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A B S T R A C T

Audio signal reconstruction consists in recovering sound signals from incomplete or degraded representations. This problem can be cast as an inverse problem. Such problems are frequently tackled with the help of optimization or machine learning strategies. In this thesis, we propose to change the cost function in inverse problems related to audio signal reconstruction. We mainly address the phase retrieval problem, which is common when manipulating audio spectrograms.

A first line of work tackles the optimization of non-quadratic cost functions for phase retrieval. We study this problem in two contexts: audio signal reconstruction from a single spectrogram and source separation. We introduce a novel formulation of the problem with Bregman divergences, as well as algorithms for its resolution.

A second line of work proposes to learn the cost function from a given dataset. This is done under the framework of unfolded neural networks, which are derived from iterative algorithms. We introduce a neural network based on the unfolding of the Alternating Direction Method of Multipliers, that includes learnable activation functions. We expose the relation between the learning of its parameters and the learning of the cost function for phase retrieval.

We conduct numerical experiments for each of the proposed methods to evaluate their performance and their potential with audio signal reconstruction.
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z (regular) scalar.

| • |, (•), (•) * magnitude, complex angle, and complex conjugate, respectively. T , H transpose and Hermitian transpose, respectively.

R, C, N sets of real numbers, complex numbers and natural integers, respectively.

, real and imaginary part functions.

, (•) d , fraction bar element-wise matrix or vector multiplication, exponentiation, and division, respectively.

• ; • inner product.

• p p-norm. With the Euclidean norm (p = 2), the index is dismissed.

I L identity matrix of size L.

diag(x) diagonal matrix which entries are the components of x.

P S projection operator on the set S. Notation and recording aim at making the sensible experience of sound reproducible. With musical notation, sound is visually represented with symbols in order to be re-performed by a musician. Even though a wide number of methods have existed through history and cultures, the Western notation system based on the equal temperament became predominant. It consists in arranging pitches in an equally divided frequency space and in time. Recording stores a signal to allow for its re-generation. Different technologies enabled this practice, initiated with Thomas Edison's Phonograph in the nineteenth century and followed by various supports including wax cylinders, vinyl discs and magnetic tape. Digital recording advented in the end of the twentieth century and consists in the storage of digital representations of sound produced through transduction, sampling and quantization. Digital sound representations are usually processed using signal processing methods as they can be degraded or incomplete. Such imperfections usually occur through the recording process and include distortion (i. e. , nonlinear transformation of the signal), mixing with an undesired source (e. g. , noise or echoes), reverberation, presence of artifacts, reduction of the frequency bandwidth, or downsampling. They can also be processed with other aims than removing degradations. For example, remastering refines music recordings through equalization and dynamic processors to adapt their character to contemporary standards. After processing, reconstructed signals are usually associated with a superior listening experience: the perceived audio quality is improved while the comprehension is enriched.

As audio signal reconstruction can be interpreted as the recovery of a signal from a set of observations (i. e. , a degraded or incomplete sound representation), it falls within the class of inverse problems. Inverse problems inspired a wide range of works in the literature and can be defined as recovering the causal factors x from a set of observations r. The relation between causes and observations F is known as the forward map, and is such that: r = F(x ).

(1.1.1)

When F is known or estimated via a forward model, inverse problems may be solved via the optimization of a real-valued cost function D, measuring the error between the estimates and the observations. This writes: minimize x D(F(x), r).

(1.1.2)

As the solutions to (1.1.2) may not be existent, unique or stable, the considered problem is said to be ill-posed. Common strategies to tackle ill-posed inverse problems include the modification of the cost function, the minimization of an additional regularization term or the restriction of the solution set. Such choices are realized with the help of a priori knowledge about the solutions. In the scope of audio signal reconstruction, such knowledge may come from listening-specific criteria. The problem should be modified such that the solutions lead to a satisfactory listening experience and that errors in terms of perceived quality and understanding are penalized.

In this thesis, we explore the idea of changing the cost function in inverse problems for audio signal reconstruction. We mainly consider the phase retrieval problem, a non-convex and non-linear inverse problem that arises when processing the most common timefrequency representation: the spectrogram. Phase retrieval occurs within different audio reconstruction tasks, including denoising and source separation, and is notoriously ill-posed as multiple signals can generate the same observations. We take interest in concepts and works from domains ranging from machine learning to audio signal processing to study formulations of the phase retrieval problem with alternative cost functions. Methods to tackle them are proposed and assessed via experimental work, for applications including denoising and audio source separation.

outline of the manuscript

This dissertation is organized as follows. Chapter 2 presents the background of this thesis. Essential tools and concepts from audio signal processing, optimization and deep learning are introduced. Chapter 3 details the problems of interest of this thesis and the state-of-the-art approaches for their resolution. The phase retrieval problem is formulated and studied in the context of audio signals. The chapter ends with the presentation of related work in deep learning. Chapter 4 details the first contribution of this thesis. The phase retrieval problem is extended to alternative cost functions: we present a formulation of the problem with Bregman divergences and we derive two algorithms. Experimental results and a discussion on the choice of the parameters are presented. Chapter 5 extends the work presented in the previous chapter to audio source separation. The phase retrieval problem with Bregman divergences and a mixing constraint is introduced with a proposed extension to the Multiple Input Spectrogram Inversion algorithm. We conduct experimental work for this applica-tion and present the results. Chapter 6 tackles the problem of learning the cost function for phase retrieval. The ADMM-based algorithm introduced in Chapter 4 is unfolded within a neural network and the proximity operators are replaced with trainable activation functions. Learning their parameters amounts to learning the cost function in the original problem. Experimental work then assesses the efficiency of the method. The final chapter draws concluding remarks and summarizes the results of this thesis. Perspectives for upcoming research are discussed subsequently. In this chapter, we introduce the fundamental tools used in this thesis. Section 2.1 defines essential concepts of audio signal processing with an overview of the short-time Fourier transform and its properties followed by a discussion on audio quality evaluation. Section 2.2 introduces elements from optimization and machine learning. We first present Wirtinger derivatives and gradient methods. Then, the proximity operator and its properties are introduced. This is followed by the definition of Bregman divergences. A brief introduction to neural networks and unfolded iterative algorithms is presented in Section 2.3.

publications

audio signal processing

Time-frequency analysis with the short-time Fourier transform

Representing audio signals

In audio signal processing, it is a common practice to process a sound signal into a representation in order to generate features. According to their properties, different representations can be considered to a given application. In most cases, it is desirable to have an invertible representation in order to reconstruct a sound signal after processing. Figure 1 displays a few usual audio representations.

The most simple representation is the waveform, which is a sampled and quantized sound signal. The waveform collects amplitude measurements over time that correspond to voltage in the case of electric signals or pressure for an acoustic sound. The measurements can be arranged in an array X ∈ R L×C , where L denotes the time dimension and C is the number of channels. Most of the time, C = 1 or 2. In background these cases, signals are respectively refered to as monophonic or stereophonic. The number of channels can be greater than 2 in the case of surround sound, where multiple sound speakers are used to enhance sound spatialization. In this thesis, only mono waveforms will be considered. They will be denoted as time vectors x ∈ R L .

Several usual representations belong to the class of time-frequency representations [START_REF] Flandrin | Time-frequency/Time-scale Analysis[END_REF]. Such representations display discrete Fourier transform (DFT) based features through time and are most of the time computed with the help of the fast Fourier transform algorithm (FFT). The short-time Fourier transform (STFT) is a commonly used operation in this context. The STFT produces a complex matrix, whose modulus is referred to as magnitude and can be interpreted as the time-frequency distribution of the signal energy. The STFT argument is known as phase and has a less obvious interpretation. However, it embodies critical information for perception [START_REF] Kuldip | On the Usefulness of STFT Phase Spectrum in Human Listening Tests[END_REF][START_REF] Kuldip | Usefulness of Phase Spectrum in Human Speech Perception[END_REF] and waveform reconstruction [START_REF] Gerkmann | Phase Estimation in Speech Enhancement-Unimportant, Important, or Impossible?[END_REF][START_REF] Mowlaee | On Phase Importance in Parameter Estimation for Single-channel Source Separation[END_REF]. It will be a prominent point of interest in this thesis. Magnitude spectrograms are obtained by considering the magnitude of the short-time Fourier transform (STFT) of a signal. In Figure 1b, the magnitude spectrogram of a 12 seconds music signal is displayed, revealing its harmonic structure. For the sake of illustration, Figure 1c displays the phase of the STFT of the same signal. At first sight, no structure can be observed: the phase spectrogram resembles a noise matrix.

The power spectrogram is another common time-frequency representation, computed with the squared magnitude of the STFT. It displays the repartition of power over time and frequency. From a statistical perspective, the power spectrogram is analogous to a variance. As seen in Figure 1d, this representation has a great dynamic range and discriminates largely between low-energy and high-energy timefrequency components of the signal. The log-spectrogram (1e) has the opposite property as it reduces the dynamic range. It is then frequently used to visualize low-energy components of the signal. The log-spectrogram is simply computed by considering the logarithm of the magnitude of the STFT.

Alternative representations display time-frequency data with a logarithmic frequency axis in order to imitate human hearing, which is considered to be logarithmic with regards to frequency. The Melspectrogram is obtained via a transform approximating this property, resulting in a quasi-logarithmic spectrogram. Representations with a logarithmic frequency axis can also be computed via non-linear frequency filterbank-based transforms: the input signal is processed via a collection of bandpass filters and the resulting energies are displayed over time. The Constant-Q transform (CQT) spectrogram (1f) is a common representation belonging to this class. Analogously, the chromagram (1g) scales the frequency axis to semitones, the usual pitch unit of Western music systems. The short-time Fourier transform is commonly used in signal processing to analyze oscillatory and non-stationnary signals. Typical applications include audio, acoustics and seismology. The STFT consists in considering the local spectrum of a signal over a short temporal duration. This is done in practice by extracting short sections of the signal and computing their DFT. Given a discrete signal x ∈ C M , the DFT is defined by:

DFT(x)(m) := M-1 =0 x( )e -i2π m M , (2.1.1)
where m ∈ {0, . . . , M -1} denotes the indexes of the frequency bins.

In order to better localize in frequency, the temporal segments are often multiplied by an analysis window before the DFT operation. This leads to the so-called sliding-window definition of the STFT. Given a discrete signal x ∈ C L and an analysis window w ∈ R M such that M < L, the STFT is the linear operator A w defined by:

[A w x](m, n) := (DFT(x n ))(m), (2.1.2) 
where m ∈ {0, . . . , M -1}, n ∈ {0, . . . , N -1} respectively denote the indexes of the frequency bins and the time frames. x n denotes the n-th windowed temporal frame of the signal x:

x n ( ) := x( )w( -nH).

(2.1.3)

H ∈ N * is called the hop size and controls the overlap between the successive frames. The overlap ratio is defined as M-H M . The STFT writes:

[A w x](m, n) := M-1 =0 x( )w( -nH)e -i2π m M . (2.1.4)
The inverse-STFT (iSTFT) can also be constructed with the help of the inverse-DFT (iDFT). Given a complex vector c ∈ C M , the iDFT is defined by:

iDFT(c)( ) := 1 M M-1 m=0 c(m)e i2π m M . (2.1.5)
For each time index, the iDFT of the STFT frame is computed, resulting in a collection of temporal segments. The signal is then reconstructed through an overlap-add procedure. The segments are usually multiplied by a synthesis window before being summed up. This procedure is termed weighted overlap-add and leads to the following iSTFT definition. Given a complex-valued time-frequency matrix C ∈ C M×N and a synthesis window v ∈ R M , the iSTFT is the linear operator S v defined by:

[S v C]( ) := N-1 n=0 [iDFT(C(•, n))]( )v( -nH), (2.1.6) 
where ∈ {0, . . . , L -1} is the time index. The iSTFT finally writes:

[S v C]( ) := 1 M N-1 n=0 M-1 m=0 C(m, n)v( -nH)e i2π m M . (2.1.7)

Overlapp-add decomposition and perfect reconstruction

In order to be able to reconstruct x from the windowed temporal frames {x n } N-1 n=0 , the window and the hop size must respect a condition. Let x denote the reconstructed signal such that:

x ( ) = N-1 n=0 x n ( ) (2.1.8) = N-1 n=0 x( )w( -nH) (2.1.9) = x( ) N-1 n=0 w( -nH). (2.1.10) 
In order to satisfy x = x , the following constant-overlap-add (COLA) constraint must be respected: [START_REF] Smith | Spectral Audio Signal Processing[END_REF]. When applying the iSTFT after the STFT, the signal x is reconstructed from temporal frames multiplied by a synthesis window v:

∀ ∈ {0, . . . , L -1}, N-1 n=0 w( -nH) = 1. ( 2 
x ( ) = 1 M N-1 n=0 M-1 m=0 M-1 =0 x( )w( -nH)e -i2π m M v( -nH)e i2π m M (2.1.12) = 1 M N-1 n=0 M-1 =0 x( )w( -nH)v( -nH) M-1 m=0 e -i2π m M ( -) .
(2.1.13)

The sum term M-1 m=0 e -i2π m M ( -) is equal to 0 unless ( -) is an integer multiple of M. In this case, = + kM and

M-1 m=0 e -i2πmk = M, (2.1.14)
with k ∈ Z. As w is equal to 0 out of its support, we consider here that k = 0. Therefore, the reconstructed signal writes:

x ( ) = N-1 n=0 x( )w( -nH)v( -nH) (2.1.15) = x( ) N-1 n=0 v( -nH)w( -nH). (2.1.16)
In order to recover x from x , the following constraint should be satisfied:

∀ ∈ {0, . . . , L -1}, N-1 n=0 v( -nH)w( -nH) = 1. (2.1.17)
When this condition is respected, perfect reconstruction such that x = S v A w x can be achieved and v and w are said to be dual. In practice, the analysis and synthesis windows are often chosen to be equal. In that case, the square-root of any nonnegative COLA window leads to perfect reconstruction. A common choice is the "root-Hann" window (also termed sine window) [START_REF] Le Roux | Explicit Consistency Constraints for STFT Spectrograms and Their Application to Phase Reconstruction[END_REF].

STFT and Gabor frames

The STFT can alternatively be written as the output of inner products between x and Gabor atoms γ mn ∈ C L , which are functions built via translation and modulation of w as follows :

γ mn ( ) = w( -nH)e i2π m M . (2.1.18)
By collecting the Gabor atoms into the columns of an L × MN matrix Γ w and ignoring the time-frequency ordering, the STFT of a signal x can equivalently be obtained by Γ H w x. Under general conditions [START_REF] Gröchenig | Foundations of Time-frequency Analysis[END_REF], the matrix Γ w defines a frame in the sense that there exists positive constants a and b such that for any x ∈ C L :

a x 2 Γ H w x 2 b x 2 . (2.1.19)
Similarly, the synthesis operator S v can be expressed as the adjoint of the STFT:

S v C = Γ v c, (2.1.20)
where c ∈ C MN is a vectorized version of C. As such, the windows w and v are dual if and only if Γ v Γ H w x = x. When the same window can be used for analysis and synthesis with perfect reconstruction (an example being the sine window [START_REF] Smith | Spectral Audio Signal Processing[END_REF]), then it can be shown that a = b = 1 and Γ H w defines a so-called Parseval frame. In the rest of this thesis, the STFT operator will be denoted with the matrix A (equal to Γ H w ). We assume that w = v and that the Parseval frame assumption holds (i.e., A H A = I L ).

Objective evaluation of audio quality

In audio processing, evaluating the quality of a signal estimate is of paramount importance to assess reconstruction performance. However, this task is nontrivial as the notion of quality remains imprecise and related to subjective perception. A common criterion is the absence of degradation after applying a chain of processes.

Subjective tests can be conducted to evaluate the perceived quality with the ABC/HR [START_REF]1116-3 Methods for the Subjective Assessment of Small Impairments in Audio Systems[END_REF] or MUSHRA [START_REF]1534-3 Method for the Subjective Assessment of Intermediate Quality Level of Coding Systems[END_REF] protocols. They usually output scores such as the Subjective Difference Grade (SDG) or the Mean Opinion Score (MOS), covering a scale from 1 (bad) to 5 (excellent). They are however costly and their reproducibility is sensitive to cognitive biases such as the listener's familiarity with the task, fatigue, or score-equalizing bias [START_REF] Zielinski | Potential Biases in MUSHRA Listening Tests[END_REF].

For that matter, objective tests were developed. They usually compute a measure of fit between a signal estimate and a reference, often termed as ground-truth. In the following, several objective evaluation scores are introduced. This is followed by a brief presentation of the reference datasets used in this thesis.

Evaluation in the time domain

The signal-to-distortion ratio (SDR) is defined as the ratio of the power of a signal of interest x over the distortion power. Its expression is:

SDR(x, x) = 10 log 10 x 2 x -x 2 , (2.1.21)
where x is the estimate of x. The SDR is expressed in decibels. It is included in the BSSEval toolbox [START_REF] Vincent | Performance Measurement in Blind Audio Source Separation[END_REF], which is widely used to assess performance in audio source separation. BSSEval also encompasses two other metrics: the signal-to-interference ratio (SIR) and the signalto-artifact ratio (SAR), which respectively measure the rejection of interferences and artifacts in the estimated signal. In [START_REF] Le Roux | SDR-Half-baked or Well Done?[END_REF], the authors propose a scale-invariant version of the SDR to evaluate estimation without taking in account scaling effects. Its expression is: x 2 the optimal scaling factor minimizing the quadratic error between the scaled reference and the estimate.

SI-SDR(x, x) = 10 log 10 xH x x 2 x 2 xH x x 2 x -x 2 , ( 2 

Evaluation in the time-frequency domain

Quality evaluation is also usually performed in the time-frequency domain using p norms.

The spectral convergence (SC) [START_REF] Sturmel | Signal reconstruction from STFT magnitude: A state of the art[END_REF] is computed from magnitude spectrograms with the 2 distance:

SC(x, x) = 10 log 10 |Ax| -|Ax| 2 |Ax| 2 . (2.1.23)
Another common choice is the 1 distance with log-spectrograms [START_REF] Sercan Ö Arık | Fast Spectrogram Inversion Using Multi-head Convolutional Neural Networks[END_REF]:

1 log (x, x) = log |Ax| -log |Ax| 1 .
(2.1.24)

These two metrics differ in their behavior as cost functions: SC is likely to penalize mostly estimation errors on the large coefficients of the spectrogram while 1 log is more sensitive to errors on the small coefficients.

Perceptually-motivated metrics

Other evaluation metrics aim to model the results obtained with subjective tests. Most of them were introduced as International Telecommunication Union (ITU) recommendations.

The Perceptual Evaluation of Audio Quality score (PEAQ) [START_REF] Colomes | Perceptual Quality Assessment for Digital Audio: PEAQ-the New ITU Standard for Objective Measurement of the Perceived Audio Quality[END_REF] was introduced in 1999 to model the MOS of perceived quality tests for general sounds. PEAQ includes psychoacoustics models based on filterbanks and time-frequency masks to compute several model variables. The latter are mapped to a single output with a basic neural network. PEMO-Q [START_REF] Huber | PEMO-Q-A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception[END_REF] was proposed later in 2006 for the same purpose. It embodies a simpler model that yet achieves better correlation with the subjective tests.

The Perceptual Evaluation of Speech Quality score (PESQ) [START_REF] Rix | PESQ-the New ITU Standard for End-to-end Speech Quality Assessment[END_REF] estimates the MOS of subjective quality tests for speech signals. This metric consists in computing measures of fit over time-aligned and modified time-frequency representations. It traditionally only considers bandpass filtered versions of the signals (due to its applications in telephony). The Perceptual Objective Listening Quality Assessment (POLQA) [START_REF] John G Beerends | Perceptual Objective Listening Quality Assessment (POLQA), the Third Generation ITU-T Standard for End-toend Speech Quality Measurement Part I-temporal Alignment[END_REF][START_REF] John G Beerends | Perceptual Objective Listening Quality Assessment (POLQA), the Third Generation ITU-T Standard for End-toend Speech Quality Measurement Part II-perceptual Model[END_REF] score is the successor of PESQ and assesses a larger amount of degradations with more intricate models.

The Short-time Objective Intelligibility score (STOI) [START_REF] Cees H Taal | An Algorithm for Intelligibility Prediction of Time-frequency Weighted Noisy Speech[END_REF] models the intelligibility of a speech signal. It is computed through filterbank decomposition and envelope correlation of the reference and estimate signals. STOI outputs a variable that ranges between 0 (unintelligible) and 1 (excellent) and which has been shown to correlate well with subjective intelligibility measurements of speech.

The Perceptual Evaluation of Audio Source Separation (PEASS) toolbox [START_REF] Emiya | The PEASS Toolkit-perceptual Evaluation Methods for Audio Source Separation[END_REF] encompasses perceptual objective scores inspired by the BSSEval toolbox: the proposed criteria account for distortions, interferences, and artifacts in the estimated signal. They were also shown to correlate well with subjective tests in the context of audio source separation.

Datasets

In the experiments of this thesis, we consider two audio datasets. The Texas Instruments/Massachusetts Institute of Technology (TIMIT) [START_REF] Garofolo | TIMIT Acousticphonetic Continuous Speech Corpus[END_REF] corpus is composed of speech signals recorded from 630 American English speakers of different genders and dialects. Each speaker reads 10 sentences selected to be phonetically rich. All the signals in the dataset are single-channel, sampled at 16kHz and 16-bit encoded.

The Free Music Archive (FMA) [START_REF] Defferrard | FMA: A Dataset for Music Analysis[END_REF] 

optimization

In this section, we introduce elements and algorithms from optimization. First, we detail the Wirtinger calculus framework, which will be required to derive gradient-based algorithms with cost functions of a complex variable. We present therefore the gradient algorithm and a few variants including acceleration and adapted step sizes. Follows an introduction to the proximity operator and common proximal methods, a family of optimization algorithms frequently used in signal processing [START_REF] Patrick | Proximal Splitting Methods in Signal Processing[END_REF]. This section ends with an introduction to Bregman divergences, a family of functions that includes measures of fit deriving from a statistical perspective.

Wirtinger calculus and gradient methods

Wirtinger calculus

When handling complex-valued data, the use of gradient-based optimization algorithms implies to minimize cost functions of a complex variable. However, as cost functions are real-valued, they are not complex differentiable. This means that they do not follow the Cauchy-background Riemann equations. For a function f of a complex variable z = z r + iz i the Cauchy-Riemann equations write:

∂f r (z) ∂z r = ∂f i (z) ∂z i and ∂f r (z) ∂z i = - ∂f i (z) ∂z r , (2.2.1)
with f(z) = f r (z) + if i (z) and f r (z), f i (z) are real-valued. The Wirtinger calculus, also termed CR-calculus, provides a gradientlike operator for those functions. It sees any function of a complex variable as a function of its real and imaginary parts. The Wirtinger derivatives are then defined as:

∂f ∂z (z) := 1 2 ∂f ∂z r (z r , z i ) -i ∂f ∂z i (z r , z i ) , ∂f ∂z * (z) := 1 2 ∂f ∂z r (z r , z i ) + i ∂f ∂z i (z r , z i ) . (2.2.2)
In practice, computing the derivative of f with respect to z (resp. z * ) can be done using usual differentiation by treating z (resp. z * ) as a real variable with z * (resp. z) treated as a constant [START_REF] Bouboulis | Wirtinger's Calculus in General Hilbert Spaces[END_REF][START_REF] Kreutz-Delgado | The Complex Gradient Operator and the CRcalculus[END_REF]:

∂f ∂z = ∂f(z, z * ) ∂z z * =const. , (2.2.3) ∂f ∂z * = ∂f(z, z * ) ∂z * z=const. . ( 2.2.4) 
Besides, if f is real-valued, the following property is verified:

∂f ∂z * = ∂f ∂z * . (2.2.5)
In a multivariate setting, the gradient of f is then defined as:

∇f = ∂f ∂z 1 , . . . , ∂f ∂z K H . (2.2.6)
When f is additionally real-valued, the following property holds from (2.2.2) and (2.2.5):

∇ R f := ∂f ∂z r (1) , . . . , ∂f ∂z r (K) H = 2 (∇f), (2.2.7) 
where ∇ R f denotes the gradient of f with regards to the real part of the variable.

Gradient methods

With the help of the Wirtinger framework, a gradient descent algorithm can be formulated to minimize a differentiable function f of a complex variable. The Wirtinger gradient descent algorithm is detailed in Algorithm 1, with µ t denoting the gradient step size. 

(µ t ) ∈ R N , ξ ∈ [0, 1] 1 Initialize y 0 .
2 while stopping criteria not met do 3 q t+1 := y t -µ t ∇f(y t ) 4 y t+1 := q t+1 + ξ(q t+1q t ) 5 end

Like the usual gradient method, the Wirtinger gradient descent converges to a critical point of the function f under conditions on the step size. It can also be accelerated similarly to Polyak's gradient descent with momentum [START_REF] Boris | Some Methods of Speeding up the Convergence of Iteration Methods[END_REF]. The Accelerated Wirtinger gradient descent algorithm is displayed in Algorithm 2, where ξ denotes the acceleration parameter.

When ∇f is P-Lipschitz, a common choice for the gradient step size is µ t < 1 P . Alternative strategies for the choice of the step size can be considered. A usual method consists in refining the gradient step size with a backtracking line search: at every gradient descent iteration, the gradient step size is repeatedly multiplied by a nonnegative factor smaller than 1 until a stopping criterion is reached. Typically, the following Armijo rule [START_REF] Armijo | Minimization of Functions Having Lipschitz Continuous First Partial Derivatives[END_REF] is considered:

f(y t+1 ) < f(y t ) - µ t 2 ∇f(y t ) 2 . (2.2.8)
This rule can be relaxed such that the gradient step size is updated until the new cost value is smaller than the maximum cost value of the last iterations. This method is referred to as non-monotonic backtracking line search [START_REF] Grippo | A Nonmonotone Line Search Technique for Newton's Method[END_REF].

With inspiration from Newton's method, Barzilai and Borwein propose a gradient method with varying step sizes in [START_REF] Barzilai | Two-point Step Size Gradient Methods[END_REF]. Their method accounts for the curvature of the cost function by approximating second-order quantities with finite-difference schemes. The authors introduce two different step sizes:

• the "long" Barzilai-Borwein step:

µ BB1 t := y t-1 -y t-2 2
∇f(y t-1 ) -∇f(y t-2 ) ; y t-1y t-2 , (2.2.9)

• the "short" Barzilai-Borwein step:

µ BB2 t := ∇f(y t-1 ) -∇f(y t-2 ) ; y t-1 -y t-2 ∇f(y t-1 ) -∇f(y t-2 ) 2 .
(2.2.10)

The Barzilai-Borwein method usually enables to reach the stopping criterion in fewer iterations without computing any Hessian, at the cost of a convergence theoretical guarantee. In the literature, several extensions to this method have been proposed [START_REF] Castera | Second-order Step-size Tuning of SGD for Nonconvex Optimization[END_REF][START_REF] Dai | Modified Two-point Stepsize Gradient Methods for Unconstrained Optimization[END_REF].

Proximity operators and proximal methods

Definitions

The proximity operator was introduced by Jean-Jacques Moreau [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace Hilbertien[END_REF] in 1962 as a generalization of the projection operator. It is now a fundamental tool in contemporary non-smooth optimization methods. With H being a Hilbert space, the proximity operator of a lower semicontinuous convex function f ∈ Γ 0 (H) is defined as the mapping of an input vector y ∈ H to the unique solution of the following minimization problem:

prox ρ -1 f (y) := argmin x∈H f(x) + ρ 2 x -y 2 . ( 2.2.11) 
It can alternatively be defined with the help of the subdifferential operator: prox ρ -1 f (y) := (Id + ρ -1 ∂f) -1 (y),

(2.2.12)

with ∂• being the subdifferential operator, i. e. , the mapping of a convex function to the set of its subgradients, defined as follows:

∂f(y) := {v ∈ H | ∀x ∈ H, x -y ; v + f(y) f(x)} . (2.2.13)
The proximity operator can also be extended to nonconvex functions, resulting in a set-valued operator. In the literature, closed-form expressions of the mapping are known only for a limited number of families of functions (e. g. , indicator functions or p norms for some values of p).

Properties and characterization

In the literature, a consequential number of properties for proximity operators and proximal calculus can be found. Only a handful of them will be detailed in the context of this thesis.

One of the fundamental properties of proximity operators is that the fixed points of prox f are the minimizers of f for every f ∈ Γ 0 (H): When H = R, the following corollary can be deduced [START_REF] Patrick | Proximal Thresholding Algorithm for Minimization Over Orthonormal Bases[END_REF]:

∀y ∈ H, y = prox f (y) ⇔ y ∈ argmin f. ( 2 
Corollary 2.1. It exists f ∈ Γ 0 (R) such that g : R → R is the proximity operator of f if and only if g is non-decreasing and non-expansive.

In [START_REF] Gribonval | A Characterization of Proximity Operators[END_REF], the authors extend the theorem to eventually nonconvex functions f : H → R ∪ {+∞} and demonstrate a relation between f, g and h. In that case, the non-expansiveness condition (2.2.17) can be dismissed and the theorem writes: Theorem 3 ([58]). Let Y be a non-empty subset of H. It exists f : H → R ∪ {+∞} such that g : Y → H is the proximity operator of f if and only if the following condition is met: ) imply that for any function g that can be characterized as the proximity operator of a function f, the expression of f is connected to h, a "primitive" function of which g is a subgradient. When g is invertible, the expression of f can be retrieved with the change of variable x = g(y) :

• It exists h ∈ Γ 0 (H) such that: ∀y ∈ Y, g(y) ∈ ∂h(y). ( 2 
f(x) = g -1 (x) ; x - 1 2 x 2 -h(g -1 (x)). (2.2.20) 

Proximal methods

The proximity operator is an essential component of a class of convex optimization algorithms entitled proximal methods. We discuss here a few of them. We consider the following problem of minimizing f ∈ Γ 0 (H). With the help of the Theorem 1, the proximal point algorithm displayed in Algorithm 3 is shown to converge to the minimizer of f [START_REF] Heinz | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] for any positive ρ.

We now assume that f can be splitted into two convex terms f 1 , f 2 ∈ Γ 0 (H). The optimization problem now writes:

minimize f 1 (y) + f 2 (y), (2.2 

.21)

If f 1 is differentiable, the proximal gradient algorithm [START_REF] Daubechies | An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint[END_REF][START_REF] Lions | Splitting Algorithms for the Sum of Two Nonlinear Operators[END_REF] can be written as in Algorithm 4, where µ t denotes the gradient step size.

The proximal gradient algorithm is shown to converge if ∇f 1 is Lipschitz, µ t is fixed and chosen smaller than the inverse of the Lip-Algorithm 5 : Alternating direction method of multipliers Parameters : ρ > 0. 1 Initialize u 0 , λ 0 . 2 while stopping criteria not met do

3 y t+1 := prox ρ -1 f 1 (u t -λ t ) 4 u t+1 := prox ρ -1 f 2 (y t+1 + λ t ) 5 λ t+1 := λ t + y t+1 -u t+1 6 end schitz constant. If f 2 is
an indicator function, this algorithm reduces to the projected gradient algorithm.

The Alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF] also considers a splitting of the optimizaton problem, with f 1 , f 2 eventually both non-differentiable. It consists in minimizing the following Lagrangian term L with regards to each variable alternatively.

L(y, u, λ) = f 1 (y) + f 2 (u) + λ T (y -u) + ρ 2 y -u 2 , (2.2.22)
where u is an auxiliary variable and λ the Lagrange multiplier. The algorithm is summarized in Algorithm 5.

ADMM is shown to converge in terms of objective function and residual (i. e. , y and u converge to the same value) for any positive ρ.

Bregman divergences

Definition

Bregman divergences are a class of functions measuring the difference between two points. A Bregman divergence1 D ψ is defined from a strictly-convex and continuously-differentiable generating function ψ as follows:

D ψ (y | z) = k d ψ (y k | z k ), (2.2.23) 
where

d ψ (y k | z k ) = ψ(y k ) -ψ(z k ) -ψ (z k )(y k -z k )
and ψ is the derivative of the generating function. Bregman divergences are nonnegative, convex with regards to their first argument and generally non-symmetric (i. e. , D ψ (y

| z) = D ψ (z | y)).
In this thesis, the divergences are refered to as "left" (respecitvely "right") when they are considered as functions of their first (resp. second) argument with fixed second (resp. first) argument. Bregman divergences include many well-known divergences and distances such as beta-divergences [START_REF] Hennequin | Beta-divergence As a Subclass of Bregman Divergence[END_REF], which include the Kullback-Leibler and Itakura-Saito divergences as well as the quadratic cost function. Examples of Bregman divergences and their generating functions can be found in Table 1. Figure 2 displays plots of usual Bregman divergences with fixed first and second arguments. Divergence 

d ψ (y | z) ψ(y) ψ (y) Quadratic cost 1 2 (y -z) 2 1 2 y 2 y Kullback-Leibler y(log y -log z) -(y -z) y log y 1 + log y Itakura-Saito y z -log y z -1 -log y -y -1 beta-divergence (β ∈ R \ {0, 1}) y β β -1 - βyz β-1 β -1 + z β y β β(β -1) - y β -1 + 1 β y β-1 -1 β -1 1 2 3 4 5 y d ψ (y | z) ( 

Statistical interpretation

Many usual Bregman divergences can be interpreted under the statistical lens as likelihood functions [START_REF] Smaragdis | Static and Dynamic Source Separation Using Nonnegative Factorizations: A Unified View[END_REF]. This means that there exists a probability density function p such that:

-log p(y | z) = aD ψ (y | z) + b, (2.2.24)
where a and b are constants and a is nonnegative. For example, minimizing the KL divergence between y and z assumes that y follows a Poisson model [START_REF] Virtanen | Bayesian Extensions to Non-negative Matrix Factorisation for Audio Signal Modelling[END_REF]. Similarly, minimizing the IS divergence implies a multiplicative Gamma noise model while the quadratic cost function implies an additive Gaussian noise model [START_REF] Févotte | Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis[END_REF]. 

Proximity operator of usual Bregman divergences

f prox f (y) Quadratic 1 2ρ • -z 2 ρy + z ρ + 1 left KL ρ -1 D KL (• | z) ρ -1 W(ρz e ρy ) left IS ρ -1 D IS (• | z) 1 2ρ (-z -1 + ρy ± √ ∆ ) with ∆ := 4ρ + (z -1 -ρy) 2 right KL ρ -1 D KL (z | •) 1 2ρ (y -1 ± √ ∆) with ∆ := 4ρz + (1 -y) 2
A closed-form expression of the proximity operator can be obtained for some of the usual Bregman divergences, such as the quadratic cost function and the KL right and left divergences [START_REF] Patrick | Proximal Splitting Methods in Signal Processing[END_REF][START_REF] Gheche | Proximity Operators of Discrete Information Divergences[END_REF]. These are summarized in Table 2.

To the best of our knowledge, the proximity operator of the left IS divergence has not been derived in closed-form in the literature. Therefore, for the sake of completeness, we derive it in Appendix 2.A.

deep learning

Neural networks

Definition

Neural networks are a class of machine learning models inspired by the behavior of the biological brain [START_REF] Rosenblatt | Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms[END_REF]. They are constructed as a composition of operations (neurons) computed on data. We consider in the following the feedforward neural network F:

ẑ = F(y) and F = F T • • • • • F 1 . (2.3.1)
The functions F t are termed layers of the network, while y and ẑ are respectively refered to as input and output of the network. Most of the time, every layer F t is composed of a linear operation (e. g. , a multiplication or a convolution) and an entrywise nonlinear operation, termed activation function. We denote by Θ the collection of all the parameters of the network.

Training a neural network

Neural networks can be considered as universal approximators of any continuous function [START_REF] Cybenko | Approximation by Superpositions of a Sigmoidal Function[END_REF][START_REF] Gribonval | Approximation Spaces of Deep Neural Networks[END_REF][START_REF] Hornik | Approximation Capabilities of Multilayer Feedforward Networks[END_REF]. They have the ability to model the relationship between inputs and outputs after a training stage. For this purpose, the supervised learning framework considers training as a minimization problem between observed and predicted data: minimize

Θ (y i , z i )∈∆ J(z i , F(y i )), (2.3.2)
where J is a cost function and ∆ is the training dataset, i. e. , a collection of input/output pairs (y i , z i ) i=1, ..., I . The training stage is achieved with the help of an optimizer, i. e. , an iterative optimization algorithm relying on gradient computation. For each training step, the parameters of the network are updated. A wide range of optimizers exist in the literature and the most popular include Stochastic Gradient Descent (SGD) [START_REF] Robbins | A Stochastic Approximation Method[END_REF], AdaGrad [START_REF] Duchi | Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[END_REF] and Adam [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF].

Unfolding iterative algorithms

Unfolding (or unrolling) is an attempt to include model knowledge in learning-based approaches. This strategy consists in considering each iteration of a model-based optimization algorithm as a trainable neural layer. This results in a deep neural network with an explainable architecture and a limited number of parameters. Furthermore, empirical work suggests that it is prone to have a good ability to generalize to unseen data or experimental conditions [START_REF] Li | Efficient and Interpretable Deep Blind Image Deblurring via Algorithm Unrolling[END_REF].

An example: ISTA and LISTA

We consider in the following example the LASSO problem [START_REF] Tibshirani | Regression Shrinkage and Selection via the LASSO[END_REF]:

minimize y Dy -z 2 + η y 1 (2.3.3)
The formulation of LASSO implies knowledge on y: the sparsity of y is promoted by regularizing (2.3.3) with the 1 norm. The Iterative Shrinkage-Thresholding Algorithm (ISTA) is a proximal gradient algorithm applied to LASSO. It alternates a gradient step to descend the least-squares part of (2.3.3) and a proximal step to descend the regularization term. The proximity operator of the 1 norm is known as soft-thresholding operator and it is defined as follows:

S ν (y) = sign(y)(|y| -ν) + , (2.3.4)
where sign(•) returns (entrywise) the sign of its input and (•) + its positive part. ISTA is detailed in Algorithm 6, with µ t denoting the gradient step.

Algorithm 6 : Iterative Shrinkage-Thresholding Algorithm Parameters :

(µ t ) ∈ R N , η ∈ R. 1 Initialize y 0 . 2 while stopping criteria not met do 3 y t+1 := S ηµ t y t -µ t D H (Dy t -z) 4 end
When considering a finite number of ISTA iterations, one can already note a similarity with deep neural networks: the algorithm alternates affine transforms (the gradient steps) with non-linear entrywise operations (the soft-thresholding steps). The latter can be interpreted as activation functions.

In [START_REF] Gregor | Learning Fast Approximations of Sparse Coding[END_REF], Gregor and Le Cun propose to unfold ISTA in a deep neural network entitled Learned ISTA (LISTA). They first rewrite the ISTA iteration as:

y t+1 = S ν W (z) z + W (y) y t , (2.3.5) 
with

W (z) = µD H , W (y) = Id -µD H D and constant gradient step.
The authors unfold the algorithm and choose ν, W (y) and W (z) as learnable parameters, shared among the layers of the network. LISTA compares advantageously to ISTA by producing better solutions with fewer iterations while respecting the sparsity model. Moreover, its architecture is explainable.

Unfolded iterative algorithms for inverse problems

The deep unfolding technique has been applied to a wide range of works following the seminal work [START_REF] Gregor | Learning Fast Approximations of Sparse Coding[END_REF] and has found application in numerous fields other than audio signal processing. A nonexhaustive list is detailed in the following.

In [START_REF] Bertocchi | Deep Unfolding of a Proximal Interior Point Method for Image Restoration[END_REF], the authors propose a neural network architecture from a variational formulation of the image restoration problem. They unfold the proximal point algorithm, resulting in a network that outperforms state-of-the-art methods for image deblurring tasks.

Unfolding is considered for an image super-resolution task in [START_REF] Zhang | Deep Unfolding Network for Image Super-resolution[END_REF]. After detailing the degradation model and the formulation of the problem, the authors propose to unfold the half-quadratic splitting algorithm. The proposed network is shown to perform comparably to other standard learning-based methods.

The unfolding of NMF is also proposed in [START_REF] Nasser | Deep Unfolding for Non-negative Matrix Factorization with Application to Mutational Signature Analysis[END_REF], where the authors introduce deep architectures for both supervised and unsupervised learning settings. Their framework outperformed standard approaches in biological data analysis tasks. In [START_REF] Hershey | Deep Unfolding: Model-based Inspiration of Novel Deep Architectures[END_REF], the authors propose a deep NMF framework based on unfolding for speech enhancement. By untying the parameters and despite using far fewer, their approach is competitive with traditional neural networks in their experimental work.

The authors of [START_REF] Lohit | Unrolled Projected Gradient Descent for Multispectral Image Fusion[END_REF] design a neural network from the iterations of the projected gradient algorithm for multi-spectral image fusion. A CNN replaces the projection operator in this case. In [START_REF] Amir | Dense Recurrent Neural Networks for Accelerated MRI: History-cognizant Unrolling of Optimization Algorithms[END_REF], the authors unfold the proximal gradient algorithm for MRI data reconstruction. They add skip connections to the network to simulate the memory of the first iterates in the late layers.

Activation functions and proximity operators

With the LISTA example, the soft-threshoding operator was interpreted as an activation function. Most of the latter can indeed be interpreted as proximity operators. This connection has been investigated in [START_REF] Patrick | Deep Neural Network Structures Solving Variational Inequalities[END_REF], where the authors observe that most of the usual activation functions belong to the same class of functions, that can be characterized as proximity operators. They denote A(R) the set of non-decreasing, non-expansive functions from R to R that take value 0 at 0. With the help of the Corollary 2.1 and (2.2.14), the following theorem can be deduced:

Theorem 4 ([27]). Let g : R → R. Then, g ∈ A(R) if and only if there exists f ∈ Γ 0 (R), which is minimized in 0, such that g = prox f .
Following Theorems 3 and 4, most of the usual activation functions can be expressed as proximity operators of functions that can be characterized. Table 3 includes illustrations from the original study [START_REF] Patrick | Deep Neural Network Structures Solving Variational Inequalities[END_REF]. 

f(y) Identity y 0 ReLU (y) + ι [0;+∞[ (y) PReLU    y if y 0, αy else.    0 if y 0, y 2 1-α 2α else. Sigmoïd 1 1+e -y -1 2          (y + 1 2 ) log(y + 1 2 ) + ( 1 2 -y) log( 1 2 -y) -1 2 (y 2 + 1 4 ) if |y| < 1 2 , -1 4 if |y| = 1 2 , +∞ else. Arctangent 2 π arctan    -2 π log(cos( πy 2 )) -1 2 y 2 if |y| < 1, +∞ else. Hyperbolic tangent tanh          (1+y) log(1+y)+(1-y) log(1-y)-y 2 2 if |y| < 1, log(2) -1 2 if, |y| = 1, +∞ else. A P P E N D I C E S

2.a proximity operator of the left is divergence

The closed-form expression of the proximity operator of the left IS divergence is detailed hereafter.

Lemma 1.

∀y ∈ R K , prox ρ -1 D ψ (• | z) (y) = 1 2ρ (-z -1 + ρy ± √ ∆ ), (2.A.1)
with

∆ := 4ρ + z -1 -ρy 2 .
Proof. Let us consider ψ such that ψ(y) =log y. We consider the problem (2.2.11) with f(y) = D ψ (y | z). Note that such a function is defined only for vectors with nonnegative entries. We can, however, broaden its definition domain to R K by assuming that [START_REF] Gheche | Proximity Operators of Discrete Information Divergences[END_REF]. We then look for y such that ∇Q(y) = 0, where

D ψ (y | z) = +∞ if y / ∈ R K + [
Q(y) = D ψ (y | z) + ρ 2 y -p 2 .
We have:

∇Q(y) = ψ (y) -ψ (z) + ρ(y -p) (2.A.2) = z -1 -y -1 + ρ(y -p). (2.A.3) Therefore, ∇Q(y) = 0 ⇐⇒ y z -1 -1 + ρy (y -p) = 0 (2.A.4) ⇐⇒ ρy 2 + (z -1 -ρp) y -1 = 0. (2.A.5)
Finally:

prox ρ -1 D ψ (• | z) (y) = 1 2ρ (-z -1 + ρy + √ ∆ ), (2.A.6) 
where

∆ := 4ρ + (z -1 -ρy) 2 .
3 This chapter introduces the problems addressed in this thesis as well as common methods to tackle them. Section 3.1 defines the phase retrieval problem and provides an overview of the usual approaches considered for its resolution. In Section 3.2, the phase retrieval problem is examined from the audio perspective and specific algorithms are presented. The chapter ends in Section 3.3, which describes learning-based methods: deep neural networks in the context of audio signal recovery and unfolded iterative algorithms.

R E L AT E D W O R K 3.

the phase retrieval problem

Problem formulation

The phase retrieval (PR) problem consists in reconstructing a signal from phaseless nonnegative measurements. It occurs in a variety of fields including optical imaging [START_REF] Walther | The Question of Phase Retrieval in Optics[END_REF], astronomy [START_REF] Fienup | Phase Retrieval and Image Reconstruction for Astronomy[END_REF], X-ray crystallography [START_REF] Harrison | Phase Problem in Crystallography[END_REF], and audio signal processing [START_REF] Gerkmann | Phase Processing for Single-channel Speech Enhancement: History and Recent Advances[END_REF][START_REF] Mowlaee | Advances in Phase-aware Signal Processing in Speech Communication[END_REF], which is the main motivation of this thesis. In this manuscript, the measurements are modeled as follows:

r ≈ |Ax | d , (3.1.1)
where x ∈ C L is the unknown signal, A ∈ C K×L is the measurement operator and r ∈ R K + collects the phaseless measurements. In practice, the measurements are most of the time either magnitude (d = 1) or power (d = 2) measurements.

The PR problem is inherently ill-posed as different signals can generate identical measurements. The retrieved signal can thus only be recovered up to a certain level of ambiguity depending on the measurement operator. A trivial ambiguity is the global phase: if x is a solution to PR, cx is also a solution for all scalar c ∈ C such that |c| = 1. Phase retrieval may be tackled with various conventional optimization algorithms. An overview of the main methods is detailed in the following. These approaches can be divided into two groups: nonconvex and convex methods.

Nonconvex methods

Phase retrieval is usually expressed as an optimization problem involving a quadratic error function:

min x∈C L |Ax| d -r 2 , (3.1.2)
As this formulation is nonconvex, some prior knowledge about the unknown signal and the measurement operator is necessary to yield a meaningful and good quality estimate. Initialization is also crucial in order to converge to better local minima.

In the seminal work [START_REF] James R Fienup | Phase Retrieval Algorithms: A Comparison[END_REF], the Error Reduction algorithm (ER) is proposed to solve PR with Fourier magnitude measurements (d = 1 and A is the DFT). It can be encompassed in the class of alternating projections algorithms. ER alternates two projections: one onto the set of measurements whose magnitude is equal to r and the other onto S 0 , the set of signals that satisfy a specific support constraint. The ER algorithm is displayed in Algorithm 7 with P S 0 being the projection operator on S 0 .

ER generalizes the Gerchberg-Saxton algorithm (GSA) [START_REF] Ralph W Gerchberg | A Practical Algorithm for the Determination of Plane from Image and Diffraction Pictures[END_REF], an alternating projections algorithm to reconstruct a signal from its modulus and its Fourier magnitude. ER can also be interpreted as a gradient descent algorithm for the quadratic loss (3.1.2) and is shown to converge to a stationnary point [START_REF] Fannjiang | The Numerics of Phase Retrieval[END_REF].

Wirtinger Flow (WF) [START_REF] Emmanuel | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF] is another gradient descent algorithm for (3.1.2), with power measurements (d = 2). It consists of two steps:

1. an initialization based on a spectral method, that computes the largest eigenvector of the matrix A H diag(r)A;

2. a gradient descent update, calculated via the Wirtinger gradient (see Section 2.2).

Algorithm 8 : Wirtinger Flow algorithm

Parameters :

(µ t ) ∈ R N 1 Initialize v 0 ∈ C L . 2 for t = 0 to T do 3 v t+1 := A H diag(r)Av t A H diag(r)Av t 4 end 5 x 0 := v T ; 6 while iterate do 7 x t+1 := x t -µ t A † (Ax t ) (|Ax t | 2 -r) 8 end
In practice, the initialization is computed via the power method, a standard numerical technique to estimate the dominant eigenvector of a matrix [START_REF] Richard L Burden | Numerical Analysis[END_REF]. The algorithm is summarized in Algorithm 8 where µ t denotes the gradient step size.

In [START_REF] Emmanuel | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF], the step size is set heuristically and grows exponentially in the first iterations before being fixed at a constant. Variations of this algorithm include the Truncated Amplitude Flow [START_REF] Wang | Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow[END_REF] and the Thresholded Wirtinger Flow algorithms [START_REF] Cai | Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow[END_REF].

The ADMM algorithm has been used several times to address phase retrieval as well. In [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF], PR is expressed as the following constrained problem by introducing auxiliary variables for the magnitude and phase of Ax: 

min x∈C L ,u∈R K + ,θ∈[0;2π[ K r -u 2 s.t. Ax = u e iθ . ( 3 
L(x, u, θ, λ) = r -u 2 + λ H (Ax -u e iθ ) + ρ 2 Ax -u e iθ 2 , (3.1.4)
where λ is the vector of the Lagrange multipliers corresponding to the constraint Ax = u e iθ and ρ is the penalty parameter. By minimizing (3.1.4), the authors derive the ADMM update rules detailed in Algorithm 9.

In [START_REF] Wen | Alternating Direction Methods for Classical and Ptychographic Phase Retrieval[END_REF], Wen et al. address PR as a feasibility problem. Instead of (3.1.2), they consider the following formulation:

find x ∈ C L s.t. |Ax| = r and x ∈ S 0 , (3.1.5)
where S 0 is the set of signals respecting an additional constraint (in optics, a typical constraint is that the signal is real-valued and nonnegative). The ADMM updates are specified in Algorithm 10 with P S 0 being the projection operator on S 0 . Other optimization algorithms have also been considered for phase retrieval. For instance, majorization-minimization is used in [START_REF] Qiu | PRIME: Phase Retrieval via Majorization-minimization[END_REF] with Algorithm 9 : ADMM ( [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF])

Parameters : ρ ∈ R 1 Initialize λ 0 ∈ C L , x 0 ∈ C K . 2 while iterate do 3 u t+1 = ρ|Ax t +ρ -1 λ t |+2r ρ+2 4 θ t+1 = Ax t +ρ -1 λ t |Ax t +ρ -1 λ t | 5 x t+1 = A † u t+1 e iθ t+1 -λ t ρ 6 λ t+1 = λ t + ρ Ax t+1 -u t+1 e iθ t+1

end

Algorithm 10 : ADMM ( [START_REF] Wen | Alternating Direction Methods for Classical and Ptychographic Phase Retrieval[END_REF])

1 Initialize λ 0 , u 0 ∈ C K . 2 while iterate do 3 x t+1 = P S 0 (u t -λ t ) 4 u t+1 = A † r A(x t+1 +λ t ) |A(x t+1 +λ t )| 5 λ t+1 = λ t + ρ(x t+1 -u t+1 ) 6 end
four different algorithmic variants. The Douglas-Rachford Splitting is also examined in [START_REF] Chen | Coded Aperture Ptychography: Uniqueness and Reconstruction[END_REF][START_REF] Chen | Fourier Phase Retrieval with a Single Mask by Douglas-Rachford Algorithms[END_REF] and has been shown to be equivalent to ADMM in the context of phase retrieval [START_REF] Fannjiang | Fixed Point Analysis of Douglas-rachford Splitting for Ptychography and Phase Retrieval[END_REF].

Convex methods

More recently, methods proposing convex relaxations of the PR problem have been presented. PhaseLift [START_REF] Emmanuel | Phaselift: Exact and Stable Signal Recovery from Magnitude Measurements Ia Convex Programming[END_REF] is the precursor of these techniques. This algorithm results from the following observation concerning power measurements:

∀k = 1, . . . , K; (|Ax| 2 ) k = Tr(a k a H k xx H ), (3.1.6) 
where a k is the k-th row of A and Tr is the matrix trace operator. With the rank-one matrix X = xx H , the phase retrieval problem now writes: find X, 

s.t. ∀k; Tr(a k a H k X) = r k , X 0, rank(X) = 1. ( 3 
X) = r k , X 0. (3.1.9)
This last problem is a convex semidefinite program (SDP) and can be tackled via a wide range of SDP solvers. When the measurement operator is a collection of random Gaussian vectors, PhaseLift has been shown to recover the unknown signal with high probability [START_REF] Emmanuel | Phaselift: Exact and Stable Signal Recovery from Magnitude Measurements Ia Convex Programming[END_REF].

PhaseCut [START_REF] Waldspurger | Phase Recovery, Maxcut and Complex Semidefinite Programming[END_REF] is another semidefinite relaxation of the phase retrieval problem. It starts by separating the amplitude and phase variables in the optimization problem with d = 1. PR now writes: In the following, methods to tackle PR with audio signals are detailed. Convex methods are rarely employed in this context due to their increased dimensionality and the large dimension of audio signals. Nonconvex methods, on the other hand, are rather common.

min u∈C K , |u|=1 x∈C L Ax -r u 2 . ( 3 

phase retrieval in audio 3.2.1 Context and applications

As many audio signal processing techniques operate on the spectrogram (or other phaseless time-frequency representations), phase retrieval is essential to reconstruct waveforms. Therefore, STFT magnitude or power measurements are usually considered and PR applies in a variety of tasks.

In speech enhancement, noise reduction algorithms are frequently formulated with spectrograms and discard the phase. Several methods have been proposed in order to estimate the phase components of the enhanced spectrogram. They achieve significantly better reconstruction performance than the methods ignoring the phase estimation [START_REF] Gerkmann | Phase Processing for Single-channel Speech Enhancement: History and Recent Advances[END_REF][START_REF] Krawczyk | STFT Phase Improvement for Single Channel Speech Enhancement[END_REF][START_REF] Mowlaee | Advances in Phase-aware Signal Processing in Speech Communication[END_REF].

PR is also useful with source separation (cf. Section 3.2.3), as most algorithms operate on phaseless time-frequency representations. A typical framework begins by estimating the magnitude spectrograms of the different sources of the mixture signal. Then, the signals are reconstructed from the source spectrogram estimates. The phase of the mixture is typically used as a phase estimate and the inverse STFT is computed. Several works observed that using PR approaches to estimate a proper phase results in better separation performance [START_REF] Magron | Modelbased STFT Phase Recovery for Audio Source Separation[END_REF][START_REF] Wang | End-to-end Speech Separation with Unfolded Iterative Phase Reconstruction[END_REF][START_REF] Wichern | Phase Reconstruction with Learned Time-frequency Representations for Singlechannel Speech Separation[END_REF].

Audio restoration is another application for PR. In [START_REF] Krémé | Phase Reconstruction for Time-frequency Inpainting[END_REF], the authors address audio inpainting in the time-frequency domain. They make use of PR algorithms to estimate the phase of the missing TF coefficients, whereas usual approaches only address magnitude inpainting. In [START_REF] Magron | Phase Reconstruction of Spectrograms with Linear Unwrapping: Application to Audio Signal Restoration[END_REF], declicking (i. e. , removing noise on short time periods) is addressed. The proposed method based on PR outperforms traditional restoration methods.

Specific algorithms

There are numerous PR algorithms in the literature that use the STFT operator and audio signals. They can be classified in two categories : iterative nonconvex optimization methods and model-based methods. The first ones are typically the counterparts of the PR algorithms detailed in Section 3.1 and were developped concurrently with them. Convex methods on the other hand, are rarely used in audio applications due to their increased computational cost: these methods do not scale to high dimension. Model-based methods design specific algorithms based on the structure of the STFT and audio signals. 

Iterative methods: Griffin-Lim algorithm and variants

The Griffin-Lim algorithm (GLA) [START_REF] Griffin | Signal Estimation from Modified Short-time Fourier Transform[END_REF] addresses the PR problem with magnitude spectrograms as measurements. This seminal work is the counterpart to the Error Reduction algorithm (cf. Section 3.1.2) and it is still widely used in the audio community. GLA alternates projections on M, the set of time-frequency coefficients whose magnitude is equal to the observed measurements, and C, the set of consistent coefficients (i. e. , that correspond to the STFT of time-domain signals). More formally, these sets write:

M = {x ∈ C K | |x| = r}, (3.2.1) 
C = {x ∈ C K | x = AA † x}. (3.2.2)
With the assumption of self-duality of the window used in the STFT, we have A † = A H and A H A = I L . The projections on the two sets then write:

P M (x) = r x |x| , (3.2.3) 
P C (x) = AA H x. (3.2.4)
Although M is not a subspace and is not convex, P M is usually called a projection since it maps an element of C K to its unique closest element in M. Alternating these projections after an initialization with random phase results in GLA, which is proved to converge to a critical point of the quadratic loss (3.1.2). GLA is displayed in Algorithm 11.

An accelerated version of GLA, termed Fast Griffin-Lim algorithm (FGLA), is proposed in [START_REF] Perraudin | A Fast Griffin-Lim Algorithm[END_REF] with a momentum strategy with constant acceleration parameter. It is shown experimentally to reach lower local minima of (3.1), yet without theoretical convergence guarantee. FGLA iterations are detailed in Algorithm 12, where ξ is the acceleration parameter.

In [START_REF] Lonce Wyse | An Efficient Algorithm for Real-time Spectrogram Inversion[END_REF], the authors propose Real-Time Iterative Spectrogram Inversion (RTISI), a real-time variant of GLA. It consists of applying GLA iterations frame by frame while only considering the previous frames. Algorithm 13 : Griffin-Lim like phase recovery via ADMM (GLADMM)

1 Initialize x0 . 2 ũ0 = x0 3 λ 0 = 0 4 while iterate do 5 xt+1 = P M ( ũt -λ t ) 6 ũt+1 = P C (x t+1 + λ t ) 7 λ t+1 = λ t + xt+1 -ũt+1 8 end 9 Return A H xT .
In [START_REF] Zhu | Realtime Iterative Spectrum Inversion with Look-ahead[END_REF], an extension to RTISI called RTISI with Look-Ahead (RTISI-LA) is proposed. The authors consider a few of the future frames and the previous frames in RTISI, which significantly improves the reconstruction performance.

A new PR optimization criterion based on consistency is proposed in [START_REF] Le Roux | Fast Signal Reconstruction from Magnitude STFT Spectrogram Based on Spectrogram Consistency[END_REF][START_REF] Le Roux | Explicit Consistency Constraints for STFT Spectrograms and Their Application to Phase Reconstruction[END_REF]. The authors also introduce an algorithm to minimize this new criterion, based on local approximations. They notice a connection between their scheme and GLA, which is the alternated minimization of an auxiliary function constructed with the proposed consistency-based loss.

The authors of [START_REF] Masuyama | Griffin-Lim like Phase Recovery via Alternating Direction Method of Multipliers[END_REF] draw on GLA to propose an ADMM scheme based on the following feasibility problem: When λ t = 0, the GLADMM iteration is identical to a Griffin-Lim algorithm step.

minimize x∈C K χ M (x) + χ C (x), (3.2 

Model-based methods

Various PR methods make use of the properties of the STFT operator and audio signals. Several of them are based on the phase derivatives and magnitude relations introduced in [START_REF] Michael R Portnoff | Magnitude-phase Relationships for Short-time Fourier Transforms Based on Gaussian Analysis Windows[END_REF]. These relations only hold theoretically when the STFT operator is applied to continuous functions and the analysis window is an infinite-support Gaussian function. With A g denoting such an operator, x being a real continuous function, m, n respectively denoting frequency and time, the relations write:

∂ A g x ∂m (m, n) = -γ ∂ ∂n log(|A g x|(m, n)), (3.2.6) ∂ A g x ∂n (m, n) = γ -1 ∂ ∂m log(|A g x|(m, n)) + 2πm. (3.2.7)
Here, γ denotes the time-frequency support ratio of the Gaussian window g, defined as follows:

g(n) = γ 2 -1 4 e -π n 2 4 . (3.2.8)
With (3.2.6) and (3.2.7), the phase gradient can be defined as:

∇ A g x(m, n) = -γ ∂ ∂n log(|A g x|(m, n)) γ -1 ∂ ∂m log(|A g x|(m, n)) + 2πm . (3.2.9)
In theory, knowing the original phase of a single time-frequency coefficient is enough to reconstruct the phase of the entire spectrogram by integrating the phase gradient (3.2.9) [START_REF] Pruša | A Noniterative Method for Reconstruction of Phase from STFT Magnitude[END_REF]. However, these relations do not stand in practice with discrete signals and finite-support windows. In [START_REF] Pruša | A Noniterative Method for Reconstruction of Phase from STFT Magnitude[END_REF], the authors still make use of them through approximations with a proposed algorithm entitled Phase Gradient Heap Integration. Their experimental work results in good reconstruction results, at the expense of theoretical guarantees. Other methods take interest in signal structure using sinusoidal models: sine waves phase can be reconstructed from the phase of a known coefficient as it grows linearly in time. The phase unwrapping algorithm [START_REF] Magron | Phase Reconstruction of Spectrograms with Linear Unwrapping: Application to Audio Signal Restoration[END_REF] proposes estimating first the instantaneous frequency of the sinusoidal components via quadratic spectrum interpolation. The phase of onsets is assumed to be known or estimated by another algorithm, and the phase is then linearly unwrapped [START_REF] Magron | Phase Reconstruction of Spectrograms Based on a Model of Repeated Audio Events[END_REF]. A similar method is developed by the Single Pass Spectrogram Inversion algorithm [START_REF] Gerald T Beauregard | Single Pass Spectrogram Inversion[END_REF] (SPSI), which detects peaks using quadratic interpolation and accumulates phase linearly.

Phase retrieval for audio source separation

Problem formulation

The source separation problem consists in estimating the source signals x (c) composing a mixture signal x. We consider a linear and instantaneous mixture model:

x = C c=1
x (c) .

(3.2.10)

Even though more intricate models include gain weights, delays or convolutions (e. g. , for dereverberation applications), these will not be considered in this thesis. As the STFT is linear, the source separation problem with model (3.2.10) can be expressed in the time-frequency domain as well:

find {x (c) } C c=1 s.t. x = C c=1 x(c) , (3.2.11) 
with x, x(c) denoting the STFT of the mixture and the sources, respectively.

(3.2.11) is often solved via time-frequency masking. This technique consists in estimating nonnegative masks b (c) that are multiplied by the STFT of the mixture to produce complex source estimates x(c) :

x(c) = b (c) x.
(3.2.12)

A wide range of approaches to mask estimation exist in the literature. Among them, Wiener filtering considers the following masks:

b (c) = r(c) C c =1 |r (c ) | 2 , (3.2.13)
which are optimal in the sense of the mean square error by design and with r(c) denoting a power spectrogram estimate. Methods to estimate r(c) include nonnegative matrix factorization [START_REF] Févotte | Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis[END_REF], kernel methods [START_REF] Liutkus | Kernel Additive Models for Source Separation[END_REF] and deep learning [START_REF] Wang | Supervised Speech Separation Based on Deep Learning: An Overview[END_REF]. The latter can also be used directly to mask estimation without the structure hypothesis (3.2.13). However, using nonnegative-valued masks for time-frequency masking implies that the phase of the source STFT estimate is equal to the phase of the mixture STFT. This assumption is known to be incorrect when the sources overlap in the time-frequency domain and to result in low-quality source estimates after the inverse STFT is applied. To address this issue, several methods aim at estimating the phase. Consistent Wiener filtering [START_REF] Le | Consistent Wiener Filtering for Audio Source Separation[END_REF][START_REF] Le Roux | Consistent Wiener Filtering: Generalized Time-frequency Masking Respecting Spectrogram Consistency[END_REF] introduces a framework accounting for the consistency of the source estimates in masking. This approach is extended in [START_REF] Magron | Consistent anisotropic wiener filtering for audio source separation[END_REF], where the phase is considered to be non-uniform, in contrast to previous Wiener filtering methods. Other methods make use of signal models in this context [START_REF] Eduardo | Least Squares Phase Estimation of Mixed Signals[END_REF][START_REF] Magron | Modelbased STFT Phase Recovery for Audio Source Separation[END_REF]. 

t+1 = y (c) t+1 + 1 C x -C c =1 y (c ) t+1 
8 end 9 end
The multiple input spectrogram inversion algorithm

The multiple input spectrogram inversion algorithm [START_REF] Gunawan | Iterative Phase Estimation for the Synthesis of Separated Sources from Single-channel Mixtures[END_REF] (MISI) is an extension to GLA [START_REF] Griffin | Signal Estimation from Modified Short-time Fourier Transform[END_REF] to perform PR with multiple measurements in the context of source separation. With the mixture x and spectrogram estimates r (c) of C sources, the problem can be formulated as follows:

min

{x (c) ∈R L } C c=1 C c=1 r (c) -|Ax (c) | 2 s.t. C c=1 x (c) = x. (3.2.14) 
MISI solves (3.2.14) with the iterations detailed in Algorithm 14.

MISI iterations begin with a Griffin-Lim step on each source, followed by a distribution of the mixture error on the different source estimates to enforce the mixture constraint. It was also demonstrated in [START_REF] Magron | Online Spectrogram Inversion for Low-latency Audio Source Separation[END_REF][START_REF] Wang | A Modified Algorithm for Multiple Input Spectrogram Inversion[END_REF] that this algorithm is related to the majorizationminimization approach and converges.

phase retrieval with deep learning

In recent years, many learning-based methods for tackling inverse problems in audio signal processing have been developed. We present hereafter techniques for phase retrieval using deep neural networks (DNN).

In order to tackle audio PR, Arik et al. propose in [START_REF] Sercan Ö Arık | Fast Spectrogram Inversion Using Multi-head Convolutional Neural Networks[END_REF] a novel convolutional neural network architecture, that is trained to synthesize audio from an observed spectrogram. The CNN includes several socalled "heads", which are subblocks of the network working in parallel with the same spectrogram input. The heads include the same transposed convolution layers, with different upsamplig factors. The loss function used is a sum of known losses in audio such as spec-tral convergence or 1 distance over log-magnitude spectrograms (c.f. Section 2.1.2). [START_REF] Takamichi | Phase Reconstruction from Amplitude Spectrograms Based on von Mises Distribution Deep Neural Network[END_REF] proposes a feed-froward DNN architecture to reconstruct phase from magnitude spectrogram. The authors train the network with cosines losses on phase and group delay, which statistically implies that the phase data follows a von Mises distribution. This work is extended to the modeling of group delay from magnitude spectrograms in [START_REF] Takamichi | Phase Reconstruction from Amplitude Spectrograms Based on Directional-statistics Deep Neural Networks[END_REF].

In [START_REF] Masuyama | Phase Reconstruction Based on Recurrent Phase Unwrapping with Deep Neural Networks[END_REF], the authors estimate the instantaneous frequency and the group delay from a magnitude spectrogram via two DNNs. The two networks are trained with a cosine loss. The authors reconstruct the phase with a recurrent unwrapping algorithm. A similar strategy is presented in [START_REF] Thieling | Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks[END_REF], where two DNNs are also used to estimate the phase derivatives. The networks are trained with a cosine loss with biquadratic regularization. The phase is reconstructed via integration over several paths.

Several deep learning based methods for phase retrieval also take inspiration from unfolding. In [START_REF] Wichern | Phase Reconstruction with Learned Time-frequency Representations for Singlechannel Speech Separation[END_REF], the authors unfold the MISI algorithm (see Section 3.2.3) for phase reconstruction in the context of source separation. The unfolded network includes parameterized layers emulating the STFT and the iSTFT, which enables the proposed architecture to learn audio representations from the data. [START_REF] Masuyama | Low-rankness of Complex-valued Spectrogram and Its Application to Phase-aware Audio Processing[END_REF] proposes a deep architecture for PR that is inspired by the unfolding of the Griffin-Lim algorithm. Every layer includes a GLA iteration and a denoising sublayer, which is a convolutional neural network trained separately to estimate the residual error.

Part II

P H A S E R E T R I E VA L W I T H B R E G M A N D I V E R G E N C E S P H A S E R E T R I E VA L F R O M S I N G L E S P E C T R O G R A M
The contributions of this chapter have been published in [START_REF] Vial | Phase Retrieval with Bregman Divergences and Application to Audio Signal Recovery[END_REF].

4 Problem (4.1.1) may be tackled with conventional optimization algorithms such as gradient descent [START_REF] Emmanuel | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF][START_REF] Decorsière | Inversion of Auditory Spectrograms, Traditional Spectrograms, and Other Envelope Representations[END_REF], alternating projections [START_REF] James R Fienup | Phase Retrieval Algorithms: A Comparison[END_REF][START_REF] Ralph W Gerchberg | A Practical Algorithm for the Determination of Plane from Image and Diffraction Pictures[END_REF], majorization-minimization [START_REF] Qiu | PRIME: Phase Retrieval via Majorization-minimization[END_REF], alternating direction method of multipliers [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF][START_REF] Wen | Alternating Direction Methods for Classical and Ptychographic Phase Retrieval[END_REF], and leveraging the structure of time-frequency measurements [START_REF] Bendory | Nonconvex Phase Retrieval from STFT Measurements[END_REF][START_REF] Pfander | Robust Phase Retrieval Algorithm for Time-frequency Structured Measurements[END_REF]. A presentation of several of these algorithms is detailed in Chapter 3, Section 3.1.

Even though a considerable amount of research has been conducted to tackle the PR problem as described in (4.1.1), such an approach suffers from one drawback when it comes to audio. Indeed, it is well established that the quadratic cost is not the best-suited metric for evaluating discrepancies in the time-frequency domain. For instance, it does not properly characterize the perceptually-related properties of audio such as its large dynamic range [START_REF] Gray | Distortion Measures for Speech Processing[END_REF].

As such, we propose to replace hereafter the quadratic cost function in (4.1.1) by alternative divergences which are more appropriate for audio signal processing [START_REF] Gray | Distortion Measures for Speech Processing[END_REF]. We consider Bregman divergences, a family of cost functions which encompasses the beta-divergence [START_REF] Cichocki | Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities[END_REF][START_REF] Hennequin | Beta-divergence As a Subclass of Bregman Divergence[END_REF] and some of its well-known special cases, the Kullback-Leibler (KL) and Itakura-Saito (IS) divergences. These are acknowledged for their superior performance in nonnegative audio spectral decomposition [START_REF] Févotte | Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis[END_REF][START_REF] Magron | Towards Complex Nonnegative Matrix Factorization with the Beta-divergence[END_REF][START_REF] Smaragdis | Static and Dynamic Source Separation Using Nonnegative Factorizations: A Unified View[END_REF][START_REF] Virtanen | Monaural Sound Source Separation by Nonnegative Matrix Factorization with Temporal Continuity and Sparseness Criteria[END_REF], audio inpainting [START_REF] Le Roux | Computational Auditory Induction As a Missing-data Model-fitting Problem with Bregman Divergence[END_REF], and music analysis [START_REF] Hennequin | NMF with Time-frequency Activations to Model Nonstationary Audio Events[END_REF][START_REF] Vincent | Adaptive Harmonic Spectral Decomposition for Multiple Pitch Estimation[END_REF]. Besides, these divergences naturally arise from a statistical perspective (cf. Section 2.2.3). For instance, minimizing the KL divergence between an observed and an estimated spectrogram assumes that the observations follow a Poisson model. Similarly, minimizing the IS divergence implies a multiplicative Gamma noise model [START_REF] Smaragdis | Static and Dynamic Source Separation Using Nonnegative Factorizations: A Unified View[END_REF]. In order to be as general as possible, we consider any nonnegative power d (we do not restrict to either 1 nor 2) and we account for the fact that these divergences are not symmetric with respect to their input parameters in general, which actually leads to tackling two different problems. To optimize the resulting objective, we derive two algorithms, based on accelerated gradient descent [START_REF] Boris | Some Methods of Speeding up the Convergence of Iteration Methods[END_REF] and ADMM [START_REF] Boyd | Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[END_REF].

The chapter is organized as follows. Section 4.2 describes the PR problem extended to Bregman divergences and details the two proposed algorithms. Section 4.3 presents the experimental works with audio signal recovery applications. Section 4.4 discusses strategies to choose optimally the step size with the proposed gradient algorithm. Finally, Section 4.5 draws some concluding remarks.

phase retrieval with bregman divergences

Problem setting

We propose to generalize the problem (4.1.1) by substituting the quadratic cost by a Bregman divergence. As it is not necessarily symmetric with respect to its input arguments, we will tackle the two following formulations of the problem, with D ψ denoting the Bregman divergence with generating function ψ:

min x∈C L → J (x) := D ψ (r | |Ax| d ), (4.2.1) 
min x∈C L ← J (x) := D ψ (|Ax| d | r). (4.2.2)
We will refer to problems (4.2.1) and (4.2.2) as "right PR" and "left PR" respectively.

Accelerated gradient descent

Similarly to [START_REF] Emmanuel | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF], we first propose a Wirtinger gradient descent algorithm to minimize the objective functions defined in (4.2.1) and (4.2.2).

The gradients of a Bregman divergence with respect to its first and second arguments are given by

∇ z D ψ (y | z) = ψ (z) (z -y), (4.2.3) 
∇ y D ψ (y | z) = ψ (y) -ψ (z). (4.2.4)
Using the chain rule [START_REF]Matrix Differential, Calculus with Applications, to, Simple, Hadamard, and Kronecker Products[END_REF], we obtain:

∇ → J (x) = (∇|Ax| d ) H [ψ (|Ax| d ) (|Ax| d -r)], (4.2.5) 
∇ ← J (x) = (∇|Ax| d ) H [ψ (|Ax| d ) -ψ (r)], (4.2.6) 
where the derivative ψ and second-derivative ψ are applied entrywise and ∇|Ax| d denotes the Jacobian of the multivariate function x → |Ax| d (the Jacobian being the extension of the gradient for multivariate functions, we may use the same notation ∇). 1 Using differentiation rules for element-wise matrix operations [START_REF]Matrix Differential, Calculus with Applications, to, Simple, Hadamard, and Kronecker Products[END_REF], we have:

∇|Ax| d = d 2 diag(|Ax| d-2 (Ax))A. (4.2.7)
Expressions of ψ, ψ and ψ for some typical Bregman divergences are given in Chapter 2, Table 1.

We rewrite the gradients (4.2.5) and (4.2.6) in the following compact form:

∇J(x) = (∇|Ax| d ) H g ψ , (4.2.8) 
where J can be either As such and together with (4.2.7), we obtain:

∇J(x) = d 2 A H |Ax| d-2 (Ax) g ψ . (4.2.11)
Using a constant step-size µ, our generic gradient algorithm writes:

x t+1 = x t -µ∇J(x t ). (4.2.12)
Similarly as in FGLA [START_REF] Perraudin | A Fast Griffin-Lim Algorithm[END_REF], we furthermore use an acceleration scheme [START_REF] Boris | Some Methods of Speeding up the Convergence of Iteration Methods[END_REF] resulting in the following updates:

q t+1 = x t -µ∇J(x t ),
x t+1 = q t+1 + ξ(q t+1q t ), (4.2.13)

where ξ is the acceleration parameter.

Remark: When considering a quadratic cost (i.e., ψ(z) = 1 2 z 2 ), problems (4.1.1), (4.2.1) and (4.2.2) become equivalent. In particular, when d = 1, both gradients (4.2.5)-(4.2.6) write:

∇J(x) = x -A H r Ax |Ax| . (4.2.14)
Gradient descent with step size equal to 1 thus yields:

x t+1 = A H r Ax t |Ax t | , (4.2.15)
which is nothing but the GLA update given by alternating the projections in Section 3.2. This shows that GLA can be seen as a gradient descent applied to the PR problem (4.1.1).

ADMM algorithm

In a similar fashion as in [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF], we propose to reformulate PR with Bregman divergences as a constrained problem. We detail hereafter the left PR problem, and a similar derivation can be conducted for its right counterpart. The problem rewrites:

min x∈C L ,u∈R K + ,θ∈[0;2π[ K D ψ (r | u) s. t. (Ax) d = u e iθ , (4.2.16) 
from which we obtain the augmented Lagrangian:

L(x, u, θ, λ) =D ψ (r | u) + λ H ((Ax) d -u e iθ ) + ρ 2 (Ax) d -u e iθ 2 , (4.2.17)
where ρ is the penalty parameter. The first step of our ADMM algorithm consists in updating the values of u and θ given x t and λ t :

{u t+1 , θ t+1 } = argmin u 0,θ L(x t , u, θ, λ t ). ( 4 

.2.18)

To that end, we first rewrite L as:

L(x, u, θ, λ) = D ψ (r | u) + ρ 2 (Ax) d + λ ρ -u e iθ 2 - 1 2ρ λ 2 . (4.2.19)
Therefore, problem (4.2.18) can be equivalently formulated as:

{u t+1 , θ t+1 } = argmin u 0,θ D ψ (r | u) + ρ 2 h t -u e iθ 2 , (4.2.20) 
with:

h t = (Ax t ) d + λ t ρ . ( 4 

.2.21)

With u fixed, the second term in (4.2.20) is minimized when the phase of h t is equal to θ. Thus, θ is updated as follows:

θ t+1 = h t . (4.2.22)
The problem in u can then be formulated as:

u t+1 = argmin u 0 D ψ (r | u) + ρ 2 |h t | -u 2 . (4.2.23)
As shown in Appendix 4.5, the minimization problem (4.2.23) remains unchanged when the positivity constraint on u is disregarded.

The u update can therefore be written

u t+1 = prox ρ -1 D ψ (r | •) (|h t |). (4.2.24)
The expressions of prox f for some of the divergences considered in our experiments are given in Table 2.

The second step of our ADMM algorithm consists in updating the value of x:

x t+1 = argmin x∈C L L(x, u t+1 , θ t+1 , λ t ). (4.2.25) 
Since only the second term on the right-hand side of (4.2.19) depends on x, this problem rewrites:

x t+1 = argmin x∈C L (Ax) d -u t+1 e iθ t+1 + λ t ρ 2 , (4.2.26)
which is a least-squares problem with the following closed-form solution:

x t+1 = A H u t+1 e iθ t+1 - λ t ρ 1/d . (4.2.27)
The final step of our ADMM algorithm consists in updating the Lagrange multipliers λ, as follows:

λ t+1 = λ t + ρ(Ax t+1 -u t+1 e iθ t+1 ). ( 4 

.2.28)

The whole ADMM procedure then consists in iteratively applying the updates given by (4.2.24), (4.2.27) and (4.2.28). The derivation of the updates for the left PR problem is similar, and the resulting algorithm is unchanged, except for the update of u in (4.2.24), which becomes:

u t+1 = prox ρ -1 D ψ (• | r) (|h t |). ( 4 

.2.29)

Algorithm 15 : Accelerated gradient descent for PR with the Bregman divergence.

1 Inputs: Measurements R ∈ R M×N + , initial phase φ 0 ∈ [0, 2π[ M×N +
, step size µ and acceleration parameter ξ. 2 Initialization: 3 X = R 1/d e iφ 0 4 x = iSTFT(X) 5 q old = 0 6 while stopping criteria not reached do

7 X = STFT(x) 8 if PR left then 9 G ψ = ψ (|X| d ) -ψ (R) else if PR right then G ψ = ψ (|X| d ) (|X| d -R) q = x -µ d 2 iSTFT(X |X| d-2 G ψ )
x = q + ξ(qq old ) q old = q end Output: x

Implementation details

We have presented gradient descent and ADMM algorithms for phase retrieval in the general case. We now address some specificities of audio signal recovery from a phaseless spectrogram, i.e., when A is the STFT matrix and x is real-valued. The STFT matrix A and its inverse are large structured matrices that allow for fast implementations of matrix-vector products of the forms Ax and A H y based on the fast Fourier transform [START_REF] Brigham | The Fast Fourier Transform[END_REF][START_REF] Smith | Spectral Audio Signal Processing[END_REF]. In that setting, one handles time-frequency matrices of size M × N, where M is the number of frequency channels and N the number of time frames, rather than vectors of size K = MN. As such, we provide in Algorithms 15 and 16 the pseudo-code for practical implementation of our accelerated gradient and ADMM algorithms, respectively, in the time-frequency audio recovery setting.

For generality, we assumed x ∈ C L in the previous sections. However, audio signals are real-valued and this deserves some comments. As shown in Appendix 4.5, the iterates x t remain real-valued under specific conditions. In a nutshell, a signal is real-valued if and only if its STFT X ∈ C M×N is frequency-Hermitian, that is: 

X(m, n) = X(M -m, n) * . ( 4 
X = R 1/d e iφ 0 4 x = iSTFT(X) 5 Λ = 0 6 while stopping criteria not reached do 7 X = STFT(x) 8 H = X d + 1 ρ Λ 9 Θ = H if PR left then U = prox ρ -1 D ψ (• | r) (|H|) else if PR right then U = prox ρ -1 D ψ (r | •) (|H|) x = iSTFT((U e iΘ -1 ρ Λ) 1/d ) Λ = Λ + ρ(STFT(x) -U e iΘ )
end Output: x main frequency-Hermitian (because operations only involve sums and element-wise products with frequency-Hermitian matrices). This in turn ensures that the variable x remains real-valued. As such, the STFT and inverse STFT (iSTFT) operations in Algorithms 15 and 16 need only return/process the first M 2 + 1 frequency channels (usually termed "positive frequencies"), as customary with real-valued signals [START_REF] Lempel | The Linear Time Frequency Analysis Toolbox[END_REF].

More rigorously, we may also re-derive our gradient and ADMM algorithms for x ∈ R L , using real-valued differentiation instead of Wirtinger gradients (and involving the real and imaginary parts of A in the objective function). This is addressed in Appendix 4.5 which shows that we indeed obtain the same algorithms.

numerical experiments

In this section, we conduct experiments on PR tasks. We first assess the potential of the proposed algorithms for recovering signals from exact (i.e., non-modified) spectrograms. Then, we consider a PR task from modified spectrograms, as often encountered in audio applications. In the spirit or reproducible research, the code related to those experiments is available online. 2 We also provide audio examples of reconstructed signals. 3

Experimental setup

Data

As acoustic material, we use two corpora in our experiments. The first one, referred to as "speech", is composed of 100 utterances taken randomly from the TIMIT database [START_REF] Garofolo | TIMIT Acousticphonetic Continuous Speech Corpus[END_REF]. The second one, referred to as "music", comprises 100 snippets from the Free Music Archive dataset [START_REF] Defferrard | FMA: A Dataset for Music Analysis[END_REF]. Signals from the "speech" corpus are 16-bits WAV files and signals from the "music" corpus are MP3 files encoded at 320 kbps. All audio excerpts are single-channel, sampled at 22, 050 Hz and cropped to be 2 seconds long. The STFT is computed with a 1024 samples-long (46 ms) self-dual sine window [START_REF] Smith | Spectral Audio Signal Processing[END_REF] (leading to an effective number of 513 frequency bins) and 50 % overlap. We used the librosa Python package [START_REF] Mcfee | Librosa: Audio and Music Signal Analysis in Python[END_REF].

Methods

PR is conducted using the algorithms presented in Section 4.2 under different settings as described next.

proposed gradient descent algorithm We experimented the accelerated gradient algorithm described in Algorithm 15 in the following settings:

• KL (β = 1) for the "right" and "left" problems with d ∈ {1, 2},

• β = 0.5 for the "right" and "left" problems and with d ∈ {1, 2},

• IS (β = 0) for the "right" problem with d = 2,

• quadratic cost (β = 2) with d ∈ {1, 2} (in that case the "right" and "left" problems are equivalent).

The "right" problems with KL, d = 1 on the one hand, and IS, d = 2 on the other hand, correspond to standard designs in NMF [START_REF] Févotte | Single-channel Audio Source Separation with NMF: Divergences, Constraints and Algorithms[END_REF][START_REF] Smaragdis | Static and Dynamic Source Separation Using Nonnegative Factorizations: A Unified View[END_REF].

The value β = 0.5 with either d = 1 or 2 has also been advocated in various papers, e.g., [START_REF] Vincent | Adaptive Harmonic Spectral Decomposition for Multiple Pitch Estimation[END_REF].

The algorithms are used with constant step-size µ and acceleration parameter ξ = 0.99 (like in [START_REF] Perraudin | A Fast Griffin-Lim Algorithm[END_REF]). The step-size is empirically set to the largest negative power of 10 enabling convergence for each cost function and value of d in the setting of the experiments reported in Sections 4.3.2 and 4.3.3. A summary of the parameter configurations and choice of cost functions is given in Table 1. 

µ = 10 -7 Associated code G•05•R1 G•05•L1 G•KL•R1 G•KL•L1 G•QD•1 G•IS•R2 Algorithm Gradient descent Gradient descent Gradient descent
ρ = 10 -1 Associated code G•05•R2 G•05•L2 G•KL•R2 G•KL•L2 G•QD•2 A•IS•L1 Algorithm ADMM ADMM [84] Griffin-Lim [59] Fast Griffin-Lim [115] GLADMM [99] Initialisation Cost Kullback-Leibler Quadratic (Quadratic) (Quadratic) (Indicator function) N/A Direction left N/A N/A N/A N/A N/A d 1 1 1 1 1 N/A Hyperparameter ρ = 10 -1 ρ = 10 -1 N/A N/A N/A N/A Associated code A•KL•L1 A•QD•1 GLA FGLA GLADMM INIT
proposed admm algorithm Applicability of ADMM is more limited than with gradient descent because it requires the expression of the proximal operators (4.2.24) and (4.2.29). We here consider the quadratic cost and "left" KL and IS problems. We set d = 1 and ρ = 1, which corresponds to the setting used by Liang et al. [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF] for the quadratic cost (which thus falls as a special case of our setting).

other baselines and parameters The previous algorithms are compared with the following other baselines: GLA, FGLA and GLADMM, presented in Section 3.2 and which use d = 1.

All the algorithms (baseline and contributed) are run for 2500 iterations (which ensures that convergence is observed for all algorithms) and initialized with the same uniform random phase (a single realization was used for each excerpt).

Evaluation metrics

The reconstruction quality is evaluated in the time-frequency domain with the standard spectral convergence (SC) metric (cf. Chapter 2). Additionally, for the "speech" corpus, we consider the short-term objective intelligibility (STOI) measure [START_REF] Cees H Taal | An Algorithm for Intelligibility Prediction of Time-frequency Weighted Noisy Speech[END_REF], which is computed with the PySTOI library [START_REF] Pariente | [END_REF]. This score has been used in several PRrelated papers such as [START_REF] Masuyama | Deep Griffin-Lim Iteration[END_REF][START_REF] Masuyama | Griffin-Lim like Phase Recovery via Alternating Direction Method of Multipliers[END_REF].

SC is directly related to the PR quadratic cost problem (4.1.1), formulated in the time-frequency domain, while the perceptual STOI is more related to the applicative needs. In both cases, the higher the value, the better the performance.

Let us note that alternative evaluation metrics exist, such as PESQ [START_REF] Rix | PESQ-the New ITU Standard for End-to-end Speech Quality Assessment[END_REF] or PEMO-Q [START_REF] Huber | PEMO-Q-A New Method for Objective Audio Quality Assessment Using a Model of Auditory Perception[END_REF], which are tailored for perceptually assessing speech quality. We also computed those, and the obtained results were overall consistent with the STOI measure, up to some minor differences. Besides, it has been shown that these measures are strongly correlated with STOI, notably in PR-related tasks [START_REF] Mayer | Impact of Phase Estimation on Singlechannel Speech Separation Based on Time-frequency Masking[END_REF].

Phase retrieval from exact spectrograms

First, we consider a PR task conducted on exact spectrograms. In this setting, measurements are directly obtained from the ground truth signals x , such that r = |Ax | d . These measurements r are then fed as inputs to the algorithms described in 4.3.1.

The results on the "speech" and "music" corpora are presented in Figures 1 and2 respectively, from which overall similar conclusions can be drawn.

The best performance in terms of SC are achieved by GLADMM and other ADMM algorithms, which are closely followed by algorithms optimizing the quadratic cost with d = 1. Note however that the advantage of quadratic cost-based algorithms against competing methods is less significant in terms of STOI. As recalled above, SC is directly related to the PR problem with quadratic cost (4.1.1) and consequently favors algorithms that directly tackle this problem.

A performance similar to that of quadratic cost-based algorithms is reached by some of the proposed alternative methods, such as the ADMM algorithms A•IS•L1 and A•KL•L1 and the gradient descent algorithms GD•05•R1, GD•KL•R2 and GD•KL•L2, in terms of SC and STOI (note that for the latter, the best performing methods exhibit a lower variance than the others). This outlines the potential of using alternative divergences rather than the quadratic cost function.

Besides, we observe that the performance of these methods depend on a variety of factors. For instance, the difference between the performance reached by GD•KL•R2 and GD•KL•R1, or between GD•QD•1 and GD•QD•2 (for both metrics and corpora) outlines the impact of d on the reconstruction quality. Likewise, considering a "left" rather than a "right" PR problem may yield very different results (see for instance the two corresponding gradient algorithms with β = 0.5 and d = 1).

Finally, for a given problem, the impact of the optimization strategy (i.e., ADMM vs. gradient descent) depends on the nature of the signals. For the "speech" corpus, ADMM algorithms (for KL and the quadratic cost) perform mildly better than their gradient algorithms respective counterparts. However, for the "music" corpus, A•KL•L1 significantly outperforms GD•KL•L1 in terms of SC.

To summarize, when retrieving a signal from an exact spectrogram, GLADMM and quadratic-minimizing algorithms (with d = 1) seem to perform best. Some alternative methods yield competitive results, but require to carefully adapt the setup (power d, cost β, "right" or "left" formulation) and optimization strategy (ADMM vs. gradient descent) to the problem, as well as considering the nature of the signals (speech or music). Note than when the data r is an exact spectrogram (i.e., r = |Ax | d ), the cost functions (4.2.1) and (4.2.2) share the same minimum value 0 and global solution x (up to ambiguities) for all ψ. This may explain why the somehow easier-to-optimize quadratic cost performs well in this scenario. However this result is to be contrasted when using modified spectrograms, as shown next.

Phase retrieval from modified spectrograms

We now consider a PR task from modified spectrograms. In audio restoration applications such as source separation [START_REF] Vincent | Audio Source Separation and Speech Enhancement[END_REF], audio inpainting [START_REF] Adler | Audio Inpainting[END_REF] or time-stretching [START_REF] Driedger | A Review of Timescale Modification of Music Signals[END_REF], the spectrogram that results from diverse operations does not necessarily correspond to the magnitude of the STFT of a signal. We propose to simulate this situation by modifying the spectrograms as in [START_REF] Masuyama | Griffin-Lim like Phase Recovery via Alternating Direction Method of Multipliers[END_REF]. We add synthetic Gaussian white noise in the time domain to each excerpt in the "speech" corpus. For each signal, the noise variance is chosen so that the input signal-tonoise ratio (SNR) takes the following values: 10, 0, -10, and -20 dB.

We then apply an oracle Wiener filter [START_REF] Liutkus | Generalized Wiener Filtering with Fractional Power Spectrograms[END_REF] to the mixture in the STFT domain: this yields a restored (even though inconsistent) magnitude spectrogram r which corresponds to realistic applications [START_REF] Masuyama | Griffin-Lim like Phase Recovery via Alternating Direction Method of Multipliers[END_REF]. To further recover a time-domain signal, we apply the considered PR algorithms to this modified spectrogram.

The results in terms of STOI are presented in Figure 3. Note that we do not report the SC, since it is mostly impacted by the spectrogram deformation procedure, not by the subsequent PR task. In that experiment, we observed some convergence problems at low input SNRs for several algorithms and signals: in these few cases, the gradient step size (which we recall was tuned using exact spectrogram data) was reduced by a factor 1/10.

At high input SNR (0 to 10 dB), we observe a similar trend than in the previous experiment: GLADMM and quadratic cost-based algorithms (with d = 1) enable better reconstruction in terms of STOI than other categories of algorithms. This confirms that such algorithms are appropriate for addressing the PR problem when the spectrograms are either exact or slightly degraded.

However, we observe a different trend at lower input SNRs, where some algorithms based on alternative cost functions exhibit more robustness to the spectrogram degradation caused by the input noise. For instance, while ADMM algorithms overall perform best at 10 dB input SNR, they are outperformed by alternative algorithms such as GD•KL•L2 at lower input SNRs (from 0 to -20 dB). Similarly and contrary to the case of high input SNRs, GLADMM is outperformed by other GL-based or ADMM algorithms. Interestingly, GD•05•L1 and GD•KL•R1 exhibit the most robust behavior among gradient algorithms with d = 1: while they perform worst at 10 dB input SNR, they actually achieve the best performance at -20 dB input SNR. On the other hand, the performance of several algorithms, such as GD•KL•R2, significantly drops when more noise is added, while they perform relatively well at high input SNRs. Finally, even though the best performance at very low input SNR is achieved by GD•05•L2, GD•KL•L2 might still be a good candidate for the task at hand: indeed, at input SNRs from 10 to -10 dB, it outperforms its counterpart using β = 0.5, and thus exhibits a more stable performance regarding the level of input noise.

Overall, the usefulness of PR with Bregman divergences is revealed when the spectrograms are highly corrupted (that is, when they are retrieved using a Wiener filter from very noisy observations), as quadratic cost-based algorithms are outperformed by alternative costbased algorithms in such a scenario. This might be explained by the ability of such divergences to better model and account for the nature of this destructive noise.

strategies for the choice of the gradient step size

In the experimental work detailed in the previous section, the gradient algorithm considered uses a fixed step size chosen empirically. Such a strategy is suboptimal: if the step size is too large, the algorithm diverges; if it is too small, the algorithm is excessively slow to reach a solution. Moreover, a step size that is appropriate for a given divergence may be suboptimal with another: no value is optimal for all. Finally, because PR is nonconvex, adjusting the step size may result in different solutions as different stationary points of the problem may be reached. Therefore, more intricate methods shall be considered to tune the step size of the considered gradient algorithms.

Experimental setup

Succinct experimental work is here conducted to study gradient algorithms with varying step size on PR tasks. A single utterance of the TIMIT database is here considered to generate nonlinear observations. 100 initializations of the gradient algorithms are obtained with random phases. The STFT parameters are identical as in the experiments of the previous section. We compare the gradient algorithms detailed in the following with PR tasks conducted on exact spectrograms. Both "left" and "right" PR problems are considered with d ∈ {1, 2} and KL, beta-divergence with β = 0.5 and quadratic cost functions. All the algorithms are run for 2500 iterations and performance is evaluated in terms of SC and STOI.

We consider the following strategies for chosing the gradient step.

gradient descent with fixed step size This method considers a constant step size. This context is similar to the previous experiments, and the step size is chosen according to the values of Table 1. This algorithm is studied without and with acceleration, which are respectively denoted as 'GD" and "GDA".

gradient descent with non-monotonic backtracking In this method, the considered step size is varying following a nonmonotonic backtracking rule as in [START_REF] Grippo | A Nonmonotone Line Search Technique for Newton's Method[END_REF]. At each iteration, the gradient step is adjusted with a scalar factor ν BT until the current cost is smaller than at least one of the last t w past cost values.

While J(x t+1 ) max

t-t w <j<t J(x j ) - µ t 2 ∇J(x t ) 2 : (4.4.1)
µ t ← ν BT µ t , ( 4 
.4.2)

x t+1 ← x t -µ t ∇J(x t ). (4.4.3)
Here, the initial step size is chosen equal to 10 times the value in Table 1 and ν BT = 0.5. The number of past cost values regarded with the rule is t w = 100 and a maximal number of backtracking iterations for each gradient iteration is fixed to 15. This algorithm is studied without and with acceleration, which are respectively denoted as "BT" and "BTA".

gradient descent with barzilai-borwein step and nonmonotonic backtracking This method also considers a varying step size following a non-monotonic backtracking rule, which is initialized with a Barzilai-Borwein step (cf. Chapter 2). The "long" step is here considered:

µ t = x t-1 -x t-2 2 ∇J(x t-1 ) -∇J(x t-2 ) ; x t-1 -x t-2 . ( 4 

.4.4)

As the Barzilai-Borwein method can lead to negative step sizes in locally-nonconvex regions, we adopt a strategy similar to [START_REF] Castera | Second-order Step-size Tuning of SGD for Nonconvex Optimization[END_REF]: a large step size is chosen when µ t < 0. The step size is then refined with the non-monotonic backtracking rule as previously. This algorithm is denoted as "BB+BT". It is not presented here with acceleration, as it empirically shown to lead the algorithm to diverge in early experiments.

Results

First, we present the results of the PR task with magnitude measurements in Figure 4. Generally speaking, the non-accelerated methods are outperformed by their accelerated counterparts with all the considered cost functions and according to both SC and STOI. When compared to the gradient descent algorithm with constant step size, the gradient algorithm with non-monotonic backtracking also shows higher SC and STOI for all cost functions. With acceleration, two different trends can be observed when comparing GDA and BTA. First, where GDA performs poorly ("left" beta-divergence and "right" KL ), BTA brings a significant improvement in performance in terms of both SC and STOI. Second, when GDA performs best ("left" KL, quadratic and "right" beta-divergence), we do not observe a significant difference in performance between GDA and BTA. Backtracking with the Barzilai-Borwein step shows little difference in SC and STOI when compared with non-monotonic backtracking or compares poorly. When the step size is tuned more accurately, quadratic cost and "right" beta-divergence lead to the best reconstruction results. However, gradient descent algorithms with divergences that showed poor performance in the experiments of Section 4.3 see their results greatly improved with a proper step size tuning strategy. They might reveal more potential in further research.

The performance of the PR task with power measurements is presented in Figure 5. In a similar fashion than with magnitude spectrograms, the accelerated methods outperform their non-accelerated counterparts in terms of SC and STOI in every setting. BT leads to a significant performance improvement when compared to GD. However, the algorithm appears to diverge with "right" KL. The improvement observed with BT also holds with accelerated methods as BTA significantly outperforms GDA with regards to both metrics. In contrast with PR from magnitude spectrograms, BB+BT shows to be more interesting with power spectrograms. It compares favorably to BT in terms of both SC and STOI and with all settings. Moreover, it converges with "right" KL. With their finest step size tuning method, both "left" and "right" KL, and "right" beta-divergence with β = 0.5 lead to better reconstruction performance when compared to phase retrieval with quadratic cost function.

In this section, we addressed tuning methods for the step size of the gradient descent algorithm for phase retrieval with Bregman divergences. Experimental work assessed the interest of non-monotonic backtracking strategies in this context, which improved the reconstruction performance with and without acceleration. With power spectrograms, the use of a Barzilai-Borwein step as initialization of the backtracking iterations leads to enhance the performance measured by SC and STOI, but this was however not observed with PR from magnitude spectrograms. Generally speaking, the scenarii that already lead to good results in the previous experiments are only slightly improved with these tuning methods. The divergences that compared favorably to the quadratic cost keep their advantage with proper step size tuning. However, poorly performing settings see their reconstruction performance greatly improved by such methods. Using a non-monotonic backtracking strategy therefore comes with a twofold advantage: first, it eases the choice of the step size parameter, which is critical with regards to reconstruction performance. Second, it leads to an improvement of the methods' results and confirms the potential of alternative divergences in phase retrieval.

conclusion

We have considered the problem of PR when the quadratic cost is replaced by Bregman divergences, a family of discrepancy measures with special cases that are well-suited for audio applications. We derived a gradient algorithm and an ADMM scheme for solving this problem and implemented them in the context of audio signal recovery. We evaluated the performance of these algorithms for PR from exact and modified spectrograms. We experimentally observed that when performing PR from exact or slightly degraded spectrograms, traditional algorithms based on the quadratic cost perform best. However, in the presence of high spectrogram distortion, these are outperformed by algorithms based on alternative cost functions. This highlights the potential of PR with the Bregman divergence for audio signal recovery from spectrograms under very noisy conditions. However it is difficult to recommend a specific alternative divergence at this stage. The choice is dependent on the amount of noise and possibly on the nature of the data itself (e.g., speech vs music). Gradient algorithms are very convenient because they can be applied to any setting, however finding efficient step sizes in every setting was chal-lenging. In that respect, appropriate methods to choose this parameter such as non-monotonic backtracking has proved to be helpful and improved the reconstruction performance. Our ADMM algorithms appeared more stable with respect to the level of noise and to the nature of the data but their applicability is more limited as they require the proximal operator to be known for each setting.

In future work, we intend to further improve the proposed gradient descent algorithms, notably by leveraging more refined initialization schemes, and to explore other optimization strategies such as majorization-minimization. It would be also useful to conduct subjective listening tests to fully assess the potential of using Bregman divergences for a phase retrieval task. In the next chapter, we tackle PR with non-quadratic measures of fit in frameworks where some additional phase information is available: speech enhancement and source separation applications.

A P P E N D I C E S

4.a algorithms derivations for real-valued signals

We here discuss the adaptation of our proposed gradient and ADMM algorithms to the specific case when the input signal is real-valued x ∈ R L .

In this setting, the gradient algorithm can be easily deduced from its complex-valued counterpart. Indeed, since x is real-valued, the gradient of J simply reduces to ∇ R J(x), as defined in Section 2.2. According to the property (2.2.7), this gradient is given by:

∇ R J(x) = 2 (∇J(x)). (4.A.1)
where ∇J(x) is computed using the Wirtinger derivatives. Consequently, the gradient update rule is similar to the complex-valued case, up to a constant factor of 2 and with the difference that we only need to retain the real part after applying A H (in practice, the inverse STFT).

Regarding the ADMM algorithm, we need to address the following sub-problem, in lieu of (4.2.26):

min x∈R L ||(Ax) d -b|| 2 2 . (4.A.2)
where we note b = u t+1 e iθ t+1 -λ t ρ . Since we only use ADMM algorithms with d = 1 in our experiments, we focus hereafter on this setting. By using again (2.2.7), we compute the gradient of the cost in (4.A.2) and set it at 0:

2 (A H Ax -A H b) = 0. (4.A.3)
This yields the following solution:

x = ( (A H A)) -1 (A H b). (4.A.4)
When using the STFT with a self-dual window we have A H A = I L and the update becomes

x = (A H b). (4.A.5)
It is the same update as in the complex-valued case (4.2.27) up to retaining the real part after applying the inverse STFT A H .

4.b regularized gradient expression

For some Bregman divergences and/or exponents d, the gradient of the cost functions (4.2.1) and (4.2.2) is not defined when one or more coefficients of Ax are zero-valued, which leads to division by zero and other potential numerical or conceptual issues. This is the case, for instance, when d 1, when computing |Ax| d-2 with d < 2, or when computing ψ (|Ax| d ) for a beta-divergence such that β 1. Therefore, we propose a rigorous treatment of this issue by considering regularized cost functions. More specifically, we consider the following alternative cost for the PR right problem (a similar technique is used for treating its left counterpart):

J ε (x) := D ψ (r 2 d + ε) d 2 | (|Ax| 2 + ε) d 2 , ( 4.B.1) 
with ε 1, such that J ε is now always defined and differentiable at 0. This yields the corresponding regularized gradient expression:

∇J ε (x) = d 2 A H (|Ax| 2 + ε) d 2 -1 Ax g ψ,ε , (4.B.2) 
with

g ψ,ε = ψ ((|Ax| 2 + ε) d 2 ) ((|Ax| 2 + ε) d 2 -(r 2 d + ε) d 2 ). (4.B.3)
For the PR left problem, a similar expression is obtained:

g ψ,ε = ψ ((|Ax| 2 + ε) d 2 ) -ψ ((r 2 d + ε) d 2 ). (4.B.4) 
We used this variant in our experiments, and implemented it in practice with ε = 10 -8 .

4.c nonnegativity constraint on u in admm

Here we prove that the nonnegativity constraint on u in problem (4.2.24) can be ignored. Let us first rewrite this problem into scalar form, as this problem is separable entrywise:

argmin u k 0 d ψ (r k | u k ) + ρ 2 |h k | -u k 2 . (4.C.1)
We will remove the index k in what follows for clarity. We aim to prove that:

If u < 0, d ψ (r | 0) + ρ 2 |h| 2 d ψ (r | u) + ρ 2 ||h| -u| 2 , (4.C.2)
If this inequality holds, then the minimizer of the function defined in (4.C.1) necessarily belongs to R + . Consequently, the nonnegativity constraint can be dismissed. Equation (4.C.2) rewrites:

ψ(r) -ψ(0) -ψ (0)r + ρ 2 |h| 2 ψ(r) -ψ(u) -ψ (u)(r -u) + ρ 2 ||h| -u| 2 , (4.C.3)
which is equivalent to:

ψ(0) -ψ(u) + rψ (0) -ψ (u)(0 -u) -rψ (u) + ρ 2 [-2u|h| + u 2 ] 0, (4.C.4)
which finally rewrites:

d ψ (0 | u) term 1 + r(ψ (0) -ψ (u)) term 2 + ρ 2 [-2u|h| + u 2 ] term 3 0. (4.C.5)
The latter inequality holds for the following reasons:

• Term 1 is nonnegative by nonnegativity of Bregman divergences.

• Term 2 is nonnegative by convexity of ψ and nonnegativity of r: ψ is convex, therefore ψ is monotonically non-decreasing. As u < 0, ψ (u) ψ (0) and r(ψ (0) -ψ (u)) 0.

• Term 3 is nonnegative because u is negative.

Therefore, (4.C.2) holds, which demonstrates that the nonnegativity constraint in (4.2.24) can be dismissed. Finally, using a similar proof, we can show that the same holds for the "left" PR problem.

P H A S E R E T R I E VA L F O R A U D I O S O U R C E S E PA R AT I O N
The contributions of this chapter have been published in [START_REF] Magron | Phase Recovery with Bregman Divergences for Audio Source Separation[END_REF].

5 

introduction

Audio source separation [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF] consists in extracting the underlying sources that add up to form an observable audio mixture. As presented in Chapter 3, Section 3.2.3, state-of-the-art approaches for source separation estimate a nonnegative mask that is applied to a time-frequency (TF) representation of the audio mixture, such as the short-time Fourier transform (STFT) [START_REF] Wang | Supervised Speech Separation Based on Deep Learning: An Overview[END_REF]. Applying a nonnegative mask to the mixture's STFT results in assigning its phase to each isolated source. Even though this practice is common and yields satisfactory results, it is well established [START_REF] Magron | Reducing Interference with Phase Recovery in DNN-based Monaural Singing Voice Separation[END_REF] that when sources overlap in the TF domain, using the mixture's phase induces residual interference and artifacts in the estimates.

In this chapter, we consider phase recovery in audio source separation as an optimization problem involving alternative divergences which are more appropriate for audio processing. In Chapter 4, we addressed phase recovery with the Bregman divergences in a singlesource setting. Here, we propose to extend this approach to a singlechannel and multiple-sources framework, where the mixture's information can be exploited. To optimize the resulting objective, we derive a projected gradient algorithm [START_REF] Patrick | Proximal Splitting Methods in Signal Processing[END_REF]. We experimentally assess the potential of our approach for a speech enhancement task. Our results show that this method outperforms the multiple input spectrogram inversion (MISI) algorithm [START_REF] Gunawan | Iterative Phase Estimation for the Synthesis of Separated Sources from Single-channel Mixtures[END_REF] for several Bregman divergences.

The rest of this chapter is structured as follows. In Section 5.2 we consider a new formulation of the problem with Bregman divergences and derive the proposed algorithm. Section 5.3 presents the experimental results. Finally, Section 5.4 draws some concluding remarks.

5.2 phase retrieval with bregman divergences and mixing constraint

Problem formulation

Given an observed mixture x ∈ R L of C sources x (c) ∈ R L , whose target nonnegative TF measurements are r (c) , PR with multiple sources can be formulated as [START_REF] Magron | Online Spectrogram Inversion for Low-latency Audio Source Separation[END_REF]:

min {x (c) ∈R L } C c=1 C c=1 r (c) -|Ax (c) | d 2 s.t. C c=1 x (c) = x. (5.2.1) 
We propose to extend our previous approach described in Chapter 4 to a single-channel source separation framework. Indeed, as described in Chapter 3, Section 3.2.3, it is necessary to include the mixture information in the optimization problem so that the estimates sum up to the mixture. We replace the cost function in (5.2.1) with a Bregman divergence, which yields the following optimization problem:

min {x (c) ∈R L } C c=1 C c=1 J (c) x (c) s.t. C c=1 x (c) = x, (5.2.2) 
where J (c) x (c) = D ψ r (c) | |Ax (c) | d for the "right" problem and (c) for its "left" counterpart.

J (c) x (c) = D ψ |Ax (c) | d | r

Projected gradient descent

Similarly as in Chapter 4, we propose a gradient descent algorithm to minimize the objective defined in (5.2.2). The set of signals whose sum is equal to the observed mixture x, appearing in the constraint of (5.2.2), is convex. As such, we may use the projected gradient algorithm [START_REF] Patrick | Proximal Splitting Methods in Signal Processing[END_REF] which boils down to alternating the two following updates:

∀c, y (c) t+1 = x (c) t -µ∇J (c) (x (c) t ) (5.2.3) ∀c, x (c) 
t+1 = y (c) t+1 + 1 C x - C i=1 y (t) i (5.2.4)
where ∇J (c) denotes the gradient of J (c) with respect to x (c) and µ > 0 is the gradient step size. In a nutshell, (5.2.3) performs a gradient descent, and (5.2.4) projects the auxiliary variables y (c) onto the set of estimates whose sum is equal to the mixture.

Derivation of the gradient

We derive hereafter the gradient of J (c) . Using the chain rule [START_REF]Matrix Differential, Calculus with Applications, to, Simple, Hadamard, and Kronecker Products[END_REF], we have:

∇J (c) (x (c) ) = (∇|Ax (c) | d ) T g (c) , (5.2.5) 
where ∇|Ax (c) | d denotes the Jacobian of the multivariate function x (c) → |Ax (c) | d (the Jacobian being the extension of the gradient for multivariate functions, we may use the same notation ∇), and:

for the "right" problem,

g (c) = ψ (|Ax (c) | d ) (|Ax (c) | d -r (c) )
for the "left" problem,

g (c) = ψ (|Ax (c) | d ) -ψ (r (c) )
where ψ and ψ are applied entrywise. Now, let us note A r and A i the real and imaginary parts of A, respectively. Using differentiation rules for element-wise matrix operations [START_REF]Matrix Differential, Calculus with Applications, to, Simple, Hadamard, and Kronecker Products[END_REF] and calculations similar as in Chapter 4, we have:

∇|Ax (c) | d = ∇ (A r x (c) ) 2 + (A i x (c) ) 2 d 2 = d × diag(|Ax (c) | d-2 ) diag(A r x (c) )A r + diag(A i x (c) )A i . (5.2.6) 
We now inject (5.2.6) in (5.2.5) and develop, which yields:

∇J (c) (x (c) ) = A T r d × diag(A r x (c) )diag(|Ax (c) | d-2 )g (c) + A T i d × diag(A i x (c) )diag(|Ax (c) | d-2 )g (c) . (5.2.7)
We remark that ∀u, v ∈ C K , diag(u)v = u v, so we further simplify this expression:

∇J (c) (x (c) ) = A T r d × (A r x (c) ) |Ax (c) | d-2 g (c) + A T i d × (A i x (c) ) |Ax (c) | d-2 g (c) . (5.2.8) Finally, we remark that ∀u ∈ C K , (A H u) = A T r (u) + A T i (u)
, thus we can rewrite the gradient (5.2.8) as:

∇J (c) (x (c) ) = d × A H ((Ax (c) ) |Ax (c) | d-2 g (c)
) . (5.2.9)

Remark: When considering the quadratic cost (for which the "right" and "left" problems are equivalent) with d = 1 and step size µ = 1, the gradient update becomes equivalent to the MISI update. This outlines that our method generalizes MISI, as the latter can be seen as a particular case of the projected gradient descent algorithm.

Algorithm 17 : Phase recovery with Bregman divergences for audio source separation: gradient descent.

1 Inputs: Measurements R (c) ∈ R M×N + , mixture x ∈ R L , step size µ > 0, Bregman divergence function ψ. 2 Initialization: 3 ∀c, x (c) = iSTFT( R (c) 1/d STFT(x) |STFT(x)| ) 4 while stopping criteria not reached do 5 ∀c, x (c) = STFT(x (c) ) 6 if "right" then 7 G (c) = ψ (|x (c) | d ) (|x (c) | d -R (c) ) 8 else if "left" then 9 G (c) = ψ (|x (c) | d ) -ψ (R (c) ) 10 ∀c, y (c) = x (c) -µd × iSTFT(x (c) |x (c) | d-2 G (c) ) 11 ∀c, x (c) = y (c) + (x -C i=1 y i )/C 12 end 13 Output: {x (c) } C c=1

Summary of the algorithm

The proposed algorithm consists of alternating the updates (5.2.3) and (5.2.4). A natural choice for obtaining initial source estimates consists in assigning the mixture's phase to each source's STFT, which is known as amplitude masking and is commonly employed to initialize MISI [START_REF] Gunawan | Iterative Phase Estimation for the Synthesis of Separated Sources from Single-channel Mixtures[END_REF][START_REF] Wang | End-to-end Speech Separation with Unfolded Iterative Phase Reconstruction[END_REF][START_REF] Wichern | Phase Reconstruction with Learned Time-frequency Representations for Singlechannel Speech Separation[END_REF]:

∀c, x (c) 0 = A † r (c) 1/d Ax |Ax| . ( 5.2.10) 
We provide in Algorithm 17 the pseudo-code for practical implementation of our method.

numerical experiments

In this section, we assess the potential of Algorithm 17 for a speech enhancement task, that is, with C = 2 and where x 1 and x 2 correspond to the clean speech and noise, respectively. Note however that this framework is applicable to alternative separation scenarios, such as musical instruments [START_REF] Cano | Musical Source Separation: An Introduction[END_REF] or multiple-speakers [START_REF] Wang | Supervised Speech Separation Based on Deep Learning: An Overview[END_REF] separation. The code related to these experiments is available online.1 

Experimental setup

data. As acoustic material, we build a set of mixtures of clean speech and noise. The clean speech is obtained from the VoiceBank test set [START_REF] Valentini-Botinhao | Noisy Speech Database for Training Speech Enhancement Algorithms and TTS Models[END_REF], from which we randomly select 100 utterances. The noise signals are obtained from the DEMAND dataset [START_REF] Thiemann | DE-MAND: a collection of multi-channel recordings of acoustic noise in diverse environments[END_REF], from which we select noises from three real-world environments: a living room, a bus, and a public square. For each clean speech signal, we randomly select a noise excerpt cropped at the same length than that of the speech signal. We then mix the two signals at various input signal-to-noise ratios (iSNRs) (10, 0, and -10 dB). All audio excerpts are single-channel and sampled at 16, 000 Hz. The STFT is computed with a 1024 samples-long (64 ms) Hann window, no zero-padding, and 75% overlap. The dataset is split into two subsets of 50 mixtures: a validation set, on which the step size is tuned (see Section 5.3.2); and a test set, on which the proposed algorithm is compared to MISI.

spectrogram estimation. In realistic scenarios, the nonnegative measurements r (c) are estimates of the magnitude or power spectrograms of the sources. To obtain such estimates, we use Open-Unmix [START_REF] Stöter | Open-Unmix -a Reference Implementation for Music Source Separation[END_REF], an open implementation of a three-layer BLSTM neural network, originally tailored for music source separation applications. This network has been adapted to a speech enhancement task. It was trained on our dataset, except using different speakers and noise environments, as described in [START_REF] Valentini-Botinhao | Speech Enhancement for a Noise-robust Text-to-speech Synthesis System Using Deep Recurrent Neural Networks[END_REF]. We use the trained model available at [START_REF] Uhlich | Open-unmix for Speech Enhancement[END_REF]. This network is fed with the noisy mixtures and outputs an estimate for the clean speech and noise spectrograms, which serve as inputs to the phase retrieval methods.

compared methods. We test the proposed projected gradient descent method described in Algorithm 17 in a variety of settings. We consider magnitude and power measurements (d = 1 or 2), "right" and "left" problems, and various values of β for the divergence (β = 0 to 2 with a step of 0.25). The step size is tuned on the validation set. As comparison baseline, we consider the MISI algorithm (which corresponds to our algorithm with β = 2, d = 1 and µ = 1). Following traditional practice with MISI [START_REF] Wang | End-to-end Speech Separation with Unfolded Iterative Phase Reconstruction[END_REF][START_REF] Wichern | Phase Reconstruction with Learned Time-frequency Representations for Singlechannel Speech Separation[END_REF], all algorithms are run with 5 iterations. In order to evaluate the speech enhancement quality, we compute the signal-to-distortion ratio (SDR) between the true clean speech x 1 and its estimate x 1 . For more clarity, we will present the SDR improvement (SDRi) of a method (whether MISI or Algorithm 17) over initialization.

Influence of the step size

First, we study the impact of the step size on the performance of the proposed algorithm using the validation set. The mean SDRi on this subset is presented in Figure 1 in the "right" setting, but similar conclusions can be drawn in the "left" setting. For d = 1, we For better readability, we set the SDRi at 0 when convergence issues occur as visually inspected, or when the SDRi is below 0, as this implies a decreasing performance over iterations, which is not desirable.

remark that the range of possible step sizes becomes more limited as β decreases towards 0 (which corresponds to the IS divergence). Conversely, when d = 2, we observe that divergences corresponding to β close to 1 (i.e., the KL divergence) allow for more flexibility when it comes to choosing an appropriate step size.

For each setting, we pick the value of the step size that maximizes the SDR on this subset and use it in the following experiment.

Comparison to other methods

The separation results on the test set are presented in Figure 2. We observe that at high (10 dB) or moderate (0 dB) iSNRs, the proposed algorithm overall outperforms MISI when d = 2 and for β 1. We notably remark a performance peak at around β = 1.25 depending on the iSNR. This observation is consistent with the findings of Chapter 4, where the gradient algorithm using the KL divergence (i.e., β = 1) in a similar scenario (d = 2 and "left" formulation) exhibited good performance. At low iSNR (-10 dB), the proposed method outperforms the MISI baseline when d = 2 and for the "left" problem formulation. This behavior is somewhat reminiscent of Chapter 4: when the spectrograms are severely degraded (i.e., at low iSNR), the algorithm based on the quadratic cost (here, MISI) is outperformed by algorithms based on more suitable alternative cost functions. Besides, it is also outperformed by a gradient algorithm based on the same quadratic cost when using a fine-tuned step size. This highlights the potential interest of phase recovery with Bregman divergences in such a scenario. Finally, note that the performance of the proposed method strongly depends on the speaker and the kind of noise used in the experiments For instance, for public square and bus noises, the proposed method consistently outperforms MISI at 10 dB iSNR while both methods perform similarly at -10 dB iSNR. However, for living room noises, a different trend is observed: in particular, the improvement of the proposed algorithm over MISI becomes more significant at -10 dB iSNR. As a result, further investigations are needed to identify the optimal β for a given class of signals, which should reduce this sensitivity and improve the above results.

conclusion

In this chapter, we have addressed the problem of phase recovery with Bregman divergences in the context of audio source separation. We derived a projected gradient algorithm for optimizing the resulting cost. We experimentally observed that when the spectrograms are highly degraded, some of these Bregman divergences induce better speech enhancement performance than the quadratic cost, upon which the widely-used MISI algorithm builds.

In future work, we will explore other optimization schemes for addressing this problem, such as majorization-minimization or the ADMM algorithm introduced in Chapter 4. We will also leverage these algorithms in a deep unfolding paradigm, which combines the qualities of model-based and learning-based methods. This approach is studied in the next chapter with PR.

Part III

P H A S E R E T R I E VA L W I T H U N F O L D E D A L G O R I T H M S L E A R N I N G P R O X I M I T Y O P E R AT O R S F O R P H A S E R E T R I E VA L
The contributions of this chapter have been published in [START_REF] Vial | Learning the Proximity Operator in Unfolded ADMM for Phase Retrieval[END_REF]. 

introduction

The phase retrieval problem is traditionnally formulated as an optimization problem with a quadratic cost. In Chapter 4, PR has been addressed by replacing the quadratic cost function with Bregman divergences. As seen in Chapter 4, prescribing a cost function that is optimal for all signal processing problems and classes of audio signals remains however challenging.

On the other hand, recent PR approaches have leveraged deep neural networks (DNNs) [START_REF] Sercan Ö Arık | Fast Spectrogram Inversion Using Multi-head Convolutional Neural Networks[END_REF][START_REF] Takamichi | Phase Reconstruction from Amplitude Spectrograms Based on von Mises Distribution Deep Neural Network[END_REF][START_REF] Thieling | Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks[END_REF][START_REF] Nguyen Binh Thien | Two-stage Phase Reconstruction Using DNN and von Mises Distribution-based Maximum Likelihood[END_REF]. Despite their successful performance in a large number of tasks, the enthusiasm for DNNs can be tempered by a general lack of explainability due to their black box structure, and by their limited ability to generalize to unseen data or experimental conditions. Deep unfolding (or unrolling) [START_REF] Gregor | Learning Fast Approximations of Sparse Coding[END_REF][START_REF] Hershey | Deep Unfolding: Model-based Inspiration of Novel Deep Architectures[END_REF] is a promising attempt to alleviate these limitations with model-based architectures derived from iterative algorithms.

In this chapter, we propose to unfold the ADMM algorithm for PR proposed in Chapter 4. Our method builds upon observing that the choice of the discrepancy measure only affects the computation of a proximity operator in the ADMM updates. Therefore, we can recast the problem of metric learning as a problem of proximity operator learning in the unfolded ADMM. To that end, we replace this proximity operator with a trainable activation function. We show that the proposed parameterization of the network is connected to the metric involved in the original optimization problem, which yields an interpretable architecture. Experiments performed on speech signals demonstrate the efficiency of our method, which outperforms a baseline ADMM [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF] with a number of iterations equal to the number of layers in the unfolded ADMM.

This chapter is structured as follows. Section 6.2 presents the proposed method. A discussion about interpretability and the characterization of proximity operators follows in Section 6.3. Our method is tested experimentally in Section 6.4 and Section 6.5 draws some concluding remarks.

learning proximity operators in unfolded admm

Proposed general unfolded architecture

The ADMM updates detailed in Section 4.2.3 consist in successive linear and nonlinear computations. As such, this algorithm can be viewed as a neural network U via unfolding the iterations:

(x T , λ T ) = U(x 0 , λ 0 ) = U 1 • • • • • U T (x 0 , λ 0 ), (6.2.1) 
where U t denotes the t-th layer of the network, mimicking the t-th iteration of the ADMM algorithm, as illustrated in Fig. 

(z) = K k=1 [ψ(z k ) + v k z k ].
We have [START_REF] Combettes | Signal Recovery by Proximal Forward-backward Splitting[END_REF]:

prox ρ -1 f (y) = prox ρ -1 ψ y -ρ -1 v , (6.2.5) 
where ψ(z) = k ψ(z k ). Setting v = -ψ (r) in (6.2.5), with ψ applied entrywise, it is straightforward to see that:

prox ρ -1 D ψ (• | r) (y) = prox ρ -1 ψ(y + ρ -1 ψ (r)). (6.2.6)
This formulation of the proximity operator is more convenient than (4.2.24) since the measurements r no longer appear in the input function of the proximity operator, but instead in the argument of the latter (with y). This leads to a more natural parameterization for unrolling. Let us first derive the proximity operator (6.2.6) in a simple scenario, namely the quadratic cost ( ψ = 1 2 • 2 , ψ (r) = r). In this case we have [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF]:

prox ρ -1 1 2 •-r 2 (y) = y + ρ -1 r 1 + ρ -1 . (6.2.7)
As a result, a first simple approach for proximity operator learning would consist in treating ρ as a learnable parameter. However, our early experiments have shown poor performance with this approach, which is due to the very low expressive power of such a model (only one scalar value). More generally, one can consider a beta-divergence with shape parameter β, for which ψ (r) = r β-1 β-1 [START_REF] Hennequin | Beta-divergence As a Subclass of Bregman Divergence[END_REF]. However, the proximity operator of ψ is not available for every beta-divergence.

To alleviate this issue, we model this unavailable proximity operator using Adaptive Piecewise Linear (APL) activations [START_REF] Sadowski | Learning Activation Functions to Improve Deep Neural Networks[END_REF]. They are defined by: APL(y) := max(y, 0)

+ C c=1 w c max(-y + b c , 0), (6.2.8) 
where w c and b c are learnable parameters controlling the slopes and biases of the linear segments, and the max is applied entry-wise.

Then, we propose the following parameterization of the nonlinear layer F t :

F t (y, r) = APL t γ (1) 
t y + γ

(2) t r β t -1 β t -1 , (6.2.9)

with learnable parameters w c,t , b c,t , γ

t , γ

t , and β t . Even though ad hoc, this parameterization is motivated by the following considerations:

• APL can represent any continuous piecewise linear function over a subset of real numbers. As such, it generalizes the proximity operator obtained in the quadratic case [START_REF] Liang | Phase Retrieval via the Alternating Direction Method of Multipliers[END_REF].

• The term in the form of r β-1 β-1 in (6.2.9) is reminiscent of ψ for beta-divergences, as mentioned above.

• Introducing learnable weights γ (1) t and γ

(2) t allows to increase the model capacity, as it was shown beneficial in our preliminary experiments.

Note that when w c = 0, γ

(1) t = 1 1+ρ -1 , γ (2) t 
= ρ -1 1+ρ -1 and β t = 2, F t is equal to the proximity operator for the quadratic cost (6.2.7). Overall, our parameterization (6.2.9) is an interesting trade-off between tractability, interpretability, and expressiveness.

Two variants of the proposed architecture will be considered in our experiments. In the "untied" variant, each layer uses different parameters, and the global set of parameters is

{w c,t , b c,t } C c=1 , γ (1) 
t , γ

t , β t T t=1

, while in the "tied" variant, the parameters are shared among layers, i.e., constant with t.

In the end, after learning these parameters (see Section 6.4), the proposed method, termed unfolded ADMM (UADMM), estimates a signal x T via (x T , λ T ) = U(x 0 , λ 0 ), where x 0 is some initial estimate.

interpretability and characterization

Discussion about interpretability

Under mild assumptions detailed in the following, we can prove that there exists a closed-form function f r,t : R K → R ∪ {+∞} such that F t (y, r) = prox f r,t (y). In the "tied" variant, where f r,t = f r , reconstructing f r from the learned parameters is analogous to identifying the metric D ψ (• | r) involved in the PR optimization problem. With the relaxation proposed in the "untied" case, this interpretation is more limited as f r,t is different in each layer of the network.

Note that when replacing (6.2.6) with (6.2.9), we have disentangled the proximity operator of ψ and the derivative ψ , in addition to introducing weights γ t . As a result, the function f r is no longer guaranteed to be a Bregman divergence, strictly speaking. Nevertheless, we can still interpret it as a measure of discrepancy between y and r.

Characterization of F(y, r) as a proximity operator

We address the problem of identifying a function f r : R K → R ∪ {+∞} such that F(y, r) = prox f r (y), with F defined in (6.2.9). Note that we ignore here the layer index t for simplicity.

Characterization with APL

We first address the case of strictly increasing APL functions as defined in (6.2.8), with negative weights and at least one nonnegative bias b c . Let us consider the following convex, lower semi-continuous function APL such that ∀z ∈ R:

APL(z) = z 2 2 χ [0;+∞] (z) + C c=1 w c -z 2 2 + b c z χ ]-∞;b c ] (z). (6.3.1)
Since for any z ∈ R, APL(z) is a subgradient of APL(z), and denoting APL(z) = K k=1 APL(z k ), it is straightforward to show that the Theorem 3 stands for g(z) = APL(z) and g(z) = APL(z). Besides, since APL is invertible we can use the relation (2.2.19) to identify σ: σ(y) = APL -1 (y) ; y -1 2 y 2 -APL(APL -1 (y)), (6.3.2) with:

APL -1 (y) = y -C c=1 w c b c χ ]-∞, APL(b c )] (y) χ [APL(0), +∞[ (y) -C c=1 w c χ ]-∞, APL(b c )] (y) 
. (6.3.3)

Characterization with F

Finally, let us retrieve f r : R K → R ∪ {+∞} such that F(y, r) = prox f r (y). Drawing on the previous section and using the definition of F from (6.2.9), we have:

F(y, r) = prox σ γ (1) y + γ (2) r β-1 β -1 . ( 6 

.3.4)

To fully identify f r , we first need to reformulate (6.3.4) so that the argument of the right hand side term simply becomes y. To that end, we leverage a property from [START_REF] Combettes | Signal Recovery by Proximal Forward-backward Splitting[END_REF], which consists in first rewriting (6.3.4) as follows:

F(y, r) = prox σ y -q 2α + 1 , (6.3.5) with α = 1 -γ (1)
2γ (1) and q = -

γ (2) γ (1)
r β-1 β -1 . The property from [START_REF] Combettes | Signal Recovery by Proximal Forward-backward Splitting[END_REF] then states that:

prox ϕ+α • 2 + q ; • (y) = prox ϕ/(2α+1) y -q 2α + 1 . (6.3.6)
Let ϕ = (2α + 1)σ. Combining (6.3.5) and (6.3.6) yields:

F(y, r) = prox (2α+1)σ+α • 2 + q ; • (y). (6.3.7)
As a result, from (6.3.7) we can identify f r such that its proximity operator is F. If we further exploit the definition of σ from (6.3.2), we finally have: 1) APL(APL -1 (y)). (6.3.8) Therefore, using (6.3.8) one can recover the function associated with the learned proximity operator, and consequently identify the metric involved in the formulation of the PR problem.

f r (y) = 1 γ (1) APL -1 (y) -γ (2) r β-1 β -1 ; y - 1 2 y 2 - 1 γ ( 

numerical experiments

In this section, we assess the potential of UADMM for PR of speech signals. Our code is implemented using the PyTorch framework [120] and is available online for reproducibility. 1 

Experimental setup

Data

We build a set of speech signals from the TIMIT dataset [START_REF] Garofolo | TIMIT Acousticphonetic Continuous Speech Corpus[END_REF]. The dataset is split into training, validation, and test subsets containing 1000, 10, and 50 utterances, respectively (note that we did not observe a significant performance improvement when using a larger training set). The signals are mono, sampled at 16 kHz and cropped to 2 seconds. The STFT is computed with a 1024 samples-long (46 ms) self-dual sine window (cf. Chapter 4) and 50% overlap. STFT magnitudes (d = 1) are considered as nonnegative observations r.

Training

The network is trained with the ADAM algorithm [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] using a learning rate of 10 -4 . We use a structure with T = 15 layers and C = 3, as these values have shown to be a good trade-off between performance and number of parameters in preliminary experiments. Batches of 10 signals with a maximum of 200 epochs are used for training. Training is stopped when the cost function on the validation subset starts increasing. Given that we consider speech signals, we train the network by minimizing the negative STOI between the estimated and ground truth signals. Indeed, this strategy was shown to be efficient for speech enhancement applications [START_REF] Naithani | Deep Neural Network Based Speech Separation Optimizing an Objective Estimator of Intelligibility for Low Latency Applications[END_REF][START_REF] Zhao | Perceptually Guided Speech Enhancement Using Deep Neural Networks[END_REF]. The negative STOI metric used for training the network is implemented in PyTorch via the pytorch-stoi library [START_REF] Pariente | PyTorch implementation of STOI[END_REF].

Methods

As baselines, we consider GLA [START_REF] Griffin | Signal Estimation from Modified Short-time Fourier Transform[END_REF] (run for 1500 iterations), and ADMM using a quadratic cost and ρ = 10 -3 , since this setup has exhibited good performance in our previous study under similar conditions (cf. Chapter 4). ADMM is run for a variable number of iterations, with a maximum of 1500 (performance does not further improve beyond). For fairness, the linear parts of UADMM use the same value for ρ, and it is initialized such that F t replicates the quadratic proximity operator . All methods use the same initial signal estimate x 0 computed using the ground truth magnitudes r and a random uniform phase, and λ 0 = 0.

Evaluation

Reconstruction performance is assessed with the STOI metric computed on the test set with the pystoi library [START_REF] Pariente | [END_REF].

Results

First, we display the training loss over epochs in Fig. 4. Both UADMM variants outperform the baseline ADMM with 15 iterations on the training set. UADMM-untied reaches a lower cost value than its tied counterpart, which was expected since this variant contains more learnable parameters. They reach a performance comparable to that of ADMM using 150 and 75 iterations, respectively. The results on the test set presented in Fig. 5 confirm that the proposed UADMM approach significantly outperforms the classical ADMM using the same number of iterations, as well as the GLA baseline. A fully-converged ADMM algorithm (using 1500 iterations) exhibits a higher STOI than our 15 layers-based approach. Nonetheless, a more fair comparison would involve that both approaches use the same total number of iterations/layers.

To that end, we consider an ad hoc extension of our method, where we duplicate the 15-layer trained UADMM network in order to increase the total amount of layers without additional training. The results presented in Fig. 6 show that this method consistently and significantly outperforms ADMM for any number of iterations. In particular, the performance of the fully-converged ADMM (after 1500 iterations) is reached at only 30 "iterations" for UADMM-untied (i.e., twice the number of trained layers), which exhibits the computational advantage of the proposed approach. Finally, let us point out that UADMM-tied with T layers is equivalent to applying T iterations of a standard ADMM algorithm using a learned metric f r (note however that it differs from the ADMM baseline used in these experiments, which uses a quadratic cost). Following the derivations in Section 6.3, we compute these metrics (f r in the tied case and f r,t in the untied case) from the trained activation functions, and display them in Fig. 7. These resemble beta-divergences with β ∈ [1.5, 2.5]. This is consistent with previous results from the literature [START_REF] Fitzgerald | On the Use of the Beta Divergence for Musical Source Separation[END_REF], where this range of values has shown good performance for audio spectral decomposition.

conclusion

In this chapter, we have addressed the problem of metric learning for phase retrieval by unfolding the ADMM algorithm proposed in Chapter 4 into a neural network. We proposed to replace the proximity operator involved in this algorithm with learnable activation functions, since this operator conveys the information about the discrepancy measure used in formulating the PR problem. Experiments conducted on speech signals show that this approach outperforms the ADMM algorithm while keeping a light and interpretable structure. In future work, we intend to further study the parameterization of the unfolded network. For example, it would be useful to learn the linear operators that correspond to intermediate representations of the estimate. We also intend to extend this framework to other inverse problems in audio, such as declipping or dereverberation. In this thesis, we studied inverse problems related to the reconstruction of audio signals. We especially focused on phase retrieval, a problem that typically occurs with applications manipulating the spectrogram. It is also notoriously challenging due to its ill-posedness, nonconvexity and non-linearity. This work resulted in several contributions. First, we proposed a novel formulation of the PR problem in which the quadratic cost function is substituted by Bregman divergences, a family of functions that includes divergences considered to be well-suited for audio applications. Two algorithms based on accelerated gradient descent and ADMM were developed and implemented to solve the problem. Experimental work evaluated the methods' performance and underlined the potential of PR with Bregman divergences for audio signal reconstruction from highly-degraded spectrograms.

Second, we extended the previous approach to phase recovery in audio source separation. We took inspiration from the MISI algorithm and considered a novel formulation of the problem that includes an error term based on Bregman divergences and a mixture constraint. We proposed a projected gradient algorithm and assessed experimentally the potential of our method for a speech enhancement task. The proposed method was shown to outperform MISI in this application and with severely degraded spectrograms.

Finally, we proposed to unfold the previously described ADMM algorithm into a deep neural network. We replaced the proximity operators of the Bregman divergences with learnable activation functions and trained the resulting network to perform a PR task with speech signals. We showed that the activation functions trained are proximity operators and characterized their corresponding function. The experimental results revealed that our method outperforms ADMM.

perspectives and future work

We discuss in the following future research directions and potential extensions of the work presented in this thesis.

First, different optimization algorithms might be used to tackle the phase retrieval problem formulated with Bregman divergences. For example, the majorization-minimization framework might be investigated. The initialization of these algorithms should also be further explored to get first estimates closer to a local minimum. Number of works examine noniterative methods for phase retrieval [START_REF] Gerald T Beauregard | Single Pass Spectrogram Inversion[END_REF][START_REF] Magron | Phase Reconstruction of Spectrograms with Linear Unwrapping: Application to Audio Signal Restoration[END_REF], which might be combined with the proposed work. Furthermore, regularization should be explored to take into consideration the spectrogram's properties even further (for example, group sparsity in the time-frequency domain [START_REF] Siedenburg | Audio declipping with social sparsity[END_REF]). Finally, non-separable divergences could be considered to account for time-frequency correlation.

Besides, further research on the parameterization of the unfolded networks might be undertaken. Attempts to learn the linear operations of the gradient and ADMM algorithms, for example, might be conducted. This would result in learning intermediate representations of the estimated signal. Weight initialization strategies should also be considered, as this procedure was realized empirically in this work but shown to be critical in the deep learning literature [START_REF] Yann A Lecun | Efficient Backprop[END_REF][START_REF] Mishkin | All You Need is a Good Init[END_REF]. Furthermore, to better account for the properties of the input spectrogram, we could make the network weights dependent from their coordinates in the time-frequency plane or compute them from the input.

Finally, the approaches discussed in this thesis may be extended to various inverse problems involving audio signals. Problems such as audio inpainting, audio declipping and dereverberation, for example, are often solved with proximal methods [START_REF] Kodrasi | Robust Sparsitypromoting Acoustic Multi-channel Equalization for Speech Dereverberation[END_REF][START_REF] Záviška | A Survey and an Extensive Evaluation of Popular Audio Declipping Methods[END_REF]. The unfolding of these algorithms, as well as the substitution of the proximity operators with trainable activation functions might improve their performances and, for example, learn adequate regularizations.

A R É S U M É D É TA I L L É D E L A T H È S E introduction

La reconstruction de signaux audio consiste à estimer des signaux sonores à partir de représentations incomplètes ou dégradées. Elle permet à l'auditeur une expérience d'écoute améliorée : la qualité sonore perçue sera meilleure et l'information présente plus intelligible.

La reconstruction de signaux audio peut également être considérée comme un problème inverse. C'est-à-dire qu'elle peut être formulée comme l'estimation de paramètres inconnus à partir d'observations et de la connaissance du problème direct. Les problèmes inverses sont fréquemment traités via la minimisation d'une fonction de coût à valeurs réelles, mesurant l'erreur entre les estimations et les observations. Les problèmes dont les solutions ne sont pas existantes, uniques ou stables sont dits mal-posés. Pour résoudre ces derniers, on utilise une connaissance a priori sur les solutions dans diverses stratégies. On pourra alors régulariser le problème, c'est-à-dire modifier la fonction de coût ou encore réduire l'ensemble des solutions.

Dans cette thèse, on propose de modifier la fonction de coût dans les problèmes inverses inhérents à la reconstruction de signaux audio. On considère principalement le problème de reconstruction de phase, un problème fréquent lors de la manipulation de la représentation temps-fréquence la plus courante : le spectrogramme. contexte Le chapitre 2 introduit différents outils issus des domaines d'intérêt de cette thèse. On étudie tout d'abord la représentation des signaux sonores. Les catégories de représentation les plus fréquentes incluent la forme d'onde et les représentations temps-fréquences. La première est une collection de valeurs d'amplitude échantillonées et quantifiées tandis que les secondes présentent des caractéristiques fréquentielles issues de la transformée de Fourier discrète (TFD) dans le temps. Ces dernières sont donc souvent calculées à l'aide de la transformée de Fourier à court-terme (TFCT). La TFCT considère le spectre local d'un signal sur de courtes durées. En pratique, elle est calculée via l'extraction de courts segments temporels du signal suivie du calcul de la TFD. On revient au signal temporel via la TFD inverse et une opération d'addition avec superposition.

À partir de telles représentations, diverses techniques nous permettent d'évaluer objectivement la qualité d'un signal audio. Celles-ci comprennent des calculs de distances dans les domaines temporels et temps-fréquences, ainsi que des scores construits autour de critères perceptuels.

On présente ensuite plusieurs outils issus de l'optimisation. Tout d'abord, le calcul de Wirtinger fournit un cadre nous permettant de dériver les fonctions d'une variable complexe non-différentiables au sens complexe. On peut ainsi calculer un gradient de ces fonctions puis mettre en oeuvre un algorithme de descente. Différentes variantes de ce dernier existent via l'accélération ou le calcul de pas de gradient de taille variable. Ensuite, les opérateurs proximaux, des généralisations de l'opérateur de projection, sont utiles dans diverses méthodes d'optimisation récentes. Plusieurs des propriétés de tels opérateurs ont été étudiées dans la littérature et sont présentées dans cette thèse. En particulier, on s'intéressera à la caractérisation de fonctions comme opérateurs proximaux et à leur fonction associée.

Enfin, les divergences de Bregman sont introduites. Cette classe de fonctions inclut différentes divergences bien connues telles que les divergences de Kullback-Leibler et d'Itakura-Saito, les bêtadivergences ou encore la fonction de coût quadratique. Elles peuvent également être interprétées sous le prisme statistique comme des fonctions de log-vraisemblance. Enfin, on s'intéresse aux opérateurs proximaux de plusieurs cas particuliers.

Pour clore ce chapitre, on présente brièvement les réseaux de neurones artificiels, une classe d'algorithmes issus de l'apprentissage automatique et inspirés par le fonctionnement du cerveau. Les réseaux de neurones sont définis par une succession d'opérations linéaires et non-linéaires séparables. L'apprentissage des paramètres des opérations est alors réalisé sur un jeu de données connu au préalable via la minimisation d'une fonction de coût entre les données observées et prédites. On présente ensuite le dépliement d'algorithmes itératifs en réseaux de neurones. Cette stratégie consiste à considérer un nombre fini d'itérations d'un algorithme d'optimisation comme un réseau de neurones dont on apprendra certains paramètres. Enfin, on étudiera la relation entre opérateurs proximaux et fonctions d'activation.

Le chapitre 3 introduit le problème de reconstruction de phase. Tout d'abord, on présente la définition générale du problème, qui consiste à estimer un signal à partir du module d'observations linéaires. Ce dernier peut éventuellement être élevé au carré pour des observations de puissance. Le problème de reconstruction de phase est mal-posé : ses solutions ne peuvent être estimées qu'à plusieurs ambiguïtés près, parmi elles un changement de phase globale.

On présente ensuite différentes méthodes pour la reconstruction de phase. Celles-ci peuvent être classées en deux catégories : les méthodes convexes et non-convexes. Les méthodes non-convexes consis-tent en la minimisation d'un coût quadratique via différents algorithmes, tels que les projections alternées, la descente de gradient ou encore l'algorithme des directions alternées. Les méthodes convexes transforment le problème en différentes relaxations convexes du problème de reconstruction de phase, traitées via des solveurs issus de l'optimisation semi-définie positive.

Le problème de reconstruction de phase est ensuite étudié dans le champ du traitement du signal audio. Dans ce contexte, les observations sont souvent des spectrogrammes, c'est à dire des modules de TFCT. La reconstruction de phase s'applique alors à différents problèmes tels que le débruitage ou la séparation de sources. Différentes méthodes pour la reconstruction de phase spécifiques à l'audio ont pu être proposées dans la littérature, que l'on peut classer selon deux catégories. La première catégorie comprend les méthodes itératives, qui peuvent être considérés comme les équivalents pour l'audio des méthodes non-convexes vues précédemment. Parmi elles, on étudie l'exemple le plus célèbre : l'algorithme de Griffin-Lim, un algorithme de projections alternées. Cette approche historique peut être interprétée comme un algorithme de descente de gradient avec une fonction de coût quadratique et a généré de multiples variantes, par exemple accélérées ou étendues au temps réel. La seconde catégorie de méthodes considère les caractéristiques spécifiques des signaux audio et de la TFCT. Parmi elles, certaines exploitent par exemple les relations entre les dérivées de la phase et le module de la TFCT. Enfin, on présente le problème de reconstruction de phase pour la séparation de sources sonores.

La dernière section du chapitre présente quelques méthodes issues du champ de l'apprentissage automatique. On s'intéresse tout d'abord aux méthodes d'apprentissage profond considérant le problème de reconstruction de phase en audio. Dans ces approches, la fonction de coût considérée pour l'apprentissage des réseaux de neurones utilise des caractéristiques spécifiques aux signaux audio. Enfin, on présente plusieurs méthodes de dépliement pour les problèmes inverses. Ces dernières introduisent une dimension d'apprentissage dans des algorithmes préalablement construits autour de modèles et donc interprétables.

reconstruction de phase avec des divergences de bregman

Le chapitre 4 présente la première contribution de cette thèse. On remplace la fonction de coût quadratique par une divergence de Bregman lorsque le problème de reconstruction de phase est formulé comme un problème de minimisation. En effet, l'optimisation d'un coût quadratique n'est pas nécessairement appropriée pour des signaux audio dans le domaine temps-fréquence : un certain nombre de travaux de la littérature scientifique établissent l'intérêt d'utiliser des divergences alternatives, telles que les divergences d'Itakura-Saito ou Kullback-Leibler, pour différentes applications telles que la séparation de sources ou la reconstruction de données audio manquantes. Les divergences de Bregman comprennent comme cas particuliers les divergences mentionnées précédemment et s'interprètent d'une perspective statistique. Celles-ci étant non-symmétriques, on propose deux formulations différentes du problème de reconstruction de phase.

Deux algorithmes sont proposés pour traiter les problèmes introduits. Tout d'abord, on considère un algorithme de descente de gradient. La fonction de coût proposée n'étant pas différentiable au sens complexe, on utilise le calcul de Wirtinger pour obtenir l'expression du gradient. Celle-ci dépend de la fonction génératrice de la divergence de Bregman considérée. L'algorithme proposé généralise l'algorithme de Griffin-Lim, qui correspond au cas du coût quadratique et des observations d'amplitude. Ensuite, nous détaillons un algorithme des directions alternées. Celui-ci correspond à la minimisation alternée du Lagrangien augmenté de la fonction de coût proposée. Les itérations de l'algorithme comprennent le calcul d'un opérateur proximal de la divergence de Bregman, dont l'expression en forme close n'est pas toujours explicite.

Une démarche expérimentale évalue les performances de la méthode proposée avec différentes divergences pour deux tâches de reconstruction de phase. Tout d'abord, nous considérons la reconstruction à partir de spectrogrammes exacts. Dans ce contexte, les algorithmes de directions alternées offrent des performances généralement supérieures aux algorithmes de gradient. Pour ces dernières, on obtient avec certaines divergences alternatives des performances similaires à celles des méthodes construites autour de coûts quadratiques. Dans la seconde tâche, nous considérons la reconstruction de phase à partir de spectrogrammes modifiés, dont la non-consistence est simulée par l'ajout de bruit puis le filtrage de Wiener. Dans ce contexte, lorsque les spectrogrammes considérés sont sévèrement dégradés, les algorithmes de gradient considérant des coûts non-quadratiques mènent aux meilleures performances de reconstruction. Enfin, nous considérons l'étude d'algorithmes de gradient avec un pas variable. L'utilisation du pas de Barzilai-Borwein et d'une stratégie de recherche linéaire non-monotone permettent l'amélioration des performances de reconstruction. reconstruction de phase avec des divergences de bregman pour la séparation de sources audio Le chapitre 5 étend les résultats du chapitre 4 au problème de séparation de sources audio. Pour traiter ce dernier, une méthodolo-gie fréquente consiste à estimer les spectrogrammes des différentes sources et d'utiliser la phase du mélange. Dans ce contexte, les techniques de reconstruction de phase permettent l'obtention d'estimations de meilleure qualité. Nous proposons ici une formulation du problème de reconstruction de phase pour la séparation de sources avec des divergences de Bregman. Celle-ci inclut une contrainte de mélange et est traitée à l'aide de l'algorithme du gradient projeté. Comme précédemment, le gradient de la fonction de coût considéré sera calculé via le formalisme du calcul de Wirtinger. L'algorithme proposé généralise l'algorithme d'inversion de spectrogrammes à multiples entrées, qui correspond au cas quadratique.

Une étude expérimentale évalue la méthode proposée pour une tâche de séparation à deux sources. On choisit une opération de débruitage, qui sera pratiquée sur des signaux mélant parole et bruits issus d'environnements acoustiques réels. L'estimation des spectrogrammes des sources est réalisée via Open-Unmix, un réseau de neurones pré-entraîné sur cette tâche. La reconstruction de phase est assurée par notre méthode. L'étude expérimentale confirme le potentiel des méthodes de reconstruction construites à l'aide de divergences non-quadratiques lorsque les spectrogrammes considérés sont sévèrement dégradés. En effet, on pourra observer que la reconstruction de phase avec des bêta-divergences délivre les meilleures performances pour β = 1.25, lorsque que le cas quadratique correspond à β = 2. apprentissage d'opérateurs proximaux pour la reconstruction de phase Le chapitre 6 propose le dépliement de l'algorithme des directions alternées introduit dans le chapitre 4. Cette approche a pour objectif de lever plusieurs difficultés. Tout d'abord, elle permet l'obtention d'une architecture neuronale interprétable en considérant chaque itération d'un algorithme comme une couche neuronale paramétrable. Ensuite, elle permet l'apprentissage des opérateurs proximaux dans ce contexte, dont une expression en forme close n'est pas disponible pour les divergences de Bregman.

L'architecture du réseau proposé considère comme couches les itérations de l'algorithme des descentes alternées pour la reconstruction de phase avec des divergences de Bregman. Chaque opérateur proximal est remplacé par une fonction d'activation paramétrée, dont les poids seront estimés lors d'une phase d'apprentissage. On démontre que les fonctions d'activation proposées sont bien des opérateurs proximaux et on caractérise leur fonction associée. Deux modalités d'apprentissage sont alors étudiées : la première considère des poids «liés », c'est à dire partagés par toutes les couches, et la seconde des poids «déliés », soit libres de prendre des valeurs différentes dans les différentes couches. Dans l'approche aux poids liés, la fonction métrique associée à l'opérateur proximal appris correspond à la divergence minimisée dans le problème de reconstruction de phase initial. Cette interprétation ne tient pas pour l'approche aux poids déliés, bien que les fonctions associées de chaque couche puissent être caractérisées.

On procède à une étude expérimentale pour évaluer la performance de notre méthode. Le réseau de neurones proposé est soumis à une phase d'apprentissage avec un corpus composé de signaux de parole et de leurs spectrogrammes. Pour un nombre égal d'itérations et de couches, la méthode proposée se montre plus performante que l'algorithme à directions alternées initial. On pourra également remarquer que la méthode aux poids déliés, qui comprend un nombre supérieur de paramètres, se montre plus performante que la méthode aux poids liés pour une tâche de reconstruction de phase. Les deux sont cependant dépassées par la méthode de référence lorsque celle-ci arrive à convergence, pour un grand nombre d'itérations. On comparera alors deux nouvelles architectures, contruites par la duplication des réseaux précédents pré-entraînés, à l'algorithme des descentes alternées. Celles-ci se montreront alors plus efficaces dans la reconstruction et permettront l'emploi d'un grand nombre de couches sans surcoût lié à l'apprentissage d'un grand nombre de paramètres. Enfin, on pourra étudier les fonctions associées aux opérateurs proximaux appris. Ces dernières comportent des ressemblances avec les bêta-divergences étudiées précédemment.

conclusion et perspectives

Pour conclure, le chaptitre 7 dresse un résumé des résultats de cette thèse, suivi d'une discussion portant sur de possibles perspectives de recherche. Parmi celles-ci, on pourra s'intéresser à des algorithmes d'optimisation différents pour la recontruction de phase avec les divergences de Bregman. En particulier, l'étude de l'algorithme de majorisation-minimisation, de stratégies d'initialisation pour l'optimisation non-convexe et de régularisation du problème nous semblent pertinentes. De plus, le travail autour du dépliement des algorithmes itératifs pour la reconstruction de phase nous semble pouvoir être approfondi. On pourra par exemple étudier l'initialisation et le choix des paramètres du réseau. Par exemple, l'apprentissage des opérations linéaires correspondrait à l'apprentissage de représentations des itérées. Enfin, on pourra considérer les méthodes étudiées dans cette thèse pour différents problèmes inverses avec des signaux audio. Par exemple, des problèmes tels que la reconstruction de données manquantes (inpainting) ou saturées (declipping) et la déréverbération sont souvent traités via des méthodes proximales qui pourraient bénéficier de stratégies de dépliement et d'apprentissage des opérateurs proximaux.
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 1 Figure 1: Waveform and time-frequency representations of the 12 first seconds of Bernard Parmegiani's De Natura Sonorum -Incidences/battements

  a) Bregman divergences with z = 1. Bregman divergences with y = 1.
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 2 Figure 2: Bregman divergences plots with fixed first (left) and second (right) arguments. β = 0.5 with the beta-divergence.
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 11 Griffin-Lim algorithm 1 Initialize x0 . 2 while iterate do 3 xt+1 := AA H r xt |x t | 4 end 5 Return A H xT .
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 5 with χ M , χ C respectively the indicator functions of sets M ad C. Writing ADMM with (3.2.5) results in the algorithm entitled Griffin-Lim like phase recovery via ADMM (GLADMM) and detailed in Algorithm 13.

Algorithm 14 :

 14 Multiple input spectrogram inversion algorithm

  " PR, g ψ = ψ (|Ax| d ) (|Ax| dr), (4.2.9) for "left" PR, g ψ = ψ (|Ax| d ) -ψ (r).(4.2.10)
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 1 Summary of setups considered in the experiments with their parameters (cost function, exponent d, type of algorithm and hyperparameter).

1 µ = 10 - 6 µ = 10 - 4 µ = 10 - 2 µ

 1106104102 Each setup is described by a code that follows this format: algorithm•cost•direction-d. = 10 -1

3 µ = 10 - 6 µ = 10 - 1 µ = 10 - 3 µ

 3106101103 = 10 -5 
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 1 Figure 1: Performance of PR from exact spectrograms for the "speech" corpus, measured with the SC (top) and STOI (bottom). Higher values correspond to a better performance. Turquoise, orange and yellow respectively denote gradient descent algorithms, ADMM algorithms and GLA-like algorithms. The boxes indicate the two middle quartiles among the ten excerpts, the middle bar is for the median, the dot for the mean, and the whiskers denote the extremal values.
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 2 Figure 2: Performance of PR from exact spectrograms for the "music" corpus measured with the SC.
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 33 Figure 3: STOI for PR from modified speech spectrograms at various input SNRs.
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 4 Figure 4: Performance of PR from magnitude spectrograms (d = 1), measured with the SC (top) and STOI (bottom). The considered cost functions are from left to right : "left" beta-divergence, "left" Kullback-Leibler, Quadratic, "right" Kullback-Leibler, "right" betadivergence. β = 0.5 with the beta-divergences.
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 5 Figure 5: Performance of PR from power spectrograms (d = 2), measuredwith the SC (top) and STOI (bottom). The considered cost functions are from left to right : "left" beta-divergence with β = 0.5, "left" Kullback-Leibler, Quadratic, "right" Kullback-Leibler, "right" beta-divergence with β = 0.5.
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 1 Figure 1: Average SDRi on the validation set obtained with the proposed algorithm at various iSNRs, when d = 1 (top) and d = 2 (bottom).For better readability, we set the SDRi at 0 when convergence issues occur as visually inspected, or when the SDRi is below 0, as this implies a decreasing performance over iterations, which is not desirable.
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 2 Figure 2: Average SDRi on the test set obtained with MISI and with the proposed algorithm (in different settings) at various iSNRs.
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 3 Figure 3: One layer of the proposed unfolded architecture.
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 4 Figure 4: Training loss (negative STOI) over epochs. Note that pytorch-stoi implementation does not exactly replicate the original metric and consequently yields values lower than -1.
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 6 Figure 6: Evaluation with STOI over test dataset with iterated model. The solid lines denote the mean STOI and the light colored areas the values between the first and the third quartile.

Figure 7 :

 7 Figure 7: Learned metrics f r,t (y) with r = 1. The quadratic cost and Kullback-Leibler divergence D KL (y | r) are also displayed for the sake of comparison. In the "tied" case, f r in analogous to D ψ (• | r) involved in the PR optimization problem. For clarity, only 3 of the 15 trained layers f r,t are displayed for the "untied" case.
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  contains 106, 574 Creative Commons-licensed music tracks. They are representative of 16, 341 artists and 161 genres. All tracks are provided with metadata and stereo MP3-encoded files. Most of them are sampled at 44.1kHz and encoded at a 320kbit/s bit rate.

N 1 Initialize y 0 . 2 while stopping criteria not met do 3 y t+1

  := y t -µ t ∇f(y t )

	Algorithm 1 : (Wirtinger) gradient descent algorithm
	Parameters : (µ t ) ∈ R 4 end
	Algorithm 2 : Accelerated (Wirtinger) gradient descent algo-
	rithm
	Parameters :

  Let f ∈ Γ 0 (H). If f has a minimizer, the recursion y t+1 = prox f (y t ) converges to the minimizer of f as t increases for any y 0 ∈ H. It exists f ∈ Γ 0 (H) such that g : H → H is the proximity operator of f if and only if the two conditions listed below are met:

	Moreover, the proximity operator of f is non-expansive [105], i. e. , :
	∀y, y ∈ H, prox f (y) -prox f (y )	y -y .	(2.2.15)
	The two properties (2.2.14) and (2.2.15) lead to the following theorem,
	which is essential to optimization with proximity operators:	
	Theorem 1 ([5]). Under some conditions, a function g : H → H can be character-
	ized as the proximity operator of some convex lower semi-continuous
	(l.s.c.) function. In [105], Moreau proposed the following characteriza-
	tion theorem:		
	Theorem 2 ([105]). 1. It exists h ∈ Γ 0 (H) such that:		
	∀y ∈ H, g(y) ∈ ∂h(y).		(2.2.16)
	2. g is non-expansive, i. e. , :		
	∀y, y ∈ H, g(y) -g(y )	y -y .	(2.2.17)
			.2.14)

Corollary 3.1. Let

  

	Algorithm 3 : Proximal point algorithm	
	Parameters : ρ > 0.	
				.2.18)
	When (2.2.18) holds, there exist f : H → R ∪ {+∞} and h ∈ Γ 0 (H) such
	that:			
	∀y ∈ Y, h(y) = y ; g(y) -	1 2	g(y) 2 -f(g(y)).	(2.2.19)

Y be a non-empty subset of R. g : Y → R is the proximity operator of some function f if and only if g is non-decreasing. 1

Initialize y 0 . 2 while stopping criteria not met do 3 y t+1

  := prox ρ -1 f (y t )

4 end Algorithm 4 : Proximal gradient algorithm Parameters : (µ t ) ∈ R N 1 Initialize y 0 . 2 while stopping criteria not met do 3 y t+1

  := prox µ t f 2 (y t -µ t ∇f 1 (y t ))

	4 end
	Theorem 3 and relation (2.2.19
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	4.1 introduction	
	Phase retrieval is commonly formulated as a nonconvex minimization
	problem involving a quadratic cost function, as follows:	
	min x∈C L	r -|Ax| d 2 .	(4.1.1)
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  3. The layer U t can be decomposed into two linear parts denoted by L , λ t-1 , u t , θ t ) → (x t , λ t ), (6.2.4) with h t , x t , λ t respectively defined as in (4.2.21), (4.2.27) and (4.2.28). F t denotes a parameterized sublayer modeling the proximity operator of equation (4.2.24). Since the choice of the discrepancy measure D ψ only affects the proximity operator (4.2.24) in the updates, we can recast the problem of metric learning as the problem of proximity operator learning. We propose to leverage a trainable activation function in order to model this layer and learn the proximity operator. To build the non-linear sublayers F t that model prox ρ -1 D ψ(• | r) , we first reformulate this operator as follows. Let v ∈ R K and f

	6.2.2 Proposed parameterization with APL units	
			(1) t and L	(2) t ,
	and a nonlinear part NL t as follows:	
	L	(1) t : (x t-1 , λ t-1 ) → h t	(6.2.2)
	NL t : h t → (u t , θ t ) = (F t (|h t |, r), h t )	(6.2.3)
	L	(2)	

t : (x t-1

  Performance on the test set. Each box-plot is made up of a central line indicating the median, box edges indicating the 1 st and 3 rd quartiles, whiskers indicating the extremal values, and circles representing the outliers.
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	0.91 0.92 0.93 0.94 0.95 0.96 Figure 5: 15 STOI 0.89 0.90	30	75 Total amount of layers/Iterations 150 UADMM -Untied 750 1500 UADMM -Tied ADMM

Note that we consider separable divergences in this thesis.

Note that the gradient is not properly defined in some cases when one or more coefficients of Ax are zero-valued. We present in Appendix 4.5 a detailed and rigorous treatment of this potential issue.

https://github.com/phvial/PRBregDiv

https://magronp.github.io/demos/jstsp21.html

https://github.com/magronp/bregmisi

https://github.com/phvial/LearningProxPR