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ABSTRACTABSTRACTABSTRACTABSTRACT    
Cellulose insulation is manufactured from recycled paper fibres, treated with mineral 
additives acting as flame retardants and antifungals. Its consistency is similar to cotton 
wool. The fibres are sold in bulk to be blown into the walls and attics. Its thermal 
conductivity is around 0.04 W/m.K, which is comparable to glass wool, but it is made 
with recycled materials and has much lower embodied energy levels. It can be either 
blown dry or sprayed with water. 
The wet spray method for cellulose insulation has several benefits compared to the dry 
process. Since the cellulose fibres become rigid after drying, it prevents the compaction 
of the material thus avoiding thermal bridges in the building envelope. However, the time 
to reach the dry state may be very long and variable depending on the dosage used and 
the environmental conditions of application. There are many bio-based additives that can 
contribute to the reduction of this period and improve the cohesion of the material. This 
research project aims to find the optimal additive for this application while retaining the 
favourable properties of the insulating material. 
Two cellulose types have been characterized with regards to the properties of the fibres to 
determine their performance with water. Both samples showed differences in chemical 
composition, grain size, and morphology. The values of water retention, water adsorption 
isotherms and the proportions of free and bound water have been factors which have 
shown an influence on the drying of the insulation. Density, compressive strength, and 
thermal conductivity increased with moisture dosage. A minimum of 14 kPa for the 
compression module was defined as the mechanical property threshold to avoid settling. 
These properties were compared with those of the cellulose insulation compacted to 
dryness and the results showed the strong influence of the stiffening and pore closing 
process upon drying, on these properties. 
Potential bio-based additives were classified and characterized with regards between 
concentration, viscosity, and adhesive strength. A relationship between these parameters 
was established. Most showed Newtonian behaviour at low concentrations, with some 
non-Newtonian concentrations having a pumpable viscosity. Unfortunately several 
additives which showed good adhesive properties were too viscous and vice versa. A 
range of surfactants were also considered. Sprayable formulations were characterized 
with respect to their drying time, compressive strength and thermal conductivity. 
Additives which have shown positive contributions drying are the lignosulfonate and the 
cationic surfactant CTAB. 
The influence of these additives on drying, with varying weather, liquid dosage and 
thickness of insulation was defined with a numerical model through the WUFI software. 
Optimal conditions in which the lignosulfonate additive is more effective have been 
defined. A first assessment of the performance of new formulation in terms of fire and 
mould was made and indications for the continuation of the study of the material were 
formalized. 
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RESUMRESUMRESUMRESUMEEEE    
La ouate de cellulose utilisée pour l’isolation est fabriquée à partir de fibres de papier 
broyé, traitées avec des additifs minéraux agissant comme agents ignifuges et 
antifongiques. La conductivité thermique du matériau final est aux alentours de 0,04 
W/m.K, ce qui est comparable à la laine de verre, avec l’intérêt d’être fabriqué à partir de 
matériaux recyclés, représentant un taux d’énergie grise beaucoup plus faible.  
Le mode de mise en œuvre par voie humide de la ouate de cellulose a plusieurs avantages 
par rapport à la voie sèche. Le fait que les fibres de cellulose se rigidifient avec l’eau, 
empêche le tassement du matériau, qui peut engendrer des ponts thermiques dans 
l’enveloppe du bâtiment. Par contre, la durée de séchage peut être très longue et variable 
selon le dosage utilisé et les conditions ambiantes d’application. Ce projet de recherche 
vise à trouver l’additif idéal permettant d’accélérer le séchage tout en conservant une 
bonne cohésion du matériau et le maintien de ses propriétés isolantes.  
Deux types de ouate de cellulose utilisés en isolation ont été caractérisés. Ils ont montré 
des différences de composition chimique, granulométrie et morphologie. L’influence de 
leurs caractéristiques physiques telles que la rétention d’eau, les isothermes d’adsorption 
d’eau et les proportions d’eau libre et liée sur le séchage du matériau final a été mise en 
évidence. Du point de vue de la mise en œuvre, il a été démontré que le dosage en eau 
avait un impact important sur les propriétés finales du matériau. La densité, la résistance 
en compression et la conductivité thermique augmentent avec le dosage en eau. Un 
minimum de 14 kPa pour le module de compression a été défini comme le seuil de 
résistance permettant d’éviter le tassement. Ces propriétés ont été comparées avec celles 
de la ouate de cellulose compactée à sec et les résultats ont montré la forte influence de la 
rigidification et de la fermeture des pores du matériau.  
Deux voies ont été envisagées pour résoudre le problème du temps de séchage : l’ajout 
d’additifs aux propriétés adhésives permettant de réduire la quantité d’eau introduite en 
renforçant la cohésion de l’isolant, et l’ajout d’additifs permettant de modifier la tension 
de surface pour faciliter le départ de l’eau. Les additifs biosourcés potentiels ont été 
caractérisés à différentes concentrations et classés selon leur  viscosité et leur pouvoir 
collant. Malheureusement plusieurs additifs ont dû être rejeté car ils présentaient un 
couple « propriété adhésive/pompabilité » non adapté. Une gamme de tensioactifs a 
également été testée par rapport à leurs tensions de surface. Les formulations pompables 
ont étés caractérisées par rapport à leurs temps de séchage, résistance en compression et 
conductivité thermique. Les additifs qui ont montré des contributions positives sur le 
séchage sont les lignosulfonates et le tensioactif cationique CTAB.  
L’influence de ces deux additifs a ensuite été étudiée avec un modèle numérique à travers 
le logiciel WUFI en prenant en compte l’impact sur le séchage, la météo, le dosage 
liquide et l’épaisseur de l’isolant. Les conditions optimales ont été définies. Le 
lignosulfonate s’est avéré être l’additif le plus efficace. Une première évaluation de la 
performance des nouveaux isolants en termes de résistance au feu et à la moisissure a été 
réalisée et des indications pour la suite de l’étude ont été proposées. 
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
Insulation materials are an essential part of a building envelope. They assure that 

the inside temperature of a room is maintained at a certain level and reduce the use of 

heating and cooling, which have a high energy demand. Currently the majority of 

traditional insulation materials such as mineral wool are made from non-renewable 

resources. An alternative insulation material known as cellulose fibre insulation (CFI), 

has the benefit of using recycled paper to produce, while having similar performance 

properties of traditional insulation materials. Usually, cellulose insulation is blown dry in 

closed wall cavities or attics. A more recent method of installing CFI, known as the “wet 

spray” method, has the advantages of ensuring a proper distribution and filling of the 

material in a wall cavity, while preventing sagging through the use of pulverized water. 

The disadvantages associated with this method, however, are mainly due to improper 

installation of CFI while it is sprayed with water. If too much water is applied, or if its 

applied in a high humidity, low temperature conditions, the material could take a long 

time to dry, imposing a long delay in construction times, or worse promote mould growth 

within the material or surrounding wood structures. Too much sprayed water could also 

weigh down the material, making the material sag and causing voids in the installed wall 

cavity. One solution to these issues would be to include an additive that improves the 

drying and/or reinforces the material, reducing its initial water dosage. Ideally this 

additive should be based on natural or renewable resources in order to preserve the eco-

friendly nature of the material. It is with this strategy in mind that the project of this 

thesis was conceived. The objectives of this project are to: 

• Investigate the properties of cellulose fibre insulation 

• Study the influence of water dosage on the performance characteristics of 

the material 

• Characterise potential additives to be used with wet-spray CFI, study their 

influence on these characteristics and optimize the new formulation 
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•  Model the dynamic hygrothermal performance of various formulations of 

CFI under different climatic conditions.  

The work of this research project is collaboration from the Laboratoire de Chimie 

Agro-Industrielle (INP-ENSIACET) with French consulting firm Greenbuilding (the 

main coordinator of the project). It is financed in part through grants from the 

Association Nationale de Recherche et Technologie (ANRT) as well as Paris Région 

Entreprises. Material was kindly provided by SOPREMA. 

 The first chapter of this thesis is dedicated to the study the state of the art 

on cellulose insulation and the possible additives, biobased binders and surfactants which 

could improve its properties. The work in chapter two seeks to establish a foundation of 

the performance of cellulose insulation installed via the wet spray method, mainly the 

influence of the applied water dosage on its final properties. Chapter three focusses on 

the characterization and the screening of the potential additives, as well as their influence 

on the thermal and mechanical properties of cellulose insulation. Finally the last chapter 

further optimizes the material, details its performance under different conditions through 

hygrothermal modelling and, determines the properties of the final insulating material. 
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CHAPTER 1: CHAPTER 1: CHAPTER 1: CHAPTER 1: STATE STATE STATE STATE OF THE ARTOF THE ARTOF THE ARTOF THE ART        

1.11.11.11.1    IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION,,,,    CONTEXT AND CONTEXT AND CONTEXT AND CONTEXT AND OBJECTIVESOBJECTIVESOBJECTIVESOBJECTIVES    

1.1.1 1.1.1 1.1.1 1.1.1 Sustainability in the building sectorSustainability in the building sectorSustainability in the building sectorSustainability in the building sector    
One of the defining challenges confronting mankind in recent times is that of 

global warming. Manmade contributions to greenhouse gas emissions are the cause of the 

yearly increase in average worldwide temperatures (Pachauri et al., 2014). Numerous 

national and international initiatives are taking place in order to limit these effects, 

through the reduction of greenhouse gas emissions, such as, carbon dioxide (CO2) 

(Stavins et al., 2014).  

Energy efficiency in buildings is an important factor in contributing to the 

reduction of greenhouse gas emissions. The building and construction sector accounts for 

30% to 40% of worldwide energy consumption, and (UNEP, 2007) with a large part 

belonging to the need to heat and cool buildings. It is with that in mind that many 

countries are looking to improve the energy efficiency of buildings, with directives such 

as the European directive 2010/31/EU, which states that new constructions in 2020 will 

have to consume 'nearly zero-energy' (European Parliament, 2010). One strategy for 

achieving this goal is through the optimal use and installation of materials that reduce the 

direct heating and cooling requirements to maintain thermal comfort in new and existing 

constructions. While these materials aid in reducing the operational energy consumption 

of buildings, most traditional insulation materials have a high embodied energy (Zabalza 

Bribián et al., 2011) which is defined as the total of the energy necessary for the entire 
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life cycle of a product. The lifecycle of a building material usually includes the stages of 

its production, installation, operation, maintenance and demolition. There is therefore a 

need to not only improve the energy footprint of buildings through improved insulation 

materials and standards but also to use alternative green materials with lower embodied 

energy. 

1.1.2 1.1.2 1.1.2 1.1.2 Cellulose fibre Cellulose fibre Cellulose fibre Cellulose fibre insulationinsulationinsulationinsulation    (CFI)(CFI)(CFI)(CFI): a sustainable solution: a sustainable solution: a sustainable solution: a sustainable solution    
The main role of thermal insulation materials in a building envelope is to prevent 

heat loss and provide thermal comfort for a building’s interior. In order to do so, a 

material or composite of materials must provide a significant resistance to heat flow, and 

thus reduce a building’s requirements for heating or cooling. The factor that characterizes 

an insulation material’s effectiveness is its thermal conductivity λ (measured in W/mK). 

The lower a material’s thermal conductivity, the more effective it is as an insulator, thus 

requiring a thinner layer to provide the same interior temperature.  

It is defined as the amount of heat that can be through an area of unit thickness of 

material, within a defined temperature difference. The R value of a material is the 

reciprocal of thermal conductivity multiplied by its thickness (L/λ) and is used for 

calculating the thermal resistance to heat flow of any material.  

Traditional insulation materials include glass fibre, stone wool, expanded 

polystyrene, and polyurethane foam. While these materials are efficient in maintaining 

thermal comfort to a building’s interior, they are made with non-renewable resources and 

have a high embodied energy. Consequently, there is an increasing interest for alternative 

insulating materials that come from renewable or recycled fibres. Natural fibres such as 

jute, flax and hemp have shown to be suitable alternatives to mineral insulation and are 

the subject of numerous research projects (Madurwar et al., 2013).  
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Figure 1.1: Cellulose insulation fibres. 

Cellulose fibre insulation, (CFI), a fibrous insulation material comprising of 

recycled paper fibre, can provide sufficient thermal comfort for a building’s interior, 

while providing a more eco-friendly alternative to classical mineral based insulation 

materials. Despite these benefits, cellulose insulation remains an underused material. 

Despite recent trends in sustainable building initiatives, one study allocates the market 

share of cellulose insulation for new homes in the U.S. in 2013 to be under 10% (see 

Table 1.1), while both forms of fibreglass have a combined majority share of 75% (Home 

Innovation Research Labs, 2013). One cause for this lack of prevalence is due to the lack 

of knowledge on the performance, manufacture, and installation of CFI.  

 

Table 1.1: Market share of US insulation materials in 2012 and 2013 source: (Home Innovation Research 
Labs, 2013)  
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This chapter will focus on the current state of the art of the topics of this project. Firstly, 

the major characteristics, properties and performance features of cellulose fibre insulation 

will be investigated. This will include its manufacture, installation and physical properties 

of both wet spray and dry cellulose insulation including the issue it presents with drying 

and opportunities in research to improve these properties. Then the feasible additives 

which could be used in conjunction with cellulose insulation to improve its properties are 

catalogued and detailed with regards to their properties and interactions with cellulose. 

1.21.21.21.2    TTTTHE HE HE HE PROPERTIESPROPERTIESPROPERTIESPROPERTIES    OF CELLULOSEOF CELLULOSEOF CELLULOSEOF CELLULOSE    FIBREFIBREFIBREFIBRE    INSULATIONINSULATIONINSULATIONINSULATION    

(CFI)(CFI)(CFI)(CFI)    

1.2.1 1.2.1 1.2.1 1.2.1 CompositionCompositionCompositionComposition    
Cellulose fibre insulation is mainly composed of ground paper fibres treated with 

inorganic additives that act as fire retardants and mould growth inhibitors. Its consistency 

is similar to that of cotton wool. The source material for the cellulose fibres are usually 

recycled newspaper, coming from either unsold or recovered papers. Newsprint is 

generally manufactured by mechanical pulping. Recycled newsprint or chemical pulp 

could also be incorporated. As with most lignocellulosic fibres, newsprint is comprised of 

a mix of cellulose, hemicelluloses, and lignin. Unlike chemical pulping, mechanical 

pulping results in little removal of lignin content. Mineral and organic additives, such as 

kaolin, china clay or cationic starch are also incorporated into the paper pulp in order to 

improve such properties as paper opacity, moisture retention, and strength. The inks 

typically used in the paper are produced from inorganic carbons, with the chromatic inks 

coming from organic pigments. The average proportions of the main components in 

newsprint and office paper (chemical pulp) are presented in Table 1.2 (Wu et al., 2001). 

These amounts can vary according to different sources of paper with variable 

compositions and quality. 
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Table 1.2: Average component proportions of newsprint and office paper, (Wu et al., 2001) 

1.2.2 1.2.2 1.2.2 1.2.2 Production Production Production Production     
As a final product, cellulose insulation can come in two forms: as a prefabricated 

panel, in which the cellulose fibres are moulded with polyester or a similar binder or, 

more commonly, the loose fibres are sold in bulk form to be manually applied on attics, 

ceilings, or walls. The first use of cellulose fibre as an insulation material can be traced 

back to 1919 in Canada (Siddiqui, 1989), but it was until the 1950s that commercial 

cellulose insulation products became commercially available in the US, where it was 

mostly used for attic retrofitting. CFI surged in popularity in the US in the 1970s due to 

an increased interest in energy performance following the American oil embargo of 1973. 

Nowadays cellulose insulation still used but it is eclipsed by mineral fibre insulation 

materials. 

 

Figure 1.2: Example of a typical manufacturing process of CFI, adapted with permission from (Makron 
Engineering, n.d.) 

In a typical production process of CFI (Figure 1.2), newspaper arrives in bulk to 

the manufacturer and is then sorted to remove any foreign objects. Items such as clips and 

plastics are removed, but also low quality or humid paper is also sorted. The newsprint 

 cellulose % hemicellulose % lignin % extractives % proteins 
% 

ash % 

Office paper 67,4 13 0,93 0,7 0,31 11,6 

Newsprint 48,3 18,1 22,1 1,6 0,44 2 
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passes through a feeding conveyor (1) then is torn to smaller pieces that are between 2 

and 4 cm in diameter in a shredder (2). The fibres then pass through a cyclone separator 

(3) in order to remove any remaining staples or other metallic elements. The fines from 

the shredded paper are blown through a filtering unit (4). The material then goes through 

a fiberizer (5) which uses high pressured air to reduce the paper into low-density cotton-

like flakes, as shown in Figure 1.3. It is in this stage that the powdered additives are 

dispersed and mixed with the fibres. The additives used are typically a mix of borax and 

boric acid, with a dose of around 15%-20% of the mass of cellulose fibres. A second 

cyclone separator (6) then removes the fines created from the fiberizer. In the final stage 

of the process, the fibres are filled in bags and then mechanically compacted (7) into 3 

times its normal density (around 130 kg/m3), in order to reduce transport costs. The bags 

are then weighed (8) and bundled into pallets and transported to supplier or directly to 

construction sites.  

 

Figure 1.3: Microscopic scan of cellulose fibres, 10X magnification 

1.2.3 1.2.3 1.2.3 1.2.3 InstInstInstInstallation of CFI allation of CFI allation of CFI allation of CFI     
There exist two main methods of applying CFI. Depending on the desired 

properties, CFI can either be installed via the “loose fill” or the “wet spray” method. 

In the loose fill method the cellulose fibres are installed with specific pneumatic 

blowing equipment. The compacted cellulose is fed to the blower which separates the 

fibres which then pass through the blowing system. The CFI is then delivered via air 
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pressure into closed wall/roof cavities or attics through a hose. When cellulose is installed 

as “dense pack”, sheets of netting are put in place over wall cavities. The cellulose is then 

blown into the cavities between studs at a higher density than loose fill, with the netting 

supporting the fibres. One of the disadvantages of this method is that settling of the 

material may occur over time, which decreases the insulation’s effectiveness, forming 

voids that cause thermal bridging in a building envelope (CIMA, 1998a). 

The wet spray technique is mostly used in open-wall wood cavities separated by 

studs. It uses the same blowing equipment as with loose-fill CFI, but a separate pump is 

used to spray water simultaneously as the material is being blown with the cellulose in 

order to improve the adherence of the fibres. After projection the excess material is 

removed via a motorized wall scrubber and the excess moist material is reintegrated in 

the blower. The water/CFI mass ratio used in this process is typically around 40%-60%. 

Adhesives, either mixed with the water or dispersed within the fibres could also be used 

(CIMA, 1998b). The main disadvantage of this method is that drying times may vary, 

depending on the thickness and ambient conditions of installation. In some conditions the 

material may take months to dry out due to high humidity and low temperatures 

(Salonvaara et al., 2010). A variant of the wet spray method is known as “stabilized” 

cellulose where a smaller dosage of water (less than 20% in mass) is used to prevent dust 

and settling in horizontal applications.  

1.2.4 1.2.4 1.2.4 1.2.4 Density and settlingDensity and settlingDensity and settlingDensity and settling    
Once cellulose insulation is installed, the loose fibres might compact and loose 

thickness over time. Therefore, when dealing with loose fibres as an insulating material, 

it is important to distinguish between the “blown” density and the “design” density of the 

fibres. The blown density is the declared density after installation in vertical or horizontal 

applications, and the design density (which takes settling into account) is determined via 

impact testing and/or cyclic humidity testing. Impact testing consists of subjecting the 

loose cellulose samples to a series of vibrations. In cyclic humidity tests, the samples are 

subjected to periodic variations of relative humidity (AFNOR, 2014). One of the first 

studies regarding the settling of CFI was done by Bomberg and Shirtliffe (1979). Their 

study found an average blown density of 34.8 kg/m3 for horizontal applications. The 
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average loss in thickness from settling was 21.5% wherein 10.5% was from drop impact 

tests and 11% was from cyclic humidity testing. The design density can be then 

calculated using by multiplying a factor which takes into account both types of settling: 

Dd = (100/(100-S)) Di 

(1.1) 

Where Dd is the design density, Di is the installed density, and S is the sum of 

both the settling from drop impact tests and cyclic humidity testing. 

The previous values give a design density factor of 1.27Di, thus an average design 

density of 44.4 kg/m3 for horizontal applications. It was also found that the dosage of fire 

additives increases density linearly, although the type of additive or mix thereof has little 

influence on final density. A survey of 38 houses in six Canadian cities (Zaborniak, 1989) 

found the actual settling density, a year after installation, to be averaged to 11.1%, with a 

range of 8.3%. The study suggests that the blown density measured in laboratory be first 

multiplied by a factor of 1.074 to account for differences between lab and building site 

measurements, and then calculated with equation 1.1 using an average settling of 11.1%.  

For horizontal applications the compressibility of loose-fill CFI can make its 

density vary widely. One early study by Bomberg and Solvason, (1980), shows installed 

density varying between 50 to 90 kg/m3. It was recommended to increase density by 10% 

after filling the wall cavity in order to prevent settling, with a minimum density of 57 

kg/m3. A series of works by Rasmussen (2005, 2003, 2002, 2001) have produced an 

approach which allows to analytically determine the optimal installed density of loose fill 

CFI that prevents settling in wood frame walls. The method takes into account the 

dynamic mechanical behaviour of a typical insulated wall cavity that is subjected to a 

cyclical variation in humidity in order to determine the density required for the fibres to 

lose volume. The volume stable density of CFI was determined through the study of the 

creep, coefficient of friction, and horizontal stress ratio testing of loose fibres. As an 

example, the minimum density to prevent settling with CFI a 2.4m tall, 0.1m thick and 

1m wide gypsum wall at 25°C and 50% RH was found to be 48 kg/m3. This value 

increases linearly with wall thickness and relative humidity (Figure 1.4). Dynamic 

conditions were also tested, where humidity varied from 50% to 80%. In this case a 2.3m 

high, 0.198m thick and 0.495m wide gypsum board cavity was calculated to require a 
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density of 62.3 kg/m3 to prevent settling. This was later confirmed experimentally with a 

CFI-filled cavity with a density of 62.7 kg/m3 where settling was not observed. 

 

 

Figure 1.4: Calculated minimal density for settling prevention of loose fill CFI in a wall under static 
humidity conditions (50% and 80% RH), as a function installed thickness, top left shows 

the dimensions of the wall cavity (Rasmussen, 2002) 

For wet spray applications, the dry density of CFI has been shown to increase 

linearly with installed moisture content, ranging from 39.6 kg/m3 with 40% moisture 

content to 71.3 kg/m3 with 100% moisture content (Salonvaara et al., 2010). If installed 

properly, wet spray cellulose does not settle. For stabilized cellulose, an initial moist 

density of around 45 kg/m3 gets reduced to around 38 kg/m3 after drying. Settling with 

the stabilized cellulose method in attics was found to be reduced to around 5% (Graves 

and Yarbrough, 1989).  

1.2.5 1.2.5 1.2.5 1.2.5 TTTThermal propertieshermal propertieshermal propertieshermal properties    
Although the typical value for CFI’s thermal conductivity is around 0,040 W/mK, 

its properties and performance can vary slightly depending on manufacturing and method 

of installation. The work of Kwon and Yarbrough (2004) has shown that a difference in 

the source newsprint quality can affect thermal performance. In their study, CFI samples 

coming from US and Korea were measured through heat flow meters, in accordance with 

ASTM C 518. By comparing CFI from both countries, the study found that the Korean 
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fibres that are shorter due to having gone through more recycling processes show a higher 

value for thermal conductivity, and therefore lower insulating performance than CFI 

fibres from the US.  

 Since cellulose fibres are naturally hygroscopic, moisture absorption can also 

affect thermal conductivity values. Tye and Spinney (1979) studied loose fill CFI 

installed in ceiling and wall constructions subjected to cyclic thermal and moisture 

gradients. Thermal conductivity measurements were made on installed samples using the 

standard ASTM C236 guarded hot box method with a mean temperature of 15°C and a 

temperature difference of approximately 10°C. It was found that thermal conductivity 

increased by 15% for a moisture gain of 10%. Nicolajsen (2005) found that under the 

hygroscopic range (i.e. RH <90%) the change in thermal transmittance of loose fill 

cellulose insulation within a wall cavity was not significant (1% to 3% increase). The 

study was done on facade elements with 285mm loose-fill CFI equipped with heat flow 

meters and moisture measuring dowels. Heat flow measurements were made according to 

the DS 418 standard. Sandberg (1992) developed three approaches to determine thermal 

conductivity as a function of water absorption using moisture content profiles of cellulose 

insulation. Measurements were made on 164mm thick loose fill CFI samples on 

600mmx600mm frames, following the ISO 8301 and ISO DIS10-051 standards. 

Computer simulations used the following relation with regards to the thermal 

conductivity of cellulose:  

λ=0.037 + 0.0002' w (W/mK) 

(1.2) 

Where w is the mass of water per unit volume of cellulose kg/m3. The calculated 

results were in agreement with sample measurements.  

Talukdar et al. (2007) determined a polynomial function to describe the relation 

between moisture and thermal conductivity by curve fitting values measured by a heat 

flow meter apparatus according to ASTM standard C518 on cellulose at different relative 

humidity conditions. Measurement temperatures were at 10 °C and 35 °C, with an 

average temperature of 22.5 °C 

λeff = (a+bφ+cφ 1.5 + d exp(-φ)) 

(1.3) 
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Where a = 0.092482655, b = 0.15480621, c = 0.066517733 and d = 0.1296168. 

The only research that studied changes in thermal conductivity past the 

hygroscopic range of 90% RH was done by Vèjelis et al. (2006). Their study determined 

moisture content of CFI in one and two floor buildings with masonry walls with different 

thickness of insulation throughout various moisture periods measurements. A qualitative 

method was used to determine the influence of moisture on variations in thermal 

conductivity. An increase in 1% of moisture content can lead to an average increase of 

1.2 % to 1.5 % in λ values for loose-fill CFI. Even when high moisture content was 

reached, thermal conductivity increased from 1.6 - 2.0 % for 1 % of moisture content 

(Figure 1.5). These changes in values of λ are similar to those mentioned previously by 

Nicolajsen (2005) and Talukdar et al., (2007) in the hygroscopic range. Generally for the 

hygroscopic range, the increase in thermal conductivity could be considered negligible. It 

is only when capillary moisture begins (RH > 90%) that the insulating properties start to 

decrease significantly. Such cases could arrive due to rain infiltration, leaking pipes, or 

improperly installed wet spray cellulose.  

 

Figure 1.5: Increase in thermal conductivity with moisture content of cellulose fibre insulation (Véjelis et 
al., 2006) 
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1.2.6 1.2.6 1.2.6 1.2.6 Air infiltrationAir infiltrationAir infiltrationAir infiltration    
Openings in a building’s envelope can cause air leakage which can have an 

impact on energy loads in buildings. The most cited study by manufacturers regarding air 

infiltration with CFI was done by Boonyakarn et al (1990). The study found that the 

installation of CFI (wet-spray in walls and loose-fill in attics) reduced the air change rate 

from 87.5 to 29.4 ACH (air changes per hour) with 50 Pa blower door testing. CFI was 

found to improve air tightness 36% better than fibreglass.  

A study by the North American Insulation Manufacturers Association (NAHB 

Research Center, 2009) found that, via testing in wood framed walls, wet spray cellulose 

had reduced the air infiltration of a structure from 10.5 to 2.2 m3/h (converted from cubic 

feet per minute) while fibreglass batts only reduced it to 6.1 m3/h . The difference in air 

infiltration between types of insulation is negligible once a weather barrier was applied. 

1.2.7 1.2.7 1.2.7 1.2.7 Fire properties:Fire properties:Fire properties:Fire properties:    
The high flammability of cellulosic fibres requires them to be treated before 

installation in order to achieve acceptable levels of combustion and smouldering 

resistance. In a typical CFI material, borate salts are added to prevent combustion and 

boric acid is added to prevent smouldering (Sprague and Shen, 1979). Other additives 

include: aluminium sulphate, aluminium trihydrate, ammonium phosphate, and 

ammonium sulphate. Day and Wiles (1978) studied the influence of the proportions of 

these additives on flame spread and smouldering resistance. The minimum boric acid 

required to prevent smouldering as a function of borax dosage was established:  

Boric acid required = 11.6 + 0.185 x (borax used). 

(1.4) 

Day et al.(1980) found that the optimal borax/boric acid ratio of 1/8 with a dosage 

16% is necessary to prevent both flaming and smouldering combustion (Figure 1.6). 
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Figure 1.6: Proportions (parts per hundred) of borax and boric acid in order to achieve smoulder retardancy 
(  diagonal) and flame retardancy ( \ diagonal) (Day et al., 1980). 

 A three component formulation using borax, boric acid, and aluminium sulphate 

was also studied. Varying dosage from 12%, 18%, and 24% increases the possible 

proportions of these constituents which allow both smouldering and combustion 

resistance to be obtained. In another study (Day et al., 1981), the effect of wetting on 

additives was examined. They establish that wetting and drying of the CFI caused a 

higher concentration of both borax and boric acid to appear on the surface of the material. 

This migration did not affect smouldering resistance and would actually be favourable for 

flame combustion resistance. Sprague (1979) studied the consistency of formulations and 

found variability in the distribution of test results. Samples were found to attain class I or 

II flame resistance with a variable distribution. As additive dosage increased, this 

variability was reduced. Some of the variability was due to inconsistency in the testing 

method itself.  

1.2.8 1.2.8 1.2.8 1.2.8 Fungal developmentFungal developmentFungal developmentFungal development    
It is widely known that wet lignocellulosic materials can allow mould growth. In 

the case of CFI, the added additives can serve a dual purpose of preventing mould growth 

as well as fire propagation. In the work of Herrera (2005), it was found that the boron 

included in the cellulose was found to have a sporocidal effect on five of the most 

common types of fungal spores, even when subjected to a high concentration of fungi. 
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For untreated fibres exposed to fungal samples, moisture content and relative humidity 

was found to have an influence on the fungal growth rate of cellulose insulation. As the 

CFI samples dried, the rate of mould growth decreased. 

There exist however, case studies where mould growth has been found to be 

produced in houses insulated with CFI. Godish and Godish (2006) studied four wet spray 

CFI-insulated houses where mould was prevalent. While the conditions in which the wet 

spray CFI was applied were not detailed (i.e. high water dosage), it was found that two of 

the houses developed fungi due to rewetting of the fibres because of water infiltration. 

Numerous hydrophilic xenophilic and toxigenic species of fungus were found both within 

the CFI material and in airborne samples. While this mould exposure poses a risk to 

building occupants, properly applied wet-spray CFI should not present these problems.  

1.2.9 1.2.9 1.2.9 1.2.9 Life Cycle AnalysisLife Cycle AnalysisLife Cycle AnalysisLife Cycle Analysis    
As mentioned before, CFI has a low embodied energy compared to traditional 

mineral and natural insulation materials. A comparative analysis with three impact 

categories of the life cycle analysis (LCA) of common insulation materials was presented 

by Zabalza Bribián et al. (2011). It is worth noting that the functional unit is 1 kg of 

material. Since the materials have different densities and thermal conductivities, a more 

proper functional unit would be the necessary amount of material to provide a specific 

value of thermal resistance. 

 Building 
product 
Density 
(kg/m3 ) 

Thermal 
conductivity 

(W/mK) 

Primary 
energy demand 

(MJ-Eq/kg) 

Global 
Warming 
Potential 

(kg CO2-Eq/kg) 

Water 
demand 

(l/kg) 

EPS foam slab 30 0.0375 105.486 7.336 192.729 

Rock wool 60 0.04 26.393 1.511 32.384 

Polyurethane 
rigid foam 

30 0.032 103.782 6.788 350.982 

Cork slab 150 0.049 51.517 0.807 30.337 

Cellulose fibre 50 0.04 10.487 1.831 20.789 

Wood wool 180 0.07 20.267 0.124 2.763 

Table 1.3: Comparative life cycle analysis of common building materials (Zabalza Bribián et al., 2011) 

A more in depth LCA comparison was done by Schmidt et al. (2004), who studied 

the cradle to grave assessment of stone wool, flax, and CFI, in compliance with the LCA 

standard ISO 14040. In this case the functional unit was the amount of material necessary 
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to provide a thermal resistance of 1 m²K/W so 1.280 kg of material in the case of loose 

fill CFI. The study takes into account the production of newsprint, the manufacture of 

CFI, the incorporation of its additives, its installation, use and disposal for the calculation 

of its inventory. Sensitivity analysis of the end of life stage was also considered. For 

loose fill solutions, manufacturers state that CFI can be recycled if no contaminants are 

present (Boogman, 2014), or incinerated to provide energy in a waste incineration plant. 

The study analyses the impact of partial recycling incineration or landfilling of the 

material. The highest impact was caused by partial landfilling of the CFI, which nearly 

tripled the global warming impact factor, due to the amount of methane released by the 

material. Recycling vs incineration had less of an impact. Interestingly, in this study CFI 

showed a higher total energy consumption than stone wool (for the same functional unit), 

which contradicts the studies previously shown. One reason for this could be strategy 

involved in the consideration of the impact of the manufacture of newsprint. In this study, 

newsprint production represented over 90% of overall energy consumption in the LCA of 

CFI. This highlights the importance of the initial hypotheses when analysing the life 

cycle of a recycled material such as CFI. More recently, a review on thermal insulation 

materials done by Schiavoni et al. (2016), showed cellulose to have one of the lowest 

embodied energy and global warming potential among most common insulation 

materials. 

Life cycle assessment is a useful tool in material selection for full construction 

projects. Takano et al. (2014) studied the impact of building material selection on the 

environmental characteristics of a construction in Finland. It was found that the change 

from rock wool to CFI as an insulator could reduce embodied energy of the building 

envelope by 15%. Similarly Tettey et al. (2014) studied the influence of different 

insulation materials on primary energy and CO2 emission of a residential multi-storey 

building using the criteria of BBR 2012 and Passivhaus 2012 energy-efficiency 

standards. It was found that the replacement of stone wool by CFI on most parts of the 

building envelope resulted in global energy reduction of 6% to 7% and a decrease in CO2 

emissions from material production of 6% to 8%, depending on the standard chosen 

(BBR 2012 or Passivhaaus). This is an interesting factor to consider when dealing with 

the refurbishment of buildings, where not only the replacement of old mineral insulation 
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with CFI will improve thermal properties of a refurbished building, but also reduce its 

ecological impact.  

1.2.10 M1.2.10 M1.2.10 M1.2.10 Moistureoistureoistureoisture    propertiespropertiespropertiesproperties    
The behaviour of a building material with moisture can be determined by a series 

of intrinsic parameters. The sorption isotherm of a material can determine amount of 

water absorbed under different values of relative humidity. This series of values is 

usually measured through continuous weighing of a cellulose insulation sample subjected 

a series of changes in humidity via saturated salt solutions.  

Sorption and desorption isotherms were determined experimentally by Hansen et 

al. (2001) (Figure 1.7). The isotherms are measured at 20.0ºC ± 0.5°C in a test chamber 

as described in EN ISO 12571, a magnesium perchlorate solution was used as a 

desiccant. The difference between sorption and desorption values (hysteresis) was 

negligible. Untreated CFI had a slightly lower sorption curve than treated CFI, suggesting 

that the mineral additives contribute to the adsorption of ambient humidity. A similar 

sorption curve was found by Talukdar et al. (2007).  

 

Figure 1.7: Sorption-desorption isotherm of treated cellulose insulation 

Moisture diffusivity is a property that is used in simulations to determine the 

moisture concentration profile of a material. It is defined by the moisture transport 

equation: 
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Jm=-ρ.D.grad u 

(1.4) 

With Jm= moisture flux (kg/m²s), ρ the dry density of the material (kg/m3), and u 

the moisture content [(kg/kg)]. This parameter was determined by Marchand and 

Kumaran (1994). Samples of blown CFI were subjected to moisture intake and then 

continuously scanned via gamma ray attenuation. These scans provided the moisture 

content profiles within the material as a function of time. Through Boltzmann 

transformation of these profiles, the moisture diffusivity D was determined as a function 

of moisture content within the cellulose. The value of D varied exponentially from 5x10-8 

m/s² to 1.2x10-7 m/s² for moisture contents of approximately 10% to 175%. 

The water vapour permeability is the rate in which water vapour is transported 

through materials. This characteristic defines the “breathability” of a material. Hansen et 

al. (2001) determined the value of vapour permeability of CFI from cup measurements at 

23ºC varying from 50% to 94% RH according to EN ISO 12572: 177±29 x10 -12 

kg/(Pa.m.s). An increase in density (from 40 to 65 kg/m3) greatly reduced the 

permeability, while the removal of mineral additives had less of an impact. The values 

are similar to those found in other works: (Mortensen et al., 2005), (Peuhkuri et al., 

2008), and (Kalamees and Vinha, 2003). Talukdar et al (2007) established the water 

vapour permeability of CFI as a function of relative humidity using ASTM Standard 

E96/E96M-05.  

A parameter that is frequently cited by manufacturers is the moisture buffering 

value (MBV) which is the ability of the materials within the room to moderate variations 

in the relative humidity. Cerolini et al.(2009) calculated the MBV of CFI by exposing 

69.6 g of CFI to daily cyclic exposure of high (75%) and low (33%) relative humidity 

levels for 8 h and 16 h. The moisture buffering value of CFI was found to be around 3.06 

g/m².%RH, which can be classified as an “excellent” moisture buffer according to the 

scale established by Rode et al. (2007). 

The highly hygroscopic nature of cellulose insulation can be detrimental to CFI’s 

performance, as was shown with the two previous sections. However having a 

hygroscopic material in a building envelope could theoretically be beneficial when it 

comes to regulating humidity conditions inside a building, especially if a vapour retarder 
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is not integrated in the building envelope. Rode (1998) modelled the performance of a 

CFI wall under isothermal and nonisothermal conditions in Nordic climate. In the case 

where no moisture barrier or plasterboard was applied a small improvement in interior 

relative humidity was found for winter months. However, external humidity conditions 

caused moisture accumulation within the CFI to reach levels over 90% RH, which could 

potentially promote mould growth. Hagentoft and Harderup (1996) used hygrothermal 

1D models to calculate moisture uptake of a typical wall with a brick façade and thermal 

loose fill CFI insulation exposed to Swedish climate. The study found that in when 

vapour retarder is not used, moisture accumulation can reach critical levels and possibly 

cause mould growth in the wooden elements of the wall. In the work of Vrána and 

Gudmundsson (2010), moisture transport within CFI was measured experimentally in 

order to model its behaviour under massive condensation and sub-zero temperatures that 

create ice formation. Their studies found that ice formation had little influence on the 

water vapour permeability of the material, yet the material continued to accumulate 

moisture and did not reach a steady state within the testing period of 100 hours.  

Using a full scale testing chamber subjected to moisture load, Mortensen et al. 

(2005) found that CFI can reduce interior relative humidity peaks by up to one half, but 

as with the previous studies, this moisture reduction becomes negligible once the surface 

layers of the composite wall are covered in plasterboard. 

This moisture sensitivity accentuates the need to protect the material from 

moisture infiltration, through the use of external weather barriers. 

1.2.11 1.2.11 1.2.11 1.2.11 Drying of wet spray CFIDrying of wet spray CFIDrying of wet spray CFIDrying of wet spray CFI    
For wet spray cellulose, drying is an important factor to consider during 

installation. The water from the sprayed fibres could be transmitted to wood frames 

cavities which could cause warping or mould growth. A study by the Canada Mortgage 

and Housing Corporation (CMHC, 1990) found that the cellulose increased plywood 

sheathing moisture content to 24% 30 days after installation, which then reduced to 15% 

after 260 days. The critical moisture content in which wood starts to develop fungi is 

around 30% so the moisture values were below the threshold although for different 

conditions, higher moisture is possible. Salonvaara et al (2010) studied drying of wet 
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spray CFI with a hygrothermal model that takes into account the period of installation. 

The study compared drying in a region with warm dry climate vs. a region with cold 

humid climate. It was found that for winter months the wet spray CFI would take many 

weeks to dry and in some cases never dry at all, especially in colder region. For example 

Figure 1.8 shows that, during the winter months of November, December, and January 

(solid blue, dashed orange, and solid black lines in the graph, respectively) moisture 

content decreased by only 10% in a month. The wet spray method is therefore preferred 

to be applied in warmer drier climates.  

 

Figure 1.8: Calculated evolution of average moisture content in exterior facing half of wet spray CFI with 
varying months of installation in Detroit Michigan (Salonvaara et al., 2010) 

1.2.12 1.2.12 1.2.12 1.2.12 Present opportunities in cellulose insulation researchPresent opportunities in cellulose insulation researchPresent opportunities in cellulose insulation researchPresent opportunities in cellulose insulation research    
The state of the art of cellulose insulation has shown both its benefits and 

disadvantages. While its physical properties have been thoroughly studied especially with 

regards to the dry blown method, the wet sprayed technique is underrepresented in the 

literature. Firstly, no work has been made to characterize the mechanical performance of 

the material after it is sprayed. The influence of the sprayed dosage on its properties has 

not been presented. Finally no research has been dedicated to improve the problem with 

regards to drying. As of now, only water has been used with the wet spray method, and 
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additives have not yet been considered. The use of additives could improve the 

mechanical cohesion of the material, and/or improve its drying times. The main objective 

of this work is then to further characterize cellulose insulation installed via the wet spray 

method, and to search for a feasible additive which could improve its drying and 

mechanical properties, while maintaining its positive qualities as an insulating material. 

1.31.31.31.3    BBBBIIIIOBASED ADDITIVES ANDOBASED ADDITIVES ANDOBASED ADDITIVES ANDOBASED ADDITIVES AND    INTERACTIONS WITH INTERACTIONS WITH INTERACTIONS WITH INTERACTIONS WITH 

CELLULOSECELLULOSECELLULOSECELLULOSE    

1.3.1 1.3.1 1.3.1 1.3.1 AdhesivesAdhesivesAdhesivesAdhesives: an introduction: an introduction: an introduction: an introduction    
An adhesive can be defined as a substance or group of substances that, once 

applied to a surface, can bind with that surface and resist separation or breaking. In doing 

so, an adhesive allows the uniform transmission of stresses from one surface to another. 

Some of the first uses of adhesives can be traced back to 4000 B.C, where prehistoric 

pottery was found to be repaired using tree sap. Another notable recorded use of 

adhesives can be traced back to ancient Egypt, in the period between 1500-1000 B.C 

where there existed paintings and murals portraying wood gluing operations. It was found 

that for the construction of king Tutankhamun’s tomb, animal glue was employed to seal 

the casket (Nicholson et al., 1991; Rifai and El Hadidi, 2010).There are many examples 

throughout history of the use of animal binders such as casein, gelatine and blood glues. 

As technology progressed, the composition and performance of binders have evolved. 

The past century introduced adhesives using petroleum based synthetic polymers. In the 

present day, adhesives are employed for a variety of uses. New developments in 

formulations of adhesives are continuously being created to suit the required properties of 

different materials, for use in many industrial sectors such as: aerospace, automotive, 

construction, cosmetics, paper, packaging, food, and agriculture, amongst others. The 

most prevalent adhesives used today are based on polymers sourced from fossil fuels, 

such as urea-formaldehyde, epoxy, polyurethane, and vinylic and acrylic polymers. There 

is a current predisposition in the adhesive industry to return to the use of natural binders 

from animal and plant origin. Manufacturers seek alternative natural and renewable 

resources for which adhesives could be produced. This is mainly due to the decrease in 
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reserves of fossil fuels, their increase in price, and their negative impact on the 

environment and human health. There exist numerous biobased polymers which offer a 

sustainable alternative to traditional adhesives, while providing similar properties in 

terms of mechanical resistance (Imam et al., 2013) . 

The ways in which adhesives could contribute to the drying of wet spray cellulose 

insulation are numerous. First of all, the hardening of the binder after it is sprayed with 

cellulose makes it consume the water that needs to be evaporated from the material, thus 

accelerating drying. The fact that the adhesive could reinforce cellulose insulation could 

make it that less initial water dosage is required. Finally the increased initial solids 

content from the adhesive makes the initial moisture content decrease, thus reducing the 

time required to reach the dry state. Ideally the included binder should not hinder the low 

environmental impact of the final product so this study focusses primarily on biobased 

adhesives. 

1.3.2 1.3.2 1.3.2 1.3.2 Mechanisms of adhesionMechanisms of adhesionMechanisms of adhesionMechanisms of adhesion    
A number of theories on the mechanisms that characterise the bonding of 

adhesives with their substrate have been developed. No one theory can describe all the 

interactions that take place once a material adheres to another. It is generally accepted 

that there is a combination of these mechanisms working together which leads to 

adhesion (Fourche, 1995). In recent years, it has been proposed that some of the classical 

theories of adhesion are a component of more complete models (Ebnesajjad, 2008). The 

current proposed theories are as follows: 

Adsorption theory: 

Reactions at the surfaces of both the adhesive and the substrate at the time they 

are in contact, cause specific interatomic and intermolecular forces. Adsorption theory 

encompasses all type of bond created from these forces, whether it be a primary bond, 

such as ionic, covalent or metallic, or secondary, such as Hydrogen or Van der Waals 

bonds. The nature of the bond depends on the properties of both the adhesive and the 

substrate. Secondary bonds present much less energy than primary bonds. Table 1.4 

shows the typical bond energies of different types of bonds (Pizzi, 1994). 
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Table 1.4: bond energies of primary and secondary bonds (Pizzi, 1994) 

 Some works differentiate the adhesion theory with the type of bond, such as 

primary bonds are sometimes referred to as chemical adhesion (Kendall, 1994), 

(Ebnesajjad, 2008), and covalent adhesion is referenced when referring to covalent bonds 

in wood adhesives (Pizzi, 1994).  

 

Figure 1.9: Adsorption bonding adhesion (Mattson, 2010). 

Mechanical interlocking theory:  

This is also known as the “hammer and nail” mechanism. Once the fluid adhesive 

flows through the substrate, it hardens and interlocks within the material, and thus 

increasing strength. This mechanism is especially prevalent when the substrate is porous, 

such as in fabrics, paper, and natural fibres, where a liquid adhesive can penetrate into the 

material by capillarity. 
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Figure 1.10: Mechanical interlocking adhesion (Mattson, 2010) 

Diffusion theory:  

Interactions between polymer chains at their interface of some materials induce 

adhesion. The entangling of polymer chains is affected by contact time, temperature, 

chemical properties, and physical form. The phenomenon only occurs with polymers with 

long molecules that allow movement and entanglement with each other. 

 

Figure 1.11: adsorption bonding illustration (Mattson, 2010) 

Electrostatic forces theory: 

 Another factor in bonding between an adhesive to its substrate could be 

electrostatic forces. These forces occur when an electrical double layer of separated 

charges at the interface is formed and are believed to play a role in the resistance to 

separation of adhered materials. In order for electrostatic adhesion to occur, both 

materials must show properties that allow electron transfer at the interface. Adhesives and 

substrates that contain polar molecules or permanent dipoles are most likely to form 

electrostatic bonds. This type of adhesion mechanism is quite weak compared to the ones 

previously cited.  
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Figure 1.12: Electrostatic adhesion (Mattson, 2010). 

Weak boundary layer theory: 

 This model is used to describe adhesive failure that occurs at the interface. One 

example of weak boundary layers is when air voids are formed through improper contact 

at the interface. This can occur through improper wetting of the adhesive. Another cause 

could be contaminants or impurities present in the interface, causing unfavourable 

reactions and voids between substrate and adhesive. In order to limit the effects of weak 

boundary layers, proper surface treatments surface treatments on the substrate can be 

applied so a strong adhesive bond can be achieved. 

1.3.3 1.3.3 1.3.3 1.3.3 Adhesion in cellulose fibresAdhesion in cellulose fibresAdhesion in cellulose fibresAdhesion in cellulose fibres    
The closest available analogue to the adhesion of the moistened fibres from wet 

spray cellulose insulation would have to be the bonding of cellulose during paper 

manufacture. This association comes with two important distinctions however: In the 

paper manufacturing process: much more water is used than for the wet spray method of 

applying CFI (paper pulp is usually a slurry with low solids content, compared to the low 

moisture content of CFI), and the source material is slightly different (most paper pulp is 

refined and has been chemically treated to remove lignin and impurities, whereas CFI 

fibres are more representative of an unrefined, untreated mechanical recycled paper pulp) 

(Biermann, 1993). Nevertheless the adhesion process during paper manufacture can give 

an idea of the interactions of cellulose fibre insulation with water and adhesives. The 

primary mechanism of adhesion between cellulose fibres is generally accepted to be 

hydrogen bonding. Since cellulose is composed of hydroxyl groups, the oxygen atoms 

from these groups can form hydrogen bonds with the water molecules in contact with the 

fibres. As the paper pulp is pressed and dries these bonds between water and fibres are 
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replaced with interfibre bonds. However, the roughness of paper pulp ( ranging from 10 

to 10000 nm ) can limit the surface in which cellulose microfibrils could be in contact in 

order to create hydrogen bonds, which are generally formed at a contact distance less than 

1 nm (Fornué et al., 2011). This means that other adhesion mechanisms must also take 

place in order for the cellulose fibres to come in close contact and bond. Of the 

mechanisms mentioned beforehand, there are three main mechanisms that have currently 

been proposed as being dominant when describing the adhesion of cellulosic fibres: 

adsorption/chemical interactions such as hydrogen bonding and Van Der Waals forces, 

intermolecular diffusion between molecular chains, and mechanical interlocking of 

irregular surfaces (Gardner et al., 2008). The interdifusion theory posed by Voiutskii 

(1963) equates the cellulose fibre surface with a polyelectrolyte gel. During pressing and 

drying of the fibres, molecules diffuse into each other through inter-solubility, 

consequently close enough contact is made between molecules that hydrogen bonding is 

possible. Van der Waals forces have also been said to contribute to the adhesion of paper. 

These forces are created as a result of temporary dipoles from the movement of electrical 

atoms in molecules. The charged fibre surfaces in water create a double layer force, 

increasing surface adhesion. These adhesive forces depend on the charge density at the 

surface of the fibres as well as properties of the aqueous medium, such as pH and salt 

concentration (Eriksson, 2006; Yan and Li, 2012). Mechanical bonding could be applied 

when cellulose fibres and microfibrils interlock with each other. This mechanism is more 

obvious when dealing with adhesion of dried fibres, and is considered less impactful to 

overall adhesive strength of wet paper pulp. Incidentally this mechanism could explain 

the cohesion obtained with loose fill (dry) cellulose fibre insulation. 
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Figure 1.13: Schematic representation of microfibril formation of hydrogen bonds between cellulosic 
fibres (Gardner et al., 2008).  

1.3.4 1.3.4 1.3.4 1.3.4 Types of adhesives in natural fibre compositesTypes of adhesives in natural fibre compositesTypes of adhesives in natural fibre compositesTypes of adhesives in natural fibre composites    
Adhesives and binders used in fibrous composites could also be defined through 

the reactions that allow them to flow, polymerize and harden. Most adhesives are in a 

liquid form which, once applied, “wet” the substrate and flows through its structure. This 

is usually achieved via either: (1) the use of heat, which allows the material to flow, (2) 

dissolving the material in a solvent, or (3) through polymerization of the liquid monomer 

form. Once in place, after the adhesive has flowed through the substrate, the material 

must cure in order to achieve its final form and reinforce the substrate. Most adhesive 

harden either through: cooling, evaporation of the solvent or chemical reaction. These 

reactions during the wetting flowing and curing stages define how they can be applied 

with a substrate (Ebnesajjad, 2008; Pizzi and Mittal, 2003). The main types include: 

Thermoset: With thermoset adhesives, the application of heat induces 

polymerization and cross-linking of the adhesive, such examples include: Urea 

formaldehyde, phenol formaldehyde, acrylics and epoxies.  

Thermoplastic: In the case of thermoplastic adhesives, heat is also employed but 

to is applied to either melt (semi-crystalline) or raise the temperature above the glass 

transition temperature (amorphous) thus allowing a polymer to flow through its substrate. 
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Ethylene Vinyl Acetate and Poly Lactic Acid are some examples of adhesives that 

portray these properties.  

Solvent loss: The mechanism which characterizes solvent loss adhesives occurs 

when a polymer is dispersed or dissolved in a solvent, forming a solution in which over 

time, the solvent evaporates leaving only solid film. Glues such as polyvinyl acetate 

(PVA) – and starch are some examples of solvent loss adhesives.   

Reactive systems: Adhesion with this type of system is realized through the 

mixing of two or more components that react together and form a chemically crosslinked 

bond, usually without using heat. They are known for providing high strength bonds and 

good performance. The most common reactive adhesives are epoxies, where a base resin 

and a hardener are mixed and can cure and harden at room temperature. 

Others: There exist other, less prominent types of adhesives which activate or 

cure through different means. Some examples include moisture-curing adhesives such as 

some types of polyurethane which cure in when in contact with moisture, or anaerobic 

adhesives such as dimethyl acrylate ester, which flow when in presence of oxygen but 

harden in its absence. 

1.3.5 1.3.5 1.3.5 1.3.5 BBBBiobased adhesivesiobased adhesivesiobased adhesivesiobased adhesives    
The main adhesives and gums coming from animal and plant resources are mainly 

polysaccharides, proteins, or phenolics, and can be classified from their main component 

as follows:  

1.3.5.1 1.3.5.1 1.3.5.1 1.3.5.1 CelluloseCelluloseCelluloseCellulose    estersestersestersesters    

 Cellulose is one of the most abundant polymers in nature. It is the main 

component of most trees, plants, crops and biomass, providing structure to their cell 

walls. Its structure consists of linear D-glucose units linked by β-(1→4)-glycosidic bonds 

(Figure 1.14). 

 Cellulose is mainly used in the manufacture of pulp and paper, but can also be 

applied to the production of biocomposites as a reinforcing fibre. As a binder, cellulose 

derivatives known are cellulose esters can contain adhesive properties or be used as an 

additive in adhesive, coatings, and paint formulations. Some examples of cellulose esters 

include: methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), and 
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carboxymethylcellulose (CMC) (Nasatto et al., 2015). These cellulose derivatives have 

many uses as thickeners and emulsifiers in food products, as additives in mortar and 

concrete formulations or as a filler in pulp and paper manufacture. In binder formulations, 

it is usually employed as a thickening agent for other adhesives and has been known to be 

used as an ingredient in wallpaper pastes (Grossi, 1954) and as a digestible binder in 

pharmaceutical application (Guo et al., 1998).  

 

Figure 1.14: Structure of cellulose (Pizzi and Mittal, 2003) 

1.3.5.2 1.3.5.2 1.3.5.2 1.3.5.2 Chitin and chitosanChitin and chitosanChitin and chitosanChitin and chitosan    

 Chitins are polysaccharides that are extracted from the exoskeletons of 

crustaceans and insects. It can also be present in some forms of mould. Chitosan is 

created from chitin that has undergone alkali deacetylation. It is a heteropolymer 

composed of randomly distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-

glucosamine units (Figure 1.18). Chitosan films have been proven to be suitable 

bioadhesives for the use in pharmaceutical applications (Nunthanid et al., 2004), as well 

as for wound treatment and tissue repair (Dragostin et al., 2016; Mati-Baouche et al., 

2014b). Chitosan has also found to be a suitable adhesive for metal. For example, high 

shear resistance of a chitosan adhesive with plasticizer was found when glued with 

chemically treated aluminium (Patel et al., 2013). For wood adhesion, a chitosan – 

laccase phenolic adhesive was formulated in the work of Peshkova and Li (2003), where 

the mechanism of adhesion was found to be similar to that of mussel proteins. Chitosan 

has also been used in the manufacture of biobased insulating composites, using sunflower 

stalks as reinforcement (Mati-Baouche et al., 2014a). 
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Figure 1.15: Structure of Chitin and Chitosan (Rinaudo, 2006) 

1.3.5.3 1.3.5.3 1.3.5.3 1.3.5.3 Pectins:Pectins:Pectins:Pectins:    

 Pectins are natural heteropolysaccharides. Their structure consists of linear 1,4-

linked α-Dgalactosyluronic residues, obtained by extraction of certain plant material. It is 

a complex mixture of polysaccharides that makes up about one third of the primary cell 

wall of plants. An important organisational property of pectin is related to the 

esterification of galacturonic acid residues with methanol or acetic acid. This factor 

defines its gelling and adhesive performance. The degree of methylation is defined as the 

percentage of carbonyl groups esterified with methanol. If more than 50% of the carboxyl 

groups are methylated the pectins are classified as high-methoxylated pectins (HM), and 

less than that degree of methylation are classified low methoxylated (LM) pectins. HM-

pectin requires a low pH of around 3.0, in order to form gels. HM-pectins are soluble in 

hot water and are prone to lumping without a dispersion agent. LM-pectins can gel at 

most pH levels, but require small levels of calcium for gelation (Sharma et al., 2006). 

Most commercial pectins are extracted from the peels of apples and citrus fruit, due to the 

fact that their molecular size and degree of esterification allow consistent gelling. Pectins 

have recently shown promise as a binder for pharmaceutical applications (Thakur et al., 

1997). They are typically produced as water soluble brown, white, powders. Pectins are 

used as thickening and gelling agent in food products and is a main ingredient present in 

jams and jellies. Not much research has been made to integrate pectin as a binder in 

composites. In the work by Flory et al. (2013), commercial pectin was found to have the 
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same tensile strength as commercial synthetic binders for the application of air-laid 

pressed paper, which can be typically used for wet-wipe products.  

  

Figure 1.16: Partial structure of pectin (Baker et al., 2012). 

1.3.5.4 1.3.5.4 1.3.5.4 1.3.5.4 Natural GumsNatural GumsNatural GumsNatural Gums    

 Gums are natural heterogeneous polysaccharides which increase the viscosity of 

a solution. Natural gums can either be produced by exudation, from either the stem or 

root of plants, from the endosperm portion of specific seeds. Gums have uses in a number 

of products: food thickeners, denture adhesives, pharmaceutical tablet binders, etc. 

(Conner, 1990). The most prevalent example is guar gum, coming from the endosperm of 

guar beans. They are galactomanns, which consist of (1-4)-linked D-mannopyranose 

chains linked to attached (16)-linked d-galactopyranosyl units (Figure 1.20). Guar gum 

has been known to be used in papermaking as a densifier and a method to improve stock 

retention (Larsson, 1988). It has also been known to be used as a tackifier for hydromulch 

erosion control to prevent clumping (Vaughn et al., 2013). Other examples include 

Arabic, locust bean, tamarind and Xanthan gums. Norström et al. (2014) studied 

dispersions of locust bean gum, guar gum, xanthan gum and tamarind gum as potential 

wood adhesives and found that locust bean gum had equivalent tensile strength to 

commercial polyvinyl acetate binder, despite low solids content due to high viscosities of 

the dispersions. Guar gum forms a thixotropic rheological system in a solution. Dilute 

solution at 1% concentration can have a high viscosity value of 10000 mPa.s (Mudgil et 

al., 2014). 
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Figure 1.17: Structure of guar gum (Mudgil et al., 2014). 

1.3.5.5 1.3.5.5 1.3.5.5 1.3.5.5 StarchStarchStarchStarch    

Starch is a carbohydrate polymer found in plants and crops such as corn, rice, 

tapioca and potatoes. The structure of starch is an arrangement of glucose units joined 

together by glycosidic bonds, forming two different molecules: amylose and amylopectin. 

The amylose molecule has a linear arrangement of glucose, while amylopectin has a more 

branched structure (Figure 1.17). Starch is typically composed 20 % to 30 % amylose and 

70 % to 80% percent amylopectin. Starch very prominently used in food applications as a 

thickener and binder. Native starch is not soluble in cold water due mainly to its tightly-

bound granular form. For native starch to be used as an adhesive, these granules must be 

opened up, which is attainable through numerous modification methods. These 

modification methods include: heating, alkali treatment, acid treatment, and oxidation. A 

formulation for a starch adhesive can include numerous additives to modify the 

adhesive’s properties, such as borax to improve tack and viscosity, urea as a plasticiser, 

pol(vinyl alcohol) for water resistance, and bentonite as a filler, amongst others 

(Baumann and Conner, 1994). As an adhesive, starch is predominantly used in the paper 

industry. Starch can be mixed with cellulose pulp either in the wet end of paper 

manufacturing in order to improve dry strength of the paper (Floyd et al., 2001), or in the 

dry end to strengthen of modify the paper surface (Wagle and Yasnovsky, 1990). Starch 

adhesives are very thoroughly used for corrugated cardboard production (Czerwin, 1978; 

Fischer Jr and Mcelmury, 1969). For wood panel production, unmodified starch has 
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shown to have too low bonding properties and requires modifications of the polymer such 

as graft copolymerization (Wang et al., 2012; Wu et al., 2009; Zhang et al., 2015) or 

crosslinking (Imam et al., 2001, 1999). Some researchers have found modified starch to 

be a suitable binder for natural fibre insulating materials, such as insulation boards 

incorporating straw, corn pith and rice husks (Lacasta Palacio et al., 2014), and hemp 

fibre concrete, with starch as an alternative to the traditional lime binder (Benitha 

Sandrine et al., 2015; Le et al., 2014).  

 

Figure 1.18: Structure of starch components (Pizzi and Mittal, 2003). 

1.3.5.6 1.3.5.6 1.3.5.6 1.3.5.6 LigninLigninLigninLignin    

 Lignin is the second most prominent polymer found in trees, plants and other 

types of biomass. Within the cell walls of vascular plants, lignin contributes to plants’ 

mechanical resistance and protection from its degradation. Most wood species contain 

20% to 30% lignin. Its structure is composed of phenylpropane units joined with many 

different linkages. These units are shown in Figure 1.15. 

 During the manufacture of paper and paper products lignin is removed during the 

pulping and bleaching, making lignin by-products that could be used in adhesive 

applications. The main by-products are Kraft lignin (black liqueor) from the Kraft 

pulping process, and lignosulphonate from sulphite pulping. Lignosulphonate as an added 

binder has been known to be used in road formulations to reduce erosion. Since the 
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polyphenolic structure of lignin is similar to that of phenol–formaldehyde resins, lignin 

has shown the potential for use as a binder in the making of wood panels. For the 

manufacture of plywood, it has been found that the partial substitution of synthetic 

phenolic resins with lignin can produce plywood panels with satisfactory bond strength 

and water resistance properties (Klašnja and Kopitović, 1992; Mittal and Sharma, 1992). 

The same has applied for the manufacture for fibreboard and particleboard (Haars and 

Huttermann, 1984; Kazayawoko et al., 1992; Mancera et al., 2011), (Mancera et al., 

2011). Despite these advantages, lignin-formaldehyde wood boards have not as of yet 

been considered commercially viable, mostly due to lengthy curing and pressing times 

(Pizzi and Mittal, 2003), therefore most of the spent lignin liquors in pulp mills are not 

recovered and burned as an energy source.  

 

 

Figure 1.19: Structure of three phenyl propane monomers of lignin. (Hatakeyama and Hatakeyama, 2009) 

1.3.5.7 1.3.5.7 1.3.5.7 1.3.5.7 Tannin:Tannin:Tannin:Tannin:    

 Tannins are phenolic compounds that can be extracted from several types of 

wood, leaves and fruits. In trees and woody plants, tannins are present in the bark layer, 

protecting the plant from exterior attacks such as fungi and bacteria. Depending on the 

source plant, tannins can have varying molecular sizes and complexities. Most 

commercial tannins are extracted from the barks of Quebracho, Chestnut or Mimosa 

trees. Tannins come in two main forms: condensed and hydrolysable tannins. Most 

industrial tannins come from hydrolysable tannins due to their high reactivity. Its main 

use as an industrial product is mainly as a colorant and is utilized in the manufacture of 

tanning leather, and in ink formulations. As with lignin, tannin presents potential use as 

an adhesive due to its phenolic structure, which could be used to partially replace 
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synthetic phenol formaldehyde and urea formaldehyde binders. There exist numerous 

examples where tannins were used as in the formulation of binders for particleboard 

(Bisanda et al., 2003; Coppens et al., 1980; Kim et al., 2003; Pizzi, 1982; Pizzi and 

Merlin, 1981; Roffael et al., 2000). More recently, successful formulations for high 

density fibreboard incorporating cationic tannin were found to improve hardboard 

properties due to ionic interactions between the positively charged tannin and negatively 

charged wood fibres (Widsten and Kandelbauer, 2014). Hussein et al (2011), produced 

composite sheets with a Tannin-phenol Formaldehyde binder reinforced with cellulose 

paper pulp. Tannin and Tannin -Polyvinyl acetate blends have also shown promise as an 

adhesive in wood-based flooring (Kim, 2009). 

 

Figure 1.20: Structure of tannic acid. Tannin acid (Ahmad, 2014). 

1.3.5.8 1.3.5.8 1.3.5.8 1.3.5.8 Protein gluesProtein gluesProtein gluesProtein glues    

 Proteins are linear polymers consisting of one or more long chains of L-α-amino 

acids, which are present in most living organisms. Protein adhesives can come from 

either plant origin such as soy proteins or gluten, or animal origin such as casein, gelatine 

or blood glues.  

Casein is a protein adhesive made from milk. In order to make casein, defatted 

milk is precipitated in either acid at a pH of 4.5, or through enzymatic conversion of the 

milk’s lactose to lactic acid. The precipitated curd is then washed to remove the acid and 
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impurities, dried and ground into a water soluble powder. In food formulations, casein is 

an additive in cheese and an important source of amino acids, carbohydrates, calcium and 

phosphorus. It has also been known to be used in paint formulations before acrylic paints 

became standard (Menaker, 1938; Scholz, 1953). In order to be made into a glue, casein 

must be mixed with an alkali, which is usually hydrated lime. Lime improves the 

adhesion, working life, and water resistance of the binder (Frihart, 2010). Other additives, 

such as sodium hydroxide are also included in the formulation to provide mould 

resistance. Casein is usually mixed with water and cured at room temperatures through 

solvent loss, though heat could be used in the curing and pressing process. Casein was 

once used for plywood manufacturing, but it became less favourable to soy and synthetic 

adhesives due to price and performance (Lambuth, 2003). Casein has however shown 

some niche applications such as for fire resistant panel and door manufacture (Selbo and 

others, 1960), and for bonding of wooden sports equipment (Bye, 1990). 

Other animal glues originate from animal blood, bones or hide. Their adhesive 

properties vary depending on the animal source, such as cows, pigs sheep, fish etc. These 

types of animal glues are either derived from collagen, one of the major constituents of 

skins, cartilage and bones, or from albumin, a type of globular protein found in blood and 

egg whites.  

Collagen involves a series of long protein molecules made up of naturally 

occurring amino acids which are linked by covalent peptide bonds. Fish collagen glues 

can be produced from the skin and bones of non-oily fish types and are sold in liquid 

form. As a commercial product, collagen glues are usually in a pure denatured form of 

gelatine. The denatured protein is spray dried in a fine powder. Upon dilution in water the 

powder forms a gel in ambient temperature, which when heated, turns into a tacky liquid 

which hardens as it dries. Animal bone and hide is mainly used in bookbinding, paper 

sizing, woodworking, and conservation (Pearson, 2003; Schellmann, 2007). 

One benefit in using albumin blood adhesives is that they show higher water 

resistance than plant proteins (Raeker and Johnson, 1995). While blood adhesives could 

either be cold or hot pressed, bone and hide act as hot-melt adhesives. Recently, cow 

blood adhesive has been found to be suitable alternative for phenol formaldehyde through 

alkali modification (Lin and Gunasekaran, 2010). 
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 Currently, for most uses, plant proteins are favoured over animal protein binders. 

Soy proteins were used as adhesives in the 1920s and 30s but fell out of favour after the 

development of petroleum based glues, which showed higher adhesive strength and better 

water resistance (Johnson et al., 1984), although recent advances in processing 

technology have created a resurgence in interest in soy protein as an adhesive. Soybean 

adhesives are produced from soybeans which have been dehulled, crushed and their oil is 

removed through high pressure or solvent extraction. This leaves a residual soybean meal 

which in turn, is used to create either soy flour (SF) soy protein isolates (SPI), or soy 

protein concentrates (SPC) (Kumar et al., 2002), which differ in protein, fat and oil 

content. As with other biopolymers mentioned beforehand, soy protein has shown to be a 

viable partial replacement with phenol formaldehyde, urea formaldehyde, and other 

synthetic resins for wood board manufacture, (Kuo et al., 1998; Lorenz et al., 1999). 

Other soy-protein blends that have been studied include soybean-blood (Brother and 

Smith, 1940) and soybean-casein glues (Bradshaw, 1931). While these blends have 

shown positive features in wood manufacture, price and long pressing times make them 

impractical. In order to have 100% soy protein adhesive formulations, the adhesion and 

water resistance properties of the protein need to be improved through chemical or 

enzymatic modification. Current modification strategies include protein denaturation, 

crosslinking, enzyme modification, and chemical reactions such as acylation and 

oxidation. The works which have applied these modification methods and their results 

were reviewed by (2002). Aside from wood binding, Soy protein adhesives have also 

been known to be used in the manufacture of cardboard (Zhong et al., 2001), paper 

coating (Krinski et al., 1990, 1987), and low density particleboard from agricultural 

residual fibres (Wang and Sun, 2002). 

Another plant protein that has good binding potential is wheat gluten, an industrial 

by-product from the processing of wheat starch. Modified wheat gluten has recently also 

shown promise as an adhesive in the manufacture of plywood and particleboard 

(Khosravi et al., 2015, 2011; Vo Hong et al., 2015) 
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1.3.6 1.3.6 1.3.6 1.3.6 SurfactantsSurfactantsSurfactantsSurfactants    
Surfactants are compounds that can modify the properties of a liquid/liquid, 

solid/liquid and gas/liquid interface. They are usually used to change the surface tension 

(or interfacial tension) between two liquids or between a liquid and a solid. They are used 

in many applications as detergents, wetting agents, emulsifiers, foaming agents, and 

dispersants. They are amphoteric which means that they contain both hydrophobic groups 

and hydrophilic groups, also known as the “head” and the “tail” respectively. These 

groups make them soluble in both organic solvents and water. When in contact with 

water, surfactants form aggregates, with an inner core formed by hydrophobic tails of the 

surfactant and the groups form an outer shell from the hydrophilic head. These aggregates 

are known as micelles, for these micelles to be formed, a minimum surfactant 

concentration, known as the critical micelle concentration (CMC), must be reached. 

For cellulose insulation, surfactants can contribute to the decrease in drying times 

through two mechanisms. Firstly the reduction of water/air surface tension and 

cellulose/water contact angle of the sprayed water can enhance water removal from 

capillaries within fibre walls and between fibres. Secondly the adsorption of cationic 

substances on negatively charged cellulose has been well documented (Alila et al., 2005). 

Cationic surfactants have found to modify the surface properties of cellulosic fibres and 

directly influence the papermaking and deinking processes on a large scale of paper pulp 

(Beaupré, 2012), and a similar outcome could be reached with cellulose insulation, to 

modify its interactions with water. 

1.3.6.1 1.3.6.1 1.3.6.1 1.3.6.1 Types of surfactantsTypes of surfactantsTypes of surfactantsTypes of surfactants    

. One can catalogue surfactants according to the charge of their hydrophilic 

portion as: anionic, cationic, amphoteric (or ‘zwitterionic’) or non-ionic surfactants.  

Anionic Surfactants: contain a negatively charged hydrophilic head, usually 

combined with an alkaline metal such as Na+, K+ or a quaternary ammonium. Their main 

uses are in detergent formulations due to the fact that the negatively charged head group 

can be repelled from most negatively charged surfaces, and thus lift particulates. They are 

the most inexpensive, commonly used surfactants and represent about 50 % of the market 
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for surfactants. Examples include alkyl sulphates, sulphonates, alkyl carboxylates and 

fatty acids salts. 

Cationic surfactants: have a positively charged hydrophilic head. Due to their 

affinity towards negatively charged surfaces such as hairs, fabrics and bacterial 

membranes, their positive charge allows them to be used in fabric softeners, hair 

conditioners, corrosion inhibitors and antibacterial agents. They are less prevalent due to 

their high cost of the high pressure hydrogenation during synthesis. Fatty amine salts and 

quaternary ammonium salts are examples of cationic surfactants. 

Non-ionic surfactants are surfactants whose hydrophilic head has a neutral 

charge. They can usually be found in formulations of emulsifiers, dispersants and low 

temperature detergents. They are the second most prevalent kind of surfactant. Some non-

ionic surfactant include sucrose esters, polyol esters and polyoxyethylene esters 

Amphoteric or Zwitterionic surfactants exhibit both anionic and cationic head 

groups, with charge highly dependent of the pH of the solution. They can be used in 

shampoo and cosmetic products due to their high foaming properties and their low 

irritation qualities. Examples include betaines or sulfobetaines and certain amino acids. 

 

Figure 1.21: Schematic representation of types of surfactants with hydrophilic head and hydrophobic tail. 

1.3.6.2 1.3.6.2 1.3.6.2 1.3.6.2 Surfactants as dewatering agents in celluloseSurfactants as dewatering agents in celluloseSurfactants as dewatering agents in celluloseSurfactants as dewatering agents in cellulose    

The work of Beaupré (2012) Studied interactions of cationic surfactants during 

the papermaking process. His work found that the addition of a cationic surfactant 

cetyltrimethylammonium bromide (CTAB) to a paper pulp slurry contributed to the 
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increase in the removal of water during the paper forming and pressing sections, thus 

requiring less energy and time for drying. It was found that the addition of CTAB 

reduced the water retention and modified the pore structure of the negatively charged 

fibres. Some detrimental effects of the addition of CTAB were also encountered: the 

mechanical strength of the paper sheets was reduced and the surface charge of the fibres 

was reversed from negative to positive. Many different varieties of cellulosic pulp were 

tested. Figure 1.22 shows a 15% decrease in water retention value (WRV) of recycled 

newsprint paper pulp, the same source material as cellulose fibre insulation. While still 

taking into consideration differences in water dosage and processing conditions, this 

decrease in water retention could be extrapolated to a reduction of CFI drying times. 

 

Figure 1.22: Water retention value vs CTAB dosage in recycled newsprint paper pulp (Beaupré (2012) 

1.41.41.41.4    CCCCONCLUSIONSONCLUSIONSONCLUSIONSONCLUSIONS    
As has been shown by the available literature, the building sector has a strong 

effect on worldwide CO2 emissions and energy consumption. Two methods to reduce the 

environmental impact of the building sector include, the increase in the insulation 

requirement of new and existing materials, and the use of alternative building materials 

comprised of natural or recycled materials with low embodied energy and ecological 

impact. CFI is an innovative eco-friendly insulation material that presents similar 
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characteristics in terms of thermal comfort and performance to its non-renewable 

counterparts. Nevertheless the material presents, in its current state, some disadvantages 

compared to less eco-friendly insulation materials and has shown the need for more 

optimization and development. Further research needs to focus on studying and resolving 

the issues with the material’s properties and performance. 

Although the current available research thoroughly presents the properties of CFI 

as installed through the dry methods (which have historically been the most prevalent 

installation techniques), there is little current information on the wet spray method. One 

work has shown the main issue with the wet spray method: the weather-dependent drying 

times of the material. The study also demonstrated the variability in the installed moisture 

content, which also leads to increased drying times. No research has yet determined the 

effect of the applied water on the thermal conductivity of cellulose insulation, or 

characterized the material’s mechanical performance when applied with water. The next 

chapter will confront this issue. 

The current research on adhesives composed of natural polymers shows the 

variety of potential candidates that could be used as a biobased additive with wet sprayed 

cellulose insulation. While there are numerous examples of biobased adhesives being 

used in the manufacture of natural fibre composites such wood fibreboards, paper pulp, 

and hemp concrete, the manufacture of these composites differs somewhat from that of 

wet spray CFI. Most notably, the specific conditions in which wet-spray cellulose fibre 

insulation is manufactured and applied will define the nature of the biobased additive to 

be used. Most of the cited examples have specific temperature, pressure, and/or material 

requirements that are not compatible with the wet spray method. As an example the use 

of a thermosetting polymer would be unfeasible since it would be extremely difficult to 

heat a polymer during the spraying process, not to mention the increased energy costs, so 

is the suitable candidate adhesive should be a solvent loss adhesive that hardens with the 

removal of moisture at ambient temperature.  

 As has been shown, the mechanics which define the process adhesion are 

complex and varied. Taking into account the adherent (loose cotton like porous cellulose 

fibres), the optimal binder will react and adhere with cellulose fibres through mainly 
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adsorption (hydrogen bonds), with the mechanical and diffusion mechanisms also taking 

place. These optimal properties are detailed more in depth in chapter 3.  

With regards to the reduction in the drying times, four scenarios could be 

envisioned through the use of biobased additives:  

• The moisture sorption and subsequent curing of added adhesive 

accelerates the evaporation rate of water, thus making the sprayed CFI dry 

faster. 

• The increased mechanical resistance of CFI due to the addition of a binder 

decreases the required initial water dosage, thus making the material reach 

a dry state sooner.  

• The increased solids content of the CFI with the added additive decreases 

the moisture to solids ratio, therefore making the material initially drier 

then with just water.  

• The decreased surface tension of the water through the use of a surfactant 

allows faster flow of the water through the pores of the material, thus 

decreasing drying rates. The absorption of cationic surfactants through the 

negatively charged fibres could also have an influence. 

These additives need to improve these properties without being detrimental to the 

performance of cellulose fibre insulation. Mainly the density and thermal conductivity of 

the material need to remain low, but also the fire and fungal resistance of the material 

must not be affected. It is through these innovations that cellulose fibre- based insulations 

can become more prevalent and contribute to more eco-friendly construction projects.  
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CHAPTER 2: THE PROPECHAPTER 2: THE PROPECHAPTER 2: THE PROPECHAPTER 2: THE PROPERTIES OF CELLULOSE IRTIES OF CELLULOSE IRTIES OF CELLULOSE IRTIES OF CELLULOSE INSULATION AND THE THNSULATION AND THE THNSULATION AND THE THNSULATION AND THE THEIR RELATION TO EIR RELATION TO EIR RELATION TO EIR RELATION TO WATER DOSAGE WATER DOSAGE WATER DOSAGE WATER DOSAGE     

 

2 
THE PROPERTIES OF CETHE PROPERTIES OF CETHE PROPERTIES OF CETHE PROPERTIES OF CELLULOSE LLULOSE LLULOSE LLULOSE 

INSULATION AND THE TINSULATION AND THE TINSULATION AND THE TINSULATION AND THE THEIR RELATION TO HEIR RELATION TO HEIR RELATION TO HEIR RELATION TO 
WATER DOSAGE WATER DOSAGE WATER DOSAGE WATER DOSAGE  

2.12.12.12.1    IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    
The available information of the state of the art has shown the benefits and 

downsides in the use of cellulose insulation for new constructions and refurbishments. 

However, research has mostly focused on the properties of dry blown cellulose. Little 

work has been done to characterize the raw material (loose recycled newsprint fibres), 

before installation. While some parallels could be made with the manufacture of recycled 

newsprint paper pulp, the method of manufacture and final product of both materials vary 

greatly. In this chapter we aim to study the physical and chemical properties of recycled 

fiberized newsprint fibres, in order to better understand their behaviour as a final product: 

a rigid, self supporting insulating material. In order to do this, the shape and structure of 

fibres were first observed using microscopic and particle size distribution analysis. The 

degree of refinement of the fibres was studied using the Schopper-Reigler method. 

Chemical analysis consisted in the determination of lignocellulosic components within 

the fibres via the Acid detergent fibre (ADF) and neutral detergent fibre (NDF) method. 

Finally the apparent density of the material was determined via the tapped density 

method. 
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In order for a new formulation of wet spray CFI to be conceived, the traditional 

method of application needs to be studied. This includes not only the behaviour of the 

newsprint fibres with water, but also the influence that varying water dosage could have 

on the final properties of the insulation material. The interactions of the fibres with water 

were first considered with dynamic vapour sorption (DVS), water retention value (WRV) 

measurements, and differential scanning calorimetry (DSC) testing to determine bound 

and unbound water content. The drying behaviour of projected cellulose insulation 

samples was then investigated. The influence of water dosage on the thermal and 

mechanical properties of cellulose fibre insulation manufactured through the wet-spray 

method was studied. A method to test the compression resistance of the cellulose fibres 

was devised to study the influence of initial moisture content on its mechanical 

properties. The same was done with thermal conductivity testing via the guarded hot plate 

method. The results from these characterization tests provide a solid foundation in order 

to improve upon the properties of CFI via a new formulation.  

2.22.22.22.2    PPPPROPERTIES OF CELLULOROPERTIES OF CELLULOROPERTIES OF CELLULOROPERTIES OF CELLULOSE INSULATSE INSULATSE INSULATSE INSULATION FIBRESION FIBRESION FIBRESION FIBRES    

2.2.1 2.2.1 2.2.1 2.2.1 Origin and preparation of raw materialsOrigin and preparation of raw materialsOrigin and preparation of raw materialsOrigin and preparation of raw materials    
Treated and untreated cellulose insulation samples (Figure 2.1) of the brand 

Univercell Comfort were provided by SOPREMA (Bordeaux, France). The raw materials 

are pre-consumer newsprint paper from several providers from the south of France. In 

factory, the papers are ground into smaller fragments, which are then turned into loose 

fibres via a specialized fiberizer. Boric acid and magnesium sulphate then added as a fire 

retardant and antifungal agent at proportions of around 15% the mass of CFI. The fibres 

come compacted in 12 kg bags in order to optimize transportation costs. For 

characterization of loose cellulose fibres, samples were taken at random points of a bag 

and separated into loose cotton-like flakes either by hand or using compressed air to 

separate the fibres. The loose fibres were then stored in a humidity chamber at 60% 

Relative humidity and 25°C. Moisture content of samples stored in these conditions as 

determined by EM01, ranged from 8% to 11%. In order to have a point of comparison for 
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some tests, treated cellulose insulation of the brand Ouateco (Saint Geours de Maremne, 

France) was also acquired.  

 

 

Figure 2.1: Loose Univercell CFI fibres 

2.2.2 2.2.2 2.2.2 2.2.2 Microscopic observationMicroscopic observationMicroscopic observationMicroscopic observation    
Figures 2.2 and 2.3 show loose CFI fibres under different levels of magnification, 

as was done with experimental method EM02. As one can see the fibres vary in size, 

ranging from the micrometer scale to fibres less than 5mm in size. The inks in the fibres 

are visible, as are the added powdered additives on the surface. The fibres show a high 

presence of hairs and fibrils. This is known as fibrillation and is the result of the shearing 

and compressive forces during shredding via a specialized high speed fiberizer. This is 

what gives the fibres their lightweight, fluffy properties. If fibres were to be shredded via 

traditional shredding methods used in papermaking such as through a hammermill, they 

would have less of these microfibrils, thus making the material denser and thus increasing 

its thermal conductivity. When the fibres are applied via the dry method (blown in 

cellulose), the fibres expand with the applied air pressure but then consolidate when 

applied within a confined space (usually an attic or a closed wall cavity). Upon 

consolidation the fibres and fibrils interlock with each other, forming a self sustaining 

structure. In the wet spray method, the use of water reinforces this structure, making the 

final product more resistant to settling.  
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Figure 2.2 : CFI fibres under X7.5 magnification 

 

Figure 2.3: CFI fibres under X20 magnification 

2.2.3 2.2.3 2.2.3 2.2.3 Schopper Reigler freeness testingSchopper Reigler freeness testingSchopper Reigler freeness testingSchopper Reigler freeness testing    
 The Schopper Reigler test, as detailed in EM03 is a method to characterize and 

surface properties of cellulosic fibres. It is typically used to determine the rate of drainage 

of a pulp suspension during the beating and refining process of paper pulp manufacture. It 

is measured in a 0°SR to 100 °SR scale. It is determined by reading the inverse of the 

amount of the liquid collected as the pulp flows through the apparatus, divided by 10.  

SR=Vpulp/10 
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(2.1) 

 The higher SR value, the more the pulp can retain water and the higher it has 

been refined. For cellulose insulation it is helpful in characterizing the swelling of the 

fibres in the presence of water. Samples of both brands of treated cellulose insulation 

fibres were disintegrated and turned into homogeneous slurry at 0.2% consistency. Table 

2.1 shows the Schopper Reigler freeness for both brands of CFI with. No difference was 

found between untreated and treated cellulose fibres. Three pulp suspensions for each 

brand were measured and averaged, with standard deviation shown in parenthesis.  

Fibres Temp °C Water collected in drainage 
cylinder (ml) 

Schopper Reigler freeness 
(° SR) 

Univercell 
(untreated) 

21 580 42 (±3) 

Ouateco 20 640 36 (±2) 

Table 2.1: Schopper-Reigler freeness testing 

The standard ISO 5267-1 requires the pulp suspension to maintain a temperature 

of 20°C which, for Univercell fibres was slightly higher. While this could have an effect 

on results, it has been shown that for a similar type of test, the Canadian standard freeness 

(CSF) a variation of ±5°C represents a variation of 10% of measured freeness 

(Gharehkhani et al., 2015). Both values of freeness were found to be close to 40°SR 

which is the value given in literature for recycled paper pulp. Standard deviation for both 

types of fibre was under 4, a requirement for results to be valid according to the standard. 

It is difficult to determine how this freeness value can affect the performance of wet 

sprayed CFI, especially since a collection of slightly moistened fibres is much different 

than a pulp suspension. Nevertheless these results give the indication that the method of 

manufacture of the cellulose fibres gives them similar swelling characteristics than those 

of recycled paper pulp. 

2.2.4 2.2.4 2.2.4 2.2.4 Tapped density and loose fill settlingTapped density and loose fill settlingTapped density and loose fill settlingTapped density and loose fill settling    
The cellulose fibres manufactured for the use in CFI have a high compressibility 

which makes them susceptible to settling, as has been shown by Svennerstedt 

(Svennerstedt, 1995). For the loose fill application the air pressure applied compacts the 

material to a sufficient density to prevent settling and ensure the material fills up the 
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volume either in a wall cavity or an attic without leaving spaces in the envelope in which 

cold air could infiltrate. For the wet spray application, the pulverised water provides an 

additional pressure which further compresses the material. 

This compressibility is due to air voids, either between the cellulose fibres or 

within the pores of the cellulose. It is therefore important to distinguish between the bulk 

density and the compacted density of the material. The standards for loose fill cellulose 

insulation require settling tests to determine the compressibility of the material. These 

tests subject a sample of loose fill cellulose to cyclical impact tests to represent the 

settling of the material over time. The material for these tests is quite specific, so an 

alternative test was designed using a tapped density apparatus for powders, as described 

in EM04. Results for density before and after compaction of 1250 taps of treated and 

untreated Univercell and treated Ouateco samples, as well as their compressibility ratio, 

are shown in Table 2.2. 

 Initial 
density 
(kg/m3) 

Tapped 
density 
(kg/m3) 

Compressibility 
(%) 

Univercell 
(untreated) 

21.3 43.1 49 

Univercell 
(treated) 

24.7 45.3 46 

Ouateco 17.3 47.9 64 

Table 2.2: Tapped density measurements. 

The initial density presented through these tests are very low when compared to 

those made to traditional settling tests in the literature (30-40 kg/m3) This is due to the 

fact that the loose fibres adhered to the cylinder of the tapped density apparatus. Once 

compacted, the densities more closely resembled those found through the traditional 

method. As a consequence the compressibility ratios are lower than through traditional 

methods. This makes the tapped density technique a viable method for determining 

settling if the initial loose density is already known, by weighing a sample of loose CFI 

fibres in a recipient with a known volume. Untreated samples had lower densities than 

treated samples which would be logical since the included additives weigh down the 

material. The higher compressibility between samples could make the Ouateco brand 

cellulose have a higher final density after spraying.  
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2.2.2.2.2.2.2.2.5555    Particle size distributionParticle size distributionParticle size distributionParticle size distribution    
The particle size distribution test is used to determine the different mass 

proportions of particles of varying sizes of a certain material. It is measured in the 

cumulative mass of the particles of the material that pass through a series of metal sieves 

with successively decreasing hole diameter. Particle size distribution of both Univercell 

and Ouateco samples were determined according to the standard defined in experimental 

method EM05. The difficulty associated with this test was the separation of the cottonous 

flakes into individual fibres and fines. Compressed air was blown into the fibres to make 

them separate and pass through the sieves. Results for both brands and untreated 

Univercell are shown in Figure 2.4. One remarkable result is the high presence of fines, 

especially for the Univercell brand samples. In papermaking, fines are particle fragments 

of fibre walls with size less than 0.3 mm. These fines could also be the powdered 

antifungal and fire resistance additive that separated from the fines, as can be seen with 

the difference in amount of fines between treated and untreated samples. Usually recycled 

paper contains less fines than paper from virgin pulp (Wistara and Young, 1999). These 

fines are a result of the shredding of recycled newsprint during cellulose insulation 

manufacture. During the fiberization phase (the second size reduction) these fines are 

collected and reintegrated with the fibres, at the same time as boric acid and the additives 

are added. These fines could have an effect on the drying and mechanical properties of 

cellulose, but also increases its density, making the material more expensive to install and 

potentially increasing its thermal conductivity.  
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Figure 2.4: Particle size distribution of cellulose samples. 

2.2.2.2.2.2.2.2.6666    Chemical composition analysis:Chemical composition analysis:Chemical composition analysis:Chemical composition analysis:    
 As has been stated in chapter 1, the main raw material of cellulose fibre 

insulation is recycled newsprint with added fire and fungal resistant additives. Newsprint 

is composed mainly of mechanical pulp, and additives such as ink, kaolins and proteins. 

Mechanical paper pulp contains cellulose, hemicelluloses and lignin, with lignin content 

being higher for mechanical pulp than for chemical pulp. Cellulose and hemicellulose are 

hydrophilic and lignin is hydrophobic, so the proportions of these constituents within the 

fibres can potentially dictate their behaviour with water. The method to determine these 

proportions was defined by Van Soest and Wine (1968) and is detailed in experimental 

procedure EM06. The proportions of cellulose, hemicelluloses, lignin, ashes, and other 

constituents of Univercell and Ouateco brands of cellulose insulation are presented in 

Table 2.3. All percentages are expressed in relation to dry mass of the material, with 

moisture content of all samples ranging from 9% to 11%. The proportions for untreated 

samples are somewhat similar to those presented for newsprint in the work of Wu et al. 

(2001). The differences between the “others” content (mass of materials removed during 

neutral detergent treatment), could mean that the soluble fire and fungal treatment 
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additives are removed during this treatment. The differences in proportions of additives, 

and hydrophilic or hydrophobic constituents of both brands could influence their drying 

behaviour. The higher cellulose contents with Ouateco compared to Univercell brands 

could make higher moisture sorption capacity, thus slower drying times. It is however, 

important to note that the source material is inconstant. Different cellulose insulation 

manufacturers have different paper providers, all with different mechanical pulp 

formulations. These formulations could contain different proportions of recycled pulp, 

chemical pulp, different additives and/or different methods of manufacture. In the future 

these factors could change, making it quite difficult to optimize the raw material 

(recycled newsprint paper) in order to improve drying. 

 

 Univercell (treated) Univercell 
(untreated) 

Ouateco 
(treated) 

Cellulose 34.7% 39.9% 45.3% 
Hemicelluloses 16.8% 17.3% 14.3% 
Lignin 20.4% 29.8% 25.3% 
Ash 3.5% 5.4% 1.0% 
Others 24.6% 7.7% 14.0% 

Table 2.3: Chemical composition of cellulose insulation samples 

2.2.2.2.2.2.2.2.7777    Interactions Interactions Interactions Interactions betweenbetweenbetweenbetween    water water water water and cellulose insulationand cellulose insulationand cellulose insulationand cellulose insulation    

2.2.7.12.2.7.12.2.7.12.2.7.1    Water retention value Water retention value Water retention value Water retention value     

The water retention value (WRV) of fibres is the measurement of the capacity for 

paper to hold water. It is measured through the removal of water via centrifugation. 

Around 5g of treated and untreated Univercell were analysed according to the procedure, 

adapted from standard ISO 23714 is described in EM08. The term “hornification” is used 

to describe a reduction in the amount of water that can be held within the fibre walls due 

to a transformation of the paper pulp. This mainly refers to fibres that have been refined 

once again or recycled, and for which external fibrillation has been exterminated, but it 

has been shown that drying of fibres can induce hornification as well (Hubbe et al., 

2007). WRV testing could be a good technique of characterizing the changes in the 

properties of CFI during drying, since hornification through drying is thought to be an 

effect of pore closure and the strengthening of fibres. This theory is heavily debated, with 
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other theories including the formation of irreversible hydrogen bonds and the formation 

of covalent bonds within carbohydrate chains from within the fibres (Brancato, 2008). In 

order to attempt to characterize the hornification of wet spray cellulose fibre insulation 

after drying, some samples were first sprayed with pulverized water, of around 80% of 

their dry weight, including the ambient moisture already in the fibres. This could be 

considered an exaggerated amount of water dosage for the wet spray method, but it is 

necessary for the amount of hornification during drying to be characterized. The average 

in WRV of 3 samples for each type are shown in Table 2.4 

 

Sample WRV g/g Standard 
deviation 
coefficient 

Univercell (treated) 2.25 15% 
Univercell (untreated) 2.16 9% 

Ouateco (treated) 2.34 11% 
Univercell (treated, air dried from 

80%) 
2.04 13% 

Table.2.4: Water retention value (WRV) of cellulose insulation samples 

The values of WRV found are much higher than those cited in the ISO 23714 

standard for recycled paper pulp (1.6 g/g), but closer than those cited by Beaupré ((2012)) 

(see Figure 1.21 in Chapter 1) for recycled newsprint. Generally, the higher the WRV the 

more energy will be required to dry the paper. It is also an indication of the high content 

of mechanical pulp, where the values of WRV reach around 1.9 vs chemical pulp which 

are around 1.2, depending on refining conditions. This could be due to the fact that the 

filtration method used is different than that specified in ISO 23714, making some of the 

water hard to remove from the fibres during centrifugation. Treated cellulose fibres seem 

to have a higher WRV than untreated fibres, which would be logical since the included 

additives are hygroscopic and would absorb some of the water. Redried fibres showed 

some a slight reduction in water retention, although the high variability of samples makes 

it hard to state a conclusion. While high, this variability is typical for WRV of recycled 

pulps. In fact, it has been shown that mechanical and thermomechanical pulps are highly 

resistant to hornification. This could be due to the presence of lignin in the structure, 

which interfere between interfibre hydrogen bonding (Diniz et al., 2004). The slight 
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difference between WRV of both brands of CFI could be an indicator of drying 

behaviour. 

2.2.7.2 2.2.7.2 2.2.7.2 2.2.7.2 Bound water determinationBound water determinationBound water determinationBound water determination    with differential scanning with differential scanning with differential scanning with differential scanning 

calorimetry (DSC)calorimetry (DSC)calorimetry (DSC)calorimetry (DSC)    

The water within cellulose fibre walls can be catalogued in three different 

categories. Non-freezing bound water is the water present in the micropores of the fibre. 

It corresponds to the water bound to the hydroxyl and carboxylic groups in pores of the 

fibre. The freezing bound water appears in pores larger than micropores and binds to 

hemicelluloses. As the freezing bound water dries, this causes the pores of the fibres to 

close irreversibly. The free or unbound water is the water present in the larger pores and 

between the lumen in fibres. Figure 2.5 shows the interactions between these types of 

water and cellulosic fibres.  

 

Figure 2.5: Types of water present in cellulosic fibre surface (Samyn, 2013). 

In order to characterize these kinds of water, within the fibres a method was 

developed by Nakamura et al. (1981) . The full method is described in EM08, and the 

results are shown in Figure 2.6. 
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Figure 2.6: Frozen and unfrozen bound water, free water and total bound water as a function of total water 
content for untreated Univercell CFI. 

The Figure shows how for low moisture contents, only non-freezing bound water 

is present, then as moisture content increases, other types of water start to appear: at 

around 14% for freezing bound water and 27% for free water. The values of both freezing 

and non-freezing bound water increase gradually until the micropores are saturated. It is 

at this point, at around 108% moisture content, in which free water fills the bigger pores 

and the voids between fibres. Past this point only the amount of free water increases. For 

the recommended dosages of cellulose insulation of 40 to 60% moisture content, mostly 

bound water is present, with smaller proportions of free water, which increases as total 

moisture content increases. Once the fibres are sprayed, the bound water strengthens and 

closes the pores within the fibres while the free water reinforces the link between fibres 

and microfibrils. This only applies once the water is fully absorbed within the fibres, as 

during spraying the bound water in the surface of the fibres gradually penetrate into 

smaller pores. The presence of freezing bound water in this dosage range means that as 

the fibres dry, the size of pores diminishes and this change in pore size could affect the 
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thermal conductivity of the material. As the fibres dry, the free water is the first to diffuse 

within the material and evaporate since it is more present in the surface of fibres. For the 

equilibrium moisture content of 8% to 11% at 60% humidity after drying, only non-

freezing bound water is found in the material. As was shown by Weise et al. (1996), one 

can correlate free water from hornification values, so the amount of free water increases, 

so does the WRV.  

2.2.7.3 2.2.7.3 2.2.7.3 2.2.7.3 Dynamic vapour sorptionDynamic vapour sorptionDynamic vapour sorptionDynamic vapour sorption    (DVS)(DVS)(DVS)(DVS)    

DVS testing was done according to EM07. Results from dynamic vapour sorption 

of cellulose fibres are shown in Figure 2.7. The isotherms show little hysteresis, less than 

2% difference between sorption and desorption isotherms. In the hygroscopic range 

moisture sorption reaches a maximum of around 20%. This is close to the result for DSC 

for when free water starts to appear (27% moisture) . 

It is possible however, to estimate the moisture sorption in the whole range using 

mathematical approximations. Many models exist such as Brunauer–Emmett–Teller 

(BET) or Guggenhein, Anderson, de-Boer (GAB) models, but for porous solids such as 

cellulose it is recommended to use the Oswin model (Barreira et al., 2014):  

 

 

 

(2.1) 

Where Xe is the calculated moisture content, aw the relative humidity, T is the 

ambient temperature, and b0, b1, b2 are coefficients dependent on the material. These 

coefficients were determined by minimizing the standard deviation between the 

calculated values and the average between the measured sorption and desorption values. 

The Oswin model shows good relation with the values determined experimentally. The 

moisture content at saturation can be estimated when RH values approach 100%. At a RH 

trending towards 100% the Oswin model gives a value of 279% moisture content, 

showing that, past the hygroscopic range, cellulose can absorb high quantities of water 

via capillary conduction. For cellulose insulation drying, this would mean that the range 

of minimum applied water dosage of 40%-60% corresponds to water past the 

hygroscopic range and within the capillaries. In practice, capillary water tends to dry 
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faster than absorbed water within the pores although below the threshold of 20-15% 

moisture content, the cellulose insulation is already considered dry. As was presented in 

chapter one, this high hygroscopisity is also considered favourable for building envelope 

materials, as it makes the material “breathable” and thus lower ambient humidity in a 

room to a comfortable level, or conversely increase it when it is too dry. 

 

Figure 2.7: Dynamic vapour sorption of CFI, with Oswin model approximation. 

2.2.8 2.2.8 2.2.8 2.2.8 Drying of cellulose samplesDrying of cellulose samplesDrying of cellulose samplesDrying of cellulose samples    
Wet spray cellulose samples were sprayed and stored according to the method 

described in EM10. To measure the drying of CFI, the mechanical specimens were 

weighed daily in order to measure the evaporated water until equilibrium moisture 

conditions at 60% RH (a mass variation of less than 1% in 24 hours) were reached. The 

equilibrium moisture content was then determined by taking 3g of fibres from the 

ambient dried sample and drying them at 103°C for two hours, as described in EM01. 

Using the mass of the samples and the equilibrium moisture content, the initial moisture 

content as well as the drying of the material at 24 hour intervals was determined. Moulds 

with the minimal moisture content of 40% were also sprayed at higher thicknesses and 
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compacted after drying to give denser materials with the same initial moisture as a 

reference point (see EM10). 

 

 

Figure 2.8: Projected CFI moulds. 

2.2.8.1 2.2.8.1 2.2.8.1 2.2.8.1 Influence ofInfluence ofInfluence ofInfluence of    treatment and source materialtreatment and source materialtreatment and source materialtreatment and source material    

An objective of this work is to investigate cellulose insulation with different 

properties and how those properties could influence its drying behaviour. The physical 

and chemical differences between brands of CFI fibres, as well as their potential 

influence on drying are summarized in Table 2.5. Given the measured differences in 

properties, it would be probable that Univercell treated brands might be able to dry faster. 
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Table 2.5: Measured differences between cellulose brands and possible influences on drying. 

In order to confirm this hypothesis, untreated and treated Univercell, and treated 

Ouateco samples were sprayed on the standard 300x300x90mm3 moulds at around 65% 

moisture content, and the evolution of this moisture content was studied. As can be seen 

in Figure 2.9, Ouateco samples dried slightly slower, as was predicted. At 72 hours, a 

difference of 8% moisture content could be measured between both brands. Untreated 

fibres dried slightly slower than treated fibres, but equilibrium moisture content was 

lower. The differences in drying between untreated and treated samples are clear; the 

additives help absorb the moisture and are within the water, but as the material dries, the 

additives retain some of the sprayed moisture. 

One would assume that the differences in the measured properties of the fibres are 

the cause for the differences in drying. There are two major limitations to this line of 

thinking: one, as mentioned previously, the sources of newsprint have variable methods 

and source material for manufacturing its paper, so it would be hard to ensure that the 

material continuously conserves its physical and chemical properties. The other is the fact 

that the specific proportions and composition of the added antifungal and fire resistant 

additives are unknown and confidential. As we were unable to obtain untreated CFI 

samples of the Ouateco brand, the differences between untreated samples could not be 

Property Brand Potential influence on drying 

Univercell  Ouateco 

Particle size distribution More fines Less fines Fines absorption could make 
the material dry faster 

chemical composition 
(ADF/NDF) 

Less cellulose and 
hemicelluloses 

More cellulose 
and 
hemicelluloses 

Higher hygroscopic cellulose 
content could make the 
material dry slower  

Tapped density more compressible less 
compressible 

More compressible materials 
could potentially dry faster, 
due to ease of moisture 
transport. 

WRV Slightly lower Slightly higher Higher WRV suggests slower 
drying. 

Schopper Reigler Similar values Similar values Higher SR could mean faster 
drying, as with paper 
production. 
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asserted. The contribution of these hygroscopic mineral additives to moisture absorption 

and subsequent drying could take priority over the influence on the studied properties of 

the fibres. Nevertheless these are factors to consider in terms of quality control. 

 

Figure 2.9: Drying of cellulose samples, comparison of different source material and treatment. 

2.2.8.2 2.2.8.2 2.2.8.2 2.2.8.2 Influence of installed water dosage on dryingInfluence of installed water dosage on dryingInfluence of installed water dosage on dryingInfluence of installed water dosage on drying    

The drying curves of projected 300x300x90mm3 samples with varying water 

pressure are shown in Figure 2.10. All samples show an initial linear constant drying rate, 

which corresponds to the removal of free water, and around 25% moisture content, the 

drying rate slow down until the material reaches equilibrium moisture content. This point 

of inflection is close to the point in which only bound water is present in the fibres, as is 

shown in Figure 2.6, which could mean that below 25% mainly bound water is present, 

which is harder to remove from the fibres, hence the slower drying rate. 

Evidently, an increase in water dosage increases the time for the material to reach 

an equilibrium dry state. In practice, installers of cellulose fibre insulation consider that 

when the material reaches around 20% moisture content, it is considered dry enough to 

allow the installation of a vapour barrier and drywall. For example, a water dosage of 

70% can increase the time to reach 20% moisture to 58 hours versus the 19 hours needed 
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when the minimum recommended dosage of 40% is applied, over three times the 

standard waiting time. It is worth noting that this applies only to 90mm thick insulation at 

the constant conditions of 25°C at 60% RH. In reality, the drying rates vary depending on 

thickness and ambient conditions. The thicker the specimen, the colder and more humid 

drying conditions are, the longer the drying times, which sometimes cause unacceptable 

delays in a construction project.  

 

Figure 2.10: Drying of cellulose samples, with varying installed water pressure. 

2.2.9 2.2.9 2.2.9 2.2.9 Changes in densityChanges in densityChanges in densityChanges in density    
As shown on Figure 2.11, the final density of the material depends on the installed 

moisture content. The values shown are slightly higher than those found by Salonvaara et 

al. (2010). The first point in the series corresponds to the initial moisture content and 

density before spraying (blown density). At the minimum moisture content of around 

40%, density varies from 47 to 53 kg/m3. The results show a semi linear increase of 

density with initial moisture content up to 77% moisture. Past this point the density 

increase is at a much slower rate. When cross referencing this inflection point with Figure 

2.5, one could observe that at the 77% moisture point almost all of the bound water has 

been absorbed within the fibres, while free water content continues to increase. The 

changes in density has two probable sources: the increased pressure from the pulverised 

water, which causes compaction of the material as it is projected, and the strengthening 
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and hardening of fibres as they dry. It could be feasible that the free water within the 

fibres contribute less to the increase in density than the bound water. As it has been 

shown with other natural building materials (Elfordy et al., 2008), these variations in 

density can also cause changes in the thermal and mechanical properties of the material, 

as will be shown in the following sections. It is therefore necessary not only to observe 

the influence of the sprayed moisture content on the mechanical and thermal properties, 

but to differentiate it from the influence of the increase in density induced by sprayed 

water. This further emphasises the need to control of water dosage since as the density 

increases, more of the material is used to insulate the same volume, which subsequently 

increases costs of installing the insulation.  

 

Figure 2.11: Influence of installed moisture on final density at equilibrium, with polynomial regression 
line. 

2.2.10 2.2.10 2.2.10 2.2.10 Mechanical testingMechanical testingMechanical testingMechanical testing    
Up until now there is no defined method to characterize the mechanical behaviour 

of wet spray CFI. The closest analogue would be the European standard EN 1605 and 

1607 which define compression and tensile tests for insulation materials, but this is 

mainly applied to rigid, prefabricated insulation boards. Using the EN1605 standard as a 
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base, a compression test was developed to characterize wet spray CFI. The method is 

described in detail in EM11.  

Stress-strain curves of 100x100 mm2 cellulose insulation samples (see Figure 

2.12) with different moisture dosages are shown in Figure 2.13. The lightweight material 

shows a quasi-linear elastic behaviour with no rupture at strains up to 20%. At higher 

deformation levels, the material starts to consolidate and the slope of the stress strain 

curve increases. As was expected, the material shows an increase in its mechanical 

resistance with increasing moisture content.   

 

Figure 2.12: Compression test sample. 

  



 

ChapterChapterChapterChapter    2: The properties of cellulose insulation and the their relation to water dosage2: The properties of cellulose insulation and the their relation to water dosage2: The properties of cellulose insulation and the their relation to water dosage2: The properties of cellulose insulation and the their relation to water dosage    

66 

 

 

 

 Figure 2.13: Stress-strain curves of projected cellulose insulation samples with varying moisture content. 

Figures 2.14 and 2.15 show the relation between the moisture content, the 

calculated elasticity modulus E, and the calculated stress at 5% and 10% strain (σ5% σ10%) 

respectively. All values indicate an increase with moisture content. As the material is 

compacted, the heterogeneous voids within it are filled with fibres, which could translate 

to an increase in mechanical resistance.  

In order to define a minimum mechanical threshold of wet spray cellulose 

insulation that ensures the material will not sag or tear once projected, the measured 

values of the modulus of elasticity E and compressive stresses σ5% σ10% at around 40% 

moisture content are averaged. This gives an average of 14.05 kPa, 0.62 kPa, and 1.34 

kPa for E, σ5%, and σ10% respectively. These values could potentially be used as a 

reference point if, for example, a raw material (recycled newsprint) of different quality is 

used, or if the amount and/or type of additives are changed. Below 40% the CFI samples 

could either not be sprayed or crumble under their own weight.  
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Figure 2.14: Influence of installed moisture content on modulus of elasticity E, with linear regression line. 

 

Figure 2.15: Influence of installed moisture content on σ5% σ10%, with linear regression line. 

In order to account for the influence on the direct compaction of the material by 

the sprayed water, the previous results were also plotted with dry density of the samples, 

compared with samples sprayed at the minimum 40% moisture content and compacted 
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once dry, to artificially increase density. The results for modulus E and measured stresses 

are shown in Figures 2.16 and 2.17.  

 

Figure 2.16: Influence of final density after spraying with various water dosages on modulus of elasticity 
E, compared to compacted samples, with regression lines. 
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Figure 2.17: Influence of final density after spraying with various water dosages on σ5% σ10%, compared to 
compacted samples, with regression lines. 

When measured with regards to density, the mechanical resistance of the material 

behaves differently at different densities. For the typical “sprayed” densities, around 45-

55 kg/m3, the mechanical resistance increases slightly and its behaviour is similar to that 

of cellulose that has been dry compacted. Past a certain density, the mechanical resistance 

increases greatly, at a slope much higher than that of the compacted reference. This 

confirms the statement that the added sprayed water not only compacts the material, 

making it resist settling and fissures, but the swelling and hardening from the fibres as 

they dry has an important impact on the mechanical performance of wet spray cellulose 

insulation. This circumstance supports the case for using an additive, which could 

increase its mechanical strength while maintaining the low density of the material.  

2.2.11 2.2.11 2.2.11 2.2.11 Thermal conductivity testingThermal conductivity testingThermal conductivity testingThermal conductivity testing    
The value of thermal conductivity, λ measured in W/mK is the main defining 

characteristic of a thermal insulation material. The lower the value of λ for a given 

material, the better it is as an insulator. Thermal conductivity measurements were applied 
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on 150x150x50mm3 samples according to EM12. Figure 2.18 shows the variation of dry 

thermal conductivity with installed water dosage at average temperatures of 10°C and 

25°C (λ10 and λ25). As with mechanical properties, the value of dry thermal conductivity 

increased with installed water content. In this case the difference in values is much 

smaller, making the results more prone to irregularity. Thermal conductivity values 

varied from 37 to 43 mW/m.K, for measurements made at 10°C and around 40 to 46 

mW/m.K for 25°C. These values are comparable to traditional insulation materials such 

as mineral wool. The high scatter could be due to the heterogeneity of the samples, or to 

irregularities in the contact surface between the heating plate and the sample. Since the 

material is highly compressible it was difficult to ensure perfect contact between the 

plates and the samples without compressing the samples, which would increase its 

density and thermal conductivity. While this increase in values of λ with applied moisture 

content is slight, it is still unfavourable to a wall’s thermal performance. It is in the 

cellulose installers’ best interest to use the lowest feasible water dosage in order to ensure 

optimum insulation capacity of the material.  
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Figure 2.18: Influence of installed moisture content on thermal conductivity values λ10 and λ25, with linear 
regression lines. 

The influence of density of samples with varying spray dosage, is shown on 

Figure 2.19. The values are compared with samples compacted sprayed at minimum 

dosage once they were dry. Ideally the relation with density should give a clearer 

indication on the trend of thermal conductivity, but results show a high scatter as well, 

due to the closeness between values and the measurement issues mentioned previously. 

Nevertheless, in general terms, an increase was observed with thermal conductivity and 

as a function of density of the material. As it was found with compression tests, a slightly 

higher thermal conductivity was found from the sprayed samples than with the dry 

compacted samples, for samples with similar density. This could be due to the decrease in 

porosity from the swelling and drying of fibres, which differ from the decrease in 

porosity from compaction. The voids formed from these changes in porosity directly 

impact the thermal conductivity of the material. 
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Figure 2.19: Influence of dry density on thermal conductivity values λ10 and λ25, with linear regression 
lines. 

2.32.32.32.3    CCCCONONONONCLUSIONCLUSIONCLUSIONCLUSIONSSSS    
Many factors within the properties of cellulose insulation fibres can contribute to 

their behaviour with water. Of the two brands of cellulose insulation samples that were 

tested both showed some differences in these properties which, as was shown, translated 

into differences in drying performance of wet sprayed cellulose samples. These properties 

can include its chemistry and proportions of lignin, cellulose and hemicelluloses, the 

particle size distribution and morphology of the fibres, and the included additives. Other 

forms of characterization of cellulosic fibres and their relation with water include water 

retention, dynamic vapour sorption, and differential scanning calorimetry to determine 

bound and unbound water content. Unfortunately due to the variability in the raw 

material, due to the differences of the recycled newspaper, these factors are difficult to 

control and optimize. Nevertheless they give indications on the behaviour of the fibres 

with water and their subsequent drying once applied.  

y = 0,1157x + 33,386

R² = 0,4432

y = 0,1074x + 37,213

R² = 0,3618

25

30

35

40

45

50

40 45 50 55 60 65 70 75 80

T
h

e
rm

a
l 

co
n

d
u

ct
iv

it
y

, 
(m

W
/m

.K
)

Density, (kg/m3)

λ (10°C) 

λ (25°C)

λ (10°C) (40% MC, compacted)

λ (25°C) (40% MC, compacted)



 

ChapterChapterChapterChapter    2: The properties of cellulose insulation and the their rela2: The properties of cellulose insulation and the their rela2: The properties of cellulose insulation and the their rela2: The properties of cellulose insulation and the their relation to water dosagetion to water dosagetion to water dosagetion to water dosage    

73 

 

 

As the results have shown, the increase of water not only delays construction after 

installation, but also increases the density and thermal conductivity wet sprayed cellulose 

insulation. The increase in density and drying time with increased water dosage remain 

important factors to consider when applying cellulose insulation. A method to determine 

the mechanical behaviour of wet sprayed cellulose was designed. While in reality the 

compression tests don’t fully represent the behaviour of cellulose fibres once they are 

projected, they do give an indication of how the installed moisture content strengthens the 

material in order to prevent sagging or tearing of the material. A baseline of 14.05 kPa 

modulus of elasticity E was defined as a minimum mechanical property of the material 

(at ambient humidity conditions) to prevent sagging. It was found that the applied water 

not only densifies the material, but as the fibres swell and become rigid during drying, an 

increase in the mechanical performance  can be observed. In a practical sense, it would be 

pertinent to have a quality control system which the wet spray water dosage was 

measured in a test sample before applying to an entire wall. Mechanical tests such as the 

one developed in this work could help verify that with the proper applied water dosage, 

the material can maintain a minimum mechanical resistance to prevent settling. While the 

changes in thermal conductivity could be considered insignificant, there is still a loss in 

thermal efficiency of the material once an excessive amount of water has been used.  

These results will serve as a basis to better understand the behaviour of cellulose 

insulation with added additives which improve its drying time and mechanical properties. 
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3 
CHAPTER 3:CHAPTER 3:CHAPTER 3:CHAPTER 3:    BIOBASEDBIOBASEDBIOBASEDBIOBASED    ADDITIVES AND THEIR ADDITIVES AND THEIR ADDITIVES AND THEIR ADDITIVES AND THEIR 

INCORPORATION WITH INCORPORATION WITH INCORPORATION WITH INCORPORATION WITH WWWWET SPRAY ET SPRAY ET SPRAY ET SPRAY 

CELLULOSE INSULATIONCELLULOSE INSULATIONCELLULOSE INSULATIONCELLULOSE INSULATION    

3.13.13.13.1    IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    
Having established the properties of cellulose insulation, as well as its behaviour 

with water using the wet-spray application process in previous sections, work could 

commence on the search for a proper additive which improves its performance in terms 

of drying. The information gained from the state of the art, detailed in chapter one states 

the issues associated with wet spray cellulose which could be improved via the 

incorporation of additives. It also catalogued and defined the viable biobased additives 

which could be used with cellulose insulation. The experimental results from chapter two 

further detailed the wet spray process and the influence of water on the final properties of 

cellulose insulation. It was found that increasing initial water content increased the 

density, mechanical strength and thermal conductivity of cellulose insulation after drying. 

While it’s important that the material should have enough sprayed water to provide 

sufficient resistance to settling and tearing, an increase in density (which in turn increases 

its price since more material is used to insulate the same volume) and an increase in 

thermal conductivity decrease its interest as an insulation material. It is therefore 
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necessary to make the compromise between applying enough water to provide good 

cohesion within the material, and limiting the water dosage as to not have high during 

times and negatively affect the insulation material’s properties. The same logic could be 

applied to the change in formulation. Ideally, the included additive should have little 

effect on the density and thermal conductivity of the material, while still decreasing the 

time required to reach a dry state and reinforcing its resistance to settling.  

The mechanisms in which biobased additives could improve drying times are 

numerous: one strategy could be through the evaporation of water from the included 

additive as it hardens, which competes with the drying of the cellulose fibres, making 

them dry faster. Another could be the reduction of initial added moisture, using the mixed 

additive to compensate for the reduced water dosage to reinforce the material. In the 

previous chapter, a minimal mechanical strength attributed to the minimal recommended 

water dosage of 40% was determined. It could therefore be plausible to apply the material 

below this dosage, with an added binder which would help attain this minimal resistance. 

Another simple solution could be the increase in the materials initial dry matter content 

by using the additive to increase the solids ratio of the sprayed solution to make the 

material have lower initial moisture. Finally, the decrease in surface tension of the 

projected water via the use of surfactants could potentially make water evaporate from 

the material faster. 

One of the limiting factors of the included additive could be its influence on the 

viscosity of sprayed solution. The ideal formulation should be applied with the standard 

spraying equipment, which is suited for liquids with water-like viscosity. Highly viscous 

liquids could clog the equipment or restrict the flow of the sprayed water, especially the 

nozzles of the spray hose. Consequently, especially in the case of binders, the 

additive/water proportions must be low enough as to not affect these factors, while still 

being effective in improving cohesion and drying times. This is another factor to consider 

as well as with the potential influence of the additive concentration on the materials final 

density and thermal conductivity. 

The work in this chapter seeks to consider these factors in the search for a new 

formulation in wet spray cellulose fibre insulation with improved drying properties. 

Firstly, the feasible candidate biobased additives presented in the literature are studied 
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with regards to their viscosity and surface tension according to their concentration in 

aqueous solution. Their compatibility with the spraying material, the pump and spraying 

nozzles are then assessed. Finally, new formulations of wet spray cellulose insulation 

with biobased additives are characterized with regards to their drying times, density, 

compression resistance, and thermal conductivity. In summary, a Venn diagram which 

exemplifies the compromise of the properties of the ideal additive to be incorporated with 

cellulose fibre insulation is presented in Figure 3.1. The ideal additive must: improve the 

drying properties of cellulose, while still being usable with the spraying equipment and 

not hinder the properties of the final product.  

 

Figure 3.1: Optimal additive formulation Venn diagram. 

3.3.3.3.2222    BBBBIOBASEDIOBASEDIOBASEDIOBASED    AAAADHESIVESDHESIVESDHESIVESDHESIVES    

3.3.3.3.2222.1 .1 .1 .1 FormulationFormulationFormulationFormulation    and preparation and preparation and preparation and preparation     
Biobased binders usually come in a powdered form which is then dissolved in 

aqueous solution to obtain the desired adhesive strength. The method in which the 

biobased adhesives are incorporated with the cellulose insulation needed to be evaluated. 

There exist two strategies in which this adhesive could be mixed with the cellulose 
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insulation. The powdered adhesive could either be dry mixed with the fibres before 

projection, just as is the case with the fire resistance additives, or they could be mixed 

with the sprayed water before projection.  

Since water is added after the adhesives are incorporated within the fibres, liquid 

viscosity is not an issue with the dry mixing method, and thus the technique allows for an 

improved control of the dosage of the powder on the fibres. Despite these benefits, the 

high volume of the cellulose fibres would require either the use of high volume 

specialized mixing equipment before installation, or for it to be installed during 

manufacture. Another issue is the fact that these binders usually require to be fully 

dissolved in water to activate, and the added water during the spray application (40%-

60% the mass of cellulose insulation) might not be enough, especially since the hydration 

of the binder competes with the moisture sorption of the fibres. This phenomenon is 

documented in the case of hemp concrete, where the lack of water within the binder due 

to moisture sorption of the hemp fibres hinder the adhesion of the binder to the fibres, 

making the material agglomerate and crumble (Amziane and Arnaud, 2013). 

The wet process presents a different set of benefits and challenges. The powdered 

additive could be easily mixed onsite before spraying, allowing a better hydration than 

the dry method. However, most of the binders cited in the state of the art increase the 

viscosity of its solvent. This increase in viscosity could be problematic in the spraying 

process, where if the liquid is too viscous it might block the pump membrane or the spray 

tips.  

Given these properties, it has been decided that the wet mixing method is better 

suited for the wet spray process. While the liquids viscosity is an issue, the concentration 

of the binder could be studied in order to attain a sprayable viscosity. 

As the binder concentration in water decreases, its viscosity decreases, but also its 

effectiveness as a binder. These properties could also be modified using heat or varying 

pH., but this is not viable onsite during the spraying process. For example, roughly 1 

tonne of cellulose insulation is needed to insulate one house. If one is to assume 40% 

added moisture, 400kg of water would be needed. It would then be cost prohibitive for a 

building project to either heat up or change the acidity of such a high volume of water. 

However, for some binders a pre-solution with a different pH levels could be made before 
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mixing with the final spraying water. The additives chosen for screening included the 

following: gums (guar gum and xanthan gum), polysaccharides (citrus pectin, 

pregelatinized corn starch, maltodextrin, and sodium alginate), a soy protein isolate, 

phenolics (lignosulfonate and low sulfonate lignin), and a reference polyvinyl acetate 

powder (PVAc). Since it has been shown that paper pulp has a negative charge, the use of 

cationic adhesives, which would be favourable for the retention of binders, was also 

explored. These include cationic tannin, chitosan, and cationic starch. The origin and 

preparation of these binders is detailed in EM 13. 

3.3.3.3.2222.2 .2 .2 .2 ViscosityViscosityViscosityViscosity    of biobased adhesive solutionof biobased adhesive solutionof biobased adhesive solutionof biobased adhesive solutionssss    
In rheological terms, biobased polymers are viscoelastic materials, which means 

that they some of the elastic properties of an ideal solid and some of the flow properties 

of an ideal liquid. The apparent viscosity of a liquid is a measurement which quantifies its 

intrinsic resistance to flow. It is measured through the determination of its resistance to 

gradual deformation by shear or tensile stress. It is usually measured in Pascals seconds 

(Pa.s) or Centipoise (cp). It is important to distinguish liquids which present Newtonian 

flow, i.e. the viscosity is independent of the shear stress, and non-Newtonian, in which 

viscosity can either increase or decreases with increasing shear stress.  

Viscosity can directly affect liquid flow through a vessel such as a pump or hose. 

It is therefore necessary to determine the concentration – viscosity relation of each binder 

in order to find a maximal sprayed concentration that is compatible with the water pump 

and spray nozzle. Neither the water pump nor the spraying nozzles give indications on the 

maximum allowable viscosity so this needs to be determined practically. An initial test 

was done to determine the maximum viscosity that is compatible with the pumping and 

spraying equipment (see EM 13).  

For most natural polymers, one can distinguish two phases of the concentration – 

viscosity relation. For highly diluted polymers, molecules are allowed to move freely. As 

concentration increases, the molecules start overlapping and forming an entanglement 

network, in which the slope of the viscosity increases. The point at when this occurs is 

known as the critical overlap concentration C*, as can be exemplified in Figure 3.2. 

Below this viscosity, the liquids exhibit a Newtonian steady-shear flow (Sworn, 2007). 
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Figure 3.2: Concentration dependence of viscosity for polysaccharides, from (Sworn, 2007). 

Viscosities of binders at different concentrations were tested according to EM14. 

Most of the tested concentrations showed a rheological behaviour similar to that shown 

for pectin, in Figure 3.3. For most concentrations, the viscosity is clearly independent of 

the shear rate; characteristic of a Newtonian or semi-Newtonian flow. For these cases, a 

shear rate of 20s-1 was considered to be the threshold for sprayed viscosity, since beyond 

this level, viscosities didn’t vary. In others, as is the case of pectins at 10% concentration, 

non-Newtonian flow was noticed.  

 

Figure 3.3: Viscosity-shear curve of pectin at varying concentration. 

This could be an interesting factor to consider in practice with the spraying 

equipment, where if a concentration is “unpumpable” a higher flow rate through the 
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pump mechanism could dynamically increase the shear rate of the liquid passing through 

the pump hose and spray nozzles, thus decreasing the viscosity to a “pumpable” level. In 

these cases the viscosity needs to be re-tested at a higher shear rate. Although the specific 

shear rate of the pump and spraying mechanism are not known and are dependent on the 

applied pump rate, shear rates ranges have been detailed in (Gösta, 2003): 

 

Process:  shear rate range: 
stirring 10 1 – 10 3 s –1 
pumping  10 2 – 10 3 s –1 
spraying  10 3 – 10 4 s –1 

Table 3.1: Typical shear rates for different processes. 

In practice, the liquid used for cellulose insulation is sheared as it is mixed, 

suctioned through the reservoir, pumped through a hose and sprayed through the nozzles. 

A shear rate of 3000 s-1, corresponding to the range of shear induced through spaying was 

therefore tested for non-Newtonian concentrations which could feasibly have a low 

enough viscosity at high shear. 

Results of the concentration-viscosity relation with different binders are shown in 

logarithmic scale in Figure 3.4. All binders show a wide range of concentration-

dependant viscosities. All curves show a linear logarithmic behaviour, where some show 

a critical concentration point indicating an increase of the slope of the viscosity. Guar 

gum, xanthan gum and sodium alginate showed the highest viscosities, even at very low 

concentrations, while tannin, both lignin polymers, soy protein isolate, and maltodextrins’ 

viscosity increased just slightly at high concentrations. The viscosity of soy protein 

isolate increased at a higher pH due to the improved solubility of the solution. It could be 

possible that for some formulations the critical concentration was not within the range of 

concentrations tested. From the preliminary tests, with the spraying equipment, the 

maximum sprayable concentrations of 1% starch and 1.5% pectin correspond to 

viscosities of 35.5 and 37.1 mPa.s, respectively. This would suggest that the maximal 

sprayable viscosity for all liquids to be sprayed with cellulose fibre insulation would be 

around 40 mPa.s at the high shear levels. This limit is shown as a dashed line in Figure 

3.4. This allows the categorization of the equivalent maximal allowable concentrations 

for all binders.  
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For most binders, the concentration in which a viscosity under this limit was 

attained was very low, showing Newtonian behaviour. However for some of the 

formulations of binders such as pectins, guar gum, xanthan gum, cationic starch, sodium 

alginate, and chitosan, a non-Newtonian shear-thinning flow was observed, in which a 

high enough shear could possibly produce a viscosity lower than the limit. These 

formulations were re-tested to the high shear of 3000 s-1. The viscosity-concentration 

curves for these formulations at high shear rates are shown in Figure 3.5, with the 40 

mPa.s limit shown. It was found that, at a high shear, the concentrations of cationic 

starch, guar gum, xanthan gum and chitosan could be higher than initially predicted with 

the low shear test, since viscosities at high shear are lower than the established limit.  

 

Figure 3.4: Viscosity concentration curves for binder solutions. 
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Figure 3.5: Viscosity concentration curves for shear thinning (non-Newtonian) binder solutions at high 

shear. 

The possible sprayable concentrations for the biobased binders in both high and 

low shear conditions are presented in Tables 3.2 and 3.3. These need to be verified 

through direct testing with the pump and spray equipment. It is important to note that 

only applies to the specific pump and spraying mechanism used for this application. 

Although this equipment is the most commonly used for the spraying of wet spray 

cellulose insulation, others with different viscosity or shear rate limits could be used, but 

a study of alternative equipment exceeds the scope of this study. Another factor to 

consider is the fact that natural polysaccharide suspensions can degrade, losing its 

rheological and adhesive properties over time. It is an important issue to consider if the 

mixed liquid adhesive is stored onsite before application. 

  



 

ChapterChapterChapterChapter    3: Biobased additives and their incorporation with wet spray cellulose insulation3: Biobased additives and their incorporation with wet spray cellulose insulation3: Biobased additives and their incorporation with wet spray cellulose insulation3: Biobased additives and their incorporation with wet spray cellulose insulation    

83 

 

 

 

 Sprayable 
Concentration 

(% w/w) 

Measured 
viscosity at 20 s-1 

(mPa.s) 
Pectin 1.5 36 

Guar Gum 0.3 39 
Xanthan Gum 0.3 32 
Corn starch 1.0 27 

Cationic starch 7.0 39 

Maltodextrins 25.0 28 
Sodium Alginate 0.5 42 
Cationic tannin 12.5 35 
Low sulfonate 

lignin 
25.0 4 

Lignosulfonate 25.0 7 
Chitosan (pH= 5) 1.0 17 

Soy protein isolate 15.0 40 

Soy protein isolate 
(ph.=10) 

5.0 28 

Polyvinyl acetate 0.5 35 

Table 3.2: Sprayable concentrations of binder solutions and viscosities. 

 Sprayable concentration 
(Non-Newtonian) (% 
w/w) 
 

Measured 
viscosity, 3000 
s-1 (mPa.s) 

Guar Gum 0.5 39 
Xanthan Gum 3.0 28 

Chitosan (pH= 5)  1.5 32 
Cationic starch 10.0 41 

Table 3.3: Sprayable concentrations of binder solutions and viscosities, at high shear rate. 

3.3.3.3.2222.3 Tensile strength.3 Tensile strength.3 Tensile strength.3 Tensile strength    
A compromise between the binders’ viscosity and its effectiveness as a binder 

must be made. The ideal binder and concentration must have a minimal viscosity and 

maximal effective adhesion. In order to have an indication of the adhesion forces within 

the applied binders and their relation to water concentration, small scale tests must be 

made before testing with cellulose fibre insulation. A method to test the adhesion of 

newsprint paper strips with biobased binders was devised using tensile tests. The 

procedure is based on the work by Flory et al., (2013) and described in EM15. Small 

paper strips of the source newspaper for use with cellulose insulation were dipped in the 
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adhesive and subject to tensile force until rupture. The concentrations of biobased binders 

presented in viscosity experiments were tested with adhesive tensile tests in order to 

correlate the decrease of viscosity (favourable for projection with cellulose) with the 

decrease in adhesive forces (unfavourable for projection with cellulose). Results are 

presented in Figure 3.6 and compared with a reference (wetted and dried newspaper 

sample). As was predicted, binder concentration had an influence on the adhesive 

properties of paper reinforced with the binder. Adhesive performance varied on the type 

of binder. The tensile strength reference newsprint paper has an average value of 36.2 N, 

but also a high standard deviation of 5.2 N. Therefore, as presented in Figure 3.6, a range 

of “non adhesive” concentrations was defined for formulations which are within the 

range of this reference, with a limit threshold established at 36.2+5.2 = 41.4N. 

 For some binders, low concentrations had little or no effect to adhesion when 

compared to the reference paper sample. This indicates that they provide no advantage to 

using those adhesive formulations instead of just water. Maltodextrins and cationic starch 

showed no adhesion even at concentrations up to 25%. Corn starch and polyvinyl acetate 

showed high adhesion but for “pumpable” viscosities, they were not effective. Pectin, 

guar and xanthan gums displayed the highest tensile strength, but within the “sprayable” 

concentrations, measured adhesive strength was low yet still superior to that of the 

reference. As with viscosity, the increase of pH in soy protein isolates increases its 

adhesive strength. 
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Figure 3.6: Tensile strength vs concentration of binder solutions. 

It is possible then to cross-reference these results with those of the “sprayable” 

concentrations to determine which biobased binders would not be feasible to use with 

cellulose insulation, as is shown in Tables 3.4 and 3.5. Using the hypothesis that the 

liquid was sprayed at a high shear, these concentrations could be increased, producing 

better adhesion. This aids in refining the list of potential additives to test with the 

spraying equipment.  
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Additive Sprayable 
concentration 

(% w/w) 

Adhesive 
strength, (N) 

Better than 
water? 

Pectin 1.5 45 Yes 
Guar Gum 0.3 42 Yes 

Xanthan Gum 0.3 46 Yes 
Corn starch 1.0 39 No 

Cationic starch 7.0 34 No 

Maltodextrins 25.0 36 No 
Sodium Alginate 0.5 54 Yes 
Cationic tannin 12.5 68 Yes 

Soy protein 
isolate 

15.0 60 Yes 

Soy protein 
isolate (ph.=10) 

5.0 70 Yes 

Low sulfonate 
lignin 

25 73 Yes 

Lignosulfonate 25.0 79 Yes 
Chitosan (pH= 5) 1.0 70 Yes 
Polyvinyl acetate 0.5 36 No 

Table 3.4: Comparison of tensile strength of binder solutions. 

 Sprayable 
concentration (Non-

Newtonian) 
(% w/w) 

Adhesive 
strength, 

(N) 

Better than 
water? 

Guar Gum 0.5 43 Yes 
Xanthan Gum 3.0 46 Yes 

Chitosan (pH= 5) 1.5 70 Yes 
Cationic starch 10.0 37 No 

Table 3.5: Comparison of tensile strength of non-Newtonian binder solutions with high shear. 

These binder concentrations are then theoretically usable with the spraying 

equipment and beneficial for the adhesion with cellulose insulation. It is worthwhile to 

note that the actual conditions in which cellulose is applied with these binders i.e. low 

liquid to cellulose ratio, makes it difficult to compare the mechanical performance of the 

final product with these tensile tests. In other words these small scale tensile tests are an 

indication of which formulations will not improve the mechanical resistance of cellulose 

insulation, and not necessarily which formulations actually will. Finally, in order to 

further narrow down the potential additives list, practical considerations were taken into 

account.  
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Since both gums showed similar adhesive and rheological properties in 

Newtonian concentrations, the more prevalent of the two, guar gum was considered. The 

same reasoning was applied in the case of low sulfonate lignin vs lignosulfonate, where 

lignosulfonate is the cheaper and more accessible of the two. Finally, since it would 

prove difficult to maintain the pH of 400L of the spray water, both binders which requires 

a buffer, Soy protein isolate (pH=10) and Chitosan (pH= 5) were excluded. The binder 

formulations to test for compatibility with cellulose insulation and its equipment are 

therefore:  

Binder Concentration 
(% w/w) 

Pectin 1.5 

Guar Gum 0.5 (non-Newtonian) 
Soy protein isolate 15  

Sodium Alginate 0.5  
Cationic tannin 12.5 

Lignosulfonate 25 

Table 3.6: Final sprayable and adhesive concentrations. 

3.3.3.3.2222.4 .4 .4 .4 Compatibility with spraying Compatibility with spraying Compatibility with spraying Compatibility with spraying equipmentequipmentequipmentequipment    
Once the optimal binders and concentrations were defined with regards to 

viscosity and adhesion performance, it is possible to test the additive formulations with 

the spraying and pumping equipment used in cellulose fibre insulation. The preliminary 

tests gave an indication of the pumpable concentrations for starch and pectin. These 

concentrations need to be confirmed for the other biobased binders. The binders must 

also be mixable and homogeneous at the scale in which cellulose insulation was applied. 

They also need to be able to be pumped and sprayed at the same flow rate as water in a 

typical application of wet spray cellulose. In order to verify these characteristics, the 

biobased adhesive powders were first mixed with 15L water at the determined 

concentrations using a Controlab 40L mixer on the lowest speed for 5 minutes. Once a 

homogeneous mixture was obtained, the liquid was poured on a bucket, covered and left 

to settle for another 10 minutes. Prior and after spraying, the pump, hoses and spray 

nozzles were rinsed by spraying small amounts of water. Small samples of the liquid 

were taken after mixing and their viscosity was measured using the same method 

described previously (EM14). The mixed liquid was then sprayed into buckets at different 
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pump pressures during 30 seconds and the flow rate was estimated by weighing the 

buckets after spraying. If little to no liquid was sprayed, the concentration was considered 

unsprayable. To further optimize the binders, a slightly higher concentration than the 

ones defined previously were also tested to ensure that the stated maximum could not be 

higher.  

Initially during mixing, the guar gum mixtures showed instances of solids 

clumping, which blocked the flow through the spray nozzles. In order to have a 

homogeneous mixture without clumps, the solid clumps were filtered using a 5mm wire 

mesh, and mixed again with a small amount of the liquid adhesive. 

 Results of liquid flow for some formulations with the measured viscosities and 

different pump pressures are shown in Table 3.7. For the most part, the initial estimated 

pump limit viscosity of 40 mPa.s was valid. In some cases the maximum pump pressure 

of 24 bars could not be attained (indicated as “pump limit” in Table 3.7). This means that 

the increased viscosity of the pump stresses the pump motor making it pump at a higher 

pressure in the one displayed in the pressure gauge. This was more prevalent in the more 

viscous, non-Newtonian concentrations such as guar gum and sodium alginate. A 

pressure of 10 bar is used to attain the 40% moisture content minimum for cellulose 

insulation sprayed with water, with a flow rate of around 2 L/minute, consequently, a 

slightly higher pump pressure needs to be used to attain the same flow rate as in water. 

For sodium alginate, a higher maximum sprayable concentration of 0.75% could be 

utilized if the pump pressure was adjusted to around 15 bar. This increase in sprayable 

viscosity establishes the premise that the high shear induced from the spraying of shear 

thinning concentrations reduces their viscosity below the sprayable threshold. The fact 

that during mixing the liquid endures as a shear force could also be a factor. This can also 

be seen when spraying guar gum at 0.75% concentration, but the pump reaches its limit 

before it is possible to attain the required 2 L/minute flow rate.  
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Liquid Concentration 
(% w/w) 

Measured 
viscosity 
(mPa.s) 

Spray rate (L/min) at applied pump pressure : 

2 bar 6 
bar 

10 bar 14 
bar 

18 
bar 

24 bar 

Water 
(reference) 

100 1.00 0.84 1.48 2.01 2.23 2.89 3.04 

Pectin 1.5 32.2 Not 
sprayable 

1.42 1.92 2.14 2.46 2.81 

Pectin 1.75 47.1 Not sprayable 

Guar gum 0.50 27.2 0.82 1.4 2.02 2.24 2.75 2.92 

Guar gum 0.75 43.2 0.64 1.08 1.33 Pump 
limit 

Pump 
limit 

Pump 
limit 

Sodium 
Alginate 

0.5 22.4 0.8 1.38 2.00 2.2 2.77 3.01 

Sodium 
Alginate 

0.75 35.2 0.22 0.68 1.22 1.88 2.33 Pump 
limit 

Sodium 
Alginate 

1 52.3 Not sprayable 

Cationic 
Tannin 

12.5 38.2 Not 
sprayable 

1.24 1.82 2.05 Pump 
limit 

Pump 
limit 

Cationic 
Tannin 

15 51.1 Not sprayable 

Lignosulfonate 25 11 0.84 1.48 2.01 2.23 2.89 3.04 

Table 3.7: Pump rate of additives. 

It is clear that viscosity is a limiting factor in the spraying of the adhesives. Some 

additives need to compensate with a higher sprayed pressure to attain the required flow, 

while others could not be sprayed at all. 

3.3.3.3.3333    SSSSURFACTANTSURFACTANTSURFACTANTSURFACTANTS    

3.3.3.3.3333.1 .1 .1 .1 FormulationFormulationFormulationFormulation    
Five different surfactants with varying properties were considered. Non-ionic 

surfactants with varying HLB (hydrophilic lipophilic balance) were tested. Tween 20, 

Triton X-100, and Poly(ethylene glycol) monooleate 400 (PEG-400). In order to test the 

influence of charge, cationic CTAB Cetyl trimethylammonium bromide, and anionic SDS 

(Sodium dodecyl sulphate) were also used. All surfactants were provided by Sigma-

Aldrich. Their charge and HLB (hydrophilic lipophilic balance) values are summarized in 
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Table 3.8 (HLB can only be empirically calculated for non-ionic surfactants, meaning 

that the HLB for SDS and CTAB are comparative values).  

 

 Type of surfactant HLB Value 
Triton X100 Non-ionic 13.51 
Tween 20  Non-ionic 16.7 
PEG-400 Non-ionic 12 
CTAB Cationic 10 
SDS Anionic 40 

Table 3.8: Properties of surfactants. 

 Surfactants-water solutions show viscosities similar to that of water, which is 

beneficial for spraying. It is therefore unnecessary to measure its influence on viscosity. 

In order to determine the penetration capabilities of surfactant solutions through the voids 

and capillaries of cellulose insulation, surface tension measurements had to be performed. 

3.3.3.3.3333.2 .2 .2 .2 Surface TensionSurface TensionSurface TensionSurface Tension    
Surfactants could possibly improve drying conditions of cellulose through 

reduced surface tension of the liquid, making the liquid flow faster through the capillaries 

within the fibres. Surface tension measurements were made according to the method 

described in EM16. Concentrations of 0.1%; 0.5% 1% and 2% were tested.  

 Surface tension (mN/m) 
Concentration 

(%w/w) 0.10 0.5 1 2 

Triton X100 34 31 30 30 
Tween 20 45 36 35 35 
PEG-400 64 63 60 55 

CTAB 40 37 37 38 
SDS 31 31 31 31 

Table 3.9: Surface tension measurements. 

As expected, all surfactants lowered the surface tension of water (72 mN/m at 

25°C), SDS and Triton provided the lowest surface tension. Past 0.5%, little change in the 

surface tension was noticed for all surfactants, except PEG, which requires a higher 

concentration to reach its minimum. For formulations with cellulose, a high concentration 

of 2% surfactant will be applied to ensure proper wetting of the fibres and surfactant 

adsorption. 
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3.3.3.3.3333.3 .3 .3 .3 Compatibility with spraying materialCompatibility with spraying materialCompatibility with spraying materialCompatibility with spraying material    
Since viscosity is not an issue with surfactants, the only concern with the use of 

surfactants is the production of foam during spraying. In fact if the water in the sprayed 

water reservoir has foam, this foam and not the liquid is suctioned through the pump, 

reducing the amount of liquid actually sprayed. This foam is mainly produced as the 

solution gets suctioned, passes through the pump and gets reintroduced to the reservoir 

via the discharge port. In order to prevent the suction of this foamed water, adjustments 

were made: first a higher amount of water was mixed in the reservoir to ensure a higher 

water to foam ratio, and next the suction hose was fastened on the bottom of the reservoir 

to ensure that only the water, which stays at the bottom was sprayed while the foam 

floats. Once these adjustments were made, surfactant formulations had the same flow rate 

as water. On the other hand, actually spraying foamed water with cellulose could prove 

beneficial since the foam might create voids within the material, possibly reducing its 

thermal conductivity. This is a technique often used in lightweight porous materials such 

as aerated autoclave concrete (AAC) (Schnitzler, 2006).  

3.3.3.3.4444    IIIINFLUENCE OF ADDITIVENFLUENCE OF ADDITIVENFLUENCE OF ADDITIVENFLUENCE OF ADDITIVES ON THE PROPERTIES S ON THE PROPERTIES S ON THE PROPERTIES S ON THE PROPERTIES OF OF OF OF CFICFICFICFI    

3.3.3.3.4444.2 .2 .2 .2 DryingDryingDryingDrying    via binder evaporation and solids content via binder evaporation and solids content via binder evaporation and solids content via binder evaporation and solids content 
increase increase increase increase     

As was defined previously, the first strategy to reduce drying times for wet 

sprayed cellulose insulation with included additives was to apply a typical dosage of 

water with the included binder, having the drying of cellulose occur as the water 

evaporates from the binder, thus theoretically increasing the flow of moisture from the 

inside of the porous material to the surface. In order to test this theory, 300x300x100mm3 

cellulose samples were sprayed with the mixed adhesives via the same method used in 

Chapter 2 (EM10). After spraying, each sample had an initial liquid content of 40% ±3%. 

Samples were stored in the same ambient conditions (60% RH, 25°C), and their weight 

measured periodically. Only the viable formulations, compatible with the pump, hoses 

and nozzles, which were defined in the previous section, were tested. The drying curves 

of each formulation , compared to cellulose sprayed with water are shown in Figure 3.7, 
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The time to reach a dry state of 20% moisture content, using linear interpolation between 

points, is presented in Figure 3.8.  

 

Figure 3.7: Drying curves for cellulose samples. 

 

Figure 3.8: final sprayable and adhesive concentrations. 

 Results show that for most liquids sprayed at around 40% dosage, the 

contribution to the drying times by most of the available binders were either negligible or 
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detrimental to reach the dry state. The only exception was lignosulfonate, for which the 

dry state of 20% was reached 12 hours faster than the reference. This is partly due to the 

fact that, since a high concentration of lignosulfonates was used, the higher density liquid 

contained high solids content. The same volume of liquid was sprayed, but the liquid 

contained a 25% ratio of diluted solids, thus reducing the overall moisture content of the 

whole material, with an initial moisture content of 36%. This is also reflected with the 

other high concentration binders, although their drying slope during the first three days is 

slower than the reference.  

There exist many explanations for these delays in drying times with biobased 

binder treated wet spray cellulose. One cause could be the formation of a “crust” on the 

surface of the cellulose; which is more exposed to the ambient air and humidity, thus 

hardens and crystallizes on the surface. This crust blocks moisture transport to the 

surface, making its drying slower. Similar results were found by Eloukabi et al., (2013), 

where efflorescence caused by dissolved minerals drying through a porous medium, 

created a crystallized surface which gives variations of the drying rate. 

Another cause for this delay relates to the influence of viscosity on moisture flow 

through a porous medium. Darcy’s law is a relation which characterizes the relationship 

between the instant discharge rate of a fluid through a porous medium with the viscosity 

and moisture pressure rate, over a defined distance. The relation is as follows: 

 

(3.1) 

Where Q (m3/s) is he total fluid flow rate, κ is the intrinsic permeability of the 

medium, (m2), the cross-sectional area of the flow, A (m2) and (pb - pa) (Pa), the total 

pressure drop, µ (Pa·s) is the viscosity of the liquid and (L) (m) is the length over which 

the pressure drop is taking place. When applied to the flow of a liquid through cellulose 

fibre insulation, the flow rate Q of a viscous liquid such as a binder decreases when 

compared to that of water due to two factors: first the decrease in the permeability ( ) of 

the cellulose fibres due to the crust formation, as mentioned beforehand, and the increase 

of µ due to the additives, which is inversely proportional to the flow rate Q, thus resulting 

in a reduced moisture flow through the cellulose insulation. In general the drying of a 
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building material occurs in two phases: a fast drying and a slow drying rate. The fast 

drying rate is generally attributed to the evaporation of the free (unbound) water from the 

large pores and capillaries of the material, while the slow drying period consists on the 

removal of the bound water.  

Pectin and sodium alginate showed a slow initial drying period during the first 24 

hours, which could be due to competition between the moisture sorption of the binders 

and the cellulose fibres. Some formulations also showed higher retention of moisture 

from the binders, with a higher final equilibrium moisture content of the cellulose 

insulation samples than the reference water sprayed samples.  

As an interim conclusion, only lignosulfonates were found to be an interesting 

additive in reducing drying times for wet spray cellulose insulation using the increased 

solids content strategy. The next approach is to test surfactant solutions and additive –

reinforced cellule insulation with lower sprayed moisture content. 

3.3.3.3.4444.3 Drying via surface tension reduction.3 Drying via surface tension reduction.3 Drying via surface tension reduction.3 Drying via surface tension reduction    
The surfactants listed in section 3.4.1 were mixed with 2% concentration and 

sprayed with cellulose on the standard, 300x300x100mm3 moulds. The initial moisture 

content was 40% ±3%. Table 3.9 indicates drying times to reach 20% moisture content, 

in comparison to the reference. All drying curves had the same shape with little variance 

with respect to the reference. Only the cationic surfactant (CTAB) had a significant 

improvement in drying times, drying 7 hours faster than the reference with only water.  

 Formulation Time to reach 
20% moisture 

content, 
(Hours) 

Water Reference 51 

Triton X100 2%  52 

Tween 20 2% 51 

PEG-400 2% 49 

CTAB 2% 43 

SDS 2% 48 

Table 3.9: Drying times of surfactant samples. 
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This would seem to indicate that the actual reduction in surface tension of the 

sprayed water had little impact on the evaporation of moisture from the cellulose fibres 

while the ionic interactions between the cationic CTAB and the negatively charged 

cellulose fibres could provide a slight reduction in drying times. These results are parallel 

with the work of Beaupré (2012), where the surfactants with the lowest surface tension 

concentration did not necessarily produce the highest dewatering of cellulose pulp, and a 

high concentration of CTAB provided the best results. 

3.3.3.3.4444.4 .4 .4 .4 MechanicalMechanicalMechanicalMechanical    strengthstrengthstrengthstrength    and densityand densityand densityand density    
The expectation in using biobased binders with wet sprayed cellulose insulation is 

that they can increase the mechanical performance of the material through the use of a 

smaller amount of water, or in the least maintain the base mechanical resistance at the 

minimum sprayed moisture dosage. Also it would be ideal if the additive would have less 

of an influence on density than sprayed water dosage while still maintaining or improving 

its mechanical performance. The dried samples sprayed at around 40% dosage from 

binder formulations described in 3.4.2 and CTAB sprayed samples from 3.4.3 were cut 

into nine 100x100x100mm3 cubes as was done in chapter 2. Figures 3.9 and 3.10 show 

the measured elastic modulus, stress at 5% and 10% deformation respectively, with final 

density on the secondary axis. They are compared with 40% and 68% average moisture 

content reference standard wet sprayed cellulose insulation samples. Averages and 

standard deviation for measured values are represented, with 3 data points for density and 

3x9=27 data points for mechanical resistance values.  
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Figure 3.9: Modulus of elasticity of samples. 
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Figure 3.10: measured stress at 5% and 10% with density of treated samples. 

In broad terms, the results indicate that, pectin, sodium alginate, cationic tannin, 

and lignosulfonate samples presented a higher mechanical resistance than the reference 

samples sprayed with only water at 40% dosage. Their modulus of elasticity and 

measured compression stresses of these samples are either similar or slightly higher than 

those shown for the reference 68% moisture content samples. This confirms the 

hypothesis that the use of binders makes it feasible to have a higher mechanical resistance 

than cellulose insulation sprayed with water, while using less water and, in some cases, 

have a slightly lower density. However, it is important to note that the high variability of 

measurements makes it difficult to confirm this conclusion with absolute certainty. One 

can see with the measured stress results that this variability is higher as strain increases. 

Guar gum, soy protein isolate, and CTAB treated cellulose insulation all performed 

slightly worse than the reference. In the case of CTAB this results was expected, as 

surfactants are not typically used as strength enhancing additives in cellulose. Using 

tensile resistance tests, Beaupré (2012) found that the addition of CTAB to paper pulp 
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handhseets led to decreased tensile strength. This was explained by the fact that the use of 

CTAB led to decreased fiber-fiber contact and hence a decreased number of fiber-fiber 

hydrogen bonds, which was confirmed by hydroxyl number testing. 

One of the issues with projecting viscous liquids with cellulose insulation was the 

fact that, even though the correct liquid flow was sprayed and the same amount of water 

was applied, the high viscosity can make the spray pattern irregular. These irregularities 

can cause a heterogeneous distribution of the liquid within the fibres, making the 

distribution of fibres clump up and hinder its mechanical resistance. Figure 3.11 

exemplifies this issue 

 

Figure 3.11: Heterogeneities of samples. 

This problem was mostly prevalent with guar gum and soy protein isolate, which 

while showed good adhesive strength in tensile tests, ultimately became detrimental to 

the mechanical strength of cellulose fibre insulation due to this clumping issue. This was 

also present to a lesser extent with sodium alginate, which while having a high 

compression resistance, showed the highest standard deviation for both mechanical 

resistance and density. Nevertheless, despite the fact that the other two formulations 

(pectin and tannin) which showed improved mechanical performance could not dry faster 

than the reference they could be usable in future studies where drying is not a factor but 

mechanical performance of the material is, i.e. prefabricated cellulose insulation panels. 

 

 

Guar Gum 0.5% CTAB 2% 
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3.3.3.3.4444....5 Drying of 5 Drying of 5 Drying of 5 Drying of rrrreduced moisture content samples. educed moisture content samples. educed moisture content samples. educed moisture content samples.     
Up to this point, the only additives which have been shown to improve the drying 

times of cellulose insulation were lignosulfonates and CTAB, with lignosulfonates having 

the added benefit of improving mechanical resistance. Another potential strategy to 

reduce drying times for cellulose insulation was to reduce the initial applied moisture, 

while compensating the loss of adhesive strength with an additive. The formulations 

which showed a higher compressive strength were sprayed at moisture content lower than 

the minimum of 40%. Unfortunately the final samples had problems with sagging and 

detachment of the cellulose. This was mainly due to the fact that since the amount of 

liquid was reduced, its distribution and dispersal within the material was uneven, making 

some parts of the material weaker and thus susceptible to separation. The low water 

content also made the presence of dust harder to control, reducing visibility during 

spraying this makes it therefore very difficult to reduce the moisture content below 40%, 

despite the fact that the applied additive reinforces the material. Figure 3.12 shows 

cellulose insulation samples sprayed with 1.5% pectin with decreasing moisture content. 

When moisture content falls below 39%, the material shows heterogeneous distribution 

of fibres and settling. The absolute minimum moisture content for cellulose insulation 

with just water was found to be around 38%, and 36% for cellulose sprayed with 

lignosulfonates, due to the increased dry solids content in the sprayed solution. As a 

consequence, the other candidates are adapted to wet spray cellulose. The final viable 

formulations remain lignosulfonate at 25% and CTAB at 2% concentrations, which will 

be optimized further in the following chapter. 

 

Figure 3.12: Cellulose-pectin samples sprayed at low dosage concentrations. 

 

39% 36% 30% 26% 
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3.3.3.3.4444.6 .6 .6 .6 Thermal conductivityThermal conductivityThermal conductivityThermal conductivity    
The thermal conductivity results from chapter 2 showed the influence of initial 

moisture content on final thermal conductivity. An association could be found between 

sprayed moisture content, density, and thermal conductivity. The same analysis needs to 

be made with regards to the contribution of additives. Thermal conductivity at 10°C and 

25°C, as well as density of sprayed samples with binders of the previously defined 

concentrations and 43%± 3% sprayed dosage were tested in the same method as with 

chapter 2 (EM12), and compared with reference samples with only water at 41% and 

66% average moisture content, with 2 data points per value (Figure 3.13).  

 

Figure 3.13: Thermal conductivity of cellulose insulation samples. 

As was observed in the relation with sprayed moisture content, the increase in 

thermal conductivity can be linked to additive concentration and density. This relation is 

more defined in thermal conductivity values at 25°C, where measurements were less 

disperse. Pectin and guar gum, showed similar densities to the 66% moisture content 

samples, but lower thermal conductivity values were closer to the 41% reference samples. 

One reason for this could be because of the increased viscosity, the liquid only penetrates 

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

D
e

n
si

ty
, 

(k
g

/m
3
)

λ
, 

(m
W

/m
K

)

λ(10°C) λ(25°C) Density



 

ChapterChapterChapterChapter    3: Biobased additives and their incorporation wi3: Biobased additives and their incorporation wi3: Biobased additives and their incorporation wi3: Biobased additives and their incorporation with wet spray cellulose insulationth wet spray cellulose insulationth wet spray cellulose insulationth wet spray cellulose insulation    

101 

 

 

the bigger pores of the fibres, leaving the smaller pores open. It has been shown that for 

materials with a similar porosity, but a lower pore size distribution, thermal conductivity 

will decrease (Alvarez et al., 2010). Soy protein isolate had the highest thermal 

conductivity and density, supporting the notion that the additive only contributes in 

increasing the density of the material and not reinforcing it. For the final viable 

formulation of lignosulfonate, an increase in the values of λ were observed, which needs 

to be taken into account when applying the material and studying its influence for thermal 

comfort. For CTAB, a slight decrease was observed, making it a better insulator, 

suggesting that the porosity increased with the surfactant, although the variability makes 

this hard to define. The formulations will be further optimized with this regard in the 

following chapter.   

3.3.3.3.5555    CCCCONCLUSIONSONCLUSIONSONCLUSIONSONCLUSIONS    
Building from the work from past chapters, a strategy was utilized to find a 

suitable additive to be incorporated with wet spray cellulose fibre insulation. First the 

available additives were characterized, with regards to their viscosity, and their adhesive 

forces. Most showed Newtonian behaviour at low concentrations, with some 

concentrations showing shear thinning behaviour where the sprayable viscosity threshold 

could be reached. Unfortunately, this discounted several binders, since viscosity is an 

inherent property of adhesives. Many additives which showed good adhesive properties 

were too viscous to be applied with the spray equipment or conversely showed a low 

enough viscosity to be sprayed but showed low adhesive strength. A range of non-ionic, 

cationic and anionic surfactants were also screened and tested with regards to their 

surface tension vs concentration. The additives complying with the adhesion and 

viscosity requirements were determined; afterwards they were tested in a bigger scale 

with cellulose insulation and the spraying equipment. First the candidate additives were 

sprayed without cellulose to ensure that the proper amount of liquid would be applied. In 

some cases the increase in viscosity of shear thinning liquids required a higher pump 

pressure to have the same flow rate. After it was verified that the additives could be 

sprayed at a similar flow rate than to that of water, they were applied with blown 

cellulose in the same conditions as done previously. They were then characterized with 
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regards to their drying times. With the notable exception of lignosulfonates, it was found 

that for binders, the increase in viscosity and the formation of a crust of the surface 

slowed moisture evaporation. The only case in which faster drying times was observed 

was through the increase of the initial dry solids content with, in particular, high 

concentration of lignosulfonates. Cationic surfactant CTAB was found to slightly 

improve these drying times as well. These samples were then tested with regards to 

compression modulus and thermal conductivity. Some samples were found to increase 

mechanical resistance at similar moisture content and density than the minimum, but 

unfortunately spraying binder formulations with low spraying dosage, in hopes that the 

increased mechanical resistance would compensate, was not feasible due to the 

heterogeneous distribution of moisture and a large production of dust while blowing the 

cellulose. Therefore, after having screened the additives with regards to their 

compatibility with cellulose insulation and its equipment, only lignosulfonates and CTAB 

remained as possible candidates. Pectin and tannin, which did not improve drying times 

yet showed improved mechanical performance, could be potentially used in the 

manufacture of prefabricated cellulose insulation batts. 

Finally the feasible formulations were tested with regards to their thermal 

conductivity. Some additives were found to produce a denser material with lower thermal 

conductivity than cellulose insulation sprayed with only water with similar final density. 

This suggests that the inaccessibility of the smaller pores by the viscous liquid could be 

beneficial in the materials insulating properties. Lignosulfonates were found to increase 

thermal conductivity to an acceptable level, only slightly decreasing its insulating 

capacity. CTAB had thermal conductivity values very close to that of the reference 

samples. 

In the following chapter we will try to further optimize the final product of 

cellulose insulation treated with additives. The combination of lignosulfonates and CTAB 

needs to be investigated. As drying tests were only done in constant controlled relative 

humidity, the influence of weather and insulation thickness needs to be studied for when 

the material is used in actual construction projects. The positive or negative influence, if 

any, on the material’s fungal and fire resistance, as well as other practical factors, are 
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important issues to consider moving forward when characterizing the final insulating 

material. 

  



 

ChapterChapterChapterChapter    4: Final properties of insul4: Final properties of insul4: Final properties of insul4: Final properties of insulating material and hygrothermal modellingating material and hygrothermal modellingating material and hygrothermal modellingating material and hygrothermal modelling    

104 

 

 

4 
CHAPTER 4:CHAPTER 4:CHAPTER 4:CHAPTER 4:    FINAL FINAL FINAL FINAL PPPPROPERTIES OF INSULATROPERTIES OF INSULATROPERTIES OF INSULATROPERTIES OF INSULATING ING ING ING 

MATERIAL AND HYGROTHMATERIAL AND HYGROTHMATERIAL AND HYGROTHMATERIAL AND HYGROTHERMAL ERMAL ERMAL ERMAL 

MODELLINGMODELLINGMODELLINGMODELLING    

4.14.14.14.1    IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    
Formulations of wet spray cellulose insulation have been established, in which 

additives improved the drying and mechanical performance of the material. Both 

lignosulfonate and CTAB have been found to reduce drying times, while either 

improving or maintaining the mechanical resistance of cellulose insulation. However, the 

formulation could still be optimized, in which a compromise could be made between the 

desired decrease in drying times and the amount of additive used. The influence of the 

concentration of lignosulfonate and CTAB additives needs to be established to reduce 

cost of the final product and its impact on density and thermal conductivity. 

The previous work has established the drying performance of cellulose insulation 

samples with 10cm thickness and at constant, controlled relative humidity conditions. A 

more comprehensive study needs to be done in which the influence of thickness and 

weather conditions need to be taken into account in order to fully understand the impact 

of the included additive under real conditions, before it can be applied at a construction 

site. Specific numerical tools and models have been designed for this purpose, in which 

these factors could be assessed.  
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Thermal insulation materials such as cellulose are subject to numerous national 

and international standards. Some of these standards specify the required fungal and fire 

resistance requirements for a material to be used as an insulation material. It is therefore 

important to confirm that the included additives do not hinder these properties and if 

possible, improve them. This could make the additive a partial or complete replacement 

of the mineral additives already used, mainly borate salts.  

In this chapter, the influence of the concentration of additive candidates on the 

drying, mechanical, and thermal properties of the final product are studied. The influence 

of the thickness and ambient conditions on drying of the final formulation is studied 

using hygrothermal modelling software. Finally, preliminary studies on the material’s fire 

performance were done to indicate the influence of the additives in this regard. 

4.24.24.24.2    IIIINFLUENCE OF ADDITIVENFLUENCE OF ADDITIVENFLUENCE OF ADDITIVENFLUENCE OF ADDITIVE    DOSAGE ON THE PROPERDOSAGE ON THE PROPERDOSAGE ON THE PROPERDOSAGE ON THE PROPERTIES TIES TIES TIES 

OF CELLULOSE INSULATOF CELLULOSE INSULATOF CELLULOSE INSULATOF CELLULOSE INSULATIONIONIONION    
Both additives have a low viscosity and good solubility in water, making it 

feasible to mix them with cellulose at high concentration. It is important to determine the 

optimal concentrations. Formulations of cellulose insulation with lignosulfonate and at 

different concentrations were studied with regards to drying, compression resistance, and 

thermal conductivity. Concentrations of lignosulfonate ranged from 10% to 40%, and for 

CTAB from 1% to 4%, for which higher concentrations could not be reached due to high 

foam production.  

4.2.1 4.2.1 4.2.1 4.2.1 DryingDryingDryingDrying    
The drying of sprayed samples as a function of lignosulfonate and CTAB 

concentration is shown in in Figure 4.1 (only CTAB at 2% is shown since the other 

concentrations were indistinguishable from the reference). The interpolated time to reach 

a dry state is shown in Table 4.1. 
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Figure 4.1: Drying cure of cellulose with lignosulfonate additives at variable concentration. 

Formulation Time to reach 
20% MC, 
(hours) 

Reference 51 
Lignosulfonate 40% 34 
Lignosulfonate 25% 38 
Lignosulfonate 10% 49 
CTAB 1% 47 
CTAB 2% 45 
CTAB 4% 48 

Table 4.1: Time to reach dry state for cellulose with lignosulfonate additives at variable concentration. 

The initial and equilibrium moisture decreases with concentration of 

lignosulfonate, which is indicative of the increased dry solids content of the material. 

This factor is the main impact parameter to the reduction of drying times. The influence 

of 10% concentration of lignosulfonates would seem to be negligible with regards to 

drying. In a practical sense, the minimum effective reduction in drying times would be 

15% which roughly translates to 1 day per week of drying. Assuming a linear relation in 

drying times between 10 and 25% moisture content, a reduction of the reference drying 

time by 15% (42.5 hours of drying to reach 20%), would require a concentration of 19%. 

For the surfactant formulations, higher concentrations of CTAB were less impactful, 
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leaving 2% as the optimum. Considering the fact that both additives use different 

mechanisms to improve the drying performance of cellulose insulation, it would be 

feasible that a combination of both additives could improve drying times even further. 

The mix of additives, CTAB and lignosulfonate, was also tested, but results showed no 

difference between the drying with lignosulfonate and lignosulfonate mixed with CTAB. 

This could be due to the circumstance that lignosulfonate also has surfactant properties. 

Surface tension measurements (EM16) of just lignosulfonate at 25% concentration in 

water found a surface tension value of 56 mN.m. 

4.2.2 Compression resistance4.2.2 Compression resistance4.2.2 Compression resistance4.2.2 Compression resistance    
Compression tests of samples with different lignosulfonate and CTAB 

concentrations were tested according to the method used in previous chapters (EM11). 

The elastic modulus of tested samples is shown in Figure 4.2. All lignosulfonate samples 

showed improved mechanical resistance; therefore even though the low concentration 

samples showed little reduction in drying times, they ensure an improved resistance to 

settling. 

 

Figure 4.2: Compression resistance for cellulose with lignosulfonate and CTAB additives at variable 
concentrations. 

An issue occurred with the 40% samples where the high concentration led to 

heterogeneous distribution of the binder, which explains the high standard deviation in 
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values. The range of 19-25% concentration for lignosulfonate seems to be adequate. As 

expected, CTAB samples showed no improvement in compression resistance. 

 

Figure 4.3: Heterogeneity in 40% concentration lignosulfonate samples 

4.2.3 4.2.3 4.2.3 4.2.3 ThermalThermalThermalThermal    conductivityconductivityconductivityconductivity    
Thermal conductivity measurements on samples with varying lignosulfonate and 

concentration were also tested, using the method from EM12. Results for thermal 

conductivity and density as a function of CTAB and lignosulfonate concentration are 

shown in Figure 4.3. The addition of lignosulfonate increased thermal conductivities with 

increasing concentration, again both due to the increase in density and the closure of 

smaller pores within the fibre. CTAB formulations had similar thermal conductivity 

values to the reference, with slightly lower values at 4% concentration, although the 

variations are significative compared to the reference, making the lower values are within 

the margin of error.  
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Figure 4.4: Thermal conductivity for cellulose with lignosulfonate and CTAB additives at variable 
concentrations. 

4.34.34.34.3    CCCCALCUALCUALCUALCULATED LATED LATED LATED DDDDRYING PERFORMANCE OFRYING PERFORMANCE OFRYING PERFORMANCE OFRYING PERFORMANCE OF    TREATED AND TREATED AND TREATED AND TREATED AND 

UNTREATED UNTREATED UNTREATED UNTREATED CFICFICFICFI    
Up until now, there has been no fixed method or standard to determine the time 

required for wet spray cellulose insulation to reach a dry state. In the French technical 

evaluation for a cellulose insulation material, there are indicative assessments on the 

drying times for cellulose, as a function of thickness and season it is applied (CSTB, 

2011). 
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Time to reach dry state, (days) 

Thickness, 
(mm) 

Season of installation 

Summer Spring/Autumn Winter 

60 3 6 8 

90 3 7 9 

120 4 8 11 

150 5 10 13 

180 7 12 15 

200 9 14 17 

Table 4.2: Indicative drying times for cellulose insulation as a function of thickness and ambient conditions 
(CSTB, 2011) 

 While these are good indicators of drying times, they are not very accurate and 

do not take into account the initial sprayed moisture, which can vary depending on the 

applier. Also for the new formulations the impact of the additive on drying times for all 

of these cases (initial moisture, thickness, ambient conditions, etc.) needs to be 

considered. 

Usually, a builder periodically measures the moisture content on the material 

using a portable moisture meter. Ideally, a cellulose insulation applier should be able to 

predict drying times for the material reliably, without having to constantly measure 

moisture content or rely on drying times which could be overestimated. There exist 

several models which could be used in this regard, where the conditions in which the 

material is installed could be taken into account. First a simple empirical model will be 

used to evaluate each parameter individually and its influence on drying under static 

conditions. Then numerical modelling software will be used to determine drying times 

using material parameters, dynamic temperature and humidity conditions. The 

hygrothermal performance of the material once dry will also be studied. 

4.3.1 Empirical model4.3.1 Empirical model4.3.1 Empirical model4.3.1 Empirical model    
Several empirical and semi-empirical mathematical models to characterize the 

drying of building materials over time have been proposed. These models and their 

effectiveness for certain types of building materials were reviewed by Barreira et al. 

(2014). A simple model is proposed by Delgado et al. (2006), using a isothermal first 

order equation: 
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���� = 1�� ���	 − ���� 
(4.1) 

Where: 
����  is the drying rate, w(t) is the material moisture content at time t, tc is 

known as the drying time constant, and weq is the moisture content at equilibrium for the 

material. Using static drying conditions, integrating this equation for the initial and end 

conditions  t = 0 to t = t and w = w0 to w = w, where w0 is the initial moisture content, 

gives: 

� = ��	 + �w� − ��	�. exp �− ���� 

(4.2) 

Applying this equation to the drying of cellulose insulation, it is possible to 

determine an empirical equation for the moisture content of the material w, as a function 

of time. The previous chapters have shown that the equilibrium moisture content for wet 

sprayed cellulose insulation weq, tends to be around 8% regardless of initial sprayed 

dosage, w�. The only unknown parameter in equation (4.2) is the drying time constant tc, 

which is sometimes attributed to the time required to dry 2/3 of initial moisture, could be 

determined by curve fitting experimental data from previous chapters with the empirical 

model. 

4.3.1.1 Influence of sprayed moistur4.3.1.1 Influence of sprayed moistur4.3.1.1 Influence of sprayed moistur4.3.1.1 Influence of sprayed moisture. e. e. e.     

The results from 2.8.2 showed the influence of installed moisture content on 

drying. The values from these measurements were fitted with the first order empirical 

model from equation 3.2. The drying constant tc was estimated using the root mean 

square error (RMSE) between the experimental and the predicted values using the solver 

function with excel (See EM17 for more information). The curves were then plotted 

against the measured values, as shown in Figure 4.4. 
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Figure 4.4: Plotted drying times with equivalent empirical model of cellulose with varying initial dosage. 

The model shows good correlation with measured values. Table 4.3 shows the 

values of initial moisture content w0 as well as the fitted values of tc with the RMSE 

(n=10) for each curve, with Figure 4.5 showing the relation between both constants. The 

more the initial moisture content, the higher the error, indicating less reliability of the 

model at high initial dosages. 

Applied Water 

pressure 

Initial moisture w0 ��� tc RMSE 

22 bar 97% 0.08 59.14 0.0052 

16 bar 69% 0.08 55.65 0.00403 

14 bar 59% 0.08 50.58 0.002352 

12 bar 52% 0.08 48.64 0.00111 

10 bar 40% 0.08 47.71 0.002083 

Table 4.3: Constants for empirical model for drying of cellulose with initial moisture dosage. 
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Figure 4.5: Influence of initial moisture on the drying time constant tc.. 

The value of tc increases with increasing sprayed moisture content. With this into 

account it is possible to consider the relation between both values as linear, thus making 

it possible to consider the drying curve as a function of only the initial and equilibrium 

moisture contents with the interpolation of tc=f(w0). Equation 4.3 then becomes: 

� = ��	 + �w� − ��	�. exp �− �17.687w�  +  40.591� 

(4.3) 

With time t in hours and w0 in (% w/w). This could be useful in characterising the 

drying performance of cellulose insulation as a function of installed moisture. A cellulose 

insulation applier could estimate the time required to dry the material from just an initial 

moisture reading. Ideally the installed moisture content for cellulose insulation should 

always be the minimal 40% because the influence of additive at high moisture would be 

negligible when compared to cellulose sprayed with just water at the minimum of 40%. 

In other words, cellulose without additive at 40% moisture constant will always dry faster 

than cellulose with lignosulphonate installed at 60% moisture content. 

4.3.1.2 Influence4.3.1.2 Influence4.3.1.2 Influence4.3.1.2 Influence    of insulation thicknessof insulation thicknessof insulation thicknessof insulation thickness    

When used in a building envelope, the installed thickness of an insulation material 

depends on the required thermal resistance for a building’s interior. The thickness of 

cellulose insulation has an effect on the drying times because the moisture has to go 

through more of the porous material to evaporate to the surface. Standard sprayed 

cellulose insulation samples at around 40% ± 3% moisture content and of 100, 150, and 
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200 mm thickness were dried according to the method used in EM10, with samples 

weighed periodically. The drying curves were again fitted with the empirical model for 

specimens of different thicknesses. Figure 4.6 show the drying curves with the fitted 

empirical models.  

 

Figure 4.6: Plotted drying times with equivalent empirical model of cellulose with varying thickness. 

Again, a good correlation is found between measured results and predicted values. 

Figure 4.7 shows the plot of sample thickness vs the estimated values of tc. It is then 

possible to adapt equation 3.1 to estimate the drying times of samples sprayed at the 

minimal moisture content 40 % as a function of sample thickness, e (in cm).  
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Figure 4.7: Influence of installed thickness on the drying time constant, tc 

� = ��	 + �w� − ��	�. exp �− �11.518e −  70.79� 

(4.4) 

The relative influence of the thickness of the insulation sample on drying times is 

higher than that of installed moisture. However, unlike the installed moisture content, the 

cellulose thickness is imposed by the requirements in insulation performance for a 

building, and not a result of improper application of the material. 

4.3.1.3 Influence of additives.4.3.1.3 Influence of additives.4.3.1.3 Influence of additives.4.3.1.3 Influence of additives.    

The drying curves from section 4.2.1 were fitted with the empirical formula. The 

differences in initial and equilibrium moisture content for each formulation were taken 

into account. Table 4.4 shows the value of the drying constant for each formulation, with 

the initial and equilibrium moisture contents. 

 

 

 

 

 

Table 4.4: Constants for empirical model for additive formulations. 

The drying time constants for all formulations were found to be lower than that of 

the reference sample. Interestingly, the drying time constant increased with increasing 
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lignosulfonate 10% 40 0.08 39.09 

lignosulfonate 25% 37 0.06 41.75 

lignosulfonate 40% 36 0.05 45.73 

CTAB 2% 41 0.08 43.21 

Reference water 41 0.08 47.71 
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lignosulfonate content, indicating that the use of the additive actually reduces the slope of 

the drying curve, but the reduction in initial moisture content allows faster drying. When 

comparing with the time constants from moisture dosage and cellulose thickness, it is 

evident that these initial conditions have much more of an effect on the drying of 

cellulose insulation than the use of addittives.  

 Considering that the first order model showed drying curves very close to 

experimental results, this approach could be a way to evaluate drying times as a function 

of both installed moisture content and thickness, which would allow optimized 

construction schedules since no extra time would be spent waiting for the material to dry. 

The same logic could be used when studying the influence of other factors such as 

temperature, humidity, and orientation of the material. In order to take these factors into 

account a more comprehensive model needs to be used, which can take into account not 

only the material’s properties, but also the atmospheric conditions when it is being 

applied. 

4.3.2 Numerical mo4.3.2 Numerical mo4.3.2 Numerical mo4.3.2 Numerical model: WUFI software.del: WUFI software.del: WUFI software.del: WUFI software.    
While the empirical model has shown to provide a good indication of drying 

times, it relies on experimental results under static conditions to model the drying 

behaviour of cellulose. In order to take into account other variables such as temperature 

and humidity, a more comprehensive model is necessary. WUFI 5, developed by 

Fraunhofer Institute for Building Physics (Stuttgart, Germany), is a hygrothermal 

numerical modelling software which could be used in this regard. It uses a 

comprehensive coupled heat and mass transport model which has been validated by 

Kehrer and Schmidt (2008) and others. Using the material properties and different 

ambient humidity and temperature scenarios, the hygrothermal performance, during and 

after installation of cellulose insulation, could be evaluated. 

4.3.2.1 Theory4.3.2.1 Theory4.3.2.1 Theory4.3.2.1 Theory    

WUFI 5 software uses a finite elements method to solve the coupled heat and 

mass transport equations (Karagiozis et al., 2001): 
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(4.5) 

 

(4.6) 

Where: H is the total enthalpy, T is temperature, k is the thermal conductivity, hv 

is the latent heat if phase change, δp is the vapour permeability, φ the relative humidity, w 

the moisture content, Dφ is the moisture diffusion coefficient. Using these equations, 

coupled with the initial and boundary conditions WUFI 5 can determine the heat and 

moisture fluxes, as well as the transient heat, relative humidity and moisture content 

profiles for a material or series of materials in one dimension.  

4.3.2.2 Input4.3.2.2 Input4.3.2.2 Input4.3.2.2 Input    parametersparametersparametersparameters    

In order to determine the hygrothermal drying performance of cellulose insulation 

using WUFI, the material input parameters of the model must be defined. Most of these 

parameters have either been determined previously, or can be taken from previous works, 

while others require further research. The temperature dependant thermal conductivity 

and density at equilibrium for both cellulose with and without additive were detailed in 

sections 2.2.11 and 4.2.3 respectively. While it’s not essential for calculations, the 

software also asks for moisture dependant thermal conductivity. Unfortunately, high 

moisture samples could not be tested reliably using the standard equipment, so a linear 

relation was used based on the results found by Sandberg (1992), where: 

 λmoist= λdry + 0.0002' w (W/mK)  

(4.7) 

Where w is the mass of water per unit volume of cellulose (kg/m3), and λdry is 

determined using the results from 25°C thermal conductivity measurements, taking into 

account the equilibrium moisture content during measurement. The porosity of the 

material was considered to be 0.95, as has been referenced by Binder et al. (2007). The 
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material moisture transport function has been determined from isothermal dynamic 

vapour sorption measurements from section 2.15, the software does not distinguish 

between sorption and desorption, and requires values close to saturation, so the Oswin 

model will be used, up to values of 0.9999 moisture activity. The water vapour resistance 

factor used was 1.8, as given by (Cerolini et al., 2009). The remaining properties which 

need to be determined are the specific heat capacity and the liquid transport coefficients. 

4.4.4.4.3333.2..2..2..2.3333    SpecificSpecificSpecificSpecific    heat capacityheat capacityheat capacityheat capacity        

The specific heat capacity cp is relative to heat the energy required for a material 

to raise its temperature by one degree Kelvin. For building materials it contributes to the 

reduction of peak heating loads in the summer. This is quantified by the thermal 

effusivity of an insulated wall. The specific heat capacity at 25°C of loose cellulose fibres 

was done using differential scanning calorimetry, as detailed in EM18. Values for treated 

and untreated cellulose insulation are shown in Table 4.5. It was shown that the addition 

of lignosulfonates had a slight contribution to the specific heat capacity of cellulose. No 

difference between CTAB and the reference samples 

 

Sample cp 
(J/kg°C) 
at 25°C 

Sprayed Cellulose (reference water) 2.145 

Sprayed Cellulose with lignosulfonate (25% 
concentration) 

2.256 

Sprayed Cellulose with CTAB (2% concentration) 2.145 

Table 4.5: Specific heat capacity of cellulose insulation formulations. 

4.3.2.4 4.3.2.4 4.3.2.4 4.3.2.4 Liquid transport coefficients. Liquid transport coefficients. Liquid transport coefficients. Liquid transport coefficients.     

The liquid transport coefficients are the most important parameters when defining 

the diffusion of water within a porous material. The diffusivity or diffusion coefficient D 

is characterized in Fick’s first law where it defines the relation between the moisture flux 

J from high to low concentration to the moisture gradient: 
'(')  
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(4.8) 

It is measured in meters per second squared. While for some applications, using a 

constant or reference diffusivity value is sufficient, for hygroscopic porous materials such 

as cellulose, moisture diffusivity is highly dependent on moisture content. Values of 

moisture dependent diffusivity for cellulose insulation has been determined by Marchand 

and Kumaran (1994) using gamma ray attenuation. Other methods for characterising 

diffusivity in porous materials include Nuclear magnetic resonance (NMR) spectroscopy 

(Pel et al., 1996). A much simpler method to approximate the values of moisture 

dependent diffusivity coefficients has been used by Künzel (1995). The method uses 

capillary sorption measurements to determine the moisture sorption coefficient Aw, 

measured in m²/s, and designates the following relation between the moisture sorption 

coefficient, the moisture content and the diffusivity D: 

 

(4.9) 

 Where w is the moisture content and wcapt is the moisture content at saturation of 

the material.The coefficient for loose cellulose insulation Aw was determined according 

to capillary transport method defined by the standard EN ISO 15148, (see EM19 for more 

details). The density of the cellulose before sorption was 52 kg/m3. The value of the 

capillary sorption coefficient Aw corresponds to the first slope the moisture flux Q, 

(kg/m²) during the fast period of capillary moisture sorption tests, plotted with the square 

root of time t1/2 (Figure 4.8). 
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Figure 4.8: Capillary sorption measurement with sorption coefficient Aw. 

The sorption coefficient Aw was found to be 0.915 kg/m²s1/2. This value is higher 

than was found by Hansen et al. (Hansen et al., 2001) (0.81 kg/m²s1/2 ), but a different 

type of cellulose was tested. The moisture dependent diffusivity coefficient can then be 

plotted as a function of moisture relative to saturation moisture, using equation 4.9. The 

value for saturated moisture content was taken from the Oswin model of isotherms 

(Figure 2.6), giving a value 742% w/w of moisture content at a relative humidity close to 

100% (saturation). Figure 4.9 shows the calculated moisture diffusivity as a function of 

moisture content for loose cellulose insulation. 
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Figure 4.9: Moisture dependent moisture diffusivity coefficient for cellulose insulation. 

As can be seen, diffusivity increases exponentially with increasing moisture 

content, which is logical since moisture diffuses faster with the higher capillary pressure. 

The orders of magnitude seem similar to those found by Marchand and Kumaran, (1994), 

as well as the reference values for cellulose insulation given in the WUFI software. The 

input parameters from the WUFI software distinguish sorption diffusivity Ds, for when 

the moisture is first absorbed within the material, and redistribution diffusivity Dr for 

when moisture disperses within the material. For cellulose the redistribution coefficients 

only becomes apparent when close to saturation, so for the drying of cellulose after it is 

spread, the redistribution diffusion coefficient is the same as the sorption diffusion.  

The same approach for calculating the diffusion coefficients was applied for the 

formulations with lignosulfonate, i.e. the sorbed water in the capillary sorption tests was 

replaced with 25% lignosulfonate and 2% CTAB (Table 4.6). For lignosulfonate, a lower 

sorption coefficient was due to the higher viscosity and the fact that the moisture 

diffusivity during sorption is different than the one during drying since the lignosulfonate 

portion of the absorbed liquid stays within the fibres during drying. In the case of CTAB 

the sorption results yielded values slightly higher to those with just water which translates 

to higher diffusivity i.e. faster drying. This method is useful as a first approach in 

determining moisture dependant diffusivity values. The diffusivity function then needs to 

be adjusted according to the experimental drying curves.  

 

Sorbed liquid Aw 
kg/m²s1/2 

Water 0.91 

Lignosulfonate 
25% 

0.68 

CTAB 2% 0.94 

 

Table 4.6: Measured capillary sorption coefficient Aw. 

4.3.2.5 Validation of parameters4.3.2.5 Validation of parameters4.3.2.5 Validation of parameters4.3.2.5 Validation of parameters    

In order to determine the accuracy of the models, most notably the diffusivity D, a 

simulation was made using the controlled experimental conditions (25°C, 60%RH). 



 

ChapterChapterChapterChapter    4: Final properties of insulating material and hygrothermal modelling4: Final properties of insulating material and hygrothermal modelling4: Final properties of insulating material and hygrothermal modelling4: Final properties of insulating material and hygrothermal modelling    

122 

 

 

Using the material parameters determined previously, models of the drying of cellulose 

samples were established and compared to experimental results. The drying of a 100mm 

cellulose sample with initial 40% moisture content. In order to have the drying of the 

material be unilateral, a 1mm layer of vapour barrier membrane was added to the left of 

the cellulose material. The duration of the model was 10 days. The drying curve from the 

WUFI model using the estimated liquid transport coefficients from capillary sorption 

tests was compared to the measured experimental results. Using equation 4.7, the value of 

the moisture sorption coefficient was adjusted in a way to provide a moisture diffusivity 

function in which the difference between measured and calculated moisture values was 

minimal. This approach was used previously, by Krus and Holm (1999). Figure 4.10 

shows the calculated drying curves of cellulose insulation at 40% initial moisture, 

compared with the experimental results determined previously. 

 

Figure 4.10: Drying curves of cellulose with calculated and fitted capillary sorption constant Aw.. 

The same approach was used to fit a moisture diffusivity function that would be 

representative of the drying of cellulose with included additives. Table 4.7 shows the new 

fitted values of Aw for the formulations of cellulose insulation. Both had slightly higher 

values indicating an increase in moisture transport, though the lignosulfonate formulation 

has the added benefit of requiring less initial moisture. 
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Formulation Aw (fitted) 
kg/m²s1/2 

Water 1.15 

Lignosulfonate 
25% 

1.3 

CTAB 2% 1.35 

Table 4.7: Values of fitted capillary sorption constant Aw 

4.3.3 Drying performance of CFI under different installation 4.3.3 Drying performance of CFI under different installation 4.3.3 Drying performance of CFI under different installation 4.3.3 Drying performance of CFI under different installation 
conditions conditions conditions conditions     

Having established and validated the required characteristics for the drying model 

in WUFI, a more in depth study can be made on its drying performance with real world 

climate conditions. In order to quantify the influence of the additive in the reduction of 

drying times for different weather and insulation thickness conditions, a series of 24 

simulations with varying parameters were made, comparing cellulose sprayed at the 40% 

moisture content with either the reference water or the 25% lignosulfonate additive (LS 

25%), varying insulation thickness (10 cm, and 20 cm), initial moisture dosage (40% 

“normal dosage or 80% “high dosage”) and weather profiles (summer, autumn and 

winter). Only the lignosulfonate formulation was tested to measure the highest feasible 

reduction in drying times. 

The following material profile was used, from exterior to interior (Figure 4.11): a 

1mm weather barrier membrane, a 15mm oriented strand board (OSB) panel (density: 

595 kg/m3) from which the properties are from the internal software material database, 

and finally the cellulose insulation of varying thickness (see EM 20).  
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Figure 4.11: WUFI wall material layers profile. 

In order to input the weather profiles, WUFI provides climate data for various 

cities around Europe, Asia, and U.S. For this study the climate data from the city of 

Bordeaux, France, the city in which the studied cellulose material (Univercell Comfort) is 

produced, was used. The climate data from the months of July, October, and January 

2008 were used for the weather profiles of summer autumn and winter, respectively. The 

average moisture and temperature conditions for each period were 67% RH, 19°C in 

summer, 74% RH, 14°C in autumn, and 84% RH 5°C in winter. These weather 

conditions were applied on both sides of the cellulose wall. The wall was considered to 

be orientated south. All simulations had a duration of 30 days, unless the threshold of 

20% moisture was not reached, in which they were extended to 60 days. 

Figures 4.12 and 4.13 show the simulated drying curves of cellulose insulation 

with varying parameters, (sprayed liquid, thickness, and period of application) for initial 

sprayed dosages of 40%, and 80%, respectively. The drying times vary greatly according 

to these factors, ranging from the quickest: cellulose with lignosulfonate sprayed during 

summer at 10cm thickness, to the slowest: cellulose with water sprayed during winter at 

80% moisture content and 20 cm thickness. The ambient conditions had a high impact on 

the equilibrium moisture content of the material, some samples took longer than the 

standard 30 days of simulation to reach the 20% moisture threshold. The contribution of 
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the additive to the reduction in drying times for each situation is apparent, but can vary 

greatly depending on the parameters. When associating with the drying curves obtained 

from the empirical model in the previous section, a relationship between the empirical 

model and drying times at summer conditions can be found, confirming the notion that 

the model provides a good initial approach in predicting drying times.  

 

Figure 4.12: Modelled drying curves under different ambient and thickness conditions at an initial dosage 
of 40% 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 100 200 300 400 500 600 700

M
o

is
tu

re
 c

o
n

te
n

t,
 (

m
a

ss
 %

)

Time, (hours)

Water-summer-10cm LS25%-summer-10cm

Water-autumn-10cm LS25%-autumn-10cm

Water-winter-10cm LS25%-winter-10cm

Water-summer-20cm LS25%-summer-20cm

Water-autumn-20cm LS25%-autumn-20cm

Water-winter-20cm LS25%-winter-20cm



 

ChapterChapterChapterChapter    4: Final properties of insulating material and hygrothermal 4: Final properties of insulating material and hygrothermal 4: Final properties of insulating material and hygrothermal 4: Final properties of insulating material and hygrothermal modellingmodellingmodellingmodelling    

126 

 

 

 

Figure 4.13: Modelled drying curves under different ambient and thickness conditions at an initial dosage 
of 80% 

Figure 4.14 shows the time to reach 20% moisture content, measured in days, for 

all simulations. The relative decrease in these times for lignosulfonate treated walls, 

compared to the reference cellulose with water is shown in Table 4.8. A steep increase in 

time required to reach the dry state can be observed when cellulose is projected at 80% 

dosage and 20 cm thickness. These cases require between twice and four times the 

required drying times of 20 cm cellulose sprayed at the proper 40% dosage. The 

appropriate application of material is therefore crucial at higher insulation thicknesses. 

The effectiveness of the additive is also reduced at higher dosages, with a reduction in 

drying times of only 5-10% for samples sprayed at 80% dosage. The condition in which 

the additive was most efficient in the reduction of drying times was during winter using 

the minimal sprayed dosage of 40%. While the relative improvement in drying times for 

10 cm cellulose sprayed with lignosulfonate additive at 40% in summer and autumn is 

high, this translates to a reduction in drying times of just 16 and 20 hours respectively. In 
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practical terms this reduction might still not be negligible, since the cellulose would dry 

in the morning instead of the evening, therefore effectively saving one work day in the 

construction site for the installation of a vapour barrier. Moreover, the improvement in 

mechanical resistance is also an added benefit. Nevertheless this improvement might not 

be cost effective. Suggesting that the additive should improve drying times by at least 24 

hours despite weather conditions, and interpolating between reductions in drying times 

from 10 to 20 cm, it’s possible to deduce that the minimum insulation thickness in which 

lignosulfonate additive would be effective at 40% sprayed liquid dosage would be 16 cm 

in summer conditions and 12 cm during autumn conditions, below that thickness, it could 

still be used, but its main purpose would be to strengthen the material at a lower moisture 

content.  

The drying performance of cellulose insulation needs to be established by means 

of full scale tests under real conditions and compared with the models. Ideally, using 

ambient temperature and humidity readings, coupled with moisture meters within the 

material, the model could be validated with on-site results. Unfortunately due to time 

constraints, this will have to be achieved for the continuation of this research project.  
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Figure 4.14: Time to reach dry state (20% moisture) for cellulose with varying formulations, sprayed 
dosage, and insulation thickness. 

 Relative decrease in drying times 

with 25% lignosulfonate additive 

 Summer Autumn Winter 

10cm - 40% dosage 23% 21% 32% 

20cm - 40% dosage 15% 17% 24% 

10cm - 80% dosage 10% 9% 5% 

20cm - 80% dosage 8% 7% 8% 

Table 4.8: Relative decrease in drying times via the contribution of lignosulfonate additives at 28% water 
concentration. 
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4.44.44.44.4    FFFFINAL PRODUCT CONSIDEINAL PRODUCT CONSIDEINAL PRODUCT CONSIDEINAL PRODUCT CONSIDERATIONSRATIONSRATIONSRATIONS    

4.4.1 Fire resistance measurements4.4.1 Fire resistance measurements4.4.1 Fire resistance measurements4.4.1 Fire resistance measurements    
The tested additives used should not interfere with the fire resistance of cellulose 

insulation provided by the included borate salts and therefore it is necessary to ensure that 

the fire retardant properties of the material are maintained. There are two types of fire 

resistance in which cellulose must comply with: smouldering and flame combustion.  

4.4.1.1 Smouldering tests4.4.1.1 Smouldering tests4.4.1.1 Smouldering tests4.4.1.1 Smouldering tests    

Smouldering is a form of combustion in which no flame is produced it is a slower 

form of combustion which produces heavy levels of smoke. In order to verify the 

smouldering resistance, a method defined in the standard ASTM C739 (ASTM, 2006) 

can be used. The method (see EM21) simply uses a lit cigarette, inserted within the 

material, to slowly burn the cellulose for two hours, the change in mass due to 

smouldering combustion is then determined. If this change in mass is higher than 15% the 

material is considered not smouldering resistant. Sprayed cellulose samples with 25% 

lignosulfonate and 2% CTAB were tested with regards to smouldering resistance tests 

and compared to the reference sample sprayed with just water. Both the standard 

cellulose which has been previously treated with borates and untreated samples were 

evaluated in order to determine if the additives had any contribution in fire resistance. 

Results from smouldering tests are shown in Table 4.9. All samples had continuous 

smouldering combustion during the duration of the tests with no flame created. All 

samples with borates were under the 15% limit for mass difference in smouldering tests, 

thus complying with the requirements for insulation materials defined by the standard. 

None of the samples without borates passed this test, with the additives showing a 

slightly increased smouldering combustion.  
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Sample Mass change 
(w/w %) 

Cellulose reference 5.5% 

25% lignosulfonate 6.9% 

2% CTAB 5.3% 

Cellulose reference (without borates) 60.1% 

25% lignosulfonate (without 
borates) 

76.4% 

2% CTAB (without borates) 65.1% 

Table 4.9: Smouldering combustion test results. 

4.4.1.2 Open flame Test4.4.1.2 Open flame Test4.4.1.2 Open flame Test4.4.1.2 Open flame Test    

In order to ensure the flame resistance of building materials, a testing method is 

defined in a European standard EN ISO 11925-2:2010 (ISO, 2002). The test determines 

the ignitability of a vertically mounted test sample when a small flame is directly applied 

to its surface. After a period of time, the flame is removed and the specimen is observed 

to determine whether there is any flame spread to a distance of 150 mm above the point 

of flame application, within a specified time period (Figure 4.15). The time that the 

material is exposed to the flame and the observation period is determined according to the 

material’s fire class, ranging from B to E, ranging from difficult to ignite materials to 

materials which are easily combustible, as defined in 13501-1 (EN, 2010) (see EM22 for 

more information). In addition, the development of smoke during burning is observed 

during this period, which is classified in the standard as either s1: no smoke/low smoke 

production, s2 some smoke production, or s3 high smoke production. Finally, a sample of 

filter paper is placed under the specimen and, as the specimen is exposed to flame, if the 

filter paper is ignited by the droplets produced during burning, the material is classified as 

d0, d1 or d2 according to the presence and persistency of the droplets.  
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Figure 4.15: Open flame combustion tests setup. 

For cellulose insulation the fire resistance classification varies depending on the 

manufacturer, but many comply with the B-s2-d0 category. 

 300x90x90 mm3 sprayed cellulose samples with lignosulfonate and CTAB were 

studied with regards to flame resistance according to EM22 and compared to reference 

samples. 3 samples per formulation were tested, with each test measured on a different 

side. Table 4.10 shows the average measured flame height, the measured change in mass, 

as well as the observed smoke and droplet behaviour of samples.  

Table 4.10: Open flame combustion tests. 

For samples without borates, flame testing could not be done due to high 

combustion levels. 

All samples complied with the requirement of having a flame height lower than 

the 150mm threshold specified by the standard. Although variability in samples and the 

Formulation Flame height, 
mm 

Mass 
change 

(w/w %) 

smoke 
level 

Ignition 
of filter 
paper 

Cellulose reference 104 ± 5 7.3% ± 
2% 

normal no 

25% lignosulfonate 96 ± 6 6.7% ± 
1% 

normal no 

2% CTAB 110 ± 10 8% ± 2% normal no 
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test method makes it difficult to verify without further results, additives treated with 

lignosulfonate showed a slightly lower flame height and change in mass than the 

reference. One cause of this is the higher density of the material, but also the minerals 

within the lignosulfonate could have a contribution. Smoke was generated from all 

samples at a similar rate and only a few droplets were produced and the filter paper under 

the sample did not ignite. From these initial results it’s possible to deduce that the fire 

resistance class of the material is not hindered by the included additives. There were 

some faults in the testing method however. The sample holding support had a wire mesh 

to keep it in place, making reading of the flame height difficult and possibly blocking part 

of the flame. This is exemplified in Figure 4.16. 

 Using other fire resistance standards to measure such as the single burning item 

test EN 13823 (EN, 2002), further work on the fire performance needs to be done to fully 

characterize the material’s performance in this regard, with the possibility of included 

additives being a partial replacement for the borax fire treatment.  

 

Figure 4.16: Open flame cellulose sample. 

4.4.2 Fungal resistance observations4.4.2 Fungal resistance observations4.4.2 Fungal resistance observations4.4.2 Fungal resistance observations    
Full fungal resistance tests, like the ones defined in EN 15101 (AFNOR, 2014) 

are beyond the scope of this work. Chapter 1 has shown how the included borates and 

other additives already used in cellulose insulation. However, this does not protect the 

cellulose when it is saturated with water. Some samples with antifungal additives which 
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were intentionally sprayed at a high dosage of around 250% moisture content showed a 

yellowish mould on its surface, probably the aspergillus species, after a week of drying 

(see Figure 4.17). 

 

Figure 4.17: Mould in high moisture cellulose samples. 

This should not be an issue if cellulose is properly applied, but can cause 

problems if there is rain infiltration or pipe leakage in contact with the cellulose. Both 

lignosulfonate and CTAB addittives have been shown to have some antifungal properties 

(Madad et al., 2011; Vieira and Carmona-Ribeiro, 2006) As a preliminary test to evaluate 

the possible influence of the additives on fungal growth, cellulose samples without 

borates were sprayed at 80% dosage in 50x150x150mm3 with water, 25% lignosulfonate, 

2% CTAB and a high concentration of 10% CTAB. The samples were laid to dry at the 

standard ambient conditions and then 10g pieces were re wetted at a high moisture 

content of around 200% moisture, and stored in 95% RH at 25°C using a saturated salt 

solution, with the intention of creating conditions favourable for mould growth. Figure 

4.18 shows untreated, 2% CTAB, 10% CTAB, and 25% Lignosulfonate (LS) samples 

after 14 days. Discoloration due to fungus can be seen with untreated samples, which is 

slightly less prevalent with 2% CTAB and 10% CTAB samples show almost no 

discoloration, resembling the borate treated samples. This could not be determined for 

lignosulfonate samples due to the colour of the additives. 
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Figure 4.18: Fungal growth discoloration on cellulose samples with different additives. 

While the 10% CTAB formulation would not be effective in reducing drying 

times, they could serve as an alternative to borates as an antifungal additive. 

4.4.3 Final product propert4.4.3 Final product propert4.4.3 Final product propert4.4.3 Final product properties and further material studies ies and further material studies ies and further material studies ies and further material studies     
Table 4.11 shows the summary of the properties of new formulations with 

lignosulfonate and CTAB. A “minimal effective dosage” of lignosulfonate at 19% 

concentration was measured with regards to drying, thermal conductivity and mechanical 

resistance. If necessary a concentration higher than 25% can be used, although at 40%, 

heterogeneities in the material can cause issues. In reality, the final effective 

concentration should be determined via full scale tests and a price evaluation. Despite the 

fact that the CTAB variant is less effective with regards to drying it could still be used as 

an additive in the case where maintaining the low thermal conductivity and density of the 

material is required.  
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Property Cellulose 
reference 

19% 
lignosulfonate 

25% 
lignosulfonate 

2% 
CTAB 

Time to reach 20% w/w moisture, 
(hours) at 60% RH 25°C 

51 42 38 45 

Density, (kg/m3) 49.8 54.3 55.6 50.6 

Thermal conductivity 10°C, 
(mW/m.K) 

39 40.9 41.1 38.7 

Thermal conductivity (25°C 
mW/m.K) 

42.3 44.5 44.8 41.9 

Thermal conductivity (40°C 
mW/m.K) 

51 55.2 57.1 52.1 

Compressive modulus E, (kPa) 14.1 16.5 16.9 14.3 

strain at 5% deformation, (kPa) 0.6 0.9 0.9 0.6 

strain at 10% deformation (kPa) 1.3 1.6 1.8 1.2 

Table 4.11: Properties summary of cellulose insulation with lignosulfonate and CTAB additives. 

From an economic standpoint, the increase in price from the included additive 

needs to be studied. Considering only material costs, on average around one tonne of 

cellulose is required to insulate an entire house. If the cellulose is sprayed at the minimal 

40%, a 25% lignosulfonate/water ratio translates to 8% lignosulfonate per ton of cellulose 

so 80 kg per building site. An average price per tonne of cellulose is around 1200€, and 

for lignosulfonate, prices can range from 300€ to 1000€ depending on the purity, quality 

and source of the lignosulfonate. Even at the high limit of this range, this only translates 

to a price increase of 7%. Using the same logic for CTAB, where prices are higher 

(1000€-10000€ per tonne) this increase is 8.3% due to the low concentration needed 

(sources: (Alibaba.com, 2016) ). The use of these additives also implies an increase in the 

material used to apply the machine. First a membrane pump needs to be used instead of 

the standard cellulose spraying pump which connects directly to the water line. A 

reservoir for storing and mixing the liquid needs to be used. The capacity of the reservoir 

can range from 100 to 400L depending on the number of times the additive will be mixed 

with water. For the mixing of the additive, either a portable paint agitator or a concrete 

mixer (which might be already necessary for the construction site) might be able to be 

used. The prices on all this extra equipment could vary from 600€ to 2000€ but these are 

initial investments or could be rented. These increases in cost can be counterbalanced 
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with the reduction in labour costs and improvement in productivity due to a reduction in 

drying times for the material. 

With regards to production, ideally both the cellulose fibres and the additives 

should be delivered together to the building site. the manufacture sites of both the 

provider of cellulose: Univercell (Bordeaux, France), and the producer of lignosulfonate: 

Tembec (Tartas, France) are within 200 km of each other. Univercell, one of the largest 

cellulose manufacturers in France, produces 15ktonnes of cellulose insulation, therefore 

would require 960 tonnes of lignosulfonate/year, assuming complete production would be 

dedicated to this new formulation. This is only 1.6% of the annual capacity (60 

ktonnes/year) of lignosulfonate from Tembec. For the CTAB variation, this becomes 

more difficult since local providers of the additive are harder to find, with the cheapest 

providers coming from China. The low concentration required per ton of cellulose can 

reduce the impact of this issue, since less of the additive is required in the production. 

The ecological impact of the final product is also an essential characteristic that 

needs to be defined. As an initial assessment of the impact of the included additives on 

the ecological impact of the new insulating material, it’s possible to consider the life 

cycle assessment of cellulose insulation from the work of Zabalza Bribián et al (2011) 

and integrate the relative impact from the additives with their respective proportions to 

cellulose insulation. In the case of lignosulfonates, González-García et al. (2011) 

calculated the environmental impact of this by-product of paper production by 

considering an economic allocation of a Swedish dissolving pulp mill from a cradle-to-

gate perspective. The mass allocation, which can vary according to current market prices 

of the lignosulfonate by-product, was 1.3% of the ecological impact of paper pulp, 

another approach could be to quantify using a mass allocation of the final paper pulp 

produced which was 2.4%. Although no clear data on the life cycle assessment of the 

CTAB surfactant could be made, data of the ecological impact from the production of an 

industrial chemical surfactant was taken as an analogue from (Huang, 2008). Table 4.12 

shows the approximated ecological impacts, with regards to primary energy demands, 

and global warming potential, of the novel insulation material formulations.  
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Material 

Primary energy 
demand 

Global 
Warming 
Potential 

(MJ-Eq/kg) (kg CO2-

Eq/kg) 

Cellulose insulation 10.4870 1.8310 

Cellulose insulation + LS 
(economic) 10.5159 1.8353 

Cellulose insulation + LS (mass) 10.5404 1.8390 

Cellulose insulation + CTAB 11.5870 4.8010 

Table 4.12: Potential impact of additives on primary energy demand and global warming potential of 
cellulose insulation. 

The influence of lignosulfonate on the ecological impact of cellulose insulation 

could be considered negligible, thus increasing the interest of the use of the material. 

Despite the lower concentration of CTAB, its production has a higher impact on both 

factors. This is primarily due to the high energy requirements for the production of 

surfactants. In spite of these increases both new formulations still have lower energy 

demand than traditional insulation materials such as polyurethane foams slabs and 

mineral wool insulation (Schiavoni et al., 2016). A full life cycle analysis, considering the 

production distribution and application of the additives should be evaluated in future 

studies. 

There exist other properties of the material that need to be determined. First, as 

mentioned previously the resistance to mould must be established according to the 

standard NF EN15101 (AFNOR, 2014). Since the material could be in contact with metal 

elements the corrosive properties is another factor that is certified for insulation products. 

The test, also defined in NF EN15101, consists in placing a series of copper and zinc 

coupons in contact with water saturated cellulose. Other important characteristics to 

determine for the final product include: Sound absorption determined according to EN 

ISO 354 and EN ISO 11654, airflow resistivity as defined by EN 29053, a toxicity and 

dangerous substance report, such as one presented in previous works (Hilado et al., 1979; 

Morgan, 2006), and odour, which, while not defined in European standards, can be found 

in ASTM C-1149 (a slight odour for lignosulfonate-treated cellulose was found at high 

concentrations). A factor not featured in the standards is the fact that the lignosulfonate 

leaves a residue on the sprayed substrate, leaving small stains on the OSB structure. Since 
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this part of the building structure is covered and not seen, it should not be an issue, but 

careful attention should be made to ensure that the stains do not bleed into other parts of 

the structure.  

4.54.54.54.5    CCCCONCLUSIONSONCLUSIONSONCLUSIONSONCLUSIONS    
In this final stage of the research project, insulation materials which incorporate 

recycled cellulose and lignosulfonate and a cationic surfactant were optimized and 

studied systematically for its subsequent use as a novel building material. In this regard, 

the concentration of both additives was studied with regards to their influence of drying 

times and final properties of cellulose insulation. A range of 19%-25% and 2% 

concentrations for lignosulfonate and CTAB respectively were found to be the most 

beneficial, although higher concentrations could be used if required, with the 

disadvantage of having a higher cost, density and thermal conductivity. 

 In pursuance of the prediction of the drying times of cellulose insulation under 

real-world dynamic conditions, models of the material’s moisture transport were studied. 

First a simplified empirical model was used in which the moisture content could be 

predicted using the cellulose insulation’s thickness, the sprayed and final moisture 

contents, as well as the influence of additives. The empirical model provided a strategy in 

predicting drying times using simple parameters at constant humidity and temperature. 

Afterwards a complete numerical model was used via the WUFI 5 software so that the 

combined influence of the lignosulfonate additive with the installed weather, liquid 

dosage and the thickness of the insulation material could be quantified with regards to the 

drying time required. The model gave indications on which conditions were the most and 

least favourable for the use of lignosulfonate formulations. Overall the use of additives 

would not be recommended when installed at high thickness coupled with high liquid 

dosage conditions, but the drying times makes these conditions impracticable even 

without additives. For summer and autumn climates at the minimal spray dosage of 40%, 

lignosulfonate is recommender at thicknesses higher than 160 mm. 

Preliminary studies with regards to the fire performance of the new cellulose 

insulations were made, which were shown to comply with the required standards. An 

early study was done for fungal growth, and the included additives could serve as a 
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partial replacement for the included borax salts. An issue with using the spray additives 

as either antifungal or fire resistance agents, is that it makes the burden of providing a fire 

and fungus resistant material more dependent on the cellulose installer and not the 

manufacturer, increasing the risk of these complications is the material is improperly 

installed, which might not be suitable for some builders. The final insulation materials 

with additives show an improvement in drying times and mechanical resistance without 

greatly affecting its thermal conductivity and density. Lignosulfonate was the most 

effective in this regard, but CTAB could be used as an alternative when maintaining the 

material’s properties is required. An initial estimation with regards to the relative 

influence of the additives on the material’s price and ecological impact was made, finding 

them to be negligible in the case of lignosulfonate, with the CTAB variant having a 

similar price but higher ecological impact in terms of energy demand and global warming 

potential. Several indications for the characterization of the final product were identified. 

The corrosion resistance, as well as full fungal resistance tests are necessary properties 

that need to be defined for the validation of the material. Other properties include: sound 

absorption, airflow resistance, toxicity, and odour testing, amongst others. Finally, full 

scale onsite tests need to be done at a pilot construction site to verify the effectiveness of 

the additives under full scale conditions and in comparison to the numerical models. 



 

    

140 

 

 

 

GENERAL CONCLUSIONS GENERAL CONCLUSIONS GENERAL CONCLUSIONS GENERAL CONCLUSIONS AND AND AND AND 
PERSPECTIVESPERSPECTIVESPERSPECTIVESPERSPECTIVES    

The challenge of sustainability in the building sector needs comprehensive 

examination. Building projects require innovative materials that not only improve its 

properties with regards to energy consumption, but also reduce the ecological impact of 

the building using building components with natural and/or recycled raw materials, all 

while taking into account practical factors such as price, availability, and impact on 

health. Despite its performance in improving thermal comfort and its eco-friendly nature, 

cellulose is not a prevalent building material when compared to traditional materials such 

as glass wool. The main issue with the material resides from its installation in building 

envelope enclosures. The dry blown method is prone to settling which causes voids that 

create thermal bridges, while the wet process can require a long time to dry, depending on 

the conditions in which it is applied, which slows down construction schedules. As a 

result of the work of this thesis, a better understanding on the performance and properties 

of cellulose insulation applied was achieved, and a new formulation of the material was 

found in which the drying and mechanical performance of the material was improved. 

This contributes to the attractiveness of the material and technique for its use in future 

building projects, thus having a positive influence on the improvement of sustainability in 

the building sector.  

An analysis of the state of the art on cellulose insulation has shown its beneficial 

properties including its thermal conductivity, low density, moisture buffering potential 

and airtightness. There is, however, a void in the literature with regards to the wet spray 

technique. While the problem with the material’s drying has been established, no 

information was available on how sprayed moisture affects its properties. The results of 

this analysis helped shape the strategy for the study on the properties of cellulose 

insulation installed via the wet spray process, and the means of which the drying problem 

could be solved via the use of additives. The potential additives which could improve the 
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properties of wet spray cellulose were categorized, with a focus on biobased binders and 

surfactants, with the purpose of maintaining the eco-friendly properties of the insulation 

material. Despite the several examples of the use of biobased binders with natural fibre 

composites, the specific conditions for the wet spray process made it difficult to 

determine the specific feasibility of the use of additives with cellulose insulation, 

requiring further investigation. 

Characterization of wet spray cellulose insulation required an initial study on the 

properties of fibres, and their physical and chemical properties. Differences between the 

composition, granulometry, degree of refining, and water retention between two types of 

cellulose insulation fibres translated directly into differences between drying times of the 

sprayed insulation, although direct quantification of the degree of influence for each 

factor could not be defined. Isothermal dynamic absorption testing and the quantification 

of different type of water within the fibres via differential scanning calorimetry proved to 

be useful tools in studying the drying rate of sprayed cellulose, where the proportions of 

bound and unbound water had an influence on the rate of evaporation of water within the 

fibres.  

During the wet spraying of cellulose insulation, the initial moisture dosage can 

vary depending on the applier. It was therefore necessary to determine how this dosage 

can affect the final properties of the material. An increase in the density, compression 

resistance and thermal conductivity was found for increasing installed moisture for 

cellulose insulation. This increase could be partially explained by the compaction of the 

material from the increase in water pressure, but when comparing with dry compacted 

samples, it was evident that other factors such as the pore closure and the hardening of 

fibres during drying also played a role. The properties of cellulose installed with the 

minimal 40% moisture content provided a comparative reference for the formulations of 

cellulose with included additives.  

The types of additives considered for the use with cellulose insulation were 

biobased binders and surfactants. For binders, one of the limitations for their use with the 

wet spray method was viscosity. The pump and spray mechanisms would only spray 

liquids of around 40 mPa.s, thus limiting the concentration of additives to be used. A 

compromise had to be made in where the concentration ranges for the biobased binder 
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candidates were varied in order to have an adhesive with maximal adhesive strength, but 

was still under the viscosity threshold. Some of the screened binders, when diluted to a 

concentration which was sprayable, presented low adhesive strength using small scale 

tensile strength tests, severely limiting number of possible biobased binders which could 

be incorporated with cellulose insulation. Compression tests on sprayed cellulose 

insulation with biobased binders were made. Some of the sprayable binders did have a 

positive contribution on mechanical resistance of cellulose insulation, while others 

showed the same as with cellulose sprayed with just water. The additives also had an 

impact on density and thermal conductivity similar to the contribution of increased water 

dosage. The addition of biobased binders could not have a direct contribution in the 

reduction of drying times for cellulose insulation, mainly due to the reduced flow from 

the viscous liquid and the formation of a crust which impeded drying. The strategy in 

which cellulose was sprayed with less than the minimal liquid dosage, compensated by 

increase in mechanical strength from binders was not fruitful either. The only biobased 

binder which showed a significant improvement in drying was lignosulfonate, due to the 

decrease in initial moisture content from high concentrations of the additive.  

A range of surfactants were also tested, with varying charge and hydrophilic 

properties. It was initially thought that the reduction in surface tension of the sprayed 

liquid would improve the drying of the water, within the fibres, but most showed little to 

no change in drying times. The only effective surfactant was CTAB, mainly due to its 

cationic nature. The interactions between the positively charged CTAB surfactant and the 

negatively charged cellulose fibres induced a slight reduction in drying times. Both 

lignosulfonate and CTAB were considered suitable additives due to their contribution to 

both mechanical resistance and drying times, with relatively low impact on density and 

thermal conductivity.  

The study on the effect of CTAB and lignosulfonate concentrations on the 

properties of cellulose insulation yielded the optimal additive/water ratios of 19-25% for 

lignosulfonate, and 2% for CTAB. In order to account for different conditions in which 

wet sprayed insulation could be applied, such as installed moisture, insulation thickness, 

and the use of additives. An empirical model was applied for cellulose drying at constant 

humidity and temperature conditions. The model gave a good indication of the impact of 
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each individual parameter on drying times. A more complete simulation, taking into 

account the properties of the material was done using numerical modelling software. By 

considering real world climate and material conditions, it was possible to determine at 

which conditions the lignosulfonate additive was the most and least effective. It was 

found that the decrease in drying times from the additive would be negligible for low 

thicknesses, low sprayed dosage, in summer conditions, and for high thicknesses, high 

sprayed dosage during winter and autumn conditions.  

Preliminary studies on the fire resistance of the new formulations were made. 

They were found to be compliant with the requirements for both smouldering and flame 

resistance, but only with the included borate salts already used. CTAB surfactants had a 

contribution on the fungal resistance of the material but only at high concentrations. 

Partial replacement of the included borate salts with the tested additives for both fungal 

and fire resistance are a possible added benefit that needs to be studied further.  

For the continuation of this work, a full scale drying test, directly in a construction 

site is envisioned. Moisture meters within the material after it is sprayed, coupled with 

ambient humidity and temperature sensors will allow the continuous monitoring of the 

drying of the new insulation material and a confirmation of the numerical model. Further 

work also needs to be done on the compliance of the material with national and 

international standards for insulation materials.  

Beyond the industrial objective of the development of the innovative insulating 

material, further research on cellulose insulation, encompassing different scientific areas, 

could be envisioned. While in an industrial scale the optimization of the physical 

chemical properties of the fibres is not feasible, an in-depth study on the optimization of 

the chemical composition and physical properties of the fibres could yield results that are 

applicable in the production of paper or materials incorporating lignocellulosic fibres. 

 From a fluid mechanics standpoint, the spreading behaviour of the sprayed liquid, 

the formation of droplets and their spread on the cellulose fibres as a function of viscosity 

is a possible topic of further study. Moisture flow through porous media is a subject in 

which the theory and experimentation is continuously evolving, which could be applied 

to the study of drying of cellulose. The fibrous network in which moisture flows from the 

cellulose interior to its surface could be studied via tomography, for example.  
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The mechanical behaviour of sprayed cellulose insulation is another remarkable 

problem to examine. Since the material adheres to all the borders of the wall cavity, it is 

subject to compressive, tensile and shearing forces from its own weight. These forces are 

dynamic in nature since as the material dries, the applied weight decreases but the 

material’s resistance strengthens. Also, once the material is dry the changes in humidity 

moisture absorption and desorption throughout the makes the material’s mechanical 

performance cyclic, requiring creep strength testing. This problem is complicated further 

by the fact that cellulose insulation could be sprayed in different configurations, not only 

the different dimensions of the wall cavities which directly affect the weight of the 

material, but also the different wall materials (OSB, fibreboard, gypsum board, etc.) 

affect its adherence.  

Materials such as cellulose insulation are essential components for the reduction 

of the environmental impact of the building sector, yet their integration in building 

projects is still less favourable than traditional materials. It is only through iteration, 

innovation, and research that building materials that incorporate natural and recycled 

fibres will become more prevalent, the norm and not the exception.  
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EXPERIMENTALEXPERIMENTALEXPERIMENTALEXPERIMENTAL    METHODSMETHODSMETHODSMETHODS    

EM01 DETERMINATION OF MOISTURE CONTENT  

For determination of moisture content of cellulose samples, the gravimetric 

method was used. 1-3g of the sample was weighed in its humid state, and then dried in an 

oven at 103°C and weighed again the moisture content is then: 

*+�%� = -��� − -�./-�./  

To measure the drying of CFI, the mechanical testing samples were weighed daily 

in order to measure the evaporated water until equilibrium moisture conditions at 60% 

RH (a mass variation of less than 1% in 24 hours) were reached (meq).  The equilibrium 

moisture content was then determined by taking 3g of fibres from the ambient dried 

sample and drying them at 100°C for two hours. Using the mass of the samples and the 

equilibrium moisture content, the initial moisture content as well as the drying of the 

material at 24 hour intervals was determined.  

The total moisture content is then  

*+�%� = *+01.2/���%� + *+�	�%� 

With  

*+01.2/���%� = -��� − -�	-�./  

-�./ and *+�	�%� were determined via the oven dried method.  

EM02 MACROSCOPIC OBSERVATION OF CELLULOSE FIBRES  

The cellulose fibres were observed using a Nikon SMZ 1500 Multizoom 

microscope. Fibres were placed between transparent plates under the microscope and the 

lighting, focus and zoom of the microscope was adjusted until the fibre surface could be 

observed. Images were taken at 10x and 20x zoom. 
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EM03 SCHOPPER REIGLER FREENESS TESTING 

For Schopper Reigler measurements, a standard tester was used. The procedure, 

adapted from ISO 5267-1:1999, is as follows. Cellulose fibres were mixed with water to 

form a suspension of 0.2% consistency. The suspension was then subjected to 

disintegration via a disintegrator at 6000 revolutions. The temperature of the pulp was 

adjusted to be around 20°C. 1L of the pulp suspension was then slowly poured into the 

drainage chamber of the Schopper Reigler apparatus. Once 5s had passed, the sealing 

cone was raised and the pulp suspension was allowed to flow through the apparatus. 

When all of the liquid had stopped flowing through the apparatus, the volume of liquid in 

the recipient cylinder was measured. The SR value is then:  

34° = 1000 − 6789:;�<=�-9�10  

Tests were repeated three times with different pulp suspensions for each sample. 

 

Figure E1: Schopper Reigler freeness tester 

EM04 TAPPED DENSITY 

Tapped density was done through a Granuloshop Densitap ETD-20 (France) 

measurement apparatus. 3-5g of loose cellulose insulation fibres were first weighed (m0) 

and then inserted into the apparatus. Careful attention was made to ensure that the fibres 

did not stick to the measurement cylinder walls. The bulk height e0 was then determined. 
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The bulk density ρ0 was determined as the ratio of m0/e0 in g/L. the material was then 

subjected to a series of mechanical taps. A sequence of 100, 300, 500, and 1250 taps were 

used until the material's height didn't vary anymore. The height etapped was measured and 

tapped density ρtapped was determined as m0/etapped . The compressibility index CI was 

then:  

+>�%� = <� − <�211��<�  

 

 

Figure E2: Tapped density apparatus. 

EM05 PARTICLE SIZE DISTRIBUTION  

The particle size distribution of the material was determined by first separating 

around 10g of fibres using compressed air. The fibres were then weighed and put through 

a series of sieves with decreasing whole diameter. The sieve was covered and compressed 

air was blown to make the fibres separate and pass through the sieve. The fibres that did 

not pass through the sieve were weighed and its proportion to the total mass of the sample 

was determined. msieve/mtotal. This value was added cumulously for each successive sieve 

until all the material was measured, adding to 100%. The material that passed through the 

sieve passed to a smaller sieve and the process was reported. The sieve diameter sizes 

used were 4mm, 2mm, 1mm, 0.5mm, and 0.25mm. 

EM06 ADF/NDF ANALYSIS 

This method allows determining the proportions of lignin, cellulose and 

hemicelluloses of fibres. The following reagents were used, according to the method 

described by Van Soest and Wine (1967).  

Neutral detergent solution: 
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Sodium borate decahydrate (Na2B4O7 - 10 H2O) 6.81 g 

Disodium ethylenediaminetetraacetate (EDTA, C10H14N2Na2O8) 18.61 g 

Sodium lauryl sulfate neutral (C12H25NaO4S) 30 g 

2-ethoxyethanol (Ethylene glycol monoethyl ether, Cellosolve, C4H10O2) 4.56 g 

10 ml Disodium phosphate anhydrous (Na2HPO4) 

Distilled water 1000 ml.  

Sodium borate and disodium EDTA  

n-octanol (C8H18O) octilic alcohol 

Sodium sulfite anhydrous (Na2SO3) 4.  

Acetone 

 Acid detergent solution: 

Cetyltrimethylammonium bromide technical grade (C19H42BrN) 20 g 

Sulfuric acid 1 N (H2SO4, 49.04 g/l) 1 l 

Dissolve tensioactive into acid while stirring to promote dissolution. 

  n-octanol (C8H18O) octilic alcohol. 

  Acetone. 

The procedures for both methods are as follows: 

Procedure for NDF determination (Neutral detergent fiber) 

1. Grind the air dried sample to pass 1 mm screen.  

2. Weigh in a crucible 1 g of grinded sample with 1 mg approximation.  

3. Add 100 ml of neutral detergent solution at room temperature into crucible with 

0.5 g of sodium sulfite and some drops of n-octanol.  

4. Heat to boiling and reflux 60 minutes from onset of boiling.  

5. Filter and wash 3 times with boiling water, then twice with cold acetone.  

6. Dry 8 hours at 105 °C and let cool in a desiccator.  

7. Weigh.  

8. Calculate neutral detergent fiber: NDF % = (weight of crucible + weight of 

residue) - weight of crucible / weight of sample x 100. Neutral detergent solubles: 

NDS % = 100 - NDF %.  

9. Ash in a muffle at 550 °C 2 hours and let cool in a desiccator.  

10. Weigh.  
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11. Calculate ash insoluble in neutral detergent: loss on ashing / weight of sample x 

100.  

Procedure for ADF determination (Acid detergent fiber)  

1. Grind the air dried sample to pass 1 mm screen.  

2. Weigh in a crucible 1 g of grinded sample with 1 mg approximation.  

3. Add 100 ml of acid detergent solution at room temperature and some drops of n-

octanol.  

4. Heat to boiling and reflux 60 minutes from onset of boiling.  

5. Filter and wash 3 times with boiling water, then twice with cold acetone.  

6. Dry 8 hours at 105 °C and let cool in a desiccator.  

7. Weigh.  

8. Calculate acid detergent fiber: ADF % = (weight of crucible + weight of residue) - 

weight of crucible / weight of sample x 100.  

9. Ash in a muffle at 550 °C 2 hours and let cool in a desiccator.  

10. Weigh.  

11. Calculate ash insoluble in acid detergent: loss on ashing / weight of sample x 100.  

EM07 DYNAMIC VAPOUR SORPTION (DVS) 

Sorption isotherms were made by dynamic vapour sorption apparatus DVS 

Advantage from Surface Measurement Systems Ltd (London, United Kingdom). Loose 

fibre samples were placed into an aluminium sample holder connected to a microbalance. 

The samples were then subjected to a series of relative humidity variations from 5% to 

95%, with 10% intervals, at a constant temperature of 25°C. The variations in mass due 

to moisture adsorption and subsequent desorption were then plotted against relative 

humidity. 
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Figure E3: DVS measurement apparatus. 

EM08 WATER RETENTION VALUE  

The water retention value (WRV) of paper was determined through a method 

inspired by ISO 23714. Around 5g of fibres were suspended in water for 24 hours. The 

sample was removed from the water and were let air dry in a wire mesh to remove water 

present in the fibre surface. The fibres were then placed in a centrifuge tube with a cloth 

mesh. The samples were then centrifuged at a speed of 3000g for 5 minutes. The fibres 

were then and weighed ,mcentrifuge. Then the fibres were then dried at 100°C for 24 hours 

and re weighed mdry. The WRV is then: 

?46 = -��@�.ABCD� − -�./-�./  

EM09 BOUND WATER DETERMINATION . 

The bound and unbound water contents were determined according to the method 

described in Nakamura et al. (1981). The method uses differential scanning calorimetry 

(DSC) to freeze the wetted fibres and measure the melting enthalpy as the frozen fibres 

reach 0°C. In these melting curves two peaks can be observed: one corresponds to the 

frozen bound water and the other to free water. The remaining water is considered to be 

the non-freezing bound water. 50g of untreated Univercell loose fibre samples were 
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moistened at around 100% moisture content then left to dry at 60% RH and 25°C. 

Around 5mg of fibres were then placed in an aluminium DSC crucible and sealed. DSC 

measurements were made from -30°C to 15°C using a DSC 3 apparatus from Mettler-

Toledo (Columbus, USA). An example melting curve is shown in Figure E4, with the 

integral of both peaks highlighted. As the fibres dried, samples were placed in the DSC 

apparatus and the melting enthalpies were measured from decreasing moisture content. 

The melting peaks were then integrated to determine bound and free water content as a 

function of total water. The melting enthalpy for the type of water was divided by the 

known melting enthalpy for water, 334 J/g, to give proportions of each type, with the 

remaining water attributed to nonfrozen bound water. The amount of water in a melting 

peak was calculated according to: (Weise et al., 1996) 

E�F�<= �%� =  GHI<FJHK ∙ -�=8 

Where: GHI<FJ is the energy transferred according to the peak melting peak, 

HKthe specific heat of fusion of water (334 J/g) and -�=8 is the mass of solids (g). 
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Figure E4: DSC melting curves. 

EM10 SPRAYING OF WET SPRAY CELLULOSE SAMPLES  

 Cellulose fibre insulation was sprayed with a Minifant M99 blowing machine 

(Figure E5a) from X-Floc (Renningen, Germany). The blower was coupled with a 

COSPET membrane pump (Poviglio, Italy) (Figure E5b) to spray the water. The pump 

was connected via a hose to two nozzles on both sides of the main blowing hose (Figure 

E5c). The spraying procedure as shown in Figure E4a is as follows: (1) the compacted 

fibres are fed to the blowing machine, which first separates them so they can be blown 

(2). For the wet spray method, a separate pump, connected to the blowing hose, pumps 

water from a 50L bucket (3) which is then atomized through nozzles at the same time the 

fibres are blown into the cavity (4). The excess material is then removed via an electric 

wall scrubber (5), (Figures E5d and E7). The blowing machine allows the control of 

material flow via two methods: the opening of the material feed gate and the air pressure 

ranging from values of 1 to 9, 9 being the feed gate completely open, and air pressure 

ranging from 0 to 100% . Too little air pressure can cause excess water to be applied, and 

too much air pressure creates dust and can create a force that makes the material detach 

from its cavity. Unless noted otherwise, most samples were sprayed at a configuration of 

a feed gate of 4 and an air pressure of 40%, which provided a sufficient material flow rate 
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to ensure proper applying of the material. This corresponds to an air flow rate of around 

140 m3/h and a material flow rate of 220 kg/h. In order to vary the initial moisture content 

of the samples, the pumped spray water pressure varied from 6 to 20 bars. For cases 

where an exaggerated water dosage was applied, the air pressure/ feed gate configuration 

was 20/8 with a water pressure ranging from 10 to 20 bars.  

 

 

 

(a) 
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Figure E5: (a) Cellulose blower and wet spraying procedure (b) Wet spraying water pump (c) blowing 
hose with water nozzles (d). 

 

 

  

(b) (c) 

(d) 
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Figure E6: Cellulose wet spraying. 

 
Figure E7: Excess material removal. 

The fibres were blown into wooden moulds of dimensions: 300x300x90mm3 for 

drying and mechanical tests. The moulds were fitted with a removable 2.5mm rigid 

cardboard base covered with a coat of vinylic glue. Once the insulation sample was dry, it 

was carefully unmoulded and another 2.5mm cardboard was glued to the other side of the 

sample. Once the glue dried, the sample was then cut into nine 100x100x90 mm3 pieces 

via a circular saw. The use of cardboard served two purposes: to ensure that the 
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100x100mm² samples have good contact with the compression plates and that they were 

cut evenly without loss of the material. Thermal conductivity samples were projected on 

150x150x50mm3 moulds with a removable top for unmoulding. Once dry, samples were 

carefully separated from the moulds using a trowel. All samples were stored in a 

climactic chamber at 25°C and 60% relative humidity (RH).  

In order to have samples with variable density but similar sprayed moisture 

contents, the 90mm thick compression testing moulds were adapted to have 120 140 and 

160 mm thickness using woodboard. The thicker samples were sprayed at the minimal 

40% moisture and dried at similar conditions of the other samples. Once dry a metal 

plaque was placed on top of the sample, with iron weights ranging from 0.5 kg to 4 kg 

were placed upon the plate to compact the material. The material was compacter for 24 

hours to ensure it would not regain its density once the plate was removed. This would 

ensure that the samples would have higher density, but similar thickness (90mm) and 

initial applied density. The same was done with thermal conductivity samples whose 

moulds were adapted from 50mm to 70mm and 90mm.  

EM11 COMPRESSION TESTING 

Compression tests, adapted from the standard NF EN 826, on the cut 100mm x 

100mm x 90mm samples were made by means of an H5KT universal testing machine 

from Tinius Olsen (Surrey, England) equipped with either 100N or 500N sensors, 

depending on the material’s resistance. Steel 100 x 100 mm² compression plates ensured 

direct contact with the samples. Compression was done at a speed of 10 mm/min. A pre-

charge of 1 N was applied to ensure direct contact with the sample. Due to the fact that 

the material is highly compressible, no fracture or rupture was detected so instead the 

measured stress at 5% and 10% strain was logged for each sample. Compression tests 

stopped once 20% strain was reached. Since each sample had slight variations in 

dimensions of the order of ± 2mm, they were measured in order to accurately calculate 

their respective stress and strain.  
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Figure E8: Compression tests. 

EM12 THERMAL CONDUCTIVITY MEASUREMENTS  

Thermal conductivity measurements were done according to the standard NF EN 

12667. Samples of 150x150x50mm3 were placed in a λ-Meter EP500e guarded hot plate 

apparatus from Lambda-Messtechnik (Dresden, Germany). Foam insulation was used 

around the samples to ensure the contact plates measured only the 150 x 150 mm² surface 

of samples. The contact plates applied a pressure of 50 Pa to ensure direct contact with 

the samples without compacting them. Measurements were made at 10 and 25° C average 

temperature with a temperature difference of 10°C between plates. Steady state was 

assumed to be reached when the value of thermal conductivity varied less than 1% in 60 

minutes. 
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Figure E9: λ-Meter EP500e apparatus. 

EM13 BIOBASED BINDER PREPARATION  

A wide range of polysaccharide binders and gums were tested. Citrus pectin 

powder, guar gum, xanthan gum, pregelatinized corn starch, and sodium alginate, were 

obtained from Kalys (Bernin, France)., produced from corn starch of the brand 

GLUCIDEX® IT 19 were obtained from Roquette (Lestrem, France). In order to have a 

comparison pont with synthetic binders, a commercial of the brand Unibond 1C was 

obtained from Unibond (Cheshire, UK), its solids content is 39%. 

Phenolic biobased adhesives were among the addittives tested. Low sulfonate 

lignin was obtained from Sigma Aldrich (Brussels, Belgium), lignosulphonates were 

obtained from Tembec (Tartas, France).  

Soy protein isolate was obtained from Activ’Inside (Libourne, France) it was 

tested in neutral water and in 10-4M/L Sodium hydroxide (NaOH) buffer with a pH of 10.  

Cationic mimosa tannin of the brand Tanfloc was obtained from Tannac 

(Hamburg, Germany). Cationic corn starch of the brand LAB 4202 was obtained from 

Roquette. This binder was in liquid form, with 42% solids content, which was taken into 

account for successive dilutions. Chitosan powder, also cationic, was obtained from 

Kalys, and mixed with 1% acetic acid (C2H4O2) solution (pH=5).  
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Powdered binders were diluted at variable concentration with around 50g of 

distilled water and mixed with a magnetic stirrer for one minute and let to settle for ten 

minutes to avoid thixotropic loss of viscosity. Since some binders are more viscous than 

others, the range of concentrations tested varied for each binder in order to attain the 

proper pumpable viscosity for some binders. In order to determine the maximum 

allowable viscosity, a preliminary test with the spraying equipment and two biobased 

binders: pregelatinized wheat starch and apple pectin. Binders were mixed with water, 

staring at 10% concentration, and gradually decreasing until the liquid was pumpable. It 

was found that for 1.5% pectin and 1% starch concentrations, binders were sprayable at a 

rate similar to that of pure water. This will further be optimized for other binders in 

section 3.5.3 

EM14 VISCOSITY MEASUREMENTS  

Rheometric analysis on biobased binder solutions was carried out with an Anton-

Paar (Graz, Austria) MCR302 rheometer with a cone-plane geometry (D=25mm) at 

25°C. 2 ml of each of the prepared binder solutions was placed under the plate using a 

micropipette. The cone was then lowered, with the excess liquid removed. Measurements 

were setup at a linear incremental step shear rate from 0.1 to 20 s-1, with 20 points of 

measurement. Afterwards, if a shear thinning behaviour was observed, the same binder 

solution was tested using a power step rate with 20 points from 0.1 to 3000 s-1.  
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Figure E10: viscosity measurement apparatus. 

EM15 TENSILE STRENGTH TESTS 

Used newspapers recovered from the cellulose insulation production line from 

SOPREMA. The newspaper was cut into 20mm x 50mm strips. The single strips were 

weighed then dipped into the binder solutions (the same used for viscosity 

measurements). The covered strips were weighed and excess liquid was removed using 

tissue paper in order to have around 200mg of liquid on all paper samples. Samples were 

then laid to dry at 60% RH and 25°C for 24 hours. The dry paper strips were then placed 

on the same H5KT universal testing machine from Tinius Olsen (Surrey, England) 

equipped with a 100N sensor and special tensile strength clamps. The paper was fitted 

between the clamps 30mm apart. The paper strips were then subjected to tensile tests at 

10mm/minute and the maximum tensile force at fracture; Fmax was measured for each 

sample.  
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Figure E11: Tensile strength tests. 

 EM16 SURFACE TENSION MEASUREMENTS  

Surface tension measurements for surfactant solutions were made using a 3S 

tensiometer from GBX (Dublin, Ireland) via the Wilhelmy plate method. Measurements 

were performed at room temperatures. All glassware and the platinum plate were rinsed 

with ethanol prior to each measurement, the platinum plate was burned using a lighter to 

remove traces of any residual material. The solution is placed on the glass recipient. The 

Wilhelm plate is subsequently lowered slowly until it is under the surface of the liquid. It 

is then raised until the plate is slightly over the surface. The measured force F is then 

divided by the length of the plate: 40mm, to give the surface tension in mN/m. 



 

    

162 

 

 

 

Figure E12: Tensiometer. 

EM17 EMPIRICAL DRYING MODEL OF CELLULOSE INSULATION  

Using equation 4.2, the model was fitted with experimental results by optimizing 

the time constant tc. This was done by calculating the root mean squared error between 

the predicted values and the experimental measured drying curves using the equation: 

4*3M =  N∑ ��PQ − �A�R@AST ;  

With �PQ and �A the experimental and calculated values for the drying moisture 

contents after each time step, and n the number of measurements. 

The drying constants were then optimized by reducing the root means square for 

the drying times using the solver function in Excel, which uses the generalized reduced 

gradient algorithm, to find the value of tc which minimises the RMSE for each case.  

EM18 SPECIFIC HEAT CAPACITY WITH DIFFERENTIAL SCANNING CALORIMETRY  

Fibre specimens ranging from 10-15 mg ware taken from sprayed cellulose 

samples after drying, to equilibrium moisture content in a climatic chamber. Samples 

were placed in 100µl crucibles and inserted into a DSC 3 apparatus from Mettler-Toledo 

(Columbus, USA). To measure specific heat capacity, the temperature modulated DSC 
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TOPEM technique was used. The method and its theory is detailed in Fraga et al. (2007). 

Using a time series of stochastic (random) temperature pulses of different durations, 

quasi-static specific heat capacity can be measured by integrating the pulse response 

curve. Specific heat capacity of samples was measured using a temperature range of 15 to 

35 °C.  

EM19 MOISTURE DIFFUSIVITY COEFFICIENT VIA CAPILLARY SORPTION  

In order to determine the diffusion coefficients using equation 4.7, as defined by 

(Künzel, 1995) the short term water absorption coefficient is calculated using a method 

based on the standard BS EN ISO 15148:2002 (British Standards Institute, 2002). In 

these tests, the loose cellulose is placed in a 150mm diameter cylindrical recipient at a 

height of 200 mm with a wire mesh covered with a polyester net at the bottom. The 

bottom part of the material is in contact with a water recipient (See Figure E13).  

 

Figure E13: Capillary sorption measurement setup (Hansen et al., 2001) 

Then the capillary water flow is measured as kg/m² of absorbing surface. The 

mass change is weighed periodically and plotted against the square root of the weighing 

times. From the slope of the initial moisture sorption, the water absorption coefficient is 

determined (see Figure E14). 
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Figure E14: Water absorption coefficient determination (Hansen et al., 2001) 

EM20 NUMERICAL DRYING MODEL USING WUFI SOFTWARE  

In order to define the drying model, the WUFI software requires the definition of 

the following category of parameters: 

Component parameters: the wall section and layers are defined, with the wall 

assembly layers and materials, orientation, inclination of the wall, the surface transfer 

coefficient, and the initial conditions,. It is this section where the initial moisture dosage 

(40 or 80%), and the insulation thickness (10 or 20cm) is defined. 

Control parameters: the calculation period is defined, which in this study was 

either the month of January, October or August or the time step of 1 hour was chosen. 

Both simultaneous moisture and heat simulations were applied. 

Climate parameters: here a database of climate conditions can be chosen, In this 

case the climate file from Bordeaux 2008, provided from Météo France, was used. For 

fitting of diffusivity curves the conditions of the climactic chamber (25°C 60% RH) was 

used. 
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Figure E15: WUFI 5 software UI. 
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Simulation run Material type Sprayed dosage Thickness Weather profile 

1 Reference water 40% 10 cm Summer 

2 Reference water 40% 10 cm Autumn 

3 Reference water 40% 10 cm Winter  

4 Reference water 40% 20 cm Summer 

5 Reference water 40% 20 cm Autumn 

6 Reference water 40% 20 cm Winter  

7 25% lignosulfonate 40% 10 cm Summer 

8 25% lignosulfonate 40% 10 cm Autumn 

9 25% lignosulfonate 40% 10 cm Winter  

10 25% lignosulfonate 40% 20 cm Summer 

11 25% lignosulfonate 40% 20 cm Autumn 

12 25% lignosulfonate 40% 20 cm Winter  

13 Reference water 80% 10 cm Summer 

14 Reference water 80% 10 cm Autumn 

15 Reference water 80% 10 cm Winter  

16 Reference water 80% 20 cm Summer 

17 Reference water 80% 20 cm Autumn 

18 Reference water 80% 20 cm Winter  

19 25% lignosulfonate 80% 10 cm Summer 

20 25% lignosulfonate 80% 10 cm Autumn 

21 25% lignosulfonate 80% 10 cm Winter  

22 25% lignosulfonate 80% 20 cm Summer 

23 25% lignosulfonate 80% 20 cm Autumn 

24 25% lignosulfonate 80% 20 cm Winter  

 

Table E01: Experimental run design parameters. 

EM21 SMOULDERING TESTS  

Smouldering combustion tests for cellulose insulation were adapted from the 

standard ASTM C739 (ASTM, 2006). Cellulose samples of 200x200x60 mm3 are 

sprayed and left to dry in a climactic chamber. Once dry they are weighed and placed in a 

metallic recipient. In the test a lit cigarette is inserted, lit side up within the material. The 

cigarette is left to burn for two hours or until smouldering has ended. After the test 

period, the remaining material and any residue are re weighed. If the weight loss does not 

exceed 15%, the material is considered resistant to smouldering combustion.  
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EM22 FLAME IGNITABILITY TESTS  

The method for this test was adapted from the standard EN ISO 11925-2.The test 

determines the ignitability of a vertically oriented test specimen when exposed to a small 

flame, at the edge of the specimen. The burning behaviour of the specimen is observed 

for flame spread, and the occurrence of burning particles and droplets. Cellulose 

insulation was sprayed into the standard 300 x 300 mm² moulds, without glue, and laid to 

dry at the standard conditions. Once dry, samples were cut using a circular saw, making 

90 x 90 x 300 mm3 samples. A burner was placed at a 45° angle at the lower corner in the 

centre of the sample. The sample was fitted on a wire mesh holder with an opening for 

contact with the flame. The flame of the burner was adjusted to have a height of 20mm. 

According to the standard, for classifications ranging from D to B, a 30 s exposure time is 

required, and the burning period after the flame is removed is 60 seconds, in which the 

flame spread threshold of 150 mm should be maintained. A piece of filter paper is placed 

under the sample to test if it will ignite with the droplets from the material. The material 

is weighed before and after the test, and the change in mass is calculated. The smoke 

production from the material is observed as well. Figure E16 illustrates the setup for the 

test.  

 

 

 Figure E16: Flame test setup. 
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RESUMRESUMRESUMRESUMEEEE    EEEEN FRANÇAISN FRANÇAISN FRANÇAISN FRANÇAIS    

Introduction 

Les matériaux d'isolation sont une partie essentielle de l'enveloppe du bâtiment. 

Ils assurent que la température à l'intérieur d'une chambre est maintenue à un certain 

niveau, et à réduire l'utilisation de chauffage et de refroidissement, qui ont une forte 

demande d'énergie. Actuellement, la majorité des matériaux isolants traditionnels tels que 

la laine minérale sont fabriqués à partir de ressources non renouvelables.  

Un matériau d'isolation alternatif, la ouate de cellulose, a l'avantage d’être 

fabriqué à partir du papier recyclé, tout en ayant des propriétés de performance similaires 

aux matériaux d'isolation traditionnels. Habituellement, l'isolant cellulosique est soufflé à 

sec dans les cavités murales fermées ou les toitures. Une méthode plus récente de 

l'installation de la ouate de cellulose, la voie humide, présente les avantages d'assurer une 

bonne distribution et le remplissage de la matière dans une cavité de mur, tout en 

empêchant le tassement grâce à l'utilisation de l'eau pulvérisée. Les inconvénients 

associés à cette méthode, cependant, sont principalement dues à une mauvaise installation 

de la ouate de cellulose alors qu'il est pulvérisé avec de l'eau. Si trop d'eau est appliqué, 

ou si son application dans une humidité élevée, des conditions de basse température, le 

matériau pourrait prendre beaucoup de temps à sécher, en imposant un long retard dans 

les délais de construction, ou pire de promouvoir la croissance de moisissures dans le 

matériau ou les structures de bois. Trop d'eau pulvérisée pourrait aussi peser sur le 

matériau, ce qui rend l'affaissement du matériau et provoquant des vides dans la cavité 

murale installée. Une solution à ces problèmes serait d'inclure un additif qui améliore le 

séchage et / ou renforce le matériau, ce qui réduit sa posologie initiale de l'eau. 

Idéalement cet additif doit être basé sur les ressources naturelles ou renouvelables, afin de 

préserver le caractère écologique du matériau. Il est avec cette stratégie à l'esprit que le 

projet de cette thèse a été conçu. Les objectifs de ce projet sont les suivants: 

• Étudier les propriétés d'isolation en fibre de cellulose 

• Étudier l'influence du dosage en eau sur les caractéristiques de performance de 

la matière première  
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• Caractériser additifs potentiels pour être utilisé avec la ouate de cellulose par 

voie humide, et étudier leur influence sur ces caractéristiques et d'optimiser la nouvelle 

formulation. 

• Modéliser la performance hygrothermique dynamique de diverses formulations 

de la ouate de cellulose dans différentes conditions climatiques. 

 
Figure 1: Ouate de celulose 

Les travaux de ce projet de recherche est la collaboration du Laboratoire de 

Chimie Agro-Industrielle (INP-ENSIACET) avec la société française de conseil 

Greenbuilding (le coordinateur principal du projet). Il est financé en partie par des 

subventions de l'Association Nationale de Recherche et Technologie (ANRT), ainsi que 

Paris Région Entreprises. Le matériel a été fourni par SOPREMA. 

Chapitre 1 

Comme il a été démontré par la littérature disponible, le secteur du bâtiment a un 

effet important sur les émissions mondiales de CO2 et la consommation d'énergie. Deux 

méthodes pour réduire l'impact environnemental du secteur bâtiment sont l'augmentation 

de l'exigence d'isolation des bâtiments  nouveaux et existants, et l'utilisation de matériaux 

de construction alternatifs composés de matériaux naturels ou recyclés avec une faible 

énergie intrinsèque et de l'impact écologique. La ouate de cellulose est un matériau 

d'isolation écologique innovant qui présente des caractéristiques similaires en termes de 

confort thermique et la performance à ses homologues non renouvelables. Néanmoins, 

dans son état actuel, il présent quelques inconvénients par rapport à moins de matériaux 

d'isolation écologiques et a montré la nécessité d'optimisation et de développement. 
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D'autres recherches doivent se concentrer sur l'étude et la résolution des problèmes avec 

les propriétés et les performances du matériau. 

Bien que la recherche disponible actuellement présente en détail les propriétés de 

la ouate de cellulose comme installé par les méthodes sèches (qui ont toujours été les 

techniques d'installation les plus répandues), il y a peu de renseignements à jour sur la 

méthode de pulvérisation par voie humide. Un travail a montré le principal problème 

avec la méthode de pulvérisation par voie humide: les temps de séchage assez long en 

fonction du période de pose. 

  
Figure 2: Séchage de la ouate de cellulose: Mikael Salonvaara, Marcin Pazera, Achilles Karagiozis, Impact of 

Weather on Predicting Drying Characteristics of Spray-Applied Cellulose Insulation, ASHRAE Report, 2010 

L'étude bibliographique a également démontré la variabilité de la teneur en 

humidité est installé, ce qui conduit également à une augmentation des temps de séchage. 

Aucune recherche n'a pas encore déterminé l'effet de l'eau appliquée sur la conductivité 

thermique de l'isolation de cellulose, ou caractérisé les performances mécaniques du 

matériau lorsqu'il est appliqué avec l'eau. Les travaux de recherche actuelles sur les 

adhésifs composés de polymères naturels montre la variété des candidats potentiels qui 

pourraient être utilisées comme additif biosourcé avec isolation en cellulose pulvérisée 

humide. Bien qu'il existe de nombreux exemples d'adhésifs biosourcés utilisés dans la 

fabrication de composites de fibres naturelles telles des fibres de bois, la pâte à papier et 

le béton de chanvre, la fabrication de ces composites diffère de celle de la forme humide 
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de la ouate de cellulose pulvérisée. Plus particulièrement, les conditions spécifiques dans 

lesquelles en fibre de cellulose est fabriquée et appliquée va définir la nature de l'additif 

biosourcé à utiliser. La plupart des exemples cités ont des exigences de température, 

pression, et / ou matériel spécifiques qui ne sont pas compatibles avec le procédé de 

pulvérisation par voie humide. A titre d'exemple l'utilisation d'un polymère 

thermodurcissable serait irréalisable car il serait extrêmement difficile de chauffer un 

polymère pendant le processus de pulvérisation, pour ne pas mentionner les coûts 

associés à ce procédé. Donc l'adhésif candidat approprié devrait être une perte de solvant 

adhésif qui durcit avec l'élimination de l'humidité à température ambiante. 

 Les mécanismes qui définissent l'adhésion de processus sont complexes et 

variées. Compte tenu de l'adhérent (coton lâche comme des fibres de cellulose poreuses), 

le liant optimal va réagir et d'adhérer à des fibres de cellulose à travers principalement 

adsorption (liaisons hydrogène), avec les mécanismes mécaniques et de diffusion 

également lieu. Ces propriétés optimales sont détaillées plus en profondeur dans le 

chapitre 3. 

En ce qui concerne la réduction des temps de séchage, quatre scénarios pourraient 

être envisagés par l'utilisation d'additifs biosourcés: 

• La sorption de l'humidité et le durcissement ultérieur de l'adhésif ajouté accélère 

le débit d'eau d'évaporation de la ouate 

• La résistance mécanique accrue de la ouate en raison de l'ajout d'un liant 

diminue la dose initiale requise de l'eau, ce qui rend le matériau atteindre un état sec plus 

tôt. 

• L'augmentation de la teneur en matières solides du TPI avec l'additif ajouté à 

l'humidité diminue la proportion de matières solides, rendant ainsi le matériau 

initialement plus sec, puis avec un peu d'eau. 

• La tension superficielle de l'eau réduite par l'utilisation d'un tensio-actif permet 

un écoulement plus rapide de l'eau à travers les pores du matériau, ce qui diminue les 

vitesses de séchage. L'absorption des tensioactifs cationiques à travers les fibres chargées 

négativement pourrait aussi avoir une influence. 

Ces additifs ont besoin pour améliorer ces propriétés sans empêcher la 

performance de l'isolant en fibre de cellulose. Principalement la densité et la conductivité 
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thermique de la nécessité matérielle restent bas, mais aussi la résistance au feu et 

fongique de la matière ne doivent pas être affectées. Il est par ces innovations qui 

isolations à base de cellulose de fibres-peuvent devenir plus fréquents et de contribuer à 

d'autres projets de construction respectueux de l'environnement. 

Chapitre 2 

Plusieurs facteurs parmi les propriétés des fibres d'isolation de cellulose peuvent 

contribuer à leur comportement à l'eau. Sur les deux marques d'échantillons de ouate de c 

cellulose qui ont été testés, les résultats ont montré quelques dissimilitudes dans ces 

propriétés qui imposent des différences de performance de séchage des échantillons de 

cellulose pulvérisée humide. Ces propriétés peuvent comprendre sa composition 

chimique et les proportions de la lignine, la cellulose et les hémicelluloses, la distribution 

de taille des particules et la morphologie des fibres, ainsi que les additifs inclus. D'autres 

formes de caractérisation des fibres cellulosiques et leur relation avec l'eau comprennent 

la rétention d'eau, ont été étudiés la sorption dynamique de vapeur et calorimétrie 

différentielle à balayage pour déterminer la teneur en eau liée et non liée. 

Malheureusement, en raison de la variabilité des matières premières, en raison des 

différences de journaux recyclés, ces facteurs sont difficiles à contrôler et optimiser. 

Néanmoins, ils donnent des indications sur le comportement des fibres avec de l'eau et 

leur séchage ultérieur une fois appliqués. 
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Figure 3: Propriétés phisicochimieques de la ouate de cellulose 
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Figure 4 : Sorption d’eau de la ouate de cellulose 

 
Figure 5 : Types d’eau contenue dans la ouate de cellulose 

Comme les résultats ont montré, l'augmentation de l'eau non seulement retarde la 

construction après l'installation, mais augmente également la densité et la conductivité 

thermique isolant cellulosique pulvérisé humide. L'augmentation de la densité et le temps 

de séchage avec une augmentation de la posologie de l'eau restent des facteurs importants 

à considérer lors de l'application d'isolation de cellulose. Une méthode pour déterminer le 

comportement mécanique de la cellulose pulvérisée humide a été conçue à travers des 

mesures en compression. Alors qu'en réalité, les essais de compression ne représentent 

pas complètement le comportement des fibres de cellulose, une fois qu'elles sont 

projetées, elles ne donnent une indication de la façon dont la teneur en humidité installé 

renforce le matériau afin d'empêcher l'affaissement ou la déchirure du matériau. Une 

ligne de base de 14,05 kPa module d'élasticité E était définie comme propriété minimale 

du matériau (dans des conditions d'humidité ambiante) pour empêcher la décroche. On a 

constaté que l'eau appliquée non seulement densifie le matériau, mais comme les fibres 

gonflent et deviennent rigides au cours du séchage, l'augmentation de la résistance 

mécanique peut être observée. En pratique, il serait pertinent d'avoir un système de 
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contrôle de qualité du dosage de l'eau pulvérisée par voie humide a été mesurée dans un 

échantillon d'essai avant l'application sur un mur complet. Des essais mécaniques tels que 

celui développé dans ce travail pourrait aider à vérifier que le dosage de l'eau appliquée 

adaptée, le matériau peut maintenir une résistance mécanique minimale pour empêcher la 

décroche. Tandis que les changements dans la conductivité thermique peuvent être 

considérés comme négligeables, il existe toujours une perte d'efficacité thermique du 

matériau une fois qu'une quantité excessive d'eau a été utilisée. 

 
Figure 6 :Module d’élasticité vs concentration d’eau 
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Figure 7: Module élastique vs densité 

 
Figure 8: Conductivité thermique vs teneur en eau 
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Figure 9: Conductivité thermique vs densité 

Ces résultats serviront de base pour mieux comprendre le comportement de 

l'isolant de cellulose avec des additifs ajoutés qui améliorent son temps de séchage et les 

propriétés de résistance mécanique. 

Chapitre 3  

A partir des travaux des chapitres précédents, une stratégie a été utilisée pour 

trouver un additif approprié pour être incorporé à jet humide isolant en fibre de cellulose. 

D'abord, les additifs disponibles ont été caractérisés, en ce qui concerne leur viscosité, et 

leurs forces adhésives. La plupart ont montré un comportement newtonien à des 

concentrations faibles, avec des concentrations présentant un comportement 

d'amincissement de cisaillement où le seuil de viscosité pulvérisable pourrait être atteint. 

Malheureusement, cette promotion plusieurs liants, puisque la viscosité est une propriété 

inhérente des adhésifs. De nombreux additifs qui ont montré de bonnes propriétés 

adhésives sont trop visqueux pour être appliqué à l'équipement de pulvérisation ou, 

inversement, a montré une viscosité suffisante pour être pulvérisé, mais a montré une 

faible résistance adhésive. Une gamme de tensioactifs non ioniques, cationiques et 



 

    

195 

 

 

anioniques, des agents tensioactifs ont également été testés quant à leur tension 

superficielle fonction de la concentration. Les additifs conformes aux exigences 

d'adhésion et de viscosité ont été déterminées; après, ils ont été testés dans une plus 

grande échelle avec une isolation en cellulose et l'équipement de pulvérisation. D'abord, 

les additifs candidats ont été pulvérisés sans cellulose pour s'assurer que la quantité 

correcte de liquide sera appliquée.  

 
Figure 10: Propriétés d’additif récherché 

Dans certains cas, l'augmentation de la viscosité des liquides de fluidification par 

cisaillement nécessite une pression de pompage plus élevée pour avoir le même débit. 

Après avoir vérifié que les additifs peuvent être traitées par pulvérisation à un débit 

similaire à celle de l'eau, ils ont été appliqués avec de la cellulose projetée dans les 

mêmes conditions que effectuées précédemment. Ils ont ensuite été caractérisés en ce qui 

concerne leur temps de séchage. À l'exception notable de lignosulfonates, on a constaté 

que pour les liants, l'augmentation de la viscosité et la formation d'une croûte de la 

surface ralenties évaporation de l'humidité. Le seul cas où un séchage plus rapide a été 

observé a été grâce à l'augmentation de la teneur initiale en matières sèches avec, en 

particulier, une forte concentration de lignosulfonates. Le tensioactif  CTAB a été trouvé 

pour améliorer légèrement ces temps de séchage ainsi. Ces échantillons ont ensuite été 
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testés en ce qui concerne la résistance à la compression et la conductivité thermique ont 

été trouvés Certains échantillons pour augmenter la résistance mécanique à la teneur en 

humidité et densité similaire au minimum, mais la pulvérisation malheureusement n'a pas 

été possible en raison de la distribution hétérogène de l'humidité et un grande production 

de poussière. Par conséquent, après avoir examiné les additifs en ce qui concerne leur 

compatibilité avec l'isolant cellulosique et de son équipement, seulement lignosulfonates 

et CTAB ont restés comme candidats possibles. Les ectines et des tanins, qui n'a pas 

amélioré le temps de séchage encore montré une amélioration des performances 

mécaniques, pourraient être potentiellement utilisés dans la fabrication de isolants de 

cellulose préfabriqués. 

 
Figure 11: Concentration vs viscosité additifs biosourcés 
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Figure 12: Concentration vs traction additifs biosourcés 

 
Figure 13: Additifs retenus 

 

Enfin, les formulations ont été testées par rapport à leur conductivité thermique. 

Certains additifs ont été trouvés pour produire un matériau dense présentant une 

conductivité thermique plus faible que l'isolant cellulosique pulvérisé avec seulement de 

l'eau avec une densité finale similaire. Ceci suggère que l'inaccessibilité des plus petits 

pores par le liquide visqueux peut être bénéfique dans les matériaux propriétés isolantes. 
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Lignosulfonate a été trouvé pour augmenter la conductivité thermique à un niveau 

acceptable, seulement légèrement en diminuant sa capacité isolante. CTAB avait des 

valeurs de conductivité thermique très proche de celle des échantillons de référence. 

 
Figure 14: Séchage colles retenus 

 

 
Figure 15 : Séchage Tensioactifs 
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Figure 16: Mécanique formulations retenus 

 

 
Figure 17: Conductivité thermique  
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Comme les essais de séchage ont été effectués uniquement en humidité relative 

contrôlée constante, l'influence des conditions météorologiques et épaisseur de l'isolant 

doit être étudié lorsque le matériau est utilisé dans des projets de construction réels. 

L'influence positive ou négative, le cas échéant, sur les champignons et le feu de la 

résistance de la matière, ainsi que d'autres facteurs pratiques, sont des questions 

importantes à prendre en compte aller de l'avant lors de la caractérisation du matériau 

isolant final. 

Chapitre 4 

Dans cette dernière étape du projet de recherche, les matériaux d'isolation qui 

incorporent la ouate de cellulose, la lignosulfonate et un tensioactif cationique (CTAB) 

ont été optimisés et étudiés systématiquement pour son utilisation ultérieure comme un 

nouveau matériau de construction. A cet égard, la concentration des deux additifs a été 

étudiée par rapport à leur influence du temps de séchage et les propriétés finales 

d'isolation. Une gamme de 19% 25% pour les concentrations lignosulfonate et et 2%  

CTAB respectivement se sont révélés d’être le plus bénéfiques, bien que des 

concentrations plus élevées puissent être utilisés si nécessaire, avec l'inconvénient d'avoir 

un coût plus élevé, la densité et la conductivité thermique. 
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Figure 18: Propriétés formulations retenus 

 

Pour réaliser la prédiction des temps de séchage de l'isolant cellulosique dans des 

conditions dynamiques du monde réel, les modèles de transports de la matière d'humidité 

ont été étudiés. D'abord, un modèle empirique simplifié a été utilisé, dans lequel la teneur 

en humidité peut être prédite en utilisant l'épaisseur de l'isolant de cellulose, la teneur en 

eau vaporisées et finale, ainsi que l'influence des additifs. Le modèle empirique fourni 

une stratégie pour prédire le temps de séchage en utilisant des paramètres simples à 

l'humidité et la température constante. Après un modèle numérique complet a été utilisé 

par le logiciel WUFI 5 de telle sorte que l'influence combinée de l'additif avec le temps 

lignosulfonate installé, le dosage de liquide et l'épaisseur du matériau d'isolation peut être 

quantifié en ce qui concerne le temps de séchage requis. Le modèle a donné des 

indications sur lequel les conditions étaient les plus et les moins favorables à l'utilisation 

de formulations lignosulfonate. Globalement, l'utilisation d'additifs ne serait pas 

recommandée lors de l'installation à haute épaisseur associée à des conditions de dosage 

liquides élevées, mais les temps de séchage rendent ces conditions impraticables, même 

sans additifs. Pour été et d'automne des climats à la dose de pulvérisation minimal de 

40%, lignosulfonate est recommendé à partir des épaisseurs supérieures à 160 mm. 
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Figure 16: Impact de l’additif sur le séchage, modélisation 

 

 
Figure 17: Impact de l’additif sur le séchage, modélisation 

 

Des études préliminaires en ce qui concerne le comportement au feu des 

nouveaux isolants à base de ouate de cellulose avec additifs ont été faites. Une première 

étude a été réalisée pour la croissance fongique, car additifs inclus pourraient servir de 

remplacement partiel pour les sels de borax inclus. Un problème avec l'utilisation des 

additifs de pulvérisation soit comme agents de résistance antifongique ou d'incendie, est 

que cela rend la charge de fournir un feu et matériau résistant à la moisissure plus 

dépendante de l'installateur de cellulose et non le fabricant, ce qui augmente le risque de 

ces complications si le matériau est mal installé, ce qui pourrait ne pas convenir à certains 

constructeurs. Les matériaux d'isolation candidats avec des additifs montrent une 

amélioration des temps de séchage et la résistance mécanique sans affecter grandement sa 

conductivité thermique et de la densité. Lignosulfonate était le plus efficace à cet égard, 

mais CTAB pourrait être utilisé comme une alternative lorsque la maitrise des propriétés 

de la matière est nécessaire. Une estimation initiale en ce qui concerne l'influence relative 

des additifs sur le prix et de l'impact écologique de la matière a été faite, ont été 

négligeables dans le cas de lignosulfonate, avec la variante CTAB ayant un prix similaire, 

mais l'impact écologique plus élevé en termes de demande d'énergie et le potentiel de 

réchauffement climatique. Plusieurs indications pour la caractérisation du produit final 



 

    

203 

 

 

ont été identifiées. La résistance à la corrosion, ainsi que des tests complets de résistance 

fongiques sont propriétés nécessaires qui doivent être définis pour la validation du 

matériau. D'autres propriétés comprennent: l'absorption acoustique, la résistance à l'air, la 

toxicité, et les tests d'odeur, entre autres. Enfin, des tests sur place pleine échelle doivent 

être faites sur un chantier de construction pilote pour vérifier l'efficacité des additifs dans 

des conditions de pleine échelle et en comparaison avec les modèles numériques. 

 
Figure 18: Mesures à la résistance au feu 

 

Conclusions et perspectives 

Pour la suite de ce travail, un test complet de séchage à grande échelle, 

directement dans un chantier de construction est envisagée. les compteurs d'humidité 

dans le matériau après sa pulvérisation, couplée à des capteurs de température et 

d'humidité ambiantes va permettre la surveillance en continu du séchage du nouveau 

matériau d'isolation et une confirmation du modèle numérique. D'autres travaux doivent 

également être fait sur la conformité du matériel aux normes nationales et internationales 

pour les matériaux d'isolation. 

Au-delà de l'objectif industriel du développement du matériau isolant innovant, 

d'autres recherches sur l'isolation de cellulose, englobant différents domaines 

scientifiques, pourrait être envisagée. Alors que dans l'échelle industrielle l'optimisation 

des propriétés physiques et chimiques des fibres n’est pas possible, une étude en 

profondeur sur l'optimisation de la composition chimique et les propriétés physiques des 
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fibres pourrait donner des résultats qui sont applicables dans la production de papier ou 

de matériaux incorporant des fibres lignocellulosiques. 

 D'un point de vue mécanique fluide, le comportement de diffusion du liquide 

pulvérisé, la formation de gouttelettes et leur propagation dans les fibres de cellulose, en 

fonction de la viscosité est un sujet d'une étude ultérieure éventuelle. flux d'humidité en 

milieu poreux est un sujet dans lequel la théorie et l'expérimentation est en constante 

évolution, qui pourrait être appliquée à l'étude du séchage de la cellulose. Le réseau 

fibreux dans lequel circule l'humidité à l'intérieur de la cellulose et sa surface peut être 

étudié par tomographie par exemple. 

Le comportement mécanique de l'isolant cellulosique pulvérisé est un autre 

problème qu’il faudra examiner. Etant donné que le matériau adhère à tous les bords de la 

cavité du mur, il est soumis aux forces de compression traction et des forces de 

cisaillement à partir de son propre poids. Ces forces sont de nature dynamique car lorsque 

le matériau sèche, le poids appliqué diminue, mais la résistance du matériau est renforcée. 

En outre, une fois que le matériau est sec les variations de l'humidité absorption 

d'humidité et de désorption à travers le fait mécanique cyclique de la performance du 

matériau, ce qui nécessite des tests de résistance au fluage. Ce problème est encore 

compliquée par le fait que l'isolant cellulosique pourrait être pulvérisé dans différentes 

configurations, non seulement les différentes dimensions des cavités murales qui 

affectent directement le poids de la matière, mais aussi comment les différents matériaux 

support (OSB, panneaux de fibres, panneaux de gypse, etc.) affecte son adhésion. 

 
Figure 18: Dispositif expérimental envisagé 
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Des matériaux tels que la ouate de cellulose sont des éléments essentiels pour la 

réduction de l'impact environnemental du secteur bâtiment, mais leur intégration dans des 

projets de construction est toujours moins favorable que les matériaux traditionnels. Il est 

seulement par itération, l'innovation et la recherche que les matériaux de construction qui 

incorporent des fibres naturelles et recyclées deviendront plus fréquente, le standard et 

non l'exception. 
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