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Introduction

Frustrated magnets are a fascinating class of both theoretical models and materials. They have
been a fruitful playground to test the limits of standard paradigms in statistical physics, as well
as identify exotic magnetic transitions. Some of the most striking examples are the Holmium
and Dysprosium titanate pyrochlores, which were proven to be realizations of so-called spin
ices. In these materials, Ising-like spins occupy sites of a pyrochlore lattice, a corner sharing ar-
ray of tetrahedra. The spins point into and out of the centres of the tetrahedra which frustrates
the ferromagnetic interaction. In the lowest energy configuration the spins satisfy a two spins in
and two spins out ice-rule, which gives rise to a disordered but correlated phase called spin ice.
In Dysprosium and Holmium iridate pyrochlores, the Iridium atoms order antiferromagneti-
cally at about 130 K and provide a staggered local field to the rare-earth spins. The competition
with the ferromagnetic exchange shifts the ground state towards a phase where the local rule is
three spins in and one spin out. The physics of Ising pyrochlores can then be brought together
in the framework of magnetic fragmentation, which will be the central concept of this work. It
makes it possible to understand how the same material can host a coexistence of an ordered
and disordered phase, each contributing to one half of the magnetic moment. This thesis work
focuses on expand the knowledge of the fragmentation phase diagram, with an emphasis on a
close collaboration between theory and experiment.

In the first chapter we present the general physics of Ising pyrochlores, highlighting the phe-
nomenon of fragmentation. We first explain the important concepts using a simple nearest-
neighbor model, then introduce the relevant pyrochlore materials and their properties. Finally
we give an overview of the other magnetic phases which can exist on the pyrochlore lattice,
and present a simple formalism to study the effects of quantumfluctuations. The second chap-
ter we introduce the various experimental techniques we have used in the study of frustrated
pyrochlore magnets. The next three chapters are dedicated to the results of this thesis work.

In Chapter 3 we study the persistence of the fragmented phase at low temperatures where
quantum fluctuations could become relevant. Using a mapping to a dimer model rendered
straightforward by the fragmentation formalism, we first investigate the case of a simpler two-
dimensional example of fragmentation and identify two possible phases and a measurable or-
der parameter to tell them apart. Using the same method, we conclude that fragmentation
would be destroyed in the three-dimensional case because quantum fluctuations would drive
the system to fully order.

In Chapter 4, we study the Holmium ruthenate pyrochlore in which Ho magnetic moments
exhibit a transition at 1.5 K. We perform low temperature magnetic, specific heat and neutron
diffraction measurements and find that the Holmium ions have a partial ordered moment, a
small residual entropyandpeculiardiffuse scatteringpatterns. We interpret these resultswithin
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the framework of fragmentation as a new fragmented structure, where the ordered fragment is
this time of ferromagnetic nature.

InChapter 5,weperformchallengingneutrondiffractionandACspecificheatmeasurements
under pressure on pyrochlore iridates, in order to probe the phase diagram and identify pre-
dicted transitions. While the experimental results proveddifficult to analyse, weprovide amore
complete mean-field description of the phase diagram to help interpret the observations.

2



Chapter 1

Spin ices: models, materials and
fragmentation
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

1.1 Introduction to nearest-neighbor pyrochlore spin ice

Thestarting point of this thesis is the concept ofmagnetic frustration. It is defined as a situation
where all pairwise interactions betweenneighboring spins cannot be satisfied at the same time.
A a simple example, consider a set of Ising spins 𝜎𝑖 with nearest-neighbor coupling 𝐽 :

ℋ=−𝐽 
⟨𝑖,𝑗⟩

𝜎𝑧
𝑖 𝜎𝑧

𝑗 (1.1.1)

which are then placed on a triangular pattern as pictured in Figure 1.1.1 (left). If the coupling is
ferromagnetic 𝐽 > 0 the ground state is straightforward with all spins pointing in the same di-
rection. If it is antiferromagnetic however, there ends upbeing twodistinct stateswith the same
lowest energy. In this instance the frustration has a geometric origin, namely the fact that the
triangle is not bipartite. It also highlights that frustration can create a degeneracy. However, it
is also possible to create frustration on a bipartite lattice by adding next-nearest-neighbor cou-
plings, for example with the 𝐽1−𝐽2 model on the square as pictured in Figure 1.1.1 (right). Lets
assume that the standard first-neighbor exchange is ferromagnetic; then an antiferromagnetic
second-neighbor exchange on the diagonal can compete in a way that makes it impossible to
satisfy all links, and find a single ground state. Of course these examples are heavily simpli-
fied, and in more realistic situations frustration can usually be relieved by considering spins
of a more complex nature. For example, the classical 𝑋𝑌 antiferromagnet on the triangular
lattice orders in a peculiar 120∘ state with an enlarged unit cell. Therefore, the existence of frus-
tration depends both on the lattice geometry, the nature of the spins and the specifics of the
interactions.

Figure 1.1.1: Simple examples of frustration. (Left) Antiferromagnetic Hamiltonian on a trian-
gle. (Right) 𝐽1−𝐽2 model on a square, with opposite exchanges.

Pyrochlore Spin ices are a subset of frustrated systems that have attracted considerable atten-
tion due to their puzzling experimental and theoretical signatures [Harris et al., 1997; Ramirez
et al., 1999]. In this first section we will present the most important properties of spin ices and
the concept of fragmentation using only a simple nearest-neighbor Ising model, which will be

4



1.1 Introduction to nearest-neighbor pyrochlore spin ice

our reference point all along the thesis. In a second part we will introduce the relevant mate-
rials and a more refined long-range model to describe their behavior. Finally we will present
the magnetic phases allowed of the pyrochlore lattice beyond the Ising case, and introduce the
formalisms to study quantum fluctuations.

1.1.1 Frustration on the pyrochlore lattice

Figure1.1.2:Pyrochlore lattice (blue) and its dual diamonddiamond lattice (black). Tetrahedra
of type 𝐴 (𝐵) are shown in shaded purple (green) respectively. The cubic unit cell is delimited
by the dashed lines and contains sixteen sites. The grey arrows show the four �⃗� vectors defined
in the text.

A pyrochlore lattice is built from corner-sharing tetrahedra, forming a four-sublattice face
centred cubic structure. A convention in discussing this system is to use the overlying cube
of side 𝑎𝑐 containing sixteen sites, as shown in Fig. (1.1.2). A laboratory frame [�̂�, �̂�, �̂�] is then
definedwith respect to thebasis vectors of the cube. On this latticewedefine local axespointing
in the four ⟨111⟩ directions. They are

z1 =
1
√3

[1,1,1], z2 =
1
√3

[1,−1,−1]

z3 =
1
√3

[−1,−1,1], z4 =
1
√3

[−1,1,−1]. (1.1.2)

and are also called the local 𝑧 axes. The centers of each tetrahedron form a diamond lattice.
The pyrochlore and diamond lattice sites are labeled 𝑖, 𝑗 and 𝐼 , 𝐽 respectively. As the diamond
lattice is bipartite, we can separate it in𝐴 and𝐵 sublattices whichwe represent with purple and
green tetrahedra respectively. From a modelling point of view this defines an index 𝜂𝐼 equal to
+1,−1 for the 𝐴,𝐵 sublattice respectively.

We now place Ising variables𝜎𝑖 =±1 on the vertices on the pyrochlore lattice, pointing along

5



1.1 Introduction to nearest-neighbor pyrochlore spin ice

Figure 1.1.3: Energy of the different configurations of a tetrahedron in the nearest-neighbor
spin ice model. From bottom to top: ice rule (no defect), single defects, double defects.

the local axesd, such that+1 spins all point out of an𝐴 type tetrahedron. Consider the following
nearest-neighbor Hamiltonian:

ℋNN =−3𝐽 
⟨𝑖,𝑗⟩

(𝜎𝑖z𝑖) ⋅ (𝜎𝑗z𝑗) = 𝐽 
⟨𝑖,𝑗⟩

𝜎𝑖𝜎𝑗 (1.1.3)

It can be rewritten as the sum over tetrahedra:

ℋNN =
𝐽
2𝐼

𝑄2
𝐼 +cte with𝑄𝐼 = 𝜂𝐼 

𝑖∈ tet 𝐼
𝜎𝑖 (1.1.4)

We consider the case where the coupling is ferromagnetic 𝐽 > 0. The ground state is therefore
foundbyminimizing the valueof |𝑄|onevery tetrahedron, namely imposing𝑄 = 0 everywhere.
This is called the ice rule: two spins point in and two spins point out [Harris et al., 1997]; the case
where 𝑄 ≠ 0 will be investigated below. As a consequence, among the 24 = 16 states of a single
tetrahedron, one finds that ⒧42⒭ = 6 have the same lowest energy: the frustration has created
a degeneracy. The other possible energies and their multiplicities for a single tetrahedron are
summarized in Figure 1.1.3.

The local constraint was first highlighted in the case of cubic water ice, where the “ice rule”
refers to the local constraint for the ground state: 2 protons close / 2 protons far from and Oxy-
gen; hence the name “spin ice” for our system. What is the consequence of this degeneracy
on the scale of the entire lattice ? Let us compute an approximation of the number of states
satisfying the ice rule for a lattice of 𝑁 tetrahedra, meaning 2𝑁 spins [Ryzhkin, 2005]. We as-
sume that tetrahedra can be considered independent of one another, meaning that each of
the 6 distinct 2 in / 2 out configurations {𝑁1,…,𝑁6} are occupied with the same probability:
𝑁1 =⋯=𝑁6 =𝑁/6. However they still have to be compatible, in the sense that a spin pointing
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

out of a tetrahedron has to be pointing into its neighbor; so each of the 2𝑁 spins only has a 1/2
probability of being accepted in the lattice tiling. The number of states𝑊 is then

𝑊 = ⒧12⒭
2𝑁 𝑁!

𝑁1!…𝑁6!
= ⒧14⒭

𝑁 𝑁!
⒧𝑁6 ⒭!6

(1.1.5)

and the entropy per tetrahedron is, using Stirling’s formula:

𝑆
𝑁 = 𝑘𝐵 ln⒧32⒭ ≈ 0.405𝑘𝐵 (1.1.6)

This approximation is called Pauling entropy and is very close to the more rigorous calculation
involving an analytical series [Nagle, 2004]. As temperature goes to 0, the systems retains an
entropyassociated to the extensivenumberof 2 in / 2out configurations. Fromanexperimental
standpoint this zero-point entropy was first measured by Ramirez et. al. [Ramirez et al., 1999],
by performing specific heat measurements.

Figure 1.1.4: Pinch-points neutron scattering pattern simulated in the nearest-neighbor spin
ice model. Figure reproduced from [Fennell et al., 2009]

Another way of understanding what happens in spin ice at low temperature is to note that
the system doesn’t order, but stays correlated through the ice rule. To derive the general shape
of the correlations we define a lattice field between two adjacent diamond lattice sites 𝐼 , 𝐽 from
the Ising variable 𝜎𝑗 between them [Lhotel et al., 2020]:

𝑀𝐼𝐽 = 𝜂𝐼𝜎𝑗 , such that𝑀𝐽𝐼 =−𝑀𝐼𝐽 (1.1.7)

which we coarse-grain over a mesoscopic volume to obtain a continuous vector fieldM(r). Us-
ing this field the ice rule takes the form of a zero divergence constraint:

∇⋅M(r) = 0, or in reciprocal space k ⋅M(k) = 0 (1.1.8)
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

ThereforeM behaves as the curl of an emergent gauge field

M=∇×A (1.1.9)

The various phases of condensed matter which can be mapped onto such a field are called
Coulomb Phases, for the following reason. The fluctuations ofM at a certain wave vector k are
strongly constrained by the fact that they have to be transverse, that is to say perpendicular to
k. In a long wavelength limit the correlations functions take the following forms in reciprocal
and real space respectively [Henley, 2010]:

⟨𝑀𝜇(−k)𝑀𝜈(k′)⟩ ∝ 𝛿kk′ ⒧𝛿𝜇𝜈 −
𝑘𝜇𝑘𝜈
𝑘2 ⒭

⟨𝑀𝜇(0)𝑀𝜈(r)⟩ ∝ 𝛿r+
1
𝑟3 ⒧𝛿𝜇𝜈 −

𝑟𝜇𝑟𝜈
𝑟2 ⒭

(1.1.10)

Thefirst expression implies that in reciprocal space the correlations are singular inonedirection
and continuous on a perpendicular one. These specific patterns resemble bow ties, as pictured
in Figure 1.1.4 and are called pinch points. This type of diffuse elastic scattering is another type
of important signature of the spin ice phase. The second expression shows that the correlations
have the spatial dependence of dipole-dipole interactions. In particular, they decrease as 1/𝑟𝑑
with 𝑑 the dimension of the system.

Figure 1.1.5: (left) Pyrochlore spin ice (right) A breaking of the local ice rules leads to two de-
confined excitations dubbed magnetic monopoles. The two sublattices A and B are shaded in
blue and yellow.

What happens now if we break the ice rule? A spin flip on the pyrochlore lattice breaks the ice
rule on twoadjacent tetrahedra: one endsupwith three spins in andoneout, and theotherwith
three out and one in. These tetrahedra actually host excitations which can propagate through
the diamond lattice by subsequent spin flips: the ice rule is restored on one tetrahedron but
broken on the next one. The two opposite charges are then linked by a string of flipped spins,
shown in yellow in Figure 1.1.5 (right). The quantity𝑄 defined in Equation (1.1.4) acquires the
nature of a topological charge, indexing the type of excitation. Indeed definition of the𝑀𝐼𝐽 field
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

relates it to the charge with a lattice Gauss law:

4

𝐽=1

𝑀𝐼𝐽 =𝑄𝐼 (1.1.11)

These observations led to such excitations of pyrochlore spin ice being dubbedmonopoles, sim-
ple when 𝑄 = ±1 and double when 𝑄 = ±2. Using this language we can also describe the
nearest-neighbor model in Equation (1.1.4) when 𝐽 < 0. The model is then unfrustrated, be-
cause it has only 2 ground states which are defined by maximizing the value of 𝑄 everywhere.
It corresponds to an antiferromagnetic structurewhere every tetrahedronhas all its spins either
in or out, which creates an alternating pattern of +2 and −2 charges. Hence this state is called
all in / all out (AIAO) or a crystal of double monopoles.

1.1.2 Fragmentation

The concept of magnetic fragmentation relies on the application of the Helmholtz decompo-
sition to the magnetization of a Ising pyrochlore magnet [Brooks-Bartlett et al., 2014]. Under
suitable boundary conditions, any vector 3𝐷 fieldM can be decomposed into two terms:

M=Mm+Md =∇Ψ+∇×A (1.1.12)

∇Ψ is a divergence-full term, also called the longitudinal field, and A is the emergent field
divergence-free field defined above, also called the transverse field. This decomposition might
seem innocuous, and in the case of a generic distribution ofmonopoles it is not straightforward
to perform. Through the lattice Gauss law described above,Ψ can be related to the monopole
density via a Poisson equation. Creating a pair of monopoles by flipping a spin transfers some
weight from the transverse to the longitudinal field but not all, as we will explain below.

Let us consider a “ionic” crystal ofmonopoles in a pyrochlore lattice,meaning±1monopoles
on sublattices A/B respectively (Figure 1.1.6 top). Such a phase can be stabilized in the nearest-
neighbor model by adding a local fieldΔ along the d directions, which translates to a staggered
chemical potential for the monopoles:

ℋFrag = 𝐽 
⟨𝑖,𝑗⟩

𝜎𝑖𝜎𝑗 −Δ
𝑖
𝜎𝑖

= 𝐽
2𝐼

𝑄2
𝐼 −Δ

𝐼
𝜂𝐼𝑄𝐼

(1.1.13)

which favors +/−monopoles on sublattice A/B respectively. The ground state of this Hamilto-
nian is a simple monopole crystal, where every tetrahedron is either three out / one in or three
in / one out. Such a state is extremely enlightening to study within the framework of fragmen-
tation because the decomposition can be done on the scale of a single tetrahedron, which we
represent by the vector of Ising variables [𝜎𝑖]. Taking into example a 3 in / 1 out state, we can
write:

M= [−1,−1,−1,1] = [−12,−
1
2,−

1
2,−

1
2]m+[−

1
2,−

1
2,−

1
2,+

3
2]d (1.1.14)

9



1.1 Introduction to nearest-neighbor pyrochlore spin ice

Figure 1.1.6: (top) Monopole crystal on the pyrochlore lattice. (bottom) Decomposition in
longitudinal/divergence-full and transverse/divergence-free components on a single tetrahe-
dron. The 3/2 field element of the transverse part is pictured in bright red

where the first component is divergence-full (containing all the monopole charge) and second
is divergence-free (it contains no monopole charge). This is pictured graphically on figure 1.1.6
(bottom). Because of this decomposition, we will call the monopole crystal phase the frag-
mented phase. The longitudinal fragment is ordered all in / all out but with elements of field of
length 1/2. In other words, this state exhibits antiferromagnetic ordering but with only half of
the magnetic moment. The rest of the moment is in the transverse emergent field. This exam-
ple is peculiar in that it has element of field of different lengths (−1/2 and +3/2) to ensure it is
divergence-free. More specifically, it has exactly one element +3/2 per tetrahedron, meaning
that it can be mapped to a dimer model on the diamond lattice. Links with +3/2 bear a dimer
and links with −1/2 are empty, so that there is exactly one dimer touching each vertex. This
mapping is represented on figure 1.1.6 with +3/2 field elements / dimers in bright red. Since
there are actually two ways to define the emergent field (as in being along or being opposite
to the +3/2 field element), it is formally said that the transverse field maps onto one ℤ2 sec-
tor of the dimer model [Huse et al., 2003]. On the diamond lattice, the dimer model also has
a residual entropy, which cannot be computed with a Pauling-like argument but needs more
involved combinatorial techniques [Nagle, 1966]. It is slightly reduced compared to spin ice:
𝑆Frag ≈𝑘𝐵 ln(1.3) per tetrahedron [Brooks-Bartlett et al., 2014; Raban et al., 2019].

We can now update the experimental signatures of spin ice phases to include the monopole
crystal. In this example, the signatures of magnetic fragmentation lie in the fact that the longi-
tudinal fragment is ordered, while the transverse fragment remains disordered. Similarly to the
spin ice phase, the emergent field has dipolar correlations because of its divergence-free con-
straint. Therefore, the monopole crystal exhibits a coexistence of order and disorder. This can
be seen first and foremost in neutron scattering, where a pinch point diffuse scattering coexist
withmagnetic Bragg peaks. Specific heat can be used tomeasure the non-zero residual entropy
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

Figure 1.1.7: Simulated neutron scattering intensity for pyrochloremonopole crystal (left) and
kagome ice (right). The intensity of the magnetic Bragg peaks for the pyrochlore is plotted in
gray scale. Figure reproduced from [Brooks-Bartlett et al., 2014]

[Cathelin et al., 2020].

1.1.3 Spin ice under field and kagome ice

The last preliminary physics we will explore within the nearest-neighbor model is the behavior
of spin ice under field. There are three main behaviors depending on the direction in which the
field is applied, shown in Figure 1.1.8

• Field along [100]: the state reached at saturation has all 𝐴-type tetrahedra in the same
two in / two out state, such that they all have their magnetization aligned with the field.
The magnetization per spin at saturation is𝑀sat/√3;

• Field along [110]: at saturation, all tetrahedra have two spins pinned along the field, pic-
tured in green. The two remaining spin are perpendicular to the field and therefore donot
contribute to the Zeeman energy, but must still satisfy the ice rule. They form chains of
spins along [11̄0] which can take either of two orientations. The magnetization per spin
at saturation is𝑀sat/√6;

• Field along [111]: at low temperature, themagnetizationas a functionof fieldfirst exhibits
a plateau before reaching saturation. On this plateau, one spin per tetrahedron is pinned
along the field and is called the apical spin. The three other spins are left to satisfy the ice
rules. The magnetization per spin on this plateau𝑀sat/3. As the field increases, the Zee-
man energy ends up dominating over the exchange so all spins align with the projection
of the field along their local axes. This breaks the ice rules and as an example the state at
saturation has every 𝐴-type tetrahedron in a three in / one out state. The magnetization
per spin at saturation is𝑀sat/2.
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1.1 Introduction to nearest-neighbor pyrochlore spin ice

Figure 1.1.8:Pyrochlore spin ice under a field in different directions. (Top left) Field along [001]
(Top right) Field along [110]. Two spins per tetrahedron are pinned along the field, pictured in
green. (Bottom left) Field along [111], ofmoderate strength so that the system is on the kagome
plateau. Apical spins, pinned along the field, are shown in green. Kagome planes are shown in
red. (Bottom right) Calculated magnetization per spin for an isolated tetrahedron under field.
The left graph shows the magnetization for the three field directions at a fixed temperature, the
right one shows the plateau that occurs for small field along [111] at low temperature. Graphs
reproduced from [Udagawa et al., 2021]

Let us focus on the magnetization plateau under a moderate [111] field. The pyrochlore lat-
tice can be decomposed perpendicularly to the [111] direction into a series of triangular planes
formed by the apical spins (the ones whose local axes are parallel to the field), and a series of
kagome planes on which the three other spins reside. The kagome lattice is formed of corner
sharing triangles and like the pyrochlore lattice, it can be separated into 𝐴/𝐵-type triangles.
As an example, suppose the apical spin is pinned in on a 𝐴-type tetrahedron. It turns out that
there is a degenerate number of states which satisfy the pyrochlore ice rules with one spin per
tetrahedron fixed. The kagome spins of an 𝐴-type tetrahedron must be in a one in / two out
configuration. On the neighboring𝐵-type tetrahedronwhere the apical spin is out, they will be
two in / one out. Therefore the magnetization plateau is characterized by a different set of ice
rules, which apply only to the kagome spins and are hence called the kagome ice rules. More
specifically, because of the regular alternance between 𝐴 and 𝐵 sites this phase is called the KII
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1.2 Materials and models

kagome spin ice [Moessner et al., 2003a]. It is pictured in Figure 1.1.9.

Figure 1.1.9: KII kagome spin ice. It is charge-ordered but spin disordered.

Similarly to the pyrochlore case, we now apply the fragmentation formalism to one 𝐴-type
triangle:

M= [−1,−1,1] = [−13,−
1
3,−

1
3]m+[−

2
3,−

2
3,+

4
3]d (1.1.15)

Similarly to the pyrochlore case, the first term is an all in / all out field which is divergence-full.
It corresponds to a charge crystal on the hexagonal lattice. However the excitations indexed by
this charge are not deconfined and are therefore not called monopoles. On the other hand, the
transverse emergent field has exactly one element of length +4/3 per triangle, the rest being
of length −2/3 to ensure it has zero divergence. This makes it possible to map this field onto
another dimer model, where a dimer is placed on the sites with +4/3 field value. The dimers
end up connecting the center of two adjacent triangles on the kagome lattice, which form a
hexagonal lattice. This dimer model also has a degenerate ground state, meaning that kagome
ice remains spin-disordered despite being charge-ordered and has an extensive residual en-
tropy. In the case of pyrochlore spin ice under a moderate [111] field the residual entropy per
tetrahedron is 𝑆 ≈ 𝑘𝐵 ln(1.17), which can again be measured by specific heat measurements
under field. As far as neutron scattering signatures are concerned, the AIAO longitudinal field
is associated to antiferromagnetic Bragg peaks whereas the divergence free constraint on the
emergent field translates into pinch-point patterns. This coexistence of order and disorder is
shown in Figure 1.1.7 (right). KII kagome ice therefore spontaneously exhibits fragmentation,
without needing any staggered chemical potential, namely because of the odd number of spins
per triangle.

1.2 Materials and models

1.2.1 Rare-earth pyrochlore oxides

The materials we will study in this thesis are part of the family of rare-earth pyrochlore oxides
R2M2O7. In this crystal structure the rare-earthRandmetalMeachoccupyadistinct pyrochlore
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1.2 Materials and models

lattice which interpenetrate, shown in Figure 1.2.1. The lattice constant 𝑎 is of the order of
10 Å. TheOxygens create a local octahedral environment on the two other species. OneOxygen
position is free and noted by a parameter 𝑥, in the range 0.32 − 0.34. The space group of the
entire structure is 𝐹𝑑3̄𝑚.

Figure 1.2.1: Interpenetrating pyrochlore lattices of the rare-earth (in blue) and the metal (in
red).

The valence of the rare-earth is 3+, leaving an unfilled 4𝑓 shell. The interactions from the en-
vironment are screened by the 5𝑠, 5𝑝 and 6𝑠 shells so the dominant interaction on the 4𝑓 elec-
tron is the spin-orbit, followed by the crystal field created by the Oxygen environment. There-
fore it is natural to consider a perturbative picture where the crystal field acts on the multiplets
|𝐽 ,𝑀⟩.

Rare earth are defined by an unfilled 4𝑓 level whose electrons are very localized and have a
large angularmomentum. Therefore the interactions they experience first is the spin-orbit cou-
pling, then the crystal field from the tetragonal environment ofOxygenatomsas aperturbation.
In the case of Holmium and Dysprosium, which will be our rare-earth of interest, the ground
state is formed fromalmost only the |+𝐽⟩ , |−𝐽⟩ doublet, with amoment pointing along the local
𝑧 axes, separated from the first excited states by an energy of about 200 to 300 K [Jaubert et al.,
2011]. It ensures at temperatures below 10 K, the doublet behaves like a classical, dipolar Ising
spin.

The magnetic moment operator is:

�̂� = 𝑔𝐽
−𝑒
2𝑚𝑒

̂J=−𝑔𝐽
𝜇𝐵
ℏ

̂J (1.2.1)

with the standard 𝑔-factor formula

𝑔𝐽 = 1+ 𝐽(𝐽 +1)+𝑆(𝑆 +1)−𝐿(𝐿 +1)
2𝐽(𝐽 +1) (1.2.2)

In the case of a simple |+𝐽⟩ , |−𝐽⟩ doublet, the value of the magnetic moment projected along
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the local 𝑧 axes is
𝜇∥ = 𝑔𝐽𝜇𝐵𝐽 (1.2.3)

It can be related to the magnetic moment measured at saturation, and will be slightly different
to the effective paramagnetic moment 𝜇eff = 𝑔𝐽𝜇𝐵√𝐽(𝐽 +1). In the rest of this text we will use
the projected magnetic moment 𝜇∥ for the definition of interactions and the measurements.
The properties of the Ho3+ and Dy3+ ions are summed up in Table 1.2.1. Their main difference
is that Dy3+ is a Kramers ion (with an odd number of electrons), while Ho3+ is non-Kramers
(even number of electrons). It means that time-independent perturbations like defects in the
lattice can split the Holmium ground state doublet, while the Dysprosium will be more robust.

Ion Configuration S L J 𝜇∥
Dy3+ [Xe]4𝑓9 5/2 5 15/2 ≈ 10 𝜇𝐵
Ho3+ [Xe]4𝑓10 2 6 8 ≈ 10 𝜇𝐵

Table 1.2.1: Single-ion parameters for Dy3+ and Ho3+. Their actual magnetic moments will be
slightly lower than 10 𝜇𝐵 due to the actual components of the wavefunction. Table adapted
from [Jaubert et al., 2011]

1.2.2 Dipolar Spin Ice

In Ising pyrochlores likeDy2Ti2O7 orHo2Ti2O7, the dipolar interaction cannot be neglected due
to the large dipole moment of the effective spin. Furthermore, the exchange interaction is usu-
ally antiferromagnetic, which seems to contradict the minimal model considered before. The
full Hamiltonian of the system, called dipolar spin ice (DSI), reads [Melko et al., 2001]:

ℋDSI =−𝐽 
⟨𝑖,𝑗⟩

S𝑖 ⋅S𝑗 +𝐷
𝑟3𝑛𝑛
2 

𝑖≠𝑗

(S𝑖 ⋅S𝑗) ⋅ (r𝑖𝑗 ⋅ r𝑖𝑗)−3(S𝑖 ⋅ r𝑖𝑗)(S𝑗 ⋅ r𝑖𝑗)
∣ r5𝑖𝑗 ∣

(1.2.4)

where 𝐽 is the direct exchange constant and 𝐷 is the dipolar constant. It is defined from the
amplitude of the dipoles 𝜇 and the pyrochlore nearest-neighbor distance 𝑟𝑛𝑛 by

𝐷 = 𝜇0𝜇2

4𝜋𝑟3𝑛𝑛
(1.2.5)

It is natural to ask how the spin-ice physics can arise fromaHamiltonian of this complexity. The
first piece of the answer lies in the truncation of the dipolar term to its nearest-neighbor part.
From the discussion of the crystal field theory above we know that the spins can be very accu-
rately represented by Ising dipoles. The result is the following nearest-neighbor Hamiltonian,
where the spins S are replaced with Ising variables 𝜎 along the local < 111 > axes:

ℋNN =
𝐽 +5𝐷
3 

⟨𝑖,𝑗⟩
𝜎𝑖𝜎𝑗 (1.2.6)
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On the table we summarize the approximate numerical values of the DSI model for both dys-
prosium and holmium titanates, with 𝐽eff = 𝐽+5𝐷

3 . The numerical factors are due to the geo-
metrical projection to the local axes. In some texts the projected values of the exchange and
dipolar constants are referred to as 𝐽𝑛𝑛 = 𝐽/3 and 𝐷𝑛𝑛 = 5𝐷/3. For both material 𝐽eff ends up

J D 𝐽eff (K)
Dy2Ti2O7 −3.7 1.4 1.1
Ho2Ti2O7 −1.6 1.4 1.8

Table 1.2.2: Approximated values of the DSI model obtained for Dy2Ti2O7 and Ho2Ti2O7, from
[Gardner et al., 2010; Bramwell et al., 2001; Gingras et al., 2000]

being positive, so we recover an effective spin ice Hamiltonian. This highlights the paramount
importance of dipolar interactions in the stabilization of a spin ice Coulomb phase. However
this does not answer the question of the validity of discarding the long-range interactions be-
yond nearest-neighbor. In [Melko et al., 2001] the authors investigated the precise effect of the
dipolar interactions on the spin ice manifold. They computed the eigenvalues of the dipolar
interactions for various ordering wave-vectors and found that it is remarkably flat thanks to the
geometry of the pyrochlore lattice. This explains why the dipolar interactions only affect the
spin ice ground state at very low temperatures, driving a transition to an (001) ordered struc-
ture called Melko-den Hertog-Gingras order below 𝑇/𝐷 ≈ 0.07 or 𝑇 ≈ 100 mK. However this
order has not definitely been observed in real materials. Indeed, in spin ice materials the char-
acteristic spin relaxation times becomes macroscopically long below about 700mK because of
the sometimes very high energy cost of some spin move needed to get rid of all monopole de-
fects. Thismakes suchmaterials challenging to correctly thermalize below those temperatures,
a fact that we will be particularly relevant in all experiments performed for this thesis.

The differences between the nearest-neighbor and dipolar spin ice models can be summa-
rized on the phase diagram in Figure 1.2.2, adapted from [Guruciaga et al., 2014]. The nearest-
neighbor model predicts an ordered AIAO phase for 𝐽𝑛𝑛/𝐷𝑛𝑛 < −1 (in blue), separated from
a paramagnetic phase by a second order transition (dot-dashed lines). The spin ice regime is
entered through a crossover (dotted lines) for 𝐽𝑛𝑛/𝐷𝑛𝑛 < −1. By contrast, the DSI model pre-
dicts a first-order transition (black lines) between the double monopole crystal (in grey) and
spin ice phase. Surprisingly, it occurs at 𝐽𝑛𝑛/𝐷𝑛𝑛 ≈ −0.91 so an effectively ferromagnetic 𝐽eff,
because the long-range Coulomb attraction between monopoles of opposite charge makes it
energetically favorable to create and order them. Finally, we added to the original graph the
first order transition in the spin ice phase to the Melko order which is seen in well-equilibrated
simulations of the DSI model.

1.2.3 Dumbbell Model

Because the dipolar interactions only have an effect on the spin ice manifold at low tempera-
tures, some authors have sought a way to include their effect in a more experimentally relevant
way. In [Castelnovo et al., 2008], they successfully performed such approximation by introduc-
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Figure 1.2.2: Comparative phase diagram of the nearest-neighbor and dipolar spin ice model,
adapted from [Guruciaga et al., 2014].

ing theDumbbellmodel. Their core idea, pictured inFigure 1.2.3, is topromote thepointdipoles
of the DSI model to dipoles spanning the distance between two diamond sites, which carry at
each of their ends a magnetic charge of value 𝑞 = ±𝜇/𝑎. We recall that 𝑎 = 2

√3𝑟𝑛𝑛. Therefore,
defects carry a total charge 𝑄 = ±2𝑞 for the simple defects or 𝑄 = ±4𝑞 for the double defects.
Using this picture, they found that the interaction energy between defects decreased propor-
tionally to the distance between them, akin to a Coulomb law; thus the monopoles acquire a
magnetic charge in addition to the topological one they carry in the nearest-neighbor model
and are from then dubbedmagnetic monopoles. The authors proposed the following dumbbell
Hamiltonian, acting only on the monopole degrees of freedom on a diamond lattice:

ℋDumbbell =
1
2𝜈0𝑟

𝑄2
𝐼 +

𝜇0
4𝜋

1
2 𝐼≠𝐽

𝑄𝐼𝑄𝐽
|r𝐼𝐽 |

(1.2.7)

=−𝜈
𝐼
𝑛2
𝐼 +

𝜇0𝑄2

8𝜋 
𝐼≠𝐽

𝑛𝐼𝑛𝐽
|r𝐼𝐽 |

(1.2.8)

where 𝑛𝐼 = 0,±1,±2 is the monopole occupation of site 𝐼 . This expression seems similar to the
study of a lattice Coulomb gas in the grand canonical ensemble. The first term corresponds
to the creation cost of monopoles, following the chemistry convention of a negative chemical
potential 𝜈 (4𝜈) for the simple (double) monopoles respectively. The second term corresponds
to the Coulombic interaction energy between the monopoles. The authors showed how the
chemical potential can be expressed as a function of the DSI model parameters, taking into
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account the geometry of the dumbbells:

𝜈 =−12𝜈0𝑄
2 =−2⎡

⎣
𝐽 +5𝐷
3 +⎛

⎝
−1+2

3
⎞
⎠
𝐷
3
⎤
⎦
=−2𝐽3 − 8

3
⎛
⎝
1+2

3
⎞
⎠
𝐷 (1.2.9)

This Hamiltonian looks very similar to the one of the one of a Coulomb gas of particles in the
grand canonical ensemble, but it is important to keep in mind that it is actually one of a fixed
number of spins in the canonical ensemble. The spins degrees of freedom can be integrated
out the partition function to leave only the monopole degrees of freedom [Nisoli, 2020; Nisoli,
2020], but that is exactly what results in the residual entropy characteristic of spin ice. For these
reasons, the lattice gas of monopoles in the dumbbell picture is not a standard electrolyte and
was instead called amagnetolyte [Kaiser et al., 2018]. In this article, the authors studiedhow the
effective creation cost of monopoles changes with respect to temperature. As monopoles are
created through thermal excitations, the effective chemical potential 𝜈𝑒𝑓𝑓 = −𝜕𝑈/𝜕𝑛 is mod-
ified by the shielding of the long distance interactions. The authors were able to use the self-
consistent Debye-Hückel theory to model this effect and accurately reproduce experimental
measurements of the specific heat with no adjustable parameters.

Figure 1.2.3:Dumbbell model: (left) the spins are promoted as dumbbells with one magnetic
”north” charge and one “south” charge. (right)When the ice rule is broken, the sumof themag-
netic charges on the tetrahedron is not zero, creating amonopolewhichmoves on the diamond
lattice. From [Raban, 2018]

Let us now focus on the energetics of the dumbbell model at 𝑇 = 0K to understand the effect
of Coulomb interactions on the competition between a vacuum of monopoles (i.e. spin ice)
and a crystal of monopoles. The coulombic internal energy of a crystal of monopoles can be
computed exactly as

Uc =
𝜇0𝑄2

8𝜋 
𝑟
⒧
𝐼≠𝐽

(−1)𝜂𝐽
|r𝐼𝐽 |

⒭ (1.2.10)

where 𝜂𝑟 is an index which is even (odd) on the 𝐴 (𝐵) diamond sublattice respectively. The sum
in between parenthesis is purely geometric and only depends on the lattice structure. It can be
expressed as a function of the diamond lattice constant 𝑎 as


𝑞≠𝑟

(−1)𝜂𝐽
|r𝐼𝐽 |

= −𝑎𝛼 (1.2.11)
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where 𝛼 is called the Madelung constant of the lattice and has an approximate value of 1.638
for the diamond lattice. Therefore the energy for a system of𝑁 tetrahedra reads

Uc =𝛼𝜇0𝑄
2

8𝜋𝑎 𝑁 (1.2.12)

On the other hand the Coulomb interaction between two nearest neighbors monopoles is

𝑢(𝑎) = −𝜇0𝑄
2

4𝜋𝑎 =−83
2
3𝐷 (1.2.13)

hence the energy of the monopole crystal can be rewritten as

Uc =
1
2𝑢(𝑎)𝛼𝑁 (1.2.14)

This negative energy competes with the energy cost of creating a monopole crystal −𝜈𝑁 (> 0)
such that the spin ice states prevails for

𝜈 ⩽ 1
2𝑢(𝑎)𝛼 (1.2.15)

−𝜈
|𝑢(𝑎)|𝛼 ⩾ 1

2 (1.2.16)

Finally we express this condition in terms of the DSI model parameters by using the relevant
Equations (1.2.9) and (1.2.13) and rearranging the terms:

𝐽𝑛𝑛
𝐷𝑛𝑛

= 𝐽
5𝐷 ⩾−45

⎡
⎣
1+2

3 ⒧1−
𝛼
2 ⒭
⎤
⎦
≈−0.92 (1.2.17)

This is in excellent agreement with the Monte-Carlo simulations of the DSI model [Melko et
al., 2001], which yielded a critical 𝐽𝑛𝑛/𝐷𝑛𝑛 ≈ −0.91 as shown in Figure 1.2.2. The origin of the
difference is the manifold of spin ice states which are all assumed to have the same energy in
the dumbbell model. This discussion proves that in addition to being necessary to stabilize a
spin ice phase in Ho2Ti2O7 and Dy2Ti2O7, long-range dipolar interactions are also important
to understand the magnetically ordered simple or double monopole crystal phases. However
they can not lead to a fragmented ground state by themselves: as −𝜈/|𝑢(𝑎)|𝛼 is lowered below
1/2 (or equivalently 𝐽𝑛𝑛/𝐷𝑛𝑛 is lowered below −0.91), the Coulomb energy favors the double
monopole crystal as it is always 4 times larger than that of a single monopole crystal. In order
to find the fragmented monopole crystal, several options have been considered. One proposal
was to study a weak double monopole crystal near its second order transition to a paramag-
net, where the fragmented phase would be stabilized by thermal fluctuations [Guruciaga et al.,
2014]. Another was to find a material where the quantum fluctuations would be strong enough
in the ground state to lift the 𝜈2 = 4𝜈 in the ground state [Brooks-Bartlett et al., 2014].
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1.2.4 Fragmentation in pyrochlore iridates

As in all pyrochlore materials, the Ti4+ ions in Dy2Ti2O7 and Ho2Ti2O7 lie on their own py-
rochlore lattice intercalated in the rare-earth lattice. Populating this second lattice with mag-
netic atoms instead offers an opportunity to manipulate the rare-earth spins with local fields
rather than external magnetic fields, thus preserving more of the lattice’s symmetries and the
geometrical frustration. This was realized in Ho2Ir2O7 and Dy2Ir2O7 [Lefrançois et al., 2017;
Cathelin et al., 2020; Lhotel et al., 2020]. Iridium is a 5𝑑 metal which in its 4+ valence has a
5𝑑5 configuration. In Figure 1.2.4 we show the various splittings acting on this orbital in a per-
turbative picture. The 5𝑑 orbital is first split by the crystal field from the octahedral Oxygen
environment into 𝑡2𝑔 and 𝑒𝑔 orbitals, of which only the former is occupied. It is then further
split by the spin-orbit coupling into two degenerate non-magnetic 𝑗eff = 3/2 orbitals, and one
𝑗eff = 1/2 orbital occupied by a single electron and therefore magnetic. The electronic corre-
lations between Ir4+ ions are of the same order of magnitude as the spin orbit coupling. They
drive the iridium sublattice to order into a magnetic insulating state, through a metal-insulator
transition at a temperature of about 140 K which is much higher than the rare-earth interac-
tions. The structure is an antiferromagnetic all-in / all-out one, where each ion carry a spin 1

2
along the local ⟨111⟩ axes.

Figure 1.2.4:Orbital occupation of the Ir4+ ion, reproduced from [Lefrançois, 2016]

Let us now focus on what effect this magnetic order has on the rare-earth sublattice. Each
rare-earth ion is surrounded by 6 nearest Iridium neighbors arranged in an hexagon, repre-
sented in Figure 1.2.5. They produce on the rare-earth a molecular field which mimics their
magnetic structure, namely a local field Bloc along the rare-earth local axes in an all-in / all-out
fashion. We can model this effect by a local Zeeman term in the spin Hamiltonian:

−𝑔𝜇𝐵
𝑖
Bloc ⋅S𝑖 (1.2.18)

which can be translated in the dumbbell picture into a staggered chemical potential for the
monopoles:

−𝜂𝑟𝑔𝜇𝐵𝐵loc𝑎
𝑟
𝑄𝑟 =−𝜂𝑟Δ

𝑟
𝑛𝑟 with Δ= 2𝑔𝜇𝐵𝐵loc𝜇 (1.2.19)

This term is antisymmetric under global spin inversion which reverses the 𝐴/𝐵 diamond sub-
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IrRE

Figure 1.2.5: Rare-earth ion (in blue) and its hexagon of nearest Ir neighbors (in red). They
create a molecular field pictured by the yellow arrow

lattice convention. Hence when positive, it promotes positive magnetic charges on diamond
sublattice 𝐴 and negative on sublattice 𝐵 respectively. Thus, it changes the monopole (𝜈) and
double monopole (𝜈2) local chemical potentials as follows:

𝜈→𝜈±Δ, 𝜈2 = 4𝜈→ 4𝜈±2Δ

depending on the diamond sublattice. For a non zero Δ like in Ho2Ir2O7 and Dy2Ir2O7 this
allows for the single monopole crystal to be the minimum energy state. In the next section we
will study in more details phase diagram and transitions between ground states.

𝐽 (K) 𝐷 (K) 𝐵loc (T)
Dy2Ir2O7 ≈−3.7 1.4 ≈ 0.9
Ho2Ir2O7 ≈−2.5 1.4 0.94

Table 1.2.3: Approximated values of the coupling constants and local fields obtained for
Dy2Ti2O7 and Ho2Ti2O7, from [Lefrançois et al., 2017; Cathelin et al., 2020; Lhotel et al., 2020]

1.2.5 Phase diagram of fragmentation

In order to compare various pyrochlore materials with different spins and lattice constants,
reduced dumbbell model parameters have been defined by dividing by |𝑢(𝑎)|𝛼 such that

�̄� = − 𝜈
|𝑢(𝑎)|𝛼 , Δ̄ = Δ

|𝑢(𝑎)|𝛼 , �̄� = 𝑘𝐵𝑇
|𝑢(𝑎)|𝛼 (1.2.20)

The sign of �̄� was changed to better represent the fact that it is the energy cost for creating
monopoles. At zero temperature we can compare the energies of a perfect vacuum of charge,
monopole crystal and double monopole crystal in theses reduced units to get the phase dia-
gram. They are respectively

�̄�0 = 0, �̄�1 =−12 + �̄�− |Δ|, �̄�2 =−12 +4�̄� −2|Δ| (1.2.21)
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Therefore the monopole crystal is stable for

1
3 <

�̄� − 1
2

|Δ̄|
< 1 (1.2.22)

whereas the ground state is a doublemonopole crystal if this ratio is smaller than 1/3 and a spin
ice if bigger than 1. This condition is pictured on the phase diagram in Figure 1.2.6 (left) where
the ground states are separated by first-order transitions. The fact that �̄� has a lower limit of 1/2
for a spin ice to exist is a remnant of the long-range dipolar interactions.

The parameters of the dumbbell model for Dy2Ti2O7, Dy2Ir2O7, Ho2Ti2O7 and Ho2Ir2O7 are
shown below in Table 1.2.4. As represented in Figure 1.2.6 (left) they are consistent with both
pyrochlore iridates being located deep into the fragmented monopole crystal phase. However
some differences between Holmium and dysprosium pyrochlore are worth noting. Dyspro-
sium pyrochlores generally have a lower �̄� which corresponds to a more long-range interact-
ing behavior. This places them closer to phase transitions in the phase diagram. In particular
Dy2Ir2O7 couldbe themost promisingmaterial inwhich toobserve a fragmentationphase tran-
sition, but the precise determination of the parameters in the dumbbell model is difficult.

𝜈 (K) Δ (K) �̄� Δ̄
Dy2Ti2O7 −4.4 0 0.9 0
Dy2Ir2O7 ≈−4.4 ≈ 4.95 ≈ 0.9 ≈ 1.0
Ho2Ti2O7 −5.7 0 1.2 0
Ho2Ir2O7 ≈−5.4 6.3 ≈ 1.1 1.3

Table 1.2.4:Approximated values of the dumbbellmodel obtained for Dy2Ti2O7 andHo2Ti2O7,
from [Lefrançois et al., 2017; Cathelin et al., 2020; Lhotel et al., 2020]

The general structure of the phase diagram was investigated numerically in [Raban, 2018;
Raban et al., 2019] and is shown in Figure 1.2.6. It can be understood as a three-dimensional
extension to the DSI model phase diagram, where the possible ground states are separated by
nearly vertical ”wings” of first-order transitions (in light green). Once again they are a signa-
ture of the long-range interactions in the system, as numerical studies of fragmentation in the
nearest-neighbor model only found evidence of crossovers between the phases [Lefrançois et
al., 2017]. As the temperature increases the first order transitions terminate on a line of critical
end points where second-order transitions occur (in dark green). These lines then join in the
multicritical regionwhereΔ= 0, �̄� ≈ 1/2. Several scenarii are possible: thewings could allmeet
together in an exotic pentacritical point atΔ= 0where all five phases can coexist, or separately
in a set of tricitical points where only three phases coexist at once. Careful considerations of
the entropy of the different phases revealed that in the dumbbell model the wings join in two
stages, once at Δ ≠ 0 then at Δ = 0 with three tricitical points. Indeed this model at Δ = 0 only
has two variables �̄� and �̄� so any pentacritical point would be accidental. However such a point
could be tuned into the model by introducing a new variable like the cost of double monopoles
�̄�2 which would be different from 4�̄�.
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Figure 1.2.6: (left) Phase diagram of the dumbbell model at 𝑇 = 0 K and (right) as a function of
temperature. Figures adapted from [Raban et al., 2019]

1.2.6 Mean-field theory of fragmentation

In order to get a free energy for fragmentation amean-fiel approachhas beenderived in [Raban,
2018; Raban et al., 2019]. It revolves around a mapping of the dumbbell model Hamiltonian to
a simpler one, the Blume-Capel model, which is the simplest model which exhibits a tricriti-
cal point. It essentially truncates the long-range interaction to the nearest-neighbor level. For
simplicity the authors limited themselves to the case of single monopoles. They define degrees
of freedom 𝑆𝐼 = 0,±1 on the diamond lattice which represent the monopole occupation state
of site 𝐼 , and consider the following Blume-Capel Hamiltonian:

ℋBlume-Capel =
1
4
|𝑢(𝑎)|𝛼

2 
⟨𝐼 ,𝐽⟩

𝑆𝐼𝑆𝐽 +𝜈
𝐼
𝑆2𝐼 −Δ

𝐼
𝜂𝐼𝑆𝐼 (1.2.23)

ℋ̄ =− 1
8𝑁 

⟨𝐼 ,𝐽⟩
𝑆𝐼𝑆𝐽 +

�̄�
𝑁 

𝐼
𝑆2𝐼 −

Δ̄
𝑁 

𝐼
𝜂𝐼𝑆𝐼 (1.2.24)

where the 1/4 factor accounts for the connectivity of thediamond lattice and𝑁 is thenumberof
sites. The second line is rewritten as an energy per site with the reduced parameters discussed
above. Two mean field variables are then introduced: 𝜌 the average density of monopoles and
𝜙 their crystallization parameter, representing their propensity to be located on the 𝐴/𝐵 sub-
lattice. They are defined from number of ±monopoles on sublattice through

𝑁𝐴,±
𝑁 = 𝜌⒧1±𝜙2 ⒭ , 𝑁𝐵,±

𝑁 = 𝜌⒧1∓𝜙2 ⒭ , 𝑁0
𝑁 = 1−𝜌 (1.2.25)

Within this approach, theproduct𝜌𝜙 is a goodparameter to tell apart the twophasesof interest:
it is close to 0 in a spin ice phase and close to 1 in a monopole crystal. Placing ourselves in the
grand canonical ensemble for monopoles and perform a mean-field procedure on the Blume-
Capel Hamiltonian in order to get a grand potential. We will first take care of the enthalpy, then
the entropy.

23



1.2 Materials and models

The sums are split into separate sums over 𝐴 and 𝐵 sublattices, then replaced by their mean-
field value:


𝐼
𝑆2𝐼 = 

𝐼∈𝐴
𝑆2𝐼 + 

𝐼∈𝐵
𝑆2𝐼 ≈𝑁𝜌


𝐼
𝑆𝐼 ≈𝑁𝜌𝜙


⟨𝐼 ,𝐽⟩

𝑆𝐼𝑆𝐽 = 
𝐼∈𝐴

𝑆𝐼
⎛
⎜
⎝

𝐽∈𝐵
𝐽 nn 𝐼

𝑆𝐽
⎞
⎟
⎠
≈ 4𝑁(𝜌𝜙)2

(1.2.26)

so that we end up with the following mean-field enthalpy per site for the monopoles:

�̄� ≈ −12𝜌
2𝜙2+�̄�𝜌− Δ̄𝜌𝜙 (1.2.27)

To compute the entropy, we use the same combinatorics than in Equation (1.1.5), meaning we
consider 𝑁 independent tetrahedron. However, in addition to the 6 two in / two out tetrahe-
droncorresponding toavacuumofmonopoles ({𝑁1,…,𝑁6})we include this time4+ ({𝑁7,…,𝑁10})
and 4 − ({𝑁11,…,𝑁14}) single monopoles states . Each of the 14 states is considered equiprob-
able and have densities

𝑁1 =⋯=𝑁6 = (1−𝜌)𝑁6 , 𝑁7 =⋯=𝑁10 = 𝜌⒧1+𝜙2 ⒭ 𝑁4 , 𝑁11 =⋯=𝑁14 = 𝜌⒧1−𝜙2 ⒭ 𝑁4 (1.2.28)

The number of states reads similarly

𝑊 = ⒧12⒭
2𝑁 𝑁!

𝑁1!…𝑁14!
(1.2.29)

So that using Stirling’s formula we end up for the following expression of the entropy per tetra-
hedron:

�̄� = 𝑆
𝑁𝑘𝐵

=−𝜌1+𝜙2 ln⒧𝜌1+𝜙2 ⒭−𝜌1−𝜙2 ln⒧𝜌1−𝜙2 ⒭+ (1−𝜌) ln⒧1−𝜌⒭+ (1−𝜌) ln⒧32⒭ (1.2.30)

The last term is the one thatmakes this entropy different from that of a gas on a bipartite lattice:
it yields the Pauling entropy when 𝜌 = 0. It is interesting to note that the entropy is negative for
some parameter values like 𝜌 = 1,𝜙 = 0. This nonsensical result is the sign of a breakdown of
Stirling’s approximation when the corresponding number of microstates𝑊 becomes to small.
In total we get the following grand potential for the monopoles:

Ω̄ = �̄� − �̄� �̄�

= −12𝜌
2𝜙2+�̄�𝜌− Δ̄𝜌𝜙+ �̄� ⒧𝜌1+𝜙2 ln⒧𝜌1+𝜙2 ⒭+𝜌1−𝜙2 ln⒧𝜌1−𝜙2 ⒭+ (1−𝜌) ln⒧1−𝜌⒭+ (1−𝜌) ln⒧32⒭⒭

(1.2.31)

This potential canbeminimizednumerically to drawaminimal phase diagramof fragmenta-
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Figure 1.2.7: (left) Phase diagram of the mean field theory of fragmentation as a function of
temperature and staggered chemical potential. (right) Plot of the order parameter at Δ̄ = 0.

tion. Compared to the one studied previously in Figure 1.2.6, it neglects any double monopole
excitation or phase. But the general structure of the phase diagram remains similar: we find
the spin ice and monopole crystal phases are separated at low temperature by wings of first
order transitions, terminated by lines of second-order transitions, which meet at a critical end
point. The schematic phase diagram, as well as a cut for Δ = 0 solved numerically, are shown
in Figure 1.2.7. Despite its shortcomings, it highlights an important feature: the barriers of first
order transition are not not completely independent on temperature. They are angled in a way
that represent the difference in entropies between the low-temperature phases they separate.
Indeed, the Clausius-Clapeyron relation reads:

dΔ̄𝑡𝑟
d�̄� = − 𝛿�̄�

𝛿(𝜌𝜙) (1.2.32)

where 𝛿(𝜌𝜙) is the difference in order parameter between the two sides of the transition, 𝛿�̄�
is the difference in entropy per tetrahedron and Δ̄𝑡𝑟 is the staggered chemical potential at the
transition. Therefore at fixed �̄�, Δ̄𝑡𝑟 will increase slightly as a function of temperature because
of the difference between the Pauling and monopole crystal residual entropies. Equivalently,
at fixed Δ̄ �̄�𝑡𝑟 will decrease slightly as shown in Figure 1.2.7 (right). The angle from the vertical
is overestimated there because our mean-field model does not include the residual entropy of
the monopole crystal. The tricritical where all phases join is located at a temperature of �̄� = 1

3 ,
which is also overestimated compared to the Dumbbell model. This is because the long-range
coulombic interactions in the monopole fluid phase have not been taken into account.
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1.3 Going beyond Ising pyrochlores: magnetic phases and
quantum effects

1.3.1 Symmetry-allowed two-dipoles interactions

In this section we want to explore the physics of pyrochlore magnets going beyond Ising spins.
Thismeans thatwefirst allow each spin to have three classical components 𝑆𝑥, 𝑆𝑦, 𝑆𝑧 expressed
in the local axes,whichweassume transform likedipoles. Wewill thenpromote toquantumop-
erators to study quantum effects. At the nearest-neighbor level, they interact through a Hamil-
tonianwhich is constrainedby the symmetry of thepyrochlore lattice. Moreprecisely, itsmatrix
elements must be left invariant by all the operations of the space group of the lattice. This re-
sults in only 4 distinct allowed nearest neighbours couplings which can be expressed in various
frames. The frame attached to the bond between two neighboring magnetic ions is where the
four fundamental interactions are most naturally expressed:

• Ising with respect to the local bond;

• XY with respect to the local bond;

• Symmetric off-diagonal exchange;

• Dzyaloshinski-Moriya exchange.

In this work we will instead use the local pyrochlore frame, because it highlights the spin ice
physics. We keep the same local 𝑧 as out of an 𝐴-type tetrahedron and define 𝑥,𝑦 local axes at
each pyrochlore site. The four parameters are expressed as 𝐽𝑧𝑧, 𝐽±, 𝐽𝑧±, 𝐽±± and the Hamiltonian
reads:

ℋlocal = 
⟨𝑖,𝑗⟩

𝐽𝑧𝑧𝑆𝑧𝑖 𝑆𝑧𝑗 −𝐽± ⒧𝑆+𝑖 𝑆−𝑗 +𝑆−𝑖 𝑆+𝑗 ⒭+𝐽±± ⒧𝛾𝑖𝑗𝑆+𝑖 𝑆+𝑗 +𝛾∗𝑖𝑗𝑆−𝑖 𝑆−𝑗 ⒭ +𝐽𝑧± 𝑆𝑧𝑖 ⒧𝜁𝑖𝑗𝑆+𝑗 +𝜁∗𝑖𝑗𝑆−𝑗 ⒭+ 𝑖 ↔ 𝑗

(1.3.1)
where 𝛾 and 𝜁 are matrices which encode the transition from one bond to another:

𝜁 =
⎛
⎜⎜⎜
⎝

0 −1 𝑒𝑖𝜋/3 𝑒−𝑖𝜋/3
−1 0 𝑒−𝑖𝜋/3 𝑒𝑖𝜋/3
𝑒𝑖𝜋/3 𝑒−𝑖𝜋/3 0 −1
𝑒−𝑖𝜋/3 𝑒𝑖𝜋/3 −1 0

⎞
⎟⎟⎟
⎠

=−𝛾∗ (1.3.2)

1.3.2 Q= 0 pyrochlore magnetic orders from group representations theory

The theory of group representations is a powerful tool in the study of magnetic ordering. It
makes it possible to predict the various q = 0 structures allowed by symmetry on a certain lat-
tice. It has been applied successfully in Ref [Yan et al., 2017] in the case of a pyrochlore lattice
with classical dipolar spins, and we will briefly restate here the main conclusions. All the q= 0
classical orders on the pyrochlore lattice can by definition be described by the set of the orien-
tations of 4 spins on the vertices of a given tetrahedron, each having 3 components. The energy
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of any configuration can therefore be computed by multiplying the vector of components by
a 12× 12 Hamiltonian matrix. As mentioned before, this matrix elements are constrained by
the symmetries of the pyrochlore lattice. Since we consider only q = 0 orders, the translation
symmetry is already included and we replace the space group by the point group of the unit
cell. The point group of the pyrochlore lattice is Oℎ = T𝑑×I where T𝑑 is the symmetry group of a
single tetrahedron and I is the inversion operation between up and down tetrahedra. The main
interest of representation theory is that it can be now used to block-diagonalize the Hamilto-
nian into blocks, whose components transform under the four non trivial irreducible repre-
sentations of T𝑑: Γ3, Γ5,Γ7, Γ9 of respective dimensions are 1, 2, 3, and 3 respectively. These
representations are also called A2, E, T2, T1.

𝚪3 𝚪5

𝚪7 𝚪9

𝚿2 𝚿3

Figure 1.3.1: Possible magnetic orders on the pyrochlore lattice, grouped by representations.

Theprecise decomposition depends on the type of objects we populate the pyrochlore lattice
with: pure dipoles, dipolar-octupolar doublets for Kramers ions, non Kramers doublets, pure
quadrupoles, etc. For our case of classical dipoles the decomposition of theHilbert space reads

Γ3⊕Γ5⊕Γ7⊕2Γ9 (1.3.3)

with two instances of the Γ9 representation, which does result in a total of 12 dimensions. The
eigenvectorsmΓ𝑖 of each representations can be interpreted as the order parameters of a par-
ticular type of ordering, shown in Figure 1.3.1:

• mΓ3 (of dimension 1) corresponds to the all-in / all-out moment, also called 𝑚 in other
texts;
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• mΓ5 (of dimension 2) to the “all 𝑥 / all 𝑦” easy plane antiferromagnetic order. Its two basis
states are calledΨ2 andΨ3;

• mΓ7 (of dimension 3) to the so-called Palmer-Chalker order;

• mΓ𝐴9 andmΓ𝐵9 (also of dimension 3) are both ferromagnetic structures, corresponding for
the first one to the ordered spin ices states, and for the other to a conventional colinear
ferromagnet.

Theeigenvalues𝑎Γ𝑖 givenby thediagonalizationprocedureare theenergy costs of thesesorders,
computed from 𝐽 the parameters described above. In concept, this approach is similar to the
diagonalisation of a tight-binding Hamiltonian in k-space, leading to several bands. The result
is that the exchange Hamiltonian can be rewritten in a simpler form:

ℋ= 1
2 ⒧𝑎Γ3𝑚

2
Γ3 +𝑎Γ5m

2
Γ5 +𝑎Γ7m

2
Γ7 +𝑎Γ𝐴9m

2
Γ𝐴9
+𝑎Γ𝐵9m

2
Γ𝐵9
+𝑎Γ𝐴𝐵9 mΓ𝐴9 ⋅mΓ𝐴9 ⒭ (1.3.4)

One important note is that this rewriting is mathematically equal to the original Hamiltonian,
and not a Landau free energy obtained through an averaging procedure. It is composed of a
sum of quadratic terms for each type of ordering, as well as one coupling allowed by symmetry
between the two order parameters that transform under the same representation Γ9. To find
themagnetic structure, onemust add a constraint of fixed length to each spin. We can highlight
some simple examples:

• 𝑎Γ3 = 3𝐽𝑧𝑧, an all-in / all-out order is stabilized if the effective Ising exchange < 0;

• 𝑎Γ5 = −6𝐽±, so an easy-plane antiferromagnetic order of representation Γ5 is stabilized if
𝐽± > 0. Within this description it turns out that any superposition of the two basis vectors
Ψ2,Ψ3 of Γ5 have the same energy; it has been shown that a ground state is thermally
selected by an order-by-disorder mechanism [Yan et al., 2017].

So far in this discussion we have ignored longer range interactions. It turns out that intro-
ducing further neighbors two-spins coupling in Equation (1.3.1) only results in renormalized
values of the nearest-neighbor couplings. This is because in theQ= 0 order picture long range
interactions are projected on the 4-site unit cell, and so the results of the group representation
analysis hold as well when considering material with significant dipolar interactions. However
they become irrelevant when the ordered state has a propagation vectorQ≠ 0, such as in dipo-
lar spin ice at low temperature.

1.3.3 Quantum effects and perturbation theory

There are several theoretical frameworks that can be used on quantum frustrated magnets:
Schwinger bosons [Sachdev, 1995; Moessner et al., 2003b], partons with gauge-mean field the-
ory [Savary et al., 2012; Savary et al., 2017b], bosonic many-body theory [Hao et al., 2014], per-
turbation theory [Bergman et al., 2007b; Bergman et al., 2006; Bergman et al., 2007a]. We will
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1.3 Going beyond Ising pyrochlores: magnetic phases and quantum effects

mostly use the latter, with a simple mapping from spins to hardcore bosons in order to get sim-
ilar quantum dimer models for various scenarios. In this thesis we will consider spin 1

2 pseu-
dospins  ̂𝑆𝑥, ̂𝑆𝑦, ̂𝑆𝑧. We limit ourselves to quantum fluctuations induced by a 𝐽± term, keeping
𝐽𝑧𝑧 > 0 as the frustrated exchange. This is known as the XXZ model, which we will apply to the
pyrochlore and kagome lattices:

ℋ= 
⟨𝑖,𝑗⟩

𝐽𝑧𝑧�̂�𝑧𝑖 �̂�𝑧𝑗 −𝐽±(�̂�+𝑖 �̂�−𝑗 +�̂�−𝑖 �̂�+𝑗 ) (1.3.5)

This mapping simply consists in replacing a spin by a boson if the spin is in a + state and a
vacuum in the − state. For example,

�̂�+𝑖 = 𝑎†𝑖 , �̂�−𝑖 = 𝑎𝑖, �̂�𝑧𝑖 = 𝑎†𝑖𝑎𝑖−
1
2 (1.3.6)

because [�̂�+, �̂�−] = 2ℏ�̂�𝑧. However these bosons don’t quite have the same commutations rela-
tions as usual canonical bosons, although they commute on different sites:

[𝑎𝑖,𝑎†𝑗 ] = 𝛿𝑖𝑗(1−2𝑎†𝑖𝑎𝑖) (1.3.7)

It is nevertheless possible to realize the same matrix elements as the spin Hamiltonian by
imposing a canonical commutation relation and a hardcore repulsion between bosons

𝑈
𝑖
⒧𝑎†𝑖𝑎𝑖−

1
2⒭

2

with𝑈 →+∞: such a term limits the number of bosons per site at 0 or 1, thus giving back the
two states of a spin 1

2 . This might seem like a standalone trick but it is representative of a com-
mon approach in quantum condensed matter: enlarge the Hilbert space (i.e. allow formally
more than one boson per site) to lift a constraint (here the unusual commutation relation in
Equation (1.3.7)), then project it back onto the physical states.

Injecting the hardcore boson definitions into the XXZ Hamiltonian, one finds that it can be
rewritten as:

ℋ=−𝐽𝑧𝑧
𝑖
𝑎†𝑖𝑎𝑖−𝐽± 

⟨𝑖,𝑗⟩
𝑎†𝑖𝑎𝑗 +𝑎†𝑗 𝑎𝑖+𝐽𝑧𝑧 

⟨𝑖,𝑗⟩
𝑎†𝑖𝑎𝑖𝑎†𝑗 𝑎𝑗 +𝑈

𝑖
𝑎†𝑖𝑎†𝑖𝑎𝑖𝑎𝑖+cte (1.3.8)

These bosons can be seen as the quantum equivalent of the dimers associated to the emergent
field. They live on the links of the diamond lattice for pyrochlore spin ice (or hexagonal lattice
for kagome spin ice), and they hop inways that preserve the local constraint at low energy. With
thismapping, non-fragmented and fragmentedpyrochlore spin ice are representedbydifferent
hard-core boson fillings:

• On the pyrochlore lattice:
– An AIAO state corresponds to having all pyrochlore sites occupied by a boson or

empty;
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1.3 Going beyond Ising pyrochlores: magnetic phases and quantum effects

– a spin ice state corresponds to having 2 surrounding each diamond site, hence the
system is at (local) half-filling;

– a fragmented ice state corresponds to having 1 or 3 bosons surrounding each dia-
mond site, hence (local) quarter-filling.

• On the kagome lattice:
– AnAIAO state corresponds to having all kagome sites occupied by a boson or empty;
– a spin ice / magnetic charge crystal corresponds to 1 or 2 bosons surrounding each

hexagonal site, hence (local) third-filling

The monopoles excitation correspond to vacancies or supplementary bosons. It is interesting
to note that the 𝐽𝑧𝑧 terms translates to a repulsion between neighboring bosons and a chemical
potential. Therefore, the perturbative limit 𝐽±≪𝐽𝑧𝑧 can be seen as going to the grand canonical
ensemble, with a globally fixed number of hard-core bosons, and a large repulsion between
neighbors.

The hardcore boson Hamiltonian obtained above can then be projected onto the degen-
erate ground space manifold, by removing the defects excitations and fixing the number of
bosons per site, using degenerate perturbation theory [Bergman et al., 2007b; Bergman et al.,
2006; Bergman et al., 2007a]. The equation obtained by this procedure is called the effective
Schrödinger equation. We write 1.3.5 in the formℋ0+ℋ1. Hereℋ0 is a classical Hamiltonian.
The details of the interactions in it can differ, so long as its ground state is a standard or frag-
mented spin ice manifold and whose excitations are the magnetic charges or monopoles, with
typical energy scale 𝐽𝑧𝑧. Most importantly, it is diagonal in the basis of spins operators along
the local axis 𝑧, such that a ground state can be expressed as a set of ⟨ ̂𝑆𝑧𝑖 ⟩. We call𝒫 the projec-
tor on the subspace of all accessible ground states. On the other hand, ℋ1 contains the small
quantum fluctuations of energy scale 𝐽±. The ground sate wavefunction satisfies the equation

𝐸0+𝒫H1
+∞

𝑛
⒧ 1
𝐸−H0

(1−𝒫)H1⒭
𝑛
𝒫|Ψ0 = 𝐸 |Ψ0 =ℋeff |Ψ0 (1.3.9)

Theoperatorℛ= 1
𝐸−H0

is called the resolvent. Because it contains the exact energy𝐸, this equa-
tion is actually a non-linear eigenvalue problem. However, to any given order of the perturba-
tion theory, 𝐸 may be expanded in a series in 𝐽±/𝐽𝑧𝑧 to obtain an equation with a true Hamil-
tonian form within the degenerate manifold. Because we will only be interested in the lowest
order terms, it is admissible to replace 𝐸 by 𝐸0 inℛ, simplifying the problem considerably. We
will present the result of this perturbative analysis in the next section, and in the third chapter
from the point of view of fragmentation.

1.3.4 Quantum spin ice

Theperturbative approach above has been applied to a the XXZHamiltonian of a quantum spin
ice [Hermele et al., 2004; Benton et al., 2012; Gingras et al., 2014]. The lowest energy term is a
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ring exchange process:

ℋeff =−12𝐽
3
±

𝐽2𝑧𝑧
�̂�+1 �̂�−2 �̂�+3 �̂�−4 �̂�+5 �̂�−6 (1.3.10)

It corresponds to the coherentflipof six spins alongahexagon in thepyrochlore lattice, pictured
in Figure 1.3.2 (right). This termpromotes spin ice to an analogue of quantumelectrodynamics.
Indeed, the emergent field A defined in Equation (1.1.9) acquires a dynamics driven by the ring
exchange Hamiltonian, so that an effective electric field emerges as well: E = −𝜕A/𝜕𝑡. In this
context the coarse-grained magnetization is commonly named B instead ofM. The emergent
quantum theory is formally called a compact𝑈(1) gauge theory. In other words, the potential
vector A has a local 𝑈(1) gauge invariance but its values are bounded, because a hexagonal
loop of spins 1

2 has a maximum winding number. Consequently, it hosts a novel charge-like
excitation, called vison, which has no equivalent in classical spin ice. The interaction between
the particles of the theory are mediated by gapless bosons with a linear dispersion, which are
therefore called effective photons. The energy scales of the various excitations of the theory are
shown inFigure 1.3.2 (left). Thequantumelectrodynamicsphase is enterednot throughaphase
transition but a crossover. The most striking signature is that the pinch-points in (quasi)elastic
scattering become blurred [Hermele et al., 2004; Benton et al., 2012].

Figure 1.3.2: (left) Ring exchange tunnelling process and (right) Energy scales of the various
novel excitations in quantum spin ice.
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2.1 Low temperature

2.1 Low temperature

2.1.1 4He cryogenics

In rare earth pyrochlores, the magnetic exchanges can range from a few tens of milliKelvins
for the transverse interactions between some rare-earth, to a hundred Kelvins for the metal-
insulator transitions observed with Iridium for example. The study of theses magnetic struc-
tures and associated phase transitions therefore requires a suite of cryogenic techniques to
reach such low temperatures.

Thecryogenicfluidof reference is 4He,which is a liquid at4.2Kat ambientpressure. Due to its
cost and large gas volume generatedwhen boiling, its handling required special care. Cryostats
are equipped with screens to limit the thermal losses by the helium vapors, and such vapors
are then collected and liquefied on site at the Néel Institute. Like all liquids, the boiling point
of helium can be lowered by diminishing the pressure. In the case of 4He this makes it possible
to reach temperatures of the order of 1 K through a device called a 1 K pot. By instead using
the cool vapors pumped from a bath of 4He, commercial instruments like theMPMS and PPMS
from Quantum Design can regulate the sample temperatures from about 2 K to 300 K and are
therefore extremely useful for sample characterization.

2.1.2 3He refrigerator

Figure 2.1.1: 3He refrigerator. Figure from Sandia National Labs

To go to temperatures below 1 K, more advanced cryogenic techniques must be used. The
simplest idea is to find another cryogenic fluid with an even lower boiling point than 4He. 3He
is the only know example, with a boiling point at 3.2 K at atmospheric pressure. Subsequent
umping on a liquid 3He bath allows to go to temperatures of the order of 300 mK. However
it adds some complexity because 3He is particularly expensive and must be kept clean after
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2.1 Low temperature

repeated passages through a pumpby going through a liquid nitrogen trap. An example of such
a 3He refrigerator is shown in Figure 2.1.1. There exists another system, called a sorption pump,
which gets rid of moving parts. It cools activated charcoals with liquid 4He and uses its large
adsorption capacity to cryopump 3He. This results in much simpler and more reliable cooling
system, but has the drawback of only offering a limited time at base temperature, usually of
several hours.

2.1.3 Dilution refrigerator

Figure 2.1.2: (Left) Phase diagram of the 3He - 4He mixture. (Righ) Schematics of a dilution
refrigerator. Figures reproduced from Wikipedia under CC BY-SA 3.0.

To go to temperatures of the order of themillikelvin formacroscopic samples, the next option
is a dilution refrigerator. This cooling technology is much more complex and we will only ex-
plain its principle of operation. It relies on the fact that below about 0.87 K a 3He - 4He mixture
separates into a 3He-rich phase, called the concentrated phase, and a 3He-poor phase called
the dilute phase. This is because the superfluid 4He cannot coexist with a large fraction of 3He
below this temperature. The other important point is that 3He has a higher vapor pressure than
4He due to it being slightly lighter. Therefore heating the dilute phase with a small heater re-
sults in mostly 3He being evaporated. The general scheme of a dilution refrigerator is shown in
Figure 2.1.2. The 3He is pumped at room temperature, then injected and cooled by a heat ex-
changer with a 1 K pot. At this point it condenses and is pushed through the main impedance
which regulates the flow. Then it is cooled by a series of heat exchangers with the still and the
3He being pumped in the dilute phase. It finally reaches the mixing chamber, at the bottom of
the cryostat, where the phase boundary between the concentrated and dilute phase is located
and to which the sample space is connected. The continuous pumping of 3He pushes it to flow
from the concentrated to the dilute phase; like a liquid turning into a gas, this process increases
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2.2 Specific heat: relaxation time and AC techniques

the entropy of 3He and is therefore endothermic. This is where the cooling power of a dilution
refrigerator is generated. The 3He then makes it way in the dilute phase to the still, where it is
vaporized by the still heater and pumped to complete the cycle. It is actually the still heater
which controls the flow of 3He and not the pumps speed, and therefore regulates the cooling
power of the refrigerator.

The dilution canes used on the magnetometer developed by Carley Paulsen and Elsa Lho-
tel actually slightly differ. The extraction mode of operation for the magnetometer needs the
cane to oscillate up and down in the cryostat and so the use of a 1 K pot to cool the 3He is not
really possible. Furthermore the study of magnetic phenomena dilution requires to perform
temperature ramps up to 4 K, which drives it in an unstable state where all of the mixture is
vaporized. The design of these specific canes therefore gets rid of the 1 K pot and injects the
mixture at a higher pressure through a higher impedance. However the cooling power is re-
duced and the sample can only reach a temperature of about 70mK in the best case scenario.
This also makes the cane more susceptible to clogging by a small impurity. There is also the
possibility to add the thermal impedance made of brass between the mixing chamber and the
sample space, which limits the minimum temperature to about 350mK but makes the dilution
much easier to operate in the 2−4 K range.

2.2 Specific heat: relaxation time and AC techniques

2.2.1 Definitions and interest

The specific heat of a thermodynamic system (assumed of constant volume) is defined as the
ratio between a heat transfer applied to the system 𝛿𝑄 and the change in temperature 𝛿𝑇 per
unit of mass:

𝐶 = 𝛿𝑄
𝛿𝑇 (2.2.1)

If there is only heat being exchanged then 𝛿𝑄 is related to the entropy change through 𝛿𝑄 =
𝑇𝛿𝑆. Therefore the knowledge of specific heat over a temperature range allows to compute the
entropy difference:

Δ𝑆 =
𝑇2

𝑇1

𝐶
𝑇 d𝑇 (2.2.2)

The specific heat is also related to the amplitude of fluctuations of the internal energy at a fix
temperature. Standard manipulations of the partition function show that

𝐶 = ⟨𝑈2⟩− ⟨𝑈⟩2
𝑘𝐵𝑇 2 (2.2.3)

This expression shows that the specific heat can be interpreted as a type of density of states at
a fixed temperature, whereas the integration of 𝐶

𝑇 counts the total number of available states,
consistent with the Boltzmann definition of the entropy.

These theoretical considerations result in the specific heat being a very good probe for phase
transitions, formally defined as a non-analyticity of a derivative of the free energy. They can be
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classified in two broad classes:

• Discontinuous (also called first-order) transitions are characterized by a discontinuity in
the entropy, a first-order derivative of the free energy. This results in a instability of the
specific heat, and the jump in entropy is associated to a latent heat;

• Continuous transitions involve a jump in a further derivative of the free energy. Themost
common case is a algebraic divergence in the specific heat which is called a second-order
transition. Through the lense of renormalization group theory, these transitions can be
grouped in several universality classes characterized by a set of critical exponents. For
example, the power law fitting the specific heat at the transition defines one such expo-
nent 𝛼.

It is therefore paramount to accurately measure the specific heat of a sample. In this thesis we
have used two distinct methods which we detail below.

2.2.2 Relaxation time method

Ca , TaK1

P Cs , TsK2

Figure 2.2.1: (left) Picture of a Ho2Ru2O7 sample on a 3He Quantum Design PPMS puck and
(right) Thermal model of the PPMS system

This method involves heating the sample with a small heating pulse, and measuring the re-
laxation time when connected through a known thermal leak to a thermal bath at a fixed tem-
perature. This principle of operation is used in the Physical Properties Measurement System
(PPMS), built by Quantum Design, which we used to characterize the samples. The sample is
fixed to a platform with some Apiezon N grease, which is then connected to the thermal bath
with wires.

This platformand the addedgreasehave their own specificheatwhich are gatheredunder the
umbrella term addenda. In Figure 2.2.1 (Left) we show the thermal model of the PPMS, where
the sample on top is connected to te platform through a finite thermal leak 𝐾2. This platform
has a specific heat 𝐶𝑎 accounting for the addenda, and is connected to the thermal bath at
temperature 𝑇0 through a known thermal leak𝐾1. A heating power 𝑃 is applied to the platform.
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The evolution of the temperatures is controlled by the following equations:

𝑃 = 𝐶𝑎
d𝑇𝑎
d𝑡 +𝐾2(𝑇𝑎 −𝑇𝑠)+𝐾1(𝑇𝑎 −𝑇0)

0 = 𝐶𝑠
d𝑇𝑠
d𝑡 +𝐾2(𝑇𝑠−𝑇𝑎)

(2.2.4)

From this two relaxation times can be defined: themain relaxation time 𝜏1 = (𝐶𝑠+𝐶𝑎)/𝐾1 corre-
sponding to the overall thermalizationof the sample and theplatform, and the sample thermal-
ization time 𝜏2 = 𝐶𝑠/𝐾2 accounting for a possible temperature difference between the sample
andplatform. ThePPMScontrol systemapplies aheatingpulseof finiteduration to limit the rel-
ative amplitude of the temperature change to about 1%. It then fits the temperature measured
at the platform using these two relaxation times. If 𝜏1≫𝜏2 then the sample is well coupled. By
measuring the addenda specific heat first before placing the sample, the sample specific heat
can be readily computed. If however 𝜏1 and 𝜏2 are of the same order of magnitude, the sam-
ple is decoupled meaning its true temperature evolution cannot be accurately measured. This
happens usually at low temperature, either because 𝐾2 becomes too small compared to 𝐾1 or
because the sample specific heat increases too much. The PPMS assigns a coupling coefficient
to each temperature measured which we use to discard spurious points. When mounting the
sample, it is therefore important to use the right sample mass, the least possible amount of
grease and to ensure a good thermal connection by lightly pressing the sample into the grease.

2.2.3 Alternative measurement of the heat capacity

C K
PAC

Figure 2.2.2: Simplified thermal model of the AC measurement of the specific heat

When one needs to measure very small samples, the relaxation time method may become
unsuitable due to a low signal-to-noise ratio. To make use of the more effective signal process-
ing techniques available for AC signals, an alternative method for measuring specific heat was
developed. A sample of heat capacity 𝐶 is subjected to an alternative heating power by Joule
effect at a fixed frequency 𝑃𝐴𝐶 = 𝑃(1+ cos2𝜔𝑡). It is also coupled to the environment through
a thermal leak 𝐾 . The corresponding simple thermal model is shown in Figure 2.2.2. In this
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simple model, the sample temperature oscillations can be written

𝑇𝑎𝑐 =
𝑃𝐴𝐶

𝐾 +2𝑗𝜔𝐶 (2.2.5)

The experimental setup comprises of a synchronous detection which measures the phase dif-
ference between the temperature oscillations and the square of the applied voltage. Within this
simple model they are

𝜙 = tan 2𝜔𝐶𝐾 (2.2.6)

Then the specific heat of the sample is

𝐶 = 𝑃
2𝜔|𝑇𝑎𝑐|

sin𝜙 (2.2.7)

This system can therefore independently measure the specific heat and the thermal leak to the
environment. In particular it is very suited to themeasurement of specific heat under pressure:
the required pressure media comes with large losses to the environment, but their effect can
be minimized with a high enough frequency. This however assumes that the sample stays in
equilibirum at a high frequency. On the contrary, a low frequency ensures equilibrium but the
phase difference might be so small that it becomes hard to measure. This is why most AC spe-
cific heat experiments try to maintain when possible a 45∘ phase difference working point. The
other parameter that must be chosen is the voltage for the temperature oscillations. A higher
voltage improves the S/N ratio but can lead to improper thermalization of the sample at the
lowest temperatures.

2.3 Magnetometry

2.3.1 Magnetization and susceptibility

Consider a magnetic material, which has a volume magnetization M defined as a sum of the
internal magnetic moments per unit volume. One the most important quantity to characterize
its properties is its susceptibility. It is defined formally defined as a tensor, whose components
are the partial derivative of themagnetization components over the applied field strength com-
ponents:

𝜒𝑖𝑗 =
𝜕𝑀𝑖
𝜕𝐻𝑗

(2.3.1)

In the case of a powder samples, like the one which will be measured in this work this tensor
can be simplified to a single scalar susceptibility 𝜒 = 𝜕𝑀

𝜕𝐻 .
Several main magnetic behaviors are defined from the value of the susceptibility. In Fig-

ure 2.3.1 are shown schematic curves of magnetization as a function of field. A paramagnetic
material is magnetized only in reaction to an applied field and in the same direction, so it has a
slightly positive susceptibility. On the contrary, a diamagnetic material’s susceptibility is neg-
ative; one striking example is a superconductor which exhibit perfect diamagnetism through
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Figure 2.3.1: Illustration of magnetization as a function of field curves for different generic
types of magnetism. Figure adapted from Encyclopedia Magnetica under CC-BY-4.0

the Meissner effect. A ferromagnet is defined by a spontaneous magnetization below a certain
temperature and so its susceptibility is expected to be orders ofmagnitudes larger. In the rest of
this work, we will use the mass susceptibility, which is the above volume susceptibility divided
by the density. We will use CGS units where the magnetic field strength 𝐻 is expressed in Oe
and the mass susceptibility in emu/g.

2.3.2 Susceptibility as a function of temperature

Figure 2.3.2: Schematic illustration of magnetic moments, susceptibility and inverse suscepti-
bility plots for (left) a paramagnet, (center) a ferromagnet and (right) an antiferromagnet. For
the ferromagnet theorderparameter is plottedbelow the transition ingreen. Figure reproduced
from Encyclopedia Magnetica under CC-BY-4.0

Upon increasing the magnetic field strength, a magnetic material will reach saturation: its
magnetization attains a maximum which gives information on the value of the projected mag-
netic moment per magnetic atom. But in order to study magnetic transitions, it can be more
useful to study the evolution of magnetic susceptibility as a function of temperature. In most
cases it is enough to consider the linear susceptibility, i.e. the𝑀/𝐻 ratio for small fields of the
order of 100 Oe for example. At high enough temperature, most magnetic materials are para-
magnetic and follow the so-called Curie-Weiss law:

𝜒 = 𝐶
𝑇 −Θ (2.3.2)
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2.3 Magnetometry

where 𝐶 is the Curie constant of the material andΘ is the Curie-Weiss temperature. As an sim-
ple example, a two level (Ising) system with effective magnetic moment ±𝜇𝑒𝑓𝑓 and molar mass
𝑀𝑚 has a (mass) Curie constant:

𝐶 =
𝜇2
𝑒𝑓𝑓

𝑘𝐵𝑀𝑚
(2.3.3)

Susceptibility measurements are often plotted as 1/𝜒 as a function of 𝑇 , and the scaling law
obtained can give important information on the nature of themagneticmoments. On the other
hand, the Curie-Weiss temperature Θ is usually of the same scale as the interactions between
moments. In non-frustrated magnets, it ends up being close to the transition temperature 𝑇𝑐.
From this point of view, a frustration coefficient can defined as the ratio of the Curie-Weiss
temperature over the transition temperature:

𝑓 = |Θ|
𝑇𝑐

(2.3.4)

which is much larger than 1 in frustrated magnets. In Figure 2.3.2 we present several examples
of susceptibilities for genericmagnetic behaviors. In aparamagnet themoments aredisordered
and the CW temperature is close to 0. In a ferromagnet, the moments align with each other
below a transition temperature and the susceptibility will tend to diverge in an ideal case. In
reality, it will saturate a relatively large value compared to the paramagnetic phase. Below the
transition, the magnetization acts as an order parameter. However in an antiferromagnet, the
spins order but in such a way that there is no overall magnetization. The determination of an
orderparameter ismore complexbecause it involvesdividing the lattice into several sublattices.
The Curie-Weiss temperature is actually negative for an antiferromagnet, representative of the
opposite sign of the interactions. This makes the susceptibility smaller overall, comparable to
that of paramagnets. Below the transition temperature, called the Néel temperature 𝑇𝑁 in this
case, it tends to decrease towards 0.

We can gain more information on the interactions by looking at the deviations from the
Curie-Weiss law just above the phase transition. A larger or smaller 𝜒 than what the scaling law
indicates the onset of ferromagnetic or antiferromagnetic correlations respectively. Finally, the
susceptibility obey a power law just above the transition which defines another critical expo-
nent 𝛾.

These properties represent an idealized sample with no defects or domain walls. In real ma-
terials there exists energy barriers which prevent the system to reach a true ground state.They
can be estimated experimentally using a so-called ZFC-FC protocol, which takes place in two
steps:

• Zero Field Cooled (ZFC) the sample is cooled with no magnetic field to the lowest tem-
perature, then the field is applied. If there are significant energy barriers, the moments
will be blocked in a given configuration. Only above a certain freezing temperature can
they order along the field;

• Field Cooled (FC) the sample is cooled again with the field still applied. The moments
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are polarized from above the freezing temperature and so the state obtained at low tem-
perature will maximize the magnetization.

The comparison of the two measurements can help determine the freezing temperature as well
an estimation of the energy barriers.

2.3.3 Susceptibility as a function of frequency

So far all the quantities we have presented are measured in a static fashion. However a lot of
information lies in the dynamics of magnetic phases, and the characteristic flipping times for
a spin as function of temperature. This is why it is very insightful to apply a small AC field𝐻(𝜔)
and measure the in-phase and out-of-phase susceptibilities at a fixed temperature, called 𝜒′
and 𝜒′′ respectively. In the presence of a single relaxation time the complex susceptibility fol-
lows a linear model:

𝜒𝐴𝐶 = 𝜒′+𝑖𝜒′′ = 𝜒𝑆 +
𝜒𝑇 −𝜒𝑆
1+𝑖𝜔𝜏 (2.3.5)

represented in Figure 2.3.3 (top). 𝜒𝑇 is the isothermal susceptibility, equivalent to theDCquan-
tities discussed before. A very high frequency, the spins do not have enough time to align with
the field, and so 𝜒 tends to a much smaller value called the adiabatic susceptibility 𝜒𝑆 . In be-
tween, 𝜒′ decreases and 𝜒′′ goes through a maximum representing a maximum of dissipation
in the sample. The frequency of that maximum represent a characteristic time 𝜏 for a spin flip.
The evolution of 𝜏 as a function of temperature can follow an Arrhenius law, which defines a
characteristic fundamental time 𝜏0 and energy barrier Δ𝐸 for a spin flip such that:

𝜏(𝑇 ) = 𝜏0𝑒−
Δ𝐸
𝑘𝐵𝑇 (2.3.6)

Figure 2.3.3: (top) 𝜒′ and 𝜒′′ as a function of frequency (bottom) Cole-Cole plot of 𝜒′′ as a func-
tion of 𝜒′. Figure reproduced from Encyclopedia Magnetica under CC-BY-4.0
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It is also possible to represent𝜒′′ as a function of𝜒′, called aCole-Cole plot. Assuming the lin-
earmodel holds, its should take the formof a semi-circle as picture in Figure 2.3.3 (bottom). If it
departs from this shape, it is the sign that there is not a single relaxation time, but a distribution
of a certain width.

One issue the ACmeasurements pose in our case with a copper sample holder is the creation
of eddy currents in the instrument. These in turn create magnetic flux where the sample is
located which perturbs the measurement. Such effect is akin to a screening of the sample and
can be modelled by applying the following transformation:

𝜒′true = 𝜒′exp cos⒧𝜃⒭+𝜒′′exp sin⒧𝜃⒭+𝜒′0
𝜒′′true =−𝜒′exp sin⒧𝜃⒭+𝜒′′exp cos⒧𝜃⒭+𝜒′′0

(2.3.7)

The angle 𝜃 and offsets 𝜒′0,𝜒′′0 depend on the frequency and must be evaluated at high temper-
ature where the sample response is known.

2.3.4 SQUID magnetometer

The instruments we have used to measure magnetization and susceptibility are SQUID mag-
netometers. A DC SQUID (Superconducting QUantum Interference Device) is a ring built from
two Josephson junctions, composed of superconductors separated by a thin isolating barrier.
The current in a Josephson junction is a function of the superconducting phase difference Δ𝜙
between the two superconductors:

𝑖(𝑡) = 𝑖𝑐 sin⒧Δ𝜑⒭ (2.3.8)

where 𝑖𝑐 the junction’s critical current. When considering a DC SQUID in the presence of a
magnetic fluxΦ, the flux quantification inside the ring imposes 2𝜋Φ/Φ0+Δ𝜑1−Δ𝜑2 = 0, where
Φ0 =ℎ/2𝑒 is the flux quantum, andΔ𝜑𝑖 is the phase difference at the junction 𝑖. This induces a
modulation of the critical current 𝑖𝑐, which then writes: 𝑖𝑐 = 𝑖0|𝑐𝑜𝑠(𝜋Φ/Φ0)|.

A simplified SQUID magnetometer is shown in Figure 2.3.4. The SQUID is inductively cou-
pled to pickup coils in which the sample is moved. It is controlled by a feedback electronic
system which turns it into a high-gain amplifier of magnetic flux. The SQUID is biased by a
current to choose a working point where the voltage change as a function of flux is maximal.
Then, when a magnetic sample is passed through the SQUID pickup coils at a constant speed,
the variation of flux is translated as a voltage change. This is called the extraction technique.

In this thesis we have used custom SQUID magnetometers built by Carley Paulsen. To elimi-
nate magnetic perturbations, the SQUID pickup coils are arranged in a first-order gradiometer
and isolated with magnetic shields. One magnetometer is equipped with a superconducting
coil which can apply fields up to 8 T. Another can only apply field up to 0.4 T, and allows mea-
surement of 𝜒𝐴𝐶 from 1 mHz to 1 Khz. The sample is connected to the mixing chamber of a
dilution cane by a copper sample holder to ensure thermalization. The entire dilution cane is
moved during the extraction and allows to measure magnetization and susceptibility down to
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Figure 2.3.4: Simplified SQUID magnetometer.

70mK.We have also used a commercial SQUIDmagnetometer built byQuantumDesign called
theMPMS3. It is instead a vibrating samplemagnetometer (VSM),where the sample is vibrated
at a known frequency and small amplitude inside the pickup coils. In this device the coils are
arranged in a second order gradiometer. A SQUID working point is chosen in a similar way to
get the maximal voltage change for a given amplitude of oscillation. The signal can be then be
picked up by a lock-in amplifier. It canmeasuremagnetization and susceptibility down to 1.8K
and an applied field of 7 T.

2.4 Neutron diffraction and scattering

2.4.1 Neutron properties and cross section

Together with protons, neutrons are particles which compose atomic nuclei. They are massive
(𝑚𝑛 ≈ 1.67× 10−27 kg) and have a nuclear spin 1/2. With a gyromagnetic ratio of about −1.9
this results in them having a magnetic moment, but no electric charge as their name suggest.
Therefore, they do not interact with nuclei through the Coulomb interaction but only through
the strong interaction which has essentially a point-like potential. As a consequence the scat-
tering can give very precise information on the structure of matter. On the contrary, their mag-
netic moment makes them interact with the magnetic field produced by unpaired electrons,
as in the case of magnetic atoms. It is common to relate the energy of neutrons to quantities
relevant in condensed matter physics. We can write the energy of a neutron as

𝐸 = ℎ2

2𝑚
1
𝜆2 =𝑘𝐵𝑇 (2.4.1)

Hence a so-called thermal neutron (𝑇 ≈ 300K) has awavelength of about 1.8Å−1 and an energy
of about 25meV.These values are of the order ofmagnitude of the typical interatomic distances
and magnetic excitations respectively. All these unique properties make neutrons a very suit-

43



2.4 Neutron diffraction and scattering

able tool to probe condensed matter structures and their dynamics, especially in the case of
magnetism.

Thescattering amplitudeof aneutron is proportional to theneutronflux and to the scattering
cross-section. We consider an elastic scattering process with a scattering wave vector Q such
that

Q= ki−kf, 𝐸i =𝐸f (2.4.2)

Let us consider a perfect lattice of atoms at positions {r𝑗} carrying dipolar moments {S𝑗}. As
we are interested in informations expressed in reciprocal space we define the following Fourier
transforms:

𝑁Q =
𝑗
𝑏𝑗𝑒𝑖Q⋅r𝑗 , MQ =

𝑗
𝑓𝑀,𝑗(Q)S𝑗𝑒𝑖Q⋅r𝑗 (2.4.3)

The quantities 𝑏𝑗 and 𝑓𝑀,𝑗 account for the various interactions between neutrons and atomic
nuclei or magnetic moments: they correspond to the scattering pattern produced by one sin-
gle scattering object for the respective interaction, and are therefore the Fourier transform of
the interaction potential. 𝑏𝑗 is called the neutron scattering length of the nuclei at position 𝑗.
It is a complex quantity, whose sign of the real part indicates if the neutron is attracted or re-
pelled by the neutron, and whose imaginary part encodes the absorption. As mentioned above
the nuclear scattering from the strong force is essentially point-like so 𝑏𝑗 is a constant, which
depends somewhat randomly on the nuclei. On the other hand, 𝑓𝑀,𝑗(Q) is called the magnetic
form factor and has a strongQ dependance, due to the spatial extension of the electron cloud.
The exact details of 𝑓𝑀,𝑗 depend on the particular electron density of the unfilled orbital, but
in a first approximation it has a somewhat bell shape with a half-width at half-maximum of
3−5 Å−1. Plus, its intensity can be comparable to the nuclear scattering. This is the reason why
neutron scattering is so useful for the study ofmagnetic structures: it producesmagnetic Bragg
peaks at lowQwhich appear distinctly from the nuclear peaks in diffraction experiments.

For scattering by unpolarized neutrons, the total cross-section is the sum of the nuclear and
magnetic scattering, which can be shown to be well approximated by:

d𝜎
dΩ ∝𝑆𝑁 (Q)+𝑆𝑀 (Q), with 𝑆𝑁 (Q) = 𝑁∗

Q𝑁Q and 𝑆𝑀 (Q) =M∗
⟂QM⟂Q (2.4.4)

where 𝑆𝑁 (Q) and 𝑆𝑀 (Q) are called the nuclear and magnetic structure factor respectively. M⟂Q
is the magnetic interaction vector, defined as

M⟂Q = Q̂×(MQ× Q̂) (2.4.5)

where Q̂ is a unit vector parallel to Q. It represents the fact that neutrons only see the compo-
nent of themagnetization that is perpendicular to their scattering vector. This is a consequence
of the dipole-dipole interaction between a neutron and themagnetization inside a sample, and
canbeunderstoodvisuallyby lookingat the scatteringbyadipolarfieldas shown inFigure2.4.1.

Neutron scattering also allows for the study of excitations in condensed matter, where the
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Figure 2.4.1:Neutron scattering offof a dipolarmagnetic field. (right)M⟂Q leads to construc-
tive interference. (left)M ∥Q leads to destructive interference. Image reproduced from [Jülich,
2007]

quantities {r𝑗 ,S𝑗} change in time in a coherent manner. This requires measuring the energy of
scattered neutrons, whose difference with the incoming energy relates to the energy of exci-
tations: ℏ𝜔 = 𝐸i −𝐸f. The differential cross section now depends on the energy transfer and
reads:

d2𝜎
dΩd𝐸 ∝ 𝑓𝑁𝑆𝑁 (Q,𝜔)+𝑓𝑀 (Q)

𝜇,𝜈
𝑆𝜇,𝜈𝑀 (Q,𝜔) (2.4.6)

where 𝑆𝑁 and 𝑆𝜇,𝜈𝑀 are the nuclear andmagnetic dynamical correlations functions respectively:

𝑆𝑁 (Q,𝜔) =
1

2𝜋ℏ
+∞

−∞
𝑒−𝑖𝜔𝑡⟨𝑁Q(0)∗𝑁Q(𝑡)⟩d𝑡

𝑆𝑀 (Q,𝜔) =
1

2𝜋ℏ
+∞

−∞
𝑒−𝑖𝜔𝑡⟨𝑀𝜇

⟂Q(0)∗𝑀𝜈
⟂Q(𝑡)⟩d𝑡

(2.4.7)

Nuclear excitations include phonons, which can appear as sharp branches going up in energy
from nuclear Bragg peaks. Magnetic excitations can either be delocalized or localized on one
site, which lead to very different signatures in the (Q,𝜔) space. For example, spin waves prop-
agate through the lattice at different wavevectors and their inelastic scattering signal matches
their dispersion relation. On the other hand, crystal field excitations are localized to one sin-
gle site, and therefore only have the spatial dependance of the dipolar form factor in reciprocal
space.

For this thesis we have used neutron instruments at two facilities: ILL and ISIS, both for elas-
tic neutron diffraction and inelastic neutron scattering. We will briefly present the operating
principles of each type of instrument below. Experimental data from diffractometer was ana-
lyzed with the FullProf software [Rodríguez-Carvajal, 1993]. It performs least-square optimiza-
tionbetween the data and an inputmodel, taking into account the specifics of each instrument.
The model contains nuclear and magnetic phases with adjustable parameters, which must be
constrained (in particular for the magnetic phases) knowing the allowed magnetic structures
in each compound. Experimental data from inelastic scattering was analyzed with the Mantid
software suite [Arnold et al., 2014].
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2.4.2 Diffractometers: D1B and D20

Figure 2.4.2: Schematic of the D20 diffractometer at ILL. Image reproduced from the ILL web-
site

The Institut Laue-Langevin (ILL) in Grenoble is a high flux nuclear reactor dedicated to the
study of the properties of matter with neutrons. At the time of writing, it is the brightest neu-
tron source in the world with a continuous flux of 1.5 × 1015 neutrons ⋅ s−1 ⋅ cm−2. Neutrons
are produced through the controlled fission of 235U which produces neutrons with an average
energy of about 2 MeV. Such high energy neutrons are moderated (meaning slowed down),
both to maintain the fission reaction and to provide a neutron beam to the scientific instru-
ments. At ILLwe have used theD1B andD20 diffractometers to determinemagnetic structures
at low temperature, with either a standard 4He cryostat or dilution refrigerator. In particular
D20 can accommodate a pressure setup, which we have used to measure the magnetic struc-
ture of Ho2Ir2O7 under pressure.

Diffractometers operate with a fixed neutron wavelength, (2.52 Å for D1B). It is selected with
a monochromator, which is usually a monocrystal (like graphite, Cu, Ge), orientated such as
to diffract a single Bragg peak of known wavelength towards the sample. The neutron beam is
then collimated on its way to the sample. The monitor, placed before the sample, then counts
the total number of neutrons sent to the sample in order to properly normalize the data. The
diffracted neutrons are detected by 3He gas detectors, where the neutron is absorbed by the
helium nucleus to create tritium and a proton. Being charged, the proton is then counted with
a classical detector. The schematic of the D20 diffractometer is shown in Figure 2.4.2.
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2.4.3 Time of flight spectrometers: WISH and LET

Figure 2.4.3: Schematic of the LET instrument viewed vertically. Five sets of disc choppers
(C1-C5) select one or more neutron wavelength (Pulse Removal - PR, Contaminant Removal -
CR), shape the pulse (Pulse Shaping - PS, Resolution - R), and eliminate frame overlap (Frame
Overlap - FO). The magnified regions show the positions of the polariser and flipper and the
analyser, respectively. Once polarised, the neutron beam can be flipped by a precession coil
flipper. It is then transported to the sample by guide fields and a set of coils , before being
analyzed by a wide-angle 3He spin filter analyzer. Figure and caption adapted from [Nilsen et
al., 2017]

Another technique to produce neutrons is the spallation process. It relies on a particle accel-
erator sending pulses of high energy protons (about 1 GeV) onto a heavy metal target (Pb, W,
Hg...). As a result of the collision, neutron are produced, among other particles. This technique
has the advantage of producing less radioactive waste but is inherently pulsed, sending packs
of neutrons of various energies. The instruments at these facilities therefore operate in a differ-
ent manner. The pulse of neutrons is first prepared by passing through a series of rotating disks
with slices called choppers, whose speed determine the minimum and maximum energies. We
have first used the WISH diffractometer at ISIS. It measures the time of flight, i.e. the energy,
of neutrons arriving over a bank of detectors covering a certain angular range. Assuming the
large majority of the neutrons detected were diffracted elastically, the time of flight is related
to the wavelength via 𝑡 = (𝑚𝑛𝑙/ℎ)𝜆 where 𝑙 is the length the neutron has traveled, which can
then be converted back into reciprocal lattice units. Finally, we have performed an experiment
on LET, which is a time of flight spectrometer used for the study of excitations in condensed
matter. Compared to a diffractometer, its detectors are resolved in angle which allows for the
simultaneous detection of a neutron’s scattering wave vector and energy. A schematic of a time
of flight spectrometer similar to LET is shown in Figure 2.4.3.
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2.4.4 Neutron scattering from fragmented states

To finish this section, we want to apply the fragmentation decomposition to the formula for
elastic neutron scattering. It is particularly useful as the longitudinal and transverse fragment,
when transformed into reciprocal space, are orthogonal. Following the spin fragmentation, we
can writeM(Q) =Mm(Q)+Md(Q), which obey the orthogonality conditionMm.Md = 0 for allQ.
As a consequence, the magnetic structure factor also decomposes into two distinct parts

𝑆𝑀 (Q) = 𝑆m(Q)+𝑆d(Q) (2.4.8)

so that the scattering intensitydivides intocomponents fromthedivergence-full anddivergence-
free the magnetic moments with no interference terms. Being associated with scattering from
the ensemble of charges with total charge neutrality, the longitudinal fragment will contribute
at antiferromagnetic peaks. Consequently, the scattering is purely from the transverse frag-
ment inside the first Brillouin zone, except at the Q = 0 point. The separation of these frag-
mentshas alreadybeenobserved inmagnetic charge crystal phases [Brooks-Bartlett et al., 2014;
Lefrançois et al., 2017; Cathelin et al., 2020; Canals et al., 2016; Paddison et al., 2016].

Up to now we have not investigated the case of scattering by polarized neutrons. We will
present a simplified version of the Blume-Maleyev equations for the present case of pyrochlore
magnets. Using polarized neutrons, 𝑆(Q) can be further resolved into “spin flip” (SF) and “non-
spin flip” (NSF) components corresponding to scattering events in which the neutron spin di-
rection is flipped or not [Fennell et al., 2009]. The SF scattering cross section lies in the plane
perpendicular to the polarisation axis and projects out the component of M⟂(Q) lying in this
plane. The NSF component projectsM⟂(Q) onto the polarisation axis. This refinement leads to
separate contributions to the structure factor, 𝑆(Q)𝑆𝐹 and 𝑆(Q)𝑁𝑆𝐹 for scattering perpendicular
and parallel to the polarisation axis, each of which can be decomposed into the two fragmen-
tation components. Polarised neutron refinement is of particular interest for scattering from
spin ice materials on the kagomé plateau. More specifically, choosing the neutron polarisa-
tion along the [111] field direction allows for the resolution of spin components parallel and
perpendicular to the kagomé plane [Turrini et al., 2022].

In the following chapter we will demonstrate this property by computing the elastic scat-
tering intensity of each fragment as well as of the total spin structure for different fragmented
magnetic states. This property opens up the possibility of defining fragmentation order param-
eters by integrating the scattered intensity in specific regions of reciprocal space.
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Quantum fluctuations and phase transitions
in fragmented spin ices
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3.2 Fragmented neutron scattering of quantum kagomé ice

3.1 Motivations

Thesearch for quantummaterials is an important driving force in the field of solid state physics.
However the concept of a quantum properties can have many practical or theoretical realiza-
tions to the point where its meaning becomes unclear. In the field of frustrated magnets, this
can refer for example to the tunnelling of a single spins from one state to another. It can be
enabled by crystal field excited states with an applied magnetic field [Tomasello et al., 2019]
or because of small level separation [Gaulin et al., 2011]. On the opposite side of the quantum
scale, it can relate to ground states where an extensive number of spins all intricated, like in
quantum spin ice [Savary et al., 2017a] or in generalized quantum spin liquids [Wen, 2017]. We
chose a median approach, where quantum effects are considered as collective fluctuations in-
side an otherwise classical ground-statemanifold. In this section, wewill investigate the effects
of quantumfluctuations on examples of fragmented ground states and identify the relevant or-
der parameter, with the goal of extending the fragmentation phase diagram from Chapter 1
towards low temperatures. We will first consider several cases on the kagomé lattice, then on
the pyrochlore lattice, and conclude by detailing how the framework of fragmentation can help
identify relevant order parameters.

3.2 Fragmented neutron scattering of quantum kagomé ice

3.2.1 Mapping to a dimer model and phase diagram

In this first section we investigate the example kagomé ice dressed with quantum fluctuations.
Weplace ourselves in theKII kagomé ice phaseddiscussed inChapter 1 (Figure 1.1.9), whichwe
recall is fragmented. The longitudinal fragment contains all the magnetic charge in the form of
a partial all-in / all-out order. The transverse fragment is divergence free, with elements of field
of different length. Itmaps onto a (ℤ2 sector of a) classical dimermodel. Quantumfluctuations
are added in the form of a 𝐽± transverse exchange, which yields an XXZ Hamiltonian on the
kagomé lattice:

ℋ= 
⟨𝑖,𝑗⟩

𝐽𝑧𝑧 ̂𝑆𝑧𝑖 ̂𝑆𝑧𝑗 −𝐽±( ̂𝑆+𝑖 ̂𝑆−𝑗 + ̂𝑆−𝑖 ̂𝑆+𝑗 ) =ℋ0+ℋ1 (3.2.1)

We follow thediscussionof quantumperturbativemethods inChapter 1 and choose todescribe
its low energy behavior with the effective Schrödinger equation in Equation (1.3.9) [Moessner
et al., 2001; Bergman et al., 2007b]. Here we can make use of the fragmentation formalism.
We know that the effective Hamiltonian is projected onto the ground state manifold, where
there are no charge excitations of typical energy 𝐽𝑧𝑧. This means that the longitudinal field is
effectively integrated out, and only the emergent transverse field contributes to the quantum
dynamics of typical energy 𝐽±. Since it maps to a dimer model, the effective Hamiltonian takes
the form of a quantum dimer model on the hexagonal lattice. We are interested in the lowest
non-zero order of the perturbation theory, meaning terms which involve the smallest num-
ber of dimer moves. Following Refs [Moessner et al., 2001; Bergman et al., 2007b], we use the
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following quantum dimer Hamiltonian:

ℋeff = 𝜇⒧|  |+ |  |⒭−𝑔⒧|  |+ |  |⒭ (3.2.2)

which is expressed as sum over all hexagons of the hexagonal lattice, also called hexagonal pla-
quettes. It is separated into two types of terms:

• Diagonal terms correspond to the classical energy of a particular dimer configuration. In
our example, we give the potential energy 𝜇 to any plaquette with three regularly spaced
dimers;

• Non-diagonal terms are the probability amplitudes of tunneling from one dimer config-
uration to another. Here we assign a “kinetic” energy cost 𝑔 to the dimer move between
the two possible types of plaquettes.

The phase diagram of such a quantum dimer model is a function of the 𝜇/𝑔 ratio. It presents
general characteristics which can be observed on a large number of lattices [Moessner et al.,
2008]. For𝑔 ≪𝜇 and𝜇 > 0, flippable plaquettes have a very high energy cost and therefore one
gets a crystal of dimerswith no flippable plaquettes. It is often called the columnar or staggered
phase and maps onto a ferromagnetically ordered phase [Moessner et al., 2006]. Inversely for
𝜇 < 0, flippable plaquettes are energetically favored. Thus the ground state is in the subspace
of dimer coverings of the lattice which have the largest amount of such plaquettes [Moessner
et al., 2001; Schlittler et al., 2017]. Finally, 𝜇/𝑔 = 1 is the Rokhsar-Kivelson point and is ex-
actly solvable. Here the ground state is the superposition of all possible dimer coverings with
equal weight and therefore the system does not display local order. This corresponds to a𝑈(1)
quantum dimer liquid which can have a given extent in the phase diagram depending on the
lattice.

The phase diagram of the quantum dimer model on the hexagonal lattice is shown in Fig-
ure 3.2.1. On this figure we show both the dimer grounds states at the top, and the equivalent
states in the spin picture at the bottom, by mapping back from the dimers to a transverse frag-
ment. But up to this point we don’t know where the XXZ Hamiltonian we started with can be
placed in this phase diagram. The exact computation of the effective parameters from degen-
erate perturbation theory is quite involved, but their scaling can be understood simply. Flip-
ping a three-dimers plaquette requires applying the 𝐽± term three times, so the lowest-order
non-diagonal term scales like 𝐽3± /𝐽2𝑧𝑧. The diagonal term however requires coming back to the
original configuration, applying the 𝐽± term another three times. It therefore scales like 𝐽6± /𝐽5𝑧𝑧.
In consequence,𝜇/𝑔 ∼ (𝐽±/𝐽𝑧𝑧)3 in the perturbative limit. Thismakes it possible to locate the so-
called ”spin-ice point” that corresponds to the position on the dimer model phase diagram of
a particular classically frustrated system with small quantum fluctuations: 𝐽±≪𝐽𝑧𝑧 so 𝜇/𝑔 ≈ 0.

The practical utility of quantum dimer models is that they are much easier to simulate nu-
merically than a full spin system, and so their phenomenology and phase diagrams are better
known. However, it is important to note that this remains an approximation that doesn’t take
into account the other interactions that might be relevant in spin ice materials. For example, a
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3.2 Fragmented neutron scattering of quantum kagomé ice

Plaquette phase Columnar statesStar phase
~ 0: Spin ice point √3 x √3 phase Spin-P phase Columnar states

Figure 3.2.1: Phase diagram of the quantum dimer model in Equation (3.2.2) on the hexagonal
lattice, with the ground states in the dimer picture (top) and spin picture (bottom), where the
plaquettes in a quantum superposition state are shown with shaded links. The dimer pictures
are adapted from [Schlittler et al., 2017].

possible evolutionof theKII kagomé icephase as the temperature is lowered [Möller et al., 2009;
Chern et al., 2011], for example thanks to the long-range interactions, is the √3×√3 phase.
The effect of dipolar interactions can be understood simply when restricted to the ground state
manifold: such interactions favors closing the magnetic flux lines, which results in an effective
negative 𝜇. However as we have explained, the 𝜇/𝑔 ≈ 0 spin ice point is located deep in a dif-
ferent, quantum phase called the plaquette phase. Therefore, we will investigate the different
diffraction signal produced by these two phases, in order to draft an experimental procedure to
tell them apart.

3.2.2 The √3×√3 and star phases

We start by considering the case of large negative 𝜇/𝑔. The ground state is called the√3×√3
phase in the spin language, because it has magnetic unit cell 3 times the size of the lattice unit
cell. Its emergent transverse fragment maps onto the star phase in the dimer language. Its
structure is illustrated in Figure 3.2.2 top.

On the top row of the figure we show the fragmentation decomposition applied to the spin
structure. The longitudinalpart gives thechargeorderof alternatepositive andnegative charges,
with a reduced unit cell of three sites. The transverse part maintains the 9-site unit cell, whose
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=
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Figure 3.2.2:Top: Fragmentation of the√3×√3 phasemagnetic structure on a kagomé plane.
Note that the unit cell extends over 9 sites. Colours illustrate the amplitude of each component,
and green and purple spheres show the placement of positive and negative magnetic charges
within the dumbbell model. Left panel, full spin configuration. Middle panel, longitudinal
fragment Mm showing all-in / all-out ordering. Right panel, transverse fragment Md showing
emergent ordering of the star phase. Bottom: spin-flipneutron scattering intensities computed
from the corresponding fragment above. The total scattering picture can also be computed by
adding the separate intensities of the two fragments.

configuration maps onto the star phase emergent dimer solid which is build from three dif-
ferent hexagon configurations A, B and C shown in Figure 3.2.1. One out of the three form a
six-fold symmetric star of dimers from which the phase takes its name [Moessner et al., 2001;
Schlittler et al., 2017].

Wenowapply the same fragmentationdecomposition to the structure factor; that is, we com-
pute the magnetic part of Equation (2.4.4) separately for the longitudinal, transverse and total
structures, and check that Equation (2.4.8) holds. I wrote a simple PYTHON code to carry out
the computation over a set of 16×16magnetic unit cells in the scattering planes we are inter-
ested in, and smoothed numerically. The results are shown in the bottom row of Figure 3.2.2,
in the scattering plane of the kagomé lattice in units appropriate for spin ice and the kagomé
plateau: the in-plane axes [𝑘,𝑘,2�̄�], [ℎ, ℎ̄,0] lie perpendicular to the [111] field axis and are in
units of 2𝜋/𝑎𝑐. The six fold symmetry of the spins lying in the plane is represented in the figure
by scaling the [𝑘,𝑘,2�̄�] axis by a factor of 1

√3 .
The total scattering intensity for the√3×√3 phase is indeed that of a fragmented double-𝑞
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structure. It is exactly the sum of the longitudinal and transverse parts, which have no commu-
nal Bragg peaks, as predicted in Equation (2.4.8). The total scattering is therefore made up of
resolvable contributions from the charge ordering and the emergent field from the star phase.
The charge ordering from the longitudinal component corresponds to antiferromagnetic, all-
in / all-out order. This is a Q = 0 order, with Bragg peaks at the centres of the kagomé lattice
Brillouin zone starting at ℎ = 2,𝑘 = 0 and symmetry related points, the scattering intensity
being zero at the zone centres with smaller wave vector transfer. The star phase from the trans-
verse component shows Bragg peaks at ℎ = 2

3 , 𝑘 = 0 and symmetry related points. These cor-
respond to the basis vectors of the reciprocal space for the √3×√3 unit cell with magnitude
𝑞 = 2𝜋

𝑎𝑐 ⒧
2√3
3 ⒭. Peaks at larger𝑞 repeat in a distinctive, 6-fold symmetric pinwheel pattern which

we can take to be characteristic of the star phase.

3.2.3 The spin-𝑃 and Plaquette phases

Let us now move to the case where quantum fluctuations are more prevalent. As discussed be-
fore, they promote a quantum superposition of closed loops of dimers. Therefore upon bring-
ing 𝜇/𝑔 gets closer to zero, the order parameter associated to the star phase is progressively
reduced from saturation [Schlittler et al., 2017] up to a discontinuous transition. This interme-
diate phase, called the plaquette phase, has strong fluctuations but also long-range order. It
is not a liquid phase, as dimer translational symmetry remains broken. But only one type of
hexagon has a larger probability of finding a dimer around its perimeter contrary to the star
phase, with the dimers are delocalized around the plaquette. This highlights the broken sym-
metry between the star and plaquette phases. Its equivalent in spin language is the resonating
√3×√3 phase, which we refer to as the spin-𝑃 phase. Two of the three types of hexagonal
spin arrangement provide a framework for resonating loops of six spins around the third type
of hexagon. This quantum resonance corresponds to a linear superposition of the two states
per unit cell with spin rotations around the enclosed hexagon in opposite directions, leaving
an effective magnetic state with reduced total moment, as shown in Figure 3.2.4 (top left).

=+( )
= 2/3 = 4/3 = 1/3

Figure 3.2.3: Approximation of the emergent transverse field in the spin-𝑃 phase, as an equal
amplitude superposition of the two possible plaquette configurations.

In order to compute the scattering from the spin-𝑃 phase, one must first apply the fragmen-
tation procedure to the effective reduced moments once the quantum spin resonances have
been taken into account. From Figure 3.2.4 (top), one can see that the residual spin on each
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Figure 3.2.4: Top: Fragmentation of the spin-𝑃 phase magnetic structure on a kagomé plane.
Note that the unit cell extends over 9 sites. Colours illustrate the amplitude of each component,
and green and purple spheres show the placement of positive and negative magnetic charges
within the dumbbell model. Left panel, full spin configuration. The quantum resonance on the
hexagonal loop results in the effective absence of spins around the loop. Middle panel, longitu-
dinal fragmentMm showing all-in / all-out ordering. Right panel, residual transverse fragment
Md corresponding to the residual emergent field of the dimer plaquette phase (see Figure 3.2.3).
Bottom: spin-flip neutron scattering intensities computed from the corresponding fragment
above. The total scattering picture can be computed by adding the separate intensities of the
two fragments. Note that the absolute intensity scale is one quarter of that in Figure 3.2.2.

triangle can be written, using the previous notation; ±[−1,0,0], arranged such that the charge
order is preserved. A vertex carrying a positive charge can thus be fragmented into a longitudi-
nal and a transverse part

[−1,0,0] = [−13,−
1
3,−

1
3]m+[−

2
3,
1
3 ,
1
3]d (3.2.3)

This is equivalent to considering that the transverse fragment of the spin-𝑃 phase is the super-
position of the two possible configuration of the transverse fragment of the√3×√3 phase, as
pictured in Figure 3.2.3.

This decomposition confirms that, on driving the√3×√3 phase into the spin-𝑃 phase with
quantum fluctuations, the charge ordering and hence the longitudinal fields are unchanged,
while the amplitude of the transverse part is reduced by a factor of two. The quantum reso-
nance is therefore limited to the transverse fragment as announced. Despite the resonance,
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3.2 Fragmented neutron scattering of quantum kagomé ice

the emergent field retains a static residue which is precisely that of transverse spin fragment
shown in Equation (3.2.3). The spin-𝑃 phase is therefore a superposition of the charge ordered
phase, and the dimer plaquette phase represented by a single ℤ2 sector of its emergent field.
In Figure 3.2.4 we show the neutron scattering data from the spin-𝑃 phase computed using the
same PYTHON code, which we interpret using the fragmentation picture. We again expect the
data to separate into independent longitudinal and transverse components and predict that
the transverse scattering intensity will be reduced by a factor of four compared with scattering
from the classical √3×√3 phase. The intensity scale is reduced by a factor of four compared
with Figure 3.2.2, highlighting the relative change in the two intensities.

3.2.4 The harmonic term of fragmentation

In this section, we will explain how the framework of fragmentation can be used to design ex-
perimental andnumerical tests than can tell the differencebetween several fragmentedphases.
We start byhighlighting an important andnewextension to the standard formalismof fragmen-
tation presented in Chapter 1 in Equation (1.1.12). It relies on the fact that for the Helmholtz
decomposition in three dimensions to be unique, a third term is needed so thatMwrites:

M=Mm+Md+Mh =∇Ψ+∇×A+h (3.2.4)

h is called the harmonic fragment due to the fact that it is both divergence and curl-free, and
is mathematically determined by the boundary conditions imposed on the problem. In a more
physical setting, it can be thought of as the overall magnetization of the system.

Consider again the case of spin ice under a magnetic field of modest strength along the [111]
direction, as shown in Figure 3.2.5. We recall that the system enters the kagomé plateau region
[Isakov et al., 2004]. In each tetrahedron the ice rules of two spins in and two out are satisfied
but the apical spin is fixed tobeout for an𝐴 tetrahedronand in for𝐵. The three remaining spins,
in the in-plane triangles forming kagome lattices perpendicular to the [111] direction, satisfy
the kagomé ice rule with two spins in / one out on an 𝐴 triangle and two out /one in on a 𝐵
triangle [Moessner et al., 2003a]. In this phase, the monopole concentration (and therefore the
longitudinal fragment) is zero. So the fragmentation decomposition concerns only the trans-
verse and harmonic fragments. Using the previous notation and identifying the fourth element
with the apical spin we find for a tetrahedron of type 𝐴:

M= [−1,−1,1,1] = [0]m+[−
2
3,−

2
3,
4
3 ,0]d+[−

1
3,−

1
3,−

1
3,1]h (3.2.5)

Here, the longitudinal fragment is zero, the transverse fragment is restricted to the three spins
in the plane with two elements of amplitude 2/3 and one of 4/3which together satisfy the zero
divergence constraint. The harmonic term spreads out evenly over the three in-plane spins
allowing the apical spin to be purely harmonic, with the sum over harmonic contributions en-
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suring zero divergence. By projecting this decomposition on the kagomé planes, we find

M2𝐷 = [−1,−1,1]

= [−13,−
1
3,−

1
3]m+[−

2
3,−

2
3,
4
3]d (3.2.6)

The in-plane projection of the harmonic term leaves a magnetic charge accumulation at the
hexagonal lattice sites, corresponding to the longitudinal fragmentofKII kagomé ice. The three-
dimensional harmonic term therefore corresponds to a two dimensional longitudinal term.
Similarly, the three-dimensional transverse fragment identifies readily to the two-dimensional
one. Using the complete mathematical expression of fragmentation, we now understand why
spin ice fragmentation on the kagoméplateau is intimately related to the fragmentation of two-
dimensional spins in kagomé ice.

Figure 3.2.5: Pyrochlore spin ice in a [111] field, showing the distinction between planes of
pinned apical spins on a triangular lattice (green) and kagomé planes satisfying the kagomé ice
rules (red).

The only subtlety left is the spins on the kagomé planes of pyrochlore spin ice under field
actually have a small canting out-of-plane, which our projection has convenientlymade disap-
pear. The experimental trick to reconcile the two and three-dimensional case is to use polarized
neutrons, as explained in the end of Chapter 2. We can recover the purely in-plane scattering
intensity of pyrochlore spin ice under a [111] field by looking at the spin-flip structure factor
𝑆(Q)𝑆𝐹 with the neutron source polarised along the [111] direction[Turrini et al., 2022].

3.2.5 Comparison with quantum spin ice under a [111] field

Weare now ready to review data fromexistingwork in the context of our analysis using the frag-
mentation picture. In Figure 3.2.6 we show unpolarised neutron scattering data in the kagomé
plane from Quantum Monte Carlo simulations. The data, for nearest neighbour quantum spin
ice in a [111] field is reproduced from Ref. [Bojesen et al., 2017]. It is taken in the interme-
diate field region corresponding to the kagomé magnetization plateau. The right hand panel
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Figure 3.2.6:Unpolarized neutron scattering data in the kagomé plane from Quantum Monte
Carlo simulations of quantum nearest neighbour spin ice in a [111] field. Left panel 𝑇

𝐽 = 1
20 ,

right panel 𝑇𝐽 = 1
320 . Data reproduced with permission from [Bojesen et al., 2017].

shows data taken at 𝑇
𝐽 = 1

20 where 𝑇 is the temperature and 𝐽 the coupling constant. It is con-
sistent with Coulomb phase spin liquid behaviour, showing correlated diffuse scattering with
pinch point features [Moessner et al., 2003a; Turrini et al., 2022]. Bragg peaks at the Brillouin
zone centres corresponding to the ferromagnetic order generated by the harmonic fragment
are masked and in an experiment would coincide with the structural Bragg peaks. On the right
is showndata atmuch lower temperature, 𝑇𝐽 = 1

320 where the development of order is clearly ob-
served. Adifferent choiceof scale along the vertical axis distorts the 6-fold symmetryof the scat-
tering pattern but despite this one can observe features similar to those shown in Figures 3.2.2
and 3.2.4. In particular, sharpening peaks at the ℎ = 2

3 , 𝑘 = 0 and symmetry related points are
clearly visible at the lowest temperature. A diffuse scattering background remains visible, pre-
sumably to remnant incoherent or thermal spin fluctuations about the ordered phase, which
could be either the√3×√3 or the spin-𝑃 phase.

We compare this figure to the diffraction patterns for the√3×√3 and spin-𝑃 phases, shown
in Figures 3.2.2 and 3.2.4. The peak structure is identical for the classical and quantum phases
but the intensity difference can be used as a diagnostic to distinguish between them. For exam-
ple, in the classical limit for the√3×√3 phase, the intensity of inner ring of star phase peaks at
ℎ = 2

3 ,𝑘 = 0 and symmetry related points, 𝐼 𝑠𝑑 is four times that of charge ordering peaks atℎ = 2,
𝑘 = 0 and related points, 𝐼𝑚, while in the spin-𝑃 phase, the two sets of peaks, 𝐼𝑝𝑑 and 𝐼𝑚 have
the same intensity. The difference could therefore be used as an order parameter separating
the two phases.

𝑄 =
4𝐼𝑚−𝐼𝑑
3𝐼𝑚

(3.2.7)

Note that even within the √3×√3 phase, quantum fluctuations in the form of flips of spins
around either one of the two kinds of hexagon loops will also reduce the intensity of the trans-
verse fragment peaks. This is already seen in direct simulations of the quantum dimer problem
[Schlittler et al., 2017] and from these results we can anticipate that the peak intensities for the
√3×√3 phase will remain above those estimated for the spin-𝑃 phase.
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In Figure 3.2.6 additional peaks can be seen compared with Figures 3.2.2 and 3.2.4. These
are due to scattering from the out of plane spin components which as explained above appear
as a consequence of simulating an unpolarised neutron source. Distinguishing between the
two phases requires either an estimation of the absolute scattering intensity of the ℎ = 2

3 , 𝑘 = 0
Bragg peaks, or the inclusion of the Q = 0 peaks, allowing a comparison of relative intensities.
As these intensities differ by a factor of four, this should give a strong indicator as to which of
the two possible ordered phases is emerging. Extended analysis of theQ = 0 peaks, separating
contributions from the apical spins and the triangular spins would give access to the charge
ordering peaks of Figures 3.2.2 and 3.2.4 and to a comparison of the relative intensities of the
longitudinal and transverse components of scattering from the spins in the kagomé plane.

3.3 Neutron scattering from the monopole crystal phase of spin
ice

A similar application of the fragmentation framework can be made to the case of fragmented
monopole crystal phase of spin ice in zero magnetic field [Brooks-Bartlett et al., 2014; Jaubert,
2015], which is the subject of this section. Our goal is again to understand the effect of quan-
tum fluctuations on this fragmented phase. Here the transverse fragment maps onto a dimer
model on the diamond lattice, so following the same approach as before we first focus on the
associated quantum dimer phase diagram.

The quantum dimer Hamiltonian in Equation (3.2.2) on the diamond lattice has been stud-
ied both analytically [Moessner et al., 2001; Bergman et al., 2006] and numerically [Sikora et al.,
2011]. The phase diagram is shown in Figure 3.3.1. For large and negative 𝜇, the dimers crys-
tallise into the so-called 𝑅-phase which maximises the number of hexagonal loops or plaque-
ttes of dimers. The four-tetrahedra unit cell is shown at the top. Switching on the off-diagonal
term through finite 𝑔, the classical 𝑅-order is again perturbed by quantum fluctuations until
there is a phase transition to a quantum phase. In this case the ground state would incorpo-
ratequantumfluctuations around the classical𝑅-orderwithout inducing further changes to the
translational symmetry (as was the case for the spin-𝑃 and plaquette phases). Moving the ratio
𝜇/𝑔 away fromzero, the dimer system is also predicted to enter a quantumphase but in amuch
smaller window, estimated numerically to be 0.75 < 𝜇/𝑔 < 1 [Sikora et al., 2011]. Additionally
this phase is a quantum dimer liquid rather than a resonating dimer solid. For 𝜇/𝑔 > 1, hexag-
onal plaquettes become unfavourable and the system passes discontinuously into a columnar
phase¹ with dimers aligned along one of the [111] axes.

As discussed before, the emergent off-diagonal dimer moves are generated by a transverse
spin coupling small compared with the nearest neighbour exchange. Therefore the spin ice
point is again close to𝜇/𝑔 = 0. As the inclusion of dipolar corrections to the classicalmonopole
model sees the systemorder into the spin-𝑅 phase [Jaubert, 2015] this takes aputative quantum
system, inclusive of dipolar interactions, even further fromanemergent dimer liquidphase. We
will therefore focus on the diffraction signal of the fully ordered phase illustrated in Figure 3.3.2
¹referred to as isolated states in [Sikora et al., 2011]
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U(1) Quantum dimer liquid Columnar statesR-phase
~ 0: Spin ice point Ferromagnetic monopole crystalSpin-R phase U(1) Quantum spin liquid

Figure 3.3.1: Top: 𝑅-phase dimer structure on the diamond lattice. The corresponding tetra-
hedra are pictured with a shade for comparison with the spin-𝑅 structure. This dimer repre-
sentation is equivalent to the emergent field representation shown in the top right panel of
Figure 3.3.2. Bottom: phase diagram [Sikora et al., 2011] for dimers on a diamond lattice as a
function of the ratio 𝜇/𝑔 from Equation (3.2.2). Also shown is the “spin ice” point correspond-
ing to the location of the monopole crystal plus small transverse quantum spin fluctuations
[Bergman et al., 2006], deep within the spin-𝑅 phase.

(top), which we refer to as the spin-𝑅 phase. The upper central and right panels show the lon-
gitudinal and transverse fragments respectively.

We recall that the transverse fragment of the monopole crystal maps onto one of the ℤ2 sec-
tors of the emergent field for hard core dimers on a diamond lattice [Huse et al., 2003]. In this
case, the element carrying transverse field ± 3

2 , which is the minority spin of either the three in
/ one out or the three-out / one corresponds to the dimer position. The total spin structure can
be represented as a classical superposition of the all-in / all-out order from the charges and the
emergent field from the phase of ordered dimers, the 𝑅-phase. We apply the same computa-
tion procedure to compute the diffraction patterns relative to each fragment. The calculated
unpolarised neutron scattering intensity from the spin-𝑅 phase is shown in the lower panels
of Figure 3.3.2 for the [ℎℎ0], [00𝑙] plane. They confirm that the scattering decomposes into a
fragmented double-Q structure with different ordering wave vectors for the longitudinal and
transverse parts. The longitudinal fragment shows the characteristicQ= 0 ordering of the ionic
crystal, while the transverse part orders with Q = (ℎℎ𝑙) in units of the reciprocal cubic cell, 2𝜋

𝑎
and with ℎ+𝑙 an odd number. The total intensity is again equal to the sum of the independent
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Figure 3.3.2: Top: fragmentation of the spin-𝑅 phase magnetic structure - a monopole crystal
with ordered transverse fragment. Only half of the tetrahedra are pictured for clarity. Left panel,
spin configuration. The minority spins are indicated by a darker shade of blue. Middle, longi-
tudinal fragment �⃗�m showing all-in / all-out ordering. Right panel, transverse fragment �⃗�d
corresponding to the emergent field for the ordered dimer phase (the 𝑅-phase, see Figure 3.3.1
(top)). The colours illustrate the amplitude of each spin component. Bottom: unpolarizedneu-
tron scattering intensities in the [ℎℎ0], [00𝑙]plane computed from the corresponding fragment
above. The total scattering picture can also be computed by adding the separate intensities of
the two fragments.

fragments with no interference terms.
Theprevious discussion applies to a fully classical spin-𝑅 structure; let us now investigate the

effect of larger quantum fluctuations, such that 𝜇/𝑔 becomes significantly positive. As long as
the system stays in the 𝑅-order region of the phase diagram, it would lead to reduction in the
intensity of the [001] peaks coming from the transverse fragment while maintaining the clas-
sical intensity of the [220] peaks. With appropriate analysis, this intensity reduction could be
developed as a diagnostic tool for the level of quantumfluctuations. If however one couldmove
into the emergent quantum dimer liquid, the neutron scattering signature of this phase would
strongly resemble that of quantum spin ice [Benton et al., 2012]. The emergent field for the
quantum dimers maps to lattice quantum electrodynamics (LQED) [Sikora et al., 2011]. It has
essentially the same structure and the same emergent photons which should show up in the
inelastic neutron scattering spectrum, albeit at very low energy. Integrating over the photon
bands to give static spin correlations, the pinch point structure of the classical system [Brooks-
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Bartlett et al., 2014] would evolve. The dipolar correlations of the classical systemwouldmap to
correlations in four dimensional space timewith projection onto three dimensions leading to a
suppression of the pinchpoint intensities at theBrillouin zone centres. These predictions could
be tested using configurations from the quantumMonte Carlo simulations of Ref. [Sikora et al.,
2011] and working backwards to construct the emergent transverse fragment of a monopole
crystal. In this partial quantum liquid phase these modified spin correlations from the trans-
verse fragment would coexist with the [220] peaks from the longitudinal fragment or charge
order. The intensity of these Bragg peaks should remain unchanged within the regime of emer-
gent quantum dimer fluctuations.

3.4 Perspectives on fragmentation

We conclude this chapter on a few perspectives to foster the use of the formalism of fragmen-
tation, from both an experimental and theoretical point of view.

3.4.1 Fragmentation order parameters

First, we would like to extend the procedure used in the differentiation of the √3×√3 and
spin-𝑃 phases to obtain the order parameter in Equation (3.2.7). Our goal is to define three
order parameters for each of the three fragments, which will be computed by integrating the
scattered intensity on certain specific regions of the reciprocal space. A similar procedure was
applied in Ref [Gray et al., 2021] for a two dimensional Coulomb fluid.

• Longitudinal part: When ordered, it can be represented by a scalar order parameter cor-
responding to thedensity ofmonopoles𝜌. As describedpreviously, it canbe computedby
integrating neutron diffraction data around antiferromagnetic Bragg peaks. When disor-
dered, it will scatter mostly in the Brillouin zones around antiferromagnetic Bragg peaks;

• Transverse and harmonic parts: Separating these two contributions is trickier as their
structure factor may have have interference terms. Nevertheless we can expect the har-
monic fragment to be ordered as we have identified it to the overall magnetization. So a
harmonic order parameter can be defined by integrating aroundQ = 0 peaks at the cen-
ter of Brillouin zones. The transverse order parameter can be defined on what remains of
the reciprocal space. The case where both the harmonic and transverse fragment have a
Q= 0 order requires more careful thinking and is outside the scope of this work.

3.4.2 Fragmenting further: the poloidal-toroidal decomposition

Building upon the mathematical properties of the Helmholtz decomposition, the more mathe-
matically inclined readerwill notice that it canbeexpanded furtherwith regard to the transverse
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term. Any divergence-free vector field can be decomposed into toroidal and poloidal fields:

∇×A= T+P
=∇𝜙× ̂𝑟 +∇×⒧∇𝜒× ̂𝑟⒭ (3.4.1)

where ̂𝑟 is a radial unit vector, 𝜙 is the toroidal and 𝜒 the poloidal scalar potentials. Together
with the longitudinal potential Ψ they make up the Debye potentials and allow the mapping
of any vector field onto a set of three scaler fields, up to a harmonic contribution [Dubovik et
al., 1990; Spaldin et al., 2008]. The fields from a single point dipole are purely poloidal while
toroidal fields are characteristic of circular solenoids or toroids. The complete decomposition
of the transverse magnetic fragment into poloidal and toroidal elements is beyond the scope
of this discussion but pragmatically one can assume that the extensive loop network leading to
pinchpoint scattering patterns is due largely to the poloidal component, while short loops con-
tain a toroidal contribution. In modified spin ice models with induced attractive interactions
between monopoles of like charge, low energy excitations include like charge clusters charac-
terized by loops of spin flips, identified as toroidal loops [Udagawa et al., 2016; Mizoguchi et al.,
2018]. Using the fragmentation picture it is straightforward to show that such clusters lead to
isolated loops in the transverse fragment, which indeed correspond to a pure toroidal contribu-
tions. In a spin liquid phase dominated by such loops, the diffuse neutron scattering exhibits
half-moons of high intensity straddling the Brillouin zone centre, rather than the pinch points
of the Coulomb phase. This strongly suggests that magnetic moment fragmentation could be
an essential tool for a complete description of such systems.

3.4.3 Beyond the perturbative limit: gauge Mean Field Theory

So far in this chapter we have used exclusively a perturbative approach to study the effect of
quantumfluctuations. This has twomains drawbacks: it restricts the amplitudeof the quantum
fluctuations that we can consider, as well as the locations in the fragmentation phase diagram
which can be used as a starting point for the degenerate perturbation theory. For example, the
low temperature behavior of the spin-ice / monopole crystal boundary plane is not known in
the case where spin ice and monopole crystal have the same ground state energy. In Ref [Lv et
al., 2015], the authors studied numerically the closely related problem of the hardcore bosons
on the pyrochlore lattice, with variable fillings. They found that the quantum fluctuations open
an intermediate elusive “superfluid” phase between the two phases that would map to the spin
ice and the monopole crystal in our case. To try to get a more analytical picture beyond pertur-
bation theory, we resort to trying a new formalism: gaugeMeanFieldTheory (gMFT) developed
bySavary et. al. inRefs. [Savary et al., 2012; Savary et al., 2013] andapplied inRef. [Bègue, 2012].
It has been used to sketch a phase diagram of a quantum Hamiltonian with parameters 𝐽𝑧𝑧, 𝐽±
and 𝐽𝑧± shown in Figure 3.4.1.

The main advantage of gMFT is that it is a non perturbative approach, so it should in princi-
ple be correct for a wider range of parameters. In particular it would be of great interest to us to
understandwhat happens at the phase boundary in the fragmentation phase diagramof Raban
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Figure 3.4.1: Phase diagram of quantum spin ice using gMFT, reproduced from [Savary et al.,
2012]. AFM is an classical antiferromagnetic phase, FMa classical ferromagnet, QSL is the𝑈(1)
quantum spin liquid of standard quantum spin ice and CFM is coulombic ferromagnet with
quantum fluctuations but nonzero magnetization in the author’s representation.

et. al. [Raban et al., 2019] (pictured in Figure 1.2.6). at low temperatures where quantum fluc-
tuationsmight become prevalent. In this regime the degenerate perturbation theory cannot be
applied as there are two distinct manifold of classical states very close in energy. In this sec-
tion we will sketch a possible extension of the existing gMFT, and try to include the staggered
chemical potential in the method.

The formalism builds upon the hardcore boson Hamiltonian in Equation (1.3.8). We define
a new operator �̂�r which lives on the centers of the tetrahedra / sites of the diamond lattice :

𝑄r = 𝜂r 
𝑖∈tetr

�̂�𝑧𝑖 = 𝜂r 
𝑖∈tetr

⒧�̂�†𝑖 �̂�𝑖−
1
2⒭ (3.4.2)

where 𝜂r = ±1 indexes the to diamond sublattices 𝐴, 𝐵. In the following we will drop the hat
sign on quantumoperators for clarity. In this language flipping a spin (or creating/annihilating
a boson) corresponds to increasing the charge on one diamond site and decreasing on the ad-
jacent site. However we recall here that the standard hardcore boson mapping is only unique
up to a phase, which is usually discarded by setting it at 0 everywhere. gMFT makes use of this
site-dependant phase 𝜃r,𝑖 to more accurately account for the quantum fluctuations and intri-
cation between degrees of freedom. We introduce 𝜙r the canonically conjugated variable to
𝑄r: [𝜙r,𝑄r] = 𝑖. Therefore one can show that Φ†

r = 𝑒𝑖𝜙r acts as a raising operator for 𝑄r. Note
that Φr,Φ†

r are not creation and annihilation operators but rather discrete ladder translation
operators, with 𝑄r akin to a distance from the origin; indeed Φ is unitary (Φ†

rΦr = 1). This is
similar to the mapping made from a spin to a quantum rotor [Sachdev, 2011]. The excitations
indexed by 𝑄r are called spinons and are of bosonic nature because there can be more than 1
per site, but𝑄r is not a number operator because it can take a negative value. The constraint in
the definition of𝑄 keeps it between −2 and 2.
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Keeping in mind that𝑄r is like a position along a ladder, we have

Φr𝑄rΦ†
r = 𝑒−𝑖𝜙r𝑄r𝑒+𝑖𝜙r =𝑄r−𝑖[𝜙r,𝑄r] (3.4.3)
=𝑄r+1 (3.4.4)

Similarly Φ†
r𝑄rΦr = 𝑄r−1. We can now write the representation of a spin operator in terms of

these new variables:

• For r ∈ 𝐴:

𝑆+r,𝑖 =Φ†
r𝑠+r,r+d𝑖Φr+d𝑖

𝑆−r,𝑖 =Φr𝑠−r,r+d𝑖Φ
†
r+d𝑖

(3.4.5)

• Equivalently, for r′ ∈ 𝐵:

𝑆+r′,𝑖 =Φr′𝑠+r,r−d𝑖Φ
†
r−d𝑖

𝑆−r′,𝑖 =Φ†
r′𝑠−r,r−d𝑖Φr′−d𝑖

(3.4.6)

where 𝑠+r,r+𝜂rd𝑖 is a local gauge field, d𝑖 are the local pyrochlore axes. These relations means
that flipping a spin creates a pair of spinons of opposite charge on neighboring tetrahedra, and
changes the sign of the gauge field in between. We emphasize that 𝑠+r,r+d𝑖 is not the physical
spin as it does not remain within the Hilbert space of a spin 1

2 . Φr is similar to a matter field.
With this mapping the XXZ Hamiltonian becomes:

ℋgMFT =
𝐽𝑧𝑧
2 

r
𝑄2
r−𝐽±

r∈𝐴

𝑖≠𝑗
𝑠+r,r+d𝑖𝑠

−
r,r+d𝑗Φ

†
r+d𝑖Φr+d𝑗−𝐽± 

r∈𝐵

𝑖≠𝑗
𝑠+r,r−d𝑖𝑠

−
r,r−d𝑖Φ

†
r−d𝑖Φr−d𝑗+cte (3.4.7)

which is the Hamiltonian of a𝑈(1) gauge theory. Indeed, upon local rotation of the spins by a
angle 𝜃r,𝑖 around their 𝑧 local, axes, the variables we have defined become

Φr→Φr𝑒𝑖𝜂r∑𝑖∈tetr 𝜃r,𝑖

𝑠±r,r+𝜂rd𝑖 →𝑠±r,r+𝜂rd𝑖𝑒
±𝑖𝜃r,𝑖 (3.4.8)

so thatℋgMFT remains invariant.
In this language the staggered chemical potential expression in straightforward:

ℋstagg =−2Δ
𝑖
𝑆𝑧𝑖 =−Δ

r
𝜂r𝑄r (3.4.9)

It favors charges+1on sublattice𝐴 and -1 on sublattice𝐵. The 𝐽𝑧𝑧 and 𝐽± termsdonot commute,
otherwise the problem would be trivial. However, the staggered chemical potential Hamilto-
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nian commutes with both the 𝐽𝑧𝑧 and 𝐽± terms:

⎡
⎣

𝑖
𝑆𝑧𝑖 , 

<𝑖,𝑗>
𝑆𝑧𝑖 𝑆𝑧𝑗

⎤
⎦
= 0 (3.4.10)

⎡
⎣

𝑖
𝑆𝑧𝑖 , 

<𝑖,𝑗>
𝑆+𝑖 𝑆−𝑗 +𝑆−𝑖 𝑆+𝑗

⎤
⎦
= 1
2𝑖

⎡
⎣
𝑆𝑧𝑖 ,

𝑗≠𝑖
𝑆+𝑖 𝑆−𝑗 +𝑆−𝑖 𝑆+𝑗

⎤
⎦

= 1
2𝑖


𝑗≠𝑖
𝑆𝑧𝑖 ,𝑆+𝑖 𝑆−𝑗 +𝑆𝑧𝑖 ,𝑆−𝑖 𝑆+𝑗

= 1
2𝑖


NN 𝑗≠𝑖

𝑆+𝑖 𝑆−𝑗 −𝑆−𝑖 𝑆+𝑗

= 0 because it is antisymmetric under 𝑖 ↔ 𝑗 (3.4.11)

This means that the eigenvectors of the staggered potential are all orthogonal to the eigenvec-
tors of the 𝐽𝑧𝑧 and 𝐽± terms. The next step is to apply the mean field decoupling between the
matter fieldΦ and the gauge field 𝑠 to obtain two HamiltoniansℋΦ andℋ𝑠, coupled together
by a small number of order parameters.

At this point we are faced with the task of applying the decoupling to the staggered chemical
potential term. A first option is to use a clever variable change, which integrates the staggered
chemical potential into a newmonopole charge𝑄∗. Indeedwe canmerge the 𝐽𝑧𝑧 and staggered
chemical potential term by “completing the square”:

𝐽𝑧𝑧
2 

r
𝑄2
r −Δ

r
𝜂r𝑄r =

𝐽𝑧𝑧
2 

r
⒧𝑄r−

2Δ
𝐽𝑧𝑧

𝜂r⒭
2
= 𝐽𝑧𝑧

2 
r
𝑄∗
r
2 since 𝜂2r = 1 (3.4.12)

This corresponds changing the origin of the ladder operatorsΦ depending on the tetrahedron,
up on tetrahedron 𝐴 and down on tetrahedron 𝐵 for example.

Another option is to integrate the chemical potential into the decoupling on the ℋ𝜃 side.
This could done by applying the commutation relation 2𝑆𝑧𝑖 = 𝑆+𝑖 ,𝑆−𝑖  in natural units and use
the mapping in Equations (3.4.5) and (3.4.6):

ℋstagg =−2Δ
𝑖
𝑆𝑧𝑖 =−2Δ

r


𝑖∈tetr
𝑠𝑧r,r+d𝑖 (3.4.13)

after the Φ terms simplify. Therefore the staggered chemical potential translates into a term
which polarizes the gauge field away from 0 in average, without needing other interactions.

I have struggled to progress further in any of these approaches due to the technical diffi-
culty of the formalism. However I am convinced that these ideas should enable the motivated
reader to reuse a large part of the results in the original articles of Savary et al. [Savary et al.,
2012; Savary et al., 2013] with minimal new computations, which would provide a better un-
derstanding of the fragmentation phase diagram with quantum fluctuations.
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3.5 Conclusions

Wehave shownhere that it is extremelyuseful to carry the fragmentationdecomposition through
to the analysis of neutron scattering results, as each component gives a separate contribution
to the neutron scattering intensity. Previous texts have concentrated on situations in which an
ordered monopole fragment coexists with the transverse fragment in the form of a correlated
spin liquid on the kagome and pyrochlore lattices [Brooks-Bartlett et al., 2014; Lefrançois et al.,
2017; Canals et al., 2016; Cathelin et al., 2020; Paddison et al., 2016]. Here we show that such
systems with magnetic charge ordering, when driven into a fully ordered phase, either through
quantum fluctuations or by long range interactions, form fragmented double-Q structures in
which each fragment orders with a distinct ordering wave vector. Due to the separation in en-
ergy scales, quantum fluctuations are largely restricted to the transverse fragment. In conse-
quence we argue that the intensity reduction of the transverse fragment compared to a known
classical limit can be used as a diagnostic tool for the level of quantum fluctuations.

Theanalysiswepropose relieson theexistenceof agappedenergy spectrumabove theground
state. In this case, the proposed quantum resonances of spins, or effective dimesmoves around
hexagonal closed loops will lead to a quantifiable reduction in the observed neutron scattering
intensity. For this to hold, both the temperature scale and the neutron energy resolution must
be smaller than this gap. Bojesen andOnoda [Bojesen et al., 2017] have argued that their quan-
tum Monte Carlo data for spin ice in a modest [111] field are consistent with the development
of an emergent quantum dimer solid at low temperature. Our work provides a protocol for a
detailed analysis allowing for the distinction between the quantum phase and its classical ana-
logue. The energy scale associated with this quantum phase is extremely low; between 1/20
and 1/320 of the nearest neighbour coupling strength, so that quantitative measurement ap-
pears to be at the limit of numerical resolution. However, a clearer quantum limit is reached in
dedicated quantum dimer simulations on a hexagonal lattice [Schlittler et al., 2017]. Our pro-
tocol could be tested in detail from such simulations by reconstructing a singleℤ2 sector of the
emergent field from the dimers and constructing the corresponding neutron scattering plots.
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4.1 State of the art and motivations

4.1 State of the art and motivations

In this chapter we focus on the ruthenate pyrochloreHo2Ru2O7. As Ru4+ ions aremagnetic, this
compound could provide a new way to explore the fragmentation phase diagram proposed in
Ref [Raban et al., 2019]. It offers a opportunity to perturb the spin ice phase favored by Ho3+
ions in isolation, with the goal of finding exotic magnetic ground states. Ho2Ru2O7 was first in-
vestigated in the early 2000s under the possibility that it could be a spin ice compound [Gardner
et al., 2005; Wiebe et al., 2004]. The main goal of the authors was therefore to find if the mate-
rial experienced a magnetic transition at low temperature, and the associated magnetic struc-
ture. They found that the Ru sublattice orders at 95 K in a ferromagnetic, ordered spin ice (Γ9)
structure. Upon further cooling, they detected a transition on the Ho sublattice at 1.5 K, there-
fore ruling out a standard spin ice phase in this material. Their specific heat measurements are
shown in Figure 4.1.1 (right). Using neutron diffraction down to 100 mK, they were able to con-
firm that the associated Ho magnetic structure is also an ordered spin ice. Their neutron data
refinement is shown in Figure 4.1.1 (left). However their work presented several shortcomings:

• the refinement of theRumagnetic structure relied on thepresence of a small peak around
𝑄 = 1.25 Å−1, which could not clearly be seen in their data. We depicted it in orange on
the picture;

• they found aHoorderedmoment of about 6𝜇𝐵 at base temperature but could not explain
the missing intensity to account for the ≈ 10 𝜇𝐵 expected for a Ho3+ doublet;

Figure 4.1.1: (Left) Neutron diffraction signal of Ho2Ru2O7, reproduced from [Wiebe et al.,
2004] (Right) Specific heat at high and low temperature, reproduced from [Gardner et al., 2005]

Our studyofHo2Ru2O7will try to address these issues, inorder to correctly identify themagnetic
ground state on both Ho and Ru sublattices, and identify the main ingredients which drive the
ordering transition.

Let us first explain why the Ru4+ ions are magnetic, following the argument in Ref [Li et al.,
2018]. They have a 4𝑑4 electronic configuration. The crystal field they experience splits the 4𝑑
states into 𝑒𝑔 and 𝑡2𝑔 orbitals, pictured in Figure 4.1.2. However, due to the lowest principal
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quantum number in Ru compared to Ir, the spin-orbit coupling could be of the same order of
magnitude than the Hund coupling, i.e. the Coulomb repulsion between electrons in the same
orbital. This leads to the two possible scenarii pictured on the right of Figure 4.1.2. If the Hund
coupling is dominant, we get scenario (a), whereas if the spin-orbit interaction is dominant we
get a quenched orbital degree of freedomas in scenario (b). Thismeans that a perturbative pic-
turewithwell separated energy scalesmaynot be applicable to theRu4+ ion in general; however
in both cases we do get a 𝑆Ru = 1 spin moment. Similarly to the Iridium 5𝑑 orbitals, we expect
theRuthenium4𝑑 orbitals tohave a significant spatial extensionandeffectivehoppingbetween
neighboring sites, so that the Ru sublattice should have some conductive properties. Finally,
the Ho3+ ion should exhibit the same properties as in other Ho-based pyrochlores, namely an
almost entirely dipolar ground state doublet with the first crystal field excited states to be sep-
arated by an energy of about 200 K.

Figure 4.1.2:Orbital occupation of the Ru4+ ion, reproduced from [Li et al., 2018]

A powder sample of Ho2Ru2O7 was synthesized by Elise Pachoud and Abdellali Hadj-Azzem
at Institut Néel. They used a solid-state synthesis starting from a stœchiometric mix of the
HolmiumandRutheniumpowders, finely grounded in amortar. Due to the tendency of Ruthe-
nium to evaporate, they sealed the mixture in a glass ampoule filled with an inert gas. The sam-
ple was then compressed into several pellets. An impurity of 1.7% of Ho2O3 was measured by
X-ray diffraction. Holmium does not absorb neutrons as much as Dysprosium and so is much
more suited to neutron scattering experiments. However it has a large 𝐼 = 7/2 nuclear spin
which leads to a hyperfine contribution in the specific heat. We performed specific heat, neu-
tron diffraction and magnetic measurements on this powder sample.

4.2 Sample characterization

4.2.1 High temperature: Ruthenium transition

First, we performed measurements above 2 K of the magnetization on the MPMS3 instrument,
and of the specific heat on the PPMS instrument. We used the same sample of 24.3mg.

On the top left of Figure 4.2.1 we show measurements of the specific heat. It has an anomaly
at about 95 K which corresponds to the Ruthenium transition. On the top right we show𝐻/𝑀
(which can be considered as the inverse susceptibility) as a function of temperature, in a zero
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Figure 4.2.1: (top left) Specific heat anomaly at 95 K (top right) 𝐻/𝑀 measured for two fields
with a ZFC-FC protocol (bottom) Magnetization as a function of field

field cooled and field cooled protocol for two applied fields of 100 and 1000Oe. The data show
no sign of any ZFC-FC effect around the ruthenium transition at 95 K, contrary to what was
seen in Ref [Bansal et al., 2002]. The transition is not visible either in a d𝑀/d𝑇 analysis. We can
expect the Ru transition to be hard to see in magnetization measurements because of its small
moment compared toHo; however aZFC-FCeffectwas seen inHo2Ir2O7 below the Ir transition.
The fact that it could not be detected here could be the sign of a sample of good purity.

On the bottom rowof Figure 4.2.1 we showmeasurements of themagnetization as a function
of an applied field up to 7T. At 4.2K,wemeasure the saturation value to be about 4.75𝜇𝐵 perHo
atom. For a powder sample of a pyrochlore magnet with strong Ising anisotropy along the local
⟨111⟩ axes, the saturationmagnetization per spin is one half of the projectedmagneticmoment
𝜇∥ [Bramwell et al., 2000]. So ourmeasurement is consistent with aHo3+ ionwith a strong Ising
anisotropy and a magnetic moment 𝜇∥ ≈ 2×4.75 = 9.5 𝜇𝐵 .

In order to confirm that the transition observed in specific heat is of magnetic nature, we
performed neutron diffraction measurements on the D1B diffractometer at ILL. The data were
collected by Claire Colin in an Easy Access experiment, on a ≈ 3 g powder sample with a wave-
length of 2.52 Å. The samplewas contained in a Vanadium sample holder and cooledwith a 4He
cryostat. Claire Colin and Virginie Simonet provided the FullProf template files from which we
refined the structure.
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Figure 4.2.2: (top) Neutron data collected on D1B. (left) Refinement of the nuclear structure at
120 K (right) Refinement of the Ru magnetic structure at 31 K (bottom) Γ5 antiferromagnetic
structure in red and Γ9 ferromagnetic structure in blue.

In Figure 4.2.2 (left) we show the neutron diffraction signal at 120 K (in red), which we re-
fined successfully with a pyrochlore structure. At 10 K, the parameter for the position of the
oxygen is 𝑥 = 0.335 and the lattice constant 𝑎 = 10.11 Å. At 95 K, small magnetic Bragg peaks
appear at locations where there were no nuclear reflections: (111) and (220), which we show
with red arrows on the picture. This is consistent with the transition seen in specific heat at this
temperature and is therefore associated to the Ru magnetic ordering. However the magnetic
structure we identify is in direct contradiction with the ferromagnetic ordered spin ice struc-
ture (Γ9) proposed in [Wiebe et al., 2004]. This structure, where all tetrahedra are in the same
two-in, two-out configuration, is associated to an additional magnetic Bragg peak at the (002)
location (indicated by the blue arrow) which is not seen in our data. Instead, we find that the
easy-plane, Γ5 antiferromagnetic structure provides a better fit, as shown in Figure 4.2.2 (right).
Below about 75 K, the amplitude of the Ru magnetic Bragg peaks does not increase. The or-
dered moment is of about 1.2 𝜇𝐵 at 10 K. Going to the lowest temperature of about 1.6 K, we
could see larger magnetic Bragg peaks develop which seemed to match the structure found in
Ref. [Wiebe et al., 2004], but we could not study them in detail due to temperature regulation
issues.

4.2.2 Low temperature: Holmium transition

To study in more details the transition that occurs at low temperature, we performed low tem-
perature magnetization and susceptibility measurements from 100mK to 4.2 K on the dilution
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magnetometer on the same 24.3 mg sample. We also measured the specific heat of a 4.3 mg
sample between 0.3 and 10Kon the PPMS instrument, using a 3He insert. Wenote here that the
24.3mg sample used for several measurements is a fragment of a pellet of about 2×1.5×1mm,
shown in Figure 2.2.1 (left). We did not undertake an estimation of the demagnetization fac-
tor of this sample but due to its shape we believe its effect will be relatively small. In fact, the
experiments on this sample were performed without maintaining a fixed orientation but their
results remained consistent.

In Figure 4.2.3 (left) we show the specific heat data for several applied fields. It shows a sharp
peak at a temperature 𝑇𝑐 ≈ 1.55 K, indicating a phase transition. Given the scale of the effective
ferromagnetic exchange in Ho pyrochlore (𝐽eff ≈ 2 K), it is natural to associate this transition
to a magnetic ordering on the Ho sublattice. Confirming this hypothesis, an irreversibility is
observed at low temperature between the ZFC and FC curves (see Figure 4.2.3 right), with a
field-cooled behavior pointing towards a ferromagnetic transition. The amplitude of the ZFC-
FC effect is large, indicating the presence of significant energy barriers below the transition.
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Figure 4.2.3: (left) Specific heat and (right) ZFC-FC effects at low temperature. The fields were
corrected for the remanent field trapped in the superconducting coil. The 1000 Oe measure-
mentwas done field-cooled only, and a temperature regulation issue prevented the 511OeZFC
curve to be correctly measured.

Wemeasured theACsusceptibility on thehighfieldmagnetometer. InFigure 4.2.4we show𝜒′
(left) and 𝜒′′ (right), corrected as best as possible from significant phase difference corrections
above 10 Hz. The𝑀/𝐻 curve matches well the low frequency 𝜒′ above the transition. Around
the transition temperature, 𝜒′ exhibits a maximum, which moves slightly towards higher tem-
perature when increasing the frequency. The width of the peak indicates that there is not a
single time scale at the transition. Moreover, the space left between the 0.57 Hz curve and the
ZFC curve points towards very slow dynamics below the transition. A frequency dependence is
observed with a large signal in the out of phase 𝜒′′ susceptibility, but it is hard to exploit further
due to the large phase corrections.
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Figure 4.2.4: AC susceptibility vs temperature measured at several frequencies between 0.57
and 110 Hz. (Left) 𝜒′ (color crosses) together with 𝑀/𝐻 measured with 𝐻 = 111 Oe (black
crosses). (Right) 𝜒′′

The transition temperature, defined in magnetization measurements as the maximum of the
slope of𝑀/𝐻 , does not change significantly increasing the magnetic field. This is confirmed in
the specific heat data, where the transition remains upon application of a 0.1T external field. In
Figure 4.2.5 (left) we show the magnetization as a function of field, measured on the high-field
magnetometer. Below the Ho transition temperature, a hysteresis cycle opens, with a coercive
field of about 0.13 T at 125mK. At a higher field, the magnetization curves for a decreasing field
at temperatures below the transition seem to exhibit an inflexion point. The shape is reminis-
cent of the case of spin ice in a [111] field, shown in Figure 1.1.8 andmeasured in Ref. [Petrenko
et al., 2003]. It could be the sign of a field induced transition, but it is hard to conclude with
our powder sample. Further measurements would be needed to better determine the field -
temperature phase diagram.

In order to investigate the magnetic structure of Ho2Ru2O7, we performed a new neutron
diffraction experiment going down to a lower temperature. The data were collected on WISH,
a time-of-flight (TOF) diffractometer at ISIS, by Pascal Manuel. We used the same sample as in
the measurement on D1B, with a Copper sample holder and a Heliox 3He sorption pump. The
analysis of the datawas performedwith the FullProf software, starting from template command
files provided by Virginie Simonet and Pascal Manuel.

At 95 K, we see smallmagnetic Bragg peaks that appear only at locations (111) and (220). This
is consistentwith theD1Bmeasurement and confirmsanantiferromagneticΓ5 structure for the
Ruthenium. Going to temperatures below 5 K, a diffuse background at low-𝑄 appears. In Fig-
ure 4.2.6 (left) we plot the signal collected from the lowest angle detector banks, allowing to see
the signal down to 𝑄 ≈ 0.15 Å−1. The spikes at smaller 𝑄 are the signature of the limitations of
the instrument at very long time of flights. The kink at𝑄 ≈ 0.45 Å−1 is due to the signal from the
sample environment and cryostat and is independent of temperature. Nevertheless, we see a
diffuse signal which arises from the 10 K reference in blue in the background. In particular it
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Figure 4.2.5: (Left) Symmetrized hysteresis cycles between 0.12 and 4.2 K and (Right) Zoom in
𝑀 as a function of𝐻 obtained after saturation as the field is decreased, for temperatures below
the transition

exhibits a bump between 0.5 and 1 Å−1. This bump reaches a maximum in absolute value at 2 K
(in red), and then gets suppressed progressively below the transition at 1.55 K as the spectral
weight is transferred to the Holmium Bragg peaks. At the same time a rise in the diffuse signal
below 0.3 Å−1 occurs and remains down to the base temperature. Because the Ru moments
are fully ordered, the diffuse signal must originate from correlations developing between the
Holmium spins. It could be a signature of dipolar correlations, as observed in other spin-ice
type compounds [Fennell et al., 2009; Lefrançois et al., 2017]. In Figure 4.2.6 (right) we show

Figure 4.2.6: (Left) WISH diffraction data for several temperatures, showing the rise of Bragg
peaks and of a diffuse signal. (right) Refinement of the data at 300mK

the large magnetic Bragg peaks originating from the Ho magnetic structure at the base temper-
ature (300mK). They can indeed be refined by an ordered spin-ice (Γ9) structure, as proposed
in [Gardner et al., 2005; Wiebe et al., 2004]. We have used a joint refinement of the Ho and Ru
structure in order to account for potential interference effect. Leaving the Rumoment as a vari-
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4.3 Towards a fragmented ground state

able did not improve significantly the quality of the fit, so we left it fixed at its 10 K value. We
find an incomplete ordered moment for Ho at low temperature, of about 6.5 𝜇𝐵 at 300 mK, as
observed by Wiebe et. al.. Finally, small peaks appear below 1.2 K at 0.85 and 1.45 Å−1. They are
most likely the sign of the magnetic transition of an impurity.

4.3 Towards a fragmented ground state

In this section we propose a new ground state for Ho2Ru2O7, which is more consistent with all
the experimental data.

4.3.1 Magnetic specific heat and entropy

In the study of Ising systems (or in general systems which are formed of copies of a N-level
fundamental object), the measure of the entropy is a powerful tool to gain information on the
nature of the ground state. At temperature high compared to the relevant energy scales, the en-
tropy per site is 𝑘𝐵 ln𝑁 because all levels are equally occupied. Then, a measure of the specific
heat can give access to the entropy difference released over the temperature range:

Δ𝑆 = 𝑆High T−𝑆Low T =
𝐶
𝑇 d𝑇 (4.3.1)

The low temperatureentropy, if not0, is called the residual entropyandcharacterizes theground
state degeneracy. However, the application of this procedure is more complex in a real world
example, because all materials have other degrees of freedom in addition to the one of interest.

In the case of Ho2Ru2O7 we focus our attention on the entropy associated to the magnetic
degrees of freedom. In the temperature range< 25K, onemust subtract the contributions from
the nucleus (which accounts for the increase in C below 1K) and the lattice (which arises above
10 K). In Ref. [Gardner et al., 2005] the authors do not give the details of this procedure but
reported a deficit of entropy at low temperature, comparable to that of the kagome plateau of
spin ice under a moderate [111] field: 𝑆residual ≈𝑅 ln1.17 J/K/mol.

We first focus on the hyperfine contribution coming from the Ho nucleus. Indeed, the only
stable isotope 165Hohas an 𝐼 = 7/2 nuclear spin and therefore its levels can be split by the inter-
action with the electronic spin. Fortunately, due to the interaction being very small, the energy
scale is of the order of fewhundredmKanddoesnot interferewith the electronic spin frustrated
physics. It does however contribute to a large increase in specific heat below 2 K and must be
accounted for to isolate the magnetic contribution. We model the nucleus as a 2𝐼 +1 = 8 level
system obeying the following Hamiltonian:

ℋ𝑁 =𝐴∥𝐼𝑧+𝑃 ⒧𝐼2𝑧 −
1
3𝐼(𝐼 +1)⒭ (4.3.2)

𝐴∥ is the strength of thehyperfine interaction, which splits thenuclear levels evenly, and𝑃 is the
quadrupole interaction, driven by the average quadrupole electronic moment, which modifies
the splitting between high and low 𝐼𝑧. The computation of the associated specific heat for one

76



4.3 Towards a fragmented ground state

0.0 2.5 5.0 7.5 10.0 12.5 15.0
T (K)

0

2

4

6

8

10

12

14
C 

(J/
K/

m
ol

 H
o)

Cexp

Cnuclear

CLattice

Cmag

100 101

T (K)

0

1

2

3

4

5

6

S m
ag

 (J
/K

/m
ol

 H
o)

R ln(2)
- R/2 ln(3/2)
- R/2 ln(1.3)
- R/2 ln(1.175)
R ln(2)/4

Figure 4.3.1: (left) Measured specific heat in black, nuclear contribution in green, lattice con-
tribution in blue, and subtraction in red (Right) Estimation of the magnetic entropy, with the
expected values for different spin ice phases: standard spin ice in red, monopole crystal in or-
ange, kagome plateau of spin ice in green.

nucleus is straightforward:

𝐶𝑁 = 𝜕⟨𝐸⟩
𝜕𝑇 = 𝜕

𝜕𝑇 ⒧𝑘𝐵𝑇 2 𝜕 ln𝑍
𝜕𝑇 ⒭ = ∑𝐼

𝑖=−𝐼∑𝐼
𝑗=−𝐼 (𝐸2

𝑖 −𝐸𝑖𝐸𝑗)exp⒧
−𝐸𝑖−𝐸𝑗
𝑘𝐵𝑇 ⒭

(𝑘𝐵𝑇 )2∑𝐼
𝑖=−𝐼∑𝐼

𝑗=−𝐼 exp⒧
−𝐸𝑖−𝐸𝑗
𝑘𝐵𝑇 ⒭

(4.3.3)

When applied to only 2 levels, it yields thewell-known Schottky anomaly. This expression could
in theory be fitted to the data, but we could not accurately collect enough data points at low
temperature to perform this. Below approximately 700 mK, the increase in specific heat and
the decrease in grease conductivity cause the sample to become decoupled from the sample
holder. This effect is amplified by the fact that we have a powder sample. We instead chose to
manually adjust the rise in specific heat measured below 1 K, comparing our estimates of 𝐴∥
and 𝑃 with published values measured in other Ho3+ systems [Lounasmaa, 1962; Bramwell et
al., 2001; Mennenga et al., 1984]: 𝐴∥ ∈ [0.3,0.4] , 𝑃 ∈ [0.002,0.009]. We find values of 𝐴∥/𝑘𝐵 =
0.33 𝐾 , 𝑃/𝑘𝐵 = 0.009 𝐾 work best for our data. This best adjustment is represented in green in
Figure 4.3.1.

Secondly, we turn our attention to the lattice degrees of freedom, responsible for the increase
in specific heat above 10 K. Fitting the data to a Debye model would be made difficult by the
presence of the ruthenium magnetic transition at 𝑇𝑁 = 95 K. So as a better approximation we
chose to measure the specific heat of the non magnetic analogue Lu2Ru2O7: it has the same
pyrochlore lattice and therefore a similar phononic structure. However the Lu2Ru2O7 measure-
ment needs to be rescaled to account for the different molar mass. The lattice specific heat is
a function of the ratio 𝑇/Θ𝐷 , where Θ𝐷 is the Debye temperature which varies like the inverse
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4.3 Towards a fragmented ground state

square root of the molar mass. Thus

𝐶𝐿,HRO =𝐶𝐿,LRO ⒧𝑇 × Θ𝐷,LRO
Θ𝐷,HRO

⒭ = 𝐶𝐿,LRO ⒧𝑇 ×
𝑀HRO
𝑀LRO

⒭ (4.3.4)

With this conversionwe estimate the lattice contribution as the blue points in Figure 4.3.1 (left).
The subtraction of both contributions leaves our estimation of the magnetic specific heat

in red. In Figure 4.3.1 (right) we show the resulting estimation of the entropy difference asso-
ciated to the Holmium magnetic transition. The shaded area corresponds to the uncertainty
related to the process of finding a suitable hyperfine contribution and is estimated by using
the two extreme values of 𝐴∥ and 𝑃 that seem to adjust equally well to the low-temperature
data. The main result is that the entropy difference does not reach 𝑘𝐵 ln2 at high temperature.
The residual entropy does not match with the Pauling estimate for standard spin ice (in red)
nor the fragmented monopole crystal (in orange), but it does match with the one for spin ice
under a moderate [111] field, computed from the 2D kagome ice entropy. Additionally, below
the transition temperature a quarter of the𝑅 ln2 entropy is released, suggesting that below this
temperature one spin per tetrahedron orders in a long-range fashion. This gives a first indica-
tion that the ground state structure is not the conventional [100] ordered spin ice previously
proposed.

4.3.2 Neutron diffraction of spin ice under a [111] field

The residual entropy discussed above, together with the incompletemoment in an Ising system
assuming a Γ9 structure are strong arguments in favor of a fragmented ground state where an
ordered and a disordered fragment coexist. But what type of fragmented structure would give
the same Bragg peaks as the ordered spin ice structure we see in Ho2Ru2O7? From the diffrac-
tion patterns in the ordered phase, we know that there is no all-in / all-out ordered moment
corresponding to a longitudinal fragmentation term. Therefore the fragmentation would oc-
cur between the transverse (fluctuating) and harmonic (ordered) terms. We have defined this
case in Chapter 3, as the fragmentation decomposition of a classical spin ice under a moderate
[111] field. One spin per tetrahedron (called apical spin) is pinned towards the field and the 3
others obey the kagome ice rule. We restate the decomposition into a harmonic and transverse
fragments below, with the first spin the apical spin:

[1,1,−1,−1] = 0,
4
3 ,−

2
3,−

2
3d

+1,−
1
3,−

1
3,−

1
3h

(4.3.5)

The crucial point is that the harmonic fragment also belongs to the same Γ9 representation. In
fact, it can be constructed by considering the superposition of 3 ordered spin ice configurations
in 3 cubic directions, which yields in average on one tetrahedron:

1
3⒧[1,1,−1,−1]+ [1,−1,−1,1]+ [1,−1,1,−1]⒭ = 1,−

1
3,−

1
3,−

1
3 (4.3.6)
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Figure 4.3.2: (left)Magneticmoment of theHo apical spin as a function of temperature. (right)
Fragmented structure in Ho2Ru2O7, with the Ru ions in red and the Ho ions in blue. The Ho
apical spin is plotted in green and is fixed. The three other Ho spins satisfy the kagome ice
rules.

In consequence, themagneticBraggpeaks associated to sucha fragmented state are identical to
theone for a fully ordered spin ice, as it is a typeof powder average, with twonotable exceptions:

• the intensity of the peaks will be reduced due to the partial ordered moment on certain
sites;

• the transverse fragment will also diffract neutrons, and should give a diffuse signal repre-
sentative of the correlations imposed by the transverse nature.

Therefore, the refinement we performed on the WISH data using the harmonic fragment as
the Holmium structure is exactly the same, shown in Figure 4.2.6 (right). We plot the value of
the ordered moment on the apical site in Figure 4.3.2. Within errors bars we indeed recover
the full moment of the Ho3+ on this site, of approximately 10 𝜇𝐵 . However, the refinement in
Figure 4.2.6 (right) is visibly not perfect for the two peaks at 2.05 - 2.15 Å−1 in particular. We
believe the issue is caused by the width of the Holmium magnetic Bragg peaks. They are wider
than the experimental resolution and despite trying several combinations of Lorentzian and
Gaussianwidening,wehavenotmanaged to refine themproperly. Weare still confident that the
ordered moment we find is correct because of the consistency with other experiments [Wiebe
et al., 2004], and because the first twomagnetic peaks are purelymagnetic, almost entirely from
theHo ordering, and are better refined. In Figure 4.2.6 (left) we can see that theHolmiumBragg
peaks are wider than the experimental resolution: the width at half maximum of the first Ru
magnetic peak at 10 K is visibly less than that of the Ho magnetic peak at 1.55 K. The inverse
of the half-width at half-maximum of a peak can be interpreted as a correlation length for the
associated magnetic phase (provided that it is much larger than the experimental resolution).
This yields a correlation length of about 30Å at 300mK, corresponding to 3unit cells or about 12
Holmium neighbors. Therefore, the ordered fragment seems to have relatively small domains.
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4.3 Towards a fragmented ground state

4.3.3 Diffuse signal

The last main experimental sign of a fragmented ground state is the presence of a diffuse scat-
tering signal in addition to the Bragg peaks. In Figure 4.2.3 (left) we showed the raw diffuse
signal seen in the WISH data. The standard procedure in studying the low-𝑄 diffuse signal is
to subtract the paramagnetic form factor at each temperature. However it is made difficult in
theWISHdata because of the background originating from the sample environment. Therefore
we instead subtracted the signal at 100 K, where the experimental contribution is the same and
the paramagnetic form factor should be quite flat in the 𝑄 range below 1.5 Å−1. In Figure 4.3.3

Figure 4.3.3: (top left) Differences of the WISH data with a 100 K reference. (top right) Differ-
ences of the D1B data with a 120 K reference. (Bottom) Plots of the simulated diffuse scattering
signal from two phases of kagome ice, in the kagome reciprocal axes, reproduced from [Canals
et al., 2016].

(top left) we show the result of the subtraction for temperatures close to the transition. It shows
that the bump in the diffuse signal is suppressed quickly below the transition, becoming invis-
ible below 1.4 K. At the same time, the spectral weight moves towards Q = 0, forming a very
large bump. On the top right, we show the differences we could compute with the data col-
lected on D1B, with essentially the same features. To understand how the diffuse signal can
change so drastically below the transition, we would like to compare this data with simulations
of the diffuse scattering for different types of kagome spin ice. The powder calculation we have
undertaken together with Geoffroy Haeseler was not successful, so we compared our measure-
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ments to the single-crystal computations performed in Ref. [Canals et al., 2016]. On the left we
show the diffuse scattering for the standard KII kagome ice. It exhibits correlation features in
red, which are located roughly where we see a bump experimentally when converting back to
pyrochlore reciprocal units. On the right we plot the signal for KI kagome ice, which is a phase
where every triangle is in a two-in / one-out or two-out / one-in configuration but do not follow
a staggered pattern: there is no magnetic charge order. In this phase the correlation features at
lowQ get suppressed. Wehypothesize that the apparent disparition of the diffuse signal around
0.65 Å−1 could be due to the presence of such defects. However this is not definitive evidence,
and we have planned an experiment on the D1B instrument to study the diffuse scattering at
low temperature in more details.

4.4 Modelling and simulations

In order to explain why an antiferromagnetic Γ5 structure for the ruthenium can induce a fer-
romagnetic Γ9 or fragmented phase on the Ho3+ ions, it is necessary to investigate the possible
interactions between those two ions. A proposed mechanism, investigated in simulations by
Julien Robert, is that the ferromagnetic holmium correlations tilt the ruthenium spins out-of-
plane, which in turn reinforces those correlations until they favor a [111] order.

4.4.1 Fragmentation in representation theory

First of all we would like to understand how the representation theory presented in Chapter 1
can be used to model fragmentation. In the group representation picture, fragmented ground
states are characterized by the coexistence of multiple representations in a single phase: name
Γ3 (all-in / all out) for the ordered longitudinal fragment and Γ9 for the transverse one. Because
the spins are subject to a constraint of fixed length, the solutions of the diagonalized Hamilto-
nian Equation (1.3.4) are always characterized by one and only one of the moments described
in Section 1.3.2, except when the system is located at a phase boundary. However it is impor-
tant to keep inmind that these solutions apply to a single tetrahedron. Hence if there are several
single-tetrahedron solutions that share some spins orientation on some sites, the ground state
of the entire lattice canbe constructedby joining the various single-tetrahedron solutions at the
site in common and tiling the lattice. This approach therefore allows to place a lower boundary
on the degeneracy of the macroscopic ground state, and is useful to identify which regions of
the phase diagram can host degenerate ground states. To give a simple example, the ground
states for the simple ferromagnetic Ising Hamiltonian are all the two-in / two-out tetrahedron
which transform under the Γ9 representation. The tiling rules allow for an extensive amount of
possible ground states and give the Pauling estimate of the spin ice entropy.

This discussion shouldmake it clear that in this approach it is not possible to obtain a ground
state that is a superposition of different representations on one tetrahedron. However this begs
a question: how is the fragmented monopole crystal observed in pyrochlore iridates possible,
as every tetrahedron is in a superposition of an Γ3 and a Γ9 representation? The answer lies in
the fact that the minimal Hamiltonian for a monopole crystal is not a just bilinear exchange,
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but also includes a local molecular field of Γ3 symmetry produced by the Ir4+ ions. In general
a molecular or external field of the desired symmetry readily gives rise to a new ground state,
which can be a superposition of representations or on the contrary reduce the degeneracy of
a certain configuration. Another simple example is the case of spin ice under a [111] field. On
the scale of a single tetrahedron, the lowest energy configurations are all the two-in / two-out
states which have the apical spin fixed along the field. From theses states, the tiling rules can
be used to create planes of kagome spin ice separated by triangular planes of apical spins.

4.4.2 Extended molecular field picture

However, in the case of Ho2Ru2O7, themolecular field produced by the Ru4+ ions on theHo site
is very different to the iridate case, as shown in Figure 4.4.1. We recall that the first Ir neighbours
in an Γ3 configuration (all-in / all-out structure along the local 𝑧 axis) produce a field along the
local 𝑧 axis on the rare-earth site. However the Ru4+ ions in a Γ5 structure (easy-plane antifer-
romagnetic structure, with spins pointing along the same local 𝑥−𝑦 plane) create a field in the
𝑥−𝑦 plane on the Ho site.

Figure 4.4.1:Molecular field (yellow arrow) produced by the first neighbours metallic ions (in
red) on the rare-earth site (in blue), in the case of AIAOordering in pyrochlore iridates (left) and
in the case of Ho2Ru2O7 (right)

To understand the possible effect of such a field and extend the simple molecular field pic-
ture, the first step is to establish what nearest-neighbor couplings between Ho and Ru ions are
allowed by symmetry. Namely, the coupling tensor 𝒥Ho-Ru𝑖 for a given Ho-Ru link needs to be
invariant upon the rotation around the rare-earth site which transforms a Ho-Ru link into the
next one. This coupling tensor is then multiplied on both sides by the anisotropy tensor g of
each ion. Ho3+ is a non Kramers ion so expressed in the local axes, the 𝑔⟂ components are zero.
We do not have any specific information on the Ru4+ ion anisotropy so it will be assumed to
be a Heisenberg spin. The general coupling Hamiltonian between nearest neighbor Ho and Ru
writes:

ℋHo-Ru = (gHoSHo)⊤𝒥Ho-Ru(gRuSRu) (4.4.1)

Julien Robert performed the details of the symmetry computations to simplify this Hamilto-
nian. It turns out that it canbe rewritten in the local axes for each ionusing only twoparameters
𝐽𝑧𝑧 and 𝐽𝑧± , where the first index relates to the Ho local axes and the second to the Ru ones:

ℋHo-Ru = 𝐽𝑧𝑧𝑆𝑧Ho𝑆𝑧Ru+𝐽𝑧±𝑆𝑧Ho ⒧𝜁Ho-Ru𝑆+Ru+𝜁∗Ho-Ru𝑆−Ru⒭ (4.4.2)
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where the 𝜁Ho-Ru matrix elements encode the transformation from one Ho-Ru link to another
similarly to Equation (1.3.1). The effective Ho only term can be found by summing the above
Hamiltonian for the six Ru neighbors around a rare-earth site. But in the case of Ru in a Γ5
structure, the computation shows the total interaction is zero:

6

𝑖=1

ℋHo-Ru𝑖 = 0 (4.4.3)

Therefore, we cannot explain our observations in a molecular field picture with a pure Ising Ho
spin.

4.4.3 Tilting the Ruthenium

In place of the molecular field formalism, where the Ru structure is fixed, we then tried to sim-
ulate the coupled dynamics of Ho and Ru with Monte-Carlo simulations. We consider the fol-
lowing Hamiltonian which stabilizes a spin ice for the Ho sublattice, a Γ5 structure for the Ru
sublattice and a simple 𝐽𝑧Ho𝑧Ru coupling in between the two:

ℋMC = 
⟨𝑖,𝑗⟩

𝐽𝑧𝑧𝑆𝑧𝑖,Ho𝑆𝑧𝑗,Ho− 
⟨𝑖,𝑗⟩

𝐽±𝑆+𝑖,Ru𝑆−𝑗,Ru+𝑆−𝑖,Ru𝑆+𝑗,Ru+ 
⟨𝑖,𝑗⟩

Ho 𝑖 nn Ru 𝑗

𝐽𝑧Ho𝑧Ru𝑆𝑧Ho𝑆𝑧Ru (4.4.4)

with 𝐽𝑧𝑧 > 0,𝐽± > 0,𝐽𝑧Ho𝑧Ru ≪ 𝐽𝑧𝑧, 𝐽±, on which Julien Robert performed Monte Carlo simulations
on a system of 4×4×4 unit cells, i. e. 2048 spins total.

The mechanism we want to test is the following. We consider that the two-in / two-out Ho
correlations which develop below 2 K can tilt the Ru out of its Γ5 structure, through the 𝐽𝑧Ho𝑧Ru
coupling. It allows for a Ru tilt along the local 𝑧 axes that has the same two-in / two-out struc-
ture. In return, the tilting creates a non zero molecular field with a two-in / two-out structure
on the Ho sublattice, analogous to an external field along a cubic direction [100]. To sum up,
Ho ions only interact with the out of plane tilt of Ru ions, that they create themselves to be-
gin with when they start to correlate. In the Monte-Carlo simulations performed with Julien
Robert, we have observed that such an interaction indeed drives a transition on the Ho sublat-
tice, but towards a fully ordered spin ice [100] state instead of a fragmented [111] one. This can
be understood simply in that the magnetization of a two-in / two-out tetrahedron will always
be along a cubic direction [100].

In fact, only a three-in / one-out tilt configuration has a magnetization towards a [111] direc-
tion. When interactingwithRuspinswith this configuration, oneHosite is surroundedby6out-
tiltedRu spinswhile the three others are surroundedby 4out-tilted and two in-tilted, and there-
fore has the same energetics as spin ice in a [111] field. A three-in / one-out tilt (or in general
any tilt configuration with a magnetization along [111]) is therefore the most straightforward
way to generate a the fragmented structure whichwe claim is the ground state of Ho2Ru2O7. To
induce this tilt configuration in the simulations, we tried to add terms to the Ru-only Hamil-
tonian. We introduced an antiferromagnetic Ising term, which favors an all-in / all-out tilt, to
compete with the two-in / two-out in a way similar to themonopole crystal. Unfortunately this

83



4.4 Modelling and simulations

approach proved inconclusive. The Ru spin has no particular anisotropy in our simulations,
so it can escape any attempt at imposing competing interactions on the tilt by minimizing its
out-of-plane component. As a result we were only able to achieve two-in / two-out or all-in /
all-out Ru tilts, wether inMonte-Carlo simulations or in numericalminimisations of the energy
on the scale of a unit cell. Therefore, we believe that the fragmented [111] ferromagnetic phase
cannot occur in a system with only bilinear interactions and that other physical ingredients are
needed.

Julien Robert was able to give a general framework to make sense of this observation. He
followed the same procedure than in Ref [Yan et al., 2017] to apply representation theory to a
bigger unit cell including the metallic site, formed of two tetrahedra, with a general symmetry-
allowedbilinearHamiltonian. In the absenceof couplings, theHamiltonian for both sublattices
is a simple sum of two Hamiltonians Equation (1.3.4). But the introduction of the generalized
couplings Equation (4.4.2) only allows for interactions between identical representations: a Γ5
structure for Ru can only couple to the same Γ5 structure on the Ho site, which has a very large
energy because of the Ising anisotropy of Ho. In particular it is not possible to find a ground
state which is a superposition of different basis vectors of the Γ9 representation, like the one of
spin ice under a [111] field.

4.4.4 A minimal model for [111] ordering in ferromagnets

Facedwith these setbacks,we turnedour focus towardsestablishingaphenomenologicalmodel
which can host ferromagnetism along the body-centered [111] direction in a cubic system. In
the case of pyrochloremagnets, we are specifically looking fo a perturbation to the Ising spin ice
Hamiltonian that can lift the degeneracy of the spin ice manifold to keep only the ones where
an apical spin is selected and pinned. We believe that such a perturbation requires two ingre-
dients:

• a first interaction which promotes all spin-ice states with a nonzero magnetization from
the spin-ice manifold, whatever its direction may be;

• a typeof self-consistent repulsive cubicfield,whichwouldpush theoverallmagnetization
as far away from [100] directions as it can, therefore ending along [111].

These two ingredients can be realized in the following effective perturbation Hamiltonian for
the Ho sublattice:

ℋHo, pert = 𝐽3 
⟨𝑖,𝑗⟩3

S𝑖 ⋅S𝑗 +𝑈 ⒧
𝑖
S𝑖 ⋅M⒭

2
(4.4.5)

The first term is a third-neighbor coupling which couples the same pyrochlore sites on neigh-
boring tetrahedra, thus favoring identical tetrahedra configuration if 𝐽3 is negative [Henelius
et al., 2016]. The second term is a self-consistent quartic interaction between each spin and
the overall magnetization of the system. It could come from an expansion of the long-range
interactions, in which we disregard the quadratic terms that can be absorbed into an effective
𝐽 ′3 and in which each term must keep the cubic symmetry of the lattice. If𝑈 is positive then it
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acts as a repulsive cubic potential. Then, there exists a region of the phase diagram where the
fragmented [111] ferromagnet is the ground state. The first term 𝐽3 can already exist in other
Ising pyrochlores as a truncation of the long-range dipolar interaction [Henelius et al., 2016].
There now remains to find a plausible origin to the second ingredient and integrating it into the
simulations.

4.4.5 Interactions between the magnetic and electronic degrees of freedom

The most promising answer we have found lies into the interaction between the magnetic and
electronicdegreesof freedomon theRusublattice. Thiswasoriginally investigated in the caseof
iridates compounds [Goswami et al., 2017; Ladovrechis et al., 2021] as the unfilled 5𝑑 orbitals
of the Ir4+ ion are extended in space and therefore their magnetism is not entirely localized.
The authors start from the normal metallic state of pyrochlore iridates: a so-called parabolic
semimetal (PSM), which at low energy has a quadratic band touching around the Fermi level.
They then use group representation theory in a similar way as explained in Chapter 1 to list all
the possible local order parameters that an interacting PSM can host. These are interpreted as
magnetic structures created by interacting with the itinerant electrons; the authors focus espe-
cially on the all-in / all-out and ordered spin ice order parameters. Because of their symmetry,
their couplings with the PSM state are constrained. Finally they apply renormalization group
theory to write an effective Landau energy for the magnetic orders dressed by such itinerant
fermions. We believe that this analysis will apply to Ruthenium ions as well. This is justified by
the fact that the Ru 4𝑑 electrons are also slightly delocalized, so the core concept of magnetic
orders interacting with electronic bands should remain valid. The main result of interest for us
is the new couplings generated as a perturbation to the Hamiltonian in Equation (1.3.4):

ℋRu, pert = 3𝑢′
1

3

𝑖=1

𝑚4
𝑖 +3𝑢

′′
1

3

𝑖<𝑗
𝑚2

𝑖𝑚2
𝑗 +𝑢2𝑚4

Γ3 +2𝑢12m
2
Γ9𝑚

2
Γ3 (4.4.6)

where 𝑚Γ3 is the all-in / all-out order parameter the 𝑚𝑖’s are the components of the mΓ9 or-
dered spin ice order parameter. Such new couplings make the following scenario for the Ru tilt
possible:

• Ru acquires a two-in / two-out tilt through interactions with the correlatedHo sublattice,
and therefore a non zeromΓ9 order parameter;

• the quartic terms with 𝑢′
1 < 0 and 𝑢′′

1 > 0 would tend to push this magnetization towards
[111], by trying to minimize the projection on a particular cubic axes;

• the𝑢12 termmixes the all-in / all-out representationwithΓ9 to obtain a three-in / one-out
tilt.

At the time of writing, Julien Robert is working in implementing such quartic terms in the sim-
ulations.
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4.5 Dynamics and excitations in the fragmented phase

4.5.1 Relaxation times measured in AC susceptibility

We performed AC susceptibility measurements down to frequencies of 1mHz to study the dy-
namics above and below the transition. We first measured the AC susceptibility at fixed fre-
quency as a function of temperature, which we report in Figure 4.5.1. We could not measure
the curve at 1mHzover the entire temperature range due to external perturbationswhich ham-
pered the very long acquisition. On the right we see that the out of phase susceptibility 𝜒′′ at
2.1 mHz exhibits two bumps: one close to the transition, which does not significantly move
in the frequency range we have explored; and one at a at low temperature (about 1 K) whose
temperature increases when frequency in increased. This point towards the existence of two
distinct relaxation times in the system. However we also observed that curves measured while
heating or cooling do not match together for frequencies above 11mHz, especially close to the
maximum of 𝜒′′. We do not understand exactly why this happened, and this made the extrac-
tion of the temperature of the maximum as a function of frequency less trustworthy.

Figure 4.5.1: (left) In phase and (right) out of phase susceptibilities as a function of tempera-
ture, measured down to 1mHz.

We then measured the AC susceptibility at fixed temperature as a function of frequency, on
the low field magnetometer. A frequency sweep is performed successively in both coils, then
the values subtracted to obtain the absolute susceptibility. The data is shown in Figure 4.5.2.
There were significant phase difference factors caused by eddy currents above 110Hz, causing
the upturn in the data. We could not remove completely their effect and this prevented an
accurate analysis to be performed. But the out of phase susceptibility 𝜒′′ again seems to exhibit
two peaks, with a low frequency mode below the transition and a high frequency one above,
which coexist around the transition.

To get a more definitive answer we performed a new measurement on another type of dilu-
tion magnetometer, tailored to the detection of magnetic fluctuations and noise. It achieves a
very large bandwidth (1mHz - 10 kHz) in part thanks to a Silicon sample holder which does not
create eddy currents. However the measurement does not give absolute values of the suscep-
tibility. The data were collected and corrected for phase differences by Félix Morineau, and are
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Figure 4.5.2: (left) In phase 𝜒′(𝑓) and (right) and out of phase 𝜒′′(𝑓) susceptibilities measured
on the low-field magnetometer.

shown in Figure 4.5.3.
This dataset makes it is clear that Ho2Ru2O7 has two characteristic time scales. Qualita-

tively, the out of phase susceptibility 𝜒′′ has two bumps: one dominates below the transition
at frequencies below 100Hz, and another takes over above the transition at frequencies above
1000 Hz. Therefore, we elected to fit the data using a model with two relaxation times, each
contributing a certain fraction of the total signal. We took into account a symmetric spread of
relaxation times through a generalized Debye model:

𝜒(𝑓) = 𝜒𝑆 +(𝜒𝑇 −𝜒𝑆)⒧
𝜂

1+ (2i𝜋𝑓𝜏𝑙)1−𝛼𝑙
+ 1−𝜂
1+(2i𝜋𝑓𝜏𝑠)1−𝛼𝑠

⒭ (4.5.1)

where 𝜒𝑇 is the DC susceptibility, 𝜒𝑆 is the high frequency limit called adiabatic susceptibility.
The two times 𝜏𝑙 and 𝜏𝑠 are the characteristic times for the long (or slow) and short (or fast)
processes respectively, with spread parameters 𝛼𝑙 and 𝛼𝑠 and relative amplitude 𝜂. 𝛼 = 0 cor-
responds to the single time Debye model. In order to constraint the fit, the times scales were
fitted on the𝜒′′ data, then fixed to fit the rest of the parameters on the𝜒′ data. The𝛼 parameters
were also set to 0 if the amplitude of the related mode is too small. The fits are represented in
Figure 4.5.3 by dashed lines. They could not be performed accurately below 1 K because the
relaxation times become longer than 103 seconds.

In Figure 4.5.4 we show the parameters of the two modes estimated by the fits. Our main
result is the characteristic time scales as a function of the inverse temperature, shown on top.
It confirms that there are two separate time scales, which coexist around the transition. Below
the transition, the slow process timescale can be fitted by an Arrhenius process with energy
barrierΔ𝐸𝑙 = 15 K and 𝜏0𝑙 = 1.1×10−5 s. Above the transition, the fast mode can be fitted by an
Arrhenius process between 2 and 4 K with energy barrier Δ𝐸𝑠 = 6 K and 𝜏0𝑠 = 5.5×10−7 s. On
the bottom left we show the estimated DC susceptibilities for each mode as well as their sum.
The slow mode arises very abruptly at the transition, while the fast mode only gets gradually
suppressed below the transition. On the bottom right we show the spread of relaxation time of
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Figure 4.5.3: (Top) In phase 𝜒′ and (bottom) and out of phase 𝜒′′ susceptibilities measured on
the noise magnetometer. The data points are the dots linked by thin dotted lines. The thick
dashed line are a fit by the model.
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Figure 4.5.4: (top) Characteristic times as a function of the inverse temperature. The red and
green dots are the results from the fit with the model, with the transparency representing their
relative amplitude. The dot-dashed line is the transition temperature, and the dashed line is
the temperature from which ferromagnetic correlations start to appear in neutron diffraction
experiments. (bottom left) DC susceptibility of each mode in red and green, and their sum in
black. (bottom right) Spread of relaxation times 𝛼 of each mode.

each mode, which again shows very different behaviors for the slow and fast processes.
To our knowledge this type of coexistence of two separate time scales has not been observed

inother Isingpyrochlores. At 2K, the characteristic time scalewemeasure onHo2Ru2O7 is com-
parable to measurements on Ho2Ti2O7 made by Sean Giblin on a high-frequency susceptome-
ter¹, as well as measurements published in Ref. [Wang et al., 2021]. However at 1 K Ho2Ru2O7
has a time scale almost 2 orders of magnitude slower than Ho2Ti2O7. In Ref. [Wang et al., 2021],
the authors identified two timescales in Ho2Ti2O7, with energy barriers 15 and 18 K for the slow
and fast processes respectively. They argued that they correspond to a single monopole diffu-
sionprocess for the slowprocesswhichdominates below1.2K, and the creationofnorth / south
monopole bound pairs for the fast process which dominates above 1.2K.However the two time

¹Private communication.
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scales join in a thermal crossover, with no comparison to the sharp transition we observe. In
Ref. [Matsuhira et al., 2011], the authors identified again two separate time scales in Dy2Ti2O7,
with energy barriers 9.2 and 6.3 K for the slow and fast processes respectively. Down to 0.5 K,
they coexist with relative amplitudes that do not dramatically change with temperature: the
slow mode has an a amplitude about twice as large as the fast mode. The authors mentioned
that these two time scales could correspond to the free and bound monopole states but did not
conclude affirmatively. On the contrary, in pyrochlore iridates Ho2Ir2O7 and Dy2Ir2O7, only a
single time scale was clearly seen in alternative susceptibility measurements. The energy bar-
riers were found to be 4.8 and 3.6 K respectively [Lefrançois et al., 2017; Cathelin et al., 2020].
In both cases the energy scale was of the same order of magnitude as that of the creation of a
defect in the monopole crystal state.

In the absence of a universal picture for the characteristic time scales in Ising pyrochlores,
we want to mention a possible interpretation of our data assuming the ground state is indeed
a fragmented structure similar to the kagome plateau under a [111] field:

• The fast mode would correspond to the creation of single monopoles excitation from the
spin icemanifold. Indeed its energybarrier between2and4K is very close to the chemical
potential of monopoles in Holmium pyrochlores;

• Theslowmodewouldcorrespond to theconstrainedmotionofmonopolesbetweenkagome
planes in the ordered phase. Hopping from one plane to the next requires flipping the
apical spin, which should have a higher energy barrier due to the internal fields. In the
ordered phase, what remains of the fast mode would be associated to the motion of ex-
citations within kagome planes. This propagation should occur perpendicularly to the
internal field created by the magnetic order and should therefore have a smaller energy
scale.

4.5.2 Inelastic scattering

An especially suitable technique to access the interactions is to probe the magnetic excitations
through inelastic neutron scattering measurements. We were able to perform an Xpress exper-
iment on the time-of-flight spectrometer LET at ISIS, for a day of measurements and 3 temper-
atures. The data were collected by Ross Stewart.

At 100 K we see two non-dispersive excitations centered around positive energy transfers 1.5
and 4.8meV. Similar excitations were observed in Ref. [Wiebe et al., 2004; Gardner et al., 2005].
The authors interpreted them as transitions between excited Ho3+ crystal field states. Indeed
the first excited levels have an energy of about 200 K and so at this temperature they can be
thermally populated.

At 1.5 K, we see again two flat excitations but centered around energies 1.4 and 2.7 meV. At
this temperature the crystal field excited states shouldnotbeoccupied so this signal could come
from a splitting of the ground state doublet. Ho3+ is a non Kramers ion so in an effective spin
1/2 picture the doublet can only be split by a longitudinal magnetic field. By including the full
crystal field structure there can be a small transverse splitting, but very small for a field of the
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Figure 4.5.5: (top row) Inelastic scattering at temperatures of 100, 20 and 1.5 K (left to right)
with 7.52 meV incoming energy. (bottom) Integration of the signal over Q ∈ [1,2.5] Å−1 with
7.52meV incoming energy.

order ofmagnitudeof a fewTeslas [Tomasello et al., 2015]. Therefore,wedonot expect thedirect
molecular field of the Ru magnetic order to significantly affect the Ho crystal field structure.
There is a interesting interpretation of these two excitations in the ground state we propose for
Ho2Ru2O7. This state creates an internal field along [111]which has a different projection along
the local 𝑧 axes for the apical or kagome plane spins. The kagome spins see a longitudinal field
that is only 1/3 the value of that for the apical spin. So in this structure there should be two
different splittings of the doublet depending on the site. However the ≈ 3meV splitting would
correspond to a unusually large internal field.

The signalmeasured at 20K is themost peculiar andwehavenot succeeded inunderstanding
where it originates from. We see two flat excitations again around energies 1.5 and 2.8 meV.
At this temperature there should not be any significant thermal population of excited crystal
field states. At the same time, the Ho sub lattice is not ordered so the signal cannot be caused
by a splitting of the doublet. Therefore we need to consider other possible interactions. Two
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4.6 Conclusions: a classical, unsaturated, [111] ferromagnet

possibilities would be the quadrupolar interactions with the phonons, or the collective effects
involving several spin flips in a single excitations. Another less exciting explanation is that the
two excitations at 1.5 and 20 K originate from an impurity like Ho2O3, since measurements in
Ho2Ir2O7 seem to showa similar signal at low temperature². Furthermeasurementswith amore
precise temperature dependencewould beneeded to confirm the simple interpretation at 1.5K
and understand the 20 K signal.

4.6 Conclusions: a classical, unsaturated, [111] ferromagnet

To conclude, we believe that we have identified the correct ground state of Ho2Ru2O7. This
work was motivated by the possibility to explore the fragmentation phase diagram thanks to
the magnetism of the Ru4+ ions, as well as a critical analysis of existing results [Wiebe et al.,
2004; Gardner et al., 2005]. This drew us to perform our own experiments which we analyzed in
the framework of fragmentation.

Ho2Ru2O7 exhibits a magnetic transition on the Ho sublattice at 1.55 K. It is characterized by
a non-zero residual entropy, an incomplete ordered moment and a diffuse signal at low-Q in
neutron diffraction which persists to some extent below te transition. This is consistent with
a type of fragmented state similar to that of classical spin ice under a moderate [111] field. It
has a unsaturated ferromagnetic order parameter, which maps onto the harmonic fragment of
the Helmholtz decomposition, and a disordered part following the local rules of kagome ice.
This is a new exotic state, to be contrasted with the partial antiferromagnetic ordering in the
iridate pyrochlores, or the 𝑆 = 1/2Heisenberg antiferromagnet [Singh et al., 1992]. In the field
of classical pyrochlore spin ices, a similar ferromagnetic Coulomb phase was found in a sys-
tem with a uniaxial distortion and a four-spin perturbative interaction [Powell, 2015]. But the
unsaturated phase appeared only as an intermediate state between the paramagnetic and fully
ordered phases, with a continuously varying magnetization.

There still remains someexperimental features ofHo2Ru2O7 thatwehavenot understood yet.
AC susceptibility measurements show two distinct relaxation times which are likely associated
to two different magnetic excitations. In a short inelastic scattering experiment, we saw two
peculiar excitations at low temperatures but could not conclude on wether they come from the
sample or from impurities. At the time of writing, we have a new diffraction experiment with
a dilution fridge planned on D1B at ILL, and we have made a proposal for a longer inelastic
scattering experiment.

²Unpublished data.
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5.1 Motivation for experiments under pressure

5.1 Motivation for experiments under pressure

The fragmentation phase diagram presented in Chapter 1 (Figure 1.2.6) has been useful to lo-
cate different compounds and classify they ground state. However, the presence of nearly
temperature-independent phase boundaries at low temperature makes it difficult to observe a
transition between the various fragmented phases. It requiresmoving horizontally in the phase
diagram, that is to change the parameters that govern the creation of monopoles and the stag-
gered chemical potential.

Such a test is easier to perform numerically, as is done in Refs. [Raban, 2018; Raban et al.,
2019]. Here the authors performed Monte-Carlo simulations of the dumbbell model with a
staggered chemical potential. They studied the out-of-equilibrium response as the staggered
chemical potential was cycled at different speeds through the line of second-order phase tran-
sitions that separates spin ices from monopole crystals. The order parameter of the transition
(i.e. the density of crystallized monopoles) was observed to have a hysteretic response, which
grew as the cycling speed increased. They hypothesized that this was due to the critical slowing
down close to the transition, as here the dynamical properties of the system are driven by the
critical fluctuations. This was confirmed by the fact that the widths of the hysteresis cycle at all
sweep frequencies could be collapsed onto a single scaling law, called the Kibble-Zurek scaling,
introduced for condensed matter systems in Ref. [Hamp et al., 2015]. Additionally it was found
that the critical exponents of a 3D Isingmodel could accurately describe the slowing dynamics.

The Kibble-Zurek scaling procedure could also be done with temperature sweeps with a pu-
tativematerial sufficiently close to the phase boundaries. Unfortunately, as seen in Figure 1.2.6
either the titanate or iridate pyrochlore are located more or less in the center of their respective
regions of the phase diagram. Hence, we tried to move in the phase diagram by changing the
interatomic distances and angles and thereforemodify the interactionswithin the samemodel.
This can be done by chemical substitution, which we tried initially with Ho2Ru2O7 but resulted
in different physics. The other popular option is to use mechanical hydrostatic pressure in a
pressure cell. The first challenge it poses it that it is hard to predict how the magnetic inter-
actions might change. As said in Equation (1.2.5) the dipolar interaction 𝐷 varies as 1/𝑟3 and
is somewhat predictable under pressure. However, the exchange 𝐽 between rare-earth is a su-
perexchangemediated by theOxygen atoms. It generically depends on the distance as 1/𝑟5 but
also on the angle between the oxygen and rare-earth atoms, whose evolution under pressure is
hard to predict.

The second challenge is to choose adequate probes of the magnetic structure. The various
pressure setups introduce complications in the data analysis which we will discuss. Hence we
cannot expect one single probe to give a definitive answer, and our objective is to combine
signals from neutron diffraction and specific heat under pressure. But this prudent approach
leads to a different hurdle: the material properties of the two known examples of fragmented
spin ices are not suited to both these techniques at the same time. On the one hand Ho2Ir2O7
has a large Schottky anomaly coming from the Ho nucleus, and we only had access to poly-
cristalline samples, which makes it complicated to study its specific heat under pressure. On
the other hand some isotopes present in naturalDysprosiumaremajor neutron absorbers, ren-
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dering difficult any neutron diffraction under pressure. We therefore used eachmaterial for the
technique it is the most suited for. The chapter is structured as follows. In the first section, we
present an extension of the mean-field theory of fragmentation that we presented in Chapter
1. We will make use of it to compute the two observables we can measure under pressure and
find how they might change as a material moves in the fragmentation phase diagram. We then
move on to the experimental results. We performed specific heat measurements under pres-
sure on Dy2Ir2O7 using the AC technique described in Chapter 2, as well as neutron diffraction
under pressure on Ho2Ir2O7. But the specific heat data was especially hard to interpret, so we
performed additional AC specific heat measurements at ambient pressure on the same crystal.
These proved very important in understanding the behavior of spin icematerials and sowewill
discuss them first.

5.2 Extended mean-field theory of fragmented spin ices

5.2.1 New parameters

In this section our goal will be to get an understanding of how observables like the specific
heat and orderedmomentmight change aswemove through the fragmentation phase diagram
across a phase boundaries. To this endwewill extend themean-field theory of the 𝑆 = 1Blume-
Capel model developed in Chapter 1 (see Equation (1.2.31)) to address some of its limitations:

• include the energetics of the double monopoles;

• take into account the entropy of the fragmented phase.

Therefore we chose to introduce two new mean-field quantities 𝜌2, 𝜙2 the density of double
monopoles and the value of the symmetry breaking between the 𝐴/𝐵 diamond sites respec-
tively. Similarly to the single monopole case detailed in Equation (1.2.25), they are defined
such that the density of double positive or negative monopoles on a 𝐴 or 𝐵 diamond site can
be written

𝑁𝐴,++
𝑁 = 𝜌2

1+𝜙2
2 , 𝑁𝐵,++

𝑁 = 𝜌2
1−𝜙2
2 ,

𝑁𝐴,−−
𝑁 = 𝜌2

1−𝜙2
2 , 𝑁𝐵,−−

𝑁 = 𝜌2
1+𝜙2
2

(5.2.1)

We will work in the same reduced units presented in Equation (1.2.20). In the most general
model the double monopoles could be allowed to break the symmetry in a direction opposite
to the single monopoles. This would be controlled by a pair new conjugated potentials �̄�2, Δ̄2
for the double monopoles only. The mean-field enthalpy in Equation (1.2.27) can be readily
promoted to

�̄� ⒧𝜌1,𝜙1,𝜌2,𝜙2⒭ = −12 ⒧𝜌1𝜙1+2𝜌2𝜙2⒭
2+�̄�1𝜌1+�̄�2𝜌2−Δ̄1𝜙1𝜌1−Δ̄2𝜙2𝜌2 (5.2.2)
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5.2 Extendedmean-field theory of fragmented spin ices

5.2.2 Computation of the entropy

As explained in Equation (1.1.5), the non-zero residual entropy of the fragmented monopole
crystal phase cannot be captured in the Pauling independent tetrahedron approximation. Its
true value can only be obtained from a loop expansion of the associated dimer problem [Nagle,
1966; Nagle, 2004], which as a minimum involves a six-tetrahedra loop. Inspired by a note in
the appendix of Ref [Kaiser et al., 2018], and in the effort of keeping the computation as simple
as possible, we choose the median route of considering the model as a set of independent bi-
tetrahedra, formed of two adjacent 𝐴 and 𝐵 tetrahedra. We will enumerate the micro-states for
these objects andperform the equivalent of the Pauling approximation to compute the entropy.

Bi-tetrahedra are formed of 7 spins, of which 1 is internal and 6 are shared with neighboring
bi-tetrahedra. Therefore there are 27 = 128micro states in an isolated bi-tetrahedron. However
only half of the shared spins canbe chosen freely as the other halfmust be kept compatiblewith
neighboring bi-tetrahedra. Hence the total number of states for a system of𝑁/2 bi-tetrahedra
can be approximated by

𝑊 = 1
2
3𝑁2 (𝑁/2)!

𝑁1!⋯𝑁128!
(5.2.3)

We now group the 128 states together depending on how what monopole charge they have on
the 𝐴 and 𝐵 sites, which we present by the symbol {𝛼𝛽}. This is where our approach diverges
from Ref [Kaiser et al., 2018] as we do not consider +/− and −/+ microstates (and all other
non-symmetric monopole configurations) as participating to the same macrostate. The full
enumeration is shown in Table 5.2.1.

∅∅ +∅ ∅+ −∅ ∅− +− −+ ++ −− +
+∅ ∅+

+
−
−∅ ∅−

−
18 12 12 12 12 10 10 6 6 3 3 3 3

+
+− −+

+
−
−+ +−

−
+
++ ++

+
−
−− −−

−
+
+
−
−

−
−
+
+

3 3 3 3 1 1 1 1 1 1

Table 5.2.1:Multiplicities of all the {𝛼𝛽} states.

Wecompute theentropyper tetrahedron in the thermodynamic limitusingStirling’s formula:

�̄� = 𝑆
𝑘𝐵𝑁

=−12 ln(𝑊 ) = −12 
configs{𝛼𝛽}

𝑁{𝛼𝛽}
𝑁/2 ln⒧

23𝑁{𝛼𝛽}
𝑚{𝛼𝛽}𝑁/2⒭ (5.2.4)

where𝑚{𝛼𝛽} is the multiplicity of a given configuration.
The next step is to relate the bi-tetrahedra densities to our single 𝐴/𝐵 tetrahedron densities.

The former is proportional to the product of the latter but up to numerical coefficient account-
ing for the different multiplicities between the single and bi-tetrahedra charge configuration.
The general rule is to divide the bi-tetrahedron multiplicity by the product of the single tetra-
hedron multiplicities.¹ For example, there are 10/128 +− bi-tetrahedron states, but on a single

¹Vojtěch Kaiser, private communication
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tetrahedron only 4/16 correspond to a given single + or −monopole. So

𝑛+− =
𝑁+−
𝑁/2 =

10
128/⒧

4
16 ×

4
16⒭𝑛𝐴,+𝑛𝐵,− =

5
4𝑛𝐴,+𝑛𝐵,−

. Similarly, there are 3/128 ∅+
+ bi-tetrahedron states, but on a single tetrahedron 6/16 corre-

spond to an empty site ∅ and only 1/16 to a double monopole +
+ , so

𝑛∅++ =
3
128/⒧

6
16 ×

1
16⒭𝑛𝐴,∅𝑛𝐵,++ = 1×𝑛𝐴,∅𝑛𝐵,++

. The other coefficients are computed in a similar way.
Finally we perform the mean-field step where we introduce our mean-field parameters de-

fined in Equation (5.2.1) in place of the single tetrahedron densities. Every density of a given
monopole on a given sublattice involves its respective crystallization parameter 𝜙1,2. The only
quantity independent of any 𝜙 is the density of empty tetrahedra which is symmetric with re-
spect to 𝐴/𝐵 inversion so is replaced by 1−𝜌1−𝜌2. We obtain the following expression for the

97



5.2 Extendedmean-field theory of fragmented spin ices

entropy per tetrahedron:

�̄�(𝜌1,𝜙1,𝜌2,𝜙2) =
𝑆

𝑘𝐵𝑁
=−12⒧(1−𝜌1−𝜌2)

2 ln⒧8(1−𝜌1−𝜌2)
2

18 ⒭

+2𝜌1
(1+𝜙1)

2 (1−𝜌1−𝜌2) ln
⎛
⎝
8𝜌1 (1+𝜙1)2 (1−𝜌1−𝜌2)

12
⎞
⎠

+2𝜌1
(1−𝜙1)

2 (1−𝜌1−𝜌2) ln
⎛
⎝
8𝜌1 (1−𝜙1)2 (1−𝜌1−𝜌2)

12
⎞
⎠

+ 5
4𝜌1

(1+𝜙1)
2 𝜌1

(1+𝜙1)
2 ln

⎛
⎝
8𝜌1 (1+𝜙1)2 𝜌1 (1+𝜙1)2

10
⎞
⎠

+ 5
4𝜌1

(1−𝜙1)
2 𝜌1

(1−𝜙1)
2 ln

⎛
⎝
8𝜌1 (1−𝜙1)2 𝜌1 (1−𝜙1)2

10
⎞
⎠

+ 3
2𝜌1

(1+𝜙1)
2 𝜌1

(1−𝜙1)
2 ln

⎛
⎝
8𝜌1 (1+𝜙1)2 𝜌1 (1−𝜙1)2

6
⎞
⎠

+2𝜌2
(1+𝜙2)

2 (1−𝜌1−𝜌2) ln
⎛
⎝
8𝜌2 (1+𝜙2)2 (1−𝜌1−𝜌2)

3
⎞
⎠

+2𝜌2
(1−𝜙2)

2 (1−𝜌1−𝜌2) ln
⎛
⎝
8𝜌2 (1−𝜙2)2 (1−𝜌1−𝜌2)

3
⎞
⎠

+3𝜌2
(1+𝜙2)
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⎞
⎠

+3𝜌2
(1−𝜙2)

2 𝜌1
(1−𝜙1)

2 ln
⎛
⎝
8𝜌2 (1−𝜙2)2 𝜌1 (1−𝜙1)2

3
⎞
⎠

+𝜌2
(1+𝜙2)

2 𝜌1
(1−𝜙1)

2 ln⒧8𝜌2
(1+𝜙2)

2 𝜌1
(1−𝜙1)

2 ⒭

+𝜌2
(1−𝜙2)

2 𝜌1
(1+𝜙1)

2 ln⒧8𝜌2
(1−𝜙2)

2 𝜌1
(1+𝜙1)

2 ⒭

+𝜌2
(1+𝜙2)

2 𝜌2
(1+𝜙2)

2 ln⒧8𝜌2
(1+𝜙2)

2 𝜌2
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(1−𝜙2)

2 𝜌2
(1−𝜙2)

2 ln⒧8𝜌2
(1−𝜙2)

2 𝜌2
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2 ⒭⒭

(5.2.5)

Such an expression requires some sanity checks:

• For a vacuum of monopoles, �̄�(0,0,0,0) = ln⒧ 32 ⒭ ≈ 0.405 per tetrahedron is the same en-
tropy as obtained with the simple Pauling approximation;

• For a crystal of monopoles, �̄�(1,1,0,0) ≈ ln(1.15) = 0.203 has a non zero value contrary
to the single tetrahedron approximation. Our approach allows to consider the intrinsic
entropy of the fragmented phase, despite giving only a qualitative approximation to the
true value of about ln(1.3);
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5.2 Extendedmean-field theory of fragmented spin ices

• For a crystal of double monopoles, �̄�(0,0,1,1) ≈ −1.04. This is erroneous because the
entropy cannot be negative, and the entropy of this particular state is known to be 0.
This artefact arises for the same reasons as in the single tetrahedron entropy discussed
in Chapter 1, that is when the number of microstates 𝑊 is too small and Stirling’s ap-
proximation breaks down. It indicates that our entropy approximation cannot be trusted
anymore when the density of double monopoles becomes large.

• Even when discounting the double monopoles and setting 𝜌2,𝜙2 = 0, we recover an ex-
pression which is more complex than the simple lattice gas in Chapter 1 and includes
some pair correlations.

5.2.3 Grand potential and obtention of the phase diagram

Going back to the case of spin ice we can impose some restrictions on the expression of the
enthalpy in Equation (5.2.2). From the nearest-neighbor model of spin ice we know that iso-
lated double monopoles have an energy creation cost 4 times that of a single monopole, so we
choose �̄�2 = 4�̄�. Additionally, the origin of the staggered chemical potential as a molecular field
from the Ir4+ ions forces Δ̄2 = 2Δ̄. Thus, we will numerically minimize the following free energy
to obtain a complete phase diagram of spin ice.

Ω̄ ⒧𝜌1,𝜙1,𝜌2,𝜙2⒭ = −12 ⒧𝜌1𝜙1+2𝜌2𝜙2⒭
2+�̄�(𝜌1+4𝜌2)− Δ̄(𝜙1+2𝜙2𝜌2)− �̄� �̄�(𝜌1,𝜙1,𝜌2,𝜙2) (5.2.6)

This function is not straightforward tominimize numerically as the parameters are constrained
by strongbounds (𝜌 ∈ [0,1],𝜙 ∈ [−1,1])where the globalminimum is often located. As such any
single pass of a minimization algorithm has a high chance of getting stuck in a local minimum,
and incorrectly identify the phase boundaries at low temperature. Not finding any elegant so-
lution to this issue, we decided to brute-force the problem by employing the Basin-hopping
method [Wales et al., 1997]: it consists in performing multiple local minimization from ran-
domly chosen starting points, and accepting the new minimum according to a Metropolis-like
criterion. The only downside of this approach is the extended computation time. Using SciPy,
we found that the L-BFGS-B algorithm worked best for the local minimization step and per-
formed the global minimization to obtain the following phase diagrams, where we plot our or-
der parameter: the crystallized density of monopoles 𝜌1𝜙1+2𝜌2𝜙2.

In Figure 5.2.1 (left) we show the phase diagram in the (�̄�, �̄� ) plane obtained at Δ̄ = 0. We
recover a qualitative feature of what is expected for the dumbbell model phase diagram: a low
density fluid phase (spin ice, in black) for �̄� > 0.5, and a crystal of double monopoles (in yel-
low) for lower �̄�, separated by a line of second-order transitions at temperatures �̄� above 0.25
approximately. Interestingly, we find a small intermediate region of stability for the crystal of
(single) monopoles (in purple) below this temperature, which is not expected in the dumbbell
model [Guruciaga et al., 2014]. It does however exist in the Blume-Capel 𝑆 = 2 model [Lara et
al., 1998]. We think that its existence in our model is a result our the erroneous entropy given
to the double monopole crystal: because its value is so low, it loses out in the competition with
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Figure 5.2.1: Density of crystallized monopoles as a color scale, for Δ̄ = 0 (Left) and Δ̄ = 0.8
(Right)

the single monopole crystal apart from at the lowest temperatures. This artefact can however
be tuned out of our model by changing the ratio �̄�2/�̄�1 away from 4 towards lower values.

Contrary to what was anticipated in Ref [Raban, 2018], we notice that the temperature of the
critical end point between the fluid phase is lower (at ≈ 0.23, corresponding to 𝑇 = 𝑢(𝑎)𝛼�̄� ≈
1.1K) thanwhatwasobtainedwithout the inclusionof themonopole crystal residual entropy (≈
0.33, see Figure 1.2.7). Indeed it was expected to stabilize this phase more and push the mean-
field critical point to even higher temperatures. We believe that this is thanks to the fact that
our approach favors the formation of pairs from a purely entropic viewpoint, as detailed above,
which favors themelting of themonopole crystal phase throughdefects. Therefore this enabled
us to include pair correlations without investigating the full effect of the dipolar interactions
between charges. This is themain limitation of our analysis: the long range dipolar interactions
only contribute through the − 1

2 ⒧𝜌1𝜙1+2𝜌2𝜙2⒭
2 term. In the fluid phase, or when defects start

to proliferate, they are mostly ignored because 𝜌1𝜙1+2𝜌2𝜙2 is close to 0. As a comparison, the
temperature of the critical point found in Dumbbell model simulations is about �̄� ≈ 0.07 or
𝑇 ≈ 400mK

In Figure 5.2.1 (right) we show the phase diagram for Δ̄ = 0.8. As expected we find that the
monopole crystal now occupies an extended region of the phase diagram. Each of the first
order transition boundaries between the various ground states is terminated by a critical point
where a second-order transition occurs. The most interesting feature is the fact that the lines of
first order transition between phases are not vertical. In fact this is what is expected from the
Clausius-Clapeyron relation presented in Equation (1.2.32) when the low-temperature phases
have different entropies. The spin-ice / monopole crystal phase boundary is nearly vertical, as
expected from the relatively low difference in entropy, but the double / singlemonopole crystal
boundary should be steeper, again because of the erroneous value of the double monopole
crystal entropy. Fromall this discussion, we conclude that our approximation of the free energy
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5.2 Extendedmean-field theory of fragmented spin ices

should be most satisfactory when computed as far as possible from a phase boundary.
We believe our approach could be extended to include the last dimension of fragmentation:

the harmonic field and the overall macroscopic magnetization. Because the bi-tetrahedra unit
cell breaks the symmetry along a [111] cubic symmetry it could indeed be used to include the
effect of the magnetic field along this direction. This would require introducing the [111]mag-
netization as a new order parameter, and further decomposing the 128 bi-tetrahedron states in
the entropy according to which magnetization they have. This will remain outside the scope of
this work.

5.2.4 Computation of observables when moving through the phase diagram

Keeping inmind this limitation,wewould like toaddsomeexperimental relevance toourmodel
by computing the two observables we will study under pressure, namely the specific heat and
the density of crystallized monopoles. We want to simulate how they will change with parame-
ters (�̄�), Δ̄modified under pressure. The chemical potential �̄� represent the order of magnitude
of the interactions in the system. So if it increases, we can expect the peak of the specific heat, as
well as the temperature below which the ordered moment arises, to increase accordingly. Here
we want to investigate another effect: how do the observables of a fragmented phase change
when Δ̄ is modified at fixed �̄� and the system changes phases. We will start deep within the
monopole crystal phase at �̄� = 1.2, Δ̄ = 1.0 and decrease Δ̄ to go towards the spin ice phase. In
order to avoid numerical problems we will not run the calculation close to the phase bound-
aries.
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Figure 5.2.2: (left) ̄𝐶 /�̄� and (right) density of crystallized monopoles as a function of tempera-
ture, for various Δ̄ at �̄� = 1.2. For Δ̄ > 0.75 (< 0.75) the system is in the monopole crystal phase
(in the spin ice phase respectively)

The specific heat is calculated from the equilibrium entropywith ̄𝐶 /�̄� = 𝜕�̄�/𝜕�̄� . As the phase
boundaries for Δ̄ ≠ 0 are nearly vertical, no phase transitions appear when doing temperature
sweeps. Instead we find a broad bump corresponding to the proliferation of defects. But it can
also be affected by the presence of a phase boundary even at an inaccessibly low temperature,
as shown in Figure 5.2.2 (left). On this graph we plot ̄𝐶 /�̄� as a function of temperature, for a
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fixed �̄� = 1.2 and various Δ̄. As Δ̄ gets below ≈ 0.75 the system transitions from a monopole
crystal to a spin ice, and the change of ground state can be spotted in two ways. First, the value
of the maximum of ̄𝐶 /�̄� (and overall area under the curves) diminishes, because the spin ice
phase has a higher residual entropy. Second, the position of thismaximum is greatly influenced
by the critical point atmuch lower temperatures. The closerwe probe to the critical Δ̄, the lower
in temperature the maximum is; as Δ̄ is decreased far from the critical value the location of the
maximum increases again.

In Figure 5.2.2 (right) we plot the density of crystallized monopoles 𝜌1𝜙1 +2𝜌2𝜙2 which we
chose as an order parameter. This quantity is proportional to the ordered all-in / all-out mo-
ment (of the Γ3 representation). The graph shows a sudden change in the zero temperature
value which defines a phase change. But even at temperatures an order of magnitude higher
than the critical point, (�̄� > 3) we can see that the ordered moment is slightly suppressed as
the staggered chemical potential decreases. At the end of this chapter, we will present data
from measurements of these two observables measured under pressure, which we will try to
interpret

5.3 AC calorimetry at ambient pressure

Before discussing the more complex pressure experiments, we want to characterize the behav-
ior of Dy2Ir2O7 in an AC specific heat measurement. The measurement was performed at Insti-
tut Néel by Thierry Klein and Christophe Marcenat.

5.3.1 Experimental setup and thermal model

The specific heat is often measured with the goal of probing phase transitions, where they ap-
pear as sharp peaks. However as shown in the previous section, there are few possible phase
transitions as a function of temperature in the case of fragmented spin ices, and so the entry
into the spin ice or monopole crystal regimes is rather characterized by a broad feature. There-
fore such materials require a more detailed thermal model than the simple Equation (2.2.5).

In Ref. [Michon, 2017], Bastien Michon validated a more refined model where the heater
and thermometer are connected only by a finite internal thermal leak 𝐾𝑖. Furthermore, it also
considers the possibility of a thermal decoupling of the sample itself: the sample assembly is
divided into the addenda from the sample assembly and the actual sample. 𝐶add and𝐾𝑐 are the
addenda specific heat and the thermal leak to the sample respectively. Finally the assembly is
connected to the thermal bath with a thermal leak 𝐾𝑒. This model is pictured in Figure 5.3.1.
The authors solved the thermal model and found that the temperature oscillations at the ther-
mometer do not involve the𝐾𝑖 thermal leak, and can be written in a simple form similar to the
standard model:

𝑇𝑎𝑐 =
𝑃𝐴𝐶

𝐾𝑒𝑓𝑓 +2𝑗𝜔𝐶𝑒𝑓𝑓
(5.3.1)

which introduces effective heat capacity and thermal conductivity that are a mix of the true
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Figure 5.3.1:Thermal model used to describe the AC measurement and sample decoupling

specific heat of the sample 𝐶𝑠 and 𝐾𝑐:

𝐾𝑒𝑓𝑓 =𝐾𝑒 +𝐾𝑐(1−𝛽(𝜔))
𝐶𝑒𝑓𝑓 =𝐶add+𝛽(𝜔)𝐶𝑠

with 𝛽(𝜔) = 1
1+ (2𝜔𝐶𝑠/𝐾𝑐)2

(5.3.2)

This model highlights the fact that above a certain frequency, the sample cannot be detected
anymore because it becomes decoupled. However using a frequency too low results in more
noise, as the optimal working point of the lock-in amplifier is to have 𝜙 around 45∘, where
𝜔𝐶𝑒𝑓𝑓 and 𝐾𝑒𝑓𝑓 are of the same order of magnitude. However this model in itself cannot say
where the decoupling originates from: it could come from the assembly compound having a
small conductivity, or from the sample itself having a small conductivity or some slow degrees
of freedom.

In the custom setup at Institut Néel, this experiment is connected to a 3He sorption pump
allowing to measure down to 300 mK. A magnetic field can be applied, and the entire setup
can be rotated perpendicularly to the magnetic field. The sample is a cut of a single crystal of
Dy2Ir2O7to a size of about 150×150×30 𝜇m, originally used for the experiment under pressure.
It is stuck to the experimental chip with a bit of Apiezon N grease. Its mass was too small to be
measured directly with the scales available at the laboratory, and in the cutting process we also
lost any information on the crystalline orientation.
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5.3.2 Evidence of an intrinsic thermal decoupling in Dy2Ir2O7

In Figure 5.3.2 we show the effective specific heat 𝐶𝑒𝑓𝑓 divided by temperature, extracted from
the temperatureoscillationswithEquation (5.3.1). Wemeasured its specificheatbetween300mK
and 4 K, for fields of 0, 1 and 3 T and two frequencies for each field. We compare the AC mea-
surements to one done at zero field in Ref. [Cathelin et al., 2020] with the relaxation method
on the commercial PPMS instrument. By scaling the curves at zero field to match the PPMS
measurement, themass of our small crystal can be estimated to be about 5 𝜇g. We observe that
for all fields, the effective specific heat at a higher frequency is markedly lower than that at a
lower frequency. This could be a sign of the decoupling discussed above.
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Figure 5.3.2: C𝑒𝑓𝑓/T as a function of temperature, for three fields (blue: 0T, green: 1T and red:
3T) and two frequencies by field (dark or light hue). The black crosses corresponds to the data
measured on another crystal on the PPMS.

To test this hypothesis, we performed measurements at zero field as a function of frequency
at temperatures below 1K, and measured the effective specific heat𝐶𝑒𝑓𝑓 and thermal leak𝐾𝑒𝑓𝑓,
shown in Figure 5.3.3 with the square points. We then fitted these measurements using the
model in Equation (5.3.2), with a thermal leak to the sample 𝐾𝑐, and a sample specific heat 𝐶𝑠
that do not depend on frequency. The square are the measurements and the dotted lines the
best fit by the thermal model.

The agreement between the data points and the model means that we can make sense of
the measurements by considering a thermal decoupling of the sample and introducing a finite
thermalization time 𝜏𝑐 = 𝐶𝑠/𝐾𝑐 at each temperature. It is interesting to note that the PPMS
measurement in Figure 5.3.2 deviates from the low frequency data at 0 T below≈ 1.1𝐾 , indicat-
ing that the sample may have decoupled in the PPMS measurement as well. However there are
two possible physical origins to the decoupling:
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Figure 5.3.3: Effective specific heat (left) and thermal leak (right) at several temperatures at
zero field. The squares are the measured data points and the dashed lines corresponds to the
fit by the thermal model in Equation (5.3.2).

• The first one is the most common: below a certain temperature, the conductivity of the
grease becomes too small compared to the specific heat of the sample and the entire sam-
ple decouples from the experimental apparatus;

• The second one depends on the sample’s intrinsic relaxation times. If some degrees of
freedom of the material become decoupled from other and have diverging relaxation
time, the entire sample cannot be considered at thermal equilibrium above a certain fre-
quency.

In order to find the correct scenario, we performed another experiment on the same sample
with another material to ensure a better contact between the sample and the chip. We chose
to use General Electric Varnish, thinned in ethanol in order to deposit a minimum amount on
the sample. It has a thermal conductivity about 30 times that of Apiezon N grease at 1 K [Cry-
otronics, 2022], so we should expect a large increase in the thermal leak to the sample 𝐾𝑐. In
Figure 5.3.4 we show the measurement of 𝐾𝑐 estimated by fitting the model for both the mea-
surements donewith grease (in blue) or the varnish (in green). To get a point of comparisonwe
plot the values of 𝐾𝑐 obtained for a measurement of UTe2 with grease. This material is a very
good metal at low temperature and can be assumed to be intrinsically coupled to the exper-
imental chip. The first observation is that our sample of Dy2Ir2O7 is relatively badly coupled
compared to UTe2 below 1 K, with a thermal contact 3 times smaller at 300 mK. More impor-
tantly, this difference is not greatly reduced in the measurement done with GE varnish. This
proves that the thermal decoupling comes from the sample and not the thermal contact by
which it is connected to the experimental assembly.

5.3.3 Magnetic nature of the thermalization time

Theintrinsic thermaldecoupling couldoriginate fromthemagneticdegreesof freedom, or from
other material properties. In the case of a spin ice like pyrochlore, we can imagine a situation
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Figure 5.3.4:𝐾𝑐 estimated by the model as a function of temperature at zero field, for both the
Apiezon N grease (blue) and GE varnish (green).

where the sample’s lattice is still coupled, but the magnetic degrees of freedom, which make up
the majority of the specific heat at these temperatures, cannot thermalize fast enough [Jaubert
et al., 2011]. It has been shown that below about 700mK, spin ice materials stay frozen into the
same spin-ice configuration, withmetastable pairs ofmonopoles called non-contractible pairs
[Raban et al., 2019]. First of all, we notice in Figure 5.3.2 that the specific heat value at which
the thermal decoupling is visible varies a function of the field; this would not be expected if the
decoupling came from non-magnetic degrees of freedom.

To get a more precise answer, we have performed the same frequency measurements as in
Figure 5.3.3 with fields of 1 and 3 T. We show the resulting decoupling time 𝜏𝑐 = 𝐶𝑠/𝐾𝑐 in Fig-
ure 5.3.5. As the field increases, the absolute specific heat, associated at these temperatures
to the magnetic degrees of freedom, decreases as well. If the decoupling was caused by non-
magnetic degrees of freedom, we would expect𝐾𝑐 to change as well in order to keep the decou-
pling time more or less constant as a function of the field. However this is not what we observe:
𝜏𝑐 decreases evenmore than the specific heat, providing stronger evidence that the decoupling
is caused by the slow magnetic degrees of freedom.

For spin ice like pyrochlores, it has been shown that the magnetic properties, and especially
the specific heat, are strongly anisotropicwith regard to the direction of an applied field [Tabata
et al., 2006; Ramirez et al., 1999; Yoshida et al., 2004]. This is due to the differentmagnetic states
reached under different field directions as shown in Figure 1.1.8. So as a final experiment, we
will study how the thermal leak to the sample 𝐾𝑐 changes when rotating the sample perpen-
dicularly to an applied field, which is possible in the setup. Unfortunately, the sample is not
oriented due to its size and the way it was prepared. With applied field of 1 T, we found that the
specific heat varied with a period of about 90∘. Thus we chose to compare 𝐾𝑐 between two an-
gles where the absolute difference in specific heat is the largest; this amounts to a 45∘ rotation
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Figure 5.3.5: Decoupling time 𝜏𝑐 as a function of temperature, for various fields. The shaded
areas correspond to the relative uncertainty in the fit of the model.

perpendicular to thefield. The result is shown inFigure 5.3.6. Weobserve that𝐾𝑐 varies asmuch
when rotating the sample relative to the field as when changing the assembly compound. This
indicates that the thermal leak to the sample is influenced in part by the orientation relative to
a magnetic field.

To conclude,wehavedemonstrated that inDy2Ir2O7 below1K the slowdynamics of themag-
netic degrees of freedom lead to a partial thermal decoupling of the sample in AC specific heat
measurement. This result should have a precautionary use as a reminder to choose the slowest
available frequency or longest relaxation time when measuring the specific heat of fragmented
spin ice compounds, but is also interesting in itself. Indeed it is a indirect signature that in
these materials the magnetic excitations participate significantly to the thermal conductivity,
and that as the temperature is lowered the magnetic relaxation times diverge and it becomes
difficult to fully thermalise the sample.

This picture is consistent with direct measurements of the thermal conductivity on spin ice
materials. In Refs [Toews et al., 2013] the authors measure the thermal conductivity of a thin
single crystal of Ho2Ti2O7grown along ⟨111⟩, under a field applied in the same direction. They
measure the phononic conductivity by applying a strongmagnetic field (> 6T)which polarizes
the system into an 3 in / 1 out state. They then compare the high-field values to the zero-field
one. Theyfind thatmonopoles excitations are responsible for an increase in thermal conductiv-
ity below 0.6 K,where they are in low enoughnumber. But as their number grows they provide a
significant scattering mechanism for the phonons and so decrease the conductivity compared
to the high-field value. Interestingly, under application of a moderate field (< 0.5 T) so that the
system is in thekagome icephase, thefirst effectdisappearsbut the second remains. This canbe
explainedby the fact that in this statemonopoles are confined to the kagomeplanes perpendic-
ular to ⟨111⟩, and therefore do not contribute themselves to the thermal conductivity, but can
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Figure 5.3.6: 𝐾𝑐 estimated by the model as a function of temperature with an applied field of
1 T, for both the Apiezon N grease (blue) and two angles for the GE varnish (green and red).

still scatter the phonons. In Refs [Kolland et al., 2012; Kolland et al., 2013; Klemke et al., 2011]
the authors performed similar experiments on Dy2Ti2O7 and observed evidence of monopole
heat transport. Such results support the continuation of the AC specific heat measurements
presented in this section on Ho2Ti2O7 or Dy2Ti2O7 samples. Indeed in these compounds the
thermal decoupling caused by the freezing of the magnetic degrees of freedom is expected to
be larger because of the lower thermal conductivity compared to Dy2Ir2O7.

5.4 Measurements of fragmented spin ices under pressure

In this final section we present our results for two measurements under pressure: specific heat
for Dy2Ir2O7 and neutron diffraction for Ho2Ir2O7.

5.4.1 AC specific heat under pressure

Thespecific heat ofDy2Ir2O7 under pressurewasmeasured at CEAwithDaniel Braithwaite. The
experimental setup is composed of a helium bellows and levers, mounted at the end of a dilu-
tion cane, that can be loadedwith diamondpressure cells going up to 10GPa. The experimental
assembly on the diamond table is shown in Figure 5.4.1 (left). The sample (which is the same
as the one in the ambient pressure AC measurements presented before) is at the center, be-
tween a heater on top and a thermocouple on the bottom, assembled with a conductive silver
lacquer. The thermometer is built from a resistive contact between two gold wires, and a gold
wire and a AuFe0.07% alloywire are pressed together to form the hot junction of a thermocouple.
The heater is a resistive contact between two gold wires with a small quantity of black Stycast
epoxy. The gasket between the two diamonds is filled with argon that acts as a hydrostatic pres-
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5.4 Measurements of fragmented spin ices under pressure

suremedium. Thepressure ismeasured in situ by tracking the fluorescence line of a small piece
of ruby placed in the cell.

Figure 5.4.1: (left) Sample assembly on the diamond table. (right) Schematic view.

The thermal model of such an experiment is expected to be different from the one in Equa-
tions (5.3.1) and (5.3.2) [Méasson, 2005]. Namely, there is a direct thermal contact between the
thermal bath, the heater and thermocouple. Additionally, the various thermal losses cannot
be characterized beforehand as they will change with every experimental assembly. At low fre-
quency, the signal is very low because of the more important losses to the environment; while
at high frequency the signal is very low because the sample becomes decoupled. An important
assumption is the that the losses to the environment should not depend significantly on the
pressure. This makes it possible to choose one frequency of temperature oscillations for the
whole experiment, chosen by searching for the maximum in the frequency response. We chose
a value of 277 Hz. This frequency is rather high considering the sample’s intrinsic relaxation
times shown in Figure 5.3.5. This pressure experiment was realized first, before having the evi-
dence for a decoupling in AC calorimetry at ambient pressure. However, it would not have been
possible to measure with a frequency of a few Hz in the pressure experiment due to the large
losses to the environment.

Similarly, the amplitude of the oscillations is tuned so that the sample is able to thermalize at
low temperatures, while still having a workable signal over noise ratio. We used a signal to the
heater of amplitude 0.11 V. The resistance of the heater can be measured in real time, in order
to normalize the temperature oscillations by the power sent. The signal is sent to several pre-
amplifiers, then the temperature oscillations and the phase difference relative to the square of
the applied voltage is measured with a lock-in amplifier. Unfortunately this means that we do
not know the value of the phase difference in situ.

The temperature oscillations per unit of power and the raw phase difference at zero field are
represented on figure 5.4.2. To compute an effective specific heat, one must interpret the data
relative to a particular thermal model. In this regard, the raw values of the phase difference
make little sense. They are influenced by a variety of parameters, including the nature of the
amplifiers. First, we assume that the phase at all pressures must have the same small value at
5 K. This is where the sample specific heat 𝐶𝑠 should be low and where the losses to the envi-
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Figure 5.4.2: (left) Amplitude of temperature oscillations per unit of power and (right) Raw
phase difference at zero field

ronment will be high. Therefore the ratio 𝐶𝑠/𝐾 representing the thermalization time should be
the smallest. The general shape of the phase curves can therefore be explained as follow:

• Below 1 K, the sample’s specific heat is low, and at the frequency of 277 Hz we use to
measure, its magnetic degrees of freedom most likely out of equilibrium. The losses to
the environment are comparatively high, so we expect the phase difference to decrease
in absolute value as the temperature is decreased.

• Between about 1 and 2 K, the sample is coupled well because its specific heat is bigger
than the thermal leak, and so the phase difference has a maximum in absolute value;

• Above 2 K, the sample becomes decoupled because its specific heat decreases as the ther-
mal conductivity of the leak increases, and so the phase decreases in absolute value as
well.

We also performed measurements under a 4 T field, but have not been able to analyze it in the
same way. The corresponding temperature oscillations and raw phase difference are shown on
figure 5.4.3.

As such we focus on the zero field measurement, which we will try to compare to the low
frequency measurement made on the same sample. We chose to shift all the phases curves to
a common reference at 5 K, then use the simple Equation (2.2.5) to compute the specific heat.
The best agreement with the ambient pressure data was found with a reference of −15∘. The
corresponding phase differences and 𝐶/𝑇 data are shown in Figure 5.4.4. We notice that 0 and
0.3GPabelow1.3K, the effective𝐶/𝑇 computed thisway is significantly larger than theambient
pressure reference shown in black. In addition, the 0 GPa data has a strange frequency shift
between 1.5 and 4K that disappeared as soon as a small pressurewas applied. Hencewebelieve
that the 0 GPa data is spurious, as the sample was probably not well stuck to the experimental
assembly. With respect to the large values measured at low temperature, we think that they
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Figure 5.4.3: (left) Amplitude of temperature oscillations per unit of power and (right) Raw
phase difference at 4 T

may be an artefact of the simple thermal model we have used. For example, it is possible that
at these temperatures the detected temperature oscillations are not from the sample but from
part of pressure medium itself, leading to an overestimated contribution [Méasson, 2005].

Therefore, we focus on temperatures above about 1.3 K. Our data analysis suggests that the
pressure decreases the specific heat, andmoves its peak to higher temperatures. Consequently,
the magnetic entropy released on heating seems to decrease. This is similar to the case we have
investigated with our mean-field computation in Figure 5.2.2 (left), where the staggered chem-
ical potential decreases at fixed �̄�. Our measurement could be a signature of a change of phase
from a monopole crystal to a spin ice phase under pressure, but remains a preliminary result.
Newmeasurements of the specific heat under pressure with a better choice of frequencywould
be needed to draw a more definitive conclusion.

5.4.2 Neutron diffraction under pressure on Ho2Ir2O7

We performed neutron diffraction under pressure on the D20 instrument at ILL. About 50 mg
of Ho2Ir2O7 powder wasmounted into a boron nitride anvils pressure cell, capable of pressures
up to 10 GPa. The pressure medium is a 4 ∶ 1 mix of methanol and ethanol. The pressure cell
is in a standard 4He cryostat and can go down to 5 K. The pressure is measured in situ with a
small piece of lead added to the sample, whose lattice parameter is calibrated as a function
of pressure. The experiment was done in collaboration with Sylvain Petit and ran by Thomas
Hansen.

Ho2Ir2O7 has an all-in / all-out ordered moment, belonging to the Γ3 representation. At am-
bient pressure, it starts to appear below 20 K and saturates below 3 K at about 5 𝜇𝐵 , half of the
single-ion Ho moment [Lefrançois et al., 2017]. In our experiment, we could not go below 17 K
at ambient pressure due to a temperature regulation issue. In Figure 5.4.5 (left) we show the
diffraction spectra at 5 K for three pressures: 4, 8 and 10 GPa with 3 hours of counting time.
They exhibits three peaks: (220), (311) and (222) of which the first two are magnetic and the last
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Figure 5.4.4: (left) Phase differences as a function of temperature for various pressures, offset
so that they all are at −15∘ at 5 K. (right) Effective 𝐶/𝑇 using the adjusted phase differences.
The data was scaled to match as well as possible with the lowest frequency data discussed in
the previous section, shown in black.

one is only nuclear in this representation. We have offset the spectra to match the background
but, we see that the signal from the sample is overall lower as the pressure is increased. This
caused by the sample volume decreasing and the environment background signal increasing
with pressure. We have also measured at higher temperatures of 7,10,15 K but for a shorter
duration because of time constraints.

In order to extract the value of the orderedmoment, we have used twomethods. On our side,
we have fitted the signal with a Rietveld refinement using the FullProf Program. Sylvain Petit
computed the differences of the spectrawith a reference signalmeasured at 80K.He then fitted
the remaining magnetic peaks manually, comparing their amplitude with that of the nuclear
peaks, to get a value of the moment. In Figure 5.4.5 (right) we show the results of the two analy-
sis methods. The two methods are in agreement at the lowest temperature of 5 K where we had
the best statistics. For the intermediate temperatures, which were noisier because of a shorter
counting time, the FullProf refinement tends to overestimate the ordered moment. The differ-
ences method seems the most sensible, especially for the 10 GPa data. The ordered moment
wemeasured at ambient pressure at 17Kwas in agreement with the literature [Lefrançois et al.,
2017].

Similarly to the case of Dy2Ir2O7under pressure, these measurements seem to show that the
pressure suppresses the fragmented monopole crystal phase and pushes the system towards
the spin ice phase, with a smaller ordered moment; however this result remains preliminary. In
order to give a more definitive answer, we have a new diffraction experiment planned on D20
at ILL at the time of writing. It will use diamond anvils pressure cells which should be able to
go to 20 GPa, with a longer beam time.
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Figure5.4.5: (left)Diffraction spectra under pressure focusedon the two lowest anglemagnetic
peaks ((220) and (311)). (right) Ordered moment as a function of temperature for all pressures,
obtained with two different methods discussed in the text.

5.5 Conclusions

In this chapter, our goal was to explore the fragmentation phase diagram from both a theoret-
ical and experimental point of view. We have produced an extension of a mean-field theory
of fragmentation centered around a combinatoric computation of the entropy for a set of two
adjacent tetrahedra. This allowed us to numerically minimize the grand potential for the en-
tire fragmentation phase diagram and obtain the qualitative features only seen in Monte-Carlo
simulations up to now. Since the actual phase transitions are located at very low temperatures
(about 400mK),we have focused on the signatures of a phase change in experiments that could
appear at higher temperatures. We computed the specific heat andorderedmoments as a func-
tion of temperature, and showed that a ground state change can be seen qualitatively at tem-
peratures of a few Kelvins.

The measurement of specific heat under pressure is done with an AC method which had not
been used before on spin ice like materials. We have characterized the behavior of Dy2Ir2O7
in this type of experiment and shown that the choice of frequency is crucial to get an accurate
measurement. Due to the large magnetic relaxation times at low temperature, the sample can
be effectively decoupled from the measurement even with a perfect thermal contact with the
chip. This effect is an indirect signature of the fact that magnetic excitations participate to the
thermal conductivity in spin ice materials.

Finally, we have performed challenging measurements of the specific heat and ordered mo-
ment under pressure, on Dy2Ir2O7 and Ho2Ir2O7 respectively. In both cases, the complexity
inherent to pressure experiments prevented us from drawing strong conclusions. Neverthe-
less, the preliminary results seem to point towards the same physics: the application of pres-
sure seems to suppress the partially ordered fragmented phase and push towards a less ordered
spin ice state. This motivates further experiments under pressure, like the measurement of the
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AC susceptibility which can be performed at dilution temperatures at CEA-Pheliqs.
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General conclusion

This thesis has been centered around the concept of magnetic fragmentation, its theoretical
consequences and its experimental signatures. It is still a relatively new concept in the field of
frustrated magnetism and we have strived to show its merits in analyzing data, shining a new
light on known magnetic structures and testing paradigms of statistical mechanics. Here we
want to provide some perspectives for further investigations.

InChapter 3wehaveapplied the fragmentation formalism to theanalysis of neutrons scatter-
ing data. It allows for a straightforward mapping as each fragment of the decomposition gives
a separate contribution to the neutron scattering intensity. We have used this understanding
to design a measurable order parameter in the case of a transition between two ground states
of quantum kagome ice. But the low energy scales associated with quantum spin ice have so
far made identification of experimental systems extremely difficult. One promising example
is Pr2Hf2O7 [Sibille et al., 2018] which shows some evidence of a quantum spin liquid ground
state from inelastic neutron scattering of single crystal samples. Experiments in a [111] field
could be of interest in the quest to observe the two-dimensional quantum phases predicted
in Ref. [Bojesen et al., 2017] and discussed in detail above. The stacked kagomé layer mate-
rial Ho3Mg2Sb3O14 also appears to show quantum corrections to a classical fragmented mag-
netic structure closely related to the KII phase of kagomé ice [Dun et al., 2020], although for the
moment only powder samples exist and the synthesis of pure samples appears challenging. Ex-
tendingour analysis to the caseof apowderwouldbeof interest, as the signal from thequantum
spin−𝑃 phase would be distinct from the alternative quantum phases predicted by Dun et. al..
From a more general point of view, our work motivates a classification of fragmented phases
and their respective experimental signatures.

In Chapter 4, we have performed a detailed study of theHo2Ru2O7 pyrochlore. Ourmeasure-
ments of the specific heat and ordered moment are in agreement to propose that the ground
state of this compound is fragmented in a new way. The ordered fragment is ferromagnetic,
contrary to the antiferromagnetic partial moment in pyrochlore iridates. Futhermore, AC sus-
ceptibility measurements showed the existence of two modes with separate relaxation times,
which coexist at the transition. We do not know yet if these two modes can be associated with
different kinds of magnetic correlations in the system, and further neutron diffraction and in-
elastic scattering at dilution temperatures are planned. The search for exotic fragmentation in
Ising pyrochlores could turn its focus toward othermaterials likeDy2Ru2O7 orNd2Ru2O7 [Rams
et al., 2011; Ku et al., 2018] to see if some experimental results are better taken into account in
a fragmentation picture. Moreover, there exists other pyrochlore oxides where the B-site is oc-
cupied by a magnetic atom, like the molybdenate pyrochlores, which have not been studied at
low temperatures [Gardner et al., 2010].



5.5 Conclusions

In Chapter 5 we have combined theory and experiments to explore the existing phase dia-
gram of fragmentation with pressure. We have managed to write an extension of a mean field
theory taking into account the entropy of the fragmented phase and the double monopoles,
and made use of it to compute observables at different points of the phase diagram. We then
measured the ordered moment of Ho2Ir2O7 and the specific heat of Dy2Ir2O7 under pressure,
which were both challenging to analyze but pointed towards a suppression of the fragmented
phase under pressure, possibly crossing into the spin ice regime. In order to better understand
the behavior of Dy2Ir2O7 in an AC specific heat measurement, we performed an additional ex-
periment at ambient pressure. It showed that this compound can become intrinsically out of
equilibrium above a certain frequency because the magnetic relaxation times are large. This
warrants new experiments at a lower measuring frequency for Dy2Ir2O7 and going to higher
pressures for Ho2Ir2O7. However, we believe that the best candidate material to see the evo-
lution of fragmentation under pressure is Ho2Ru2O7, as its sharp transition at 1.55 K would be
much easier to track in specific heat or susceptibility measurements.
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