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A B S T R A C T

Audio signal reconstruction consists in recovering sound signals from
incomplete or degraded representations. This problem can be cast as
an inverse problem. Such problems are frequently tackled with the
help of optimization or machine learning strategies. In this thesis, we
propose to change the cost function in inverse problems related to
audio signal reconstruction. We mainly address the phase retrieval
problem, which is common when manipulating audio spectrograms.

A first line of work tackles the optimization of non-quadratic cost
functions for phase retrieval. We study this problem in two contexts:
audio signal reconstruction from a single spectrogram and source
separation. We introduce a novel formulation of the problem with
Bregman divergences, as well as algorithms for its resolution.

A second line of work proposes to learn the cost function from a
given dataset. This is done under the framework of unfolded neural
networks, which are derived from iterative algorithms. We introduce
a neural network based on the unfolding of the Alternating Direction
Method of Multipliers, that includes learnable activation functions.
We expose the relation between the learning of its parameters and
the learning of the cost function for phase retrieval.

We conduct numerical experiments for each of the proposed meth-
ods to evaluate their performance and their potential with audio sig-
nal reconstruction.
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R É S U M É

La reconstruction de signaux audio consiste à estimer des sig-
naux sonores à partir de représentations incomplètes ou dé-
gradées. Ce problème peut être formulé comme un problème in-
verse. Ces derniers sont fréquemment traités à l’aide de stratégies
d’optimisation ou d’apprentissage automatique. Dans cette thèse, on
propose de modifier la fonction de coût dans les problèmes inverses
liés à la reconstruction de signaux audio. On considère principale-
ment le problème de reconstruction de phase, un problème fréquent
lors de la manipulation de spectrogrammes audio.

Un premier axe de ces travaux étudie l’optimisation de fonctions
de coût non-quadratiques pour la reconstruction de phase. Ce prob-
lème est étudié dans deux contextes: la reconstruction de signaux
audio à partir d’un spectrogramme et la séparation de sources. Nous
proposons une nouvelle formulation du problème à l’aide des diver-
gences de Bregman, ainsi que des algorithmes pour leur résolution.

Un second axe considère l’apprentissage de la fonction de coût à
partir d’un jeu de données. On utilise le cadre des réseaux de neu-
rones dépliés, obtenus à partir d’algorithmes itératifs. On propose un
réseau de neurones construit via le dépliement de l’algorithme des di-
rections alternées et incluant des fonctions d’activations paramétrées.
On explicite la relation entre l’apprentissage de ses paramètres et de
la fonction de coût pour la reconstruction de phase.

Enfin, on conduit un travail expérimental pour chaque méthode
exposée dans cette thèse afin d’évaluer leur performance et leur po-
tentiel pour la reconstruction de signaux audio.
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1
I N T R O D U C T I O N

1.1 general context and motivation

Notation and recording aim at making the sensible experience of sound
reproducible. With musical notation, sound is visually represented
with symbols in order to be re-performed by a musician. Even though
a wide number of methods have existed through history and cultures,
the Western notation system based on the equal temperament became
predominant. It consists in arranging pitches in an equally divided
frequency space and in time. Recording stores a signal to allow for its
re-generation. Different technologies enabled this practice, initiated
with Thomas Edison’s Phonograph in the nineteenth century and fol-
lowed by various supports including wax cylinders, vinyl discs and
magnetic tape. Digital recording advented in the end of the twentieth
century and consists in the storage of digital representations of sound
produced through transduction, sampling and quantization.

Digital sound representations are usually processed using signal
processing methods as they can be degraded or incomplete. Such im-
perfections usually occur through the recording process and include
distortion (i. e. , nonlinear transformation of the signal), mixing with
an undesired source (e. g. , noise or echoes), reverberation, presence
of artifacts, reduction of the frequency bandwidth, or downsampling.
They can also be processed with other aims than removing degra-
dations. For example, remastering refines music recordings through
equalization and dynamic processors to adapt their character to con-
temporary standards. After processing, reconstructed signals are usu-
ally associated with a superior listening experience: the perceived au-
dio quality is improved while the comprehension is enriched.

As audio signal reconstruction can be interpreted as the recovery
of a signal from a set of observations (i. e. , a degraded or incomplete
sound representation), it falls within the class of inverse problems. In-
verse problems inspired a wide range of works in the literature and
can be defined as recovering the causal factors x? from a set of obser-
vations r. The relation between causes and observations F is known
as the forward map, and is such that:

r = F(x?). (1.1.1)

When F is known or estimated via a forward model, inverse problems
may be solved via the optimization of a real-valued cost function D,

1



2 introduction

measuring the error between the estimates and the observations. This
writes:

minimize
x

D(F(x), r). (1.1.2)

As the solutions to (1.1.2) may not be existent, unique or stable,
the considered problem is said to be ill-posed. Common strategies to
tackle ill-posed inverse problems include the modification of the cost
function, the minimization of an additional regularization term or the
restriction of the solution set. Such choices are realized with the help
of a priori knowledge about the solutions. In the scope of audio signal
reconstruction, such knowledge may come from listening-specific cri-
teria. The problem should be modified such that the solutions lead
to a satisfactory listening experience and that errors in terms of per-
ceived quality and understanding are penalized.

In this thesis, we explore the idea of changing the cost function
in inverse problems for audio signal reconstruction. We mainly con-
sider the phase retrieval problem, a non-convex and non-linear in-
verse problem that arises when processing the most common time-
frequency representation: the spectrogram. Phase retrieval occurs
within different audio reconstruction tasks, including denoising and
source separation, and is notoriously ill-posed as multiple signals
can generate the same observations. We take interest in concepts and
works from domains ranging from machine learning to audio signal
processing to study formulations of the phase retrieval problem with
alternative cost functions. Methods to tackle them are proposed and
assessed via experimental work, for applications including denoising
and audio source separation.

1.2 outline of the manuscript

This dissertation is organized as follows. Chapter 2 presents the back-
ground of this thesis. Essential tools and concepts from audio signal
processing, optimization and deep learning are introduced. Chapter
3 details the problems of interest of this thesis and the state-of-the-art
approaches for their resolution. The phase retrieval problem is formu-
lated and studied in the context of audio signals. The chapter ends
with the presentation of related work in deep learning. Chapter 4 de-
tails the first contribution of this thesis. The phase retrieval problem
is extended to alternative cost functions: we present a formulation
of the problem with Bregman divergences and we derive two algo-
rithms. Experimental results and a discussion on the choice of the
parameters are presented. Chapter 5 extends the work presented in
the previous chapter to audio source separation. The phase retrieval
problem with Bregman divergences and a mixing constraint is intro-
duced with a proposed extension to the Multiple Input Spectrogram
Inversion algorithm. We conduct experimental work for this applica-



1.3 publications 3

tion and present the results. Chapter 6 tackles the problem of learning
the cost function for phase retrieval. The ADMM-based algorithm in-
troduced in Chapter 4 is unfolded within a neural network and the
proximity operators are replaced with trainable activation functions.
Learning their parameters amounts to learning the cost function in
the original problem. Experimental work then assesses the efficiency
of the method. The final chapter draws concluding remarks and sum-
marizes the results of this thesis. Perspectives for upcoming research
are discussed subsequently.

1.3 publications
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In this chapter, we introduce the fundamental tools used in this the-
sis. Section 2.1 defines essential concepts of audio signal processing
with an overview of the short-time Fourier transform and its proper-
ties followed by a discussion on audio quality evaluation.
Section 2.2 introduces elements from optimization and machine learn-
ing. We first present Wirtinger derivatives and gradient methods.
Then, the proximity operator and its properties are introduced. This
is followed by the definition of Bregman divergences. A brief intro-
duction to neural networks and unfolded iterative algorithms is pre-
sented in Section 2.3.

2.1 audio signal processing

2.1.1 Time-frequency analysis with the short-time Fourier transform

Representing audio signals

In audio signal processing, it is a common practice to process a sound
signal into a representation in order to generate features. According
to their properties, different representations can be considered to a
given application. In most cases, it is desirable to have an invertible
representation in order to reconstruct a sound signal after processing.
Figure 1 displays a few usual audio representations.

The most simple representation is the waveform, which is a sampled
and quantized sound signal. The waveform collects amplitude mea-
surements over time that correspond to voltage in the case of electric
signals or pressure for an acoustic sound. The measurements can be
arranged in an array X ∈ RL×C, where L denotes the time dimension
and C is the number of channels. Most of the time, C = 1 or 2. In

7
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these cases, signals are respectively refered to as monophonic or stereo-
phonic. The number of channels can be greater than 2 in the case of
surround sound, where multiple sound speakers are used to enhance
sound spatialization. In this thesis, only mono waveforms will be con-
sidered. They will be denoted as time vectors x ∈ RL.

Several usual representations belong to the class of time-frequency
representations [47]. Such representations display discrete Fourier
transform (DFT) based features through time and are most of the time
computed with the help of the fast Fourier transform algorithm (FFT).
The short-time Fourier transform (STFT) is a commonly used opera-
tion in this context. The STFT produces a complex matrix, whose
modulus is referred to as magnitude and can be interpreted as the
time-frequency distribution of the signal energy. The STFT argument
is known as phase and has a less obvious interpretation. However, it
embodies critical information for perception [111, 112] and waveform
reconstruction [53, 106]. It will be a prominent point of interest in this
thesis. Magnitude spectrograms are obtained by considering the magni-
tude of the short-time Fourier transform (STFT) of a signal. In Figure
1b, the magnitude spectrogram of a 12 seconds music signal is dis-
played, revealing its harmonic structure. For the sake of illustration,
Figure 1c displays the phase of the STFT of the same signal. At first
sight, no structure can be observed: the phase spectrogram resembles
a noise matrix.

The power spectrogram is another common time-frequency represen-
tation, computed with the squared magnitude of the STFT. It dis-
plays the repartition of power over time and frequency. From a statis-
tical perspective, the power spectrogram is analogous to a variance.
As seen in Figure 1d, this representation has a great dynamic range
and discriminates largely between low-energy and high-energy time-
frequency components of the signal. The log-spectrogram (1e) has the
opposite property as it reduces the dynamic range. It is then fre-
quently used to visualize low-energy components of the signal. The
log-spectrogram is simply computed by considering the logarithm of
the magnitude of the STFT.

Alternative representations display time-frequency data with a log-
arithmic frequency axis in order to imitate human hearing, which
is considered to be logarithmic with regards to frequency. The Mel-
spectrogram is obtained via a transform approximating this property,
resulting in a quasi-logarithmic spectrogram. Representations with
a logarithmic frequency axis can also be computed via non-linear
frequency filterbank-based transforms: the input signal is processed
via a collection of bandpass filters and the resulting energies are dis-
played over time. The Constant-Q transform (CQT) spectrogram (1f) is a
common representation belonging to this class. Analogously, the chro-
magram (1g) scales the frequency axis to semitones, the usual pitch
unit of Western music systems.
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(b) Magnitude spectrogram

0 1.5 3 4.5 6 7.5 9 10
Time (s)

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y 
(H

z)

3

2

1

0

1

2

3

(c) Phase of STFT
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(d) Power spectrogram
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(e) Log-spectrogram
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(f) CQT spectrogram
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Figure 1: Waveform and time-frequency representations of the 12 first sec-
onds of Bernard Parmegiani’s De Natura Sonorum - Incidences/batte-
ments
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The short-time Fourier transform

The short-time Fourier transform is commonly used in signal process-
ing to analyze oscillatory and non-stationnary signals. Typical appli-
cations include audio, acoustics and seismology. The STFT consists
in considering the local spectrum of a signal over a short temporal
duration. This is done in practice by extracting short sections of the
signal and computing their DFT. Given a discrete signal x ∈ CM, the
DFT is defined by:

DFT(x)(m) :=

M−1∑
`=0

x(`)e−i2π
m
M `, (2.1.1)

where m ∈ {0, . . . ,M− 1} denotes the indexes of the frequency bins.
In order to better localize in frequency, the temporal segments are
often multiplied by an analysis window before the DFT operation. This
leads to the so-called sliding-window definition of the STFT. Given a
discrete signal x ∈ CL and an analysis window w ∈ RM such that
M < L, the STFT is the linear operator Aw defined by:

[Awx](m,n) := (DFT(xn))(m), (2.1.2)

where m ∈ {0, . . . ,M− 1}, n ∈ {0, . . . ,N− 1} respectively denote the
indexes of the frequency bins and the time frames. xn denotes the
n-th windowed temporal frame of the signal x:

xn(`) := x(`)w(`−nH). (2.1.3)

H ∈N∗ is called the hop size and controls the overlap between the suc-
cessive frames. The overlap ratio is defined as M−H

M . The STFT writes:

[Awx](m,n) :=
M−1∑
`=0

x(`)w(`−nH)e−i2π
m
M `. (2.1.4)

The inverse-STFT (iSTFT) can also be constructed with the help of
the inverse-DFT (iDFT). Given a complex vector c ∈ CM, the iDFT is
defined by:

iDFT(c)(`) :=
1

M

M−1∑
m=0

c(m)ei2π
m
M `. (2.1.5)

For each time index, the iDFT of the STFT frame is computed, re-
sulting in a collection of temporal segments. The signal is then re-
constructed through an overlap-add procedure. The segments are usu-
ally multiplied by a synthesis window before being summed up. This
procedure is termed weighted overlap-add and leads to the follow-
ing iSTFT definition. Given a complex-valued time-frequency matrix
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C ∈ CM×N and a synthesis window v ∈ RM, the iSTFT is the linear
operator Sv defined by:

[SvC](`) :=

N−1∑
n=0

[iDFT(C(·, n))](`)v(`−nH), (2.1.6)

where ` ∈ {0, . . . ,L− 1} is the time index. The iSTFT finally writes:

[SvC](`) :=
1

M

N−1∑
n=0

M−1∑
m=0

C(m,n)v(`−nH)ei2π
m
M `. (2.1.7)

Overlapp-add decomposition and perfect reconstruction

In order to be able to reconstruct x from the windowed temporal
frames {xn}N−1

n=0 , the window and the hop size must respect a condi-
tion. Let x ′ denote the reconstructed signal such that:

x ′(`) =

N−1∑
n=0

xn(`) (2.1.8)

=

N−1∑
n=0

x(`)w(`−nH) (2.1.9)

= x(`)

N−1∑
n=0

w(`−nH). (2.1.10)

In order to satisfy x = x ′, the following constant-overlap-add (COLA)
constraint must be respected:

∀` ∈ {0, . . . ,L− 1},
N−1∑
n=0

w(`−nH) = 1. (2.1.11)

Windows that respect the COLA property include the Bartlett, the
Hann and the Hamming window for half-overlap (H = N

2 ). With
appropriate normalization, any COLA window for overlap H is also
COLA for H ′ = H

2 , H3 , . . . , HH if H ′ is an integer [129].
When applying the iSTFT after the STFT, the signal x ′ is recon-

structed from temporal frames multiplied by a synthesis window v:

x ′(`) =
1

M

N−1∑
n=0

M−1∑
m=0

M−1∑
` ′=0

x(` ′)w(` ′ −nH)e−i2π
m
M `
′
v(`−nH)ei2π

m
M `

(2.1.12)

=
1

M

N−1∑
n=0

M−1∑
` ′=0

x(` ′)w(` ′ −nH)v(`−nH)

M−1∑
m=0

e−i2π
m
M (` ′−`).

(2.1.13)
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The sum term
∑M−1
m=0 e

−i2πmM (` ′−`) is equal to 0 unless (` ′ − `) is an
integer multiple of M. In this case,

` ′ = `+ kM and
M−1∑
m=0

e−i2πmk =M, (2.1.14)

with k ∈ Z. As w is equal to 0 out of its support, we consider here
that k = 0. Therefore, the reconstructed signal writes:

x ′(`) =

N−1∑
n=0

x(`)w(`−nH)v(`−nH) (2.1.15)

= x(`)

N−1∑
n=0

v(`−nH)w(`−nH). (2.1.16)

In order to recover x from x ′, the following constraint should be sat-
isfied:

∀` ∈ {0, . . . ,L− 1},
N−1∑
n=0

v(`−nH)w(`−nH) = 1. (2.1.17)

When this condition is respected, perfect reconstruction such that
x = SvAwx can be achieved and v and w are said to be dual. In
practice, the analysis and synthesis windows are often chosen to be
equal. In that case, the square-root of any nonnegative COLA window
leads to perfect reconstruction. A common choice is the “root-Hann”
window (also termed sine window) [78].

STFT and Gabor frames

The STFT can alternatively be written as the output of inner products
between x and Gabor atoms γmn ∈ CL, which are functions built via
translation and modulation of w as follows :

γmn(`) = w(`−nH)e
i2πmM `. (2.1.18)

By collecting the Gabor atoms into the columns of an L×MN matrix
Γw and ignoring the time-frequency ordering, the STFT of a signal x
can equivalently be obtained by ΓH

wx. Under general conditions [62],
the matrix Γw defines a frame in the sense that there exists positive
constants a and b such that for any x ∈ CL:

a‖x‖2 6 ‖ΓH
wx‖2 6 b‖x‖2. (2.1.19)

Similarly, the synthesis operator Sv can be expressed as the adjoint of
the STFT:

SvC = Γvc, (2.1.20)

where c ∈ CMN is a vectorized version of C. As such, the windows
w and v are dual if and only if ΓvΓ

H
wx = x. When the same window
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can be used for analysis and synthesis with perfect reconstruction
(an example being the sine window [129]), then it can be shown that
a = b = 1 and ΓH

w defines a so-called Parseval frame. In the rest of this
thesis, the STFT operator will be denoted with the matrix A (equal to
ΓH

w). We assume that w = v and that the Parseval frame assumption
holds (i.e., AHA = IL).

2.1.2 Objective evaluation of audio quality

In audio processing, evaluating the quality of a signal estimate is of
paramount importance to assess reconstruction performance. How-
ever, this task is nontrivial as the notion of quality remains imprecise
and related to subjective perception. A common criterion is the ab-
sence of degradation after applying a chain of processes.

Subjective tests can be conducted to evaluate the perceived quality
with the ABC/HR [122] or MUSHRA [123] protocols. They usually
output scores such as the Subjective Difference Grade (SDG) or the
Mean Opinion Score (MOS), covering a scale from 1 (bad) to 5 (excel-
lent). They are however costly and their reproducibility is sensitive
to cognitive biases such as the listener’s familiarity with the task, fa-
tigue, or score-equalizing bias [163].

For that matter, objective tests were developed. They usually com-
pute a measure of fit between a signal estimate and a reference, often
termed as ground-truth. In the following, several objective evaluation
scores are introduced. This is followed by a brief presentation of the
reference datasets used in this thesis.

Evaluation in the time domain

The signal-to-distortion ratio (SDR) is defined as the ratio of the
power of a signal of interest x over the distortion power. Its expression
is:

SDR(x, x̂) = 10 log10
‖x‖2

‖x − x̂‖2
, (2.1.21)

where x̂ is the estimate of x. The SDR is expressed in decibels. It is
included in the BSSEval toolbox [147], which is widely used to assess
performance in audio source separation. BSSEval also encompasses
two other metrics: the signal-to-interference ratio (SIR) and the signal-
to-artifact ratio (SAR), which respectively measure the rejection of
interferences and artifacts in the estimated signal. In [81], the authors
propose a scale-invariant version of the SDR to evaluate estimation
without taking in account scaling effects. Its expression is:

SI-SDR(x, x̂) = 10 log10
‖ x̂Hx
‖x‖2 x‖2

‖ x̂Hx
‖x‖2 x − x̂‖2

, (2.1.22)
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with x̂Hx
‖x‖2 the optimal scaling factor minimizing the quadratic error

between the scaled reference and the estimate.

Evaluation in the time-frequency domain

Quality evaluation is also usually performed in the time-frequency
domain using `p norms.

The spectral convergence (SC) [132] is computed from magnitude
spectrograms with the `2 distance:

SC(x, x̂) = 10 log10
‖|Ax|− |Ax̂|‖2

‖|Ax|‖2
. (2.1.23)

Another common choice is the `1 distance with log-spectrograms
[2]:

`1log(x, x̂) = ‖ log |Ax|− log |Ax̂|‖1. (2.1.24)

These two metrics differ in their behavior as cost functions: SC is
likely to penalize mostly estimation errors on the large coefficients
of the spectrogram while `1log is more sensitive to errors on the small
coefficients.

Perceptually-motivated metrics

Other evaluation metrics aim to model the results obtained with sub-
jective tests. Most of them were introduced as International Telecom-
munication Union (ITU) recommendations.

The Perceptual Evaluation of Audio Quality score (PEAQ) [24] was
introduced in 1999 to model the MOS of perceived quality tests for
general sounds. PEAQ includes psychoacoustics models based on fil-
terbanks and time-frequency masks to compute several model vari-
ables. The latter are mapped to a single output with a basic neural
network. PEMO-Q [70] was proposed later in 2006 for the same pur-
pose. It embodies a simpler model that yet achieves better correlation
with the subjective tests.

The Perceptual Evaluation of Speech Quality score (PESQ) [124] es-
timates the MOS of subjective quality tests for speech signals. This
metric consists in computing measures of fit over time-aligned and
modified time-frequency representations. It traditionally only consid-
ers bandpass filtered versions of the signals (due to its applications
in telephony). The Perceptual Objective Listening Quality Assessment
(POLQA) [7, 8] score is the successor of PESQ and assesses a larger
amount of degradations with more intricate models.

The Short-time Objective Intelligibility score (STOI) [133] models
the intelligibility of a speech signal. It is computed through filterbank
decomposition and envelope correlation of the reference and estimate
signals. STOI outputs a variable that ranges between 0 (unintelligible)
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and 1 (excellent) and which has been shown to correlate well with
subjective intelligibility measurements of speech.

The Perceptual Evaluation of Audio Source Separation (PEASS)
toolbox [39] encompasses perceptual objective scores inspired by the
BSSEval toolbox: the proposed criteria account for distortions, inter-
ferences, and artifacts in the estimated signal. They were also shown
to correlate well with subjective tests in the context of audio source
separation.

Datasets

In the experiments of this thesis, we consider two audio datasets. The
Texas Instruments/Massachusetts Institute of Technology (TIMIT)
[49] corpus is composed of speech signals recorded from 630 Ameri-
can English speakers of different genders and dialects. Each speaker
reads 10 sentences selected to be phonetically rich. All the signals in
the dataset are single-channel, sampled at 16kHz and 16-bit encoded.

The Free Music Archive (FMA) [34] contains 106, 574 Creative
Commons-licensed music tracks. They are representative of 16, 341
artists and 161 genres. All tracks are provided with metadata and
stereo MP3-encoded files. Most of them are sampled at 44.1kHz and
encoded at a 320kbit/s bit rate.

2.2 optimization

In this section, we introduce elements and algorithms from optimiza-
tion. First, we detail the Wirtinger calculus framework, which will
be required to derive gradient-based algorithms with cost functions
of a complex variable. We present therefore the gradient algorithm
and a few variants including acceleration and adapted step sizes. Fol-
lows an introduction to the proximity operator and common proxi-
mal methods, a family of optimization algorithms frequently used in
signal processing [26]. This section ends with an introduction to Breg-
man divergences, a family of functions that includes measures of fit
deriving from a statistical perspective.

2.2.1 Wirtinger calculus and gradient methods

Wirtinger calculus

When handling complex-valued data, the use of gradient-based op-
timization algorithms implies to minimize cost functions of a com-
plex variable. However, as cost functions are real-valued, they are not
complex differentiable. This means that they do not follow the Cauchy–
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Riemann equations. For a function f of a complex variable z = zr+ izi
the Cauchy–Riemann equations write:

∂fr(z)

∂zr
=
∂fi(z)

∂zi
and

∂fr(z)

∂zi
= −

∂fi(z)

∂zr
, (2.2.1)

with f(z) = fr(z) + ifi(z) and fr(z), fi(z) are real-valued. The
Wirtinger calculus, also termed CR-calculus, provides a gradient-
like operator for those functions. It sees any function of a complex
variable as a function of its real and imaginary parts. The Wirtinger
derivatives are then defined as:

∂f

∂z
(z) :=

1

2

(
∂f

∂zr
(zr, zi) − i

∂f

∂zi
(zr, zi)

)
,

∂f

∂z∗
(z) :=

1

2

(
∂f

∂zr
(zr, zi) + i

∂f

∂zi
(zr, zi)

)
.

(2.2.2)

In practice, computing the derivative of f with respect to z (resp.
z∗) can be done using usual differentiation by treating z (resp. z∗) as
a real variable with z∗ (resp. z) treated as a constant [11, 75]:

∂f

∂z
=
∂f(z, z∗)
∂z

∣∣∣∣
z∗=const.

, (2.2.3)

∂f

∂z∗
=
∂f(z, z∗)
∂z∗

∣∣∣∣
z=const.

. (2.2.4)

Besides, if f is real-valued, the following property is verified:(
∂f

∂z

)∗
=
∂f

∂z∗
. (2.2.5)

In a multivariate setting, the gradient of f is then defined as:

∇f =
[
∂f

∂z1
, . . . ,

∂f

∂zK

]H

. (2.2.6)

When f is additionally real-valued, the following property holds
from (2.2.2) and (2.2.5):

∇Rf :=

[
∂f

∂zr(1)
, . . . ,

∂f

∂zr(K)

]H

= 2<(∇f), (2.2.7)

where ∇Rf denotes the gradient of f with regards to the real part of
the variable.

Gradient methods

With the help of the Wirtinger framework, a gradient descent algorithm
can be formulated to minimize a differentiable function f of a com-
plex variable. The Wirtinger gradient descent algorithm is detailed in
Algorithm 1, with µt denoting the gradient step size.



2.2 optimization 17

Algorithm 1 : (Wirtinger) gradient descent algorithm

Parameters : (µt) ∈ RN

1 Initialize y0.
2 while stopping criteria not met do
3 yt+1 := yt − µt∇f(yt)
4 end

Algorithm 2 : Accelerated (Wirtinger) gradient descent algo-
rithm
Parameters : (µt) ∈ RN, ξ ∈ [0, 1]

1 Initialize y0.
2 while stopping criteria not met do
3 qt+1 := yt − µt∇f(yt)
4 yt+1 := qt+1 + ξ(qt+1 − qt)
5 end

Like the usual gradient method, the Wirtinger gradient descent con-
verges to a critical point of the function f under conditions on the step
size. It can also be accelerated similarly to Polyak’s gradient descent
with momentum [117]. The Accelerated Wirtinger gradient descent al-
gorithm is displayed in Algorithm 2, where ξ denotes the acceleration
parameter.

When∇f is P-Lipschitz, a common choice for the gradient step size
is µt < 1

P . Alternative strategies for the choice of the step size can be
considered. A usual method consists in refining the gradient step size
with a backtracking line search: at every gradient descent iteration, the
gradient step size is repeatedly multiplied by a nonnegative factor
smaller than 1 until a stopping criterion is reached. Typically, the
following Armijo rule [3] is considered:

f(yt+1) < f(yt) −
µt

2
‖∇f(yt)‖2. (2.2.8)

This rule can be relaxed such that the gradient step size is updated
until the new cost value is smaller than the maximum cost value of
the last iterations. This method is referred to as non-monotonic back-
tracking line search [61].

With inspiration from Newton’s method, Barzilai and Borwein pro-
pose a gradient method with varying step sizes in [4]. Their method
accounts for the curvature of the cost function by approximating
second-order quantities with finite-difference schemes. The authors
introduce two different step sizes:

• the “long” Barzilai-Borwein step:

µBB1

t :=
‖yt−1 − yt−2‖2

〈∇f(yt−1) −∇f(yt−2) ; yt−1 − yt−2〉
, (2.2.9)
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• the “short” Barzilai-Borwein step:

µBB2

t :=
〈∇f(yt−1) −∇f(yt−2) ; yt−1 − yt−2〉

‖∇f(yt−1) −∇f(yt−2)‖2
. (2.2.10)

The Barzilai-Borwein method usually enables to reach the stopping
criterion in fewer iterations without computing any Hessian, at the
cost of a convergence theoretical guarantee. In the literature, several
extensions to this method have been proposed [19, 31].

2.2.2 Proximity operators and proximal methods

Definitions

The proximity operator was introduced by Jean-Jacques Moreau [104]
in 1962 as a generalization of the projection operator. It is now a fun-
damental tool in contemporary non-smooth optimization methods.
With H being a Hilbert space, the proximity operator of a lower semi-
continuous convex function f ∈ Γ0(H) is defined as the mapping of
an input vector y ∈ H to the unique solution of the following mini-
mization problem:

proxρ−1f(y) := argmin
x∈H

f(x) +
ρ

2
‖x − y‖2. (2.2.11)

It can alternatively be defined with the help of the subdifferential
operator:

proxρ−1f(y) := (Id+ ρ−1∂f)−1(y), (2.2.12)

with ∂· being the subdifferential operator, i. e. , the mapping of a con-
vex function to the set of its subgradients, defined as follows:

∂f(y) := {v ∈ H |∀x ∈ H, 〈x − y ; v〉+ f(y) 6 f(x)} . (2.2.13)

The proximity operator can also be extended to nonconvex func-
tions, resulting in a set-valued operator. In the literature, closed-form
expressions of the mapping are known only for a limited number of
families of functions (e. g. , indicator functions or `p norms for some
values of p).

Properties and characterization

In the literature, a consequential number of properties for proximity
operators and proximal calculus can be found. Only a handful of
them will be detailed in the context of this thesis.

One of the fundamental properties of proximity operators is that
the fixed points of proxf are the minimizers of f for every f ∈ Γ0(H):

∀y ∈ H, y = proxf(y)⇔ y ∈ argmin f. (2.2.14)
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Moreover, the proximity operator of f is non-expansive [105], i. e. , :

∀y, y ′ ∈ H, ‖proxf(y) − proxf(y
′)‖ 6 ‖y − y ′‖. (2.2.15)

The two properties (2.2.14) and (2.2.15) lead to the following theorem,
which is essential to optimization with proximity operators:

Theorem 1 ([5]). Let f ∈ Γ0(H). If f has a minimizer, the recursion yt+1 =
proxf(yt) converges to the minimizer of f as t increases for any y0 ∈ H.

Under some conditions, a function g : H → H can be character-
ized as the proximity operator of some convex lower semi-continuous
(l.s.c.) function. In [105], Moreau proposed the following characteriza-
tion theorem:

Theorem 2 ([105]). It exists f ∈ Γ0(H) such that g : H → H is the
proximity operator of f if and only if the two conditions listed below are met:

1. It exists h ∈ Γ0(H) such that:

∀y ∈ H, g(y) ∈ ∂h(y). (2.2.16)

2. g is non-expansive, i. e. , :

∀y, y ′ ∈ H, ‖g(y) − g(y ′)‖ 6 ‖y − y ′‖. (2.2.17)

When H = R, the following corollary can be deduced [25]:

Corollary 2.1. It exists f ∈ Γ0(R) such that g : R → R is the proximity
operator of f if and only if g is non-decreasing and non-expansive.

In [58], the authors extend the theorem to eventually nonconvex
functions f : H → R∪ {+∞} and demonstrate a relation between f, g
and h. In that case, the non-expansiveness condition (2.2.17) can be
dismissed and the theorem writes:

Theorem 3 ([58]). Let Y be a non-empty subset of H. It exists f : H →
R∪ {+∞} such that g : Y→ H is the proximity operator of f if and only if
the following condition is met:

• It exists h ∈ Γ0(H) such that:

∀y ∈ Y, g(y) ∈ ∂h(y). (2.2.18)

When (2.2.18) holds, there exist f : H → R ∪ {+∞} and h ∈ Γ0(H) such
that:

∀y ∈ Y, h(y) = 〈y ; g(y)〉− 1
2
‖g(y)‖2 − f(g(y)). (2.2.19)

Corollary 3.1. Let Y be a non-empty subset of R. g : Y→ R is the proxim-
ity operator of some function f if and only if g is non-decreasing.
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Algorithm 3 : Proximal point algorithm
Parameters : ρ > 0.

1 Initialize y0.
2 while stopping criteria not met do
3 yt+1 := proxρ−1f(yt)
4 end

Algorithm 4 : Proximal gradient algorithm

Parameters : (µt) ∈ RN

1 Initialize y0.
2 while stopping criteria not met do
3 yt+1 := proxµtf2(yt − µt∇f1(yt))
4 end

Theorem 3 and relation (2.2.19) imply that for any function g that
can be characterized as the proximity operator of a function f, the
expression of f is connected to h, a “primitive” function of which
g is a subgradient. When g is invertible, the expression of f can be
retrieved with the change of variable x = g(y) :

f(x) = 〈g−1(x) ; x〉− 1
2
‖x‖2 − h(g−1(x)). (2.2.20)

Proximal methods

The proximity operator is an essential component of a class of convex
optimization algorithms entitled proximal methods. We discuss here a
few of them.

We consider the following problem of minimizing f ∈ Γ0(H). With
the help of the Theorem 1, the proximal point algorithm displayed in
Algorithm 3 is shown to converge to the minimizer of f [5] for any
positive ρ.

We now assume that f can be splitted into two convex terms f1, f2 ∈
Γ0(H). The optimization problem now writes:

minimize f1(y) + f2(y), (2.2.21)

If f1 is differentiable, the proximal gradient algorithm [32, 85] can be
written as in Algorithm 4, where µt denotes the gradient step size.

The proximal gradient algorithm is shown to converge if ∇f1 is
Lipschitz, µt is fixed and chosen smaller than the inverse of the Lip-
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Algorithm 5 : Alternating direction method of multipliers
Parameters : ρ > 0.

1 Initialize u0, λ0.
2 while stopping criteria not met do
3 yt+1 := proxρ−1f1(ut − λt)
4 ut+1 := proxρ−1f2(yt+1 + λt)
5 λt+1 := λt + yt+1 − ut+1
6 end

schitz constant. If f2 is an indicator function, this algorithm reduces
to the projected gradient algorithm.

The Alternating direction method of multipliers (ADMM) [12] also con-
siders a splitting of the optimizaton problem, with f1, f2 eventually
both non-differentiable. It consists in minimizing the following La-
grangian term L with regards to each variable alternatively.

L(y, u, λ) = f1(y) + f2(u) + λT(y − u) +
ρ

2
‖y − u‖2, (2.2.22)

where u is an auxiliary variable and λ the Lagrange multiplier. The
algorithm is summarized in Algorithm 5.

ADMM is shown to converge in terms of objective function and
residual (i. e. , y and u converge to the same value) for any positive ρ.

2.2.3 Bregman divergences

Definition

Bregman divergences are a class of functions measuring the differ-
ence between two points. A Bregman divergence 1 Dψ is defined from
a strictly-convex and continuously-differentiable generating function
ψ as follows:

Dψ(y | z) =
∑
k

dψ(yk | zk), (2.2.23)

where dψ(yk | zk) = ψ(yk) −ψ(zk) −ψ
′(zk)(yk − zk) and ψ ′ is the

derivative of the generating function. Bregman divergences are non-
negative, convex with regards to their first argument and generally
non-symmetric (i. e. , Dψ(y | z) 6= Dψ(z |y)). In this thesis, the diver-
gences are refered to as “left” (respecitvely “right”) when they are
considered as functions of their first (resp. second) argument with
fixed second (resp. first) argument.

Bregman divergences include many well-known divergences and
distances such as beta-divergences [66], which include the Kullback–
Leibler and Itakura–Saito divergences as well as the quadratic cost

1 Note that we consider separable divergences in this thesis.
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function. Examples of Bregman divergences and their generating
functions can be found in Table 1. Figure 2 displays plots of usual
Bregman divergences with fixed first and second arguments.

Table 1: Typical Bregman divergences generating functions with their first
derivatives.

Divergence dψ(y | z) ψ(y) ψ ′(y)

Quadratic cost 1
2(y− z)

2 1
2y
2 y

Kullback-Leibler y(logy− log z) − (y− z) y logy 1+ logy

Itakura-Saito y
z − log yz − 1 − logy −y−1

beta-divergence (β ∈ R \ {0, 1})
yβ

β− 1
−
βyzβ−1

β− 1
+ zβ

yβ

β(β− 1)
−

y

β− 1
+
1

β

yβ−1 − 1

β− 1

1 2 3 4 5

1

2

3

4

5

y

dψ(y | z)

(a) Bregman divergences with z = 1.

1 2 3 4 5

1

2

3

4

5

z

dψ(y | z) Quad.
KL
IS

β-div.

(b) Bregman divergences with y = 1.

Figure 2: Bregman divergences plots with fixed first (left) and second (right)
arguments. β = 0.5 with the beta-divergence.

Statistical interpretation

Many usual Bregman divergences can be interpreted under the statis-
tical lens as likelihood functions [128]. This means that there exists a
probability density function p such that:

− logp(y | z) = aDψ(y | z) + b, (2.2.24)

where a and b are constants and a is nonnegative.
For example, minimizing the KL divergence between y and z as-

sumes that y follows a Poisson model [150]. Similarly, minimizing
the IS divergence implies a multiplicative Gamma noise model while
the quadratic cost function implies an additive Gaussian noise model
[42].
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Proximity operator of usual Bregman divergences

Table 2: Proximity operators of some standard (convex) Bregman diver-
gences. W is the Lambert W function (i.e., the inverse relation of
z 7→ zez) applied entry-wise.

Divergence Expression Proximity operator

f proxf(y)

Quadratic 1
2ρ‖ ·−z‖2 ρy + z

ρ+ 1

left KL ρ−1DKL(· | z) ρ−1W(ρz� eρy)

left IS ρ−1DIS(· | z) 1
2ρ(−z−1 + ρy±

√
∆ ′)

with ∆ ′ := 4ρ+ (z−1 − ρy)2

right KL ρ−1DKL(z | ·) 1
2ρ(y − 1±

√
∆)

with ∆ := 4ρz + (1− y)2

A closed-form expression of the proximity operator can be ob-
tained for some of the usual Bregman divergences, such as the
quadratic cost function and the KL right and left divergences [26, 38].
These are summarized in Table 2.

To the best of our knowledge, the proximity operator of the left
IS divergence has not been derived in closed-form in the literature.
Therefore, for the sake of completeness, we derive it in Appendix
2.A.

2.3 deep learning

2.3.1 Neural networks

Definition

Neural networks are a class of machine learning models inspired by
the behavior of the biological brain [126]. They are constructed as a
composition of operations (neurons) computed on data. We consider
in the following the feedforward neural network F:

ẑ = F(y) and F = FT ◦ · · · ◦ F1. (2.3.1)

The functions Ft are termed layers of the network, while y and ẑ are
respectively refered to as input and output of the network. Most of the
time, every layer Ft is composed of a linear operation (e. g. , a mul-
tiplication or a convolution) and an entrywise nonlinear operation,
termed activation function. We denote by Θ the collection of all the
parameters of the network.
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Training a neural network

Neural networks can be considered as universal approximators of any
continuous function [30, 57, 68]. They have the ability to model the
relationship between inputs and outputs after a training stage. For
this purpose, the supervised learning framework considers training
as a minimization problem between observed and predicted data:

minimize
Θ

∑
(yi, zi)∈∆

J(zi, F(yi)), (2.3.2)

where J is a cost function and ∆ is the training dataset, i. e. , a col-
lection of input/output pairs (yi, zi)i=1, ..., I. The training stage is
achieved with the help of an optimizer, i. e. , an iterative optimization
algorithm relying on gradient computation. For each training step,
the parameters of the network are updated. A wide range of opti-
mizers exist in the literature and the most popular include Stochastic
Gradient Descent (SGD) [125], AdaGrad [37] and Adam [71].

2.3.2 Unfolding iterative algorithms

Unfolding (or unrolling) is an attempt to include model knowledge
in learning-based approaches. This strategy consists in considering
each iteration of a model-based optimization algorithm as a trainable
neural layer. This results in a deep neural network with an explain-
able architecture and a limited number of parameters. Furthermore,
empirical work suggests that it is prone to have a good ability to
generalize to unseen data or experimental conditions [83].

An example: ISTA and LISTA

We consider in the following example the LASSO problem [139]:

minimize
y

‖Dy − z‖2 + η‖y‖1 (2.3.3)

The formulation of LASSO implies knowledge on y: the sparsity of y
is promoted by regularizing (2.3.3) with the `1 norm.

The Iterative Shrinkage-Thresholding Algorithm (ISTA) is a prox-
imal gradient algorithm applied to LASSO. It alternates a gradient
step to descend the least-squares part of (2.3.3) and a proximal step
to descend the regularization term. The proximity operator of the `1

norm is known as soft-thresholding operator and it is defined as fol-
lows:

Sν(y) = sign(y)(|y|− ν)+, (2.3.4)

where sign(·) returns (entrywise) the sign of its input and (·)+ its
positive part.

ISTA is detailed in Algorithm 6, with µt denoting the gradient step.
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Algorithm 6 : Iterative Shrinkage-Thresholding Algorithm

Parameters : (µt) ∈ RN, η ∈ R.
1 Initialize y0.
2 while stopping criteria not met do
3 yt+1 := Sηµt

(
yt − µtDH(Dyt − z)

)
4 end

When considering a finite number of ISTA iterations, one can al-
ready note a similarity with deep neural networks: the algorithm
alternates affine transforms (the gradient steps) with non-linear en-
trywise operations (the soft-thresholding steps). The latter can be in-
terpreted as activation functions.

In [56], Gregor and Le Cun propose to unfold ISTA in a deep neural
network entitled Learned ISTA (LISTA). They first rewrite the ISTA
iteration as:

yt+1 = Sν
(
W(z)z + W(y)yt

)
, (2.3.5)

with W(z) = µDH, W(y) = Id − µDHD and constant gradient step.
The authors unfold the algorithm and choose ν, W(y) and W(z) as

learnable parameters, shared among the layers of the network. LISTA
compares advantageously to ISTA by producing better solutions with
fewer iterations while respecting the sparsity model. Moreover, its
architecture is explainable.

Unfolded iterative algorithms for inverse problems

The deep unfolding technique has been applied to a wide range
of works following the seminal work [56] and has found applica-
tion in numerous fields other than audio signal processing. A non-
exhaustive list is detailed in the following.

In [10], the authors propose a neural network architecture from a
variational formulation of the image restoration problem. They un-
fold the proximal point algorithm, resulting in a network that outper-
forms state-of-the-art methods for image deblurring tasks.

Unfolding is considered for an image super-resolution task in [160].
After detailing the degradation model and the formulation of the
problem, the authors propose to unfold the half-quadratic splitting
algorithm. The proposed network is shown to perform comparably
to other standard learning-based methods.

The unfolding of NMF is also proposed in [109], where the au-
thors introduce deep architectures for both supervised and unsuper-
vised learning settings. Their framework outperformed standard ap-
proaches in biological data analysis tasks. In [67], the authors pro-
pose a deep NMF framework based on unfolding for speech enhance-
ment. By untying the parameters and despite using far fewer, their
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approach is competitive with traditional neural networks in their ex-
perimental work.

The authors of [88] design a neural network from the iterations of
the projected gradient algorithm for multi-spectral image fusion. A
CNN replaces the projection operator in this case. In [69], the authors
unfold the proximal gradient algorithm for MRI data reconstruction.
They add skip connections to the network to simulate the memory of
the first iterates in the late layers.

Activation functions and proximity operators

With the LISTA example, the soft-threshoding operator was inter-
preted as an activation function. Most of the latter can indeed be
interpreted as proximity operators. This connection has been inves-
tigated in [27], where the authors observe that most of the usual ac-
tivation functions belong to the same class of functions, that can be
characterized as proximity operators. They denote A(R) the set of
non-decreasing, non-expansive functions from R to R that take value
0 at 0. With the help of the Corollary 2.1 and (2.2.14), the following
theorem can be deduced:

Theorem 4 ([27]). Let g : R → R. Then, g ∈ A(R) if and only if there
exists f ∈ Γ0(R), which is minimized in 0, such that g = proxf.

Following Theorems 3 and 4, most of the usual activation functions
can be expressed as proximity operators of functions that can be char-
acterized. Table 3 includes illustrations from the original study [27].



2.3 deep learning 27

Ta
bl

e
3

:U
su

al
ac

ti
va

ti
on

fu
nc

ti
on

s
as

pr
ox

im
it

y
op

er
at

or
s

N
am

e
pr

ox
f
(y
)

f(
y
)

Id
en

ti
ty

y
0

R
eL

U
(y
) +

ι [
0

;+
∞[(
y
)

PR
eL

U

  y
if
y
>
0

,

α
y

el
se

.

  0
if
y
>
0

,

y
2
1
−
α

2
α

el
se

.

Si
gm

oï
d

1
1
+
e
−
y
−
1 2

        (y
+
1 2
)

lo
g(
y
+
1 2
)
+
(1 2

−
y
)

lo
g(
1 2
−
y
)
−
1 2
(y
2
+
1 4
)

if
|y
|
<
1 2

,

−
1 4

if
|y
|
=
1 2

,

+
∞

el
se

.

A
rc

ta
ng

en
t

2 π
ar

ct
an

  −
2 π

lo
g(

co
s(
π
y 2
))
−
1 2
y
2

if
|y
|
<
1
,

+
∞

el
se

.

H
yp

er
bo

lic
ta

ng
en

t
ta

nh

        (1
+
y
)

lo
g(
1
+
y
)+

(1
−
y
)

lo
g(
1
−
y
)−
y
2

2
if
|y
|
<
1
,

lo
g(
2
)
−
1 2

if
,|
y
|
=
1
,

+
∞

el
se

.





A P P E N D I C E S

2.a proximity operator of the left is divergence

The closed-form expression of the proximity operator of the left IS
divergence is detailed hereafter.

Lemma 1.

∀y ∈ RK, proxρ−1Dψ(· | z)(y) =
1

2ρ
(−z−1 + ρy±

√
∆ ′), (2.A.1)

with ∆ ′ := 4ρ+
(
z−1 − ρy

)2.

Proof. Let us consider ψ such that ψ(y) = − logy. We consider the
problem (2.2.11) with f(y) = Dψ(y | z). Note that such a function is
defined only for vectors with nonnegative entries. We can, however,
broaden its definition domain to RK by assuming that Dψ(y | z) =

+∞ if y /∈ RK+ [38]. We then look for y such that ∇Q(y) = 0, where
Q(y) = Dψ(y | z) + ρ

2‖y − p‖2. We have:

∇Q(y) = ψ ′(y) −ψ ′(z) + ρ(y − p) (2.A.2)

= z−1 − y−1 + ρ(y − p). (2.A.3)

Therefore,

∇Q(y) = 0⇐⇒ y� z−1 − 1+ ρy� (y − p) = 0 (2.A.4)

⇐⇒ ρy2 + (z−1 − ρp)� y − 1 = 0. (2.A.5)

Finally:

proxρ−1Dψ(· | z)(y) =
1

2ρ
(−z−1 + ρy +

√
∆ ′), (2.A.6)

where ∆ ′ := 4ρ+ (z−1 − ρy)2.
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This chapter introduces the problems addressed in this thesis as
well as common methods to tackle them. Section 3.1 defines the
phase retrieval problem and provides an overview of the usual ap-
proaches considered for its resolution. In Section 3.2, the phase re-
trieval problem is examined from the audio perspective and specific
algorithms are presented. The chapter ends in Section 3.3, which de-
scribes learning-based methods: deep neural networks in the context
of audio signal recovery and unfolded iterative algorithms.

3.1 the phase retrieval problem

3.1.1 Problem formulation

The phase retrieval (PR) problem consists in reconstructing a signal
from phaseless nonnegative measurements. It occurs in a variety of
fields including optical imaging [152], astronomy [45], X-ray crystal-
lography [64], and audio signal processing [52, 107], which is the
main motivation of this thesis. In this manuscript, the measurements
are modeled as follows:

r ≈ |Ax?|d, (3.1.1)

where x? ∈ CL is the unknown signal, A ∈ CK×L is the measurement
operator and r ∈ RK+ collects the phaseless measurements. In practice,
the measurements are most of the time either magnitude (d = 1) or
power (d = 2) measurements.

The PR problem is inherently ill-posed as different signals can gen-
erate identical measurements. The retrieved signal can thus only be
recovered up to a certain level of ambiguity depending on the mea-
surement operator. A trivial ambiguity is the global phase: if x is a
solution to PR, cx is also a solution for all scalar c ∈ C such that
|c| = 1.

31
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Algorithm 7 : Error Reduction algorithm

1 Initialize x0.
2 while iterate do

3 xt+1 := PS0

(
A†
(

r� Axt
|Axt|

))
4 end

3.1.2 Algorithms

Phase retrieval may be tackled with various conventional optimiza-
tion algorithms. An overview of the main methods is detailed in the
following. These approaches can be divided into two groups: noncon-
vex and convex methods.

Nonconvex methods

Phase retrieval is usually expressed as an optimization problem in-
volving a quadratic error function:

min
x∈CL
‖|Ax|d − r‖2, (3.1.2)

As this formulation is nonconvex, some prior knowledge about the
unknown signal and the measurement operator is necessary to yield
a meaningful and good quality estimate. Initialization is also crucial
in order to converge to better local minima.

In the seminal work [44], the Error Reduction algorithm (ER) is pro-
posed to solve PR with Fourier magnitude measurements (d = 1 and
A is the DFT). It can be encompassed in the class of alternating pro-
jections algorithms. ER alternates two projections: one onto the set
of measurements whose magnitude is equal to r and the other onto
S0, the set of signals that satisfy a specific support constraint. The ER
algorithm is displayed in Algorithm 7 with PS0 being the projection
operator on S0.

ER generalizes the Gerchberg-Saxton algorithm (GSA) [51], an alter-
nating projections algorithm to reconstruct a signal from its modulus
and its Fourier magnitude. ER can also be interpreted as a gradient
descent algorithm for the quadratic loss (3.1.2) and is shown to con-
verge to a stationnary point [40].

Wirtinger Flow (WF) [16] is another gradient descent algorithm for
(3.1.2), with power measurements (d = 2). It consists of two steps:

1. an initialization based on a spectral method, that computes the
largest eigenvector of the matrix AHdiag(r)A;

2. a gradient descent update, calculated via the Wirtinger gradient
(see Section 2.2).
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Algorithm 8 : Wirtinger Flow algorithm

Parameters : (µt) ∈ RN

1 Initialize v0 ∈ CL.
2 for t = 0 to T do

3 vt+1 :=
AHdiag(r)Avt
‖AHdiag(r)Avt‖

4 end
5 x0 := vT ;
6 while iterate do
7 xt+1 := xt − µtA†

[
(Axt)� (|Axt|2 − r)

]
8 end

In practice, the initialization is computed via the power method, a
standard numerical technique to estimate the dominant eigenvector
of a matrix [14]. The algorithm is summarized in Algorithm 8 where
µt denotes the gradient step size.

In [16], the step size is set heuristically and grows exponentially in
the first iterations before being fixed at a constant. Variations of this
algorithm include the Truncated Amplitude Flow [155] and the Thresh-
olded Wirtinger Flow algorithms [15].

The ADMM algorithm has been used several times to address
phase retrieval as well. In [84], PR is expressed as the following con-
strained problem by introducing auxiliary variables for the magni-
tude and phase of Ax:

min
x∈CL,u∈RK+,θ∈[0;2π[K

‖r − u‖2 s.t. Ax = u� eiθ. (3.1.3)

From (3.1.3) one can derive the augmented Lagrangian:

L(x, u,θ,λ) = ‖r−u‖2+<
(
λH(Ax − u� eiθ)

)
+
ρ

2
‖Ax−u� eiθ‖2,

(3.1.4)

where λ is the vector of the Lagrange multipliers corresponding to
the constraint Ax = u� eiθ and ρ is the penalty parameter. By min-
imizing (3.1.4), the authors derive the ADMM update rules detailed
in Algorithm 9.

In [157], Wen et al. address PR as a feasibility problem. Instead
of (3.1.2), they consider the following formulation:

find x ∈ CL s.t. |Ax| = r and x ∈ S0, (3.1.5)

where S0 is the set of signals respecting an additional constraint (in
optics, a typical constraint is that the signal is real-valued and non-
negative). The ADMM updates are specified in Algorithm 10 with
PS0 being the projection operator on S0.

Other optimization algorithms have also been considered for phase
retrieval. For instance, majorization-minimization is used in [121] with



34 related work

Algorithm 9 : ADMM ([84])
Parameters : ρ ∈ R

1 Initialize λ0 ∈ CL, x0 ∈ CK.
2 while iterate do
3 ut+1 =

ρ|Axt+ρ−1λt|+2r
ρ+2

4 θt+1 =
Axt+ρ−1λt
|Axt+ρ−1λt|

5 xt+1 = A†
(

ut+1 � eiθt+1 − λt
ρ

)
6 λt+1 = λt + ρ

(
Axt+1 − ut+1 � eiθt+1

)
7 end

Algorithm 10 : ADMM ([157])

1 Initialize λ0, u0 ∈ CK.
2 while iterate do
3 xt+1 = PS0(ut − λt)

4 ut+1 = A†
(

r� A(xt+1+λt)
|A(xt+1+λt)|

)
5 λt+1 = λt + ρ(xt+1 − ut+1)
6 end

four different algorithmic variants. The Douglas-Rachford Splitting is
also examined in [21, 22] and has been shown to be equivalent to
ADMM in the context of phase retrieval [41].

Convex methods

More recently, methods proposing convex relaxations of the PR prob-
lem have been presented. PhaseLift [17] is the precursor of these tech-
niques. This algorithm results from the following observation con-
cerning power measurements:

∀k = 1, . . . , K; (|Ax|2)k = Tr(akaH
kxxH), (3.1.6)

where ak is the k-th row of A and Tr is the matrix trace operator. With
the rank-one matrix X = xxH, the phase retrieval problem now writes:

find X,

s.t. ∀k; Tr(akaH
kX) = rk,

X � 0,
rank(X) = 1.

(3.1.7)

Equation (3.1.7) can equivalently be written as the following rank
minimization problem:

minimize rank(X),

s.t. ∀k; Tr(akaH
kX) = rk,

X � 0.
(3.1.8)
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As the rank minimization problem (3.1.8) is NP-hard, it is relaxed into
the following trace minimization problem:

minimize Tr(X),

s.t. ∀k; Tr(akaH
kX) = rk,

X � 0.
(3.1.9)

This last problem is a convex semidefinite program (SDP) and can
be tackled via a wide range of SDP solvers. When the measurement
operator is a collection of random Gaussian vectors, PhaseLift has
been shown to recover the unknown signal with high probability [17].

PhaseCut [151] is another semidefinite relaxation of the phase re-
trieval problem. It starts by separating the amplitude and phase vari-
ables in the optimization problem with d = 1. PR now writes:

min
u∈CK, |u|=1

x∈CL

‖Ax − r� u‖2. (3.1.10)

As (3.1.10) can be solved explicitly in x when the phase vector |u| is
fixed, the problem writes:

minimize uHMu

s.t. |u| = 1,
(3.1.11)

with M = diag(r)(I − AAH)diag(r). With the rank-one matrix
U = uuH, (3.1.11) is equivalent to:

minimize Tr(UM),

s.t. diag(U) = 1,

U � 0,
rank(U) = 1.

(3.1.12)

Similarly than with the Maxcut relaxation [54, 110], (3.1.12) is relaxed
in the following SDP:

minimize Tr(UM),

s.t. diag(U) = 1,

U � 0.
(3.1.13)

Problem (3.1.13) then can be solved with the help of a SDP solver.
In the following, methods to tackle PR with audio signals are de-

tailed. Convex methods are rarely employed in this context due to
their increased dimensionality and the large dimension of audio sig-
nals. Nonconvex methods, on the other hand, are rather common.
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3.2 phase retrieval in audio

3.2.1 Context and applications

As many audio signal processing techniques operate on the spectro-
gram (or other phaseless time-frequency representations), phase re-
trieval is essential to reconstruct waveforms. Therefore, STFT magni-
tude or power measurements are usually considered and PR applies
in a variety of tasks.

In speech enhancement, noise reduction algorithms are frequently
formulated with spectrograms and discard the phase. Several meth-
ods have been proposed in order to estimate the phase components
of the enhanced spectrogram. They achieve significantly better recon-
struction performance than the methods ignoring the phase estima-
tion [52, 73, 107].

PR is also useful with source separation (cf. Section 3.2.3), as most
algorithms operate on phaseless time-frequency representations. A
typical framework begins by estimating the magnitude spectrograms
of the different sources of the mixture signal. Then, the signals are
reconstructed from the source spectrogram estimates. The phase of
the mixture is typically used as a phase estimate and the inverse STFT
is computed. Several works observed that using PR approaches to
estimate a proper phase results in better separation performance [91,
156, 158].

Audio restoration is another application for PR. In [74], the authors
address audio inpainting in the time-frequency domain. They make
use of PR algorithms to estimate the phase of the missing TF coeffi-
cients, whereas usual approaches only address magnitude inpainting.
In [90], declicking (i. e. , removing noise on short time periods) is ad-
dressed. The proposed method based on PR outperforms traditional
restoration methods.

3.2.2 Specific algorithms

There are numerous PR algorithms in the literature that use the STFT
operator and audio signals. They can be classified in two categories :
iterative nonconvex optimization methods and model-based methods.
The first ones are typically the counterparts of the PR algorithms de-
tailed in Section 3.1 and were developped concurrently with them.
Convex methods on the other hand, are rarely used in audio appli-
cations due to their increased computational cost: these methods do
not scale to high dimension. Model-based methods design specific
algorithms based on the structure of the STFT and audio signals.
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Algorithm 11 : Griffin-Lim algorithm

1 Initialize x̃0.
2 while iterate do

3 x̃t+1 := AAH
(

r� x̃t
|x̃t|

)
4 end
5 Return AHx̃T .

Iterative methods: Griffin-Lim algorithm and variants

The Griffin-Lim algorithm (GLA) [59] addresses the PR problem with
magnitude spectrograms as measurements. This seminal work is the
counterpart to the Error Reduction algorithm (cf. Section 3.1.2) and
it is still widely used in the audio community. GLA alternates projec-
tions on M, the set of time-frequency coefficients whose magnitude
is equal to the observed measurements, and C, the set of consistent
coefficients (i. e. , that correspond to the STFT of time-domain signals).
More formally, these sets write:

M = {x̃ ∈ CK | |x̃| = r}, (3.2.1)

C = {x̃ ∈ CK | x̃ = AA†x̃}. (3.2.2)

With the assumption of self-duality of the window used in the STFT,
we have A† = AH and AHA = IL. The projections on the two sets then
write:

PM(x̃) = r� x̃
|x̃|

, (3.2.3)

PC(x̃) = AAHx̃. (3.2.4)

Although M is not a subspace and is not convex, PM is usually called
a projection since it maps an element of CK to its unique closest el-
ement in M. Alternating these projections after an initialization with
random phase results in GLA, which is proved to converge to a crit-
ical point of the quadratic loss (3.1.2). GLA is displayed in Algo-
rithm 11.

An accelerated version of GLA, termed Fast Griffin-Lim algorithm
(FGLA), is proposed in [115] with a momentum strategy with con-
stant acceleration parameter. It is shown experimentally to reach
lower local minima of (3.1), yet without theoretical convergence guar-
antee. FGLA iterations are detailed in Algorithm 12, where ξ is the
acceleration parameter.

In [50], the authors propose Real-Time Iterative Spectrogram Inversion
(RTISI), a real-time variant of GLA. It consists of applying GLA it-
erations frame by frame while only considering the previous frames.
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Algorithm 12 : Fast Griffin-Lim algorithm
Parameters : ξ ∈ [0, 1]

1 Initialize x̃0.
2 while iterate do

3 ũt+1 := AAH
(

r� x̃t
|x̃t|

)
4 x̃t+1 := ũt+1 + ξ(ũt+1 − ũt)
5 end
6 Return AHx̃T .

Algorithm 13 : Griffin-Lim like phase recovery via ADMM
(GLADMM)

1 Initialize x̃0.
2 ũ0 = x̃0
3 λ0 = 0
4 while iterate do
5 x̃t+1 = PM(ũt − λt)
6 ũt+1 = PC(x̃t+1 + λt)
7 λt+1 = λt + x̃t+1 − ũt+1
8 end
9 Return AHx̃T .

In [162], an extension to RTISI called RTISI with Look-Ahead (RTISI-
LA) is proposed. The authors consider a few of the future frames
and the previous frames in RTISI, which significantly improves the
reconstruction performance.

A new PR optimization criterion based on consistency is proposed
in [76, 78]. The authors also introduce an algorithm to minimize this
new criterion, based on local approximations. They notice a connec-
tion between their scheme and GLA, which is the alternated min-
imization of an auxiliary function constructed with the proposed
consistency-based loss.

The authors of [99] draw on GLA to propose an ADMM scheme
based on the following feasibility problem:

minimize
x̃∈CK

χM(x̃) + χC(x̃), (3.2.5)

with χM, χC respectively the indicator functions of sets M ad C.
Writing ADMM with (3.2.5) results in the algorithm entitled Griffin-
Lim like phase recovery via ADMM (GLADMM) and detailed in Algo-
rithm 13.

When λt = 0, the GLADMM iteration is identical to a Griffin-Lim
algorithm step.
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Model-based methods

Various PR methods make use of the properties of the STFT operator
and audio signals. Several of them are based on the phase deriva-
tives and magnitude relations introduced in [118]. These relations
only hold theoretically when the STFT operator is applied to contin-
uous functions and the analysis window is an infinite-support Gaus-
sian function. With Ag denoting such an operator, x being a real con-
tinuous function, m, n respectively denoting frequency and time, the
relations write:

∂6 Agx

∂m
(m, n) = −γ

∂

∂n
log(|Agx|(m, n)), (3.2.6)

∂6 Agx

∂n
(m, n) = γ−1

∂

∂m
log(|Agx|(m, n)) + 2πm. (3.2.7)

Here, γ denotes the time-frequency support ratio of the Gaussian
window g, defined as follows:

g(n) =
(γ
2

)− 1
4
e−π

n2

4 . (3.2.8)

With (3.2.6) and (3.2.7), the phase gradient can be defined as:

∇6 Agx(m, n) =

(
−γ ∂∂n log(|Agx|(m, n))

γ−1 ∂
∂m log(|Agx|(m, n)) + 2πm

)
. (3.2.9)

In theory, knowing the original phase of a single time-frequency co-
efficient is enough to reconstruct the phase of the entire spectrogram
by integrating the phase gradient (3.2.9) [119]. However, these rela-
tions do not stand in practice with discrete signals and finite-support
windows. In [119], the authors still make use of them through ap-
proximations with a proposed algorithm entitled Phase Gradient Heap
Integration. Their experimental work results in good reconstruction
results, at the expense of theoretical guarantees.

Other methods take interest in signal structure using sinusoidal
models: sine waves phase can be reconstructed from the phase of a
known coefficient as it grows linearly in time. The phase unwrapping
algorithm [90] proposes estimating first the instantaneous frequency
of the sinusoidal components via quadratic spectrum interpolation.
The phase of onsets is assumed to be known or estimated by another
algorithm, and the phase is then linearly unwrapped [89]. A similar
method is developed by the Single Pass Spectrogram Inversion algorithm
[6] (SPSI), which detects peaks using quadratic interpolation and ac-
cumulates phase linearly.



40 related work

3.2.3 Phase retrieval for audio source separation

Problem formulation

The source separation problem consists in estimating the source sig-
nals x(c) composing a mixture signal x. We consider a linear and
instantaneous mixture model:

x =

C∑
c=1

x(c). (3.2.10)

Even though more intricate models include gain weights, delays or
convolutions (e. g. , for dereverberation applications), these will not be
considered in this thesis. As the STFT is linear, the source separation
problem with model (3.2.10) can be expressed in the time-frequency
domain as well:

find {x̃(c)}Cc=1 s.t. x̃ =

C∑
c=1

x̃(c), (3.2.11)

with x̃, x̃(c) denoting the STFT of the mixture and the sources, respec-
tively.

(3.2.11) is often solved via time-frequency masking. This technique
consists in estimating nonnegative masks b(c) that are multiplied by
the STFT of the mixture to produce complex source estimates ˆ̃x(c):

ˆ̃x(c) = b(c) � x̃. (3.2.12)

A wide range of approaches to mask estimation exist in the literature.
Among them, Wiener filtering considers the following masks:

b(c) =
r̂(c)∑C

c ′=1 |r̂(c
′)|2

, (3.2.13)

which are optimal in the sense of the mean square error by design
and with r̂(c) denoting a power spectrogram estimate. Methods to es-
timate r̂(c) include nonnegative matrix factorization [42], kernel meth-
ods [87] and deep learning [153]. The latter can also be used directly
to mask estimation without the structure hypothesis (3.2.13).

However, using nonnegative-valued masks for time-frequency
masking implies that the phase of the source STFT estimate is equal
to the phase of the mixture STFT. This assumption is known to be in-
correct when the sources overlap in the time-frequency domain and
to result in low-quality source estimates after the inverse STFT is ap-
plied. To address this issue, several methods aim at estimating the
phase. Consistent Wiener filtering [79, 80] introduces a framework ac-
counting for the consistency of the source estimates in masking. This
approach is extended in [93], where the phase is considered to be
non-uniform, in contrast to previous Wiener filtering methods. Other
methods make use of signal models in this context [20, 91].
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Algorithm 14 : Multiple input spectrogram inversion algo-
rithm
1 Initialize x(1)0 , . . . , x(C)

0 .
2 while iterate do
3 for c = 1 to C do

4 y(c)
t+1 = A†

(
r(c) � Ax(c)t

|Ax(c)t |

)
5 end
6 for c = 1 to C do

7 x(c)t+1 = y(c)
t+1 +

1
C

(
x −
∑C
c ′=1 y(c ′)

t+1

)
8 end
9 end

The multiple input spectrogram inversion algorithm

The multiple input spectrogram inversion algorithm [63] (MISI) is an ex-
tension to GLA [59] to perform PR with multiple measurements in
the context of source separation. With the mixture x and spectrogram
estimates r(c) of C sources, the problem can be formulated as follows:

min
{x(c)∈RL}Cc=1

C∑
c=1

∥∥∥r(c) − |Ax(c)|
∥∥∥2 s.t.

C∑
c=1

x(c) = x. (3.2.14)

MISI solves (3.2.14) with the iterations detailed in Algorithm 14.

MISI iterations begin with a Griffin-Lim step on each source, fol-
lowed by a distribution of the mixture error on the different source
estimates to enforce the mixture constraint. It was also demon-
strated in [96, 154] that this algorithm is related to the majorization-
minimization approach and converges.

3.3 phase retrieval with deep learning

In recent years, many learning-based methods for tackling inverse
problems in audio signal processing have been developed. We present
hereafter techniques for phase retrieval using deep neural networks
(DNN).

In order to tackle audio PR, Arik et al. propose in [2] a novel con-
volutional neural network architecture, that is trained to synthesize
audio from an observed spectrogram. The CNN includes several so-
called "heads", which are subblocks of the network working in par-
allel with the same spectrogram input. The heads include the same
transposed convolution layers, with different upsamplig factors. The
loss function used is a sum of known losses in audio such as spec-
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tral convergence or `1 distance over log-magnitude spectrograms (c.f.
Section 2.1.2). [134] proposes a feed-froward DNN architecture to re-
construct phase from magnitude spectrogram. The authors train the
network with cosines losses on phase and group delay, which statis-
tically implies that the phase data follows a von Mises distribution.
This work is extended to the modeling of group delay from magni-
tude spectrograms in [135].

In [98], the authors estimate the instantaneous frequency and the
group delay from a magnitude spectrogram via two DNNs. The two
networks are trained with a cosine loss. The authors reconstruct the
phase with a recurrent unwrapping algorithm. A similar strategy is
presented in [136], where two DNNs are also used to estimate the
phase derivatives. The networks are trained with a cosine loss with
biquadratic regularization. The phase is reconstructed via integration
over several paths.

Several deep learning based methods for phase retrieval also take
inspiration from unfolding. In [158], the authors unfold the MISI al-
gorithm (see Section 3.2.3) for phase reconstruction in the context of
source separation. The unfolded network includes parameterized lay-
ers emulating the STFT and the iSTFT, which enables the proposed
architecture to learn audio representations from the data. [100] pro-
poses a deep architecture for PR that is inspired by the unfolding of
the Griffin-Lim algorithm. Every layer includes a GLA iteration and a
denoising sublayer, which is a convolutional neural network trained
separately to estimate the residual error.
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4.1 introduction

Phase retrieval is commonly formulated as a nonconvex minimization
problem involving a quadratic cost function, as follows:

min
x∈CL

‖r − |Ax|d‖2. (4.1.1)

Problem (4.1.1) may be tackled with conventional optimization algo-
rithms such as gradient descent [16, 33], alternating projections [44,
51], majorization-minimization [121], alternating direction method of
multipliers [84, 157], and leveraging the structure of time-frequency
measurements [9, 116]. A presentation of several of these algorithms
is detailed in Chapter 3, Section 3.1.

Even though a considerable amount of research has been con-
ducted to tackle the PR problem as described in (4.1.1), such an ap-
proach suffers from one drawback when it comes to audio. Indeed, it
is well established that the quadratic cost is not the best-suited met-
ric for evaluating discrepancies in the time-frequency domain. For
instance, it does not properly characterize the perceptually-related
properties of audio such as its large dynamic range [55].

As such, we propose to replace hereafter the quadratic cost func-
tion in (4.1.1) by alternative divergences which are more appropriate
for audio signal processing [55]. We consider Bregman divergences, a

45
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family of cost functions which encompasses the beta-divergence [23,
66] and some of its well-known special cases, the Kullback-Leibler
(KL) and Itakura-Saito (IS) divergences. These are acknowledged for
their superior performance in nonnegative audio spectral decomposi-
tion [42, 95, 128, 149], audio inpainting [77], and music analysis [65,
146]. Besides, these divergences naturally arise from a statistical per-
spective (cf. Section 2.2.3). For instance, minimizing the KL diver-
gence between an observed and an estimated spectrogram assumes
that the observations follow a Poisson model. Similarly, minimizing
the IS divergence implies a multiplicative Gamma noise model [128].
In order to be as general as possible, we consider any nonnegative
power d (we do not restrict to either 1 nor 2) and we account for the
fact that these divergences are not symmetric with respect to their
input parameters in general, which actually leads to tackling two dif-
ferent problems. To optimize the resulting objective, we derive two
algorithms, based on accelerated gradient descent [117] and ADMM
[12].

The chapter is organized as follows. Section 4.2 describes the PR
problem extended to Bregman divergences and details the two pro-
posed algorithms. Section 4.3 presents the experimental works with
audio signal recovery applications. Section 4.4 discusses strategies to
choose optimally the step size with the proposed gradient algorithm.
Finally, Section 4.5 draws some concluding remarks.

4.2 phase retrieval with bregman divergences

4.2.1 Problem setting

We propose to generalize the problem (4.1.1) by substituting the
quadratic cost by a Bregman divergence. As it is not necessarily sym-
metric with respect to its input arguments, we will tackle the two
following formulations of the problem, with Dψ denoting the Breg-
man divergence with generating function ψ:

min
x∈CL

→
J (x) := Dψ(r | |Ax|d), (4.2.1)

min
x∈CL

←
J (x) := Dψ(|Ax|d | r). (4.2.2)

We will refer to problems (4.2.1) and (4.2.2) as “right PR” and “left
PR” respectively.

4.2.2 Accelerated gradient descent

Similarly to [16], we first propose a Wirtinger gradient descent algo-
rithm to minimize the objective functions defined in (4.2.1) and (4.2.2).
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The gradients of a Bregman divergence with respect to its first and
second arguments are given by

∇zDψ(y | z) = ψ ′′(z)� (z − y), (4.2.3)

∇yDψ(y | z) = ψ ′(y) −ψ ′(z). (4.2.4)

Using the chain rule [35], we obtain:

∇
→
J (x) = (∇|Ax|d)H[ψ ′′(|Ax|d)� (|Ax|d − r)], (4.2.5)

∇
←
J (x) = (∇|Ax|d)H[ψ ′(|Ax|d) −ψ ′(r)], (4.2.6)

where the derivative ψ ′ and second-derivative ψ ′′ are applied entry-
wise and ∇|Ax|d denotes the Jacobian of the multivariate function
x→ |Ax|d (the Jacobian being the extension of the gradient for multi-
variate functions, we may use the same notation ∇).1 Using differen-
tiation rules for element-wise matrix operations [35], we have:

∇|Ax|d =
d

2
diag(|Ax|d−2 � (Ax))A. (4.2.7)

Expressions of ψ, ψ ′ and ψ ′′ for some typical Bregman divergences
are given in Chapter 2, Table 1.

We rewrite the gradients (4.2.5) and (4.2.6) in the following compact
form:

∇J(x) = (∇|Ax|d)H gψ, (4.2.8)

where J can be either
→
J or

←
J and

for “right” PR, gψ = ψ ′′(|Ax|d)� (|Ax|d − r), (4.2.9)

for “left” PR, gψ = ψ ′(|Ax|d) −ψ ′(r). (4.2.10)

As such and together with (4.2.7), we obtain:

∇J(x) = d

2
AH [|Ax|d−2 � (Ax)� gψ

]
. (4.2.11)

Using a constant step-size µ, our generic gradient algorithm writes:

xt+1 = xt − µ∇J(xt). (4.2.12)

Similarly as in FGLA [115], we furthermore use an acceleration
scheme [117] resulting in the following updates:

qt+1 = xt − µ∇J(xt),
xt+1 = qt+1 + ξ(qt+1 − qt),

(4.2.13)

1 Note that the gradient is not properly defined in some cases when one or more co-
efficients of Ax are zero-valued. We present in Appendix 4.5 a detailed and rigorous
treatment of this potential issue.
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where ξ is the acceleration parameter.
Remark: When considering a quadratic cost (i.e., ψ(z) = 1

2z
2), prob-

lems (4.1.1), (4.2.1) and (4.2.2) become equivalent. In particular, when
d = 1, both gradients (4.2.5)-(4.2.6) write:

∇J(x) = x − AH
(

r� Ax
|Ax|

)
. (4.2.14)

Gradient descent with step size equal to 1 thus yields:

xt+1 = AH
(

r� Axt
|Axt|

)
, (4.2.15)

which is nothing but the GLA update given by alternating the projec-
tions in Section 3.2. This shows that GLA can be seen as a gradient
descent applied to the PR problem (4.1.1).

4.2.3 ADMM algorithm

In a similar fashion as in [84], we propose to reformulate PR with
Bregman divergences as a constrained problem. We detail hereafter
the left PR problem, and a similar derivation can be conducted for its
right counterpart. The problem rewrites:

min
x∈CL,u∈RK+,θ∈[0;2π[K

Dψ(r |u) s. t. (Ax)d = u� eiθ, (4.2.16)

from which we obtain the augmented Lagrangian:

L(x, u,θ,λ) =Dψ(r |u) +<
(
λH((Ax)d − u� eiθ)

)
+
ρ

2

∥∥∥(Ax)d − u� eiθ
∥∥∥2 , (4.2.17)

where ρ is the penalty parameter. The first step of our ADMM algo-
rithm consists in updating the values of u and θ given xt and λt:

{ut+1,θt+1} = argmin
u>0,θ

L(xt, u,θ,λt). (4.2.18)

To that end, we first rewrite L as:

L(x, u,θ,λ) = Dψ(r |u) +
ρ

2

∥∥∥∥(Ax)d +
λ

ρ
− u� eiθ

∥∥∥∥2 − 1

2ρ
‖λ‖2 .

(4.2.19)

Therefore, problem (4.2.18) can be equivalently formulated as:

{ut+1,θt+1} = argmin
u>0,θ

Dψ(r |u) +
ρ

2
‖ht − u� eiθ‖2, (4.2.20)
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with:

ht = (Axt)d +
λt

ρ
. (4.2.21)

With u fixed, the second term in (4.2.20) is minimized when the phase
of ht is equal to θ. Thus, θ is updated as follows:

θt+1 = 6 ht. (4.2.22)

The problem in u can then be formulated as:

ut+1 = argmin
u>0

Dψ(r |u) +
ρ

2
‖|ht|− u‖2. (4.2.23)

As shown in Appendix 4.5, the minimization problem (4.2.23) re-
mains unchanged when the positivity constraint on u is disregarded.
The u update can therefore be written

ut+1 = proxρ−1Dψ(r | ·)(|ht|). (4.2.24)

The expressions of proxf for some of the divergences considered in
our experiments are given in Table 2.

The second step of our ADMM algorithm consists in updating the
value of x:

xt+1 = argmin
x∈CL

L(x, ut+1,θt+1,λt). (4.2.25)

Since only the second term on the right-hand side of (4.2.19) depends
on x, this problem rewrites:

xt+1 = argmin
x∈CL

∥∥∥∥(Ax)d − ut+1 � eiθt+1 +
λt

ρ

∥∥∥∥2 , (4.2.26)

which is a least-squares problem with the following closed-form so-
lution:

xt+1 = AH(ut+1 � eiθt+1 − λt
ρ

)1/d. (4.2.27)

The final step of our ADMM algorithm consists in updating the La-
grange multipliers λ, as follows:

λt+1 = λt + ρ(Axt+1 − ut+1 � eiθt+1). (4.2.28)

The whole ADMM procedure then consists in iteratively applying the
updates given by (4.2.24), (4.2.27) and (4.2.28).

The derivation of the updates for the left PR problem is similar,
and the resulting algorithm is unchanged, except for the update of u
in (4.2.24), which becomes:

ut+1 = proxρ−1Dψ(· | r)(|ht|). (4.2.29)
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Algorithm 15 : Accelerated gradient descent for PR with the
Bregman divergence.

1 Inputs: Measurements R ∈ RM×N+ , initial phase
φ0 ∈ [0, 2π[M×N+ , step size µ and acceleration parameter ξ.

2 Initialization:
3 X = R1/d � eiφ0

4 x = iSTFT(X)
5 qold = 0

6 while stopping criteria not reached do
7 X = STFT(x)
8 if PR left then
9 Gψ = ψ ′(|X|d) −ψ ′(R)

10 else if PR right then
11 Gψ = ψ ′′(|X|d)� (|X|d − R)

12 q = x − µd2 iSTFT(X� |X|d−2 �Gψ)
13 x = q + ξ(q − qold)

14 qold = q
15 end
16 Output: x

4.2.4 Implementation details

We have presented gradient descent and ADMM algorithms for phase
retrieval in the general case. We now address some specificities of
audio signal recovery from a phaseless spectrogram, i.e., when A is
the STFT matrix and x is real-valued. The STFT matrix A and its
inverse are large structured matrices that allow for fast implemen-
tations of matrix-vector products of the forms Ax and AHy based
on the fast Fourier transform [13, 129]. In that setting, one handles
time-frequency matrices of size M×N, where M is the number of
frequency channels andN the number of time frames, rather than vec-
tors of size K =MN. As such, we provide in Algorithms 15 and 16 the
pseudo-code for practical implementation of our accelerated gradient
and ADMM algorithms, respectively, in the time-frequency audio re-
covery setting.

For generality, we assumed x ∈ CL in the previous sections. How-
ever, audio signals are real-valued and this deserves some comments.
As shown in Appendix 4.5, the iterates xt remain real-valued under
specific conditions. In a nutshell, a signal is real-valued if and only if
its STFT X ∈ CM×N is frequency-Hermitian, that is:

X(m,n) = X(M−m,n)∗. (4.2.30)

When R is the spectrogram of a real-valued signal and when Al-
gorithms 15 and 16 are initialized with a frequency-Hermitian ma-
trix X, all the time-frequency matrices involved in the updates re-
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Algorithm 16 : ADMM for PR with the Bregman divergence.

1 Inputs: Measurements R ∈ RM×N+ , initial phase
φ0 ∈ [0, 2π[M×N+ and augmentation parameter ρ.

2 Initialization:
3 X = R1/d � eiφ0

4 x = iSTFT(X)
5 Λ = 0

6 while stopping criteria not reached do
7 X = STFT(x)
8 H = Xd + 1

ρΛ

9 Θ = 6 H
10 if PR left then
11 U = proxρ−1Dψ(· | r)(|H|)

12 else if PR right then
13 U = proxρ−1Dψ(r | ·)(|H|)

14 x = iSTFT((U� eiΘ − 1
ρΛ)1/d)

15 Λ = Λ+ ρ(STFT(x) − U� eiΘ)

16 end
17 Output: x

main frequency-Hermitian (because operations only involve sums
and element-wise products with frequency-Hermitian matrices). This
in turn ensures that the variable x remains real-valued. As such, the
STFT and inverse STFT (iSTFT) operations in Algorithms 15 and 16

need only return/process the first
⌊
M
2

⌋
+ 1 frequency channels (usu-

ally termed “positive frequencies"), as customary with real-valued
signals [130].

More rigorously, we may also re-derive our gradient and ADMM
algorithms for x ∈ RL, using real-valued differentiation instead of
Wirtinger gradients (and involving the real and imaginary parts of A
in the objective function). This is addressed in Appendix 4.5 which
shows that we indeed obtain the same algorithms.

4.3 numerical experiments

In this section, we conduct experiments on PR tasks. We first assess
the potential of the proposed algorithms for recovering signals from
exact (i.e., non-modified) spectrograms. Then, we consider a PR task
from modified spectrograms, as often encountered in audio applica-
tions. In the spirit or reproducible research, the code related to those
experiments is available online.2 We also provide audio examples of
reconstructed signals.3

2 https://github.com/phvial/PRBregDiv

3 https://magronp.github.io/demos/jstsp21.html

https://github.com/phvial/PRBregDiv
https://magronp.github.io/demos/jstsp21.html
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4.3.1 Experimental setup

Data

As acoustic material, we use two corpora in our experiments. The
first one, referred to as “speech”, is composed of 100 utterances taken
randomly from the TIMIT database [49]. The second one, referred
to as “music”, comprises 100 snippets from the Free Music Archive
dataset [34]. Signals from the “speech” corpus are 16-bits WAV files
and signals from the “music” corpus are MP3 files encoded at 320
kbps. All audio excerpts are single-channel, sampled at 22, 050 Hz
and cropped to be 2 seconds long. The STFT is computed with a
1024 samples-long (46 ms) self-dual sine window [129] (leading to an
effective number of 513 frequency bins) and 50 % overlap. We used
the librosa Python package [102].

Methods

PR is conducted using the algorithms presented in Section 4.2 under
different settings as described next.

proposed gradient descent algorithm We experimented
the accelerated gradient algorithm described in Algorithm 15 in the
following settings:

• KL (β = 1) for the “right” and “left” problems with d ∈ {1, 2},

• β = 0.5 for the “right” and “left” problems and with d ∈ {1, 2},

• IS (β = 0) for the “right” problem with d = 2,

• quadratic cost (β = 2) with d ∈ {1, 2} (in that case the “right”
and “left” problems are equivalent).

The “right” problems with KL, d = 1 on the one hand, and IS, d = 2

on the other hand, correspond to standard designs in NMF [43, 128].
The value β = 0.5 with either d = 1 or 2 has also been advocated in
various papers, e.g., [146].

The algorithms are used with constant step-size µ and acceleration
parameter ξ = 0.99 (like in [115]). The step-size is empirically set to
the largest negative power of 10 enabling convergence for each cost
function and value of d in the setting of the experiments reported in
Sections 4.3.2 and 4.3.3. A summary of the parameter configurations
and choice of cost functions is given in Table 1.
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proposed admm algorithm Applicability of ADMM is more
limited than with gradient descent because it requires the expression
of the proximal operators (4.2.24) and (4.2.29). We here consider the
quadratic cost and “left" KL and IS problems. We set d = 1 and ρ = 1,
which corresponds to the setting used by Liang et al. [84] for the
quadratic cost (which thus falls as a special case of our setting).

other baselines and parameters The previous algorithms
are compared with the following other baselines: GLA, FGLA and
GLADMM, presented in Section 3.2 and which use d = 1.

All the algorithms (baseline and contributed) are run for 2500 itera-
tions (which ensures that convergence is observed for all algorithms)
and initialized with the same uniform random phase (a single real-
ization was used for each excerpt).

Evaluation metrics

The reconstruction quality is evaluated in the time-frequency domain
with the standard spectral convergence (SC) metric (cf. Chapter 2).
Additionally, for the “speech” corpus, we consider the short-term ob-
jective intelligibility (STOI) measure [133], which is computed with
the PySTOI library [113]. This score has been used in several PR-
related papers such as [97, 99].

SC is directly related to the PR quadratic cost problem (4.1.1), for-
mulated in the time-frequency domain, while the perceptual STOI is
more related to the applicative needs. In both cases, the higher the
value, the better the performance.

Let us note that alternative evaluation metrics exist, such as
PESQ [124] or PEMO-Q [70], which are tailored for perceptually as-
sessing speech quality. We also computed those, and the obtained
results were overall consistent with the STOI measure, up to some
minor differences. Besides, it has been shown that these measures are
strongly correlated with STOI, notably in PR-related tasks [101].

4.3.2 Phase retrieval from exact spectrograms

First, we consider a PR task conducted on exact spectrograms. In this
setting, measurements are directly obtained from the ground truth
signals x?, such that r = |Ax?|d. These measurements r are then fed
as inputs to the algorithms described in 4.3.1.

The results on the “speech" and “music" corpora are presented in
Figures 1 and 2 respectively, from which overall similar conclusions
can be drawn.

The best performance in terms of SC are achieved by GLADMM
and other ADMM algorithms, which are closely followed by algo-
rithms optimizing the quadratic cost with d = 1. Note however that
the advantage of quadratic cost-based algorithms against competing
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methods is less significant in terms of STOI. As recalled above, SC
is directly related to the PR problem with quadratic cost (4.1.1) and
consequently favors algorithms that directly tackle this problem.

A performance similar to that of quadratic cost-based algorithms
is reached by some of the proposed alternative methods, such as the
ADMM algorithms A·IS·L1 and A·KL·L1 and the gradient descent
algorithms GD·05·R1, GD·KL·R2 and GD·KL·L2, in terms of SC and
STOI (note that for the latter, the best performing methods exhibit a
lower variance than the others). This outlines the potential of using
alternative divergences rather than the quadratic cost function.

Besides, we observe that the performance of these methods depend
on a variety of factors. For instance, the difference between the per-
formance reached by GD·KL·R2 and GD·KL·R1, or between GD·QD·1
and GD·QD·2 (for both metrics and corpora) outlines the impact of
d on the reconstruction quality. Likewise, considering a “left" rather
than a “right" PR problem may yield very different results (see for
instance the two corresponding gradient algorithms with β = 0.5 and
d = 1).

Finally, for a given problem, the impact of the optimization strat-
egy (i.e., ADMM vs. gradient descent) depends on the nature of the
signals. For the “speech" corpus, ADMM algorithms (for KL and the
quadratic cost) perform mildly better than their gradient algorithms
respective counterparts. However, for the “music" corpus, A·KL·L1

significantly outperforms GD·KL·L1 in terms of SC.
To summarize, when retrieving a signal from an exact spectrogram,

GLADMM and quadratic-minimizing algorithms (with d = 1) seem
to perform best. Some alternative methods yield competitive results,
but require to carefully adapt the setup (power d, cost β, “right" or
“left" formulation) and optimization strategy (ADMM vs. gradient de-
scent) to the problem, as well as considering the nature of the signals
(speech or music). Note than when the data r is an exact spectrogram
(i.e., r = |Ax?|d), the cost functions (4.2.1) and (4.2.2) share the same
minimum value 0 and global solution x? (up to ambiguities) for all ψ.
This may explain why the somehow easier-to-optimize quadratic cost
performs well in this scenario. However this result is to be contrasted
when using modified spectrograms, as shown next.

4.3.3 Phase retrieval from modified spectrograms

We now consider a PR task from modified spectrograms. In audio
restoration applications such as source separation [148], audio in-
painting [1] or time-stretching [36], the spectrogram that results from
diverse operations does not necessarily correspond to the magnitude
of the STFT of a signal. We propose to simulate this situation by mod-
ifying the spectrograms as in [99]. We add synthetic Gaussian white
noise in the time domain to each excerpt in the “speech" corpus. For
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Figure 1: Performance of PR from exact spectrograms for the “speech” cor-
pus, measured with the SC (top) and STOI (bottom). Higher val-
ues correspond to a better performance. Turquoise, orange and
yellow respectively denote gradient descent algorithms, ADMM
algorithms and GLA-like algorithms. The boxes indicate the two
middle quartiles among the ten excerpts, the middle bar is for
the median, the dot for the mean, and the whiskers denote the
extremal values.

each signal, the noise variance is chosen so that the input signal-to-
noise ratio (SNR) takes the following values: 10, 0, −10, and −20 dB.
We then apply an oracle Wiener filter [86] to the mixture in the STFT
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Figure 2: Performance of PR from exact spectrograms for the “music” cor-
pus measured with the SC.

domain: this yields a restored (even though inconsistent) magnitude
spectrogram r which corresponds to realistic applications [99]. To fur-
ther recover a time-domain signal, we apply the considered PR algo-
rithms to this modified spectrogram.

The results in terms of STOI are presented in Figure 3. Note that we
do not report the SC, since it is mostly impacted by the spectrogram
deformation procedure, not by the subsequent PR task. In that exper-
iment, we observed some convergence problems at low input SNRs
for several algorithms and signals: in these few cases, the gradient
step size (which we recall was tuned using exact spectrogram data)
was reduced by a factor 1/10.

At high input SNR (0 to 10 dB), we observe a similar trend than in
the previous experiment: GLADMM and quadratic cost-based algo-
rithms (with d = 1) enable better reconstruction in terms of STOI than
other categories of algorithms. This confirms that such algorithms are
appropriate for addressing the PR problem when the spectrograms
are either exact or slightly degraded.

However, we observe a different trend at lower input SNRs, where
some algorithms based on alternative cost functions exhibit more ro-
bustness to the spectrogram degradation caused by the input noise.
For instance, while ADMM algorithms overall perform best at 10 dB
input SNR, they are outperformed by alternative algorithms such as
GD·KL·L2 at lower input SNRs (from 0 to −20 dB). Similarly and con-
trary to the case of high input SNRs, GLADMM is outperformed by
other GL-based or ADMM algorithms. Interestingly, GD·05·L1 and
GD·KL·R1 exhibit the most robust behavior among gradient algo-
rithms with d = 1: while they perform worst at 10 dB input SNR, they
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Figure 3: STOI for PR from modified speech spectrograms at various input
SNRs.
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Figure 3: STOI for PR from modified speech spectrograms at various input
SNRs.
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actually achieve the best performance at −20 dB input SNR. On the
other hand, the performance of several algorithms, such as GD·KL·R2,
significantly drops when more noise is added, while they perform
relatively well at high input SNRs. Finally, even though the best per-
formance at very low input SNR is achieved by GD·05·L2, GD·KL·L2

might still be a good candidate for the task at hand: indeed, at in-
put SNRs from 10 to −10 dB, it outperforms its counterpart using
β = 0.5, and thus exhibits a more stable performance regarding the
level of input noise.

Overall, the usefulness of PR with Bregman divergences is revealed
when the spectrograms are highly corrupted (that is, when they are
retrieved using a Wiener filter from very noisy observations), as
quadratic cost-based algorithms are outperformed by alternative cost-
based algorithms in such a scenario. This might be explained by the
ability of such divergences to better model and account for the nature
of this destructive noise.

4.4 strategies for the choice of the gradient step size

In the experimental work detailed in the previous section, the gra-
dient algorithm considered uses a fixed step size chosen empirically.
Such a strategy is suboptimal: if the step size is too large, the algo-
rithm diverges; if it is too small, the algorithm is excessively slow to
reach a solution. Moreover, a step size that is appropriate for a given
divergence may be suboptimal with another: no value is optimal for
all. Finally, because PR is nonconvex, adjusting the step size may re-
sult in different solutions as different stationary points of the problem
may be reached. Therefore, more intricate methods shall be consid-
ered to tune the step size of the considered gradient algorithms.

4.4.1 Experimental setup

Succinct experimental work is here conducted to study gradient algo-
rithms with varying step size on PR tasks. A single utterance of the
TIMIT database is here considered to generate nonlinear observations.
100 initializations of the gradient algorithms are obtained with ran-
dom phases. The STFT parameters are identical as in the experiments
of the previous section. We compare the gradient algorithms detailed
in the following with PR tasks conducted on exact spectrograms. Both
“left” and “right” PR problems are considered with d ∈ {1, 2} and KL,
beta-divergence with β = 0.5 and quadratic cost functions. All the
algorithms are run for 2500 iterations and performance is evaluated
in terms of SC and STOI.

We consider the following strategies for chosing the gradient step.
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gradient descent with fixed step size This method consid-
ers a constant step size. This context is similar to the previous exper-
iments, and the step size is chosen according to the values of Table
1. This algorithm is studied without and with acceleration, which are
respectively denoted as ‘GD” and “GDA”.

gradient descent with non-monotonic backtracking

In this method, the considered step size is varying following a non-
monotonic backtracking rule as in [60]. At each iteration, the gradi-
ent step is adjusted with a scalar factor νBT until the current cost is
smaller than at least one of the last tw past cost values.

While J(xt+1) > max
t−tw<j<t

{
J(xj)

}
−
µt

2
‖∇J(xt)‖2: (4.4.1)

µt ← νBTµt, (4.4.2)

xt+1 ← xt − µt∇J(xt). (4.4.3)

Here, the initial step size is chosen equal to 10 times the value in Table
1 and νBT = 0.5. The number of past cost values regarded with the
rule is tw = 100 and a maximal number of backtracking iterations
for each gradient iteration is fixed to 15. This algorithm is studied
without and with acceleration, which are respectively denoted as “BT”
and “BTA”.

gradient descent with barzilai-borwein step and non–
monotonic backtracking This method also considers a vary-
ing step size following a non-monotonic backtracking rule, which is
initialized with a Barzilai-Borwein step (cf. Chapter 2). The “long”
step is here considered:

µt =
‖xt−1 − xt−2‖2

〈∇J(xt−1) −∇J(xt−2) ; xt−1 − xt−2〉
. (4.4.4)

As the Barzilai-Borwein method can lead to negative step sizes in
locally-nonconvex regions, we adopt a strategy similar to [19]: a large
step size is chosen when µt < 0. The step size is then refined with
the non-monotonic backtracking rule as previously. This algorithm is
denoted as “BB+BT”. It is not presented here with acceleration, as it
empirically shown to lead the algorithm to diverge in early experi-
ments.

4.4.2 Results

First, we present the results of the PR task with magnitude measure-
ments in Figure 4. Generally speaking, the non-accelerated methods
are outperformed by their accelerated counterparts with all the con-
sidered cost functions and according to both SC and STOI. When
compared to the gradient descent algorithm with constant step size,
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the gradient algorithm with non-monotonic backtracking also shows
higher SC and STOI for all cost functions. With acceleration, two dif-
ferent trends can be observed when comparing GDA and BTA. First,
where GDA performs poorly (“left” beta-divergence and “right” KL
), BTA brings a significant improvement in performance in terms of
both SC and STOI. Second, when GDA performs best (“left” KL,
quadratic and “right” beta-divergence), we do not observe a signif-
icant difference in performance between GDA and BTA. Backtrack-
ing with the Barzilai-Borwein step shows little difference in SC and
STOI when compared with non-monotonic backtracking or compares
poorly. When the step size is tuned more accurately, quadratic cost
and “right“ beta-divergence lead to the best reconstruction results.
However, gradient descent algorithms with divergences that showed
poor performance in the experiments of Section 4.3 see their results
greatly improved with a proper step size tuning strategy. They might
reveal more potential in further research.

The performance of the PR task with power measurements is pre-
sented in Figure 5. In a similar fashion than with magnitude spec-
trograms, the accelerated methods outperform their non-accelerated
counterparts in terms of SC and STOI in every setting. BT leads
to a significant performance improvement when compared to GD.
However, the algorithm appears to diverge with “right” KL. The im-
provement observed with BT also holds with accelerated methods as
BTA significantly outperforms GDA with regards to both metrics. In
contrast with PR from magnitude spectrograms, BB+BT shows to be
more interesting with power spectrograms. It compares favorably to
BT in terms of both SC and STOI and with all settings. Moreover, it
converges with “right” KL. With their finest step size tuning method,
both “left” and “right” KL, and “right” beta-divergence with β = 0.5
lead to better reconstruction performance when compared to phase
retrieval with quadratic cost function.

In this section, we addressed tuning methods for the step size of
the gradient descent algorithm for phase retrieval with Bregman di-
vergences. Experimental work assessed the interest of non-monotonic
backtracking strategies in this context, which improved the recon-
struction performance with and without acceleration. With power
spectrograms, the use of a Barzilai-Borwein step as initialization of
the backtracking iterations leads to enhance the performance mea-
sured by SC and STOI, but this was however not observed with PR
from magnitude spectrograms. Generally speaking, the scenarii that
already lead to good results in the previous experiments are only
slightly improved with these tuning methods. The divergences that
compared favorably to the quadratic cost keep their advantage with
proper step size tuning. However, poorly performing settings see
their reconstruction performance greatly improved by such methods.
Using a non-monotonic backtracking strategy therefore comes with a
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(a) Spectral convergence

(b) STOI

Figure 4: Performance of PR from magnitude spectrograms (d = 1), mea-
sured with the SC (top) and STOI (bottom). The considered cost
functions are from left to right : “left” beta-divergence, “left”
Kullback-Leibler, Quadratic, “right” Kullback-Leibler, “right” beta-
divergence. β = 0.5 with the beta-divergences.

twofold advantage: first, it eases the choice of the step size parameter,
which is critical with regards to reconstruction performance. Second,
it leads to an improvement of the methods’ results and confirms the
potential of alternative divergences in phase retrieval.

4.5 conclusion

We have considered the problem of PR when the quadratic cost is
replaced by Bregman divergences, a family of discrepancy measures
with special cases that are well-suited for audio applications. We de-
rived a gradient algorithm and an ADMM scheme for solving this
problem and implemented them in the context of audio signal recov-
ery. We evaluated the performance of these algorithms for PR from
exact and modified spectrograms. We experimentally observed that
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(a) Spectral convergence

(b) STOI

Figure 5: Performance of PR from power spectrograms (d = 2), measured
with the SC (top) and STOI (bottom). The considered cost func-
tions are from left to right : “left” beta-divergence with β = 0.5,
“left” Kullback-Leibler, Quadratic, “right” Kullback-Leibler, “right”
beta-divergence with β = 0.5.

when performing PR from exact or slightly degraded spectrograms,
traditional algorithms based on the quadratic cost perform best. How-
ever, in the presence of high spectrogram distortion, these are out-
performed by algorithms based on alternative cost functions. This
highlights the potential of PR with the Bregman divergence for au-
dio signal recovery from spectrograms under very noisy conditions.
However it is difficult to recommend a specific alternative divergence
at this stage. The choice is dependent on the amount of noise and pos-
sibly on the nature of the data itself (e.g., speech vs music). Gradient
algorithms are very convenient because they can be applied to any
setting, however finding efficient step sizes in every setting was chal-
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lenging. In that respect, appropriate methods to choose this parame-
ter such as non-monotonic backtracking has proved to be helpful and
improved the reconstruction performance. Our ADMM algorithms
appeared more stable with respect to the level of noise and to the na-
ture of the data but their applicability is more limited as they require
the proximal operator to be known for each setting.

In future work, we intend to further improve the proposed gradi-
ent descent algorithms, notably by leveraging more refined initializa-
tion schemes, and to explore other optimization strategies such as
majorization-minimization. It would be also useful to conduct sub-
jective listening tests to fully assess the potential of using Bregman
divergences for a phase retrieval task. In the next chapter, we tackle
PR with non-quadratic measures of fit in frameworks where some
additional phase information is available: speech enhancement and
source separation applications.





A P P E N D I C E S

4.a algorithms derivations for real-valued signals

We here discuss the adaptation of our proposed gradient and ADMM
algorithms to the specific case when the input signal is real-valued
x ∈ RL.

In this setting, the gradient algorithm can be easily deduced from
its complex-valued counterpart. Indeed, since x is real-valued, the
gradient of J simply reduces to ∇RJ(x), as defined in Section 2.2. Ac-
cording to the property (2.2.7), this gradient is given by:

∇RJ(x) = 2<(∇J(x)). (4.A.1)

where ∇J(x) is computed using the Wirtinger derivatives. Conse-
quently, the gradient update rule is similar to the complex-valued
case, up to a constant factor of 2 and with the difference that we only
need to retain the real part after applying AH (in practice, the inverse
STFT).

Regarding the ADMM algorithm, we need to address the following
sub-problem, in lieu of (4.2.26):

min
x∈RL

||(Ax)d − b||22. (4.A.2)

where we note b = ut+1 � eiθt+1 − λt
ρ . Since we only use ADMM

algorithms with d = 1 in our experiments, we focus hereafter on this
setting. By using again (2.2.7), we compute the gradient of the cost
in (4.A.2) and set it at 0:

2<(AHAx − AHb) = 0. (4.A.3)

This yields the following solution:

x = (<(AHA))−1<(AHb). (4.A.4)

When using the STFT with a self-dual window we have AHA = IL
and the update becomes

x = <(AHb). (4.A.5)

It is the same update as in the complex-valued case (4.2.27) up to
retaining the real part after applying the inverse STFT AH.

4.b regularized gradient expression

For some Bregman divergences and/or exponents d, the gradient of
the cost functions (4.2.1) and (4.2.2) is not defined when one or more
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coefficients of Ax are zero-valued, which leads to division by zero and
other potential numerical or conceptual issues. This is the case, for in-
stance, when d 6 1, when computing |Ax|d−2 with d < 2, or when
computing ψ ′(|Ax|d) for a beta-divergence such that β 6 1. There-
fore, we propose a rigorous treatment of this issue by considering
regularized cost functions. More specifically, we consider the follow-
ing alternative cost for the PR right problem (a similar technique is
used for treating its left counterpart):

Jε(x) := Dψ

(
(r
2
d + ε)

d
2 | (|Ax|2 + ε)

d
2

)
, (4.B.1)

with ε � 1, such that Jε is now always defined and differentiable at
0. This yields the corresponding regularized gradient expression:

∇Jε(x) =
d

2
AH
[
(|Ax|2 + ε)

d
2−1 �Ax� gψ,ε

]
, (4.B.2)

with

gψ,ε = ψ
′′((|Ax|2 + ε)

d
2 )� ((|Ax|2 + ε)

d
2 − (r

2
d + ε)

d
2 ). (4.B.3)

For the PR left problem, a similar expression is obtained:

gψ,ε = ψ
′((|Ax|2 + ε)

d
2 ) −ψ ′((r

2
d + ε)

d
2 ). (4.B.4)

We used this variant in our experiments, and implemented it in prac-
tice with ε = 10−8.

4.c nonnegativity constraint on u in admm

Here we prove that the nonnegativity constraint on u in prob-
lem (4.2.24) can be ignored. Let us first rewrite this problem into
scalar form, as this problem is separable entrywise:

argmin
uk>0

dψ(rk |uk) +
ρ

2
‖|hk|− uk‖2. (4.C.1)

We will remove the index k in what follows for clarity. We aim to
prove that:

If u < 0, dψ(r | 0) +
ρ

2
|h|2 6 dψ(r |u) +

ρ

2
||h|− u|2, (4.C.2)

If this inequality holds, then the minimizer of the function defined
in (4.C.1) necessarily belongs to R+. Consequently, the nonnegativity
constraint can be dismissed. Equation (4.C.2) rewrites:

ψ(r) −ψ(0) −ψ ′(0)r+
ρ

2
|h|2 6 ψ(r) −ψ(u)

−ψ ′(u)(r− u) +
ρ

2
||h|− u|2, (4.C.3)
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which is equivalent to:

ψ(0) −ψ(u) + rψ ′(0) −ψ ′(u)(0− u)

− rψ ′(u) +
ρ

2
[−2u|h|+ u2] > 0, (4.C.4)

which finally rewrites:

dψ(0 |u)︸ ︷︷ ︸
term 1

+ r(ψ ′(0) −ψ ′(u))︸ ︷︷ ︸
term 2

+
ρ

2
[−2u|h|+ u2]︸ ︷︷ ︸

term 3

> 0. (4.C.5)

The latter inequality holds for the following reasons:

• Term 1 is nonnegative by nonnegativity of Bregman diver-
gences.

• Term 2 is nonnegative by convexity of ψ and nonnegativity of r:
ψ is convex, therefore ψ ′ is monotonically non-decreasing. As
u < 0, ψ ′(u) 6 ψ ′(0) and r(ψ ′(0) −ψ ′(u)) > 0.

• Term 3 is nonnegative because u is negative.

Therefore, (4.C.2) holds, which demonstrates that the nonnegativity
constraint in (4.2.24) can be dismissed. Finally, using a similar proof,
we can show that the same holds for the “left" PR problem.
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5.1 introduction

Audio source separation [29] consists in extracting the underlying
sources that add up to form an observable audio mixture. As pre-
sented in Chapter 3, Section 3.2.3, state-of-the-art approaches for
source separation estimate a nonnegative mask that is applied to a
time-frequency (TF) representation of the audio mixture, such as the
short-time Fourier transform (STFT) [153]. Applying a nonnegative
mask to the mixture’s STFT results in assigning its phase to each
isolated source. Even though this practice is common and yields sat-
isfactory results, it is well established [92] that when sources overlap
in the TF domain, using the mixture’s phase induces residual inter-
ference and artifacts in the estimates.

In this chapter, we consider phase recovery in audio source sepa-
ration as an optimization problem involving alternative divergences
which are more appropriate for audio processing. In Chapter 4, we
addressed phase recovery with the Bregman divergences in a single-
source setting. Here, we propose to extend this approach to a single-
channel and multiple-sources framework, where the mixture’s infor-
mation can be exploited. To optimize the resulting objective, we de-
rive a projected gradient algorithm [26]. We experimentally assess the
potential of our approach for a speech enhancement task. Our results
show that this method outperforms the multiple input spectrogram
inversion (MISI) algorithm [63] for several Bregman divergences.
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The rest of this chapter is structured as follows. In Section 5.2
we consider a new formulation of the problem with Bregman diver-
gences and derive the proposed algorithm. Section 5.3 presents the
experimental results. Finally, Section 5.4 draws some concluding re-
marks.

5.2 phase retrieval with bregman divergences and mix-
ing constraint

5.2.1 Problem formulation

Given an observed mixture x ∈ RL of C sources x(c) ∈ RL, whose tar-
get nonnegative TF measurements are r(c), PR with multiple sources
can be formulated as [96]:

min
{x(c)∈RL}

C

c=1

C∑
c=1

∥∥∥r(c) − |Ax(c)|d
∥∥∥2 s.t.

C∑
c=1

x(c) = x. (5.2.1)

We propose to extend our previous approach described in Chap-
ter 4 to a single-channel source separation framework. Indeed, as de-
scribed in Chapter 3, Section 3.2.3, it is necessary to include the mix-
ture information in the optimization problem so that the estimates
sum up to the mixture. We replace the cost function in (5.2.1) with a
Bregman divergence, which yields the following optimization prob-
lem:

min
{x(c)∈RL}Cc=1

C∑
c=1

J(c)
(

x(c)
)

s.t.
C∑
c=1

x(c) = x, (5.2.2)

where J(c)
(
x(c)

)
= Dψ

(
r(c) | |Ax(c)|d

)
for the “right" problem and

J(c)
(
x(c)

)
= Dψ

(
|Ax(c)|d | r(c)

)
for its “left" counterpart.

5.2.2 Projected gradient descent

Similarly as in Chapter 4, we propose a gradient descent algorithm
to minimize the objective defined in (5.2.2). The set of signals whose
sum is equal to the observed mixture x, appearing in the constraint
of (5.2.2), is convex. As such, we may use the projected gradient algo-
rithm [26] which boils down to alternating the two following updates:

∀c, y(c)
t+1 = x(c)t − µ∇J(c)(x(c)t ) (5.2.3)

∀c, x(c)t+1 = y(c)
t+1 +

1

C

(
x −

C∑
i=1

y(t)
i

)
(5.2.4)

where ∇J(c) denotes the gradient of J(c) with respect to x(c) and
µ > 0 is the gradient step size. In a nutshell, (5.2.3) performs a gradi-
ent descent, and (5.2.4) projects the auxiliary variables y(c) onto the
set of estimates whose sum is equal to the mixture.
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5.2.3 Derivation of the gradient

We derive hereafter the gradient of J(c). Using the chain rule [35], we
have:

∇J(c)(x(c)) = (∇|Ax(c)|d)Tg(c), (5.2.5)

where ∇|Ax(c)|d denotes the Jacobian of the multivariate function
x(c) → |Ax(c)|d (the Jacobian being the extension of the gradient for
multivariate functions, we may use the same notation ∇), and:

for the “right" problem, g(c) = ψ ′′(|Ax(c)|d)� (|Ax(c)|d − r(c))

for the “left" problem, g(c) = ψ ′(|Ax(c)|d) −ψ ′(r(c))

where ψ ′ and ψ ′′ are applied entrywise. Now, let us note Ar and Ai
the real and imaginary parts of A, respectively. Using differentiation
rules for element-wise matrix operations [35] and calculations similar
as in Chapter 4, we have:

∇|Ax(c)|d = ∇
(
(Arx(c))2 + (Aix(c))2

)d
2

= d× diag(|Ax(c)|d−2)
(

diag(Arx(c))Ar + diag(Aix(c))Ai
)

.

(5.2.6)

We now inject (5.2.6) in (5.2.5) and develop, which yields:

∇J(c)(x(c)) = AT
r

(
d× diag(Arx(c))diag(|Ax(c)|d−2)g(c)

)
+ AT

i

(
d× diag(Aix(c))diag(|Ax(c)|d−2)g(c)

)
. (5.2.7)

We remark that ∀u, v ∈ CK, diag(u)v = u� v, so we further simplify
this expression:

∇J(c)(x(c)) = AT
r

(
d× (Arx(c))� |Ax(c)|d−2 � g(c)

)
+ AT

i

(
d× (Aix(c))� |Ax(c)|d−2 � g(c)

)
. (5.2.8)

Finally, we remark that ∀u ∈ CK, <(AHu) = AT
r<(u) + AT

i =(u), thus
we can rewrite the gradient (5.2.8) as:

∇J(c)(x(c)) = d×<
(

AH((Ax(c))� |Ax(c)|d−2 � g(c))
)

. (5.2.9)

Remark: When considering the quadratic cost (for which the “right"
and “left" problems are equivalent) with d = 1 and step size µ =

1, the gradient update becomes equivalent to the MISI update. This
outlines that our method generalizes MISI, as the latter can be seen
as a particular case of the projected gradient descent algorithm.
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Algorithm 17 : Phase recovery with Bregman divergences for
audio source separation: gradient descent.

1 Inputs: Measurements R(c) ∈ RM×N+ , mixture x ∈ RL, step
size µ > 0, Bregman divergence function ψ.

2 Initialization:

3 ∀c, x(c) = iSTFT(
(
R(c)

)1/d � STFT(x)
|STFT(x)|)

4 while stopping criteria not reached do
5 ∀c, x(c) = STFT(x(c))
6 if “right" then
7 G(c) = ψ ′′(|x(c)|d)� (|x(c)|d − R(c))

8 else if “left" then
9 G(c) = ψ ′(|x(c)|d) −ψ ′(R(c))

10 ∀c, y(c) = x(c) − µd× iSTFT(x(c) � |x(c)|d−2 �G(c))

11 ∀c, x(c) = y(c) + (x −
∑C
i=1 yi)/C

12 end
13 Output: {x(c)}Cc=1

5.2.4 Summary of the algorithm

The proposed algorithm consists of alternating the updates (5.2.3)
and (5.2.4). A natural choice for obtaining initial source estimates con-
sists in assigning the mixture’s phase to each source’s STFT, which is
known as amplitude masking and is commonly employed to initialize
MISI [63, 156, 158]:

∀c, x(c)0 = A†
((

r(c)
)1/d

� Ax
|Ax|

)
. (5.2.10)

We provide in Algorithm 17 the pseudo-code for practical implemen-
tation of our method.

5.3 numerical experiments

In this section, we assess the potential of Algorithm 17 for a speech en-
hancement task, that is, with C = 2 and where x1 and x2 correspond
to the clean speech and noise, respectively. Note however that this
framework is applicable to alternative separation scenarios, such as
musical instruments [18] or multiple-speakers [153] separation. The
code related to these experiments is available online.1

5.3.1 Experimental setup

data . As acoustic material, we build a set of mixtures of clean
speech and noise. The clean speech is obtained from the VoiceBank

1 https://github.com/magronp/bregmisi

https://github.com/magronp/bregmisi
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test set [141], from which we randomly select 100 utterances. The
noise signals are obtained from the DEMAND dataset [137], from
which we select noises from three real-world environments: a living
room, a bus, and a public square. For each clean speech signal, we
randomly select a noise excerpt cropped at the same length than that
of the speech signal. We then mix the two signals at various input
signal-to-noise ratios (iSNRs) (10, 0, and −10 dB). All audio excerpts
are single-channel and sampled at 16, 000 Hz. The STFT is computed
with a 1024 samples-long (64 ms) Hann window, no zero-padding,
and 75% overlap. The dataset is split into two subsets of 50 mixtures:
a validation set, on which the step size is tuned (see Section 5.3.2); and
a test set, on which the proposed algorithm is compared to MISI.

spectrogram estimation. In realistic scenarios, the nonneg-
ative measurements r(c) are estimates of the magnitude or power
spectrograms of the sources. To obtain such estimates, we use Open-
Unmix [131], an open implementation of a three-layer BLSTM neural
network, originally tailored for music source separation applications.
This network has been adapted to a speech enhancement task. It was
trained on our dataset, except using different speakers and noise en-
vironments, as described in [142]. We use the trained model available
at [140]. This network is fed with the noisy mixtures and outputs an
estimate for the clean speech and noise spectrograms, which serve as
inputs to the phase retrieval methods.

compared methods . We test the proposed projected gradient
descent method described in Algorithm 17 in a variety of settings.
We consider magnitude and power measurements (d = 1 or 2), “right"
and “left" problems, and various values of β for the divergence (β = 0

to 2 with a step of 0.25). The step size is tuned on the validation
set. As comparison baseline, we consider the MISI algorithm (which
corresponds to our algorithm with β = 2, d = 1 and µ = 1). Following
traditional practice with MISI [156, 158], all algorithms are run with
5 iterations.
In order to evaluate the speech enhancement quality, we compute
the signal-to-distortion ratio (SDR) between the true clean speech x?1
and its estimate x1. For more clarity, we will present the SDR im-
provement (SDRi) of a method (whether MISI or Algorithm 17) over
initialization.

5.3.2 Influence of the step size

First, we study the impact of the step size on the performance of
the proposed algorithm using the validation set. The mean SDRi on
this subset is presented in Figure 1 in the “right" setting, but sim-
ilar conclusions can be drawn in the “left" setting. For d = 1, we



76 phase retrieval for audio source separation

−6

−4

−2

0

St
ep

 si
ze

 (l
og

) iSNR = 10 dB

0.0

0.2

0.4

0.6

iSNR = 0 dB

0.0

0.2

0.4

0.6
iSNR = -10 dB

0.0

0.1

0.2

0.3

0 1 2
β

−6

−4

−2

0
St
ep

 si
ze

 (l
og

)

0.00

0.25

0.50

0.75

0 1 2
β

0.00

0.25

0.50

0.75

0 1 2
β

0.0

0.2

0.4

Figure 1: Average SDRi on the validation set obtained with the proposed
algorithm at various iSNRs, when d = 1 (top) and d = 2 (bottom).
For better readability, we set the SDRi at 0 when convergence is-
sues occur as visually inspected, or when the SDRi is below 0, as
this implies a decreasing performance over iterations, which is not
desirable.

remark that the range of possible step sizes becomes more limited as
β decreases towards 0 (which corresponds to the IS divergence). Con-
versely, when d = 2, we observe that divergences corresponding to β
close to 1 (i.e., the KL divergence) allow for more flexibility when it
comes to choosing an appropriate step size.
For each setting, we pick the value of the step size that maximizes the
SDR on this subset and use it in the following experiment.

5.3.3 Comparison to other methods

The separation results on the test set are presented in Figure 2. We
observe that at high (10 dB) or moderate (0 dB) iSNRs, the proposed
algorithm overall outperforms MISI when d = 2 and for β > 1. We no-
tably remark a performance peak at around β = 1.25 depending on
the iSNR. This observation is consistent with the findings of Chap-
ter 4, where the gradient algorithm using the KL divergence (i.e.,
β = 1) in a similar scenario (d = 2 and “left" formulation) exhibited
good performance.

At low iSNR (−10 dB), the proposed method outperforms the MISI
baseline when d = 2 and for the “left" problem formulation. This be-
havior is somewhat reminiscent of Chapter 4: when the spectrograms
are severely degraded (i.e., at low iSNR), the algorithm based on the
quadratic cost (here, MISI) is outperformed by algorithms based on
more suitable alternative cost functions. Besides, it is also outper-
formed by a gradient algorithm based on the same quadratic cost
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Figure 2: Average SDRi on the test set obtained with MISI and with the
proposed algorithm (in different settings) at various iSNRs.

when using a fine-tuned step size. This highlights the potential inter-
est of phase recovery with Bregman divergences in such a scenario.

Finally, note that the performance of the proposed method strongly
depends on the speaker and the kind of noise used in the experiments
For instance, for public square and bus noises, the proposed method
consistently outperforms MISI at 10 dB iSNR while both methods
perform similarly at −10 dB iSNR. However, for living room noises, a
different trend is observed: in particular, the improvement of the pro-
posed algorithm over MISI becomes more significant at −10 dB iSNR.
As a result, further investigations are needed to identify the optimal
β for a given class of signals, which should reduce this sensitivity
and improve the above results.

5.4 conclusion

In this chapter, we have addressed the problem of phase recovery
with Bregman divergences in the context of audio source separation.
We derived a projected gradient algorithm for optimizing the result-
ing cost. We experimentally observed that when the spectrograms
are highly degraded, some of these Bregman divergences induce bet-
ter speech enhancement performance than the quadratic cost, upon
which the widely-used MISI algorithm builds.

In future work, we will explore other optimization schemes for
addressing this problem, such as majorization-minimization or the
ADMM algorithm introduced in Chapter 4. We will also leverage
these algorithms in a deep unfolding paradigm, which combines the
qualities of model-based and learning-based methods. This approach
is studied in the next chapter with PR.
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6.1 introduction

The phase retrieval problem is traditionnally formulated as an opti-
mization problem with a quadratic cost. In Chapter 4, PR has been
addressed by replacing the quadratic cost function with Bregman di-
vergences. As seen in Chapter 4, prescribing a cost function that is
optimal for all signal processing problems and classes of audio sig-
nals remains however challenging.

On the other hand, recent PR approaches have leveraged deep neu-
ral networks (DNNs) [2, 134, 136, 138]. Despite their successful per-
formance in a large number of tasks, the enthusiasm for DNNs can
be tempered by a general lack of explainability due to their black box
structure, and by their limited ability to generalize to unseen data
or experimental conditions. Deep unfolding (or unrolling) [56, 67] is
a promising attempt to alleviate these limitations with model-based
architectures derived from iterative algorithms.

In this chapter, we propose to unfold the ADMM algorithm for PR
proposed in Chapter 4. Our method builds upon observing that the
choice of the discrepancy measure only affects the computation of a
proximity operator in the ADMM updates. Therefore, we can recast
the problem of metric learning as a problem of proximity operator
learning in the unfolded ADMM. To that end, we replace this prox-
imity operator with a trainable activation function. We show that the
proposed parameterization of the network is connected to the met-
ric involved in the original optimization problem, which yields an
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Figure 3: One layer of the proposed unfolded architecture.

interpretable architecture. Experiments performed on speech signals
demonstrate the efficiency of our method, which outperforms a base-
line ADMM [84] with a number of iterations equal to the number of
layers in the unfolded ADMM.

This chapter is structured as follows. Section 6.2 presents the pro-
posed method. A discussion about interpretability and the character-
ization of proximity operators follows in Section 6.3. Our method is
tested experimentally in Section 6.4 and Section 6.5 draws some con-
cluding remarks.

6.2 learning proximity operators in unfolded admm

6.2.1 Proposed general unfolded architecture

The ADMM updates detailed in Section 4.2.3 consist in successive
linear and nonlinear computations. As such, this algorithm can be
viewed as a neural network U via unfolding the iterations:

(xT , λT ) = U(x0, λ0) = U1 ◦ · · · ◦UT (x0, λ0), (6.2.1)

where Ut denotes the t-th layer of the network, mimicking the t-th
iteration of the ADMM algorithm, as illustrated in Fig. 3. The layer
Ut can be decomposed into two linear parts denoted by L(1)t and L(2)t ,
and a nonlinear part NLt as follows:

L(1)t : (xt−1, λt−1) 7→ ht (6.2.2)

NLt : ht 7→ (ut, θt) = (Ft(|ht|, r), 6 ht) (6.2.3)

L(2)t : (xt−1, λt−1, ut, θt) 7→ (xt, λt), (6.2.4)



6.2 learning proximity operators in unfolded admm 83

with ht, xt, λt respectively defined as in (4.2.21), (4.2.27) and (4.2.28).
Ft denotes a parameterized sublayer modeling the proximity opera-
tor of equation (4.2.24). Since the choice of the discrepancy measure
Dψ only affects the proximity operator (4.2.24) in the updates, we can
recast the problem of metric learning as the problem of proximity op-
erator learning. We propose to leverage a trainable activation function
in order to model this layer and learn the proximity operator.

6.2.2 Proposed parameterization with APL units

To build the non-linear sublayers Ft that model proxρ−1Dψ(· | r)
,

we first reformulate this operator as follows. Let v ∈ RK and
f(z) =

∑K
k=1[ψ(zk) + vkzk]. We have [28]:

proxρ−1f(y) = proxρ−1ψ̃
(
y − ρ−1v

)
, (6.2.5)

where ψ̃(z) =
∑
kψ(zk). Setting v = −ψ ′(r) in (6.2.5), with ψ ′ ap-

plied entrywise, it is straightforward to see that:

proxρ−1Dψ(· | r)(y) = proxρ−1ψ̃(y + ρ−1ψ ′(r)). (6.2.6)

This formulation of the proximity operator is more convenient
than (4.2.24) since the measurements r no longer appear in the in-
put function of the proximity operator, but instead in the argument
of the latter (with y). This leads to a more natural parameterization
for unrolling.

Let us first derive the proximity operator (6.2.6) in a simple sce-
nario, namely the quadratic cost (ψ̃ = 1

2‖ · ‖
2, ψ ′(r) = r). In this case

we have [84]:

proxρ−1 12‖·−r‖2(y) =
y + ρ−1r
1+ ρ−1

. (6.2.7)

As a result, a first simple approach for proximity operator learning
would consist in treating ρ as a learnable parameter. However, our
early experiments have shown poor performance with this approach,
which is due to the very low expressive power of such a model (only
one scalar value). More generally, one can consider a beta-divergence
with shape parameter β, for which ψ ′(r) = rβ−1

β−1 [66]. However, the
proximity operator of ψ̃ is not available for every beta-divergence.

To alleviate this issue, we model this unavailable proximity opera-
tor using Adaptive Piecewise Linear (APL) activations [48]. They are
defined by:

APL(y) := max(y, 0) +
C∑
c=1

wcmax(−y + bc, 0), (6.2.8)

where wc and bc are learnable parameters controlling the slopes and
biases of the linear segments, and the max is applied entry-wise.
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Then, we propose the following parameterization of the nonlinear
layer Ft:

Ft(y, r) = APLt

(
γ
(1)
t y + γ

(2)
t

rβt−1

βt − 1

)
, (6.2.9)

with learnable parameters wc,t,bc,t, γ
(1)
t , γ(2)t , and βt. Even though

ad hoc, this parameterization is motivated by the following considera-
tions:

• APL can represent any continuous piecewise linear function
over a subset of real numbers. As such, it generalizes the prox-
imity operator obtained in the quadratic case [84].

• The term in the form of rβ−1
β−1 in (6.2.9) is reminiscent of ψ ′ for

beta-divergences, as mentioned above.

• Introducing learnable weights γ(1)t and γ(2)t allows to increase
the model capacity, as it was shown beneficial in our prelimi-
nary experiments.

Note that when wc = 0, γ(1)t = 1
1+ρ−1

, γ(2)t = ρ−1

1+ρ−1
and βt = 2, Ft

is equal to the proximity operator for the quadratic cost (6.2.7). Over-
all, our parameterization (6.2.9) is an interesting trade-off between
tractability, interpretability, and expressiveness.

Two variants of the proposed architecture will be consid-
ered in our experiments. In the “untied” variant, each layer
uses different parameters, and the global set of parameters is{
{wc,t,bc,t}

C
c=1,γ(1)t ,γ(2)t ,βt

}T
t=1

, while in the “tied” variant, the pa-
rameters are shared among layers, i.e., constant with t.

In the end, after learning these parameters (see Section 6.4), the
proposed method, termed unfolded ADMM (UADMM), estimates a
signal xT via (xT ,λT ) = U(x0,λ0), where x0 is some initial estimate.

6.3 interpretability and characterization

6.3.1 Discussion about interpretability

Under mild assumptions detailed in the following, we can prove that
there exists a closed-form function fr,t : RK → R ∪ {+∞} such that
Ft(y, r) = proxfr,t

(y). In the “tied" variant, where fr,t = fr, reconstruct-
ing fr from the learned parameters is analogous to identifying the
metric Dψ(· | r) involved in the PR optimization problem. With the
relaxation proposed in the “untied" case, this interpretation is more
limited as fr,t is different in each layer of the network.

Note that when replacing (6.2.6) with (6.2.9), we have disentangled
the proximity operator of ψ̃ and the derivative ψ ′, in addition to intro-
ducing weights γ(1)t and γ(2)t . As a result, the function fr is no longer
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guaranteed to be a Bregman divergence, strictly speaking. Neverthe-
less, we can still interpret it as a measure of discrepancy between y
and r.

6.3.2 Characterization of F(y, r) as a proximity operator

We address the problem of identifying a function fr : RK → R∪ {+∞}

such that F(y, r) = proxfr
(y), with F defined in (6.2.9). Note that we

ignore here the layer index t for simplicity.

Characterization with APL

We first address the case of strictly increasing APL functions as de-
fined in (6.2.8), with negative weights and at least one nonnegative
bias bc. Let us consider the following convex, lower semi-continuous
function APL such that ∀z ∈ R:

APL(z) =
z2

2
χ[0;+∞](z) +

C∑
c=1

wc

(
−z2

2
+ bcz

)
χ]−∞;bc](z). (6.3.1)

Since for any z ∈ R, APL(z) is a subgradient of APL(z), and denoting
ÃPL(z) =

∑K
k=1 APL(zk), it is straightforward to show that the Theo-

rem 3 stands for g(z) = APL(z) and g̃(z) = ÃPL(z). Besides, since APL
is invertible we can use the relation (2.2.19) to identify σ:

σ(y) = 〈APL−1(y) ; y〉− 1
2
‖y‖2 − ÃPL(APL−1(y)), (6.3.2)

with:

APL−1(y) =
y −
∑C
c=1wcbcχ]−∞, APL(bc)](y)

χ[APL(0),+∞[(y) −
∑C
c=1wcχ]−∞, APL(bc)](y)

. (6.3.3)

Characterization with F

Finally, let us retrieve fr : RK → R ∪ {+∞} such that
F(y, r) = proxfr

(y). Drawing on the previous section and using the
definition of F from (6.2.9), we have:

F(y, r) = proxσ

(
γ(1)y + γ(2)

rβ−1

β− 1

)
. (6.3.4)

To fully identify fr, we first need to reformulate (6.3.4) so that the ar-
gument of the right hand side term simply becomes y. To that end, we
leverage a property from [28], which consists in first rewriting (6.3.4)
as follows:

F(y, r) = proxσ

(
y − q
2α+ 1

)
, (6.3.5)
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with α =
1− γ(1)

2γ(1)
and q = −

γ(2)

γ(1)
rβ−1

β− 1
. The property from [28] then

states that:

proxϕ+α‖·‖2+〈q ; ·〉(y) = proxϕ/(2α+1)

(
y − q
2α+ 1

)
. (6.3.6)

Let ϕ = (2α+ 1)σ. Combining (6.3.5) and (6.3.6) yields:

F(y, r) = prox(2α+1)σ+α‖·‖2+〈q ; ·〉(y). (6.3.7)

As a result, from (6.3.7) we can identify fr such that its proximity
operator is F. If we further exploit the definition of σ from (6.3.2), we
finally have:

fr(y) =
1

γ(1)

〈
APL−1(y) − γ(2)

rβ−1

β− 1
; y
〉

−
1

2
‖y‖2 − 1

γ(1)
ÃPL(APL−1(y)). (6.3.8)

Therefore, using (6.3.8) one can recover the function associated with
the learned proximity operator, and consequently identify the metric
involved in the formulation of the PR problem.

6.4 numerical experiments

In this section, we assess the potential of UADMM for PR of speech
signals. Our code is implemented using the PyTorch framework [120]
and is available online for reproducibility.1

6.4.1 Experimental setup

Data

We build a set of speech signals from the TIMIT dataset [49]. The
dataset is split into training, validation, and test subsets containing
1000, 10, and 50 utterances, respectively (note that we did not ob-
serve a significant performance improvement when using a larger
training set). The signals are mono, sampled at 16 kHz and cropped
to 2 seconds. The STFT is computed with a 1024 samples-long (46 ms)
self-dual sine window (cf. Chapter 4) and 50% overlap. STFT magni-
tudes (d = 1) are considered as nonnegative observations r.

Training

The network is trained with the ADAM algorithm [71] using a learn-
ing rate of 10−4. We use a structure with T = 15 layers and C = 3, as
these values have shown to be a good trade-off between performance

1 https://github.com/phvial/LearningProxPR

https://github.com/phvial/LearningProxPR
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and number of parameters in preliminary experiments. Batches of 10
signals with a maximum of 200 epochs are used for training. Train-
ing is stopped when the cost function on the validation subset starts
increasing. Given that we consider speech signals, we train the net-
work by minimizing the negative STOI between the estimated and
ground truth signals. Indeed, this strategy was shown to be efficient
for speech enhancement applications [108, 161]. The negative STOI
metric used for training the network is implemented in PyTorch via
the pytorch-stoi library [114].

Methods

As baselines, we consider GLA [59] (run for 1500 iterations), and
ADMM using a quadratic cost and ρ = 10−3, since this setup has
exhibited good performance in our previous study under similar con-
ditions (cf. Chapter 4). ADMM is run for a variable number of it-
erations, with a maximum of 1500 (performance does not further im-
prove beyond). For fairness, the linear parts of UADMM use the same
value for ρ, and it is initialized such that Ft replicates the quadratic
proximity operator . All methods use the same initial signal estimate
x0 computed using the ground truth magnitudes r and a random
uniform phase, and λ0 = 0.

Evaluation

Reconstruction performance is assessed with the STOI metric com-
puted on the test set with the pystoi library [113].

6.4.2 Results

First, we display the training loss over epochs in Fig. 4. Both UADMM
variants outperform the baseline ADMM with 15 iterations on the
training set. UADMM-untied reaches a lower cost value than its tied
counterpart, which was expected since this variant contains more
learnable parameters. They reach a performance comparable to that
of ADMM using 150 and 75 iterations, respectively. The results on the
test set presented in Fig. 5 confirm that the proposed UADMM ap-
proach significantly outperforms the classical ADMM using the same
number of iterations, as well as the GLA baseline. A fully-converged
ADMM algorithm (using 1500 iterations) exhibits a higher STOI than
our 15 layers-based approach. Nonetheless, a more fair comparison
would involve that both approaches use the same total number of
iterations/layers.

To that end, we consider an ad hoc extension of our method, where
we duplicate the 15-layer trained UADMM network in order to in-
crease the total amount of layers without additional training. The
results presented in Fig. 6 show that this method consistently and
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Figure 4: Training loss (negative STOI) over epochs. Note that pytorch-stoi
implementation does not exactly replicate the original metric and
consequently yields values lower than −1.

significantly outperforms ADMM for any number of iterations. In
particular, the performance of the fully-converged ADMM (after 1500
iterations) is reached at only 30 “iterations” for UADMM-untied (i.e.,
twice the number of trained layers), which exhibits the computational
advantage of the proposed approach.

Finally, let us point out that UADMM-tied with T layers is equiva-
lent to applying T iterations of a standard ADMM algorithm using a
learned metric fr (note however that it differs from the ADMM base-
line used in these experiments, which uses a quadratic cost). Follow-
ing the derivations in Section 6.3, we compute these metrics (fr in the
tied case and fr,t in the untied case) from the trained activation func-
tions, and display them in Fig. 7. These resemble beta-divergences
with β ∈ [1.5, 2.5]. This is consistent with previous results from the lit-
erature [46], where this range of values has shown good performance
for audio spectral decomposition.

6.5 conclusion

In this chapter, we have addressed the problem of metric learning
for phase retrieval by unfolding the ADMM algorithm proposed in
Chapter 4 into a neural network. We proposed to replace the prox-
imity operator involved in this algorithm with learnable activation
functions, since this operator conveys the information about the dis-
crepancy measure used in formulating the PR problem. Experiments
conducted on speech signals show that this approach outperforms
the ADMM algorithm while keeping a light and interpretable struc-
ture. In future work, we intend to further study the parameterization
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Figure 6: Evaluation with STOI over test dataset with iterated model. The
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values between the first and the third quartile.

of the unfolded network. For example, it would be useful to learn
the linear operators that correspond to intermediate representations
of the estimate. We also intend to extend this framework to other
inverse problems in audio, such as declipping or dereverberation.
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C O N C L U S I O N A N D P E R S P E C T I V E S

7.1 summary

In this thesis, we studied inverse problems related to the reconstruc-
tion of audio signals. We especially focused on phase retrieval, a prob-
lem that typically occurs with applications manipulating the spectro-
gram. It is also notoriously challenging due to its ill-posedness, non-
convexity and non-linearity.

This work resulted in several contributions. First, we proposed a
novel formulation of the PR problem in which the quadratic cost
function is substituted by Bregman divergences, a family of func-
tions that includes divergences considered to be well-suited for audio
applications. Two algorithms based on accelerated gradient descent
and ADMM were developed and implemented to solve the problem.
Experimental work evaluated the methods’ performance and under-
lined the potential of PR with Bregman divergences for audio signal
reconstruction from highly-degraded spectrograms.

Second, we extended the previous approach to phase recovery in
audio source separation. We took inspiration from the MISI algorithm
and considered a novel formulation of the problem that includes an
error term based on Bregman divergences and a mixture constraint.
We proposed a projected gradient algorithm and assessed experimen-
tally the potential of our method for a speech enhancement task. The
proposed method was shown to outperform MISI in this application
and with severely degraded spectrograms.

Finally, we proposed to unfold the previously described ADMM al-
gorithm into a deep neural network. We replaced the proximity oper-
ators of the Bregman divergences with learnable activation functions
and trained the resulting network to perform a PR task with speech
signals. We showed that the activation functions trained are proximity
operators and characterized their corresponding function. The exper-
imental results revealed that our method outperforms ADMM.

7.2 perspectives and future work

We discuss in the following future research directions and potential
extensions of the work presented in this thesis.

First, different optimization algorithms might be used to tackle the
phase retrieval problem formulated with Bregman divergences. For
example, the majorization-minimization framework might be inves-
tigated. The initialization of these algorithms should also be further
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explored to get first estimates closer to a local minimum. Number
of works examine noniterative methods for phase retrieval [6, 90],
which might be combined with the proposed work. Furthermore, reg-
ularization should be explored to take into consideration the spec-
trogram’s properties even further (for example, group sparsity in
the time-frequency domain [127]). Finally, non-separable divergences
could be considered to account for time-frequency correlation.

Besides, further research on the parameterization of the unfolded
networks might be undertaken. Attempts to learn the linear oper-
ations of the gradient and ADMM algorithms, for example, might
be conducted. This would result in learning intermediate representa-
tions of the estimated signal. Weight initialization strategies should
also be considered, as this procedure was realized empirically in this
work but shown to be critical in the deep learning literature [82, 103].
Furthermore, to better account for the properties of the input spec-
trogram, we could make the network weights dependent from their
coordinates in the time-frequency plane or compute them from the
input.

Finally, the approaches discussed in this thesis may be extended to
various inverse problems involving audio signals. Problems such as
audio inpainting, audio declipping and dereverberation, for example,
are often solved with proximal methods [72, 159]. The unfolding of
these algorithms, as well as the substitution of the proximity opera-
tors with trainable activation functions might improve their perfor-
mances and, for example, learn adequate regularizations.
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introduction

La reconstruction de signaux audio consiste à estimer des signaux
sonores à partir de représentations incomplètes ou dégradées. Elle
permet à l’auditeur une expérience d’écoute améliorée : la qualité
sonore perçue sera meilleure et l’information présente plus intelligi-
ble.

La reconstruction de signaux audio peut également être considérée
comme un problème inverse. C’est-à-dire qu’elle peut être formulée
comme l’estimation de paramètres inconnus à partir d’observations
et de la connaissance du problème direct. Les problèmes inverses
sont fréquemment traités via la minimisation d’une fonction de coût
à valeurs réelles, mesurant l’erreur entre les estimations et les ob-
servations. Les problèmes dont les solutions ne sont pas existantes,
uniques ou stables sont dits mal-posés. Pour résoudre ces derniers,
on utilise une connaissance a priori sur les solutions dans diverses
stratégies. On pourra alors régulariser le problème, c’est-à-dire modi-
fier la fonction de coût ou encore réduire l’ensemble des solutions.

Dans cette thèse, on propose de modifier la fonction de coût dans
les problèmes inverses inhérents à la reconstruction de signaux audio.
On considère principalement le problème de reconstruction de phase,
un problème fréquent lors de la manipulation de la représentation
temps-fréquence la plus courante : le spectrogramme.

contexte

Le chapitre 2 introduit différents outils issus des domaines d’intérêt
de cette thèse. On étudie tout d’abord la représentation des signaux
sonores. Les catégories de représentation les plus fréquentes incluent
la forme d’onde et les représentations temps-fréquences. La première
est une collection de valeurs d’amplitude échantillonées et quantifiées
tandis que les secondes présentent des caractéristiques fréquentielles
issues de la transformée de Fourier discrète (TFD) dans le temps.
Ces dernières sont donc souvent calculées à l’aide de la transformée
de Fourier à court-terme (TFCT). La TFCT considère le spectre local
d’un signal sur de courtes durées. En pratique, elle est calculée via
l’extraction de courts segments temporels du signal suivie du calcul
de la TFD. On revient au signal temporel via la TFD inverse et une
opération d’addition avec superposition.
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À partir de telles représentations, diverses techniques nous perme-
ttent d’évaluer objectivement la qualité d’un signal audio. Celles-ci
comprennent des calculs de distances dans les domaines temporels et
temps-fréquences, ainsi que des scores construits autour de critères
perceptuels.

On présente ensuite plusieurs outils issus de l’optimisation. Tout
d’abord, le calcul de Wirtinger fournit un cadre nous permettant de
dériver les fonctions d’une variable complexe non-différentiables au
sens complexe. On peut ainsi calculer un gradient de ces fonctions
puis mettre en œuvre un algorithme de descente. Différentes vari-
antes de ce dernier existent via l’accélération ou le calcul de pas
de gradient de taille variable. Ensuite, les opérateurs proximaux, des
généralisations de l’opérateur de projection, sont utiles dans diverses
méthodes d’optimisation récentes. Plusieurs des propriétés de tels
opérateurs ont été étudiées dans la littérature et sont présentées dans
cette thèse. En particulier, on s’intéressera à la caractérisation de fonc-
tions comme opérateurs proximaux et à leur fonction associée.

Enfin, les divergences de Bregman sont introduites. Cette classe
de fonctions inclut différentes divergences bien connues telles que
les divergences de Kullback–Leibler et d’Itakura–Saito, les bêta-
divergences ou encore la fonction de coût quadratique. Elles peu-
vent également être interprétées sous le prisme statistique comme des
fonctions de log-vraisemblance. Enfin, on s’intéresse aux opérateurs
proximaux de plusieurs cas particuliers.

Pour clore ce chapitre, on présente brièvement les réseaux de neu-
rones artificiels, une classe d’algorithmes issus de l’apprentissage au-
tomatique et inspirés par le fonctionnement du cerveau. Les réseaux
de neurones sont définis par une succession d’opérations linéaires et
non-linéaires séparables. L’apprentissage des paramètres des opéra-
tions est alors réalisé sur un jeu de données connu au préalable via la
minimisation d’une fonction de coût entre les données observées et
prédites. On présente ensuite le dépliement d’algorithmes itératifs en
réseaux de neurones. Cette stratégie consiste à considérer un nombre
fini d’itérations d’un algorithme d’optimisation comme un réseau de
neurones dont on apprendra certains paramètres. Enfin, on étudiera
la relation entre opérateurs proximaux et fonctions d’activation.

Le chapitre 3 introduit le problème de reconstruction de phase.
Tout d’abord, on présente la définition générale du problème, qui con-
siste à estimer un signal à partir du module d’observations linéaires.
Ce dernier peut éventuellement être élevé au carré pour des obser-
vations de puissance. Le problème de reconstruction de phase est
mal-posé : ses solutions ne peuvent être estimées qu’à plusieurs am-
biguïtés près, parmi elles un changement de phase globale.

On présente ensuite différentes méthodes pour la reconstruction de
phase. Celles-ci peuvent être classées en deux catégories : les méth-
odes convexes et non-convexes. Les méthodes non-convexes consis-
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tent en la minimisation d’un coût quadratique via différents algo-
rithmes, tels que les projections alternées, la descente de gradient ou
encore l’algorithme des directions alternées. Les méthodes convexes
transforment le problème en différentes relaxations convexes du prob-
lème de reconstruction de phase, traitées via des solveurs issus de
l’optimisation semi-définie positive.

Le problème de reconstruction de phase est ensuite étudié dans le
champ du traitement du signal audio. Dans ce contexte, les observa-
tions sont souvent des spectrogrammes, c’est à dire des modules de
TFCT. La reconstruction de phase s’applique alors à différents prob-
lèmes tels que le débruitage ou la séparation de sources. Différentes
méthodes pour la reconstruction de phase spécifiques à l’audio ont
pu être proposées dans la littérature, que l’on peut classer selon deux
catégories. La première catégorie comprend les méthodes itératives,
qui peuvent être considérés comme les équivalents pour l’audio des
méthodes non-convexes vues précédemment. Parmi elles, on étudie
l’exemple le plus célèbre : l’algorithme de Griffin–Lim, un algorithme
de projections alternées. Cette approche historique peut être inter-
prétée comme un algorithme de descente de gradient avec une fonc-
tion de coût quadratique et a généré de multiples variantes, par ex-
emple accélérées ou étendues au temps réel. La seconde catégorie de
méthodes considère les caractéristiques spécifiques des signaux audio
et de la TFCT. Parmi elles, certaines exploitent par exemple les rela-
tions entre les dérivées de la phase et le module de la TFCT. Enfin, on
présente le problème de reconstruction de phase pour la séparation
de sources sonores.

La dernière section du chapitre présente quelques méthodes is-
sues du champ de l’apprentissage automatique. On s’intéresse tout
d’abord aux méthodes d’apprentissage profond considérant le prob-
lème de reconstruction de phase en audio. Dans ces approches, la
fonction de coût considérée pour l’apprentissage des réseaux de neu-
rones utilise des caractéristiques spécifiques aux signaux audio. Enfin,
on présente plusieurs méthodes de dépliement pour les problèmes
inverses. Ces dernières introduisent une dimension d’apprentissage
dans des algorithmes préalablement construits autour de modèles et
donc interprétables.

reconstruction de phase avec des divergences de breg-
man

Le chapitre 4 présente la première contribution de cette thèse. On
remplace la fonction de coût quadratique par une divergence de Breg-
man lorsque le problème de reconstruction de phase est formulé
comme un problème de minimisation. En effet, l’optimisation d’un
coût quadratique n’est pas nécessairement appropriée pour des sig-
naux audio dans le domaine temps-fréquence : un certain nombre



96 résumé détaillé de la thèse

de travaux de la littérature scientifique établissent l’intérêt d’utiliser
des divergences alternatives, telles que les divergences d’Itakura–
Saito ou Kullback–Leibler, pour différentes applications telles que la
séparation de sources ou la reconstruction de données audio man-
quantes. Les divergences de Bregman comprennent comme cas parti-
culiers les divergences mentionnées précédemment et s’interprètent
d’une perspective statistique. Celles-ci étant non-symmétriques, on
propose deux formulations différentes du problème de reconstruc-
tion de phase.

Deux algorithmes sont proposés pour traiter les problèmes intro-
duits. Tout d’abord, on considère un algorithme de descente de gra-
dient. La fonction de coût proposée n’étant pas différentiable au sens
complexe, on utilise le calcul de Wirtinger pour obtenir l’expression
du gradient. Celle-ci dépend de la fonction génératrice de la di-
vergence de Bregman considérée. L’algorithme proposé généralise
l’algorithme de Griffin–Lim, qui correspond au cas du coût quadra-
tique et des observations d’amplitude. Ensuite, nous détaillons un
algorithme des directions alternées. Celui-ci correspond à la min-
imisation alternée du Lagrangien augmenté de la fonction de coût
proposée. Les itérations de l’algorithme comprennent le calcul d’un
opérateur proximal de la divergence de Bregman, dont l’expression
en forme close n’est pas toujours explicite.

Une démarche expérimentale évalue les performances de la méth-
ode proposée avec différentes divergences pour deux tâches de re-
construction de phase. Tout d’abord, nous considérons la reconstruc-
tion à partir de spectrogrammes exacts. Dans ce contexte, les algo-
rithmes de directions alternées offrent des performances générale-
ment supérieures aux algorithmes de gradient. Pour ces dernières,
on obtient avec certaines divergences alternatives des performances
similaires à celles des méthodes construites autour de coûts quadra-
tiques. Dans la seconde tâche, nous considérons la reconstruction de
phase à partir de spectrogrammes modifiés, dont la non-consistence
est simulée par l’ajout de bruit puis le filtrage de Wiener. Dans
ce contexte, lorsque les spectrogrammes considérés sont sévère-
ment dégradés, les algorithmes de gradient considérant des coûts
non-quadratiques mènent aux meilleures performances de recon-
struction. Enfin, nous considérons l’étude d’algorithmes de gradi-
ent avec un pas variable. L’utilisation du pas de Barzilai-Borwein
et d’une stratégie de recherche linéaire non-monotone permettent
l’amélioration des performances de reconstruction.

reconstruction de phase avec des divergences de breg-
man pour la séparation de sources audio

Le chapitre 5 étend les résultats du chapitre 4 au problème de sé-
paration de sources audio. Pour traiter ce dernier, une méthodolo-
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gie fréquente consiste à estimer les spectrogrammes des différentes
sources et d’utiliser la phase du mélange. Dans ce contexte,
les techniques de reconstruction de phase permettent l’obtention
d’estimations de meilleure qualité. Nous proposons ici une formu-
lation du problème de reconstruction de phase pour la séparation
de sources avec des divergences de Bregman. Celle-ci inclut une con-
trainte de mélange et est traitée à l’aide de l’algorithme du gradi-
ent projeté. Comme précédemment, le gradient de la fonction de
coût considéré sera calculé via le formalisme du calcul de Wirtinger.
L’algorithme proposé généralise l’algorithme d’inversion de spectro-
grammes à multiples entrées, qui correspond au cas quadratique.

Une étude expérimentale évalue la méthode proposée pour une
tâche de séparation à deux sources. On choisit une opération de
débruitage, qui sera pratiquée sur des signaux mélant parole et bruits
issus d’environnements acoustiques réels. L’estimation des spectro-
grammes des sources est réalisée via Open-Unmix, un réseau de neu-
rones pré-entraîné sur cette tâche. La reconstruction de phase est as-
surée par notre méthode. L’étude expérimentale confirme le potentiel
des méthodes de reconstruction construites à l’aide de divergences
non-quadratiques lorsque les spectrogrammes considérés sont sévère-
ment dégradés. En effet, on pourra observer que la reconstruction de
phase avec des bêta-divergences délivre les meilleures performances
pour β = 1.25, lorsque que le cas quadratique correspond à β = 2.

apprentissage d’opérateurs proximaux pour la recon-
struction de phase

Le chapitre 6 propose le dépliement de l’algorithme des directions al-
ternées introduit dans le chapitre 4. Cette approche a pour objectif de
lever plusieurs difficultés. Tout d’abord, elle permet l’obtention d’une
architecture neuronale interprétable en considérant chaque itération
d’un algorithme comme une couche neuronale paramétrable. Ensuite,
elle permet l’apprentissage des opérateurs proximaux dans ce con-
texte, dont une expression en forme close n’est pas disponible pour
les divergences de Bregman.

L’architecture du réseau proposé considère comme couches les
itérations de l’algorithme des descentes alternées pour la reconstruc-
tion de phase avec des divergences de Bregman. Chaque opérateur
proximal est remplacé par une fonction d’activation paramétrée, dont
les poids seront estimés lors d’une phase d’apprentissage. On démon-
tre que les fonctions d’activation proposées sont bien des opérateurs
proximaux et on caractérise leur fonction associée. Deux modalités
d’apprentissage sont alors étudiées : la première considère des poids
«liés », c’est à dire partagés par toutes les couches, et la seconde des
poids «déliés », soit libres de prendre des valeurs différentes dans
les différentes couches. Dans l’approche aux poids liés, la fonction
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métrique associée à l’opérateur proximal appris correspond à la di-
vergence minimisée dans le problème de reconstruction de phase ini-
tial. Cette interprétation ne tient pas pour l’approche aux poids déliés,
bien que les fonctions associées de chaque couche puissent être carac-
térisées.

On procède à une étude expérimentale pour évaluer la perfor-
mance de notre méthode. Le réseau de neurones proposé est soumis
à une phase d’apprentissage avec un corpus composé de signaux de
parole et de leurs spectrogrammes. Pour un nombre égal d’itérations
et de couches, la méthode proposée se montre plus performante que
l’algorithme à directions alternées initial. On pourra également re-
marquer que la méthode aux poids déliés, qui comprend un nombre
supérieur de paramètres, se montre plus performante que la méthode
aux poids liés pour une tâche de reconstruction de phase. Les deux
sont cependant dépassées par la méthode de référence lorsque celle-ci
arrive à convergence, pour un grand nombre d’itérations. On compar-
era alors deux nouvelles architectures, contruites par la duplication
des réseaux précédents pré-entraînés, à l’algorithme des descentes
alternées. Celles-ci se montreront alors plus efficaces dans la recon-
struction et permettront l’emploi d’un grand nombre de couches sans
surcoût lié à l’apprentissage d’un grand nombre de paramètres. En-
fin, on pourra étudier les fonctions associées aux opérateurs proxi-
maux appris. Ces dernières comportent des ressemblances avec les
bêta-divergences étudiées précédemment.

conclusion et perspectives

Pour conclure, le chaptitre 7 dresse un résumé des résultats de
cette thèse, suivi d’une discussion portant sur de possibles perspec-
tives de recherche. Parmi celles-ci, on pourra s’intéresser à des algo-
rithmes d’optimisation différents pour la recontruction de phase avec
les divergences de Bregman. En particulier, l’étude de l’algorithme
de majorisation-minimisation, de stratégies d’initialisation pour
l’optimisation non-convexe et de régularisation du problème nous
semblent pertinentes. De plus, le travail autour du dépliement des al-
gorithmes itératifs pour la reconstruction de phase nous semble pou-
voir être approfondi. On pourra par exemple étudier l’initialisation
et le choix des paramètres du réseau. Par exemple, l’apprentissage
des opérations linéaires correspondrait à l’apprentissage de représen-
tations des itérées. Enfin, on pourra considérer les méthodes étudiées
dans cette thèse pour différents problèmes inverses avec des signaux
audio. Par exemple, des problèmes tels que la reconstruction de don-
nées manquantes (inpainting) ou saturées (declipping) et la déréver-
bération sont souvent traités via des méthodes proximales qui pour-
raient bénéficier de stratégies de dépliement et d’apprentissage des
opérateurs proximaux.
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