weak genetic correlation of -0.21 with 

LSCS. This result on OTU1666 is in agreement with Wang et al. (2021) finding that this family 

is phenotypically associated with anti-inflammatory molecules such as 2-Phenylbutiric acid. 

But, for the three others OTUs belonging to the Lachnospiraceae family, an increase of their 

abundances is genetically linked with more LSCS. The identification in this study of QTLs on 

OAR3 common for LSCS and OTUs in addition to the results obtained for genetic correlations, 

contribute to the hypothesis of a genetic link between rumen bacteria and mastitis. We can 

conclude that host genetic may influence ruminal bacteria abundances and udder inflammation 

in sheep via mainly positive genetic correlations, but the underlying metabolic pathways are 

still difficult to identify with only the identification of bacterial genera. The genetic study of 

these bacteria’s functions is underway in order to unravel the various results obtained at the 

OTU level. 
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Conclusion of section 5.3 

The host genetics may influence ruminal bacteria abundances and udder inflammation in 

sheep: using a bi-trait GWAS we identified two QTLs associated with SCS and three OTU 

abundances. But the links were very few and the underlying metabolic pathways are still 

difficult to identify with only the identification of bacteria at the genera level.  

To conclude, the combination of genetic correlations and GWAS are complementary 
approaches to characterize the first genetic links between milk somatic cell score and 
some rumen bacterial abundances.  

 

5.4 Conclusion 

As for others livestock species, we demonstrated the modulation of gut bacterial abundances 

by sheep host genes. The genetic links found between rumen bacterial abundances and fine 

milk composition traits were moderate to high but for a very small proportion of OTUs of the 

total microbial community. Combination of methodologies such as genetic correlations and 

multiple trait GWAS allowed for evaluate more precisely the associations between microbial 

abundances and phenotypes, but a further step is still needed to see if these links are of interest 

in animal breeding.
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Chapter 6 
Impact of rumen microbiota 

on phenotypes 
 

6.1 Introduction 

The high-dimensional omics data can be analyzed as direct trait, as well as complementary 

information in the models to explained the expression of complex traits. The classical genetic 

models account the direct genetic effect on the phenotype, but using omics data, it is possible 

to account also for the indirect genetic effect on the phenotype, that is the genetic effect 

mediated by RNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), or 

metagenomics (microbial genes). In that way, Christensen et al. (2021) proposed a joint model 

for intermediate omics and phenotypes, and a method for prediction of breeding values 

developed. Our study is focus on microbial abundances, so even if it is not strictly an 

intermediate trait as proposed the authors, it is still interesting to quantify which part of the 

host genetic effect is mediated by the rumen bacterial abundances. Not only can the addition 

of the microbial component have an impact on the accuracies of EBVs, but it will increase 

knowledge about the potential host genetic control over the microbial composition that impact 

the phenotype of interest. 

The work began with the application of the method proposed by Christensen et al. (2021), 

using a joint model in order to calculated the total heritability of dairy traits. As a first step it 

was estimated the microbiability and residual heritability using a model which includes dairy 

traits as phenotype, and the microbiota and genomics as random effects. And as second step it 

was estimated the heritability of microbial community in the rumen using a model which 

includes the microbiome effect predicted in first model for each animal and dairy trait, and 

genomics as random effect. Moreover, we estimated the gain in fit of the genetic model by 

adding the microbiota effect. 

A first part of the results obtained from these analyses were presented as Oral presentation at 

the 12th World Congress on Genetics Applied to Livestock Production in July 2022 in 
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Rotterdam (The Netherlands), and the complete results plus MWAS analyses were submitted 

for publication under the title Microbiability of milk composition and genetic control of 
microbiota effects in sheep  in Journal of Dairy Science in October 2022. 

6.2 Microbiability of milk composition and genetic control of microbiota effects in sheep 
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Abstract 

Recently, high-dimensional omics data are becoming available in larger quantities, and models 

have been developed that integrate them with genomics to understand in finer details the 

relationship between genotype and phenotype, and thus improve the performance of genetic 

evaluations. Our objectives are to quantify the impact of the inclusion of metagenomic data in 

the genetic evaluation for dairy traits in sheep, through the estimation of the heritability, 

microbiability, and how the metagenomic effect on dairy traits decomposes into genetic and 

non-genetic parts. In this study we analyzed milk and rumen samples of 795 Lacaune dairy 

ewes. We included, as phenotype, the dairy traits and milk fatty acids and proteins composition; 

as omics measurements, 16S rRNA rumen bacterial abundances; and as genotyping, 54k SNP 

chip for all ewes. Two nested genomic models were used: a first model to predict the individual 

contributions of the genetic and microbial abundances to phenotypes, and a second model to 

predict the additive genetic effect of the microbial community. In addition, microbiome-wide 

association studies for all dairy traits was applied using the 2,059 rumen bacterial abundances. 

Results showed that in general the inclusion of both genetic and microbial effect did not 

improve the fit of the model compare to the model with the genetic effect only. In addition, for 

all dairy traits the total heritability was equal to the residual heritability after fitting microbiota 

effects, due to a microbiability being almost zero for most dairy traits and heritability of the 

microbial community as a whole was very close to zero. MWAS did not show OTUs with major 

effect for any of the dairy traits evaluated. So far, we can conclude that, using a substantial 

dataset of 795 Lacaune dairy ewes, rumen bacterial abundances do not provide improved 

genetic evaluation for dairy traits in sheep. 

Key words 

Rumen microbiota, heritability, microbiability, MWAS, dairy sheep 
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Introduction 

In plant and animal breeding, it has recently become possible to obtain high-dimensional omics 

data in larger quantities, such as metabolites, gene expression, proteins, microbial genes, in 

addition to the already available genotypes. This has enabled the integration of different types 

of data to uncover the genotype-phenotype relationship (Morgante et al., 2020), which will be 

beneficial for the development of an optimized breeding strategy to improve complex traits 

(Fernie and Schauer, 2009; Guo et al., 2016). 

However, to use omics information in genomic evaluations there must be methods and models 

available that can account for these high-dimensional data. To this end, first, Weishaar et al. 

(2020) used two models: a microbial model to describe the microbial abundances effect on  

phenotypes, i.e. the microbiability defined by Difford et al. (2018) for gut microbiome in cattle, 

and a genetic model for microbial abundances, which quantify the host genetic control on the 

microbiota. The genetic effect on the trait, not mediated by the microbiome, is included in a 

final step in a selection index. However, in this regard, Christensen et al. (2021) proposed a 

joint model including the genetic effect not mediated by the microbiome in the first model. This 

joint model was proposed for intermediate traits, which are those traits between the DNA action 

and phenotype expression. Although microbiome data is not strictly an intermediate trait from 

a metabolic point of view, in practice it is a source of information between genotype and 

phenotype.  

In ruminants, the rumen microbiome is crucial to digest plant fiber and is closely associated to 

productive traits (Difford et al., 2018; Xue et al., 2018; Matthews et al., 2019). Particularly in 

dairy ruminants, the rumen fermentation products, such as volatile fatty acids, and the microbial 

amino acids are used by the mammary gland to produce milk with a high solid content which 

allows the production of high-quality cheese. Our previous results showed that rumen bacterial 

abundances are controlled by host genetics in Lacaune dairy ewes (Martinez Boggio et al., 

2022) and that fine milk composition is linked with particular rumen bacteria (Martinez Boggio 

et al., 2021). So, we hypothesized that there is an indirect genetic effect on dairy traits mediated 

by the bacterial abundances in the ewe’s rumen. Therefore, we propose to apply the method 

defined by Christensen et al. (2021) on a Lacaune dairy sheep dataset including targeted 

metagenomics (16S rRNA gene), and fine milk composition traits as phenotypes, aiming to 

quantify the impact of the inclusion of the rumen microbial abundance in the genetic evaluation 

of dairy traits, estimating the residual heritability (ℎ𝑟2) and microbiability (𝑐𝑚2 ), and the 
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heritability of the predicted microbiome effect (ℎ𝑚2 ), which amounts to a general heritability of 

the microbial community (Christensen et al., 2021).  

Materials and Methods 

The study was conducted at the INRAE Experimental Unit of La Fage (UE 321 agreement 

A312031, Roquefort, France) with a protocol for rumen sampling approved by the French 

Ministry of Higher Education, Research and Innovation – Animal Ethics Committee (approval 

number: APAFIS#6292-2016080214271984 v8). 

Animals’ phenotyping 

Data of dairy traits and rumen bacterial abundance from 795 multiparous Lacaune dairy ewes 

were collected from 2015 to 2019. For details, see Martinez Boggio et al. (2022). The data 

consisted of records of milk yield (MY), and mid-infrared (MIR) spectra predictions of the milk 

fat content (FC), protein content (PC) and fine profile of daily milk fatty acids (FAs) and 

proteins. The accuracies of the predictive equations of ewe milk FAs and proteins were 

retrieved from Ferrand-Calmels et al. (2014) and Ferrand et al. (2012), respectively. The 

coefficients of determination for the FAs retained for this study, were higher than 0.91, with 

the exception of c9t11 C18:2 and C18:3n-3 with values of 0.74. Meanwhile, for caseins, the 

coefficients of determination were higher than 0.82, and equal to 0.77 and 0.26 for beta-

lactoglobulin and alpha-lactalbumin, respectively. The fatty acids predicted by MIR were 

saturated FAs, such as butyric acid (C4:0), caproic acid (C6:0), caprylic acid (C8:0), capric acid 

(C10:0), lauric acid (C12:0), and palmitic acid (C16:0), and unsaturated FAs, such as oleic acid 

(c9 C18:1), rumenic acid (c9t11 C18:2) and alpha-linolenic acid (C18:3n-3). The proteins 

predicted by MIR were caseins, namely, alpha-S1-casein (αs1-CN), alpha-S2-casein (αs2-CN), 

beta-casein (β-CN) and kappa-casein (κ-CN), and two whey proteins, namely, alpha-

lactalbumin (α-LAC) and beta-lactoglobulin (β-LG). 

Rumen sampling 

Rumen sampling was performed in morning or afternoon within 3 days around the official milk 

recording of the flock. Ruminal contents were sampled from each ewe using a vacuum pump 

and a medical gastric tube. After extraction, the DNA strands of the 795 samples were 

sequenced using V3-V4 region of 16S rRNA gene with Illumina MiSeq technology (Illumina, 

USA) at the Genomic and Transcriptomic Platform (INRAE, Toulouse, France). More details 
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on rumen sampling, DNA extraction, amplicon sequencing and bioinformatic process are 

provided in Martinez Boggio et al. (2022). We obtained an abundance table with 2,059 

operational taxonomic units (OTUs) as result of the bioinformatic process of DNA sequences 

using FROGS 3.0 pipeline (Escudié et al., 2018). 

Genotyping 

Among the 795 ewes, 743 were genotyped using Illumina Ovine SNP50 BeadChip (54,241 

SNPs), and 52 ewes were genotyped with Illumina Ovine SNP15 (16,681 SNPs) followed by 

imputation to a medium-density SNP chip as part of the Lacaune dairy sheep genomic selection 

program (Larroque et al., 2017). Genotypes were subjected to quality control, including 

minimum call rates of 90% for SNPs and 95% for individuals and exclusion of SNPs with a 

minor allele frequency lower than 5%. The final dataset included 773 genotyped individuals 

and 35,492 autosomal SNPs. 

Statistical analyses 

The methodology applied for inference with complete omics data was the one proposed by 

Christensen et al. (2021), where a joint model for omics and phenotypes was proposed, and a 

method for prediction of breeding values developed. The method consisted of the following 

two steps: 1) prediction of the individual contributions of the genetic and microbiome to 

phenotypes, and 2) prediction of the additive genetic effect of the microbial community. As an 

additional analysis, in the first step, we compared two models to assess the relevance of 

including the microbiome effect to the genetic one. The individual dairy traits were analyzed 

separately using single trait models.  

Step 1 

The first step consisted on fitting a single trait model including the residual additive genetic 

effect and the microbiome effect (Eq. 1).  

 𝒚 = 𝑿𝒃 + 𝒁𝟏𝒂𝒓 + 𝒁𝟐𝒖 + 𝒆, (1) 

where 𝒚 is the vector of observations, 𝒃 is the vector of fixed effects, 𝒂𝒓 is the vector of random 

residual additive genetic effects, 𝒖 is the vector of individual effects due to microbiome, and 𝒆 

is the vector of random residual effects, 𝑿 is the incidence matrix for 𝒃, and 𝒁𝟏 and 𝒁𝟐 are 

incidence matrices for 𝐚𝐫 and 𝒖, respectively. The distributional assumptions are 𝒂𝒓~𝑁(0, 𝑮𝜎𝑎𝑟2 ), 𝒖~𝑁(0, 𝑶𝜎𝑢2), 𝒆~𝑁(0, 𝑰𝜎𝑒2), where 𝑮 is a genomic relationship matrix 
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computed based on the first method proposed by VanRaden (2008), 𝑶 is the microbial similarity 

matrix, and 𝑰 is an identity matrix; 𝜎𝑎𝑟2  is the residual additive genetic variance, 𝜎𝑢2 is the 

microbiome effect variance, and 𝜎𝑒2 is the residual variance. The microbiability was estimated 

as 𝑐𝑚2 = 𝜎𝑢2/𝜎𝑦2, and the residual heritability as ℎ𝑟2 = 𝜎𝑎𝑟2 /𝜎𝑦2, where 𝜎𝑦2 is the phenotypic 

variance. 

The fixed effects considered in 𝒃 (Eq. 1) were defined by ANOVA test with P <0.05. For all 

dairy traits, we included the effects of days in milk (28 to 133 DIM) as a covariate and the 

sampling year (with five levels: 2015 to 2019). For FC and milk FAs, we included the number 

of lactations nested in the sampling year (with seven levels: in 2015, ewes in second, third or 

fourth and more lactations, and in 2016 to 2019 ewes in second lactation only), and for PC, 

milk proteins and FAs, we also included litter size, with two levels (1, or 2 and more lambs).  

The microbial similarity matrix (𝑶) for the 795 ewes was computed based on the rumen 

bacterial abundance similarities between animals using the method proposed by Ross et al. 

(2013):    

 𝑶 = 𝑴𝑴′𝑛   

The matrix was computed as a variance-covariance matrix from rumen bacterial abundances as 

where 𝑴 is the abundance matrix with 𝑛 = 2,059 OTUs, with zeros corrected with the 

geometric Bayesian-multiplicative (GBM) method (Martín-Fernández et al., 2015) and 

centered log-ratio (CLR) transformed. OTU abundances were pre-corrected for the significant 

fixed effects (for more than 10% of OTUs; P <0.05) not included in 𝒃 (Eq. 1), such as total 

number of sequences per rumen sample, sequencing run, and sampling time and order, all of 

them nested on the sampling year. Note that the microbial matrix 𝑶, is called 𝑴 by other authors 

(Difford et al., 2018; Weishaar et al., 2020), but here we use 𝑴 for the abundance matrix to 

have the same notation as Christensen et al. (2021). Similarly, microbiability, that we call 𝑐𝑚2 , 

was named 𝑚2 in Difford et al. (2018). 

To assess the relevance of including the microbiome effect in the prediction model, we used 

the full model with genetic and microbiome effects (Eq. 1), and a model with the genetic effect 

only as follows:  

 𝒚 = 𝑿𝒃 + 𝒁𝟏𝒈 + 𝒆, (2) 

where 𝒈 is the vector of random additive genetic effects, and 𝒚, 𝒃, 𝒆, 𝑿 and 𝒁𝟏 are described 

above.  
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This model with the genetic effect only (Eq. 2), defined as the null hypothesis, was compared 

to the full one (Eq. 1) on the basis of a likelihood ratio test. The P-values were computed 

considering that the distribution of likelihood ratio test asymptotically is a mixture of Chi-

squared distributions (Visscher, 2006). The significance for Chi-squared test with one degree 

of freedom was defined at P <0.05.  

Step 2 

The second step consisted on fitting a single trait model using the estimates of microbiome 

effect (obtained from Eq. 1) as phenotype: 

 �̂� = 𝑾𝜷 + 𝒁𝟏𝒈 + 𝜺 (3) 

where �̂� is the predicted effects 𝒖 in Equation 1 for each individual, 𝜷 is the vector of fixed 

effects (same effects as in 𝒃); 𝒈 is the vector of random additive genetic effects on microbial 

OTUs; and 𝜺 is the vector of random residual effects; 𝑾 is the incidence matrix for 𝜷. The 

distributional assumptions are 𝒈~𝑁(0, 𝑮𝜎𝑔2) and 𝜺~𝑁(0, 𝑰𝜎𝜀2), where, 𝑮 is a genomic 

relationship matrix, and 𝑰 is an identity matrix; 𝜎𝑔2 is additive genetic variance and 𝜎𝜀2 is residual 

variance. The heritability of the microbial community was calculated as ℎ𝑚2 = 𝜎𝑔2/(𝜎𝑔2 + 𝜎𝜀2). 
Here, contrary to our previous work (Martinez Boggio et al., 2022) we assume (or force) the 

same heritability for all OTUs, which is a simplifying assumption in Christensen et al. (2021). 

In theory, using the Equation 3 in all traits should result in the same ℎ𝑚2  . However, first, when 𝜎𝑢2 → 0 there is no variation in �̂� and ℎ𝑚2  (although well defined) is not estimable. Second, 

because the variance components of Equation 1 are themselves estimates, the estimate of 

variance components in Equation 3, which uses inferred �̂�, will suffer from incorrect estimation 

of variance components in Equation 1. 

Thus, the total heritability of a phenotype is decomposed into a microbiome mediated 

heritability (𝑐𝑚2 ℎ𝑚2 ), and a residual heritability (ℎ𝑟2) according to the formula ℎ2 = 𝑐𝑚2 ℎ𝑚2 + ℎ𝑟2 

presented by Christensen et al. (2021). All variance components were estimated using 

BLUPF90+ (Misztal et al., 2002) with OPTION method VCE. 

Microbiome-wide association study (MWAS)  

Single-OTU regression analyses were applied to test the effect of the 2,059 OTUs, one at a 

time, and obtain the associated P-value. The model used was the Equation 2 plus the specific 

OTU as a fixed covariate. The P-value of the estimate of the regression coefficient for the fitted 

OTU-covariate was obtained by converting the estimate and its standard error to Z-score and 
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applying a Chi-squared test. The model was fitted using BLUPF90+ (Misztal et al., 2002) with 

OPTION method VCE. 

Results 

Description of phenotypes 

A data summary on dairy traits and rumen bacterial composition is available in Martinez Boggio 

et al. (2022). Briefly, MY averaged 1.95 ± 0.59 liters, with a FC of 7.37 ± 1.14 g/100ml and a 

PC of 5.71 ± 0.52 g/100ml. Among the fine milk components measured by MIR spectra, beta-

casein was the most abundant protein (2.10 ± 0.23 g/100ml) and palmitic acid (C16:0) the most 

abundant FA (1.96 ± 0.37 g/100ml). 

Comparison between full model and genetic model 

The inclusion of the microbiome effect was significant for beta-lactoglobulin (P <0.01), alpha-

S2-casein and kappa casein (P <0.05). However, we obtained non-significant effects of the 

inclusion of the microbiome effect in all FAs (Table 1). 

Microbiability and heritability of the microbial community 

The microbiability estimated from the full model was almost zero for most dairy traits (Table 

1), with exception of beta-lactoglobulin (0.06 ± 0.05), alpha-S2-casein (0.07 ± 0.05), kappa-

casein and alpha-S1-casein (0.04 ± 0.04) and PC (0.03 ± 0.03) where values were barely higher 

than zero. For all the dairy traits with a microbiability almost equal to zero, the model in step 2 

did not run because the predicted phenotypes �̂� have zero variance and ℎ𝑚2  is therefore not 

estimable. For the remaining traits having a nonzero microbiability (albeit small in all cases), ℎ𝑚2  was very close to zero. So, in practice, the total heritability (𝑐𝑚2 ℎ𝑚2 + ℎ𝑟2) of dairy traits was 

equal to the residual heritability (from step 1) as shown in Table 1. Furthermore, we tested the 

contribution of each specific OTU on dairy traits using a MWAS, but no OTU for any dairy 

trait showed a significant effect (results not shown).
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Table 1. Estimates of residual heritability (ℎ𝑟2), microbiability (𝑐𝑚2 ), heritability of the microbial community (ℎ𝑚2 ), total heritability as 

product of (𝑐𝑚2 ℎ𝑚2 ) plus (ℎ𝑟2), and heritability (ℎ2) from the model including only the genetic effect, and P-values from the comparison 

between the full model (Eq. 1) and model with genetic effect only (Eq. 2).  †model in Equation 4 not run. 

Trait ℎ𝑟2 𝑐𝑚2  ℎ𝑚2  𝑐𝑚2 ℎ𝑚2 + ℎ𝑟2 ℎ2 P-value 

MY 0.25±0.07 0.005±0.02 † 0.25 0.25±0.07 0.33 

FC 0.54±0.07 <10e-4 (<10e-3) † 0.54 0.54±0.07 0.50 

PC* 0.51±0.07 0.03±0.03 0.004±0.003 0.51 0.52±0.07 0.06* 

αs1-CN* 0.49±0.09 0.04±0.04 0.006±0.004 0.49 0.50±0.09 0.05* 

αs2-CN** 0.70±0.08 0.07±0.05 0.03±0.007 0.70 0.69±0.08 0.02** 

β-CN 0.42±0.09 <10e-4 (<10e-3) † 0.42 0.42±0.09 0.50 

κ-CN** 0.47±0.08 0.04±0.04 0.006±0.003 0.47 0.48±0.08 0.03** 

α-LAC 0.28±0.10 <10e-4 (<10e-3) † 0.28 0.28±0.10 0.50 

β-LG*** 0.44±0.09 0.06±0.05 0.003±0.002 0.44 0.46±0.09 0.005*** 

C4:0 0.46±0.09 <10e-4 (<10e-3) † 0.46 0.46±0.09 0.50 

C6:0 0.44±0.09 <10e-4 (<10e-3) † 0.44 0.44±0.09 0.50 

C8:0 0.47±0.09 <10e-4 (<10e-3) † 0.47 0.47±0.09 0.50 

C10:0 0.52±0.09 <10e-4 (<10e-3) † 0.52 0.52±0.09 0.50 

C12:0 0.55±0.08 <10e-4 (<10e-3) † 0.55 0.55±0.08 0.50 

C16:0 0.47±0.08 0.01±0.03 † 0.47 0.47±0.08 0.41 

c9 C18:1 0.43±0.09 <10e-4 (<10e-3) † 0.43 0.43±0.09 0.50 

c9t11 C18:2 0.35±0.09 <10e-4 (<10e-3) † 0.35 0.35±0.09 0.50 

C18:3n-3 0.36±0.09 <10e-4 (<10e-3) † 0.36 0.36±0.09 0.50 
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Discussion 

In this study, we evaluated the impact of rumen bacterial abundance on milk composition traits 

in dairy ewes. Rumen microbiota was considered as an intermediate trait in the model of 

Christensen et al. (2021), although microbiota is not strictly intermediate between DNA action 

and expression of the phenotype of interest. Despite that, it is interesting to assess the potential 

impact of including metagenomic data in the genetic evaluation of milk composition traits 

closely associated with rumen microbiota (Matthews et al., 2019). Moreover, a genetic control 

of bacterial abundances by the host, and genetic associations with the fine milk composition, 

had been shown Martinez Boggio et al. (2022). This close link of some rumen microbiota with 

milk FAs is due to rumen fermentation products, such as volatile fatty acids, which influence 

the milk FA profile through “de novo” synthesis of FAs in the mammary gland and 

biohydrogenation of unsaturated FAs in the rumen (Lourenço et al., 2010; Osorio et al., 2016). 

Furthermore, the link between rumen microbiota and milk proteins is mainly due to the fact that 

the passage of microbial proteins to the intestine supplies the mammary gland with essential 

amino acids used for protein production (Osorio et al., 2016). Although microbiota provides 

precursors for the production of milk FAs and proteins, the microbiome effect obtained in this 

study was only slightly significant for milk protein models. 

For all dairy traits included in this study, total heritability was moderate to high (0.25 to 0.70). 

However, the contribution to total heritability was entirely due to the direct genetic effect on 

the phenotype, i.e. total heritability (𝑐𝑚2 ℎ𝑚2 + ℎ𝑟2) was equal to the residual heritability (ℎ𝑟2). 

This was due, first, to the weak impact of the microbiota on most dairy traits, as shown by low 

values of microbiability (𝑐𝑚2 ) estimated. In the literature, a zero microbiability was reported for 

most milk FAs in dairy cows, except for C15:0 (0.42 ± 0.18) and C18:3n-3 (0.31 ± 0.14) 

(Buitenhuis et al., 2019), and there are no references for milk proteins, for which we obtained 

a very low impact of the microbiota (e.g. alpha-S2-casein 0.07 ± 0.05 and beta-lactoglobulin 

0.06 ± 0.05). Second, the heritability of the microbial community (ℎ𝑚2 ) as a whole estimated in 

step 2 was close to zero, and similar to the average heritability of 0.04 ± 0.03 obtained for the 

2,059 OTUs (Martinez Boggio et al., 2022). Thus, those elements evidence a non-contribution 

of the genetic effect on the phenotype mediated by the rumen microbial abundance (𝑐𝑚2 ℎ𝑚2 ).  

Despite the results obtained with dairy traits, the methodology proposed by Christensen et al. 

(2021) allowed to separate the direct genetic effect on phenotypes from the indirect genetic 
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effect on phenotypes mediated by the rumen microbiome. However, regarding the indirect 

genetic effect, we observed that at the extreme when the predicted microbiome effects �̂� were 

zero, the model in step 2 did not run. That imposed limitations on the use of the resulting 

predicted phenotype for the quantification of host genetic control of the microbial community. 

The results here showed that including metagenomics as an additional information source of 

data will not improve accuracy of estimated breeding values. It would be interesting to evaluate 

some elements that may improve this accuracy. Firstly, the use of traits more closely associated 

with rumen microbiota, such as rumen FAs or methane emissions, which are direct products of 

the rumen microbial community (Hurtaud et al., 1993; Dehority, 2003). In the literature for 

those traits, moderate but significant impacts of the rumen microbiota were obtained. For 

metabolic traits, such as milk acetone and beta-hydroxybutyric acid, a microbiability of 0.15 ± 

0.09 were estimated for both traits (Gebreyesus et al., 2020). In addition, for methane emissions 

Difford et al. (2018) and Ramayo‐Caldas et al. (2020) in dairy cows and Hess et al. (2020) in 

meat sheep, reported microbiabilities of 0.13 ± 0.09, 0.16 ± 0.09 and 0.19 ± 0.07, respectively. 

Secondly, replacing the use of rumen microbial abundances by rumen microbial functions to 

construct the microbial similarity matrix would avoid functional redundancy at the rumen 

microbiota (Weimer, 2015).  Furthermore, we suggest much further work is needed to evaluate 

more complex models that fit the biological nature of the microbial community in the rumen, 

since the methodology used in this study was designed for intermediate -omics traits between 

DNA and the phenotype of interest, which is not really the case with microbiota. 

Conclusions 

Rumen microbial abundance does not contribute to the phenotypic variance of most of the fine 

milk composition traits and no causative OTUs were detected. In turn, there was no genetic 

control of the microbial community. So far, we can conclude that, using a substantial dataset of 

795 Lacaune dairy ewes, rumen bacterial abundances do not provide improved genetic 

evaluation for dairy traits in sheep. Further work will be needed to evaluate traits that are a 

direct product of the microbiota (e.g. rumen volatile fatty acids or methane emissions) as well 

as the substitution of microbial abundances for microbial functions. 
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6.2.1 Supplementary results 

In this chapter we estimated the microbiability using a mixed model with a genomic effect and 

microbial effect. We accounted the microbial effect through a microbial similarity matrix based 

on the microbial abundances for each individual. We constructed the  matrix using the method 

proposed by Ross et al. (2013b): 

where,  is the abundance matrix with  total number of OTUs. However, we have tried 

including different information and number of OTUs in the  matrix: 

: All 2,059 OTU CLR-transformed abundances, GBM-imputed zeros, and values 

corrected only for the number of sequences. 

: All 2,059 OTU CLR-transformed abundances, GBM-imputed zeros, and values 

corrected for all significant fixed effects. 

: All 2,059 OTU log10-transformed abundances, zeros imputed by adding one, and 

values corrected for all significant fixed effects. 

: CLR-transformed abundances, GBM-imputed zeros, and values 

corrected for all significant fixed effects (to note GBM and CLR were applied to the all 

. 

We chose beta-lactoglobulin as the trait to test the different types of microbial matrices, because 

it was one of the traits that showed the highest microbial effect in the abovementioned 

estimation models. As shown in Table 7, the microbiabilities were quite similar among the 

different matrices evaluated, ranging from 0.03 ± 0.02 to 0.10 ± 0.07. However, the matrix 

including CLR-transformed abundances corrected for all fixed effects ( ) was the one that 

showed the average of the diagonal ( ) closest to one, and average relationship ( ) equal 

zero. This is relevant, as proposed by Legarra (2016), for the relationship matrices used to 

obtain comparable estimates (  of 1 and  of 0). 

  

  (9) 
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Table 7. Estimates of variance components (  residual genetic,  microbial, and  residual 

variances), heritability ( ), microbiability ( ), statistics of the relationship matrices (average 

of the diagonal  and average relationship ) for beta-lactoglobulin, for four different 

types of the relationships ( , , , ). 

     

 0.35±0.08 0.36±0.08 0.36±0.08 0.36±0.08 

 0.05±0.03 0.05±0.04 0.08±0.07 0.02±0.02 

 0.40±0.07 0.40±0.07 0.41±0.07 0.42±0.07 

 0.44±0.09 0.44±0.09 0.42±0.09 0.45±0.09 

 0.06±0.04 0.06±0.05 0.10±0.08 0.03±0.02 

 1.28 1.05 0.47 1.14 

 1.26e-06 1.26e-06 1.26e-06 1.26e-06 

 

6.3 Conclusion 

This work was the first implementation of the methodology proposed by Christensen et al. 

(2021) for dairy traits, which allows for estimate the direct and indirect genetic effect mediated 

by the metagenomics on the phenotype. Unfortunately, microbiabilities for fine milk 

composition traits were low or equal to zero. These very low microbiabilities generate problems 

in estimating the associated genetic effect, which revealed some limitations of the method used. 

The heritability of the microbial community was expected due to the mean of heritability 

obtained for the 2,059 OTUs. Then, to conclude, with the dataset used and the low genetic 

variance explained by the rumen microbiota, the rumen bacteria abundances do not provide 

improved genetic evaluation for dairy traits in sheep.
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Chapter 7 

General discussion 
 

In recent years, with the microbiome revolution, as defined by Blaser (2014), more attention 

has been given to the microbiota composition of animals and their crucial role in their host. In 

that sense, the concept of a holobiont, i.e., the assemblage between the host and their microbial 

communities was proposed as a single unit. Considering the organism as a whole allows for a 

better understanding of its functioning and therefore for the improvement of traits of interest in 

animal breeding. The microbiota is associated with some of these traits of interest (e.g., milk 

composition traits, methane emissions, nutrient digestibility, growth traits); in ruminants, this 

occurs through the rumen symbiotic microorganisms responsible for converting nondigestible 

plant mass into energy (Hungate, 1966). This capability is of enormous importance to mankind 

because ruminants are intermediaries between the light energy harvested in green parts of plants 

and the production of digestible compounds for humans such as milk and meat. Fermentation 

products of the rumen microbiota, mainly bacteria, have a direct effect on the composition of 

fatty acids and proteins in milk (Hurtaud et al., 1993). The combination of this information on 

the impact of the microbiota on productive traits and the host and microbial genome based on 

recent advances in NGS technologies allows for us to better understand the relationship between 

the host and its microbiome. 

The overall objective of this thesis was to integrate the relationship between the host 
genome and the rumen metagenome of the animal in modeling the variability of milk 

composition and udder health in dairy sheep.  

7.1 What impact does the rumen microbiota have on phenotypic variability? 

The main results of this thesis that contribute to this question are presented in Figure 15. These 

are integrated and discussed throughout this section for a better understanding of the impact of 

the rumen microbiota on phenotypes.  
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Figure 15. Main results obtained for individual and microbiota effects on phenotypes. OTU: 

operational taxonomic unit, : phenotypic correlation, : microbiability, VFAs: volatile fatty 

acids in rumen, LCFAs: long-chain fatty acids in rumen, SCS line: genetic lines selected for 

somatic cell score, PERS: genetic lines selected for persistency in milk production. The 

microbiome-wide association study (MWAS) did not show any significant OTU for any of the 

dairy traits. The rumen microbial community was not able to discriminate through a 

discriminant analysis the genetic lines SCS (SCS+ and SCS-), nor PERS (PERS+ and PERS-). 

7.1.1 Links between OTU abundances and phenotypes 

The rumen bacterial abundance was low to moderately associated with phenotypes. In general, 

for traits that are a direct product of bacteria in the rumen, such as VFAs and LCFAs, OTUs 

showed moderate phenotypic correlations (|0.20-0.50|). However, for milk composition traits, 

such as FAs and proteins, OTUs showed low phenotypic correlations (|0.08-0.20|), and were 

even lower for MY and SCS (<|0.11|). These results evidence different degrees of association 

between rumen bacteria and their direct fermentation products and final milk components. The 

low correlations observed between bacteria and milk composition traits are logical given the 

many genetic (Osorio et al., 2016) and nongenetic factors (Hurtaud et al., 1993) that mediate 
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the synthesis of FAs and proteins in the mammary gland. In this sense, ruminal bacteria play a 

key role in the production of FAs that determine the milk composition. This intermediate 

process is evidenced by the identification of the same predominant bacterial genera in the 

rumen, such as Prevotella, Ruminococcus, and Rikenellaceae_RC9_gut_group, associated with 

traits in the rumen and milk. However, we also identified a few bacterial genera, such as 

Succinivibrionaceae_UCG-002, Lachnospiraceae_NK3A20_group and Acetitomaculum, that 

were associated with rumen or milk FAs but not with both. The approach used in this study 

allows for initial evaluation of the associations with direct rumen fermentation products such 

as VFAs and LCFAs of the rumen bacteria and milk composition traits, allowing for us to 

partially unravel the intermediate process from the rumen to the mammary gland. These results 

need to be confirmed given the functional redundancy in the rumen (Weimer, 2015), which 

results in many bacteria being involved in the same metabolic function. 

Do the low phenotypic correlations obtained for dairy traits mean that there is no direct link 

between rumen microbial abundances and fine milk composition traits? Or are they due to the 

variance of these traits, which are strongly influenced by how they are predicted or measured 

in milk? In this regard, there may be two ways to address this question:  

1. Perform standard laboratory measurements (e.g. wet lab method) for milk components 

as in Buitenhuis et al. (2019). This allows for us to compare the association with rumen 

microbial abundances using different methodologies such as wet lab techniques, MIR 

spectra predictions and gas chromatography, but implies higher costs and sample 

processing time for a large number of animals.  

2. Confirm the results obtained in this work using MIR spectra predictions and gas 

chromatography with a larger database. This would allow for us to obtain more precise 

estimates, as there are no published studies to refer to with a large number of ruminants, 

such as those used in our work, that include milk traits and microbial abundances.  

Furthermore, we did not detect any association between rumen bacterial OTUs and the fine 

milk composition using a single OTU-regression analysis, i.e., MWAS. These results are even 

less promising than the phenotypic correlations with milk FAs and proteins. We performed 

MWASs for all 2,059 OTUs available without preselection based on the variance explained for 

the two principal components (as in the sparse Partial Least-Square analysis), as for the 

phenotypic correlations. In addition, in the MWAS, we included an extra effect in the regression 

model, which is the genetic effect that controls the risk of associations based on the genetic 
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population structure. In general, in livestock species using varied traits, most OTUs in the 

MWAS failed to pass the defined significance threshold (Difford et al., 2018; Gebreyesus et 

al., 2020; Vollmar et al., 2020; Aliakbari et al., 2022). In our study, we applied a compositional 

data process of microbial abundances, which was suggested by Vollmar et al. (2020) to improve 

the detection of OTU causalities in the MWAS but we did not identify any significant signal. 

7.1.2 Microbial community effect on phenotypes 

Usually, the number of OTUs is larger than the number of animals sampled, so a solution could 

be to estimate all microbial effects simultaneously rather than OTU by OTU. For this, the rumen 

bacterial community could be considered through the use of an abundance matrix with animals 

and OTUs or through the construction of a similarity matrix that expresses the similarities 

between individuals in terms of microbial abundances.  

First, we used the global rumen microbial abundances in order to discriminate two lines 

divergently selected by years for two specific traits: somatic cell score in milk (SCS lines) and 

the coefficient of variation of milk production (PERS lines). Despite the clear genetic 

differences between these lines (>2 genetic standard deviations), no discrimination was possible 

using the microbial community abundance. These results could mean that genetic selection 

occurs, which is based on the transmission of the best combination of alleles that will improve 

the phenotype of interest (e.g., SCS or PERS), and any of those alleles are transmitted jointly 

with alleles associated with the rumen bacterial abundances. 

Then, using a microbial similarity matrix ( ), we estimated the variance explained by each 

dairy trait by the microbiota abundance, i.e., the microbiability. We obtained no phenotypic 

variance for milk FAs and very weak variance for milk proteins (<0.06). It can be assumed that 

the phenotypic correlations of dairy traits with the OTUs presented above are diluted when 

studying the overall microbial effect on the phenotype. These results are thus not far those 

obtained in dairy cows for milk FAs (Buitenhuis et al., 2019), where the microbiabilities of the 

fine milk composition were very low and had large standard errors.  

Then, the question of what impact does the rumen microbiota have on the phenotypic 

variability of dairy traits was examined. The rumen microbial abundance has a weak 

association with dairy traits, mainly evidenced by a group of OTUs with some significant 

phenotypic correlations, but these OTU effects on the phenotype are diluted when using the 

microbial community as a whole. It is also noteworthy that rumen VFAs and LCFAs were more 

closely associated with OTUs than fine milk composition traits, although these results should 
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be confirmed. The first step in considering the potential use of genetic selection on the traits 

that showed an impact of the rumen microbiota, however low, is to evaluate the genetic control 

on microbial composition. 

7.2 What degree of control do host genetics have over microbial composition? 

The main results obtained from the genetic analyses were integrated to determine the host 

genetic control on the microbial composition in the rumen of dairy sheep (Figure 16).  

 
Figure 16. Main results obtained for host genetic effect on individual and community microbial 

composition. OTU: operational taxonomic unit, Heritable-OTU: operational taxonomic units 

that with a heritability significantly different from zero (N=306 OTUs), : genetic correlation, 

: heritability, : heritability of the microbial community. For the genome-wide association 

study (GWAS) of OTUs with significant genetic variance were identified six quantitative trait 

loci (QTLs).   

7.2.1 Host genetic control on OTU abundance 

The rumen bacteria represented by 2,059 OTUs, without applying the rarefication process, 

presented a proportion of 15% (306 OTUs) with low to moderate host genetic control (  from 
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0.10 to 0.29). These results are higher than the 2%, 4%, 6% and 8% presented in cows by Zhang 

et al. (2020), Zang et al. (2022), Difford et al. (2018) and Wallace et al. (2019), respectively, 

and there is thus far no reference in sheep. Therefore, in general, in the rumen microbiota, there 

are a large number of OTUs with no genetic control and a few OTUs with moderate to high 

genetic control; in our work, the maximum heritability was 0.29, but for some other authors, it 

was as high as 0.60 (Wallace et al., 2019). 

Considering GWASs, we determined the abundance of each OTU and found that the host 

genetic control was very low. In fact, major effects on OTU abundances were detected on only 

four autosomal chromosomes, and many of the signals found throughout the host genome were 

unclear. The low number of QTLs for the OTU abundances detected contributes to the 

hypothesis of Pérez-Enciso et al. (2021) that it is very difficult to find causative SNPs for 

bacterial abundances with GWAS analysis alone. First, numerous factors may have biased the 

results obtained, such as the number of GWASs and independent statistical analyses performed 

with a relatively small dataset of ~800 ewes. Moreover, the low heritability of OTUs leads to 

problems in estimating the effects and variances of SNPs with the methodology of single-step 

GWAS (Aguilar et al., 2019). 

The genetic links between OTU abundances with significant genetic variance and dairy traits 

were high (|0.35 0.99|), and for the SCS were moderate (|0.21-0.68|). However, a very small 

proportion of the microbiota (one-third of heritable OTUs i.e., 5% of the total) showed a 

significant correlation with traits, even if they were affiliated with the most abundant microbial 

families and genera in the rumen. The fact that the most important genera are represented is 

misleading, since many OTUs belonging to these genera presented opposite correlations with 

the same dairy trait in many cases.  

Despite the methodological limits, the partial genetic control of the host over bacterial 

abundances could be explained by the functional redundancy in the rumen. We hypothesize that 

the host controls key microbial functions in the rumen that have a role in its metabolism rather 

than OTU abundance. Therefore, from one animal to another, different OTUs could be involved 

for the same function, which would produce that the variance of this microbial function is 

divided in the abundance of different OTUs, explaining the weak relationship between 

abundances and traits. In this regard, we attempted to determine the metabolic functions by 

which the host controls over the microbial abundances through the QTL identification of OTU 

abundances. Most of the microbial functions detected were associated with the immune system.  



Chapter 7 General discussion

145 
 

Future work could identify microbial functions that are not possible to determine using short 

sequencing reads, as they do not contain enough information to support highly resolved 

phylogenetic classification. A promising option could be the use of short-read sequencers to 

generate accurate synthetic long reads. This sequencing technology (LoopSeq 16S Long Read) 

amplifies the full-length 16S rRNA gene and achieves enough accuracy for species-level 

assignment from the 16S rRNA gene (Callahan et al., 2021). Another option is to use the high-

dimensional data from shotgun sequencing, as Martínez-Álvaro et al. (2022) did, which allowed 

for them to work with microbial functions and estimate the heritabilities of microbial genes, for 

which they obtained higher values than for the abundances (27% of microbial genes with  

from 0.2 to 0.6). However, and despite being finer than 16S rRNA gene sequencing for the 

study of microbial functions and LoopSeq 16S when large amounts of nontarget DNA are 

present in the samples, shotgun sequencing costs five times more 

sample) than targeting the 16S rRNA gene.  

7.2.2 Host genetic control over the microbial community 

The genetic control of the host on OTU abundance was low to moderate, and if we consider the 

rumen bacterial community as a whole, this genetic control was even lower. In general, the 

results showed zero heritability of alpha-diversity indices and no genetic control over the 

microbial community estimated with the Christensen et al. (2021) method for different dairy 

traits.  

First, an alpha-diversity index provides a measure of species diversity within each sample, thus 

allowing for all OTUs to be condensed into a single value per animal. As higher microbial 

diversity is often considered an attribute of gut health (Fouhse et al., 2016), some authors 

considered these measures for potential use in genetic selection for associated traits in 

monogastric species (Aliakbari et al., 2021; Déru et al., 2022). However, in our work, the results 

obtained for Simpson's and Shannon's indices were zero, which differs from published results 

using nonrecommended preprocessing of microbial abundances such as rarefaction (McMurdie 

and Holmes, 2014). For the alpha-diversity indices in dairy cows, F. Li et al. (2019) obtained a 

heritability of 0.19 ± 0.08 for the Simpson index and 0.23 ± 0.09 for the Shannon index. In 

addition, for beta-diversity indices such as Bray-Curtis, for the two first principal coordinates 

of the dissimilarity matrix, Difford et al. (2018) obtained a heritability of 0.20 ± 0.10 and 0.02 

± 0.05, and F. Li et al. (2019) obtained 0.12 ± 0.07 and 0.25 ± 0.09. 
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Second, as mentioned above, the microbial effect on dairy traits predicted using a microbial 

similarity matrix was equal to or very close to zero for all traits. Then, we estimated the genetic 

control over the microbial community as the heritability of the predicted microbial effect, and 

it was similar to the mean of 0.04 ± 0.03 obtained for the heritability of the 2,059 OTUs. 

However, in this work, we reveal a limitation of the Christensen et al. (2021) methodology; 

when the model uses the microbial effect predicted from the previous model as the phenotype 

and this derived phenotype has very low variance (values close to zero for all animals), then the 

model does not run. 

The results obtained from community analyses are less promising than for individual OTUs, 

which could be explained by the information contained in the microbial similarity matrix. This 

microbial matrix was proposed by Ross et al. (2013b), and it is the most widely used for 

microbiome studies in different livestock species (Camarinha-Silva et al., 2017; Difford et al., 

2018; Vollmar et al., 2020; Khanal et al., 2021). In this work, we evaluated different ways of 

constructing the microbial similarity matrix ( ) such as the use of CLR-transformed 

abundances of all OTUs or only the  ones (N=306), but in any case, we observed 

significant differences in microbiabilities for the beta-lactoglobulin. Thus, whether the 

microbial matrix focuses only on the 306 OTUs or considers all OTUs did not change the 

estimated effects, meaning that OTUs with significant heritability do not have a differential 

impact on the phenotype compared to the others. One additional element to consider in the 

microbial matrix is the information that it contains. We know that the microbiota composition 

is highly impacted by the surrounding environment; thus, the lack of host genetic control over 

the microbial community could be explained by the fact that the similarity between individuals 

could be mostly due to the shared environment between the contemporary group of animals. 

For example, He et al. (2022) obtained greater microbiabilities in pigs when they did not include 

pen and sire effects in the prediction models. The way to reduce this phenomenon is to limit the 

experimental variation factors and, if not controlled, record them for correction by statistical 

models. However, the sources of variation are so large and there is possible horizontal microbial 

transmission between animals, thus it would be impossible to eliminate the environmental 

effects. 

What degree of control do host genetics have over microbial composition? Host genetics 

have low to moderate genetic control over a small group of OTUs in the rumen which are also 

associated with dairy traits and udder health traits. However, the use of microbial community 

information for breeding purposes is not promising due to the null results obtained in this work.  
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7.3 How could the holobiont concept be implemented in animal breeding? 

The results obtained in this thesis allow for us to better understand the relationship between the 

rumen microbiota and its host from a phenotypic and genetic points of view, as well as to 

elaborate possible scenarios for the use of microbiota in animal breeding.   

7.3.1 Genetic selection of microbiota 

Genetic selection for a particular rumen microbial community could be seen as an opportunity 

to improve the phenotype of interest. To date, the only published experience of selection on 

microbial genera is from Larzul et al. (2021). The authors conducted a two-generation 

directional selection based on the abundance of four bacterial genera. These genera are part of 

two gut enterotypes in pigs associated with growth traits, such as Prevotella and Mitsuokella 

and Ruminococcus and Treponema. This study shows that genetic selection for bacterial genus 

abundance is possible based on the moderate heritability estimated (  from 0.3 to 0.4) and the 

genetic differences observed for those genera under selection after two generations. However, 

some points deserve consideration. The selection criteria used by Larzul et al. (2021) were well 

defined in a previous study that evidenced these two enterotypes in the pig intestine (Ramayo-

Caldas et al., 2016). However, beyond the four genera, we know little about the impact of this 

selection on the microbial community or how to carry out such experiments in nonuniform 

environmental conditions?  

In dairy ewes, the search for ruminotypes has not yet been conducted. However, the zero 

heritability of alpha-diversity indices and the low to moderate heritability of rumen bacteria, of 

which only the Prevotella genus was identified as abundant and overrepresented over heritable 

OTUs, as well as the few OTUs genetically associated with fine milk composition do not allow 

for us to consider selection on some specific OTUs or genera considering only genetic effects. 

7.3.2 Short-term changes in microbiota composition 

Considering that the microbiota is highly influenced by environmental effects and is dynamic 

throughout the animal's life, we could imagine, beyond the selection, making innovative short-

term changes in the composition of the microbiota. This means that at any time of the animal's 

life, a rapid change in the rumen microbial composition could occur for a short period of time 

to impact the phenotype of interest until the animal re-establishes the original composition. 

There are long-used methods to change the microbiota in the rumen, and the knowledge 

generated in our work indicates that it could be interesting to re-evaluate some of them (e.g., 

rumen microbial transplantation and bacteriophages).  
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Rumen microbial transplantation (or also known as transfaunation) refers to transferring rumen 

fluid containing microbes and nutrients from one animal to another. However, to date, the 

studies using this technique included a low number of animals, two to eight animals (Weimer 

et al., 2010; Zhou et al., 2018; Santos et al., 2021), and did not evaluate the impact on traits 

directly affected by the rumen bacteria. Previous experiences have shown that there is generally 

high interindividual variability in terms of time to restore the original microbial composition, 

but it commonly occurs within a period of 28 days (Zhou et al., 2018) to 63 days (Weimer et 

al., 2010). Therefore, it could be an interesting window of time to modify the rumen microbiota 

and thus impact the phenotype of interest. Another option is the use of bacteriophages, which 

are viruses that infect and kill bacterial cells through a lytic process (Patra, 2012). They were 

applied to control potential pathogens naturally occurring in the rumen, e.g., two days before 

cattle slaughter, to reduce the risk of meat contamination (Rozema et al., 2009; Montso et al., 

2021) and were also proposed to control methane emissions in cattle (Mirzaei-Aghsaghali and 

Maheri-Sis, 2015). However, the results obtained by the authors using bacteriophages are too 

variable, and further work is needed to find a suitable way to use them. 

In conclusion, and based on the weak genetic control of the host over its rumen microbial 

composition, it would be interesting to use some of the long-used methods to rapidly improve 

the production of rumen traits directly associated with the microbiota. As an experimental 

scenario, we could impact methane emissions for a short time by rumen microbial 

transplantation of animals from very efficient lines.  

7.3.3 Selection of microbiota as a nongenetic effect 

For years, animal selection schemes have been performed using only genetic effects, where 

genes are inherited by the transmission of DNA material that determines the expression of 

phenotype. Nongenetic sources of inheritance (e.g., epigenetics, microbiota, behavior effects) 

have thus far not been considered in the selection of livestock species, which today is a 

limitation to achieving the maximum progress in selection (David and Ricard, 2019). One of 

the first references is Tal et al. (2010), who proposed a mathematical model that was later used 

by Varona et al. (2015) to estimate the variance components of epigenetic marks. More 

recently, David and Ricard (2019) proposed a transmissibility model to estimate the 

transmissible values instead of EBVs, including all sources of genetic and nongenetic variance, 

such as the microbiota composition.  
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Then, the microbiota could also be considered a nongenetic effect that is physically transmitted 

across generations (Sandoval-Motta et al., 2017), contributing to the phenotypic resemblance 

between relatives. For example, direct physical contact with the mother during birth and during 

the suckling period is crucial to the establishment of the microbial community in ruminants 

(Dehority, 2004). However, the mechanisms of microbiota transmission or the possibility of 

simultaneously enhancing the transmission of microbiota effects controlled and not controlled 

by host genetics are not discussed in a recent review by Pérez-Enciso et al. (2021). We proposed 

to include this transmissible subset of OTUs that are not genetically controlled but have an 

impact on the phenotype, as well as the subset of OTUs under genetic control that impact the 

phenotype.  

As we now know that microbiota has host genetic control, though only 15% of the rumen 

microbiota in our study, is it possible to select microbiota for the nongenetic but transmissible 

microbial effect in animal breeding? This will depend on three factors: the transmission fidelity 

of the microbiota due to the variety of transmission mechanisms, the environmental 

colonization and within-host proliferation during development periods of the host, and the 

number of microbial generations within one host generation (Bruijning et al., 2022). Then, 

considering the proposal of David et al. (2019), we can perform an intervention at a specific 

moments in the  life, such as birth, to generate a change in the composition of the rumen 

microbiota of the mother that will be transmitted vertically to the offspring. In this way, we can 

have an impact on the expression of the phenotype of future generations.
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Chapter 8 
Conclusions and perspectives 

 

The analyses performed in this thesis produced multiple results that have greatly improved our 

knowledge of the dairy sheep holobiont. First, we defined a suitable method to work with 

microbial abundances considering the compositional nature of the microbiome community and 

its high susceptibility to environmental factors. Host genetic selection based on rumen bacterial 

composition for milk quality improvement is not promising due to mainly null microbiability 

as well as the low number of OTUs genetically controlled and genetically associated (even 

highly) with the fine milk composition and the absence of genomic regions in common between 

bacterial abundances and dairy traits. Milk quality could not be improved through host genetic 

selection for microbiota-mediated effects. However, if the microbiota had influenced milk traits 

and was transmissible, we could select for those traits even if the microbiota is not genetically 

controlled. Knowledge about the relationship between the host, rumen microbiome and traits 

will allow for us to assess the future use of . 

Based on the data in this project, the perspectives for future work are as follows: 

The microbial abundances were useful as a first approach to the microbiome analysis. However, 

they contain redundant information about functions in the rumen, then, it might be better to use 

microbial functions instead of abundances. In our study, we evidenced through GWASs of 

bacterial abundances that host genome was associated through genes that were involved in 

immune system pathways. Then, an interesting point to explore could be through microbial 

functions confirm these association with the immune system more precisely, and evidence 

potential associations of rumen bacteria with markers of disease or immune system measures. 

The microbiome is a complex and dynamic community interacting with its host and 

environment. At present

at the time of collection, so longitudinal microbiome studies which collected data across 

multiple time points is highly recommended. In this way, these studies capture temporal 

variation within microbiome to gain mechanistic insights in microbial system, and to assess 
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phenotypic and genetic associations with phenotypes of interest over different periods of the 

animal's life. 

The microbiome in the holobiont will play a fundamental role in adapting to changing 

environmental conditions (e.g., climate change). This is because even with low host genetic 

control, the microbiota can improve the phenotypic means of producing specialized individuals 

for a production system or increase the phenotypic variance of producing animals adapted to 

changing environmental situations. Then, the incorporation in the genetic evaluations system 

of nongenetic effect could be an interesting approach to refining the breeding strategies for the 

future agroecology by focusing on the holobiont rather than the animal.
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Résumé 
La sélection animale a montré ces dernières années un intérêt croissant pour l'utilisation des 
informations du microbiote digestif étant donné l'association avec les caractères physiologiques 
de l'hôte. Dans ce contexte, les hypothèses de cette thèse sont : 1) le microbiote du rumen 
influence les caractéristiques de composition fine du lait et de la santé de la mamelle, et 2) 
le microbiote ruminal est contrôl aractères de 
composition du lait et de santé de la mamelle. Pour répondre à ces hypothèses, nous avons 
exploré la relation entre le génome de l'hôte et le métagénome ruminal dans la modélisation de 
la variabilité des phénotypes chez la brebis laitière. Le projet "MicroGenOL" était basé sur 795 
brebis Lacaune provenant de deux lignées génétiques élevées dans les mêmes conditions de 
logement et d'alimentation à l'Unité Expérimentale INRAE de La Fage. Pour tous les animaux, 
la composition fine du lait a été prédite par les spectres dans le moyen infrarouge, et pour 118 
brebis, les acides gras (AG) ont été mesurés par chromatographie en phase gazeuse. En outre, 
tous les animaux ont été génotypés à l'aide d'une puce SNP 54k, et un prélèvement de rumen a 
été effectué pour tous les animaux, ou deux à une semaine d'intervalle pour 118 brebis. Le gène 

 échantillons de jus de rumen. Pour travailler avec 
les abondances microbiennes en raison de leur nature compositionnelle, un process de 

dénombrements des Unités Taxonomiques Opérationnelles (OTU) ont été transformés en 

traitement des données sur les estimations génétiques nous ont permis de définir la meilleure 
façon de travailler et les limites de l'interprétation des résultats. Les premières analyses ont 
porté sur 
associations phénotypiques faibles (<|0.20|) avec les AG et les protéines du lait, et modérées 
(|0.20-0.50|) avec les AG du rumen. De plus, la matrice microbienne explique un très faible 
pourcentage de la variabilité fine de la composition du lait (microbiabilité nulle pour les AG et 
inférieure à 0,06 pour les protéines). L'utilisation des données du microbiote dans son ensemble 
n'a pas permis de mettre en évidence des relations avec aucun des caractères laitiers, alors que 
certains OTU sont apparus associés aux AG du rumen et dans une moindre mesure aux AG et 
protéines du lait. En ce qui concerne l'existence de liens entre le microbiote ruminal et la 

microbiote avec seulement 15% des abondances bactériennes du rumen présentant des 
héritabilités significatives (0.10-0.29). Les associations génétiques pour ces OTU héritables 
avec la composition fine du lait étaient élevées (|0.35-0.99|) mais pour moins de 5% des OTU. 

s sur les chromosomes 3, 5, 10 et 11 ont été détectées 
comme impactant des abondances bactériennes, mais aucune de ces régions n'était commune 
avec celles des caractères laitiers. Enfin, comme la plupart des OTU n'était pas contrôlée par la 
génétique de l'hôte et que les liens entre le microbiote et la composition fine du lait étaient 
faibles, la sélection génétique des brebis pour l'abondance microbienne ne semble pas 
prometteuse. Cependant, la prise en compte de la transmissibilité d'effets non génétiques portés 
par le microbiote pourrait être une opportunité intéressante pour augmenter le progrès 
génétique. Ce projet a ouvert de nouvelles perspectives pour l'intégration de l'hôte et de son 
microbiote dans la sélection animale, grâce à une meilleure compréhension de la biologie sous-
jacente aux modèles. 

Mots clés : Microbiote, Rumen, Génétique quantitative, Brebis laitière, Holobionte  
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Summary 
Animal breeding has shown in recent years an increasing interest in the use of digestive 
microbiota information, given the association with the physiological traits of the host. In this 
context, the hypotheses of this thesis are: 1) the rumen microbiota influence milk composition 
and udder health traits, and 2) a genetic determinism exist on rumen microbiota that affects 
milk composition and udder health traits. To address these hypotheses, we explored the 
relationship between the host genome and ruminal metagenome in the modeling of dairy  

lines reared under the same housing and feeding conditions at the INRAE Experimental Unit 
of La Fage. For all animals the fine milk composition was predicted by mid-infrared spectra, 
and for 118 ewes, fatty acids (FAs) were measured by gas chromatography. In addition, all 
animals were genotyping with 54k SNP chip, and one rumen sampling for all animals, or two 
one week apart for 118 ewes, were collected. Rumen samples were sequencing of 16S RNA 
gene. To work with microbial abundances due to their compositional nature, a workflow was 
defined: after bioinformatics process of the raw sequences, operational taxonomic unit (OTU) 
counts in the abundance table were transformed in logratios (after zeros imputation) and 
corrected by environmental factors using linear models. The variability of microbial 
abundances between two weeks and the impact of data processing on genetic estimations 
allowed for us to defined the best way to work with, and the limits of results interpretation. The 
first analysis focused on the influence of the rumen microbiota on the phenotype. We found 
low (<|0.20|) phenotypic associations with milk FAs and proteins, and moderate (|0.20 0.50|) 
associations with rumen FAs. In addition, the microbial matrix explains a very low percentage 
of the fine milk composition variability (microbiability null for FAs and lower than 0.06 for 
proteins). Using the microbiota data for evidence relationships with 
none of the dairy traits, but at the OTU level, associations have been demonstrated with direct 
products such as rumen FAs and in a lesser extent with milk FAs and proteins. Regarding the 
existence of host genetic control over the rumen microbiota composition, we found a low 
impact on the microbiota since only 15% of rumen bacterial abundances showed significant 
heritabilities (0.10-0.29). The genetic associations for those heritable OTUs with the fine milk 
composition was high (|0.35-0.99|) but for less than 5% of OTUs. Six quantitative trait loci 
regions were detected for bacterial abundances in autosomal chromosomes 3, 5, 10 and 11, but 
none were in common with those of dairy traits. Finally, given that most OTUs were not 
controlled by host genetics and the weak associations between microbiota and fine milk 
composition, genetic selection of sheep for microbial abundance does not seem promising. 
However, considering the transmissibility of non-genetic effect possibly carried by the 
microbiota could be an interesting opportunity to increase the genetic progress. This project 
produced new perspectives to incorporate of the host and its microbiota in animal breeding 
through a better understanding of the biology behind the models. 
 
Keywords: Microbiota, Rumen, Quantitative genetics, Dairy sheep, Holobiont  
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