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Theoretical and Experimental Determination of Effective 

Diffusion and Thermal diffusion Coefficients in Porous Media 

 

Abstract 

A multicomponent system, under nonisothermal condition, shows mass transfer with cross 

effects described by the thermodynamics of irreversible processes. The flow dynamics and 

convective patterns in mixtures are more complex than those of one-component fluids due 

to interplay between advection and mixing, solute diffusion, and thermal diffusion (or 

Soret effect). This can modify species concentrations of fluids crossing through a porous 

medium and leads to local accumulations. There are many important processes in nature 

and industry where thermal diffusion plays a crucial role. Thermal diffusion has various 

technical applications, such as isotope separation in liquid and gaseous mixtures, 

identification and separation of crude oil components, coating of metallic parts, etc. In 

porous media, the direct resolution of the convection-diffusion equations are practically 

impossible due to the complexity of the geometry; therefore the equations describing 

average concentrations, temperatures and velocities must be developed. They might be 

obtained using an up-scaling method, in which the complicated local situation (transport of 

energy by convection and diffusion at pore scale) is described at the macroscopic scale. At 

this level, heat and mass transfers can be characterized by effective tensors. The aim of this 

thesis is to study and understand the influence that can have a temperature gradient on the 

flow of a mixture. The main objective is to determine the effective coefficients modelling 

the heat and mass transfer in porous media, in particular the effective coefficient of thermal 

diffusion. To achieve this objective, we have used the volume averaging method to obtain 

the modelling equations that describes diffusion and thermal diffusion processes in a 

homogeneous porous medium. These results allow characterising the modifications 

induced by the thermal diffusion on mass transfer and the influence of the porous matrix 

properties on the thermal diffusion process. The obtained results show that the values of 

these coefficients in porous media are completely different from the one of the fluid 

mixture, and should be measured in realistic conditions, or evaluated with the theoretical 

technique developed in this study. Particularly, for low Péclet number (diffusive regime) 

the ratios of effective diffusion and thermal diffusion to their molecular coefficients are 

almost constant and equal to the inverse of the tortuosity coefficient of the porous matrix, 
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while the effective thermal conductivity is varying by changing the solid conductivity. In 

the opposite, for high Péclet numbers (convective regime), the above mentioned ratios 

increase following a power law trend, and the effective thermal diffusion coefficient 

decreases. In this case, changing the solid thermal conductivity also changes the value of 

the effective thermal diffusion and thermal conductivity coefficients. Theoretical results 

showed also that, for pure diffusion, even if the effective thermal conductivity depends on 

the particle-particle contact, the effective thermal diffusion coefficient is always constant 

and independent of the connectivity of the solid phase. In order to validate the theory 

developed by the up-scaling technique, we have compared the results obtained from the 

homogenised model with a direct numerical simulation at the microscopic scale. These two 

problems have been solved using COMSOL Multiphysics, a commercial finite elements 

code. The results of comparison for different parameters show an excellent agreement 

between theoretical and numerical models. In all cases, the structure of the porous medium 

and the dynamics of the fluid have to be taken into account for the characterization of the 

mass transfer due to thermal diffusion. This is of great importance in the concentration 

evaluation in the porous medium, like in oil reservoirs, problems of pollution storages and 

soil pollution transport. Then to consolidate these theoretical results, new experimental 

results have been obtained with a two-bulb apparatus are presented. The diffusion and 

thermal diffusion of a helium-nitrogen and helium-carbon dioxide systems through 

cylindrical samples filled with spheres of different diameters and thermal properties have 

been measured at the atmospheric pressure. The porosity of each medium has been 

determined by construction of a 3D image of the sample made with an X-ray tomograph 

device. Concentrations are determined by a continuous analysing the gas mixture 

composition in the bulbs with a katharometer device. A transient-state method for coupled 

evaluation of thermal diffusion and Fick coefficients in two bulbs system has been 

proposed. The determination of diffusion and thermal diffusion coefficients is done by 

comparing the temporal experimental results with an analytical solution modelling the 

mass transfer between two bulbs. The results are in good agreement with theoretical results 

and emphasize the porosity of the medium influence on both diffusion and thermal 

diffusion process. The results also showed that the effective thermal diffusion coefficients 

are independent from thermal conductivity ratio and particle-particle touching. 
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Déterminations Théorique et Expérimentale des Coefficients de 

Diffusion et de Thermodiffusion Effectifs en Milieu Poreux 

 

Résumé en français 

Les conséquences liées à la présence de gradients thermiques sur le transfert de matière en 

milieu poreux sont encore aujourd’hui mal appréhendées, essentiellement en raison de la 

complexité induite par la présence de phénomènes couplés (thermodiffusion ou effet 

Soret). 

Le but de cette thèse est d’étudier et de comprendre l’influence que peut avoir un gradient 

thermique sur l’écoulement d’un mélange. L’objectif principal est de déterminer les 

coefficients effectifs modélisant les transferts de chaleur et de matière en milieux poreux, 

et en particulier le coefficient de thermodiffusion effectif. En utilisant la technique de 

changement d’échelle par prise de moyenne volumique nous avons développé un modèle 

macroscopique de dispersion incluant la thermodiffusion. Nous avons étudié en particulier 

l'influence du nombre de Péclet et de la conductivité thermique sur la thermodiffusion. Les 

résultats ont montré que pour de faibles nombres de Péclet, le nombre de Soret effectif en 

milieu poreux est le même que dans un milieu libre, et ne dépend pas du ratio de la 

conductivité thermique (solide/liquide). À l'inverse, en régime convectif, le nombre de 

Soret effectif diminue. Dans ce cas, un changement du ratio de conductivité changera le 

coefficient de thermodiffusion effectif. Les résultats théoriques ont montré également que, 

lors de la diffusion pure, même si la conductivité thermique effective dépend de la 

connectivité de la phase solide, le coefficient effectif de thermodiffusion est toujours 

constant et indépendant de la connectivité de la phase solide. Le modèle macroscopique 

obtenu par cette méthode est validé par comparaison avec des simulations numériques 

directes à l'échelle des pores. Un bon accord est observé entre les prédictions théoriques 

provenant de l'étude à l’échelle macroscopique et des simulations numériques au niveau de 

l’échelle de pores. Ceci démontre la validité du modèle théorique proposé. Pour vérifier et 

consolider ces résultats, un dispositif expérimental a été réalisé pour mesurer les 

coefficients de transfert en milieu libre et en milieu poreux. Dans cette partie, les nouveaux 

résultats expérimentaux sont obtenus avec un système du type « Two-Bulb apparatus ». La 

diffusion et la thermodiffusion des systèmes binaire hélium-azote et hélium-dioxyde de 

carbone, à travers des échantillons cylindriques remplis de billes de différents diamètres et 
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propriétés thermiques, sont ainsi mesurées à la pression atmosphérique. La porosité de 

chaque milieu a été déterminée par la construction d'une image 3D de l'échantillon par 

tomographie. Les concentrations sont déterminées par l'analyse en continu de la 

composition du mélange de gaz dans les ampoules à l’aide d’un catharomètre. La 

détermination des coefficients de diffusion et de thermodiffusion est réalisée  par 

confrontation des relevés temporels des concentrations avec une solution analytique 

modélisant le transfert de matière entre deux ampoules.   

Les résultats sont en accord avec les résultats théoriques. Cela permet de conforter 

l’influence de la porosité des milieux poreux sur les mécanismes de diffusion et de 

thermodiffusion. Ce travail ouvre ainsi la voie à une prise en compte de l’ensemble des 

mécanismes de diffusion dans l’établissement des modélisations numériques du transport 

en milieu poreux sous conditions non isothermes. 
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Out beyond ideas of wrongdoing and rightdoing, 

there is a field. I will meet you there. 

When the soul lies down in that grass, 

the world is too full to talk about 

language, ideas, 

even the phrase “each other” 

doesn't make any sense.  

Rumi 

 

 

 

 

No amount of experimentation can ever prove me right; 

a single experiment can prove me wrong.  

Einstein 

 

 

 

 

Ce n’est pas parce que les choses sont difficiles que nous n’osons pas, 

 c’est parce que nous n’osons pas qu’elles sont difficiles.  

Sénèque 

 

 

 



 

 VII  

Remerciements 

Ma thèse, comme bien d’autres, a nécessité de nombreux efforts de motivation et de 

patience, et n’aurait pu aboutir sans la contribution et le soutien d’un grand nombre de 

personnes. Comment pourrais-je en effet remercier en seulement quelques mots les gens 

qui m’ont soutenu pendant ces trois années, tant leur aide et leur présence quotidienne ont 

été précieuses à mes yeux ? 

Dans un premier temps, je tiens à remercier avec beaucoup de respect et de 

reconnaissance Michel Quintard, mon directeur de thèse et aussi le responsable du groupe 

GEMP qui m’a accueilli à l’IMFT de Toulouse. Je le remercie pour sa confiance en moi, ce 

qui m’a permis d’effectuer cette thèse et en même temps apprendre une langue et une 

culture très riche, que j’apprécie beaucoup. Sa rigueur, ainsi que ses qualités humaines tout 

au long de ces trois années auront très largement contribué à mener à bien ce travail. Je 

pense notamment aux nombreuses relectures de documents, mais également à l’aide très 

précieuse apportée lors des difficultés rencontrées durant cette période. Je souhaite ici dire 

particulièrement merci à Michel Quintard et à son épouse, Brigitte, pour m’avoir donné 

tellement d’amitié, en parallèle à un travail sérieux, d’avoir passé d’agréables moments, de 

bons repas français et pour le week-end spéléologique qui était un moment inoubliable. 

Rester dans la nature sauvage m’a permis de souffler et de me ressourcer afin de revenir à 

ma thèse avec le cerveau libéré et les idées plus claires. 

Ensuite, je remercie très chaleureusement Manuel Marcoux, pour m’avoir encadré et 

guidé au quotidien avec une grande adresse. Je lui suis reconnaissant pour son esprit 

d’ouverture, son professionnalisme, sa pédagogie, sa disponibilité ainsi que ses qualités 

humaines. Ses yeux d’expert tant sur le plan théorique qu’expérimental ont apporté 

beaucoup à mes travaux de recherche. Merci Manuel pour les longues heures consacrées à 

vérifier et corriger ces nombreux articles, présentations, manuscrit de thèse, et pour ton 

aide et tes conseils en dehors du travail. Sincèrement, j’avais les meilleures encadrants qui 

peuvent exister ! 

Une partie de ma thèse a été financé par le projet ANR Fluxobat, je tiens donc à 

remercier une nouvelle fois Manuel Marcoux et Michel Quintard en tant que responsable 

scientifique de ce projet à l’IMFT et responsable du groupe GEMP, ainsi que Jacques 

Magnaudet, le directeur du laboratoire. 

Je remercie l’attaché de coopération scientifique et technique de l’ambassade de 

France à Téhéran, Sixte Blanchy, pour m’avoir attribué une bourse du gouvernement 

français pendant un an. Je ne peux pas oublier de remercier chaleureusement Majid 

Kholghi mon professeur de Master pour son aide pendant la période des démarches 

administratives pendant l’inscription ; mais, malheureusement, les circonstances ne nous 

ont pas permis de travailler ensemble. Je voudrais remercier très chaleureusement le 

responsable des relations internationales de l’ENSEEIHT, Majid Ahmadpanah, pour son 



 

 VIII

assistance précieuse. Je tiens à remercier Hadi Ghorbani, mon ancien collègue de 

l’université de Shahrood, qui m’a toujours supporté et encouragé. 

 Je remercie Azita Ahmadi qui m’a aidé et m’a supporté dans bien des situations 

difficiles, ainsi que pour le démarrage de la thèse. 

J’adresse mes sincères remerciements à Ziad Saghir et Azita Ahmadi, qui ont accepté 

de rapporter sur ce travail. Je leur suis reconnaissant pour les remarques et commentaires 

éclairés qu’ils ont pu porter à la lecture de ce manuscrit.  

Je remercie Kader Mojtabi qui m’a fait l'honneur de présider le jury de cette thèse. 

J’exprime mes profonds remerciements à Christelle Latrille et Piere Costesèque pour avoir 

accepté de juger ce travail. Je remercie tout particulièrement Kader Mojtabi et Piere 

Costeseque de l’IMFT pour les discussions constructives durant ma thèse sur le sujet de la 

thermodiffusion. Je remercie Helmut pour sa présence à ma soutenance qui m’a donné 

beaucoup d’énergie.  

Je remercie Gérald Debenest, Rachid Ababou et Franck Plouraboué pour avoir suivi 

mon travail, leurs encouragements et leurs conseils constructifs. 

J’ai aussi eu l'honneur de rencontrer Massoud Kaviany au cours d'une de ses visites à 

l’IMFT, je le remercie pour ses conseils généraux qui m’ont été utiles. 

Merci à Juliette Chastanet, ancienne post-doc à l’IMFT, qui m’a beaucoup aidé à 

comprendre la théorie du changement d’échelle et qui a vérifié mes calculs numériques 

durant ma deuxième année de thèse. 

Le travail rapporté dans ce manuscrit a été réalisé à l’Institut de Mécanique des 

Fluides de Toulouse, dans le Groupe d’Etude des Milieux Poreux. Je tiens donc à remercier 

la direction de l’IMFT, et Henri Boisson. Je remercie également tout le personnel de 

l’IMFT et en particulier Suzy Bernard, Yannick Exposito, Doris Barrau, Muriel Sabater, 

Sandrine Chupin, Hervé Ayroles. Je remercie Lionel Le Fur, le technicien du groupe pour 

son aide à la mise en place du dispositif expérimental. 

Merci à David Bailly mon ami et collègue du bureau 210 pendant deux ans et quelques 

mois. Quand il n’y avait personne au laboratoire, bien tard, il y avait toujours David et ça 

m’a donné envie de rester et travailler. David, je n’oublierai jamais nos discussions sur 

différents  sujets, durant les pauses. Les débats qui commencent par des sujets scientifiques 

et souvent se terminent par des sujets culturels, historiques ou bien mystérieux. Et je 

remercie sa « diptite » chérie, Emma Florens, futur docteur de l’IMFT, qui passait souvent 

pour nous voir. 

Je remercie aussi mon amie et ma collègue de bureau, Marion Musielak, ancienne 

stagiaire et nouvelle doctorante très sérieuse. Je la remercie pour ses encouragements, son 

aide pour corriger mes lettres en français et pour sa gentillesse. Je lui souhaite bon courage 

pour sa thèse qui vient de démarrer. 

Je remercie mes anciens collègues de bureau pendant presque un an: Laurent Risser, 

Pauline Assemat, Romain Guibert au bout du couloir, bureau 110, où j’ai commencé ma 

thèse. 



 

 IX 

Toute mon amitié à Yohan Davit (le grand chef), Stephanie Veran (Mme Tissoires 

spécialiste des mots fléchés ), Alexandre (le Grand) Lapène, Florent Henon (avec ou sans 

sabre chinois), Vincent Sarrot (champion des chiffres et des lettres), Yunli Wang 

(championne de rallye), Clément Louriou (dominateur d’informatique et d’acquisition des 

données), les inséparables : Fabien Chauvet + Ian Billanou, Dominique Courret (passionné 

de poissons), Bilal Elhajar (champion de tennis), Arnaud Pujol (fameux ciné-man du 

groupe), Faiza Hidri, Solenn Cotel, Haishan Luo, Hassane Fatmi, Karine Spielmann 

(championne de ping pong), Mehdi Rebai, Damien Chenu. Je les remercie pour leur amitié 

et pour leur soutien moral, avec eux j’ai vécu des moments inoubliables plein d’amitié 

avec ambiance et humour à coté du travail. Je remercie aussi tous les responsables et les 

membres de la fameuse pause café du groupe. Merci à tous, sans eux cette aventure aurait 

sûrement été moins plaisante. 

Souvent, parler dans sa langue maternelle ça aide à oublier la nostalgie du pays ; je 

remercie donc Hossein Fadaei et sa femme qui ont organisé quelques randonnées durant 

ces années. 

Je suis très fier d’avoir appris la langue française, je remercie beaucoup mes 

professeurs de  l’Alliance Française de Toulouse en particulier Sébastien Palusci et Lucie 

Pépin. Grâce à Lucie j’ai beaucoup avancé en communication orale, je l’en remercie 

beaucoup. Pendant cette période, à l’Alliance Française de Toulouse, j’ai trouvé des amis 

de tous les coins du monde. Ils sont très nombreux et gentils. Je remercie particulièrement 

Luciano Xavier, Isaac Suarez, Pavel Dub, Laia Moret Gabarro, Zaira Arellano, Fernando 

Maestre, Paula Margaretic, Azucena Castinera, Alan Llamas qui sont restés fidèles. 

Au cours de l’été 2009 j’ai participé à une école d’été sur la modélisation des 

réservoirs pétroliers à l’université technique du Danemark (DTU) de Lyngby ; c’était un 

grand honneur pour moi de rencontrer Alexander Shapiro et ses collègues du département 

de génie chimique et biochimique. Je remercie également Osvaldo Chiavone, Negar 

Sadegh et Yok Pongthunya pour leur amitié pendant cette période. 

Je remercie mes anciens amis et mes anciens collègues de l’université de Shahrood, je 

voulais leur dire que même si la distance nous sépare physiquement, l’esprit d’amitié est 

toujours resté entre nous et je ne vous oublierai jamais. 

Enfin, je tiens à remercier du fond du coeur mes parents et ma famille pour les 

encouragements et le soutien qu’ils m’ont apporté tout au long du parcours qui m’a mené 

jusqu’ici.  

 

  

 

« Be paian amad in daftar hekaiat hamchenan baghist !» 

(Ce cahier se termine, mais l’histoire continue !) 
 
 
 



 

 X 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 XI

Table of Contents  
 

1. General Introduction ..............................................................2 

1.1 Industrial interest of Soret effect ........................................................... 4 

1.2 Theoretical Direct numerical solution (DNS) ....................................... 6 

1.3 Theoretical upscaling methods .............................................................. 6 

1.3.1 Multi-scale, hierarchical system .............................................................. 6 

1.3.2 Upscaling tools for porous media ............................................................ 9 

1.4 Experimental methods ......................................................................... 10 

1.4.1 Two-bulb method................................................................................... 10 

1.4.2 The Thermogravitational Column.......................................................... 12 

1.4.3 Thermal Field-Flow Fractionation (ThFFF) .......................................... 13 

1.4.4 Forced Rayleigh-Scattering Technique.................................................. 13 

1.4.5 The single-beam Z-scan or thermal lens technique ............................... 14 

1.5 Concentration measurement ................................................................ 14 

1.5.1 From the variation of thermal conductivity ........................................... 15 

1.5.2 From the variation of viscosity .............................................................. 16 

1.5.3 Gas Chromatography (GC) .................................................................... 16 

1.5.4 Analysis by mass spectrometer .............................................................. 18 

1.6 Conclusion ........................................................................................... 19 

2. Theoretical predictions of the effective diffusion and 

thermal diffusion coefficients in porous media ..........................21 

2.1 Introduction.......................................................................................... 25 

2.2 Governing microscopic equation......................................................... 27 

2.3 Volume averaging method................................................................... 29 

2.4 Darcy’s law .......................................................................................... 31 

2.4.1 Brinkman term ....................................................................................... 31 

2.4.2 No-linear case ........................................................................................ 32 

2.4.3 Low permeability correction.................................................................. 33 



 XII

2.5 Transient conduction and convection heat transport ........................... 34 

2.5.1 One equation local thermal equilibrium ................................................ 36 

2.5.2 Two equation model............................................................................... 48 

2.5.3 Non-equilibrium one-equation model.................................................... 49 

2.6 Transient diffusion and convection mass transport ............................. 51 

2.6.1 Local closure problem............................................................................ 53 

2.6.2 Closed form............................................................................................ 56 

2.6.3 Non thermal equilibrium model............................................................. 57 

2.7 Results.................................................................................................. 59 

2.7.1 Non-conductive solid-phase ( 0≈σk ) .................................................... 60 

2.7.2 Conductive solid-phase ( 0≠σk )............................................................ 67 

2.7.3 Solid-solid contact effect ....................................................................... 71 

2.8 Conclusion ........................................................................................... 76 

3. Microscopic simulation and validation................................78 

3.1 Microscopic geometry and boundary conditions ................................ 79 

3.2 Non-conductive solid-phase ( 0≈σk )................................................... 80 

3.2.1 Pure diffusion ( )0,0 ≈≈ σkPe ................................................................ 80 

3.2.2 Diffusion and convection ( )0,0 ≈≠ σkPe ............................................. 83 

3.3 Conductive solid-phase ( 0≠σk ) .......................................................... 85 

3.3.1 Pure diffusion ( )0,0 ≠≈ σkPe .............................................................. 85 

3.3.2 Diffusion and convection ( )0,0 ≠≠ σkPe ............................................. 92 

3.4 Conclusion ........................................................................................... 97 

4. A new experimental setup to determine the effective 

coefficients .....................................................................................99 

4.1 Introduction........................................................................................ 102 

4.2 Experimental setup ............................................................................ 103 

4.2.1 Diffusion in a two-bulb cell ................................................................. 106 

4.2.2 Two-bulb apparatus end correction ..................................................... 109 



 XIII

4.2.3 Thermal diffusion in a two-bulb cell ................................................... 110 

4.2.4 A transient-state method for thermal diffusion processes ................... 111 

4.3 Experimental setup for porous media ................................................ 113 

4.4 Results................................................................................................ 113 

4.4.1 Katharometer calibration...................................................................... 113 

4.4.2 Diffusion coefficient ............................................................................ 115 

4.4.3 Effective diffusion coefficient in porous media................................... 117 

4.4.4 Free fluid and effective thermal diffusion coefficient ......................... 121 

4.4.5 Effect of solid thermal conductivity on thermal diffusion................... 127 

4.4.6 Effect of solid thermal connectivity on thermal diffusion................... 130 

4.4.7 Effect of tortuosity on diffusion and thermal diffusion coefficients ... 132 

4.5 Discussion and comparison with theory............................................ 134 

4.6 Conclusion ......................................................................................... 137 

5. General conclusions and perspectives................................139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XIV

List of tables 
 
Table  1-1. Flux-force coupling between heat and mass ........................................................ 5 

Table  2-1. Objectives of each order of momentum analysis ............................................... 49 

Table  4-1. Thermal conductivity and corresponding katharometer reading for some gases at 

atmospheric pressure and T=300°K................................................................................... 105 

Table  4-2. The properties of CO2, N2 and He required to calculate mixk  (T=300 °C, P=1 

atm.)................................................................................................................................... 115 

Table  4-3. Molecular weight and Lennard-Jones parameters necessary to estimate diffusion 

coefficient ................................................................................................................... ...... 117 

Table  4-4. Estimation of diffusion coefficients for binary gas mixtures He-CO2 and He-N2 

at temperatures 300, 350 and 7.323=T °K, pressure 1 bar.............................................. 117 

Table  4-5.  Measured diffusion coefficient for He-N2 and different media ...................... 120 

Table  4-6.  Measured diffusion coefficient for He-CO2 and different medium ................ 121 

Table  4-7. Measured thermal diffusion and diffusion coefficient for He-N2 and for different 

media ................................................................................................................................. 124 

Table  4-8.  Measured diffusion coefficient and thermal diffusion coefficient for He-CO2 

and for different media ...................................................................................................... 125 

Table  4-9.  Measured diffusion coefficient and thermal diffusion coefficient for He-N2 and 

different media................................................................................................................... 127 

Table  4-10. The solid (spheres) and fluid mixture physical properties (T=300 K) .......... 128 

Table  4-11. The solid (spheres) and fluid mixture physical properties (T=300 K) .......... 131 

Table  4-12.  Porous medium tortuosity coefficients ......................................................... 133 

 
 
 
 
 
 
 
 
 
 
 
 



 XV

List of figures 
 
Fig.   1-1  Example of a multi-scale system ........................................................................... 7 

Fig.   1-2. A schematic diagram of the two-bulb apparatus used to determine the thermal 

diffusion factors for binary gas mixtures ............................................................................ 11 

Fig.   1-3. Principle of Thermogravitational Cell with a horizontal temperature gradient... 12 

Fig.   1-4. Principle of Thermal Field-Flow Fractionation (ThFFF) .................................... 13 

Fig.   1-5. Principle of forced Rayleigh scattering ............................................................... 14 

Fig.   1-6. Diagram showing vertical section of the katharometer ...................................... 15 

Fig.   1-7.  Schematics of a Gas Chromatograph Flame Ionization Detector (GC-FID)...... 17 

Fig.   1-8.   Schematics of a Gas Chromatograph Electron Capture Detector (GC-ECD) ... 17 

Fig.   1-9. Schematics of a simple mass spectrometer.......................................................... 18 

Fig.   2-1. Problem configuration ......................................................................................... 28 

Fig.   2-2. Normalized temperature versus position, for three different times (triangle, Direct 

Numerical Simulation= ( ) ( )CHC TTTT −−
β

β ; circles, Direct Numerical Simulation 

= ( ) ( )CHC TTTT −−
σ

σ ; solid line, Local-equilibrium model= ( ) ( )CHC TTTT −− ...................... 44 

Fig.   2-3. Normalized temperature versus position, for three different times (triangle, Direct 

Numerical Simulation= ( ) ( )CHC TTTT −−
β

β ; circles, Direct Numerical Simulation 

= ( ) ( )CHC TTTT −−
σ

σ ; solid line, Local-equilibrium model= ( ) ( )CHC TTTT −− ...................... 46 

Fig.   2-4. Chang’s unit cell .................................................................................................. 55 

Fig.   2-5. Spatially periodic arrangement of the phases ...................................................... 59 

Fig.  2-6.  Representative unit cell (εβ=0.8).......................................................................... 60 

Fig.  2-7.  Effective diffusion, thermal diffusion and thermal conductivity coefficients at  

Pe=0..................................................................................................................................... 62 

Fig.  2-8. Effective, longitudinal coefficients as a function of Péclet number ( 0≈σk  and 

8.0=βε  ): (a)  mass dispersion , (b) thermal dispersion , (c) thermal diffusion  and (d) Soret 

number ................................................................................................................................. 65 

Fig.   2-9. Comparison of closure variables 
xSβb  and 

xTβb  for εβ=0.8 ............................... 66 

Fig.  2-10. The influence of conductivity ratio (κ ) on (a) effective, longitudinal thermal 

conductivity and (b) effective thermal diffusion coefficients (εβ=0.8) ............................... 68 



 XVI

Fig.   2-11.  Comparison of closure variables fields βTb  and βSb  for different thermal 

conductivity ratio ( )κ  at pure diffusion ( )8.0&0 == βεPe ................................................... 69 

Fig.   2-12. Comparison of closure variables fields 
xTβb  and 

xSβb  for different thermal 

conductivity ratio ( )κ  at convective regime ( )8.0&14 == βεPe ........................................... 70 

Fig.  2-13. The influence of conductivity ratio (κ ) on the effective coefficients by 

resolution of the closure problem in a Chang’s unit cell (εβ=0.8 , Pe=0)............................ 71 

Fig.   2-14. Spatially periodic model for solid-solid contact ................................................ 72 

Fig.   2-15. Effective thermal conductivity for (a) non-touching particles, a/d=0 (b) touching 

particles, a/d=0.002, (εβ=0.36, Pe=0) .................................................................................. 72 

Fig.   2-16. Spatially periodic unit cell to solve the thermal diffusion closure problem with 

solid-solid connections a/d=0.002, (εβ=0.36, Pe=0)............................................................ 73 

Fig.   2-17. Effective thermal conductivity and thermal diffusion coefficient for touching 

particles, a/d=0.002, εβ=0.36, Pe=0..................................................................................... 74 

Fig.   2-18. Comparison of closure variables fields βTb  and βSb  when the solid phase is 

continue, for different thermal conductivity ratio ( )κ at pure diffusion................................ 75 

Fig.   2-19. Effective thermal conductivity and thermal diffusion coefficient for touching 

particles, a/d=0.002, εβ=0.36 ............................................................................................... 76 

Fig.  3-1.  Schematic of a spatially periodic porous medium ( HT : Hot Temperature and CT : 

Cold Temperature)............................................................................................................... 79 

Fig.  3-2. Comparison between theoretical and numerical results at diffusive regime and 

κ=0, (a) time evolution of the concentration at x = 15 and (b and c) instantaneous 

temperature and concentration field .................................................................................... 82 

Fig.  3-3. Comparison between theoretical and numerical results, κ=0 and Pe=1, (a and b) 

instantaneous temperature and concentration field, (c) time evolution of the concentration 

at  x = 0.5, 7.5 and 13.5 ....................................................................................................... 84 

Fig.   3-4.  Influence of the thermal conductivity ratio on the temperature and concentration 

fields .................................................................................................................................... 86 

Fig.   3-5.  (a) Temperature and (b) concentration profiles for different conductivity ratio 87 

Fig.   3-6.  Temporal evolution of the separation profiles for different thermal conductivity 

ratio...................................................................................................................................... 88 

Fig.  3-7. Comparison between theoretical and numerical results at diffusive regime and 

κ=10, temporal evolution of (a) temperature and (b) concentration profiles ...................... 89 



 XVII

Fig.   3-8.  Effect of thermal conductivity ratio at diffusive regime on (a and b) 

instantaneous temperature and concentration field at t=10 and (b) time evolution of the 

concentration at  x = 15 ....................................................................................................... 91 

Fig.  3-9. Comparison between theoretical and numerical results, κ=10 and Pe=1, (a) time 

evolution of the concentration at  x = 0.5, 7.5 and 13.5 (b and c) instantaneous temperature 

and concentration field ........................................................................................................ 93 

Fig.  3-10.  Influence of Péclet number on steady-state (a) temperature and (b) 

concentration profiles (κ=10) .............................................................................................. 94 

Fig.   3-11. Influence of Péclet number on steady-state concentration at the exit (κ=10).... 95 

Fig.   3-12.  Influence of (a) separation factor and (b) conductivity ratio on pick point of the 

concentration profile............................................................................................................ 96 

Fig.  4-1. Sketch of the two-bulb experimental set-up used for the diffusion and thermal 

diffusion tests..................................................................................................................... 104 

Fig.   4-2. Dimensions of the designed two-bulb apparatus used in this study .................. 104 

Fig.   4-3. Katharometer used in this study (CATARC MP – R) ....................................... 105 

Fig.   4-4. A schematic of katharometer connection to the bulb......................................... 106 

Fig.   4-5. Two-bulb apparatus ........................................................................................... 106 

Fig.   4-6. Katharometer calibration curve with related estimation of thermal conductivity 

values for the system He-CO2 ........................................................................................... 114 

Fig.   4-7. Solute transport process in porous media .......................................................... 115 

Fig.   4-8.  Cylindrical samples filled with glass sphere..................................................... 118 

Fig.   4-9. X-ray tomography device (Skyscan 1174 type) used in this study.................... 119 

Fig.   4-10.  Section images of the tube (inner diameter 795.0=d cm) filled by different 

materials obtained by an X-ray tomography device (Skyscan 1174 type) ........................ 119 

Fig.   4-11. Composition-time history in two-bulb diffusion cell for He-N2 system for 

different medium. ( KTC 300= and %1000
1 =bc )..................................................................... 120 

Fig.   4-12. Composition-time history in two-bulb diffusion cell for He-CO2 system for 

different medium ( KT 300= and %1000
1 =bc )....................................................................... 121 

Fig.   4-13. Schematic diagram of two bulb a) diffusion and b) thermal diffusion processes

........................................................................................................................................... 122 

Fig.   4-14. Composition-time history in two-bulb thermal diffusion cell for He-N2 binary 

mixture for different media ( KT 50=Δ , KT 7.323= and %500
1 =bc ) .................................... 124 



 XVIII

Fig.   4-15. Composition-time history in two-bulb thermal diffusion cell for He-CO2 binary 

mixture for different media .( KT 50=Δ , KT 7.323= and %500
1 =bc ) ................................... 125 

Fig.   4-16. New experimental thermal diffusion setup without the valve between the two 

bulbs .................................................................................................................................. 126 

Fig.   4-17. Composition-time history in two-bulb thermal diffusion cell for He-N2 binary 

mixture for different media ( KT 50=Δ , KT 7.323= and %25.610
1 =bc ) ................................ 127 

Fig.   4-18.  Cylindrical samples filled with different materials (H: stainless steal, G: glass 

spheres and ε=42.5) ........................................................................................................... 128 

Fig.   4-19. Katharometer reading time history in two-bulb thermal diffusion cell for He-

CO2 binary mixture for porous media having different thermal conductivity (3 samples of 

stainless steal and 3 samples of glass spheres) ( KT 50=Δ , KT 7.323= and %500
1 =bc )....... 129 

Fig.   4-20.  Cylindrical samples filled with different materials (A: glass spheres, B:  

aluminium spheres and ε=0.56)......................................................................................... 130 

Fig.   4-21. Katharometer time history in two-bulb thermal diffusion cell for He-CO2 binary 

mixture for porous media made of different thermal conductivity (aluminum and glass 

spheres) ( KT 50=Δ , KT 7.323= and %500
1 =bc ) .................................................................. 131 

Fig.   4-22. Definition of tortuosity coefficient in porous media, L= straight line and L’= 

real path length .................................................................................................................. 132 

Fig.   4-23.  Cylindrical samples filled with different materials producing different 

tortuosity but the same porosity ε=66% (E: cylindrical material and F: glass wool)........ 133 

Fig.   4-24.  Composition time history in two-bulb thermal diffusion cell for He-CO2 binary 

mixture in porous media made of the same porosity (ε=66% ) but different tortuosity 

(cylindrical materials and glass wool) ( KT 50=Δ , KT 7.323= and %500
1 =bc ) ................... 134 

Fig.   4-25.  Comparison of experimental effective diffusion coefficient data with the 

theoretical one obtained from volume averaging technique for different porosity and a 

specific unit cell................................................................................................................. 135 

Fig.   4-26.  Comparison of experimental effective thermal diffusion coefficient data with 

theoretical one obtained from volume averaging technique for different porosity and a 

specific unit cell................................................................................................................. 136 

Fig.   4-27.  Comparison of the experimental thermal diffusion ratio data with theoretical 

one obtained from volume averaging technique for different porosity and a specific unit 

cell ..................................................................................................................................... 136 



 XIX

Fig.   5-1.  3D geometry of the closure problem with particle-particle touching made with 

COMSOL Multiphysics..................................................................................................... 141 

Fig.   5-2. Discrepancy between numerical results and experimental measurements in a 

packed thermo- gravitational cell ..................................................................................... 142 

Fig.   5-3. Proposition of experimental setup for convective regime ................................. 143 



 

 

 

 

 

 

CChhaapptteerr  11  

  
GGeenneerraall  IInnttrroodduuccttiioonn  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

1. General Introduction  

 
The Ludwig-Soret effect, also known as thermal diffusion (or thermal diffusion and also 

thermo-migration), is a classic example of coupled heat and mass transport in which the 

motion of the particles in a fluid mixture is driven by a heat flux coming from a thermal 

gradient. Generally, heaviest particle moves from hot to cold, but the reverse is also seen 

under some conditions. The Soret effect has been studied for about 150 years with more 

active periods following economic interests (separation of isotopes in the 30s, petroleum 

engineering in the 90s ...). Many researchers have developed different techniques to 

measure this effect and deduced theories to explain it. However, because of the complexity 

of this coupled phenomenon, only recently, there has been an agreement on the values of 

the thermal diffusion coefficients measured by different techniques. Theoretically, there 

exists a rigorous approach based on the kinetic gas theory which explains the thermal 

diffusion effect for binary and multi-component ideal gas mixtures. For liquids, the 

theories developed are not enough accurate and there is still a lack of understanding on the 

basis of the effect for these mixtures. The situation becomes even more complicated when 

considering porous media. Fluid and flow problems in porous media have attracted the 

attention of industrialists, engineers and scientists from varying disciplines, such as 

chemical, environmental, and mechanical engineering, geothermal physics and food 

science. The main goal of the present thesis is to understand this complexity in porous 

media when there is a coupling between heat and mass transfer. The main objective is to 

study if the effective thermal diffusion depends on the following 

•  the void fraction of the phases and the structure of the solid matrix, i.e., the extent 

of the continuity of the solid phase,  

•  the thermal conductivity of each phase, i.e., the relative magnitude of thermal 

conductivity ratio,  

•  the contact between the no-consolidated particles, i.e., the solid surface coatings, 

•  the fluid velocity, i.e., dispersion and free convection in pore spaces.  

 

The background and main goal of this thesis is presented in this chapter. 

In chapter 2 we present a theoretical approach based on the volume averaging method to 

determine the effective transport coefficients in porous media. In this part, we are 
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interested in the upscaling of mass and energy coupled conservation equations of each 

component of the mixture. 

Chapter 3 presents a validation of the proposed theory by comparing the predicted 

behavior to results obtained from a direct pore-scale simulation.  

In chapter 4, coefficients of diffusion and thermal diffusion are measured directly using 

specially designed two-bulb method, and different synthetic porous media with different 

properties.  

Finally, in chapter 5, conclusions and suggestions for future work are presented. 
  

Introduction générale en français 
 

L’effet de Ludwig-Soret, également connu sous le nom de thermal diffusion (ou thermo-

migration), est un exemple classique de phénomène couplé de transport de chaleur et 

matière dans lequel le mouvement molécules (ou des particules) dans un mélange fluide est 

produit par un flux de chaleur dérivant d’un gradient thermique. En général, la particule la 

plus lourde se dirige vers la région plus froide, mais l'inverse est également possible sous 

certaines conditions. L'effet Soret est étudié depuis prés de 150 ans avec des périodes plus 

actives suivant les intérêts économiques (séparations d’isotopes dans les années 30, génie 

pétrolier dans les années 90 …). Différentes techniques ont été mises aux points pour 

mesurer cet effet et développer les théories pour l'expliquer. Toutefois, en raison de la 

complexité de ce phénomène couplé, ce n’est que récemment qu’il y a eu un accord sur les 

valeurs des coefficients de thermal diffusion mesurées par des techniques différentes. 

Théoriquement, il existe une approche rigoureuse basée sur la théorie cinétique des gaz qui 

explique l'effet de thermal diffusion pour les mélanges binaires et multi-composants de gaz 

parfaits. Pour les liquides, les théories développées ne sont pas assez précises et il y a 

toujours un manque de compréhension sur les fondements de cet effet. La situation devient 

encore plus compliquée lorsque l'on considère cet effet en milieux poreux. Les problèmes 

d'écoulement de fluides mutlticonstituants en milieu poreux en présence de gradients 

thermiques ont attiré l'attention des industriels, des ingénieurs et des scientifiques de 

différentes disciplines, telles que la chimie, l'environnement, le génie mécanique, la 

physique géothermique et science des aliments. L'objectif principal de cette thèse est de 

comprendre cette complexité dans les milieux poreux lorsqu'il existe un couplage entre les 
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transferts de chaleur et de matière. L'objectif est d'étudier si la thermal diffusion effective 

dépend de : 

• la fraction de vide dans le milieu (porosité) et la structure de la matrice solide, par 

exemple la continuité de la phase solide,  

• la conductivité thermique de chaque phase, et en particulier la valeur du rapport  

des conductivités thermiques,  

• le contact entre les particules non-consolidées, et la forme générale de la surface 

d’échange de la matrice solide,  

• la vitesse du fluide, c'est à dire la dispersion et la convection naturelle dans les 

espaces du pore. 

 

Le contexte et l'objectif principal de cette thèse sont présentés dans le chapitre 1.  

En chapitre 2, nous présentons une approche théorique basée sur la méthode de prise de 

moyenne volumique afin de déterminer les coefficients de transport effectifs dans un 

milieu poreux. Dans cette partie, nous appliquons les techniques de changement d’échelle 

des équations couplées de conservations de la matière et de l'énergie.  

Le chapitre 3 présentes une validation de la théorie proposée en comparant les résultats 

théoriques avec les résultats obtenus par simulation directe d’échelle du pore. 

En chapitre 4, les coefficients de diffusion et de thermal diffusion sont mesurés 

directement en utilisant un dispositif expérimental  à deux bulbes, développé 

spécifiquement pour ce travail,  et appliqué à différents milieux poreux modèles réalisés 

dans  différentes gammes de propriétés thermo-physique. 

Enfin, en chapitre 5, les conclusions et suggestions pour les travaux futurs sont présentées.  

 

1.1 Industrial interest of Soret effect  
 

In order to optimize production costs when extracting fluid field by producers, it is 

important to know precisely the distribution of different species in the field. This 

distribution has generally been generated over long formation period and separation has 

been mainly influenced by the gravity and the distribution of pressure in the reservoir. 

Considerable methods have been implemented in order to obtain reliable thermodynamic 

models, allow obtaining correctly the distribution of species in the reservoir. Since it is not 
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possible to ignore the important vertical extension of a given field, it is very possibly that 

this distribution is influenced by thermal diffusion and convection (gravity is one of the 

first components included in the models), but also by the geothermal gradient (natural 

temperature gradient of the earth).  

This gradient could be the cause of migration of species in a phenomenon known as the 

Soret effect or thermal diffusion (more generally, the name thermal diffusion is used to 

describe this effect in a gas mixture; whereas Soret effect or Ludwig effect will be used in 

liquids). This is the creation of a concentration gradient of the chemical species by the 

presence of a thermal gradient, i.e., the existence of a thermal gradient is causing migration 

of species. This effect, discovered by C. Ludwig in 1856 [55] (and better exploited by C. 

Soret in 1880 [98]) is a particular phenomenon since it is associated to coupled 

thermodynamic phenomena, i.e. a flux created by a force of different nature (here a 

concentration gradient is induced by the presence of a thermal gradient), Table  1-1 

summarizes the flux-force coupling effects between heat and mass transfer. 

 
Table  1-1. Flux-force coupling between heat and mass 

Flux\Force T∇  c∇  

Heat Fourier’s law of conduction Dufour effect 

Mass Soret effect Fick’s law of diffusion 

 

The study of these relations between flux and forces of this type is called Thermodynamics 

of Linear Irreversible Processes [38]. The main characteristic quantity for thermal diffusion 

is a coefficient called Soret coefficient ( TS ). Many works have been undertaken to 

determine this quantity with different approaches: experimental approaches (Soret 

Coefficients in Crude Oil under microgravity condition [35, 100], thermo-gravitational 

column) or theoretical approaches (molecular dynamics simulations [89, 34], multi-

component numerical models [91]). Most of these research concluded that values obtained 

experimentally are different from the theoretical one. These differences are mainly 

explained by the fact that the measurements are technically simpler in a free medium 

(without the porous matrix), and the effects due to pore-scale velocity fluctuations or to 

differences in thermal conductivity between rock and liquid are then not taken into 

account. Failures in the thermo-gravitational model based on the free fluid equations is a 
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good example of the need to determine a new model for the phenomena of diffusion and 

thermal diffusion in porous media. There are several theoretical and experimental methods 

available to determine the transport properties in porous media  

1.2 Theoretical Direct numerical solution (DNS) 
 

The direct numerical simulation of flows through porous formations is difficult due to the 

medium fine scale heterogeneity and also the complexity of dynamic systems. An accurate 

well-resolved computation often requires great amount of computer memory and CPU 

time, which can easily exceed the limit of today’s computer resources.  

Despite of this difficulty, the direct resolution of microscopic equation in porous media can 

be interesting for reasons of fundamental research, e.g., validation of macroscopic models 

(see for example [80] and [19]) as we have done in this study (Chapter 3). There are also 

many problems for which the upscaling processes are not possible or they are very difficult 

to achieve; therefore DNS can be used to resolve the problem in a simpler geometry 

problem on a volume containing a small number of pores. 

 In practice, it is often sufficient to predict the large scale solutions to certain accuracy. 

Therefore, alternative theoretical approaches have been developed.  

1.3 Theoretical upscaling methods 
 

The understanding and prediction of the behavior of the flow of multiphase or 

multicomponent fluids through porous media are often strongly influenced by 

heterogeneities, either large-scale lithological discontinuities or quite localized phenomena 

[29]. Considerable information can be gained about the physics of multiphase flow of 

fluids through porous media via laboratory experiments and pore-scale models; however, 

the length scales of these data are quite different from those required from field-scale 

simulations. The presence of heterogeneities in the medium also greatly complicates the 

flow. Therefore, we must understand the effects of heterogeneities and coefficients on 

different length scales.  

1.3.1 Multi-scale, hierarchical system 
 

Observation and modelling scales (Fig.   1-1) can be classified as 

• microscopic scale or pore scale,  

• macroscopic or Darcy scale, usually a few characteristic dimensions of the pore,  
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• mesoscopic or macroscopic scale heterogeneities of the porous medium, which 

correspond to variations in facies,  

• megascopic scale or scale of the aquifer, reservoir, etc. 

The physical description of the first two scales has been the subject of many studies. 

Taking into account the effect of heterogeneity, poses many problems often unresolved 

when level description in the model used is too large (e.g. a mesh numerical model too 

large compared to heterogeneities).   

In a porous medium, the equations of continuum mechanics permit to describe the 

transport processes within the pores. For a large number of pores, the detailed description 

of microscopic processes is generally impractical. It is therefore necessary to move from a 

microscopic description at the pore scale to a macroscopic description throughout a certain 

volume of porous medium including a large number of pores.  

In this section we describe briefly these different scales and their influences on the 

transport equations. 

 

 

σ

β

γ

ω

Microscopic 
or pore scale

Macroscopic
 or Darcy scale

Megascopic
or aquifer scale  

 

                            Microscopic scale: β=water phase, σ=solid phase, γ=organic phase. 

                            Macroscopic scale: η and ω are porous media of different characteristics. 

                            Megascopic scale: here the aquifer contains two mesoscopic heterogeneities. 

 

Fig.   1-1  Example of a multi-scale system 
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I. Microscopic scale 
 

The microscopic description focuses on the behavior of a large number of molecules of the 

present phases (e.g., organic phase and water phase shown in Fig.   1-1). The equations 

describing their transport are those of the continum mechanics. The flow is well described 

by the following equations  

• Mass balance equations for all components in the considered phase. In these 

equations may appear, in addition to the accumulation, convection and diffusion 

terms, chemical reaction terms known as homogeneous chemical reaction as they 

take place within this phase  

• The Navier-Stokes equations describing the momentum balance 

•  The equation of heat transfer if there are temperature gradients in the system 

• Boundary conditions on interfaces with other phases which depend upon the 

physics of the problem. 

 
II. Macroscopic scale 
 

The direct resolution of microscopic equations on a volume containing a small numbers of 

pores is usually possible and interesting for reasons of fundamental research (e.g. 

validation of macroscopic models). However, it is usually impossible to solve these 

microscopic equations on a large volume. In practice, it must be obtained a macroscopic 

description representing the effective behavior of the porous medium for a representative 

elementary volume (REV) containing many pores.  Many techniques have been used to 

move from the pore scale to the REV scale [23]. Integration on the REV (called volume 

averaging technique) of the microscopic conservation equations allow obtaining 

macroscopic equations which are valid for average variables called macroscopic variables 

[7, 91].  

In the case of a homogeneous porous medium, the REV size can be characterized by a 

sphere whose diameter is about 30 times the average grain diameter [7]. The problems 

associated with upscaling from the microscopic scale to the macroscopic scale will be 

treated in the next chapter.  

At the macroscopic scale, the description of the flow of phases introduces new equations 

which are the transposition of the mass balance, momentum and energy microscopic 

equations. For example, the equation of Darcy is the momentum balance at the 
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macroscopic scale. In these macroscopic equations appear effective properties, as the 

permeability in Darcy's law, the relative permeabilities and capillary pressure in the 

multiphase case, etc. These effective properties can be theoretically deduced from 

microscopic properties by using upscaling techniques. They are most often estimated from 

measurements on a macroscopic scale. The direct measurement of these properties is not 

simple, because of heterogeneities of the medium.  

 
III. Mesoscopic and Megascopic scale 

 
The macroscopic properties are rarely the same at every point of the aquifer. Natural 

medium are in fact generally heterogeneous. It is sometimes possible to take into account 

the effect of these heterogeneities by solving the equations with a macroscopic mesh size 

smaller than the characteristic size of the heterogeneities. If this is not possible, the 

situation is similar to that already encountered in the transition between microscopic and 

macroscopic scales: it must be established a valid description at the mesoscopic or 

megascopic.  

 

1.3.2 Upscaling tools for porous media 
 

In the macroscopic description of mass and heat transfer in porous media, the convection-

diffusion phenomena (or dispersion) are generally analyzed using an up-scaling method, in 

which the complicated local situation (transport by convection and diffusion at the pore 

scale) is finally described at the macroscopic scale by effective tensors [65]. To model 

transport phenomena in porous media, several methods exist. These tools are listed below 

• integral transform methods, 

• fractional approaches,  

• homogenization,  

• volume averaging technique 

• central limit approaches, 

• Taylor–Aris–Brenner (TAB) moment methods, 

•  spectral integral approaches,  

• Fast Fourier transform (FFT) and Greens functions methods, 

• mixture and hybrid averaging/mixture approaches,  
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• projection operator methods,  

• stationary stochastic convective type approaches,  

• and nonstationary stochastic convective type methods. 

The reader can look at [23] for a brief description of different types of hierarchies and 

recommended tools which may be applied.  

 Among others, the method of moments [11], the volume averaging method [14] and the 

homogenization method [61] are the most used techniques. In this study, we shall use the 

volume averaging method to obtain the macro-scale equations that describe thermal 

diffusion in a homogeneous porous medium [23]. It has been extensively used to predict 

the effective transport properties for many processes including transport in heterogeneous 

porous media [83], two-phase flow [79], two-Phase inertial flow [53], reactive media [111, 

1], solute transport with adsorption [2] multi-component mixtures [80].  

  

1.4 Experimental methods 
 

In this section, we present a review of different methods used for measuring the diffusion 

and thermal diffusion effect in gas.  There is more than 150 years that the thermal diffusion 

effect was firstly observed by Ludwig. Along these years, researchers have designed a 

wide variety of setup for measuring this effect. Measuring thermal diffusion compared to 

diffusion and dispersion is not an easy task because this effect is usually very small and 

slow. 

In this section, the goal is not to explain all existing methods, but to describe briefly the 

methods most commonly used. 

1.4.1 Two-bulb method  
 

The two-bulb technique is the most widely used method for determining the diffusion 

coefficients [114] and thermal diffusion [37] coefficients of gases. The basic arrangement 

for a two-bulb cell consists of two chambers of relatively large volume joined by a small-

volume diffusion tube. Initially, the two chambers are filled with fluid mixtures of different 

composition at the same pressure which are allowed to approach a uniform composition by 

means of diffusion through the tube. 

Experimental investigations of thermal diffusion have usually been based on the 

determination of the difference in composition of two parts of a fluid mixture which are at 
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different temperatures. A temperature gradient is set up in the tube by bringing the bulbs to 

different temperatures, uniform over each bulb. Provided the ratio of the bulbs volume is 

known, the separation can be found from the change in composition which occurs in one 

bulb only. A two-bulb apparatus used to determine the thermal diffusion coefficients is 

illustrated in Fig.   1-2. In this type of the two-bulb apparatus due to the large ratio in the 

volume of the two bulbs, almost all change in the gas mixture composition occurs in the 

lower bulb. In the literature, numerous measurements were made in free medium in 50s 

and 60s (see for instance some series of measurements which were done by Ibbs, 1921; 

Heath, 1941; van Itterbeek, 1947; Mason, 1962; Saxena, 1966; Humphreys, 1970; Grew, 

1977; Shashkov, 1979 and Zhdanov, 1980). 

 

 
 
 
 
 

Fig.   1-2. A schematic diagram of the two-bulb apparatus used to determine the thermal diffusion factors for 
binary gas mixtures [95] 

 
 
 
 
 
 
 
 
 
 

A: top bulb; B: bottom bulb; C: gas inlet valve; D: thermocouple; E: metal 

jacket; F: metal block; G and H: thermistor elements and I: isolation valve 
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1.4.2 The Thermogravitational Column  
 

Another method for measuring thermal diffusion coefficients is the thermogravitational 

column which consists of two vertical plates separated by a narrow space under a 

horizontal [54] or vertical [30] thermal gradient. The principle is to use a thermal gradient 

to simultaneously produce a mass flux by thermal diffusion and a convection flux. Starting 

from a mixture of homogeneous composition, the coupling of the two transport 

mechanisms leads to a separation of the components. In most experimental devices, the 

applied thermal gradient is horizontal and the final composition gradient is globally 

vertical. The separation rate in this system defined as the concentration difference between 

the top and the bottom cell. Thermogravitational column was devised by Clusius and 

Dickel (1938). The phenomenology of thermogravitational transport was exposed by Furry 

et al. (1939), and was validated by many experiments. The optimal coupling between 

thermal diffusion and convection ratio (maximum separation) correspond to an optimal 

thickness of the cell in free fluid (less than one millimetre for usual liquids) and an optimal 

permeability in porous medium [56, 57]. The so called packed thermal diffusion cell (PTC) 

was described and intensively used to perform experiments on varieties of ionic and 

organic mixtures [54, 21, 66]. The separation in a thermogravitational column can be 

substantially increased by inclining the column [72]. Recently, Mojtabi et al., 2003, 

showed that the vibrations can lead whether to increase or to decrease heat and mass 

transfers or delay or accelerate the onset of convection [18].  
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Fig.   1-3. Principle of Thermogravitational Cell with a horizontal temperature gradient 
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1.4.3 Thermal Field-Flow Fractionation (ThFFF) 
 
Thermal field-flow fractionation (ThFFF) is a sub-technique of the FFF family that relies 

on a temperature gradient (create a thermal diffusion force) to characterize and separate 

polymers and particles. A schematic of the TFFF system is shown in Fig.   1-4. Separation 

of suspended particles is typically performed in a solvent carrier. Higher molecular weight 

particles react more to the thermal gradient and compact more tightly against the cold. 

Because of the parabolic velocity profile of the carrier, lower molecular weight will have a 

higher average velocity. The difference in average velocity results in the spatial and 

temporal separation along the ThFFF channel. The TFFF system possesses unique 

characteristics making it more suitable for some separations than conventional system [13]. 

Thermal Field-Flow Fractionation (Thermal FFF) is an excellent technique for measuring 

Soret coefficients particularly for dissolved polymers and suspended particles [96]. 
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Fig.   1-4. Principle of Thermal Field-Flow Fractionation (ThFFF) 

 

1.4.4 Forced Rayleigh-Scattering Technique 
 
The principle of the forced Rayleigh scattering method is illustrated in Fig.   1-5.  Two 

pulsed, high-power laser beams of equal wavelength and equal intensity intersect in an 

absorbing sample. They generate an optical interference fringe pattern whose intensity 

distribution is spatially sinusoidal. Following partial absorption of the laser light, this 

interference pattern induces a corresponding temperature grating, which in turn causes a 

concentration grating by the effect of thermal diffusion. Both gratings contribute to a 

combined refractive index grating that is read out by diffraction of a third laser beam. 

Analyzing the time dependent diffraction efficiency, three transport coefficients can be 

obtained (the thermal diffusivity, the translation diffusion coefficient D, and the thermal 

diffusion coefficient DT). The ratio of the thermal diffusion coefficient and the translation 

diffusion coefficient allows the determination of the Soret coefficient ST  [113].  
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Fig.   1-5. Principle of forced Rayleigh scattering [99] 

 

1.4.5 The single-beam Z-scan or thermal lens technique 
 

The z-scan is a simple technique for determining the absorptive and refractive nonlinear 

optical properties of matter. In this type of technique a single laser beam is used for both 

heating and detecting. Any effect that creates variation of the refractive index can be 

studied with this setup. Giglio and Vendramini, 1974 [36] noticed that, when an intense 

narrow laser beam is reflected in a liquid, beside the thermal expansion, the Soret effect 

appears. This work showed the effect of the laser beam in binary mixtures compared to 

pure liquids. This technique for determination of the Soret coefficient is based on analysing 

the optical nonlinearities of the laser light.  

1.5 Concentration measurement   
 

A number of methods have been used for measuring the change in composition resulting 

from thermal diffusion or diffusion. In some early investigations the gas was analysed by 

chemical methods, but for many mixtures there are more rapid and convenient methods 

depending on the variation with composition of properties such as thermal conductivity, 

viscosity and optical refractivity. The development in recent years of Gas 

Chromatography-Mass Spectrometry (GC-MS) has enabled some progress to be made. In 

this section, we describe briefly these methods of measurement.  
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1.5.1 From the variation of thermal conductivity 
 

An instrument was originally devised by Shakespear in 1915 (see [27]) and as the 

instrument was primarily intended to measure the purity of the air, the name 

"katharometer" was given to it. Katharometer [sometimes spelled “catherometer” and often 

referred to as the thermal conductivity detector (TCD) or the hot-wire detector (HWD)] 

was applied by Ibbs (1921) in his first experiments on thermal diffusion.  

As we can see in Fig.   1-6, a typical kind of katharometer consists of a metal block in 

which one chamber is filled or purged with the gas mixture of unknown concentration and 

another one with a reference gas. Each chamber contains a platinum filament forming a 

branch of a Wheatstone bridge circuit and heated by the bridge current. The block serves as 

a heat sink at constant temperature. The katharometer concentration calibration is limited 

to a binary mixture. Therefore, this method is not appropriate in the case of more than two 

components. 

 

 

 

 

Fig.   1-6. Diagram showing vertical section of the katharometer [27] 
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Heat loss by radiation, convection, and leak through the supports is minimised in order to 

let the conduction through the gas be the dominant transfer mechanism of heat from the 

filament to the surroundings. Changes in gas composition in a chamber lead to temperature 

changes of the filament and thus to accompanying changes in resistance which are 

measured with the completed Wheatstone bridge. The heat lost from the filament will 

depend on both the thermal conductivity of the gas and its specific heat. Both these 

parameters will change in the presence of a different gas or solute vapor and as a result the 

temperature of the filament changes, causing a change in potential across the filament. This 

potential change is amplified and either fed to a suitable recorder or passed to an 

appropriate data acquisition system. As the detector filament is in thermal equilibrium with 

its surroundings and the device actually responds to the heat lost from the filament, the 

detector is extremely flow and pressure sensitive. Consequently, all katharometer detectors 

must be carefully thermostated and must be fitted with reference cells to help compensate 

for changes in pressure or flow rate. Usually, one of the spirals of the katharometer is 

sealed permanently in air and the resistance readings are the reference readings. Other 

filament is connected with the gas as analyze reading. The katharometer has the advantage 

that its open cell can form part of the diffusion cell, and so it can indicate continuously the 

changes in composition as diffusion and thermal diffusion proceeds without sampling. 

 

1.5.2 From the variation of viscosity 
 

Van Itterbeek and van Paemel (1938, 1940) ([101, 102], see also [50]) have developed a 

method of measurement based on the damping of an oscillating-disk viscometers. The 

oscillating disk itself is a part of the top bulb of the thermal diffusion cells. The change in 

the composition of the upper part due to thermal diffusion, changes the viscosity of the 

mixture and then corresponding change in composition is found from calibration curve. 

This method has a precision of the same as the conductivity detector. 

 

1.5.3 Gas Chromatography (GC) 
 

In a Gas Chromatograph the sample is injected into a heated inlet where it is vaporized, 

and then transferred into a chromatographic column. Different compounds are separated in 

the column, primarily through their physical interaction with the walls of the column. Once 
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separated, the compounds are fed into a detector. There are two types of the detector: 

Flame Ionization Detector (FID) and Electron Capture Detector (ECD). Schematic of a gas 

chromatograph flame ionization detector is illustrated in Fig.   1-7. As we can see in this 

figure, GC-FID uses a flame ionization detector for identification of compounds. The 

flame ionization detector responds to compounds that create ions when combusted in a 

hydrogen-air flame. These ions pass into a detector and are converted to an electrical 

signal. This method of analysis can be used for the detection of compounds such as 

ethanol, acetaldehyde, ethyl acetate, and higher alcohols. 

 

Fig.   1-7.  Schematics of a Gas Chromatograph Flame Ionization Detector (GC-FID) 

 

The ECD or electron capture detector (Fig.   1-8) measures electron capturing compounds 

(usually halogenated) by creating an electrical field in which molecules exiting a GC 

column can be detected by the drop in current in the field. 

 

Fig.   1-8.   Schematics of a Gas Chromatograph Electron Capture Detector (GC-ECD) 

 

The ECD works by directing the gas phase output from the column across an electrical 

field applied across two electrodes, either using a constant DC potential or a pulsed 

potential. The electrical field is produced using a thermally stable 63Ni source that ionizes 
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some of the carrier gas or auxiliary detector gas (usually nitrogen or a mixture of argon 

95%, methane 5%) and produces a current between a biased pair of electrodes.  The ECD 

is one of the most sensitive gas chromatography detectors available. The sensitivity of the 

ECD enables it to provide unmatched performance for extremely tough applications. It is 

the first choice for certain environmental chromatography applications due to its extreme 

sensitivity to halogenated compounds like PCBs (Polychlorinated biphenyls), 

organochlorine pesticides, herbicides, and halogenated hydrocarbons. The ECD is 10-1000 

time more sensitive than the FID (Flame Ionization Detector), but has a limited dynamic 

range and finds its greatest application in analysis of halogenated compounds.  

 

1.5.4 Analysis by mass spectrometer 
 

Mass spectrometers are sensitive detectors of isotopes based on their masses. For the study 

of thermal diffusion in isotopic mixtures, a mass spectrometer is necessary. In the mass 

spectrometer the mixture is first ionized by passage through an electron beam as shown in 

Fig.   1-9; the ions are accelerated by an electric field and then passed through a slit system 

into a magnetic field by which they are deflected through an angle which depends on the 

mass and velocity. The final element of the mass spectrometer is the detector. The detector 

records either the charge induced or the current produced when an ion passes by or hits a 

surface. The combination of a mass spectrometer and a gas chromatograph makes a 

powerful tool for the detection of trace quantities of contaminants or toxins.  

 
 

Fig.   1-9. Schematics of a simple mass spectrometer 

 

 
 

http://hyperphysics.phy-astr.gsu.edu/HBASE/magnetic/maspec.html#c1#c1


 19

1.6 Conclusion 
 

From the discussion in section  1.3, it is clear that models of transport in porous media are 

related to scale description. The prediction and modelling of fluid flow processes in the 

subsurface is necessary e.g. for groundwater remediation or oil recovery. In most 

applications the fluid flow is determined by, in general, highly heterogeneous distribution 

of the soil properties. The conclusion of the detailed knowledge of the heterogeneous 

parameter distribution into a flow model is computationally not feasible. It is therefore an 

important task to develop upscaling methods to simplify the small-scale flow model while 

still including the impact of the heterogeneities as far as possible. In this study we have 

used the volume averaging technique to obtain the macro-scale properties of the porous 

media because this method has been proved to be suitable tool for modelling transport 

phenomena in heterogeneous porous media. 

Different experimental techniques, which permit to measure the separation and therefore 

calculate the thermal diffusion coefficients, have been presented. It follows that, two-bulb 

method, among other methods, is a suitable method for this study since we can measure the 

both diffusion and thermal diffusion coefficients. It is easily adoptable to apply for a 

porous medium case. In this method thermal diffusion process does not disturb by the free 

convection which is negligible in this system.  

Katharometer, despite its limitation to binary mixtures, is still most commonly used 

detector in many industries. Katharometer is simple in design and requires minimal 

electronic support and, as a consequence, is also relatively inexpensive compared with 

other detectors.  Its open cell can form part of the diffusion cell, and so it can indicate 

continuously the changes in composition without sampling. This is why that in this study, 

we have used a conductivity detector method with katharometer to analyze the separation 

process in a two-bulb method. 
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2. Theoretical predictions of the effective diffusion and thermal 
diffusion coefficients in porous media 

 
This chapter presents the theoretical determination of the effective Darcy-scale coefficients 

for heat and mass transfer in porous media, including the thermal diffusion effect, using a 

volume averaging technique. The closure problems related to the pore-scale physics are 

solved over periodic unit cells representative of the porous structure.  

 

 

Nomenclature of Chapter 2 

 

va  VβσA , interfacial area per unit 
volume, m-1 

 

βp  Pressure in the β-phase, Pa 

0A  Specific surface area, m-1 β

βp  
Intrinsic average pressure in the β-
phase, Pa 

βσA  Area of the β-σ  interface contained 
within the macroscopic region, m2 

 

r  Position vector, m 

eβA  

 

Area of the entrances and exits of the β-
σ phase associated with the 
macroscopic system, m2 

 

βr  Scalar field that maps 

⎟
⎠
⎞⎜

⎝
⎛ −

σ
σ

β
β TT  onto βc~  

 

βσA  Area of the β-σ interface within the 
averaging volume, m2 

Sc  Schmidt number 

 ib  Gas slip factor 
TS  Soret number, 1/K 

βCb  Mapping vector field for βc~ , m βs  Scalar field that maps 

⎟
⎠
⎞⎜

⎝
⎛ −

σ
σ

β
β TT  onto βT~  

 

βSb  Mapping vector field for βc~ , m σs  Scalar field that maps 

⎟
⎠
⎞⎜

⎝
⎛ − σ

σ

β

β TT  onto σT~  
 

xSβb  x-coordinate coefficient of βSb  *ST  Effective Soret number, 1/K 
 

ββSb  Vector field that maps 
β

βT∇ onto 

βc~ ,m 
 

xxT
*S  

Longitudinal Soret number, 1/K 

βσSb  Vector field that maps σ
σT∇ onto 

βc~ ,m 
 

t  Time, s 
 

βTb  Mapping vector field for βT~ , m *t  Characteristic process time, s 

xTβb  
x-coordinate coefficient of βTb  βT  Temperature of the β-phase, K 
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ββTb  Vector field that maps 
β

βT∇ onto 

βT~ ,m 

β

βT  Intrinsic average temperature in the 
β-phase, K 
 

βσTb  Vector field that maps σ
σT∇ onto 

βT~ ,m 
βT~  Spatial deviation temperature , K 

σβTb  Vector field that maps 
β

βT∇ onto 

σT~ ,m 

βCu
 

One-equation model mass transport 
coefficient associated with 

⎟
⎠
⎞⎜

⎝
⎛ −∇

σ
σ

β
β TT.  in the β-phase 

equation 
 

σσTb  Vector field that maps σ
σT∇ onto 

σT~ ,m 
ββu  Two-equation model heat transport 

coefficient associated with 
β

βT∇ in 

the β-phase equation 
 

pc  
Constant pressure heat capacity, J.kg/K 

βσu  
Two-equation model heat transport 
coefficient associated with σ

σT∇ in 
the β-phase equation 
 

βc  
Total mass fraction in the β-phase 

σβu  Two-equation model heat transport 
coefficient associated with 

β
βT∇ in 

the σ-phase equation 
 

β

βc  
 

Intrinsic average mass fraction in the β-
phase σσu  Two-equation model heat transport 

coefficient associated with σ
σT∇ in 

the σ-phase equation 
 

βc~  Spatial deviation mass fraction in the β-
phase 
 

P  Mean pressure, Pa 

βD  Binary diffusion coefficient, m2/s 
βCp  Capillary pressure, Pa 

βTD  Thermal diffusion coefficient, m2/s.K 
 

Pe
 

Cell Péclet number 
 

*D βT  Total thermal diffusion tensor, m2/s.K 
 

Pr  Prandtl number 

xx

*
TβD  Longitudinal thermal diffusion 

coefficient, m2/s.K 0r  Radius of the averaging volume, m 

*D ββT  Effective thermal diffusion tensor 
associated with 

β
βT∇ in the β-phase  

 

βv  Mass average velocity in the β-phase, 
m/s 

*D βσT  Effective thermal diffusion tensor 
associated with σ

σT∇ in the β-phase  
 

β

βv  Intrinsic average mass average 
velocity in the β-phase, m/s 

*
βD  

Total dispersion tensor, m2/s 
βv~  

Spatial deviation mass average 
velocity, m/s 
 

xx

*
βD  

Longitudinal dispersion coefficient, 
m2/s βV  Volume of the β-phase contained 

within the averaging volume, m3 

 
F  

 Forchheimer correction tensor V  Local averaging volume, m3 
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g  Gravitational acceleration, m2/s yx,  Cartesian coordinates, m 
h  

Film heat transfer coefficient, KsmJ ..  z  
Elevation in the gravitational field, m 

I  
Unit tensor 
 

Greek symbols 

ak  Apparent gas permeability, m2 

 Fβ  A factor experimentally deduced 

βrk  Relative permeability 
 βε  Volume fraction of the β-phase or 

porosity 

βk  Thermal conductivity of the fluid phase, 
W/m.K 
 

κ  βσ kk , conductivity ratio  

σk  Thermal conductivity of the solid phase, 
W/m.K 
 

λ   Mean free path of gas, μm 

βK  Permeability tensor, m2 
βμ  Dynamic viscosity for the β-phase, 

Pa.s 

ββk  Two-equation model effective thermal 
conductivity tensor associated with 

β
βT∇ in the β-phase equation 

 

βμ~   Effective viscosity, Pas.s 

βσk  Two-equation model effective thermal 
conductivity tensor associated with 

σ
σT∇ in the σ-phase equation 

 

βυ  Kinematic viscosity for the β-phase, 
m2/s 

σβk  Two-equation model effective thermal 
conductivity tensor associated with 

β
βT∇ in the σ-phase equation 

βρ  Total mass density in the β-phase, 
kg/m3 

σσk  Two-equation model effective thermal 
conductivity tensor associated with 

σ
σT∇ in the σ-phase equation 

 

τ  
Scalar tortuosity factor 

*
βk , *k  Total thermal conductivity tensors for 

no-conductive and conductive solid 
phase, W/m.K 
 

ϕ  Arbitrary function  

xx

*
βk  Longitudinal thermal dispersion 

coefficient, W/m.K 
ψ  Separation factor or dimensionless 

Soret number 

∞k  Klinkenberg permeability, W/m.K Subscripts, superscripts and other symbols 
 

*
∞k  

Asymptotic thermal dispersion 
coefficient , W/m.K 
 

ref  Refers to the reference gas 

l  
Characteristic length associated with the 
microscopic scale, m 
 

β  Fluid-phase 

UCl  Characteristic length scale associated 
with a unit cell, m 
 

σ  Solid-phase 

βl  Characteristic length for the β-phase, m 
 

βσ  β-σ interphase  

L  Characteristic length  for macroscopic 
quantities, m 
 

βe  Fluid-phase entrances and exits 

εL  Characteristic length for ε∇ , m *
 

Effective quantity 
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M  Gas molecular weight, g/mol 
 

 Spatial average 

βσn  Unit normal vector directed from the β-
phase toward the σ –phase 
 

β  Intrinsic  β-phase average 

 



 25

2.1 Introduction 
 

It is well established, see for instance [39], that a multicomponent system under 

nonisothermal condition is subject to mass transfer related to coupled-transport 

phenomena. This has strong practical importance in many situations since the flow 

dynamics and convective patterns in mixtures are more complex than those of one-

component fluids due to the interplay between advection and mixing, solute diffusion, and 

the Soret effect (or thermal diffusion) [112]. The Soret coefficient may be positive or 

negative depending on the direction of migration of the reference component (to the cold 

or to the hot region). 

There are many important processes in nature and technology where thermal diffusion 

plays a crucial role. Thermal diffusion has various technical applications, such as isotope 

separation in liquid and gaseous mixtures [86, 87], polymer solutions and colloidal 

dispersions [112], study of compositional variation in hydrocarbon reservoirs [32], coating 

of metallic items, etc. It also affects component separation in oil wells, solidifying metallic 

alloys, volcanic lava, and in the Earth Mantle [45].  

 Platten and Costesèque (2004) searched the response to the basic question:” is the Soret 

coefficient the same in a free fluid and in a porous medium?” They measured separately 

four coefficients: isothermal diffusion and thermal diffusion coefficients, both in free fluid 

and porous media. They measured the diffusion coefficient in free fluid by the open-ended-

capillary (OEC) technique, and then they generalized the same OEC technique to porous 

media. The thermal diffusion coefficient in the free system has also been measured by the 

thermogravitational column technique [73]. The thermal diffusion coefficient of the same 

mixture was determined in a porous medium by the same technique, except that they filled 

the gap between two concentric cylinders with zirconia spheres. In spite of the small errors 

that they had on the Soret coefficient due to measuring independently diffusion and 

thermal diffusion coefficient they announced that the Soret coefficient is the same in a free 

fluid and in porous medium [74]. The experimental study of Costesèque et al. (2004) for a 

horizontal Soret-type thermal diffusion cell, filled first with the free liquid and next with a 

porous medium showed also that the results are not significantly different [20].  

Saghir et al. (2005) have reviewed some aspects of thermal diffusion in porous media; 

including the theory and the numerical procedure which have been developed to simulate 

these phenomena [91]. In many other works on thermal diffusion in a square porous cavity, 
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the thermal diffusion coefficient in free fluid almost has been used instead of an effective 

coefficient containing the tortuosity and dispersion effect. Therefore, there are many 

discrepancies between the predictions and measurements separation.  

  The effect of dispersion on effective diffusion is now well established (see for example 

Saffman (1959), Bear (1972), …) but this effect on thermal diffusion has received limited 

attention. Fargue et al. (1998) searched the dependence of the effective thermal diffusion 

coefficient on flow velocity in a porous packed thermogravitational column. They showed 

that the effective thermal diffusion coefficient in thermogravitational column filled with 

porous media includes a dependency upon the fluid velocity. Their results showed that the 

behaviour of the effective thermal diffusion coefficient looks very similar to the effective 

diffusion coefficient in porous media [31]. 

The numerical model of Nasrabadi and Firoozabadi (2006) in a packed thermogravitational 

column was not able to reveal a dispersion effect on the thermal diffusion process, perhaps 

mainly due to low velocities [66]. 

In this chapter, we have used the volume averaging method which has been extensively 

used to predict the effective isothermal transport properties in porous media. The 

considered media can also be subjected to thermal gradients coming from natural origin 

(geothermal gradients, intrusions,…) or from anthropic anomalies (waste storages,…). 

Thermal diffusion has rarely been taken completely under consideration, in most 

description, coupled effects being generally forgotten or neglected. However, the presence 

of temperature gradient in the medium can generate a mass flux.  

For modelling mass transfer by thermal diffusion, the effective thermal conductivity must 

be first determined. Different models have been investigated for two-phase heat transfer 

systems depending on the validity of the local thermal equilibrium assumption. When one 

accepts this assumption, macroscopic heat transfer can be described correctly by a classical 

one-equation model [47, 82, 79, 84]. The reader can look at [3] for the possible impact of 

non-equilibrium on various flow conditions. For many initial boundary-value problems, the 

two-equation model shows an asymptotic behaviour that can be modelled with a “non 

equilibrium” one-equation model [115, 116]. The resulting thermal dispersion tensor is 

greater than the one-equation local-equilibrium dispersion tensor. It can also be obtained 

through a special closure problem as shown in [64]. These models can also be extended to 

more complex situations like two-phase flow [65], reactive transport [77, 85, 93]. 
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However, for all these models many coupling phenomena have been discarded in the 

upscaling analysis. This is particularly the case for the possible coupling with the transport 

of constituents in the case of mixtures. 

A model for Soret effect in porous media has been determined by Lacabanne et al (2002), 

they presented a homogenization technique for determining the macroscopic Soret number 

in porous media. They assumed a periodic porous medium with the periodical repetition of 

an elementary cell. In this model, the effective thermal diffusion and isothermal diffusion 

coefficient are calculated by only one closure problem while, in this study, two closure 

problems have to be solved separately to obtain effective isothermal and thermal diffusion 

coefficients. They have also studied the local coupling between velocity and Soret effect in 

a tube with a thermal gradient. The results of this model showed that when convection is 

coupled with Soret effect, diffusion removes the negative part of the separation profile 

[51]. However, they calculated the effective coefficients for a purely diffusive regime for 

which one cannot observe the effect of force convection and conductivity ratio as 

explained later in this study. In addition, these results have not been validated with 

experimental results or a direct pore-scale numerical approach.  

In this chapter, effective properties will be calculated for a simple unit-cell but for various 

physical parameters, in particular the Péclet number and the thermal conductivity ratio.  

 

2.2  Governing microscopic equation 
 

We consider in this study a binary mixture fluid flowing through a porous medium 

subjected to a thermal gradient. This system is illustrated in Fig.   2-1, the fluid phase is 

identified as the β-phase while the rigid and impermeable solid is represented by the σ-

phase.  

From the thermodynamics of irreversible processes as originally formulated by Onsager 

(1931) the diagonal effects that describe heat and mass transfer are Fourier’s law which 

relates heat flow to the temperature gradient and Fick’s law which relates mass flow to the 

concentration gradient. There are also cross effects or coupled-processes: the Dufour effect 

quantifies the heat flux caused by the concentration gradient and the Soret effect, the mass 

flux caused by the temperature gradient. 
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Fig.   2-1. Problem configuration 

 
 In this study, we neglect the Dufour effect, which is justified in liquids [75] but in gaseous 

mixtures the Dufour coupling may becomes more and more important and can change the 

stability behaviour of the mixture in a Rayleigh-Bénard problem in comparison to liquid 

mixtures [43].  

Therefore, the transport of energy at the pore level is described by the following equations 

and boundary conditions for the fluid (β-phase) and solid (σ-phase) 

( ) ( ) ( ) ( )βββββ
β

β
ρρ TkTc

t
T

c pp ∇∇=∇+
∂
∂

.. v , in the β-phase   ( 2-1)

BC1: σβ TT = , at βσA  ( 2-2)

BC2: ( ) ( )σσβσβββσ TkTk ∇=∇ .. nn , at βσA                                                                                    ( 2-3)

( ) ( )σσ
σ

σ
ρ Tk

t
Tcp ∇∇=
∂
∂ . , in the σ-phase            ( 2-4)

where βσA  is the area of the β-σ  interface contained within the macroscopic region. 

 We assume in this work that the physical properties of the fluid and solid are constant. 

Then the component pore-scale mass conservation is described by the following equation 

and boundary conditions for the fluid phase [9] 

( ) ( )ββββββ
β TDcDc
t

c
T ∇+∇∇=∇+

∂

∂
.. v , in the β-phase   ( 2-5)
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At the fluid-solid interfaces there is no transport of solute so that the mass flux (the sum of 

diffusion and thermal diffusion flux) is zero 

BC1: ( ) 0. =∇+∇ βββββσ TDcD Tn , at βσA  ( 2-6)

where βc  is the mass fraction of one component in the β-phase, βD and βTD  are the 

molecular isothermal diffusion coefficient and thermal diffusion coefficient. βσn  is unit 

normal from the liquid to the solid phase. We neglect any accumulation and reaction of 

solute at the fluid-solid interface as well as the phenomenon of surface diffusion.  

 To describe completely the problem, the equations of continuity and motion have to be 

introduced for the fluid phase. We use Stokes equation for the flow motion at the pore-

scale, assuming classically negligible inertia effects, also named creeping flow. This is a 

type of fluid flow where advective inertial forces are small compared to viscous forces (the 

Reynolds number is low, i.e. Re<<1). This is a typical situation in flows where the fluid 

velocities are very slow, the viscosities are very large, or the length-scales of the flow are 

very small. The Stokes equation, the continuity equation, and the no-slip boundary 

condition are then written as 

0. =∇ βv , in the β-phase       ( 2-7)

( ) gv βββ ρμ +∇∇+−∇= .0 p , in the β-phase     ( 2-8)

BC1: 0. =ββσ vn , at βσA  ( 2-9)

 In this problem, we also consider the flow of the β-phase to be steady, incompressible, and 

laminar. It is assumed that the solid phase is rigid and impervious to solute diffusion and 

the thermal and solutal expansions have been neglected. 

  

2.3 Volume averaging method 
 

Because the direct solution of the convection-diffusion equation is in general impossible 

due to the complex geometry of the porous medium, equations describing average 

concentrations and velocities must be developed [109]. The associated averaging volume,  

V  is shown in Fig.   2-1. The development of local volume averaged equations requires 

that we define two types of averages in terms of the averaging volume [111].  For any 

quantity βψ  associated with the β-phase, the superficial average is defined according to 
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dV
V
∫=
β

ββ ϕϕ
V
1   ( 2-10)

while the second average is the intrinsic average defined by 

dV
V V
∫=
β

β
β

β
β ϕϕ 1  ( 2-11)

Here we have used βV  to represent the volume of the β-phase contained within the 
averaging volume. These two averages are related by 
 

β

βββ ϕεϕ =  ( 2-12)

in which βε  is the volume fraction of the β-phase or porosity in the one phase flow case.  

The phase or superficial averages are volume fraction dependent. From the diagram in Fig.  

 2-1 we can see that the sum of volume fractions of the two phases satisfies 

 1=+ σβ εε  ( 2-13)

In order to carry out the necessary averaging procedures to derive governing differential 

equations for the intrinsic average fields, we need to make use of the spatial averaging 

theorem, written here for any general scalar quantity βϕ  associated with the β-phase  

 dA
A
∫+∇=∇
βσ

ββσββ ϕϕϕ n
V
1  ( 2-14)

A similar equation may be written for any fluid property associated with the β-phase. Note 

that the area integral in equation ( 2-14) involves unit normal from the β-phase to the σ –

phase. In writing corresponding equation for the σ –phase, we realize that σββσ nn −=  

according to the definitions of the unit normal. Following classical ideas [111] we will try 

to solve approximately the problems in terms of averaged values and deviations.  

The pore-scale fields deviation in the β-phase and σ -phase are respectively defined by 

β

β

ββ ϕϕϕ ~+=  and σ
σ

σσ ϕϕϕ ~+=  ( 2-15)

The classical length-scale constraints (Fig.   2-1) have been imposed by assuming 

βl << 0r << L  ( 2-16)

After performing the volume averaging on the original boundary value problem and 

solving the associated closure problems, the final form of the transport equations contains 

local averages, rather than micro-scale point values. Thus, the microscopic equations that 

hold for a point in space are developed into the appropriate macroscopic equations, which 

hold at a given point for some volume in space of the porous medium. 
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2.4 Darcy’s law 
 

If we assume that density and viscosity are constants, the flow problem can be solved 

independently from the heat and constituent transport equations, and the change of scale 

for Stokes flow equation and continuity has already been investigated and this leads to 

Darcy’s law and the volume averaged continuity equation [94, 110] written as  

( )g
K

v β

β

β
β

β
β ρ

μ
−∇−= p. , in the porous medium                                                  ( 2-17)

0. =∇ βv , in the porous medium                                                               ( 2-18)

where βK  is the permeability tensor.  

Note that the Darcy velocity, βv , is a superficial velocity based on the entire volume, not 

just the fluid volume. One can also related the Darcy velocity to the average intrinsic 

velocity, 
β

βv  as 

β

βββ ε vv =                                                          ( 2-19)

Values of the liquid-phase permeability vary widely, from 710−  to 910− 2m  for clean gravel 

down to 1810−  to 2010− 2m for granite (Bear, 1979 [7]). A Darcy (or Darcy unit) and 

millidarcies (mD) are units of permeability, named after Henry Darcy. These units are 

widely used in petroleum engineering and geology. The unit Darcy is equal to 

21210987.0 m−×  but most of the times it is simply assumed 212101 mD −= .  

 

Darcy’s law is applicable to low velocity flow, which is generally the case in porous media 

flow, and to regions without boundary shear flow, such as away from walls. When wall 

shear is important, the Brinkman extension can be used as discussed below. A Forchheimer 

equation is appropriate when the inertial effect is important. In some situations (e.g., Vafai 

and Tien, 1981), the Brinkman and Forchheimer equations are both employed. One must 

use an effective correlation of apparent gas permeability in tight porous media because of 

Knudsen effect. 

2.4.1 Brinkman term 
 
The Brinkman extension to Darcy’s law equation (introduced by Brinkman in 1947) 

includes the effect of wall or boundary shear on the flow velocity, or 

http://en.wikipedia.org/wiki/Units_of_measurement
http://en.wikipedia.org/wiki/Permeability_(fluid)
http://en.wikipedia.org/wiki/Henry_Darcy
http://en.wikipedia.org/wiki/Petroleum_engineering
http://en.wikipedia.org/wiki/Geology
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βββ
β

β
β

β

β μ
μ

ρ vv
K

g 2~0 ∇+−+−∇= p                                                          ( 2-20)

the third term on the RHS is a shear stress term such as would be required by no-slip 

condition. The coefficient βμ~  is an effective viscosity, which in general is not equal to the 

fluid viscosity, βμ , as discussed by Nield and Bejan (1999) [70]. For many situations, the 

use of the boundary shear term is not necessary. Without discussing the validity of 

Brinkman’s equation near a wall or in areas of rapid porosity variations, the effect is only 

significant in a region close to the boundary whose thickness is of order of the square root 

of the gas permeability, 5.0
βK  , (assuming ββ μμ =~ ), so for most applications and also in 

this study the effect can be ignored. 

The Brinkman equation is also often employed at the interface between a porous medium 

and a free fluid (fluid with no porous medium), in order to obtain continuity of shear stress 

(more detail in [70] and [47]) 

 

2.4.2 No-linear case 
 

At low pore velocities, Darcy’s law works quite well. However, as the pore velocities 

increase, the inertial effect becomes very important, the flow resistance becomes non-

linear, and the Forchheimer equation is more appropriate as 

ββββ
β

β
β

β

β βρ
μ

ρ vvv
K

g Fp −−+−∇=0                                                    ( 2-21)

The third term on the RHS is a nonlinear flow resistance term. According to Nield and 

Bejan (1999), the above equation is based on the work of Dupuit (1863) and Forchheimer 

(1901) as modified by Ward (1964). Fβ  is a factor to be experimentally deduced.  

Whitaker, (1996) derived Darcy's law with the Forchheimer correction for homogeneous 

porous media using the method of volume averaging. Beginning with the Navier-Stokes 

equations, they found that the volume averaged momentum equation to be given by 

( ) ββ

β

β
β

β
β ρ

μ
vFg

K
v .. −−∇−= p                                                                       ( 2-22)
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where F  is the Forchheimer correction tensor. In this equation, βK  and F  are determined 

by closure problems that must be solved using a spatially periodic model of a porous 

medium [110]. 

2.4.3 Low permeability correction 
 
Based on Darcy’s law, the mass flux for a given pressure drop should decrease as the 

average pressure is reduced due to the change in gas density. However, Knudsen found that 

at low pressures, the mass flux reaches a minimum value and then increases with 

decreasing pressure, which is due to slip, or the fact that the fluid velocity at the wall is not 

zero due to free-molecule flow. As the capillary tubes get smaller and smaller, the gas 

molecular mean free path becomes of the same order, and free molecule, or Knudsen, 

diffusion becomes important. 

Assuming gas flow in an idealized porous medium, using Poiseuille's law or Darcy's law, a 

correlation between the apparent and “true” permeability of a porous medium was derived 

as (Klinkenberg, 1941) 

Ik a ⎟
⎠
⎞

⎜
⎝
⎛ += ∞ P

bk i1  ( 2-23)

Eq. ( 2-23) is also referred to as the Klinkenberg correlation, where P  is the mean 

pressure, ak  is the apparent gas permeability observed at the mean pressure, and ∞k  is 

called “true” permeability or Klinkenberg permeability. For a large average pressure, the 

correction factor in parentheses goes to zero, and the apparent and true permeabilities tend 

to become equal. As the average pressure decreases, the two permeabilities can deviate 

significantly from each other. This behavior is confirmed by data presented by 

Klinkenberg (1941) for glass filters and core samples and by Reda (1987) for tuff. 

The gas slip factor ib  is a coefficient that depends on the mean free path of a particular gas 

and the average pore radius of the porous medium ib  can be calculated by 

β

λ
l

Pfbi
4

=  ( 2-24)

where, βl  is the radius of a capillary or a pore, λ is the mean free path of the gas 

molecules, and f  is proportionality factor. The Klinkenberg coefficient for air can be 

estimated as  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VDW-4VCH6XH-3&_user=4373277&_coverDate=03%2F31%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5993&_sort=d&_docanchor=&view=c&_searchStrId=1031925657&_rerunOrigin=google&_acct=C000043979&_version=1&_urlVersion=0&_userid=4373277&md5=3bf6202672106a1c8cf46c6aee58ca29#bib9


 34

39.011.0 −= lkbair , with 1914 1010 −− >> lk        Heid et al. (1950) 

                                                              
( 2-25)

33.086.0 −= lkbair , whit 1714 1010 −− >> lk       Jones and Owens (1980) 

 
( 2-26)

the Klinkenberg coefficient for a given porous medium is different for each gas and is 

dependent on the local temperature. The Klinkenberg factor can be corrected for different 

conditions as follows [41] 
2121
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where subscript ref  refers to the reference gas, which is usually air, and M  is the 

molecular weight. The temperature T  is in absolute units.  

Another transport mechanism, configurational diffusion, occurred in very low permeability 

of approximately 22110 m− , where the gas molecule size is comparable to the pore 

diameter. The gas-phase permeability may be different than the liquid-phase permeability 

due to this effect. 
 

2.5 Transient conduction and convection heat transport 
 

The process of volume averaging begins by forming the superficial average of Eqs. ( 2-1) to 

( 2-4),  in the case of a homogeneous medium for the β-phase 

( ) ( ) ).().( ββββ
β

β
ρρ TkTc

t
T

c pp ∇∇=∇+
∂

∂
βv , in the β-phase ( 2-28)
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( 2-29) 
 

 

  

And, with the spatial decomposition of the temperature and velocity for the β-phase 
β

βββ TTT −=~  , 
β

βββ vvv −=~   , 0~ =βv  , 0~ =βT  ( 2-30)

we have 
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( 2-32) 

 

  

Imposing the length-scale constraint to obtain the intrinsic form 
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( 2-33) 

 

In differential equations like equation ( 2-33) we can clearly identify different terms as  

• The terms involving area integrals of the unit normal multiplied by the spatial 

deviations reflect the tortuosity of the porous medium, since they are highly 

dependent on the geometry of the interfacial region. 

• The volume integrals of the velocity deviations multiplied by the temperature 

deviations are responsible for what is commonly known as hydrodynamic 

dispersion.  

• The area integrals of the unit normal multiplied by the diffusive fluxes are the 

contributions from interfacial mass transport. 

 

The σ-phase transport equation is analogous to Eq. ( 2-33) without the convection term and 

we list the result as 
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2.5.1 One equation local thermal equilibrium 
 
Since we have neglected Dufour effect, the heat transfer problem may be solved 

independently from Eqs. ( 2-5) and ( 2-6). This question has received a lot of attention in the 

literature. The one-equation equilibrium model consists of a single transport equation for 

both the σ and β-regions. When the two temperatures in the two regions are close enough, 

the transport equations that represent the two-equation model can be added to produce this 

model. We mean that the principle of local-scale heat equilibrium is valid. The conditions 

for the validity of a one-equation conduction model have been investigated by Quintard et 

al. (1993). They have examined the process of transient heat conduction for a two-phase 

system in terms of the method of volume averaging. Using two equation models, they have 

explored the principle of local thermal equilibrium as a function of various parameters, in 

particular the conductivity ratio, micro-scale and macro-scale dimensionless times and 

topology [79]. The one-equation equilibrium model is obtained directly from the two-

equation model by imposing the constraints associated with local mass equilibrium. 

The local equilibrium model obtained when there is a fast exchange between the different 

regions, is characterized by 
σ

σ

β

β TTT ==  ( 2-35)

If we accept this idea, Eq. ( 2-33) and Eq. ( 2-34) can be added to obtain: 
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( 2-36) 
 

Equation ( 2-33) is not too useful in its current form because of the terms containing the 

spatial deviations βT~ . Therefore, one seeks to relate this spatial deviation to the averaged 

temperature 
β

βT and their gradient. This will help us to obtain a closure of the problem, 

i.e., to have enough equations to allow a solution for the averaged temperature.  

In order to develop this closure scheme, we derive governing differential equations for the 

spatial deviation by subtracting the average equation ( 2-33) from the point equation ( 2-1). 

We then make a determination of the most important terms in the governing equations for 

βT~ by using estimates of the order of magnitude of all the terms.  
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Finally, we postulate the functional dependence of βT~ on 
β

βT by analyzing the form of 

the differential equation and boundary conditions. The resulting constitutive equations will 

have functions that need to be evaluated in order to allow calculations of the important 

transport coefficients.  

In order to develop the governing differential equation for βT~  we divide Eq. ( 2-33) by βε  

and the result can be expressed as 
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If we subtract Eq. ( 2-37) from Eq. ( 2-1), we obtain the following governing differential 

equation for the spatial deviation temperature, βT~  in β-phase 
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One can express the interfacial flux as 

( ) dATkTkdATk
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In this equation we have made use of a theorem developed by Gray (1975), relating area 

integrals of the unit normal to gradients in volume fraction, for this case 

βε
βσ

−∇=∫ dA
A

βσn
V
1

 ( 2-40)

Since the volume fraction of the β–phase have been taken as constant, this integral sum to 

zero. 
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The point temperature field βT  will vary microscopically within each phase over distances 

on the order of the characteristic length βl  indicated in Fig.   2-1. This is also the 

characteristic length associated with large variations in the spatial deviation field βT~ .  

However, the average field 
β

βT  is treated as being constant within the averaging 

volume,V . It undergoes significant variations only over distances L  which is much 

greater than the characteristic length βl . These two widely different length scales in the 

problem helps us to simplify the transport equations for the spatial deviations by making 

order of magnitude estimates of the terms in equation ( 2-38) and the equation for βT~ .  

The order of magnitude of the non-local convective transport term can be expressed as 
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and the order of magnitude of the local convective transport is 
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This indicates that the non-local convective transport can be neglected when-ever 

L<<βl  ( 2-43)

Similarly, we can estimate the diffusive terms as follows 
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and for the local diffusive transport term 
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In Eq. ( 2-44) we have used the characteristic length βl  to estimate the second derivative 

of βT~ . In Eq. ( 2-45) we have noted that area βσA  divided by the volume V  will have a 

magnitude of order βl . However, the term in parenthesis is an averaged quantity, and thus 

will vary significantly over distances of order L.  Again, if the criterion of equation ( 2-43) 

is satisfied, we can simplify the transport equation by making the approximation 
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and by substitution  
β

βββ TTT += ~  in second term finally we will obtain our transport 

equation for βT~   
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Finally, there is a time constraint involved here which can be readily derived if we write 

the order of magnitude of the time derivative in equation ( 2-38) as 
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where *t  is the characteristic time required for the temperature to change through a fixed 

point in space. This time would be on the order of L  divided by the pulse velocity in the β- 

phase, say 
β

βv  
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If we compare the order of magnitude of the time derivative in equation ( 2-48) with that of 

the diffusive term in equation ( 2-44) we see that the spatial deviation field can be treated as 

being quasi-steady if 
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Under this conditions the quasi-steady approximation can be made in equation ( 2-47) 
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 This allows us to consider the closure problems as quasi-steady  
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BC1: σβ TT ~~ =      , at βσA  ( 2-53)
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BC2: ( ) β
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BC3: ( )tfT ,~ r=β , at eβA & ( )tgT ,~ r=σ  ( 2-55)
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I. Closure variable     

 

In order to obtain a closure, we need to relate the spatial deviations βT~ , σT~  to the average 

temperature T . The transport equations for spatial deviation fields are linear in the 

averaged terms. We are thus encouraged to look for linear relations between the spatial 

deviations and average concentrations of the type [14] 

TT T ∇= .~
ββ b  ( 2-57)

TT T ∇= .~
σσ b  ( 2-58)

in which βTb  and σTb  are referred to as the closure variables for solid and liquid 

respectively. These vectors are functions of position only, since the time dependence of the 

βT~  and σT~  comes only from the time dependence of the average temperature appearing in 

the equations and boundary conditions for the spatial deviation. If we substitute equations 

( 2-57) and ( 2-58) into equation ( 2-52) to ( 2-56), we can derive transport equations for the 

closure functions for each phases. In doing this we can neglect higher derivatives of the 

average fields in the expressions for the gradients. This approximation is consistent with 

the constraint L<<βl  described previously. If we treat the representative region as a unit 

cell in a spatially periodic porous medium, we can replace the boundary condition imposed 

in equation ( 2-55) with a spatially periodic condition [111]. The closed equations are listed 

below, together with their boundary conditions at the fluid-solid interfaces [79, 111] 

Problem I:      

( ) ( ) βββββσ
β

βββββ
βσ

ε
ρρ T

A
TpTp kdAkcc bbnvbv 2

1

.~. ∇=∇++∇ ∫
−

V
 ( 2-59)

BC1: σβ TT bb = , at βσA                                                                                                                   ( 2-60)

BC2: ( )σββσσσβσβββσ kkkk TT −+∇−=∇− ... nbnbn , at βσA                                                ( 2-61)
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σσβββσ
σ

βσ

ε
T

A
T kdAk bbn 2

1

∇=∇
−

∫
−

V
 ( 2-62)

Periodicity: ( ) ( )rbrb ββ TiT =+ l  & ( ) ( )rbrb σσ TiT =+ l , i=1,2,3 ( 2-63)

Averages: 0=
β

βTb , 0=σ
σTb  ( 2-64)

This way of writing the problem, i.e., under an integro-differential form, is reminiscent of 

the fact that this must be compatible with the full two-equation model as described, for 

instance, in [82]. However, following the mathematical treatment described also in this 

paper (using the decomposition described by Eqs. 20 in ref [82]), this problem reduces to 

(the proof involves the use of periodicity conditions) the following problem. 

Problem I:      

( ) ( ) βββββββ
ρρ TpTp kcc bvbv 2~. ∇=+∇  ( 2-65)

BC1: σβ TT bb = , at βσA                                                                                                                   ( 2-66)

BC2: ( )σββσσσβσβββσ kkkk TT −+∇−=∇− ... nbnbn , at βσA                                                ( 2-67)

σσ Tk b20 ∇=  ( 2-68)

Periodicity: ( ) ( )rbrb ββ TiT =+ l  & ( ) ( )rbrb σσ TiT =+ l , i=1,2,3 ( 2-69)

Averages: 0T T T

β σ
β β σ σε ε= + =b b b  ( 2-70)

In fact, the resulting field is also compatible with Eqs. ( 2-64), which is consistent with the 

local-equilibrium closure being compatible with the one from the two-equation model, as a 

limit case. 

 

II. Transport equation for averaged temperature 
 

In order to obtain the closed form of the macroscopic equation, we recall Eq. ( 2-36)  

( ) ( )( ) ( )

( )

( ) βββ

σ
σ

β
β

σσββ

β
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εε
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∫∫ VV
 ( 2-71)
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In order to obtain a transport equation for the averaged temperature T , we substitute the 

representations for βT~  and σT~  (equations ( 2-57) and ( 2-58)) into the spatially averaged 

convective diffusion equation for two phases, equation ( 2-36) or ( 2-71). Note that, in this 

case, one cannot neglect terms involving second derivatives of the average concentration. 

It is a mistake to neglect these terms in the transport equations since they are of the same 

order as the tortuosity or dispersion tensors. As was done in the development of the 

equations for the average temperature, we treat all averaged quantities as constants within 

the averaging volume. Therefore, the transport equation obtained has the form 

( ) ( )( ) ( ) ( )
( )

( ) ( )Tc

TdA
kk

TcT
t

cc
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A
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∇∇−
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ερρερε
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bv
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v

βσV
 ( 2-72)

A product (of two vectors) such as ββσ Tbn  is called a dyad product and is a special form 

of the second-order tensors. Each tensor is decomposed as  

332211 sssn βσβσβσβσ nnn ++=  ( 2-73)

where is  is the unit vector in the i-direction. Then the dyad product is given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

332313

322212

312111

ββσββσββσ

ββσββσββσ

ββσββσββσ

ββσ

TTT

TTT

TTT

T

bnbnbn
bnbnbn
bnbnbn

bn  ( 2-74)

 

Also, the unit tensor used in Eq. ( 2-77) is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

I  ( 2-75)

in Cartesian coordinates. 

Then the closed form of the convective-dispersion governing equation for T
 
can be 

written 

( ) ( )( ) ( ) ( ) ( )TTcT
t

cc ppp ∇∇=∇+
∂
∂

+ ... *kv
β

βββσσββ ερρερε  ( 2-76)

where *k  is the thermal dispersion tensor given by 
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( ) ( ) ( ) βββββσ
σβ

σσββ ρεε
βσ

Tp
A

T cdA
kk

kk bvbnIk* ~−
−

++= ∫V
 ( 2-77)

As an illustration of such a local-equilibrium situation, we will compare a direct simulation 

of the pore-scale equations with a macro-scale prediction. The geometry is an array of NUC 

of the periodic Unit Cell (UC) shown in Fig.  2-6 . The initial temperature in the domain is 

a constant, TC . The fluid is injected at x=0 at temperature TH. The temperature is imposed 

at the exit boundary and is equal to TC. This latter boundary condition has been taken for a 

practical reason: we have ongoing experiments using the two-bulb method, which is 

closely described by this kind of boundary-value problem. In addition, this particular 

problem will help us to illustrate some theoretical considerations given below. The 

parameters describing the case were: 
3

6 3 6 3 4

*

120 ; 2 10 m; 1W/m.K ; 4 W/m.K ; 0.615

( ) 4.18 10 J/m K ; ( ) 4 10 J/m K ; 1.4 10 m /

1.607 W/m.K

UC UC

p p

N k k

c c v s

k

β σ β

β

β σ β

ε

ρ ρ

−

−

= = × = = =

= × = × = ×

=

l

 ( 2-78)

An example of comparison between the averaged temperatures obtained from the direct 

simulation and theoretical predictions is given Fig.   2-2. We considered three stages: 

• a short time after injection, which is often the source of a discrepancy between 

actual fields and macro-scale predicted ones, because of the vicinity of the 

boundary, 

• an intermediate time, i.e., a field less impacted by boundary conditions, 

• a long time typical of the steady-state condition associated to the initial boundary-

value problem under consideration. 
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Fig.   2-2. Normalized temperature versus position, for three different times (triangle, Direct Numerical 
Simulation= ( ) ( )CHC TTTT −−

β

β ; circles, Direct Numerical Simulation = ( ) ( )CHC TTTT −−
σ

σ ; solid line, 

Local-equilibrium model= ( ) ( )CHC TTTT −−  
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We see on these figures a very good agreement between the direct simulations and the 

predictions with the local equilibrium model. This illustrates the fact that the local-                        

equilibrium model does allow to represent correctly the system behaviour for moderate 

contrasts of the pore-scale physical properties. What happens when this contrast becomes 

dramatic, i.e., when the pore-scale characteristic times are very different? To illustrate the 

problem, we designed such a case by taking the following parameters: 
3

6 3 6 3 5

*

480 ; 2 10 m; 1W/mK ; 0.01W/mK ; 0.615

( ) 4 10 J/m K ; ( ) 4 10 J/m K ; 6.95 10 m /

0.455W/m.K

UC UC

p p

N k k

c c v s

k

β σ β

β

β σ β

ε

ρ ρ

−

−

= = × = = =

= × = × = ×

=

l

 ( 2-79)

The comparison between the averaged temperatures obtained from direct numerical 

simulations and the theoretical predictions of the local-equilibrium model are presented in 

Fig.   2-3  for three different times. At early stages, we see a clear difference between the 

averaged temperatures of the two phases, and also a clear difference with the local-

equilibrium predictions. This difference is also visible for intermediate times, and one sees 

that the local-equilibrium model has an effective conductivity which is too small. 

However, at steady-state, it is remarkable to see that the temperature fields revert to the 

local-equilibrium conditions and that, despite the steep gradient near the boundary, the 

local-equilibrium models offers a very good prediction. It must be pointed out that this 

possibility has not been documented in the literature, and this may explain certain 

confusion in the discussion about the various macro-scale models. Without going into 

many details, we may summarize the discussion as follows: 

• for moderate thermal properties contrasts, the local-equilibrium predictions are 

very good, and not very sensitive to boundary conditions or  initial conditions, 

• the situation is much more complex for higher contrasts, which lead to non-

equilibrium conditions. 
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Fig.   2-3. Normalized temperature versus position, for three different times (triangle, Direct Numerical 
Simulation= ( ) ( )CHC TTTT −−

β

β ; circles, Direct Numerical Simulation = ( ) ( )CHC TTTT −−
σ

σ ; solid line, 

Local-equilibrium model= ( ) ( )CHC TTTT −−  
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If the local equilibrium assumption does not hold, the different stages for the typical 

problem considered here are as following:  

• early stages: initial conditions with sharp gradients and the vicinity of boundaries 

create non-equilibrium situations that are difficult to homogenize. They may be 

modelled through modified boundary conditions ([71], [16]), mixed models (i.e., a 

small domain keeping pore-scale description such as in [6]). 

• two-equation behaviour: in general, the initial sharp gradients are smoothed after 

some time and more homogenizable conditions are found. Different models may 

be used: mixed models, different types of two-equation models (see a review and 

discussion in [83]), or more sophisticated equations in [105]. Two-equation models 

may be more or less sophisticated, for instance, two-equation models with first 

order exchange terms [11, 82, 79, 115, 116] or two-equation models with more 

elaborate exchange terms like convolution terms that would model non local and 

memory effects [64]. This is beyond the scope of this paper to develop such a 

theory for our double-diffusion problem. 

• asymptotic behaviour: if the medium has an infinite extent (this can also be 

mimicked by convective conditions at the exit for a sufficiently large domain), 

cross diffusion may lead to a so-called asymptotic behaviour which may be 

described by a one-equation model with a different effective thermal conductivity, 

larger than the local-equilibrium value. This asymptotic behaviour for dispersion 

problems has been investigated by several authors and the link between the one-

equation model obtained and the properties of the two-equation model well 

documented ([116], [2], [81]). The one-equation non-equilibrium model may be 

derived directly by a proper choice of the averaged concentration/temperature and 

deviations as in [81] and [65]. 

• Complex history: It must be emphasized that non-equilibrium models 

corresponding to the asymptotic behaviour require special situations to be valid. If 

events along the flow path change due to forcing terms like source terms, 

heterogeneities, boundaries, the conditions leading to the asymptotic behaviour are 

disturbed and a different history develops. This is what happened in our test case. 

The boundary effects dampened the asymptotic behaviour that has probably taken 

place in our system (in the absence of an interpretation with two-equation models 

or one-equation asymptotic models, we cannot distinguish between the two 
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possibilities, while the large extent of the domain has probably favoured an 

asymptotic behaviour) and this led to a steady-state situation well described by the 

local-equilibrium model. This possibility has not been seen by many investigators. 

However, it must be taken into account for practical applications. Hence, for our 

test case, it would be better to use a two-equation model, which truly embeds the 

one-equation local-equilibrium model, than the asymptotic model that would fail to 

catch the whole history. 

Now we have at our disposal a mapping vector that gives the local temperature field in 

terms of the averaged value. It is important to remark that the upscaling of the heat 

equation problem has been solved independently from the solute transport problem. This 

feature is a key approximation that will simplify the treatment of the solute transport 

equation as explained in section  2.6. 

 

2.5.2 Two equation model 
 

In this case the time and length scales are such that a unique macroscopic or effective 

medium cannot represent the macroscopic behavior of the two phases. The two-equation 

model consists of separate heat transport equations for both the σ and β-phases. The 

dominant coupling between the two equations is represented by an inter-phase flux that 

depends, in the simpler version, on an exchange coefficient and the difference between the 

temperatures of the two phases. The spatial deviation temperatures in terms of the 

macroscopic source terms is often represented as 

( )σ
σ

β

ββ
σ

σβσ

β

ββββ TTsTTT TT −−∇+∇= ..~ bb  ( 2-80)

( )σ
σ

β

βσ
σ

σσσ

β

βσβσ TTsTTT TT −−∇+∇= ..~ bb  ( 2-81)

Here the mapping vectors and the scalars are obtained from the solution of steady, pore 

scale closure problems (see Quintard et al. 1997). Then, the macroscopic equation for the 

β-phase, is expressed as [82] 
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( ) ( )σ
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β
σ

σβσ
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βββ
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βββ
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c
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∂

...

...

kk

uuv βσββ
 ( 2-82)

In this equation, the effective properties such as ββk , βσk , ββu , βσu  and the volumetric 

heat exchange coefficient hav , are obtained explicitly from the mapping vectors, and 
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representation of these coefficients are given in [82]. An equation analogous to equation 

( 2-82) describes the intrinsic average temperature for the σ-phase, and this equation is 

given by 

( )

( ) ( )σ
σ

β

β
σ

σσσ

β

βσβ

σ
σσσ

β

βσβ
σ

σσσ ρε

TThaTT

TTT
t

c

v
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−+∇+∇∇=

∇−∇−
∂
∂

...

..

kk

uu
 ( 2-83)

This two-equations model is fully compatible with the one-equation model with the 

effective thermal dispersion tensor of equation ( 2-76) given by [82] 

σσσββσββ kkkkk* +++=  ( 2-84)

 

2.5.3 Non-equilibrium one-equation model 
 

If the local equilibrium assumption is not made, it is possible to obtain a one-equation non-

equilibrium model which consists of a single transport equation for both the σ and β-

regions. Similarly, it can be shown that, the two equation model described in the last 

section reduces to a single dispersion equation for sufficiently long time. It can be obtained 

by defining an enthalpy averaged temperature and working with the upscaling process by 

defining deviations with respect to this temperature [65]. One can begin with the two-

equation model, determine the sum of the spatial moments of the two equations, and 

construct a one-equation model that matches the sum of the first three spatial moments in 

the long-time limit. The second analysis yields exactly the same equation as the first as 

explained in Quintard et al. (2001) for the case of dispersion in heterogeneous systems 

[81]. A complete three-dimensional moment’s analysis associated with a two-equation 

model has been proposed in reference [115]. It is shown that a model with two equations 

converges asymptotically to a model with one equation, and it is possible to obtain an 

expression for the asymptotic global dispersion coefficient. A similar analysis was 

presented in the case of miscible transport in a stratified structure [2]; in this case some 

coefficients are zero.  

The processes of a spatial moment analysis are listed in Table  2-1. 

Table  2-1. Objectives of each order of momentum analysis 

Order of moment Definition 

Zeroth  The total amount of field present in each phase 
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First  The average position 

Second  Measure of the spread of the pulse relative to its average position 

 

Consider a pulse introduced into spatially infinite system at time t=0. As the pulse 

transported, the temperature in each phase will change with position and time according to 

Eqs. ( 2-82) and ( 2-83). 

From zeroth spatial moment, we can see that a quasi-equilibrium condition is reached 

when 

( ) ( )
( ) ( )( )

σσββ

σσββ

ρερε

ρερε

ppv

pp

ccha

cc
t

+
>>  ( 2-85)

The first order moment provides that the difference between the two mean pulse positions 

is a constant and, as a result, both pulses will move at the same velocity. Given this result, 

one tries to obtain the rate of spread of the pulses in each phase relative to their mean 

position by second moment analysis which shows that the difference in the pulse spreads is 

constant. Then, considering a flow parallel to the x-axis, the one-equation model can be 

written as 
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*  ( 2-86)

 

The asymptotic thermal dispersion coefficient *
∞k  is given by [115, 2] 

( )
( ) ( )( )2

2

*

σσββ

β
βββ

ρερε

ρε

ppv

p

σσσββσββ
ccha

vc
kkkkk

+

⎟
⎠
⎞⎜

⎝
⎛

++++=∞  ( 2-87)

*
∞k  can be much greater than *k  as it is illustrated by numerical examples obtained for the 

case of a stratified system in Ahmadi et al. (1998). We note that, in this case there is no 

reason for equality between the regional averages; however, the difference between the 

two regional temperatures will generally be constrained by [81] 
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2.6 Transient diffusion and convection mass transport 
 

In this section we have applied the volume averaging method to solute transport with Soret 

effect in the case of a homogeneous medium in the β-phase. We now take the spatial 

average of ( 2-5), using the spatial averaging theorem [111] on the convective and diffusive 

terms. We begin our analysis with the definition of two spatial decompositions for local 

concentration and velocity 
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.. v  ( 2-91)

In this equation we have considered the fluid flow to be incompressible, and have .made 

use of no-slip boundary condition and equation ( 2-6) at the fluid-solid interface 
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 ( 2-92)

 

We define the spatial deviations of the point concentrations and velocities from the 

intrinsic phase average values by the relations 

β

β

ββ ccc ~+= ,  in βV  

β
β

ββ vvv ~+= , in βV  
( 2-93)

 
The averaged quantities and their gradients are taken to be constants within the averaging 

volumeV , and this makes equation ( 2-92) to the form 
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( 2-94)

Here, we have assumed that, as a first approximation, 0~ =βv  and 0~ =βc . Therefore, 

the volume averaged convective transport has been simplified to 

ββ
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ββββ ε vvv ~~ccc +=  ( 2-95)

Subtracting Eq. ( 2-94) from Eq. ( 2-5) yields the governing equation for βc~  
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One can also use the definitions of the spatial deviations to obtain boundary conditions for 

βc~  from the boundary condition in Eq. ( 2-6). At the σ-β interface, we find that βc~  satisfies 

the relations  

BC1: ( ) ( )βββ

β

βββσβββββσ TDcDTDcD TT ∇+∇=∇+∇− .~~. nn   , at βσA  ( 2-97)

and at the entrance and exit surface  

BC2:     ( )tfc ,~ r=β , at eβA  ( 2-98)

The spatial deviations must satisfy the additional constraint that their average values be 

zero, in accordance with their definition in Eq. ( 2-93). 

0~ =
β

βc  ( 2-99)

The spatial deviation field is subject to simplifications allowed the development of a 

relatively simple closure scheme to relate spatial deviations to average concentration.  

The non-local diffusion and thermal diffusion terms can be discarded on the basis of 



 53

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∇ ∫− dAc

D

Aβσ

ββσ
β

βε ~.1 n
V

<< ( )ββ cD ~. ∇∇    ( 2-100)

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∇ ∫− dAT

D

A

T

βσ

ββσ
β

βε
~.1 n

V
 << ( )ββ TDT

~. ∇∇                               ( 2-101)

The fourth and the sixth terms in the right hand side of Eq. ( 2-96) are diffusion and thermal 

diffusion sources. On the basis of the length-scale constraint given by βl  << εL  we can 

discard these two terms. This constraint is automatically satisfied in homogeneous porous 

media for which εL  is infinite [111]. 

 The last term in the right hand side of this equation is the non-local convective transport 

and can be neglected whenever βl << L.  

The closure problem for βc~  will be quasi-steady whenever the constraint 

*

2

tDβ

βl <<1 ( 2-102)

 is satisfied. Therefore, the quasi-steady closure problem for the spatial deviation 

concentration takes the form 

( ) ( )ββββ

β

ββββ TDcDcc T
~.~..~~. ∇∇+∇∇=∇+∇ vv  ( 2-103)

and the associated boundary conditions are 

BC1: ( ) ( )β

ββ

β

βββσβββββσ TDcDTDcD TT ∇+∇=∇+∇− .~~. nn   , at βσA  ( 2-104)

BC2:     ( )tfc ,~ r=β , at eβA  ( 2-105)

2.6.1 Local closure problem 
 

 We wish to solve the closure problem in some representative region. So, we must discard 

the boundary condition given by equation ( 2-104) and replace it with some local condition 

associated with the representative region. This naturally leads us to treat the representative 

region as a unit cell in a spatially periodic model of a porous medium [111]. Therefore, the 

boundary condition given by Eq. ( 2-105) takes the form   

Periodicity: ( ) ( )rr ββ cc i
~~ =+ l , i=1,2,3 ( 2-106)

Here the single non-homogeneous term in the local closure problem is proportional to 

xc∇ and xT∇ so we can express βc~  as 
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Tcc SC ∇+∇= ..~
β

β
βββ bb  ( 2-107)

in which βCb  and βSb  are referred to as the closure variables which are specified by the 

following boundary value problems. In developing these equations, we have collected all 

terms proportional to 
β

βc∇ and T∇ , and written equation and the boundary conditions 

in the form  

0=∇+∇ Tbca
β

β  ( 2-108)

where a and b are expressions containing the vector functions in the constitutive equation. 

In order to satisfy Eq. ( 2-108), we set each of the terms a and b, individually equal to zero, 

and this gives rise to the following equations. The solution of these problems is all subject 

to the constraint of equation ( 2-99). This means that the volume integrals of the vector 

fields must be zero.  

 

Problem IIa    

βββββ CC D bvbv 2~. ∇=+∇  ( 2-109)

BC: ββσβββσ DD C nbn =∇− . , at βσA                     ( 2-110)

Periodicity: ( ) ( )rbrb ββ CiC =+ l , i=1,2,3 ( 2-111)

Averages: 0=
β

βCb   ( 2-112)

 

Problem IIb   

ββββββ TTSS DD bbbv 22. ∇+∇=∇  ( 2-113)

BC: ( ) ββσβββββσ TTTS DDD .. nbbn =∇+∇− , at βσA                               
 

( 2-114)

Periodicity: ( ) ( )rbrb ββ SiS =+ l , i=1,2,3 
 

( 2-115)

Averages: 0=
β

βSb   
 

( 2-116)

 The closure problem can be solved also in a Chang’s unit cell shown in Fig.   2-4, in this 

case, we can replace the periodic boundary conditions for βSb and βCb  by a Dirichlet 

boundary condition. Therefore, the closure problem for pure diffusion and for Chang’s unit 

cell becomes 
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Fig.   2-4. Chang’s unit cell 

 

Problem I for Chang’s unit cell 

02 =∇ βTb  ( 2-117)

BC1: σβ TT bb = , at βσA                                                                                                                 ( 2-118)

BC2: ( )σββσσσβσβββσ kkkk TT −+∇−=∇− ... nbnbn , at βσA                                          ( 2-119)

σσ Tk b20 ∇=  ( 2-120)

BC3: 0=βTb , at 2rr =                                                                                                                 ( 2-121)

 

Problem IIa  for Chang’s unit cell   

02 =∇ βCb  
( 2-122)

BC1: ββσβββσ DD C nbn =∇− . , at βσA                     ( 2-123)

BC1: 0=βCb , at 2rr =                     ( 2-124)

 

Problem IIb for Chang’s unit cell   

ββββ TTS DD bb 220 ∇+∇=  ( 2-125)

BC1: ( ) ββσβββββσ TTTS DDD .. nbbn =∇+∇− , at βσA                               
 

( 2-126)

BC2: 0=βSb , at 2rr =                     
 

( 2-127)
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2.6.2 Closed form 

 By substituting βc~  and βT~  from decomposition equations into Eq. ( 2-94) and imposing 

the local equilibrium condition, Eq. ( 2-35), the closed form of the convection-double 

diffusion equation can be expressed by 

( ) ( )Tcc
t
c

T ∇+∇∇=∇+
∂

∂
.... * *DDv ββ

β

βββ

β

β

β

ββ

β

ββ εεε
ε

 ( 2-128)

where the total dispersion and total thermal-dispersion tensors are defined by 

β
ββββσ

β
ββ

βσ

C
A

C dA
V

D bvbnID ~1* −⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∫  ( 2-129)

β
ββββσ

β
βββσ

β
ββ

βσβσ

S
A

TT
A

ST dA
V

DdA
V

D bvbnIbnD* ~11
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∫∫  ( 2-130)

The area integral of the functions in this equations multiplied by the unit normal from one 

phase to another have been defined as tortuosity, which can be written for isotropic media 

dA
V A

C∫+=
βσ

ββσ
βτ

bnII 1  ( 2-131)

We can define an effective diffusion tensor, in the isotropic case, according to 

 

τ
β I

D
D

eff =  ( 2-132)

The influence of hydrodynamic dispersion appears in the volume integral of the function 

multiplied by the spatial deviation in the velocity 

 
β

ββ SHyd bvD ~
. −=  ( 2-133)

Therefore, the total dispersion tensor appearing in Eq. ( 2-128) is the sum of the effective 

diffusion coefficient and the dispersion tensor as 

 

.
*

Hydeff DDD +=β  ( 2-134)

For a diffusive regime, the hydrodynamic tensor will be zero. If we look at the effective 

diffusion and thermal diffusion coefficients in equations ( 2-129) and ( 2-130), we can 

conclude that the only condition that will produce the same tortuosity effect for diffusion 

and thermal diffusion mechanism is 
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01
=∫ dA

V A
S

βσ

ββσ
β

bn
 

( 2-135)

The numerical results in the next chapter will solve this problem.  

2.6.3 Non thermal equilibrium model 
 

 When the thermal equilibrium is not valid, the temperature deviations are written in terms 

of the gradient of the average temperature in two phases and we can write the 

concentration deviation as  

( )σ
σ

β

ββ
σ

σβσ

β

βββ

β

βββ TTrTTcc SSC −−∇+∇+∇= ...~ bbb  ( 2-136)

By substitution of this new concentration deviation and temperature deviation from 

equation ( 2-80) in β-phase into our quasi-steady closure problem for the spatial deviation 

concentration, equations ( 2-103)-( 2-106), we obtain following boundary value problems 

for diffusion and thermal diffusion closure variables. 

We note that the problem for βCb  is the same as problem IIa for thermal equilibrium-one 

equation model. Here are all the closure problem to determine the closure variable βCb , 

ββSb , βσSb  and βr  to model a macroscopic scale coupled heat and mass transfer in porous 

media  

 

Problem IIIa  

βββββ CC D bvbv 2~. ∇=+∇  ( 2-137)

BC: ββσβββσ DD C nbn =∇− . , at βσA                     ( 2-138)

Periodicity: ( ) ( )rbrb ββ CiC =+ l , i=1,2,3 ( 2-139)

Averages: 0=
β

βCb   ( 2-140)

 

Problem IIIb   

βββββββββ TTSS DD bbbv 22. ∇+∇=∇  ( 2-141)

BC: ( ) ββσβββββββσ TTTS DDD .. nbbn =∇+∇− , at βσA                               ( 2-142)

Periodicity: ( ) ( )rbrb ββββ SiS =+ l , i=1,2,3 ( 2-143)

Averages: 0=
β

ββSb   ( 2-144)
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Problem IIIc   

βσββσββσβ TTSS DD bbbv 22. ∇+∇=∇  ( 2-145)

BC: ( ) 0. =∇+∇− βσββσββσ TTS DD bbn , at βσA                               ( 2-146)

Periodicity: ( ) ( )rbrb βσβσ SiS =+ l , i=1,2,3 ( 2-147)

Averages: 0=
β

βσSb   ( 2-148)

 

Problem IIId 

ββββββ sDrDr T
22. ∇+∇=∇v  ( 2-149)

BC: ( ) 0. =∇+∇− βββββσ sDrD Tn , at βσA                               ( 2-150)

Periodicity: ( ) ( )rr ββ rr i =+ l ,  i=1,2,3 ( 2-151)

Averages: 0=
β

βr  ( 2-152)

By substituting βc~  and βT~  from the decomposition given by equations ( 2-80) and ( 2-136) 

into Eq. ( 2-94), the closed form of the convection-double diffusion equation for the non-

equilibrium two-equation temperature model case can be expressed by 

( ) ( )( )
( )σ

σβσ

β

βββ

β

βββ

σ
σ

β

ββ

β

β

β

ββ

β

ββ

ε

ε
ε

TTc

TTc
t
c

TT

C

∇+∇+∇∇

=−∇−∇+
∂

∂

....

...

* ** DDD

uv
 ( 2-153)

where the effective tensors are defined by 

β

ββββσ
β

ββ
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V

D bvbnID ~1* −
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⎝
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+= ∫  ( 2-154)

β
ββββββσ

β
ββββσ

β
βββ
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β

βσββσβσ
β

ββσβσ
β

ββσ

βσβσ

S
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TT
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β
ββββσ

β
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ββ

βσβσ
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DdAr
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2.7 Results 
 

In order to illustrate the main features of the proposed multiple scale analysis, we have 

solved the dimensionless form of the closure problems, for thermal equilibrium case (I, IIa, 

IIb), on a simple unit cell, to determine the effective properties. We note here that the 

resolution of all models described in the last section and comparison between different 

models are not the objective of this study.  

If we treat the representative region as a unit cell in a spatially periodic porous medium, we 

can replace the boundary condition imposed at eβA with a spatially periodic condition 

[111]. One such periodic porous media used in this study is shown in Fig.   2-5. The entire 

phase system can be generated by translating the unit cell distances corresponding to the 

lattice base vectors il , (i=1,2,3). The entire set of equations can then be solved within a 

single unit cell. The spatial periodicity boundary conditions are used in this study at the 

edges of the unit cell, as shown in Fig.  2-6. 

 

βl

β-phase

V

V

σ-phase

 
Fig.   2-5. Spatially periodic arrangement of the phases 



 60

 
Fig.  2-6.  Representative unit cell (εβ=0.8) 

 

This unit cell which will be used to compute the effective coefficients is a symmetrical cell 

Fig.  2-6, for an ordered porous media (in line arrangement of circular cylinders). This type 

of geometry has already been used for many similar problems [80, 111]. Then, the macro-

scale effective properties are determined by equations ( 2-77), ( 2-129) and ( 2-130). For this 

illustration we have fixed the fluid mixture properties at ( ) ( ) 1=
βσ

ρρ pp cc . The numerical 

simulations have been done using the COMSOLTM Multiphysics finite elements code. In 

this study, we have calculated the longitudinal coefficients which will be needed to 

simulate a test case for the macroscopic, one-dimensional equation. 

 

2.7.1 Non-conductive solid-phase ( 0≈σk ) 
 

In this section, the solid thermal conductivity is assumed to be very small and will be 

neglected in the equations. The corresponding closure problems and effective coefficients 

in this case ( 0≈σk ) are listed as below 

 
Problem I ( 0≈σk ): closure problem for effective thermal conductivity coefficient 
 
( ) ( ) βββββββ

ρρ TpTp kcc bvbv 2~. ∇=+∇  ( 2-158)

BC1: βσββσ nbn =∇− T. , at βσA                                                                                                 ( 2-159)

Periodicity: ( ) ( )rbrb ββ TiT =+ l  , i=1,2,3 ( 2-160)

Averages: 0=
β

βTb  ( 2-161)
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Problem IIa ( 0≈σk ): closure problem for the effective diffusion coefficient   
 

βββββ CC D bvbv 2~. ∇=+∇  ( 2-162)

BC: ββσβββσ DD C nbn =∇− . , at βσA                  ( 2-163)

Periodicity: ( ) ( )rbrb ββ CiC =+ l , i=1,2,3 ( 2-164)

Averages: 0=
β

βCb   ( 2-165)

 

Problem IIb ( 0≈σk ): the closure problem for the effective thermal diffusion coefficient  

 

ββββββ TTSS DD bbbv 22. ∇+∇=∇  ( 2-166)

BC: ( ) ββσβββββσ TTTS DDD .. nbbn =∇+∇− , at βσA  ( 2-167)

Periodicity: ( ) ( )rbrb ββ SiS =+ l , i=1,2,3 ( 2-168)

Averages: 0=
β

βSb   ( 2-169)

and the effective coefficients are calculated with 
 

( ) βββββσβββ ρε
βσ

Tp
A

T cdAk bvbnIk ~1* −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∫V

 ( 2-170)
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β
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= ∫∫  ( 2-172)

The macroscopic equations for
β

βT and 
β

βc  become 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ∇∇=⎟

⎠
⎞⎜

⎝
⎛∇+

∂

∂ β
ββ

β
β

β
βββ

β
ββ

β
εερ

ε
ρ TTc

t

T
c pp ... *kv  ( 2-173)

( ) ( )β

βββ

β

βββ

β

β

β

ββ

β

ββ εεε
ε

Tcc
t
c

T ∇+∇∇=∇+
∂

∂
.... * *DDv  ( 2-174)

 

 One can find in the literature several expressions for the effective diffusion coefficient 

base on the porosity, such as Wakao and Smith (1962) βββ ε DD =* , Weissberg (1963) 
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β

β

εln
2
11−

=
D

D*
β , Maxwell (1881) 

β

β

ε−
=

3
2D

D*
β  (see Quintard (1993)). For isotropic 

systems one may write  βD*
βD  as  τI , where τ  is the scalar tortuosity of the porous 

matrix. The arbitrary, two dimensional effective tensor *
βΦ  is defined as  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=Φ

yyyx

xyxx
**

**

*

ββ

ββ

β ϕϕ

ϕϕ
 

For the symmetric geometry shown in Fig.  2-6, when the Péclet number is zero, the 

effective coefficients are also symmetric; therefore, we can write 
yyxx

***
βββ ϕϕϕ == and 

0** ==
yxxy ββ ϕϕ . For a dispersive regime generated by a pressure gradient in the x-

direction, the longitudinal dispersion coefficient 
xx

*
βϕ is obviously more important than the 

transversal dispersion coefficient 
yy

*
βϕ . In this study, as it is mentioned in the previous 

section, we have just calculated the longitudinal coefficients which will be needed to 

simulate a test case for the macroscopic, one-dimensional equation. 

 

Fig.  2-7 shows our results of the closure problem resolution (A.I, A.IIa and A.IIb) in the 

case of pure diffusion ( 0=Pe ).  
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Fig.  2-7.  Effective diffusion, thermal diffusion and thermal conductivity coefficients at  Pe=0 
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We have therefore found that the effective thermal diffusion coefficient can also be 

estimated with this single tortuosity coefficient.  

τkDD T

T IkDD
===

ββ

β

β

β

β

β

ε

***

 ( 2-175)

Here, the stared parameters are the effective coefficients and the others are the coefficient 

in the free fluid.  

This relationship is similar to the one obtained for the effective diffusion and thermal 

conductivity in the literature [80, 111]. Therefore, we can say that the tortuosity factor acts 

in the same way on Fick diffusion coefficient and on thermal diffusion coefficient. In this 

case, the tortuosity is defined as 

dA
V

dA
V A

C
A

T ∫∫ +=+=
βσβσ

ββσ
β

ββσ
βτ

bnIbnII 11  ( 2-176)

 This integral called tortuosity since, in the absence of fluid flow, it modifies the diffusive 

properties of the system for the solute and heat transport. 

The results with convection ( 0≠Pe ), are illustrated in Fig.  2-8. One can see that, for low 

Péclet number (diffusive regime), the ratio of effective diffusion coefficient to molecular 

diffusion coefficient in the porous medium is almost constant and equal to the inverse of 

the tortuosity of the porous matrix, which is consistent with previously published results. 

On the opposite, for high Péclet numbers, the above mentioned ratio changes following a 

power-law trend after a transitional regime. The curves of longitudinal mass dispersion 

(Fig.  2-8a) and thermal dispersion (Fig.  2-8b) have the classical form of dispersion curves 

[111]. In our case, the longitudinal mass and heat dispersion coefficients can be 

represented by 

70.10234.0
20.1
1kD

Pe
kD

xx

*
β

β

xx

*
β

+==
ββε

 ( 2-177)

 where the dimensionless Péclet number is defined as  

β

β

β

D
Pe UClv

=  ( 2-178)

The dispersive part of the effective longitudinal thermal diffusion coefficient decreases 

with the Péclet number (Fig.  2-8c) and for high Péclet number it becomes negative. As we 

can see in Fig.  2-8c, there is a change of sign of the effective thermal diffusion coefficient. 
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This phenomenon may be explained by the fact that, by increasing the fluid velocity, the 

gradient of 
xTβb  (x-coordinate of βTb ) changes gradually its direction to the perpendicular 

flow path which could lead to a reversal the 
xSβb  (x-coordinate of βSb ) distribution and as 

a result, a change of the 
xx

*
TβD  sign (see Fig.   2-9).  

This curve can be fitted with a correlation as  

00.20052.0
20.1
1D

Pe
DTβ

xx

*
Tβ

+=  ( 2-179)

 
The results in terms of Soret number, which is the ratio of isothermal diffusion coefficient 

on thermal diffusion coefficient, are original. Fig.  2-8d shows the ratio of effective Soret 

number to the Soret number in free fluid as a function of the Péclet number. The results 

show that, for a diffusive regime, one can use the same Soret number in porous media as 

the one in the free fluid ( 1S* =TxxT S ). This result agrees with the experimental results of 

Platten and Costesèque (2004) and Costesèque et al. (2004) but, for convective regimes, 

the effective Soret number is not equal with the one in the free fluid. For this regime, the 

Soret ratio decreases with increasing the Péclet number, and for high Péclet number it 

becomes negative.  

To test the accuracy of the numerical solution, we have solved the steady-state vectorial 

closures A.I, A.IIa and A.IIb analytically for a plane Poiseuille flow between two 

horizontal walls separated by a gap H.  

For this case, we found the following relation between the effective longitudinal thermal 

diffusion and the thermal diffusion in the free fluid ( 1=βε ) 

210
1

2*
Pe

Sc
Pr

D

D

T

xxT
×−=

β

β
 ( 2-180)

and the longitudinal dispersion is given (Wooding, 1960) by  

210
1

2*
Pe

D

D
xx +=

β

β
 ( 2-181)

Here, Pe  is defined as 
β

β

β

D
H

Pe zv
=  where 

β

βzv is the z-component of the intrinsic 

average velocity of the fluid. The predicted values agree with the analytical results. 
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Fig.  2-8. Effective, longitudinal coefficients as a function of Péclet number ( 0≈σk  and 8.0=βε  ): (a)  mass 
dispersion , (b) thermal dispersion , (c) thermal diffusion  and (d) Soret number   
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a) Pe=0.001,    Arrow:  

xTβb  gradient                                                         Arrow: 
xSβb

 
gradient               

  
b) Pe=10,    Arrow:  

xTβb  gradient                                            Arrow: 
xSβb

 
gradient    

  
c)  Pe=100,      Arrow:  

xTβb  gradient                                         Arrow: 
xSβb

 
gradient    

 
 

Fig.   2-9. Comparison of closure variables 
xSβb  and 

xTβb  for εβ=0.8 
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2.7.2 Conductive solid-phase ( 0≠σk ) 
 

In the previous section, we made the assumption 0=σk  only for simplification whereas, 

for example, the soil thermal conductivity is about 0.52 W/m.K, and it depends greatly on 

the solid thermal conductivity (in the order of 1 W/m.K) and varies with the soil texture. 

The thermal conductivity of most common non-metallic solid materials is about 0.05-20 

W/m.K, and this value is very large for metallic solids [47]. Values of βk  for most 

common organic liquids range between 0.10 and 0.17 W/m.K at temperatures below the 

normal boiling point, but water, ammonia, and other highly polar molecules have values 

several times as large [76]. 

The increase of the effective thermal conductivity when increasing the phase conductivity 

ratio,κ , is well established from experimental measurements and theoretical approaches 

([47, 111]) but the influence of this ratio on thermal diffusion is yet unknown. In this 

section, we study the influence of the conductivity ratio on the effective thermal diffusion 

coefficient. To achieve that, we solved numerically the closure problems with different 

conductivity ratios. Fig.  2-10 shows the dependence of the effective tensors with the 

conductivity ratio, for different Péclet numbers. As shown in Fig.  2-10a the effective 

conductivity initially increases with an increase in κ  and then reaches an asymptote. As 

the Péclet number increases, convection dominates and the effect of κ  on ββε k*k  is 

noticeably different. The transition between the high and low Péclet number regimes 

occurs around 10=Pe  (see also [47]). For higher Péclet numbers (Pe > 10), ββε k*k  is 

enhanced by lowering κ , as shown in Fig.  2-10 a for 14=Pe . Our results for 

ββ TT D*D have a similar behaviour as ββε k*k . Fig.  2-10 b shows the influence of the 

conductivity ratio on the effective thermal diffusion coefficients for different Péclet 

numbers. One can see that increasing the solid thermal conductivity increases the value of 

the effective thermal diffusion coefficient for low Péclet numbers.  

On the contrary, for high Péclet numbers (Pe > 10) increasing the thermal conductivity 

ratio decreases the absolute value of the effective thermal diffusion coefficient.  As shown 

in Fig.  2-10b, the thermal conductivity ratio has no influence on the thermal diffusion 

coefficients for the pure diffusion case ( 0=Pe ). As we can see also in Fig.   2-11, both 
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closure variables fields βSb  and βTb  change with the thermal conductivity ratio but 

coupling results defined by Eq. ( 2-172) , when velocity field is zero, are constant. 
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Fig.  2-10. The influence of conductivity ratio (κ ) on (a) effective, longitudinal thermal conductivity and (b) 

effective thermal diffusion coefficients (εβ=0.8) 

 

Fig.   2-12 shows the closure variables fields 
xTβb   and 

xSβb  for a Péclet number equal to 

14, we can see also that both closure variables change with the thermal conductivity ratio. 

We can also solve the closure problem in a Chang’s unit cell (Fig.   2-4). In the closure 

problem we have a Dirichlet boundary condition in place of a periodic boundary. We have 

solved the closure problems given by Eqs. ( 2-117)-( 2-121) for the thermal conductivity 

coefficients and Eqs. ( 2-125)-( 2-127) for the thermal diffusion coefficient for pure 

a 

b 
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diffusion. Fig.  2-13 shows the effective thermal diffusion and thermal conductivity versus 

the thermal conductivity ratio. One can see here also that, for pure diffusion, changing the 

conductivity ratio does not change the effective values. 

 

 

Fig.   2-11.  Comparison of closure variables fields βTb  and βSb  for different thermal conductivity ratio ( )κ  
at pure diffusion ( )8.0&0 == βεPe  

 
a) 001.0=κ ,    βTb                                                                              βSb              

 
b) 10=κ ,             βTb                                                                              βSb              

  
c) 100=κ ,         βTb                                                                              βSb              
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a) 001.0=κ ,     

xTβb                                                                                        
xSβb              

 
b) 10=κ ,             

xTβb                                                                                   
xSβb              

  
c) 100=κ ,             

xTβb                                                                                   
xSβb          

 

Fig.   2-12. Comparison of closure variables fields 
xTβb  and 

xSβb  for different thermal conductivity 

ratio ( )κ  at convective regime ( )8.0&14 == βεPe  
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Fig.  2-13. The influence of conductivity ratio (κ ) on the effective coefficients by resolution of the closure 

problem in a Chang’s unit cell (εβ=0.8 , Pe=0) 

 

2.7.3 Solid-solid contact effect 
 

It has been emphasized in the literature that the “solid-solid contact effect” has a great 

consequence on the effective thermal conductivity [79, 92], it can also change the effective 

thermal diffusion coefficient.   

In order to model the effect of particle-particle contact we used the model illustrated in Fig.  

 2-14, in which the particle-particle contact area is determined by the adjustable parameter 

a/d (the fraction of particle-particle contact area). 

When a/d=0 then the β-phase is continuous and the ratio βk*k  becomes constant for 

large values of κ . When a/d is not zero, at large values of κ , the solution predicts a linear 

dependence of βk*k  on the ratio κ . The calculated results for both the continuous β-

phase (non-touching particles) and the continuous σ-phase (touching particles) are shown 

in Fig.   2-15. The comparison presented by Nozad et al. (1985) showed a very good 

agreement between theory and experiment. Sahraoui and Kaviany (1993) repeated the 

computation of Nozad et al. and find that the selection of a/d=0.002 gives closest 

agreement with experiments. 
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Fig.   2-14. Spatially periodic model for solid-solid contact 
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Fig.   2-15. Effective thermal conductivity for (a) non-touching particles, a/d=0 (b) touching particles, 
a/d=0.002, (εβ=0.36, Pe=0) 
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Unfortunately we cannot use this type of geometry to study the effect of solid-solid 

connection on effective thermal diffusion coefficient because the fluid phase is not 

continuous.  We have used therefore a geometry which has only particle connection in the 

x-direction as shown in Fig.   2-16. 

 

 

Fig.   2-16. Spatially periodic unit cell to solve the thermal diffusion closure problem with solid-solid 
connections a/d=0.002, (εβ=0.36, Pe=0) 

 

Fig.   2-17 shows the results for the effective coefficient obtained from the resolution of the 

closure problem for pure diffusion on the unit cell shown in Fig.   2-16. The a/d ratio has 

been selected to be 0.002. It is clear from Fig.   2-17 that, while the particle connectivity 

changes greatly the effective values, the effective thermal diffusion coefficients is 

independent of the solid connectivity. 
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Fig.   2-17. Effective thermal conductivity and thermal diffusion coefficient for touching particles, a/d=0.002, 
εβ=0.36, Pe=0 

 
The same problems have been solved on the geometry shown in Fig.   2-14 but without y-

connection parts.  

Comparison of closure variables fields βTb  and βSb when the solid phase is continuous, for 

different thermal conductivity ratios ( )κ  and pure diffusion are shown in Fig.   2-18. As we 

can see the closure variable for concentration βSb  also change with conductivity ratio.  

The effective thermal conductivity and thermal diffusion coefficients for this closure 

problem are plotted in Fig.   2-19, despite the results illustrated in Fig.   2-15, the ratio 

βk*k  becomes constant for small values of κ  because in y-direction there is not any 

particle-particle resistance. At large values of κ  the solution predicts a linear dependence 

of βk*k , on the ratio κ . However, the ratio ββ TT D*D remains constant with the thermal 

conductivity ratio κ . 
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a) 001.0=κ ,     βTb                                                                              βSb          

  
b) 1=κ ,     βTb                                                                              βSb          

  
c) 1000=κ ,    βTb                                                                              βSb          
 

Fig.   2-18. Comparison of closure variables fields βTb  and βSb  when the solid phase is continue, for 
different thermal conductivity ratio ( )κ at pure diffusion  
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Fig.   2-19. Effective thermal conductivity and thermal diffusion coefficient for touching particles, a/d=0.002, 
εβ=0.36 

 
 
 

2.8 Conclusion 
 

To summarize our findings, in this chapter we determined the effective Darcy-scale 

coefficients for heat and mass transfer in porous media using a volume averaging 

technique including thermal diffusion effects. We showed that the effective Soret number 

may depart from the micro-scale value because of advection effects. The results show that, 

for low Péclet numbers, the effective thermal diffusion coefficient is the same as the 

effective diffusion coefficient and that it does not depend on the conductivity ratio. 

However, in this regime, the effective thermal conductivity changes with the conductivity 

ratio. On the opposite, for high Péclet numbers, both the effective diffusion and thermal 

conductivity increase following a power-law trend, while the effective thermal diffusion 

coefficient decreases. In this regime, a change of the conductivity ratio will change the 

effective thermal diffusion coefficient as well as the effective thermal conductivity 

coefficient. At pure diffusion, even if the effective thermal conductivity depends on the 

particle-particle contact, the effective thermal diffusion coefficient is always constant and 

independent on the connectivity of the solid phase. 
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3. Microscopic simulation and validation 

In this chapter, the macroscopic model obtained by the theoretical method is validated by 

comparison with direct numerical simulations at the pore-scale. Then, coupling between 

forced convection and Soret effect for different cases is investigated. 

Nomenclature of Chapter 3 

βσA  Area of the β-σ  interface contained 
within the macroscopic region, m2 

β

βT  Intrinsic average temperature in the β-
phase, K 
 

SA  segregation area, m2 
CH TT , Hot and cold temperature 

pc  Constant pressure heat capacity, J.kg/K 
βv  Mass average velocity in the β-phase, 

m/s 

βc  Total mass fraction in the β-phase yx,  Cartesian coordinates, m 
 

β

βc  
 

Intrinsic average mass fraction in the 
β-phase 

Greek symbols 

0c  Initial concentration  
βε  Volume fraction of the β-phase or 

porosity 
 

Da  Darcy number κ  βσ kk , conductivity ratio  

βD  Binary diffusion coefficient, m2/s 
βμ  Dynamic viscosity for the β-phase, Pa.s 

 

βTD  Thermal diffusion coefficient, m2/s.K 
βρ  Total mass density in the β-phase, kg/m3 

 
*D βT  Total thermal diffusion tensor, m2/s.K τ  Scalar tortuosity factor 

*
βD  Total dispersion tensor, m2/s ψ  Separation factor or dimensionless Soret 

number 
 

βk  Thermal conductivity of the fluid 
phase, W/m.K 

Subscripts, superscripts and other symbols 

σk  Thermal conductivity of the solid 
phase, W/m.K 
 

β  Fluid-phase 

βK  Permeability tensor, m2 σ  Solid-phase 

*
βk , *k  Total thermal conductivity tensors for 

no-conductive and conductive solid 
phase, W/m.K 
 

βσ  β-σ interphase  

βσn  Unit normal vector directed from the β-
phase toward the σ –phase 

*  Effective quantity 

Pe  Cell Péclet number  Spatial average 

TS  Soret number β  Intrinsic  β-phase average 

*ST  Effective Soret number   

t  Time, s 
 

  

βT  Temperature of the β-phase, K   
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3.1 Microscopic geometry and boundary conditions 
 
In order to validate the theory developed by the up-scaling technique in the previous 

chapter, we have compared the results obtained by the macro-scale equations with direct, 

pore scale, simulations. The porous medium is made of an array of the unit cell described 

in Fig.  2-6. The array is chosen with 15 unit cells, as illustrated in Fig.  3-1.  
 

 
 

 

 

Fig.  3-1.  Schematic of a spatially periodic porous medium ( HT : Hot Temperature and CT : Cold 
Temperature) 

 

In the macro-scale problem, the effective coefficients are obtained from the previous 

solution of the closure problem. The macroscopic, effective coefficients are the axial 

diagonal terms of the tensor. Given the boundary and initial conditions, the resulting 

macro-scale problem is one-dimensional. 

Calculations have been carried out in the case of a binary fluid mixture with simple 

properties such that, 1=×Δ=
β

βψ
D
D

T T  and ( ) ( )
βσ

ρρ pp cc = . 

Microscopic scale simulations, as well as the resolution for the macroscopic problem, have 

been performed using COMSOL MultiphysicsTM. 

 

The 2D pore-scale dimensionless equations and boundary conditions to be solved are Eqs. 

( 2-1)-( 2-9). Velocity was taken to be equal to zero (no-slip) on every surface except at the 

entrance and exit boundaries. Danckwerts condition (Danckwerts, 1953) was imposed for 

the concentration at the entrance and exit (Fig.  3-1). In this dimensionless system, we have 

imposed a thermal gradient equal to one.  

BC1: 0=x   ( ) 0. =∇+∇ βββ ψ Tcen  and 1== HTT  ( 3-1)

BC2: 15=x  ( ) 0. =∇+∇ βββ ψ Tcen  and 0== CTT  ( 3-2)

IC: 0=t  00 == cc  and 00 == TT  ( 3-3)

Danckwerts B.C. for 
concentration field 

Initial condition  ( 00 =T  & 00 =c ) y 
1=HT

 
0=CT

x 
Danckwerts B.C. for 
concentration field 
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Mass fluxes are taken equal to zero on other outside boundaries and on all fluid-solid 

boundary surfaces. Zero heat flux was used on the outside boundary except at the entrance 

and exit boundaries where we have imposed a thermal gradient. In the case of conductive 

solid-phase, the continuity boundary condition has been imposed for heat flux on the fluid-

solid boundary surface while these surfaces will be adiabatic for a no-conductive solid-

phase case.  

Macroscopic fields are also obtained using the dimensionless form of equations ( 2-17), 

( 2-18) ( 2-76) and ( 2-128).We obtained, from a method for predicting the permeability 

tensor [78], a Darcy number equal to 25.02 == UCKDa lβ   , for the symmetric cell shown 

in Fig.  2-6.  

The boundary condition at the exit and entrance of the macro-scale domain were taken 

similar to the pore scale expressions but in terms of the averaged variables. Depending on 

the pressure boundary condition and therefore the Péclet numbers, we can have different 

flow regimes. First, we assume that the solid phase is not conductive (Section  3.2) and we 

compare the results of the theory with the direct simulation. Then, the comparison will be 

done for a conductive solid-phase (Section  3.3) and different Péclet numbers. In all cases, 

the micro-scale values are cell averages obtained from the micro-scale fields. 

 

3.2 Non-conductive solid-phase ( 0≈σk ) 

 

In this section, the solid thermal conductivity is assumed to be very small and will be 

neglected in the equations and the solid-phase energy equation is not solved. Therefore we 

can express the equation of heat transfer Eq. ( 2-1) to Eq. ( 2-4) as 

( ) ( ) ( ) ( )βββββ
β

β
ρρ TkTc

t
T

c pp ∇∇=∇+
∂

∂
.. v , in the β-phase   ( 3-4)

BC1: ( ) 0. =∇ βββσ Tkn , at βσA                                                                                    ( 3-5)

 The various contributions of the fluid flow including pure diffusion and dispersion can be 

expressed as presented in the followings.  

3.2.1 Pure diffusion ( )0,0 ≈≈ σkPe  
 

 We have first investigated the Soret effect on mass transfer in the case of a static 

homogeneous mixture. In this case, we have imposed a temperature gradient equal to one, 
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in the dimensionless system, for the microscopic and macroscopic models, and we have 

imposed a Danckwerts boundary condition for concentration at the medium entrance and 

exit. The porosity βε  of the unit cell is equal to 0.8 and, therefore, in the case of pure 

diffusion, the effective coefficients (diffusion, thermal conductivity and thermal diffusion) 

have been calculated with a single tortuosity coefficient equal to 1.20 as obtained from the 

solution of the closure problem shown in Fig.  2-7. 

Fig.  3-2a shows the temporal evolution of the concentration at the exit for the two models, 

microscopic and macroscopic, with ( 1=ψ ) and without ( 0=ψ ) thermal diffusion.  

One can see that thermal diffusion modifies the local concentration and we cannot ignore 

this effect. The maximum modification at steady-state is equal to ψ . We also see that the 

theoretical results are here in excellent agreement with the direct simulation numerical 

results. 
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Fig.  3-2. Comparison between theoretical and numerical results at diffusive regime and κ=0, (a) time 
evolution of the concentration at x = 15 and (b and c) instantaneous temperature and concentration field 

a 

b 
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 Fig.  3-2b and Fig.  3-2c show the distribution of temperature and concentration in the 

medium at given times. Here also, one can observe the change of the concentration profile 

generated by the Soret effect compared with the isothermal case (c=0), and the 

microscopic model also perfectly fits the macroscopic results. These modifications are 

well matched with temperature profiles for each given time.  

 

3.2.2 Diffusion and convection ( )0,0 ≈≠ σkPe  
 

Next, we have imposed different pressure gradients on the system shown in Fig.  3-3. The 

temperature and concentration profiles at 1=Pe  for different times are shown in Fig.  3-3a 

and Fig.  3-3b, respectively. 

The results show a significant change in the concentration profile because of species 

separation when imposing a thermal gradient. Here, also, the theoretical predictions are in 

very good agreement with the direct simulation of the micro-scale problem. 

Comparison of the concentration elution curves at x=0.5, 7.5 and 13.5 in Fig.  3-3c between 

the two regimes (with and without thermal diffusion) also shows that the elution curve for 

no-thermal diffusion is different from the one with thermal diffusion. The shape of these 

curves is very different from the pure diffusion case (Fig.  3-2a) because, in this case, the 

thermal diffusion process is changed by forced convection. One also observes a very good 

agreement between the micro-scale simulations and the macro-scale predictions. 
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Fig.  3-3. Comparison between theoretical and numerical results, κ=0 and Pe=1, (a and b) instantaneous 
temperature and concentration field, (c) time evolution of the concentration at x = 0.5, 7.5 and 13.5  
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3.3 Conductive solid-phase ( 0≠σk ) 

 

Thermal properties of the solid matrix have also to be taken into account in the thermal 

diffusion process. In this section, the heat diffusion through the solid-phase is considered. 

Therefore, the comparison has been done for the same micro-scale model but with a 

conductive solid-phase. First, we compare the results for a pure diffusion system and then 

we will describe the local dispersion coupling with Soret effect.    

3.3.1 Pure diffusion ( )0,0 ≠≈ σkPe  
 

Before we start to compare the theoretical results with the numerical one for the case of a 

conductive solid-phase, in order to see clearly the influence of the thermal conductivity 

ratio on the separation process, we have solved the microscopic coupled heat and mass 

transport equations (Eqs. ( 2-1)-( 2-6)) in a simple geometry containing two unit cells. In the 

dimensionless system shown in Fig.   3-4.  

Danckwerts conditions were imposed for the concentration at the entrance and exit ( 

Fig.  3-1). In this dimensionless system, we have imposed a horizontal thermal gradient 

equal to one.  

BC1: 0=x   ( ) 0. =∇+∇ βββ ψ Tcen  and 1== HTT  ( 3-6)

BC2: 2=x  ( ) 0. =∇+∇ βββ ψ Tcen  and 0== CTT  ( 3-7)

IC: 0=t  00 == cc  and 00 == TT  ( 3-8)

Mass fluxes are taken equal to zero on other outside boundaries and on all fluid-solid 

boundary surfaces. The continuity boundary condition has been imposed for heat flux on 

the fluid-solid boundary surface. Steady-state concentration and temperature fields for 

different thermal conductivity ratio are represented in Fig.   3-4.  As we can see, the 

concentration distribution (or separation) depends on the temperature distribution in the 

medium. When the temperature distribution changes with the thermal conductivity, it will 

also change the concentration distribution.  

Fig.   3-5 shows the steady-state concentration and temperature profiles at y=0.5 (a section 

situated in the middle of the medium). We can see clearly that the thermal conductivity 

ratio changes the final temperature and concentration profiles. However, the final 

separations are constant. That means, although the thermal conductivity ratio change 
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locally the concentration distribution in the medium, it has no influence on the final 

separation. We discuss this point in more details below. 

 

  
a) 001.0=κ ,   Temperature field                                                   Concentration field                                  

 
b) 1=κ ,   Temperature field                                                                 Concentration field                                  

c) 10=κ ,   Temperature field                                                                  Concentration field                                 

Fig.   3-4.  Influence of the thermal conductivity ratio on the temperature and concentration fields 
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Fig.   3-5.  (a) Temperature and (b) concentration profiles for different conductivity ratio 
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The influence of the thermal conductivity on the transient separation process is presented 

in Fig.   3-6 for different time steps.  

 As we can see, the thermal conductivity of the solid phase locally changes the 

concentration profile. We must note here that one cannot judge from these results whether 

the thermal conductivity ratio has an influence on the effective thermal diffusion 

coefficient or not. Actually, we must compare the average of the fields with the theoretical 

results as we will show in the following example. 
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Fig.   3-6.  Temporal evolution of the separation profiles for different thermal conductivity ratio 

 

In this example, the pure diffusion ( )0=Pe  problem has been solved for a ratio of 

conductivity equal to 10 ( 10=κ ). In this condition, the local thermal equilibrium is valid 

as shown in Quintard et al. (1993). Then, we can compare the results of the micro-scale 

model and the macro-scale model using only one effective thermal conductivity (local 

thermal equilibrium). We have shown in Section  3.3 that the thermal conductivity ratio has 

no influence on the effective thermal diffusion coefficient for diffusive regimes. Therefore, 

we can use the same tortuosity factor for the effective diffusion and the thermal diffusion 

coefficient that the one used in the previous section ( βDD*
β 83.0=  and βT

*
Tβ DD 83.0= ).  

Whereas, we know that for pure diffusion, increasing the conductivity ratio increases the 

effective thermal conductivity. According to Fig.  2-10a for 0=Pe  and 10=κ , we obtain 
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ββε kk* 72.1= . Fig.  3-7a and Fig.  3-7b show the temporal change in temperature and 

concentration profile for both models.  
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Fig.  3-7. Comparison between theoretical and numerical results at diffusive regime and κ=10, temporal 
evolution of (a) temperature and (b) concentration profiles 
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The symbols represent the direct numerical results (averages over each cell) and the lines 

are the results of the one-dimensional macro-scale model. One sees that, for a conductive 

solid-phase, our macro-scale predictions for concentration and temperature profiles are in 

excellent agreement with the micro-scale simulations. 

In order to well understand the effect of the thermal conductivity ratio on the thermal 

diffusion process, we have plotted in Fig.   3-8 the temperature and concentration profiles 

for different thermal conductivity ratios, at a given time solution (t=10). As shown in this 

figure, a change in thermal conductivity changes the temperature profiles (Fig.   3-8a) and, 

consequently, the concentration profiles (Fig.   3-8b). Since we showed that the thermal 

diffusion coefficient is constant at pure diffusion, we conclude that modifications in 

concentration because of different thermal conductivity ratio come from changing the 

temperature profiles. These modifications can be well distinguishable in Fig.   3-8c which 

shows the time evolution of the concentration at x = 15 for different thermal conductivity 

ratio. 
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Fig.   3-8.  Effect of thermal conductivity ratio at diffusive regime on (a and b) instantaneous temperature and 
concentration field at t=10 and (b) time evolution of the concentration at  x = 15 
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3.3.2 Diffusion and convection ( )0,0 ≠≠ σkPe  
 

A comparison has been made for Pe=1 and a thermal conductivity equal to 10. The 

temperature and concentration profiles for different times are shown in Fig.  3-9a and Fig. 

 3-9b, respectively. Here, also, the theoretical predictions are in very good agreement with 

the direct simulation of the micro-scale problem. 

Fig.  3-10a shows the effect of the Péclet number on the axial temperature distribution in 

the medium. At small Pe  , the temperature distribution is linear, but as the pressure 

gradient (or Pe ) becomes large, convection dominates the axial heat flow. 

 In Fig.  3-10b the steady-state distribution of the concentration is plotted for different 

Péclet numbers. One can see clearly that the concentration profile changes with the Péclet 

number. For example, for 2=Pe , because the medium has been homogenized thermally 

by advection in most of the porous domain, the concentration profile is almost the same as 

in the isothermal case (without thermal diffusion). Near the exit boundary, there is a 

temperature gradient which generates a considerable change in the concentration profile 

with an optimum point. This peak is a dynamic one resulting from coupling between 

convection and Soret effect.  
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Fig.  3-9. Comparison between theoretical and numerical results, κ=10 and Pe=1, (a) time evolution of the 
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Fig.  3-10.  Influence of Péclet number on steady-state (a) temperature and (b) concentration profiles (κ=10) 

b 

a 



 95

If we define a new parameter, SA , named segregation rate defined as the surface between 

isothermal and thermal diffusion case concentration profiles, we can see that increasing the 

Péclet number decreases the segregation rate. The obtained puff concentration at the exit 

(x=15) and for different Péclet numbers is illustrated in Fig.   3-11. The results show that 

the maximum separation passing trough the exit point increases with increasing the Péclet 

number while occuring in shorter period.   
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Fig.   3-11. Influence of Péclet number on steady-state concentration at the exit (κ=10) 

 

As shown in Fig.   3-12 the concentration profile, and consequently the peak point, not 

only depends on the Péclet number, but also it is changed by the conductivity ratio, κ  and 

separation factor, ψ .  

The concentration profile in the case of 75.0=Pe  and 1=κ  for different separation 

factors, ψ ,  has been plotted in Fig.   3-12a. One can see that increasing the separation 

factor increases the local segregation area of species. Fig.   3-12b shows the influence of 

the conductivity ratio for a fixed Péclet number and separation factor ( 2=Pe  and 1=ψ  ) 

on the concentration profile near the exit boundary ( x  between 10 and 15). The results 

show that a high conductivity ratio leads to smaller optimum point but higher segregation 

area than the ideal non-conductive solid-phase case. This means that the segregation area 

will be a function of 
Pe
ψκ . This specific result should be of importance in the analysis of 
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species separation and especially in thermogravitational column, filled with a porous 

medium. 
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Fig.   3-12.  Influence of (a) separation factor and (b) conductivity ratio on pick point of the concentration 
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3.4 Conclusion 
 

In order to validate the theory developed by the up-scaling technique in the previous 

chapter, we have compared the results obtained by the macro-scale equations with direct 

pore-scale simulations. The porous medium is made of an array of unit cells. A good 

agreement has been found between macro-scale resolutions and micro-scale, direct 

simulations, which validates the proposed theoretical model. We have presented a situation 

illustrating how variations of Péclet number, conductivity ratio and separation factor 

coupled with Soret effect can change locally the segregation of species in a binary mixture. 

This may be of a great importance when evaluating the concentration in applications like 

reservoir engineering, waste storage, and soil contamination.



 

 

 

 

 

 

CChhaapptteerr  44  

  
AA  nneeww  eexxppeerriimmeennttaall  sseettuupp  ttoo  ddeetteerrmmiinnee    

tthhee  eeffffeeccttiivvee  ccooeeffffiicciieennttss  
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4. A new experimental setup to determine the effective 
coefficients 

 

The theoretical model developed in chapter 2 concerning the effective thermal diffusion 

coefficient at pure diffusion regime confirmed that the tortuosity factor acts in the same 

way on both isothermal Fick diffusion coefficient and on thermal diffusion coefficient. We 

have shown also that the effective thermal diffusion coefficient does not depend on the 

solid to fluid conductivity ratio. 

 In this study, a new experimental setup has been designed and fabricated to determine 

directly the effective diffusion and thermal diffusion coefficients for binary mixture.  new 

experimental results obtained with a two-bulb apparatus are presented. The diffusion and 

thermal diffusion of helium-nitrogen and helium-carbon dioxide system through 

cylindrical samples filled with glass spheres of different diameters and thermal 

conductivities are measured at the atmospheric pressure. Concentrations are determined by 

analysing the gas mixture composition in the bulbs with a katharometer device. A 

transient-state method for coupled evaluation of thermal diffusion and Fick coefficient in 

two bulbs system is proposed.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 100

Nomenclature of Chapter 4 

A  Cross-sectional area of the connecting 
tube, m2 

 

TS  Soret number, 1/K 

*
12

*
12

*
12

,

,

C

B

A

 

Ratios of collision integrals for 
calculating the transport coefficients of 
mixtures for the Lennard-Jones (6-12) 
potential 

*
TS  Effective Soret number, 1/K 

0
1c , 0

2c  Initial mass fraction of the heavier and 
lighter component 
 

T  Temperature of the colder bulb, K  

ibc  Mass fraction of component i in the b  
bulb 
 

0T  Initial temperature, K 

itc  Mass fraction of component i in the t  
bulb 
 

T ′  Temperature of the hotter bulb, K 

∞
ic  Mass fraction of component i at 

equilibrium 
 

*T  Dimensionless temperature 

oc  Mass fraction at time t = 0 
 

T  Averaged temperature, K 

12D  Diffusion coefficient, m2/s t  Time, s 

d Diameter of the connecting tube, m 
 

*t  Diffusion relaxation time, s 

*D  Effective diffusion coefficient, m2/s 
 

V Volume of the bulb, m3 

TD  Thermal diffusion coefficient, m2/s 
 bV  Volume of the bottom bulb, m3 

*
TD  Effective thermal diffusion coefficient, 

m2/s 
 

tV  Volume of the top bulb, m3 

iJ  Mass diffusion flux, kg/m2.s 
αx  Mole fraction of species α  

Bk  Boltzmann constant, 1.38048 J/K 
βx  Mole fraction of species β  

mixk  Thermal conductivity of the gas 
mixture, W.m/K 
 

  

Tk  Thermal diffusion ratio 
 

Greek symbols 

*
Tk  Effective thermal diffusion ratio 

Tα  Thermal diffusion factor 

αk  Thermal conductivity of the pure 
chemical species α  , W.m/K 

β  Characteristic constant of the two-bulb 
diffusion cell defined in Eq. ( 4-10), m-2 

 
l  Length of the connecting tube, m 

1cΔ  Change in the concentration of heavier 
component at the steady state in the lower 
bulb 
 

iM  Molar mass of component i, g/mol 
12ε  Characteristic Lennard-Jones energy 

parameter (maximum attractive energy 
between two molecules), kg.m2/s2 

 
m Particle shape factor 

 
ε  Fractional void space (porosity) 
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N  The number of chemical species in the 
mixture 
 

αμ  Dynamic viscosity of pure species α , 
g/cm.s 

iN  Mass flux of component i, kg/m2.s 
12σ  Characteristic Lennard-Jones  length 

(collision diameter), 
o

A  
 

n Number density of molecules 
  

τ  Tortuosity 

p  Pressure, bar 
tτ  Thermal diffusion relaxation time, s 

KR  Katharometer reading , mV 
αβΦ  The interaction parameter for gas-mixture 

viscosity  
 

S Separation rate 
DΩ  Collision integral for diffusion  

S, Q Quantities in the expression for Tα  )*,( slΩ  Collision integral  

gS  Partial gas saturation   
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4.1 Introduction 
 

In the previous chapters we developed a theoretical model to predict effective thermal 

diffusion coefficients from micro-scale parameters (thermal diffusion coefficient, pore-

scale geometry, thermal conductivity ratio and Péclet numbers). The results confirm that 

for a pure diffusion regime, the effective Soret number in porous media is the same as the 

one in the free fluid [24, 25]. This means that the tortuosity factor acts in the same way on 

the Fick diffusion coefficient and on the thermal diffusion coefficient. In the present work, 

the influences of pore-scale geometry on effective thermal diffusion coefficients in gas 

mixtures have been measured experimentally. Related to coupled-transport phenomena, 

the classical diffusion equation is completed with the additional thermal diffusion term. 

The mass flux, considering a mono-dimensional problem of diffusion, in the x -direction 

for a binary system, no subjected to external forces, and in which the pressure, but not the 

temperature, is uniform, can be written 

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

−=
x
TD

x
cDJ T

1
121 βρ     ( 4-1)

where 12D  is the ordinary diffusion coefficient and TD  the thermal diffusion coefficient. 

Defining thermal diffusion ratio 12DTDk TT = , we can write (as in [52]) 

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

−=
x
T

T
k

x
cDJ T1

121 βρ     ( 4-2)

Other quantities encountered are the thermal diffusion factor, Tα , (for gases) and the Soret 

coefficient, TS , defined in literatures by 0
2

0
1 cckTT =α  and TkS TT =  respectively.  

When Tk  in equation ( 4-2) is positive, heaviest species (1) moves toward the colder 

region, and when it is negative, this species moves toward the warmer region. In some 

cases, there is a change in sign of the thermal diffusion ratio as the temperature is lowered 

(See [17] and [13]). 

By now, data for gas thermal diffusion in porous medium are not available and there is 

some uncertainty for the question concerning the relationship between the effective liquid 

thermal diffusion coefficient and the micro-scale parameters (such as pore-scale geometry) 

[20, 74]. 

 In this study, using a gaseous mixture has the advantage that the relaxation time is much 

smaller compared to the one of liquid mixture.  
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The main purpose of this part is to measure directly the binary diffusion and thermal 

diffusion coefficients in porous media for the systems He-N2 and He-CO2, using a two-

bulb cell close to the design of Ney and Armistead [67]. This method has been used 

already in many works to determine transport properties in binary and ternary gases as 

well as liquids, with accurate results.  

4.2 Experimental setup 
 
In this study we have designed and fabricated a new experimental setup that has been 

proven suitable results for the study of diffusion and thermal diffusion in free fluid. It is an 

all-glass two-bulb apparatus, containing two double-spherical layers 1 (top) and 2 (bottom) 

as shown in Fig.  4-1. In fact, the particular difference between this system and the earliest 

two-bulb systems is that each bulb contains an interior glass sphere to serve as reservoir 

bulb and another exterior glass spheres in which, in the space between two glass layers 

there may be a water circulation to regulate the reservoir temperature. As shown in Fig.  

 4-2, the reservoir bulbs with equal and constant volume 1000== bt VV cm3, joined by an 

insulated rigid glass tube of inner diameter 795.0=d cm and length 8  cm containing a 

valve also made especially of 0.795 cm bore, and 5.87 cm long. Therefore, the total length 

of the tube in which the diffusion processes occur is about 87.13=l  cm. To avoid 

convection, the apparatus was mounted vertically, with the hotter bulb uppermost.  

The concentration is determined by analysing the gas mixture composition in each bulb 

with a katharometer. As we described in Section  1.5.1, katharometer, or thermal 

conductivity detector (Daynes 1933 [26], Jessop 1966 [46]), has already been used to 

measure the concentration of binary gas mixtures. The method is based on the ability of 

gases to conduct heat and the property that the thermal conductivity of a gas mixture is a 

function of the concentration of its components. The thermal conductivity of a gas is 

inversely related to its molecular weight. Hydrogen has approximately six times the 

conductivity of nitrogen for example. The thermal conductivity of some gases with 

corresponding katharometer reading at atmospheric pressure is listed in Table  4-1. 
 

 

 

 

http://en.wikipedia.org/wiki/Nitrogen
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Fig.  4-1. Sketch of the two-bulb experimental set-up used for the diffusion and thermal diffusion tests 

 

 

Fig.   4-2. Dimensions of the designed two-bulb apparatus used in this study 

13.87 cm 
d=0.795 cm 

Vt= 1 liter 

Vb= 1 liter 
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Table  4-1. Thermal conductivity and corresponding katharometer reading for some gases at atmospheric 
pressure and T=300°K  

Gas Air N2 CO2 He 

k(W/m.K) 0.0267  0.0260  0.0166  0.150  

RK(mV) 1122 1117 976 2345 

 

In this study, we have used the analyzer ARELCO-CATARC MP-R model (Fig.   4-3) with 

a sensor operating on the principle of thermal conductivity detection. The electronics high-

performance microprocessor of this device allows analysing the binary gas mixtures with 

±0.5% repeatability. The touch screen display allows also seeing and verifying all essential 

parameters e.g. scale analog output, temperature control, and access menus. This type of 

Katharometer works with a circulation of the analyzed and reference gases into the 

sensors. The first series of the experiment showed that the sampling with circulation 

cannot be applied in the two-bulb method because gas circulation can perturbs the 

establishment of the temperature gradient in the system. Small changes in the pressure in 

one bulb may produce forced convection in the system and cause a great error in the 

concentration evaluation. Therefore, in this study we have eliminated the pump system 

between the bulbs and katharometer sensors. Instead we connected the katharometer 

analyser sensor directly to the bulbs as shown in Fig.   4-4. Therefore, the open cell of the 

katharometer form a part of the diffusion cell, and so it can indicate continuously and 

without sampling the changes in composition as diffusion and thermal diffusion processes. 

The other sensor of the katharometer has been sealed permanently in air and the readings 

are the reference readings.  

 

 

 

Fig.   4-3. Katharometer used in this study (CATARC MP – R) 
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Fig.   4-4. A schematic of katharometer connection to the bulb 

 

 For gases, the diffusion coefficient is inversely proportional to the absolute pressure and 

directly proportional to the absolute temperature to the 1.75 power as given by the Fuller et 

al. [33] correlation discussed in Reid et al. (1987). 

Pressure and temperature measurements are made with two manometers and 

thermometers. The temperature of each bulb is kept at a constant value by circulating 

water from a bath temperature controller. In this study, for all diffusion measurements, the 

temperature of two bulbs system is fixed to 300 °K. The gas purities are: He: 100%, N2: 

100% and CO2: 100%. 

 

4.2.1 Diffusion in a two-bulb cell 
 

The two-bulb diffusion cell is a simple device that can be used to measure diffusion 

coefficients in binary gas mixtures. Fig.   4-5 shows a schematic of the two-bulb apparatus.  

 

l

A
Vt Vb

 
 

Fig.   4-5. Two-bulb apparatus 
 

Gas from the bulb to 
measure (analyzed gas) 

Reference gas 

Heated metal block 

Heated metal block 

Sensor connections 
to Wheatstone 

bridge 
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Two vessels containing gases with different compositions are connected by a capillary 

tube. The katharometer cell itself is connected with the bulb and its volume is negligible 

compared to the volume of the bulbs. The katharometer cell and the two bulbs were kept at 

a constant temperature of about 300 °C. 

The vacuum pumps are used at the beginning of the experiment to eliminate the gas phase 

initially in the diffusion cell and in the gas flow lines. 

At the start of the experiment (at t = 0), the valve is opened and the gases in the two bulbs 

can diffuse along the capillary tube. An analysis of binary diffusion in the two-bulb 

diffusion apparatus has been presented by Ney and Armistead (1947) [67] (see, also, 

Geankoplis, 1972). It is assumed that each bulb is at a uniform composition (the 

composition of each bulb is, of course, different until equilibrium is reached). It is further 

assumed that the volume of the capillary tube connecting the bulbs is negligible in 

comparison to the volume of the bulbs themselves. This allows expressing the component 

material balances for each bulb as follows 

 

AN
dt

dc
V

dt
dc

V i
it

t
ib

b −=−= ββ ρρ     ( 4-3)

where A  is the cross-sectional area of the capillary tube, itc  is the mass fraction of 

component i in the top bulb, and ibc  is the mass fraction of that component in the bottom 

bulb. The mass flux of species i through the capillary tube iN  is considered to be positive 

if moving from top bulb to bottom bulb.  

The density can be computed from the ideal gas law at the average temperature T  

TR
P

=βρ     ( 4-4)

at constant temperature and pressure the density of an ideal gas is a constant; thus, there is 

no volume change on mixing and in the closed system the total flux tN  must be zero. 

The composition in each bulb at any time is related to the composition at equilibrium ∞
ic  

by  

ibbittibt cVcVcVV +=+ ∞)(     ( 4-5)

The compositions at the start of the experiment are, therefore, related by 
00)( ibbittibt cVcVcVV +=+ ∞     ( 4-6)
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where 0c is the mass fraction at time t = 0. 

In the analysis of Ney and Armistead it is assumed that, for i=1 at any instant, the flux 1N  

is given by its one dimensional, steady-state diffusion flux as 

( )tb cc
D

J 11
12

1 −=
l

βρ     ( 4-7)

Thus ( 11 NJ = ), 

)( 11
121

tb
b

b ccAD
dt

dcV −−=
l

ββ ρρ     ( 4-8)

To eliminate tc1  from Eq.( 4-8) one makes use of the component material balance for 

both bulbs, Eqs. ( 4-6) and ( 4-7). 

)( 1112
1 ∞−−= ccD

dt
dc

b
b β   ( 4-9)

where β  is a cell constant defined by 

bt

bt

VV
AVV

l

)( +
=β     ( 4-10)

A similar equation for the mass fraction of component 2 in bulb t  may also be derived. 

Equation ( 4-9) is easily integrated, starting from the initial condition that at t = 0, o
bb cc 11 = , 

to give 
∞∞ +−−= 1121

0
11 )exp()( ctDccc bb β   ( 4-11)

Hence, if β  is known then just one value of bc  is all that is needed to calculate the 

diffusivity 12D . Alternatively, if an accurate value of 12D  is available, Eq.( 4-11) can be 

used to calibrate a diffusion cell for later use in measuring diffusion coefficients of other 

systems.  

In this study, the volume of the two bulbs is equal bt VV = then, we can write Eqs. ( 4-6) and 

( 4-10) as 

( ) 200
ibiti ccc +=∞     ( 4-12)

V
A

l

2
=β    ( 4-13)

where  V is the bulb volume. 
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4.2.2 Two-bulb apparatus end correction 
 

When we determine the diffusion coefficient in a two bulb system connected with a tube, 

the concentration gradient does not terminate at the end of the connecting tube and, 

therefore an end-correction has to be made. This correction was made in the calculation of 

the cell constants as an end-effect by Ney and Armistead [67].They adjust the tube length 

L for end effects to give an effective length effl , given by 

deff 82.0+= ll   ( 4-14)

where d is the tube diameter. 

 Rayleigh, 1945 [88], when investigating the velocity of sound in pipes, showed that one 

must add 0.82r for thick annulus flange and 0.52r for a thin annulus flange to each end of 

the tube. Here, r is the tube radius.  

Wirz, 1947 showed that the end corrections for sound in tubes depend on the annulus 

width, w, and diameter, d. The results fit the correlation [114] 

⎟
⎠
⎞

⎜
⎝
⎛+=

w
0.125d-exp 22.060.0α   ( 4-15)

where α  is the end-correction factor. 

Analysis of many results on diffusion both in porous media and bulk gas also showed a 

significant difference between diffusion coefficients measured in different cells [108]. This 

difference may arise through a difference in geometry affecting the diffusion (say cell 

effect) or, in the case of the capillary tube, the end correction factor being incorrect. More 

recent work indicates that the effect is due to differences in cell geometry [106]. The 

existence of this difference implies that all measurements of bulk gas diffusion by the two-

bulb technique may contain systematic errors up to 2% [108].  

Arora et al, 1977 [4] using precise binary diffusion coefficients showed that the end 

correction formulation is not precise enough when an accuracy of 0.1% in coefficients is 

required. However, they proposed to calibrate the two-bulb cells with the standard 

diffusion coefficients. 

According to this short bibliography, calculated diffusion coefficients in a two-bulb 

apparatus depend on the cell geometry and end connection tubes. Then, in this study, we 

will use the standard values of diffusion coefficients to calibrate the two-bulb apparatus for 

effective tube length. 
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In our work concerning the determination of tortuosity, this error may be small because we 

have calculated a ratio of the two diffusion coefficients. However, a better understanding 

of this problem requires doing more experimental or numerical studies.  

 

4.2.3 Thermal diffusion in a two-bulb cell 
 

For calculation of the magnitude of the Soret effect we used the same setup that we have 

used for diffusion processes. The diameter of the tube is small enough to eliminate 

convection currents and the volume of the tube is negligible in comparison with the 

volume of the bulbs.  

 In the initial state, the whole setup is kept at a uniform and constant temperature 0T  and 

the composition of the mixture is uniform everywhere. After closing the valve in the tube, 

the temperature of the top bulb is increased to HT  and the temperature of bottom bulb is 

lowered to CT , the two bulbs are set at the same pressure. After this intermediate state, the 

valve is opened. After a short time, a final stationary state is reached, in which there is a 

constant flux of heat from bulb t to bulb b. Measures have been taken such that CT  and HT  

remain constant and, due to the Soret effect, it is observed a difference in mass fraction 

between the bulbs. 

Thermal diffusion separation is determined by analysing the gas mixture composition in 

the bulbs by katharometric analysis. 

At steady-state, the separation due to thermal diffusion is balanced by the mixing effect of 

the ordinary diffusion, there is no net motion of either 1 or 2 species, so that 01 =J . If we 

take the tube axis to be in the x -direction, then from Eq. ( 4-2) we get 

x
T

T
k

x
c T

∂
∂

−=
∂
∂ 1     ( 4-16)

We may ignore the effect of composition on Tk  and integrate this equation on temperature 

gradient between CT  and HT  to get the change in concentration of the heavier component 

at the steady state in the lower bulb [97]. 
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then the thermal diffusion factor Tα  is calculated from the following relation 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−

=

C

H
T

T
Tcc

c

ln0
2

0
1

1α  
( 4-18)

here,  0
1c  and 0

2c  are the initial mass-fractions of the heavier and lighter components 

respectively in the binary gas mixture, and ∞∞ −=Δ tb ccc 111 .  

Tα  values thus obtained refer to an average temperature, T , in the range CT  to HT ([37] 

and [95]) and these are determined from the formula of Brown (1940) according to which 

[12] 
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which is based on an assumed temperature dependence for Tα  of the form 1−−= bTaTα  . 

The relaxation time tτ  for this process can be expressed as [95] 
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where V is the volume of one of the bulbs. The relaxation time is therefore proportional to 

the length of the connecting tube, and inversely proportional to its cross-sectional area. 

The approach to the steady state is approximately exponential, and this was confirmed by 

following measurements. 

The variation of pressure is small in each experience. Theory and experiment agree in 

showing that, at least at pressure below two atmospheres, the separation is independent of 

the pressure; therefore in this study the thermal diffusion factor is not changed by small 

variation of pressure. In most gaseous mixture the thermal diffusion factor increases with 

increasing pressure. The temperature and concentration dependence of the thermal 

diffusion factor also were found to be affected by pressure [8]. 

4.2.4 A transient-state method for thermal diffusion processes 
 

In this section, a transient-state method for thermal diffusion process in a two-bulb 

apparatus is proposed. In this case, the flux is the sum of Fick diffusion flux and thermal 

diffusion flux, as 



 112

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

C

HT
bt T

TkDccDJ ln12
11

12
1

ll
ββ ρρ     ( 4-21)

at thermal equilibrium and for one-dimensional case. Then the concentration variation in 

the bottom bulb is given by 
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The compositions at the starting of the experiment are related by 

   00
itib cc =  ( 4-23)

and, the composition in each bulb at any time is 

   ( ) 0
ibbtibbitt cVVcVcV +=+  ( 4-24)

Then one can eliminate bc1 from Eq. ( 4-22) using these two component balances 
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A similar equation for the mass fraction of component 1 in bulb t may also be derived. The 

integration of equation ( 4-25), starting from the initial condition at 0=t , 0
1 ibb cc = , gives 
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If the value of 12D  is available, then just one value of ( )tc b ,1  is all that is needed to 

calculate the thermal diffusion factor and then the thermal diffusion coefficient. However, 

when the experimental time evaluation of the concentration is available, both 12D  and 

Tk (or TD ) can be evaluated. It is sufficient to adjust 12D  and Tk  until equation ( 4-26) fits 

the experimental data.  

When the volume of the two vessels is equal, Eq. ( 4-26) simplifies to 
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where, ⎟⎟
⎠

⎞
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⎛
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TkS ln  and 
12

*

AD
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=  are a separation rate (or 1cΔ  in Eq. ( 4-17)) and a 

diffusion relaxation time respectively. 
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4.3 Experimental setup for porous media 
 

In a porous medium, the effective diffusion coefficient for solute transport is significantly 

lower than the free diffusion coefficient because of the constricted and tortuous solute flow 

paths. This effective diffusion coefficient is related to the free diffusion coefficient and 

tortuosity coefficient.  

 The mono-dimensional solute transport can be write as 

   2

2
*

x
cD

t
c

∂
∂

=
∂
∂  ( 4-28)

where *D is the effective diffusion coefficient. 

We have used the same apparatus and method explained in the last section to measure the 

effective coefficients except that, here, one part of the connecting tube (4 cm long, 

connected to bottom bulb) is filled with a synthetic porous medium made with the spheres 

of different physical properties.  

 

4.4 Results 

4.4.1 Katharometer calibration  
 

To find the relative proportions of the components of a gas mixture, the instrument needs 

first to be calibrated. This is done by admitting mixtures of known proportions on the open 

cell and observing the difference resistance between reference values and analyzed 

readings. The precision with which the change in composition of a mixture can be 

measured depends, of course, on the difference of the thermal conductivities of the two 

components and this also depends on the difference of the molecular masses. Fig.   4-6 

shows an example of katharometer calibration curve for mixtures of 2COHe − , which 

have been obtained in order to interpolate the changes in concentration as a function of 

katharometer readings. One can see that the katharometer calibration curve gives a very 

close approximation in shape to the theoretical curve of thermal conductivity against 

concentration. 
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Fig.   4-6. Katharometer calibration curve with related estimation of thermal conductivity values for the 

system He-CO2 
 

The thermal conductivities for gas mixtures at low density have been estimated by Mason-

Saxena approach [58]   
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where N  is the number of chemical species in the mixture. For each species α, αx  is the 

mole fraction, αk  is the thermal conductivity, αμ  is the viscosity at the system temperature 

and pressure, and αM  is the molecular weight of species α.   

The properties of N2, CO2 and He required to calculate thermal conductivity of mixture 

have been listed in Table  4-2 at 300°K and 1 atm. 
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Table  4-2. The properties of CO2, N2 and He required to calculate mixk  (T=300 °C, P=1 atm.) 

 αM  410×αμ  

(g/cm.s) 

710×αk  

cal/cm.s.K 

CO2 44.010 1.52 433 

N2 28.016 1.76 638 

He 4.002 2.01 3561 

 

4.4.2 Diffusion coefficient 
 
Usually, five modes of gas transport can be considered in porous media [59]. As illustrated 

schematically in Fig.   4-7, four of them are related to concentration, temperature or partial 

pressure gradients (molecular diffusion, thermal diffusion, Knudsen diffusion and surface 

diffusion), and one to the total gas pressure gradient (viscous or bulk flow). When the gas 

molecular mean free path becomes of the same order as the tube dimensions, free-

molecule, or Knudsen, diffusion becomes important. Due to the influence of walls, 

Knudsen diffusion and configurational diffusion implicitly include the effect of the porous 

medium. 

 

 
Fig.   4-7. Solute transport process in porous media 

 

In the discussion which follows, no total pressure gradient (no bulk flow) is considered 

since this is the condition which prevails in the experiments presented in this study. In 

most of the former studies, surface diffusion was either neglected or considered only as a 

rapid process since its contribution to the overall transport cannot be assessed precisely. 

Knudsen diffusion is neglected because the pore size is larger than the length of the free 

path of the gas molecules. For example, in the atmospheric pressure, the mean free path of 
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the helium molecule at 300 °C is about 1.39×10-7m. Thus, in this study, only binary 

molecular gas diffusion is considered. 

In this type of experiment, it is assumed that the diffusion coefficient of the gas mixture is 

independent of composition, and the transient temperature rises due to Dufour effects are 

insignificant. It is also assumed that the concentration gradient is limited to the connecting 

tube whereas the composition within each bulb remains uniform at all times. In addition, 

the pressure is assumed to be uniform throughout the cell, so that viscous effects are 

negligible, and high enough to minimize free-molecular (Knudsen) diffusion. 

For the setup described in Section 2, the cell constant β is equal to 51016.7 −× , therefore we 

can rewrite Eq.( 4-11) as 
 

∞−∞ +×−−= 112
5

1
0
11 )1016.7exp()( ctDccc bb   ( 4-31)

Using Eq. ( 4-31), only one point ( )tc t ,1  is sufficient to determine the diffusion coefficient. 

The katharometer interval registration data has been set to one minute; therefore, there is 

sufficient data to fit Eq. ( 4-31) on the experimental data to obtain a more accurate 

coefficient, compared with a one point calculation. Then, the obtained binary diffusion 

coefficient is about 0.690 cm2/s for 2NHe −  system and 0.611 cm2/s for 2COHe −  

system. In the literature [103], binary diffusion coefficient for a 2NHe −  system measured 

with two-bulb method at the condition of p=101.325 kPa, and T=299.19 °K, is about 

0.7033 cm2/s. This coefficient for a 2COHe −  system has been reported as 0.615 cm2/s at 

300°K [28]. Using these standard coefficients a new calibrated mean cell constant has been 

calculated. This constant that will be used for all next experiments is equal to β/1.015. 

The theoretical estimation of the diffusion coefficients also are not different from values 

obtained in this study which show the validity of the measuring method and apparatus (the 

theoretical formulation has been explained in Appendix A). 

 Table  4-3 shows the necessary data to estimate the diffusion coefficient for the system, 

2COHe −  and 2NHe − . The calculation of mixture parameters, dimensionless 

temperature, collision integral and diffusion coefficient from Eq. (A. 2) and for 

temperatures applied in this study have been listed in Table  4-4. 
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Table  4-3. Molecular weight and Lennard-Jones parameters necessary to estimate diffusion coefficient [10] 

 
iM (g/mol) Bkε  (K) σ  )A(

o

 

2CO  44 190 3.996 

2N  28 99.8 3.667 

He  4 10.2 2.576 
 
 
 

Table  4-4. Estimation of diffusion coefficients for binary gas mixtures He-CO2 and He-N2 at temperatures 
300, 350 and 7.323=T °K, pressure 1 bar 

 2COHe −  2NHe −  

T (K) 300 350 323.7 300 350 323.7 

12σ )A(
o

 3.286 3.121 

k/12ε (K) 44.02 31.90 

*T (-) 6.815 7.950 7.353 9.403 10.970 10.145 

DΩ (-) 0.793 0.771 0.782 0.749 0.731 0.740 

12D ( scm2 ) 0.596 0.772 0.677 0.715 0.925 0.812 

 

4.4.3 Effective diffusion coefficient in porous media 
 

A number of different theoretical and experimental models have been used to quantify gas 

diffusion processes in porous media. Most experimental models are models derived for a 

free fluid (no porous media) that were modified for a porous medium. Attempts have been 

made to define effective diffusion parameters according to the presence of the porous 

medium. In literature, the effective diffusion coefficients are now well established, 

theoretically ([60], [104], [107], [90] and [79]) and experimentally ([42], [22] and [49]). 

The comparison of the theoretical and experimental results for the dependence of the 

effective diffusion coefficient on the medium porosity shows that the results of Quintard 

(1993) in three dimensional arrays of spheres [79] and the curve identified by Weissberg 

(1963) are in excellent agreement with the experimental data [111]. 

Many experimental studies have been done to determine the effective diffusion coefficient 

for unconsolidated porous media. The diffusion of hydrogen through cylindrical samples 
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of porous granular materials was measured by Currie (1960) [22]. An equation having two 

shape factor of the form mDD εγ=* has been proposed which fits with all granular 

material, m is the particle shape factor. The value of γ  for glass spheres can be fixed to 

0.81 [15]. The expected m value for spheres is 1.5.  

For measuring effective diffusion coefficients we have used the same apparatus and 

method but here, one part of the connecting tube (4 cm long, connected to the bottom bulb) 

is filled with the porous medium made of glass spheres (Fig.   4-8). A metal screen was 

fixed at each end of the tube to prevent spheres fall down. The mesh size of the screen is 

larger than spheres diameter and smaller than the pore size. The porosity of each medium 

has been determined by construction of a 3D image of the sample made with an X-ray 

tomography device (Skyscan 1174 type, see Fig.   4-9). A section image of the different 

samples used in this study is shown in Fig.   4-10. 

 

 

 
 

Fig.   4-8.  Cylindrical samples filled with glass sphere 
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Fig.   4-9. X-ray tomography device (Skyscan 1174 type) used in this study 

 

 

   
Glass spheres 
d= 700-1000 μm 
ε=42.5 % 

Glass spheres 
d= 200-210 μm 
ε=40.2 % 

Glass spheres 
d= 100-125 μm 
ε=30.6 % 

  
 

Mixture of glass spheres 
D=100-1000 μm 
ε=28.5 % 

Cylindrical material  
d=1500 μm 
ε=66 % 

Glass wool 
Mean fiber diameter= 6 μm  
ε≅ 66 % 

 

Fig.   4-10.  Section images of the tube (inner diameter 795.0=d cm) filled by different materials obtained 
by an X-ray tomography device (Skyscan 1174 type) 
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The various diffusion time evolution through a free medium and porous media made of 

different glass spheres (or mixture of them) are shown in Fig.   4-11 and Fig.   4-12 for He-

N2 and He-CO2 systems, respectively. These results show clearly that the concentration 

time variations are very different from free medium and porous medium experiments. In 

the case of porous medium there is a change depending on the porosity of the medium. 

The values of the particle diameter, corresponding porosity, and calculated diffusion 

coefficients are shown in Table  4-5 and Table  4-6. Here, the stared parameters are the 

effective coefficients and the others are the coefficient in the free fluid.  

 The diffusion coefficients have been obtained by curve fitting of equation ( 4-31) on the 

experimental data. We can conclude from these results that there is not significant 

difference between calculated ratios of 12
* DD  obtained from two different gas systems. 

50

55

60

65

70

75

80

85

90

95

100

0 36000 72000 108000 144000 180000 216000

Time (s)

C
on

ce
nt

ra
tio

n 
of

  N
2 i

n 
bo

tto
m

 b
ul

b 
(%

) .

Free Fluid

Porous media, ε=42.55

Porous media, ε=30.59
Porous media, ε=28.52

 

Fig.   4-11. Composition-time history in two-bulb diffusion cell for He-N2 system for different medium. 
( KTC 300= and %1000

1 =bc ) 

 

Table  4-5.  Measured diffusion coefficient for He-N2 and different media 

particle 
diameter (μm) 

Porosity 
(%) 

D12 
(cm2/s) 

D*/D12 
(-) 

Free Fluid 100 0.700 1 
750-1000 42.5 0.438 0.64 
100-125 30.6 0.397 0.57 

Mixture of spheres 28.5 0.355 0.51 
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Fig.   4-12. Composition-time history in two-bulb diffusion cell for He-CO2 system for different medium 
( KT 300= and %1000

1 =bc ) 

 

Table  4-6.  Measured diffusion coefficient for He-CO2 and different medium 

particle 
diameter (μm) 

Porosity 
(%) 

D 
(cm2/s) 

D*/D 
(-) 

Free Fluid 100 0.620 1 
750-1000 42.5 0.400 0.65 
200-210 40.2 0.375 0.61 

Mixture of spheres 28.5 0.322 0.52 
 

 

4.4.4 Free fluid and effective thermal diffusion coefficient 
 

Experimental investigations of thermal diffusion have usually been based on the 

determination of the difference in composition of two parts of a given gas mixture which 

are at different temperatures. In this work, after obtaining the steady-state in the diffusion 

process, described in the section  4.4.3,(see also Fig.   4-13a),  the temperature of top bulb is 

increased to 350°K as shown in Fig.   4-13b. In this stage the valve between the two bulbs 

is closed. Increasing the temperature in this bulb will increase the pressure then, by 

opening a tap on the top bulb, the pressure decrease until it reaches an equilibrium value 

between the two bulbs.  
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Fig.   4-13. Schematic diagram of two bulb a) diffusion and b) thermal diffusion processes 

 

In this study, since the thermal diffusion coefficient is a complex function of 

concentration, temperature, pressure, and molecular masses of the components, we have 

tried to fix all these parameters in order to observe only the influence of porosity on the 

thermal diffusion process.  

The separation can be found from the change in composition which occurs in one bulb 

during the experiment, providing that the ratio of the volumes of the two bulbs is known.  

In the equation expressing the separation, the volume of the connecting tube has been 

neglected. Then, from equation ( 4-18) the thermal diffusion factor for He-N2 and He-CO2 

binary mixtures is obtained, respectively, as about 0.31 and 0.36. In the literature, this 

factor, for the temperature range of 287°K -373 °K, is reported as about 0.36 for He-N2 

binary mixture [44]. From experimental results of composition dependence of He-CO2 

mixture, done with a swing separator method by Batabyal and Barua, (1968) [5] Tα  
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increases with increasing concentration of the lighter component. A thermal diffusion 

factor equal to 0.52 is obtained from the equation proposed in their paper, at 0.341=T °K 

[5].  

 A study using a two-bulb cell to determine the composition and temperature dependence 

of the diffusion coefficient and thermal diffusion factor of He-CO2 system has been done 

by Dunlop and Bignell, (1995) [28].  They obtain a diffusion coefficient equal to 0.615 

cm2/s at 300 °K and a thermal diffusion factor of 0.415 at 300=T °K [28]. 

 The theoretical expression for the first approximation to the thermal diffusion factor, 

according to the Chapman-Enskog theory may be written as follows 

[ ] )56( *
121 −= CAα   ( 4-32)

where A is a function of molecular weights, temperature, relative concentration of the two 

components, and *
12C  is a ratio of collision integrals in the principal temperature 

dependence given by the )56( *
12 −C  factor [40]. We calculated the values of the thermal 

diffusion factors for He-CO2 and He-N2 mixtures at T , using this theoretical approach and  

according to the Lennard-Jones (12:6) potential model. We obtained a thermal diffusion 

factor for He-N2 mixture about 0.32 and for He-CO2 about 0.41. The detail of formulation 

and estimation are listed in Appendix B.   

As we explained in section  4.2.4, when the experimental data concerning time evolution of 

the concentration exist, we can evaluate the both diffusion and thermal diffusion 

coefficients. Therefore in this study, by a curve fitting procedure on the experimental data, 

two parameters 12D  and TD   are adjusted until equation ( 4-26) fits the experimental curve. 

In fact, adjusting 12D  fits the slope of the experimental data curves and then, TD  is related 

to the final steady-state of the curves. The thermal diffusion kinetics for, respectively, free 

media and porous media made of different glass spheres (or mixture of them) are shown in 

Fig.   4-14 (He-N2 mixture) and Fig.   4-15 (He-CO2 mixture). Here also, the time history 

changes with the porous medium porosity. The values for porosity, particle diameter of the 

porous medium, calculated diffusion coefficients, thermal diffusion coefficients and 

related thermal diffusion factor are shown in Table  4-7 for He-N2 mixture and Table  4-8 

for He-CO2 mixture. 

The diffusion coefficients calculated with this method are larger than the one obtained in 

diffusion processes for He-N2 system. The theoretical approach (Table  4-4) and 

experimental data show that the diffusion coefficient increases with increasing the 
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temperature. From equation (A. 2), when the ideal-gas law approximation is valid, we can 

write 

( )*

2
3

12 T
TD
DΩ

∝   ( 4-33)
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Fig.   4-14. Composition-time history in two-bulb thermal diffusion cell for He-N2 binary mixture for 
different media ( KT 50=Δ , KT 7.323= and %500

1 =bc ) 

Table  4-7. Measured thermal diffusion and diffusion coefficient for He-N2 and for different media 

particle 

diameter 

(μm) 

Porosity 
(%) 

D12 
(cm2/s) 

D*/D12 
(-) 

αT 
(-) 

DT 
(cm2/s.K) 

DT*/DT 
(-) 

Free Fluid 100 0.755 1 0.310 0.059 1 

750-1000 42.5 0.457 0.605 0.312 0.035 0.61 

100-125 30.6 0.406 0.538 0.308 0.031 0.53 

Mixture of 
spheres 28.5 0.369 0.489 0.304 0.028 0.48 
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Fig.   4-15. Composition-time history in two-bulb thermal diffusion cell for He-CO2 binary mixture for 
different media .( KT 50=Δ , KT 7.323= and %500

1 =bc ) 

 
 

Table  4-8.  Measured diffusion coefficient and thermal diffusion coefficient for He-CO2 and for different 
media 

particle 

diameter 

(μm) 

Porosity 
(%) 

D12 
(cm2/s) 

D*/D12 
(-) 

αT 
(-) 

DT 
(cm2/s.K) 

DT*/DT 
(-) 

Free Fluid 100 0.528 1 0.358 0.047 1 

750-1000 42.5 0.304 0.627 0.362 0.028 0.61 

200-210 40.2 0.320 0.567 0.364 0.027 0.59 

Mixture of 
spheres 28.5 0.273 0.508 0.363 0.024 0.52 

 

 

In a second set of thermal diffusion experiments, we eliminate the valve between the two 

bulbs in order to have a shorter relaxation time. In this case, the tube length is equal to 4 

cm only (calibrated cell constant= 241044.2 −−× cm ) and we filled the system cells with a 

binary gas mixture ( %25.610
2
=Nc ). At the initial state, the whole setup is kept at a 

uniform and constant temperature about 325 °K and the composition of the mixture is 

uniform everywhere. Then, the temperature of the top bulb is increased to 350=HT °K 
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and the temperature of the bottom bulb is lowered to 300=CT °K. At the end of this 

process, when the temperature of each bulb remains constant, the pressure of the two bulbs 

is equal to the beginning of the experience. The thermal diffusion separation in this period 

is very small because of the forced convection. The katharometer reading data have been 

recorded with one minute interval. Concentration in bottom bulb has been determined 

using the katharometer calibration curve. Then, with a curve fitting procedure on the 

experimental data, as in the last section, the two coefficients 12D  and TD  are adjusted until 

equation ( 4-26) fits the experimental curve. The adjusted curves for a free medium and 

different porous media are shown in Fig.   4-17. The values obtained for porosity, particle 

diameter of the porous media, calculated diffusion and thermal diffusion coefficients and 

thermal diffusion factor are listed in Table  4-9.  

 

 

 

Fig.   4-16. New experimental thermal diffusion setup without the valve between the two bulbs 

Top  
bulb 

Bottom 
bulb 

Tube containing 
porous medium  
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Fig.   4-17. Composition-time history in two-bulb thermal diffusion cell for He-N2 binary mixture for 
different media ( KT 50=Δ , KT 7.323= and %25.610

1 =bc ) 

 
 
Table  4-9.  Measured diffusion coefficient and thermal diffusion coefficient for He-N2 and different media 

particle 

diameter 

(μm) 

Porosity 
(%) 

D 
(cm2/s) 

D*/D 
(-) 

αT 
(-) 

DT 
(cm2/s.K) 

DT*/DT 
(-) 

Free Fluid - 0.480 1 0.256 0.029 1 

315-325 33.8 0.257 0.530 0.248 0.015 0.52 

5-50 26.4 0.165 0.344 0.252 0.010 0.34 

 
 

4.4.5 Effect of solid thermal conductivity on thermal diffusion 
 
In section  2.7.2, the theoretical model revealed that, for pure diffusion, the effective 

thermal diffusion coefficients are independent of the thermal conductivity ratio. To 

validate this result we have conducted some experiments with two different materials 

shown in Fig.   4-18. Stainless steel and glass spheres are used in these experiments which 

their physical properties are listed in Table  4-10. 
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Fig.   4-18.  Cylindrical samples filled with different materials (H: stainless steal, G: glass spheres and 
ε=42.5) 

 
Table  4-10. The solid (spheres) and fluid mixture physical properties (T=300 K) [48] 

Material 

of 

particles 

Diameter 

(mm) 
σk (sphere) 

(W/m.K) 

 

βk (gases) 

(W/m.K) 

 

( )
σ

ρ pc  

 (kg/m3 

×J./kg.K) 

( )
β

ρ pc  

 (kg/m3 

×J./kg.K) 

β

σ

k
k

 
( )
( )

β

σ

ρ
ρ

p

p

c
c

 

Stainless 

Steel 
1 15 7900×477 301 3202 

Glass 

 
1 1.1 

He=0.149 

CO2=0.0181 

Mix=0.0499 2500×750 

He= 

0.1624×5200 

CO2= 

1.788×844 

Mix=1177 

22 1593 

 

The gas mixture used for this study is a He (50%)-CO2 (50%) mixture. Like in the section 

 4.4.4, first the sample (tube of 4 cm length filled by spheres produced a void fraction about 

ε=42.5) is placed between two bulbs carefully. Next step is to vacuum the air from the 

system using the vacuum pump. Then, the system, which is kept at a uniform temperature 

of 325 K, is filled by the gas mixture at atmospheric pressure. To start the thermal 

diffusion process, the temperature of the top bulb is increased to 350 K and at the same 

time, the temperature of the bottom bulb is decreased to 300 K.  The advantage of this 

method is that, at the end of this step, when the temperature of each bulb is constant, the 

pressure of the closed system will be the same as at the starting of the experiment. During 

this intermediate period, the thermal diffusion process is negligible because of the forced 

G H 
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convection between the two bulbs through the tube. Then, continuous measurements by 

katharometer, barometers, and thermometers are started in the two bulbs.  

It is important to note that, during the tube packing, even if the spheres diameter is the 

same in both cases, it may result in slightly different porosity. This could be due to 

different spheres arrangement (because of packing and shaking degree). To avoid this 

error, we made three samples of each type therefore the experiment is repeated for each 

sample.   
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Fig.   4-19. Katharometer reading time history in two-bulb thermal diffusion cell for He-CO2 binary mixture 
for porous media having different thermal conductivity (3 samples of stainless steal and 3 samples of glass 
spheres) ( KT 50=Δ , KT 7.323= and %500

1 =bc ) 

  

Katharometer reading time histories for porous media made of different thermal 

conductivity (stainless steal and glass spheres) is plotted in Fig.   4-19.   

As it is shown in this plot, thermal diffusion curves for the two different materials can be 

superimposed and we can conclude that, in this case, the thermal conductivity ratio has no 

significant influence on the thermal diffusion process.  
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4.4.6 Effect of solid thermal connectivity on thermal diffusion 
 

It is known that heat conduction at the contact points plays a dominant role in determining 

the effective heat conduction in porous media [79, 92]. To determine the effect of solid 

phase connectivity, one must use a higher thermal conductor than stainless steal. Because 

theoretical results show that the influence of this phenomenon is considerable when the 

thermal conductivity ratio is more than 100 as shown in Fig.   2-15. Therefore, it is better to 

test more conductive martial. We have chosen aluminum and glass spheres with a diameter 

of 6mm shown in Fig.   4-20. The sample preparation is different from the last section. 

Here, the sample is made of one array of spheres, in which we can neglect the problem that 

we had concerning spheres arrangement in the tube.  Here, inner diameter of insulated 

rigid glass tube is chosen to be 75.0=d cm and length of 8.5=l  cm. The number of 

spheres forming the porous medium is ten, which produced a void fraction about 56.0=ε .  

 

Fig.   4-20.  Cylindrical samples filled with different materials (A: glass spheres, B:  aluminium spheres and 
ε=0.56) 

 

The physical properties of two materials used in this experiment are listed in Table  4-11. 

As we can see, the thermal conductivity ratio for aluminum and the mixture of helium and 

carbon dioxide is about 4749. At this value, the connectivity of the solid phase has a high 

influence on the effective thermal conductivity coefficients as shown in Fig.   2-15.   
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 Table  4-11. The solid (spheres) and fluid mixture physical properties (T=300 K) [48] 

Material 

of 

particles 

Diameter 

(mm) 
σk (sphere) 

 (W/m.K) 
 

βk (gases) 

 (W/m.K) 

 

( )
σ

ρ pc  

 (kg/m3 

×J./kg.K) 

( )
β

ρ pc  

 (kg/m3 

×J./kg.K) 

β

σ

k
k

 
( )
( )

β

σ

ρ
ρ

p

p

c
c

 

Aluminum 6 237 2702×903 4749 2073 

Glass 

 
6 1.1 

He=0.149 

CO2=0.0181 

Mix=0.0499 
2500×750 

He= 

0.1624×5200 

CO2= 

1.788×844 

Mix=1177 

22 1593 

 

Katharometer reading time histories for porous media made of aluminum and glass spheres 

have been plotted in Fig.   4-21.   

This figure shows that, the thermal diffusion curves for two different materials are 

superimposed. That means that, the particle-particle contact does not show a considerable 

influence on the thermal diffusion process.  
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Fig.   4-21. Katharometer time history in two-bulb thermal diffusion cell for He-CO2 binary mixture for 
porous media made of different thermal conductivity (aluminum and glass spheres) ( KT 50=Δ , 

KT 7.323= and %500
1 =bc ) 
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4.4.7 Effect of tortuosity on diffusion and thermal diffusion coefficients 
 

Mathematically, the tortuosity factor, τ , defined as the ratio of the length of the “tortuous” 

path in a porous media divided by a straight line value shown in Fig.   4-22.  

 

L

L'

 

Fig.   4-22. Definition of tortuosity coefficient in porous media, L= straight line and L’= real path length 

 

There are several definitions of this factor. The most widely used correlation for gaseous 

diffusion is the one of Millington and Quirk (1961) for saturated unconsolidated system 

[63, 62]  

 311 ετ =  ( 4-34)

 

Tortuosity is also an auxiliary quantity related to the ratio of the effective and free 

diffusion coefficients. τ  in many application for homogenous and isotropic environment is 

also defined as [69, 68] 

   *
12

D
D

=τ  ( 4-35)

In this study, we define the tortuosity as a ratio of the effective to free diffusion 

coefficients as we mentioned also in chapter 2 

τD
D 1

12

*

=  or, 
τD

D
T

T 1*

=  ,which are ⎟
⎠
⎞

⎜
⎝
⎛

′L
Lf  ( 4-36)

Table  4-12 presents the tortuosity factors calculated from values measured in this work 

(for non-consolidate spheres and the tortuosity definition with Eq. ( 4-36)) 

 

 

 

⎟
⎠
⎞

⎜
⎝
⎛

′
=

L
Lfτ  
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Table  4-12.  Porous medium tortuosity coefficients 

Particle 

diameter 

(μm) 

Porosity 
(%) 

*
12

D
D

=τ  

(From diffusion 
experiments) 

*
12

D
D

=τ  

(From thermal diffusion 
experiments) 

*
T

T

D
D

=τ  

(From thermal 
diffusion experiments) 

 
τ  
 

750-1000 42.5 1.57 1.62 1.63 1.61 
200-210 40.2 1.65 1.76 1.71 1.71 
315-325 33.8 - 1.89 1.92 1.90 

100-125 30.6 1.76 1.86 1.87 1.83 
Mixture of 
spheres 

28.5 1.95 2.00 1.99 1.98 

5-50 26.4 - 2.91 2.90 2.90 

 

We showed that porosity has an important influence on both effective isothermal diffusion 

and thermal diffusion coefficients. Another question is what may happen when there are 

two media with the same porosity but not the same tortuosity.  

In this section we tried to construct two media with such properties as shown in Fig.   4-23. 

 

Fig.   4-23.  Cylindrical samples filled with different materials producing different tortuosity but the same 
porosity ε=66% (E: cylindrical material and F: glass wool) 

 

The section image of the tubes filled by these materials obtained by the tomograph device 

(Skyscan 1174 type) is shown in Fig.   4-10 E and F. 

The results of concentration-time histories for porous medium made with cylindrical 

samples and glass wool are plotted in Fig.   4-24.  As we can see, the concentration-time 

curves for two cases are not superimposed and are completely separated. The calculated 

E F 
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tortuosity factor in porous medium made of cylindrical materials is 37.2=τ  and for glass 

wool it is relatively two times less than one for cylindrical materials 04.1=τ . These 

results indicate that the effective coefficients are not only the function of porosity but also 

the geometry. Thus, tortuosity prediction using only the porosity may not be enough and 

the permeability of the medium should be considered also. 
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Fig.   4-24.  Composition time history in two-bulb thermal diffusion cell for He-CO2 binary mixture in porous 
media made of the same porosity (ε=66% ) but different tortuosity (cylindrical materials and glass wool) 
( KT 50=Δ , KT 7.323= and %500

1 =bc ) 

4.5 Discussion and comparison with theory 
 

In the theoretical part of this study, chapter  2, we have presented the volume averaging 

method to obtain the macro-scale equations that describe diffusion and thermal diffusion 

processes in a homogeneous porous medium. The results of this model showed that the 

effective thermal diffusion coefficient at diffusive regime can be estimated with the single 

tortuosity, results fully discussed in the literature [79, 80]. Here, we rewrite the basic 

theoretical results for a pure diffusion and binary system as 

τD
D

D
D

T

T 1*

12

*

== ,  for pure diffusion ( 4-37)

Fig.   4-25 and Fig.   4-26 show respectively a comparison of effective diffusion and 

thermal diffusion coefficients measured in this study and the theoretical results from the 

volume averaging technique for different porosity of the medium. We note that, the 

volume averaging process, have carried out using a model unit cell such as the one shown 
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in Fig.  2-6. In this system, the effective diffusion and thermal diffusion coefficients for 

different fractional void space is plotted as the continuous lines. These figures show that 

the experimental, effective coefficient results for the non-consolidated porous media made 

of spheres are in excellent agreement with volume averaging theoretical estimation.   
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Fig.   4-25.  Comparison of experimental effective diffusion coefficient data with the theoretical one obtained 
from volume averaging technique for different porosity and a specific unit cell 

 

In Fig.   4-27 the ratio of  TT kk*  has been plotted against porosity, where, the effective 

thermal diffusion ratio, *
Tk ,  has been defined as *** DTDk TT = . The experimental results 

for both mixtures are fitted with the volume averaging theoretical estimation. These results 

also validate the theoretical results and reinforce the fact that for pure diffusion the Soret 

number is the same in the free medium and porous media. 
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Fig.   4-26.  Comparison of experimental effective thermal diffusion coefficient data with theoretical one 
obtained from volume averaging technique for different porosity and a specific unit cell 
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Fig.   4-27.  Comparison of the experimental thermal diffusion ratio data with theoretical one obtained from 
volume averaging technique for different porosity and a specific unit cell 
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4.6 Conclusion 
 

In this chapter, we used a “two-bulb apparatus” for measuring the diffusion and thermal 

diffusion coefficient in free medium and non-consolidated porous medium having different 

porosity and thermal conductivity, separately. The results show that for He-N2 and He-CO2 

mixtures, the porosity of the medium has a great influence on the thermal diffusion 

process. On the opposite, thermal conductivity and particle-particle contact of the solid 

phase have no significant influence on thermal diffusion in porous media. The comparison 

of the ratio of effective coefficients in the porous medium to the one in the free medium 

shows that the behavior of tortuosity is the same for the thermal diffusion coefficient and 

diffusion coefficient. Therefore, the thermal diffusion factor is the same for a free medium 

and porous media. For non-consolidated porous media made of the spheres these results 

agree with the model obtained by upscaling technique for effective thermal diffusion 

coefficient proposed in the theoretical chapter 2. The tortuosity of the medium calculated 

using both effective diffusion and effective thermal diffusion coefficients are not different 

to the measurement accuracy. 



 

 

 

 

 

 

CChhaapptteerr  55  

  
GGeenneerraall  ccoonncclluussiioonnss  aanndd  ppeerrssppeeccttiivveess  



 139

5. General conclusions and perspectives 

 

In this study, the effective Darcy-scale coefficients for coupled via Soret effect heat and 

mass transfer in porous media have been determined theoretically and experimentally. A 

theoretical model has been developed using the volume averaging technique. We 

determined from the microscopic equations new transport equations for averaged fields 

with some effective coefficients. The associated quasi-steady closure problems related to 

the pore-scale physics have been solved over periodic unit cells representative of the 

porous structure. Particularly, we have studied the influence of the void volume fraction 

(porosity), Péclet number and thermal conductivity on the effective thermal diffusion 

coefficients. The obtained results show that 

• the values of the effective coefficients in porous media are completely different 

from the ones of the free medium (without the porous medium),  

• in all cases, the porosity of the medium has a great influence on the effective 

thermal diffusion coefficients, 

• for a diffusive regime, this influence is the same for the effective diffusion 

coefficient and thermal diffusion coefficient. As a result, for low Péclet numbers, 

the effective Soret number in porous media is the same as the one in the free fluid. 

At this regime, the effective thermal diffusion coefficient does not depend on the 

solid to fluid conductivity ratio,  

• for a convective regime, the effective Soret number decreases and then changes its 

sign. In this case, a change of conductivity ratio will change the effective thermal 

diffusion coefficient as well as the effective thermal conductivity coefficient,  

• theoretical results also showed that for pure diffusion, even if the effective thermal 

conductivity depends on the particle-particle contact, the effective thermal 

diffusion coefficient is always constant and independent on the connectivity of the 

solid phase. 

As a validation, the initial pore-scale problem was solved numerically over an array of 

cylinders, and the resulting averaged temperature and concentration fields were compared 

to macro-scale theoretical predictions using the effective coefficients resulting from the 

previous theoretical study. The results showed that 
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• a good agreement has been found between macro-scale resolutions and micro-

scale, direct simulations, which validates the proposed theoretical model, 

• thermal diffusion modifies the local concentration and this modification depends 

locally on the porosity, thermal conductivity ratio and fluid velocity. Therefore, we 

cannot ignore this effect. 

A new experimental setup has been designed and made-up to determine directly the 

effective diffusion and thermal diffusion coefficients for binary mixtures. This setup is a 

closed system, which helped carry out the experiments for the case of pure diffusion only. 

The experiments have been performed with special all-glass two-bulb apparatus, 

containing two double-spherical layers. The diffusion and thermal diffusion of helium-

nitrogen and helium-carbon dioxide systems through cylindrical samples first without 

porous media and then filled with spheres of different diameters and thermal conductivities 

were measured at the atmospheric pressure. Concentrations were determined by analysing 

the gas mixture composition in the bulbs with a katharometer device. A transient-state 

method for coupled evaluation of thermal diffusion and Fick coefficient in two bulbs 

systems has been proposed. Here, with a simple thermal diffusion experiment, this model 

is able to determine both diffusion and thermal diffusion coefficients. The determination of 

diffusion and thermal diffusion coefficients is done by a curve fitting of the temporal 

experimental results with the transient-state solution describing the mass balance between 

the two bulbs. The results showed 

• a dependency of the thermal diffusion and diffusion coefficients on the porosity,  

• a good agreement with theoretical results, which confirm the validity of the 

theoretical results for pure diffusion,  

• the tortuosity of the medium calculated using both effective diffusion and effective 

thermal diffusion coefficients were not different to the measurement accuracy,  

• the experimental results also showed that the particle-particle touching has not a 

significant influence on the effective thermal diffusion coefficients.  

There is still much work to be done concerning thermal diffusion in porous media. Several 

perspectives can be proposed. The following ones present especial interest 

• in the theoretical part of this study we developed a coupled heat and mass transfer 

macro-scale equation with a non-thermal equilibrium case (using a two-equation 

temperature problem). One may use this model when the assumption of thermal 

equilibrium is not valid. However, the closure problems have not been solved for 
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this model. Therefore, the next step may be to solve numerically these closure 

problems and then compare with the one-equation results,  

• the model proposed in this study is able to predict the effective coefficients in a 

binary mixture of gas (or liquid) phase, the future works may be to focuse on more 

real and complex problems, i.e. multi-component and multi-phase systems. 

• the effect of solid phase connectivity on the effective thermal conductivity and 

thermal diffusion coefficients has been investigated on a two dimensional closure 

problem. In the case of thermal diffusion, we eliminated the particle touching in the 

y-direction to calculate the longitudinal thermal diffusion coefficient. In future 

work, one can resolve this problem using a three dimensional model, keeping the x, 

y and z touching parts as shown in Fig.   5-1. The three dimensional model may be 

also interesting for calculating effective thermal conductivity for purpose of  

comparison with earlier two dimensional results, 

 

 

Fig.   5-1.  3D geometry of the closure problem with particle-particle touching made with COMSOL 
Multiphysics 
 

• by now, there is no qualitative agreement between numerical and experimental 

results concerning separation in packed thermogravitational cell as shown in Fig.  

 5-2 [31]. We showed that the ratio of thermal conductivity is very important for the 

convective regime. Therefore, this should change the separation rate in a packed 

thermogravitational cell. Therefore, it is very interesting to find the relation 
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between separation and thermal conductivity ratio. This may be achieved by simple 

micro-scale modelling or by the design of an experimental setup for a packed 

thermogravitational cell filled with different materials. The results may  reveal the 

reason of discrepancy which exists between theoretical and experiment results in a 

packed thermogravitational cell, 

 
Rayleigh number 

Fig.   5-2. Discrepancy between numerical results and experimental measurements in a packed thermo- 
gravitational cell [31] 

 

• in our work the experiments have been done for a non-consolidated material. The 

next experiments can be done using consolidated porous media. One will be able to 

produce two porous media of different materials with exactly same porosity. 

• in this study using a katharometer device, the experiments have been limited to 

binary systems. However, it is also important to measure directly the effective 

thermal diffusion coefficients in ternary mixtures or beyond. In future work, using, 

for example, a gas chromatography device, the results will be extended to more 

than two components, 

• the experiments were performed for pure diffusion cases, which allowed us to 

validate the corresponding theoretical results only at pure diffusion. Designing 

another setup capable to measure the impact of dispersion on thermal diffusion (see 

Fig.   5-3) can be helpful to validate the theoretical results when the Péclet number 

is not zero, as well as for practical reasons. 
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Fig.   5-3. Proposition of experimental setup for convective regime 
 

• Finally, it could be interesting to apply the new results obtained in this work to 

practical situations.  
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Conclusions générales et perspectives en français 
 

Dans cette étude, les coefficients effectifs à l’échelle de Darcy pour le transfert couplé de 

la chaleur et de la matière dans le milieu poreux ont été déterminés expérimentalement et 

théoriquement. Un modèle théorique a été développé en utilisant la méthode de prise de 

moyenne volumique. L'application du théorème de prise de moyenne volumique sur les 

équations microscopiques décrivant les transports à l’échelle du pore permet d'obtenir les 

nouvelles équations de transport pour les champs moyens avec les coefficients effectifs. 

Les problèmes de fermetures liées à la physique de l'échelle des pores ont été résolus sur 

une cellule unitaire périodique représentative de la structure poreuse. En particulier, nous 

avons étudié l'influence de la fraction volumique du pore (porosité), nombre de Péclet et 

de la conductivité thermique sur les coefficients de thermodiffusion effectifs. Les résultats 

obtenus montrent que : 

• les valeurs des coefficients effectifs en milieu poreux sont complètement différents 

de celles du milieu libre (sans milieu poreux), 

• dans tous les cas, la porosité du milieu a une grande influence sur les coefficients 

de thermodiffusion effectifs en milieu poreux, 

• pour un régime diffusif (Pe = 0), cette influence est la même pour le coefficient de 

diffusion isotherme effectif et le coefficient de thermodiffusion effectif. En 

conséquence, pour les faibles nombres de Péclet, le nombre de Soret effectif dans 

le milieu poreux est le même que celui en milieu libre. Pour ce régime, le 

coefficient de thermodiffusion effectif ne dépend pas du ratio des conductivités 

thermiques,  

• pour le régime convectif (Pe ≠ 0), le nombre de Soret effectif diminue et change 

même de signe pour les régimes fortement convectifs. Dans ce cas, un changement 

du rapport de la conductivité thermique changera le coefficient thermodiffusion 

effectif ainsi que le coefficient conductivité thermique effective, 

• en diffusion pure, même si la conductivité thermique effective dépend de la 

connectivité de phase solide, le coefficient thermodiffusion effective est toujours 

constant et indépendant de la connectivité de la phase solide, 

 

Afin de valider les résultats théoriques précédents, le problème d'échelle du pore a été 

résolu numériquement sur une série de cylindres. Les températures et concentrations 
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moyennes sont comparées avec les prédictions macroscopiques en utilisant les coefficients 

effectifs obtenus avec le modèle proposé. Les résultats montrent que : 

• il y a un très bon accord entre les résultats issus des résolutions à l'échelle 

macroscopique (avec coefficients effectifs) et microscopiques (simulations 

directes), ce qui valide le modèle théorique proposé, 

• la thermodiffusion modifie la concentration locale et cette modification dépend 

localement de la porosité, du ratio de conductivité thermique et de la vitesse du 

fluide. Par conséquent, cet effet ne peut pas être négligé dans la plupart des cas. 

 

Un nouveau dispositif expérimental a été conçu et mis en place afin de déterminer 

directement les coefficients de diffusion et thermodiffusion effectif pour des mélanges 

binaires. Le dispositif réalisé est un système fermé, ce qui a permis d’effectuer des 

expériences pour les cas de diffusion pure. Les expériences ont été réalisées avec un 

dispositif de type « deux bulbes » spécifique, tout en verre, contenant une double couche 

sphérique permettant de contrôler les températures de chaque réservoir. La diffusion et la 

thermodiffusion de mélanges binaires  hélium-azote, et d'hélium-dioxyde de carbone, à 

travers des échantillons cylindriques d'abord sans milieux poreux, puis rempli avec des 

sphères de différents diamètres et de différentes conductivités thermiques est mesurée à  

pression atmosphérique. Les concentrations sont déterminées en analysant la composition 

du mélange de gaz dans les ampoules à l’aide d'un catharomètre qui est solidarisé à une 

partie de l'ampoule. Une méthode transitoire pour l'évaluation couplée du coefficient de 

thermodiffusion et de diffusion de Fick dans le système de deux ampoules a été proposée. 

Ici, avec une expérience simple de thermodiffusion, ce modèle est capable de déterminer à 

la fois les coefficients de diffusion et de thermodiffusion. La détermination de ces 

coefficients est réalisé par ajustement (« fiting ») de la courbe expérimentale de l’évolution 

temporelle des concentrations avec une solution analytique décrivant le bilan transitoire de 

matière entre les deux ampoules. Cela permet d'ajuster les coefficients jusqu'à ce que les 

équations se superposent avec les résultats expérimentaux. Les résultats ont montré : 

• une dépendance des coefficients de thermodiffusion et  de diffusion effectifs avec 

la porosité, 

• un bon accord avec les résultats théoriques, ce qui confirme la validité des résultats 

théoriques en diffusion pure, 
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• une valeur de la tortuosité du milieu identique lorsqu’elle est calculée à partir des 

coefficients de diffusion effectifs ou à l’aide des coefficients de thermodiffusion 

effectifs, ce qui permet de proposer une valeur moyenne du coefficient de 

tortuosité du milieu, 

• le contact particule-particule n'a pas d’influence significative sur les coefficients de 

thermodiffusion effectifs. 

 

Il reste encore beaucoup des recherches et de développements à faire concernant la 

thermodiffusion en milieux poreux. Plusieurs perspectives peuvent être proposées; celles 

qui suivent présentent un intérêt particulier en prolongement du travail réalisé : 

• dans la partie théorique de cette étude, nous avons développé un modèle 

macroscopique décrivant de transfert de chaleur et matière avec une équation de 

non-équilibre locale thermique (avec un problème à deux équation pour 

température), qu’il peut être utiliser lorsque l'hypothèse de l'équilibre thermique 

n'est pas valide. Toutefois, pour ce modèle les problèmes de fermeture n’ont pas 

été résolus. Une prochaine étape consisterait à résoudre numériquement ces 

problèmes des fermetures et comparer ensuite avec les résultats à une équation, 

• l'effet de la connectivité de la phase solide sur les coefficients de thermodiffusion 

et la conductivité thermique a été traité avec un problème de fermeture à deux 

dimensions. Dans le cas de la thermodiffusion, nous avons éliminé la connectivité 

de particules dans la direction y pour ne pas « bloquer » le transfert de matière et 

calculer le coefficient de thermodiffusion effective longitudinal. En utilisant un 

modèle à trois dimensions, on pourrai résoudre ce problème en gardant la 

connectivité de la phase solide dans les trois directions x, y et z (Fig.   5-1). Ce 

modèle en trois dimensions pourrait d’ailleurs être également intéressant pour la 

détermination de la conductivité thermique effective, 

• jusqu’à présent, il n'y a pas d'accord entre les résultats numériques et 

expérimentaux concernant la séparation dans un cellule thermogravitationelle [31] 

comme indiqué dans la Fig. 5 2. Nous avons montré que l’influence du rapport des 

conductivités thermiques est très importante pour le régime convectif. Ceci doit 

avoir des conséquences sur la séparation des espèces obtenue dans les cellules de 

thermogravitation. Par conséquent, il serait intéressant de trouver cette influence 

par modélisation numérique en l’échelle du pore ou par la réalisation d’un autre 
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dispositif expérimental avec une cellule thermogravitationelle remplie de matériaux 

différents. Ceci pourrait peut être montrer la raison des divergences qui existent 

entre les résultats théoriques et expérimentaux dans la cellule 

thermogravitationelle, 

• dans ce travail les expériences ont été réalisées pour des matériaux non-consolidés. 

Les expériences suivante peut-être faite en utilisant les milieux poreux consolidés. 

Certaines expériences pourraient être réalisé pour déterminer par exemple l'impact 

de la conductivité thermique sur les coefficients de thermodiffusion en milieu 

poreux avec différentes propriétés thermo-physiques, 

• dans cette étude, l’utilisation d’un catharomètre, a limité les expériences à des 

systèmes binaires. Il serait également important de pouvoir mesurer directement les 

coefficients de thermodiffusion effectifs dans des mélanges ternaires. Dans les 

travaux futurs, l’utilisation par exemple d’un dispositif de chromatographie seront 

permettrait d’obtenir des résultats pour des mélanges à plus de deux composants, 

• le dispositif expérimental réalisé ici a permis de traiter le cas de la diffusion pure, 

et de valider les résultats théoriques correspondant à ce cas. La validation 

expérimentale des résultats théoriques lorsque le nombre de Péclet n'est pas nul 

(validés par ailleurs par les simulations à l’échelle du pore) nécessiterait  la 

réalisation d’un nouveau dispositif (voir Fig.   5-3), en système ouvert, permettant 

de mesurer l'impact de la dispersion sur la thermodiffusion. 

• Enfin, il pourrait être intéressant d'appliquer les nouveaux résultats obtenus dans ce 

travail à des situations pratiques. 
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Appendix A. Estimation of the diffusion coefficient with gas kinetic theory 

The diffusion coefficient 12D  for the isothermal diffusion of species 1 through constant- 

pressure binary mixture of species 1 and 2 is defined by the relation 

1121 cDJ ∇−=   (A. 1)

where 1J  is the flux of species 1 and 1c  is the concentration of the diffusing species. 

Mutual-diffusion, defined by the coefficient 12D , can be viewed as diffusion of species 1 at 

infinite dilution through species 2, or equivalently, diffusion of species 2 at infinite 

dilution through species 2.  

Self-diffusion, defined by the coefficient 11D , is the diffusion of a substance through itself. 

There are different theoretical models for computing the mutual and self diffusion 

coefficient of gases. For non-polar molecules, Lennard-Jones potentials provide a basis for 

computing diffusion coefficients of binary gas mixtures [76]. The mutual diffusion 

coefficient, in units of cm2/s is defined as 

 
DpMM

MMTD
Ω

+
= 2

1221

2123
12

100188.0
σ

 (A. 2)

where T is the gas temperature in unit of Kelvin, 1M  and 2M  are molecular weights of 

species 1 and 2,  p is the total pressure of the binary mixture in unit of bar, 12σ  is the 

Lennard-Jones characteristic length, defined by ( )2112 21 σσσ += , DΩ  is the collision 

integral for diffusion, is a function of temperature, it depends upon the choice of the 

intermolecular force law between colliding molecules. DΩ  is tabulated as a function of  

the dimensionless temperature 12
* εTkT B= for the 12-6 Lennard-Jones potential, Bk  is the 

Boltzman gas constant and 2112 εεε =  is the maximum attractive energy between two 

molecules. The accurate relation of Neufield et al. (1972) is 

( ) ( ) ( ) ( )***15610.0* 89411.3exp
76474.1
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Values of the parameters σ  and ε  are known for many substances [76].  

The self-diffusion coefficient of a gas can be obtained from Eq. (A. 2), by observing that 

for a one-gas system: MMM == 21 , 21 εε =   and 21 σσ = . Thus, 

DpM
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Ω
= 2

11

23
12

1200188.0
σ

  (A. 4)
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Appendix B. Estimation of the thermal diffusion factor with gas kinetic theory  

 

From the kinetic theory of gases, the thermal diffusion factor, Tα  for a binary gas mixture 

is very complex, as described by Chapman and Cowling, 1939. Three different theoretical 

expressions for Tα  are available, depending on the approximation procedures employed: 

the first approximation and second one of Chapman and Cowling and the first 

approximation of Kihara, 1949. The most accurate of these is probably Chapman and 

Cowling’s second approximation, but this is rather complicated, and the numerical 

computation involved is quite annoying. A few sample calculations indicated that Kihara’s 

expression is more accurate than Chapman and Cowling’s first approximation (Mason and 

Rice, 1954; Mason, 1954), and usually differs from their second approximation by less 

than the scatter in different experimental determination of Tα . It therefore seemed 

satisfactory for the present purpose to use Kihara’s approximation written in the form 
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The principal contribution to the temperature dependence of Tα  comes from the factor 

( )56 *
12 −C , which involves only the unlike (1, 2) molecular interaction. The concentration 

dependence is given by 2211 xSxS −  term. The main dependence on the masses of the 

molecules is given by 1S  and 2S .  A positive value of Tα  means that component 1 tends to 

move into the cooler region and 2 towards the warmer region. The temperature at which 

the thermal diffusion factor undergoes a change of sign is referred to as the inversion 

temperature. 

These quantities calculated as  

 
( )

( ) ( )
( )

( )2
21

122
2

21

*
1221

2

12

11
*1,1

12

*2,2
11

21

2

2

1
1 2

1542
MM

MMM
MM

AMM
MM

M
M
MS

+
−

−
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Ω
Ω

+
=

σ
σ  

(B. 2) 

 
( )

( )

( )

⎥
⎦

⎤
⎢
⎣

⎡
++⎟

⎠
⎞

⎜
⎝
⎛ −×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Ω
Ω

++
=

*
1221

2
2

2
1

*
12

2

12

11
*1,1

12

*2,2
11

21

2

212
1

5
83

5
6

2
5

22

AMMMMB

MM
M

MMM
Q

σ
σ

 

(B. 3) 



 150

 
( )

( ) ( )

( )

( )

( )

2

2
12

2211
*1,1

12

*2,2
22

*1,1
12

*2,2
11

12

21*
12

2
21

*
1221*

12

2

21

21
12

5
8

5
1211

4
5
6

2
515

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Ω
Ω

⎥
⎦

⎤
⎢
⎣

⎡
Ω
Ω+

+⎟
⎠
⎞

⎜
⎝
⎛ −×

+
+⎟

⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

=

σ
σσ

MM
MMB

MM
AMMB

MM
MMQ

 

(B. 4) 

 
with relations for S2, Q2 derived from S1, Q1 by interchange of subscripts. The transport 

properties for gaseous mixtures can also be expressed in terms of the same collision 

integral. *
12A , *

12B  and *
12C  are function of  12

*
12 εkTT = defined as 
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The subscripts on the )*,( slΩ  refer to the three different binary molecular interactions which 

may occur in a binary gas mixture. By convention, the subscript 1 refers to the heavier 

gas. To this investigation, Lennard-Jones (12-6) model is applied, which has been the best 

intermolecular potential used to date for the study of transport phenomena and is expressed 

by a repulsion term varying as the inverse twelfth power of the distance of separation 

between the centers of two molecules and an attraction term varying as the sixth power of 

the separation distance. The force constants of pure components  σ  and ε  obtained from 

viscosity data are used as Table  4-3 and Table  4-4. 



 151

References 

[1] A. Ahmadi, A. Aigueperse, and M. Quintard. Calculation of the effective properties 

describing active dispersion in porous media: from simple to complex unit cells. Advances 

in Water Resources, 24 (3-4):423–438, 2000. 

[2] A. Ahmadi, M. Quintard, and S. Whitaker. Transport in chemically and mechanically 

heterogeneous porous media V. Two-equation model for solute transport with adsorption. 

Advances in water resources, 22:59–58, 1998. 

[3] A. Amiri and K. Vafai. Analysis of dispersion effects and non-thermal equilibrium, 

non-darcian, variable porosity incompressible flow through porous media. International 

journal of heat and mass transfer, 37(6):939–954, 1994. 

[4] P. S. Arora, I. R. Shankland, T. N. Bell, M. A. Yabsley, and P. J. Dunlop. Use of 

precise binary diffusion coefficients to calibrate two-bulb cells instead of using the 

standard end correction for the connecting tube. Review of Scientific Instrument, 48 

(6):673–674, 1977. 

[5] A. K. Batabyal and A. K. Barua. Composition dependence of the thermal-diffusion 

factors in He-CO2 Ne-CO2, and Xe-CO2 mixtures. Journal of Chemical Physics, 48:2557–

2560, 1968. 

[6] J.C. Batsale, C. Gobbé, and M. Quintard. Local non-equilibrium heat transfer in porous 

media, in recent research developments in heat, mass & momentum transfer. Research 

Signpost, India 1:1–24, 1996. 

[7] J. Bear. Hydraulics of Groundwater. McGraw-Hill Book Company, New York, 1979. 

[8] E. W. Becker. The thermal de-mixing of gases at high pressures. Die 

Naturwissenschaften, 37 (7):165–166, 1950. 

[9] A. Bejan and D. A. Nield. Convection in Porous Media. Springer Verlag, 1998. 

[10] R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena. 2nd Ed. New 

York: J. Wiley and Sons, 2002. 

[11] H. Brenner. Dispersion resulting from flow through spatially periodic porous media. 

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and 

Physical Sciences, 297 (1430):81–133, 1980. 

[12] H. Brown. On the temperature assignments of experimental thermal diffusion 

coefficients. Physical Review, 58:661 – 662, 1940. 



 152

[13] D. R. Caldwell. Thermal and Fickian diffusion of sodium chloride in a solution of 

oceanic concentration. Deep-Sea Research and Oceanographic Abstracts, 20 (11):1029–

1039, 1973. 

[14] R. G. Carbonell and S. Whitaker. Heat and mass transfer in porous media. 

Fundamentals of Transport Phenomena in Porous Media, Martinus Nijhoff, Dordrecht, 

1984. 

[15] P. C. Carman. Flow of gases through porous media. Academic Press Inc., New York, 

1956. 

[16] M. Chandesris and D. Jamet. Jump conditions and surface-excess quantities at a 

fluid/porous interface: A multi-scale approach. Transport in Porous Media, 78:419–438, 

2009. 

[17] S. Chapman and T. G. Cowling. Thermal Combustion and Diffusion in Gases, An 

Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. 

Cambridge Mathematical Library, third Ed., 1970. 

[18] M. C. Charrier-Mojtabi, K. Maliwan, Y. Pedramrazi, G. Bardan, and A. Mojtabi. 

Control of thermoconvective flows by vibration. Mecanique and Industries, 4 (5):545–

549, 2003. 

[19] F. Cherblanc, A. Ahmadi, and M. Quintard. Two-domain description of solute 

transport in heterogeneous porous media: Comparison between theoretical predictions and 

numerical experiments. Advances in Water Resources, 30 (5):1127–1143, 2007. 

[20] P. Costeseque, T. Pollak, J. K. Platten, and M. Marcoux. Transient-state method for 

coupled evaluation of Soret and Fick coefficients, and related tortuosity factors, using free 

and porous packed thermodiffusion cells. European Physical Journal E, Soft matter, 15 

(3):249–253, 2004. 

[21] P. Costeseque, D. Fargue, and Ph. Jamet. Thermodiffusion in porous media and its 

consequences. Thermal Nonequilibrium Phenomena in Fluid Mixtures. Lecture Notes in 

Physics, Springer, Berlin, 584:389–427, 2002. 

[22] J. A. Currie. Gaseous diffusion in porous media. I. A non-steady state method. British 

Journal of Applied Physics, 11 (8):314–317, 1960. 

[23] J. H. Cushman, L. S. Bennethum, and B. X. Hu. A primer on upscaling tools for 

porous media. Advances In Water Resources, 25(8-12):1043–1067, AUG-DEC 2002. 

[24] H. Davarzani, J. Chastanet, M. Marcoux, and M. Quintard. Theoretical determination 

of effective thermodiffusion coefficients, application to the description of mass transfer in 



 153

porous media. Lecture Notes of the 8th International Meeting on Thermodiffusion (IMT8), 

Thermal Nonequilibrium,, 3, Forschungszentrum jülich GmbH, Bonn, Germany:181–187, 

2008. 

[25] H. Davarzani, M. Marcoux, and M. Quintard. Theoretical predictions of the effective 

thermodiffusion coefficients in porous media. International journal of heat and mass 

transfer, 53: 1514-1528, 2010. 

[26] H. A. Daynes. Gas analysis by measurement of thermal conductivity. Cambridge 

University Press, Cambridge, UK, pages 1–302, 1933. 

[27] H. A. Daynes and G. A. Shakespear. The theory of the katharometer. Proceedings of 

the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical 

Character, 97, Issue 685:273–286, 1920. 

[28] P. J. Dunlop and C. M. Bignell. Diffusion coefficients and thermal diffusion factors 

for He-CO2, He-N2O and He-COS. Berichte der Bunsen-Gesellschaft, 99:77–79, 1995. 

[29] R. E. Ewing. Aspects of upscaling in simulation of flow in porous media. Advances in 

Water Resources, 20 (5-6):349–358, 1997. 

[30] D. Fargue, P. Costeseque, P. Ph. Jamet, and S. Girard-Gaillard. Separation in vertical 

temperature gradient packed thermodiffusion cells: an unexpected physical explanation to 

a controversial experimental problem. Chemical Engineering Science, 59 (24):5847–5852, 

2004. 

[31] D. Fargue, P. Costeseque, P. Ph. Jamet, and S. Girard-Gaillard. Separation in vertical 

temperature gradient packed thermodiffusion cells: an unexpected physical explanation to 

a controversial experimental problem. Chemical Engineering Science, 59 (24):5847–5852, 

2004. 

[32] A. Firoozabadi. Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New 

York City, 1991. 

[33] E.N. Fuller, K. Ensley, and J.C. Giddings. Diffusion of halogenated hydrocarbons in 

helium: the effect of structure on collision cross sections. Journal of Physical Chemistry, 

73:3679, 1969. 

[34] G. Galliéro, J. Colombani, P. A. Bopp, B. Duguay, J. P. Caltagirone, and F. Montel. 

Thermal diffusion in micropores by molecular dynamics computer simulations. Physica A: 

Statistical Mechanics and its Applications, 361 (2):494–510, 2006. 



 154

[35] Ph. Georis, F. Montel, S. Van Vaerenbergh, Y. Decroly, and J. C. Legros. 

Measurement of the Soret coefficient in crude oil. In Proceedings of the European 

Petroleum Conference, 1998. 

[36] M. Giglio and A. Vendramini. Thermal lens effect in a binary liquid mixture: a new 

effect. Applied Physics Letters, 25 (10):555–557, 1974. 

[37] K.E. Grew and T.L. Ibbs. Thermal diffusion in gases. Cambridge University Press, 

1952. 

[38] S.R. De Groot. Non-Equilibrium Thermodynamics. Dover Publication Inc., New 

York, 1984. 

[39] S.R. De Groot and P. Mazur. Non-Equilibrium Thermodynamics. Dover, New York, 

1984. 

[40] J. O. Hirschfelder, C.F. Curtiss, and R. B. Bird. Molecular Theory of Gases and 

Liquids. Johns Wiley & Sons, Inc., New York, 1964. 

[41] Clifford K. Ho and S.W. Webb (Eds). Gas transport in porous media. Springer 

(Online service), 2006. 

[42] J. Hoogschagen. Diffusion in porous catalysts and adsorbents. Industrial and 

Engineering Chemistry, 47 (5):906–912, 1955. 

[43] W. Hort, S. J. Linz, and M. Lücke. Onset of convection in binary gas mixtures: role of 

the dufour effect. Physical review. A, 45(6):3737–3748, 1992. 

[44] T. L. Ibbs and K. E. Grew. Influence of low temperatures on the thermal diffusion 

effect. Proceedings of the Physical Society, 43:142–156, 1931. 

[45] I. Ryzhkov Ilya. On double diffusive convection with Soret effect in a vertical layer 

between co-axial cylinders. Physica D 215, 215 (2):191–200, 2006. 

[46] G. Jessop. Katharometers. Journal of Scientific Instruments, 43 (11):777–782, 1966. 

[47] M. Kaviany. Principles of Heat Transfer in Porous Media. Second Edition, (Second 

Printing), Springer-Verlag, New York, 1999. 

[48] M. Kaviany. Principles of Heat Transfer. John Wiley & Sons, Inc., New York, 2002. 

[49] J. H. Kim, J. A. Ochoa, and S. Whitaker. Diffusion In Anisotropic Porous-Media. 

Transport In Porous Media, 2:327–356, 1987. 

[50] L. S. Kotousov and A. V. Panyushkin. Apparatus for determining thermal-diffusion 

coefficients in gas mixtures. Journal of Engineering Physics and Thermophysics, 9 

(5):390–393, 1965. 



 155

[51] B. Lacabanne, S. Blancher, R. Creff, and F. Montel. Soret effect in multicomponent 

flow through porous media: local study and upscaling process. Lecture notes in physics, 

Springer, 584:448–465, 2002. 

[52] L. D. Landau and E. M. Lifschitz. Fluid Mechanics. 2nd Ed. Oxford, England: 

Pergamon Press, 1982. 

[53] D. Lasseux, A. Ahmadi, and A. A. Abbasian Arani. Two-phase inertial flow in 

homogeneous porous media: A theoretical derivation of a macroscopic model. Transport 

in Porous Media, 75 (3):371–400, 2008. 

[54] M. Lorenz and A.H. Emery. The packed thermodiffusion column. Chemical 

Engineering Science, 11:16–23, 1959. 

[55] C. Ludwig. Sitzungsber. K. Preuss, Akad. Wiss., 20:539, 1856. 

[56] M. Marcoux and M. C. Charrier-Mojtabi. Etude paramétrique de la thermogravitation 

en milieu poreux. Comptes Rendus de l’Académie des Sciences, 326:539–546, 1998. 

[57] M. Marcoux and P. Costeseque. Study of transversal dimension influence on species 

separation in thermogravitational diffusion columns. Journal of Non-Equilibrium 

Thermodynamics, 32 (3):289–298, 2007. 

[58] E. A. Mason and S. C. Saxena. Approximate formula for the thermal conductivity of 

gas mixtures. Physics of Fluids, 1:361–369, 1958. 

[59] E.A. Mason and A.P. Malinauskas. Gas Transport in Porous Media: The Dusty Gas 

Model. Elsevier, Amsterdam, 1983. 

[60] J. C. Maxwell. A treatise on electricity and magnetism. Clarendon Press, Oxford, I, 

2nd edition, 1881. 

[61] C. C. Mei. Method of homogenization applied to dispersion in porous media. 

Transport in porous media, 9(3):261–274, 1991. 

[62] R. J. Millington. Gas diffusion in porous media. Science, 130 (3367):100–102, 1959. 

[63] R. J. Millington. Permeability of porous solids. Transactions of the Faraday Society, 

57:1200–1207, 1961. 

[64] C. Moyne. Two-equation model for a diffusive process in porous media using the 

volume averaging method with an unsteady-state closure. Advances in Water Resources, 

20, Issues 2-3:63–76, 1997. 

[65] C. Moyne, S. Didierjean, H.P.A. Souto, and O.T. da Silveira Filho. Thermal 

dispersion in porous media: One-equation model. International Journal of Heat and Mass 

Transfer, 43 (20):3853–3867, 2000. 



 156

[66] H. Nasrabadi, H. Hoteit, and A. Firoozabadi. An analysis of species separation in 

thermogravitational column filled with porous media. Transport in Porous Media, 67 

(3):473–486, 2007. 

[67] E. P. Ney and F. C. Armistead. The self-diffusion coefficient of uranium 

hexafluoride. Physical Review, 71(1):14–19, 1947. 

[68] C. Nicholson. Diffusion and related transport mechanisms in brain tissue. Reports on 

Progress in Physics, 64:815–884, 2001. 

[69] C. Nicholson and J. M. Phillips. Ion diffusion modified by tortuosity and volume 

fraction in the extracellular microenvironment of the rat cerebellum. Journal of Physiology 

(Cambridge), 321:225–258, 1981. 

[70] D. A. Nield and A. Bejan. Convection in Porous Media. Second Edition, Springer-

Verlag New York, Inc., New York, 1999. 

[71] J. Ochoa-Tapia and S. Whitaker. Heat transfer at the boundary between a porous 

medium and a homogeneous fluid. International Journal of Heat and Mass Transfer, 40 

(11):2691–2707, 1997. 

[72] J. K. Platten. Enhanced molecular separation in inclined thermogravitational columns. 

The Journal of Physical Chemistry B, 107 (42):11763–11767, 2003. 

[73] J. K. Platten. The Soret effect: A review of recent experimental results. Journal of 

applied mechanics, 73(1):5–15, 2006. 

[74] J. K. Platten and P. Costeseque. The Soret coefficient in porous media. Journal of 

Porous Media, 7 (4):329–42, 2004. 

[75] J.K. Platten and J.C. Legros. Convection in liquids. Springer, Berlin, Chap. 9, 1984. 

[76] B. E. Poling, J. M. Rausnitz, and J. P. Connell. The Properties of Gases and Liquids. 

McGraw-Hill, New York, 5th edition, 2000. 

[77] N. Puiroux, M. Prat, and M. Quintard. Non-equilibrium theories for macroscale heat 

transfer: ablative composite layer systems. International Journal of Thermal Sciences, 

43(6):541–554, 2004. 

[78] M. Quintard, and S. Whitaker. Transport in ordered and disordered porous media III: 

Closure and comparison between theory and experiment. Transport in Porous Media, 

15(1):31–49, 1994. 

[79] M. Quintard. Diffusion in isotropic and anisotropic porous systems: Three-

dimensional calculations. Transport in Porous Media, Volume 11, Number 2:187–199, 

1993. 



 157

[80] M. Quintard, L. Bletzaker, D. Chenu, and S. Whitaker. Nonlinear, multicomponent, 

mass transport in porous media. Chemical Engineering Science, 61:2643–2696, 2006. 

[81] M. Quintard, F. Cherblanc, and S. Whitaker. Dispersion in heterogeneous porous 

media: One-equation non-equilibrium model. Transport in Porous Media, 44(1):181–203, 

2001. 

[82] M. Quintard, M. Kaviany, and S. Whitaker. Two-medium treatment of heat transfer in 

porous media: numerical results for effective properties. Advances in Water Resources, 20 

(2-3):77–94, 1997. 

[83] M. Quintard and S. Whitaker. Transport in ordered and disordered porous media: 

volume-averaged equations, closure problems and comparison with experiment. Chemical 

Engineering Science, 14:2534–2537, 1993. 

[84] M. Quintard and S. Whitaker. Local thermal equilibrium for transient heat 

conduction: theory and comparison with numerical experiments. International Journal of 

Heat and Mass Transfer, 38 (15):2779–2796, 1995. 

[85] M. Quintard and S. Whitaker. Theoretical analysis of transport in porous media. 

Handbook of Heat Transfer in Porous Media, edited by H. Hadim and K. Vafai, Marcel 

Decker, Inc., New York,, Ch. 1:1–52, 2000. 

[86] G. D. Rabinovich, R. Y. Gurevich, and G. N. Bobrova. Thermodiffusion separation of 

liquid mixtures. [in Russian], Nauka i Tekhnika, Minsk, 1971. 

[87] G.D. Rabinovich. Separation of isotopes and other mixtures by thermal diffusion. 

Atomizdat, Moscow, 1981. 

[88] J. W. S. Rayleigh. Theory of Sound, (2nd Ed.). Dover, New-York, 1945. 

[89] D. Reith and F. Mueller-Plathe. On the nature of thermal diffusion in binary lennard-

jones liquids. Journal of Chemical Physics, 112:2436–2443, 2000. 

[90] D. Ryan, R. G. Carbonell, and S. A. Whitaker. Theory of diffusion and reaction in 

porous media. A.I.Ch.E. Symposium Series, 77, No. 202:46–62, 1981. 

[91] M.Z. Saghir, C.G. Jiang, M. Chacha, Y. Yan, M. Khawaja, and S. Pan. 

Thermodiffuison in porous media. In Transport Phenomena in Porous Media III, (Eds. D. 

B. Ingham and I. Pop,, Elsevier, Oxford, page 227–260, 2005. 

[92] M. Sahraoui and M. Kaviany. Slip and no–slip temperature boundary conditions at 

interface of porous, plain media: Conduction. International Journal of Heat and Mass 

Transfer, 36:1019–1033, 1993. 



 158

[93] M. Sahraoui and M. Kaviany. Direct simulation vs volume-averaged treatment of 

adiabatic, premixed flame in a porous medium. International Journal of Heat and Mass 

Transfer, 37(18):2817–2834, 1994. 

[94] E. Sanchez-Palencia. On the asymptotics of the fluid flow past an array of fixed 

obstacles. International Journal of Engineering Science, 20 (12):1291–1301, 1982. 

[95] S. C. Saxena and E. A. Mason. Thermal diffusion and the approach to the steady state 

in gases II. Molecular Physics, 2 (4):379–396, 1959. 

[96] M. E. Schimpf. Studies in thermodiffusion by thermal field-flow fractionation. 

Proceedings of the Third International Symposium on Thermodiffusion, pages 58–63, 

1998. 

[97] A. G. Shashkov, A. F. Zolotukhina, T N. Abramenko, and B. P. Mathur. Thermal 

diffusion factors for binary gas systems: Ar-N2, Ar-CO2, He-H2, He-N2O, Kr-N2O and He-

NH3. Journal of physics B- Atomic molecular and optical physics, 12(21):3619–3630, 

1979. 

[98] C. Soret. Influence de la temperature sur la distribution des sels dans leurs solutions. 

Compte-Rendu de l’Academie des Sciences, Paris, 91:289, 1880. 

[99] C. Tropea and and J. F. Foss (Eds.) A. L. Yarin. Springer Handbook of Experimental 

Fluid Mechanics. Springer, 2007. 

[100] S. Van Vaerenbergh, J. C. Legros, J. L. Daridon, T. Karapantsios, M. Kostoglou, and 

Z. M. Saghir. Multicomponent transport studies of crude oils and asphaltenes in DSC 

program. Microgravity Science and Technology, 18 (3-4):150–154, 2006. 

[101] A. van Itterbeek and O. van Paemel. Measurements on the viscosity of hydrogen- 

and deuterium gas between 293°k and 14°k. Physica, 5 (10):938–944, 1938. 

[102] A. van Itterbeek and O. van Paemel. Measurements on the viscosity of neon, 

hydrogen, deuterium and helium as a function of the temperature, between room 

temperature and liquid hydrogen temperatures. Physica., 7 (3):265–272, 1940. 

[103] A. S. M. Wahby and J. Los. Diffusion in lorentzian and quasi-lorentzian N2-light 

noble gas mixtures. Physica, B + C, 145 (1):69–77, 1987. 

[104] N. Wakao and J. M. Smith. Diffusion in catalyst pellets. Chemical Engineering 

Science, 17 (11):825–834, 1962. 

[105] L. Wang and M. Quintard. Nanofluids of the future. Advances in Transport 

Phenomena, chap. 4:179–243, 2009. 



 159

[106] H. Watts. Diffusion of krypton-85 in multicomponent mixtures of krypton with 

helium, neon, argon and xenon. Transactions of the Faraday Society, 60 (10):1745–1751, 

1964. 

[107] H. L. Weissberg. Effective diffusion coefficient in porous media. Journal of Applied 

Physics, 34 (9):2636–2639, 1963. 

[108] K. R. Weller, N. S. Stenhouse, and H. Watts. Diffusion of gases in porous solids. II. 

theoretical background and experimental method. Canadian Journal of Chemistry, 52 

(15):2684–2691, 1974. 

[109]  S. Whitaker. Diffusion and dispersion in porous media. AIChE J, 13:420–427, 1967. 

[110] S. Whitaker. The forchheimer equation: A theoretical development. Transport in 

Porous Media, 25 (1):27–61, 1996. 

[111] S. Whitaker. The method of Volume Averaging. Kluwer Academic Publishers, 

Dordrecht, The Netherlands, 1999. 

[112] S. Wiegand. Thermal diffusion in liquid mixtures and polymer solutions. Journal of 

Physics: Condensed Matter, 16 (10):357–379, 2004. 

[113] S. Wiegand and W. Köhler. Measureemt of transport coefficients by an optical 

grating technique. Thermal Nonequilibrium Phenomena in Fluid Mixtures Lecture Notes 

in Physics, Springer-Verlag, 584:189–210, 2002. 

[114] M. A. Yabsley and P. J. Dunlop. A study of the two-bulb method for measuring 

diffusion coefficients of binary gas mixtures. Physica A, 85 (1):160–174, 1976. 

[115] F. Zanotti and R. G. Carbonell. Development of transport equations for multiphase 

system-I. General development for two phase system. Chemical Engineering Science, 39, 

Issue 2:263–278, 1984. 

[116] F. Zanotti and R. G. Carbonell. Development of transport equations for multiphase 

systems-II. Application to one-dimensional axi-symmetric flows of two phases. Chemical 

Engineering Science, 39, Issue 2:279–297, 1984. 

 



 

 
 
 
 
 
 
 
 


	Abstract
	Résumé
	Remerciements
	Table of Contents
	Chapter 1. General Introduction  
	1.1 Industrial interest of Soret effect  
	1.2 Theoretical Direct numerical solution (DNS) 
	1.3 Theoretical upscaling methods 
	1.3.1 Multi-scale, hierarchical system 
	1.3.2 Upscaling tools for porous media 

	1.4 Experimental methods 
	1.4.1 Two-bulb method  
	1.4.2 The Thermogravitational Column  
	1.4.3 Thermal Field-Flow Fractionation (ThFFF) 
	1.4.4 Forced Rayleigh-Scattering Technique 
	1.4.5 The single-beam Z-scan or thermal lens technique 

	1.5 Concentration measurement   
	1.5.1 From the variation of thermal conductivity 
	1.5.2 From the variation of viscosity 
	1.5.3 Gas Chromatography (GC) 
	1.5.4 Analysis by mass spectrometer 

	1.6 Conclusion 

	Chapter
2. Theoretical predictions of the effective diffusion and thermal diffusion coefficients in porous media 
	2.1 Introduction 
	2.2  Governing microscopic equation 
	2.3 Volume averaging method 
	2.4 Darcy’s law 
	2.4.1 Brinkman term 
	2.4.2 No-linear case 
	2.4.3 Low permeability correction 

	2.5 Transient conduction and convection heat transport 
	2.5.1 One equation local thermal equilibrium 
	2.5.2 Two equation model 
	2.5.3 Non-equilibrium one-equation model 

	2.6 Transient diffusion and convection mass transport 
	2.6.1 Local closure problem 
	2.6.2 Closed form 
	2.6.3 Non thermal equilibrium model 

	2.7 Results 
	2.7.1 Non-conductive solid-phase ( ) 
	2.7.2 Conductive solid-phase ( ) 
	2.7.3 Solid-solid contact effect 

	2.8 Conclusion 

	Chapter
3.  Microscopic simulation and validation 
	3.1 Microscopic geometry and boundary conditions 
	3.2 Non-conductive solid-phase ( ) 
	3.2.1 Pure diffusion   
	3.2.2 Diffusion and convection   

	3.3 Conductive solid-phase ( ) 
	3.3.1 Pure diffusion   
	3.3.2 Diffusion and convection   

	3.4 Conclusion 

	Chapter
4.  A new experimental setup to determine the effective coefficients 
	4.1 Introduction 
	4.2 Experimental setup 
	4.2.1 Diffusion in a two-bulb cell 
	4.2.2 Two-bulb apparatus end correction 
	4.2.3 Thermal diffusion in a two-bulb cell 
	4.2.4 A transient-state method for thermal diffusion processes 

	4.3 Experimental setup for porous media 
	4.4 Results 
	4.4.1 Katharometer calibration  
	4.4.2 Diffusion coefficient 
	4.4.3 Effective diffusion coefficient in porous media 
	4.4.4 Free fluid and effective thermal diffusion coefficient 
	4.4.5 Effect of solid thermal conductivity on thermal diffusion 
	4.4.6 Effect of solid thermal connectivity on thermal diffusion 
	4.4.7 Effect of tortuosity on diffusion and thermal diffusion coefficients 

	4.5
Discussion and comparison with theory 
	4.6 Conclusion 

	Chapter
5.  General conclusions and perspectives 
	Appendices 
	Appendix A. Estimation of the diffusion coefficient with gas kinetic theory
	Appendix B. Estimation of the thermal diffusion factor with gas kinetic theory

	References



