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Abstract
In a century defined by climate change and data abundance, combustion is moving towards
new opportunities created by the digital revolution. Large eddy simulations (LES) of full-
scale practical combustion systems are becoming tractable, but their predictive power hinges
on the accuracy of the subgrid-scale (SGS) models that account for unresolved turbulent com-
bustion physics. Deep learning (DL) has recently been used to train data-driven SGS models
that achieve excellent accuracy in a priori tests. Yet, there are still hardly any applications
of DL SGS models in LES of practical combustion systems. This work investigates three
elements that must be addressed to enable the adoption of deep learning in practical LES
of turbulent premixed combustion: evaluating DL models on high Reynolds test cases, en-
suring their ability to generalize beyond their training configuration, and implementing a
computationally efficient integration of DL models to high-performance LES solvers. Three
DL models that gradually include each of these elements are developed. They are based on
U-Net convolutional neural networks (CNNs) trained on downsampled filtered snapshots of
direct numerical simulations. First, a model for the total flame surface density is trained
on the R2 high Reynolds turbulent jet flame. Excellent a priori generalization to higher
Reynolds numbers and to LES snapshots is observed, and insights on the inner workings of
the model are provided. Second, a CNN model for the SGS variance of the progress variable
is trained on a statistically planar turbulent flame. With a Pfitzner source term formula-
tion and a beta probability density function closure, it is able to accurately predict a priori
the SGS variance and the filtered reaction rate on the R2 jet flame, thus demonstrating its
ability to generalize to new configurations. Third, the AVBP-DL coupling strategy is devel-
oped to enable DL models to be queried by the AVBP solver with negligible computational
overhead. Finally, the Masri vented obstructed explosion test case is used to test a posteri-
ori a CNN model for the SGS wrinkling factor trained on the statistically planar turbulent
flame. The model predicts the right peak overpressure, but this results from a compensation
between excessive wrinkling in the initial laminar phase and insufficient wrinkling in the crit-
ical turbulent propagation stage. Several attempts to correct this behavior are then explored.

Keywords: deep learning, large eddy simulation, subgrid-scale model, numerical combus-
tion.



Résumé
Dans un siècle défini par le changement climatique et l’abondance de données, la combustion
se dirige vers de nouvelles opportunités créées par la révolution numérique. Les simulations
aux grandes échelles (Large Eddy Simulations, LES) de systèmes de combustion à échelle
réelle deviennent réalisables, mais leur capacité prédictive se base sur la précision de modèles
de sous-maille (Subgrid-Scale, SGS) qui tiennent compte de l’activité de combustion turbu-
lent non résolue. L’apprentissage automatique profond (Deep Learning, DL) a récemment été
utilisé pour entraîner des modèles SGS basés sur les données qui atteignent une excellent pré-
cision lors de tests a priori. Toutefois, il n’y a toujours presque pas d’applications de modèles
DL SGS à des LES de systèmes de combustion industriels. Ces travaux s’intéressent à trois
éléments qui doivent être étudiés pour permettre l’adoption du DL dans des LES de combus-
tion turbulente prémélangée : l’évaluation de modèles DL sur des cas tests à haut Reynolds,
l’assurance de leur capacité à généraliser au-delà de leur configuration d’entraînement, et
l’implémentation d’une intégration efficace de modèles DL à des solveurs LES haute perfor-
mance. Trois modèles DL incluant graduellement chacun de ces éléments sont développés.
Ils ont basés sur des réseaux de neurones convolutionnels (Convolutional Neural Networks,
CNNs) U-Nets entraînés sur des instantanés filtrés et déraffinés de simulations numériques
directes. Premièrement, un modèle pour la densité totale de surface de flamme est entraîné
sur la flamme de jet turbulente à haut Reynolds R2. Une excellente généralisation a priori
à de plus hauts nombres de Reynolds et à des instantanés LES est observée, et des aperçus
sur le fonctionnement interne du modèle sont proposés. Dans un second temps, un mod-
èle CNN pour la variance SGS de la variable de progrès est entraîné sur une flamme plane
turbulente statistiquement stationnaire. Avec une formulation Pfitzner du terme source et
une fermeture beta densité de probabilité, il est capable de prédire a priori avec précision
la variance SGS et le taux de réaction filtré sur la flamme de jet R2, démontrant ainsi sa
capacité à généraliser à de nouvelles configurations. Troisièmement, la stratégie de couplage
AVBP-DL est développée pour permettre à des modèles DL d’être interrogés par le solveur
AVBP avec un surcoût de calcul négligeable. Enfin, le cas test d’explosion aérée et obstruée
Masri est utilisé pour tester a posteriori un modèle CNN pour le facteur de plissement SGS
entraîné sur la flamme plane turbulente statistiquement stationnaire. Le modèle prédit la
bonne supression maximale, mais ceci résulte d’une compensation entre un plissement exces-
sif lors de la phase initiale laminaire et d’un plissement insuffisant durant l’étape critique de
propagation turbulente. Plusieurs tentatives de correction de ce comportement sont ensuite
explorées.

Mots-clés: apprentissage automatique profond, simulation aux grandes échelles, modèle
de sous-maille, combustion numérique.
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1.1 Future challenges in combustion

The 21st century will present critical challenges for combustion. Mitigating the long-term
impact of climate change hinges on an urgent transformation of our societies. The rise
of global surface temperatures is one of the key physical markers of climate change, with
cascading consequences on natural catastrophes, sea level rise, biodiversity, and food security.
Increasing temperatures starting from the second half of the 20th century are fully explained
by higher concentrations of atmospheric greenhouse gases due to anthropogenic activities.
Quoting from the Summary for Policymakers of the Working Group I contribution on the
Intergovernmental Panel on Climate Change Sixth Assessment Report [256]:

This Report reaffirms with high confidence the AR5 finding that there is a near-
linear relationship between cumulative anthropogenic CO2 emissions and the global
warming they cause. Each 1000 GtCO2 of cumulative CO2 emissions is assessed
to likely cause a 0.27 ◦C to 0.63 ◦C increase in global surface temperature with a
best estimate of 0.45 ◦C.

Figure 1.1 illustrates this near-linear relationship, along with five shared socioeconomical
pathways for the future. Limiting the global surface temperature increase to 1.5 ◦C or 2 ◦C
calls for immediate action to curb cumulative CO2 emissions within a strict carbon budget.

Energy is the lifeblood of modern societies, providing power, heating, and transportation.
Yet, energy consumption accounts for three quarters of global greenhouse gas emissions [311].
Reducing global emissions must involve a prompt reform of the energy sector. In 2021, fossil
fuels still made up 80% of the energy consumed in the world (Figure 1.2). Faced with this
conundrum, it appears that improving the efficiency of the combustion systems involved in
oil-, gas-, and coal-powered energy processes is a fundamental concern for the near future.

Today, numerical simulations play a key role in the design of combustion applications as
they enable cost-efficient, rapid design iterations. They discretize turbulent reactive flows
on a computational grid and predict their evolution by iterative time advancement. Two
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Figure 1.1: Relationship between cumulative CO2 emissions and increase in global surface
temperature from 1850 to 2019. From IPCC 2021, Figure SPM.10 [256].

elements make numerical combustion particularly computationally intensive. First, all prac-
tical combustion applications are turbulent, since turbulence greatly enhances the rate of
energy transfer. Turbulent flows contain small-scale eddies that are central to the physics
of turbulent reactive flows. Second, combustion involves chemical reactions happening at
sub-millimetric scales. Accurate turbulent combustion simulations must therefore account
for complex physical phenomena that are several orders of magnitude smaller than the extent
of large combustion systems.

Large eddy simulations (LES) are able to fully resolve turbulent reactive flows up to the
resolution of the computational grid. They rely on subgrid-scale (SGS) models to reproduce
the effect of unresolved phenomena. Thanks to advances in hardware efficiency, numerical
methods, and SGS modeling, LES is becoming a viable solution to simulate large-scale com-
bustion systems. Still, most state-of-the-art LES computations are performed on reduced-
scale configurations [26, 59, 88, 224, 287] and industrial-scale cases are still out of reach.
Working towards the improvement of the computational efficiency of LES and the accuracy
of SGS models at coarse resolutions could unlock full-scale LES of realistic combustors.

The decarbonization of the energy sector will also create new opportunities for com-
bustion. To manage the intermittency of solar and wind power production, energy storage
infrastructure will need to grow. Electric cars are poised to dominate the passenger ve-
hicle market, with European and Californian bans on the sale of new internal combustion
engine cars from 2035. These applications rely on battery electricity storage, typically in
lithium-ion batteries today. Stationary battery storage is projected to grow from 2 GW in
2017 to 235 GW in 2030 [297]. Lithium-ion batteries are prone to thermal runaway, a sudden
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Figure 1.2: Breakdown of global energy consumption by source. From Our World In Data [312]
licensed under CC BY 4.0.

increase in temperature that can lead to spontaneous combustion [94]. Understanding this
mechanism via numerical simulations is paramount to the safety of transportation and power
generation.

Hydrogen is a carbon-free fuel that could play a vital role in a decarbonized society. An
electrical grid reliant on renewable energies will need long-term storage to tackle interseasonal
variations in power supply and demand. In peak production periods, transforming excess
electrical energy into chemical energy for long-term storage, a concept known as power-to-
gas, could be economically viable if renewable energy penetration reaches 80% [352]. In
applications like transportation or heating, hydrogen could be used for electricity storage via
fuel cells or be combusted directly, for instance by blending with natural gas. Hydrogen also
has the potential to decarbonize high-temperature industrial processes for iron, steel, and
cement production. But hydrogen is a dangerous molecule: it is prone to leaking, odorless
and colorless, gaseous at ambient conditions, very flammable, and burns extremely quickly
due to synergistic interactions with turbulence [27]. Numerical combustion could greatly
facilitate the design of safe storage and distribution systems for hydrogen.

Finally, combustion must adapt to a world where data is abundant. The availability
of sensor data and low-power computing devices encourages systematic data collection and
processing in combustion systems [298]. This could help detect problematic events like
combustion instabilities [42] or guide preventive maintenance. Direct numerical simulations
of reacting flows now commonly exceed billions of degrees of freedom [27, 209, 395]. Deep
learning is a promising solution to extract useful insights from these vast quantities of data.
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1.2 Deep learning

Deep learning introduces expressive statistical models (deep neural networks) that are able
to automatically learn complex patterns from extensive amounts of data. Early successes
of deep learning come from computer vision, where deep neural networks quickly became
the best-performing models for image classification [137, 176, 356]. Since then, advances in
deep learning have enabled complex vision tasks like generating photorealistic images [155],
learning useful representations from videos [18, 227], and rendering large 3D scenes [228].
Deep learning has been successfully applied to a wide range of data modalities. Deep neural
networks are now able to synthesize music [73, 145] and speech [306, 334] with long-term
coherence. Large language models with more than 1011 parameters like GPT-3 [38] and
PaLM [60] are trained on huge textual corpora, and produce convincing results in machine
translation, text summarization, question answering, and even code generation [50]. Large
language models have been shown to perform some form of reasoning on mathematical prob-
lems [189], and can explain answer questions with a step-by-step explanation of their logical
chain of thought [170]. Lately, multi-modal models that combine various data types have un-
locked increasingly complex tasks. Deep learning for speech recognition, the transformation
of an audio signal into language, is nearing human-level performance [293]. Models jointly
trained on text and image data [292] have opened new creative avenues for text-guided image
generation. In the past year only, Stable Diffusion [314], DALL-E 2 [299], Flamingo [5], and
Imagen [320] are some examples of generative models that have reached a quality and flexi-
bility in image generation approaching human-level abilities. As an example, an illustration
of the theme of this thesis generated by DALL-E 2 is shown in Figure 1.3.

Figure 1.3: Illustration generated by the DALL-E 2 [299] text-to-image generative model from the
prompt "Numerical simulation of an orange photorealistic turbulent flame with a neural network".

Deep learning is firmly on its way to accelerating scientific progress. AlphaFold deals
with the long-standing problem of predicting the 3D structure of proteins from their se-
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quence of amino acids significantly faster than traditional computational methods [154]. In
high-energy physics, deep learning is routinely used to analyze the enormous quantity of data
generated by particle colliders [124]. Deep neural networks can enhance weather forecasts
by accurately predicting precipitations within short time horizons [301]. Closer to the appli-
cations of this thesis, deep learning is seeing growing adoption in models for computational
fluid dynamics [80] and combustion simulations specifically [146].

1.3 Objective and organization of the thesis

This thesis is motivated by the following research question:

How can deep learning be applied to SGS modeling in practical LES of
turbulent premixed flames?

The organization of the thesis is summarized in Figure 1.4. Numerical combustion and
deep learning are two domains that are presented in Part I. Chapter 2 recalls the theoret-
ical foundations of large eddy simulations of turbulent premixed flames. Chapter 3 covers
the deep learning notions underpinning the multiscale convolutional neural networks used
throughout the thesis. Chapter 4 then explores the intersection between these two domains,
starting from a review of existing deep learning applications to numerical combustion. It
highlights three missing elements from the existing literature that are necessary to move
towards applying deep learning in practical LES: evaluating models on challenging high
Reynolds test cases, choosing different configurations for the training and test sets to assess
generalization, and efficiently integrating deep learning models to high-performance LES
solvers. These are the three axes that underlie the construction of this thesis. Chapter 4
also presents the methods used to train and evaluate deep learning SGS models, and the
overarching modeling framework of this thesis.

Part II presents two SGS models that are evaluated a priori. In Chapter 5, a model
for the total flame surface density proposed by Lapeyre et al. [183] is evaluated on a highly
turbulent jet flame, with a focus on interpreting the predictions and learning process of the
model. Chapter 6 trains a model for the SGS progress variable variance and investigates its
generalization from an academic training configuration to a different challenging test case.

Part III is devoted to a posteriori validation of deep learning models. In practice, it
requires a coupling between an LES solver and the model which must solve hardware and
software constraints in a computationally efficient manner. This is handled by the AVBP-DL
coupling scheme presented in Chapter 7. Finally, Chapter 8 evaluates a model for the SGS
wrinkling factor a posteriori in the LES of a vented explosion in an obstructed chamber.



6 CHAPTER 1. INTRODUCTION

Chapter 2

Numerical combustion

Chapter 3

      Deep learning      

Chapter 4

Deep learning for numerical combustion

Chapter 5

  Modeling the total FSD  

Chapter 6

Modeling the SGS


progress variable variance

Chapter 7

AVBP-DL coupling

Chapter 8

LES of explosions


  with a wrinkling model  

Part I: Theoretical concepts

High-  test case

Generalization

Solver 
integration

Part II: A priori evaluation

Part III: A posteriori evaluation

Figure 1.4: Organization of the thesis.



Part I

Theoretical concepts





Chapter 2

Turbulent premixed combustion

Contents
2.1 Governing equations of multispecies reacting flows . . . . . . . . . . 10
2.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Laminar premixed flames . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Phenomenology of a 1D laminar premixed flame . . . . . . . . . . . . . 14
2.3.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Pfitzner source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Turbulent premixed flames . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Large eddy simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Large eddy simulations of turbulent premixed combustion . . . . . 26

2.7.1 LES governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Modeling frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.3 Subgrid-scale wrinkling factor . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.4 Subgrid-scale wrinkling models . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.5 Charlette model and its variants . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Numerical simulations with the AVBP solver . . . . . . . . . . . . . 36

This chapter presents theoretical concepts that underpin the numerical simulations that
are carried out in this work. The governing equations and constitutive relations of multi-
species reacting flows are first recalled. Notions of laminar premixed combustion, turbulence,
turbulent premixed combustion, and large eddy simulations are then introduced. Since each
of these topics is too vast to cover exhaustively, classical books are referenced throughout this
overview. Combining all these notions leads to an overview of LES for turbulent premixed
combustion, with a specific focus on subgrid-scale models to close the filtered reaction rate.
Finally, the AVBP solver used for all the numerical simulations of this thesis is presented.
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2.1 Governing equations of multispecies reacting flows

Consider a compressible, multispecies, reacting, gaseous mixture of N chemical species. The
local composition of the mixture is parametrized by the species mass fractions (Yk)k=1,...,N ,
defined as the ratio of the mass of species k to the total mass of the mixture in a small control
volume. By definition, the species mass fractions sum to unity:

N∑
k=1

Yk = 1 . (2.1)

From the velocity fields uk of all the species, a mass-averaged bulk velocity is defined
as [178]

u =
N∑

k=1
Ykuk , (2.2)

and is simply called the velocity field of the mixture. The difference between the velocity uk

of an individual species k and the mixture velocity is the diffusion velocity Vk = uk − u.
Balance equations for a set of primitive variables composed of:

• the density ρ, which is the local mass of the mixture per unit volume,

• the velocity field u,

• the total specific non-chemical energy et,

• and the species mass fractions (Yk)k=1,...,N ,

fully describe the spatio-temporal evolution of the mixture. In conservative form, they
read [185]:

∂ρ

∂t
+∇ · (ρu) = 0 , (2.3)

∂ρu

∂t
+∇ · (ρu⊗ u) = ∇ · σ , (2.4)

∂ρet

∂t
+∇ · (ρetu) = ∇ · (σ · u− q) + ω̇T , (2.5)

∂ρYk

∂t
+∇ · (ρYku) = −∇ · Jk + ω̇k , for k = 1, ..., N, (2.6)

where σ is the Cauchy stress tensor, q the heat flux vector, ω̇T the heat release rate, Jk the
diffusive flux vector of species k, and ω̇k the mass production rate of species k. Radiative
heat transfer and volumic body forces such as gravity are omitted.

2.2 Constitutive relations

Equations 2.3 to 2.6 are complemented by the following constitutive relations.
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Equation of state All the species are assumed to behave like perfect gases. The partial
pressure Pk of species k is related to its density ρk = ρYk, its atomic weight Wk, the perfect
gas constant R = 8.314 J mol−1 K−1, and the temperature T through the equation of state

Pk = ρk
R

Wk
T . (2.7)

The total thermodynamic pressure P is equal to the sum of partial pressures (Dalton’s law),
leading to

P = ρ
R

W
T , (2.8)

with W = 1/
(∑N

k=1 Yk/Wk

)
the mixture molecular weight.

Stress tensor The Cauchy stress tensor σ is commonly decomposed as the sum of an
isotropic term −PI, which is the stress tensor for a fluid at rest, and of a viscous stress
tensor τ generated by the motion of the fluid [22]:

σ = −PI + τ . (2.9)

The gas is presumed to behave like a Newtonian fluid, meaning that viscous stresses are
proportional to the strain rate tensor S = (∇u+∇uT )/2. Assuming that the fluid is isotropic
and that the bulk viscosity term is negligible, an expression for τ can be derived [22]:

τ = 2µ
[
S − 1

3(∇ · u)I
]
. (2.10)

µ is the dynamic viscosity, which mainly depends on temperature. Models for µ are discussed
in Section 2.8

Total energy Species specific sensible enthalpies hs,k quantify how enthalpy changes with
temperature:

hs,k(T ) =
∫ T

T0
cp,k dT , (2.11)

with cp,k the species specific heat capacity at constant pressure, and T0 a reference temper-
ature usually set to 298.15 K [275]. Specific sensible energies es,k are defined as

es,k = hs,k −
RT

Wk
. (2.12)

The specific sensible energy of the whole mixture is thus equal to

es =
N∑

k=1
es,kYk =

∫ T

T0
cp dT − RT

W
. (2.13)
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There are many viable choices for an energy or enthalpy variable [275]. This work will use
the total specific non-chemical energy et which adds the specific sensible and kinetic
energies:

et = es + 1
2u · u . (2.14)

Heat flux The heat flux q originates from heat diffusion through conduction and energy
transport due to the diffusion of species with different sensible enthalpies. Using Fourier’s
law for the conduction term, q writes:

q = −λ∇T +
N∑

k=1
Jkhs,k , (2.15)

with λ the thermal conductivity. Following common practice [185], heat transfer due to mass
diffusion, also called the Dufour effect, is neglected.

Heat release rate The heat release rate ω̇T measures the volumic heat released by the
production and destruction of species with different formation enthalpies in chemical reac-
tions:

ω̇T = −
N∑

k=1
∆h0

f,kω̇k , (2.16)

with ∆h0
f,k the specific formation enthalpy of species k at the reference temperature T0.

Diffusive flux The diffusive flux vector Jk of species k is expressed as

Jk = ρYkVk . (2.17)

The diffusion velocity Vk is influenced by the diffusion of other species induced by composition
and pressure gradients as well as thermodiffusion (also known as the Soret effect) which
refers to mass diffusion created by a temperature gradient. The Soret effect is known to
be crucial in combustion simulations when light molecules such as atomic and molecular
hydrogen are included in the chemical mechanisms [87]. In this thesis, only reduced chemical
mechanisms for simple hydrocarbon fuels which do not contain such light species will be used.
Accordingly, the Soret effect will be omitted without significant repercussions.

The equation for the diffusion velocity Vk thus writes [178]:

XkVk = −
N∑

j=1
Dk,j

[
∇Xj + (Xj − Yj)∇P

ρ

]
, (2.18)

with Xk = YkW/Wk the mole fraction of species k, and Dk,j the diffusion coefficient of
species j into species k. The pressure term is usually neglected. The multicomponent
diffusion matrix D = (Dk,j)k,j is not given by the kinetic theory of gases and requires the
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resolution of an N×N system [86] which is prohibitively computationally expensive in usual
combustion simulations.

Instead, the Hirschfelder-Curtiss approximation [141] is a common simplifying alternative
to estimate Dk,j . It expresses the diffusion velocity as

Vk = −Dk

Xk
∇Xk + Vc , (2.19)

where Dk is the diffusion coefficient of species k into the rest of the mixture:

Dk = 1− Yk∑N
j=1,j ̸=k Xj/Dk,j

, (2.20)

and Vc is a correction velocity that ensures mass conservation:

Vc =
N∑

k=1
Dk

Wk

W
∇Xk . (2.21)

Note that there exists a rigorous theoretical justification for the Hirschfelder-Curtiss approx-
imation, since it is possible to exhibit a matrix series that converges towards the multicom-
ponent diffusion matrix, and whose truncation at the zeroth-order leads to the Hirschfelder-
Curtiss approximation [113].

Transport coefficients The interplay between the diffusional transport of momentum,
species, and heat plays a key role in combustion processes. Their characteristic rates of
evolution are the kinematic viscosity ν = µ/ρ, the species diffusivities Dk, and the thermal
diffusivity α = λ/(ρcp). To compare the magnitude of these three effects, it is convenient to
introduce the following non-dimensional numbers:

• the Prandtl number, comparing momentum and heat diffusion

Pr = ν

α
= µcp

λ
, (2.22)

• the Schmidt number, comparing momentum and species diffusion

Sc = ν

Dk
, (2.23)

• and the Lewis number, comparing heat and species diffusion

Le = α

Dk
= λ

ρcpDk
. (2.24)

These numbers are presumed to be constant in time and space [275].
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Species production rate Let M be the number of elementary chemical reactions involved
in the system. Reaction j is written in the form:

N∑
k=1

ν ′
k,jMk ⇌

N∑
k=1

ν ′′
k,jMk , (2.25)

where ν ′
k,j and ν ′′

k,j are the stoichiometric coefficients of species k, and Mk denotes the
species k. According to the law of mass action, the rate of progress of a single reaction is
proportional to the product of reactant molar concentrations [Xk] = ρYk/Wk. The rate of
progress Qj therefore writes:

Qj = Kf,j

N∏
k=1

[Xk]ν
′
k,j −Kr,j

N∏
k=1

[Xk]ν
′′
k,j . (2.26)

Kf,j and Kr,j are the forward and reverse rate constants which need to be modeled. Their
most common expression is given by the Arrhenius law:

K = AT βj exp
(
−Ea,j

RT

)
, (2.27)

where A the pre-exponential constant, βj the temperature exponent, and Ea,j the activation
energy are tabulated.

Finally, the mass production rate of species k writes:

ω̇k = Wk

M∑
j=1

νk,jQj , (2.28)

where νk,j = ν ′′
k,j − ν ′

k,j is the net stoichiometric coefficient of species k in reaction j.

2.3 Laminar premixed flames

The fundamentals of premixed combustion, where reactants (fuel and oxidizer) are fully pre-
mixed before combustion, are usually laid out in the context of a 1D laminar unstretched
flame [178, 185, 275]. Laminar flames indeed play a key role in understanding turbulent pre-
mixed flame fronts via the flamelet assumption, where local flame elements behave like 1D
laminar flamelets, as detailed in Section 2.5. In the following, the subscripts and superscripts
F , u, b will denote quantities related to the fuel, unburnt state, and burnt state, respectively.

2.3.1 Phenomenology of a 1D laminar premixed flame

The structure of a 1D laminar premixed flame is illustrated in Figure 2.1. In this simple case,
chemical reactions are modeled as a single global irreversible reaction Reactants→ Products.
Chemical activity is concentrated in a narrow region marked by the reaction rate peak,
where the temperature is sufficiently high for the reaction to occur (Equation 2.27). This
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is the reaction zone, which is controlled by the balance between diffusive transport of
the reactants that enter this zone and the burning rate of these reactants. This reaction
zone naturally propagates towards the unburnt state, leaving behind a burnt mixture of
combustion products and reactants, depending on the stoichiometry, at the adiabatic flame
temperature Tb. For a lean mixture with unity Lewis numbers, Tb is given by:

Tb = Tu + qRY
u

F

cp
(2.29)

where qR = −ω̇T /ω̇F is the specific heat of reaction and cp has been assumed to be constant.
Incoming reactants are preheated by the thermal conduction of the heat released by the

reaction. This forms a preheat zone upstream of the reaction zone where temperature
gradually rises from the unburnt temperature to the reaction zone temperature. This region
is piloted by the interaction between convection and diffusion of the reactants.

0.0

0.2

0.4

0.6

0.8

1.0
L

Flame propagation direction

Unburnt state Burnt state

Reactants
Temperature
Reaction rate

Figure 2.1: Structure of a 1D laminar premixed flame. The temperature, reactant mass fractions,
and reaction rate profiles are normalized by their unburnt and burnt values.

Overall, the preheat zone and the reaction zone form a flame front which propagates at
a laminar flame speed defined by the consumption rate of the fuel [275]:

sL = − 1
ρuY u

F

∫ +∞

−∞
ω̇F dx . (2.30)

Its thermal thickness is defined via the steepest gradient of temperature:

δL = Tb − Tu

max (dT/dx) (2.31)

which is useful to define mesh resolution constraints to properly resolve the flame. Two other
definitions of the flame thickness are:



16 CHAPTER 2. TURBULENT PREMIXED COMBUSTION

• the diffusive thickness δ, based on the thermal diffusivity α and used in some theoretical
developments:

δ = αu

sL
, (2.32)

• and the progress variable thickness δL,c:

δL,c = 1
max (dc/dx) (2.33)

which can be different from δL if c is not defined as a normalized temperature. This
definition will be used in Section 4.3 to characterize the thickness of the flame front
relevant to the DL model.

sL and δL have square root dependencies on the magnitude of the diffusion and reaction
terms [275]:

sL ∝
√
αA (2.34)

, δL ∝
√
α

A
, (2.35)

where A is the pre-exponential constant for the single-step reaction.

2.3.2 Theoretical analysis

A governing equation for the 1D laminar flame is now derived, with more details contained in
Poinsot and Veynante [275]. Some simplifying assumptions are made: all species have same
a unity Lewis number, reactions are grouped in a single-step irreversible global reaction,
and the fuel is the deficient reactant, i.e. combustion is lean and the equivalence ratio ϕ is
below unity. These hypotheses preserve the main physical phenomena while facilitating a
purely analytical approach. The evolution of the flame is controlled by a single parameter,
the progress variable c = (T −Tu)/(Tb−Tu) = 1−YF /Y

u
F . This non-dimensional quantity

parametrizes the whole premixed flame structure. Its conservation equation reads:

ρu
∂c

∂x
= ∂

∂x

(
ρD

∂c

∂x

)
− ω̇F

Y u
F

, (2.36)

where D = α = Dk is the diffusivity. A reduced spatial variable ξ is introduced:

ξ =
∫ x

0

ρusL

ρ(y)D(y) dy . (2.37)

Noting that
∂

∂x
= ∂ξ

∂x

∂

∂ξ
=
(
ρusL

ρD

)
∂

∂ξ
(2.38)

and using the conservation of mass ρu = ρusL, Equation 2.36 becomes:

∂c

∂ξ
= ∂2c

∂ξ2 −
ρD

(ρusL)2Y u
F

ω̇F . (2.39)
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Grouping the constants into the factor Λ = (ρusL)2Y u
F , the fuel production rate ω̇F is

therefore linked to the non-dimensional source term ω by:

ω̇F = − Λ
ρD

ω . (2.40)

2.3.3 Pfitzner source term

While the Arrhenius law (Equation 2.27) is precise, it is also cumbersome and combustion
theoreticians have looked to derive simpler expressions for the species reaction rates [96, 275].
Recently, Pfitzner et al. [269, 270] proposed such an expression. They showed that cm(ξ) =
[1 + e−mξ]−1/m is a solution of Equation 2.39 parametrized by a model coefficient m. It
corresponds to the non-dimensional source term

ωm(c) = (m+ 1)(1− cm)cm+1 . (2.41)

The dimensional Pfitzner source term therefore writes:

ω̇F,m = − Λ
ρD

(m+ 1)(1− cm)cm+1 . (2.42)

This is an alternative to the exponential Arrhenius reaction rate (Equation 2.27) which has
a polynomial expression in c and therefore T . It assumes that chemistry can be reduced to
a global single-step irreversible reaction.

The laminar flame speed is given in the factor Λ, and for any m value, it is consistent
with the definition of the laminar flame speed as a consumption speed:

− 1
ρuY u

F

∫ ∞

−∞
ω̇F,m(x) dx = sL . (2.43)

The progress variable flame thickness is inversely proportional to m and has the following
analytical expression in ξ space:

δL,c = (m+ 1) m+1
m

m
. (2.44)

The Pfitzner formulation can be a substitute to any flame computed with Arrhenius
chemistry by matching independently the flame speed with the Λ parameter and the flame
thickness with the m parameter. Figure 2.2 compares the fuel consumption rate profiles for
Pfitzner and Arrhenius source terms in the example of a lean methane-air mixture at elevated
pressure and temperature. It illustrates two possible use cases of the Pfitzner source term. In
this example, choosing m = 5 provides a good approximation of the Arrhenius source term.
This allows complex skeletal mechanisms to be replaced by a single-step mechanism that uses
the Pfitzner source term, which could lead to massively increased computational efficiency
if only the relationship between the progress variable and the reaction rate is needed. On
the other hand, lower values of m can be chosen to thicken the reaction zone. This could
allow computational savings by relaxing mesh resolution requirements, especially for LES of
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large premixed systems where a perfect description of complex chemistry is not needed [290].
Finally, the polynomial nature of the Pfitzner source term makes it amenable to analytical
turbulent closures. This property will be used in Chapter 6.
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c [-]

0

250

500

750

1000

1250

1500

1750

F
 [k

g/
m

³/s
]

Arrhenius
Pfitzner m = 5
Pfitzner m = 2
Pfitzner m = 1

Figure 2.2: Arrhenius and Pfitzner fuel consumption rate for a lean (ϕ = 0.7) methane-air mixture
at P = 4 bar, Tu = 800 K. The Arrhenius rate is derived from a skeletal mechanism [208].

2.4 Turbulence

J. O. Hinze proposes the following definition of turbulent flows [140]:

Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variation with time and space coordinates, so that sta-
tistically distinct average values can be discerned.

In this definition, randomness should be understood as the variability of the velocity field
u(x, t) over repetitions of the same experiment. This is a consequence of the sensitivity of
the Navier-Stokes equations 2.3 and 2.4 to small perturbations that inevitably perturb the
flow [282]. The stochastic nature of turbulent flows leads to enhanced diffusivities of mass,
momentum, and heat, making them particularly desirable in engineering applications where
the flow acts as an energy carrier.

A key indicator of the laminar or turbulent nature of a flow is the Reynolds number Re:

Re = ||u||L
ν

, (2.45)

where L is a characteristic size of the flow. At low Reynolds numbers, viscous forces dominate
inertial effects, and the flow is laminar1. For high Reynolds numbers, inertial effects lead to

1Named so because of the image of a flow moving in smooth layers, or laminae [393].
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the creation of coherent swirls that deviate from the mean motion of the flow. These are
turbulent eddies.

The theory of turbulence formalized by Kolmogorov [172] involves a continuous spectrum
of turbulent eddy scales. As the flow evolves, the largest eddies, whose size depends on the
geometry of the flow, break up into smaller eddies to whom they transfer their kinetic
energy. These smaller eddies break up into yet smaller eddies and so on, a sequence named
the energy cascade. As eddies get smaller, viscous forces start to dominate inertial effects,
and eventually a balance is reached between the kinetic energy received by larger eddies and
the energy dissipated through molecular viscosity. This characterizes the smallest eddies in
the energy cascade. Unlike the largest eddies, motion at the smallest scales is independent
of the geometry as it is driven by the equilibrium between inertial and dissipative fluxes, and
happens over much shorter characteristic time scales.

The kinetic energy dissipation rate ϵ = 2ν⟨S : S⟩ is constant across the scales of the
turbulent cascade. It can thus be estimated by the rate of energy transfer from the large
scales, which contain most of the turbulent kinetic energy (TKE) k = ⟨u·u⟩/2. A dimensional
analysis leads to

ϵ = k3/2

lt
, (2.46)

where lt is the integral lengthscale that characterizes the size of the largest, energy-containing
eddies.

Kolmogorov’s first similarity hypothesis presumes that for a sufficiently large Reynolds
number, there exists a universal equilibrium range, where the statistics of sufficiently small
eddies only depend on the viscosity ν, representing dissipative effects, and the kinetic energy
dissipation rate ϵ, representing energy transfer from larger eddies. The universal equilibrium
range is split into an inertial subrange, where turbulence statistics only depend on ϵ (Kol-
mogorov’s second similarity hypothesis), and a dissipative range that contains the smallest
eddies, for which viscous forces overpower inertial effects and lead to viscous dissipation of
the TKE. Turbulent eddies in the dissipative range are characterized by the Kolmogorov
length, time, and velocity:

η =
(
ν3

ϵ

)1/4

, (2.47)

τη =
(
ν

ϵ

)1/2
, (2.48)

uη = (νϵ)1/4 . (2.49)

Figure 2.3 illustrates the energy cascade on the Pope model turbulence spectrum [282]
which plots the energy spectrum function E as a function of the wavenumber κ. The TKE
k is the sum of the contribution of E over all the wavenumbers:

k =
∫ ∞

0
E(κ) dκ . (2.50)

The spectrum shows that most of the TKE is contained in the largest eddies, hence their
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grouping into the energy-containing range. In the inertial subrange, the spectrum evolves
proportionally to κ−5/3.

l 1
t

1

5/3

Energy-containing range Inertial subrange Dissipative range

Figure 2.3: Pope model turbulence spectrum in log-log scale [282].

Figure 2.4 is a visual example of a turbulent velocity field. It shows a component of the
velocity field in homogeneous isotropic turbulence (HIT). The multi-scale nature of turbu-
lence is clearly apparent by the existence of coherent velocity regions over a wide range of
lengthscales.
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Figure 2.4: x velocity field in the z-normal plane of homogeneous isotropic turbulence
(u′ = 3.8 m s−1, lt = 1.8 mm, t = 5.7lt/u′).
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2.5 Turbulent premixed flames

To understand the effects of turbulence on premixed flame propagation, it is convenient
to explore the limit cases where turbulence effects are weak and strong compared to lami-
nar flame advancement. In these conditions, Damköhler’s observations on burning velocity
measurements on a Bunsen burner led to two hypotheses [70, 77]:

1. In the limit of weak turbulence, where turbulent eddies are larger than the laminar
flame thickness, turbulence only stretches and wrinkles the flame front without per-
turbing its inner structure. Accordingly, the turbulent flame speed sT should be pro-
portional to the area of the wrinkled flame front:

sT

sL
∼ AT

AL
. (2.51)

2. In the limit of strong turbulence, where turbulent eddies are smaller than the laminar
flame thickness, turbulence only affects the inner structure of the flame front in the
form of an increased turbulent diffusivity Dt:

sT

sL
∼

√
1 + Dt

D
. (2.52)

The strength of the influence of turbulence on premixed flames is assessed by comparing
velocity and length scales that characterized turbulent eddies and laminar flame propagation.
Two ratios are therefore introduced: u′/sL compares the turbulence intensity u′ =

√
2k/3,

representing the turnover velocity of large eddies, to the laminar flame speed sL, and lt/δ

compares the integral lengthscale to the diffusive laminar flame thickness δ = νu/sL.
These ratios have been used to propose regime diagrams that attempt to categorize

turbulent flame types with a finer granularity than Damköhler’s hypotheses [34, 265–267,
276]. Figure 2.5 shows the commonly used Borghi-Peters diagram [267].

The boundaries of the regime diagram are defined by the turbulent Reynolds number of
the large eddies:

Ret = u′lt
νu

=
(
u′

sL

)(
lt
δ

)
, (2.53)

and the Karlovitz number, expressed as the ratio of the flame time τF = δ/sL to the Kol-
mogorov time τη:

Ka = τF

τη
=
(
δ

η

)2
=
(
u′

sL

)3/2 ( lt
δ

)−1/2
. (2.54)

Boundaries in regime diagrams should be interpreted as transition regions, and not hard
delimiters between distinct flame types.
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Figure 2.5: Borghi-Peters turbulent premixed combustion diagram.

The Borghi-Peters diagram distinguishes 5 turbulent flame types:

• Ret < 1 corresponds to laminar flames.

• When u′/sL < 1 but the integral lengthscale is sufficiently large, flame propagation
is driven by the laminar burning rate rather than turbulent wrinkling. This is the
wrinkled flamelet regime which is rarely encountered in practical flows.

• Wrinkled flamelets subject to higher turbulence intensities but still below the limit
Ka = 1 (Klimov-Williams criterion) become corrugated flamelets. In this regime,
δ < η, which indicates that the smallest turbulent eddies are larger than the flame
thickness and cannot penetrate into the flame front.

• Turbulent flames with a Karlovitz number 1 < Ka < 100 belong to the thin reaction
zones (TRZ) regime. The limit Ka = 100 corresponds to a unity Karlovitz number
relative to the inner reaction zone thickness, which is approximately 10 times smaller
than the diffusive thickness [267]. In this regime, the smallest eddies can therefore enter
the flame front and broaden the preheat zone, thus enhancing turbulent transport of
preheated gas. However, they are not small enough to enter the inner reaction zone.
Peters hypothesized that the reaction zone may become thinner due to stretching from
these turbulent eddies, hence the name of this regime.

• The final region is the broken reaction zones regime for Ka > 100, where turbulence
is so intense that the smallest eddies are able to penetrate the inner reaction layer and
disrupt the flame structure.
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The Borghi-Peters diagram is derived purely from physical reasoning on orders of magni-
tude. Recent work has complemented the diagram with measurements from direct numerical
simulations (DNS) and experimental results. Figure 2.6 shows the measured regime diagram
of Skiba et al. [346]. They observe that broadening of the preheat zone only occurs when
the turbulent diffusivity Dt is large enough compared to the preheat zone diffusivity D∗, at
about Dt/D

∗ = 180. Below this limit, turbulent eddies do not have enough energy to disrupt
the convective-diffusive balance that governs the structure of the preheat zone, even though
the smallest eddies are small enough to penetrate it. This new thin flamelets regime is also
empirically delimited by Ka = 60.

Figure 2.6: Measured premixed combustion regime diagram with DNS and experimental data
points. Reprinted from Skiba et al. [346] with permission from Elsevier, license number
5364270406074.

The flamelet concept, which is used in some regions of the regime diagrams, plays a
central in turbulent premixed combustion theory. Flamelets are regions of the flame front in
which chemical reactions take place in thin layers that are wrinkled but not fragmented by
turbulence [265]. Chemical timescales are assumed to be fast compared to turbulent processes
so that the effects of turbulence can be treated independently from the chemistry. Under
these assumptions, the evolution of thermochemical variables can be tracked by a single scalar
quantity, the progress variable c, which increases monotonically from 0 in the unburnt state
to 1 in the burnt state. In a flamelet, the relationship between a thermochemical quantity ψ
such as temperature and species mass fractions and the progress variable is, on average, the
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same as in a laminar flame. In practice, this is estimated by comparing the conditional mean
profile ⟨ψ|c⟩ to a laminar flame profile [77]. It is also said that the structure of a flamelet is
that of a laminar flame.

The extent of the flamelet regime is still a matter of active research and debate [77, 161].
There is evidence that high-Karlovitz number flames up to the upper end of the TRZ can
still preserve a flamelet structure [12, 14, 252, 346]. On the other hand, several recent DNS
studies have observed thickening of the reaction zone in the TRZ, a marker of non-flamelet
behavior which leads to an enhancement of the turbulent consumption speed that cannot be
explained by an increase in flame surface [15, 161, 231]. Nonetheless, even in the latter works,
turbulent wrinkling remains the leading order effect that drives the increase of the turbulent
consumption speed [15]. Wrinkling effects can be decoupled from turbulent diffusion and
flame structure alterations by rewriting the turbulent consumption speed as [37]:

sT

sL
= I0

∫
Σ dn , (2.55)

where the first term of the right hand side is the stretch factor I0, and the second term is
the integral along n, the normal coordinate to the local flame element, of the flame surface
density (FSD) Σ = |∇c|. I0 is usually close to unity unless differential diffusion plays a
large role in the reactant balance in the preheat zone, like in hydrogen combustion [11–13],
or intense turbulence is able to disrupt the structure of the reaction zone [15].

2.6 Large eddy simulations

For numerical simulations of turbulent premixed combustion, the complex interactions be-
tween turbulence and combustion outlined above suggest that the direct resolution of Equa-
tions 2.3 to 2.6 should be essential to capture the full extent of the physical phenomena at
play. This is done in direct numerical simulations, which are unfortunately intractable for
most practical flows. The reason lies in the vast separation of scales in turbulent and reac-
tive flows. While chemical mechanisms require a resolution of the order of the laminar flame
thickness δL ∼ 0.1 mm, typical combustion systems extend over 0.1 m − 10 m. In addition,
Equations 2.46, 2.47, 2.53 show that the separation between the integral lengthscale and the
Kolmogorov lengthscale grows with the turbulent Reynolds number as [282]

lt
η
∝ Re3/4

t . (2.56)

These separations of scales require the computational domain to be both large and finely
discretized, making DNS of high Reynolds number reacting flows very computationally ex-
pensive [310].

Large eddy simulations (LES) are a widely used computational alternative to DNS for
practical combustion simulations. LES is able to capture fine, unsteady combustion phe-
nomena in complex premixed combustion configurations [262, 263, 369]. In LES, the domain
is discretized with a mesh size h which is much larger than the Kolmogorov scale η. The
smallest turbulent eddies and chemistry at the scale of the flame front are therefore not
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resolved and must be modeled. For inert turbulent flows, the concept of LES is justified by
the universal nature of the smallest turbulent eddies in the turbulent cascade (Section 2.4),
which makes them amenable to universal modeling. The large-scale features of the flow,
which depend on the specific configuration, are fully resolved in a proper LES. For combus-
tion phenomena, LES often exploits universal characterizations of the flame front through
the flamelet concept and wrinkling-based models, as will be covered in Section 2.7.3.

The usual theoretical treatment of LES is to consider that it operates on spatially filtered
quantities ψ̄ [108, 319]. Filtering is represented by a spatial convolution with a low-pass kernel
G:

ψ̄(x) = (G ∗ ψ)(x) =
∫ +∞

−∞
G(x− x′)ψ(x′) dx′ . (2.57)

The cutoff frequency of G is also called the filter size and denoted ∆. It is typically of the
order of the mesh size h [319]. G is normalized:∫ +∞

−∞
G(x) dx = 1 , (2.58)

and has a finite support. Explicitly filtered LES applies a closed-form filter G on the quan-
tities discretized on the computational mesh, but comes at an increased computational cost.
Instead, in implicitly filtered LES2, variables discretized on the computational grid are al-
ready assumed to be intrinsically filtered without the intervention of an explicit filtering
operator. Filtering is caused by a combination of the effects of the numerical scheme,
subgrid-scale models, and discretization by the computational grid. This is the approach
that will be used in this manuscript.

For compressible flows, Favre filtering [89] is used to avoid unnecessary unclosed terms
in the filtered mass conservation equation:

ψ̃ = ρψ

ρ̄
. (2.59)

For both types of filtering, any quantity ψ can be decomposed into a filtered component
and a high-frequency component:

ψ = ψ̄ + ψ′ = ψ̃ + ψ′′ . (2.60)

ψ′ and ψ′′ are called subfilter scale quantities. Some authors prefer to distinguish subfilter
scale and subgrid scale quantities, the latter designating the residual obtained from the
projection on the computational grid of size h [126]. This subtlety is mostly relevant for
explicitly filtered LES [126]. Since ∆ ∼ h, the term subgrid scale (SGS) will simply be used
to denote the residual quantities ψ′, ψ′′ lost in the filtering operation.

2This should not be confused with the concept of implicit LES, which refers to LES where the numerical
scheme is responsible for subgrid-scale closure instead of an explicit subgrid-scale model [319].
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2.7 Large eddy simulations of turbulent premixed combustion

2.7.1 LES governing equations

Assuming that the LES filter commutes with differentiation, filtering the governing equa-
tions 2.3 to 2.6 leads to the LES equations:

∂ρ̄

∂t
+∇ · (ρ̄ũ) = 0 , (2.61)

∂ρ̄ũ

∂t
+∇ · (ρ̄ũ⊗ ũ) = ∇ · (−P̄I + τ̄ + τ t) , (2.62)

∂ρ̄ẽt

∂t
+∇ · (ρ̄ẽtũ) = ∇ · (−P̄ ũ + τ̄ · ũ− q̄ − qt) + ω̇T , (2.63)

∂ρ̄Ỹk

∂t
+∇ · (ρ̄Ỹkũ) = −∇ · (J̄k + J t

k) + ω̇k , for k = 1, ..., N. (2.64)

The filtered equations involve many new terms that must be resolved, closed, or neglected.
In particular, the filtered energy equation 2.63 was simplified by computing the filtered energy
from resolved quantities only: ẽt = es(T̃ ) + ũ · ũ/2. Rigorously speaking, this should result
in a vast number of unclosed SGS fluxes coming from cross-correlations with convective
terms [380]. A priori studies on filtered DNS have shown that most of these unclosed terms
are typically much smaller than the leading order terms in the filtered energy equation,
and that the non-negligible terms that remained to be modeled were the SGS heat flux
(velocity-sensible enthalpy correlation) and the SGS turbulence diffusion (velocity-kinetic
energy correlation) [254, 272]. Here, their effect is grouped in the term qt which is detailed
below.

The new terms in Equations 2.61 to 2.64 are:

• τ̄ , the filtered viscous stress tensor:

τ̄ = 2µ
[
S − 1

3(∇ · u)I
]

(2.65)

≈ 2µ(T̃ )
[
S̃ − 1

3(∇ · ũ)I
]
. (2.66)

• τ t, the SGS Reynolds stress tensor:

τ t = −ρ̄(ũ⊗ u− ũ⊗ ũ) . (2.67)

It is modeled with the Boussinesq hypothesis, according to which energy transfers from
the resolved to the subgrid scales are analogous to molecular diffusion. This postulates
the existence of a turbulent viscosity µt such that:

τ t = 2ρ̄µt

[
S̃ − 1

3(∇ · ũ)I
]
. (2.68)

Practical models for µt are presented in Section 2.8.
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• q̄, the filtered heat flux:

q̄ = −λ∇T +
N∑

k=1
Jkhs,k (2.69)

≈ −λ̄∇T̃ +
N∑

k=1
J̄khs,k(T̃ ) . (2.70)

• qt, an SGS term modeling the unclosed terms of the filtered energy equation as addi-
tional turbulent contributions to the filtered heat flux:

qt = −λt∇T̃ +
N∑

k=1
J t

khs,k(T̃ ) , (2.71)

where λt is a turbulent conductivity defined as:

λt = µtcp

Pr t
, (2.72)

with a turbulent Prandtl number Pr t set to 0.6.

• J̄k, the filtered species diffusive flux:

J̄k = ρYk

−Dk

Xk
∇Xk +

N∑
j=1

Dj
Wj

W
∇Xj

 (2.73)

≈ ρ̄

−D̄k
Wk

W
∇X̃k +

N∑
j=1

D̄j
Wj

W
∇X̃j

 , (2.74)

with D̄k ≈ µ̄/(ρ̄Sck).

• J t
k, the SGS species convective flux:

J t
k = ρ̄(ũYk − ũỸk) (2.75)

≈ ρ̄

−D̄t
k

Wk

W
∇X̃k +

N∑
j=1

D̄t
j

Wj

W
∇X̃j

 , (2.76)

which is modeled through the action of an additional turbulent diffusivity D̄t
k =

µt/(ρ̄Sct
k) involving a turbulent Schmidt number Sct

k set to 0.6. Subgrid-scale coun-
tergradient transport [372] is therefore not modeled.

• ω̇k, the filtered production rate which is the main focus point of turbulent combustion
models. Given ω̇k, the filtered heat release rate ω̇T is derived from Equation 2.16.

In addition, the perfect gas equation of state is considered to hold for the filtered quan-
tities:

P̄ = ρ̄
R

W
T̃ . (2.77)
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2.7.2 Modeling frameworks

The main challenge for LES of turbulent premixed flames is that the mesh resolution is
too coarse to properly resolve the flame structure. To properly model turbulent combustion
phenomena in spite of this constraint, statistical and geometrical modeling approaches are
two viable alternatives.

Probability density function (PDF) methods rely on a statistical description of turbu-
lent and combustion mechanisms via the composition or velocity-composition joint PDF
(JPDF) [280]. A transport equation for this JPDF is solved using Monte-Carlo methods.
These methods have the benefit of representing convective transport and detailed chemical
kinetics without closure, but modeling is required for small-scale mixing [279]. PDF methods
have greatly evolved since the theoretical foundations laid by Pope in the 1980s [280], and
significant work is dedicated today to improving mixing models, computational efficiency,
and numerical accuracy [135]. These methods involve very specific numerical tools, notably
Lagrangian Monte-Carlo methods instead of grid-based numerical schemes, which are far
remote from the ones used in this manuscript.

Alternatively, several modeling frameworks focus on a geometrical description of the flame
front and its surface:

• Level set approaches introduce a level set function G which is used to locate the in-
stantaneous flame surface at G = G0 under flamelet assumptions [237, 273]. Values of
G away from the flame front are usually set to the distance to the flame front. The
rationale behind this approach is to avoid the numerical difficulties involved in dealing
directly with a discontinuous (at the scale of the LES mesh) flame surface by implic-
itly parametrizing the flame surface with the continuous G function. The G-equation
describes the evolution of G:

∂G

∂t
+ u · ∇G = sL|∇G| . (2.78)

Adapting the G-equation to LES requires the filter to be applied along the instanta-
neous flame surface only [273]. The filtered G-equation needs models for the subfilter
propagation of the flame front, interactions between flame curvature and molecular
transport, and the flame front-conditioned filtered velocity. An additional transport
equation for the progress variable may be included to account for resolved transport
in the preheat zone [237].

• Flame surface density methods also rely on flamelet assumptions and work from the
filtered progress variable balance equation [33]:

∂ρ̄c̃

∂t
+∇ · (ρuc) = ∇ · (ρDc∇c) + ω̇c = ⟨ρsd⟩sΣ ≈ ρu⟨sc⟩sΣ , (2.79)

where Dc is the progress variable diffusivity, ω̇c the progress variable source term,
sd the displacement speed, Σ = |∇c| is the generalized total flame surface density,
and ⟨ψ⟩s = ψΣ/Σ denotes averaging along the flame surface. This approach fully
decouples the flame structure, contained in the ⟨sc⟩s term, from the wrinkling of the
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flame sheet, determined by Σ. Σ can be modeled algebraically by a wrinkling model or
via a transport equation [278, 363]. For instance, Boger et al. [33] propose an algebraic
expression for Σ in the limit of a thin flame front relative to the filter size:

Σ = 4
√

6
π

Ξ c̃(1− c̃)∆ , (2.80)

where the SGS wrinkling factor Ξ remains to be modeled.

• The Filtered Tabulated Chemistry for LES (F-TACLES) formalism [98] relies on a
progress variable parametrization of the flame, in which thermochemical quantities are
tabulated as a function of the progress variable. To close the filtered LES equations, the
filtered progress variable source term, filtered laminar diffusion terms, and various SGS
fluxes are supposed to depend only on c̃ and the filter size ∆ and are thus tabulated
from filtered 1D laminar flame solutions. A wrinkling model is required to handle SGS
wrinkling of the flame front that does not appear in the 1D laminar flames. Recent
developments also account for the effect of SGS wrinkling on the flame structure by
filtering 2D sinusoidal flames [225]. In the limit of an infinitely thin flame front, F-
TACLES recovers the Boger model (Equation 2.80).

• The thickened flame model for LES (TFLES) [40, 67] artificially thickens the
flame front by both multiplying the diffusivities and dividing the reaction rates by a
thickening factor F . The scaling relations in Equation 2.34 show that this does not
affect the laminar flame speed but increases the laminar thermal flame thickness by
F . This enables the flame front to be fully resolved on the LES mesh, and for de-
tailed chemical kinetics to be naturally included. The flame structure may however
be affected, especially flame-turbulence interactions in the preheat and reaction zones.
Additionally, the thickening operation reduces the surface of the resolved flame front.
This is compensated by an efficiency function E which accounts for unresolved wrin-
kling of the thickened flame front. In practice, this consists in applying the following
transformations to Equations 2.61 to 2.64:

D̄k → EFD̄k , (2.81)
λ̄→ EFλ̄ , (2.82)

ω̇k →
E

F
ω̇k(ψ̃) , (2.83)

ω̇T →
E

F
ω̇T (ψ̃) . (2.84)

This results in the following turbulent flame speed sT and thickened flame thickness
δ̌L:

sT = EsL ,

δ̌L = FδL .

(2.85)
(2.86)

This manuscript will adopt the TFLES formalism which has a long track record as a
predictive and computationally efficient method for LES of practical premixed combustion



30 CHAPTER 2. TURBULENT PREMIXED COMBUSTION

configurations [150, 239, 287, 369, 378]. The main term to be modeled is the efficiency
function E which is directly equated to the SGS wrinkling factor at the scale ∆:

E = Ξ∆ . (2.87)

In the thickening formalism, the scale ∆ will be defined in the following section devoted to
wrinkling models. SGS wrinkling models can also be applied to the flame surface density
and F-TACLES approaches if a transport equation for Σ is not used.

2.7.3 Subgrid-scale wrinkling factor

SGS wrinkling models originate from a flame surface density approach to turbulent com-
bustion modeling. Assuming that reactions take place in an infinitely thin sheet located at
c = c∗, the surface area of the reaction sheet is given by the co-area formula [90, 242]:

A(c∗) =
∫

V
|∇c|δ(c− c∗) dV , (2.88)

where δ is the Dirac delta function. This formula justifies the interpretation of |∇c| as
the flame surface density (FSD), measuring the area of the flame surface per unit volume.
Intuitively, |∇c| measures the density of c isosurfaces. Under flamelet assumptions, it is
reasonable to presume that iso-surfaces of c remain parallel and that the flame surface area
is well approximated by averaging out Equation 2.88 for all c values:

A =
∫ 1

0
A(c) dc =

∫
V
|∇c| dV . (2.89)

In the LES formalism, this area can be recovered thanks to the normalization condition of
the filter (Equation 2.58):

A =
∫

V
|∇c| dV . (2.90)

Equation 2.90 involves the total FSD |∇c| which can be integrated to recover the total flame
surface A. To close |∇c|, it is often connected to the resolved FSD |∇c̄| through the SGS
wrinkling factor Ξ∆:

Σ = Ξ∆|∇c̄| . (2.91)

Ξ∆ measures the ratio of the total FSD to the resolved FSD. It is equal to one when flame
wrinkling is fully resolved, like in the case of a laminar flame. Ξ∆ depends on the combus-
tion filter size ∆ related to the thickness of the LES flame. In the TFLES formalism, Ξ∆
must account for the artificial thickening of the flame front in addition to LES filtering. The
TFLES combustion filter size is thus defined as:

∆ = FδL . (2.92)

Figure 2.7 illustrates the difference between a true, thin flame front and a thickened flame
front. Thickening (as well as filtering) induces a loss of flame surface that is compensated
by the SGS wrinkling factor.
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Figure 2.7: True (solid) and thickened (dashed) flame fronts.

2.7.4 Subgrid-scale wrinkling models

Algebraic models for Ξ∆ have seen extensive developments over the years and have been
comparatively reviewed in the literature [44, 214]. They are divided into two families:

• Models based on correlations of the turbulent flame speed [67, 302, 392]. These models
leverage Equation 2.55 to express Ξ∆ as a function of turbulence parameters such as
u′/sL, lt/δL. For instance, Colin et al. [67] propose the expression:

Ξ∆ = 1 + αΓ∆
u′

sL
, (2.93)

where Γ∆ accounts for the net straining effect of all vortices smaller than ∆, and α is
a model constant computed as:

α = βColin
2 ln 2

3cms(Re1/2
t − 1)

. (2.94)

βColin is a parameter prescribed by the user, usually set to 0.3.

• Models based on a fractal description of the flame front [45, 46, 106, 117, 118, 134,
160, 167, 385]. These will be detailed in the following.

Building from the seminal work of Gouldin et al. [117, 118], fractal models assume that,
in a range of physical scales bounded by an inner cutoff η and an outer cutoff L, the flame
front is a fractal surface of dimension D such that 2 ≤ D ≤ 3. The flame surface area A

depends on the measurement scale ϵ as:

A(ϵ) ∝ ϵ2−D . (2.95)

As shown in Figure 2.8, the fractal nature of the flame is characterized by a constant slope
between the cutoff scales in the log-log plot of A versus ϵ. The wrinkling factor Ξ is defined
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as the relative amount of missing flame surface at any given scale ϵ:

Ξϵ = A(η)
A(ϵ) ≥ 1 . (2.96)

L
log( )

lo
g(

A) 1
2 D

Figure 2.8: Evolution of the area A with respect to the measurement scale ϵ for a fractal surface
with cutoff lengths [η, L].

Skiba et al. [344] have highlighted the fractal nature of an experimental turbulent flame
using a stepping-caliper measurement technique shown in Figure 2.9. The area of a progress
variable iso-surface in an experimental flame (top left) is measured using calipers ("rulers")
of increasing length (bottom). As the caliper becomes larger, the flame is discretized at a
coarser resolution and the surface decreases. Scale invariance denoting a fractal behavior is
evidenced by the power-law relationship between the surface area and the caliper size (top
right), and the slope of the linear trend in log-space provides the fractal dimension. For a
highly resolved flame front (experimental or DNS), it is therefore possible to estimate the
fractal dimension and the cutoff scales.

In LES, the exact values of the cutoff scales and the fractal dimension are unknown
and need to be modeled. Theoretical scaling arguments based on Damköhler’s small- and
large-scale limits [267] indicate that D ranges from 7/3 in flamelets to 8/3 in high Karlovitz
flames [134]. Experimental measurements lean towards the lower end of this range, with
recent results on highly turbulent flames reporting 2.1 ≤ D ≤ 2.3 [344]. L corresponds to the
size of the largest unresolved wrinkles, which is roughly the turbulence integral lengthscale lt
in RANS [117] and the combustion filter size ∆ in LES [46, 166]. This justifies the expression
of ∆ in TFLES (Equation 2.92), as the thickened flame thickness is also the characteristic
size of the largest unresolved wrinkles. η is the size of the smallest wrinkles which is larger
or equal to the laminar flame thickness δL [46] and scales with the inverse of the Karlovitz
number [125, 343].
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Figure 2.9: Illustration of the fractal nature of an experimental turbulent flame. Reprinted from
Skiba et al. [344] with permission from Elsevier, license number 5365931215646.

2.7.5 Charlette model and its variants

One of the most widely-used fractal wrinkling models is the Charlette model [45]. In this
model, the inner cutoff scale η is chosen as the inverse mean curvature of the flame |⟨∇ ·n⟩s|
with n the normal vector to the flame front. It is modeled by assuming an equilibrium of the
production and destruction of SGS flame surface density, and lower bounded by the laminar
flame thickness. The resulting expression for the SGS wrinkling factor is [385]:

Ξ∆ =
(

1 + min
[∆
δL
− 1,Γ∆

u′
∆
sL

])β

. (2.97)

Γ∆ is a vortex efficiency function that serves the same purpose as in the Colin model of
Equation 2.93. While the Colin model introduced a multiplicative model parameter α, the
Charlette model uses a power-law exponent β which is linked to the fractal dimension by
β = D − 2 (Equation 2.95). A constant value β = 0.5 (D = 2.5) is proposed in the original
paper and leads to a static version of the Charlette model. When u′

∆ is sufficiently large,
Equation 2.97 takes on a saturated form:

Ξ∆ =
(∆
δL

)β

, (2.98)

where the wrinkling does not depend on the turbulence intensity.
The power-law parameter β can also be determined by a dynamic procedure [46] where it
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becomes a spatially and temporally evolving quantity. This avoids the delicate and arbitrary
choice of one single value for β, which is often only justified post hoc by comparison to DNS or
experimental data. It is also supported by empirical evidence highlighting significant spatial
and temporal variations of the fractal dimension in turbulent flames [160, 344].

The dynamic procedure introduces a filtering operation ˆ̄Q at an effective test-filter size3

∆̂ = γ∆ > ∆ and an averaging operation ⟨Q⟩ over a size ∆m > ∆̂. The model assumes that
the fractal behavior extends up to the test-filter scale ∆̂, and compares the flame surface at
scales4 ∆ and ∆̂ to derive β, as illustrated in Figure 2.10.

m

A

A

A

1

Figure 2.10: Position of the dynamic filtering scales in the fractal cascade. The flame surfaces A,
Â respectively resolved at the scales ∆, ∆̂ are compared to deduce the total flame surface A.

By equating two expressions of the averaged test-filtered total FSD:

⟨Ξ∆|∇c̄|
∧

⟩ = ⟨Ξ∆̂|∇ˆ̄c|⟩ , (2.99)

and assuming that β is uniform over the averaging volume, a closed-form formula for β can
be found. The high levels of turbulence seen in practical turbulent configurations mean that
Equation 2.97 often takes its saturated form [371] and in this case, the dynamic expression
for β is:

β = ln (⟨|∇c̄|
∧

⟩/⟨|∇ˆ̄c|⟩)
ln γ . (2.100)

3Ideal filters like a sharp spectral filter are projection operators, meaning that ¯̄ψ = ψ̄ [282]. In this case,
the composition of two filters of size ∆ and ∆′ ≥ ∆ is equivalent to filtering at a size ∆′. This is not the case
for non-ideal, practical LES filters. The true LES filter is unknown and is often approximated by a Gaussian
filter [188, 313]. The composition of two Gaussian filters of size ∆ and ∆′ = c1∆ ≥ ∆ is equivalent to a single
Gaussian filter of effective size

√
1 + c2

1 > ∆′.
4Here, the scales are analogous to the caliper lengths in the stepping-caliper measurement of Figure 2.9.
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Equation 2.100 involves the ratio ⟨|∇c̄|
∧

⟩/⟨|∇ˆ̄c|⟩ which can be interpreted as the wrinkling
between the scales ∆ and ∆̂. After introducing the notations:

Σ1 = |∇c̄|
∧

, (2.101)
Σ2 = |∇ˆ̄c| , (2.102)

Equation 2.100 yields:
β = ln (⟨Σ1⟩/⟨Σ2⟩)

ln γ . (2.103)

Due to the behavior of the ratio ⟨Σ1⟩/⟨Σ2⟩, this formulation leads to numerical issues
when flame fronts:

1. are near domain boundaries,

2. interact with other flame fronts.

These issues are illustrated in the PhD thesis of P. Quillatre [290], where the uncorrected
dynamic Charlette model was used in simulations of explosions in semi-confined domains and
led to spuriously high, unphysical values of β. The dynamic model was later corrected by
S. Mouriaux to handle both problematic cases. These modifications are summarized below,
and full details are contained in her paper and PhD thesis [238, 239].

Mouriaux et al. [239] illustrate the presence of numerical issues near domain boundaries
in the simple case of a laminar 1D flame front. In this configuration, there is no subgrid-scale
wrinkling and β should be equal to zero everywhere. Since c̄ is strictly increasing, Σ1 and Σ2
simplify to ∇c̄

∧
and ∇ˆ̄c. The test-filtering and gradient operations must therefore commute to

ensure β = 0. This is the case everywhere except near the boundary, where the test-filtering
operator stencil is truncated. A simple solution is to swap the order of the gradient and
test-filtering operations in Σ2:

Σ2,new = |∇c̄
∧
| . (2.104)

This enforces the correct behavior for a laminar flame and does not affect values far from
the boundary.

The behavior of Σ1 and Σ2 in the presence of flame front interactions is also problematic.
When two flame fronts are separated by a distance d smaller than the test-filter size ∆̂,
the test-filtering operation blends the two filtered fronts into a test-filtered progress variable
profile ˆ̄c that is flat in the interaction zone, leading to small values of Σ2. In contrast, test-
filtering the filtered gradients |∇c̄| that peak inside the filtered fronts leads to uniformly large
values of Σ1. The resulting β field would therefore be high even in the absence of unresolved
wrinkling.

To correct this behavior, a flame interaction sensor ζ is introduced. It is built by compar-
ing the directions of the normal vectors to the filtered and test-filtered flame fronts, noted n

and N respectively. The normal vectors are aligned when there are no flame front interac-
tions, and are not aligned when flame front interact at the test-filter level. ζ is hence defined
as:

ζ =

1, if n ·N < 0.9,
0, otherwise.

(2.105)
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ζ is then test-filtered to match the characteristic scale of flame-front interactions ∆̂. In
regions where ζ̂ = 1, the expression

Σ3 = n ·N |∇c̄|
∧

(2.106)

is used instead of Σ2 to account for the interactions.
In the end, the final expression for Σ2 that accounts for domain boundary and flame front

interaction corrections is:
Σ2,corr = (1− ζ̂)Σ2,new + ζ̂Σ3 . (2.107)

The dynamic Charlette model in its various forms has been applied to LES of jet
flames [326, 377, 385], ignition kernels [239, 386], stratified non-swirling burners [226, 285],
the PRECCINSTA swirled burner [371, 378], explosions in semi-confined domains [376], and
light-around in an annular combustor [287]. It has also seen numerous incremental improve-
ments over the years [239, 285, 385] and stands today as a state-of-the-art model for the
SGS wrinkling factor. The dynamic saturated Charlette model with Mouriaux corrections
is abbreviated as the CDSM model, and will be used in Chapters 5 and 8 as a baseline to
benchmark DL models.

2.8 Numerical simulations with the AVBP solver

In this manuscript, DNS and LES simulations will be performed using the AVBP solver [327,
328]. AVBP is an explicit massively parallel code that solves the compressible, multispecies,
reacting Navier-Stokes equations (both Equations 2.3 to 2.6 and Equations 2.61 to 2.64)
on unstructured grids with a cell-vertex formulation. Abundant details on the numerical
methods used in AVBP are contained in the PhD thesis of N. Lamarque [180]. The numerical
scheme that will be used throughout this work is the Two-step Taylor Galerkin scheme
(TTGC) [68]. It is a finite element centered scheme with explicit two-step integration in
time. It is third-order accurate in space and time, and has excellent dissipative and dispersive
properties that are valuable in unsteady LES and DNS. Boundary conditions are treated with
the Navier-Stokes Characteristic Boundary Conditions (NSCBC) method [277].

Second- and fourth-order artificial viscosity is introduced to damp spurious waves created
by dispersion errors of the numerical scheme. These oscillations may not be smoothed out by
physical diffusion, potentially leading to unphysical values for all thermochemical quantities.
In the DNS computations of this manuscript, only fourth-order artificial viscosity is added
to the density, species, and energy residuals to prevent node-to-node oscillations. In the LES
computations, both second- and fourth-order artificial viscosities are used, and second-order
artificial viscosity is only applied when stiff numerical gradients are detected.

Turbulent viscosity models In LES, the role of the turbulent viscosity µt (Equation 2.68)
is to reproduce the energy transfer from the resolved scales to the SGS scales. Two models
for µt will be used in the LES simulations carried out in this work:

• The WALE model [248] improves on the Smagorinsky model [194] by accounting for
the effect of the rotation rate of resolved turbulent eddies, and recovering the correct
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near-wall scaling:

µt = ρ̄(Cw∆)2 (Sd : Sd)3/2

(S̄ : S̄)5/2 + (Sd : Sd)5/4 , (2.108)

where Cw = 0.49 is a model constant, S̄ is the strain rate tensor of the resolved
velocities, and

Sd = 1
2
[
∇ū∇ū + (∇ū∇ū)T

]
− 1

3(∇ū : ∇ū)I (2.109)

is the traceless symmetric part of the square of the velocity gradient tensor ∇ū.

• The Sigma model [249] builds upon the WALE model, and additionally suppresses the
turbulent viscosity for solid rotation and when resolved scales are in pure axisymmetric
or isotropic expansion:

µt = ρ̄(Cσ∆)2σ3(σ1 − σ2)(σ2 − σ3)
σ2

1
, (2.110)

where Cσ = 1.35 is a model constant, and σ1 ≥ σ2 ≥ σ3 are the singular values of the
velocity gradient tensor.

Dynamic viscosity The dynamic viscosity µ is assumed to be close to that of air, and is
modeled via a power-law dependency on the temperature T :

µ = µref

(
T

Tref

)b

, (2.111)

where µref = 1.8× 105 kg m−1 s−1, Tref = 300 K, and b = 0.68.

TFLES implementation The TFLES thickening operations (Equations 2.81 to 2.84) are
only applied in the flame front thanks to a flame sensor S [187]. This allows mixing to be
correctly computed outside of the flame zone, where the thickening operation is not needed.
The thickening factor simply writes:

F = 1 + (Fmax − 1)S , (2.112)

where Fmax is the user-defined value set in the flame zone. The flame sensor is computed as:

S = tanh
(
β′ Ω

Ω0

)
, (2.113)

with β′ = 50. Ω is based on the fuel oxidation reaction:

Ω = Y νF
F Y νO

O exp
(
− Ea

RT

)
, (2.114)

and Ω0 is its maximum value in a 1D laminar flame.
Moreover, when thickening is applied in the flame region, the structure of the flame is

considered to be fully resolved, and SGS energy and species diffusive fluxes are discarded.
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These terms are therefore transformed like so:

qt → (1− S)qt , (2.115)
J t

k → (1− S)J t
k . (2.116)

To improve the computational efficiency of the CDSM model, the test-filtering and av-
erage filtering operations are implemented via a second-order truncation of the Taylor series
expansion of the application of a Gaussian filter [236]. This allows for a simple expression of
the filtered quantity using second- and fourth-order derivatives which can easily be computed
on an unstructured mesh. For similar efficiency reasons, the β parameter is updated at a
user-defined frequency instead of every iteration [377], since the flame time is typically orders
of magnitude larger than the convective timestep imposed by the Courant–Friedrichs–Lewy
(CFL) number.



Chapter 3

Deep learning

The biggest lesson that can be read from 70
years of AI research is that general methods
that leverage computation are ultimately the
most effective, and by a large margin.

Richard Sutton, The Bitter Lesson1
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Deep learning (DL) is a branch of machine learning (ML) where deep neural networks
are used as high-capacity predictive models. This chapter limits its coverage to the notions
that are necessary to understand the DL developments of this thesis, gradually narrowing its
focus to the specific tools that are used in this work. First, a brief introduction to machine
learning is offered. The chapter then turns towards deep neural networks, explaining their
mathematical foundations and how they are trained in practice. A presentation of convolu-
tional neural networks and why they are useful follows. Finally, the U-Net architecture is
detailed, as it is the backbone of the DL models trained in the rest of this work. To delve
deeper into the fascinating world of deep learning, the reader is referred to the classic books
of Bishop [29], Hastie et al. [133], Chollet [58] and Goodfellow et al. [115].

3.1 Introduction to machine learning

3.1.1 What is machine learning?

In machine learning, a predictive model is trained to perform a learning task from exposure
to training data. The model takes features of the data as input, and forms a prediction
on a variable of interest. It must be able to generalize, that is, retain its predictive ability
on data that was not seen during training. Clearly, as the amount of training data grows,
the empirical training data distribution p(xtrain) will become more representative of the true
data distribution p(xtrue). Machine learning therefore benefits from an abundance of data
as well as sufficiently large computing power to process it. ML models contain very few or
no handcrafted rules, and are especially useful for problems where an automated solution is
needed and rule-based algorithms fail. In particular, machine learning excels in predictive
tasks involving high-dimensional data.

3.1.2 Machine learning paradigms

Depending on the nature of the training data available to the model, machine learning
approaches fall under three broad categories:

• Supervised learning: for each training sample x, there is a label y that cor-
responds to the output of the learning task. Labels guide the learning process by
providing clear ground truth targets for the model.

• Unsupervised learning: no labels are available. When some supervision is often
inferred from the structure of the data, the term self-supervised learning is used.
Self-supervised learning can be understood under the framework of energy-based mod-
els [186], where the model learns to map a pair of inputs x1 to x2 to an energy function.
The energy function is small if x1 and x2 are compatible with regards to the learning
task, and large if they are not. For example, in image recognition, two distorted versions
of the same image may be encouraged to be similar as long as the distortion preserves
the semantic nature of the content. Difficulties emerge when attempting to construct
incompatible pairs while avoiding a collapse of the model to a trivial solution. Self-
supervised learning is an active research domain where contrastive and non-contrastive
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approaches compete [41, 53, 54, 120, 136, 365, 407]. There is no hard boundary be-
tween supervised and unsupervised learning, and it is often useful to combine both
frameworks, as is done for example in knowledge distillation [139, 361].

• Reinforcement learning [355]: an agent observes the state of an environment and
takes actions that affect these states. It is trained to maximize a reward function
that can correspond to a predefined goal, or learn to discover intrinsic rewards [358].
Reinforcement learning agents have produced outstanding results in robotic manipula-
tion [10, 121], video games [230, 374], and perfect information strategy games like Go,
Shogi, and chess [338, 339].

3.1.3 Learning tasks

Learning tasks are too diverse to enumerate exhaustively. Three common examples are:
• Regression, where the goal is to predict continuous numerical values. These target

values can be scalars (for instance predicting house prices based on their specifications)
or vectors (finding the coordinates of the bounding box of objects in an image [240]).

• Classification, which aims to predict discrete, predetermined classes. Image classi-
fication is often used to benchmark computer vision models on datasets such as Ima-
geNet [151] or CIFAR-10 [175]. The model predicts a single class label for each image.
For a finer understanding of the content of an image, semantic segmentation is the task
of classifying each pixel in an image [204]. The output is then a map of class labels
with the same dimensions as the input image.

• Generative modeling, which learns to sample a data distribution. Among generative
models, likelihood-based models directly learn the distribution’s PDF by maximum
likelihood optimization. This family includes variational autoencoders (VAEs) [165,
309], normalizing flows [308], and auto-regressive models [367]. Generative adversarial
networks (GANs) [116] replicate the sampling process of the distribution without ex-
plicitly learning its PDF by adversarially learning to transform samples drawn from a
noise distribution. Diffusion models [347] slowly perturb training data with increasing
random noise, and learn to reverse this process by estimating the score (gradient of
the log-PDF) of the perturbed distribution with a neural network. Generative models
must find a compromise between high sample quality, sample diversity, and sampling
efficiency [398].

3.1.4 Bias-variance tradeoff

Consider a supervised regression task with inputs x and labels y(x). For any training dataset
D, an ML model can be trained. Its prediction on an unseen test sample x is noted ŷ(x;D).
The average prediction error on x is the expected value over all training datasets D of the
least squares error of the model:

ED
[
(ŷ(x;D)− y(x))2

]
= (ED[ŷ(x;D)]− y(x))2 + ED

[
(y(x)− ED[ŷ(x;D)])2

]
= Bias2 + Variance .

(3.1)
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The bias ED[ŷ(x;D)]− y(x) measures the deviation of the average prediction from the true
label y(x). The variance ED

[
(y(x)− ED[ŷ(x;D)])2

]
is interpreted as the sensitivity of the

model performance to the choice of the dataset D.
Typically, bias and variance depend on the capacity of the model, which is its ability to

represent complex relationships in the data. Increasing the number of parameters, adding
input features, or switching to a more powerful class of models are modeling choices that
would increase model capacity. Models with high capacity are able to learn fine patterns
in the training data, and thus achieve low training errors and low bias. However, this also
means that they have high variance since they tend to learn patterns that are specific to
the training set and are not relevant to the full distribution. This phenomenon is called
overfitting. On the other hand, low capacity models are prone to underfitting, meaning
they fail to struggle to even fit the training set. They tend to have high bias but low variance.

Figure 3.1 illustrates how the training and test errors of a model evolve with its capacity,
as presented in classical machine learning theory [29, 133]. As capacity grows, the model
is able to learn increasingly complex patterns and its training and test errors decrease.
However, if the capacity becomes too large, the model will start to overfit on the training
data. Although the training error continues to improve, the test error starts to plateau or even
increase. The difference between the test and training error is called the generalization
gap. The best-performing model achieves the lowest test error, which corresponds to a
capacity that is neither too low nor too high. Equation 3.1 underlines that this corresponds
to a tradeoff between bias and variance.
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Model capacity

Training error

Test error

Generalization gap

Bias ↑

Variance ↓

Bias ↓

Variance ↑

Figure 3.1: Bias-variance tradeoff.

To find the right tradeoff, there is no set formula, and a balance between the complexity
of the learning task and the capacity of the model must be found. For large datasets with
high-dimensional inputs and outputs, it is important to choose a model with large capacity,
and model selection plays a key role in successfully building a predictive model. Techniques
to mitigate overfitting include stopping training when the validation loss starts to plateau,
penalizing the magnitude of the weights (weight decay), or using data augmentation, i.e.
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increasing the diversity of training data by applying small perturbations that do not alter
the training objective.

The zoology of machine learning models is vast [133], and includes linear models (ordinary
least squares, logistic regression), support vector machines, decision trees (random forests,
gradient boosted trees), and neural networks. This last category will be at the center of this
work since it has seen an extensive revival over the past decade with the emergence of deep
learning.

3.1.5 Deep learning

Neural networks were born in the middle of the 20th century [223, 316] from the idea of build-
ing digital analogs to the circuitry of animal brains. They rose to prominence in the 21st

century thanks to the exponential growth of computing power and data availability, which
eventually reached the critical mass needed to routinely train deep neural network architec-
tures. The era of deep learning was famously ushered in by a breakthrough success in the
2012 ImageNet Large Scale Visual Recognition Challenge, a yearly competition that evalu-
ates algorithms on visual recognition tasks, with images taken from the ImageNet annotated
image database [151]. A deep convolutional neural network won the competition with a clas-
sification error of 16%, a significant improvement the previous mark of 25%, beating machine
learning and rule-based image recognition algorithms [176]. Since then, progress in hardware
efficiency, especially for powerful general purpose Graphics Processing Units (GPUs), and the
development of open-source libraries such as Tensorflow [2] and PyTorch [261] have enabled
immense advances in the scale of neural networks that can be trained and the accessibility
of deep learning to newcomers. Deep neural networks are at the core of major develop-
ments in computer vision [31, 155, 299], natural language processing [38, 72], recommender
systems [49], and even scientific discovery [154].

3.2 Deep neural networks

3.2.1 Dense layers

Neural networks are composed of a succession of layers that perform simple operations on
their input feature map, and pass on the resulting output feature map to the next layer.
The most simple neural network architecture is the multilayer perceptron (MLP) which only
contains dense layers. For an MLP with n layers L1, ...,Ln, the dense layer Li transforms
the feature map xi ∈ Rdi as:

xi+1 = Li(xi) = gi(W T
i xi + bi) . (3.2)

Wi ∈ Rdi×di+1 , bi ∈ Rdi+1 , gi are the weight matrix, bias vector, and activation function
of layer i. Weights and biases form the parameters θi = (Wi, bi) that are adjusted when
training the network. If the activation function is linear, then Li is simply a linear transfor-
mation. Instead, using a non-linear activation function allows for greater model expressivity
(i.e. higher capacity) as the model will be able to capture non-linear relationships. The
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rectified linear unit (ReLU) [244], defined as an elementwise maximum operator

σ(x) = max(0, ·)⊙ x , (3.3)

is one of the most common activation functions. An MLP that only contains ReLU activa-
tions is therefore a piecewise linear function that transforms input features x as:

ŷθ = (Ln ◦ ... ◦ L1)(x) (3.4)

and is parametrized by θ = (θ1, ...,θn). n is the depth of the network. Quantities that
characterize the network but that are not directly optimized during training such as the
number of layers or their dimensionality are called hyperparameters.

3.2.2 Stochastic gradient descent

Neural networks are trained by iterative gradient descent, an optimization procedure that
seeks the parameters θ that minimize a loss function L over the training dataset. L is chosen
in accordance with the learning task. For the regression problems tackled in this work, the
loss function is a mean squared error between the network predictions and the ground truth:

L(x; θ) = (ŷθ − y)2 . (3.5)

In practice, when training on large datasets, gradient descent over the entire training set
is prohibitively expensive because it requires a gradient evaluation at every training data
point. The preferred method is stochastic gradient descent (SGD), where the training
set is randomly split into small batches and gradient descent is done on one batch at a time.
This amounts to approximating the real gradient with its value over one batch. A parameter
update on one batch is called an iteration, and a pass through the entire training set is
called an epoch.

During a pass over a batch {x(1), ...,x(m)}, the mean gradient of L with respect to θ

is accumulated by automatic differentiation. θ is then updated in the direction of steepest
descent:

θ ← θ − ϵ∇θ

(
1
m

m∑
i=1
L(x(i); θ)

)
, (3.6)

where ϵ is a hyperparameter called the learning rate. This is the backpropagation step.
Algorithm 1 shows pseudo-code for the base SGD algorithm.

Building from the concept of stochastic gradient optimization, many evolutions of the
base SGD algorithm have been proposed in the DL literature. One of the most popular
variants is the Adam optimizer [164] which adaptively decays the learning rates of individual
parameters. It performs consistently well on a wide set of learning tasks [325] and will be
used in all DL training runs of this work.
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Algorithm 1: Stochastic gradient descent
Data: Number of iterations N , learning rate schedule ϵk, batch size m
Result: Trained parameters θ

for k ← 1 to N do
Randomly draw a batch {x(1), ...,x(m)} from the training set
Compute the gradient approximation: g ← ∇θ

(
1
m

∑m
i=1 L(x(i),θ)

)
Update the parameters: θ ← θ − ϵkg

3.2.3 Training and validation datasets

To detect underfitting and overfitting, the data available during training is split into a train-
ing set and a validation set. Parameters are optimized only on the training set, and the loss
function on the validation set is monitored throughout the training. As training progresses,
the training loss will consistently decrease, while the validation loss may start to plateau or
increase after enough iterations have passed: this is a sign that the model has started to
overfit. Typically, the model with the lowest validation loss is selected. Hyperparameters
may be adjusted to improve the lowest validation loss, at the cost of needing to retrain the
model for each set of hyperparameters. Underfitting is solved by adding more parameters
or layers to the network to increase its capacity. Overfitting is addressed by reducing the
model’s capacity, either by directly removing parameters and layers, or indirectly through
regularization methods like weight decay [177] and dropout [350]. The final performance of
the model should be assessed on a test set that is not used for parameter or hyperparameter
tuning.

3.2.4 Why deep neural networks are able to generalize

Despite the widespread usage of deep learning, how and why deep neural networks generalize
is still not well understood. Modern deep neural networks can contain trillions of param-
eters [91] and are typically overparametrized with respect to their training dataset. The
fact that overparametrized neural networks are able to fit random labels is at odds with all
traditional machine learning explanations for generalization [411]. It implies that DL models
learn to memorize training labels, seemingly contradicting their ability to extrapolate to un-
seen test data. This is corroborated by an empirical phenomenon known as double descent.
Unlike the monotonous test error curve of Figure 3.1, the test error of deep neural networks
starts to decrease again when model capacity is sufficiently large [25, 247]. Double descent
is consistent with the ability of modern overparametrized neural networks to reach near zero
training error while avoiding overfitting, even without explicit regularization. To reconcile
memorization and generalization, Feldman et al. [92, 93] argue that since natural data distri-
butions are long-tailed, memorization of training labels is necessary to achieve low training
and generalization errors. Overparametrization may also be crucial to explain why deep
neural networks can converge to arbitrarily low training errors despite the non-smoothness
of their optimization landscape [8].
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3.2.5 Selecting the right architecture

A key element of the success of deep neural networks is the flexibility of their architecture, as
increasing their depth or the dimensionality (width) of the inner layers allows them to scale
to very high capacity and thus tackle complex learning tasks. In this regard, MLPs suffer
from an explosion of the number of parameters when working on high-dimensional data such
as long time series, images, videos, or multidimensional grids. The size of the weight matrix
is the product of the dimension of its inputs and of its outputs, making it an inefficient way
to parametrize the network when these dimensions are large.

3.3 Convolutional neural networks

3.3.1 Convolutional layers

For high-dimensional data that is naturally structured on a grid, replacing matrix multipli-
cations with convolutions leads to a much more efficient use of the parameters of a neural
network.

A convolutional layer Ci applies a convolution filter Gi to its input:

xi+1 = Ci(xi) = gi(Gi ∗ xi + bi) . (3.7)

The convolution weights of Gi are the trainable parameters of the layer. Convolutional
neural networks (CNNs) are neural networks that contain at least one convolutional layer.

The inner workings of CNNs are detailed using the example of a 2D convolutional layer
which operates on 2D features. Feature maps in CNNs usually have multiple channels to
enhance the expressiveness of the network. For instance, color images can be decomposed
into red, green, and blue channels that each contain specific information about the image.
Channels are stacked along a third dimension. The input xi of the 2D convolutional layer
has a shape Hi×Wi×Ci where Hi and Wi are the height and width of each channel, and Ci

is the number of channels. Gi is composed of Ci+1 convolution kernels of shape hi×wi×Ci.
The convolution operation is illustrated in Figure 3.2. Each channel j, 1 ≤ j ≤ Ci+1 of
the output xi+1 is obtained by convolving the j-th kernel and xi, and applying the bias
and activation function. A 3D convolutional layer works in the same manner, only with an
additional depth dimension. In practice, a batch dimension is also added to process all the
batch elements at the same time.

The number of parameters of the convolutional layer is hi × wi × Ci × Ci+1. Crucially,
it does not depend on the dimension of xi. The size of the convolution kernels and the
number of channels are hyperparameters that are defined by the architecture of the network.
Generally, hi = wi for all kernels.

3.3.2 Padding

Figure 3.2 shows that convolutions reduce the size of the output feature maps (Hi+1 < Hi,
Wi+1 < Wi). To preserve the size of the feature map, padding can be applied prior to
the convolution operation. This allows the sizes of the output feature map and of the
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Dot product

Figure 3.2: 2D convolutional layer. A filter of size hi × wi × Ci = 3× 3× 3 is convolved with the
input feature map (Hi = Wi = 5, Ci = 3). Each value in the output feature map is computed as the
dot product of the filter with a hi × wi × Ci patch of the input (example outlined in dark red). The
output has a shape Hi+1 ×Wi+1 × Ci+1 = 3× 3× 1.

convolutional kernels to be controlled independently. Most commonly, spatial dimensions of
the input are padded with zeros at the boundaries (zero-padding).

3.3.3 Pooling

Learning from high-dimensional data requires some form of compression to find data rep-
resentations that efficiently encode information that is useful to the learning task, while
discarding the rest. To this end, it is beneficial to reduce the size of deep feature maps
to encourage them to learn more abstract data representations. In parallel, the number of
channels is usually increased to increase the diversity of feature maps. In practice, pooling
layers are used to reduce the dimension of feature maps. For example, k × k max pooling
applies a maximum operation over a k× k neighborhood with a stride k, effectively dividing
each dimension by a factor k. Pooling also improves the computational efficiency of the
network by reducing the number of parameters needed in subsequent layers. Finally, pooling
has a large impact on the receptive field of the network.

3.3.4 Receptive field

The receptive field of a CNN is the region of its input that can influence the prediction
at a given output location [115]. From Figure 3.2, it is clear that the receptive field of
the output of a convolutional layer is proportional to the size of the convolutional kernels.
A pooling layer with a size k multiplies the receptive field by k. The receptive field of a
CNN containing a sequence of convolutional and pooling layers can therefore be very large.
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In other words, predictions at a given location take into account a wide spatial context.
Further investigations into the receptive field are done in Section 5.8.1.

3.3.5 Batch normalization

Normalization layers have long been known to increases convergence speed and stability of
deep neural networks. For instance, AlexNet use a local response normalization layer [176].
In modern deep learning practice, batch normalization (BN) [148] has emerged as the main
normalization technique used in CNNs. BN layers are placed after dense or convolutional
layers to stabilize the mean and variance of the feature map. During training, the mean µi

and standard deviation σi of the input feature map xi are aggregated along the batch and
spatial dimensions. For each channel, the BN layer rescales the feature map:

xi+1 = Bi(xi) = γi
xi − µi

σi
+ βi . (3.8)

γi and βi are a scale and a shift parameter that are trainable. In inference mode (when the
model is used on the validation or test set), values of µi and σi saved from the training set
are used to prevent data leakage.

One of the explanations for the success of BN is that it helps the optimization process
by smoothing the loss landscape [322]. This also explains why it empirically solves gradient
explosion or vanishing. In addition, BN has a regularization effect which tends to limit the
capacity of the model and prevent overfitting [212].

3.3.6 Why CNNs are useful

Supervised training of neural networks is a form of inductive learning, for which generaliza-
tion depends on the inductive biases of the model [119]. These are the factors outside of the
observed data that intrinsically steer the model towards learning a specific representation.
Generalization is largely driven by how well the model’s inductive biases fit the properties
of the data representation it is trained to learn. The inductive biases of neural networks are
heavily influenced by their architecture. MLPs have weak inductive biases, whereas CNNs
have strong locality and translation equivariance inductive biases [23] which explains their
success in generalization of computer vision tasks [410].

Locality is enforced by the limited extent of convolutional kernels. Unlike mechanisms
such as attention [368] that enable long-range dependencies, convolutions enforce local rela-
tionships, i.e. limited to a restricted spatial neighborhood. This property is desirable when
building an LES SGS combustion model, as the evolution of the flame should be fully de-
termined by local properties. In contrast, applications of CNNs to the non-local problem of
solving the elliptic Poisson differential equation showed that in this case, very large receptive
fields are needed to combat the locality bias of convolutional layers [56].

In a convolutional layer, the same set of weights is applied to every input location, instead
of having to learn location-dependent weights. This property is called parameter sharing and
makes CNNs very efficient to deal with high-dimensional features where absolute positions
are not relevant to the learning task. In particular, this work applies DL models to volumetric
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data discretized on 3D grids where convolutions are much more efficient than dense layers
in terms of computation and memory. Parameter sharing also makes convolutional layers
equivariant to translation. This means that a convolutional layer C and a spatial translation
t commute:

(C ◦ t)(x) = (t ◦ C)(x) . (3.9)

In an SGS model working on the resolved flow, if the flow is translated, the corresponding
SGS field should follow the same translation. Translation equivariance is therefore a useful
property for this task. In general, generalization of data-driven models is greatly improved
by leveraging invariance or equivariance to physical transformations. Intuitively, physical
invariance reduces the complexity of the modeling task and leads to perfect generalization
to invariant transformations of the data.

CNNs benefit greatly from deep architectures which stack many convolutional layers. In
practice, shallow convolutional layers have been observed to learn Gabor filters, which natu-
rally occur in the visual cortex of mammals and are often chosen to extract image features in
hand-made image classifiers [115]. Moving deeper into the network, convolution filters learn
increasingly complex concepts. Feature visualization is a technique that highlights what
specific filter, channels, or layers learn to detect. Figure 3.3 is taken from Olah et al. [255]
where it is applied at the level of a channel. Gradient ascent in the input feature space is
performed to find the input that maximizes the activation of a given channel in a CNN [85].
In this case, the network is a GoogleNet architecture [356] trained for object classification
on the ImageNet dataset [151]. Shallow layers are sensitive to textures, while deeper layers
respond more to increasingly abstract and generic concepts (dog eyes, a house, balls).

(a) Layer 3a (b) Layer 4a (c) Layer 4c (d) Layer 5a

Figure 3.3: Feature visualization of channels of GoogleNet [356] trained on the ImageNet
dataset [151]. Going from left to right, layer depth increases. For each layer, one channel is selected,
and the input that maximizes the activation of this channel is shown. Figures from Olah et al. [255]
licensed under CC BY 4.0.

3.4 U-Nets

U-Nets are convolutional neural network architectures that are designed for field-to-field
visual tasks, and are commonly used in computer vision for 2D and 3D image segmenta-
tion [64, 315, 416]. They follow the structure of an autoencoder, with an encoder part that
progressively reduces the dimension of the feature maps and increases the number of chan-
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nels, and a symmetrical decoder part that maps to an output with the same dimension as
the input. The network is split into stages separated by pooling operations that downsample
(in the encoder) or upsample (in the decoder) the feature maps. The specificity of U-Nets
lies in the skip connections that concatenate the end of each encoder stage to the start of
the matching decoder stage. The combination of upsampling and concatenation encourages
each decoder stage to aggregate information from two separate spatial scales. U-Nets are
therefore multiscale CNNs that combine information on a continuum of scales extending up
to their receptive field. Skip connections also allow the network to combine low-level features
learned by the shallow layers of the encoder with the more complex, abstract features learned
by the decoder, and accelerate training convergence [416].

The architecture of the U-Net used throughout this work is shown in Figure 3.4. Each
stage is composed of two successive combinations of:

• a 3D convolution with a 3× 3× 3 kernel,

• a batch normalization layer,

• a ReLU activation function,

followed by 2 × 2 × 2 pooling operations. In the encoder, maxpooling operations decrease
the spatial dimensions of the feature maps by a factor of 2. The shape of the input field
is then recovered by upsampling pooling operations in the decoder. All the convolutional
layers include zero-padding to preserve the spatial dimensions of their input feature map.
Padding could be adapted to specific boundary conditions if they were known in advance [7],
for instance for periodic boundaries. However, one of the strengths of this architecture is
that it is fully convolutional, meaning there are no constraints on the shape of the inputs
it can process. This allows training to be performed on random crops for which no specific
boundary conditions exist. Previous studies working on CNNs trained for flow field predic-
tions have found no substantial impact of zero padding compared to padding strategies that
are consistent with their boundary conditions [234].

This architecture follows conventional best practices for deep CNNs. One of them consists
in stacking consecutive small 3×3×3 kernels instead of using a single equivalent larger kernel.
Using several small kernels has the advantage of requiring fewer parameters to reach a given
receptive field size, which can accelerate and regularize the training of deep CNNs. This is
a key concept in the design of the Inception module [356], the VGG architecture [341], and
ResNets [137]. Batch normalization was found to be mandatory for training to converge.
Without BN, training stalls as soon as the first epoch. Whether BN should be placed before
or after the ReLU non-linearity is a matter of debate, but it has not been observed to
significantly affect performance here or in the literature. Although it is arguable that BN
→ ReLU makes sense to ensure that the following convolutional layer sees normalized data,
here ReLU → BN was chosen in accordance with the original paper [148]. This network
contains a total of 1.4 million trainable parameters.

In the applications presented in this manuscript, U-Nets are trained to map a resolved
LES field to an SGS field of interest. This is a 3D field-to-field regression task for which the
U-Net architecture is well-adapted. Multiscale CNN architectures were successfully used for
CFD modeling by Lapeyre et al. [183] to predict SGS flame wrinkling and Ajuria et al. [4]
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Figure 3.4: U-Net architecture. Each feature map is represented with 2 out of its 3 spatial
dimensions as height and depth, and the channel dimension as width. The number of channels is
noted below each feature map. The hidden layers connecting the feature maps are represented by
the arrows. The input and output fields are colored in pink, and the feature maps concatenated by
the skip connections are colored in blue.

to solve the Poisson equation in incompressible flows. In the following, the U-Net model will
simply be called the CNN. For SGS modeling, this multiscale approach can be thought of as
an extension of the dynamic procedure which extracts information at a test-filtered scale to
inform local predictions. Its ability to predict the entire output field at once is also attractive
in terms of computational efficiency, as a single inference of the network is needed for the
whole domain. This is an appealing approach for combustion SGS modeling since the CNN
is able to make local predictions based on the knowledge of the full spatial structure of the
flame front.
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In a few short years, deep learning has become one of the hottest topics in scientific
computing and is now widely applied to enhance numerical fluid simulations. This chapter
closes the introductory part of this thesis with a survey of the existing literature to place this
work in the appropriate context, and expands on the methodology and modeling framework
used in the rest of the thesis. First, a short review on the state of the art of deep learning
applications in CFD is established, followed by a more specific examination of advances in
numerical combustion. A methodology to train and evaluate DL SGS models is detailed.
Finally, Part I ends with a description of the modeling framework used in the three DL
models developed in the thesis.
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4.1 Deep learning for CFD

Like many scientific fields, CFD has widely adopted deep learning as a powerful modeling tool
that opens the door to fascinating new applications. In this section, some recent advances
in the field are present, and the reader is referred to the many existing reviews for more
details [39, 80, 81, 373].

4.1.1 Learning useful flow representations

The large capacity of deep neural networks enables them to learn flexible representations of
fluid flows. One task where this is useful is super-resolution, where coarse turbulent fields
are upsampled to high-resolution versions. Deep neural networks are trained in a super-
vised [102, 103, 199] or unsupervised [107, 162] fashion to generate realistic fully resolved
turbulent flows. While super-resolution increases the dimensionality of a flow representation,
reduced-order modeling seeks a compressed, low-order representation of the flow that can
be used whenever high-fidelity flows are unwieldy. Existing techniques include proper or-
thogonal decomposition [210] and dynamic mode decomposition [324]. With deep learning,
convolutional autoencoders are trained to encode a compressed representation of fluid flows
into a low-dimensional latent vector, corresponding to the feature map at the bottleneck of
their architecture. This latent vector is then used to advance temporal dynamics at a low
computational cost [84, 219] or visualize flow fields, effectively performing a type of non-
linear mode decomposition [243]. Some works are dedicated to assessing the uncertainty of
reduced-order models involving neural networks [104, 218].

4.1.2 Predicting spatio-temporal dynamics

Learning a model for the evolution of turbulent flows could disrupt the field of numerical
simulation by replacing traditional CFD solvers which are bounded by slow convergence or
iterative temporal iterations. For steady-state flows, several methods learn the converged
flow state by encoding the geometry of the domain using signed distance functions [127] or
point cloud representations [157]. Spatio-temporal modeling of unsteady flows is a topic of
active research, with extensive works aiming to predict the temporal evolution of turbulent
flows [232, 245, 304, 349, 351, 387] with applications like turbulence inflow generation [105,
163]. All these methods displace the computational burden from the inference phase (rolling
out temporal iterations) to the training phase of a deep neural network.

Wandel et al. [384] propose an unsupervised training framework where fluid data is cycled
through a CNN until a physics-constrained loss function converges. This is analogous to many
recent methods that have been proposed to solve partial differential equations (PDEs) in a
data-free manner, i.e. without needing paired input-output data that are generated from
costly high-fidelity simulations. This is achieved by sampling random solution states and
minimizing a physics-constrained loss function that includes the residual of the PDE as well
as Dirichlet or Neumann boundary conditions [179, 417]. Along with finite difference schemes
to approximate PDE derivatives, this method was used to train deep learning PDE solvers
based on MLPs [342] or auto-regressive convolutional architectures [110]. Physics-informed
neural networks [295] use automatic differentiation instead of finite difference schemes to
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analytically compute derivatives in the physics-constrained loss function. They are a mesh-
independent class of DL PDE solvers that have been applied to inverse problems [128],
modeling vortex-induced vibrations [296] and turbulent scalar mixing [294], and solving the
Navier-Stokes equations [153]. In practice, they can face limitations due to difficulties in
learning unsteady dynamics, high training costs, the need to retrain them when changing
parameters or boundary conditions, imperfect numerical accuracy, and sometimes failure to
train at all [389].

More generally, the intersection of deep learning and differential equations is a promis-
ing research area. There are fundamental analogies between residual neural networks [137]
and ordinary differential equations (ODEs). Skip connections in a residual network can be
interpreted as an Euler scheme to discretize first-order derivatives [206], enabling generative
models known as continuous normalizing flows that leverage ODE solvers [52] and are con-
nected to diffusion models [144]. Fourier neural operators [193] are DL PDE solvers that
learn the solution operator of a PDE as a succession of kernel integral operators containing
learnable transformations in Fourier space. Like physics-informed neural networks, they are
mesh- and resolution-independent, but have the additional ability to learn operators for a
class of parametrized PDEs, and not only a single PDE. Two of their drawbacks are their
reliance on paired input-output training data, and their large memory usage which still
prevents them from scaling to large 3D applications.

4.1.3 Accelerating CFD solvers

Instead of outright replacing CFD solvers, some works focus on using deep learning to accel-
erate existing solvers. Tompson et al. [360] train a CNN to approximate the solution of the
Poisson equation in incompressible flows, which is commonly solved using iterative solvers.
Ajuria et al. [4] extend this method by enforcing stricter accuracy requirements. They de-
velop a hybrid approach in which an iterative Jacobi solver is initialized with approximate
solutions given by a multi-scale CNN. This significantly reduces the number of Jacobi itera-
tions needed for convergence, thus accelerating the Poisson solver. Applications of multi-scale
CNNs to predict acoustic wave propagation also show that replacing traditional solvers with
CNNs could remove CFL restrictions on the solver timestep, enabling faster simulations [6].
Bar-Sinai et al. [20] propose to learn the coefficients of the stencils that discretize PDE dif-
ferential operators. For coarse spatial and temporal resolutions, the resulting data-driven
discretizations can improve the numerical accuracy of CFD solvers and relax mesh resolution
requirements, thus accelerating computations [169]. Promising research avenues are opened
by the development of fully differentiable solvers such as SU2 [83] and phiflow [142] that
enable end-to-end optimization of ML models developed for PDE solvers [24].

4.1.4 Turbulence modeling

A plethora of approaches have been proposed to train deep neural networks for SGS turbu-
lence modeling in LES, including regression of an SGS model trained by supervised learn-
ing [122, 222, 259, 283, 390, 399, 415], model classification to select and optimally blend
existing models [220], deconvolution [132, 221, 406], and reinforcement learning [253].



56 CHAPTER 4. DEEP LEARNING FOR NUMERICAL COMBUSTION

4.1.5 A transverse theme: embedding physical knowledge

Across all the applications of deep learning to CFD, a common theme is the integration of
physical knowledge in a data-driven approach. Some methods build physical inductive biases
in the design of the model. This applies to physics-informed neural networks that explicitly
embed PDEs in the network architecture, or models that use convolutional layers to encour-
age translation equivariance and locality. Alternatively, physical constraints can be imposed
by judiciously selecting the inputs and outputs of the model. In Ling et al. [197], an MLP
learns to predict the decomposition of the Reynolds stress anisotropy tensor on an invariant
tensor basis, thus ensuring that the resulting tensor is Galilean invariant by construction.
Similarly, Prakash et al. [284] express model inputs in a the strain-rate eigenframe to achieve
rotation and reflection invariance in a model for SGS stresses. Pre-processing transforma-
tions and data augmentation are used by Frezat et al. [101] to encourage invariance to
translation, rotation, linearity, and Galilean transformations for predictions of SGS scalar
fluxes. For coarse-graining of incompressible turbulence, Mohan et al. [233] predict a vector
potential, to ensure that the associated velocity field is divergence-free. Vollant et al. [375]
find that MLPs trained to predict the SGS scalar flux divergence generalize better if they are
trained to predict coefficients in a physically-derived functional form, rather than the SGS
quantity directly. Finally, soft constraints on physical relations can simply be imposed using
physics-constrained loss functions [179, 295, 387] or data augmentation [101], but do not
ensure that these relations will be consistently satisfied. Hard constraints are more difficult
to enforce and may be imposed by neural network verification [289] or corrections applied to
the predictions of a trained network [6].

4.2 Deep learning for numerical combustion

Narrowing down the field of CFD to numerical combustion, this section presents a short,
non-exhaustive overview of machine learning applications in combustion simulations. See
Ihme et al. [146] for a recent in-depth review of this topic.

Some of the first applications of machine learning to combustion targeted the reduction
of complex mechanisms. Neural networks in particular are often proposed to replace look-up
tables in tabulated chemistry for significant improvements in memory efficiency and speed [9,
30, 47, 48, 61, 74, 99, 131, 147, 257, 331, 382, 412]. Some chemistry modeling approaches
transform the thermochemical state into a low-dimensional embedding to reduce the number
of variables to be transported, especially for complex mechanisms involving many species.
While principal component analysis has long been the method of choice to project and
reconstruct the full thermochemical variables, neural networks have sometimes been used as
reduced-order models to replace it [82, 229, 264]. Reconstruction of high-fidelity reactive flows
is made possible by convolutional neural networks trained to perform super-resolution [32]
or deconvolution [203, 250]. Finally, using neural networks for turbulent combustion closures
has seen a recent surge of interest with the emergence of deep learning.

More specifically, deep learning for SGS models in LES is the subject of this thesis and
is covered more extensively here. Table 4.1 reviews some recent works that involve neural
networks to model unclosed terms in the LES equations of turbulent reactive flows. Although
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many works use MLP architectures that are typically only a few layers deep, they are still
included under the term deep learning given the relevance of their approach. All of these
works involve supervised training of a neural network trained to regress input-output pairs
generated from a filtered DNS, and consistently beat existing algebraic models. From the
choice of model targets, three distinct families emerge: FSD models [183, 305, 336], PDF
models [55, 158, 357, 402, 403], and models that directly predict the filtered reaction rate,
sometimes with unclosed dissipation terms [152, 203, 246, 329, 337]. Indirect models that
rely on the existing FSD and PDF frameworks thereby inject some physical knowledge in
the resulting model for the filtered reaction rate, although whether this knowledge should
be subsumed in an end-to-end direct model is debatable. Determining which input features
to use is typically not done in a formal way. Some approaches choose to rely on a very
restricted set of inputs [183, 203, 305, 329], while others opt to use many more features.
Several authors perform feature importance analyses to understand which features are more
relevant for the model: Yellapantula et al. [403] use integrated gradients [354], while Shin
et al. and Kasten et al. [158, 337] use Shapley additive explanations [211] and maximal
information coefficients [307]. Finally, despite the beneficial inductive biases and parameter
efficiency of CNNs outlined in Section 3.3, CNNs are rarely used, and when so, often with
receptive field restrained to 2D or neighbors of a reduced box stencil.

Table 4.1 underlines the rarity of three key assessments of the performance of a DL model:

1. evaluation on a high Reynolds configuration instead of an academic flame,

2. evaluation on a configuration that is different from the training case,

3. a posteriori evaluation.

These three elements are key to ensuring the applicability of DL models to industrial LES
computations. They are therefore the core problems that are addressed throughout this
thesis

The first point is apparent from the list of testing configurations shown in the table. Many
works evaluate their model on statistically planar flames or low-Reynolds jet flames. This is
understandable, as high Reynolds DNS datasets are costly to generate and not systematically
shared with the combustion community. To remedy this issue, Chung et al. [62] have recently
launched an open repository for DNS combustion datasets. Models in this thesis will be
evaluated on high Reynolds filtered DNS or LES simulations.

Regarding the second point, the limits to generalization of SGS neural network models
are still not well understood. Generalization is usually assessed by evaluating the model on
the training distribution sampled at different spatial [357] or temporal [32, 55] locations, or
through minor parametric variations [55, 183, 250, 402, 403]. For FSD models specifically,
Ren et al. [305] study highly turbulent statistically stationary planar flames at Ka = 38 (case
L), 390 (case M), and 1710 (case H). Cases M and H are located in the broken reaction zone
regime, where the flamelet assumption may not hold. Snapshots show a highly fragmented
reaction front and the authors point out that the resolved and total FSD fields have large
discrepancies for these cases. After training on case H, the model performs well on case M and
at larger filter sizes, beating a selection of static wrinkling models. It is interesting to note
that it performs relatively poorly on case L which belongs to the thin reaction zone regime
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and features an intact reaction zone. This result highlights the model’s sensitivity to changes
in the turbulent combustion regime. Attili et al. [15] draw similar conclusions after training
the U-Net from Lapeyre et al. [183] on four DNS of jet flames with increasing Reynolds
numbers [209]. Their results show that generalization to unseen turbulent levels works better
between high Reynolds number flames, which they suggest is due to the asymptotic behavior
of high Reynolds turbulence. In addition, models trained on a specific region of the flame
(flame base, fully turbulent region, or flame tip) perform noticeably worse when tested on
a different region, thus highlighting the spatial variations of the wrinkling distribution in a
given flame. Generalization to new configurations is addressed in Chapters 6 and 8

Missing literature for the third point can partly be explained by the difficulty of coupling
deep neural networks with high-performance LES solvers. A posteriori evaluation of DL
models is covered in Chapters 7 and 8. The difference between a priori and a posteriori
testing is recalled in the following section.
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Reference Inputs Targets Input size Architecture Training case /
Test case if different

A posteriori
evaluation

Lapeyre et al. [183] c̄ Σ Full 3D field CNN (U-Net) Jet flame (low Re) –

Seltz et al. [329] ω̇(c̃), ∇ · (ρ̄D∇c̃) ω̇, SGS scalar flux 33 box CNN Jet flame (high Re) –

de Frahan et al. [357] Z̃, Z̃′2, c̃, c̃′2 p(Z, c | Z̃, Z̃′2, c̃, c̃′2) Single point MLP, VAE Low-swirl burner –

Yao et al. [402] Z̃, ν̃t, ||S̃||, D̃, ρ̄, J̃m, Ũd, C̃ p(Z), ⟨N | Z⟩, Ñ Single point MLP Spray flame –

Yellapantula et al. [403] c̃, c̃′2, D̃c, 2D̃c|∇c̃|2,
principal rates of strain

χ̃c,SGS Single point MLP Statistically planar
turbulent flame –

Ren et al. [305] |∇c̃|, u′
∆ Σ 32 box CNN Statistically planar

turbulent flame –

Chen et al. [55] Z̃, Z̃′2, c̃, c̃′2, Z̃′c′ p(Z, c | Z̃, Z̃′2, c̃, c̃′2) Single point MLP MILD flame –

Shin et al. [336] c̄, |∇c̄|, |∇2c̄| Σ Single point MLP
(ResNet + MDN) Jet flame (low Re) ✓

Liu et al. [203] c̄ ω̇, SGS scalar flux 2D slices CNN
(autoencoder)

Statistically planar
turbulent flame –

Nakazawa et al. [246] Ỹk, T̃ , k̃, ϵ̃, ρ̄ ω̇ Single point MLP Statistically planar
turbulent flame / V-flame –

Jigjid et al. [152]
ϕ, c̃, |∇c̃|, exp

(
−Z̃/Zst

)
,

|∇Z̃|,∆
ω̇ Single point MLP MILD flame –

Shin et al. [337]
c̃, |∇c̃|, |∇2c̃|, u′

∆, |ũ|, ||∇ũ||,
||S̃||, ||∇ × ũ||, κ̃, ãt, ∆ ω̇ Single point MLP (ResNet)

Statistically planar
turbulent flame /

Jet flame (low Re)
–

Kasten et al. [158] c̃, Da, Ka, ∆/δL, τ χ̃c,SGS Single point MLP (ResNet) Statistically planar
turbulent flame –

Table 4.1: List of recent works using neural networks for turbulent combustion closure. Table-specific nomenclature: Z: mixture fraction,
χ̃c,SGS : SGS dissipation rate of c, Jm: evaporation rate, Ud: droplet relative velocity, C: droplet number density, N : scalar dissipation rate,
MILD: Moderate or Intense Low-oxygen Dilution, MDN: mixture density network, ϕ: combustion mode, κ: flame curvature, at: tangential
strain rate, τ = (Tadiab − Tu)/Tu.



60 CHAPTER 4. DEEP LEARNING FOR NUMERICAL COMBUSTION

4.3 Methods for training and evaluating a deep learning SGS
model

SGS machine learning models trained via supervised learning require the exact subgrid terms
during the training process. By definition, these terms are not available in an LES since
they need to be modeled. A solution is to produce resolved and subgrid variables from
DNS solutions. This process usually involves applying a spatial filter to the DNS, and
downsampling it to a coarse mesh. It is grounded on the analogy between the LES governing
equations and filtered DNS equations. The resulting filtered coarse DNS is simply called the
filtered DNS. The resolved filtered variables can then be used as inputs to the DL model,
while the subgrid terms to be modeled are available through the DNS solutions.

There are two main ways of evaluating LES subgrid-scale models [319]:

• A priori evaluation requires fully resolved variables from a DNS. The DNS is spatially
filtered and downsampled on a coarse mesh to generate coarsely resolved variables
on which the model can be applied. The exact subgrid terms can be computed on
the coarse mesh based on the DNS variables. They serve as a reference against the
predictions of the SGS model.

• A posteriori evaluation assesses how the model performs when used in a real LES.
This validates the model in the true simulation context in which it is intended to
be used, including model propagation errors and LES numerical errors. However,
it is not usually possible to validate the model from a one-to-one comparison with
experimental or DNS data. Instead, validation relies on statistical comparisons of
integral metrics that are relevant to the configuration. For DL models, a posteriori
evaluation requires the LES solver to be able to query the neural network on-the-fly,
which can be technically challenging.

For DL models, a priori evaluation on a held-out set of filtered DNS data is straightforward.
However, it is important that the filtered DNS is similar to real LES data for a priori
performance to be indicative of a posteriori performance. This applies to any SGS model,
but it is especially important for deep neural networks which are high-variance models that
could overfit the specific distribution of the training filtered DNS.

4.3.1 Non-equivalence of filtered DNS and LES

Unfortunately, there is no rigorous, straightforward connection between the distributions
of filtered DNS and LES variables. First, in implicitly filtered LES solvers like AVBP,
filtering is caused by a combination of the effects of the numerical scheme, the SGS model,
and discretization by the computational grid. There is no closed-form expression for the
resulting implicit filter, so no way to replicate it when explicitly filtering DNS variables for
a priori testing. Section 4.3.3 will discuss how explicit DNS filtering is done in practice.

Second, even assuming the existence of a perfect explicit filter, filtered DNS and LES will
still differ in practice due to numerical and modeling errors. This is formalized by Ghosal’s
analysis of LES numerical errors [111] which is briefly presented here.
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Let ψ denote DNS variables whose time evolution is governed by an exact Navier-Stokes
operator N :

∂ψ

∂t
= N (ψ) . (4.1)

Filtering and downsampling ψ to a coarse mesh is formalized as the application of a projection
operator P mapping DNS solutions to the space of solutions discretized on the coarse mesh1:

∂P(ψ)
∂t

= (P ◦ N )(ψ) . (4.2)

Let NLES be the LES Navier-Stokes operator, including the LES numerical schemes and SGS
models. It operates on coarse variables ψLES. The difference between filtered DNS variables
and LES variables e = P(ψ)− ψLES follows a forced Navier-Stokes equation:

∂e

∂t
−NLES(e) = (P ◦ N −NLES ◦ P)(ψ) . (4.3)

The forcing term (P ◦ N − NLES ◦ P)(ψ) aggregates LES numerical and modeling errors.
Even for an ideal SGS model, numerical errors stemming from discrete approximations of
derivatives and non-linear terms will remain and prevent e from staying arbitrarily small. In
other words, a filtered DNS and an LES of the same flow are not statistically equivalent. This
implies some degree of discrepancy between the distributions of realizable filtered DNS and
LES variables. In machine learning terms, training a model on a filtered DNS and evaluating
it a posteriori in an LES is a form of out-of-distribution generalization.

With these theoretical caveats in mind, it remains necessary to transform DNS data in a
way that best approximates LES, even if it is not perfect. The main difference between DNS
and LES being the mesh resolution, downsampling the DNS to a coarser mesh is the core
part of this transformation. However, doing so without pre-filtering the DNS would lead to
undesirable aliasing, as explained in the following.

4.3.2 Aliasing

Aliasing occurs when a signal of maximum frequency fmax is sampled at a frequency fs such
that fs/2 ≤ fmax, violating the Nyquist-Shannon sampling theorem. fs/2 is the Nyquist
frequency, which is the maximum frequency that can be resolved by the sampler. Frequencies
in the [fs/2, fmax] range that cannot be resolved are aliased to lower frequencies mirrored
across the Nyquist frequency, a phenomenon called frequency folding. Figure 4.1 shows
an example of frequency folding for a signal characterized by its energy spectrum E(f) in
the frequency domain. The original signal is sampled at a frequency fs, leading to the
aliasing of all the frequencies f ≥ fs/2 to frequencies lower than the Nyquist frequency. The
spectrum of the downsampled signal is the sum of the bandlimited original spectrum and
the aliased spectrum, leading to spurious high values near the Nyquist frequency. Aliasing
can be mitigated by bandlimiting a signal prior to downsampling. This is achieved by using
a low-pass filter that dissipates high-frequency fluctuations while having a limited effect on

1Filtering is not the focus of this argument, so it can be assumed that the filter has ideal properties
including idempotency and optimal preservation of DNS statistics.



62 CHAPTER 4. DEEP LEARNING FOR NUMERICAL COMBUSTION

fs / 2
f

E

Figure 4.1: Frequency folding due to aliasing. In the original spectrum (blue), frequencies above
fs/2 (dashed blue) are aliased to lower frequencies (dashed red), leading to a distorted
downsampled spectrum (orange).

low-frequency signal components. The cutoff frequency of the filter marks the transition
between its passing and stopping behavior.

Aliasing and the effect of low-pass filtering is illustrated in Figure 4.2 on an RGB image
from the Kodak open image dataset2. Downsampling the original image by a factor 8 without
pre-filtering leads to an aliased representation with a large amount of high-frequency noise.
Filtering the original image with a Gaussian kernel before downsampling produces a low-
resolution reconstruction that preserves most of the information at the pixel scale.

The effect of pre-filtering is also visible on the energy spectrum of the four images plotted
in Figure 4.3. For the downsampled image without pre-filtering, while the energy of low
frequencies is well preserved, high frequencies are more energetic than the original image.
This is consistent with the large pixel-to-pixel fluctuations observed in Figure 4.2. The
filtered image has reduced energy across all but the largest scales. But downsampling the
filtered image leads to a spectrum that is more consistent with the original image near the
Nyquist frequency.

Like in the RGB images, downsampled 3D DNS data can also suffer from aliasing effects.
Figure 4.4 illustrates how aliasing can occur when working with turbulent flame fronts. A
DNS flame front with fine-grained wrinkling is downsampled by a ratio R = 10 without
pre-filtering. The resulting coarse flame front contains high-frequency noise which typically
characterizes aliasing. Since this work focuses on training CNNs on coarse turbulent flame
fronts, and given the sensitivity of CNNs to high-frequency information such as texture [109,
115, 138], eliminating this noise through filtering is mandatory.

2Available at http://www.cs.albany.edu/~xypan/research/snr/Kodak.html

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html
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Figure 4.2: Effect of pre-filtering on aliasing of an RGB image. Top left: original image, top right:
aliased image, bottom left: filtered image, bottom right: filtered and downsampled image.
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Figure 4.3: Energy spectrum of the four images of Figure 4.2.
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Figure 4.4: Aliasing on a premixed turbulent flame front represented by the progress variable
field. Top: DNS flame front, bottom: downsampled aliased flame front.
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4.3.3 Filtering

Filtering a signal S is mathematically expressed as a spatial convolution with a kernel G

S̄(x) = (G ∗ S)(x) =
∫ +∞

−∞
G(x− x′)S(x′) dx′ . (4.4)

In practice, G has finite support, so the integration bounds are finite. G(x) is called the
impulse response of the low-pass filter associated with this convolution. It characterizes the
effect of the filter in physical space. It satisfies the normalization condition of Equation 2.58.

In the frequency domain parametrized by wavenumbers k, the filtered spectrum S̄ is the
product of the kernel transfer function G and the original spectrum S

S̄(k) = G(k)S(k) . (4.5)

Consider a DNS field resolved on a mesh of size h that must be downsampled by a factor
R to a coarse mesh of size Rh. The smallest wavelengths that can be resolved on the coarse
mesh have a size ∆ = 2Rh. An ideal low-pass filter avoiding any aliasing would suppress
spatial frequencies above the cutoff wavenumber kc = 2π/∆ and preserve any frequency
below that. This ideal filter can be expressed as a step function in wavenumber space

G(k) =

1, if |k| ≤ kc,

0, otherwise.
(4.6)

Its impulse response is a sine cardinal (sinc) with infinite support

G(x) = sinc(kcx) = sin(kcx)
kcx

, x ∈ [−∞,+∞] . (4.7)

The counterpart of the sinc filter is the box filter, which has a step function impulse
response

G(x) =

 1
∆ , if x ∈ [−∆/2,∆/2],
0, otherwise,

(4.8)

and a sine cardinal transfer function

G(k) = sinc(k∆/2) . (4.9)

The Gaussian filter is another common alternative. Its impulse response is a Gaussian

G(x) =
( 6
π∆2

)1/2
exp

[
−6x2

∆2

]
(4.10)

with the same standard deviation σ = ∆/
√

12 as a box filter of size ∆. Its frequency response
is also Gaussian

G(k) = exp
[
−∆2k2

24

]
. (4.11)
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The impulse responses of the Gaussian and sinc filters have infinite support, so they
must be truncated for practical use.

√
3∆ is a good estimate of a truncation width for the

Gaussian kernel that preserves most of its non-trivial values. Since the sinc kernel decays
slowly to zero, truncating it will result in an imperfect approximation. A longer truncation
length will mitigate this imperfection at the cost of increasing the computational cost of the
filter due to the increased kernel size.

Figure 4.5 presents the impulse and frequency responses of box, Gaussian and sinc filters
with the same cutoff wavenumber kc. The absolute magnitude of the wavenumber response
of the filters is shown in Figure 4.5b. Due to the truncation, the sinc filter loses its ideal low-
pass properties. A ringing phenomenon called ripple appears, creating oscillating magnitudes
around the Nyquist frequency. The box filter features a large side lobe in the [2kc, 4kc] range
which could lead to aliasing for these wavenumbers. The Gaussian filter is the only one to
impose a smooth, albeit slow, transition around the cutoff wavenumber.
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Figure 4.5: Characteristics of equivalent box, Gaussian and sinc filters.
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In the rest of this work, filtering will always be performed using a Gaussian filter un-
less specified otherwise. Although the box and sinc filters have been used in historical
developments of LES [95], the majority of modern LES literature employs Gaussian filter-
ing [188, 313] due to its compact nature and smooth decay at high wavenumbers. Gaussian
kernels also have useful mathematical properties. The composition of two Gaussian kernels
of widths ∆1,∆2 is also a Gaussian kernel of width

√
∆2

1 + ∆2
2. An efficient way to perform

multidimensional Gaussian filtering is to convolve the signal with a 1D Gaussian kernel in
each dimension. This produces the same result as convolving it with a multidimensional
Gaussian kernel while being faster.

4.3.4 Filtering and thickening

Filtering and thickening are two operations that remove high-frequency structures in a flame
front. To pre-process filtered DNS data in order to best approach a thickened flame front,
the size of the explicit Gaussian filter must be carefully chosen.

TFLES implicitly thickens the flame front by modifying the species conservation equa-
tions. This operation acts as an additional filter on the LES progress variable field, but has
no explicit closed form. Its cutoff length is equal to the thickened flame thickness FδL = Nch,
where Nc, the number of mesh points on which the thickened front is resolved, is typically
greater than 5. Thickening therefore supersedes the implicit LES filtering of size ∆LES ∼ h.
In a TFLES, the progress variable field is thus not strictly speaking a Favre-averaged filtered
representation c̃ of c, but rather a thickened representation č. This notation will be used
whenever it is relevant to distinguish between filtered and thickened progress variable fields.

The effect of thickening on a 1D laminar flame front can be approached by explicitly
filtering the flame front with a filter size ∆ chosen with the following criterion:

Proposition 4.1 (Filter size of a thickened flame). When matching thickening at a factor
F with a filtering operation of size ∆, ∆ is chosen so that a filtered 1D flame has the same
maximum progress variable gradient as a thickened 1D flame

δ̄L,c = δ̌L,c

Note that Proposition 4.1 relies on a consistent definition of the progress variable. Fig-
ure 4.6 plots the progress variable profile of a thickened 1D flame and of several filtered 1D
flames. The original flame is a stoichiometric propane-air premixed 1D laminar flame com-
puted using a single-step mechanism. The progress variable is defined from the fuel mass
fraction: c = 1 − YF /Y

u
F . The laminar flame thickness is δL,c = 352 µm. The thickened

profile is generated with a thickening factor F = 5, leading to a thickened flame thickness
δ̌L,c = 1760 µm. Gaussian filtering, Favre-averaged Gaussian filtering, and box filtering are
applied to the flame front, with filter sizes tuned according to Proposition 4.1. Despite this
constraint, the profiles have noticeable discrepancies near the trailing and leading edges.
Differences between the filtered and the thickened profiles are plotted on Figure 4.7. Box
filtering leads to flatter leading and trailing edges than in the thickened front. Reynolds-
and Favre-averaged Gaussian filtering lead to similar flame profiles that closely match the
thickened profile, but with opposite sign differences. These results encourage choosing the
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Gaussian filter over the box filter, and suggest that Gaussian filtering with and without
Favre-averaging can be suitable approximations of thickening.

Non-Favre-averaged Gaussian filtering will be used throughout this work to generate
filtered progress variable fields used as CNN inputs. Since resolved variables in a compressible
LES are Favre-averaged, Favre-averaged Gaussian filtering may seem like a more apt choice
in the context of a posteriori testing. Nevertheless, this choice is not expected to noticeably
deteriorate the performance of the model, as the differences between non-Favre-averaged and
Favre-averaged flame profiles have been shown above to be small, and LES flame profiles are
already very different from Favre-averaged profiles due to the unknown nature of the LES
filter and limited flame front resolution. A dedicated a priori investigation of the effect of
the nature of the filter on the performance of the CNN is performed in Section 5.6.3.1.
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Figure 4.6: Progress variable profiles of thickened and filtered 1D flames.
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Figure 4.7: Deviation of filtered progress variables to the thickened progress variable.
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Proposition 4.2 induces a relationship between the appropriate filter size ∆ and the
thickening factor F of the thickened flame. This relationship may depend on the progress
variable profile induced by the chemistry and on the nature of the filter. To investigate this
dependency, 1D flames of a single-step methane-air mechanism [270] and a detailed hydrogen-
air mechanism [1] are thickened at various F values and filtered according to Proposition 4.2
for each F . Figure 4.8 then plots the ratio of filter size to thickened flame thickness α =
∆/(FδL,c) with respect to F for these two flames. It appears that for both fuels, α ≈ 1.4
for F > 5 with a Gaussian filter, which is consistent with results from the literature on the
dynamic Charlette model [287, 377]. For a box filter however, α approaches a value of 1.
These observations provide two insights:

• the relationship between ∆ and F seems to depend on the nature of the filter, and not
on the chemistry,

• this relationship seems to be linear for highly filtered/thickened flames.
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Figure 4.8: Ratio of filter size to filtered flame thickness on 1D flames. Solid: Gaussian filter,
dashed: Box filter. Blue: methane-air flame, red: hydrogen-air flame.

This discussion on filtering and thickening exclusively dealt with laminar 1D flame fronts,
and it is more delicate to extend to realistic turbulent 3D flames, where additional factors can
lead to differences between a thickened and a filtered flame front. On the one hand, thickening
is fundamentally an a posteriori operation that affects the flame front along its local normal
direction. On the other hand, a priori Gaussian filtering is isotropic, and therefore averages
out wrinkling in the tangential direction. Filtering will also create interferences when a
flame front interacts with another flame front or a domain boundary at the scale of the filter
size [239]. Despite these limitations, it must be stressed that a priori filtering is to date
the only way to generate bandlimited LES-like SGS quantities for supervised learning of a
machine learning model.
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4.3.5 Choosing the filtering parameters

When preparing the training dataset, two variables must be determined: ∆, the filter size
which controls the intensity of the filter, and h, the size of the coarse mesh onto which the
filtered fields are downsampled. ∆ controls the absolute size of the spatial structures in the
data. When filtering turbulent flame fronts, larger filter sizes create thicker, less wrinkled
flame fronts. This is especially relevant for CNNs, as they learn from the geometrical struc-
tures and spatial gradients of their inputs. Normalizing by the progress variable thickness to
allow a fair comparison between premixed flames with different laminar thicknesses leads to
the ratio ∆/δL,c. ∆/δL,c pilots the amount of SGS information that is lost by the filtering
process: filtering a thin flame leads to more SGS combustion than filtering a thick flame.
Note that the progress variable thickness δL,c is used instead of the thermal thickness δL. As
will be detailed in Section4.4, c is the input of the model, so δL,c is truly representative of
the flame front thickness seen by the model. This is important in cases where c is not defined
as a normalized temperature, and δL,c may be significantly different from δL. To ensure the
consistency of the target SGS quantity predicted by the model, the following criterion is
proposed:

Proposition 4.2 (Filter size choice). The filter size of the training dataset is chosen so that
∆/δL,c is conserved between the training and test dataset.

A second ratio δ̄L,c/h determines the resolution of the filtered flame seen by the CNN.
Since CNNs work on voxel grids with no innate distance information, it is important that the
resolution of the structures they see in the training and evaluation sets is similar [362]. This
allows the CNN to generalize from one configuration to another, even if they have different
flame thicknesses and DNS mesh sizes. Hence a second criterion:

Proposition 4.3 (Coarse mesh size choice). The coarse mesh size of the training dataset is
chosen so that δ̄L,c/h is conserved between the training and test dataset.

If the test dataset is a TFLES simulation, δ̄L,c is replaced by the thickened flame thickness
δ̌L,c. Proposition 4.3 enforces consistency of the CNN inputs to ensure that the flame fronts
seen by the CNN are resolved on the same number of mesh points.

Propositions 4.2 and 4.3 are combined to find the ∆ and h values used to filter the training
dataset, even if the training and generalization flames have different laminar thicknesses. In
Chapters 5 and 8, the CNN is evaluated on a TFLES flame with a constant thickening factor.
In these cases, Algorithm 2 outlines the procedure leading to the filtering parameters. In
Chapter 6, the generalization case is a filtered DNS, so Algorithm 2 does not apply and
Propositions 4.2 and 4.3 are simply applied (details in Section 6.3).

4.4 Modeling framework of this thesis

In the vast taxonomy of machine learning frameworks presented in Section 3.1, this work falls
under supervised regression of 3D fields. It aims to predict the full 3D field of an SGS quantity
of interest from 3D fields that are resolved in an LES computation. This SGS quantity is
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Algorithm 2: Determination of the filtering parameters
Data: Generalization flame: mesh size hG, thickness δG

L,c, thickening factor F
Data: Training flame: thickness δT

L,c

Result: Filtering parameters for the training flame: ∆T , hT

1 δ̌G
L,c ← FδG

L,c

2 With the generalization flame chemistry, find the size ∆G of the Gaussian filter that
generates a filtered flame with the thickness δ̌G

L,c (Proposition 4.1)
3 ∆T ← ∆GδT

L,c/δ
G
L,c (Proposition 4.2)

4 Compute the filtered flame thickness δ̄T
L,c

5 hT ← hGδ̄T
L,c/δ̌

G
L,c (Proposition 4.3)

Paradigm Supervised learning
Learning task 3D field-to-field regression

Model architecture U-Net (CNN)
Training data Filtered DNS

Input Filtered resolved quantities
Output SGS quantity

Optimization process SGD (Adam optimizer)
Loss function Mean squared error (Equation 3.5)

Evaluation context A priori and a posteriori

Table 4.2: Definition of the DL modeling framework.

then used in a physics-based turbulent combustion model to close the filtered reaction source
term. Table 4.2 and Figure 4.9 present the main elements of this methodology.

Following this methodology, the characteristics of the three models developed in this
thesis are summarized in Table 4.3. Note that the filtered reaction rate is not predicted
directly, but deduced from a physical closure. Accordingly, the models do not depend on
specific mixture compositions or chemical mechanisms, and could be applied in theory to
any premixed flame satisfying the flamelet assumption.

y f

Chapter 5 Σ+ TFLES
Chapter 6 c′2 PB-CNN
Chapter 8 Ξ TFLES

Table 4.3: Overview of the three DL models. Details are found in the corresponding chapters.

This species- and chemistry-agnostic philosophy also governs the choice of input features,
which are kept to a minimum. In nearly all the DL models that are investigated, the
filtered progress variable c̄ is the only input variable. c is a universal parameter that fully
parametrizes the thermochemical state of a fully premixed flame. This framework assumes
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Figure 4.9: Summary of the DL modeling methodology.

that the sole knowledge of c is sufficient to deduce the SGS output field y. This strong
assumption is discussed in each chapter individually. In particular, the filter size ∆ is a key
variable in many traditional SGS models like the CDSM model. It could also be integrated
to the CNN, for instance by including ∆ as an input feature. However, this creates a risk
for improper generalization for test-time ∆ values outside of the range seen during training.
Instead, the approach presented in Section 4.3.5 is used to set the filter size in the preparation
of the training dataset. The downside to this approach is a lack of flexibility regarding to
the filter size and mesh resolution of the generalization dataset, which must be known in
advance. This is not an issue in the applications presented in this manuscript, but may
arise for instance with meshes containing very disparate cell sizes. Chapter 8 experiments
with additional input variables, for instance ones that inform on the turbulence intensity.
Apart from the choice of a multiscale convolutional architecture, the models are fully data-
driven and physics-agnostic. Physical knowledge is embedded in the downstream turbulent
combustion model and in the choice of the training dataset.
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This chapter builds upon the CNN model proposed in Lapeyre et al. [183] to model the
total FSD. The total FSD represents the resolved and SGS flame surface area per unit volume
and can be related to a wrinkling factor and a TFLES efficiency function, as explained in
Section 2.7.3. The problem formulation of the original paper and its main results are first
recalled. This model is then applied to a challenging high Reynolds jet flame configuration,
where it is trained to generalize to larger scales and higher Reynolds numbers. The R2 and
R3 flames investigated in this chapter are presented. The entire model training pipeline is
then detailed, from the preparation of the data and visualizations of comparative statistics
to the training of the CNN. A priori results on the R2 and R3 datasets are presented,
including the effects of variations in the data preparation. An LES of the R3 configuration is
performed, and the a priori performance of the CNN on snapshots of this LES is compared
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to the Charlette model. Finally, interpretations regarding what the CNN sees and learns are
sought.

5.1 A deep learning model for the total FSD

This chapter extends the approach of Lapeyre et al. [183] to a new high Reynolds number
configuration, and additionally investigates how hard the learning problem is, how the model
would perform in a posteriori conditions, and what the model actually learns. The problem
formulation of Lapeyre et al. is therefore summarized here. They propose a deep learning
model for the total flame surface density which is trained by supervised field-to-field regres-
sion. Filtered DNS snapshots of a methane-air Bunsen burner are used to generate a training
set of matching c and Σ = |∇c| fields. Σ is normalized by σ, its maximum value on a 1D
laminar flame:

Σ+ = Σ
max(|∇c|1D)

= Σ
σ
. (5.1)

A deep convolutional neural network with a U-Net architecture is trained to map c to Σ+.
It is then evaluated a priori on a test set drawn from a similar Bunsen simulation where the
inlet bulk velocity was modulated to induce large-scale variations in the flame shape over a
transient phase. Figure 5.1 shows a slice of progress variable.
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Figure 5.1: Progress variable slice from a filtered DNS in the test set of Lapeyre et al. [183] at
t = 0.8 ms.

Key results on the test set are shown in Figure 5.2. Figure 5.2a plots the streamwise
evolution of the total flame surface area predicted on the test set snapshot with the largest
DNS total flame surface by the CNN, the static Charlette model (β = 0.5) and the dynamic
Charlette model. These values are computed by integrating the total FSD on transverse
slices of the width of a coarse cell. For reference, DNS ground truth total flame surfaces are
included, as well as No model values obtained from the resolved FSD only. Three distinct
regions emerge: a weakly turbulent flame base attached to the inlet (x ≈ 0 − 1.5 cm),
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followed by a detached pocket of unburnt gases (x ≈ 1.5− 4.5 cm) and a postflame region of
combustion products with no flame front.
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(a) Evolution of the total flame surface area along the streamwise x direction at t = 0.8 ms.
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(b) Time evolution of the relative error on the domain-integrated total flame surface
area.

Figure 5.2: A priori evaluation of the Lapeyre et al. CNN.

The static Charlette model with constant β = 0.5 finds the correct trend but consistently
fails to accurately match the DNS flame surface values. The dynamic Charlette model with
local β (∆̂ = 1.5∆, ∆m = 2∆̂) including corrections from Wang et al. [385] and Mouriaux et
al. [239] performs very well in the detached pocket and close to the inlet, but struggles near
the tip of the attached flame which features prominent flame front interactions. Finally, the
CNN agrees nearly perfectly with the target values in all regions of the domain. Figure 5.2b
shows that this behavior is consistent throughout the whole duration of the transient phase,
whereas the error made by the Charlette dynamic model fluctuates in time.

This paper demonstrates the viability of deep CNNs for SGS combustion modeling, shows
that they can reach excellent a priori modeling accuracy for the total FSD, and explores
a weak form of generalization through parametric variations on the training configuration.
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Building upon this seminal work, this chapter investigates the a priori performance of U-Nets
on more challenging turbulent cases and assesses their generalization to test sets with greater
Reynolds numbers and physical scales than the training set. This marks a first step towards
extending the range of applications of these models to large-scale industrial configurations
where there is no DNS data on which to train or fine-tune the model.

5.2 Presentation of the R2/R3 flames

The flames that will now be investigated are the R2 and R3 methane-air premixed slot
jet flames [207–209]. DNS snapshots from these simulations were kindly provided by Dr.
Antonio Attili.

A fully premixed unburnt methane–air mixture at equivalence ratio ϕ = 0.7 and bulk
velocity Ubulk = 100 m s−1 is injected through a rectangular slot of width H = 1.2 mm
for R2 and H = 2.4 mm for R3. It is surrounded by a slower coflow of burnt gases at
Ucoflow = 15 m s−1, which leads to the formation of two shear-driven turbulent flame fronts.
The pressure and unburnt temperature are set to P = 4 bar, Tu = 800 K to mimic typical
engine conditions. Chemistry is described by a skeletal chemical mechanism containing 16
species and 72 reactions [207]. The laminar flame speed corresponding to these operating
conditions is sL = 1 m s−1 and the thermal thickness is δL = 110 µm. Turbulent fluctuations
at the inlet for the bulk flow velocity are extracted from pre-computed turbulent channel
flow simulations.

Both R2 and R3 are discretized on a uniform Cartesian mesh with a resolution h = 20 µm.
The domain dimensions of R2 are 28.8 mm, 19.2 mm, and 5.16 mm in the streamwise (x),
crosswise (y), and spanwise (z) directions, respectively. For R3, all three domain dimensions
of the domain are doubled and all other parameters are kept constant. The Reynolds number
Re = UbulkH/ν is therefore doubled.

The Kolmogorov lengthscale η is computed by the authors from the averaged kinematic
viscosity ν̄ and Favre-averaged dissipation ϵ̃ as η = (ν̄3/ϵ̃)1/4. It satisfies the criterion η ≥ 2h
which ensures that the finest turbulent structures are well resolved.

Table 5.1 summarizes all the relevant simulation parameters. In this chapter, unless
otherwise specified, a temperature-based progress variable will be used. A slice of c progress
variable field is shown in Figure 5.3 for sample snapshots of R2 and R3. Qualitatively, the
same flame structures can be found in both flames. Starting from the slot and moving in
the downstream direction, the flame fronts are increasingly wrinkled, eventually featuring
rib-like oblique structures. At the end of the main body, instead of a well-defined flame tip,
pockets of unburnt gases detach from the main body of the flame and finish burning as they
are convected downstream.
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R2 R3

Fuel CH4
ϕ 0.7
Tu 800 K
P 4 bar
sL 1 m s−1

δL 110 µm
Ubulk 100 m s−1

h 20 µm
H 1.2 mm 2.4 mm
Re 5600 11200
u′/sL 10 9.8
lt/δL 4.8 5.9
η 23 µm 25 µm
Ka 23 21

Table 5.1: R2 and R3 simulation parameters [209].
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Figure 5.3: Progress variable slices of R2 (top) and R3 (bottom). Zones of the domain far from
the flame in the spanwise direction were cropped for the visualization.

5.3 Data preparation

To generate the training and test datasets, DNS variables discretized on the uniform cartesian
grid of R2 and R3 can be easily manipulated as structured arrays to facilitate data processing.
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c and |∇c| are filtered at a filter size ∆/δL = 4.9 (∆/h = 27) and downsampled by a factor
R = 4. These values are obtained via Algorithm 2 and the parameters of the TFLES used
to validate the model in Section 5.7. The output field of the CNN Σ+ is computed as in
Equation 5.1 using the maximum FSD on the corresponding 1D flame for normalization.

Figure 5.4 shows c, c and Σ+ on a given slice. On the c slice, it is apparent that small-
scale wrinkling has been lost through filtering. This information is contained in the Σ+ field
that must be modeled by the CNN.
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Figure 5.4: Result of filtering and downsampling an R2 snapshot. Top: DNS c slice. Middle:
Filtered and downsampled c slice. Bottom: Filtered and downsampled Σ+ slice.

Training is performed on 90 snapshots of R2 sampled every 0.01 ms from the steady-state
regime of the DNS (t = 5.5 ms to t = 6.4 ms). The first 80 constitute the training dataset,
and the last 10 are kept as a validation set to monitor the training process. One steady-state
R3 snapshot (t = 1.8 ms) will be used as a test set to assess how well the CNN can generalize
to the R3 configuration.

Training Validation Test

First 80 snapshots of R2 Last 10 snapshots of R2 1 snapshot of R3
80× 64× 80× 348 10× 64× 80× 348 1× 128× 160× 696

Table 5.2: Composition and dimensionality of the datasets used for training and a priori
validation.



5.4. COMPARATIVE STATISTICS 81

5.4 Comparative statistics

Before building the model, a statistical analysis of the R2 and R3 flames is performed to
understand the difficulty of learning a mapping c 7→ Σ+ that generalizes from R2 to R3.
First, the shift in the relationship between the input c and the output Σ+ is investigated
through their JPDF. It is visualized via kernel density estimation [133] which produces a
continuous PDF p̂ that approximately fits a PDF p given observed samples (x1, ..., xn) ∼ p.
At a new location x0, the kernel density estimate (KDE) p̂ is evaluated as

p̂(x0) = 1
nλ

n∑
i=1

Kλ(x0, xi) , (5.2)

where Kλ is a Gaussian kernel with a standard deviation λ. Kλ provides a smooth estimate
of the number of samples xi that are close to x0.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

+

R2
R3

Figure 5.5: KDE plots of the joint PDF and marginal PDFs of c and Σ+ on R2 and R3.

Figure 5.5 shows kernel density estimates of the JPDF of c and Σ+ for R2 and R3. KDEs
are visualized by five iso-density levels for clarity. The KDEs of the marginal PDFs are also
plotted above (for c) and on the right (for Σ+). Compared to visualization methods like
histograms that strictly rely on sample binning, KDEs allow clear comparisons of univariate
and bivariate data distributions. These plots only include locations where the condition
Σ+

> 0.2 is met. This makes the PDFs easier to read by filtering out the large number of
points at the tails of the PDFs that do not contain a meaningful amount of flame surface,
typically in the fully unburnt or burnt mixtures, and which are therefore less critical to
predict accurately.
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The joint PDFs for R2 and R3 are found to be very similar despite the different Reynolds
number. This could indicate that a model trained on R2 would be able to generalize to
R3. This result can be surprising in light of the differences found by Attili et al. [15] in
terms of total wrinkling and structure of the flame fronts. They find that the turbulent
flame surface area normalized by a reference unwrinkled surface was found to grow from
about 3.1 in R2 to 4.3 in R3. This reveals that the R3 flame is globally more wrinkled than
R2. As a result, the total flame surface density contained in any box of size ∆ should be
higher for R3. The fact that the distribution of Σ+ does not reach higher values for R3 is
therefore somewhat unexpected. One reason for this behavior could be that the filter size ∆
is not large enough (∆/δL = 4.9) compared to the typical size of the wrinkles. Larger filter
sizes should highlight the differences between R2 and R3, up to the limit where averaging is
performed on the whole domain where the area ratios of Attili et al. should be recovered.
Another possible contributing factor is the thickening of the reaction layer with increasing
Reynolds number which drives down the values of |∇c| on the R3 DNS.

The joint PDF gives insights on the pointwise relationship between the input and output
of the model. Since the CNN is sensitive to the geometry of the flame front, a complementary
analysis is performed on how the geometry of the input varies between the two flames. This
is quantified through the flame front curvature κ:

κ = ∇ ·
(
− ∇c
|∇c|

)
. (5.3)

The PDF of the curvature of an iso-surface c = 0.7 (corresponding to the temperature of
maximum heat release rate in a laminar flame) normalized by the laminar flame thickness
is plotted in Figure 5.6. It shows that the curvatures of the flame fronts are similarly dis-
tributed, which once again suggests that the task of generalizing from R2 to R3 is reasonably
achievable.

Figure 5.6: PDF of normalized curvature on the c = 0.7 isosurface for R2 and R3 in linear (left)
and logarithmic scale (right).
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5.5 Model training

5.5.1 Model architecture

The DL model is a U-Net with the architecture presented in Section 3.4. Variations on
the activation layer, number of encoder–decoder stages, number of convolutional layers in
each stage have been tested, with no significant improvement over this baseline. Since this
architecture already reaches excellent performance (see Section 5.6), a thorough neural ar-
chitecture search or a hyperparameter search have not been deemed necessary. Architectural
improvements could be explored for a bigger, more diverse dataset that would require very
high model capacity.

5.5.2 Data pipeline

Training the model is done through SGD, as presented in Section 3.1. SGD performs gradient
descent steps on batches sampled from the training dataset. The construction of these
batches is now detailed. The current dataset is composed of a small number of samples with
a large number of degrees of freedom, which distinguishes it from many computer vision
datasets. For instance, the ImageNet dataset [151] contains 14 million RGB images, which
are commonly cropped to a 256× 256× 3 size when training computer vision models. GPU
memory constraints impose a tradeoff between the batch size and the number of degrees of
freedom of batch elements. The low number of degrees of freedom of 2D, 3-channel images
allows for large batch sizes and major training speedups [333, 405]. Conversely, for the
R2 dataset, the input field of a single training snapshot contains approximately 1.8 million
single-precision floating point values, and the entire dataset contains 79 training snapshots.
Large batches built from full snapshots are therefore not achievable. Instead, a batch is
formed by randomly selecting ns = 4 training snapshots and extracting nc = 8 random crops
of size d3

c = 403 on each snapshot. This leads to a batch of nc × ns samples, as illustrated
in Figure 5.7. As the random crops cover a small fraction of each snapshot, this strategy
generates batches with high variability, which could be beneficial to help the convergence of
SGD through noisier gradient updates.

Any point in the domain can be at the center of the random crop, except those located
at a distance dc/2 or smaller to the boundary. The filtered DNS can be padded to allow for
random crops centered near the boundaries, as long as the padding is consistent with the
boundary condition. This is helpful to slightly increase the amount of training data that can
be sampled. In periodic directions, padding consists in mirroring information at the opposite
boundary. Periodic padding of size dc/2 is therefore performed in the spanwise direction.

Spatial data augmentation is applied to the random crops with random 90◦ rotations and
reflections with respect to the 3 coordinate axes, adding variability to the orientation of the
flame fronts in the dataset.

The validation set is neither random cropped nor spatially augmented. This is to ensure
that the validation loss is consistently computed on the same data, as its value is used to
select the best performing model over the training process.
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Figure 5.7: Building a training batch from randomly cropped samples among the training set.

Training is performed by stochastic gradient descent using the Adam optimizer [164]
with an initial learning rate ϵ = 0.01. The loss function is a voxelwise mean squared error
(Section 3.1). The biases of all the convolutional filters are initialized to 0, and the filter
weights are initialized according a uniform Glorot distribution [114]:

w ∼ U
[
−
√

6
nin + nout

,

√
6

nin + nout

]
, (5.4)

where U is the uniform distribution, nin and nout are the number of input and output channels
of the layer. Table 5.3 lists the hyperparameters used during training.

Figure 5.8 shows training and validation loss curves for a full training run, plotted against
the cumulative number of training samples seen since the start. Training samples denote
individual random crops of size d3

c which are grouped in batches of size nc × ns = 32. One
training epoch is arbitrarily defined as a set of 80 batches, or 2560 samples. After each
epoch, the training loss is computed from the average loss value over the epoch batches,
and the model is evaluated over the entire validation set to compute a validation loss value.
The validation loss is consistently higher than the training loss, with no visible overfitting
which would be denoted by a noticeable increase of their difference. Due to the stochastic
nature of the optimization and sampling processes, the losses do not decrease monotonically.
In particular, after about 1.9 million training samples, a sharp peak in the training loss is
observed. This could be due one or many successive batch instances containing a list of
random crops that are not representative of the total target distribution to be modeled.
This risk was alleviated by purposefully cropping out domain areas containing only burnt
gases above and below the flame in the spanwise direction. Although it may slow down
convergence, this peak is not necessarily harmful for the training process, and the losses
recover their original levels shortly after. In fact, temporary increases in the loss function
are typical when using an SGD training technique called warm restarts [205]. Warm restarts
are done by episodically increasing the value of learning rate and letting it decay using an
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annealing schedule. They are used to escape suboptimal local minima that can stall training
early on, and can often lead to better final performance. In the case of Figure 5.8, the
training and validation losses both recover shortly after the peak.

nc ns dc ϵ Batches per epoch Epochs

8 4 40 0.01 80 1000

Table 5.3: Training hyperparameters.
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Figure 5.8: Training and validation loss curves.

Training is arbitrarily stopped after ∼ 2.6×106 samples, when adequate performance has
been reached and training is starting to plateau. Hardware details and training performance
metrics for this run are recorded in Table 5.4. GPU memory consumption is dictated by
the size of the validation set which is fed into a single batch. Its value can be reduced by
batching the validation set if limiting GPU memory is a concern. For the training steps only,
memory consumption is 10 GB.

Hardware NVIDIA A100 40 GB GPU
ML framework Tensorflow 2.4.0
Wall clock time 4 h17 min

GPU memory consumption 34 GB

Table 5.4: Technical details for the training run of Figure 5.8.
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5.6 A priori results on filtered DNS

5.6.1 Performance on the validation set

The best performing model is built from the model weights saved at the lowest validation
loss attained during training, after around 2.55 million training samples. This CNN is
first evaluated on the validation set. Since the entire dataset only includes snapshots from
the steady-state regime of the R2 flame, validation snapshots are drawn from the same
distribution as the training set. These results ensure that the model has learnt to adequately
predict Σ+ on this distribution.

Figure 5.9 shows slices of the input field c, target outputs Σ+
true, predicted outputs Σ+

CNN
and its deviation from the ground truth Σ+

CNN−Σ+
true for one validation snapshot. The CNN

qualitatively reproduces all the trends of the ground truth, despite significant variations all
across the flame front. Deviations to the ground truth are limited in magnitude and localized
in small areas.
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Figure 5.9: Sample slices from a validation snapshot of R2. Starting from the top: inputs c,
ground truth Σ+

true, CNN predictions Σ+
CNN, and deviation from the ground truth Σ+

CNN −Σ+
true. On

the bottom slice, progress variable isolines (solid line: c = 0.2, dashed line: c = 0.8) denote the
location of the flame front.
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Figure 5.10 provides a quantitative pointwise comparison of model predictions to the
ground truth on the entire validation set. The vast majority of the points are concentrated
around the ideal model line y = x, and the conditional mean of model predictions fits this
line almost perfectly. There are no outliers with highly unphysical values. This confirms
the excellent accuracy of the model. Integrating the total FSD field over the whole domain
produces the total flame surface area of the flame. This value is well predicted by the CNN
with a relative error of less than a percent. All in all, this qualitative and quantitative
analysis of the CNN predictions on the validation set proves its ability to accurately predict
the distribution of Σ+ on R2.
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Figure 5.10: Hexbin plots of model predictions against the ground truth on the R2 validation set.
Data points are gathered in hexagonal bins colored according to the number of data points they
contain (logarithmic color scale). The red line y = x represents a perfect model. The cyan line is
the conditional mean of model predictions.

5.6.2 Performance on the generalization set

The CNN is now evaluated on a snapshot of R3. Figure 5.11 shows excellent qualitative
results, much like on R2. Looking at the flame front more closely in Figure 5.12, it is evident
that the model is able to correctly reproduce fine local variations of total FSD. The green
circle highlights an example of a local flame element in the filtered DNS with sub-unity Σ+

values across the entire flame front. This is explained by a departure from a pure flamelet
regime at the present high turbulence conditions (high Ka and Re), and by local turbulence-
induced thickening of the flame front [15]. Note that Σ+ is not the SGS wrinkling factor,
and instead quantifies the amount of local total flame surface relative to the peak value in
a laminar 1D flame. It is therefore not constrained to only take values higher than unity in
the flame front.
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Figure 5.11: Sample slices from a snapshot of R3. Starting from the top: inputs c, ground truth
Σ+

true, CNN predictions Σ+
CNN, and deviation from the ground truth Σ+

CNN − Σ+
true. On the bottom

slice, progress variable isolines (solid line: c = 0.2, dashed line: c = 0.8) are plotted.
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Figure 5.12: Zoom on ground truth (left) and CNN predictions (right) of Σ+, with isolines of
Σ+ = 0.5 (solid) and Σ+ = 1 (dotted). A flame element of the filtered DNS with sub-unity
maximum total FSD is circled in green.
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Quantitative metrics confirm the excellent accuracy of the model. Pointwise predictions
are compared to the ground truth in Figure 5.13, where a near-perfect linear trend with
minimal variance is apparent.
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Figure 5.13: Hexbin plots of model predictions against the ground truth on R3.

The streamwise evolution of the flame surface is examined by integrating Σ+ on cross-
section slices of the width of a coarse cell at every streamwise grid location:

A(x) =
∫ x+h/2

x∗=x−h/2
σΣ+(x∗, y, z) dx∗ dy dz. (5.5)

A(x) is plotted in Figure 5.14 for the true total FSD (labeled DNS), the CNN predictions, the
CDSM model (Equation 2.107 with ∆̂ = 1.5∆, ∆m = 2∆̂), and the resolved FSD (labeled
No model). The CDSM model is implemented a priori and used as a reference algebraic
model for the total FSD. The resolved FSD shows the outcome of not using any SGS flame
surface model. The CNN is able to accurately reproduce the total flame surface area across
the entire length of the flame. On the other hand, the CDSM model does not predict enough
wrinkling near the inlet, and overpredicts near the flame tip. Close to the inlet, the flame
is mostly flat, and small wrinkled structures are lost in the filtered flame front, which would
explain the underprediction of the CDSM model. The flame tip region features prominent
flame-flame interactions as pockets of unburnt gases are detached, and high curvatures as
these pockets are small. These two factors are weaknesses of the dynamic Charlette model
which the Mouriaux corrections attempt to fix, but they may not be sufficient in this specific
configuration.
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Figure 5.14: Evolution of the total flame surface area along the streamwise direction on the R3
snapshot.

This ability of the CNN to generalize from R2 to R3 is consistent with results from
Attili et al. [16]. They train a version of this U-Net on the R1/R2/R3/R4 flames and
obtain very good generalization results among the higher Reynolds number flames (R2 and
above). They conjecture that this is linked to the asymptotic behavior of high Reynolds
number turbulence. In addition, when training the CNN on a specific region of the flame
(flame base, fully turbulent region, or flame tip), it performs noticeably worse when tested
on a different region. Their results highlight the CNN’s sensitivity to the specific wrinkling
distribution of its training set.

5.6.3 Robustness to data transformations

Given the propensity of deep neural networks to overfit a narrow training distribution, it is
important to understand whether the excellent a priori performance of the CNN is contingent
on specific processing choices in the generation of the training and test datasets. Variations
on the progress variable formulation and on the nature of the filter are introduced to evaluate
the CNN’s robustness to small data transformations that preserve the physical formulation
of the problem. These transformations slightly perturb the joint distribution of the CNN
inputs and outputs, and robustness to these transformations would therefore indicate that
the model has not completely overfit the specific training distribution.

5.6.3.1 Filter type

First, robustness to the filter type is investigated by generating c and Σ+ fields using Favre-
averaged Gaussian filtering and box filtering on an R2 validation snapshot with the same
filter size ∆ as in the original Gaussian filtered dataset. Changing the nature of the filter
affects the relationship between c and Σ+. This is visualized in Figure 5.15 and Figure 5.16
which compare the KDE of the JPDF of c and Σ+ for Gaussian filtered quantities and
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Favre-averaged Gaussian filtered or box filtered quantities.
From Figure 5.15, it appears that Favre-averaging shifts the c distribution towards lower

values of c, as density is higher near the unburnt mixture. The normalized total FSD
is unchanged, as Σ+ does not involve Favre-averaging (Equation 5.1). Figure 5.16 shows
that compared to Gaussian filtering, box filtering slightly lowers the top end of the Σ+

distribution. Favre Gaussian filtering alters the input distribution of the model, while box
filtering modifies the output distribution. Note that σ depends on the nature of the filter
and was adjusted accordingly in each case.

The CNN is then evaluated on Favre-averaged Gaussian filtered and box filtered snap-
shots of R2. Figure 5.17 compares its predictions to the ground truth (filtered with the
appropriate filter). Both scatter plots contain more variance than the one for the Gaussian
filter (Figure 5.10). Nonetheless, most predictions are distributed close to the ideal model. In
both cases, the streamwise evolution of the flame surface is very well predicted by the CNN
(Figure 5.18). These results indicate that a CNN trained on a Gaussian filtered dataset is
equally accurate for different filter types, which may extend to thickened flames a posteriori.
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Figure 5.15: KDE plots of the joint PDF and marginal PDFs of Gaussian filtered and Gaussian
Favre filtered c and Σ+.
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Figure 5.16: KDE plots of the joint PDF and marginal PDFs of Gaussian filtered and box filtered
c and Σ+.
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Figure 5.17: Hexbin plots of model predictions on Favre Gaussian filtered (left) and box filtered
(right) variables against the ground truth on R2.
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Figure 5.18: Evolution of the total flame surface area along the streamwise direction on a
validation snapshot of R2 for different filter types.

5.6.3.2 Progress variable formulation

Next, robustness to the progress variable choice is assessed. A progress variable can be
defined from any combination of reactive scalars that varies monotonically from the unburnt
to the burnt state. Ideally, it should contain non-trivial gradients in the reaction zone to be
relevant for reaction rate closures based on a flame surface formalism.

The progress variable in the original dataset was defined as the normalized temperature,
and is noted cT . Alternatively, a progress variable can be defined from the mass fraction of
a reactant like the fuel:

cCH4 = 1− YCH4

Y u
CH4

(5.6)

or from the mass fraction of a product like O2:

cO2 =
YO2 − Y u

O2

Y b
O2
− Y u

O2

. (5.7)

Figure 5.19 compares the laminar profiles of the three progress variable formulations in a
1D flame corresponding to the R2/R3 operating conditions. The fuel consumption rate and
heat release rate normalized to the [0, 1] range are also shown for reference. The cT profile is
the slowest to reach unity in the burnt mixture and has large gradients far into the postflame
zone, which is typical of detailed mechanisms of hydrocarbon fuels. Using cT could lead to
a model predicting high total FSD levels in the burnt mixture, but at worst these values
will have no effect on the flame propagation speed since the fuel consumption rate and heat
release rate are so low in these regions. cCH4 reaches unity right after the peak heat release
rate, which may discourage its use for flame surface density models using this mechanism.
cO2 exhibits an intermediate behavior.

Figure 5.20 and 5.21 show that the JPDFs based on species mass fractions are shifted
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towards higher values of c and Σ+. As a result, CNN predictions tend to be slightly lower than
the ground truth (Figures 5.22 and 5.23). This can be interpreted as the CNN reproducing
the range of Σ+ values in its training dataset. Nonetheless, the deviation from the ground
truth remains small, and practical implications are expected to be limited as the formulation
of the progress variable can easily be chosen to match how the training dataset was generated.
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Figure 5.19: 1D laminar flame profile of the R2 flame with the three progress variable
formulations, the normalized fuel consumption rate, and the normalized heat release rate.
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Figure 5.20: KDE plots of the joint PDF and marginal PDFs of c and Σ+ based on T and YO2 .
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Figure 5.21: KDE plots of the joint PDF and marginal PDFs of c and Σ+ based on T and YCH4 .
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Figure 5.22: Hexbin plots of model predictions based on cCH4 (left) and cO2 (right) variables
against the ground truth on R2.
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Figure 5.23: Evolution of the total flame surface area along the streamwise direction on a
validation snapshot of R2 for different progress variable formulations.

5.7 A priori results on LES snapshots

5.7.1 Presentation of the LES

The performance of the CNN is evaluated on snapshots of an LES of R3. This is a hybrid
between a priori and a posteriori testing, as the data comes from a true LES and not a
filtered DNS, but model errors are not propagated through time as only isolated snapshots
are considered.

A TFLES simulation of R3 is performed under the same physical conditions as the original
DNS. The domain is discretized on a fully unstructured mesh of 95 million tetrahedral cells.
Figure 5.24 shows the distribution of cell sizes near the inlet lips. The mesh is discretized
to the DNS resolution hDNS = 20 µm near the inlet walls to fully capture the near-wall
turbulence and the initial development of the turbulent mixing layer aft of the lips. The
mesh is gradually coarsened in the downstream direction until it reaches a constant mesh
size h = 4hDNS = 80 µm. Based on the location of the flame in the R3 DNS, this constant
resolution region extends in the crosswise direction up to a distance 2H away from the
centerplane y = 0. Beyond that, the mesh is coarsened as there are no flame fronts that
would need to be well resolved.

The original DNS used an auxiliary turbulent channel flow computation to inject inlet
turbulence. In this LES, turbulent velocity fluctuations are instead added to the bulk flow
using a synthetic generation method [174]. A turbulent velocity fluctuation field u′ is built
from a Fourier series decomposition

u′(r, t) =
N∑

n=1
vn(κn) cos(κn·r + ωnt) + wn(κn) sin(κn·r + ωnt) , (5.8)

with N = 20 modes. The Fourier modes {vn,wn}, wavevectors κn, and pulsations ωn are
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Figure 5.24: Cell size distribution of the LES mesh near the R3 slot.

random variables sampled to obtain a Passot-Pouquet [260] turbulence spectrum

E(κ) = 16u
′2

κe

√
2
π

(
κ

κe

)4
exp

[
−2
(
κ

κe

)2
]
, (5.9)

where u′ = 10 m s−1 is the turbulent fluctuation intensity and κe is the wavenumber associ-
ated with the most energetic lengthscale. κe is related to the integral lengthscale lt of the
spectrum through lt =

√
2π/ke, and its value is chosen to obtain lt = 0.6 mm = H/4.

This LES was performed using the AVBP code whose specificities are presented in Sec-
tion 2.8. NSCBC inlet and outlet boundary conditions [277], adiabatic no-slip walls, and
periodic conditions are imposed in the streamwise, crosswise, and spanwise directions, re-
spectively. The same skeletal mechanism as the original DNS is used for the chemistry. SGS
turbulent stresses are modeled using the Sigma model (Equation 2.110). SGS combustion
modeling is handled by the thickened flame model with a target thickening value F = 4,
which would resolve the flame front on approximately 5.5 cells in the constant h = 80 µm
region. Thickening is only applied inside a flame sensor that dynamically tracks the position
of the flame front [150]. Finally, the efficiency function is computed by the CDSM model
updated every 1000 iterations, ∆̂ = 1.8∆, ∆m = 2.2∆.

The filter size ∆/h = 27 used to generate the training dataset was adapted to satisfy
Proposition 4.2 given the thickening factor F = 4 used in this LES. Figure 5.25 compares the
1D filtered and thickened progress variable profiles. The profiles are significantly different
above c = 0.8, as thickening preserves the slow rise to unity which is smoothed out by
filtering.
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Figure 5.25: Profiles of filtered (∆/h = 27) and thickened (F = 4) c on the R2 1D laminar flame.

5.7.2 CNN results

An LES snapshot from the steady-state regime of R3 is used to compare the CDSM model
used in the LES with the CNN. The Charlette model directly provides the wrinkling factor
Ξ which is multiplied by |∇c̄|/σ to obtain Σ+.

Figure 5.26 shows visible differences in the behavior of the two models. The CNN predicts
high values of Σ+ throughout the flame front. There are many extremely high values for
the Charlette model, which seems to be caused by low |∇c̄| values in regions where strong
turbulent mixing broadens the temperature field. In the KDE plots of Figure 5.27, the CNN
is seen to predict Σ+ with a smaller spread. The CNN predicts relatively more high values,
which are distributed towards lower c levels.
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Figure 5.26: Slices of progress variable field (top) and Σ+ fields predicted by the CNN (middle)
and the CDSM model (bottom) on a snapshot of the R3 LES.
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Figure 5.27: KDE plots of the joint PDF and marginal PDFs of c and Σ+ predicted by the CNN
and Charlette model.

To assess the pertinence of the LES, the length of the flame is identified as the integral
quantity of interest that must be well predicted by this simulation. The LES length is
therefore compared to the DNS length. This length is estimated by computing the time-
and transverse-averaged progress variable field, then measuring the point where the domain
centerline meets the isosurface c = 0.73 of this averaged field. c = 0.73 corresponds to
the progress variable value at peak methane consumption rate on a 1D laminar flame. The
length of the LES flame is measured as 3.9 cm, while the DNS length is 2.8 cm, which is 30%
lower. This implies that the CDSM model is not able to predict the right flame length due
to insufficiently high wrinkling values.

Naturally, one might wonder how the CNN would affect these results. Although a poste-
riori simulations are left to Chapter 8, it is possible to compute the reaction rate field that
would have resulted from using the CNN instead of the CDSM model by using the wrinkling
fields. This assessment is not as rigorous as a true a posteriori evaluation since it is applied
to frozen snapshots, but should still indicate what would happen if the CDSM model were
replaced with the CNN in the simulation.

The domain is decomposed in 10 slabs that equally divide the length of the domain L

along the downstream direction. In each of these slabs, the total fuel consumption rate is
integrated for the CDSM and the CNN models and shown in Figure 5.28. It appears that
overall, the CNN would tend to correct the overprediction of the flame length by inducing
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higher burning rates in the middle and end sections of the flame. The total fuel consumption
rate integrated in the whole domain is 8% higher for the CNN compared to the CDSM model.
These encouraging results suggest that the CNN could improve the accuracy of the R3 LES
if it were used a posteriori.
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Figure 5.28: Fuel consumption rate integrated on 10 slabs along the streamwise direction in the
R3 LES.

5.8 Model interpretability

This section is devoted to visualizing and analyzing how the CNN is trained and how it
performs its predictions. Deep neural networks are notoriously difficult to interpret, and
a large body of the literature has specifically focused on visualizing the inner workings of
CNNs [190, 213, 255, 330, 340, 408]. For classifiers, common techniques include generating
saliency maps representing the influence of each pixel of a given input image on its class
prediction [340, 408], and feature visualization [255] which seeks inputs that maximize the
response of a given neuron, layer, or class logit. Because the U-Net discussed in this chapter
performs regression instead of classification, many of these methods are not applicable. This
short study will be limited to two simple questions:

• What does the U-Net see? What region of the input can affect the output at a given
location?

• What does the U-Net learn? Are there any redundant feature maps? How can we
visualize the training process?

5.8.1 What does the U-Net see?

To understand what region of the input matters for the prediction of the U-Net, the extent of
its receptive field (Section 3.3) is investigated. The size of its theoretical receptive field could
be derived from the number of convolutional and pooling layers that it contains. In practice
however, due to the distribution of the hidden layer connections inside the network, points
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located at the center of the receptive field contribute more to the prediction than those at
the periphery. To account for this effect, the notion of effective receptive field (ERF) [213]
is introduced. It measures the extent of the receptive field that is actually meaningful to
the prediction, and is measured by counting the number of connections originating from
each input location. In practice, the ERF is computed from a U-Net where all the biases
are initialized to 0, and all the convolution weights are set to 1. A gradient signal ∂L/∂y
is set to 1 at the center of the output layer and 0 everywhere else. Backpropagating this
signal through the CNN leads to a ∂y/∂x input signal representing the contribution of each
input location to the center of the output layer. This input signal is approximately Gaussian
distributed. The ERF is defined as the group input points with a magnitude greater than
1 − 95.45% = 4.55% of the center value, i.e. less than two standard deviations away. With
nERF the cardinality of this group, the size of the ERF is defined as d

√
nERF with d the

dimensionality of the inputs (d = 2 for images, 3 for 3D fields).
Figure 5.29 compares the extent of the ERF of the U-Net with the filtered R2 flame.

The size of the ERF is approximately equal to 4∆ ≈ 4δ̄L, which indicates that the CNN
can learn from large-scale structures of the flame front. In comparison, the context size of
the Charlette dynamic model can be estimated as the averaging filter size which is typically
2 − 6 times the filtered laminar flame thickness [371, 377]. Both models can thus theoret-
ically incorporate multi-scale information at similar context sizes. However, increasing the
context size of the dynamic model may lead to numerical issues caused by flame/bound-
ary and flame/flame interactions [239] and greatly impacts the computational cost of the
procedure [377], whereas for CNNs it can simply be achieved by using a deeper network.
Moreover, the CNN incorporates information from a continuum of scales ranging from the
mesh resolution to the size of the ERF, while the dynamic model involves a set of discrete
scales (the resolved, test-filtered, and averaging-filter scales).

Figure 5.29: ERF superimposed on iso-lines of c̄ = 0.1, 0.5, 0.9 (solid blue, dashed red, dotted
yellow) on a slice of filtered R2. Grayscale intensity in the ERF is proportional to the impact of the
input voxel location on the output prediction at the center of the ERF. Dashed circular line: edge of
the ERF.

The large size of the U-Net receptive field is a natural consequence of the successive
convolution and pooling layers that it contains. This property differentiates it from shallow
CNNs which have often been used for SGS modeling in numerical combustion [250, 305, 329,
336, 382]. These CNNs operate on a grid of first-degree neighbors, typically of size 33, to
include limited spatial context (Table 4.1). Their receptive field is limited to this grid, and
they should not contain many convolutional layers nor any pooling layer. These networks
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have the benefit of being simple and lightweight at the cost of model capacity, and sacrifice
sampling efficiency as they must be applied to each output location separately.

5.8.2 What does the U-Net learn?

Analyzing the evolution of the convolutional filters learnt by the U-Net can provide insights
into how training progresses beyond simply monitoring the loss values. The distributions of
the biases and kernel weights at specific convolutional layers are recorded every 100 epoch.
Results for the first convolutional layer are shown in Figure 5.30 and Figure 5.31 in the
form of KDE plots. Biases are initially set to 0 and quickly shift to a bimodal distribution
that stabilizes early in the training process. Weights gradually spread over a large range
of values centered around zero as training progresses. Interestingly, the biases of all the
subsequent layers remain very close to their initial value of 0. Their weights do evolve
during the training, as shown in Figure 5.32 which corresponds to the first convolutional
layer of the bottom stage of the U-Net, where spatial dimensions are the smallest and the
number of channels is maximal (Figure 3.4). The weights of the final convolutional layer
seem to take the longest to stabilize (Figure 5.33) as noticeable modal shifts still occur
from epoch 500 to 600 and from epoch 700 to 800. From these visualizations, it seems
that the weights of early layers (close to the input) converge faster than those in late layers
(close to the output). This is also seen in the distribution of the β and γ parameters of
the BN layers, which control the mean and the variance of the feature maps that pass
through the CNN (Figures 5.34, 5.35, 5.36, 5.37). This observation could be connected
to the typical behavior of classifier CNNs trained on image datasets, where early layers
learn generic universal geometric kernels, while later layers learn semantically meaningful
specialized kernels which can take longer to get established [115, 255]. Additional work
delving into the feature maps of the U-Net could clarify this point.

After training the U-Net, examining the correlations between filters in a given convo-
lutional layer can highlight superfluous channels. Highly correlated filters can be probably
be pruned to reduce the parameter count of the U-Net. For every pair of channels (i, j),
Pearson correlation coefficients ri,j are computed from the corresponding set of filter weights
(w(i)

k , w
(j)
k )k=1,...,N :

ri,j =
∑N

k=1(w(i)
k − w(i))(w(j)

k − w(j))√∑N
k=1(w(i)

k − w(i))2
√∑N

k=1(w(j)
k − w(j))2

(5.10)

Figure 5.38 and Figure 5.39 contain the cross-correlation matrix (ri,j) of the filters of
the first and penultimate convolutional layers. They indicate that very few filters are highly
correlated with one another. This also implies that each filter is learning a unique, useful
transformation of its input feature map. To reduce the size of the network, a promising
pruning strategy would be to look for lottery ticket subnetworks which perform as well as
the full network [100, 404, 414].
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Figure 5.30: KDE plots of the bias distributions at the first convolutional layer, plotted at the end
of every 100 training epoch (numbering starts at 0)
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Figure 5.31: KDE plots of the filter weight distributions at the first convolutional layer.
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Figure 5.32: KDE plots of the filter weight distributions at the first convolutional layer of the
bottom stage.
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Figure 5.33: KDE plots of the filter weight distributions at the final convolutional layer.
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Figure 5.34: KDE plots of the β parameter of the first BN layer.
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Figure 5.35: KDE plots of the γ parameter of the first BN layer.
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Figure 5.36: KDE plots of the β parameter of the final BN layer.
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Figure 5.37: KDE plots of the γ parameter of the final BN layer.
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Figure 5.38: Cross-correlation matrix of the filters of the first convolutional layer.
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Figure 5.39: Cross-correlation matrix of the filters of the penultimate convolutional layer.

5.9 Conclusion and perspectives

In this chapter, a DL model for the total FSD was trained on the R2 jet flame and evaluated
a priori on the higher Reynolds number R3 flame. This extends the existing work of Lapeyre
et al. [183] to high Reynolds training and test cases. A priori evaluations on filtered DNS and
LES snapshots underline the excellent performance of the model compared to the state-of-the-
art CDSM model. Modifying the nature of the filter and the progress variable formulation to
assess the robustness of the model induced minimal losses in accuracy. The effective receptive
field of the CNN was shown to cover a large proportion of the flame front, and the depth of
the model was justified by visualizations of the weight distributions and channelwise cross-
correlations which highlighted a continuous, non-redundant learning process during training.
Overall, the success of this approach suggests a strategy to develop DL SGS models for large-
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scale LES applications: training the model on the DNS of a reduced configuration seems to
generalize well to the full-size simulation.

Evaluating a model on a configuration that only differs by its Reynolds number may
be unsatisfying, as one is left to wonder how the model behaves under different pressure,
temperature, chemistry, or mixture composition conditions. Generalization to vastly different
test cases is still insufficiently explored and will be one of the main axes of Chapter 6.



Chapter 6

Generalization capability of CNN
SGS models for the progress

variable variance and the filtered
reaction rate

Contents
6.1 The Pfitzner beta PDF CNN model . . . . . . . . . . . . . . . . . . . 114

6.1.1 Algebraic SGS variance models . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.2 Convolutional neural networks for SGS variance modeling . . . . . . . . 117

6.2 Training and generalization flow configurations . . . . . . . . . . . . 118
6.2.1 Training configuration: statistically planar flame in homogeneous isotropic

turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Exploration of the HIT dataset . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.3 Generalization configuration: R2 slot burner jet flame . . . . . . . . . . 124
6.2.4 Comments on the differences and similarities between the two configu-

rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Data preparation and model training . . . . . . . . . . . . . . . . . . 126
6.4 A priori evaluation of the SGS variance model . . . . . . . . . . . . 127

6.4.1 Evaluation on the HIT test set . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.2 Evaluation on the R2 generalization set . . . . . . . . . . . . . . . . . . 129
6.4.3 Discussion on the conditions for generalization . . . . . . . . . . . . . . 131

6.5 A priori evaluation of the PB-CNN model . . . . . . . . . . . . . . . 132
6.5.1 Evaluation on the HIT test set . . . . . . . . . . . . . . . . . . . . . . . 132
6.5.2 Evaluation on the R2 generalization set . . . . . . . . . . . . . . . . . . 135

6.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . 138



114 CHAPTER 6. GENERALIZATION OF CNN SGS MODELS

This chapter explores the applicability of DL modeling for PDF turbulent combustion
models, with an emphasis on the generalization of deep CNNs far from their training distri-
bution. First, the Pfitzner beta PDF CNN (PB-CNN) model is presented. It relies on the
modeling of the SGS progress variable variance by a CNN, which is used in a closed-form
expression for the filtered reaction rate based on a presumed beta PDF for the progress
variable. The generalization of the CNN to new, complex configurations is assessed by using
vastly different training and test datasets. The model is trained on a dataset generated
from the DNS of a statistically planar turbulent flame immersed in decaying homogeneous
isotropic turbulence. It is then assessed on a highly turbulent jet flame DNS, where its
predictions for the SGS progress variable variance are compared to the ground truth of fil-
tered DNS snapshots. The model training procedure follows the same concepts outlined in
Chapter 5 for the total FSD model. A priori testing of the CNN, and conditions for proper
generalization are discussed. Finally, the soundness of the PB-CNN model for the filtered
reaction rate is investigated. Most of the developments presented in this chapter have been
published in Xing et al. [400].
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Figure 6.1: Visual outline of Chapter 6.

6.1 The Pfitzner beta PDF CNN model

This section presents a computationally efficient turbulent combustion model which relies
on an analytical closure of the filtered reaction rate, and where the main quantity to be
closed, the SGS variance of the progress variable c′2, is modeled by a CNN. It assumes that
combustion can be described by a single-step irreversible chemical reaction, and parametrized
by a progress variable c = 1 − YF /Y

u
F . It is therefore well-suited to large-scale premixed

combustion configurations where complex chemistry would be too expensive, and an efficient
turbulent combustion model is needed to keep computational costs to a minimum. Due to
the analytical nature of the closure and the low overhead of coupling a DL model with AVBP
(detailed in Chapter 7), this formulation is a compelling alternative to tabulated chemistry
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methods that incur large storage and computational costs [98, 281, 366].

The PB-CNN model is part of the family of PDF models which rely on modeling the
subfilter distribution of c, noted as p(c), to express the filtered reaction rate as the expected
value of the DNS reaction rate:

ω̇F =
∫ 1

0
p(c)ω̇F (c) dc . (6.1)

p(c) is the progress variable filtered density function [135, 274, 279] which represents the
statistical distribution of the local subfilter state given an LES filter G:

p(c = c∗;x) =
∫
δ(c− c∗)G(x− x′) dx′ . (6.2)

p(c = c∗) dc is the G-weighted fraction of fluid around x with a progress variable in the range
[c∗, c∗ + dc]. p(c) can be modeled as a parametrizable probability distribution. A common
choice [35, 36, 69, 182, 286] is the beta PDF that has the expression

pβ(c) = Γ(a+ b)
Γ(a)Γ(b)c

a−1(1− c)b−1 , (6.3)

where Γ is the gamma function, and a and b are two parameters linked to the mean c and
variance c′2 = c2 − c2 of the distribution by the relations

a = c

[
c(1− c)
c′2

− 1
]
, b = (1− c)

[
c(1− c)
c′2

− 1
]
. (6.4)

Some weaknesses of presuming that the SGS distribution of c follows a beta PDF have
been pointed out in the literature, namely a departure from the true SGS PDF when the
filter size is large and the PDF approaches a bimodel limit [35, 75, 168]. Nevertheless,
some experimental evidence points towards the accuracy of the beta PDF up to highly
turbulent flame fronts [343, 345], and it has consistently shown good results in LES SGS
modeling [71, 184, 286]. A key observation made by Pfitzner et al. [269] is that if a Pfitzner
source term is used for the reaction rate (Equation 2.41), then the LES nondimensional
reaction rate (ωm)β has an analytical expression:

(ωm)β =
∫ 1

0
pβ(c)ωm(c) (6.5)

= (m+ 1)Γ(a+ b)
Γ(a)

( Γ(a+m+ 1)
Γ(a+ b+m+ 1) −

Γ(a+ 2m+ 1)
Γ(a+ b+ 2m+ 1)

)
. (6.6)

Note that such a simple closed-form formula cannot be found with an Arrhenius source
term. This makes the combination of the Pfitzner source term and a presumed beta PDF
particularly interesting for computationally efficient evaluations of the filtered reaction rate.
Using Equation 2.42, a similar formula can be derived for the fuel reaction rate under the
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simplifying assumption ρD ≈ ρD = ρD̃:

ω̇F =
∫ 1

0
pβ(c)ω̇F dc = Λ

∫ 1

0
pβ(c) ωm(c)

ρ(c)D(c) dc (6.7)

= Λ
ρD̃

(ωm)β . (6.8)

With a Pfitzner beta PDF formulation, the turbulent LES reaction rate can be computed
without needing on-the-fly integration of the PDF or tabulated chemistry.

An interesting theoretical remark is that a closed-form formula for the turbulent flame
speed associated with the beta PDF source term in Equation 6.5 can be derived via a
Kolmogorov-Petrovsky–Piskunov (KPP) analysis. The derivation is presented in Appendix A

6.1.1 Algebraic SGS variance models

To fully close the reaction rate, an SGS model is required for c′2. Many closures rely on
algebraic expressions based on the gradient of the resolved progress variable. A common
gradient model [69, 168, 370] is given by:

c′2 = Cs∆2|∇c|2 , (6.9)

where ∆ is the local filter size and Cs is the model parameter. It is important to note that
this model was originally proposed for nonreactive scalars, and for reactive scalars such as
the progress variable, it should be modified to account for the correlation of the scalar with
its source term [271]. Nevertheless, it is still commonly found in the literature whenever
an algebraic model for the progress variable is needed [19, 159, 168, 300, 370, 379]. It is
therefore used here as a basis of comparison for the CNN, which plays the same role as a
traditional algebraic model. The simplest way of estimating Cs is to use a global constant,
and values such as 1/12 [19, 168], 0.18 [370], or 0.5 [300] have been proposed in the literature.
However, a constant value is not expected to be accurate for all flow configurations and filter
sizes [168, 379], and the best model constant is a priori unknown. The model of Equation 6.9
with a constant Cs parameter will be called the CST model.

Cs can also be determined by a dynamic procedure [168, 241, 271, 381] recalled in the
following. A test filter of size ∆̂ = 2∆ is used to generate test-filtered quantities, noted as
ˆ̄ϕ. It is assumed that the model coefficient varies slowly in space, and that Equation 6.9
holds at the filter and test filter levels with the same model coefficient. Its expression at the
standard filter level is filtered to the test-filter level:

ĉ2 − ĉ c = Cs∆2 |̂∇c|2 , (6.10)

and independently expressed directly at the test-filter level:

ĉ2 − ĉ ĉ = Cs∆̂2|∇ĉ|2 . (6.11)
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After introducing a Leonard term defined as

L = ĉ c− ĉ ĉ , (6.12)

and a model term
M = ∆̂2|∇ĉ|2 −∆2 |̂∇c|2 , (6.13)

the combination of Equations 6.10 and 6.11 leads to:

L = CsM . (6.14)

A least-squares procedure consisting of averaging over homogeneous directions of the flow
is used to remedy stability issues [195]. The final expression of the model coefficient is

Cs = ⟨LM⟩
⟨M2⟩

, (6.15)

where the averaging operation is denoted by the brackets ⟨·⟩. The resulting model for c′2 is
called DYN.

6.1.2 Convolutional neural networks for SGS variance modeling

The simple algebraic model formulation of Equation 6.9 is driven by sound physical argu-
ments, but also limits the family of c′2 fields that these models can fit. As a consequence,
algebraic models are often inaccurate [159, 168, 241] and transport equations for c′2 are
usually preferred [75, 76, 251] but they induce additional computations and require supple-
mentary modeling. To combine computational efficiency and accuracy, c′2 is modeled using
the U-Net presented in Section 3.4. It is trained on a planar flame wrinkled by homogeneous
isotropic turbulence with simplified Pfitzner chemistry and evaluated a priori on the DNS
of a slot burner jet flame with skeletal chemistry. Since most thermophysical and chemical
parameters are purposefully different from one configuration to the other, this is a difficult
generalization test for the model. It is assumed that local values of c′2 can be determined
from three main elements:

1. the profile of the c field in the neighboring flame brush,

2. the amount of unresolved SGS scales,

3. the effect of local turbulence on the SGS distribution of c.

If they are known by the model or kept similar in the training and generalization con-
figuration, the model should be able to generalize properly. The essential nature of these
elements is highlighted by their presence in the algebraic model of Equation 6.9, respectively,
in the form of the terms |∇c|, ∆, and Cs. They therefore guide some of the key choices in
this section:

1. A CNN is used because of its ability to accurately learn spatial patterns in an extended
area around a location of interest (Section 6.3);
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2. the flame fronts seen in the training and evaluation contexts belong to the same tur-
bulent combustion regime (Sections 6.2.1 and 6.2.3);

3. DNS snapshots are filtered and downsampled to a coarse grid with a well-chosen reso-
lution (Section 6.3).

6.2 Training and generalization flow configurations

6.2.1 Training configuration: statistically planar flame in homogeneous
isotropic turbulence

The training database is built from the DNS of a freely-propagating, statistically planar
flame immersed in decaying homogeneous isotropic turbulence (HIT), a common configura-
tion in the literature [33, 43, 46, 159]. The cubic domain is uniformly meshed with 3843

hexahedral elements and a mesh size h = 36 µm. In the x direction, NSCBC inlet and outlet
boundary conditions are prescribed [277], while the other boundary conditions are periodic
(Figure 6.2). The flame front is initialized along the x direction using a DNS solution of a 1D
laminar propane–air flame at stoichiometry, temperature T = 300 K, and pressure P = 1 bar.
Chemistry is represented by a single irreversible reaction C3H8 + 5 O2 −−→ 3 CO2 + 4 H2O
and the fuel reaction rate is computed using the Pfitzner DNS formulation of Equation 2.42.
As key inputs needed in the formulation, the laminar flame speed sL = 0.383 m s−1 and the
model parameter m = 3.8 are chosen to match the laminar flame speed and flame thickness
δL,c = 352 µm obtained with single-step Arrhenius chemistry [291]. The flame thickness is
based on the gradient of c:

δL,c = 1
max dc

dx

. (6.16)

The initial laminar flame front in the HIT is therefore resolved on approximately 10 mesh
points.

In the fresh gases, turbulent velocity fluctuations are superimposed on the velocity field
of the laminar flame with the Fourier series decomposition method presented in Section 5.7.1.
This time, a von Karman–Pao (VKP) spectrum is used [17]:

E(κ) = α
u′2

κe

(κ/κe)4

[1 + (κ/κe)2]17/6 exp

−2
(
κ

κη

)2
 , (6.17)

where κe, κη are the wavenumber of the most energetic eddies and wavenumber of the
Kolmogorov scale η, respectively. α = 1.453 is a numerical constant. The integral length
scale lt is related to κe through lt ≈ 0.747/κe [17]. u′ and κe are chosen so that

u′/sL = 10 , lt/δL,c = 4.8 , (6.18)

leading to u′ = 3.83 m s−1 and κe = 423 m−1. κη is obtained via the dissipation rate
ϵ ≈ u′3/lt, which leads to κη = 2π/η = 2πν−3/4ϵ1/4 = 3.49 × 105 m−1. The ratio of the
mesh size to the Kolmogorov scale is h/η = 2, so that the mesh is fine enough to resolve
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all the eddies of the initial spectrum. Table 6.1 summarizes the main flame and turbu-
lence parameters at initialization, including the Damköhler number Da = (lt/δL,c)/(u′/sL),
Karlovitz number Ka = (u′/sL)3/2(lt/δL,c)−1/2, turbulent Reynolds number Ret = u′lt/ν,
Taylor-scale Reynolds number Reλ = u′λg/ν based on the Taylor microscale λg, and eddy
turnover time τ = lt/u

′.

sL δL,c u′ lt η Da Ka Ret Reλ τ

0.383 m s−1 352 µm 3.83 m s−1 1.77 mm 18 µm 0.48 14 450 82 0.46 ms

Table 6.1: HIT initial parameters.

The DNS is run using the fully compressible explicit code AVBP [327, 328] with the
TTGC Taylor–Galerkin finite element scheme of third-order accuracy in time and space [68].
The simulation is run for 1.84 ms, corresponding to 4-eddy turnover times.

Figure 6.2: Slices of the HIT DNS at t = 2τ : velocity magnitude in the xz-plane and heat release
rate in the xy-plane.

6.2.2 Exploration of the HIT dataset

To assess the quality of the HIT DNS, its turbulence and combustion properties are analyzed
in post-processing. Its turbulent evolution is studied by performing a cold simulation without
combustion, where the flow is an inert decaying homogeneous isotropic turbulence. This
cold HIT is run over three eddy turnover times. Then, combustion-relevant quantities and
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visualizations are analyzed for the reacting HIT DNS.

Turbulent kinetic energy dissipation The impact of numerical effects on the dissipation
of the TKE k is first assessed. Numerical dissipation must remain small relative to physical
dissipation for the decaying turbulence to be meaningful. The balance equation for the TKE
k can be expressed using the time derivatives of density and momentum:

∂k

∂t
= u · ∂ρu

∂t
− u · u

2
∂ρ

∂t
. (6.19)

Then, a discretized balance equation of the TKE can be derived from the discretized versions
of the Navier-Stokes equations 2.3, 2.4 that are solved by AVBP. Details are contained in
the PhD thesis of V. Moureau [235]. The rate of evolution of the discretized TKE averaged
over the computational domain is finally written as:〈∆k

∆t

〉
= ϵvis + ϵac︸ ︷︷ ︸

ϵphys

+ ϵconv + ϵartif︸ ︷︷ ︸
ϵnum

, (6.20)

where various dissipation source terms are identified. The physical dissipation ϵphys is caused
by energy transfers due to molecular diffusion (ϵvis) and acoustic effects (ϵac). The numerical
dissipation ϵnum is composed of the dissipation of the convective scheme (ϵconv) and of the
artificial viscosity (ϵartif ). Physical and numerical dissipations are normalized by ⟨∆k/∆t⟩,
indicated by the superscript +, and plotted in Figure 6.3. It appears that the numerical
dissipation remains two orders of magnitude smaller than the rate of evolution of the TKE
and of the physical dissipation. This indicates that the numerical effects in the DNS do not
play a large role in the evolution of the TKE.
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Figure 6.3: Normalized numerical and physical dissipation in the cold HIT.

Turbulent kinetic energy decay Next, the rate of decay of the mean TKE is investi-
gated. For a decaying HIT with a turbulence spectrum that behaves as E(κ) ∼ κ4 when
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κ → 0 like the VKP spectrum (Equation 6.17), turbulence theory and numerical evidence
indicate that the mean TKE decays asymptotically as ⟨k⟩ ∼ t−10/7 [149]. The time evolution
of the mean TKE is reported in Figure 6.4, normalizing the mean TKE by its initial value
and time by the eddy turnover time. The rate of decay consistently increases and eventually
approaches the theoretical slope of −10/7, although this simulation may be too short to
make a proper comparison with this theoretical limit. DNS studies of decaying turbulence
report decay rates of exactly −10/7 only after very long times, i.e. t = O(10τ) [149]. Given
the limited time span of this simulation, the TKE decay rate seems to agree with the usual
behavior of decaying turbulence.
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Figure 6.4: Time evolution of the mean turbulent kinetic energy in the cold HIT.

Turbulence spectrum The turbulence spectrum in the HIT at initialization and at later
times is shown in Figure 6.5. The energy spectrum function and the wavenumbers are non-
dimensionalized by Kolmogorov scales. Compared to the Passot-Pouquet spectrum of Equa-
tion 5.9, the VKP spectrum has the advantage of extending far into dissipative wavenumbers,
as the wavenumber in the exponential term of the energy spectrum function is normalized
by the dissipative wavenumber κη instead of the large-scale wavenumber κe. The initial
spectrum mostly follows the Kolmogorov scaling law E(κ) ∝ κ−5/3, with no clear dissipative
range. This dissipative range would only appear in the initial spectrum if the mesh size was
significantly smaller than the Kolmogorov scale, an unfeasible resolution constraint in this
simulation. A dissipative range appears as soon as t = 0.1τ , indicating that the synthetic
turbulence spectrum has relaxed to realistic turbulence. The characteristic lengthscale that
separates the inertial and dissipative ranges seems to lie around 5η. It is larger than the
laminar flame thickness whose associated wavenumber is indicated by the black dash-dotted
line. The range of turbulent eddies that are able to wrinkle the flame front therefore extends
until the observed dissipation range. This further justifies the use of a VKP spectrum whose
broad spectral range generates eddies up to the smallest wrinkling lengthscale right away,
instead of needing to wait for large eddies to break up if a Passot-Pouquet spectrum had
been used. Over the course of the simulation (t = τ , t = 2τ), the shape of the turbulence
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spectrum stays mostly the same, and the energy decay appears in the downward shift of the
spectrum.
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Figure 6.5: Turbulence spectrum normalized by Kolmogorov scales in the cold HIT. The
dash-dotted black line marks the wavenumber associated with the laminar flame thickness.

Turbulent evolution In the reacting simulation, turbulent eddies wrinkle the flame front.
Figure 6.6 shows a representative slice of the turbulent flow field, illustrated by the normal
vorticity component, and the turbulent flame front at t = 3.9τ . Turbulent eddies wrinkle the
flame front on multiple scales, and 3D wrinkling effects are evidenced by pockets of c = 0.1
and c = 0.9 isosurfaces in the fresh and unburnt gases. Turbulence is dissipated through
the flame front by the combination of the increase in viscosity with the temperature and
dilatational dissipation [318].

The evolution of the reacting HIT in the Borghi-Peters turbulent combustion diagram is
plotted in Figure 6.7. In this figure, u′ is the density-weighted averaged turbulent velocity
fluctuation in the preheat zone (defined as the region where 0.1 < c < 0.5). lt is computed
as u′3/ϵ̃, where the Favre-averaged dissipation rate is given by [318]:

ϵ̃ = 1
ρ̄

[
µω · ω + 4

3µ(∇ · u)2 + 2µ(∇⊗∇) : (u⊗ u)− 4µ∇ · (u(∇ · u))
]

(6.21)

and accounts for both solenoidal and dilatational contributions.
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Figure 6.6: z component of the vorticity normalized by the flame time on a z-normal slice at
t = 3.9τ , with iso-lines c = 0.1 (dashed), c = 0.9 (solid). Fresh (resp. burnt) gases are located on the
left (resp. right) of this figure.

Throughout the simulation, the flame evolves in the TRZ regime, where in theory a
broadening of the turbulent flame brush may be observed but the inner reaction zone should
not be significantly perturbed. Interestingly, although there is no forcing term for the turbu-
lence, the computational estimates of u′ and lt increase during the simulation. This may be
due to velocity fluctuations generated by the propagation of the wrinkles in the flame front.
Note that the computational estimates of u′ and lt lead to different initial values than those
reported in Table 6.1 which come from the theoretical VKP spectrum. This discrepancy may
be due to the limited extent of the preheat zone in which these quantities are averaged. This
should tend to reduce the computational estimates of u′ and lt which is what is observed in
Figure 6.7. There is no definite right way of computing these quantities, and both estimates
indicate that the flame lies in the TRZ.

Finally, the relative increase in flame surface area and the fuel consumption rate are
plotted in Figure 6.8. Turbulent wrinkling increases the flame surface up to a factor 6,
and the fuel consumption rate consistently tracks the increase in flame surface area, with
deviations no greater than 15%. This indicates that the flame preserves its flamelet structure
throughout the DNS, as expected from the TRZ regime. The evolution of the flame surface
is thus a good proxy for the evolution of the total burning rate. This property will be used
for the CNN model trained in Chapter 8.
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Figure 6.7: Borghi-Peters turbulent combustion diagram, with the location of HIT snapshots
colored by time.
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Figure 6.8: Time evolution of the flame surface and fuel consumption rate normalized by their
initial values in the reacting HIT.

6.2.3 Generalization configuration: R2 slot burner jet flame

The configuration used to assess the generalization of the CNN is the DNS of the R2 slot
jet flame already used in Chapter 5 and briefly recalled here. A fully premixed methane–air
mixture at temperature T = 800 K, pressure P = 4 bar, equivalence ratio ϕ = 0.7, and bulk
velocity U = 100 m s−1 is injected through a slot of width H = 1.2 mm and surrounded
by a slow coflow of burnt gases. Chemistry is described by a skeletal chemical mechanism
containing 16 species and 72 reactions [207]. The corresponding laminar flame has a speed of
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sL = 1 m s−1 and a progress variable thickness δL,c = 85 m s−1. The domain dimensions
are 28.8 mm, 19.2 mm, and 5.16 mm in the streamwise (x), crosswise (y), and spanwise (z)
directions, respectively. It is uniformly meshed with a resolution h = 20 µm. The progress
variable field of the fully developed jet flame is shown in Figure 6.9. 5 uncorrelated snapshots
from instants where the jet is fully developed are used in this study, and form what will be
called the generalization set.
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Figure 6.9: Slice of progress-variable field in R2 DNS.

6.2.4 Comments on the differences and similarities between the two con-
figurations

The HIT and R2 flames feature very different domain geometries, flow dynamics, and sim-
ulation parameters (Table 6.2). In addition, turbulence in the flame brush is induced by
homogeneous isotropic turbulence in one case and shear between the jet and the coflow in the
other. Previous studies involving CNNs investigated minor parametric variations in the inlet
condition [183], fuel species, and Karlovitz number [403], or turbulence intensity [250, 305].
Substantial generalization was observed by Wan et al. [382] for a fully connected neural net-
work trained as a surrogate model for the filtered reaction rate on a micromixing database.

This chapter investigates the capacity of the CNN trained on the HIT to generalize well
to flames in the same premixed turbulent combustion regime, characterized by the velocity
and length ratios u′/sL, lt/δL,c [265, 266, 275]. To this end, in Equation 6.18, the parameters
of the initial turbulence spectrum of the HIT were chosen to match the u′/sL, lt/δL,c values
computed by Luca et al. [209] at the crosswise location of maximum heat release and 60%
of the flame length. They are considered to be representative of the turbulent combustion
regime of the R2 flame.

Finally, three orders of magnitude separate the computational cost of the two DNS sim-
ulations. To simulate 0.9 ms of physical time, R2 requires 1 million wall clock hours on an
Intel Xeon Haswell-based supercomputer [208], while the HIT only needs 1600 wall clock
hours on a comparable Intel Xeon Skylake-based cluster. This highlights the greatly reduced
computational demands of training an ML model on simple canonical configurations instead
of full-scale realistic flames.
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HIT R2

Fuel C3H8 CH4
Reactions 1 72
Species 5 16
ϕ 1 0.7
T 300 K 800 K
P 1 bar 4 bar
sL 0.383 m s−1 1 m s−1

δL,c 352 µm 85 µm
h 36 µm 20 µm

Table 6.2: Main differences in the simulation parameters of the HIT and R2 DNS.

6.3 Data preparation and model training

The CNN trained in this study is the same U-Net architecture used in Chapter 5 to model
the total FSD. It is trained to process c input fields and predict associated c′2 output fields.
Following the LES framework, the filtered fields are represented on a grid of size h that
is coarser than the DNS mesh. To generate these filtered coarse fields, 3D fields of c =
1 − YF /Y

u
F are first extracted from instantaneous snapshots of the DNS simulations. They

are then filtered with a Gaussian filter (Equation 4.10) and downsampled to a coarse mesh
of size hcoarse. The filtering and coarsening procedure for HIT and R2 is illustrated in
Figure 6.10. The PB-CNN model does not involve thickening, so here the combustion filter
size ∆ is the LES filter size, equated with the coarse mesh size resolution hcoarse [313].
Following Propositions 4.2 and 4.3, the value of the coarse mesh resolution for the HIT and
R2 is chosen to ensure that the ratio ∆/δL,c = 0.81 is the same for both cases, leading to
hcoarse = ∆ = 288 µm and 70 µm for the HIT and R2, respectively.

The training database is built from 46 instantaneous snapshots of the HIT DNS, extracted
at regular intervals of 0.04 ms. The first 38 constitute the training set for the CNN, while
the next 4 form the validation set and the final 4 are kept as a held-out test set for the
results shown below. Instead of directly predicting c′2, the CNN is trained to predict the
unmixedness factor c′2/[c(1− c)], a normalized version of the variance that was empirically
found to lead to slightly better results. As a preprocessing step, the input and output
fields are periodically padded in the y and z directions to enforce the periodicity boundary
conditions of the DNS.

At each training iteration, 16 snapshots from the training set are sampled and, for each
snapshot, 4 randomly cropped 323 cubes are passed through random 90◦ rotations and
mirror operations before being added to the training batch. Gradient descent optimization is
performed by an Adam optimizer [164] with an initial learning rate of 0.01. A mean squared
error loss function encourages the CNN outputs to match the ground truth c′2 fields. Training
was performed with the Tensorflow 2 Python library and stopped after 10,000 iterations when
convergence was well-established. On an NVIDIA Tesla V100 GPU, this equates to one hour
of training time. This training procedure only needs to be done once, after which the weights
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of the CNN are frozen and the trained model can predict c′2 from a given c field in a few
milliseconds.
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Figure 6.10: Summary of the filtering process for the HIT and R2 for ∆/δL,c = 0.81, illustrated
with enlargements of the corresponding flame.

6.4 A priori evaluation of the SGS variance model

6.4.1 Evaluation on the HIT test set

The a priori performance of the CNN on the test set of the HIT is assessed to ensure that
it has successfully learned to represent c′2 on samples from the same distribution as the
training database. The CNN model predictions are compared to ground truth c′2 values
computed from the filtered downsampled DNS, called true values, and to the CST model
predictions. The constant coefficient Cs = 0.18 [370] was chosen by picking the value in the
literature [19, 168, 300, 370] that best matched the true c′2 values. For the DYN model,
since there are no fully homogeneous directions, the averaging procedure is conducted on
isocontours of c. Another possibility is to perform averaging over the whole model, leading
to a dynamically determined constant Cs = 0.17, which is very close to the value chosen for
the CST model.

Figure 6.11 shows sample slices of c, true c′2, and modeled c′2 fields from the test set.
The CNN matches the ground truth faithfully in all regions of the flow, while the gradient
model does not seem as accurate.

Model predictions are aggregated on the whole test set and plotted against true values
in Figure 6.12. The excellent performance of the CNN is confirmed by the tight spread
of its predictions around the perfect model line, and the lack of bias of their linear trend.
In comparison, CST and DYN model predictions display significantly higher variance and
nonzero bias. Note that with prior knowledge of the ground truth, a Cs value that leads to
an unbiased CST model can be chosen but this would have little effect on the variance. The
dynamic procedure proves to be effective at estimating a local model coefficient without any
prior knowledge and leads to a slightly smaller error than the CST model.
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Figure 6.11: Sample slices of c (a), and c′2 (b): ground truth (top-left), CNN (top-right), CST
(bottom-left), and DYN (bottom-right) model on the HIT test set.

Most of the data points plotted in Figure 6.12 are in regions of the flow where no flame
front is present and using c′2 for SGS closure is not important. The critical zones for c′2

models are located in the reaction zone of the flame, identified as the regions where the
laminar Pfitzner reaction rate is greater than 10% of its maximum value:

Z = {c : ω̇F (c) ≥ 0.1× max
0≤c≤1

(ω̇F (c))} . (6.22)

Hexplots conditioned on c ∈ Z are plotted in Figure 6.13, and error values are also
reported in Table 6.3. It is interesting to note that the CNN performs even better in these
critical regions, and is very close to a perfect model. On the other hand, the performances
of the gradient models are significantly worse. Error values computed using a normalized
mean square metric:

ϵ =
∑(ymodel − ytrue)2∑

y2
true

(6.23)

are reported in Table 6.3 and confirm the excellent a priori performance of the CNN on the
HIT test set.

Model ϵ ϵ, c ∈ Z

CNN 0.060 0.054
CST 0.417 0.733
DYN 0.398 0.730

Table 6.3: HIT test set error values for c′2.
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Figure 6.12: Hexbin plots of model predictions against ground truth: (a) CNN model, (b) CST
model, (c) DYN model. Data points are gathered in hexagonal bins and colored according to the
number of data points they contain. The red line y = x represents a perfect model. Cyan lines
represent linear trends of the model.
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Figure 6.13: Hexbin plots of model predictions against ground truth conditioned on c ∈ Z: (a)
CNN model, (b) CST model, (c) DYN model.

6.4.2 Evaluation on the R2 generalization set

The various models are now assessed on the 5 snapshots of R2 composing the generalization
set. For the DYN model, averaging is performed in the spanwise direction of the burner.

Figure 6.14 shows a sample slice of the c̃ field in a filtered snapshot of R2 and the
predictions of the CNN, CST, and DYN model for the corresponding SGS variance. Once
again, the value Cs = 0.18 is retained for the CST model. All models reproduce qualitatively
the evolution of the filtered DNS c′2. The hexplots of Figure 6.15 and the error values
reported in Table 6.4 reveal that the CNN performs the best out of all the models, which is
a demonstration of its ability to transfer its predictive power from the HIT flame to the R2
flame. However, it is naturally less accurate than on the test of the HIT, which contained
samples from the same distribution as its training set. In comparison, the CST and DYN
models show zero bias but a higher variance. Unlike in the HIT, all the models perform
similarly when evaluated on the whole domain or only the reaction zone Z, as indicated by
the error values in Table 6.4.
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Figure 6.14: Sample R2 slices of c, true c′2, CNN, CST, and DYN model predictions.
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Figure 6.15: Hexbin plots of model predictions against ground truth on the R2 generalization set:
(a) CNN model, (b) CST model, (c) DYN model.
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Model ϵ ϵ, c ∈ Z

CNN 0.241 0.214
CST 0.371 0.331
DYN 0.358 0.322

Table 6.4: R2 error values for c′2.

For a sample snapshot, the spatial distribution of model predictions is investigated by
plotting c′2 values averaged on transverse slices in Figure 6.16. The CNN recovers the
filtered DNS values nearly perfectly, while the algebraic models consistently overestimate
the variance.

This a priori evaluation of c′2 models has shown that the CNN trained on the HIT
configuration was able to generalize accurately to the R2 flame and outperform constant
coefficient and dynamic algebraic models.
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Figure 6.16: Evolution of transverse averages of the true c′2 and model predictions along the
streamwise direction x.

6.4.3 Discussion on the conditions for generalization

Between the HIT training/test sets and the R2 generalization set, three key ratios are con-
served: u′/sL, lt/δL,c, and ∆/δL,c. It is important to understand the sensitivity of the
generalization of the CNN to these ratios, as they could place strict limits on the practical
applicability of the model.

The influence of u′/sL and lt/δL,c is analyzed by training a second CNN on the same
HIT configuration with halved initial values of u′/sL, lt/δL,c, leading to lesser wrinkling in
the turbulent flame front. When evaluated on R2, this second CNN had an error ϵ = 0.301,
which is 30% higher than the reference CNN. Figure 6.17 shows that the effect of training
on a weaker HIT is noticeable in the first 4 mm of the flame near the inlet. The second CNN
underpredicts the SGS variance compared with the reference CNN and the filtered DNS.
This is coherent with the fact that it is trained on a weaker HIT, which contains lower c′2
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values than the original configuration. This brief study seems to indicate that the choice
of u′/sL, lt/δL,c is indeed impactful on the generalization accuracy of the CNN, but more
extensive work should be performed to fully understand the effect of these ratios.
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Figure 6.17: Evolution of transverse averages of the true c′2 and both CNN predictions in the first
4 mm of the R2 flame.

The restriction to relying on a single value of ∆/δL,c can be relaxed by training the
CNN on a range of filter size values. An instance of the CNN was trained on a dataset
comprising the collection of training HIT snapshots, which were filtered at ∆/δL,c = 0.8,
1.2 and 1.6, for a total of 126 snapshots with 3 separate filter sizes. It was then tested on
R2 for the same filter sizes, as well as unseen values ∆/δL,c = 1, 1.4, and 2. Figure 6.18
shows the evolution of the error made by the CNN and DYN models with ∆/δL,c. When
∆/δL,c increases, the performance of the DYN model deteriorates as the SGS modeling task
becomes more difficult. In contrast, the error made by the CNN is stable across all filter sizes,
including unseen ones. This suggests that with proper training, the CNN can be accurate
on a range of ∆/δL,c values instead of a single one. Note that the error made by this CNN
on ∆/δL,c = 0.8 is higher than the one reported in Table 6.4 for the CNN solely trained on
this filter size. This implies that a balance must be found between accuracy at a single filter
size, and validity across a range of values. Interestingly, providing the ∆/δL,c value as an
additional input channel for the CNN did not improve the results. The rest of this work is
presented with the original CNN trained with ∆/δL,c = 0.8.

6.5 A priori evaluation of the PB-CNN model

6.5.1 Evaluation on the HIT test set

In the previous section, the CNN was shown to be able to learn a model for c′2, which is
accurate on the test and generalization configurations. In the following, modeled values of
c′2 are incorporated in the presumed beta PDF approach detailed in Section 6.1 to form the
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Figure 6.18: CNN and DYN model errors on R2 for various filter sizes.

PB-CNN model for ω̇F . Beta PDFs are known to sometimes be inaccurate models for the
SGS distribution of c in premixed combustion [35, 75, 168]. Therefore, the presumed beta
PDF approach needs to be justified independently from the model for c′2. For the HIT,
Figure 6.19 shows the conditional median, 5% and 95% quantiles plotted against c for the
true filtered reaction rate, and the Pfitzner beta PDF reaction rate with true c′2 values. The
beta PDF appears to be a good approximation for the true SGS PDF, showing that the
presumed beta PDF assumption is sound in the case of the HIT.
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Figure 6.19: Distribution of the filtered reaction rate computed from a beta PDF assumption with
true c′2 (blue) and the filtered DNS (red): conditional mean (solid line); 5% and 95% conditional
quantiles (delimiting the shaded area). The statistics are aggregated over the HIT test set.

Given the accuracy of the CNN model, replacing the true c′2 values with the CNN
predictions does not noticeably affect the shape of the beta PDF. The isolated effect of the
CNN model on the beta PDF reaction rate appears minimal in Figure 6.20, where the beta
PDF reaction rates with CNN values of c′2 are compared with beta PDF reaction rates with
true values of c′2.
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Figure 6.20: Hexbin plot of beta PDF reaction rates with CNN values of c′2 against beta PDF
reaction rates with true values of c′2.

Finally, the combined effect of the beta PDF assumption and the c′2 model is shown in
Figure 6.21. The high variance values predicted by the DYN model lead to underpredictions
of the reaction rate when combined with the Pfitzner beta PDF closure. In contrast, using
CNN predictions leads to a much closer fit to the true filtered reaction rate. Figure 6.22,
where true and modeled reaction rates averaged on yz-planes are plotted against the stream-
wise x coordinate, illustrates how the quality of the CNN model for c′2 leads to a good very
estimate of fuel consumption rates using a beta PDF assumption.
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Figure 6.21: Hexbin plots comparing true filtered reaction rates to beta PDF reaction rates using
modeled c′2 values: (a) CNN model, (b) DYN model.
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Figure 6.22: Evolution in the streamwise x direction of the true and modeled reaction rates
averaged on yz-planes, for a sample in the HIT test set. PB-DYN denotes the Pfitzner beta PDF
closure with the DYN model for c′2.

6.5.2 Evaluation on the R2 generalization set

The PB-CNN closure is finally evaluated on R2. From the R2 coarse fields of c, beta PDF
reaction rates are computed according to Equation 6.7 and using either true c′2 or predictions
from the CNN. A reference 1D laminar flame matching the conditions of the R2 simulation is
used to compute the prefactor Λ = (ρfsL)2Y u

F . The value for the Pfitzner model parameter
m = 4.7 was chosen so that the total fuel consumption rate of the reference 1D flame is
matched by the Pfitzner reaction rate based on the c field of the reference 1D flame. As a
result, by construction, both reaction rates would lead to the same total fuel consumption
rate on a planar laminar flame. Figure 6.23 shows the close match of the resulting Pfitzner
reaction rate to the fuel reaction rate of the skeletal mechanism.
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Figure 6.23: DNS fuel reaction rates for skeletal and Pfitzner chemistry vs. progress variable in a
1D laminar flame.
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Figure 6.24 compares the PB-CNN reaction rates with the true filtered values of R2.
For clarity, only the points where the filtered DNS reaction rate is greater than 10% of
its maximum value are plotted. This corresponds to the same condition as Equation 6.22.
Compared with the HIT flame, the scatter plot still exhibits low bias, with a large portion
of the predictions concentrated around the reference linear trend, but it also has a higher
variance, which is emphasized by the logarithmic scale of the color bar. This indicates that
some local values of the reaction rate are not well predicted by the PB-CNN model.

One particular group of mispredicted points is located on the x-axis of the plot and cor-
responds to regions in the reaction zone where the PB-CNN model erroneously predicts a
reaction rate of exactly 0. Analyzing the reason for this misprediction is insightful to under-
stand the behavior of the model in difficult edge cases. This group of points is characterized
in Figure 6.25 by the distribution of their values of the true filtered reaction rate, filtered
progress variable, true SGS variance, and CNN predictions for the variance. It appears that
these points are located in the postflame region, where c ≈ 1 and the skeletal mechanism
still predicts some chemical activity. On the other hand, the SGS variance is extremely small
and estimated by the CNN to be 0, causing the beta PDF-based reaction rate to also be
exactly 0. This highlights a limitation of comparing a simplified reaction rate formulation
relying on the SGS variance against a skeletal mechanism. However, these mispredictions
are a rare occurrence since this group of points only constitutes 0.1% of the points in the
reaction zone.
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Figure 6.24: Hexbin plots comparing true filtered reaction rates with PB-CNN reaction rates for
points in the reaction zone of the filtered DNS of R2. The black line represents the linear trend of
the model.

Despite discrepancies in local predictions of the reaction rate, the PB-CNN model pro-
vides correct estimates of spatially averaged reaction rates. This is important as it shows
that the model would be useful in LES to recover key integral quantities of the burner such as
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Figure 6.25: Histograms of ω̇F , c̄, true c′2, and CNN c′2 for the points in the reaction zone where
the PB-CNN reaction rate is exactly zero.

the mean length of the flame. This is shown in Figure 6.26, which compares the streamwise
evolution of the filtered DNS and PB-CNN reaction rates averaged on transverse slices. The
PB-CNN closure recovers the correct averaged reaction rate in all regions of the flame. This
leads to a fuel consumption rate in the whole domain within 5% of the reference value. A
posteriori simulations could be carried out in the future to assess if the PB-CNN reaction
rate leads to an LES flame with the same length and total burning rate as the R2 DNS.
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Figure 6.26: Evolution of transverse averages of skeletal and beta PDF reaction rates along the
streamwise direction x.
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6.6 Conclusion and perspectives

A deep convolutional neural network was trained to model the progress variable SGS variance
c′2 on a statistically planar flame in homogeneous isotropic turbulence, and was shown to
generalize accurately to the R2 jet flame in an a priori evaluation. Despite very different flow
dynamics, thermophysical parameters, and chemistry, the conservation of the normalized fil-
ter size ∆/δL,c and the turbulence–flame interaction ratios u′/sL, lt/δL,c were assumed to be
key to the generalization of the CNN, and their influence on the results was discussed. This
work indicates that CNNs can be trained on canonical simple cases and used in practical
configurations. Future studies could focus on applying this methodology to different com-
bustion models. The universal nature of the conditions for generalization that are exhibited
here should also be investigated, as well as ways to integrate them into the machine learning
model.

In an effort to combine computational efficiency and modeling accuracy, the PB-CNN
closure for the mean LES fuel reaction rate was proposed. It combines the reaction source
term formulation of Pfitzner et al. [269, 270], a presumed beta PDF assumption, and the
CNN model for c′2 in an analytical formula for the reaction rate. It showed excellent a pri-
ori results on the R2 flame when compared with the burning rate produced by the original
skeletal chemistry. In the future, an a posteriori evaluation would be a challenging test of
the accuracy of the c′2 model given by the CNN and the PB-CNN closure for ω̇F . This
formulation would be especially well suited to simulating large-scale premixed combustion
configurations, such as explosions in venting chambers. The resulting overpressure can be
accurately captured using simplified chemistry, but remains a challenge at scale due to insuf-
ficient mesh resolution, prohibitive computational costs, and strong sensitivity to turbulent
reaction rates [291, 369]. Such applications are investigated in Chapter 8.
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This chapter presents the AVBP-DL coupling strategy which allows the AVBP solver to
query predictions made by deep neural networks on-the-fly during an LES simulation. Cou-
pling a massively parallel fluid solver with deep CNNs requires dedicated high performance
computing efforts, as AVBP is still mostly bound to central processing units (CPUs) while
neural networks operate most efficiently on GPUs. It is a mandatory step towards using deep
learning for practical LES computations. The computational overhead of the coupling must
remain competitive against other modeling alternatives. A global overview of the AVBP-DL
coupling strategy is first provided, followed by details of its implementation, especially for
the mesh localization and temporal loop. A performance and scalability study is then carried
out to estimate the computational overhead of the coupling.
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Figure 7.1: High-level overview of the AVBP-DL coupling strategy.

The AVBP-DL coupling strategy follows a Multiple Program Multiple Data (MPMD) ap-
proach which involves two distinct solvers. AVBP is the fluid solver that handles time
advancement of the LES reactive Navier-Stokes equations. A DL solver is run in parallel
and can pilot deep learning models that may replace any subgrid-scale model needed by
AVBP. Both AVBP and the DL solver involve a large number of processes that perform dis-
tributed computation. Parallel asynchronous communications are used to exchange inputs
and outputs of the deep learning model between AVBP and the DL solver.

This chapter will focus on CNN models for turbulent combustion modeling, although
AVBP-DL can handle any generic data-driven model. CNNs introduce some specificities
in the coupling strategy. Because they operate on voxels, they cannot immediately process
AVBP data which is unstructured and discretized with arbitrary finite element types. Addi-
tionally, complex geometries featuring curved boundaries and non-convexities require special
treatment. These specificities motivate the use of the CWIPI (Coupling With Interpolation
Parallel Interface) library [303] to manage communications between the solvers. CWIPI en-
ables efficient coupling between parallel solvers through MPI communications. It can handle
non-matching element types and non-coinciding domains by interpolating data between the
domains.

AVBP-DL greatly benefits from the emergence of hybrid CPU/GPU nodes in modern
supercomputing clusters. Hybrid architectures have come to dominate supercomputing rank-
ings1 and enable deep learning models that can efficiently use GPU acceleration. In a coupled
simulation, processes are split between AVBP and the DL solver, with typically many more
AVBP processes than DL processes. Each DL process controls a copy of the deep learning
model via Python code.

1In the June 2022 TOP 500 list, the top-ranking clusters in France, Europe and worldwide were all equipped
with hybrid nodes.

https://top500.org/lists/top500/list/2022/06/
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In this chapter, AVBP-DL coupling is applied to the a posteriori investigation of a CNN
model for the SGS wrinkling factor in the Masri vented obstructed gas explosion. Numerical
and physical details of the configuration and of the model are presented in Chapter 8. The
CNN model takes a progress variable field c as input and returns a wrinkling factor field
Ξ. The 3D c and Ξ fields are the only data exchanged at every step. This chapter will
focus on detailing the AVBP-DL coupling strategy outlined in Figure 7.1 and measure the
computational overhead compared to a non-coupled AVBP simulation. The physical analysis
of the results of the simulation are found in Chapter 8.

7.2 Detailed overview

7.2.1 Mesh localization

AVBP and the DL solver can operate on non-coinciding meshes. AVBP regions not covered
by the DL mesh may correspond to parts of the domain where the DL model is not needed.
In the Masri configuration, this corresponds to the plenum (Figure 8.1) where turbulent
combustion does not affect the quantity of interest of the simulation. The DL mesh therefore
only covers the extent of the obstructed chamber. On the other hand, the DL mesh may
extend outside the AVBP mesh if the domain geometry does not match a structured grid.
Since CNNs work on structured arrays, the DL mesh is defined as the union of disjoint
3D rectangular domains, generally forming one contiguous rectangular box. In the Masri
configuration, the DL domain is therefore defined as the bounding box of the main chamber,
including obstacles that are excluded from the AVBP mesh as they are outside the fluid
domain. The AVBP unstructured mesh is composed of 28 million tetrahedral elements and
5.1 million nodes, with a typical mesh size h = 0.5 mm. The DL structured mesh is composed
of 500× 100× 100 = 5 million hexahedral elements with the same mesh size h.

Each solver uses its own domain decomposition method. In AVBP, the ParMETIS [156]
library performs parallel partitioning of the unstructured mesh. Since the DL domain is a
rectangular box, DL partitions are defined using a recursive coordinate bisection algorithm.
Figure 7.2 shows a y-normal slice offset 1 cm from the centerplane of the Masri configura-
tion, with the partitioning of the AVBP and DL meshes for a total of 1280 processes (1264
AVBP/16 DL).

Since both solvers can have non-coinciding domains which are discretized using different
element types and domain decomposition algorithms, linear interpolation is applied to the
data that is exchanged between the solvers to convert between its representation on both
meshes. On either mesh, points that are contained within the extent of the distant mesh are
called localized points. They belong to regions where both meshes overlap. Meshes remain
static during the whole simulation, so interpolation weights for localized points can be pre-
computed and saved before the temporal loop. This is the localization step. This parallel
procedure follows the inter-code communication scheme algorithm detailed in Duchaine et
al. [78].
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Figure 7.2: AVBP and DL partitioning on a y-normal slice at y = 1 cm. Top: AVBP partitioning
(the white strips correspond to the 3 obstacle grids) with 1264 processes. Bottom: DL partitioning
with 16 processes.

7.2.2 Temporal loop

Figure 7.3 breaks down the timeline of an AVBP-DL temporal iteration. The placement of
MPI communications is optimized to hide as much of the computational overhead as possible.

The iteration starts with the computation of the progress variable c in AVBP. It is then
sent to the DL solver via the CWIPI communication graph built in the localization step.
CWIPI performs data interpolation and parallel exchanges from the AVBP partitions to
the appropriate DL partitions. The exchange is a non-blocking synchronous send opera-
tion (MPI_ISsend). Non-blocking means that the operation returns immediately and allows
AVBP computations to continue without waiting for reception on the DL side. Synchronous
indicates that the waiting operation that checks for completion Wait_ISsend will return
only when the data has started to be received. The non-blocking receive operation for Ξ
(MPI_Irecv) is called right after. This buffers the reception of Ξ, allowing it to be received
by MPI as soon as possible.

For the DL solver, c is received by a matching receive operation. Some processing steps are
needed before running the CNN inference. Non-localized DL points did not receive c values
and are filled in using nearest neighbor interpolation from the set of localized points. These
points correspond to the obstacles inside the Masri chamber. Their treatment is important
because the DL solver takes an input domain which includes these points. Alternatives to
nearest neighbor interpolation could be trilinear interpolation or filling in a constant default
value. Trilinear interpolation was found to be computationally expensive and had minimal
impact on the resulting field. Filling in a constant value would introduce sharp transitions
in the c field at the edge of the obstacles which would induce errors in the CNN predictions.
They are avoided with nearest neighbor interpolation, although discontinuities may still exist
inside the obstacles. Their effect on the physical results is discussed in Section 8.8.
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Figure 7.3: Timeline of an AVBP-DL temporal iteration.

Because DL partitions are disjoint, CNN predictions on either side of partition boundaries
may differ. Indeed, predictions on either side of the boundary are generated by different in-
put fields. Existing work has addressed this issue by implementing the exchange of partition
margins before every convolution operation of a 3D U-Net to perform distributed train-
ing [143]. This work pursues a simpler approach illustrated in Figure 7.4. 3D rectangular
overlaps are exchanged between neighboring partitions via MPI before the inference of the
CNN. Overlaps have a size s in the normal direction to the partition boundary, and extend
to the bounds of the domain in the other directions. If s is larger than half of the effective
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receptive field of the CNN, Figure 7.4 shows that the overlap zone encompasses all the input
points that can influence CNN predictions at the edge of the partition. This approach was
preferred as the ERF of the U-Net architecture of the model is not too large. Given the size
of the ERF, s = 12 is a suitable overlap size for the Masri simulation.

DL 1

DL 2

DL 3

DL 4

ERF

Figure 7.4: Exchange of DL partition overlaps. In this example, only exchanges to DL process 1
are drawn. Overlaps from DL processes 2, 3, 4 are communicated to process 1. The ERF of the
CNN at the partition boundary is also pictured.

Figure 7.5 illustrates the impact of overlaps on CNN predictions. Without overlaps,
predictions in the flame front near the boundaries are generally lower than when sufficient
overlap is given to account for the whole field. Discrepancies would lead to discontinuities
across DL partition boundaries up to values of 1, which is the order of magnitude of wrinkling
values. This underlines the necessity to use an overlap to preserve the integrity of the CNN
predictions near partition boundaries.
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Figure 7.5: Effect of overlaps on CNN predictions. Left: sample cropped progress variable slice
from the Masri simulation. Right: difference between CNN prediction with overlaps (s = 12) and
without overlaps, with progress variable iso-lines c = 0.1 (dashed), c = 0.9 (dotted).
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In each DL partition, the progress variable field produced by these processing steps is
mapped to a SGS wrinkling factor field Ξ by an instance of the trained CNN. Overlaps are
then removed, and Ξ is sent by a non-blocking synchronous send operation to AVBP.

The matching Wait_Irecv operation in AVBP is placed just before Ξ is needed for the
efficiency. This minimizes the waiting time for AVBP, which can be zero if intermediate fluid
computations take longer than the data processing and inference of the DL solver. The Ξ
value of non-localized AVBP points is set to one.

Compared to a non-coupled AVBP simulation, the DL overhead is defined as the du-
ration of all the additional operations in the AVBP timeline (colored in blue in Figure 7.3).
This computational overhead should remain as low as possible, and it will be used to assess
the performance of the coupling. It is controlled by the DL time, defined as the time taken
by the DL solver to output Ξ after it has received c and colored in red, and by the duration
of the communications between the two solvers.

7.3 Performance and scalability

7.3.1 Performance benchmark setup

AVBP-DL is benchmarked on the Jean Zay supercomputing cluster2. As of June 2022, Jean
Zay has a cumulative peak performance of 36.85 petaflops per second and is ranked 114th
on the TOP 500 list. Computations are carried out on its accelerated hybrid partition whose
hardware and software specifications are listed in Table 7.1.

CPU processor Intel Cascade Lake 6248, 2.5 GHz (2 per node)
Cores per node 40

GPU model Nvidia Tesla V100 SXM2 16GB
GPUs per node 4

Communication architecture Intel Omni-Path 100 GB/s

Tensorflow version 2.6.0
CUDA version 11.2
cuDNN version 8.1.1

MPI library Open MPI 4.1.1

Table 7.1: Hardware and software specifications for the performance benchmark.

Hyperthreading is disabled, so there is a one-to-one relationship between computing cores
(hardware) and MPI processes (software). 40 processes are launched on each node and can
either be assigned to AVBP or to the DL solver. DL processes each launch one CNN instance
on one GPU, and each GPU executes at most one CNN instance. Four process distributions
are benchmarked (Table 7.2). D1, D2, D4 use respectively 1, 2, and 4 GPUs per node. D0.5
uses half the number of DL processes as D4. In this case, the DL processes are all grouped
on a few nodes which run 4 DL processes each. The rest of the nodes only contain AVBP
processes.

2http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html

http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
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Distribution name D0.5 D1 D2 D4

Number of AVBP processes 39.5n 39n 38n 36n
Number of DL processes 0.5n n 2n 4n

Table 7.2: Process distributions for AVBP-DL benchmarking.

The scalability of AVBP-DL is assessed by a strong scaling study, where the problem size
is kept constant while the number of resources is increased. The base amount of computing
resources is n = 4 hybrid nodes of the Jean Zay cluster and is increased to 8, 16, 32, and 64
nodes. For each number of nodes and for each process distribution, five identical AVBP-DL
simulation of the Masri configuration are run for 100 iterations, and the DL solver is queried
at each iteration to provide Ξ. Timers for all the steps of the AVBP-DL temporal loop are
aggregated over all the iterations and all the processes of the five executions. The duration
of the initialization (before the temporal iterations) and termination (after the temporal
iterations) of the computation is not included in this study.

7.3.2 Speedup

Speedup is defined as the acceleration relative to the base case due to the increase in resources.
Perfect scalability is characterized by a linear relation between speedup and the number of
nodes. Figure 7.6 reports the speedup and the duration of the temporal iteration. All
distributions achieve perfect scalability until 16 nodes. After 32 nodes, they all see a clear
drop-off except for D0.5. The more GPUs used, the sharper the drop-off, and Figure 7.6b
shows that this loss of scalability is not compensated by faster iteration times at low node
counts. D1, D2, D4 take longer to perform an iteration with 64 nodes than with 32 nodes.
As a consequence, practical AVBP-DL computations in Chapter 8 are carried out with
distribution D0.5.
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Figure 7.6: Strong scaling results.
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7.3.3 DL overhead

To understand the scalability results of D4 and why D0.5 behaves otherwise, focus is placed
on the DL overhead. Since both D4 and D0.5 use roughly the same amount of AVBP
processes, the difference in scalability must come from the coupling with the DL solver and
not from the intrinsic behavior of AVBP.

In practical computations, the DL model does not need to be queried at every iteration.
This is also true for the CDSM model and was explained in Section 2.8: the global timestep
is generally imposed by the convective scheme via the CFL number, and this acoustic time is
typically orders of magnitude smaller than the characteristic evolution time of the wrinkling
field. DL overhead values for this benchmark should therefore not be interpreted as the true
overhead encountered in practice. Instead, θ(N) is defined as the DL overhead divided by
the full iteration time when querying the DL model every N iterations. When N > 1, the
N −1 iterations between every exchange do not incur any overhead as the previous field of Ξ
is simply reused. The DL overhead measured in this benchmark corresponds to θ(1). θ(N)
is then deduced via:

θ(N) = θ(1)
N [1− θ(1)] . (7.1)

In the Masri computation, the timestep is approximately ∆t = 5 × 10−8 s, so with a
characteristic flow velocity ||u|| = 100 m s−1 at the peak flame acceleration and a cell size
h = 0.5 mm, it takes about h/(||u||∆t) = 100 iterations for the flame to move across one cell.
N = 100 will therefore be used to quantify the practical DL overhead in this simulation. It
is also the order of magnitude of the wrinkling model update frequency typically used for
the CDSM model. Volpiani et al. [377] benchmarked the overhead of the CDSM model with
N = 100 and 250. For N = 100, they report an overhead of 24.5% compared to the static
Charlette model. The CDSM overhead is due to the many expensive test-filtering operations
used by the model. Note that two elements may bias the comparison of their CDSM overhead
with the CNN overhead. First, the details of the CPU hardware they use are unclear, so
the ratio between CPU processing power and the number of mesh nodes per core cannot be
compared with the values of this study. Second, the base case in Volpiani et al. incurs the
cost of the static Charlette model, whereas in AVBP-DL, the base case does not require any
computation for the efficiency model as the previous efficiency field is simply reused. Still,
the values reported by Volpiani et al. are good orders of magnitude of the computational
overhead of the CDSM model in practical LES simulations.

Table 7.3 reports θ(1) and θ(100) averaged among all AVBP processes and all iterations,
for each number of nodes. For D4, θ(1) is very low until 32 nodes, then climbs to very high
values. This is linked to the speedup drop-off observed in Figure 7.6. On the other hand,
θ(1) values for D0.5 steadily increase. In general, θ(100) takes very low values, remaining
below 1% except for the 64 node case of D4 where it reaches 2.9%. The overhead incurred by
the use of a deep CNN as a wrinkling model is therefore negligible in practical computations.
For the node configuration used in the Masri simulations of Chapter 8, which is 32 nodes
and distribution D0.5, a direct comparison between the CDSM and AVBP-DL iteration
times is done. When exchanging every iteration, the average iteration time AVBP-DL is
0.28 s compared to 3.96 s for CDSM. AVBP-DL therefore leads to a 14-fold speedup of the
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turbulent combustion model compared to CDSM. The overall speedup of the computation
is inversely proportional to N per Equation 7.1. For N = 100, a speedup of 16% would
therefore be expected over the whole simulation.

Nodes 4 8 16 32 64

θ(1) [%] 0.4 0.5 0.7 24 74.3
θ(100) [%] ≈ 0 ≈ 0 ≈ 0 0.3 2.9

Nodes 4 8 16 32 64

θ(1) [%] 11.1 12.7 15.8 22.8 23.1
θ(100) [%] 0.1 0.1 0.2 0.3 0.3

Table 7.3: Fraction of DL overhead in temporal iteration time for D4 (top) and D0.5 (bottom).

Beyond mean values, Figure 7.7 provides a full description of the distribution of DL
overhead values. For D4, it is interesting to note that the large increase in mean and
median overhead at 32 nodes also brings about an increase in variability. For D0.5, the
variability stays roughly constant. Data points outside of the box plot whiskers can be
considered outliers [364]. This is the case for most minimum and maximum values and is
especially noticeable for the maxima at 64 nodes. This suggests that stochastic events such
as communication delays due to network bandwidth bottlenecks may play a large part in the
DL overhead.

4 8 16 32 64
Nodes [-]

0.001

0.01

0.1

t [
s] D0.5

D4

Figure 7.7: Box plots of DL overhead times for D4 and D0.5. Green lines indicate the median,
boxes spread from the first quartile Q1 to the third quartile Q3, and whiskers extend from
Q1− 1.5(Q3−Q1) to Q3 + 1.5(Q3−Q1). Minimum and maximum values are shown as empty circles.
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7.3.4 Understanding the DL overhead

To understand why D4 and D0.5 scale differently, the DL overhead and its components are
aggregated among all processes and plotted for every iteration. Figure 7.8 shows that the
DL overhead grows to very large values for D4 32 and 64 nodes. For D0.5, it decreases on
average with the number of nodes, but shows intense fluctuations across iterations for 64
nodes compared to 32 nodes. Rarely, for 16 and 32 nodes, the DL overhead increases by a
order of magnitude for a few consecutive iterations.

0 20 40 60 80
Iteration number [-]

10 2

10 1

DL
 o

ve
rh

ea
d 

[s]

144/16
288/32
576/64
1152/128
2304/256

0 20 40 60 80
Iteration number [-]

10 1

100

DL
 o

ve
rh

ea
d 

[s]

158/2
316/4
632/8
1264/16
2528/32

Figure 7.8: DL overhead per iteration for D4 (left) and D0.5 (right) (average over five executions
of the maximum among all AVBP processes). Each configuration is labeled by its AVBP/DL
process distribution.

According to Figure 7.3, the DL overhead is composed of four distinct steps: a send
operation including interpolation to the DL mesh, a wait send operation, a wait receive
operation, and a Ξ processing step. Timers for the send and processing operations are
reported in Section B.1 of Appendix B and show good scalability.
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Figure 7.9: AVBP wait send time per iteration for D4 (left) and D0.5 (right) (average over five
executions of the maximum among all AVBP processes).

Non-negligible wait send times indicate that AVBP communications have not begun to
be received by the DL solver by the time AVBP has finished intermediate computations
while waiting for Ξ. Figure 7.9 shows that this is the case for the D4 32 and 64 node cases,
where large DL overheads are observed. Intermittent peaks for the D0.5 distribution also
correlate with DL overhead increases in Figure 7.8. The full breakdown of the DL overhead is
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available in Section B.3, where it appears that the wait send operation is responsible for most
of the DL overhead in the D4 32 and 64 node cases. This clearly points to communication
bottlenecks which are mitigated in D0.5 since the number of communications scales with
nAV BP × nDL which is smaller in D0.5 than in D4. It would also explain why they would
start to arise for D0.5 64 nodes, when nAV BP × nDL starts to become significant.

Non-negligible wait receive times may indicate that the DL solver is not ready to send
Ξ, or that communication bottlenecks delay the exchange. In the first case, it may be
caused by increased computational time from the DL solver, i.e. the DL time colored in
red in Figure 7.3, or a delay in the start of the DL solver iteration. Figure 7.10 shows that
the wait receive times for D4 behave like the wait send times, suggesting that once again
communication bottlenecks are to blame. The situation is different for D0.5, where a clear
speedup of the wait receive time is observed as the number of resources increases. The
fluctuations seen for 16, 32, and 64 nodes are correlated with the wait send fluctuations,
indicating that communication issues also affect the D0.5 wait receive times, but to a lesser
extent than D4.
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Figure 7.10: AVBP wait receive time per iteration for D4 (left) and D0.5 (right) (average over five
executions of the maximum among all AVBP processes).

The DL time is plotted in Figure 7.11, and a breakdown its composition is also available in
Section B.2. In all configurations, the DL time decreases as the number of nodes increases.
Saturation is observed for D4 at large node count. In this case, it is dominated by the
prediction time which does not scale well due to incompressible overhead from Tensorflow
that is more visible for small partition sizes. Unlike the DL overhead, the DL time for high
node count is still lower than for low node count. The DL time should therefore not be the
main reason for high wait receive times in D4.

Finally, Figure 7.12 measures the time from the beginning of the full iteration to the DL
receive operation. It indicates that there is no such delay for D4 at high node count, thus
suggesting that its high wait receive times are due to communication bottlenecks.
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Figure 7.11: DL time per iteration for D4 (left) and D0.5 (right) (average over five executions of
the maximum among all DL processes).
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Figure 7.12: DL wait receive time per iteration for D4 (left) and D0.5 (right) (average over five
executions of the maximum among all DL processes).

7.4 Conclusion and perspectives

AVBP-DL enables massively parallel coupling of AVBP with a deep neural network for on-
the-fly DL predictions with virtually no computational overhead. It relies on the CWIPI
library to accommodate the different data structures of AVBP and the DL model via mesh-
to-mesh interpolation, and on MPI communications for decentralized data exchanges. An
asynchronous coupling strategy is developed to hide the computational cost of the DL model.
In practical computations, the overhead compared to a non-coupled AVBP simulation is esti-
mated to be ≈ 1%, making this strategy viable for industrial LES simulations and improving
on the performance of the CDSM model. This overhead is only attainable on hybrid nodes
combining CPUs and GPUs, which are becoming the standard in new supercomputing clus-
ters built today. A scalability study reveals that using less DL processes and thus less GPUs
per AVBP process leads to better performance. An in-depth investigation of all the coupling
steps indicates that an abundance of DL processes induces communication bottlenecks that
slow down the computation, although the impact on the practical DL overhead is minimal.
Analyzing execution traces with tools such as Extrae3 could allow for a finer understanding
of these issues.

3https://tools.bsc.es/extrae

https://tools.bsc.es/extrae
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Future work on AVBP-DL may focus on enabling more flexible neural network architec-
tures. CNNs place constraints on the DL mesh which could need to be relaxed when dealing
with complex geometries. Graph neural networks (GNNs) [23, 397] may be interesting al-
ternatives as they could directly operate on the data represented on the unstructured mesh,
thereby bypassing the need for the creation of a separate structured mesh and back and
forth interpolation. MeshGraphNets [268] are GNN variants that have been used to simulate
temporal dynamics of physical systems discretized on surface meshes. When temporal dy-
namics are defined by a closed-form ODE, graph neural networks can be trained as an ODE
integrator using a Hamiltonian approach [321]. Numerical errors stemming from imperfect
approximations of differential operators on unstructured meshes have been addressed by
specific graph architectures [332]. Aside from learning temporal dynamics, direct modeling
of physical quantities (without explicitly enforcing compliance to the ODE) have also been
investigated using graph convolutional networks [24] and neural operators [192]. This task
matches the scope of this work which is to learn an approximation of an LES SGS model.
However, GNNs come with scalability issues that have not yet been fully addressed. Unlike
CNNs which benefit from deeper architectures, GNNs are known to struggle when model
depth is increased [191]. This is caused by the over-smoothing phenomenon, which is the
tendency in deep GNNs of node features to collapse to similar values due to the diffusive
action of the succession of message passing operations. This restricts GNNs to shallow archi-
tectures with limited expressivity and a narrow receptive field, hence limiting their appeal for
context-based modeling compared to CNNs. Additionally, scaling GNNs to very large graphs
containing O(106 − 108) nodes, around the order of magnitude of the size of an LES mesh,
is still challenging. To this end, open benchmarks featuring large-scale graph datasets have
recently emerged to accelerate research in this direction [3]. To overcome scalability barriers,
node clustering [57] or subsampling [130] are common methods which have the drawback of
altering the structure of the graph. All in all, developing GNN architectures which efficiently
scale to graphs of the scale of typical LES unstructured meshes is still an active research
topic [51, 200, 413].

Boundary conditions set by AVBP are not accounted for by AVBP-DL or the CNN. For
a SGS wrinkling model, the nature of the boundary conditions is not expected to signifi-
cantly affect model predictions. Other cases might nevertheless be sensitive to the choice of
boundary conditions. For instance, when training a CNN to predict spatio-temporal dynam-
ics of the heat equation or of acoustic wave propagation, proper handling of the boundary
conditions was shown to be essential to the success of the model [7]. In such cases, coupled
simulations with a fluid solver should include proper encoding of the boundary condition
inside the DL model.
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This chapter investigates the application of a CNN SGS model to vented obstructed gas
explosions of premixed gases in an industrial-scale configuration. The presence of obstacles in
a vented domain amplifies the damage caused by explosions that can occur due to accidental
ignition of a premixed gas mixture in the domain. The main quantity of interest that
determines the severity of the explosion is the peak overpressure induced by the sudden
release of burnt gases. LES simulations heavily rely on turbulent combustion models to
accurately predict this quantity. In this chapter, a CNN is trained to predict the SGS
wrinkling factor directly, instead of the total FSD. The training set is the HIT dataset
presented in Section 6.2.1, a choice which is discussed in the developments. The CNN is
tested on the well-known Masri configuration. It demonstrates excellent a priori performance
on filtered data from a Masri very resolved LES. The first a posteriori analysis of a deep
CNN SGS model on an industrial-scale configuration is then carried out. The behavior of
the CNN is analyzed in detail using comparisons with the reference CDSM model presented
in Section 2.7.5. The CNN predicts the correct peak overpressure, but also incorrectly
accelerates the flame in the initial laminar propagation phase. To correct this behavior,
variants involving delaying the use of the CNN model and adding more physical information
to the inputs of the neural network are investigated.

8.1 Overview of LES for explosions

8.1.1 Context

This chapter focuses on applications of numerical combustion to the safety of industrial
processes. Industrial facilities in the energy sector are exposed to explosion hazards during
the extraction, transport and storage of combustible energy vectors such as natural gas and
hydrogen. They are found in their gaseous phase at standard temperature and pressure
conditions and are usually compressed to very high pressures to minimize their volume.
This increases the likelihood of explosions caused by the ignition of accidental leaks, which
can lead to catastrophic material and human losses. As experimental data of realistic large-
scale industrial explosions are scarce, numerical simulations can offer unique insights into the
phenomenology of such an explosion, and help guide design choices to mitigate the associated
risk.

This study focuses on explosions without transition to detonation, occurring in a domain
initially filled with premixed gases at rest, with limited venting capacity through restricted
openings to the outside atmosphere. After ignition and as the flame propagates in the
domain, premixed gases are replaced with burnt gases which are an order of magnitude less
dense. Because gases can only escape the domain through restricted venting outlets, this
results in a build-up in pressure inside the chamber. The corresponding pressure differential
relative to the initial pressure, or overpressure, is one of the key indicators of the severity of
an explosion. Table 8.1 presents the human and material consequences of a few overpressure
levels generated by an explosion.

The overpressure generated by an explosion is increased when it occurs in an obstructed
domain. In the presence of obstacles inside the domain, the outward flow induced ahead
of the propagating flame front generates turbulence in the wake of the obstacles. These
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turbulent eddies wrinkle the flame front and accelerate its propagation. Obstacles can also
locally increase the blockage ratio of the domain, which exacerbates the effects of confinement
on the overpressure.

To further understand the mechanisms behind the generation of overpressure, it is useful
to examine the balance equation for the pressure P , assuming it is homogeneous [290]:

D

Dt

〈 1
γ − 1P

〉
chamber

= ⟨ω̇T ⟩chamberVchamber − ⟨ρcpTUn⟩outletSoutlet , (8.1)

where Un is the flow velocity normal to the outlet, ⟨·⟩chamber denotes volume averaging in
the chamber of volume Vchamber, and ⟨·⟩outlet denotes surface averaging on the chamber
outlet of area Soutlet. The first term of the right hand side is a turbulent combustion term
enhanced by the wrinkling of the flame front as it propagates past and interacts with the
obstructions in the domain. The second term is a venting term related to the mass flow
rate of the gases exiting the domain. Equation 8.1 shows that predicting P in the chamber
relies on predicting the chamber-averaged heat release rate ⟨ω̇T ⟩chamber which is one of the
most difficult quantities to evaluate in turbulent combustion models. Based on Equation 8.1,
empirical 0D models can be developed to estimate the overpressure [290] but they cannot
account for the geometry of the chamber which plays a crucial role in the final result. Since
flame acceleration is an unsteady process which depends on fine-grained flame-turbulence
interactions, LES is the method of choice to simulate this phenomenon. The main challenge
lies in the large separation of scales between the characteristic size of the laminar flame front
(δL ∼ 0.1 mm) and the size of the domain (up to a few meters). This greatly constrains
how small the mesh size can be chosen to maintain a tractable computational cost. LES
must therefore produce predictive simulations in spite of severe resolution limitations, which
places a heavy burden on the turbulent combustion model.

Overpressure magnitude Consequences

3 mbar Loud noise (143 dB)

70 mbar Shattered windows (90%)
People are thrown off their feet

170 mbar Destroyed houses (50%)

430 mbar Ruptured eardrums (50%)
Destroyed houses (∼100%)

840 mbar Ruptured eardrums (90%)

1.75 bar Death by direct blast (90%)

Table 8.1: Human and material consequences of the overpressure induced by an explosion, with
indicative probabilities in parentheses [258].

8.1.2 The Masri test case

A well-studied benchmark for vented obstructed gas explosions is the Masri test case [216,
217] depicted in Figure 8.1. The domain is a 3D rectangular chamber closed on all sides
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except for an outlet face opening to a large plenum kept at atmospheric pressure. It is initially
filled with a fully premixed stoichiometric propane-air fresh mixture at rest. The mixture
is ignited at the closed end of the chamber, leading to the development of a hemispherical
laminar flame. The propagation of the flame is disrupted by a succession of obstacles placed
inside the chamber. The turbulence generated in the wake of the obstacles causes significant
wrinkling of the flame front, which triggers flame acceleration and a pressure build-up inside
the chamber. Experiments with this configuration have been carried out for a domain length
of 25 cm (small scale or SS) by Prof. A. Masri and his team [216], and later repeated on
two larger scales 1.5 m (medium scale MS), and 6 m (large scale) by GexCon [369]. From
these experiments, overpressure time signals and high-speed video footage providing the
propagation speed of the flame front are used to validate numerical simulations.

Variations on the Masri configuration involve varying the position and number of ob-
stacles. In all cases covered here, a large central obstacle is placed as the last obstruction.
Three positions upstream of the central obstacle can be occupied by removable grids. The
configurations are referenced by a quadrigram XXXS, where X can be B (the grid is present)
or O (the grid is removed). The more rows are present, the higher the peak overpressure
is. Figure 8.1 shows the detailed measurements of the BBBS SS configuration which is the
focus of this work.

Figure 8.1: Masri test case in the BBBS SS configuration (3 rows of grids followed by a central
obstacle). Left: 3D view, right: top view with domain measurements (in millimeters) and location
of experimental overpressure measurements (red asterisk). Figures from Vermorel et al. [369] and
Volpiani et al. [376].

The various stages of flame propagation are shown in Figure 8.2. After an initial laminar
expansion phase, the flame kernel crosses the first obstacle grid at t = 6 ms, first through the
two central channels and then through the outer channels. Moderately wrinkled finger-like
structures are generated by the pinching and acceleration of the flame as it passes through
the grid. The two central fingers drive the propagation of the leading edge of the flame.
They merge before going through the second obstacle grid (t = 8 ms). After the second grid
(t = 9.6 ms), the flame tips accelerate further in the streamwise direction. As a consequence,
the finger structures are more elongated and do not have time to merge in the transverse
direction before meeting the third row. All the central and outer fingers are also noticeably
wrinkled by turbulence. During the passage of the third grid (t = 10 ms) and of the central
obstacle (t = 10.8 ms), the flame tips experience a final phase of flame acceleration caused
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by intense turbulence in the wake of the obstacles. The large discrepancy between the
propagation speed of the tips and other regions of the flame front generates a vast amount of
flame surface, including many pockets of unburnt gases trapped in the wake of the obstacles.
Peak overpressure measured at the closed end of the chamber is generated by the sharp
increase in flame surface as the flame tip crosses the central obstacle.

Figure 8.2: Visualizations of flame propagation in the Masri experiment (left, OH-PLIF) and LES
(right, fuel consumption rate). Figure from Vermorel et al. [369].

Previous LES studies on the Masri configuration [291, 369, 376] have shown that TFLES
with static efficiency models [45, 67] predicts an overpressure evolution that closely matches
experimental results in the SS and MS configurations, and also correctly reproduces para-
metric variations at a given scale. As an example, Figure 8.3 shows the overpressure signal
from an AVBP LES simulation using the Colin model [67] on the small-scale configuration
with three, two, and one row(s) of obstacle grids. In all cases, the peak overpressure of
the LES lands in the envelope of experimental results. However, these models rely on an
arbitrary determination of the model constant which cannot be known prior to the compu-
tation. As a consequence, they struggle to account for variations in the scale of the domain.
Fig. 8.4 shows the overpressure predicted using the Colin and Charlette efficiency functions
with standard parameters βColin = 0.3 and βCharlette = 0.5 for the SS and MS configurations.
The Colin model fits the experimental overpressure very well on the SS but underpredicts the
overpressure on the MS while the Charlette model has the opposite behavior. Fine tuning
the model coefficients is possible but only when the experimental results are known, hence
weakening the predictive ability of the turbulent combustion models.

Volpiani et al. [376] reported very good results using the dynamic saturated Charlette
model on the Masri BBBS SS configuration. The dynamic model has the advantage of
correctly capturing the laminar and turbulent phases of the flame development without
arbitrary parameter tuning. In the laminar spherical phase, as long as the ignition radius is
not too small [238], the filtered and test-filtered flame fronts are identical and the dynamic
model predicts no SGS wrinkling. When the flame crosses the obstacle grids, it is significantly



160 CHAPTER 8. LES OF GAS EXPLOSIONS WITH A WRINKLING MODEL

Figure 8.3: Overpressure time evolution for the SS case with three (left), two (middle), and one
(right) row(s) of obstacle grids. Grey: experimental envelope. Black: TFLES simulation with the
Colin efficiency model [67]. From [369].

Figure 8.4: Overpressure time evolution for the SS case (left) and MS case (right) using Colin [67]
and Charlette [45] efficiency models with standard parameters. From [369].

curved due to the pinching effect of the narrow gap between the grids. Coupled with the effect
of the resolved turbulence in the obstacle wake, this triggers the activation of the dynamic
model in the wake of the obstacles, thus correctly accelerating the flame. To highlight the
variation of the model parameter over the course of the simulation, Figure 8.5 shows the
evolution of the βCharlette parameter as a function of the flame tip position. In all the
obstacle variations that are studied, β remains negligible in the laminar phase before the
flame crosses the first obstacles, then increases as long as additional obstacles are present.
The dynamic model correctly predicts the peak overpressure in the SS configurations and
underlines the need to account for spatial and temporal variations of β based on the local
flame geometry. However, no conclusive results have yet been reached on the MS and LS
cases.
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Figure 8.5: Evolution of the mean βCharlette parameter as a function of the flame tip position in
the BBBS (solid black), OOBS (dashed blue), and BOOS (dotted red) configurations. From [376].

Overall, the Masri configuration is a challenging test case to benchmark turbulent com-
bustion models as:

• it features laminar and turbulent flame propagation which must both be well repro-
duced,

• the peak overpressure is sensitive to numerical, physical, and geometrical parame-
ters [369],

• existing models fail to scale to the medium and large scales if all model parameters
from the small-scale are used.

This chapter investigates to what extent deep learning models can produce accurate
overpressure results on the Masri configuration. Additionally, since no DNS data from Masri
or another confined explosion configuration was used to train the model, this constitutes
a challenging framework to study how CNNs can generalize to LES of large-scale realistic
configurations like the Masri case.

8.2 SGS wrinkling modeling

For the Masri configuration, the goal is to train a SGS model that easily integrates in the
TFLES formalism used by AVBP for a posteriori validation. Like in Chapter 5, a model
for the unresolved flame surface is chosen. Unlike Chapter 5 however, the model learns to
predict the SGS wrinkling factor Ξ and not the total FSD. The SGS wrinkling factor can be
directly used as a TFLES efficiency function, whereas the total FSD must first be converted
to a wrinkling factor by division with the resolved FSD (Equation 2.91)

From model predictions of the total FSD Σ+
CNN given by Equation 5.1, a wrinkling factor

can be computed from the resolved FSD as:

ΞCNN = 1 + S ×
(

Σ+
CNNσ

|∇c̄|+ ϵ
− 1

)
, (8.2)
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using ϵ << |∇c̄| and a sensor S based on the the values of |∇c̄| to avoid divisions by zero.
For instance,

S =

1, if |∇c̄| > max(|∇c̄|)/10,
0, otherwise.

(8.3)

Figure 8.6 shows the behavior of this model on a 1D laminar flame. In this case, the
resolved and total FSD are equal, and the model should predict a wrinkling profile uniformly
equal to unity. The top plot shows that the CNN is able to capture nearly perfectly the
evolution of Σ+ in the flame front. Tiny errors nevertheless have a noticeable impact on
the final profile of ΞCNN. In the flame front, the CNN wrinkling factor ΞCNN is lower than
one because of slight underpredictions of Σ+. This issue is amplified in a posteriori due to
approximation errors in the computation of |∇c̄| on an unstructured mesh, especially for
curved laminar flame fronts. The model is therefore unable to reliably propagate a laminar
flame at the laminar flame speed.
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Figure 8.6: Illustration of non-unity wrinkling arising from a CNN model for Σ+. Ground truth
and CNN Σ+ profiles (top), numerical sensor and wrinkling factor profiles (bottom).

To overcome this issue, this chapter focuses on the direct modeling of the wrinkling
factor. This formulation was found to lead to more stable a posteriori efficiency values, as
the output of the model suffers no numerical issues and is directly used in the solver.
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8.3 Choice and relevance of the training dataset

The Masri configuration offers a unique opportunity to further study how far CNNs can
generalize away from their training database. The approach is summarized as follows: a
CNN is trained to predict SGS wrinkling on a canonical turbulent flame, and directly used
in an LES of the Masri configuration. The canonical configuration is the statistically planar
flame in decaying HIT presented in Section 6.2.1 which covers both laminar and turbulent
wrinkling regimes. The CNN is therefore able to learn a diverse representation of Ξ which
can be applied to the Masri LES. The premise is that the c̄ 7→ Ξ mapping learnt on the HIT
also applies to Masri. The relevance of training the CNN on this dataset to apply it on the
Masri configuration is a crucial point that merits a careful discussion.

Strong constraints on filtering and turbulent combustion characteristic ratios were im-
posed in Chapter 6 to set strict prerequisites for generalization. These constraints need to
be relaxed for a Masri simulation where these ratios are difficult to evaluate and significantly
vary depending on the time and location of the flame. Estimates of the turbulent combus-
tion ratios can nonetheless indicate whether the choice of the training dataset is appropriate.
The integral lengthscale lt is chosen as the intergrid y spacing, leading to lt/δL = 15. Ex-
perimental studies [123] have measured turbulent velocity fluctuations encountered by the
leading edge of the flame and report corresponding u′/sL values ranging from 0.1 to 40.
Numerical estimates from LES simulations [290] fall into this range as well. To complement
these estimates, the integral lengthscale and turbulent intensity were computed on a VRLES
snapshot of the OOBS configuration (see Section 8.6.1) using the same method as on the
HIT (Section 6.2.1) and only in the flame front aft of the third obstacle grid where the flame
is fully wrinkled. This leads to an integral lengthscale value which is consistent with the
estimate from the intergrid spacing.

Figure 8.7 reports the locations of HIT and Masri operating points in the Borghi-Peters
turbulent combustion diagram. The key observation is that both simulations are mainly
located in the thin reaction zone regime, except for the onset of the Masri simulation where
the flame is laminar, and that the turbulence intensity and Karlovitz number seen by the
HIT flame are contained in the range spanned by the Masri simulation. It can thus be
expected that in both configurations, the flame front is moderately wrinkled by turbulence
on multiple scales, while preserving a flamelet structure.

Nonetheless, the values of lt/δ measured on the HIT flame are smaller than in the the
Masri configuration. Compared to the filter size ∆/δ = 15, the integral lengthscale in
the HIT is much smaller than ∆ while the integral lengthscale in the Masri configuration is
larger. Whether this difference impacts the relationship between the filtered progress variable
field and the wrinkling factor is unknown. Understanding the marginal effect of the integral
lengthscale on the wrinkling factor at a filter scale ∆ could be an interesting avenue for future
research. Additionally, although fully laminar flame fronts are present in the HIT, it does not
contain any spherical laminar flame fronts. Wrinkling induced by flame acceleration around
and between obstacles is not covered, and the range of turbulence intensities is narrower
than in the Masri simulation. All these factors highlight the limitations induced by the use
of a single training dataset on the modeling capacity of the CNN. Future work should focus
around the design of more varied datasets, which come at a great computational premium
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but could be specifically tailored to explosion configurations. Nevertheless, the applicability
of the CNN is motivated by the characterization of the HIT and Masri wrinkled flame fronts
in the same turbulent combustion regime, and the limitations raised in this discussion will
help guide the a posteriori analysis of the CNN.
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Figure 8.7: Borghi-Peters turbulent combustion diagram. ◦: HIT points colored by time, ▽: Masri
BBBS values reported in the literature [123, 290], ▲: Masri OOBS values measured on a VRLES
snapshot (Section 8.6.1).

Figure 8.8 summarizes the methodology used to train and then evaluate a posteriori the
CNN model. The CNN is trained on filtered snapshots of the HIT DNS. Its trainable weights
are then frozen, and the resulting trained model is used in the LES of the Masri BBBS small-
scale configuration. Local and integral comparisons are performed with a reference simulation
that uses the CDSM model.
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Figure 8.8: Summary of the training and a posteriori evaluation process.

8.4 Training data preparation

8.4.1 Determining the filtering parameters

Like in the previous chapters, filtering and downsampling is applied to the HIT DNS snap-
shots to generate c and Ξ fields. Ξ is computed as in Equation 8.2.

The HIT and Masri flames are both stoichiometric propane-air flames with the same
unburnt temperature and pressure. The only difference is the chemical mechanism, with
the HIT using a one-step Pfitzner source term while the Masri simulation uses a two-step
Arrhenius chemistry (more details in Section 8.7). Both laminar flame thicknesses and
profiles are therefore very similar, and the filtered flame thickness of the HIT δ̄H

L is close to
the thickness of the Masri flame δ̌M

L .
The CNN is trained on a single filter size ∆H and coarse mesh resolution hH . Although

a generic model should be able to handle varying filter sizes, the filter size and resolution of
the thickened flame fronts in the Masri are constant, and it is therefore possible to restrain
to study to a single filter size. Algorithm 2 is used to determine the filter size ∆H and coarse
mesh size hH of the HIT. The filtering parameters for the HIT are reported in Table 8.2.

δH
L hH ∆H δ̄H

L

352 µm 500 µm 3289 µm 2494 µm

Table 8.2: Filtering parameters for the HIT.

8.4.2 Flame-flame interaction corrections

Figure 8.9 shows HIT samples of a quasi-laminar and a fully wrinkled flame front, as well
as their corresponding c and Ξ fields. For the laminar flame front, the wrinkling factor is
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uniformly very close to unity. In the wrinkled flame front, the large size of the filter relative to
the wrinkled structures leads to a destruction of flame surface. The filtered flame front loses
its flamelet structure and contains thick regions of moderate c values. Moreover, wrinkling
values can reach spurious high values due to the behavior of |∇c̄| in flame-flame interactions
that occur at scales below the filter scale. This is the same issue that can occur in the
test-filtering operation of the dynamic Charlette model. Here, its amplitude is magnified by
the large size of the filter compared to the wrinkled structures. The solution proposed by
Mouriaux et al. [239] in the CDSM model and described in Section 2.7.5 is used to correct
the values of wrinkling. Here, filtering at the scale ∆ takes the role of test-filtering in the
dynamic model, and the DNS flame front replaces the LES thickened flame front.
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Figure 8.9: Sample slices from the training dataset at t = 0.1τ (top) and t = 1.7τ (bottom). Left:
DNS c, middle: filtered c, right: Ξ after flame-flame interaction corrections, with isolines c = 0.1
(dashed), c = 0.9 (solid).

1

4

7

10

13

6

4

2

0

Figure 8.10: Sample slices of wrinkling factor before (left) and after (middle) corrections for
flame-flame interactions, with isolines of c = 0.1 (dashed), c = 0.9 (solid). The difference between
the corrected and uncorrected fields is shown on the right.
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Figure 8.10 compares the wrinkling field before and after corrections of flame-flame-
interactions. Before the corrections, values up to 13 are found in regions between opposing
DNS flame fronts. Mouriaux corrections for this behavior effectively target only these regions,
while leaving wrinkling in the rest of the flame front untouched. One difference compared to
the corrections for the dynamic model lies in the threshold value for the interaction sensor
ζ (Equation 2.105). In the CDSM model, the test-filter scale is typically 1.5 to 2 times the
thickened flame filter scale, so minute misalignments of the filtered and test-filtered normals
can reveal flame-flame interactions. The threshold value used in Mouriaux et al. [239] is
therefore high, i.e. n ·N = 0.9. Here, since filtering is performed at a larger scale relative
to the flame thickness (∆/δL = 9.3, see Table 8.2), a greater amount of wrinkling is lost,
and the filtered flame front is more prone to misalignment with the DNS flame front. A
threshold n ·N = 0.9 activates ζ in the entire DNS flame front and renders the corrections
ineffective, as illustrated in Figure 8.11. A value of n ·N = 0.2 was found to better isolate
the problematic regions and correctly mitigate wrinkling there.
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Figure 8.11: Effect of flame-flame interaction corrections with a threshold n ·N = 0.2 (left) and
n ·N = 0.9 (right), with isolines of ζ = 1, on the same slices as Figure 8.10.

Given the non-flamelet structure of some filtered flame elements and the use of flame-
flame interaction corrections, the definition of the wrinkling field and its relevance as a SGS
modeling target need to be justified. The corrected wrinkling factor field must allow the
DNS flame surface to be recovered from filtered quantities. The generalized flame surface
density, defined as |∇c|, is representative of the subgrid surface density of any c isosurface
in thin flamelets, where all the c isosurfaces are parallel and have the same surface area. In
a thin flame front like in the DNS, volume integration of the generalized total FSD leads to
a flame surface equal to the area of any c isosurface. In a non-thin filtered flamelet like in
Figure 8.9, the corrected wrinkling field must recover the DNS flame surface:∫

|∇c|dV =
∫

Ξ|∇c̄| dV (8.4)

Figure 8.12 plots the DNS flame surface
∫
|∇c|dV , the filtered flame surface

∫
|∇c̄| dV and

the filtered flame surface with the corrected wrinkling factor
∫

Ξ|∇c̄| dV for all snapshots in
the HIT dataset. The corrected wrinkling factor perfectly recovers the DNS flame surface in
the early phase of the DNS, when the flame is weakly wrinkled. Later on, a deviation from
the DNS flame surface is observed and could be explained by the non-flamelet nature of the
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filtered flame front and by the effects of flame-flame interaction corrections. The relative
error remains smaller than 10%, and the corrected wrinkling field is therefore deemed a
reliable measure of the unresolved flame surface density.
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Figure 8.12: Flame surface from the DNS, filtered DNS and filtered DNS with the corrected
wrinkling factor over the course of the HIT simulation.

8.4.3 Dataset characteristics

The training dataset contains the first 41 snapshots of the HIT. The last 5 snapshots of the
HIT are kept as a validation set. Downsampling the filtered fields from the DNS mesh size
hDNS = 36 µm to the coarse mesh size hH = 500 µm (Table 8.2) drastically reduces their
spatial dimensions from 3843 to 283. Like in Section 5.5.2, periodic padding is applied in
the y and z periodic directions to increase the spatial dimensions to 28× 52× 52. Table 8.3
summarizes the composition of the training, validation, and test datasets.

Training Validation Test (Section 8.6.1)

First 41 snapshots of HIT Last 5 snapshots of HIT 1 snapshot of Masri VRLES
41× 28× 52× 52 5× 28× 52× 52 1× 116× 104× 104

Table 8.3: Composition of the datasets used for training and a priori testing.

8.5 Model training

The U-Net architecture presented in Section 5.5.1 is trained with the procedure detailed in
Section 5.5.2. Training hyperparameters are reported in Table 8.4. The size dc and number
nc of the random crops are smaller than in Section 5.5.2 because of the reduced spatial
dimensions of the filtered snapshots. This is partly compensated by a larger number of
snapshots sampled per batch ns. Training and validation losses are plotted in Figure 8.13.
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Training is stopped when an adequate accuracy is reached on the validation set. Figures 8.14
and 8.15 show that the trained CNN predicts Ξ on planar and wrinkled flame fronts from
the training dataset very accurately.

nc ns dc η Batches per epoch Epochs

4 16 24 0.01 50 1000

Table 8.4: Training hyperparameters for the HIT dataset.
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Figure 8.13: Training and validation loss curves on the HIT dataset.
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Figure 8.14: Visual comparison of the predictions of the trained CNN on snapshots at t = 0.1τ
(top) and t = 1.7τ (bottom). Left: c, middle: ground truth Ξ, right: Ξ predicted by the CNN.
Isolines of Ξ = 2 (dashed), Ξ = 3 (solid) are shown for the bottom Ξ fields.
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Figure 8.15: Hexbin plot of model predictions against the ground truth on the HIT validation set,
colored by bin count. The red line y = x represents a perfect model. The cyan line is the
conditional mean of model predictions.

8.6 A priori testing on a reference LES simulation

8.6.1 Presentation of the Masri OOBS VRLES

The test set used for a priori validation of the CNN is a very refined LES (VRLES)
of the Masri small-scale OOBS configuration, performed by Pierre Quillatre during his
PhD [290, 369]. In this configuration, the chamber only contains one obstacle grid placed
close to the central obstacle. The laminar propagation phase therefore extends further than
in the BBBS configuration, as the flame front only wrinkles when it passes through the grid.
The peak overpressure and turbulence intensity are thus lower than in the BBBS configura-
tion. The domain is discretized with a 973 million cell mesh of tetrahedral elements, with a
characteristic mesh size in the chamber h = 136 µm. Table 8.5 compares the mesh size to the
laminar flame thickness, Kolmogorov lengthscale, and integral lengthscale. With h/η = 3.9,
the smallest eddies are close to being fully resolved. A laminar flame front would be resolved
on δL/h = 2.5 cells, and as a result, to resolve the thickened flame front on Nc = 5 cells, a
thickening factor of only F = Nh/δL = 2 is needed.

h δL/h h/η lt/h

136 µm 2.5 3.9 43

Table 8.5: Comparison of the VRLES mesh size with characteristic combustion and turbulence
lengthscales (from [369]).

Details on the numerical setup of the simulation are available in the original papers [290,
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369]. The thickened flame model with a target thickened flame resolution of Nc = 5 cells
in the flame front is used, leading to a thickening factor F ≈ 2 in the flame front inside
the chamber. SGS flame wrinkling is modeled by the Colin efficiency model (Equation 2.94)
with βColin = 0.3. Initially, the domain is filled with a stoichiometric premixed propane-air
mixture at Tu = 300 K. A half-sphere of burnt mixture with a 1 cm radius is deposited at the
closed end of the chamber to initialize the spherical laminar propagation phase. A reduced
2-step chemical mechanism ensures that the computational cost of the simulation stays as
low as possible, while correctly reproducing the main features of flame acceleration and flame
wrinkling [291].

The CNN is tested on a snapshot of the VRLES at t = 11.5 ms, when the tip of the
flame front propagates past the central obstacle. This coincides with the peak generation of
overpressure as the leading edge of the flame enters the last blocked section of the chamber
and meets the turbulent wake generated downstream of the central obstacle. Visualizations
of the vorticity magnitude and a č iso-surface colored by efficiency are shown in Figures 8.16
and 8.17.

Figure 8.16: Centerplane slice of vorticity magnitude in the VRLES.

8.6.2 A priori results

The fine resolution of the turbulence and low value of the thickening factor in the VRLES
indicate that a large part of the flame surface is resolved. The efficiency function was shown
to play a limited part in the total fuel consumption rate (Figure 20 in [369]), which is
confirmed by the moderate values taken by the efficiency in Figure 8.17. Moreover, the
VRLES correctly predicts the peak overpressure and evolution of the flame tip speed (Figure
19 in [369]). As a consequence, modeling errors in the efficiency function are expected to
be small, and E|∇č| is considered to reliably measure the total flame surface density at the
scale of the VRLES.
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Figure 8.17: Iso-surface of č = 0.86 colored by efficiency in the VRLES. č = 0.86 is the progress
variable value of peak heat release rate in a laminar flame.

The VRLES snapshot is interpolated by inverse distance weighting onto a structured
mesh of uniform hexahedral cells with the same mesh size h as the unstructured mesh. After
this step, structured mesh points inside the obstacle are filled with an arbitrary value. Next,
filtering ·̄ at the scale ∆M is performed through masked Gaussian convolutions which ignore
the values inside the obstacles and appropriately normalize the convolution kernel. Since
the CNN operates on a structured grid, values of ¯̌c must be prescribed inside the obstacles.
Nearest neighbor interpolation is therefore applied inside the obstacles to fill in missing values
of ¯̌c. At the scale ∆M , the ground truth total FSD is given by:

ΣVRLES = E|∇č| . (8.5)

From the filtered ¯̌c field, the CNN predicts a wrinkling field ΞCNN, leading to the correspond-
ing total FSD:

ΣCNN = ΞCNN|∇¯̌c| . (8.6)

Note that the total FSD is used as the ground truth quantity instead of the wrinkling
factor. Numerical noise in the wrinkling factor computed as |∇č|/|∇¯̌c| makes it unwieldy for
pointwise comparisons with the smooth predictions produced by the CNN.

Figure 8.18 compares the ground truth and CNN predictions for the total FSDs in the
region around the central obstacle where the flame is most wrinkled. While the ground
truth takes uniformly high values in the flame front, CNN predictions are less homogeneous.
The CNN appears to predict high values where the filtered flame front is wrinkled. In
Figure 8.19, a pointwise comparison of the total FSD values shows a wide scatter with
relatively low bias. When isolating only bins containing more than 100 data points, scatter
is considerably reduced, indicating that the majority of points are in fact distributed in a
narrower distribution around the perfect model line. The total flame surface computed by
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volume integration of the total FSD is only 10% higher for the CNN than the ground truth.
The CNN is thus able to precisely predict the total flame surface of this filtered VRLES
snapshot. This positive outcome of the a priori investigation of the generalization of the
CNN to the OOBS configuration is promising for the final a posteriori application.

0.0

0.2

0.4

0.6

0.8

1.0

0

200

400

600

800

Figure 8.18: Slices of ¯̌c (left), ΣVRLES (middle), and ΣCNN (right) on the VRLES snapshot,
cropped around the central obstacle, with iso-lines of |∇č| = 200 (dashed), |∇č| = 600 (solid).
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Figure 8.19: Hexbin plot of CNN predictions against ground truth total FSD. The white contour
delineates bins containing more than 100 data points.

8.7 AVBP-DL LES numerical setup

The a posteriori validation of the CNN is carried out on the BBBS configuration which is
the most challenging, as the presence of three obstacle grids, instead of a single one in the
OOBS case, leads to greater flame acceleration and peak overpressure.

The domain is meshed with an unstructured mesh of 35 million cells, with a uniform
mesh size h = 500 µm in the main chamber, as illustrated in Figure 8.20. At the obstacle and
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chamber walls, adiabatic no-slip boundary conditions are imposed. NSCBC outlet conditions
at atmospheric pressure are prescribed at the exit of the plenum. SGS turbulent stresses
are computed by the WALE model (Equation 2.108). The same propane-air 2-step chemical
mechanism as in the VRLES is used, with unity Lewis numbers for all the species. The
simulation is initialized with a 1 cm radius half-sphere of burnt mixture deposited at the
closed end of the chamber, with a laminar flame profile imposed at the transition with the
premixed mixture that fills the rest of the chamber.

Figure 8.20: Cell size distribution in the Masri chamber. Most of the plenum was truncated for
this visualization.

The thickened flame model is used with a target resolution of the thickened flame front
Nc = 5, corresponding to a thickening factor F = 6.8 in the chamber. The dynamic thick-
ening flame sensor defined in Equation 2.113 is based on the reaction rate of the C3H8 +
3.5 O2 −−→ 3 CO + 4 H2O reaction. It is filtered by 5 successive gather-scatter operations to
extend its coverage and ensure that density gradients are well captured.

In the AVBP-DL simulation, the wrinkling factor predicted by the CNN is directly used as
an efficiency function in the chamber. A structured mesh of size 500×100×100 (h = 500 µm)
coinciding with the chamber is partitioned into 16 equal hexahedral regions. As detailed in
Chapter 7, a separate CNN instance is run on each partition and queried to predict Ξ at
runtime, with overlaps of size s = 12. A simulation is also performed using the CDSM model
(∆̂ = 1.8∆, ∆m = 2.2∆) and serves as a basis for comparison against the CNN.

The AVBP-DL simulation is run on hybrid CPU/GPU computing nodes of the Jean-
Zay supercomputer. A total of 1280 cores are used, split between 1264 cores for AVBP
processes and 16 cores for DL processes. This corresponds to the 32 node configuration of
distribution D0.5 in the scalability study of Section 7.3. The DL solver is queried every
N = 100 iterations, so according to Table 7.3, the DL cost is 0.3% of the computational
time. The simulation is stopped when the flame reaches the plenum after 8.5 ms of physical
time are simulated, amounting to 15k CPUh. Detailed performance reports, including the
computational overhead of the DL coupling and comparisons to the overhead of the CDSM
model, are found in Chapter 7. Table 8.6 reports all the Masri LES runs which are discussed
in the a posteriori results.
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Name Model Description Reference

CDSM CDSM Reference simulation Section 8.8

AVBP-DL CNN Original AVBP-DL run Section 8.8

AVBP-DL FGI CNN Initialization from a CDSM
solution at the first grid Section 8.8.4

AVBP-DL LAM CNN Spherical laminar flames in the
training set Section 8.9.1

AVBP-DL VORT CNN Resolved vorticity input channel Section 8.9.2.2

AVBP-DL TEST-FILT CNN Test-filtered progress variable
input channel Section 8.9.3

Table 8.6: List of Masri LES simulations.

8.8 A posteriori results

8.8.1 Flame propagation

The evolution of the flame front is visualized through five z-normal centerplane slices of
efficiency and progress variable for the AVBP-DL (Figure 8.21) and CDSM (Figure 8.22)
simulations. Starting from the laminar propagation phase (snapshot 1), it appears that the
CNN predicts efficiency values larger than unity in the spherical flame front. Figure 8.23
shows that the highest values of the efficiency are located in the preheat zone, for c values
between 0.2 and 0.4. In the reaction zone, typical efficiency values range from 1.5 to 2. This
is explained by the absence of laminar curved flame fronts in the training dataset. In the
HIT, the flame is initially planar, and curvature of the filtered flame front originates from
partially unresolved turbulence-induced curvature of the DNS flame front. Curved filtered
flame fronts in the training dataset are therefore systematically associated with non-unity
wrinkling factors. As the CNN is aware of the geometry of the flame front, this pattern is
replicated in the spherical laminar flame front of the Masri initialization.

Note that the CDSM model can exhibit a similar behavior in small laminar spherical
kernels [238]. Because the test-filtering operation destroys highly curved structures that
correspond to high wrinkling frequencies, when the curvature radius is of the order of the
test-filter size, the β coefficient of the model can be non-zero in a laminar flame. The
dynamic model does not inherently distinguish between laminar and turbulent flame fronts:
any variation of the flame curvature at the scale of the test-filter size is captured by the
model. In this simulation, the radius of the initial burnt kernel is large enough so that β is
zero in the laminar flame front. The sensitivity of the CDSM model to highly curved flame
fronts explains the slight overshoot in efficiency at the center of the initial CDSM flame
kernel, where gradients of c are not quite 0. However, these values are deep into the burnt
gases and do not affect the propagation of the flame front.
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Figure 8.21: Efficiency slices from the AVBP-DL simulation at t = 0.1, 3, 4.7, 5.2, 5.6 ms, with
iso-lines c = 0.1, c = 0.9. Snapshots are numbered 1 through 5.
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Figure 8.22: Efficiency slices from the CDSM simulation at t = 0.1, 5.5, 8.1, 8.8, 9.3 ms, with
iso-lines c = 0.1, c = 0.9. Snapshots are numbered 1 through 5.
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Figure 8.23: Scatter plot of efficiency vs. progress variable colored by heat release rate in the
AVBP-DL snapshot 1.

After the flame passes through the first obstacle grid (snapshot 2), similar flame structures
are found in the CDSM and AVBP-DL simulations. Efficiency values are higher in the
AVBP-DL simulation, especially in the outer flame tips. Merging of the two central finger-
like structures happens near the central obstacle of the first grid for the CDSM flame, as
the efficiency is uniformly high in the region where the two upper and lower flame fronts
interact. For the AVBP-DL flame, the efficiency predicted by the CNN is close to one in the
wake of the obstacle, and merging happens further downstream. Artifacts in the AVBP-DL
efficiency field are found in the burnt mixture around the three central grid obstacles. They
are caused by the imperfect treatment of the progress variable field inside the obstacles for
the CNN. Figure 8.24b shows a close-up view around the middle of the first grid of the
progress variable field seen by the CNN and the associated efficiency field. As detailed in
Section 7.2.2, the progress variable is interpolated by a nearest neighbor procedure inside the
obstacles. The transition between the edge of the obstacle and the fluid domain is smooth,
but sharp gradients appear inside the obstacle. They trigger high wrinkling predictions,
which are interestingly located only in the burnt gases. Although the highest values are
localized inside the domain and do not affect the flame, the large receptive field of the
CNN makes predictions in the fluid domain near the obstacle sensitive to the discontinuities.
Spurious non-unity efficiency values are therefore observed inside the domain, but they are
limited to regions with no flame front. Figure 8.24a highlights the absence of any artifact as
the flame is propagating through the grid, since the progress variable field on all sides of the
obstacles is mostly homogeneous. All in all, spurious artifacts only affect fully burnt regions
upstream of the obstacles after the passage of the flame front, and thus have a negligible
effect on flame propagation.
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Figure 8.24: Effect of obstacle-induced artifacts on the CNN efficiency field as the flame front is
crossing the grid (a) and after the flame front has crossed the grid (b). Progress variable (left) and
efficiency (right) slices on the CNN mesh near the first obstacle grid.

After the second grid (snapshot 3), both flames experience similar resolved wrinkled
structures. Outer fingers are curved outwards in the wake of the second grid, and their tip
veers back inwards. Efficiency values are particularly high at the tip in both simulations,
although more so in the AVBP-DL case. This leads to a smearing of the tip of the outer
fingers. In the AVBP-DL flame, high efficiency values are still seen in broadened flame
fronts upstream of the second grid. In these regions, only small pockets of fresh gases near
the chamber walls remained to be slowly consumed, so efficiency values there are mostly
irrelevant to the generation of overpressure. In the CDSM flame, high efficiency values seem
correlated to flame-flame interactions behind the obstacles and between the two inner fingers.

After the third grid and the central obstacle (snapshots 4 and 5), notable differences
emerge between the AVBP-DL and the CDSM flames. They are further illustrated by com-
paring progress variable slices in Figure 8.25 and Figure 8.26. In the AVBP-DL flame, large
heterogeneities in the efficiency field lead to uneven burning rates and fragmentation through-
out the flame front. Unlike in the CDSM simulation, large pockets of unburnt gas are still
present between the second and third grids. This is explained by the accumulation of large
CNN efficiency values in broadened preheat zones, further broadening these regions without
affecting the propagation of the flame which is driven by the efficiency in the reaction zone.

Figure 8.27 shows the distribution of AVBP-DL efficiency values with respect to |∇č|δ̌L. It
highlights the correlation of high efficiency values with low gradients of the progress variable.
Looking at the same data in the training dataset (Figure 8.28) reveals a similar pattern. The
highest wrinkling values are associated with low values of |∇c̄|δ̄L, and the conditional mean
peaks at |∇c̄|δ̄L ≈ 0.3 like in the Masri simulation. However, Masri č values there are
significantly lower than HIT c̄ values. This implies that high CNN efficiencies are more
sensitive to gradients of the progress variable rather than its local value.
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Figure 8.25: Progress variable slices from snapshots 4 of the AVBP-DL (top) and CDSM (bottom)
simulations.

Figure 8.26: Progress variable slices from snapshots 5 of the AVBP-DL (top) and CDSM (bottom)
simulations.
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For both simulations, the two inner flame fingers reach the central obstacle as the outer
fingers are crossing the third grid. AVBP-DL efficiencies are close to unity in the inner
fingers, while they are uniformly of the order of 2 for the CDSM model. CDSM efficiencies
are also uniformly high in the fresh gas pockets trapped between the second and third grid.
Due to the self-interaction of the flame front surrounding these pockets, the dynamic model
predicts elevated wrinkling values and the pockets are consumed faster than in the AVBP-DL
simulation.

Overall, the CDSM and AVBP-DL flames go through the same stages of flame propa-
gation, with similar resolved structures observed in both simulations. The main differences
seem to be induced by excessive AVBP-DL efficiency values in the laminar phase, leading
to increased flame acceleration throughout the simulation. Figure 8.29 provides evidence for
this with the temporal evolution of the flame tip position, defined as the furthest streamwise
location of the č = 0.86 iso-surface corresponding to the progress variable value of peak heat
release rate in a laminar flame. This iso-surface is the reference flame surface for all the fol-
lowing post-processings. The AVBP-DL flame reaches the central obstacle 4 ms ahead of the
CDSM flame. Increased flame acceleration is further underlined by tracking the velocity of
the flame tip in Figure 8.30. The AVBP-DL flame tip is consistently faster than the CDSM
and experimental flames until it reaches the wake of the central obstacle, which coincides
with the production of peak overpressure. In addition to flame acceleration, greater hetero-
geneity in the CNN efficiency field results in increased fragmentation of the resolved flame
front after the third grid due to differential propagation across the flame front.
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Figure 8.27: Hexbin plot of efficiency vs. |∇č|δ̌L in the AVBP-DL snapshot 5, colored by mean č
in each bin. Only points where 0.01 < č < 0.99 are collected. Green solid line: conditional mean.
Yellow dotted line: |∇č|δ̌L = 1.
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Figure 8.28: Hexbin plot of wrinkling vs. |∇c̄|δ̄L in the training dataset, colored by mean c̄ in
each bin. Only points where 0.01 < c̄ < 0.99 are collected. Green solid line: conditional mean.
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Figure 8.29: Temporal evolution of the flame tip position. The obstacles are represented as grey
horizontal areas.
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Figure 8.30: Evolution of the flame tip streamwise velocity with respect to the flame tip position.
The obstacles are represented as grey vertical areas.
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8.8.2 Overpressure

The peak overpressure is the main quantity of interest that must be correctly predicted by
the LES simulation. Due to variations in the experimental ignition process, experimental
and LES overpressure temporal signals are typically shifted to match the time when the
peak overpressure is reached [291, 369]. Figure 8.31 reports the temporal evolution of the
time-shifted CDSM and AVBP-DL overpressures. The AVBP-DL simulation predicts a peak
overpressure value inside the experimental envelope. Given the increased flame acceleration
in the spherical phase, this result can be surprising and may suggest an error compensation in
the form of weaker fuel consumption in the later stages of flame propagation. The following
sections seek to understand the behavior of the CNN model and compare it with the reference
CDSM simulation.
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Figure 8.31: Temporal evolution of the overpressure. LES times are shifted to match the time of
peak overpressure in the experiment envelope. Snapshots shown in Figures 8.21 (▼) and 8.22 (•) are
numbered 1− 5.

8.8.3 Analysis of the turbulent combustion models

Equation 8.1 shows that the overpressure is controlled by the mean heat release rate in
the chamber. This quantity is proportional to the total flame surface if the flame front
has a flamelet structure, as discussed in Section 2.5. This is verified by plotting the JPDF
of the heat release rate and the progress variable for snapshot 5 in Figure 8.32. Despite
the large amount of turbulence-induced scatter in the distribution, the conditional mean
heat release rate ⟨ω̇T |c⟩ follows the profile of a laminar flamelet. The interpretation is that
the state relations of turbulent flame elements do not deviate from flamelet state relations
on average, hence the validity of the flamelet assumption for this flame [77]. Turbulence
therefore primarily affects the flame by wrinkling the flame front, and the mean heat release
rate is mainly driven by the increase of the flame surface as the flame propagates through the
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domain. The rest of this section investigates the effect of the turbulent combustion models
on the total flame surface.
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Figure 8.32: Hexbin plot of heat release rate vs. progress variable in the AVBP-DL snapshot 5.
Red solid line: conditional mean. Orange dashed line: flame structure of the corresponding laminar
flame. In the turbulent heat release rate, the efficiency and the thickening are removed to enable the
comparison to the laminar data, i.e. ω̇T = ω̇AV BP

T × F/E.

Figure 8.33 plots the evolution of the resolved and total flame surfaces with respect to
the flame tip position. The resolved flame surface is evaluated as the surface area of the
reference č = 0.86 iso-surface. The total flame surface is the integral of the total flame
surface density E|∇č|. Before the central obstacle, resolved flame surfaces in the CDSM and
AVBP-DL simulations are nearly identical. Increased efficiency values in the initial phases
of the AVBP-DL run lead to a moderately greater flame surface until the third grid. After
the central obstacle, both resolved and total AVBP-DL flame surfaces reach a plateau, while
the CDSM values continue to rise. This may explain why the two peak overpressures are
the same despite the early acceleration of the AVBP-DL flame. Peak overpressure is reached
as the flame tip goes past the central obstacle, and at this moment the abated rise of the
AVBP-DL total flame surface compensates the effects of early flame acceleration.

The contribution of the efficiency models to the total flame surface is further investigated
through the evolution of the proportion of SGS flame surface in the total flame surface,
defined as

∫
(E − 1)|∇č|dV and plotted in Figure 8.34. The contribution of the CDSM

model is low in the laminar phase as the resolved flame front is weakly curved. It increases
over the course of flame propagation until it reaches the same level as the CNN after the
central obstacle. Meanwhile, the CNN does not discriminate between laminar and turbulent
regimes and is consistently responsible for 30% to 40% of the total flame surface. Crucially,
this contribution does not follow the increased turbulence levels seen by the propagating
flame tip.
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Figure 8.33: Evolution of the resolved and total flame surfaces with the flame tip position.
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Figure 8.34: Evolution of the fraction of SGS flame surface with the flame tip position.

Despite the large efficiency values observed throughout the flame in Figure 8.21, the
comparable resolved and total flame surfaces observed in Figure 8.33 indicate that efficiency
values in the reaction zone are not much higher than in the CDSM simulation. This is
supported by visualizations of the efficiency field on the reference isosurface in Figures 8.35
and 8.36. In addition, the efficiency distribution over the iso-surface at the same timestamps
is plotted in Figure 8.37. Over the entire flame, the CDSM distribution has a clear mode
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at unity efficiency corresponding to laminar flame fronts in the far end of the chamber. For
the AVBP-DL flame, these regions correspond to a second mode around E = 1.5, once again
outlining the excessive predictions of the CNN there. When limiting the distributions to the
portion of the domain after the second grid to eliminate these laminar regions, it is striking to
note that a significant portion of the turbulent flame front is assigned unity efficiency values
by the CNN. On the other hand, sections with an efficiency larger than 2 constitute a greater
proportion of the turbulent streamwise propagating flame front in the CDSM simulation than
in the AVBP-DL case. This confirms that the CDSM model is predicting a greater amount
of SGS flame surface at the leading point of the flame, which compensates for the slower
flame tip velocity and leads to the same peak overpressure as the AVBP-DL simulation.

Figure 8.35: Iso-surface of c = 0.86 colored by efficiency in the AVBP-DL snapshot 5.

Figure 8.36: Iso-surface of c = 0.86 colored by efficiency in the CDSM snapshot 5.



188 CHAPTER 8. LES OF GAS EXPLOSIONS WITH A WRINKLING MODEL

1 1.5 2 2.5 3 3.5 4 4.5
Efficiency [-]

0

0.5

1

1.5

De
ns

ity
 [-

]

CDSM
AVBP-DL

1 1.5 2 2.5 3 3.5 4 4.5
Efficiency [-]

0

0.5

1

1.5

De
ns

ity
 [-

]

CDSM
AVBP-DL

Figure 8.37: Density histogram of efficiency in snapshots 5 on the reference iso-surface at the
same flame tip position (after the passage of the central obstacle) for the whole flame (top) and
after the second grid only (bottom).

Finally, the correlation between efficiency and flame curvature is investigated in Fig-
ure 8.38 for the portion of the reference iso-surface located after the second grid. The JPDF
shows that in both AVBP-DL and CDSM flames, the variance of the curvature conditioned
on E grows with the value of E. This means that large efficiency values are distributed over
a larger range of curvatures than small efficiency values. It is indeed fair to assume that
highly curved resolved flame fronts should be assigned high efficiency values, as they are
wrinkled by turbulent eddies of the size of the thickened flame front which may also generate
unresolved wrinkling.

While unity efficiencies are concentrated only in low curvature regions for the CDSM
flame, they are spread across a relatively larger extent of curvatures for the AVBP-DL flame.
For the CDSM flame, curvature in the resolved flame front will lead to different resolved and
test-filtered flame surface densities, and thus an efficiency value higher than one. This does
not apply to the CNN model which can predict unity efficiency values even in highly curved
flame elements. It is unclear whether this behavior is strictly beneficial or detrimental to the
accuracy of the model, but it is a clear difference that separates the two models.
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Figure 8.38: Hexbin plot of efficiency against normalized curvature colored by bin count in the
AVBP-DL (a) and CDSM (b) snapshot 5 on the reference iso-surface after the second grid.
Marginal histograms are plotted on the side. Contours delineate bins containing more than 20 (light
pink) and 100 (dark purple) samples.
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It appears that AVBP-DL efficiencies are moderately correlated with the curvature,
whereas such a correlation is less clear for the CDSM model from the vertical orientation
of its purple and pink density isocontours. This correlation is self-enhancing, as illustrated
in Figure 8.39. Positively curved flame elements receive higher efficiencies and propagate
faster towards the fresh mixture, thus further increasing their curvature. In Figure 8.38a,
this phenomenon is evidenced by the large extent of the marginal curvature distribution in
the positive values compared to the same distribution for the CDSM flame in Figure 8.38b.
It could explain the fragmented nature of the AVBP-DL flame front observed in Figure 8.35.

BG

FG

BG

FG

Figure 8.39: Self-enhancement of the high efficiency/positive curvature correlation. Illustrative
efficiency magnitudes are shaded in red. BG: burnt gases, FG: fresh gases. Black arrows indicate
the direction of local flame propagation.

8.8.4 Initializing the AVBP-DL simulation from the first grid

Results from the AVBP-DL simulation highlight that although the peak overpressure lands
inside the experimental envelope, one key area of concern is the increased initial flame accel-
eration due to non-unity efficiencies in the laminar phase. In the following, a new AVBP-DL
simulation is initialized from a CDSM snapshot right before the flame crosses the first obsta-
cle grid as illustrated in Figure 8.40. This ensures that the laminar propagation phase has
already been correctly represented, and the CNN is used as a SGS combustion model only
when the flame is known to become turbulent. This new simulation is denoted AVBP-DL
FGI (First Grid Initialization).

CDSM AVBP-DL FGI

t = 0 ms t = 3 ms

Figure 8.40: Initialization of the AVBP-DL FGI run.
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Figure 8.41: Temporal evolution of the overpressure, including the AVBP-DL FGI run. LES times
are shifted to match the time of peak overpressure in the experiment envelope. Snapshots shown in
Figures 8.45 (▽) and 8.46 (□) are marked I and II.
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Figure 8.42: Evolution of the flame tip streamwise velocity with respect to the flame tip position,
including the AVBP-DL FGI run. Dotted lines mark the flame tip position for the snapshots of
Figures 8.45 and 8.46.

Figure 8.41 shows the new overpressure time signal along with the two previous ones.
This time, the overpressure does not rise sharply, and instead reaches a plateau before hitting
its maximum value. This leads to a peak overpressure value which is 30% lower than the
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previous AVBP-DL simulation, and is outside of the experimental range.
One candidate explanation for the lower peak overpressure value is that the flame front

does not propagate as fast as in the original AVBP-DL simulation before reaching the central
obstacle, since it does not benefit from the acceleration in the initial spherical phase. Plotting
the flame tip streamwise velocity (Figure 8.42) reveals that this is not the case. In fact, the
AVBP-DL flame front initialized after the laminar phase catches up with the propagation
speed of the original AVBP-DL flame soon after the first grid. However, major differences
emerge between the third grid and the central obstacle. After reaching the central obstacle,
the flame tip velocity significantly drops below the trend of the original AVBP-DL flame.

To investigate the cause of this phenomenon, the spatial evolution of the flame surface
is plotted in Figure 8.43. In the AVBP-DL FGI run, the resolved and total flame surfaces
stabilize when the flame is located between the third grid and the central obstacle. As a
comparison, a plateau is also observed in the original AVBP-DL simulation but only after
the passage of the central obstacle, and the CDSM flame surfaces steadily rise until well after
the central obstacle.
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Figure 8.43: Evolution of the resolved and total flame surfaces with respect to the flame tip
position, including the AVBP-DL FGI run. Dotted lines mark the flame tip position for the
snapshots of Figures 8.45 and 8.46.

The impact of the diminished increase in flame surface on the overpressure generation is
quantified by the temporal growth rate of the mean heat release rate in the chamber ∂⟨ω̇T ⟩/∂t.
From Equation 8.1, it is evident that this quantity drives the rise and fall of the overpressure,
higher values that are not immediately compensated by the venting term being responsible
for an increase in overpressure. Figure 8.44 shows that this term significantly drops in the
AVBP-DL FGI simulation as the flame tip reaches the central obstacle. In particular, two
distinct troughs appear and are marked by snapshots noted I and II corresponding to two
distinct flame tip positions for each simulation. They correspond to times when the two
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overpressure signals start to diverge (Figure 8.41).
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Figure 8.44: Temporal growth rate of the mean heat release rate in the chamber as a function of
the flame tip position. Dotted lines mark the flame tip position for the snapshots of Figures 8.45
and 8.46.

Comparative visualizations of the progress variable field for snapshots I and II are shown
in Figures 8.45 and 8.46. In snapshot I, compared to the original AVBP-DL flame, the flame
front initialized from the first grid features smaller unburnt pockets between the second
and third grid. In addition, the propagation of the outer flame fingers is delayed as they
have not yet crossed the third obstacle grid. Finally, the tip of the inner flame fingers has
detached from the main body of the flame. This last point has lasting consequences on flame
propagation. In snapshot II, the flame tips have nearly completely vanished, leaving a lagging
reaction front located around the start of the central obstacle along with partially burnt areas
propagating ahead of it. This explains the stagnation of the resolved flame surface observed
in Figure 8.43 and the resulting overpressure plateau. In the CDSM simulation and past LES
results (Figure 8.2), a key driver in the burning rate after the central obstacle is the uneven
propagation of the central and outer flame fingers, which creates outer pockets of fresh gases
that are swiftly consumed as the outer fingers catch up to the center. This cannot occur
here in the absence of well-defined central flame fingers.

Results from the AVBP-DL FGI simulation therefore seem to be explained by variations
in the resolved flame structure as it interacts with the obstacles. These variations are not
compensated by the turbulent combustion model which predicts insufficient wrinkling values
during the critical stages of turbulent flame propagation, i.e. after the flame tip crosses the
central obstacle. In the rest of this chapter, improvements to the CNN are sought in order
to fix the issues outlined in this analysis.
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Figure 8.45: Progress variable slices from the AVBP-DL (top) and AVBP-DL FGI (bottom)
simulations for snapshot I.

Figure 8.46: Progress variable slices from the AVBP-DL (top) and AVBP-DL FGI (bottom)
simulations for snapshot II.
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8.9 Search for an improved CNN model

8.9.1 Addition of laminar flames to the training set

A specificity of the Masri configuration is the initial laminar regime of the expanding ignited
sphere, until the first grid is reached. To encourage the network to predict a unity SGS
wrinkling factor in this phase, 7 snapshots of thickened laminar spherical fronts are added to
the training dataset, with a target wrinkling field that is uniformly unity. They are obtained
by running the TFLES of an expanding burnt gas kernel using the same chemistry and
transport as the HIT, and the thickening parameters of the reference Masri TFLES. The
radius of the 7 kernels ranges from 8 mm to 22 mm, which covers the whole range of radii of
the laminar phase in Masri. Similarly, a snapshot of a planar flame front with unity target
wrinkling is added to the training dataset.

The CNN trained on the HIT dataset is fine-tuned on this new composite dataset until
convergence for the laminar flames is reached, after about 20 epochs. Results on the training
set contained in Appendix C show that this does not affect the validation accuracy of the
model. The consequences in the Masri simulation are shown in Figure 8.47. While the CNN
now predicts the correct wrinkling in the laminar phase, it underpredicts wrinkling in weakly
curved flame fronts after the first obstacle compared to the original AVBP-DL simulation
(compare with Figure 8.21). This may be the reason for the lower peak overpressure reached
in this simulation (Figure 8.48) as flame acceleration is not as strong. The peak overpressure
falls short from the experimental range by a factor 2. This may again be due to the inability
of the CNN to distinguish between laminar and turbulent flame fronts.

Figure 8.47: Efficiency slices from the AVBP-DL LAM simulation at t = 0.1 ms (left) and
t = 4.6 ms (right), with iso-lines c = 0.1, c = 0.9.
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Figure 8.48: Overpressure vs. time for the AVBP-DL LAM simulation. LES times are shifted to
match time of peak overpressure in the experiment.

8.9.2 Turbulence input channel

To address this issue, a natural avenue for improvement is to supply the CNN additional
information on the flow turbulence. This can be achieved in two ways:

• providing an estimate of the subgrid-scale velocity fluctuation intensity u′,

• providing a resolved turbulence field such as the vorticity ω = ∇× u.

8.9.2.1 SGS turbulence intensity input

The first option relies on an accurate SGS model for u′, like in the Colin and non-saturated
Charlette wrinkling models. Estimating u′ is known to be challenging in a practical LES. Lan-
gella et al. [181] benchmark u′ models against filtered DNS data. Scale-similarity models for
the turbulent velocity [282] and turbulent kinetic energy [21], an eddy viscosity model [194],
the Colin et al. model [67], and a new dissipation-diffusion model are compared on their
ability to recover the mean SGS kinetic energy on a DNS of a statistically planar turbu-
lent premixed flame. All the models rely on constants which can be fitted to best match
the target SGS kinetic energy. The authors note that the ideal model constant depends on
the Reynolds number, filter size, and combustion state (products, reactants, or inside the
flame front). Importantly, all these values differ from the base model constants provided in
the original papers and which were fitted on a different configuration. This work therefore
highlights the lack of robust u′ models for arbitrary reacting flows.

Furthermore, a good u′ model for SGS wrinkling models must solely capture fluctuations
that generate an increase of flame surface. In reacting flows, SGS velocity fluctuations
contain a dilatational component due to thermal expansion in the flame front, even in a
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laminar flame. Colin et al. purposefully discard this component to build an irrotational
formulation for the turbulence intensity between the Kolmogorov scale and a cutoff scale
∆e = 10h which is their estimate for a typical thickened flame thickness FδL. The model
writes [67]:

u′ = c2h
3∇2(∇× u) , (8.7)

with c2 = 2 fitted to recover the kinetic energy between the Kolmogorov scale and ∆e on a
non-reacting homogeneous isotropic turbulence DNS. The rotational operator ensures that
u′ is zero through a laminar flame front, as only the solenoidal component of the velocity field
is retained. The authors observe little variation of the optimal c2 with Reynolds numbers
ranging from 102 to 105, which seems to contradict the findings of Langella et al. discussed
above. This may be explained by the generation of potential velocities by the flame front
which would be present in the reacting case of Langella et al. and not in the non-reacting HIT
of Colin et al. Recently, weakly turbulent premixed flames have been observed to generate
non-negligible anisotropic potential velocity fluctuations upstream of the flame front [317].
These fluctuations perturb the incoming turbulence seen by the leading edge of the flame
and may therefore affect wrinkling. Additionally, DNS analysis of low and high Karlovitz jet
flames indicates that heat release effects on incoming turbulence decrease as the Karlovitz
number increases [215]. This further complicates the task of finding a u′ model that correctly
accounts for turbulence-flame interactions.

In light of these difficulties, some wrinkling models like the CDSM model eschew a depen-
dency of u′ and were shown to capture the temporal and spatial evolution of SGS wrinkling
on a turbulent swirled flame in a priori and a posteriori testing [371]. The strong perfor-
mance of the model suggests that an accurate SGS wrinkling model can be found without
including u′ in its formulation. This work therefore adopts the same modeling strategy and
avoid using unreliable u′ models as input to the CNN. Instead, information on the resolved
turbulence in the form of the resolved vorticity field is fed to the CNN.

8.9.2.2 Resolved vorticity input

A normalized vorticity magnitude field ω+ = ||∇ × u||δL/sL is here used as a second input
channel for the CNN. The normalization factor δL/sL is a characteristic flame time that
provides some degree of generalizability regarding the type of flame. Masking the ω+ field
to remove vorticity values outside the flame front was empirically found to slightly improve
performance on the validation set. Masking is applied using the same flame sensor S as for
the wrinkling factor (Equation 8.3).

The performance metrics in Appendix C indicate that it performs well on the validation
dataset. However, the AVBP-DL VORT simulation shows that this solution is not able to
solve the problems of the original AVBP-DL simulation. It appears that the model is unable
to predict unity wrinkling in the laminar phase (Figure 8.49), and worse, a sudden increase
in overpressure after the third row of obstacles leads to a numerical crash (Figure 8.50).

Investigating the efficiency and ω+ fields at this instant (Figure 8.51) reveals that ω+

values are much higher than in the training dataset, inducing very high efficiency predictions
by the CNN. Vorticity values in the Masri configuration are naturally much higher than in
the HIT since the velocity of the flow reaches higher values, around 100 m s−1 at peak flame
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acceleration. Turbulence metrics that generalize better should therefore be sought in further
investigations to robustly integrate turbulence information in the CNN.

Figure 8.49: Efficiency slice from the AVBP-DL VORT simulation at t = 0.1 ms, with iso-lines
c = 0.1, c = 0.9.
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Figure 8.50: Overpressure vs. time for the AVBP-DL VORT simulation. LES times are shifted to
match time of peak overpressure in the experiment.

8.9.3 Test-filtered progress variable input channel

Finally, since the CDSM model uses the test-filtered progress variable as a key additional
input to derive the wrinkling, an idea could be to introduce this variable as an input to the
CNN. It is interesting to dwell upon some differences in the modeling heuristics of the CNN
and CDSM models.
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Figure 8.51: Efficiency and ω+ slices from the AVBP-DL VORT simulation at t = 3.8 ms, with
iso-lines c = 0.1, c = 0.9.

The CDSM model relies on a strong physical prior: the relation between the SGS flame
surface and the filter scale is logarithmic up to a test-filter scale (Figure 2.10). The compar-
ison of the filtered and test-filtered FSDs is then sufficient to deduce the SGS flame surface.
One may note that fractal theory predicts a logarithmic relationship between turbulent sur-
faces and a measurement scale [348], but the spatial scale used in the CDSM model is a
combustion filter size associated with the thickness of the LES flame. Although these two
scales play similar roles, seemingly no study has verified whether the power-law exponent
derived from the evolution of the surface of a DNS flame front filtered at increasing filter
scales is the same as the fractal dimension of a caliper-stepping or box-counting method ap-
plied to the unfiltered flame front. If these two quantities were to be equal, this should offer
an insightful justification to the power-law relationship of the CDSM model with respect to
the combustion filter size.

The CDSM model leans towards the high bias/low variance side of the bias-variance
tradeoff at the center of conventional ML principles (Section 3.1). On the other hand, the
CNN is rather a low bias/high variance model, leveraging vast amounts of data without any
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specific physical hypothesis. Without a prior regarding the existence of a specific relationship
between the filtered and test-filtered FSDs, it is unclear whether the CNN should be able
extract any useful information from the ˆ̄c field which does not contain any new information
by virtue of the data processing inequality.

Nevertheless, a final version of the CNN is trained with the test-filtered progress variable ˆ̄c
as a second input channel. The test-filter size is chosen as ∆̂ = 1.8∆. Results in Appendix C
still show good performance on the validation dataset. However, this version does not lead
to an improvement in the behavior of the model. Wrinkling in the laminar phase reaches the
same levels as the original AVBP-DL simulation, and the peak overpressure is slightly lower
(Figure 8.52), underlining the sensitivity of this metric to the specific instance of the CNN
model.
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Figure 8.52: Overpressure vs. time for the AVBP-DL TEST-FILT simulation. LES times are
shifted to match time of peak overpressure in the experiment.

8.10 Conclusion and perspectives

CNN models for the SGS wrinkling factor were trained on the HIT dataset and evaluated
a posteriori on the small-scale Masri explosion configuration. This case is known to be
sensitive to the choice of the turbulent combustion model. The AVBP-DL coupling strategy
was used with Table 8.7 sums up the main results of the AVBP-DL simulations. The original
CNN reached a peak overpressure inside the experimental range, but displayed increased
flame acceleration in the early stages of flame propagation compared to the reference CDSM
simulation. This is induced by high wrinkling values predicted by the CNN in the initial
laminar phase. Differences between the CNN and CDSM models were underlined. The CNN
model tends to predict more low values of wrinkling at the forward end of the propagating
flame front, which may balance the greater initial flame acceleration in the resulting peak
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overpressure. A moderate correlation of the CNN predictions with the flame front curvature
could explain the greater fragmentation of the AVBP-DL turbulent flame front.

Attempts to reconcile the accurate prediction of the peak overpressure and unity wrin-
kling values in the laminar phase were proposed. Transitioning from the CDSM model to
the CNN after the flame has crossed the first flame front or adding laminar spherical flames
in the training dataset both lead to a lower peak overpressure than the original simulation.
This suggests that the wrinkling levels predicted by the CNN in the turbulent phase are
not large enough. This issue is not solved by adding the test-filtered progress variable as
input, and could motivate to reconsider the choice of the training configuration. Including
turbulence information via the resolved vorticity field led to an unstable simulation to a
distribution shift in the values of the vorticity given to the model as input.

Clearly, some work still remains before DL SGS models are widely used in industrial-scale
LES computations. Beyond addressing the shortcomings of the CNN seen on the small-
scale configuration, applications to the medium-scale or large-scale cases, where the chamber
length grows by a factor 6 and then 4, should be pursued in future works. Currently, even the
CDSM model struggles to recover the correct overpressure at these scales, so an adequately
trained DL model has the potential to unlock unprecedented use cases for industrial safety.
Increasing the scale of the configuration at a fixed computational cost would however bring
about new challenges for the CNN training methodology. The combustion filter size would
increase, and the strict application of Algorithm 2 would require the resolution of the training
set DNS to grow by the same scale factor. For the large-scale configuration, this would require
a DNS with unattainable computational demands. New methodologies could be developed
to overcome this difficulty.

Name Correct peak overpressure Correct laminar behavior

AVBP-DL ✓ ✗

AVBP-DL FGI ✗ –
AVBP-DL LAM ✗ ✓

AVBP-DL VORT ✗ ✗

AVBP-DL TEST-FILT ✗ ✗

Table 8.7: Summary of the AVBP-DL simulation results.
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9.1 Conclusion on the contributions of this thesis

This thesis has investigated developments for the applicability of deep learning SGS models
to large-scale LES of turbulent premixed flames. There is now a sizable body of literature
on SGS modeling with deep neural networks, yet little to no a posteriori validation of these
models on practical configurations. To achieve this objective, three elements were identified
as insufficiently studied: evaluation of deep learning models on challenging high Reynolds
test cases, assessment of their ability to generalize by selecting different training and test
configurations, and the development of efficient coupling strategies with high-performance
LES solvers. These elements were incrementally put in practice in the three DL models
based on U-Net convolutional neural networks.

First, an existing model for the total flame surface density was trained and evaluated
a priori on the R2 high Reynolds turbulent premixed jet flame (Chapter 5). It showed an
improvement on the state-of-the-art CDSM model, including when tested on LES snapshots.
These results were robust to variations in the nature of the filter and the progress variable
formulation, and insights into the effective receptive field and the evolution of parameter
distributions during training were provided.

Then, a model was trained to predict the SGS progress variable variance on the HIT
statistically planar flame DNS (Chapter 6). Based on this model, the PB-CNN analytical
closure for the filtered reaction rate was proposed and tested a priori on the R2 flame, which
exhibits significant differences with the training configuration. Yet, with a proper choice of
the filtering parameters for the training dataset, excellent generalization performance was
observed for the SGS progress variable variance and the filtered reaction rate.

A posteriori evaluation of DL SGS models were made possible by the AVBP-DL coupling
strategy which seamlessly integrates DL models in the temporal loop of the AVBP solver for
virtually no computational overhead (Chapter 7). The final application was the LES of a
gaseous explosion in the vented obstructed chamber of the Masri configuration (Chapter 8).
A DL model trained on the HIT dataset to predict the SGS wrinkling factor led to the
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correct peak overpressure. However, this result was shown to result from the compensation of
increased flame acceleration in the early stages of flame propagation, especially in the laminar
phase where super-unity wrinkling values are predicted by the model, and of insufficient
wrinkling in the most critical phase of turbulent propagation. Many variations were tested
to attempt to reconcile the expected physical behavior of the model and the correct peak
overpressure, but none delivered fully convicing results.

All in all, progress was made in the right direction, culminating in the Masri AVBP-DL
simulation which is, to our knowledge, the first a posteriori test of a DL SGS model in a
non-academic configuration with a massively-parallel LES solver. Yet the conclusions of this
simulation prove that some work still remains before deep learning reliably replaces SGS
models in numerical combustion.

9.2 Perspectives for future research

Ensuring consistent laminar/turbulent behaviors Chapter 8 suggests that a pure
data-driven learning approach on the HIT dataset may not be sufficient to capture both the
laminar and turbulent flame propagation regimes in the Masri simulation. Future work could
investigate modifications to the model inputs, architecture, or training procedure to pursue
consistent laminar/turbulent behaviors in a generalizable way. For example, turbulence
sensors used in mesh adaptation could be used as input features to the model.

Turbulent combustion regime adaptation More generally, ensuring that the model can
generalize to a wide set of turbulent conditions would increase the range of applications that
could be covered with deep learning. In this thesis, dependency on the combustion regime
was softly enforced by conserving u′/sL and ∆/δL in Chapter 6. Failure to do so resulted
in degraded results, and may also explain the shortcomings of the wrinkling model on the
Masri simulation. A simple solution would be to use quantities that quantify the turbulent
combustion regime such as u′/sL as input features to the model, or as side information via
feature-wise transformations [79]. At first glance, this runs the risk of failing to generalize
outside of the range of values seen in training, but it could prove to be sufficient in target
specific applications where the combustion regime is known a priori. Such a solution could
also require an extensive training database that efficiently samples a subset of the turbulent
combustion diagram. New dataset sharing initiatives [62] may accelerate this process in the
near future.

Filter size dependency To increase the flexibility of DL SGS models, their dependency
on the filter size must be addressed, as it controls the magnitude of the SGS quantity to be
modeled. Empirical rules (Propositions 4.1, 4.2) were proposed in this thesis to adapt the
training set filter size to a known evaluation configuration. This dependency is addressed in
some works by including multiple filter sizes in the training dataset [158] or using ∆ as an
input feature [152, 158, 335, 337]. In the future, more robust, generalizable methods should
be sought to incorporate this information in the model.
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Mesh dependency A related topic is the dependency of DL models on the data dis-
cretization. The models trained in this thesis were CNNs that operate on voxel grids for
3D spatial data. CNNs rely on a consistent grid size for generalization, as it determines the
magnitude of gradients in the data. In this thesis, only uniform voxel meshes were used,
and Proposition 4.3 proposed a simple criterion to determine the discretization size of the
training set depending on the evaluation case. Extending this method to non-uniform voxel
meshes could be implemented by adding the cell size to the input features. The issues related
to generalization that were mentioned for the filter size and the turbulent combustion regime
would then also apply here.

For irregular geometries and complex meshes, working directly on the unstructured grid
of the LES solver is a promising solution. This would simplify the coupling scheme as
no back-and-forth interpolation would be required, although this step was not found to
induce any sensible overhead in Chapter 7. As discussed in the conclusion of Chapter 7,
GNNs like MeshGraphNets [268] are well-adapted to this form of discretization as their
node and edge embeddings contain absolute distance values, allowing them to capture the
spatial structure of the mesh. Point cloud representations could also be investigated, as it
is unclear whether the connectivity of the unstructured mesh must be strictly respected by
the network [157, 288].

In fact, the grid discretization defines two separate quantities: the resolution of the spatial
structures and their scale (absolute size). Both can vary independently from each other, and
ideal models should be expected to respond correctly to changes in resolution (where the
underlying physics does not change) and in scale (where the physics changes but not the
discretized fields seen by the model). To circumvent this difficult problem, methods that
learn continuous mappings such as Fourier neural operators [193] could be explored. To date
however, GNNs and neural operators still struggle to operate on large 3D meshes.

Encoding physical invariance Leveraging physical invariance has proven to effectively
help generalization in some CFD applications of deep learning [196, 284, 388]. Many fluid
quantities are invariant or equivariant to operations such as translation, rotation, scaling,
or Galilean transformations. Invariance is one of the most promising research topics in the
general deep learning community [65, 66, 359, 391, 396]. The intersection between model
invariance and numerical combustion modeling warrants some attention to build innovative
models that can generalize better. This thesis has only scratched the surface of this topic
through the promotion of CNNs that are naturally translation equivariant, and systematic
data augmentation with 90◦ rotations and reflections.

Partially-premixed and non-premixed combustion This thesis has focused on mod-
eling approaches for fully premixed combustion. In practical combustion systems, flames
usually burn in a partially-premixed regime, where reactants are not fully premixed and
mixture fractions fluctuate between zero to unity [76, 328]. In this regime, modeling may
combine models derived for fully premixed and non-premixed combustion, or require a new
separate treatment. In the first case, a simple assignment of DL SGS models to purely pre-
mixed and non-premixed regions could be performed with a flame index [401] or classification
by a machine learning model [63, 383].
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Decarbonized fuels Future combustion systems will increasingly involve decarbonized
fuels such as hydrogen and ammonia. In lean premixed mixtures, these fuels are particu-
larly prone to enhanced combustion triggered by thermodiffusive instabilities. The inter-
play of differential diffusion and stretch effects leads to increased burning rates compared
to thermodiffusively-stable flames [28] which is not directly correlated to increased wrin-
kling [27]. Flame surface-based models like the ones developed in Chapters 5 and 8 can
therefore not account for the turbulent reaction rate of these mixtures. Note that this also
applies to equidiffusive mixtures subject to extreme turbulence that causes reaction layer
thickening [15]. DL SGS models applied to lean hydrogen or ammonia combustion should
perhaps focus directly on the prediction of the filtered reaction rate, trading off genericity
for the accuracy of a specialized model.

Beyond supervised training The conventional workflow to train an SGS model, whether
physically- or data-driven, relies on the generation of high-fidelity DNS data that is filtered
to generate ground truth labels. This is a supervised training framework that constrains
training datasets to DNS simulations that are readily available. Reliable DNS simulations
are a rare commodity since they involve great computational expenses, and often focus
on academic test cases that are not representative of practical combustion configurations.
Finding a solution for semi-supervised, self-supervised, or unsupervised training of SGS
models would make great inroads in deep learning applications for LES. Inspiration can be
taken from the vast quantity of deep learning research on unsupervised training for style
transfer [201, 202, 394] which was already applied to turbulence super-resolution [162], or
contrastive and non-contrastive self-supervised learning [41, 53, 120, 136, 407].
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Appendix A

Kolmogorov-Petrovsky–Piskunov
analysis of the Pfitzner beta PDF

source term

This appendix uses the Kolmogorov-Petrovsky–Piskunov theorem [173] to derive a closed-
form formula for the turbulent flame speed of a 1D premixed steady flame computed with
the beta PDF source term of Equation 6.5. The KPP theorem is a classical tool in the study
of propagating waves in nonlinear partial differential equations [112, 323, 353] and has been
used in the past to derive analytical turbulent flame speeds based on specific reaction source
terms formulations [97, 171, 198, 409].

A.1 KPP analysis for an arbitrary source term

Consider a 1D premixed steady flame with a single-step irreversible chemical mechanism. The
Lewis number is set to unity. Turbulence is assumed to be incorporated in a total diffusivity
D containing both laminar and turbulent diffusivities. Conservation of mass implies that
ρu = ρusT where sT is the flame leading edge velocity which is equated to the turbulent
flame speed. The balance equation for the progress variable c = 1− YF /Y

u
F writes:

ρusT
∂c

∂x
= ∂

∂x

(
ρD

∂c

∂x

)
− ω̇F

Y u
F

. (A.1)

Like in Hakberg and Gosman [129], assume that sT is governed by the behavior at cold
boundary, where ρD ≈ ρuDu. Equation A.1 is then a second-order autonomous differential
equation of the form

c′′ − αc′ + f(c) = 0 (A.2)

with:

α = sT /Du , (A.3)
f(c) = −ω̇F (c)/(ρuDuY

u
F ) . (A.4)

The usual method to study this type of equation is to introduce a phase space (c, p) with
p = c′ : c′ = p

p′ = αp− f(c)
(A.5)
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The equation has two singular points (0, 0) and (1, 0). Linearizing around (0, 0) gives:(
c′

p′

)
=
(

0 1
−f ′(0) α

)(
c

p

)
(A.6)

The nature of the singular point is determined by the characteristic polynomial λ2−αλ+f ′(0).
Its roots are λ1,2 = c±

√
α2−4f ′(0)

2 . If α2− 4f ′(0) < 0, the singular point (0, 0) is an attractor,
and phase trajectories approach it in a converging spiral. This is impossible because c must
remain positive, hence:

α2 ≥ 4f ′(0) . (A.7)

Note that this is the same equation as Equation (5.132) of Poinsot and Veynante [275], where
the KPP analysis is presented for an eddy break-up source term which is quadratic in c.

The KPP theorem [323, 353] states that the propagation speed of the traveling flame
front is found when Equation A.7 is an equality:

α2 = 4f ′(0) . (A.8)

Using Equations A.3 and A.4, the final expression for the turbulent flame speed is then given
by:

sT = 2
√
−ω̇′

F (0)Du

ρuY u
F

. (A.9)

Two hypotheses are necessary for the KPP theorem to rigorously apply:

• f ′(0) > 0

• f ′(c) ≤ f ′(0), c ∈ [0, 1]

Since f = ω̇F /(ρuDuY
u

F ), these two inequalities must also apply to the source term.

A.2 Application to the Pfitzner source term

The non-dimensional Pfitzner turbulent source term for a beta PDF pβ(a; b) writes:

ωβ = (m+ 1)Γ(a+ b)
Γ(a)

( Γ(a+m+ 1)
Γ(a+ b+m+ 1) −

Γ(a+ 2m+ 1)
Γ(a+ b+ 2m+ 1)

)
, (A.10)

with

a = c̄

[
c̄(1− c̄)
c′2

− 1
]
, (A.11)

b = (1− c̄)
[
c̄(1− c̄)
c′2

− 1
]
. (A.12)

For a well-chosen expression of the SGS progress variable variance c′2 = kc̄(1 − c̄) with
k a constant, a closed-form formula for the source term derivative at c = 0 can be found.
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In the following, k = 0.1. Introducing α = 1/k − 1 = 9, a and b have simple expressions
(overbars denoting filtering are omitted for clarity):

a = c

[
c(1− c)
kc(1− c) − 1

]
= αc , (A.13)

b = (1− c)
[
c(1− c)
kc(1− c) − 1

]
= α(1− c) . (A.14)

For m = 1, the non-dimensional reaction rate can be simplified using the properties of
the Γ function:

ωβ = (m+ 1) Γ(α)
Γ(αc)

(Γ(αc+m+ 1)
Γ(α+m+ 1) −

Γ(αc+ 2m+ 1)
Γ(α+ 2m+ 1)

)
(A.15)

= 2Γ(α)
(

[(αc+ 1)αc]���Γ(αc)

�
��Γ(αc)Γ(α+ 2)

− [(αc+ 2)(αc+ 1)αc]���Γ(αc)

�
��Γ(αc)Γ(α+ 3)

)
(A.16)

= 2Γ(α)
(
α2c2 + αc

Γ(α+ 2) −
α3c3 + 3α2c2 + 2αc

Γ(α+ 3)

)
. (A.17)

Its derivative at c = 0 is:

ω′
β(0) = 2Γ(α)α

( 1
Γ(α+ 2) −

2
Γ(α+ 3)

)
(A.18)

= 2× 9!
( 1

10! −
2

11!

)
(A.19)

= 9
55 (A.20)

≈ 0.164 . (A.21)

Going back to the dimensional reaction rate:

ω̇′
F (0) = −Y

u
F (ρusL)2

ρuDlam
u

ω′
β(0) . (A.22)

The KPP Equation A.9 finally writes:

sT = 2sL

√
Du

Dlam
u

ω′
β(0) . (A.23)

This formula was validated by implementing the Pfitzner beta PDF reaction rate in
AVBP and computing the turbulent flame speed with Equation 2.30. For the parameters
sL = 0.383 m s−1, µt = 5 × 10−4 N s m−2, µlam = 1.8 × 10−5 N s m−2, Equation A.23 and
AVBP give the same turbulent flame speed sT = 1.664 m s−1.

Some comments on this derivation:

• If k is increased to 1/3, Equation A.18 correctly accounts for the higher SGS variance
by increasing ω′

β(0) to 1/3.
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• Fichot et al. [97] performed a KPP analysis on a FSD-based source term and find a
similar expression sT ∝

√
k with k the turbulent kinetic energy.

A.3 Some general formulas

A general formula can be derived for any integer value of m:

ω′
β(0) = (m+ 1)Γ(α)α

(
m!

Γ(α+m+ 1) −
(2m)!

Γ(α+ 2m+ 1)

)
. (A.24)

For instance with m = 2, ω′
β(0) = 0.0503. If m is a half-integer, closed-form formulas can

also be found.

A.3.1 m = 1/2

ωβ = 3Γ(α)
2Γ(αc)

(Γ(αc+ 3/2)
Γ(α+ 3/2) −

Γ(αc+ 2)
Γ(α+ 2)

)
= A(c)−B(c) . (A.25)

First compute the derivative of A(c):

A′(c) = 3Γ(α)
2Γ(α+ 3/2)

(
αΓ′(αc+ 3/2)Γ(αc)− αΓ′(αc)Γ(αc+ 3/2)

Γ(αc)2

)
(A.26)

= 3αΓ(α)
2Γ(α+ 3/2)

(
ψ(0)(αc+ 3/2)Γ(αc+ 3/2)Γ(αc)− ψ(0)(αc)Γ(αc)Γ(αc+ 3/2)

Γ(αc)2

)
(A.27)

= 3αΓ(α)Γ(αc+ 3/2)
2Γ(α+ 3/2)

(
ψ(0)(αc+ 3/2)

Γ(αc) − ψ(0)(αc)
Γ(αc)

)
. (A.28)

Since Γ 0+−−→ +∞ and ψ(0)/Γ 0−→ −1, this leads to:

A′(0) = 3αΓ(α)Γ(3/2)
2Γ(α+ 3/2) . (A.29)

For the second term B(c):
B′(0) = 3αΓ(α)

2Γ(α+ 2) . (A.30)

Finally:
ω′

β(0) = 3αΓ(α)
2

( Γ(3/2)
Γ(α+ 3/2) −

1
Γ(α+ 2)

)
≈ 0.28 . (A.31)

A.3.2 m = 3/2

ω′
β(0) = 5αΓ(α)

2

( Γ(5/2)
Γ(α+ 5/2) −

6
Γ(α+ 4)

)
≈ 0.090 (A.32)
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A.4 Turbulent flame thickness

Equation A.2 can be linearized around c = 0 :

c′′ −mc′ + f ′(0)c = 0 , (A.33)

which means c(x) is an exponential form. The KPP theorem states that the discriminant of
the characteristic equation is zero, leading to:

c(x) = emx/2(a1 + a2x) . (A.34)

However this formula does not easily lead to an expression for the turbulent flame thickness,
because the KPP analysis is valid at the leading edge of the flame, and Equation A.34 is
only valid there (obviously c does not go to infinity). Equation A.34 suggests the formula:

δt
L = 2

m
= 2Du

sT
. (A.35)

AVBP simulations indicate that this formula is off by a factor 4 exactly: δt
L = (8Du)/sT .

Future work could be dedicated to looking for an exact formula for δt
L which is consistent

with simulation results.





Appendix B

AVBP-DL performance metrics

This appendix contains AVBP-DL performance metrics that supplement Section 7.3.

B.1 DL overhead components

Figure B.1 shows the time per operation of the AVBP send operation. Figure B.2 shows the
time per iteration of the AVBP process Ξ operation. Both of these timers scale correctly
with the number of nodes for distributions D4 and D0.5.
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Figure B.1: AVBP send time per iteration for D4 (left) and D0.5 (right) (average over five
executions of the maximum among all DL processes). Each configuration is labeled by its
AVBP/DL process distribution.
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Figure B.2: AVBP process Ξ time per iteration for D4 (left) and D0.5 (right) (average over five
executions of the maximum among all DL processes). Each configuration is labeled by its
AVBP/DL process distribution.
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B.2 DL time breakdown

Figures B.3 and B.4 report the breakdown of the DL iteration time averaged over all DL
processes and all iterations for distributions D4 and D0.5. The AVBP-DL temporal iteration
timeline of Figure 7.3 outlines 4 steps that compose the DL iteration between the exchanges
of the c and Ξ fields. The fraction of each of these steps in the DL iteration time are shown
in pie charts.

For D4, as the number of node increases, the proportion of the CNN prediction in the
DL iteration grows. This is caused by the bad scalability of the prediction time due to the
small dimensionality of the CNN inputs. With the lowest number of nodes, the duration of
the prediction is already very low, around 20 ms. Improvements may come from Tensorflow
installation optimizations but were not deemed necessary given the low prediction times. By
contrast, the steps involving processing and exchanging Ξ take up smaller fractions of the
DL iteration, and the share of the processing of c is stable.

For D0.5, the largest component of the DL iteration time is the exchange of Ξ, except
for the largest number of nodes where it is overtaken by the prediction. The exchange is
dominated by the interpolation of Ξ from the DL mesh to the AVBP mesh. Compared to
D4, there are less DL processes per AVBP process in D0.5, so each DL process must handle
interpolation with a greater number of AVBP processes. This could explain the greater
importance of this step in D0.5. In spite of the differences in the initial breakdown, each
timer follows the same trend as in D4. The fraction of prediction time increases sixfold from
4 to 64 nodes, and the fraction of Ξ processing shrinks by a factor two.

B.3 DL overhead breakdown

Figures B.5 and B.6 report the breakdown of the DL overhead averaged over all AVBP
processes and all iterations for distributions D4 and D0.5.

For D4, as the number of nodes increases, the DL overhead is dominated by the send
operation (involving interpolation to the DL mesh), then by the wait receive operation in-
dicating unfinished computations by the DL solver, and finally by the wait send operation
due to communication bottlenecks.

For D0.5, the reduced number of DL processes solves the issue of communication bottle-
necks but increases the load placed on the DL solver, and the DL overhead is thus almost
entirely due to the wait receive operation.
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Figure B.3: Breakdown of the mean DL time per iteration for D4 with 4 (a), 8 (b), 16 (c), 32 (d),
and 64 (e) nodes.
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Figure B.4: Breakdown of the mean DL time per iteration for D0.5 with 4 (a), 8 (b), 16 (c), 32
(d), and 64 (e) nodes.
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Figure B.5: Breakdown of the mean DL overhead per iteration for D4 with 4 (a), 8 (b), 16 (c), 32
(d), and 64 (e) nodes.
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Figure B.6: Breakdown of the mean DL overhead per iteration for D0.5 with 4 (a), 8 (b), 16 (c),
32 (d), and 64 (e) nodes.



Appendix C

Performance metrics of wrinkling
CNNs on the HIT dataset

This appendix gathers performance metrics on the HIT dataset of the wrinkling CNN variants
trained in Chapter 8. They are:

• the original CNN, taking the filtered progress variable c as input,

• the LAM CNN, which takes c as input and was trained on additional spherical laminar
flame fronts,

• the VORT CNN, taking c and the masked normalized vorticity magnitude ω+ as inputs,

• and the TEST-FILT CNN, taking c and the test-filtered progress variable ˆ̄c as inputs.

Visualizations of the CNN inputs, CNN output, and ground truth are shown for two
representative flame fronts of the dataset in Section C.1 and C.2. Sample 1 is extracted from
the early stages of the HIT, at t = 0.4τ , where the flame front begins to wrinkled. It is
part of the training dataset of all the CNNs. Sample 2 is taken from the later stages of the
simulation, at t = 3.7τ . The flame is significantly wrinkled, and it is part of the validation
dataset.

Quantitative metrics computed on the HIT validation set are presented in the form of
hexbin plots comparing the wrinkling factor predicted by the CNNs with the ground truth
in Section C.3, and mean-squared errors in Section C.4.
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C.1 Sample 1
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Figure C.1: Visualizations of CNN inputs, CNN outputs, and ground truth on sample 1: (a)
Original CNN (c, ΞCNN , Ξtrue), (b) LAM CNN (c, ΞCNN , Ξtrue), (c) VORT CNN (c, masked ω+,
ΞCNN , Ξtrue), (d) TEST-FILT CNN (c, ˆ̄c, ΞCNN , Ξtrue).
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C.2 Sample 2
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Figure C.2: Visualizations of CNN inputs, CNN outputs, and ground truth on sample 2: (a)
Original CNN (c, ΞCNN , Ξtrue), (b) LAM CNN (c, ΞCNN , Ξtrue), (c) VORT CNN (c, masked ω+,
ΞCNN , Ξtrue), (d) TEST-FILT CNN (c, ˆ̄c, ΞCNN , Ξtrue).
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C.3 Hexplots
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Figure C.3: Hexbin plots of model predictions against ground truth on the HIT validation set for
the CNN models used in the Masri a posteriori simulations: (a) Original CNN, (b) LAM CNN, (c)
VORT CNN, (d) TEST-FILT CNN.

C.4 Mean-squared errors

Original LAM VORT TEST-FILT
0.066 0.085 0.068 0.093

Table C.1: Mean-squared errors on the HIT validation set.
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