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Introduction

Circular Rydberg states are probably the most peculiar atomic levels of single-valence
electron elements. In circular Rydberg atoms, the outer electron’s wavefunction is
shaped like a torus and located extremely far away from the singly-charged ionic
core [1]. More formally, circular states are deőned by a high principal quantum num-
ber n and maximal orbital and magnetic angular momenta: l = m = n − 1. When
excited to these states, atoms are thousands of times larger than a standard, ground-
state atomic system. A circular atom, while behaving under the laws of quantum
mechanics, can have a diameter of more than 200 nm, which is a lengthscale usually
associated with classical physics phenomena. As a comparison, a regular virus ś made
up of tens of millions of atoms ś is approximately 100 nm wide. Another way to put
the circular atom’s remarkable scales into perspective is to imagine its ionic core hav-
ing the size of a marble. Then, its valence electron would orbit more than 30 meters
away from it. The shape of circular atoms clearly sets them apart from other atomic
conőgurations, which explains their distinctive role in the history of quantum physics.

Because of the huge distance between their outer electron and ionic core, circular
states are the most hydrogen-like levels of alkali elements. The speciőc circular shape
of their wavefunction also makes them the most łclassicalž, and altogether simple,
atomic states. It is therefore no wonder that they correspond to the levels described
by Niels Bohr in his 1913 papers [2], in which he deciphered, for the őrst time, the
hydrogen spectrum and the basic behavior of atoms. His work then allowed Einstein
and Planck’s theory of quantized light-matter interactions to blossom into modern
quantum mechanics. More than a century ago, the notion of circular atoms, albeit at
its nascent stage, was therefore essential to the birth of quantum physics.

1 From individual quantum objects to quantum
technology

Although conceptually simple, circular Rydberg states require a signiőcant amount
of effort to be studied in the lab. Seventy years had to go by between Bohr’s the-
oretical work and the őrst creation of circular atoms, in 1983, by Hulet and Klepp-
ner [3]. Their work provided the technical recipe for the generation of circular states
in an experimental setup. It opened the way to their extensive use, by our team, in
cavity quantum-electrodynamics experiments, which fully harnessed their distinctive
features [4]. Thanks to their unique size and shape, circular states indeed display

1



2 INTRODUCTION

singular properties, among which long lifetimes and a high sensitivity to their en-
vironment. Taken as individual quantum systems gifted with such assets, circular
atoms triggered the investigation of the most basic yet counter-intuitive principles of
quantum mechanics: superposition, entanglement, őeld quantization, etc. Over the
following decades, our team manipulated individual circular atoms and single photons
to not only explore such features, but to also bring to life several thought experiments
devised by the founding fathers of the quantum theory. Among the experiments suc-
cessfully carried out with circular atoms, we can point out: the direct observation
of the quantization of the electromagnetic őeld [5], the generation of Schrödinger cat
states of light and the study of their decoherence [6], the creation of pairs of atoms in
entangled states of the Einstein-Podolsky-Rosen (EPR) type [7], the non-destructive
measurement of single photons [8], the measurement of quantum jumps of light [9] and
the reconstruction of the Wigner function of non-classical states [10].

These experiments were only a small part of a wider global effort to manipulate
individual quantum systems and probe the most fundamental laws of quantum me-
chanics. Besides circular atoms, a wide variety of other elementary quantum objects
were devised and studied throughout the end of the last century. In 1976, the Young
double-slit experiment was carried out for the őrst time with massive particles [11],
using single electrons. In 1982, Alain Aspect prepared pairs of entangled photons to
investigate the EPR paradox and successfully observed the violation Bell’s inequali-
ties [12]. Around the same time, Hans Dehmelt’s group trapped individual ions and
recorded their quantum jumps [13, 14]. David Wineland and his colleagues built
upon this technique to implement fundamental quantum gates [15] and generate non-
classical states of motion [16] with single ions. By the end of the 80’s, John Martinis
and Michel Devoret demonstrated level quantization in Josephson junctions [17, 18],
thus creating an artiőcial individual quantum object at the macroscopic scale. Various
other technical implementations of elementary quantum systems soon followed, among
which we can cite optically-trapped individual neutral atoms [19] and single-photon
emitters such as quantum dots [20, 21] or diamond vacancy color centers [22, 23].

By the turn of the century, the control of these individual quantum objects had
become advanced enough to envision a new realm for their applications: quantum in-
formation processing. Researchers mastered the various technologies mentioned above
with such craft that it soon became possible to implement assemblies of individual
2-level systems, or qubits, interacting in tailored ways. Such platforms constitute the
basis for modern quantum technologies, whose goal is to tame the laws of quantum
physics to outperform classical computers, communication channels and sensors. This
new őeld of research has attracted much attention and funding in the past years ś both
in the public and private sectors ś and can be divided into four different areas: quantum
computing, quantum metrology, quantum communications and quantum simulation.

Quantum computing, at the forefront of the őeld but still far from practical re-
sults, aims at exploiting entanglement and state superposition to parallelize complex
calculations and tackle problems such as prime factorization exponentially faster than
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classical machines [24]. Quantum metrology, whose goal is to implement highly sensi-
tive measurements of physical quantities, is currently at a much more advanced stage.
Thanks to single-ions atomic clocks, it is now possible to measure time with a preci-
sion of one part in 1018, which corresponds to a tenth of a second accuracy over the
age of the universe [25ś27]. Using similar technology, gravimeters have now reached
the centimeter resolution in measuring altitudes in earth’s gravitational potential [28].
The őeld of quantum communications deals with quantum-based protocols to transmit
data in an intrinsically invulnerable manner [29, 30].

Lastly, quantum simulation is the idea of studying, on a well-controlled system
of interacting and measurable qubits ś a quantum simulator ś problems that are
numerically intractable. To understand the principle of a quantum simulator, consider
a simple 10×10 square lattice of interacting qubits. A quantum mechanical description
of this system involves a Hilbert space of dimension 2100. In other words, storing a
single generic state of the system requires 2100 units of memory, each of them having
to store two real numbers, which translates into an even larger memory requirement.
For comparison, Frontier, the world’s most powerful super computer [31], łonlyž has
around 260 storage bits, making it unable to work with such a quantum state, let
alone simulate the dynamics of this basic lattice. The purpose of an analog quantum
simulator is then to mimic these interacting qubits with a synthetic quantum system,
in a controlled experimental setting1. Recording their behavior and evolution provides
direct and immediate insights into the features of the model of interest, which is rarely
possible with real-life systems. With direct impact to many areas of physics, quantum
simulation has gained a lot of traction over the past decades and offers promising
results. This is where circular atoms could, once again, play a signiőcant role.

2 Quantum simulations of spin systems

The idea of mimicking complex quantum systems on a controlled and measurable ex-
perimental replica was formally introduced for the őrst time by Richard Feynmann in
1982 [32]. An efficient quantum simulator should be made up of a large number of long-
lived and measurable qubits, arbitrarily arranged, and interacting in a well-controlled
and tunable manner, so as to explore various phenomena in the class of problems
being addressed. Such systems would then trigger the investigation of a wide vari-
ety of intractable, strongly-correlated many-body models, ranging from fundamental
physics to applied technological issues. The promised applications could be signiőcant
in high-energy physics (with the simulation of lattice gauge theories), atomic physics
(via the Jaynes-Cummings Hamiltonian), quantum chemistry, cosmology and, more
importantly, in condensed-matter physics [33].

1Digital quantum simulation, another paradigm for simulating physics on a quantum machine, is
more closely related to quantum computers. It consists in running simulations of physical systems
on a gate-based quantum architecture. We will focus here on analog quantum simulations only, the
main purpose of this work.
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Quantum simulation schemes might indeed provide deep insights into two quintessen-
tial condensed-matter physics problems: the Hubbard model and spin systems. The
Hubbard model, describing interacting fermions on a lattice, is the simplest way to
represent the behavior of electrons in solids. However important it may be, the Hub-
bard Hamiltonian has yet to be completely solved in dimensions greater than one. For
instance, it is still unknown if the ground state of the system displays superconduc-
tivity when one spin sign outnumbers the other in the electron population. Several
quantum simulation platforms have nonetheless already explored some of its features,
such as the emergence of quantum degeneracy or the signs of long-range antiferromag-
netic ordering [34].

Spins systems, the second important class of condensed-matter problems targeted
by quantum simulations, cover an extremely broad variety of speciőc models. They
are typically deőned by spin-1/2 Hamiltonians of the form

ĤXY Z =
∑

⟨i,j⟩

J (i,j)
x σ̂xi σ̂

x
j + J (i,j)

y σ̂yi σ̂
y
j + J (i,j)

z σ̂zi σ̂
z
j , (1)

to which external őelds can be added and where the summation runs over pairs of spins
in the lattice ś of arbitrary dimension. This generic Hamiltonian encompasses several
well-known systems. When the interactions are uniform and verify Jx = Jy ̸= Jz, it
describes the anisotropic Heisenberg model. If Jx = Jy = 0, the system reduces to
the famous Ising model. All of these cases lead to a surprising variety of many-body
phenomena, which amount to what is called łquantum magnetismž [35].

Embryos of quantum simulators have already started tackling some of these phe-
nomena. One famous example is the observation of the superŕuid to Mott insulator
transition in the Hubbard model, carried out in several platforms [36, 37]. Among the
problems accessible to quantum simulations, there is also the investigation of localiza-
tion and transport phenomena, through the introduction of controlled disorder [38]. In
the same vein, observing spin glasses physics becomes within reach [39]. Yet another
topic of interest is the frustration induced by speciőc geometries of spin systems, which
give rise to spin liquids [40]. Topological ordering is also a feature of peculiar geome-
tries and is being investigated [41]. Finally, much attention has recently been brought
to the dynamical properties of spin systems, such as relaxation and thermalization,
quantum chaos [42], quantum scars [43] and many-body localization [44]. Altogether,
spin systems offer a seemingly endless playground of open questions that quantum
simulations could hopefully tackle, provided that the appropriate simulators are im-
plemented. Several platforms have already been designed for that purpose, built upon
the control of individual quantum objects acquired throughout the end of the 20th

century. For the sake of completeness, we provide here a brief review of the current
state of spin-system-oriented quantum simulations, before diving into the purpose of
this work within that context.
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Trapped ions

In trapped ions quantum simulators [45], the qubits are made up of single ions, cap-
tured in radio-frequency Paul traps [46] for 1D chains or Penning traps [47] for 2D
lattices. The spin states are encoded onto two long-lived internal electronic levels
of the ions. The tunable, long-range interactions exhibited by the ions [45] allow
the implementation of various spin systems, such as the Ising and Heisenberg mod-
els [48]. The main advantages of these platforms are the long coherence times of
individual ions, which can now reach one hour [49], and their high preparation, read-
out and gate ődelities [50]. Trapped ions experiments have proven that they can
successfully implement non-trivial spin systems. For instance, such platforms already
investigated entanglement propagation in a 15-ion chain [51] and many-body local-
ization in a transverse-őeld Ising system of 10 spins with tunable disorder [52]. The
simulation of the Schwinger model is also a signiőcant accomplishment of trapped ions
systems [53]2. The main drawback of trapped ions simulators is their scalability. As
the number of target qubits grows, the optical and electrical techniques used to trap,
cool and address individual ions get increasingly harder to deal with.

Superconducting qubits

A superconducting qubit is a micrometer-sized electrical device behaving as a 2-level
quantum system. It relies on the Josephson effect [56, 57] to emulate a spin-1/2, which
can take several forms depending on the qubit design. Flux, phase and charge qubits,
along with their various hybridizations, are currently the most advanced qubit archi-
tectures [58], and different types of coupling modules allow them to interact. Their
manufacture relies on well-established micro-fabrication techniques, which enable the
efficient design of qubit assemblies with tailored frequencies and coupling strengths,
but at the cost of interaction tunability and geometric ŕexibility. The impact of su-
perconducting qubits has therefore been more signiőcant in gate-based quantum com-
putations [59] than in analog quantum simulations. Some explorations of quantum
many-body effects have nonetheless been carried out on circuit-based analog simula-
tors. Speciőc architectures were designed to study quantum Ising models and their
phase transitions [60ś62], the XXZ Hamiltonian [63] and fermionic systems [64]. The
emergence of chiral currents in the ground state of a three-qubit system was also ob-
served [65] and a chain of 8 strongly-coupled qubits was stabilized in its Mott insulator
phase [66]. Through the introduction of disorder in a 9-qubit setup, the transition be-
tween thermalized and localized phases was probed [67]. However, several facets of
superconducting qubits seem to limit, for now, the scope of their applications to quan-
tum simulations. They lack exact identicality (because of unavoidable fabrication
imprecision), their connectivity scales poorly with the size of the system, and they
need to be operated in a cryogenic setup.

2Other achievements of ion platforms, though not related to spin physics simulations, are worth
mentioning to underline their relevance: similar system were used to implement Shor’s algorithm [54]
and to carry out quantum chemistry computations [55].
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Neutral atoms in optical lattices

A third important toolbox for the implementation of quantum simulations is that of
cold atoms trapped in optical lattices, which has already reached a level of maturity
allowing for the thorough investigation of complex many-body phenomena [68ś70]. In
these systems, the interference of several light beams creates large trapping lattices,
which are őlled with bosonic or fermionic species prepared in the quantum-degenerate
regime. The spin states of the target Hamiltonian are cast into the occupation of
the lattice sites, while tunneling processes provide the nearest-neighbor interactions.
Additional degrees of freedom can be created using the hyperőne levels of the atoms.
Through high-resolution imaging, single atoms are detected and site-resolved measure-
ments carried out with good ődelity [71]. The őrst signiőcant problem tackled by such
systems was the Hubbard model, which they replicate in a straightforward manner.
The superŕuid to Mott insulator transition was directly observed with neutral atoms,
őrst from collective measurements [72] and then at the single-atom level [36]. Atomic
lattices also have the capacity to replicate spin models [73], which yielded insights
into strongly-correlated systems [74], topological phenomena [75, 76], and artiőcial
gauge őelds [77, 78]. The addition of an optical speckle pattern introduces disorder
in the lattice and led to the observation of many-body localization [38, 79]. How-
ever, cold atoms platforms still face several challenges. The large timescales involved
in tunneling exchanges compared to lattice lifetimes prevent the study of long-term
dynamics. Such lattices are also subject to many loss and decoherence mechanisms.
Finally, single-site addressing is difficult since the lattice period is comparable with
the smallest achievable laser focusing widths.

3 Rydberg atom quantum simulators

Circular atoms could soon contribute to the őeld of quantum simulations within a
fourth category of platforms: Rydberg qubit experiments [80, 81]. Atoms placed in
Rydberg states have a large principal quantum number n [82], which gives rise to prop-
erties that are promising for quantum simulation schemes. The Rydberg community
currently works with low-ℓ states only, we will therefore describe their use for current
quantum simulations őrst, before addressing the relevance of circular atoms in this
context.

In Rydberg states, the large distance between ionic core and valence electron gen-
erates two important features. First, Rydberg atoms exhibit long lifetimes compared
to low-lying states, in the 100 µs range for n ∼ 50 for instance. Secondly, their large
orbitals give rise to strong dipole-dipole interactions between one another, typically of
tens of MHz for n ∼ 50 at distances of around 5 µm. These properties naturally make
them promising qubit encoders for quantum simulation schemes: their long lifetimes
and strong, long-range interactions circumvent some of the bottlenecks inherent to
other platforms.
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Defect-free lattices of individual atoms

To make use of these properties, one needs to be able to deterministically position
neutral atoms in a precise pattern, which was recently made possible thanks to im-
provements in optical control techniques. Using either spatial light modulators [83,
84], arrays of micro-lenses [85, 86] or even passive optical designs [87], it is now possible
to create arbitrary lattices of tightly-focused beams, which can each trap at most a
single atom in its ground state. The inter-atomic spacing in these platforms is within
the 2-15 µm range. The loading of these arrays suffers from the random processes gov-
erning the atom capture, which prevent the creation of defect-free lattices of atoms.
This issue was overcome in 2016 by several groups through different tactics. The
teams of Mikhail Lukin at Harvard and Jaewook Ahn in Seoul dynamically moved
the loaded tweezers to create 1d chains of evenly-spaced atoms [88] or two- [89] and
three-dimensional [90] defect-free lattices. At Institut d’Optique, Antoine Browaeys
et al. used an additional tweezer of tunable position to move the atoms one by one
on the lattice, after the initial random loading [91]. These sets of techniques now
yield near-perfect őlling fractions in up to two dimensions, even with large arrays of
hundreds of atoms, and offer great geometric ŕexibility.

Mapping onto spin Hamiltonians

Two Rydberg atoms interact through the dipole-dipole Hamiltonian V̂dd ∼ d̂1d̂2/(4πε0r
3),

where r is the inter-atomic distance and d̂i the electric dipole moment of atom i [92ś
95]. Depending on the speciőc Rydberg states of the atoms, the interaction gives rise
to two different kinds of effects. If the two atoms are prepared in two dipole-coupled
Rydberg states, the coupling is of the őrst order kind, and leads to an interaction
energy that goes as ±C3/r

3. If the atoms are in the same Rydberg state, the dipole-
dipole interaction generally acts as a second-order process through other levels, and
the interaction behaves as ±C6/r

6, in the so-called van der Waals regime. These con-
őgurations relate to two different kinds of phenomena, both of which are relevant in
the context of quantum simulations.

First-order interactions

The Hamiltonian of an ensemble of atoms in the dipole-coupled Rydberg states | ↓⟩ = |r⟩
and | ↑⟩ = |r′⟩ and coherently driven with Rabi frequency Ω and detuning δ writes:

Ĥ =
ℏΩ

2

∑

i

σ̂xi +
ℏδ

2

∑

i

σ̂zi +
∑

i<j

C
(i,j)
3

r3ij

(

σ̂xi σ̂
x
j + σ̂yi σ̂

y
j

)

. (2)

This amounts to the XY spin model [96] with longitudinal and transverse őelds, a
sub-class of the generic Hamiltonians of equation (1). This system provides a suitable
platform to study quantum magnetism, excitation transport [97] and entanglement
propagation, although very few experiments have explored it in atomic lattices as of
now. In [98], the team of Antoine Browaeys remarkably demonstrated the emergence
of topologically-protected edge states in a chain of 14 Rydberg atoms with alternating



8 INTRODUCTION

weak and strong couplings. This result is the őrst realization of a symmetry-protected
topological phase in a 1d system of interacting bosons [99]. They later implemented
with this conőguration the XXZ Hamiltonian, by periodic applications of resonant
micro-wave pulses [100].

Second-order interactions and the Ising model

However, most Rydberg platforms rely on the van der Waals interactions to study spin
Hamiltonians. In this case, the qubit is encoded on a ground state and a Rydberg level:
| ↓⟩ = |g⟩, | ↑⟩ = |r⟩. The two states are coupled via a 2-photon optical transition
that, when driven at Rabi frequency Ω and detuning δ, gives rise to the following
Hamiltonian for an ensemble of atoms [101]:

Ĥ =
ℏΩ

2

∑

i

σ̂xi − ℏδ
∑

i

n̂i +
∑

i<j

C
(i,j)
6

r6ij
n̂in̂j. (3)

In this expression n̂i = (1+ σ̂zi )/2 is the number of excitations on site i. This Hamilto-
nian has the form of the quantum Ising model, another speciőc case of spin systems (1).
The third term in the Hamiltonian describes the Rydberg blockade mechanism [102,
103], where the excitation of an atom impacts or even prevents that of its neighbors
contained within the blockade radius. The effects of this interaction can be tuned via
the inter-atomic distance and the driving strength, which leads to a rich variety of
phases that have recently been probed in one and two dimensions. The group of An-
toine Browaeys opened the way with the őrst realization of Hamiltonian (3), in a chain
of 20 Rydberg qubits with periodic boundary conditions [104], before doing so with a
square 7 × 7 lattice [105]. They later observed the dynamical growth of correlations
in their system [106]. Jaewook Ahn et al. then focused on the thermalization of a
chain of 10 such qubits [107] and in simple 2d geometries [108]. At Harvard, the team
of Mikhail Lukin őrst prepared the ground state of the model in various Zn phases
via adiabatic sweeps of its parameters [109]. Among other results, they also witnessed
the onset of a quantum spin liquid phase [40] in a Kagome lattice of spins frustrated
by the Rydberg blockade. Recent efforts in these platforms have been dedicated to
increasing their sizes, which now extend to three dimensions [110] and to over two
hundred atoms in 2d [111, 112].

Although highly ŕexible, Rydberg-mediated simulations currently face a serious
obstacle: they are severely limited by the achievable system lifetimes. First, Rydberg
atoms are not trapped by optical tweezers, which actually repel them. The trapping
lattice has to be turned off at the beginning of the simulation, which restricts the
evolution time to a few µs. After that, the residual atomic motion destroys the cho-
sen initial geometry and prevents any investigation of the longer-term dynamics. To
bypass this issue, 2-valence species could replace alkali atoms, with one electron in
the Rydberg state and the other used to keep the atoms still [113, 114]. However, the
limited atomic lifetime of low-ℓ Rydberg levels (and their photo-ionization [115]) inher-
ently restrict their study to short timescales. With a single-atom lifetime of ∼ 100 µs
for low-ℓ Rydberg levels, current platforms working with N atoms can only remain
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defect-free for 100/N µs, which enforces a strong restriction on the allowed investiga-
tions. This is where circular Rydberg atoms őnally come into play. Thanks to their
outstanding properties, they indeed offer prospects of overcoming the limitations of
current Rydberg platforms.

4 Quantum simulations with circular Rydberg atoms

A circular state of principal quantum number n, which we write |nC⟩, has very few
dipole-allowed transitions. It is mainly coupled to the two circular levels |(n± 1)C⟩ of
the neighboring manifolds, and these transitions lie in the microwave domain. Thanks
to this peculiarity, their natural lifetime is extremely large. However, it dramatically
goes down as the temperature increases: at 0 K, |50C⟩ has a lifetime of 29 ms, which
is reduced to 9 ms at 4 K, and to 120 µs at room-temperature. Let us therefore stress
right away that taking advantage of the lifetime of circular atoms comes at the cost of
operating in a cryogenic environment. Moreover, circular atoms interact through the
dipole-dipole coupling, in a similar fashion as low-ℓ states. Altogether, these promising
features led to proposals for their use in quantum computation schemes [116] and as
a new platform for quantum simulations. In 2018, our team detailed a proposal for a
simulator based on circular states [117], built on our expertise in the manipulation of
individual circular atoms.

An ensemble of circular Rydberg atoms can implement the spin-1/2 XXZ Hamil-
tonian

Ĥ/ℏ =
Ω

2

∑

i

σ̂xi +
δ

2

∑

i

σ̂zi +
∑

⟨i,j⟩

J (i,j)
(

σ̂xi σ̂
x
j + σ̂yi σ̂

y
j

)

+ J (i,j)
z σ̂zi σ̂

z
j , (4)

up to lattice edge terms not written here. The qubit levels are taken to be two circular
states |nC⟩ and |(n+ 2)C⟩, so that they are not dipole-coupled and the resulting van
der Waals interaction leads to an 1/r6 dependence in all the interaction coefficients.
The effective spins are driven by a microwave 2-photon transition, with Rabi frequency
Ω and detuning δ, which respectively implement the őctitious transverse and longi-
tudinal őelds. This conőguration covers a wide range of systems, among which the
Ising model addressed by low-ℓ Rydberg simulators. Furthermore, the circular atoms
offer unprecedented ŕexibility: the Jz coefficients can be tuned, via the static electric
and magnetic őelds, over a wide range of values spanning several quantum phases.
However, it must be noted that, at inter-atomic distances in the range of 5-10 µm and
for n ∼ 50, the interaction energies are of the order of 10 kHz i.e., about three times
weaker than second-order interactions in low-ℓ Rydberg atoms for similar conditions
[104]. To compensate for this issue and effectively explore spin dynamics over a large
number of interaction cycles, our team proposed in [117] to further increase the lifetime
of the atoms through spontaneous emission inhibition. By placing the circular atoms
within a plane-parallel capacitor with a spacing lower than the radiated microwave
wavelengths, one could reach individual lifetimes of the order of a minute [118], and
implement ∼ 105 interaction cycles. Naturally, the circular atoms also need to be
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trapped throughout their evolution, which adds another difficulty in the project of
building a circular-atom quantum simulator. My team decided to take on this chal-
lenge, despite its arduous nature. The project was put into motion in the beginning
of 2018, following the initial proposal [117]

My PhD work started in 2018, under the supervision of Jean-Michel Raimond
and shortly after the inception of the circular-atom simulator project, led by Clément
Sayrin. Back then, the experimental setup dedicated to this endeavor had been used
to study low-ℓ Rydberg states in a cloud of ultra-cold atoms and in the vicinity of
a superconducting chip. A colossal upgrade of the setup and the installation of new
systems needed to be carried out to meet the requirements of the circular-atom sim-
ulator. To spread out the workload and progressively acquire the relevant technical
expertise, the project was divided into several initial tasks, which involved multiple
people and were achieved throughout the őve years of my PhD studies.

Demonstration of spontaneous emission inhibition. A separate experiment
was initiated in order to implement, for the őrst time, the lifetime enhancement of
circular atoms in an atomic cloud within a capacitor structure. This was conducted
by Haiteng Wu, who designed, built and operated a new room-temperature setup to
successfully demonstrate inhibition of black-body radiation-induced transfers. His re-
sults are detailed in [119].
Preparation of circular states out of an atomic cloud. Using our old cryo-
genic setup, a preliminary step of creating circular states of rubidium, from a cloud
of ultra-cold atoms, was carried out. Along with Rodrigo Cortiñas and Brice Ravon,
former PhD students, we successfully prepared atoms in the |52C⟩ level with a purity
above 80 %, measured their lifetime to be 3.7 ms, and characterized their coherence
times. These results are presented in [120]. Thanks to this initial stage, we identiőed
some key technical points in the proper free-space manipulation of ultra-cold circular
atoms, the main one being a tight control of the electric and magnetic őelds to reach
satisfying coherence times.
Ponderomotive action on circular atoms. Still using the old version of the ex-
periment, we then moved on to the demonstration of the effect of the ponderomotive
force on circular states, with the help of Maxime Favier, a former post-doc of the
team, and Yohann Machu, who had just joined us. Using a Laguerre-Gauss hollow
beam, we were able to trap ensembles of circular Rydberg states along two dimensions
for up to 10 ms, without any impact on their properties [121]. This work underlined
the importance of proper aberration correction in shaping the trapping beams and
familiarized us with the operation of spatial-light modulators.
Trapping individual circular atoms. At this point, the next step was the imple-
mentation of individual circular atom trapping. It required the preparation of arrays
of ultra-cold, ground-state atoms trapped in optical tweezers. The technical necessi-
ties of these new sets of tools were no longer compatible with the old cryogenic setup,
and we undertook the construction of a new experiment. It was decided that this
new, intermediate-stage setup would operate at room temperature, so as to not pile
up the cryogenic constraints on top of other, newer difficulties. Yohann Machu, Brice
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Ravon, Maxime Favier and I built the new atomic environment, installed additional
laser systems and modernized the old ones. We were eventually able to implement
state-of-the-art lattices of ground-state atoms (with random loading), and to demon-
strate the trapping of individual circular atoms in hollow bottle beams [122]. These
results constitute the topic of Brice Ravon’s dissertation [123], in which this new setup
is thoroughly described.
Study of circular-circular interactions. Using the new platform, we then switched
to the investigation of the dipole-dipole interactions between individually trapped cir-
cular atoms. To do so, we needed to be able to őll our atomic lattices in a deterministic
manner. With the help of Andrés Durán-Hernández, a younger PhD student, we added
a moving tweezer to the setup, in order to create defect-free geometries of trapped cir-
cular atoms. It allowed us to eventually characterize the dipole-dipole coupling within
pairs of circular atoms. In doing so, we investigated the interaction-induced atomic
motion appearing within the individual traps, and eventually learned how to mitigate
these effects. These results make up the heart of my thesis and are presented here.
Future steps. In the near future, the experiment will be switched back, in its current
state, to a cryogenic environment. In doing so, it should already allow the exploration
of some interesting quantum simulation schemes. The őnal step will be the addition
of the spontaneous-inhibition structure, at which point the circular-atom simulator
should reach its full capacity and allow the study of unexplored regimes in many-body
spin systems. Hopefully, circular atoms will then once again be at the forefront of
modern quantum physics, more than a century after Niels Bohr’s őrst intuition of
these fascinating states.

5 Outline

This dissertation is split into four chapters. In the őrst one, we present the formal no-
tions governing the physics of circular atoms. We introduce the appropriate framework
for their description and, by doing so, pave the way for a good understanding of their
manipulation in our setup. We point out the relevant properties of individual circular
atoms but mainly center the discussion on the description of their interactions, speciő-
cally in the őrst-order regime we investigated in our experiments. We also address the
expected interplay between motion and interactions in a system of two individually
trapped circular atoms. Through analytical models and numerical simulations carried
out in collaboration with Guillaume Roux, we exhibit several regimes of spin-motion
coupling tailored to various applications.

The second chapter is dedicated to the presentation of our experimental setup and
to the description of the preparation of deterministic arrays of ultra-cold atoms, the
őrst cornerstone of our experiments. The technical discussions will be kept short, as
the new setup is already detailed in Brice Ravon’s thesis [123], to which we refer the
reader for more in-depth explanations of the apparatus. We nonetheless take the time
to address here the moving tweezer, the newest addition to the setup, designed and
optimized to create defect-free arrays of atoms.
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The excitation of the atoms to circular states and their individual trapping rely
on complex protocols and techniques, which we present in the third chapter. We
characterize there the successive steps of the circularization procedure, the second
cornerstone of our manipulations. The individual trapping of circular atoms is also
explained in this chapter, along with the properties of the trapped atoms. These re-
sults rely on the site-resolved, optical detection of circular states, a key element in the
future operation of the full-scale simulator.

In the fourth chapter, we tackle the experimental investigation of resonant dipole-
dipole interactions between circular atoms, our newest results, which make up the
core of this work. By focusing on pairs of circular atoms, we thoroughly characterize
their interaction energy, that we probe by microwave spectroscopy. In strongly in-
teracting regimes, we witness the emergence of unwanted atomic motion. Through a
reőned preparation procedure, we show how to inhibit this motion, so as to implement
fully controlled, unperturbed circular-circular interactions. We then demonstrate their
tunability via the study of their geometric dependence, which perfectly matches the
theoretical expectations. We conclude with the observation of spin exchange between
two circular atoms, a signiőcant milestone and my last contribution in the long-term
project of a circular-atom quantum simulator.



Chapter I

Elements of theory

The őrst chapter focuses on the key concepts and phenomena that underlie the exper-
imental results of this thesis. By going over formal notions and numerical estimates,
we provide here the set of tools that are useful to understand and explain the data
discussed throughout this work.

We begin by introducing the single-atom framework in which circular atoms are
best described. Our experiments are based on the manipulation of rubidium-87, an
alkali atom with a single valence electron. As such, when elevated to Rydberg levels,
i.e. levels with a large principal quantum number n, and in particular to circular Ryd-
berg levels, rubidium can be accurately described by the simple model of the hydrogen
atom. Through this analogy, of which the limitations are addressed here, we outline
the main properties of individual alkali Rydberg atoms. This discussion leads to the
deőnition of circular Rydberg levels, the center of focus of this thesis. Owing to their
large principal quantum number and maximal orbital angular momentum, circular
Rydberg atoms exhibit remarkable properties, among which long lifetimes and very
large dipole moments. An additional useful feature of Rydberg atoms is their sensi-
tivity to the ponderomotive force, which enables their optical trapping in individual
traps. This last point concludes the theoretical description of the single-atom physics
relevant to this thesis.

The second part of this chapter tackles the subject of interactions between circular
atoms. We restrict the analysis to a pair of interacting atoms, as it is the case in
our experimental investigations. Due to their electric polarizability, circular atoms
exhibit important dipole-dipole interactions. A perturbative approach distinguishes
two interaction regimes: the őrst-order direct dipole case and the second-order van der
Waals interaction. By a formal re-writing of the general dipole-dipole Hamiltonian, we
can identify the pair of atoms with two spins that interact via tunable transverse and
longitudinal terms. Depending on the speciőc circular levels involved, two different
situations emerge. Either the resonant, őrst-order spin-exchange term dominates the
physics of the system, or all terms are second-order, van der Waals contributions and
exhibit the same order of magnitude. We narrow down our focus to the őrst case, that
of the resonant exchange, which we study experimentally in this work. In this regime,
where two atoms approximately 10 µm apart evolve between two circular states dis-
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tant by a single quantum of angular momentum (∆n = 1), the interaction is in the
MHz range and only depends on the geometry of the system. The case of the van
der Waals interactions regime, where ∆n = 2, displays richer physics and is the end
goal for quantum simulations with circular atoms, but has not been investigated in
our experiments as of yet.

To predict the dynamics of a pair of interacting circular atoms as thoroughly as
possible, we conclude this theoretical part by discussing the interplay between the spin
and motional states of the atoms in their traps. This auxiliary study [124], carried
out in collaboration with G. Roux, characterizes the spin-motion coupling in a pair of
individually trapped interacting atoms and yields several interesting insights. On the
one hand, there are regimes of experimental parameters in which the spin-motion en-
tanglement should not be detrimental to the second-order van der Waals dynamics for
quantum simulations. On the other hand and more interestingly, it is possible to take
advantage of this interplay in strong coupling regimes: either to indirectly measure
the temperature of the circular atoms in their traps, or to create motional Schrödinger
cat states. Unfortunately, due to lack of time, this last section on spin-motion entan-
glement describes purely theoretical results for now, as we lacked the time during my
PhD to explore these regimes in real experiments.

I.1 Individual Rydberg atoms

I.1.1 Rydberg states of alkali atoms

Rubidium 87, the atomic species used in our experiments, has a single valence electron.
Its atomic energy levels are therefore solutions of Schrödinger’s equation [125] for this
electron in the potential V (r) created by the atomic core:

(

− ℏ
2

2me

∆+ V (r)

)

ψ(r) = Eψ(r), (I.1)

where ℏ is the reduced Planck constant and me the electron mass. Qualitatively, we
expect that when its wavefunction lies far away from the nucleus and other electronic
shells, the electron sees the potential V (r) as a point-like, single charge distribution:

V (r) ∼
r→∞

− e2

4πε0

1

r
, (I.2)

with e the elementary charge and ε0 the vacuum permittivity. In such a highly-excited
state, rubidium can then behave as a hydrogenic atom, in which a single electron
orbits a single point charge. The hydrogen model is therefore a good starting point
to dive into single-atom Rydberg physics. Going over its solutions provides the right
framework for the study of the Rydberg states of rubidium.
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The bound states of a single electron in a Coulomb potential are described by the
wavefunctions [126]:

ψnℓm(r, θ, ϕ) = a
−3/2
0

2

n2

√

(n− ℓ− 1)!

(n+ ℓ)!
Fnℓ

(

2r

na0

)

Y m
ℓ (θ, ϕ), (I.3)

where a0 is Bohr’s radius a0 = 4πε0ℏ
2/mee

2. These states are labeled by three quantum
numbers: n ∈ N

∗, ℓ ∈ {0, ..., n− 1} and m ∈ {−ℓ, ..., ℓ}. The principal quantum
number n describes the energy of the state via the Rydberg constant Ry and the
őne-structure constant α:

En = −Ry

n2
, Ry =

α2mec
2

2
=

e2

8πε0a0
. (I.4)

The electron orbital angular momentum is written ℓ and its projection along the z-
axis m. The radial and angular parts of the wavefunction, Fnℓ and Y m

ℓ , are analytically
deőned using the Laguerre polynomials and spherical orbitals.

This state classiőcation does not completely account for all the transition frequen-
cies measured in hydrogen. To perfectly describe its energy levels, one must also take
into account [126]:

• relativistic corrections,

• the nucleus mass, accounted for by replacing me with the reduced mass of the
2-body system, i.e. a 10−5 correction to me,

• the electron spin s = 1/2 and its projection ms = ±1/2 [127], which interacts
with its own orbital angular momentum (őne structure),

• the spin-orbit and spin-spin interactions between the nucleus and the electron
(hyperőne structure).

These four contributions lead to various energy shifts in this őrst simple level structure.
To study Rydberg levels, i.e., levels with large principal quantum number, we need to
retain only one of these deviations [128], the spin-orbit coupling, which arises from the
interaction between the electron’s intrinsic magnetic moment and its orbital angular
momentum. Indeed, in Rydberg levels the electron lies rather far away from the
nucleus and evolves slowly compared to low-lying levels: the relativistic corrections
and coupling to the nucleus spin are always negligible. The spin-orbit term in the
atomic Hamiltonian writes, for the hydrogen atom [126]:

ĤSO =
ℏαgS
2m2

ec

(

Ŝ · L̂
)

r3
, (I.5)

with gS the electron g-factor, Ŝ and L̂ its spin and orbital angular momentum ob-
servables. To compute quantities associated to this term, the total electron angular
momentum J = L + S is introduced, which leads to the deőnition of new quantum
numbers: j = ℓ ± 1/2 and mj its projection on the quantization axis. The proper
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basis in which to consider the hydrogenic energy levels is then (n, j,mj). This őne
structure formalism is relevant for low-ℓ states only, independently of the principal
quantum number. It arises from relativistic effects and, as such, becomes negligible
when ℓ grows: the electron evolves further away from the nucleus, in a weaker poten-
tial and with reduced momentum [128]. As stated previously, other corrective terms
are ignored in our study of Rydberg states, as they lead to insigniőcant or constant
energy shifts [123].

With these notions in mind, we can now properly deőne Rydberg states of rubid-
ium and estimate their proximity to the hydrogen model. Qualitatively, we expect
that deviations from the hydrogenic model will emerge when the electron is close to
the ionic core and the potential differs from the Coulomb one. This situation is en-
countered whenever ℓ is small. Throughout this study, we will therefore make sure to
carefully distinguish the two cases: low ℓ or ℓ≫ 1.

To estimate the similitude between rubidium Rydberg levels, i.e., states with n≫ 1
(around 50 in the experiments) and hydrogenic states, we can start by computing from
equation (I.3) the size ⟨r⟩ and spread ∆r =

√

⟨r2⟩ − ⟨r⟩2 of the generic hydrogenic
wavefunctions:

⟨r⟩ = a0
2

[

3n2 − ℓ(ℓ+ 1)
]

, ∆r =
a0
2

√

n2(n2 + 2)− ℓ2(ℓ+ 1)2. (I.6)

We now consider two limit cases. First, for hydrogenic states with maximal orbital
angular momentum (ℓ = n− 1), we obtain

∆r

⟨r⟩ ∼ 1

3

√

2

n
. (I.7)

Here, the relative spread of the wavefunction goes to zero as n grows. In such states
with high n and maximal angular momentum, the electron remains located at a large
distance ∼ a0n

2 from the core and we anticipate close proximity between the hydrogen
model and the corresponding levels in rubidium.

However, in a zero orbital angular momentum level (ℓ = 0), equation (I.3) yields:

∆r

⟨r⟩ ∼ 1

3
, (I.8)

which shows that, in this case and independently of n, the electron always gets close
to the ionic core. Large deviations from the hydrogen model are then expected in
low-ℓ Rydberg states of rubidium, due to the interaction between the electron and the
complex ionic structure of the core.

In őgure I.1 (a), we represent the electron probability distribution computed for two
Rydberg states of rubidium that match the two limit cases: |52D, j = 5/2,mj = 5/2⟩
(a low-ℓ state) and |52, l = 45,m = 44⟩ (high-ℓ state). These images make it visually
clear that in the low-ℓ orbitals of rubidium, the electron interacts with the ionic core,
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Figure I.1: (a) Probability density distribution |rψ(r)|2 (logarithmic scale) in the
x− z plane, for the |52D,mj = 5/2⟩ (left panel) and |52, ℓ = 45,m = 44⟩ (right panel)
rubidium levels, z being the quantiőcation axis. The core penetration is clear for the
low-ℓ level and nonexistent in the high-ℓ level. (b) Level scheme for the whole n = 52
rubidium manifold. Low-ℓ states are energy-shifted by several tens of gigahertz due
to their quantum defects. High-ℓ levels (ℓ ≥ 4) all stand at the same energy, taken as
the origin. The ℓ = 3 states, have a −0.8 GHz quantum defect, which is not visible
in the őgure. The őne structure splitting of each level is also taken into account but
barely visible at this scale.

as the electronic density is non-zero near the nucleus. However, in high-ℓ levels the
electronic density is zero for a large volume around the ionic core and the electron
therefore sees it as a simple far-away point-charge.

In rubidium, the electron penetration in the complex atomic core structure results
in energy deviations from the hydrogenic model that are called quantum defects [129].
These shifts are accounted for by empirically introducing a non-integer, effective prin-
cipal quantum number in the radial part of the wavefunction, which yields the new
energies:

E∗
nℓj = −Ry

n∗2
= − Ry

(n− δnℓj)
2 , (I.9)

where the quantum defect δnℓj can be expanded as a power series for more detailed
analyses: δnℓj = δ

(0)
ℓj +δ

(2)
ℓj /(n−δ

(0)
ℓj )

2+ . . . [82]. For ℓ up to 4, its őrst terms have been
measured experimentally in rubidium [130ś132]. The energy shift due to the quantum
defect in the |52D⟩ levels is −65.6 GHz with respect to the unperturbed levels in the
n = 52 manifold. That of the |52F ⟩ levels is −0.8 GHz.

These energy shifts are depicted in őgure I.1 (b) for the n = 52 rubidium manifold.
The quantum defect lifts some of the manifold’s degeneracy by lowering the energy of
low-ℓ levels by several tens of gigahertz. For higher values of ℓ (ℓ ≥ 4), the quantum
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defect scales as ℓ−5 [82], which quickly makes it irrelevant as ℓ grows. For ℓ ≥ 4, we
can consider that that the quantum defects vanish and all states are degenerate.

Overall, Rydberg states of rubidium can be well-described by the simple hydrogen
atom model. However, extra caution has to be taken when dealing with low-ℓ Ry-
dberg levels, for two reasons. First, their spin-orbit coupling is often non-negligible.
Cases in which the őne structure has to be considered will be detailed when address-
ing the coupling of the atom to static őelds. Secondly, low-ℓ levels are also subject to
quantum defects, the main difference between hydrogen and Rydberg states of alkali
atoms. High-ℓ levels (ℓ ≥ 4) in the degenerate subspace, however, behave exactly as
a hydrogenic system. They can be accurately studied as an electron in a Coulomb
potential. We will use this analogy throughout the rest of section to introduce the
Rydberg states of rubidium and their properties, while making sure to underline the
deviations in low-ℓ states when necessary.

I.1.2 Coupling to static fields

As a hydrogenic system in which an electron is loosely held around the ionic core, any
electric őeld will greatly deform a Rydberg atom: it is said to have a large electric
polarizability. Furthermore, a directing static őeld, whether it be electric or magnetic,
will couple differently to different levels in a given manifold and thus will lift its de-
generacy. Accordingly, understanding the coupling of Rydberg atoms to static őelds
is essential for their manipulation.

Magnetic field: Zeeman and Paschen-Back effects

We begin with the simpler case of the interaction with the magnetic őeld, which
acts on the spin and orbital angular momenta of the atom via the Hamiltonian

ĤB =
µB
ℏ

(

gLL̂+ gSŜ
)

·B, (I.10)

where gL and gS are the orbital and spin g-factors of the electron, and µB the Bohr
magneton [133]. We consider the quantization axis to be along B. This Hamilto-
nian leads to different effects depending on its strength vis-à-vis the bare spin-orbit
coupling described in equation (I.5). We focus on the two straightforward limit cases
HB ≫ HSO and HB ≪ HSO, which are sufficient to describe the relevant experimental
conditions.

In the strong őeld situation, the magnetic őeld de-couples the spin and orbital
angular momenta of the electron: both S and L precess around B. The őne structure
then becomes irrelevant, ℓ, m, ms remain the good quantum numbers and the energy
contribution of the magnetic őeld coupling writes, in the state |n, ℓ,m,ms⟩,

⟨ĤB⟩ = µB (gLm+ gSms)B. (I.11)
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This regime is called the Paschen-Back effect. Given the limited magnitude of the mag-
netic őelds in our experiments, (around 10 G), the strong-őeld limit typically arises as
soon as the spin-orbit coupling becomes small, i.e., when considering Rydberg states
with ℓ ≥ 3 [128].

With low-ℓ states however, we are in the opposite situation: the spin-orbit coupling
is large and HB ≪ HSO. Here, the magnetic őeld can be treated as a perturbation to
the spin-orbit coupling. We keep the |ℓ, j,mj⟩ basis, in which we get the Zeeman level
shifts:

⟨ĤB⟩ = µBgJmjB, (I.12)

where gJ is the Landé factor, deőned as

gJ = gL +
j(j + 1)− ℓ(ℓ+ 1) + 3/4

2j(j + 1)
(gL − gS). (I.13)

In summary, in both cases the magnetic őeld linearly shifts the Rydberg levels. The
value of the orbital angular momentum determines if the őne-structure basis provides
the appropriate description or not. In our experimental conditions, the shift is ruled
by mj if ℓ ≤ 2 and by m and ms if ℓ ≥ 3. We recall that, on top of this distinction,
quantum defects have to be considered for ℓ ≤ 3.

Electric field: Stark shift

The effects of the electric őeld on Rydberg states are a bit trickier to tackle. The
coupling between the atom and the static őeld F is described by the Stark Hamilto-
nian [133]:

ĤF = −d̂.F, (I.14)

where d̂ = −er̂ is the dipole operator. As opposed to the Zeeman Hamiltonian, this
Stark term impacts the radial motion of the electron, which causes a more complex
mixing of subspaces. A few results can nonetheless be derived from basic considera-
tions without diving into the full Hamiltonian diagonalization. We consider the őeld
F to be along (Oz), taken as the natural quantization axis in this context.

The Stark term can then be re-written using spherical harmonics:

ĤF = −eẑ|F| = −er̂
√

4π

3
Y 0
1 |F|, (I.15)

where Y 0
1 is the (ℓ = 1,m = 0) spherical harmonic. Through this expression, it comes

out that the electric őeld only mixes states having the same m and orbital angular
momenta that differ by a single unit, yielding the formal static dipole selection rules
between two states |nℓm⟩ and |n′ℓ′m′⟩:

ℓ′ = ℓ± 1, (I.16)
m′ = m. (I.17)
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Let us note that per these selection rules (or because ⟨ψnℓm|r̂|ψnℓm⟩ = 0) the Stark
term does not couple a state to itself, i.e., its diagonal matrix elements are zero.

The presence of the static electric őeld also breaks down the spherical symmetry
of the bare atom. Because of the dipole operator in the Stark Hamiltonian, the L̂2

operator does not commute with the full Hamiltonian anymore, which means that ℓ
is no longer a good quantum number (as it was suggested by the mixing of states
with ∆ℓ = 1). However, the system retains a cylindrical symmetry around (Oz). The
projection m of L along this axis therefore remains a good quantum number.

As we have seen, the low-ℓ levels are non-degenerate and shifted far away from the
manifold by the quantum defects (see őgure I.1 [b]). In the case of a weak electric
őeld, perturbation theory can therefore be applied to estimate the effects of the Stark
term on these states. Since the Stark Hamiltonian does not couple a state to itself, it
only generates a second-order, quadratic shift on these low-ℓ levels. In the degenerate
manifold however (when ℓ ≥ 4), the dipole operator couples states that have the same
bare energy and non-degenerate perturbation theory should be replaced by the degen-
erate one1. We then expect a őrst order, linear shift on these levels. Figure I.2 (a)
depicts the Stark shift on the n = 52 subspace, for ℓ ≥ 2 in the weak őeld regime. The
data was computed by brute-force numerical diagonalization of the full Hamiltonian.
We indeed observe a second-order shift on the low-ℓ levels and a linear splitting of the
manifold under the action of the static electric őeld. The behavior of the |52F ⟩ level,
which quadratically joins the base of the manifold as F is increased, will be relevant
in the description of the experimental processes.

As suggested, since ℓ is no longer an appropriate quantum number, a change of
basis is required to make the general study of the linear Stark shifts in the manifold
more straightforward. Since we want to focus on the states of the degenerate manifold
(i.e, without quantum defects), which follows the behavior of the hydrogen model,
we will proceed within this simpliőed context and directly extrapolate the results to
rubidium.

The most convenient way to proceed is by introducing the symmetric Runge-Lenz
vector [134]:

Â =
n

cmeα

[

1

2

(

p̂ ∧ L̂− L̂ ∧ p̂
)

− e2me

4πε0

r̂

r

]

, (I.18)

where p̂ is the electron momentum. This vector allows us to deőne the two operators

Ĵa =
1

2
(L̂− Â), Ĵb =

1

2
(L̂+ Â). (I.19)

These operators commute with the full Hamiltonian and with each other, and deőne
two angular momenta of size Ĵ2

a(b) = ℏ
2(n2 − 1)/4 [135]. A given state in the n-

1The states in this subspace actually have very slightly different energies because of the various
corrections, such as the fine structure, that we considered negligible. However, even at low field
strengths, the effect of the Stark Hamiltonian is always much larger than these bare energy differences.
In that sense, we consider these states to be degenerate when applying an electric field.
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Figure I.2: (a) Stark map of the n = 52 manifold in rubidium 87, depicting the energy
of the atomic levels as a function of the electric őeld strength. |52S⟩ and |52P ⟩ are not
shown here; |52D⟩ and |52F ⟩ exhibit a quadratic, second-order Stark shift, whereas
the levels within the manifold spread apart linearly when ℓ ≥ 5 under the action of the
electric őeld. (b) Stark diagram of the manifold levels, in the hydrogen model, labeled
in the parabolic basis |n,m, k⟩. This classiőcation and depiction remain mostly valid
for Rydberg states of rubidium within a given manifold: only its low-ℓ levels deviate
from this picture.

th manifold can then be unequivocally labeled via ji = J = (n − 1)/2 and mi ∈
{−ji,−ji + 1, ..., ji − 1, ji}, with i = a, b. The actions of Ĵa and Ĵb are straightforward
in this basis:

Ĵ2
a(b)|J,ma,mb⟩ = ℏ

2J(J + 1)|J,ma,mb⟩, Ĵa(b),z|J,ma,mb⟩ = ℏma(b)|J,ma,mb⟩,
(I.20)

which leads to the standard deőnition of the ladder operators Ĵa(b),± = Ĵa(b),x± iĴa(b),y.
Given the expression of Ĵa and Ĵb in equations (I.19), we also have ma + mb = m.
Finally, it can be shown [136] that the two angular momenta relate to the dipole
operator d̂ via

d̂ =
3

2
nea0(Ĵa − Ĵb)/ℏ. (I.21)

This last relation hints at the deőnition of a new quantum number k = ma − mb,
directly linked to an observable. Each state can be written unambiguously |n,m, k⟩
under this new representation, that we call the parabolic basis. Even though this is
strictly valid for the hydrogen model only, we will apply this classiőcation to rubidium
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while keeping in mind that, in low-ℓ states, ja and jb are actually not good quantum
numbers.

The dipole matrix elements of the Stark Hamiltonian are easier to compute in this
new basis. Through a perturbative approach, one can show [133] that the Stark shift
writes, for a given state |n,m, k⟩:

∆ES = α(1)F + α(2)F 2 + α(3)F 3 + ... (I.22)

with the őrst coefficients α(i) expressed as:

α(1) =
3kn

2
ea0, (I.23)

α(2) = −n
4

32
(17n2 − 9m2 − 3k2 + 19)

(ea0)
2

Ry
, (I.24)

α(3) =
3kn7

128
(23n2 + 11m2 − k2 + 39)

(ea0)
3

Ry2
. (I.25)

We indeed recover a őrst order linear shift of the degenerate levels, which depends
only on k. In őgure I.2 (b) we give a representation of the hydrogenic manifold under
a static electric őeld, classiőed in this new basis by order of m and k, for the hydrogen
model. The end result for rubidium would be very similar, with only slight additional
displacements for low-m levels and some missing levels at the center of the manifold,
due to the quantum defects shifting them far away out of this scale. In this represen-
tation of the manifold, the action of the ladder operators Ĵa(b),± are easily understood
and shown in red arrows in the diagram. They raise or lower ma(b) by a single unit,
which corresponds to transfers along the diagonals of the manifold.

We wrap up this section by discussing the atomic state evolution in static őeld
within this formalism. We consider F and B to be static and along (Oz). We neglect
the irrelevant spin coupling to the magnetic őeld, i.e., we consider only the őrst term
of the Hamiltonian (I.10), where we set the orbital g-factor gL = 1 −me/M ≃ 1 (M
being the mass of rubidium 87). The coupling to the static őelds then writes:

ĤB,F =
µB
ℏ
L̂ ·B− d̂.F. (I.26)

Using the deőnitions (I.19) of the two angular momenta Ĵa and Ĵb, the Hamiltonian
can be recast as

ĤB,F = −(ωS − ωZ)Ĵa,z + (ωS + ωZ)Ĵb,z, (I.27)

where ωZ = µBBz/ℏ and ωS = (3nea0/2)Fz/ℏ are respectively the Zeeman and Stark
frequencies. To get a sense of the atomic dynamics, we focus on the expectation values
of the two angular momenta, which we write ⟨Ja(b)⟩. Through Ehrenfest equation and
the usual commutation relations [Ĵa(b),α, Ĵa(b),β] = iℏϵαβγ Ĵa(b),γ, we get the evolution of
the expectation values:

d⟨Ja⟩
dt

= −(ωS − ωZ)uz × ⟨Ja⟩, (I.28)

d⟨Jb⟩
dt

= (ωS + ωZ)uz × ⟨Jb⟩. (I.29)
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Both precess around the quantization axis, with their norms being preserved. ⟨Ja(b),z⟩
remains constant, while the transverse components along x and y rotate, with a pul-
sation that depends on the strength of the őelds. Since the Stark frequency dominates
at regular őeld values, both pre-factors ωS−ωZ and ωS +ωZ are positive, and the two
angular momenta rotate in opposite directions.

For later purposes, we őnally consider the application of a radio-frequency őeld, of
frequency ωRF, which couples the manifold levels via the ladder operators Ĵa(b),±. If
the őeld is σ+-polarized, its action on the atom, combined with the effect of the static
őelds, boils down to the Hamiltonian [136]:

ĤRF = −ωaĴa,z −∆bĴb,z + Ωb(Ĵb,+ + Ĵb,−), (I.30)

where ∆b = −ωb + ωRF and Ωb ∝ F is the Rabi frequency of the Ĵb,± transitions.
Under the right frequency and power conditions, the σ+ RF őeld drives the transitions
along the lower-left to top-right diagonals of the manifold. It keeps ma constant, while
acting on mb only. This feature will be helpful when addressing the state evolution
towards the circular level in the experiments.

I.1.3 Circular Rydberg states

The parabolic basis provides the right framework to properly deőne circular Rydberg
states and their neighboring levels within a given nmanifold. For a őxed n, the circular
levels are the two states with maximal angular momentum: ℓ = n−1, m = ±(n−1).
In the Stark diagram of őgure I.2 (b), they are located at both lateral ends of the man-
ifold. As levels with maximal angular momentum, circular states are not subject to
quantum defects and the hydrogen model perfectly applies to their study. We focus
on the circular state with positive m (one for each n ś the right-most level in the
őgure) and denote it |nC⟩. Accordingly, its deőnition in the parabolic basis repre-
sentation is |n, k = 0,m = n − 1⟩. In the Ja, Jb formalism, this circular level is
|ma = +J,mb = +J⟩. In this state, the two angular momenta are aligned and parallel
to the quantization axis.

The circular state wavefunction writes, from equation (I.3):

ψ|nC⟩(r, θ, ϕ) =
1

√

πa30

1

nn!

(

− r

na0
eiϕ sin θ

)n−1

e
− r

na0 . (I.31)

Figure I.3 (a) depicts the electron probability density in |52C⟩, seen in the x−z plane.
This speciőc circular state is the one we prepare and manipulate in the experiments.
Its electron is located on a torus approximately 200 nm away from the nucleus, and
its phase winds up n − 1 times along its orbit. More generally, the radius of circular
atoms goes as

⟨r⟩|nC⟩ ∼ a0n
2. (I.32)

The parabolic basis is particularly convenient to deőne the levels closest to the
circular state in the Rydberg manifold, called the elliptical states. They differ from
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Figure I.3: (a) Electron probability density in the circular state |52C⟩. (b) Level
scheme for the circular states and their elliptical neighbors of three adjacent manifolds.

|nC⟩ by a single quantum of angular momentum and are written:

|nE±⟩ = |n,m = n− 2, k = ±1⟩. (I.33)

Figure I.3 (b) illustrates this level structure by focusing on the right-most part of
the Stark diagram, for three neighboring n manifolds. We consider here the directing
electric őeld to be of the order of 1 V/cm, so that we can get an idea of the energy
scales involved in typical experimental conditions. In this case, the energy difference
between |52C⟩ and |52E±⟩ is around 100 MHz, whereas the |52C⟩-|51C⟩ and |52C⟩-
|53C⟩ distances are of approximately 50 GHz, i.e, orders of magnitude larger.

Dipole matrix elements

One important feature of Rydberg atoms is, due to their great size, their large
dipole matrix elements on the allowed transitions. This is especially true for circular
levels. Using the same formalism as the one introduced to describe the static Stark
shifts, the generalized dipole selection rules (i.e. for non-necessarily static electric
őelds) between two levels |n, ℓ,m⟩ and |n′, ℓ′,m′⟩ write [137]:

ℓ′ = ℓ± 1, (I.34)
m′ = m+ q, (I.35)

where q = 0 corresponds to a π-polarized transition, and q = ±1 to σ−- or σ+-polarized
transitions, depending on whether a photon is absorbed or emitted. These dipole ma-
trix elements are numerically tractable [95]. The one associated to the σ+ microwave
transition |52C⟩ → |51C⟩ is 1846(ea0) and scales as n2. For comparison, the one be-
tween |52S1/2⟩ and |52P3/2⟩ is 1574(ea0) and the dipole matrix element for the D2 line
transition |5S1/2⟩ → |5P3/2⟩ is about 4.2(ea0) [138]. The huge dipole matrix elements
between neighboring circular states imply that these transitions are strongly coupled
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to the electromagnetic őeld, in the microwave range. This makes for an easy manipu-
lation of the circular levels using standard microwave technology.

Lifetime

Another important characteristic of circular atoms is their lifetime. To sponta-
neously decay, the only channels available to a circular state (allowed by the general
dipole transition rules) are towards the underlying elliptical state |nE−⟩ and towards
the lower circular state |(n − 1)C⟩. Their rates are given by the Einstein coeffi-
cients [139]:

Aif =
4αω3

3c2
|⟨i|r̂|f⟩|2, (I.36)

where |i⟩ and |f⟩ are the initial and őnal levels involved in the radiative decay and
ω/(2π) the transition frequency. Given the ω3 dependency in this expression and the
frequencies of the two allowed transitions in an experimentally standard electric őeld
ś MHz radio-frequency towards |nE−⟩ and GHz micro-wave towards |(n− 1)C⟩ ś the
|nC⟩ → |nE−⟩ decay is completely negligible. The resulting spontaneous emission rate
yields a 0 K natural radiative lifetime of 35 ms for |52C⟩, our circular state of inter-
est. For comparison, low-ℓ Rydberg states, with many decay channels in the optical
domain to low-lying or ground state levels, have a radiative lifetime at 0 K of a few
hundred microseconds [82].

As previously explained, dipole-accessible transitions from circular states are strongly
coupled to the electromagnetic őeld in the microwave range. At non-zero tempera-
ture, it is therefore crucial to take into account absorption and stimulated emission
processes to estimate the real lifetime of circular atoms [139]. Stimulated emission
occurs over the same |nC⟩ → |(n − 1)C⟩ transition as spontaneous emission, but ab-
sorption can occur for several allowed transitions to the upper n+ q, q ≥ 1 manifolds.
Both mechanisms are described by the enhanced Einstein coefficients

Bif = n(ω)Aif , (I.37)

where n(ω) is the average number of photons in mode ω at a given temperature:

n(ω) =
1

eℏω/kBT − 1
. (I.38)

Altogether, these various contributions yield a lifetime of about 10 ms for |52C⟩ at 4 K
(accessible using standard cryogenic technology [120]). At 300 K, the temperature of
our current setup, this lifetime drops to about 140 µs. In the őrst part of appendix A,
we detail the numerical model we use to estimate the circular atom lifetimes. It will be
used throughout the rest of the text in various discussions of the experimental results.
It can őnally be shown that the spontaneous emission lifetime scales as n5 for circular
atoms at low temperature [82].

The properties outlined here, of large circular-circular dipole matrix elements and
long lifetimes, make circular atoms good candidates on which to encode spin states
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for quantum simulation. However, in order to make use of these features, one has to
be able to individually trap these atoms to immobilize them over extended durations.
This is thankfully made possible by the ponderomotive force, described in the next
section.

Ponderomotive energy

The ponderomotive energy arises from the interaction between the Rydberg elec-
tron and an oscillating inhomogeneous electromagnetic őeld [140, 141]. In a quickly
oscillating őeld, charged particles undergo a quiver motion: to minimize their kinetic
energy, the particles are attracted to low-intensity regions of space. In a Rydberg
atom, the valence electron can be subjected to this force if the atom is placed in such
an inhomogeneous őeld distribution, typically using frequencies in the optical domain.
The force also applies to the ionic core, but its large mass makes this effect negligible.
The electron then drives the whole atom to low-intensity regions, thus creating a 3-
dimensional potential distribution for the Rydberg atom.

The ponderomotive effect can be derived from the general atom-őeld interaction
Hamiltonian, using the classical electromagnetic four-vector (Φ/c,A) in the Coulomb
gauge and where we set Φ ≡ 0 since there are no sources:

ĤI =
e

me

A(r̂, t).p̂+
e2

2me

A2(r̂, t) +
µB
ℏ
gSŜ.B(r̂, t). (I.39)

In this expression, we can drop the magnetic term, as it is much smaller than others.
We can also discard the A.p̂ contribution: in Rydberg states, as n increases, p gets
smaller and that part vanishes. We end up with the quadratic term only, which we
re-write in terms of őeld intensity I(r) via F = −∂tA = −iωA, to obtain a classical
potential [142], written as a function of the light frequency ω/(2π) and position r:

V (r) =
e2

2mecε0ω2
I(r) = hβ(ω)I(r). (I.40)

To give an idea of the energy scale involved, we compute the proportionality coef-
őcient β(ω) in the case of our trapping light of 821 nm wavelength:

β(ω) = 1.52
MHz

mW µm−2
. (I.41)

Rydberg atoms are low-őeld seekers in such a distribution. It is then possible
to trap individual circular atoms in this ponderomotive potential, provided that one
can create, in the optical domain, a low-intensity region surrounded by high intensity
regions in all 3 dimensions. It is also important to mention that circular atoms are
insensitive to photo-ionization [117, 121], an essential property that low-ℓ states lack.

Having now covered the properties of individual Rydberg atoms, and more speciő-
cally those of circular Rydberg atoms, we can turn to the matter of their interactions,
at the heart of this work.
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I.2 Interactions between circular Rydberg atoms

As large antennas strongly coupled to the electromagnetic őeld, (circular) Rydberg
states exhibit signiőcant interactions with one another. In this section, we cover the
general description of two interacting circular atoms. After introducing the necessary
formalism to understand the underlying physics, we focus on two speciőc conőgura-
tions which lead to different interaction regimes: either a őrst-order resonant exchange
or a second-order van der Waals interaction which can emulate the XXZ Hamiltonian.

I.2.1 Two interacting circular atoms

We consider two circular atoms, indexed 1 and 2, in states |nC⟩ and |n′C⟩, with
dipole moments di and at a őxed distance r (treated classically). The inter-atomic
vector is written r = rn1→2 and static parallel electric and magnetic őelds deőne the
quantization axis, which allows us to use the parabolic basis depicted in őgures I.2 (b)
and I.3 (b) of the previous sections. The two atoms interact via the dipole-dipole
Hamiltonian [143]:

V̂dd(r) =
1

4πε0 r3

[

d̂1.d̂2 − 3(d̂1.
r

r
)(d̂2.

r

r
)
]

. (I.42)

This operator gives rise to couplings between the pair state |nC, n′C⟩ and other
pair levels |a, b⟩ via dipole-allowed transitions, i.e.

∆ℓi = ±1, ∆mi ∈ {−1, 0, 1} , (I.43)

for each atom i. The dipole-dipole couplings should also conserve the projection of the
total angular momentum m = m1 +m2, so that ∆m = 0. Without additional details,
we expect these dipole-dipole matrix elements to scale as 1/r3, given the expression
of V̂dd. We treat the action of this operator perturbatively, in orders of 1/r3. The
őrst-order, 1/r3 terms are referred to as the łdirectž dipole interaction, whereas the
second-order, 1/r6 ones are the van der Waals interactions.

Two atoms in the same circular state

In the simplest n = n′ case, the selection rules impose ⟨nC, nC|V̂dd|nC, nC⟩ = 0.
The dipole-dipole interaction then acts as a second order perturbation. It induces a
distance-dependent energy shift in the uncoupled |nC⟩|nC⟩ state that goes as [143]:

EnC−nC(r) =
∑

|ab⟩

⟨nC, nC|V̂dd|ab⟩⟨ab|V̂dd|nC, nC⟩
2EnC − Ea − Eb

=
C6,nC−nC

r6
, (I.44)

where Eg is the energy of the individual level |g⟩. The main contribution in this sum
comes from the coupling to the state (|nE+, nE−⟩ + |nE−, nE+⟩)/

√
2 (see őgure I.3

for the position of the elliptical levels with respect to |nC⟩). The linear Zeeman shift
(eq. (I.11)) and quadratic Stark shift (eq. (I.22)) ensure that this symmetric level
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is non-degenerate with |nC, nC⟩, so that the denominator of this term does not di-
verge and non-degenerate perturbative expansion stands. The next signiőcant allowed
couplings are with |nE+, nE+⟩ and |ne−, ne−⟩, but these two contributions actually
cancel each other out [144]. By brute-force diagonalization, in őelds of F = 2 V/cm
and B = 10 G, we compute this van der Waals coefficient for |52C⟩ in two conőg-
urations, with the inter-atomic axis either parallel or orthogonal to the quantization
axis:

C
∥
6,52C−52C/h = 7.8 GHz.µm6, C⊥

6,52C−52C = 6.3 GHz.µm6. (I.45)

The second-order, 1/r6 van der Waals behavior holds true for large-enough distances,
when the perturbative treatment remains valid. Through the numerical diagonaliza-
tion, we őnd that the perturbative approach and the 1/r6 scaling are accurate for
r > 3 µm.

Two atoms in different circular states

We now consider the interaction between atoms in two different circular levels:
n′ > n. We restrict our study to the two most interesting and relevant cases n′ = n+1
or n′ = n+ 2. Once again, the selection rules (eq. (I.43)) impose

⟨nC, n′C|V̂dd|nC, n′C⟩ = ⟨n′C, nC|V̂dd|n′C, nC⟩ = 0. (I.46)

These diagonal terms in the general V̂dd operator are therefore 0. The interaction-
induced energy shift on the bare |nC⟩|n′C⟩ and |n′C⟩|nC⟩ levels is a second-order, van
der Waals contribution via the mixing to other states. We can nonetheless take these
contributions into account in diagonal terms [145] by writing an effective Hamiltonian:

V̂ /ℏ =

(

|nC, n′C⟩ |n′C, nC⟩
CnC−n′C AnC−n′C |nC, n′C⟩
AnC−n′C CnC−n′C |n′C, nC⟩

)

. (I.47)

The diagonal component writes

CnC−n′C(r) =
∑

|ab⟩

⟨nC, n′C|V̂dd|ab⟩⟨ab|V̂dd|nC, n′C⟩
EnC + En′C − Ea − Eb

=
C6,nC−n′C

r6
(I.48)

and it describes the second-order shift on the bare levels |nC⟩|n′C⟩ and |n′C⟩|nC⟩.
Technically, this amounts to turning the full V̂dd matrix into a block-diagonal matrix,
where we extract the block corresponding to the subspace {|nC, n′C⟩, |n′C, nC⟩}. The
off-diagonal terms AnC−n′C govern an exchange interaction |nC, n′C⟩ ↔ |n′C, nC⟩ and
are written, up to second order:

AnC−n′C(r) = ⟨nC, n′C|V̂dd|n′C, nC⟩+
∑

|ab⟩

⟨nC, n′C|V̂dd|ab⟩⟨ab|V̂dd|n′C, nC⟩
EnC + En′C − Ea − Eb

=
A3,nC−n′C

r3
+
A6,nC−n′C

r6
.

(I.49)
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If the |nC, n′C⟩ ↔ |n′C, nC⟩ transition is dipole-allowed, AnC−n′C is a őrst-order,
direct exchange and scales as 1/r3, since the őrst term in the expansion dominates.
If not, only the second-order term in the perturbative treatment is non-zero and we
recover, for the off-diagonal terms, a van der Waals interaction scaling as 1/r6 via the
coupling to other pair states.

To cover the more general case where the two atoms can be in the same state, we
write the effective interaction operator as:

V̂ /ℏ =









|nC, nC⟩ |nC, n′C⟩ |n′C, nC⟩ |n′C, n′C⟩
CnC−nC 0 0 0 |nC, nC⟩

0 CnC−n′C AnC−n′C 0 |nC, n′C⟩
0 AnC−n′C CnC−n′C 0 |n′C, nC⟩
0 0 0 Cn′C−n′C |n′C, n′C⟩









. (I.50)

In V̂ , according to the above discussion, the distance dependence goes as

V̂ /ℏ ∼









1/r6 0 0 0
0 1/r6 1/r3 or 1/r6 0
0 1/r3 or 1/r6 1/r6 0
0 0 0 1/r6









, (I.51)

depending on whether or not the |nC⟩ ↔ |n′C⟩ transition is dipole-allowed.

Spin Hamiltonian

It is actually easier to make sense of the circular-circular interaction dynamics
by rewriting the previous Hamiltonian in terms of spins [117]. We identify the space
{|nC⟩, |n′C⟩} with a spin-1/2 so that the pair of atoms evolves in {| ↓↓⟩, | ↓↑⟩, | ↑↓⟩, | ↑↑⟩}
under Hamiltonian (I.50). In order to write V̂ using the usual spin formalism, we in-
troduce the following quantities:



















δE0 = (CnC−nC + 2CnC−n′C + Cn′C−n′C)/4

δζ = (CnC−nC − Cn′C−n′C)/2

Jz = (CnC−nC − 2CnC−n′C + Cn′C−n′C)/4

J = AnC−n′C/2.

(I.52)

According to equation (I.51), δE0, δζ and Jz scale as 1/r6, but J scales as either 1/r3

or 1/r6 depending on whether or not the |nC⟩ ↔ |n′C⟩ transition is allowed. Thanks
to this transformation, we can write the interaction Hamiltonian as

V̂ /ℏ =









δE0 + δζ + Jz 0 0 0
0 δE0 − Jz 2J 0
0 2J δE0 − Jz 0
0 0 0 δE0 − δζ + Jz









. (I.53)
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By dropping the constant energy offset δE0 and introducing the standard Pauli ma-
trices, we őnally write the dipole-dipole interaction Hamiltonian between two atoms
restricted to two circular levels as:

V̂ /ℏ =
δζ

2
(σz1 + σz2) + Jz(σ

z
1σ

z
2) + J(σx1σ

x
2 + σy1σ

y
2). (I.54)

We recognize here three terms:

• the single-atom frequency shift δζ, related to edge effects that are more explicitly
understood in larger ensembles of atoms,

• the longitudinal łIsing-likež interaction Jz, pertaining to the alignment or anti-
alignment of the spins,

• the transverse term J , which characterizes the energy exchange between the two
spins.

From the deőnition of the C coefficients in equations (I.44) and (I.48), we expect that
δζ and Jz vary with F and B, due to the Stark and Zeeman shifts induced on all
the levels involved in the summation. Numerical diagonalization indicates that these
three coefficients are at most of the order of 1-10 kHz. The situation is a bit more
complex with J . If the |nC⟩ ↔ |n′C⟩ transition is allowed, i.e., if n′ = n + 1, then J
(∝ 1/r3) is proportional to ⟨nC, n′C|V̂ |n′C, nC⟩ and its value is in the MHz range: it
dominates all other terms. If the transition is not allowed however, i.e., if n′ = n + 2
for instance, then perturbation expansion is involved and J (∝ 1/r6) is of the same
order of magnitude as the other terms (i.e. in the kHz range). Interestingly, in both
cases J is nearly independent of F and B, the őelds’ amplitudes, contrary to the other
coefficients. The details of the dynamics in these two different regimes (J dominant
and direct exchange vs. all coefficients of similar magnitude and van der Waals inter-
actions) are detailed in the next sections.

I.2.2 Resonant spin-exchange interaction

Our experimental investigations led us to focus on the n′ = n+1, direct exchange case.
As we currently work with a room-temperature setup, the limited lifetime of the circu-
lar atoms (a few hundred µs) prevented us from properly characterizing the slow van
der Waals interactions (in the kHz range). We therefore decided to focus on the direct
exchange interaction, which lies in the MHz range and is accessible to our experimen-
tal capabilities. Following the formalism introduced in the previous section, we detail
here the spin dynamics of two circular atoms, each in {| ↓⟩ = |51C⟩, | ↑⟩ = |52C⟩}, the
levels we work with in the lab. This section provides the theoretical context with
which the results of chapter 4 are coupled. Figure I.4 (a) represents the geometry of
the system. We write r the distance between the two atoms and θ the angle between
the quantization axis and the inter-atomic axis. We consider here that the atoms have
inőnite lifetimes and no motion.
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Figure I.4: (a) Geometry and parametrization of the system. The őelds are taken to
be F = 2 V/cm and B = 10 G for the energy computations. (b) Level scheme for the
interacting pair states: the energy splitting between |+⟩ and |−⟩ is given by 2J . The
two other states | ↑↑⟩ and | ↓↓⟩ lie tens of GHz away from them due to the bare atomic
energies: ω0 is the single spin-ŕip energy, between |51C⟩ and |52C⟩. (c) Variation of
J with the distance r, for both θ = 0 (red) and θ = π/2 (blue). (d) Variation of J
with the angle θ, at a distance of 10 µm. For θ = θ0 ≃ 54.7°, J = 0 and the two atoms
do not interact.

Numerical computations give, for a distance of 10 µm and at an angle θ = π/2 (i.e.
atoms placed like two plates next to each other on a table), in őelds of 2 V/(cm) and
10 G, the following interaction coefficients:

J = −2π × 832 kHz, Jz = 2π × 1 kHz, δζ = −2π × 0.4 kHz. (I.55)

As expected from the previous section, J (which goes as 1/r3 here) is much larger
than the other terms (in 1/r6). It then is safe to neglect all terms except J to study
the dynamics of the pair of atoms, and we end up with the simpliőed interaction
Hamiltonian:
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V̂ /ℏ =









| ↓↓⟩ | ↓↑⟩ | ↑↓⟩ | ↑↑⟩
−ω0 0 0 0
0 0 2J 0
0 2J 0 0
0 0 0 ω0









, (I.56)

where we also account for the bare atoms’ energies via ω0, the pulsation difference
between |51C⟩ and |52C⟩, which is of the order of 2π × 50 GHz. The diagonalization
of this operator is straightforward and its eigenvectors are

{

| ↓↓⟩, |+⟩ = (| ↑↓⟩+ | ↓↑⟩)/
√
2, |−⟩ = (| ↑↓⟩ − | ↓↑⟩)/

√
2, | ↑↑⟩

}

. (I.57)

Figure I.4 (b) depicts the level scheme in this basis. The interaction coupling J
appears in the splitting between the symmetric and anti-symmetric levels. Probing the
interaction strength is then possible via microwave spectroscopy. The frequency of the
transition from | ↑↑⟩ (or | ↓↓⟩) to |+⟩, compared to that of the bare | ↓⟩ → | ↑⟩ tran-
sition, gives a direct measurement of J . Since J lies in the MHz range, the linewidth
constraints for these measurements should not be too demanding. It is also worth
noting that, due to symmetry conservation, the transition from | ↑↑⟩ (or from | ↓↓⟩)
to the anti-symmetric state |−⟩ is forbidden. We also expect a pair of atoms initial-
ized in | ↑↓⟩ to undergo spin-exchange oscillations | ↑↓⟩ ↔ | ↓↑⟩ at a frequency 4J/(2π).

Furthermore, the interaction strength is tunable via the geometry of the system.
Using numerical diagonalization, we plot in őgure I.4 (c) J as a function of distance,
for angles θ of 0 and π/2. Figure I.4 (d) represents the variation of J as a function of θ,
at a distance of 10 µm. As shown in these plots, J is proportional to 1/r3 and tuning
θ changes the sign of the interaction: for values of θ below θ0 ≃ 54.7°, J is positive and
the interaction in |+⟩ is repulsive. For θ ∈ [θ0, π/2] however, J < 0 and the interaction
in |+⟩ is attractive. Importantly, for θ = θ0 the interaction energy vanishes. We make
use of this important property in the experiments to inhibit interactions when needed.

This behavior can be understood via a geometrical interpretation of the system in
terms of real electric dipoles. When the pair is in the symmetric level |+⟩, each atom
evolves in superposed states, according to the decomposition:

|+⟩ = 1

2
{(| ↑⟩+ | ↓⟩)⊗ (| ↑⟩+ | ↓⟩)− (| ↑⟩ − | ↓⟩)⊗ (| ↑⟩ − | ↓⟩)} . (I.58)

The wavefunction of the electron in the superposition |↑⟩+ |↓⟩ makes a real dipole
emerge, because of the phase winding numbers that differ by a single unit between
| ↑⟩ and | ↓⟩, as illustrated in őgure I.5 (this is only true in this present case, where
n′ = n+ 1). This dipole rotates in the plane of the atom at the angular frequency ω0,
the energy difference between the two circular levels involved, since the superposition
evolves in time as | ↓⟩ + e−iω0t| ↑⟩. In this symmetric state, one can therefore see
each atom as a clock with a single hand that points in the direction of the dipole and
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ω0

Figure I.5: Wavefunction of the electron in the superposition |51C⟩ + e−iω0t|52C⟩,
illustrating the emergence of a real electric dipole rotating around the quantization
axis.

rotates over times. The two hands always point in the same direction, according to
equation (I.58) and since the two atoms’ states can both be decomposed in exactly
the same way.

When the two atoms are on top of each other (i.e., θ = 0), the two clock hands
rotate in sync above one another around the quantization axis. Their respective ori-
entation never changes and they classically repel each other, with a strength that goes
as 1/r3. When the two atoms are next to each other (θ = π/2), the two clock hands
rotate in the same plane, going from an attractive interaction when aligned with the
inter-atomic axis to a repulsive interaction when perpendicular to the inter-atomic
axis. However, on average over a full rotation (i.e averaging 1− 3 cos2 ω0t), this inter-
action is attractive - and obviously still varies as 1/r3. In the anti-symmetric state,
decomposition (I.58) changes and the two dipoles point in opposite directions, leading
to the opposite interactions. We therefore recover from this simple geometrical picture
the behavior expected from the numerical simulations.

From the discussed numerical computations, we can roughly estimate the trap
depth needed to experimentally probe these interactions. We consider individual traps
based on the ponderomotive energy described in section I.1.3. To counteract the typ-
ical interaction strength in the {|51C⟩, |52C⟩} subspace described here, trap depths
of several MHz are required, according to őgure I.4. From the proportionality factor
of equation (I.41), the domain walls of the intensity distribution should be around
5 mW µm−2 in order to probe interactions of up to a few MHz.

To sum up, this exchange conőguration constitutes the most basic and straight-
forward system in which to probe interactions between circular Rydberg atoms. It
exhibits elementary dynamics governed by a single dominant and geometrically tun-
able term in the MHz range, which is measurable via microwave spectroscopy. The
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experimental investigation of this rudimentary system constitutes a natural ś but
nonetheless signiőcant ś milestone on the way to full scale quantum simulations with
circular atoms.

I.2.3 Quantum simulation of a tunable XXZ Hamiltonian

The end goal of mastering interactions between circular atoms is to implement quan-
tum simulation schemes [117]. In the case n′ = n+2, interacting circular states display
much more complex behaviors. In this conőguration, J scales as 1/r6, just like the
other coefficients of the spin Hamiltonian (I.54). All terms are van der Waals, sec-
ond order contributions of the same order of magnitude and no single one dominates
the dynamics of the system. To get an idea of the new energy scales involved here,
we give the values of the three interaction coefficients in this new conőguration, with
| ↓⟩ = |50C⟩ and | ↑⟩ = |52C⟩. these levels were identiőed in [117] as convenient
for the implementation of simulation schemes. We keep here the parametrization of
the previous section (őgureI.4 [a]), we still consider the őelds to be 2 V/(cm), 10 G
and θ = π/2 but we choose a distance of 5 µm (the 1/r6 dependence requires shorter
distances to make the interactions signiőcant):

J = −2π × 28 kHz, Jz = 2π × 69 kHz, δζ = −2π × 51 kHz. (I.59)

Apart from the comparable strengths of the three coefficients, the other advantage
of this conőguration compared to the n′ = n+1 direct exchange is its tunability. Since
Jz is sensitive to the values of the static őelds, the ratio between the longitudinal term
Jz and the transverse term J can be tuned over a wide range of values, both positive
and negative, without changing the geometry. Figure I.6 (a) shows the extent of the
variations of Jz/J in various őelds, with the same geometrical parameters as previously
stated. The tunability suggests the possibility to explore different regimes of spin
physics in such a system. By adding a microwave drive resonant on the |↓⟩ ↔ |↑⟩
transition (2-photon process of Rabi frequency Ω and detuning δ) and extending the
spin Hamiltonian (I.54) to a 1D chain of atoms (neglecting edge effects and next-
nearest-neighbor interactions), we end up with the XXZ Hamiltonian [146ś150]:

V̂ /ℏ =
∑

i

Jzσ
z
i σ

z
i+1 + J(σxi σ

x
i+1 + σyi σ

y
i+1) +

Ω

2
σxi +

δ

2
σzi . (I.60)

The wide tunability of the system, through Jz/J , δ and Ω and at arbitrary timescales2,
should therefore allow to explore a large range of many-body physics phenomena [151ś
155]. The XXZ Hamiltonian exhibits a rich phase diagram, reproduced in őgure I.6
for a chain of atoms in the δ = 0 case. Four different phases of spin physics and their
corresponding phase transitions [155ś160] can be studied in such a system, by simply
tuning the parameters of the circular atoms via the static őelds and the microwave
drive power. At high microwave drive, the ensemble of spins is in a paramagnetic
phase: the drive dominates the dynamics of the atoms, there is no spontaneous or-
dering. At low microwave drive and large negative values of Jz (when Jz/J < −1),

2In our experiment, the electric field strength can be changed in under one microsecond, while the
microwave drive power is tunable over tens of nanoseconds.
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Figure I.6: (a) Ratio Jz/J as a function of the electric őeld, at an inter-atomic distance
of 5 µm, with θ = π/2 and δ = 0, for magnetic őelds ranging from 8 G (dark blue)
to 15 G (red). (b) Phase diagram of the XXZ Hamiltonian, showing the 4 phases of
the system. The red lines indicate Ising transitions and the blue ones Luttinger liquid
phases.

the system reaches a ferromagnetic phase and exhibits spontaneous magnetization. As
Jz increases via zero to positive values, the atoms go through two Néel phases. For
|Jz| < 1, the spins tend to anti-align along y (Néel-y phase) and for large values of Jz
(for Jz/J > 1), the spins anti-align along z (Néel-z).

Such a platform would also enable the investigation of quantum scars [161, 162],
quenches and thermalization (through the dynamic control of the Hamiltonian) [107,
163], localization (by adding disorder) [52, 164] and topological effects (with speciőc
lattice geometries) [165, 166]. However, getting to these implementations requires ad-
ditional experimental features that have yet to be developped in our setup. It should
őrst and foremost be switched back to a cryogenic environment to make the most of
the atoms’ black-body-sensitive lifetimes and kHz interaction frequencies. Additional
control over the system, such as single-site spin manipulation, will also be required for
state initialization. That is why we focused, in this thesis, only on the direct exchange
conőguration in pairs of atoms, which nevertheless constitutes a őrst step towards
full-scale quantum simulations schemes.
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I.3 Spin-motion coupling in interacting circular atoms

Throughout the previous part, we completely neglected the motion of the atoms. How-
ever, in a real experiment, even though the atoms are individually trapped, they are not
perfectly still. The traps necessarily have some spatial extension and the atoms have
a certain amount of kinetic energy due to their non-zero temperature. They therefore
oscillate around the traps minima and the inter-atomic distance changes over time.
Since the interaction coefficients strongly depend on this distance (as 1/r3 or 1/r6,
depending on the conőguration), we expect them to change over time, which might
alter the spin dynamics of the interaction. Perhaps more importantly, the interaction
in itself, whether it be attractive or repulsive, could induce some extra motion. If
the atoms are initially not interacting and lying at their equilibrium positions, switch-
ing on the interactions can generate motion in the traps. The next section therefore
describes the interplay between the spin and motional dynamics for two trapped, in-
teracting circular Rydberg atoms. It presents the main results of a theoretical study,
published in [124], born out of the Covid lockdowns, when we used the time away
from the lab to answer this question: could the motion in the traps impede the proper
investigation of circular atoms interactions?

I.3.1 System definition

In the following, we consider two circular atoms individually trapped by the pondero-
motive force. The discussion is based on the trapping setup suggested in the original
proposal for quantum simulations with circular atoms [117]. The quantization axis
(Oz) is perpendicular to the inter-atomic axis (Ox), the atoms are trapped in the
periodic minima of a sinusoidal intensity pattern along (Ox) and tightly conőned in
the other directions (achievable with a set of laser beams described in [117, 124]).
We therefore neglect the transverse motion and consider that the atoms only have a
one-dimensional motion along the inter-atomic axis. The distance between the two
sites’ minima is written d and is adjustable. The trapping frequency associated to the
harmonic approximation of the sine traps is ω, which is also freely tunable by varying
the beam powers. Using readily available laser systems, trap depths of several MHz
can be achieved3: as long as the motional energy remains small compared to that,
we consider the trap to be harmonic. All these geometrical quantities are depicted in
őgure I.7 (a), where we also display the spatial extension x0 of the motional ground
states in the traps.

Spin-phonon Hamiltonian

Using the same framework as in the previous part and considering the atoms to
be in the circular states {| ↓⟩ = |nC⟩, | ↑⟩ = |(n+∆n)⟩}, with ∆n ∈ {1, 2}, we still
write the interaction Hamiltonian as

ĤS/ℏ =
δζ

2
(σz1 + σz2) + Jz(σ

z
1σ

z
2) + J(σx1σ

x
2 + σy1σ

y
2) + δE0, (I.61)

3We reach these values in our own experimental setup but with a different optical trapping scheme.
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where the four coefficients depend on r, the inter-atomic distance, as 1/rm (m = 3
or 6, not necessarily the same for all coefficients). We restrict our study to the case
where there is no microwave őeld driving the transitions between the two levels. This
simpliőcation still allows us to tackle the goals of this project, namely the impact
of motion on the pair-state’s spin oscillations. We therefore focus on the subspace
{| ↓↑⟩, | ↑↓⟩}, i.e. the 2 × 2 block in the center of matrix (I.53). We will consider
situations where the atomic levels are initialized in one of the subspace’s states and are
left to evolve freely. Introducing the set of Pauli matrices Σ̂X,Y,Z standardly associated
to this subspace, the Hamiltonian reads:

H̃S/ℏ = 2JΣ̂X −∆, (I.62)

where ∆ = Jz − δE0. According to the different conőgurations discussed in subsec-
tion I.2.1, if ∆n = 1, J goes as 1/r3 and dominates all other terms, which we can
discard by setting ∆ = 0 to carry out the analytics. If ∆n = 2, all contributions are
comparable and scale as 1/r6.

The atomic positions in the traps are described by x̂1 and x̂2, taken with respect to
the traps minima. Thanks to the harmonicity of the wells, we can actually eliminate
the un-coupled center of mass motion and describe the dynamics using the relative
position x̂ = x̂2 − x̂1 and the reduced mass µ = M/2, which is subjected to the same
harmonic potential as each atom. We will use the regular quantization formalism to
describe the motion in terms of phonons, i.e., occupation numbers of the discretized
levels of the harmonic oscillator (of frequency ω). The spatial extent of the motional
ground state is given by x0 =

√

ℏ/(2µω) and we write d the őxed distance between
the traps’ centers. The full Hamiltonian of the system is then:

Ĥ =
p̂

2µ
+

1

2
µω2x̂2 + Ûm(x̂)⊗ ℏ(2JΣ̂X −∆), (I.63)

where

Um(x̂) =

(

1 +
x̂

d

)−m

(I.64)

accounts for the distance dependence of the interaction coefficients. Once again, we
recall that if m = 3 i.e., ∆n = 1), we can set ∆ = 0. Throughout this study, we will
compute both the expectation value of the relative position x(t) = ⟨x̂⟩(t) and the spin
level probability P↑↓ over time, starting from | ↑↓⟩ and a given motional state.

To further simplify the Hamiltonian, we introduce the dimensionless quantity
ξ̂ = x̂/x0 and the coupling factor g = x0/d ≪ 1. Using the standard phonon number
n̂ = â†â, with â† and â the creation and annihilation operators for the harmonic levels
of the relative displacement, we end up with the spin-phonon Hamiltonian:

Ĥ/ℏ = ω(n̂+
1

2
) + (1 + gξ̂)−m ⊗ (2JΣ̂X −∆). (I.65)
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Figure I.7: (a) Schematic view of the geometrical conőguration for the study of the
spin-motion entanglement in a system of two trapped, interacting circular atoms in-
dexed 1 and 2. The spatial extent of the motional ground state (in yellow) is x0 and
the inter-atomic distance d. The trapping potentials are schematically shown in red.
(b) Potential energies as functions of the relative displacement x = x2−x1 in a strong
interaction regime. The bare sine potential is plotted in red, its harmonic approxima-
tion in blue (solid line). The two effective potentials V+ and V− exerted on states |X⟩
and | − X⟩ are the dashed and dotted lines respectively. They illustrate the ∼ ±2J
spin-dependence of the system’s energy.

Geometric picture and effective potentials

The spin dependence of the motion can be made more explicit by using the pro-
jectors on the two eigenstates of Σ̂X , | ±X⟩ = (| ↑↓⟩ ± | ↓↑⟩)/

√
2, through which we

decompose the Hamiltonian as follows:

Ĥ =

(

p̂2

2µ
+ V+(x̂)

)

⊗ |X⟩⟨X|+
(

p̂2

2µ
+ V−(x̂)

)

⊗ | −X⟩⟨−X|, (I.66)

where V+ and V− are the two effective potentials exerted on the two different spin
states:

V±(x̂) =
1

2
µω2x̂2 + ℏUm(x̂)(±2J −∆). (I.67)

These two effective potentials are plotted in őgure I.7 (b) as functions of the relative
displacement x, for a strong interaction regime that clearly separates them: n = 48
and ∆n = 1 (so that m = 3 and J ≃ −2π × 3 MHz dominates), d = 6 µm and
ω = 2π × 50 kHz. The bare sine trap and its harmonic approximation are also shown
here. The effect of the interaction is to shift, both spatially and energetically, the bare
harmonic potential. In state |X⟩, the interaction is attractive (J < 0, see őgure I.4 [b])
so the minimum is shifted to lower values of x, the spin energy is low and therefore
the effective potential is lowered. In | −X⟩, the interaction is repulsive, so x is shifted
to higher values, with a positive global offset on the potential because of the positive
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spin energy. For very strong attractive interaction, the hyperbolic behavior of Um(x)
can dominate the harmonic trap. In that extreme case, the conőning potential is not
robust enough to keep the atoms apart and the system becomes unstable: the effective
potential no longer traps the atoms. This issue, which we avoid in the rest of this work
by focusing on weak-enough interactions, is discussed in more details in appendix B.

We can thus see the motion as two uncoupled movements related to the two spin
components: if the initial state is |Ψ(t = 0)⟩ = |ψ0(x)⟩| ↑↓⟩, the evolving state then
reads:

|Ψ(t)⟩ = 1√
2
(|ψ+(x, t)⟩|+X⟩+ |ψ−(x, t)⟩| −X⟩), (I.68)

|ψ±(x, t)⟩ = e−iĤ±t|ψ0(x)⟩ being the evolution under the two effective potentials (Ĥ± =
p̂2/2µ+V±(x̂)). The motional ket associated to the | ↑↓⟩ spin component in the wave-
function is then (|ψ+⟩+ |ψ−⟩)/

√
2. The resulting spin level probability P↑↓ is derived

from the interference between these two paths.

Linear coupling

The őrst, simpliőed way of computing the effect of motion on the interaction dy-
namics is to consider the linear coupling limit, which amounts to developing (1+gξ)−m

in equation (I.65) to őrst order in g. Using η = gm, we get

Ĥ/ℏ = ω(n̂+
1

2
) + (1− ηξ̂)⊗ (2JΣ̂X −∆). (I.69)

Again, let us recall that if ∆n = 1, i.e. m = 3, we can consider ∆ ∼ 0. Following the
previous discussion, the two spin-dependent effective potentials read:

V±(x̂) =
1

2
µω2(x̂− x±0 )

2 ± ℏΩ

2
− ℏ∆− ℏω(α2 + α2

z). (I.70)

The displacements of the minima of both potentials are made explicit via x±0 =
2x0(±α− αz), where we introduce the two dimensionless shifts in phase space:

α = η
2J

ω
, αz = η

∆

ω
. (I.71)

The energy difference between the minima of the two effective potentials is written

Ω = 4J

(

1 + 2η2
∆

ω

)

. (I.72)

Under this form, it is possible to diagonalize the Hamiltonian using a unitary polaron
transformation via the displacement operator D̂(β) = exp

(

βâ† − β∗â
)

:

Û(α, αz) = D̂(αΣ̂X − αz) = eα(â
†−â)⊗Σ̂X−αz(â†−â)⊗1. (I.73)

In the transformed Hamiltonian ˆ̃H = Û †(α, αz)ĤÛ(α, αz) the spin and positions are
decoupled:

ˆ̃H/ℏ = ω(n̂+
1

2
) +

Ω

2
Σ̂X −∆− ω(α2 + α2

z). (I.74)
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In this linear coupling limit, we can therefore analytically compute the state of equa-
tion (I.68). We assume that the initial motion is described by a coherent state |α0⟩
and that the spins start in | ↑↓⟩.

The spin oscillation then writes:

P↑↓(t) =
1

2

[

1 + e−4α2(1−cosωt) cos (Ωt−Θ(t))
]

, (I.75)

with
Θ(t) = 4α(αz + α0) sin(ωt). (I.76)

The pair state undergoes oscillations between |↑↓⟩ and |↓↑⟩ at the Rabi frequency Ω,
which corresponds to the energy difference between the two effective minima. This is
in agreement with the wavefunction of (I.68): the two spatial components |ψ±(x, t)⟩
evolve with a phase difference of Ω, due to the energy imbalance between their two
effective Hamiltonians. Since P↑↓ is derived from the interference between these two
paths, as stated previously in the beginning of this section, we get the emergence of
spin Rabi oscillations at this frequency Ω. It amounts to a őrst-order correction of
the bare Rabi frequency 4J , as suggested by equation (I.72). The oscillation is phase-
shifted by the periodic function Θ, which is small compared to Ω because α, αz ≪ 1.
The contrast of the oscillations is also periodically modulated over time, at a frequency
ω/(2π). For a small displacement α (i.e. for a small coupling g), the contrast is barely
affected but, for a large value of α, it periodically collapses to zero with a period
Ttrap = 2π/ω.

We also show that, starting from the coherent state |α0⟩, the |ψ±(x, t)⟩ wavefunc-
tions remain coherent states throughout the evolution. Indeed, we derive from the
polaron transformation in the linear regime:

|ψ±(x, t)⟩ = |α0 + α±e
−iωt⟩, (I.77)

with α± = ±α − αz and up to time-dependent global phases that differ between the
two wavefunctions.

The two components of the motional state rotate along circles centered around α±

in phase space, at the angular frequency ω and with opposite orientations. Figure I.8
illustrates these trajectories in the oscillator phase space. The initial state splits into
two components that evolve separately before reuniting periodically, with a period
Ttrap.

The collapse of the Rabi oscillations and the splitting of the motional wavefunc-
tion, which both evolve with the same time period, hint at a full entanglement of
the spin and motional degrees of freedom when α in non-negligible. When the two
coherent states reunite in |α0⟩, the spin oscillates with perfect contrast. When the
two motional components are maximally separated, the envelope of the average Rabi
signal is reduced.
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Figure I.8: Phase-space trajectories of the two spatial components |ψ±(x, t)⟩ in the
linear regime, starting from an initial coherent state |α0⟩.

The linear approach gives a őrst glimpse of the possible effects of the atomic mo-
tion on the spin dynamics, which could range from no impact to a total collapse of the
Rabi oscillations depending on the strength of the coupling. Thanks to the polaron
transformation, which decouples the spin and motion dynamics, all observables can
be analytically computed in this regime. In the next sections, we detail the analysis
of this system in three different speciőc conőgurations, serving various purposes. We
use exact numerical simulations to compute observables when needed, in order to go
beyond the linear coupling limit.

I.3.2 Spin-motion coupling in the XXZ Hamiltonian parame-
ters

The őrst concrete application of this study is the estimation of the contrast loss in
the spin dynamics of the XXZ simulator that could be induced by the motional de-
gree of freedom of the circular atoms. Since the circular atoms allow for simulations
over long timescales, we need to scrutinize the spin-motion entanglement over many
interaction cycles. We can tackle this problem either via analytical solutions in the
linear coupling regime or using numerical computations at higher orders. To do so, we
consider here an atomic conőguration similar to the initial simulator proposed in [117].

We set a high trapping frequency to minimize the spin-motion coupling and con-
sider the atoms to be placed next to each other, again as two plates on a table4:

n = 48, n′ = 50, d = 6 µm, ω = 2π × 50 kHz,
F = 9 V/cm, B = 12 G.

(I.78)

4This configuration differs a bit from that of section I.2.3 on the presentation of the XXZ simulator:
the levels involved are not the same, the distance is slightly larger and F is smaller, so that the
interactions are weakened and the spin-motion coupling is further reduced.
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With these parameters, we compute the following interaction coefficients and other
relevant quantities:

J = −2π × 5.8 kHz, ∆ = −2π × 73.2 kHz,

g = 0.008, x0 = 48 nm, Ω = 2π × 22.8 kHz.
(I.79)

To estimate the effect of temperature as realistically as possible, we now take the initial
motional state to be a thermal distribution

ρ̂T (0) =
1

1 + n

∞
∑

n=0

(

n

1 + n

)n

|n⟩⟨n|, (I.80)

where the average phonon number n is related to the atomic temperature T via the
Bose-Einstein distribution n = 1/(eℏω/kBT − 1), with ℏω/kB = 2.4 µK the natural
temperature scale of the harmonic well. The initial spin level is taken to be | ↑↓⟩, so
that the system starts in:

ρ̂(0) = ρ̂T (0)⊗ | ↑↓⟩⟨↑↓ |. (I.81)

We implement the numerical simulations in this context and present the results in
őgures I.9 (a) and (b), respectively the displacement ξ(t) and the spin probability P↑↓

over tens of interaction cycles. The computations shown here are carried out to inőnite
order in the spin-phonon coupling but the terms up to second order actually already
account for all the features seen on the resulting graphs.

These simulations reveal some signiőcant contrast loss over time in the spin dy-
namics of the system, even though the motion remains limited, with an amplitude
for the relative position x of less than 15 nm (to be compared with the extent of the
motional ground state, 48 nm, and the inter-atomic distance of 6 µm).

To get more insight into this phenomenon, we compute the state energies up to
second-order in the coupling. We consider the eigenenergies of the linear Hamiltonian
of equation (I.69) to be known, via the polaron transformation described above. The
second-order coupling term 7/12 η2ξ̂2(2JΣ̂X −∆) is then treated as a perturbation on
that linear Hamiltonian, which allows us to effectively obtain the energies E(n, s) for
the states |n⟩ ⊗ |s⟩ to second-order in η, with s the spin state (|+X⟩ or | −X⟩) and
|n⟩ a motional Fock state. By computing the energy difference between the two spin
eigenstates |n⟩|+X⟩ and |n⟩|−X⟩, we retrieve the spin Rabi frequency Ωn associated
to this Fock state and show that it depends linearly on the phonon number:

Ωn = Ω+
7

3
η2J × n, (I.82)

with Ω = 4J(1 + 2η2∆/ω) the Rabi frequency in the linear regime. Altogether, each
motional level |n⟩ involved in the thermal distribution (I.80) induces its own spin Rabi
frequency Ωn. These different frequencies lead, over a few ms, to a progressive loss of
contrast in the average Rabi oscillation signal. However, since we consider the system
to be closed, we expect the evolution to remain coherent, so that the different contri-
butions are brought back in phase after some delay, a phenomenon quite reminiscent
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Figure I.9: (a) Displacement ξ(t) = x(t)/x0. We recall that x0 = 48 nm here, so that
the total amplitude of the oscillations of x2(t)−x1(t) is less than 15 nm. The top axis
(in blue) gives the evolution in numbers of trap periods Ttrap = 2π/ω. (b) Spin-state
probability P↑↓(t) over 100 spin oscillations, showing the loss of contrast due to the
spin-phonon entanglement. The top axis (in dark blue) shows the number of cycles
TRabi = 2π/Ω. (c) Envelope C(t) of the Rabi oscillations over time, computed for
various temperatures and over several hundred cycles of interactions.

of the quantum revivals observed for the Rabi oscillation of a two-level system in a
coherent quantum őeld [167]. We show this result in őgure I.9 (c), where we plot the
envelope of the Rabi oscillations over long timescales and for various temperatures.
We observe that, as the temperature grows, the contrast loss becomes more severe.
There is nonetheless always a revival of the oscillations after some amount of time,
which corresponds to approximately 350 oscillations (or 17 ms).

Two conclusions can be drawn from these results:

• First, the contrast loss is highly sensitive to the temperature of the atoms: even
at 2 µK, the contrast is already diminished by half. Lowering the atomic tem-
perature is therefore key to limiting these effects. With standard optical and
adiabatic cooling mechanisms, temperatures of a few µK can be reached. More
advanced mechanisms, such as side-band Raman cooling [168], should be consid-
ered to fully prevent these effects by forcing the atomic temperature to be small
compared to Ttrap.5

5Increasing the trapping frequency ω would also limit this effect but might not be a viable long-
term solution appropriate for large number of traps.
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• Secondly, since this contrast loss results from a mere dephasing of different Rabi
frequencies and not from irremediable decoherence, it could in principle be can-
celed out by echo techniques, that have yet to be detailed.

We therefore get the answer to the original question that spawned this study: un-
der the right circumstances, spin-motion coupling should not be detrimental to the
realization of a circular atom quantum simulator. The system does not exhibit any
irreversible motional-induced decoherence. We should only expect some preventable
contrast loss that highly depends on the temperature of the atoms.

I.3.3 Application to thermometry

The temperature dependence of the spin dynamics incidentally suggests that one could
use the Rabi oscillations to directly probe the motion of the atoms. More speciőcally,
by making the spin-phonon interplay as large as possible within reasonable bounds,
could this effect be put to use to make the circular levels a thermometer for the atomic
motion? To investigate this question, we keep the atomic parameters of the previous
section but lower the trap frequency from 2π × 50 kHz to 2π × 15 kHz, such that we
reach the coupling strength g = 0.015 (versus 0.008 for the XXZ simulator), which
should exacerbate the effects of the motion on the spin evolution. The linear coupling
results should remain valid for low temperatures, as g is still small and validates the
perturbative treatment of the problem.

Figure I.10 (a) shows the results of exact simulations of the spin evolution in this
system, over a few periods and for various temperatures. As expected, the contrast
decays much faster than in the previous part (see őgure I.9 [b] and [c]) as soon as the
temperature is non-zero, because of the lower trapping frequency. The quick decay
allows for an efficient probe of the temperature: measuring the spin level after half of
an oscillation (i.e. after ∼ 23 µs) already yields information on the motional state of
the atoms.

In őgure I.10 (b) we detail this feature by plotting the population at half of the
Rabi period P↑↓ [TRabi/2] as a function of temperature, both using the analytics of the
linear case (blue dotted line) and the numerical simulations for exact resolution (red
solid line). The two are in good agreement for low temperatures (under 10 µK). In
that range, the slope is approximately 2% /µK: a measurement of the spin population
with a 1% error therefore gives a temperature estimation with a 1 µK precision.

To go further, we study the variation of this sensitivity with the geometric parame-
ters of the system. We write P ∗

↑↓ the spin population at half the Rabi period and derive,
from the linear regime results, the sensitivity dP ∗

↑↓/dn (equivalent to dP ∗
↑↓/dT but more

straightforward to compute), using φR = πω/(4J), the phase halfway through the őrst
spin oscillation:

dP ∗
↑↓

dn
= 4α2(1− cosφR) cos(4ααz sinφR)e

−4α2(1−cosφR)(2n+1). (I.83)
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Figure I.10: (a) Rabi oscillations in the XXZ atomic parameters but with a low
trapping frequency of 15 kHz. The motion-induced contrast decay occurs over a few
oscillations and strongly depends on the temperature. (b) Spin expectation value
at half the Rabi period as a function of temperature. The solid red line depicts the
result of exact numerical simulations, while the blue dotted line is derived from the
linear coupling results. The two approaches remain comparable for temperatures below
10 µK. (c) Thermometer sensitivity, in %/phonon, as a function of ω and d, for n = 1.
The lower left part of the plot (white hatched area) where dP ∗

↑↓/dn decreases to zero
should be ignored, as it corresponds to conőgurations where the trapping depth is not
enough to counteract the strong interactions.

Figure I.10 (c) plots this quantity as a function of ω and d, taking n = 1 (i.e.,
with always the same phonons in the motional states of the harmonic well). At
ω = 2π×15 kHz, this condition corresponds to T ≃ 1.5 µK and at ω = 2π×50 kHz to
T ≃ 3 µK. For low values of ω and d, the interaction is too strong to keep the atoms
in their shallow traps: it overcomes the trapping potential and the traps open up. The
lower left part of the plot I.10 (c), hatched in white and where the sensitivity abruptly
drops, should be ignored. It corresponds to instabilities previously mentioned and
addressed in appendix B. The graph clearly exhibits a region of sensitivity maxima,
where we expect the spin population to vary by 3% per phonon. The parameters used
in this section (d = 6 µm and ω = 15 kHz) were not far from that optimum. Although
this is computed using the linear coupling results, we expect these considerations to
hold true for the system as long as the temperature is not too high, as shown in panel
(b) of őgure I.10.

With the right set of parameters, the precise measurement of the spin popula-
tion therefore provides a sensitive temperature estimation for the initial atomic mo-
tion. It is most appropriate for small oscillation frequencies and low average phonon
numbers, conditions in which other methods (release and recapture after thermal ex-
pansion, measurement of motional side-bands) tend to fall short. Furthermore, the
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short timescales involved here (half a Rabi oscillation) also make this method appli-
cable to ordinary low-ℓ, short-lived Rydberg states, already in use in several quantum
simulation platforms.

I.3.4 Motional Schrödinger cat states

We described so far the impact of the atomic movement on the spin dynamics of
the pair of atoms: the motion-induced contrast loss should not be detrimental to
simulation of spin physics and could actually be used to probe the temperature of the
system. In this last section, we scrutinize the motional states of the atoms themselves.
As explained from equation (I.68), we expect the displacement associated to the spin
level | ↑↓⟩ to be (|ψ+⟩+ |ψ−⟩)/

√

(2), i.e., a Schrödinger cat state, where |ψ±⟩ are the
evolutions under the two effective potentials of equation (I.67) (or (I.70) in the linear
coupling limit). In order to investigate the formation of these states, we switch to the
set of parameters of the direct exchange6, with ∆n = 1:

n = 48, n′ = 49, d = 8 µm, ω = 2π × 50 kHz,
F = 9 V/cm, B = 12 G.

(I.84)

These parameters lead to a large interaction term J , and therefore a large motional
displacement α = 2ηJ/ω, while keeping the coupling g = x0/d small so that the linear
regime results remain accurate:

J = −2π × 1277 kHz, ∆ = −2π × 9 kHz,

g = 0.006, x0 = 48 nm, Ω = 2π × 5106 kHz.
(I.85)

This conőguration is notably close to that detailed in section I.2.2 on the pure direct-
exchange interaction, and the fact that we focused on this scheme in our experiments
adds a layer of relevance to the investigation of its spin-motion dynamics. Although
we use different circular levels here, ∆n = 1 guarantees that the fast direct exchange
term J dominates the spin evolution and ∆ can be discarded.

We proceed as in the last two sections: the system is initialized in ρ̂(0) = ρ̂T ⊗ | ↑↓⟩⟨↑↓ |,
with ρ̂T a thermal distribution of temperature 2 µK. We compute the exact evolution
numerically, although the linear regime analytics yield the same results quite accurately
thanks to the low g value. To properly characterize the spin-phonon entanglement and
the motional states, we compute two additional quantities besides P↑↓(t) and ξ(t): the
von Neumann entropy [169] and the Wigner function [167] of the displacement.

The von Neumann entanglement entropy, which quantiőes the łmixedž or łpurež
character of the spin state, is deőned as:

SvN(t) = −Tr (ρ̂S(t) ln ρ̂S(t)) , (I.86)

where ρ̂S(t) is the spin density matrix, obtained by tracing over the harmonic oscillator
part of the full density matrix ρ̂S(t) = TrHO (ρ̂(t)). This quantity is always positive.

6The only differences with the set of parameters of section I.3.2 on the contrast loss in the XXZ
simulator are ∆n and d, taken to be a bit larger (8 µm instead of 6 µm)
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In the limiting case of the spin being in a pure state, SvN = 0. When the spin is
in a maximally mixed state, i.e., fully entangled with the motion, the von Neumann
entropy is ln(2), its maximal value.

The Wigner function of the motion is a function deőned in phase space, using the
number parity operator Π̂ = (−1)n̂, the displacement operator D̂(β) = eβâ

†−β∗â and
the motion density matrix ρ̂HO = TrS (ρ̂):

W (q) =
1

π
Tr

{

ρ̂HOD̂(q)Π̂D̂†(q)
}

, (I.87)

in which we use q = (r + ip)/
√
2. We also compute the projected Wigner function

W (q) =
1

π
Tr

{

⟨↑↓ |ρ̂| ↑↓⟩D̂(q)Π̂D̂†(q)
}

, (I.88)

where the oscillator density matrix is conditioned on the spin state | ↑↓⟩, to speciőcally
probe the motional entanglement associated to that state. Indeed, we recall that we
expect the evolution from a pure motional state to go as

∝ [|ψ+⟩+ |ψ−⟩]⊗ | ↑↓⟩+ [|ψ+⟩ − |ψ−⟩]⊗ | ↓↑⟩. (I.89)

We introduce W to examine the displacement starting from the mixed thermal state
and when projecting the spin in | ↑↓⟩.

We present the evolution of all these quantities, in the current direct-exchange con-
őguration, in őgure I.11. The spin dynamics display a total collapse of the envelope
after ∼ 15 oscillations and an almost perfect revival after one trap period Ttrap, when
the contrast nearly grows back to 1. The normalized von Neumann entropy in panel (c)
explicitly indicates that, when P↑↓ stagnates at 0.5, the entanglement between spin
and motion is maximal. Regarding the motion, we witness in panel (b) much slower
oscillations of the displacement ξ = (x2 − x1)/x0 at the trap frequency ω. In terms
of phonons, this leads to an evolution of n, the average phonon number, between its
initial value of ∼ 0.4 (corresponding to 2 µK) and 4, which amounts to a 10 µK tem-
perature. The exchange interaction in this trap thus induces a non-negligible łheatingž
of the atoms.

The standard Wigner function W (q) (top row of panel (e) in őgure I.11) splits
into two components that evolve along circles in phase space, in opposite directions
(drawn in green in the őgure) and with angular frequency ω. They each correspond
to the motion in the effective potentials V+ and V− predicted in the linear regime and
already illustrated in őgure I.8. The projected Wigner function W (q), on the other
hand (bottom row of the same panel), displays negative regions that appear over half
of a trap oscillation and rotate as the features of W (q). These indicate a non-classical
evolution and are characteristic of a cat state [167]. Throughout the plateau of the
spin oscillations, the motion is in a two-component Schrödinger cat state of the har-
monic oscillator.
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Figure I.11: Evolution of the system observables in the ∆n = 1 conőguration, com-
puted to inőnite order coupling. (a) Rabi oscillations of the spin state P↑↓, showing
a total collapse and a revival of the contrast after one trap period. (b) Displacement
ξ(t), oscillating much slower than the spins, due to the large imbalance between J
and ω. (c) Evolution of the normalized von Neumann entropy, reaching 1 over a large
span of time and thus indicating maximal entanglement between the spin and motion
degrees of freedom. (d) Average number of phonons n(t), starting from a thermal
state of T = 2 µK. (e) Standard (top row) and projected (bottom row) Wigner func-
tions computed at various times over half a trap period. The negative values of W
(blue regions) reveal a clear Schrödinger cat state during the collapse of the spin Rabi
contrast.
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We have explored in the last part of this őrst chapter several consequences of the
coupling between motion and atomic states in a system of two trapped, interacting
circular Rydberg atoms. We showed that, in the tight trapping regime, the motion
degree of freedom does not lead to an irreversible damage to the spin oscillations:
although the low-phonon number regime is key to limiting the reduction of the con-
trast, motion-induced effects could be canceled out via additional echo techniques,
and quantum simulation should remain accessible over long timescales. Moreover, it is
possible to take advantage of the spin-phonon coupling to precisely and quickly probe
the motional states of the atoms. In the strong coupling regime, we showed that the
spin and motion become fully entangled, leading to interesting, non-classical motional
states, which should be realistically observable in accessible experimental conditions.
These őrst results constitute only a őrst step in the exploration of these phenomena
and can obviously be further detailed. To explore the full XXZ dynamics, a resonant
microwave drive could easily be added to the spin Hamiltonian in the simulations. The
extension of the model to more than two atoms would also be an interesting develop-
ment. A more reőned description of the trapping could őnally be implemented: the
two circular states involved have different sizes and therefore do not perceive exactly
the same trap shape.
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Conclusion of chapter 1

We presented in this őrst chapter the main properties of individual and interacting
circular Rydberg atoms that pertain to the scope of this thesis. The hydrogenic model
was used to introduce the features of Rydberg states of Rubidium, the alkali species
used in our experiments. The theory of quantum defects accounts for corrections to
the hydrogen model that have to be taken into account to describe low-ℓ Rydberg
states. Their coupling to static őelds and their classiőcation within a given n manifold
were detailed, so as to provide the tools and formalism required to understand the
experimental excitation of Rubidium from its ground state to circular states, on which
our results are based. We outlined the remarkable properties of these speciőc states:
long lifetimes, large dipole matrix elements and their sensitivity to the ponderomotive
force, which allows their individual trapping in hollow beams of light.

Such features hinted at the use of circular states as spin-encoding levels in quantum
simulation schemes. This idea ultimately led to the experimental results presented in
this thesis, on the interactions between trapped circular atoms. The second part of this
chapter therefore discussed the framework in which we study these interactions, going
from the perturbative treatment of the dipole-dipole interactions to their description
using the toolbox of spin physics. We focused on the case of two atoms restrained to
circular states separated by a single quantum of angular momentum and thoroughly
described the interactions and their geometrical dependence in this case. We also ex-
amined the more complex paradigm envisioned for the realization of a tunable XXZ
Hamiltonian using circular atoms, which should open up prospects of rich and complex
experimental investigations.

The third part focused on the more speciőc problem of spin-phonon coupling in
pairs of trapped, interacting circular atoms. Although highly sensitive to the atomic
temperature, the interplay between the atomic and motional degrees of freedom is
far from being detrimental to the implementation of quantum simulations, and could
actually be used to probe the temperature of the atoms or to generate interesting
Schrödinger cat states of motion.



Chapter II

Defect-free arrays of ultracold atoms

The main goal of this thesis is to measure and characterize, for the őrst time, interac-
tions between circular Rydberg atoms. Since interacting circular atoms are a new őeld
of investigations for our team, we decided to simplify our endeavor by the following
means. First, we chose to conduct the experiments in a room-temperature setup, even
though one of the main assets of circular atoms is their long lifetimes in a cryogenic
environment. Albeit constraining us to the study of interaction dynamics over short
timescales because of the reduced lifetimes, this choice allowed us to get rid of the ex-
perimental layer of complexity that comes with a cryogenic setup. We were therefore
able to focus on mastering techniques that were new to us, especially in the optical
trapping domain. The setup was designed to eventually be easily transferred into a
cryostat, once it is deemed acceptable to add this constraint, with which our team has
years of experience [170, 171]. Secondly, and partly because of the reduced lifetimes,
we decided to focus on the investigation of the direct exchange interaction. As we have
seen in chapter 1, it involves short timescales and can easily be probed via microwave
spectroscopy thanks to the energy distance of several MHz between the pair states.
We focused on interactions within pairs only, as a őrst step towards the realization of
more complex geometries. All in all, the experimental prerequisites to reach the goals
of this thesis were the deterministic creation of pairs of trapped circular states and the
ability to measure the state of the atoms within said pairs.

This second chapter presents the main features of our new experimental setup and
details the łground-statež part of the atomic manipulations. We introduce here the
ultra-high vacuum chamber that hosts the experiment. Within that chamber, we ma-
nipulate the atoms in a hollow sapphire cube holding electrodes for precise electric
őeld control. We also detail the crucial optical trapping apparatus, which consists in
three different beams to (i) trap the ground-state atoms in tweezers, (ii) move them
around to create deterministic arrays and (iii) trap the Rydberg atoms in hollow beams
once the excitation process has been carried out. The optical traps are shaped thanks
to spatial light modulators, in a process that involves careful algorithmic optimizations.

We then describe the preparation and characterization of arrays of ultra-cold atoms,
individually trapped in optical tweezers loaded in a probabilistic manner. These őrst
points were conducted alongside Brice Ravon, with whom I worked on the design, con-
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struction and operation of this new setup. A more detailed account of these features
can be found in his own PhD manuscript [123], the őrst to present this setup and its
capacities.

The third section of this chapter őnally discusses its most recent development, the
addition of the rearranger beam, used to create deterministic atomic arrays by spa-
tially reordering the atoms in each experimental run.

II.1 Experimental setup

We start with the technical description of the key features of the experimental setup.
To give an idea of the mechanical conőguration of the experiment, we present the
chamber in which we manipulate the atoms and the relevant elements in its vicinity.
We then describe the setup inside the chamber, designed to precisely control the elec-
tromagnetic őelds. We also choose to detail the optical setup put in place to trap the
atoms, both in their ground and Rydberg states, as it constitutes a new and crucial
element in the success of our achievements. The description of the other laser systems
is left out of the main text and presented in appendix D. Other components of the
setup, such as the őeld ionization system or the single-atom imaging scheme, will only
be mentioned, since they consist in standard technology and do not involve any new
technical implementations.

II.1.1 The ultra-high vacuum chamber

Our experiments take place in a ultra-high vacuum (UHV) chamber, where the residual
pressure is kept at 3×10−10 mbar by an ion pump. Figure II.1 depicts the chamber and
its surrounding optical table, which accommodates all the components used to bring
the various laser beams to the experiment through eight optical windows. Under the
chamber is a structure that holds a bi-dimensional magneto-optical trap (2D-MOT,
developed by the SYRTE laboratory), in which a rubidium cell continuously releases
atoms. Its operation is described in details in [172]. The 2D-MOT is directly con-
nected to the chamber via a tube. It provides a vertical stream of slow (10ś20 m/s)
atoms fed into the experiment that we control by switching on or off the 2D-MOT
laser beams. The 2D-MOT has two advantages: to allows to enable or disable the
source of cold atoms at the ms scale, and is compatible with a cryogenic setup. The
UHV chamber and 2D-MOT ²are shown in őgure II.1 (a), where we also deőne the
coordinate system (x, y, z) that will be used throughout the rest of the text. The whole
structure is supported by a frame, on which large magnetic coils are placed to cancel
out earth’s and other stray magnetic őelds in the region of the experiment (shown in
the inset of panel [a]).

The heart of the experiment, where we manipulate the atoms, is made of a hollow
sapphire structure located in the cylindrical center of the UHV chamber, which is
shown in beige in őgure II.1 (b). The sapphire structure appears in the center of panel
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Figure II.1: Main elements of the experimental platform, adapted from [123]. (a) De-
piction of the largest components of the setup, showing the UHV chamber, the sur-
rounding optical table and the atom source (2D-MOT) right under them. The com-
pensation coils are drawn in the inset: in blue for Bx, pink for By and green for Bz.
(b) Close-up on the main parts of the UHV chamber: the heart of the experiment
where the atoms are manipulated is shown in beige, the ion pump and associated
tubing in purple, the ion channeling and detection setup in yellow and the electrical
feedthroughs in cyan. The optical access directions used to shine beams onto the
atoms are illustrated with red arrows. The one coming from +y is hidden behind the
chamber. (c) Coil holders shown around the sapphire cube that hosts the heart of the
experiment. The colors are the same as for the compensation coils.

(c) of that őgure, and in more details in őgure II.2 of the next sub-section, where we
thoroughly discuss its design. The hollow sapphire cube holds various electric-őeld-
control electrodes, designed to precisely tune the static and radio-frequency őelds in
the region of the experiment, at its center. The UHV chamber is equipped with several
electrical feedthroughs to control the electrodes. A total of 8 windows allow optical
access to the center of the UHV chamber, along 4 axes: x, y, and at angles of ±45°
in the y − z plane (all drawn with red arrows in II.1 [b]). One of its sides (in +x)
also hosts the ion detection setup, designed to be compatible with an optical access
along that axis. A microwave horn antenna, not shown in the őgures, is placed close
to the 45◦ (−y,+z) window to shine microwave radiation onto the atoms when needed.

A set of 3 pairs of coils allow for precise, time-resolved control of the magnetic őeld
in the region of the atoms, at the ms scale. The coils are placed on holders secured
onto the UHV chamber, and are shown in panels (b) and (c) of őgure II.1. The Bx coils
are positioned as close as possible to the atoms in order to create the őeld gradient
for the magneto-optical trap and the strong directing magnetic őeld used to carry out
the Rydberg experiments. The less critical By and Bz coils are placed further away
from the atoms and help őne-tune the magnetic őeld.
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II.1.2 Sapphire cube and electric-field control

The individual trapping and manipulation of the atoms, from their ground state to
circular levels, takes place in the center of the hollow, custom-made sapphire structure.1

Having dimensions of 50 × 50 × 55 mm, it will from now on be simply referred to as
the sapphire cube. A picture of it, attached to one of the UHV chamber ŕanges, is
shown in őgure II.2 (c). A 26×26 mm vertical opening throughout the cube allows for
the loading of the atoms from below, coming from the 2D-MOT under the chamber
(represented in őgure II.1 [a]). Eight additional holes, drilled in the sapphire structure
and aligned with the eight windows of the chamber, ensure the optical access to the
atoms along the four different axes previously mentioned. The four holes along the
diagonal directions in the y− z plane have a diameter of 8 mm, when that of the pairs
of holes along x and y is 12 mm. Two aspheric lenses are placed inside the openings of
the ±y holes into the center of the cube. They are used to tightly focus the trapping
beams onto the atoms and are depicted in light blue in the drawings of őgure II.2.

As we have seen in the őrst chapter, Rydberg atoms are highly sensitive to static
electric őelds; a őne control of them throughout the experiments is essential to their
manipulation. The inner dielectric surfaces of the cube are therefore covered with
gold-plated, brass electrodes, shown in pink, yellow, blue and red in őgure II.2. These
ten electrodes, whose potentials can be individually set, allow for a very precise control
of the electric őeld and its gradients in all three directions. We split the ten electrodes
into four groups:

• The two electrodes along x, used to deőne the quantization axis when manip-
ulating high-ℓ Rydberg states, by maintaining F parallel to x. Drawn in pink
in őgure II.2, they are called the Stark electrodes. We also use them to ionize
the atoms for state-selective detection by applying high voltages to them. They
each have a 6 mm diameter hole in their center to allow optical access along x.

• The two additional electrodes along the x axis, pictured in blue in the őgures,
which are used to cover the sapphire surface to avoid stray őelds. They are called
the Stark holder electrodes.

• The four electrodes placed on the +y and −y sides of the atoms, with tubes
going up the diagonal holes in the cube and drawn in yellow in the őgure: these
electrodes generate the radio-frequency őeld needed to reach, starting from the
bottom of the Rydberg manifolds, the circular states. Called the RF electrodes,
they are also used to apply static őelds to the region of manipulation of the
atoms to őnely tune the three components Fx, Fy and Fz of the electric őeld.

• The lens holder electrodes, placed between each aspheric lens and the sapphire
structure. They maintain electrical contact with the lenses, which are made
conductive thanks to an indium tin oxide coating on their surfaces. This set of

1Sapphire was chosen as the building material for the heart of the setup because it is both a good
electrical insulator and thermal conductor: it can hold various high-voltage electrodes and dissipate
the heat potentially induced by stray light from intense laser beams. This last property is crucial for
a transfer of the experiment to a cryogenic setup.
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Figure II.2: Sapphire cube and its electrodes, adapted from [123]. (a) Views of the
cube and its electrodes from the top and from the −x side. (b) 3D rendering of the
sapphire structure and electrodes. The grey tube is grounded and used to guide the
ions for Rydberg state-selective detection. (c) Picture of the sapphire cube secured
onto a ŕange (2) of the UHV chamber; a support for one of the Bx coils (3) is also
visible. One of the aspheric lenses can be seen in the center of the image. (d) Ex-
ploded view of the 10 electrodes surrounding the region of the experiment: the 2 Stark
electrodes responsible for the directing őeld Fx (pink), the 2 Stark holders (blue), the
4 RF electrodes (yellow) and the 2 lens-holding electrodes (red). The 2 aspheric lenses
and their supports (pictured assembled in the inset) also appear in the panel.

electrodes adds an additional layer of control over Fy, especially to reduce its
gradient.

We therefore have in this new setup an environment in which we can manipulate
atoms in precisely controlled electric and magnetic őelds. In appendix C, we detail
how we predict, measure and calibrate the electric őeld in three dimensions. The
electrode setup, although substantial, is designed to allow numerous optical accesses
to the atoms. Among these optical paths, one is speciőcally designed to tightly focus
the trapping beams via the two aspheric lenses placed in the sapphire structure.
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II.1.3 Optical trapping setup

To trap the atoms throughout the experiments, we work with three different trapping
beams:

• the tweezers: an array of tightly focused gaussian beams, designed to trap indi-
vidual ground state rubidium atoms through the dipole force,

• the rearranger: a single gaussian beam whose intensity and position can be
quickly tuned to move single atoms from one site to another on the tweezer
lattice,

• the bottle beams (łBoBsž): an array of hollow traps, devised to trap individual
Rydberg atoms via the ponderomotive force.

Optical system

All three of these trapping beams emanate from the same laser, a Toptica TA Pro
system, set to 821 nm with 2 W of output power. The initial laser beam is split in
three via two acousto-optic modulators (AOM). Each of these beams is sent via dis-
tinct optical őbers to the UHV chamber optical table, where they are overlapped and
sent to the experiment after having been shaped separately for their respective pur-
poses. The top inset of őgure II.3 shows the arrangement used to split the laser output
between the three trapping beams. If the atoms are in Rydberg states, a őrst AOM
sends all of the laser intensity to the BoBs path, as there is no need for tweezers or the
rearranger. If the atoms are in their ground state, this AOM is turned off and all the
light goes to a second AOM, which splits it between the rearranger and the tweezers.
Its őrst diffraction order is sent to the tweezers őber, and the residual, non-diffracted
light goes to the rearranger. Tuning the diffraction efficiency of this AOM changes the
power balance between the tweezers and the rearranger. This scheme ensures that a
maximal amount of light is always allocated to the traps independently of which ones
are being used (as opposed to having power divisions of őxed ratios).

On the UHV chamber optical table, three different spatial light modulators (SLMs)
shape each of the trapping beams to create the desired intensity patterns in the region
of the experiment and correct for aberrations induced by the optical paths. We detail
this crucial process in this section. Moreover, an acousto-optic deŕector (AOD) is
placed on the rearranger path. It allows to control its position and intensity over fast
timescales in order to move single atoms around the tweezer lattice. We will discuss
that speciőc part of the setup in the last section of this chapter. All of these optical
elements are pictured in őgure II.3, where the trapping beams are colored in green.
We also show in this őgure, for future reference, the other optical systems involved
in the experiment, such as the magneto-optical trap beams, the Rydberg excitation
lasers, the łRamanž beams and the imaging setup. After reŕecting on their respective
SLMs, the three trapping beams are overlapped via polarization-dependent cubes and
sent into the UHV chamber and sapphire cube along the y axis. They are tightly fo-
cused by the aspheric lens (Asphericon AFL12-15-S-U-285), of focal length 16.3 mm,
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Figure II.3: Schematic view of the optical systems involved in the experiment. All of
them lie on the optical table surrounding the UHV chamber. The top inset represents
the scheme for power distribution between the three trapping paths. Shown in green,
the trapping beams are each reŕected on an SLM before being overlapped and sent into
the experiment. The * symbol indicates the position where spatial őltering is carried
out. We also represent here the other optical systems involved in the experiments.
The cooling lasers (łMOT beamsž, two along x and four in the y− z plane) are shown
in red. The two Rydberg excitation beams, in dark red and in blue, propagate along
x. The imaging system, which collects the atomic ŕuorescence signal and sends it to
the EMCCD camera, is represented in red. Other beams, such as the łprobež, łtunable
repumperž and łRamanž beams also appear on the őgure. The various uses of these
systems are addressed throughout the rest of the text, using this őgure as reference
for the geometry of the system.
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to create the required traps at the position of the atoms. The second identical aspheric
lens then re-collimates the beams. After exiting the chamber, a small fraction of the
intensity is sent to a camera for alignment and beam shaping purposes.

Spatial light modulation

The SLMs we use are Hamamatsu łliquid crystals on siliconž phase modulators,
models X10468 for the tweezers and the rearranger and X15213 for the BoBs (the
latter has higher resolution and is used for more complex beam shapes). Each SLM
is made of a dielectric mirror covered by a matrix of independent phase modulators,
that can be seen as elementary łpixelsž. Every single pixel has a tunable refractive
index. Upon reŕection on the SLM, an arbitrary discrete phase pattern, or łphase
maskž, is applied to the light beam. The diffraction by this phase mask is what allows
us to arbitrarily shape the trapping beams. To brieŕy explain the SLM operation, we
denote u and v the transverse coordinates in the SLM plane, φ(u, v) the phase pattern
applied (with values in [0, 2π[), and consider the light őeld in this plane to be that of
a gaussian beam of waist w and wavelength λ = 2π/k. The beam, that we suppose
to propagate along y as in the experiment, is subsequently focused by a lens of focal
length f . The resulting őeld distribution then writes, close to the lens’ focal plane
y = 0, in the paraxial approximations and up to global constants [173]:

F (x, y, z) ∝
∫

eiφ(u,v)−
u2+v2

w2 (1+iwky/f) × e−i
k
f
(ux+vz)dudv (II.1)

We recognize here the Fourier transform of a function related to the phase mask. We
write this function

fy(u, v) = eiφ(u,v)−
u2+v2

w2 (1+iwky/f), (II.2)

which amounts to the transparency function of the phase mask, multiplied by the
beam’s gaussian proőle and by a function that depends on the observation position.
The őeld in the focal plane of the lens is then simply:

F (x, y, z) ∝ FT [fy]

(

kx

f
,
kz

f

)

. (II.3)

Creating the desired intensity proőle F in the focal plane of the lens is however not
as simple as applying, on the SLM, the phase mask derived from the inverse Fourier
transform of F . The inverse Fourier transform of a target őeld would impose not only
a phase, but also an amplitude distribution in the SLM plane. However, we have no
control over the incoming intensity proőle, as it is always that of a gaussian beam
of 4-mm waist. As we will see, the procedure we implement to properly shape the
traps is much more involved than that. We go over this scheme rather quickly: a
more detailed discussion will be found in Y. Machu’s upcoming PhD dissertation. We
focus here on a single SLM as a generic example: the procedure is exactly the same
for each of the three trapping beams, the only difference being the target intensity
distributions that are speciőc to each trapping system. The process is divided into
three steps, each producing a phase mask: (i) positioning and spatially őltering the
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trapping beam, (ii) generating the desired trapping intensity pattern, (iii) correcting
optical aberrations. The end result is the addition, modulo 2π, of the three created
phase masks.

(i) Position and spatial filtering

The őrst step consists in getting rid, in the trapping beam, of the unwanted stray
light that is not diffracted by the SLM (of imperfect diffraction efficiency). We do
so with a simple grating pattern in the phase mask. In a disk-shaped region in the
center of the SLM, of radius 5.5 mm and corresponding to the area of illumination
(all three beams have a waist of 4 mm), we implement a vertical grating using the
allowed phase modulation. Over the rest of the SLM surface, an horizontal grating is
applied. The top left image of őgure II.4 (a) shows such a phase mask. We also install
a őrst focusing system before the UHV chamber, using two lenses of focal lengths
400 mm and as pictured in the region labeled with a * in őgure II.3. In the focal
plane of these lenses we place a small pinhole, positioned such that it only lets the
desired diffracted light go through. Thanks to the grating patterns, in this focal plane
the light diffracted by the vertical grating of the central region of the SLM is shifted
horizontally with respect to the non-diffracted, zero-order light (always present due to
the technical imperfections of the SLM), which is itself blocked by the pinhole. More-
over, the light diffracted by the edges and corners of the SLM outside of the central
disk is shifted vertically and is also blocked by the pinhole. This operation allows us
to remove the stray, zero-order light which could damage the intensity patterns seen
by the atoms. It also restores a cylindrical symmetry around the propagation axis in
spite of the rectangular SLM frame, thanks to the disk-shaped intensity selection that
we call from now on the łdiffracting pupilž. Tuning the central grating of the pupil
will also enable the őne adjustment of the traps’ positions in the plane of the atoms
by global shifts of the intensity pattern in the x − z plane. This spatial őltering is
implemented in the same manner for all three of the trapping beams.

(ii) Trapping pattern definition

The decisive point in the deőnition of the őnal phase mask is őnding the SLM phase
pattern that will generate the desired intensity proőle seen at the atoms’ position, in
the focal plane of the entrance aspheric lens. To do so, we implement an adaptation of
an algorithm devised by Gerchberg and Saxton [174]. Given an input intensity proőle
I0 (in the SLM plane, measured from the incoming beam) and a target output pattern
It (in the focal plane), it enables the retrieval of a phase mask that will yield the
desired result. It proceeds iteratively as follows, writing Akeiϕk the őeld proőles in the
plane of the SLM and Bke

iψk those in the focal plane of the focusing lens:

• initialization: the őeld in the SLM plane is deőned as A0e
iϕ0 =

√
I0e

iϕ0 , with ϕ0

a random phase mask or an educated guess.

• nth iteration:

– compute the őeld in the focal plane Bn−1e
iψn−1 = FT

[√
I0e

iϕn−1
]

,
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Figure II.4: (a) Illustration with real SLM phase proőles of the three components in
the deőnition of the phase mask: a őrst phase layer made of gratings ensures spatial
őltering and removes stray light (the central vertical grating is at a slight angle to
őne-tune the traps position), a second layer computed from the Gerchberg-Saxton
algorithm imprints the phase that will lead to the target intensity in the image plane,
a third layer corrects optical aberrations. The grating used to discard the light hitting
the edges of the SLM is always present. The addition modulo 2π of the three layers
yields the őnal phase mask. (b) Real image of the three trapping beams as they
typically exist in the experiment: BoBs (blue), tweezers (red) and rearranger (green,
center of the image). The image is taken on the diagnostics camera after re-focusing at
the exit of the UHV chamber but the distance scale shown is that of the corresponding
lattices in the experiment at the position of the atoms.

– replace the obtained amplitude with the target intensity proőle:
Bn−1e

iψn−1 →
√
Ite

iψn−1 ,

– derive the corresponding őeld in the SLM plane vie the inverse Fourier
transform: Aneiϕn = FT−1

[√
Ite

iψn−1
]

,

– replace the SLM őeld amplitude with the imposed intensity:
Ane

iϕn →
√
I0e

iϕn .

• conclusion: stop the iterations after a őxed number of loops or once Bn is close
enough to the target

√
It. We keep ϕn as the phase mask to apply on the SLM

to get the target trapping pattern in the focal plane of the focusing lens.

The resulting phase-mask, an example of which is given in őgure II.4 (a) (center
image of top row), is then simply added modulo 2π to the diffracting pupil. We carry
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out this algorithmic procedure to create arrays of tweezers with arbitrary geometries.
To make sure that we implement homogeneous lattices, the procedure is run a őrst
time, with an array of identical tweezers as the target. We then measure the power of
each tweezer in the result, using the diagnostics camera. The resulting power distribu-
tion shows some ŕuctuations across the array. We then re-run the algorithm, this time
taking as the target the array of tweezers with single-site intensities adjusted to cancel
out the measured spatial variations. The result is now an array with very homoge-
neous single-site powers, with deviations across the lattice of the order of 0.4% around
an average value. The number of traps we can effectively implement is only limited
by the trade-off between the available laser power and the power per site required to
efficiently trap ground-state atoms.

To create arrays of hollow beams (BoBs) that trap individual Rydberg atoms, an
additional ingredient is needed. Considering a target geometry for a lattice of BoBs,
we run the Gerchberg-Saxton algorithm as if wanting to create the same array but
with tweezers. We then take the output phase mask and add to it a π phase-shift over
a disk of radius 3.35 mm centered on the diffracting pupil. We recall that the beam
waist is 4 mm and the diffracting pupil has a radius of 5.5 mm. Thanks to the π phase
shift applied to the inner part of the beam only, each site of the resulting lattice will
be a hollow beam instead of a simple tweezer. Indeed, in the focal plane, the inner and
outer parts of each single trap of the lattice interfere destructively, producing a small
region of space devoid of any intensity surrounded by light in all directions [175]. This
distribution corresponds to the geometry required to trap Rydberg atoms through
the ponderomotive force, as discussed in the őrst chapter. The precise geometry of
the bottle beam trap will be discussed further down when we address the trapping
of individual circular atoms. Concerning the rearranger, we do not need to run the
Gerchberg-Saxton algorithm to conceive its trap-shaping phase mask, as it consists
in a single elementary tweezer. For that beam only, this step is skipped in the phase
mask deőnition process.

Figure II.4 (b) shows the results of this process with an image of the three over-
lapped trapping systems, taken on the diagnostics camera after re-focusing. The BoB
and tweezer lattices have the same 5× 8 geometry. The former are shown in blue and
the latter in red. The axes are scaled to show the distances as they appear in the
UHV chamber, in the focal plane of the aspheric lens. Let us mention that, although
meticulously calibrated, a minor uncertainty is not impossible in the optical system’s
magniőcation. In other words, distances in the lattice could be very slightly smaller
or bigger than we program them to be. This remark will become important in the
exploration of the circular-circular interactions.
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(iii) Aberration correction

The purpose of the third and őnal layer of phase deőnition is to correct optical
aberrations induced by the imperfect optical paths. Without any correction, the traps
created following the Gerchberg-Saxton procedure would have many defects and ef-
őcient trapping of the atoms, especially in the BoBs, would be arduous. This step
is divided in two components: the aberrations of the UHV components (its windows
and the aspheric lenses), and the aberrations of the rest of the optical path (various
mirrors, lenses and wave-plates).

The aberrations induced by the chamber’s windows and by the aspheric lenses were
all measured prior to their deőnitive installation in the setup. By comparing the wave-
front of a beam before and after going through each of these components, we obtained
the transverse phase pattern that each of them induces. Adding the opposite of that
phase to the SLM phase mask then cancels the corresponding aberrations. Thanks to
these measurements, we are able to correct the aberrations associated either to the
entrance into the setup (+y window and +y aspheric lens) or to the full crossing of the
UHV chamber (both windows and both aspheric lenses), which is useful to properly
reconstruct the expected image intensity pattern on the diagnostics camera.

To counter the aberrations created by all the other optical elements, another al-
gorithmic optimization routine is run in situ, using the diagnostics camera. Roughly
speaking, it consists in a 3-dimensional version of the Gerchberg-Saxton algorithm
aiming for a single perfect gaussian beam. Fresnel lenses are added to the SLM phase
masks to reconstruct the beam proőle at various positions along its optical axis. The
Gerchberg-Saxton algorithm is then run for each of these positions, so as to obtain a
perfect gaussian proőle both in the transverse and longitudinal planes of the beam.
Once achieved, the resulting phase mask is a correction for all the aberrations induced
by the optical path and can be added to the diffracting pupil and trap-shaping layers
to create the őnal phase mask (see őgure II.4 [a]). This sensitive procedure is run once
every couple of months and whenever one of the beam gets slightly misaligned in the
optical setup. More details regarding its principle will be discussed in Yohann Machu’s
PhD thesis, as he is the one who devised the process. The homogeneity, both in shape
and in intensity, of the traps in the image of őgure II.4 shows that the aberration
correction is efficient.

The three steps described here allow us to create state-of-the art trap arrays. We
are able to generate ensembles of traps highly homogeneous both in depth and shape,
over an area of ∼ 100 µm×100 µm in the focal plane of the aspheric lens. The quality
of the produced arrays will be analyzed in the next section of this chapter through
atomic signal measurements.
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II.2 Arrays of ultra-cold atoms in optical tweezers

Now that we covered the main technical components of the setup, we present the
preparation and characterization of the trapped ground-state atoms. This is the őrst
step towards the manipulation of circular states. In this next section, we describe
the experimental process implemented to create arrays of ultra-cold rubidium atoms
individually trapped in optical tweezers. We start by discussing the sequence designed
to load the traps with single atoms, cool them and image the resulting array, őlled in a
probabilistic manner. The optical detection and subsequent data analysis method are
detailed here, as they are central to the measurements presented throughout this work.
Through atomic signals, we then characterize the individual traps by measuring their
depths and waists. We also present here some properties of the trapped ground-state
atoms, namely their temperature and lifetime in the tweezers.

II.2.1 Atomic preparation: trapping, cooling and imaging

The initial preparation of trapped ground-state rubidium-87 atoms relies on usual no-
tions and experimental techniques: magneto-optical trapping and optical molasses are
used to cool them down, while their trapping in optical tweezers is based on the dipole
force. Without going over the theoretical principles behind these standard concepts
and mechanisms [176], we describe here their speciőc use and implementation in our
setup for the purpose of creating arrays of individual, ultra-cold atoms, prepared for
Rydberg excitation. All the relevant laser systems and their locking scheme are de-
scribed in appendix D. I personally oversaw the installation of the Rydberg lasers,
the design and implementation of the locking schemes and the overall alignment and
operation of most laser systems.

Optical trapping in individual tweezers

The dipole force is the phenomenon that allows the trapping of ground-state rubid-
ium atoms in optical tweezers [177]. Each tweezer of the array, created by a speciőc
SLM phase mask and corrected for aberrations (cf. subsection II.1.3), is a tightly-
focused gaussian beam. We use linearly-polarized light at 821 nm to create the traps.
Each tweezer has a power of approximately 2 mW and an estimated 1.2 µm waist.2

With these parameters, the light is red-detuned with respect to the |5S1/2⟩ → |5P1/2⟩
and |5S1/2⟩ → |5P3/2⟩ transitions (at respectively 795 and 780 nm) and in a negligible
saturation regime. Accordingly, the intensity pattern I(r) of each tweezer creates an
attractive well V (r) = β0I(r) for ground-state atoms, where they can be trapped in the
region of highest intensity [177]. The energy scale can be computed via second-order
perturbation theory [95]:

β0 = −18.2 MHz/(mW µm−2). (II.4)

This attractive well amounts to a negative light-shift induced on |5S1/2⟩, almost in-
dependently of its hyperőne sub-levels. For one of the experiments discussed further

2These estimations, derived from the laser power and designed phase masks, will be quantitatively
characterized later through atomic measurements.



64 CHAPTER II. DEFECT-FREE ARRAYS OF ULTRACOLD ATOMS

down, we also make use of the light-shift induced on |5P3/2, F
′ = 2⟩, for which we

have the positive coefficient β1 = 5.7 MHz/(mW µm−2). The total light-shift on the
|5S1/2⟩ → |5P3/2, F

′ = 2⟩ is then β1 − β0 = 23.9 MHz/(mW µm−2).

Thanks to their extremely small trapping volume, each tweezer implements the
collisional blockade mechanism [178]. A combination of effects due to the cooling light
and reduced trapping volumes allows to trap at most a single ground-state atom at
the focus of each tweezer, where the intensity is highest [19].

Experimental sequence

In each repetition of a typical experimental sequence, the 2D-MOT is activated
during 10 ms. The atoms sent upwards during this delay are collected 50 cm above, in
the central region of the sapphire cube, by a tri-dimensional magneto-optical trap (3D-
MOT) [176, 179]. The general arrangement of these elements is shown in őgure II.1 (a).
The 3D-MOT is made of three pairs of counter-propagating, circularly-polarized cool-
ing beams: one pair along the x axis and two along the diagonal directions in the y−z
plane (see őgure II.1 [b] to visualize the axes involved). The three pairs of coils around
the center of the UHV chamber (őgure II.1 [c]) create a magnetic quadrupole along x,
with the Bx coils set in an anti-Helmholtz conőguration. By and Bz help őnely adjust
the position of the őeld zero at the center of the quadrupole. The cooling beams are
red-detuned by 14.8 MHz with respect to the natural |5S1/2, F = 2⟩ → |5P3/2, F

′ = 3⟩
cycling transition. This amounts to a −2.5Γ detuning, Γ = 2π × 6.06 MHz being the
natural linewidth of the transition [138]. The intensity in each beam is ∼ 10 mW/cm2,
when the saturation intensity of the transition is Isat = 3.5 mW/cm2 [138]. These pa-
rameters are illustrated in the őrst part of őgure II.5 (a). During the MOT cooling
process, atoms are sometimes sent to |5P3/2, F

′ = 2⟩ and from there can then decay to
the dark state |5S1/2, F = 1⟩. The atoms that do end up in this dark state are pumped
back to |5P3/2, F

′ = 2⟩ by a łrepumperž laser, set on resonance with this transition
and co-propagating with four of the six cooling beams. Figure II.5 (b) depicts the
energy levels involved in the cooling mechanism of the 3D-MOT. This stage lasts for
about 150 ms in each repetition of the experimental sequence. It creates, from the
rising beam of rubidium, a cold atomic cloud positioned at the center of the sapphire
cube.

The optical tweezers are turned on throughout the 3D-MOT stage. As stated
above, some of the optical traps get őlled with a single atom during this initial cooling
period. The trapped atoms experience a large light-shift of approximately +30 MHz
(i.e., around 5 Γ) on the cycling transition: the MOT cooling beams become ineffec-
tive on these atoms. After the 150 ms MOT duration, we switch the MOT frequency
during ∼ 5 ms to a blue-detuned value of +0.5Γ with respect to the cycling transi-
tion of the free atoms, which pushes them away from the region of the trapping array
without affecting the already trapped atoms. We end up at this point with an array
of tweezers partially őlled with single atoms and no residual atomic cloud around them.
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Figure II.5: Preparation of trapped ultracold atoms. (a) Schematic representation of
the experimental steps implemented to prepare arrays of trapped, ultracold ground
state atoms. The trapping beams are on throughout the sequence. The magnetic őeld
is switched from a quadrupole conőguration for the MOT to a Helmholtz one for the
molasses, imaging and experiment stages. The cooling laser detuning is shown with
respect to the natural |F = 2⟩ → |F ′ = 3⟩ transition. Importantly, the trapped atoms
experience a ∼ 30 MHz light-shift on this transition. This value, which amounts to
∼ 5Γ, should be added to the indicated detuning in the molasses and imaging phases
to understand the real action of the cooling beams on the trapped atoms. The inset
shows the steps we can add to deterministically rearrange the array (the details of the
rearrangement itself are not depicted here). (b) Rubidium 87 atomic levels (D2 line)
involved in the cooling and imaging mechanisms. The detuning of the cooling beams
shown here is that of the MOT.

Further manipulations are then still required to fully prepare the trapped atoms
for Rydberg experiments. The complete sequence subsequently implemented (and in-
cluding the initial MOT) is schematically drawn in őgure II.5 (a). An optical molasses
stage is carried out to further cool the trapped atoms [176, 180]: the detuning of the
cooling beams is brought to 15.6Γ and their power is decreased to 3 mW/cm2, while
the Bx coils are switched to a Helmholtz conőguration (by inverting the current po-
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larity in one of them) to cancel the magnetic őeld in the whole region of the atoms.
A repumping beam of adjustable frequency, the łtunable repumperž (see őg. II.3) is
used to avoid loosing atoms in the dark state during the optical molasses. A őrst
pre-experiment, reference image of the trapped atoms is then taken. To do so, the
detuning of the cooling beams is reduced to -0.8 MHz for the trapped atoms, and
their power increased so as to make the trapped atoms ŕuoresce. Some of the photons
scattered by the atoms are collected through the +y aspheric lens. With a numeri-
cal aperture of 0.36, the fraction of collected photons is approximately 3% of all the
scattered light. These photons are sent to an Andor iXon EMCCD camera following
the optical path shown in őgure II.3. The camera records the ŕuorescence intensity
and converts it to photon numbers for each pixel. Examples of recorded images are
shown further down in őgure II.6 (a), when presenting the data-processing protocol.
A second stage of optical molasses is then carried out after the őrst image acquisition
to re-cool the atoms.

The cooling parameters for the imaging step, along with those of the optical mo-
lasses, are optimized through atomic measurements. We try to get a good ŕuorescence
signal while minimizing their temperature resulting from these manipulations. The
atomic temperature measurement will be detailed in the next section of this chapter.

The preparation of the trapped atoms ends with a őnal step of optical pumping
[181]. Its purpose is to prepare the atoms in the hyperőne sub-level |5S1/2, F = 2,mF =
+2⟩ for later optical excitation to Rydberg levels in an efficient manner. To do so, the
magnetic őeld is őrst ramped up to 10 G to mitigate the light-shifts and decoherence
induced by the spatially-varying polarization within each tweezer [182]. The trapped
atoms are then illuminated during 400 µs by two beams: the łtunable repumperž and
the łprobež beam. They co-propagate along x (see őg. II.3 for their position in the
optical setup) and are both σ+-polarized with respect to the applied magnetic őeld.
Their intensities are 0.02 mW.cm−2 for the łprobež and 200 mW.cm−2 for the łtunable
repumperž. Their frequencies are set on resonance, for the trapped atoms, with the
F = 2 → F ′ = 3 (łprobež) and F = 1 → F ′ = 2 (łtunable repumperž) transitions.
Their tunable frequencies allow us to adapt this process to various trapping powers.
During this procedure, with each F = 2 → F ′ = 3 cycle, the hyperőnemF sub-level oc-
cupied by the atom grows approximately by one, via the σ+ excitation from the probe
beam and random spontaneous σ−, π or σ+ de-excitation. The łtunable repumperž
avoids the loss of atoms in the dark state F = 1. We characterize the efficiency of
this process through a 2-photon Raman spectroscopy, which probes the population in
the F = 2 sub-levels. Its principle is detailed in appendix E. Through this charac-
terization, we measure an optical pumping efficiency of ηOP = 0.97 ± 0.01 in optimal
conditions. In other words, at the end of the process, only 3% of the atoms remain in
states with mF < 2. However, this level of performance is arduous to maintain on a
day-to-day basis in the experiment. The tweezers exhibit slow intensity drifts, which
detune the transition frequencies over time. Moreover, the very low łprobež power is
subject to ŕuctuations. The re-optimization of these parameters is unfortunately too
time-consuming to be conducted daily, and the optical pumping efficiency is closer to
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90% in typical experimental runs.

The optical pumping concludes the preparation of the trapped atoms for actual
experiments, which cover a wide range of situations discussed in dedicated parts of
this work. We can manipulate the ground state atoms or their traps for various diag-
nostics, or bring them to Rydberg and circular states for other purposes. A second,
post-experiment image is őnally taken after these manipulations: its comparison with
the őrst image will constitute the results of the investigations.

Let us only mention for now that additional steps can be added to this sequence
right before the optical pumping to rearrange the array in a deterministic manner, as
shown in the inset of őgure II.5. Once the rearrangement of the atoms is performed,
another image of the őlled target array is taken to be the pre-experiment reference
and an optical molasses stage re-cools the atoms. The full rearrangement procedure
and its dedicated hardware and software, the most recent additions to the setup, will
be detailed in the last section of this chapter.

Imaging and data processing

For clarity in further discussions, we wrap up this atomic preparation section by
describing the digitization of the ŕuorescence signals for data analysis purposes. Ex-
amples of images of a loaded array (7 × 6 sites) are presented in őgure II.6 (a). The
axes of the setup with respect to the array are indicated in the őrst image. The optical
components used to collect the ŕuorescence induce a slight angle in the imaging optical
path, which makes the orientation appear tilted on the recorded images.

By averaging together many images of the trapped atoms, we can precisely deőne
the locations of the trapping sites in a given array, and therefore deőne a łregion
of interestž (ROI) for each trap. These ROIs are squares of 3 pixels width, over
which we integrate the recorded photon number for each acquired image. Once every
day, before proceeding with actual experiments, we acquire a large number (typically
1000) of images of the loaded, cooled array. We then plot the distribution of each
integrated ROI signal over the many frames in the form of histograms, as shown in
őgure II.6 (b). In each ROI histogram, the horizontal axis corresponds to the recorded
photon numbers while the vertical axis is the frequency of such occurrences, over the
series of acquired images and in this ROI only. Each histogram displays two clearly
separated peaks: the background signal, when no atom is in the trap (photon number
around 50), and the ŕuorescence signal, when an atom is in the trap (photon number
around 250). We then őt a sum of two gaussian peaks on each histogram. For a site
i, the amplitudes (A(i)

b for the background and A
(i)
f for the ŕuorescence) and centers

(µ(i)
b and µ(i)

f ) of both peaks allow us to deőne two key quantities:

• pi = A
(i)
f /(A

(i)
b + A

(i)
f ), the loading probability of the site, which we assimilate

with the fraction of the total signal corresponding to the ŕuorescence peak,

• ti = 0.55µ
(i)
b +0.45µ

(i)
f , the threshold that will be used to determine, for a single
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image and in real time, whether or not an atom is present in site i. If, in a given
image, the recorded number of photons in the ROI is lower than ti, then no atom
is trapped. If it is higher, then an atom is present. This threshold is empirically
deőned and shifted towards the ŕuorescence peak, in order to reduce the number
of false positive events in the łatomž and łno atomž discrimination.

The MOT, molasses and imaging parameters are chosen to maximize all pi (for a good
loading of the array) and µ

(i)
f − µ

(i)
b (for a good discrimination ŕuorescence signal),

while keeping the atomic temperature as low as possible. In our standard experimen-
tal conditions, we get an average loading probability per site between 60 and 65%,
with deviations from this value over the lattice of the order of 1%. We therefore have
state-of-the-art loading of the lattice (independently of its size), and this loading is
very homogeneous across the array.

We use the thresholds to discriminate the łatomž and łno atomž events in each site
for two different purposes:

• For data analysis: to extract information from the optical measurements, we
compare, for each repetition of the full sequence, the pre- and post-experiment
images. Figure II.6 (c) illustrates this process: using the thresholds ti, each of
the two frames is converted into a binary matrix representing the őlling of the
array, before and after conducting the experiment. The comparison between
these two matrices yields four possible outcomes for each site (see őg. II.6 (c) for
an example):

– null event: no atom in either frame,

– appearance event: no atom in the őrst frame and an atom in the second
frame (rare event caused by some residual background atoms, occurring
typically with a probability of less than 0.1% in each site),

– loss event: an atom in the őrst frame but no atom in the second frame,

– recapture event: an atom in both frames.

Computing statistics on these events over many repetitions of a sequence provides
the desired conclusions on the experiments carried out. We obtain loss and
recapture probabilities for each site of the array, most often as a function of a
scanned parameter.

• For the rearrangement: when implementing deterministic rearrangement of the
atoms, the initial image of the randomly őlled array is processed by the acquisi-
tion software, in real time and using the thresholds, so as to determine how the
atoms should be moved on the lattice to reach the target geometry.

I personally designed and coded the acquisition software that controls the camera,
acquires the images, deőnes the thresholds and analyses the optical data accordingly.
It also comprises, as we will see later, the rearrangement module which computes in
real time the movements to implement and controls the hardware that executes them.
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Figure II.6: Image processing for binarization of the optical signal. (a) Two frames
of a series of images acquired for the calibration of the digitization process. (b)
Histograms of the recorded photon numbers in each region of interest, onto which we
őt two gaussian peaks. The thresholds deőned accordingly are plotted as vertical green
lines. (c) Illustration of the image binarization for data analysis. In the representation
of the sequence, the red band represents the activation of the optical tweezers: its color
is dimmed during the experiment as the sequence can involve turning the tweezers off.
The comparison between the pre- and post-experiment images yields one of four events
for each site: loss of the atom (red), recapture (blue), appearance of an atom (orange)
and null.

It only takes a few ms to retrieve the image from the camera and convert it to a digital
őlling matrix.
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With this overview of the fundamental steps of the atomic preparation in mind,
we can move on to the description of the experimental investigations per se. From
now on, we will focus on the łexperimentž part of the sequence (shown in green in
őgure II.6 [c]) and on its results derived from the data treatment process. Let us
address here the notations that will be used throughout the rest of the text. We take
for example a sequence designed to measure a quantity X, either in each site or over
the whole array. The measurement yields a dataset di for each site i (most often
the recapture probability as a function of a scanned parameter). Two data analysis
procedures are then possible. On the one hand, to get the site-resolved result, we
can extract from each dataset the desired quantity Xi. The spatial average of these
results is then written ⟨Xi⟩, and its error bar refers to spatial ŕuctuations of X over
the array. On the other hand, if we are interested in a global estimation of X, we can
őrst average the individual datasets together to obtain what we write d. From this
average data, we can then extract the mean quantity of interest, written X. Its error
bar refers, in this case, to the error in the estimation of X from d, via őtting routines
or numerical computations and simulations.

II.2.2 Characterization of the tweezers and trapped atoms

We present here the various measurements we carried out to fully characterize the prop-
erties of both the gaussian tweezers array and of the individual trapped atoms. In all
the experiments described in this section, the preparation sequence is implemented as
previously discussed, we do not conduct any rearrangement, and the outcome of the
manipulations is the recapture probability in each site.

Tweezer characteristics

As a gaussian beam, each tweezer i is fully characterized by two parameters: its
power Pi and its waist wi. To access these quantities and assess the quality and
homogeneity of the array, we measure the tweezers peak intensities Ii and transverse
trapping frequencies νi. Assuming that the traps have perfect gaussian proőles3, all
these quantities are related as follows [177]:

wi =

√

hβ0Ii
π2Mν2i

, Pi =
π

2
Iiw

2
i , (II.5)

where M is rubidium 87’s mass, h is the Planck constant and β0 the intensity-energy
conversion coefficient previously introduced in equation (II.4). We will compute the
traps properties in one of the arrays used for our Rydberg experiments and shown in
II.6 (a): a lattice of 7× 6 sites, of dimensions 70 µm× 60 µm.

To obtain the peak intensity of each trap, we perform a spectroscopic measurement
on the |5S1/2, F = 1⟩ → |5P3/2, F

′ = 2⟩ transition. The experimental sequence, its

3The quality of the aberration correction process ensures that the traps differ very little from
perfect gaussian beams.
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corresponding level evolution and its results are presented in őgure II.7 (a). Once
the atomic preparation is done and a pre-experiment image has been acquired, the
manipulation of the trapped atoms goes as follows:

• We apply the cooling beams, without the repumper, during 20 ms, to pump
the atoms to F = 1, so that they are all initialized in |5S1/2, F = 1⟩. This
initialization is not shown in the őgure, where we focused on the following steps.

• A repumping pulse of 8 µs duration is applied, using the łtunable repumperž,
propagating along x (see őgure II.3) and whose frequency is scanned. We run
this experiment with the traps either on or off during this pulse. When they are
off, the pulse effectively repumps the atoms into F = 2 when it is at resonance
with the natural F = 1 → F ′ = 2 transition frequency. When the traps are on
during the pulse, the atoms are repumped in F = 2 only when the laser is at
a higher frequency, because of the light-shift induced on the F = 1 → F ′ = 2
transition by the traps (β0 = 3.877 MHz/(mW µm−2)).

• A łkickž pulse of 4 µs is applied, with the traps off, using the łprobež beam (see
őgure II.3) resonant on the F = 2 → F ′ = 3 (non light-shifted) transition. Two
possibilities then arise. If the atoms had been repumped into F = 2, this pulse
kicks them away and they are not recaptured when we turn the traps back on.
If the atoms had not been repumped into F = 2, the łkickž pulse has no effect
on them, they do not move away and are recaptured when the traps are turned
back on.

We plot in őgure II.7 (b) the recapture probability as a function of the łtunable
repumperž frequency, averaged over all the sites and in the two cases: tweezers on
or off during the repumping pulse. The frequency origin is set at the center of the
resonance measured with the traps off. The position of the line in the łtraps onž case
indicates the average light-shift exerted by the traps on the repumping transition.
We also plot in this graph the Lorentzian őt of the averaged data. The łtraps onž
line is wider than the łtraps offž one because it was measured with a slightly more
powerful kick pulse. By őtting the spectrum obtained for each ROI, we can compute
the light-shift and therefore the peak intensity of each trap, as illustrated in the spatial
map (mosaic) of the same őgure, which matches the actual geometry of the array. We
therefore get the precise intensity distribution over the traps of the lattice. The spatial
average of the intensity, which we can also write in terms of trap depths Ui, is:

⟨Ii⟩ = 1.07± 0.05 mWµm−2, ⟨Ui⟩ = 1220± 62 µK. (II.6)

We recall that the error estimations presented here refer to the spatial distribution
of the results across the array. Although two deőcient sites clearly differ from this
average value and indicate some local defects, we have a pretty homogeneous array
intensity-wise, with only a 5% spread in this distribution over the whole lattice. This
is not as good as the power dispersion of 0.4% mentioned in the description of the
phase mask design, indicating that the system was in need of some slight aberration
correction at the time of this measurement.
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Figure II.7: Tweezer characterization. (a) Sequence of events and level evolution.
The tweezer activation in shown in red, with the traps ON or OFF (dimmed red part
in the experimental sequence) during the repumper pulse to measure the light-shift
induced by each trap on the F = 1 → F ′ = 2 transition. The fading red in the
sequence indicates links with previous (preparation) and subsequent (re-initialization)
manipulations of the trapped atoms. (b) Recapture probability averaged over all sites,
with and without the tweezers, and őtted with Lorentzian peaks. The averaged data
yields the mean intensity I = 1.065± 0.003 mW/µm2. (c) Site-by-site result of peak
intensity for each trap. (d) Release-recapture experiment to measure the transverse
trapping frequencies of the tweezers. (e) Averaged signal, displaying oscillations at
166 KHz. (f) Site-resolved transverse trapping frequencies.
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The measurement of the trapping frequencies relies on a different experiment and
is shown in part (d) of őgure II.7. It consists in a łrelease-recapturež experiment:

• The atoms are released a őrst time for 6 µs. Due to their thermal velocity, atoms
move slightly away from the center of each trapping site.

• We turn the traps back on for a variable duration τ . The atoms are recaptured
but now oscillate within their traps, all in sync, since they had moved away from
their centers.

• The traps are turned off a second time, for 20 µs, which probes the atoms’
oscillations. The instant at which we open the traps this second time varies
according to τ . If it occurs as the atoms are moving quickly in the middle of
their traps (high kinetic energy, low potential energy), the fast momentum they
have will prevent recapture when turning the traps back on after 20 µs of free
evolution. If the traps extinction happens when the atoms are slower but further
away from the traps centers (low kinetic energy but high potential energy), the
recapture probability will be high after the 20 µs extinction, as they won’t have
enough momentum to move away from the trapping region. The end result is a
periodic evolution of the recapture probability, as a function of τ , at twice the
trapping frequency. Indeed, recapture spikes up when this second trap extinction
happens as atoms are at both ends of their oscillations in the traps.

The recapture probability, averaged over all 42 sites, is plotted in the lower left part of
őgure II.7 (e). Although technically not sinusoidal, a damped sine őt of each site data
provides its trapping frequency with good accuracy. Individual site results are given
in the mosaic spatial map (f), which shows the distribution of trapping frequencies
across the array. The average value is

⟨νi⟩ = 81.3± 2.3 kHz. (II.7)

Again, we have a very homogeneous distribution over the whole array: apart from
the same outliers as in the intensity distribution, all traps have the same transverse
trapping frequency, up to 3% differences.

From these two measurements, we can now recover the distributions of the traps’
powers and waists across the array, according to equation (II.5):

⟨Pi⟩ = 2.3± 0.1 mW, ⟨wi⟩ = 1.16± 0.01 µm. (II.8)

The uniformity of these distributions conőrms the efficiency of the array creation and
aberration-correction procedures. We are able to create very homogeneous gaussian
traps over the a 100 µm×100 µm area in the őeld of the aspheric lenses. This conőrms,
in a quantitative manner, the expectations of section II.1.3 on the optical trapping
setup and the design of the arrays.
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Atomic characteristics

The two main properties of the trapped atoms we can easily access are their life-
time and temperature. Again, these measurements are conducted after the standard
loading and cooling sequence and the results are derived from the average recapture
probability in each site, computed from the images.

The measurement of the atoms lifetime in the tweezers is straightforward. We scan
the delay between the pre- and post-experiment image acquisitions, while keeping the
tweezers on in-between. We then compute the survival probability of the atoms as
a function of the delay. To reduce the heating of the atoms due to their scattering
of the trapping light and to potential traps ŕuctuations in intensity and position, we
apply the cooling beams (and static repumper) in their molasses conőguration during
the waiting delay. This basic sequence is shown in őgure II.8, where we also plot the
survival probability, averaged over all of the sites, as a function of the delay. We őt the
averaged data with a simple exponential decay model, which yields the mean atomic
lifetime:

τat = 12.6± 0.2 s. (II.9)

The indicated error refers to that of the őt of the average data, and not to variations
over the array. Individual site results (not shown here) do not display any signiőcant
heterogeneity. This simple model accounts for losses over time due to collisions with
residual, untrapped atoms surrounding the array, which occur with a rate 1/τat. The
agreement between the experimental data and the őt is not perfect: a more reőned
analysis, taking into account the possibility of loading empty traps with residual back-
ground atoms during the waiting delay, can be carried out to explain the deviations
from a basic exponential decay [123]. This result is nonetheless satisfactory: the qual-
itative estimation of the lifetime τat indicates low losses at the sub-second timescales
over which we want to manipulate the atoms. Indeed, the estimated lifetime for the
full array of N atoms is τarray = τat/N . In a 100-site array őlled with around 50 atoms,
the őrst loss will occur after 240 ms on average. We will make use of such estimations
when discussing the success rates of the rearranging procedure, which is carried out
in a fraction of a second.

A more sensitive measurement, conducted daily in our setup, is that of the atomic
temperature. The experimental sequence consists in a simple release-recapture pro-
cess, where we release the atoms by turning the tweezers off for a variable delay τ , as
shown in őgure II.8 (b). We then compute, over many repetitions and for each site
i, the recapture probability p(i)recap(τ). The higher the recapture, the lower the atomic
temperature: cold atoms have a low kinetic energy and therefore escape less during
the opening of the traps. The recapture probability, averaged over all sites, is plotted
in the lower part of the panel.

To extract the value of the temperature from the data, we carry out numerical
Monte-Carlo simulations of the evolution. Given a trap depth and waist (we use
the measured values of őgure II.7), we simulate the release-recapture evolution, as
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Figure II.8: Characterization of the atomic properties. (a) Lifetime measurement: the
survival probability over a variable waiting time yields an atomic lifetime of approx-
imately 12 seconds in the tweezers, limited by collisions with background gas. (b)
Temperature measurement, yielding T = 19 µK.

implemented in the sequence, for several temperature values {Tk}. For a single Tk,
we thus generate a simulated recapture probability psim, k(τ). We then compute the
distance between the experimental result precap (single site or average over all traps)
and the simulated evolution psim, k through

χ2(Tk) =
∑

τ

(precap(τ)− psim, k(τ))
2

σ2
recap(τ)

, (II.10)

where σrecap is the standard deviation in precap (measurement error if single site, spread
over sites if averaged value). The sum runs over all the scanned values of the delay
τ . We őnally perform a polynomial őt of χ2(Tk) near its minimum, so as to extract
a temperature T = argminχ2(T ), where the data őts closest to the simulation, i.e.,
the most likely real temperature of the atoms. We can perform the simulation and
őtting routine for the data on each site: the result is a temperature distribution over
the lattice

⟨Ti⟩ = 18.7± 2.3 µK. (II.11)

We get here signiőcant deviations across the array, with atoms on the ±x edges being
hotter than those in the center of the array. This might be explained by the geo-
metrical 3D-MOT conőguration and beam waists, although no further investigation
was conducted to mitigate this dispersion. The temperature estimation is neverthe-
less precise enough to optimize all of the molasses and imaging parameters, which are
chosen to minimize its value. Some re-optimization of these parameters are required
once every few weeks because of drifts.

The main contribution to the temperature of the atoms comes from the optical
pumping, which signiőcantly heats them: without it, we measure temperatures around
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9 µK. We can further reduce the temperature of the atoms through an adiabatic ramp-
down of the tweezer intensities right before conducting experiments. By exponentially
decreasing their power to 10% of its initial value in 500 µs, we lower the energy of the
motional states in the traps while their population remains unchanged, leading to an
effective cooling of the atoms [183]. Through this technique, we reach temperatures of
less than 5 µK for all trapped atoms, regardless of the implementation or not of the
optical pumping beforehand. The implementation of adiabatic cooling is not always
necessary in the experiments. Since it does not directly relate to the essential atomic
preparation and characterization, the data presented thus far was acquired without
this additional process, for clarity purposes in these őrst experimental results.

A third measurement concludes the characterization of the trapped ground-state
atoms: the Raman spectroscopy of the hyperőne levels population. As previously
mentioned in the global description of the sequence, it analyses the efficiency of the
optical pumping procedure. Its presentation is left out of the main text and addressed
in appendix E, dedicated to the hyperőne manipulation of the atoms. We only retain
here the important value it provides: the maximal efficiency of the optical pumping
procedure, measured at ηOP = 0.97± 0.01 in optimal conditions.

We presented in this section the standard techniques implemented to load, cool
and image arrays of individually trapped ground-state atoms. Thanks to the highly
homogeneous properties of the lattices and to careful optimization of the preparation
process, we reach high loading probabilities, excellent imaging signals, low temper-
ature and good hyperőne population control in all individual trapping sites. All of
these preparation steps provide a good basis for the excitation of the trapped atoms
to Rydberg and circular states.

II.3 Deterministic array rearrangement

As such, the preparation of lattices of trapped, ultra-cold ground state atoms has
a signiőcant drawback: the random, ∼ 65% loading of the tweezers prevents any
deterministic study of interactions between circular states. Ideally, to characterize
the pair interactions described in the őrst chapter, we need to work with arrays of
isolated pairs of atoms and not with randomly őlled lattices. More generally and for
the longer-term goals of quantum simulations [117], we would like to deterministically
implement őlled arrays of arbitrary geometry: each repetition of the experimental
sequence should yield exactly the same őlled array. To do so, we recently added a
łrearranging beamž (the moving tweezer) to the setup: a gaussian tweezer similar to
the static ones but of tunable intensity and position, able to move atoms from one site
to another in the lattice of traps. The moving tweezer can trap ground-state atoms
exactly as the static tweezers, via the dipole force. For a given target sub-lattice of
the full array of static tweezers, the rearranger operation is inserted into the sequence
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as follows, for each repetition:

• a randomly-őlled array of ultra-cold atoms is prepared in the static tweezers and
a őrst image is acquired,

• an algorithm computes which atoms need to be moved where to őll the target
sub-lattice,

• the rearranging beam executes the moves and discards the extra unnecessary
atoms by moving them away from the lattice,

• a second image is taken to check that we are left, as required, with the őlled
target array.

We describe in this section the working principle of the moving tweezer, the hardware
and software it relies on and the way we optimized its parameters. The end result of
this new tool is the deterministic creation of atomic arrays of arbitrary geometries,
which will be presented and characterized here. This additional feature opens the way
for the proper study of interactions in our setup.

II.3.1 The moving tweezer

Technical setup

The implementation of the rearranging beam setup is shown in őgure II.9. The
goal of this system is to create, at the position of the trapping array, a gaussian tweezer
focused in the plane of the lattice, whose depth and (x,z) position can be tuned over
short timescales (in the µs range). This trapping beam is generated from the same
821 nm laser used to create the static traps (cf. őgure II.3). To be able to control
its position and intensity, we use two crossed Acousto-Optic Deŕectors (AODs - DT-
SXY250 from AA Opto-Electronics): each one handles the position of the beam in one
of the two directions x and z.

A single AOD deŕects an incoming beam via the diffraction induced by the sound
wave excited in its crystal, generated by an input radio-frequency signal. The RF fre-
quency tunes the deŕection angle, while its power adjusts the deŕection efficiency. The
AODs each have a deŕection range of 49 mrad, for an input RF bandwidth of 36 MHz
centered on 100.5 MHz. We discard the non-diffracted light thanks to a diaphragm,
which only allows the light effectively diffracted by both AODs to reach the setup.
The two radio-frequency input signals (RFx,RFz) thus completely control the output
direction and power of the beam after the diaphragm. The beam is then expanded by
a telescope to reach a size compatible with the subsequent beam shaping. An SLM is
used for aberration correction, as described in the őrst section of this chapter. We also
use this SLM to őnely adjust the position of the moving tweezer, in a static manner.
We make sure that the beam waist is close to that of the tweezer array beam, shaped
on its own SLM, so that the moving tweezer in the setup has a size comparable with
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Figure II.9: Illustration of the technical system implementing the moving tweezer. The
intensity and (x,z) position of the moving tweezer is set by tuning the frequency and
power of the two radio-frequency signals sent into the two AODs with orthogonal axes.
These signals are generated by a DDS, numerically controlled from our homemade
acquisition software.

that of the static tweezers, after focusing by the aspheric lens. The moving tweezer
is superimposed with the other two trapping beams (tweezers and bottle beams) via
polarization-dependent cubes, before being sent into the setup. Given the deŕection
range of the AODs, the magniőcation of the beam and the focal length of the aspheric
lens, we obtain a 250×250 µm2 position range for the moving tweezer in the (x, z)
focal plane of the lens, which is more than enough considering the 100× 100 µm2 ex-
tent of the static arrays. The position of the moving tweezer in the setup then varies
linearly, in each direction, with the input RF frequencies. The intensity of the beam is
set by the RFz signal only, as RFx is always tuned to maximum diffraction efficiency
(at 33 dBm). This choice mitigates the thermal effects occurring in the AODs when
switching the RF on and off [91].

A two-channel Direct Digital Synthesizer (DDS, FlexDDS-NG DUAL ś Wieser-
labs Electronics) generates the input RF signals. It is digitally controlled from the
acquisition software and outputs, from digital orders, an analog sinusoidal signal of
tunable amplitude, frequency and phase4. The DDS output frequency ranges from
0.3 to 400 MHz, with a 0.23 Hz precision and a 0.005◦ phase resolution. The digital
commands of the DDS are carried out by lists of instructions sent from the computer
through the PyVISA python library and an ethernet connection. This enables the con-
trol, over microseconds, of the moving tweezer’s position and intensity. The low-level,
technical encoding protocols and complex DDS operation proved to be challenging.
We however leave their discussion out of this work, as they are irrelevant to the im-
plementation of the experiments.

4The DDS output waveform is actually an approximation of a sine wave, generated using evenly
spaced voltage steps at its 1 GHz internal clock rate. The steps’ amplitudes and durations are however
small enough to consider, for our purposes, the output signal to be a perfect sine oscillation.
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Characteristics and calibration of the moving tweezer

We conducted, with the moving tweezer, the same experiments as those used to
characterize the array of static tweezers, i.e., light-shift spectroscopy to obtain the
intensity at its focus and a release-recapture sequence to compute its transverse trap-
ping frequency. We use RF amplitudes of 33 and 22 dBm in the x and z channels
respectively. We limit the RFz power here to reduce the optical power and aim for a
light-shift in the same range as that of the static tweezers. The two RF frequencies
are set to position the moving tweezer in the center of the aspheric lens’ focal plane
without moving (i.e., at the center of the static lattices). In this conőguration, we
measure in these single-atom experiments a light-shift of 23.6 MHz and a trapping
frequency of 74.7 kHz. From these values, we derive the waist of the moving tweezer:

w = 1.21 µm. (II.12)

This waist is therefore very close to that of the static tweezers (1.16 µm on average),
as expected from the design of the optical setup. The power computed from these
experiments is 2.3 mW. Although measured in a speciőc RF power conőguration, it
allows us to extrapolate the maximal power available in the setup at full amplitude
in both RF channels: 27.3 mW. This corresponds to a depth of 13 mK, i.e., about 10
times more than the static tweezers. This is more than enough to capture a single
atom efficiently from a static tweezer without switching off the array [91].

To be able to carefully position the moving tweezer over the static array, we need
to convert the RF frequencies to actual positions in the lattice. We do so through the
diagnostics camera (see őg. II.3). We image the focal plane of the aspheric lens onto
it, and thus obtain an image of the traps as they appear in the setup. The scaling
factor between the trapping plane in the setup and that of the camera is know with
good precision. Formally, the goal of the process is then to map the RF frequencies
(νx, νz) onto positions (x, z) in the setup:

x = x0 + αxνx, z = z0 + αzνz. (II.13)

To determine the proportionality factor, we precisely pinpoint the position of the
moving tweezer on the camera for various RF frequency couples. A linear regres-
sion of the positions then provides the proportionality coefficients, measured to be
αx = αz = 6.8 µm/MHz. This measured value matches very well the 250 µm range
estimated from the optical design for the full 36 MHz AOD bandwidth. This calibra-
tion was done once and its result is stable in time.

Dealing with the (x0, z0) offset is more sensitive. We actually impose its value, not
through the AOD, but using the moving tweezer’s SLM. To do so, we őrst remove
the array-deőning phase mask layer of the static tweezers SLM, so that it outputs
a single gaussian beam, identical to the moving tweezer. The position of this single
static tweezer is taken as the origin O of the (x − z) plane of the setup, thus com-
pletely deőning a reference frame (O, x, z). From the deőnition of the tweezer arrays,
we know the position (xi, zi), in this frame, of any site i in the lattice we want to work
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with. Then, using őnely tuned phase gratings on the moving tweezer SLM, we overlap
it with the single static tweezer on the diagnostics camera. While doing so, the RF
frequencies are őxed and at the center of the AOD bandwidth (ν

(0)
x , ν

(0)
z ). When the

two beams are perfectly overlapped, we end up with the moving tweezer positioned
at the origin of the plane in the setup. We keep the corresponding grating on its
SLM. This effectively imposes the (x0, z0) offset, which is therefore set to (0, 0) in the
deőned reference frame. Once the static tweezer array is re-implemented, the moving
tweezer can be placed at any site position in the lattice (xi, zi) via the conversion to
RF frequencies (ν

(0)
x + xi/αx, ν

(0)
z + zi/αz). The offset adjustment, which boils down

to tuning the phase grating on the moving tweezer SLM, is carried out daily via an
automated procedure. It allows us to overcome the independent drifts of each trapping
beam.

Moving a single atom

Now that we have described the technical implementation and characteristics of
the moving tweezer, we can go over its actual operation to move atoms on the lattice.
The execution of a single elementary displacement of an atom from a őlled trap to an
empty one is depicted in őgure II.10 (a). We illustrate this process in one dimension
only, taking z as the direction of the movement, and we schematically plot the relevant
RFz parameters as functions of time in (b) and (c). The full procedure goes as follows:

1. the moving tweezer, initially at zero or low intensity (low RFz amplitude), is
brought at the position of the őlled static tweezer by ramping its frequency,

2. its depth is increased by a linear ramp-up of the RFz amplitude, from t1 to t2,
until its intensity is (much) higher than that of the static tweezer: the moving
tweezer catches the atom,

3. the RFz frequency is linearly changed over a duration t3− t2 to place the moving
tweezer at the position of the empty static trap,

4. the moving tweezer releases the atom in the empty trap via a decrease of the
RFz amplitude from t3 to t4,

5. a őnal change in the RF frequency shifts the moving tweezer away.

Let us mention here that we can also catch an atom from a őlled static tweezer and
release it away from the lattice site to discard it. We will implement these elementary
moves many times in each realization of the arrays of ground-state atoms, so as to
reach a target geometry from initial random őllings. The elementary displacement
therefore needs to be highly effective to avoid unwanted errors and deterministically
generate the target lattice with good success rates.
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Figure II.10: Schematic illustration of the displacement, using the moving tweezer
(M.T.), of a single atom from a static tweezer to another. (a) Representation of the
full procedure in one spatial dimension. (b) Moving tweezer depth, proportional to the
power of RFz, ramping from a low to high value and back. (c) Evolution of the RFz
frequency over time, directly proportional to the position of the moving tweezer. (d)
Indicative plot of the RF signal over time, varying both in amplitude and frequency.
The frequencies used here for illustration purposes are not representative of the actual
timescales of the experimental implementation.

II.3.2 Optimization of the elementary displacement

We present here the approach we took to optimize the elementary displacement of
atoms. The goal is to maximize its probability of success by őnding the optimal values
of the following parameters:

• The catch time tc over which the moving tweezer intensity is increased to grab
the atom: tc = t2 − t1 as per the notations of the previous subsection and őgure
II.10.

• The trapping depth U , i.e., the moving tweezer intensity kept constant when
moving the atom, controlled via the power in RFz.
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• the moving speed v, deőned in the case of the previous illustrative example as
v = (z2 − z1)/(t3 − t2). We work with a constant moving speed; it should be as
high as possible so as to rapidly implement many successive displacements, but
not so high that it induces losses or signiőcant heating due to the movement.

• The drop time td over which we release the atom in the target tweezer.

To optimize these parameters, we worked with a square 6× 6 array of static tweezers
with 15 µm spacing. We operate the rearranger to study elementary moves within
pairs of sites: the full lattice can be seen as an array of 18 horizontal pairs, arranged
in three columns of six pairs each, as depicted in őgure II.11 (a). We prepare the atoms
via the standard MOT-molasses-image-molasses sequence, with random őlling of the
array. We then operate the moving tweezer in a pre-deőned sequence of moves, using
a őxed set of parameters (tc, U, v, td) for elementary moves. For simplicity purposes,
we set tc = td. The sequence of moves goes as follows:

1. In each pair, we apply an elementary move from the left site to an empty region
of the plane: if an atom was initially in the left site, it is discarded.

2. We implement, in each pair, a move from right to left and then a move from left
to right; we repeat this back-and-forth displacement a total of őve times. If an
atom was initially in the site on the right and the elementary moves are efficient,
it ends up in the right site again at the end of the ten moves.

3. We perform one last move from right to left in each pair, for measurement
purposes. We want the result to be a transfer probability, from right to left.

We then take a second image and őnally compute the success rate of the full
process within each pair, over 200 repetitions of the total sequence. We deőne the
total, 11-move success probability within each pair as:

P (tot)
move = P [ (• ◦)2 | (× •)1 ] . (II.14)

It corresponds to the probability of őnding, in the second image, the conőguration
(• ◦)2, i.e., the left site őlled and the right side empty, conditioned on the realization
of the conőguration (× •)1 in the őrst image, i.e., an atom in the right site and either
an atom or no atom in the left site (made irrelevant thanks to the őrst step in the
sequence, which discards any left atom). We work here with numerous (eleven) repeti-
tions of the elementary move to exacerbate its inefficiencies: if the success probability
of a single elementary move is Pmove, then we have5 P

(tot)
move = (Pmove)

11.

The measurement of the total success probability, averaged over all 18 pairs, as a
function of the displacement parameters are plotted in the three panels (b), (c) and (d)

5This is technically an approximation, as an 11-move process could be considered successful even
if several of the elementary moves it comprises were unsuccessful in catching the atom. However,
we witnessed that the failures come almost exclusively from the motion itself and the release of the
atom. Cases where, in several successive moves, the atom is not caught are extremely rare. We also
neglect here the probability of capturing a background atom at any time during the process. These
model refinements are not necessary to the optimization of the parameters.
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Figure II.11: Optimization of the elementary displacement. (a) Sequence of elemen-
tary moves deterministically implemented within each pair of sites, detailed in the
main text. (b-d) Total 11-move success rate P (tot)

move, averaged over all 18 pairs, as a
function of (a) the moving tweezer depth during the motion (via the RF power), (b)
the moving speed v and (d) the catch and drop times tc and td, taken equal to each
other. The dots are the average success rate, while the shaded area is delimited by
the minimal and maximal probabilities, among all individual pairs, for each scanned
value. Vertical dashed lines correspond to the values kept as optimal.

of őgure II.11. We remind that we chose to implement ramps with the same catch and
drop times: their values are kept identical and scanned at the same time in graph (d).
The success rate dependency on each parameter is clear and allows us to select optimal
values:

v = 150 µm/ms, tc = td = 150 µs, PRFz = 33 dBm, (II.15)

with the maximal RF power PRFz corresponding to a trapping depth of ∼ 13 mK. The
speed v is chosen as a trade-off between efficiency and execution speed. It corresponds



II.3. DETERMINISTIC ARRAY REARRANGEMENT 85

Pmove

0.990

0.992

0.994

0.996

0.998

Figure II.12: Outcome of the optimization process: spatial map of the elementary
move success rate over the 18 pairs.

to the highest value deemed acceptable in terms of success performance. These param-
eters lead to an estimated 94 ± 3% 11-move success rate over all pairs. We therefore
extrapolate the elementary move success probability:

⟨Pmove⟩ = 99.44± 0.29%. (II.16)

where the standard deviation is related to spatial dispersion across the array of pairs.

Figure II.12 displays the spatial map of the elementary success over the 18 pairs.
Two lines of pairs seem to exhibit lower success probabilities, but no general tendency
appears over the full array. We also checked that the same procedure implemented
within vertical pairs leads to the same results, without any clear spatial dependency of
the success rate. Overall, we reach a very satisfactory level of efficiency, which should
be enough to implement full rearrangement of the arrays without too many errors, as
discussed in the next section.

We presented here the optimization of the physical process in which we move a
single atom from a site to another. We left aside most of the low-level technicalities
that were also overcome to make this process work correctly. Let us only mention here
that careful attention was brought to the continuity of the RF phase. Phase jumps
in the input signal generated by the DDS initially prevented us from reaching good
displacement efficiencies, as the atoms were kicked out of the moving tweezer by these
discontinuities. Fine tuning of the delays between successive displacements and of the
DDS discretization steps were also carried out to remove unwanted deőciencies.
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II.3.3 Complete rearrangement procedure

With an efficient elementary move process, we now have the means to fully rearrange
the arrays of trapped atoms so as to implement arbitrary, defect-free geometries in each
repetition of the experiment. The goal is to reach, for any initial random őlling of the
full array, a pre-deőned target arrangement of the atoms on a sub-lattice, via successive
elementary moves that relocate or discard the atoms. The full preparation sequence
then goes as shown in őgure II.5, where the inset dedicated to the rearrangement is
now taken into account. We remind that its successive steps are, in the following order:

loading → cooling → image 1 → cooling → rearrangement → image 2 → cooling,

where the loading and cooling steps are done respectively in the MOT and molasses
conőgurations. From that preparation, we can then proceed with the actual experi-
ments in the same fashion as before and perform optical detection with a third, őnal
imaging step. We focus here on the rearrangement phase of the full process. We
estimate its efficiency through the comparison of image 1 with image 2 over many
repetitions.

Atom-sorting algorithm

The computation of an optimal series of elementary moves to reach the target
lattice from the initial őlling is key: it should return a minimal number of moves,
computed in a minimal amount of time. This corresponds to the NP-hard łpebble mo-
tion on a graphž problem; we take a heuristic approach, based on known algorithms
[91], to őnd efficient though approximate solutions to this problem. We restrict our
method to rectangular lattices but it could easily be extended to any regular lattice
geometry. For simplicity purposes, we also impose that the algorithm only outputs
moves along the axes of the lattice or along the directions of its main diagonals (those
of a square of n× n sites).

To present the implemented algorithm, we need to introduce some relevant no-
tations. The full array of sites is indexed from 1 to N, each site having real-space
coordinates (xi, zi). We derive from the sites coordinates the distance matrix D =
(dij)1≤i,j≤N , where dij = (xi − xj)

2 + (zi − zj)
2 is the squared euclidean distance be-

tween sites i and j. A random atomic őlling of the array is written (σi)1≤i≤N ∈ {0, 1}N ,
while (ti)1≤i≤N (also in {0, 1}N) is the őxed target arrangement.

The algorithm takes as inputs the initial őlling (σi)1≤i≤N and the target (ti)1≤i≤N ,
and it outputs an ordered list of allowed moves {(a→ b), (c→ d), ...}. It proceeds
with the following successive sub-tasks:

1. Assignment: őnding in which site each atom of the initial őlling should end up.
We solve this task through the Jonker-Volgenant algorithm [184]. Using the
sub-matrix of D that only links the őlled sites {i | σi = 1} to the target sites
{j | tj = 1}, it derives the sorting that minimizes the total distance traveled by
the atoms: the atom initially in site i should end up in site j, the one in site



II.3. DETERMINISTIC ARRAY REARRANGEMENT 87

k should go to l, etc. This solution does not take into account the physical
constraints of the movements: it can lead to two or more atoms being placed in
the same site during the procedure, which we want to avoid. It also does not
take into account the fact that atoms cannot be moved over already őlled sites.
We then have to compute, from this initial assignment, the actual atomic paths.

2. Reordering: pre-processing of the assignment solution. The prescribed assign-
ments are re-ordered to prevent sending several atoms in the same site. For
instance, the series of assignments (1 → 3), (2 → 3), (3 → 4) is changed to
(1 → 3), (3 → 4), (2 → 3).

3. Path-őnding: translation of the ordered assignment into real atomic moves. Each
element of the ordered assignment is converted, through Bresenham’s line algo-
rithm [185], into a series of real steps on the lattice. Bresenham algorithm
selects, from two sites, the series of lattice points that most closely approximates
the straight line between the two input points. An assignment is therefore con-
verted into a sequence of elementary moves on the lattice, along its axes or its
main diagonals. These elementary moves are then re-ordered to avoid collisions:
if we need to do (i→ j) but a őlled site k is in the way, we őnd the next displace-
ment that moves k and place it before (i→ j) (the move involving k necessarily
exists, otherwise k would have been assigned to j, being closer to it than i).

4. Merging: we combine the moves that can be merged. If two successive moves
can be combined, we do so. For instance, (a → b), (b → c) becomes (a → c),
provided that the two moves are along the same direction.

5. Removal: the moves required to discard the extra, unwanted atoms are added
to the result. They consist in taking an atom and dropping it in its neighboring
empty space, away from its own or other tweezers.

We assess the performance of the full algorithm by running it in numerical simulations,
written in Python and run on our standard acquisition computer. The full array is
taken to be a square 144-site lattice, while the target lattice contains 72 sites. The
lattice őlling is initialized with 72 randomly placed atoms. The loading of the real
arrays being above 60%, we simulate here a conservative 50% estimation of the actual
őlling. In this conőguration, the average computing time needed to őnd a solution is
around 50 ms, while the output number of steps is ∼ 50. For this number of atoms,
these estimations are independent on the geometry of target.

Taking into account the duration of the optimized elementary move, we estimate
the total rearrangement procedure to last approximately 75 ms (50 ms computation
time and 50× 500 µs moving time). This is less than half of the predicted lifetime for
the full array of ground state atoms: τarray = 166 ms in a 72-atom array, according
to the single-atom 12 s lifetime. Moreover, given the single-move 99.44% efficiency, a
50-move process should have a total success rate of about 75%. These estimations are
quite satisfactory for the scope of our experiments on circular interactions, where we
actually use smaller arrays which require around 25 moves to be rearranged. When
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increasing the number of atoms and size of the arrays in the simulations, the number
of moves and computation times grow in various fashions and start depending a lot
on the target geometry. We leave these considerations aside, as our work focuses on
arrays of reduced size, 72 atoms already being higher than the amount involved in
most of our experimental conditions. We typically work with 40-site lattices which
contain less than 25 atoms.

Rearranged arrays and success rate

The rearrangement procedure is operated by a homemade Python code, embedded
in the imaging and data-processing software. In each repetition of the experimental
sequence, the software acquires the őrst image of the random őlling, computes the
atomic positions using the pre-deőned thresholds, and runs the sorting algorithm with
that input. The generated list of moves is then converted to successive frequency and
amplitude ramps to be sent to the AODs. This conversion uses the daily AODs cal-
ibration, converting positions in the lattice to RF frequencies. The ramps are then
encoded into signals readable by the DDS and sent to it, which őnally feeds them to
the AODs, thus executing the computed moves. In regular lattices of around 50 static
sites, the whole process always takes less than 60 ms, in good agreement with the esti-
mations discussed above. Figure II.13 shows single-shot images of rearranged arrays,
with four different target geometries. The full underlying array of static tweezers is a
5× 8 lattice with regular 15 µm spacing.

15 µm 15 µm 15 µm 15 µm

Figure II.13: Single-shot frames of rearranged arrays, showing different target geome-
tries reached from the same 5× 8 initial rectangular lattice.

To precisely estimate the success rate of the rearrangement, we work with a target
array used for experiments on circular atom interactions. The full lattice now has
6× 8 sites and the target sub-array is a set of nine pairs of traps. Single shot images
of the array, before and after the rearrangement, are shown in őgure II.14 (a). We run
1000 repetitions of the rearranging sequence and compute, for each one, the number
of errors in the rearranged array with respect to the target. The results are plotted
in őgure II.14 (b). On average, the rearranging sequence involves 7±3 atomic moves
between sites and 14±5 moves to discard extra atoms. We expect, from the number
of moves between sites (considering that discarding atoms is always successful) and
from the collective lifetime of the 18 atoms compared to the duration of the process, a
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Figure II.14: (a) Single-shot images of the atoms, before and after a successful re-
arrangement. The target array, realized in the second frame, is designed to study
interactions within pairs of atoms. (b) Histogram of the distance to the target array,
in 1000 repetitions of the sequence. In 774 cases, the target array is perfectly realized,
with no missing or extra atoms.

success rate of 86%. The measured value is 77.4%, indicating unexpected inefficiencies
in the process. In 14% of all repetitions, an atom is missing from the target array,
while the presence of an extra atom on a site that should be empty occurs with a
4% rate. Unsuccessful realizations with two errors are rarer, and rearranged arrays
with a distance to the target larger than 2 happen in less than 0.5% of the repetitions.
Further investigations would need to be conducted to reach the theoretical rearranging
efficiency, but the overall success rate is nonetheless satisfactory for the experiments
presented in this work: a single pair has a 98% probability of being successfully created
in each repetition of the experiments.

We therefore properly implemented the rearrangement of arrays of ultra-cold atoms
to work on Rydberg experiments with deterministic geometries. The moving tweezer,
controlled through AODs and aberration-corrected via an SLM, can move atoms from
one trap to another with state-of-the-art efficiency. The full rearrangement of the
arrays, based on a heuristic algorithm that computes the moves for each repetition
of the sequence, yields correct success rates, though not as high as expected. With
the example of an array of pairs devised to study atomic interactions (18 atoms), the
setup outputs a defect-free geometry in more than 3 out of 4 repetitions. We checked
that the rearrangement procedure does not affect the properties of the atoms: once re-
cooled by optical molasses, atoms in a rearranged array have the same temperature of
∼ 9 µK (prior to the optical pumping phase) as those in the non-rearranging sequences.
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Conclusion of chapter 2

We presented in this second chapter our new experimental setup, designed, built and
put into operation over the past few years. Though currently running at room-
temperature, the heart of the setup is set to be moved from the UHV chamber to
a cryogenic environment for future experiments, once some őrst measurements on
circular Rydberg interactions have been performed with it in the current system.
Such experiments start with the preparation ultra-cold, defect-free arrays of individ-
ual ground-state rubidium atoms. Several coils and various optical accesses enable
the use of standard techniques to load and cool the arrays of single atoms, trapped
in optical tweezers. The optical traps are created through a careful design of phase
patterns on an SLM, which allows us to implement arbitrary arrays of traps over a
wide 100 µm × 100 µm area in the focal plane of the aspheric lens that focuses the
trapping beams. The correction of aberrations via the SLM ensures that the tweezers
are homogeneous both in shape and intensity throughout the lattice. This is checked
via atomic measurements. Spectroscopy and release-recapture experiments reveal the
power and waist distribution over a 42-site, 70 µm-wide array:

⟨Pi⟩ = 2.3± 0.1 mW, ⟨wi⟩ = 1.16± 0.01 µm. (II.17)

Good control on the loading, cooling and imaging parameters of the setup yields state-
of-the-art atomic properties in the arrays. Their initial random őlling is around 65%,
while we measure their lifetime and temperature to be:

τat = 12.6± 0.2 s, ⟨Ti⟩ = 18.7± 2.3µK. (II.18)

The hyperőne level of the trapped atoms is also controlled, via an optical pumping
stage that, while somewhat heating the atoms, populates the |5S1/2, F = 2,mF = +2⟩
sub-level with ηOP = 97% efficiency.

The moving tweezer, controlled by AODs and shaped by an SLM, őnally allows us
to deterministically rearrange the atoms on the arrays. The optimization of its param-
eters led to a rearranging efficiency of 77% in creating ∼ 20-atom target geometries,
designed for the study of circular Rydberg interactions. More precisely, in the tested
geometry of 9 pairs of atoms, the rearranging process has a 97% success rate for each
pair.

Thanks to these various setup features and techniques, the atoms are properly
prepared for Rydberg experiments. The excitation to Rydberg states, detailed in
the next chapter, will always start from arrays that we prepare as described here:
individually trapped, ultra-cold atoms, optically pumped to |5S1/2, F = 2,mF = +2⟩,
either randomly őlling the array or rearranged to őt our needs.



Chapter III

Arrays of trapped circular atoms

The preparation of deterministic arrays of trapped, ultra-cold ground-state atoms con-
stitutes the groundwork for experiments on interacting circular Rydberg states. The
end goal of this thesis is the characterization of interactions between circular states,
and our longer-term aim is the implementation of quantum simulations based on cir-
cular atoms. Efficiently bringing the atoms to circular levels is therefore key in our
experiments. The process which elevates ground-state atoms to circular levels, with
its speciőc technical tools and methods, constitutes the second pillar of the setup and
has been mastered for a long time in our team. To properly study circular-circular
interactions, we also need to individually trap the Rydberg atoms at őxed distances
from one another. This level of control was successfully achieved for the őrst time in
our setup quite recently [122], and is now implemented daily in our experiments.

In this third chapter, we őrst tackle the circularization procedure itself, which ex-
cites the atoms to |52C⟩. We work with this speciőc state due to a combination of
historical reasons and motivations related to the simulator project. From the scaling
laws of the circular atom properties with respect to n, levels with n ∼ 50 were identi-
őed as the most promising spin-encoding states [117]. These levels coincide with the
ones we are used to working with in the lab, although exciting the atoms to other
manifolds require little additional effort and could easily be implemented in a similar
manner. All of the results presented here are therefore based on the creation and study
of |52C⟩ exclusively.

We also describe here the trapping of these states in individual optical bottle
beams, based on the ponderomotive energy discussed in the őrst chapter and the
optical system introduced in the second one. A more detailed account of these results
and methods can be found in Brice Ravon’s dissertation [123], as the trapping of
circular atoms made up the central results of his thesis, and in the corresponding
publication [122]. We focus here on the general description of these processes, with
the study of interactions in sight. For the purpose of this chapter, we mostly use
non-rearranged arrays, in order to maximize the number of atoms present in each
repetition of the Rydberg experiments. When dealing with circular atoms, the lattice
geometry is speciőcally chosen to minimize interactions: all the results presented here
still pertain to single-atom physics.

91
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III.1 From ground-state atoms to Rydberg states

III.1.1 Overview and ionic detection

The circularization process constitutes a crucial part of the experiments: a good cir-
cularization efficiency is key to the preparation of defect-free arrays of circular atoms.
Its principle has been extensively discussed in previous works from our team [123,
144]. We present here its speciőc implementation in this new setup, starting from a
non-rearranged array of ultra-cold atoms optically pumped to |5S1/2, F = 2,mF = 2⟩,
with a directing magnetic őeld Bx deőning the quantization axis along x kept constant
throughout the sequence. The adiabatic cooling through the exponential ramp-down
of the tweezer intensity is always implemented, so that the trapped atoms have a
< 8 µK temperature. The electric őeld is initially zero. The full procedure consists in
three main steps, illustrated in őgure III.1 (a) with the relevant atomic levels involved.
The three successive stages are:

1. Two-photon laser-excitation process to reach, via the intermediate level 6P3/2,
the Rydberg state |52D5/2,mj = 5/2⟩.

2. Microwave transfer to |52F,m = 2⟩. The electric őeld is then ramped up to lift
the degeneracy of the n = 52 manifold and branch 52F onto one of its low-lying
levels (cf. Stark map of the n = 52 manifold in őg. I.2).

3. Radio-frequency adiabatic transfer. The successive absorption of many σ+-
polarized RF photons while the electric őeld strength is ramped up brings the
atom to the circular state |52C⟩. In this work, two slightly different implemen-
tations of the adiabatic passage were used. The őrst one, that will be referred
to as ładiabatic passage Až, relies on a historical set of parameters and is carried
out in a magnetic őeld of 10 G. In the second one, called ładiabatic passage Bž,
the parameters were recently re-optimized to further improve its efficiency, and
it is performed in 14 G.

We discuss each of these processes and their respective efficiencies in the following
subsections.

To manipulate Rydberg states, we rely on yet another feature of the setup: the
ionic detection. Speciőcally designed to measure the state of the atoms when in Ry-
dberg levels, it consists in applying a large ramp of electric őeld to the atoms, over
approximately 100 µs. Rydberg states, being close to the ionization threshold, ionize
at őelds around 100 V/cm, reachable with standard electronic tools. In the setup,
the two Stark electrodes (in pink in őg. II.2 of chapter 2) can apply such voltages.
The details of the electrical system enabling, through the Stark electrodes, both the
implementation of precise low őelds for atomic manipulation and the creation of in-
tense electric őelds for ionization, are discussed in appendix C. After their ionization,
the Rb+ ions are guided, thanks to various electrodes, to the channeltron, a charge-
amplifying device that counts the incoming ions [123]. The different voltages to which
the guiding electrodes are set maximize the number of ions that reach the channeltron.
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Figure III.1: (a) Schematic representation of the full circularization process, starting
with a 2-photon excitation to the |52D⟩ level of the n = 52 Rydberg manifold, followed
by a microwave transfer and a RF adiabatic passage to őnally reach |52C⟩. The
energy scales shown here do not reŕect the real ones. (b) Ionic detection signals
recorded for various Rydberg levels, superimposed on the same graph to show the
state discrimination. The ionization threshold depends on both n and m. |52D⟩ and
|52F ⟩ ionize at smaller őelds than |52C⟩, while the ionizing őeld and arrival time of
circular states grow with decreasing n. The corresponding electric őeld ramp is plotted
under the atomic signals. It is chosen here to be slower than those implemented in
most experiments, in order to clearly illustrate the level discrimination it enables.

Different Rydberg states ionize at different electric őelds, and therefore at different
times during the electric őeld ramp. By precisely recording the arrival time of the ions,
we can deduce which Rydberg level the atoms were in at the time of the ionization.
This is schematized in őgure III.1 (b), where we plot both the electric őeld over time
and the corresponding ionic signal recorded for various Rydberg levels. The ionic de-
tection scheme therefore allows us to discriminate between the different states involved
in the circularization process. Triggering this detection technique gives a snapshot of
the Rydberg level populations present at a given time in the experiment. We use the
ionic detection to optimize parts of the circularization process and to diagnose the
outcome of the manipulations of circular levels between different manifolds. Its main
drawback is that it does not provide site-resolved results, as opposed to the optical
detection scheme discussed so far. When possible, both techniques are implemented
to provide complementary information on the state of the atoms.
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III.1.2 Laser excitation to |52D⟩
We perform the excitation to Rydberg levels with a two-photon optical transition, from
|5S1/2, F = 2,mF = 2⟩ to |52D5/2,mj = 5/2⟩, the highest laser-accessible state in the
n = 52 manifold, via the intermediate state |6P3/2⟩. To do so, we use two counter-
propagating beams aligned on the x axis of the setup (cf. őg. II.3), one at 420 nm and
the other at 1015 nm.1 Both are σ+-polarized with respect to the quantization axis,
deőned by the magnetic őeld Bx = 10 G, which splits apart2 the |52D5/2⟩ sub-levels
and allows us to aim for mj = +5/2. The detuning with the intermediate level is set
to approximately +500 MHz.

The beams originate from two titanium-sapphire lasers (Equinox-SolsTiS systems,
M-Squared). One of them is frequency-doubled through a cavity doubler (ECD-X,
M-Squared) to reach 420 nm. Both lasers are locked onto a Fabry-Perot etalon cavity
and output around 1.5 W of light at their respective wavelengths. The lasers systems,
which I set up and optimized, are detailed in appendix D. Each beam is shaped by a
system of cylindrical lenses before reaching the atoms, in order to elongate them along
the vertical direction z while decreasing their size along y. We do so to maximize and
homogenize the intensity focused in the plane where the atoms are, and to not lose
light in the y ̸= 0 regions of the experiment. Their measured waists are

w(420)
y = 80 µm, w(420)

z = 372 µm, (III.1)

w(1015)
y = 46 µm, w(1015)

z = 214 µm. (III.2)

Given the optical power in each beam, 100 mW for the infrared laser and 190 mW for
the blue one, we expect single-photon Rabi frequencies to be

Ω420 = 2π × 192 MHz, Ω1015 = 2π × 20 MHz. (III.3)

The detuning with respect to the intermediate level is large compared to these Rabi
frequencies: we can treat the excitation as the addressing of a two-level transition, from
the ground-state to the Rydberg level. The two-photon Rabi frequency is then [186]:

Ω =
Ω420Ω1015

2∆
= 2π × 3.8 MHz, (III.4)

where ∆ = 2π × 500 MHz is the detuning with respect to the intermediate level.

The characterization of the excitation is shown in őgure III.2. The experiment is
carried out after the preparation of the trapped cold atoms, as described in chapter
2. A őrst reference image is taken, the atoms are re-cooled and optically pumped to
mF = +2, the adiabatic cooling is carried out, and the tweezers are then turned off for
a few µs while the excitation lasers are turned on. The optical traps are off during the

1We remind that the atom arrays lie in the (x, z) plane of the experiment.
2In these conditions, the spin-orbit coupling of |52D⟩ is still large compared to the effect of the

magnetic field. As per the discussion of chapter 1, the fine structure remains relevant for |52D⟩ and
the field shifts its mj sub-levels according to the Zeeman effect.
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Figure III.2: Two-photon excitation to |52D⟩. (a) Sequence used to characterize
the laser excitation. Both detection methods, optical and ionic, are implemented.
(b) Spectrum of the laser excitation for a 0.4 µs pulse. The x-axes are centered on ν0,
the peak frequency of the average optical signal. Left panel: site-resolved data. Center
panel: optical signal averaged over all sites and converted to counts, overlapped with
the ionic signal. Right panel: spatial maps of the amplitude and central frequencies,
obtained from the őts of the individual spectra. The dispersion in central frequencies
reŕects the spatial variation of the lasers’ intensities. (c) Rabi oscillation signal: the
measured average Rabi frequency is lower than the theoretical 3.8 MHz value but shows
good homogeneity across the array, thanks to the cylindrical shape of the beams. The
measured residual variations in Rabi frequencies across the vertical direction are in
good agreement with the spatial proőle of the two lasers.
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excitation to avoid unwanted inhomogeneous light-shifts on the 2-photon transition
across the array. We also keep the electric őeld at zero during the whole sequence, in
order to reduce the Stark broadening of the transition induced by őeld gradients. The
traps are switched back on right after the end of the laser pulse. Atoms that have been
excited to |52D⟩ get repelled from the trapping region due to the ponderomotive force
exerted on them by the tweezers, while the atoms that stayed in the ground-state are
recaptured in their traps. We then proceed with our two measurements techniques.
First, we trigger the ionic detection. A ∼100 µs electric őeld ramp ionizes the excited
atoms, which we count via the scheme presented above. A second image is őnally
acquired and we compute, from the two frames, the recapture probability in each site
of the array. If the laser excitation is efficient, the recapture probability is low and the
ion counts are high. Panel (a) of őgure III.2 schematically represents the successive
steps involved in the sequence.

The optical detection allows us to have site-resolved characterization of the excita-
tion, as shown in the spectra on the left side of őg. III.2-(b). The data presented here
was acquired with a non-rearranged 6× 7 array, with 12 µm spacing and a laser pulse
duration of 0.4 µs. Each spectrum is well approximated by the theoretical line shape
of a 2-level excitation by a square pulse of duration τ and frequency ν [186]:

P (ν) = y0 + A sinc2
[

π(ν − ν(0))τ)
]

, (III.5)

where P is the transition probability and ν(0) the resonant frequency. We extract, for
each site i, the excitation efficiency Ai and the central frequency ν(0)i , which we map in
őg. III.2 (b). The direction of propagation of the excitation lasers corresponds to the
horizontal axis of the grids. The excitation amplitude is rather homogeneous across the
array, and yields the overall efficiency (amplitude of the site-averaged optical signal):

η52D = 0.83± 0.02. (III.6)

This data reŕects a combination of both the optical pumping efficiency (usually about
90%) and that of the laser pulse itself (around 93% according to the damping of the
Rabi oscillations), in standard, day-to-day operations. With extra care on the op-
timization of the optical pumping process and precise re-alignment of the excitation
lasers, we can reach a global efficiency of about 90% with any array of the same di-
mensions. These parameters are not re-optimized daily, and we end up with usual
excitation efficiencies closer to 85%.

The spatial variations in the central frequencies of the spectra reŕect the laser in-
tensity distribution across the array. The blue 420 nm beam light-shifts the addressed
transition, so that atoms closer to its center experience a higher resonant frequency
than those on the top and bottom edges of the array. This dispersion, of the order
of 0.1 MHz, is nonetheless small compared to the 1/τ = 2.2 MHz őtted width of the
spectra. Let us note here that this width is in good agreement with the 0.4 µs pulse
duration and conőrms that the excitation is Fourier-limited: no unwanted process
broadens the excitation spectrum.
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The signal averaged on all sites and converted to counts is also plotted in őg-
ure III.2 (b), along with the ionic data. The counts derived from the optical detection
are computed using the 64% loading probability measured in this experiment. At
resonance, nopt = 22.1 atoms are on average excited to |52D⟩ and not recaptured
(difference between baseline and resonance). However, the ionic signal indicates that,
on average at resonance, nion = 14.3 atoms are detected (we integrate all the counts
measured over the ramp). The discrepancy between the two numbers comes from the
150 µs lifetime of |52D⟩, which is ionized ∼65 µs after its excitation by the lasers.
Given these numbers, we expect the losses measured with the optical detection to
translate into nopt × e−65/150 = 14.3 ionic counts, in excellent agreement with the
measured value. We therefore have near-perfect ionic detection efficiency. It is worth
noting that, for the ionic measurement, we summed up all the detected ions, regardless
of their arrival time. The signal is however spread over a rather large time window,
maybe because of the Coulomb interaction between the charged particles during their
ŕight to the channeltron, or because of atomic interactions and level crossings when
the őeld is ramped up. This trick will not be possible when dealing with several Ryd-
berg states at a time, as precise level-speciőc time windows will have to be deőned.

We also show in őgure III.2 (c) the Rabi oscillation on the laser excitation. In the
same fashion, we present the site-resolved results, the average optical detection signal
translated into atomic counts, and the spatial map of the Rabi frequencies. The őrst
main information from these results is the spatial distribution of the individual Rabi
frequencies obtained over the array:

⟨Ωi⟩ = 2π × (1.39± 0.03) MHz. (III.7)

This value is much lower than the theoretical 3.8 MHz expectation. This could be
explained by poor estimations of the laser powers effectively involved in the pulses, as
the pulse peak powers might be lower than the continuous-operation values we mea-
sured. The polarizations of the beams might also not be as pure as we expect them to
be. Although less probable, the low Rabi frequency could maybe indicate an erroneous
alignment of the lasers in the system. The second notable feature of the Rabi signals
is the spatial variation of the frequencies, explained by the intensity proőle of the laser
beams along the vertical direction z. Taking the measured vertical waists w(420)

z and
w

(1015)
z , we expect the ratio between the 2-photon Rabi frequencies at the center and at

the top and bottom edges of the array to be Ω(z = 30 µm)/Ω(z = 0 µm) = 0.95. We
indeed measure a ratio of 0.94 between the smallest and largest measured frequencies,
indicating a good understanding of the spatial proőle of the excitation. The spatial
map of the Rabi frequencies is actually used to cautiously align the two excitation
lasers onto the array.

Regardless of the unexpected average Rabi frequency, we overall implement an
efficient and homogeneous excitation of the ground-state atoms to |52D5/2,mj = 5/2⟩,
with a mean η52D = 83% efficiency and limited dispersion in the excitation properties
over the full array. The two detection methods provide complementary diagnostics,
with the main advantage of the optical detection being the site-resolved data. The
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same methods will be implemented in the next steps of the process to reach circular
states.

III.1.3 Microwave transfer to |52F ⟩
Because of its large quantum defect, |52D⟩ is much lower in energy than the n = 52
sub-manifold where the high-ℓ states, and speciőcally |52C⟩, are located (as shown in
the Stark map of őgure I.2-[a]). The next step in reaching circular atoms is therefore
the transfer to a state closer in energy to the high-ℓ levels, from which we will then be
able to climb the łladderž of states (depicted in őg. I.2-[b]) to reach |52C⟩.

We do so through a one-photon microwave transfer to a sub-level of |52F ⟩. We
address this transition in the same őeld conditions as the laser excitation: zero elec-
tric őeld (to minimize transition broadening) and a 10 G directing magnetic őeld
along x, which deőnes the quantization axis. As explained in chapter 1, |52D⟩ and
|52F ⟩ exhibit two different behaviors with these őeld parameters. On the one hand,
the spin-orbit coupling in |52D⟩ still overcomes the effect of the magnetic őeld: the
őne structure basis remains its relevant description and its mj sub-levels are linearly
shifted by Bx. On the other hand, the spin-orbit coupling in 52F is much weaker,
so that it is subjected to the Paschen-Back effect. In 10 G, its coupling to the mag-
netic őeld dominates its behavior and its appropriate quantum numbers are l, m and
ms. Starting from |52D5/2,mj = +5/2⟩, also written |52D,m = 2,ms = +1/2⟩, we
can excite the atoms to any of the three states |52F,m,ms = +1/2⟩, m ∈ {1, 2, 3},
according to the selection rules of the electric dipole transition. For reasons that will
be explained later, |52F,m = 2⟩ is the most convenient level to then reach |52C⟩.
We therefore choose to address the ∆m = 0 transition, as drawn in őgure III.3-(b)
within the relevant level structure. In a magnetic őeld of 10 G, the frequency of this
transition is 64.754 GHz. In the experimental setup, a signal generator (MG3692C,
Anritsu) generates microwave at 16.19 GHz, which is then ampliőed and quadrupled
(AMC-15-RFH00, Militech) before being shone by a horn onto the atoms through one
of the chamber’s windows. A PIN diode allows us to digitally control the activation
and extinction of the microwave sent to the atoms, in order to implement square pulses
with 0.1 µs time resolution (limited by the National Instruments card controlling the
PIN diode).

We present in őgure III.3 the full characterization of the transition. The sequence,
pictured in panel (a), implements both detection methods. After the initial cold-atoms
preparation, the tweezers are turned off and a őrst laser π-pulse sends the atoms to
|52D⟩. The microwave pulse, of tunable frequency and duration, is then applied. A
second laser π-pulse lowers the remaining |52D⟩ atoms back to their ground-state,
after which the tweezers are turned back on. The atoms transferred to |52F ⟩ by the
microwave pulse are kicked out of the trapping region by the tweezers and not re-
captured. We count them via ionic detection, while optical detection computes the
recapture probability for each set of microwave parameters, related to the number of
|52D⟩ atoms after the microwave pulse. We show here the spectrum of the transition
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(panel [c]), obtained with a 0.6 µs pulse. We also plot the Rabi oscillation signal at
resonance the resonance frequency (panel [d]).

The site-resolved spectra obtained from optical detection are well approximated by
the theoretical shape of equation (III.5). The individual resonant frequencies ν0 are
very homogeneous, with only a 25 kHz dispersion across the lattice. The baselines,
lower than 1, reŕect the imperfect laser π-pulse efficiency. In this experiment, the
tweezers are turned off for 2.6 µs, which is small with respect to the atomic tempera-
ture: recapture losses induced by the free ŕight during that time are negligible. The
mosaic representing the individual amplitudes over the array shows some spatial varia-
tions. Atoms in the top-left corner have higher microwave transfer than the rest of the
array. One deőcient site, already outlying in the laser excitation, has a signiőcantly
lower amplitude than the rest. This speciőc tweezer might have an imperfect shape
and therefore recapture less efficiently.

The averaged optical signal is also converted into counts. Through the 64% initial
loading of the array, we initialize nGS = 26.7 ground-state atoms. On average, at
resonance, we recapture 1.9 atoms. These include the atoms unaffected by both laser
pulses (0.8 atoms) and those excited to |52D⟩, not transferred to |52F ⟩ and then
brought back to the ground-state. Knowing the laser pulse efficiency, we compute
from these numbers the mean microwave succes rate:

η52F = 0.94± 0.01. (III.8)

The ionic signals of both |52D⟩ and |52F ⟩ are trickier to analyze, and are presented
here for indicative purposes only. Indeed, the arrival time windows of both levels ex-
hibit some overlap. Even at microwave resonance, we count ions in the |52D⟩ window,
which biases the results. The overlap can bee seen in the ionic signals of őg. III.1-(b),
where a residual |52F ⟩ orange signal appears in the blue |52D⟩ time window. Some
non-negligible ion counts also occur after the two peaks, indicating some spreading of
the ŕight times which are difficult to take into account to analyze level populations.

The Rabi oscillation of this microwave transition, presented in panel (b) of őg-
ure III.3, displays one noteworthy feature. The single-site Rabi frequencies exhibit a
noticeable gradient across the array, with a 5% difference in value between the top-left
and bottom-right corners of the lattice. We attribute this phenomenon to a gradient of
microwave power across the array. With various gilded electrodes covering the inside
of the sapphire structure, a microwave standing wave emerges during the pulse (of
4.6 mm-wavelength) and one of its nodes happens to be near the lattice. The spread
in Rabi frequencies seems to explain the spatial variations of the spectra’s amplitudes.
In the spectrum sequence, not all sites experienced a π pulse, leading to reduced am-
plitude in some regions of the array.

Overall, we retain from this characterization an efficient transfer of population from
|52D5/2,mj = 5/2⟩ to |52F,m = 2,ms = 1/2⟩. Even though we witness a gradient in
Rabi frequencies across the array, we reach an overall efficiency of η52F = 94%, which
is satisfactory and allows us to proceed with the circularization.
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Figure III.3: Microwave transition to 52F . (a) Experimental sequence. (b) Level
structure, highlighting the selected atomic transition. (c) Spectrum of the transition,
with the horizontal axes centered on ν0, the central frequency of the average optical
signal. Site-resolved data are őtted with the theoretical sinc line shape and yield the
spatial distribution of amplitudes plotted in the mosaic. The optical recapture signal,
averaged over all sites, indicates that, on average, 20.8 atoms are excited to |52F ⟩ at
resonance. The ionic signals are presented for comparison, but overlap between the
detection windows of the two levels involved make them harder to analyze. (d) Rabi
oscillations, exhibiting a gradient of Rabi frequencies across the array linked to in-
homogeneity in the microwave power, probably explained by a nearby node in the
microwave standing wave pattern.
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III.2 Circularization to |52C⟩

The őnal part in the preparation of circular atoms is the transfer of population from
the low-ℓ |52F ⟩ state to the circular state |52C⟩. Its purpose is the absorption of
many quanta of angular momentum by the atoms, in a well-controlled manner, in
order to reach the state |52,m = 51, k = 0⟩ = |52C⟩. This procedure is not as
straightforward as the optical and microwave transitions previously addressed. We
rely on a rapid adiabatic passage induced by a σ+-polarized radio-frequency őeld. The
adiabatic passage carries the atomic population up the lower-right diagonal of states in
the Stark multiplicity (cf. őg. I.2 of chapter 1). This method has been used for a long
time in our team, and its robustness and efficiency were demonstrated in numerous
results [170, 171, 187]. Since it has been described extensively in previous works [123,
135, 144, 145], we only recall here its basic general principle and its application to
the n = 52 manifold of rubidium 87. We then discuss in more details its technical
implementation, in its recently improved, ładiabatic passage Bž version, and show the
results it leads to in the setup.

III.2.1 The adiabatic passage procedure

To go over the basics of the circularizing adiabatic passage, we consider a hydrogenic
Rydberg manifold with principal quantum number n. A őxed electric őeld F lifts
its degeneracy and deőnes the quantization axis. The purpose of the procedure is to
climb the lower-right ladder of the manifold: we therefore only consider the atomic
states |n,m, k = m + 1− n⟩ along this diagonal, written in the parabolic basis intro-
duced in chapter 1. Such states are unambiguously deőned by m, or equivalently by
k = m+1−n, so that we write them |m⟩. The end goal is to reach, from a low-m/high-
k state, the circular level where m = n − 1 and k = 0. To do so, we couple these
states with one another through a pure σ+-polarized radio-frequency őeld. We denote
its frequency ω and write N the number of photons in its mode. Moreover, the atomic
states have ś considering their linear Stark shifts only ś evenly-spaced bare energies
Em = k × ℏω0, where ℏω0 = 3nea0F/2 according to equation (I.23) of chapter 1.

The adiabatic passage is best understood in the dressed-atom formalism [188]. We
describe the full atom-őeld system by state vectors |m,N⟩. The radio-frequency őeld
couples the neighboring states via single-photon transitions. More speciőcally, a state
|m,N⟩ is coupled to both |m+ 1, N − 1⟩ (absorption of a photon) and |m− 1, N + 1⟩
(emission of a photon). We can thus restrict the analysis to the subspace of őxed total
energy {|m,N0 −m⟩}, wherem ∈ {0, ..., n− 1} and N0 ≫ 1 (high-intensity limit). We
introduce the detuning ∆ = ω0 − ω and coupling strength Ω = 3nea0ERF/

√
2, where

ERF if the őeld amplitude. The Hamiltonian of the system can then be written [189],
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Figure III.4: Adiabatic passage for circularization. (a) Eigenenergies of the atom-őeld
system, in the hydrogenic model and for a generic n, as a function of the detuning
between the RF őeld frequency and the atomic level spacing. Black lines represent
the eigenenergies without atomśradio-frequency coupling, while the coupled states
are shown in red. The highest-energy level, plotted in purple, evolves from |m = 0⟩
to |m = n − 1⟩ as the detuning is ramped up. (b) Level structure involved in the
adiabatic passage for rubidium. In 2.15 V/cm, the state |m = 2, k = −47⟩ happens
to lie, thanks to its quantum defect, on the lower ladder of the manifold, at an energy
that matches the ladder spacing. Starting from this level, the successive absorption of
49 σ+ photons through the adiabatic passage leads to |52C⟩.
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, (III.9)

where am depends only on m. Its eigenenergies are analytically tractable for any őeld
conőguration (Ω,∆).

In the large detuning limit |∆/Ω| ≫ 1, the effect of the őeld coupling on the bare
atomic energies becomes negligible. Two possibilities then arise:

• if ∆ > 0, the eigenenergies are ordered with m, and |m = 0⟩ has the lowest
energy,

• if ∆ < 0, the order of the energies are reversed: |m = n− 1⟩ now has the lowest
energy among atomic states.
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The principle of the adiabatic passage is now clear: it consists in ramping the detuning
from a large negative value to a large positive value3. If this is done in an adiabatic
way, an atom initially in |m = 0⟩ ends up in |m = n − 1⟩, i.e., in the circular state.
This procedure is illustrated in őgure III.4 (a), where we plot both the bare (in black)
and dressed (red) eigenenergies of the system as a function of the detuning. The anti-
crossing of the coupled states is clearly visible, and the level followed by the atom is
during the ramp is highlighted in purple.

The complete adiabatic procedure then splits into three parts, starting from an
atomic population in m = 0 and zero őeld amplitude:

1. the radio-frequency is turned on progressively, with a őxed large negative detun-
ing, so as to dress the atoms: this is done adiabatically provided that
|dΩ/dt|/∆2 ≪ 1,

2. the detuning is ramped up: the atoms remain in the highest-energy eigenstate if
|d∆/dt|/Ω2 ≪ 1 [190],

3. the őeld amplitude is brought back to zero, under the same condition as the őrst
step.

Following these steps in the right adiabatic conditions should therefore lead to a per-
fect population transfer to the circular state.

III.2.2 Technical implementation

In practice, carrying out the adiabatic passage with non-Hydrogen atoms requires
to address some additional details. Indeed, as described in chapter 1, low-ℓ Ryd-
berg states of rubidium are affected by quantum defects: the ladder of states used
for the adiabatic transfer only exhibits regular spacing for m ≥ 3. We circumvent
this issue with a careful choice of electric őeld and initial level: at 2.15 V/cm, the
|52,m = 2, k = −47⟩ state happens to be 225 MHz below |m = 2, k = −48⟩, while the
spacing in the ladder is also 225 MHz. Figure III.4 (b) shows the relevant level struc-
ture in this speciőc őeld. The |m = 2, k = −47⟩ level is highlighted in red. It will be
the starting point of the atoms in the adiabatic passage. |52F,m = 2⟩ was speciőcally
selected as an intermediate level in the full excitation procedure because it branches
to |m = 2, k = −47⟩ when the electric őeld is switched on. In the experiment, we
therefore ramp up the electric őeld right after the 52D-52F microwave transfer. We do
so fast enough (in 0.2 µs) so that anti-crossings with other levels are avoided and no
purity losses are induced by the process. We keep F aligned with the magnetic őeld
while doing so to preserve the quantization axis along x.

To proceed with the adiabatic transfer, we scan the detuning by actually ramping
the electric őeld, instead of changing the RF frequency. We keep the RF frequency

3In adiabatic passage A, the detuning was ramped from a positive to a negative value.
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at 225 MHz, while the static electric őeld strength sets the actual detuning: the res-
onance condition is fulőlled when F = 2.15 V/cm. At this őeld strength only, the
ladder effectively extends from |m = 2, k = −47⟩ to the circular state and its spacing
matches the RF frequency, as pictured in őg. III.4-(b). A őeld ramp from 2.05 to
2.25 V/cm is then enough to go from a large negative detuning to a large positive one
and implement the adiabatic passage. Through this process, the atoms absorb a total
of 49 photons and end up in |52C⟩.

The radio-frequency őeld is created by four dedicated electrodes within the sapphire
cube, shown in yellow in őgure II.2 of chapter 2. Speciőc RF circuitry allows us to
control the amplitude and relative phases of the signals emitted by each of the four
electrodes, numbered from 1 to 4. Due to some malfunction with electrode 3, we
actually only use the 1-2 pair to create the σ+ őeld. A signal generator (Synth-300,
Acquitek) creates the 225 MHz signal, which is split between separate channels leading
to the electrodes. On each channel, digitally-controlled mixers tune the RF amplitude
(and bias-tees, also digitally-controlled, apply DC voltages to the electrodes to őne-
tune the static őeld throughout the experimental sequence). The envelope of the RF
pulse is shaped by an arbitrary waveform generator (33521A, Agilent Technologies)
controlling mixers on each channel, so as to create a smooth pulse whose amplitude has
a trapezoidal shape over time, fulőlling the adiabatic condition on its activation and
extinction. A phase-shifter on channel 2 sets the relative phase between electrodes 1
and 2, in order to be able to only have σ+ polarization at the atoms position. This point
is actually crucial, as any residual σ− polarization could hamper the efficient transfer
of population to |52C⟩. The absorption of a σ− photon removes the atom from the
ladder via the |m, k⟩ → |m − 1, k + 1⟩ transition, and it will never reach the circular
state. The optimization of the procedure is described below via the measurement of
the circular state purity.

III.2.3 Circular state purity

To assess and optimize the performance of the adiabatic passage, we rely on microwave
spectroscopy. To already set the stage for interaction measurements, we use here a
rearranged array of 6 pairs of atoms. The geometry of the system is drawn in őg-
ure III.5 (c). The distance between neighboring pairs is 30 µm, while the distance
between two atoms within a pair is 10 µm. To inhibit interactions, we rotate the full
array in the (x − z) plane so that the inter-atomic axis is at the angle θ0 = 54.7°
with the electric and magnetic őelds (along x), which deőne the quantization axis. As
explained in chapter 1, in this conőguration the dipole-dipole interactions are zero.
We also proceed using the ionic detection only, as optical detection of circular states
implies going back down to the ground state from the circular levels, which adds tech-
nicalities to the sequence and reduces the overall detection efficiency. We only explore
the optical detection of circular states once the circularization has been properly op-
timized through the ionic detection method and once the trapping of Rydberg states
is implemented.
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The sequence designed to assess the purity is shown in őgure III.5 (a). We prepare
the rearranged array of cold atoms, then turn the tweezers off and carry out the laser
excitation and D-F microwave transition. The electric őeld is ramped up to branch
|52F ⟩ to |52,m = 2, k = −47⟩, after which the adiabatic passage is carried out, in
version B (the most recent, efficient one). We can then apply a microwave probe pulse
or not, and we őnally trigger the ionic detection. The whole process, from the ground
state to ionization of the circular atoms, takes less than 60 µs. During this time, atoms
move by less than 5 µm, which is negligible compared to the electric őeld structure.
The efficiency of the ionic detection is therefore not affected by the free-ŕight of the
atoms in this experiment.

Within a single manifold, high-m states ionize at a signiőcantly higher őeld than
low-ℓ levels, as can be seen in the ionic signals of őgure III.1 (b). The őrst step in opti-
mizing the adiabatic passage is therefore to maximize the time at which we record ions
during the ionizing electric őeld ramp. The őne adjustment of the adiabatic passage
parameters (radio-frequency pulse shape, amplitudes and phase for polarization pu-
rity, őeld ramp amplitude and timings) is then done through microwave spectroscopy
between the n=52 and n=50 manifolds.

The relevant level structure is drawn in panel (b): thanks to the őrst step of rough
optimization of the circularization, most atoms end up, after the adiabatic passage, in
the three levels of highest m in the manifold, among which |52C⟩. Using the notations
of chapter 1, the two levels closest to |52C⟩ are called łelliptical statesž and written
|52E+⟩ and |52E−⟩. An imperfect σ+ polarization or an insufficient RF power during
adiabatic passage lead to populating these elliptical states instead of |52C⟩. The three
levels cannot be distinguished via the ionic detection, as their ionization thresholds are
almost identical. However, the ionic detection discriminates very well high-m states of
different manifolds, as illustrated by the ionization signals of different circular states
in őgure III.1 (b). We write pn the counts recorded on average in the time window
allotted to the high-m states (among which |nC⟩) of manifold n.

To assess the purity of the circular state preparation, we therefore use a two-photon
microwave transfer to n = 50, which serves as a probe of the population in the three
high-m levels of the 52 manifold.4 Thanks to their differential Stark shifts, in a őeld of
∼ 2 V/cm, the transitions |52E+⟩→|50E+⟩, |52C⟩→|50C⟩ and |52E−⟩→|50E−⟩ are
each approximately ∼ 4 MHz apart. We use this property to estimate the population
distribution resulting from the adiabatic passage. For a single microwave frequency,
we measure the transfer from n = 52 to n = 50, deőned from the ionic counts as
p50/(p50 + p52). Scanning the frequency of the microwave probe pulse over 10 MHz
around the |52C⟩→|50C⟩ frequency (99.279 GHz) yields a spectrum with three peaks,
one for each of the three |52E+⟩→|50E+⟩, |52C⟩→|50C⟩ and |52E−⟩→|50E−⟩ tran-

4We choose this specific two-photon transition for various reasons. First, the two ionic arrival
time windows for n = 52 and n = 50 are more separated than those of 52 and 51 or 52 and 53.
Moreover, black-body-induced transfers to neighboring manifolds would quickly reduce the contrast
of the n = 52 → n = 51 transition spectrum in this room-temperature setup.
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D-F transfer to branch |52F ⟩ to the starting level for the circularization. (b) Atomic
levels involved in the 2-photon microwave probe of the circular state purity. The pink
arrows depict the three 2-photon transitions probed in the spectra. (c) Geometry
of the atomic arrays for this experiment. The tweezer lattice is shown in red dots.
The rearranger places atoms on a sub-lattice of six pairs, used for the circular purity
measurement. The angle between the quantization axis and the inter-atomic axis is
chosen to inhibit interactions within pairs. (c) Spectrum of the microwave probe after
careful optimization of the adiabatic passage: the elliptical-elliptical peaks are almost
indiscernible, indicating a good circular state purity.

sitions. The relative heights of the three peaks are roughly proportional to the pop-
ulation distribution among the three levels at the end of the circularization. We can
then precisely optimize the adiabatic passage parameters by maximizing the circular-
circular peak while minimizing the two elliptical-elliptical ones.

The optimal purity was reached with a radio-frequency pulse of total duration 4 µs,
which comprises the 1 µs ramp times to switch it on and off adiabatically. The electric
őeld ramp has a 0.2 V/cm amplitude and lasts 2 µs. These parameters fulőll the
adiabatic conditions previously discussed and are shown in the őgure.

The full spectrum obtained after complete optimization of the circularization is
plotted in őgure III.5 (c). The three peaks are labeled according to their corresponding
atomic transitions. We őt each of them with the theoretical line-shape obtained from
a square pulse. The microwave probe pulse duration used here is 0.9 µs. We note that
the data does not perfectly őt the sinc model, indicating that the pulse duration was
slightly different from the optimal π-pulse for the central peak. We can nevertheless
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estimate the amplitudes A−, AC−C and A+ of the three peaks:

A− = 0.031± 0.003, AC−C = 0.92± 0.02, A+ = 0.015± 0.004. (III.10)

We deduce from these amplitudes the circularization efficiency, corresponding to the
ratio between the amplitude of the central peak and the sum of the three amplitudes:

η52C =
AC−C

A− + AC−C + A+

. (III.11)

In conclusion, the adiabatic passage is carried out in 4 µs, with a satisfactory efficiency
of:

η52C = 0.95± 0.01. (III.12)

Some useful information can also be derived from the ionic counts. Over the
span of the spectrum, the total number of detected atoms is stable and around
ptot = p50 + p52 = 6.4. This is in good agreement with what we expect, given the
limited room-temperature lifetime of circular states. Over the 50 µs delay between
their creation and their ionization, the atoms undergo black-bodyśinduced transfers,
mainly to their neighboring manifolds. We therefore have signiőcant population trans-
fer from n = 52 to n = 51 and n = 53, and from n = 50 to n = 51 and n = 49 before
the ionization. Using the rate equations of appendix A.1 to simulate the population
evolution between the manifolds, we estimate that, at 300 K and in 50 µs, 29% of
the atoms transfer to a neighboring circular state. We can then deduce the expected
number of detected atoms, taking into account the number of rearranged sites (12),
the laser, microwave and adiabatic transfer efficiencies (85%, 92% and 95%) and the
lifetime of the circular atoms. We get an expected number of atoms of 6.3 on average
in each repetition of the sequence. This number matches the one we measure, indicat-
ing again near-perfect global efficiency in our ionic detection.

To sum up, the complete circularization protocol takes approximately 10 µs to
elevate the single atoms from their ground state to |52C⟩. The laser excitation to
|52D⟩ is carried out in less than 1 µs and the microwave transfer to |52F ⟩ in 0.5 µs. It
then takes 0.5 µs to switch on the electric őeld diabatically, thus branching |52F ⟩ onto
the starting level of the circularization, and an additional 1 µs to let the static őeld
settle. Adding the 4 µs of the RF adiabatic passage and some delays between all these
events, we get a total duration of 10 µs. The single-atom total preparation efficiency,
from ground to circular state, is derived from those of the three successive steps:

ηprep = η52D × η52F × η52C

= 0.73± 0.02
(III.13)

Although adequate for experiments on interactions within pairs of atoms, this ef-
őciency is obviously not suitable for the creation of large, defect-free ensembles of
circular atoms. Even with some recurrent but time-consuming efforts spent on the
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optical pumping and laser excitation optimizations that could bring it to 79%, the
efficiency would not be high enough to properly elevate large arrays to circular lev-
els. Let us mention here some prospective ways in which the full circularization could
be improved. First, more advanced beam-shaping of the Rydberg lasers [111] could
improve the homogeneity of the transfer to Rydberg states. The simple laser excita-
tion π-pulse could be replaced by a stimulated Raman adiabatic passage (STIRAP)
[191ś193], which is less demanding in terms of parameter optimization. Secondly, a
better control of the microwave standing wave pattern in the experiment would reduce
the gradient of microwave Rabi frequencies, thus improving the overall D-F trans-
fer. Lastly, known methods of optimal control [194] could replace the radio-frequency
adiabatic passage. In such schemes, a circularization ődelity above 96% is reached,
through a process that takes about 100 ns. All in all, several techniques could greatly
improve the performance of the circularization in this setup and make it adequate for
experiments involving defect-free ensembles of tens of circular atoms.

To conclude this part, let us note that the setup allows us to de-circularize and then
de-excite the circular atoms back to their ground state. By simply applying the sym-
metric electric őeld ramp and the same radio-frequency pulse as in the circularization,
the atoms are brought back down to the base of the manifold, after which we can turn
off the electric őeld and apply microwave and laser π-pulses to reach the ground state.
With some extra care on the settling of the electric őeld before the F −D transition,
the de-excitation efficiencies are the same as the excitation ones. We will make use of
this ability to study the circular atoms through the optical detection scheme, in order
to get site-resolved measurements and diagnoses.

III.3 Individually-trapped circular atoms

Having tackled the preparation of circular atoms, we can turn to the matter of their
individual trapping, a pre-requisite for appropriate control of their interactions over
long timescales. To trap individual circular atoms, we use bottle beams (BoBs), that
were already mentioned in chapter 2. We recall that, thanks to a good understanding
and control of the SLM phase masks designed for their implementation, the arrays of
BoBs we create display low aberrations. The BoBs are defect-free and homogeneous
in shape across the 100 µm × 100 µm region of the experiment. To provide more
insight into the particular shape of a bottle beam, we start this section by detailing
its geometry. We then proceed with the demonstration of the trapping of circular
atoms, before discussing the in situ characterization of the traps and the coherent
manipulation of individual circular atoms within them. All of the data shown here
was acquired with the adiabatic passage B, except in the last section where adiabatic
passage A was still in use.

III.3.1 Optical trapping of circular states

As explained in the őrst chapter, Rydberg atoms interact with off-resonant radiation
through the ponderomotive effect. In a given intensity distribution I(r), a Rydberg
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atom is subjected to the classical potential

V (r) =
e2

2mecϵ0ω2
I(r) = h× 1.52 MHz/(mWµm−2)× I(r). (III.14)

The second part of the equation is written for a wavelength of 821 nm, as is the case in
the experiment. In an inhomogeneous light őeld, Rydberg atoms are low-őeld seekers:
they are attracted to regions of lowest intensities. The purpose of the bottle beam is
therefore to create a őeld distribution in which a small volume with low intensity is
surrounded in all directions by higher intensity. We recall that a single bottle beam
is generated by a speciőc phase pattern on an SLM, where the incoming beam has a
4 mm waist. A π phase-shift over a radius of 3.35 mm induces destructive interference
between the inner and outer parts of the beam when focused by the aspheric lens.
Adding the lattice-deőning phase mask and the aberration correction to the SLM pro-
őle ultimately creates arbitrary arrays of such bottle beams, as shown in the image of
őgure II.4 in the second chapter.

The bottle beam trap

We focus here on the speciőc geometry of a single bottle beam. Its theoretical
intensity proőle is plotted in őgure III.6, computed using the 16.3 mm focal length of
the aspheric lens for size accuracy. The total power is chosen to be 30 mW, a value
similar to what we use in most experiments. The axes are set according to the real
orientation of the bottle beams in the setup. The direction of propagation is y, while
the transverse proőle is in the x − z plane. The beam has an elongated shape and
cylindrical symmetry, as shown by the 2D cuts of the őgure. It is made up of two
lobes of high intensity approximately 13 µm apart along y, linked by an outer łtubež
of about 3 µm diameter. Three quantities characterize the bottle beam trap: its depth
and its two trapping frequencies.

For a power of 30 mW, the trapping depth is estimated to be 60 µK from athe
numerical simulation of its shape. This value corresponds to the height of the trap-
ping potential along diagonals in the y − z cut proőle. Indeed, at the edges of the
high-intensity lobes, the intensity is not as high as in the transverse ring, and this is
where leakage is most likely to happen if the bottle beam is not intense enough. In the
leakage direction, we estimate that the height of the trap goes as ∼2 µK/mW. For com-
parison, the height of the ring scales with the total power approximately as 3 µK/mW.

To determine the expected trapping frequencies, we őt the intensity proőles of the
beam along two axes, shown in white dashed lines in őgure III.6. From the two cuts,
we get the estimated transverse and longitudinal frequencies:

ωt = 2π × 21.3± 1.2 kHz, ωl = 2π × 7.6± 0.2 kHz. (III.15)

The harmonic approximation holds true for radial distances r < 1 µm and longitudinal
positions −3 µm < y < 3 µm. Further away from these bounds, the intensity distri-
bution deviates from a quadratic shape, as quartic terms become non-negligible. The
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Figure III.6: Bottle beam intensity distribution for 30 mW total power. The harmonic
approximation of the proőles are plotted in red dashed lines in the lower panel.

trapping frequencies approximately scale as the square-root of the total power, with
potential deviations to this rule because of the trap’s imperfect harmonicity. These
values are useful to estimate the stability issues for systems of trapped, interacting
atoms, as addressed in appendix B.

In the experiment, we are able to create arbitrary arrays of such optical traps.
Thanks to a good aberration control, bottle beams have low defects over large, 100 µm-
wide arrays. The main limitation of the setup is the number of bottle beams we can
implement at once. We are ultimately constrained by the total available power in the
laser that generates the three trapping systems (tweezers, moving tweezer and bottle
beams). Using trap characterizations presented at the end of this chapter, we estimate
that a total of ∼ 360 mW can be allotted to the bottle beams. From this value, we
infer the expected trapping depths and frequencies as functions of the number of bottle
beams implemented, a useful calibration to check the consistency of some experiments.
The result is shown in őgure III.7, which presents a rough estimation of the depths
and transverse frequencies. Adding to the gaussian approximation for the shape of the
bottle beams, the SLM diffracting efficiency might slightly depend on the number of
traps we create: we suspect that less power goes into the őrst diffracted order when
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Figure III.7: Computed estimations of the bottle beams’ depth and transverse trapping
frequency, as functions of the number of sites N generated in the experiment. We
plot here the theoretical estimations based on the ∼ 360 mW total available laser
power and using the scaling laws: 1/N for the depth and 1/

√
N for the transverse

trapping frequency. However, an-harmonicity in the trap and non-linearity in the
SLM diffraction efficiency probably lead to deviations from these indicative values.

we generate 18 BoBs than when we only create two of them. Figure III.7 therefore
only provides an indicative assessment of the traps characteristics for different num-
bers of sites. In the following results, we choose the geometry of the bottle beam
array from a trade-off between the available laser power and the atomic temperature.
Finally, the bottle beam array is always a sub-lattice of the tweezers, corresponding
to the rearranging target. The overlap of the two arrays is regularly adjusted so that
the bottle beams are correctly centered onto the tweezers of the target sub-lattice for
proper atomic transfer from one trap to another in the experiments.

Demonstration of trapping

To trap circular atoms, and more generally any Rydberg state involved in the ex-
periments, we turn on the bottle beams right after the laser excitation pulse. Low-ℓ
Rydberg states, such as |52D⟩ and |52F ⟩, also experience the ponderomotive force,
just as circular atoms do. The rest of the preparation sequence (microwave transfer
and adiabatic passage) is carried out while the atoms are trapped in the bottle beams.
We checked that the various preparation steps are not affected by the trapping. No
detectable difference was seen in the preparation efficiency whether the Rydberg atoms
were trapped or not.
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In order to demonstrate that we efficiently capture individual circular atoms, we
rely on optical detection. After a variable waiting time τ spent in |52C⟩, during which
the atoms are supposedly trapped, we run a second adiabatic passage to de-circularize
the atoms. The radio-frequency pulse is the same as before, but the electric őeld ramp
is now the opposite of the one use in the circularization. We then apply a microwave
|52F ⟩ → |52D⟩ π-pulse, turn the electric őeld off, turn the bottle beams off, and de-
excite the atoms to their ground state through the optical transition. At this point,
the tweezers are turned back on, and we count the number of recaptured atoms. The
full sequence is pictured in őgure III.8 (a), in a similar fashion as before. We also run
the same acquisition, but without turning on the BoBs.

This experiment constitutes the basis onto which we build the more complex ma-
nipulations presented in chapter 4. For its results to be as relevant as possible in
subsequent discussions, we carry it out in a similar geometrical conőguration as the
one used for interaction investigations. The results presented here are therefore not the
same as the ones in [123] and [122]. We create here three pairs of atoms, as shown in
panel (b) of őgure III.8. The rearranger positions the ground-state atoms in the target
pairs only, where the six bottle beams are placed. The maximum available amount
of power is sent in the six bottle beams, i.e., around 62 mW per trap. Within each
pair, the angle between the inter-atomic axis and the quantization axis is equal to θ0,
so that no dipole-dipole interactions between the atoms emerge during the sequence.
This speciőcity is based on investigations presented in chapter 4.

The site-resolved optical data clearly indicates efficient trapping of the circular
atoms. Even after a waiting time of several hundred microseconds, recapture is sig-
niőcantly higher than when the atoms are free. The recapture decay is mainly due
to black-body-induced transitions to other circular states during the waiting time.
The atoms that transfer to neighboring manifolds are not de-excited to their ground
state. Even though they might remain trapped in the bottle beams, they result in an
inevitable decay of the recapture probability over time. The recapture at the short-
est waiting time, of 20 µs, is about 50%. It matches the back-and-forth efficiency of
ground-state to circular to ground-state evolution (ηprep2 ≃ 53%), and conőrms the
successful manipulation of the atoms, even in the bottle beams.

To estimate additional losses, we compute the average recapture probability over
the six sites and compare it to the theoretical population evolution of |52C⟩, computed
numerically for a black-body temperature of 300 K in free space (cf. appendix A.1),
taking into account the transfers to elliptical states for improved accuracy. The overlap
between the two is shown in panel (d) of őgure III.8. The expected evolution is nor-
malized to match the recapture at the shortest waiting time. Over the őrst ∼200 µs,
the recapture decay follows the population evolution. After that, we recapture less
atoms than we should according to the numerical simulation: at 1 ms waiting time,
recapture of trapped atoms is around 3%, when we expect it to be higher than 10%.
Some additional exploration would be required to address this issue. In earlier experi-
ments, presented in [122] and [123], we had reached a conőguration in which the data
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Figure III.8: Demonstration of individual optical trapping of circular atoms. (a) Ex-
perimental sequence: the bottle beams are activated as soon as the atoms are excited
to a Rydberg state, after which they are circularized and left in their traps for a vari-
able delay τ . The atoms are then brought back to their ground state and recaptured in
their tweezers. (b) Trapping geometry used in this experiment. Three pairs of atoms
are implemented, with a spatial arrangement tailored to inhibit interactions between
the two atoms of each pair. (c) Site-resolved recapture probability, plotted in semi-
logarithmic scale, with (red) and without (dark blue) activating the bottle beams.
In each site, the evidence of trapping is manifest, with a recapture probability being
much larger when the BoBs are turned on. (d) Averaged data, compared with the
simulated population evolution of |52C⟩ at 300 K. Although the proof of trapping is
clear, the comparison with the theoretical population decay reveals some unexpected
losses after several hundred microseconds.

followed the theoretical evolution for up to 1 ms of trapping. However, the experi-
ments related to interactions only take place over a much shorter timescale, of tens
of microseconds. We therefore do not particularly need to address the unkown decay
at long timescales in this work. They could be related to a wrong estimation of the
theoretical evolution, as the atoms are not really in a free-space environment. The
surrounding structure of electrodes could create a őeld distribution that enhances the
black-body microwave transitions.
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III.3.2 Site-resolved coherent manipulation of circular atoms

Now that we have proven the optical trapping of individual circular atoms, we move on
to the manipulation and measurement of their internal state while conőned inside the
bottle beams. Several experiments can be carried out to characterize the trapped cir-
cular atoms and check that the ponderomotive action does not affect their properties.
These investigations, which study the lifetimes and coherence characteristics of the
trapped atoms, are thoroughly described in [123]. Their main conclusion is that the
trapping does not modify the single-atom properties in any noticeable way, except for
some light-shift induced on microwave transitions at maximal trapping power, when
working with a single site.

We only present here the simplest of these experiments, namely the basic driving
of the |52C⟩ ↔ |50C⟩ transition. This is the same transition we addressed earlier to
estimate the purity of the circular state preparation. However, we now proceed with
trapped atoms and optical detection, instead of the ionic one. Apart from highlighting
our ability to act on the atomic levels of the trapped atoms, this new manipulation
more importantly demonstrates the site-resolved detection of circular levels, an essen-
tial feature of the future quantum simulator. The experimental sequence starts with
the preparation of the cold atoms, rearranged into 3 pairs, as in the above trapping ex-
periment. The six atoms are then transferred to |52C⟩ while trapped in their individual
bottle beams. The microwave 2-photon pulse to |50C⟩ is applied right after the end
of the adiabatic passage. We őnally de-circularize the atoms and bring them back to
their ground state. Since the adiabatic passage is tailored to the n = 52 manifold lev-
els, the atoms transferred to |50C⟩ by the microwave pulse are neither de-circularized
nor recaptured in the ground-state tweezers at the end of the sequence. The recap-
ture signal therefore provides a site-resolved, circular state-selective detection method.

The full sequence is shown in őgure III.9 (a). By scanning the frequency of the
microwave pulse, we őrst examine the spectrum of the transition, obtained from the
computed recapture probability in each site and for each microwave frequency. The
six spectra are plotted in (b) and centered on the average resonance frequency ν0. The
position of the individual plots follow the general geometry of the atomic arrangement.

The ∼ 50% baseline of the spectra corresponds to the őrst point, at shortest waiting
time, of the trapping experiment, when the recapture reŕects the combined efficiencies
of the excitation and de-excitation processes. At resonance, the recapture probability
drops to a few percents. The origin of the remaining signal can be attributed to a
combination of several effects: ground-state atoms that are not excites to Rydberg
states and remain in the bottle beams’ lobes during the sequence, |50C⟩ atoms that
are de-excited back to their ground state, or |50⟩ atoms that undergo black-body tran-
sitions to |52C⟩ before the de-excitation. We nonetheless obtain a good contrast on
the transition, and therefore good circular-state selectivity with this detection method.

We then drive Rabi oscillations on this transition. The site-resolved data is shown
in panel (c) of őgure III.9. We measure individual oscillations over 5 periods, with an
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Figure III.9: Circular-circular (|50C⟩ → |50C⟩) microwave spectroscopy, with site-
resolved detection. (a) Experimental sequence, built upon that of the circular-atom
trapping experiment. The microwave probe pulse is pictured in dark blue and is
followed by the state-selective de-excitation process, so as to optically detect whether
each atom was in |52C⟩ or not. (b) Individual optical spectra: recapture probability
as a function of the microwave frequency. (c) Rabi oscillations on the transition. The
background color represents the őtted Rabi frequency in each site, thus showing the
overall ∼ 7% dispersion in Rabi frequencies because of microwave power gradients.

average Rabi frequency of 0.51±0.01 MHz and no noticeable damping. The individual
őtted Rabi frequencies are displayed through the background color of each plot. We
recognize here the microwave power gradient őrst observed when characterizing the
|52D⟩ → |52F ⟩ transition. The atoms of the lower-left part of the experiment display
a Rabi frequency about 7% slower than those of the top right corner.
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More advanced experiments were carried out on top of this simple microwave spec-
troscopy. They are all addressed in [123], and we only give here their most important
results. By going to longer microwave pulses, we őrst measured a single-atom damping
time of 51 ± 6 µs on the |52C⟩ → |50C⟩ oscillations. We then performed Ramsey in-
terferometry experiments with the trapped atoms, still based on the n = 52 → n = 50
transition. Using the full spatial extent of the trapping region and via the sensitivity
of the Ramsey method to dephasing, we measured an electric őeld variation below
1 mV/cm over the 100 µm × 100 µm extent of the trapping region. Then, working
with a single site only, we obtained a characteristic coherence time T2 = 61 ± 8 µs
for a trapped circular atom. This result is compatible with the estimated 0.9 mV/cm
electric őeld noise in the setup, associated with ∼ 2 kHz temporal ŕuctuations on the
two-photon transition. We checked that the ponderomotive trapping does not have a
detrimental effect on the coherence properties of the atoms. Finally, by triggering the
ionic detection of the circular atoms at various instants after their preparation, we re-
constructed the population evolution ruled by black-body transfers between manifolds,
with and without the bottle beams. No difference was seen in the atomic evolution
between the two conőgurations, and the lifetime of the atoms is therefore not affected
by the trapping beams.

Altogether, the measurements presented here, although fundamentally simple, demon-
strated the possibility of implementing site-resolved measurements of the coherent
manipulation of individual circular atoms. Within the prospect of a quantum simula-
tor based on circular-atom qubits, site-resolution in measurements is a key ingredient
to study many-body phenomena. All in all, these results ultimately strengthen our
conődence in the long-term success of this project.

III.3.3 In situ bottle beam characterization

We conclude this chapter with an in situ measurement of the bottle beams’ transverse
trapping frequency. This experiment is rather tricky to carry out, as it requires a őne
adjustment of the traps’ positions and results in a low signal-to-noise ratio. We ac-
quired the data presented here for the purpose of Brice Ravon’s thesis, before setting
up the rearranging beam and with the old version A of the adiabatic passage. How-
ever, the conclusions drawn from these results are still valid, since the trap preparation
method or optical setup have not evolved since then.

We consider here a non-rearranged array of 3× 6 sites. The initial preparation of
the ground-state atoms is done as usual, minus the rearranging part. The tweezers are
then turned off to proceed with the laser excitation, after which the bottle beams are
switched on. The bottle beams are positioned so that their centers have a +300 nm
offset along x with respect to the ground-state tweezers. Due to this offset, when the
bottle beams are turned on, the Rydberg atoms are in non-zero light, with positive
potential energy. They start to oscillate within their traps, all in phase, and along the
x direction. The rest of the preparation and circularization is done while the atoms
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move in their bottle beams. We then implement a release-recapture experiment with
the BoBs, as was done with the tweezers. The bottle beams are turned off during a
15 µs delay, and we scan the time at which this is done. If, when switching off the
BoBs, the atoms are at the center of their trap with high velocity, they will not be
recaptured 15 µs later. However, if they are at one end of their periodic motion as
the extinction occurs, with zero velocity but maximal potential energy, they will be
recaptured in their BoBs. The total time spent in the bottle beams (before and after
the release) is around 200 µs. We őnally de-circularize the recaptured atoms and revert
to the tweezers. The site-resolved tweezer recapture probability, plotted as a function
of the time at which the BoBs are switched off, is shown in őgure III.10 (c). Although
noisy, each result can be őtted with a damped sinusoidal oscillation. Its frequency is
twice the transverse trapping frequency of the bottle beam trap.

The mosaic plot of őgure III.10 displays the distribution of trapping frequencies
across the array. We őnd an average value

⟨ωt⟩ = 2π × (15.7± 0.6) kHz. (III.16)

One particular outlying trap displays a signiőcantly lower trapping frequency, but
the full array is otherwise rather homogeneous. Using the theoretical BoB intensity
distribution presented earlier, we can deduce the power effectively input in each bottle
beam. From the measured trapping frequencies, we get the average power:

⟨P ⟩ = 20± 2 mW. (III.17)

This measurement is in good agreement with the total estimated power sent in the
bottle beam array, of about 360 mW. We also conducted the same experiment but with
the tweezer-BoB position offset along the z direction, and found similar results. One
could őnally imagine an identical measurement of the longitudinal frequency ωl, with
an offset along the y axis. However, we expect ωl to be three times smaller than ωt.
Its measurement would require longer sequences to observe a similar number of oscil-
lations, which would further reduce the signal-to-noise ratio of the data. Furthermore,
the estimation of ωl is not as important as that of ωt for the scope of this work. We
will later address the atomic motion linked to the interactions, which is induced in the
x−z plane. The relation between longitudinal motion along y and interactions is only
of the second-order kind and will be discarded, as in the formal spin-phonon study
of the őrst chapter. The measurement of the transverse trapping frequency provides
enough characterization of the traps for our purposes. Perhaps more generally, it also
validates our mastery of holographic optical shaping methods and the precision of the
trapping array deőnition.
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Figure III.10: Measurement of the transverse trapping frequency of the bottle beams.
(a) Release-recapture sequence, performed while the Rydberg atoms oscillate in their
traps thanks to a position offset between the tweezer and BoB arrays. (b) Geome-
try implemented for the measurement. The circular atoms are shown off-centered in
their bottle beams to illustrate their initial position when switching on the BoBs. (c)
Site-resolved recapture data, displaying oscillations that we őt with damped sinusoidal
functions. (d) Average recapture probability, displaying a clearer oscillation. (e) Ar-
ray of transverse trapping frequencies deduced from the individual results.
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Conclusion of chapter 3

The third chapter addressed the łRydbergž part of the experiment. We presented here
the successive processes implemented to excite the atomic lattices to circular levels,
along with the speciőc apparatus and techniques used to trap, manipulate and detect
them. The discussion was centered on single-atom results, so as to estimate the overall
efficiency of the preparation procedure and to introduce as clearly as possible the sev-
eral methods that will later be applied to the more complex study of their interactions.

The excitation to circular states is divided in three successive steps, each subject
to speciőc challenges. The three stages go as follows:

1. Two-photon laser excitation to |52D5/2,mj = 5/2⟩, in 10 G and zero electric őeld,
of unexpectedly low 1.4 MHz Rabi frequency but with satisfactory efficiency
η52D = 83 ± 2%. Through a careful optimization of the prior optical pumping
procedure and a painstaking re-alignment of the two cylindrical excitation beams,
it is however possible to reach daily efficiencies higher than 90%.

2. Microwave transfer to |52F,m = 2⟩, still in zero electric electric őeld and direct-
ing magnetic őeld. Although quite efficient, with a correct transfer of η52F = 94± 1%
of the atoms, the study of this transition reveals signiőcant microwave power in-
homogeneities over the trapping area. After the microwave transfer, the electric
őeld is suddenly ramped up to 2.25 V/cm to branch |52F ⟩ onto |n = 52,m =
2, k = −47⟩, the state of the parabolic basis chosen to be the starting point of
the subsequent adiabatic passage.

3. Radio-frequency adiabatic transfer, from |n = 52,m = 2, k = −47⟩ to |52C⟩. By
ramping the electric őeld over 0.2 V/cm while applying a radio-frequency őeld
of 225 MHz (and under some adiabatic conditions), the atoms each absorb 49
σ+-polarized photons and reach the circular level |52C⟩. We probe the efficiency
of the adiabatic passage via a two-photon microwave spectroscopy to the n = 50
manifold, which yields the circular purity η52C = 95± 1%.

The whole process takes about 10 µs and has a total cumulative efficiency of around
73%, from ground-state to circular level. To implement and characterize these succes-
sive steps, we partly relied on the ionic detection mechanism, a speciőc sub-system of
the setup designed to offer state-resolved detection of the Rydberg atoms, but lacking
spatial resolution.

A way to overcome this bottleneck is to rely on the de-circularization of |52C⟩,
which leads to a site-resolved ś albeit binary ś detection of the circular atoms. Through
this technique, we are able to measure, in each individual site, whether or not a |52C⟩
atom was present at the outcome of the experimental manipulations. Thanks to this
method, we proved that the bottle beams properly trap the circular atoms. Over
200 µs, the atoms are conőned in their respective traps and their internal states follow
the probabilistic microwave black-body-induced evolution between manifolds. After
that, some discrepancy between the data and theory emerges, which is fortunately
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irrelevant for the scope of this work, focused on shorter timescales.

We further demonstrated the potential of combining optical detection and circular
Rydberg manipulation by presenting the coherent control of circular states, in optical
traps, measured with site-resolution. Through a simple microwave spectroscopy of the
|52C⟩ → |50C⟩ transition, we illustrated the good level discrimination between two
circular states offered by the optical detection. At this point, we have arguably created
the embryos of the quantum simulator qubits. We can prepare deterministic lattices
of circular atoms, coherently drive transitions between two of their circular levels, and
detect their internal state with single-site resolution. Although some improvements
could be made in the preparation ődelity and trapping efficiency, what we showed in
this chapter constitutes a promising set of results and a solid starting point for the
study of the interactions.



Chapter IV

Interactions between trapped circular
atoms

Having covered the creation of arbitrary, defect-free arrays of trapped circular atoms,
we are ready to őnally tackle the experimental characterization of their interactions.
The fourth chapter describes our most recent results, obtained throughout the major
part of my őfth and őnal year of PhD studies. They address the implementation and
measurement of controlled circular-circular interactions. To venture into this new,
uncharted territory of circular-Rydberg physics, we decided to simplify our endeavor
by two different means. First, we restricted this study to pairs of circular atoms only,
so as to characterize the couplings in the most elementary geometric conőguration.
Secondly, we chose to examine the őrst-order, resonant dipole-dipole interaction be-
tween circular states |nC⟩ and |(n+1)C⟩. As discussed in the őrst chapter, at atomic
distances of several microns, the resonant interactions are of the order of the MHz,
whereas the second-order van der Waals interactions are about a hundred times weaker.
A spectroscopic characterization of the interactions is therefore easier to carry out in
the resonant case, with line splittings and displacements in the MHz range, as com-
pared to tens of kHz in the van der Waals conőguration. Moreover, measurements of
the pair-state evolution over time also favor the resonant case over the van der Waals
one, since the setup currently operates at room-temperature. At 300 K, the lifetime
of circular atoms with n ∼ 50 is of the order of 130 µs. A pair of such states will
therefore remain intact for about 65 µs on average, which does not leave enough time
to accurately observe pair-state oscillations if the frequency involved is that of the van
der Waals interactions.

The interaction regimes explored here are therefore different from those of the long-
term circular atom simulator. Their investigation is nonetheless a signiőcant milestone
in this context. With this work, we depart from single-atom physics and enter the őeld
of circular atoms in dipole-dipole interactions. With it come several new technical dif-
őculties, that we learn to overcome through these preliminary steps. Furthermore,
within the larger global context of quantum simulation efforts, these results can be
seen as the őrst implementation of a new kind of interacting spins, in which the spin
states are encoded onto circular Rydberg levels.

121
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All of the results of this last chapter are based on the theory of the resonant,
őrst-order dipole-dipole interaction, introduced in chapter 1. Figure I.4 provides the
theoretical framework in which the results presented here can be understood.

The organization of this chapter follows the real progression of our experiments,
which allows us to underline the difficulties inherent to the study of circular-circular
interactions and to explain the means implemented to overcome them. The data shown
in the őrst experiments was acquired with adiabatic passage A, but we then switched
to the settings of adiabatic passage B for improved results. We will signal in the text
the moment where version B starts being used.

We start by presenting the speciőc conditions őrst chosen to explore the resonant
interactions in pairs of circular atoms. We detail the selected geometry and level
scheme, and introduce the microwave transition used to probe the relevant coupling.
We exhibit the őrst clear evidence of interactions, őrst in the frequency domain with
microwave spectra, and then in the time domain with driven Rabi oscillations of the
pair states. Next, we explore the geometric dependence of the interaction, by varying
both the distance between the atoms and the orientation of the pairs with respect to
the quantization axis. While doing so, we witnessed some discrepancies between the
data and theoretical expectations, explained by atomic motion induced by interactions
between the atoms when in low-ℓ states, before the circularization process. This led us
to reőne the preparation procedure to mitigate these effects and recover data in perfect
agreement with the theory. We őnally dedicate the last part of this chapter to the
observation of spin exchange between two atoms. To reach this result, we implement
a site-selective preparation sequence based on the dipole blockade mechanism. Using
all the setup’s features to their full capacity, we witness the coherent exchange of a
spin excitation between two circular atoms, a őrst step in the realm of circular-atom
quantum simulations.

IV.1 Microwave probe of the resonant interaction

IV.1.1 Atomic configuration

As we saw in previous chapters, we are now able to create any arrangement of up to
approximately 20 trapped circular atoms. To witness interactions, we focus on pairs
of atoms only, which should already exhibit evidences of couplings adjustable via the
geometry of the system. The spatial parametrization of a single pair is schematically
depicted in őgure IV.1. The quantization axis, deőned by the orientation of the elec-
tric őeld, is still along x for now. The circular atoms are placed in bottle beams that
propagate along y, meaning that they are tightly trapped in the x− z plane and more
loosely conőned in the y direction. The two geometric parameters that deőne the in-
teractions within the pair are d, the distance between the two atoms, and θm, the angle
between the inter-atomic axis and the quantization axis. In practice, d corresponds to
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Figure IV.1: Geometric parametrization of the pair interactions for the preliminary
microwave spectroscopy experiments. The electric and magnetic őelds are along x
and deőne the quantization axis throughout the sequence. The circular atoms are
arbitrarily placed with respect to one another via the positions of their traps, which
allows us to control and tune both d, the inter-atomic distance, and θm, the pair
orientation with respect to the quantization axis.

the distance between the two bottle beams’ minima. It will be in the 7-16 µm range
in all the experiments presented in this chapter to keep the interaction energy close
to the MHz. As we have previously seen, a circular atom can move around its trap
minimum, so we assume that the inter-atomic distance can ŕuctuate by hundreds of
nanometers around d. To make things clear and maintain consistency with the nota-
tions of the rest of the text, we keep d as the distance between the traps minima and
write r the actual inter-atomic distance. The versatility of the trapping setup allows
us to arbitrarily vary both d and θm.

The sequence implemented to probe the pair interactions is pictured in őgure IV.2 (a).
We proceed with the usual successive steps: the preparation and rearrangement of the
ground-state atoms in the desired geometry, their excitation to Rydberg states and
their circularization to |52C⟩. The bottle beam array is the same as the tweezer sub-
lattice targeted by the rearrangement procedure. The bottle beams are turned on as
soon as the atoms are in |52D⟩ and remain active throughout the rest of the sequence.
A microwave pulse of tunable frequency (close to the |52C⟩ → |51C⟩ resonance) and
with tunable duration is applied right after the circularization procedure. As we will
see, it constitutes the probe of the pair interactions. The detection is then carried out
by the ionization ramp. We compute, from the ionic signal, the transfer p51/(p51 + p52)
from |52C⟩ to |51C⟩, as a function of the probe pulse parameters (frequency and du-
ration).
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To examine the effect of interactions, we implement two different Rydberg trapping
schemes, both represented in panel (b) of őgure IV.2. The initial ground-state trap-
ping array of tweezers is the same in both cases, and is made of a rectangular lattice of
6×8 sites. In order to establish a reference of the bare, non-interacting |52C⟩ → |51C⟩
transition characteristics, the őrst of the two Rydberg arrangements consists in 12
individual sites, with nearest-neighbors being 25 µm apart. To study interactions, we
work with a second design that creates a lattice of 9 pairs of atoms. The pairs are
placed so that, within each one, θm = π/2 and d = 10 µm. The minimal distance
between two atoms of different pairs is 25 µm. Single-shot images of the ground-state
atoms, in both of these conőgurations and after the rearrangement procedures, are
shown in panel (c) of őgure IV.2. Given the geometrical analysis of the bottle beams
in chapter 3, we expect the depth and transverse trapping frequency of each trap to
be ∼ 61 µK and ∼ 20.6 kHz for the individual atoms conőguration (12 BoBs), and
∼ 41 µK and ∼ 16 kHz for the pairs conőguration (18 BoBs).

In these experiments, we restrict the analysis to the evolution of the circular atoms
within the {|52C⟩, |51C⟩} subspace, which we also write {|↑⟩, |↓⟩}. In the őeld con-
őguration of 10 G and 2 V/cm, the bare single-photon |52C⟩ → |51C⟩ transition sits
at approximately ν0 = 48.188 GHz. In the case of a pair of atoms in |52C, 52C⟩, the
atomic resonances are displaced by the interactions. As explained in the őrst chapter,
the Hamiltonian of the pair interacting in the direct exchange regime writes

Ĥ/ℏ =









| ↓↓⟩ | ↓↑⟩ | ↑↓⟩ | ↑↑⟩
−ω0 0 0 0
0 0 2J 0
0 2J 0 0
0 0 0 ω0









, (IV.1)

where ω0 = 2π×ν0 is introduced to account for the bare energy levels. The Hamiltonian
is written here up to őrst-order in the dipole-dipole interactions, characterized by the
pulsation J , which varies with the geometry as:

J/(2π) =
A(3 cos2(θm)− 1)

r3
. (IV.2)

Here, A = 832 MHz µm3 is computed via numerical simulations, so that we can pre-
dict the value of J for any conőguration (d, θm). Strictly speaking, second-order van
der Waals terms also shift and couple the pair states, but they behave as 1/r6 and
can be neglected compared to the direct őrst-order interaction and bare energies. For
instance, the level displacement induced on | ↑↑⟩ by the van der Waals interaction is
about 5 kHz in these conditions. It can clearly be discarded when compared to the
other energy scales involved here.

In panel (d) of őgure IV.2, we compare the levels schemes of both the interacting
(trivial) and non-interacting transitions. In the case of a pair, the initial level | ↑↑⟩ is
only coupled to the other symmetric eigenstates |↓↓⟩ and |+⟩ = (|↑↓⟩+|↓↑⟩)/

√
2, since
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Figure IV.2: Conőguration of the microwave spectroscopy experiments designed to
probe pair interactions. (a) Experimental sequence, starting with the preparation of
a rearranged array, followed by the standard successive steps. The microwave probe
pulse, of tunable frequency and duration, is pictured in pink. Ionic detection is imple-
mented to compute the outcome of the sequence. (b) Drawings of the two trapping
schemes used in the sequences. Ground-state tweezers are shown with red dots, while
bottle beams are pictured as red torii. The rearrangement targeted in the sequence
always corresponds to the bottle-beam sub-lattice. The left scheme implements non-
interacting single atoms for reference, while the right one creates pairs of trapped
circular atoms. (c) Single-shot images of the ground-state atoms in the two geome-
tries. (d) Level schemes for both conőgurations. The pair state |↑↑⟩ is coupled to |+⟩
with a transition pulsation which is close ω0 +2J (up to negligible second-order shifts
in the kHz range).
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the atoms are symmetrically coupled to the microwave őeld. The |↑↑⟩ → |+⟩ transition
that we want to address has a 2J frequency shift with respect to the bare transition.
Given the geometry (θm = π/2, d = 10 µm), we expect J to be negative (i.e., an
attractive interaction) and to be J = −2π × 0.83 MHz. This value translates into
a 1.67 MHz shift to higher microwave frequencies from the bare transition resonance
to the interacting one, as it can be understood from őgure IV.2 (d). Given these
estimation, a linewidth of about 1 MHz on these spectra should be enough to discern
the spectroscopic signature of the interactions.

IV.1.2 Spectroscopic evidence of interactions

We analyze in this section one of the őrst clear evidences of controlled interactions
between circular atoms, acquired in the conditions detailed above. Figure IV.3 shows
the result of the microwave spectroscopy probe, displaying the transfer from n = 52
to n = 51 as a function of the probe pulse frequency, measured by ionic detection, for
both the pairs and the single atoms. The horizontal axis is centered on ν0, the bare
|52C⟩ → |51C⟩ frequency őtted from the single-atom result. The data shown here was
generated with microwave pulses of durations 2 µs and 1.3 µs for the single atoms and
pairs respectively, with the same power in both cases.

The single-atom transition line displays some features that need to be discussed
before moving on to the interaction signal. It is labeled ł0ž in the following for clear
distinction with other peaks. First, it exhibits a signiőcant background, of the order
of 15%. It corresponds to the black-body-induced transitions from n = 52 to n = 51,
occurring between the end of the microwave probe and the ionization of the atoms,
about 45 µs later. Numerical estimates (cf. appendix A.1) indicate that, after such a
delay and at 300 K, an initially pure |52C⟩ population will have transferred by about
12% into |51C⟩, so that p51/(p51 + p52) ≃ 0.15 at that point. This is in good agree-
ment with the baseline of the spectrum. However, if the initial population were indeed
purely |52C⟩, and if the microwave pulse were 100% efficient, we would get a peak
reaching ∼ 88% transfer, which is not the case here. The reduced height is probably
a combination of imperfections in both purity and microwave transfer efficiency. At
the time of these measurements, because of the use of adiabatic passage A, circular
single-atom purity was only around 85%, instead of the best achievable 95% with adi-
abatic passage B. The microwave power inhomogeneity, previously mentioned several
times in this text, could account for the rest of the amplitude reduction and explain
the total 60% peak height.

The most important information of this graph is the splitting of the bare transition
into two lines when working with pairs of circular atoms. We write this frequency split-
ting ∆ν. In this case, we obtain two resonance frequencies: one 20 kHz below the bare
transition, labeled ł1ž, and the other 1.19 MHz above, labeled ł2ž. The őtting error
on the peak frequencies is around 5 kHz in both cases. We identify the high-frequency
line as the | ↑↑⟩ → |+⟩ transition (cf. őgure IV.2 [d] for the level scheme). How-
ever, the measured ∆ν value, of 1.19 MHz, does not properly match the theoretical
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Figure IV.3: Evidence of circular-circular interactions in a microwave spectroscopy
experiment: transfer from n = 52 to n = 51 as a function of the probe pulse frequency.
The geometric parameters of the implemented pairs are indicated at the top of the plot.
The ∼ 15% background is explained by thermal transfers between multiplicities during
the sequence. The reduced height of the single-atom peak accounts for preparation
imperfections and microwave power inhomogeneity across the array. We measure a
1.19 MHz splitting between the interacting and non-interacting cases. It is lower than
the expected value by 30%, most probably because of undesirable motion in the bottle
beams.

1.67 MHz expectation. It implies that, at the time of the microwave probe, the atoms
are further apart from one another than expected. The measured value corresponds to
an inter-atomic distance of about 11.2 µm, meaning that each atom is off-centered by
about 600 nm in its trap during the probe pulse1. This hints at unexpected atomic dis-
placements, a őrst issue that arises when working with interacting atoms. The height
of peak 2 is also lower than that of peak 0 because of the intrinsic nature of the pair-
state reached. When in |+⟩, we detect |52C⟩ and |51C⟩ with 50% probability each.

1The measured interaction strength could also be explained by a distance between BoBs larger
than expected. However, given the careful calibrations of the optical system, a 12% error on the
inter-site distances is not likely.
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It explains why the interaction peak is about half the height of the bare transition one.

We can associate the low frequency peak (peak 1) with two possible transitions.
First, it could correspond to the two-photon process |↑↑⟩ → |↓↓⟩, via the intermediate
state |+⟩. The differential, second-order shift induced by interactions on this transi-
tion is estimated to be of about 1 kHz in this conőguration, so we expect the 2-photon
transition to be resonant at ν0. Moreover, peak 1 is also associated to occurrences
of pairs in which one of the atoms is not initialized in |52C⟩, but in another level |r⟩
instead, because of preparation imperfections. In this case, the properly initialized
atom is simply transferred to |51C⟩ at the resonant frequency ν0: |↑⟩|r⟩ → |↓⟩|r⟩. Let
us note here that we indeed observed a reduced purity when working with geometric
conőgurations made to favor interactions (such as the one studied here). We measured
with rectangular lattices of circular atoms that, at θm = π/2 and when the atoms are
10 µm apart, the circular purity is about 30% lower than that of individual or non-
interacting atoms. Peak 1 therefore accounts partly for the diminished circular purity
in the interacting regime. This issue constitutes the second difficulty that appears
with interactions, after that of the unwanted motion.

Overall, the signal displayed here clearly constitutes an evidence of the circular-
circular interactions. Although not exactly in line with theoretical expectations, the
atomic behavior we witness here őts our general understanding of the resonant dipole-
dipole interactions probed by microwave spectroscopy. Unfortunately, this successful
achievement comes at a cost, paid in the form of two different issues created by these
very interactions: a reduction in purity and unwanted atomic motion in the traps. We
will adress these questions in more details later on, in order to understand their origin
and to őgure out how to counteract them.

IV.1.3 Driven pair-state Rabi oscillations

To go further with this preliminary experiment, we carry out Rabi oscillations with
both the single atoms and the pairs, on the three lines identiőed above. They allow
us to demonstrate a second evidence of circular-circular interactions. The results
are displayed in őgure IV.4, where we plot the Rabi oscillations of the three peaks.
The data was taken with a more powerful microwave őeld than the one used for the
spectroscopy data, so as to drive the transitions faster and measure several oscillations
on each line.

We őt the oscillating signals of the bare and interaction transitions (0 and 2 as
according to the notations) with a damped sine function and obtain the following
Rabi frequencies, labeled according to their respective peaks:

Ω0 = 2π × (544± 4) kHz, (IV.3)
Ω2 = 2π × (699± 9) kHz. (IV.4)

The pair transition oscillates signiőcantly faster than the single atom one, which is



IV.1. MICROWAVE PROBE OF THE RESONANT INTERACTION 129

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pulse duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

52
→

51
tr
an

sf
er

single atoms - peak 0

pairs - peak 1

pairs - peak 2

θm = 90° d = 10 µm

Figure IV.4: Rabi oscillations of each of the three peaks measured in the spectroscopic
sequence. The pair-state signal (red) oscillates ∼

√
2 times faster than the single-atom

one (blue), further conőrming the fact that we drive the | ↑↑⟩ → |+⟩ transition and
that atoms interact as we expect them to. The signal of peak 1 (black) displays a sum
of two oscillations, one at the single atom frequency and the other at less than half of
that.

another signature of the interaction between the two atoms in the pairs we create.
Without interactions, we would only be able to drive pair oscillations between | ↑↑⟩
and | ↓↓⟩, evolving at the single-atom Rabi frequency Ω0. The interactions break the
regular spacing between |↑↑⟩, |↓↓⟩ and |+⟩ (presence of peak 2), so that we can drive
the transition between | ↑↑⟩ and the displaced pair state. The faster Rabi frequency
Ω2 conőrms that we are driving a transition different from | ↑↑⟩ → | ↓↓⟩. Ultimately,
the resonance and Rabi frequencies of line 2 are two sides of a same coin, and both
illustrate the presence of interactions within the pairs.

The ratio between the single-atom and pair Rabi frequencies is Ω2/Ω0 = 1.29±0.02.
This is close to the expected theoretical ratio of

√
2 ≃ 1.4142, with a 9% difference only

2N entangled particles undergo collective oscillations between the ground state and Dicke states
at a rate

√
N times larger than for a single such particle.
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between the two values. The ratio conőrms that we address the level |+⟩, in which
the two atoms are entangled. The residual 9% error is probably caused, once again,
by the microwave power dispersion across the arrays, which induces spatial variations
in the Rabi frequencies.

We also őt the Rabi oscillation of peak 1, this time with a sum of two damped sine
functions. We obtain the two following Rabi frequencies and respective amplitudes:

Ω
(a)
1 = 2π × (219± 4) kHz, A

(a)
1 = 0.21± 0.02, (IV.5)

Ω
(b)
1 = 2π × (551± 5) kHz, A

(b)
1 = 0.10± 0.02. (IV.6)

Thanks to these values, we can elaborate our understanding of the atomic transitions
driven in line 1. We observe that Ω

(b)
1 ≃ Ω0, meaning that peak 1 is partly driven

by single-atom transitions, appearing due to rearranger or circularization errors. The
other part of this signal oscillates at a slower frequency. Following the above discussion,
we attribute this contribution to the 2-photon process | ↑↑⟩ → | ↓↓⟩. It seems to be
consistent with the estimation we can make of its Rabi frequency. If we consider
{|↑↑⟩, |↓↓} to be an effective two-level system, driven by a two-photon process via
the far-detuned intermediate level |+⟩, its Rabi frequency writes Ω|↑↑⟩−|↓↓⟩ = Ω2

2/(2δ).
Here, δ is the detuning with respect to the intermediate level and we consider that
both |↑↑⟩ → |+⟩ and |+⟩ → |↓↓⟩ have the same Rabi frequency Ω2, measured on line
2. Using the values of δ = 2π × 1.19 MHz and Ω2 = 2π × 699 kHz, we estimate:

Ω|↑↑⟩−|↓↓⟩ = 2π × (205± 5) kHz. (IV.7)

The computed value matches very well the measured frequency Ω
(a)
1 of the slow

component in the oscillations, thus conőrming that it corresponds to the 2-photon
transition |↑↑⟩ → |↓↓⟩.

All in all, the Rabi oscillations shown here strengthen our understanding of the
atomic behavior in the experimental sequences. They not only provide further proof
that the circular atoms interact, but will also allow us, in the next section, to enrich
the information provided by the spectra.

IV.1.4 Conclusions on the preliminary data

We complete and sum up here the information that can be inferred from the spectra
and Rabi oscillations, to establish a self-consistent diagnosis of the atoms thanks to
the measured data. We focus here on the signals acquired with the nine pairs of atoms.

First, as implied in the spectroscopy section, the splitting ∆ν between the two peaks
(1 and 2) of the spectrum constitutes a precise measurement of the distance between
the two atoms at the time of the microwave probe. The numerical model allows us to
precisely convert, via equation (IV.2), the measured splitting ∆ν = −2J/(2π) into an
inter-atomic distance, given the angle θm. Here, the 1.19 MHz value obtained in this
conőguration yields:

r = 11.18± 0.03 µm. (IV.8)
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We will later use this conversion to probe the variation over time of the inter-atomic
distance, or in other words, measure the motion of the circular atoms in their traps.

Secondly, we take advantage of the information deduced from the Rabi oscillations
to estimate the purity of the circular atoms in the pairs, i.e, the overall probability
of having the two atoms in |52C⟩ in each repetition of the sequence. To do so, we
need to compute several quantities. First, thanks to the images acquired throughout
the sequences, we estimate that each pair has a probability Pr ≃ 0.92 of being cor-
rectly prepared by the rearranger3. Each pair, in 8% of repetitions, lacks one atom.
Occurrences where both atoms are missing after the rearrangement procedure can be
neglected. Furthermore, we derive from the single-atom spectrum, taking into account
the 85% single-atom purity and the lifetime of |52C⟩, that the microwave probe pulse
has an average ≃ 83% efficiency over the array. Thanks to these values, through a
simple numerical toy model of the atomic state evolution4, we derive a linear relation
between the average circular purity5 in the pairs η52C (2) and the maximum transfer of
peak 2, so that we get the estimation:

η52C
(2) = 0.58± 0.02. (IV.9)

In other words, for a single pair in this conőguration (d = 10 µm and θm = π/2),
there is only a 58% chance of successfully carrying out the adiabatic passage with
each atoms. We recover here the estimated 30% purity loss, from 85%, that we had
roughly measured with evenly-spaced lattices of circular atoms. The ability to directly
estimate the purity from these simple signals will be used to assess the impact of the in-
teractions on the atomic preparation, in the various conőguration that we will test out.

To conclude, the spectroscopy data is not only relevant to reveal the existence
of circular-circular interactions, but also useful to derive other effects caused by the
proximity between the atoms. We estimated that, in this geometry, the probability to
circularize the atoms is signiőcantly reduced and some non-negligible displacements are
induced in the traps. These effects are most probably caused by the coupling between
the atoms during their preparation: the resonant, circular-circular interactions only
appear with the microwave probe, and cannot impact the position of the atoms or
their purity at the time of the measurement. We will get back to these issues later to
present the solution we found to solve them. For now, we push the exploration of the
behavior of the resonant dipole exchange a bit further than in the preliminary data
presented so far.

3This is lower than the 98% success rate for each pair presented at the end of chapter 2. In the
experiments presented here, the rearranging procedure was not performing at its optimal efficiency
and was in need of a slight re-calibration. To circumvent this issue, we could post-select the data to
only keep the ionic results of sequence repetitions in which the rearranger had properly worked, but
the ionic detection software unfortunately does not allow this level of detailed analysis.

4We take into account the various experimental efficiencies (rearranger, excitation to low-ℓ states,
microwave probe transition), and use numerical estimations of black-body-induced transfers between
manifolds.

5We remind that the circular purity is the fraction of atoms properly excited to |52C⟩ by the
radio-frequency adiabatic passage.
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IV.2 Geometric tunability of the interactions

We now turn to the geometric dependence of the interactions. We implement here the
same experimental sequence as above, based on microwave spectroscopy from n = 52
to n = 51, but with varying geometries. We do so by changing the lattices used and
their orientation, so as to measure the line splitting, and therefore J , as a function of
the two geometric parameters d and θm.

IV.2.1 Distance dependence

We start with the measurement of the interaction as a function of the distance between
the two circular atoms. We keep θm = π/2 as in the previous settings, so that the
relationship between the line splitting ∆ν and the distance writes ∆ν = −2J/(2π) =
2A/d3.

In order to reduce the displacement issue which already appeared in the prelimi-
nary data, we now work with a single pair of circular atoms. It allows us to send the
maximal available optical power in each bottle beam, making them as tightly conőning
as possible. With approximately 200 mW in each trap, we expect their depth and trap-
ping frequency to be ∼ 400 µK and ∼ 50.5 kHz. The 2-atom conőguration also avoids
potential couplings to other atoms of neighboring pairs, and eliminates the effects of
the microwave power spatial inhomogeneity. We still use the rearranging procedure to
deterministically create, for each repetition of the sequence, a single pair of trapped
circular atoms, placed along the vertical direction z. The inter-atomic distance d is
varied by simply changing the spacing for each acquisition, via the SLM phase masks.
For a given d, we perform the spectroscopy experiment detailed above, in which we
record the n = 52 → n = 51 transfer driven by the microwave pulse, as a function of
its frequency.

The 2-atom spectra, obtained for d ranging from 8 µm to 16 µm are shown in
őgure IV.5 (a). We overlap them with the single-atom spectrum, where no interac-
tions come into play and whose central frequency is taken as the x-axis origin. The
span of each frequency scan is centered on peak 2, the transition towards |+⟩, whose
resonance frequency changes with d. We clearly see this peak appear and move to
higher frequencies as the distance gets shorter. We also witness its contrast decreasing
signiőcantly when the interaction gets larger, in line with a reduction in circular-state
purity when the atoms are prepared closer to one another.

For each spectrum, we őt the data with a gaussian peak and retrieve the frequency
splitting ∆ν with respect to the single-atom reference peak. In őgure IV.5 (b), we plot
∆ν as a function of d, in log-log scale. We also plot the result of the same experiment,
but conducted with four pairs of trapped circular atoms instead of one, and the single
point obtained in section (1.2) with 9 pairs. The overlap of the three conőgurations
underlines the importance of the trapping strength as the interactions grow. Overall,
the data is in good agreement with the power-law behavior of the interaction as a func-
tion of distance. With a single pair of atoms, the measurements match the expected
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Figure IV.5: Resonant dipole interaction as a function of the inter-atomic distance.
(a) Spectra of the | ↑↑⟩ → |+⟩ transition, each obtained with a single pair of circular
atoms for maximal trapping strength, and for distances ranging from 8 µm to 16 µm.
The x-axis is centered on the resonant frequency of the single-atom, non-interacting
conőguration, also plotted here (in blue). As the distance is reduced, the interactions
grow, so that the interaction line shifts to higher frequencies. Its contrast also drops,
because of reduced circular purity when the atoms are prepared close to one another.
(b) Interaction energy ∆ν = −2J/(2π) as a function of d. Several trapping conőgu-
rations are plotted: data acquired with a single pair (the spectra on the right panel),
data taken with four pairs of traps, and the preliminary data obtained with 9 pairs.
The error bars are smaller than the data points.

values for distances larger than 10 µm. Below that, deviations to the theory appear
and indicate that, in strongly-interacting conőgurations, the atoms do not remain at
their trap’s centers. With four pairs, i.e., four times less trapping depth, the discrep-
ancy with the theory emerges as soon as d = 12 µm.

Overall, we clearly recover here the 1/r3 behavior of the resonant dipole interaction.
Although deviations from the theory occur when the atoms are close to each other,
the measured distance dependence matches the expectations, and further conőrms
our understanding of the system. Conversely, these results show that, by changing
the inter-atomic distance, one is able to tune the circular-circular resonant dipole
interactions.



134 CHAP. IV. INTERACTIONS BETWEEN TRAPPED CIRCULAR ATOMS

IV.2.2 Angular dependence

We now turn to the variation of J with θm, which we investigate experimentally in
the same manner as above. We still work with a single pair, but this time with őxed
inter-atomic distance d = 13 µm. We vary θm, the angle between the inter-atomic axis
and the quantization axis, by rotating the trapping arrays (tweezers and bottle beams)
in the (x, z) plane. For each value of θm, we acquire the microwave probe spectrum,
őt the interaction line (peak 2) with a gaussian shape, and compute its distance with
the non-interacting, single-atom transition frequency ν0.

The recorded spectra are presented in őgure IV.6 (a). They demonstrate the change
of sign of the interaction as the angle θm goes from 0 to 90◦, with the line shifting from
a resonance frequency lower than ν0 to one higher than ν0. Importantly, at θm ≃ 60◦,
peak 2 almost merges with peak 1 at ν0, and we essentially recover the single-atom
spectrum. This corresponds to the interactions vanishing at θm = θ0 ≃ 54.7◦, as men-
tioned in chapter 1. In other words, close 60◦, we mostly get single-atom transitions
from |52C⟩ to |51C⟩.

In őgure IV.6 (b), we plot the measured splitting as a function of θm. As in the
distance study, the data approximately őts the theoretical prediction. The general
behavior matches the (3 cos2(θm) − 1) evolution, but with deviations at the largest
interaction strengths, when the angle gets close to 0◦. Still, without any other ex-
perimental reőnements, we are able to control the sign of the interactions via simple
rotations of the trapping systems.

We conducted here the őrst characterization of resonant dipole interactions between
circular atoms. Their behavior matches the theoretical predictions, up to discrepan-
cies in the strongest interaction regimes, when θm is lower than ∼ π/4 or when the
inter-atomic distance is shorter than ∼ 10 µm. So far, these deviations prevent any
őne control of the interactions, which is problematic for the examination of many-body
phenomena with more than a mere pair of atoms. The next part of this work is there-
fore dedicated to understanding these deviations, in order to ultimately get rid of them.
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Figure IV.6: Resonant dipole interaction as a function of the angle between the quan-
tization axis and the inter-atomic axis, for d = 13 µm. (a) Spectra of the |↑↑⟩ → |+⟩
transition, each obtained with a single pair of circular atoms, for θm ranging from 0◦

to 90◦. The x-axis is once again centered on ν0, and the single-atom | ↑⟩ → |↓⟩ spec-
trum is also plotted here (in blue). (b) Measured interaction energy ∆ν = −2J as a
function of θm, and overlapped with the theoretical expected behavior. For most data
points, the error bar is smaller than the pictured symbol. In the strongest interaction
regimes, the data deviates once more from the expected values because of induced
atomic displacements.

IV.3 Improved atomic preparation for error elimina-
tion

To go any further with this experimental platform, we need to understand and mit-
igate the deleterious effects witnessed with strong interactions. The irregularities we
observed in the data presented here suggest that, in strongly interacting geometries,
the atomic positions deviate from the centers of their traps. The spectra only give us
a snapshot of the inter-atomic distance at the time of the microwave pulse, but the
atoms could very well oscillate over several hundred nanometers around their equilib-
rium positions over time, which would prevent a proper control of their interactions
in the pairs, let alone in larger ensembles. Moreover, the strongly interacting regimes
appear to reduce the quality of the circular state preparation, which is not acceptable
for prospects of quantum simulations with larger number of atoms.

To tackle this issue, we őrst design a numerical model of the interacting pairs,
describing their evolution throughout the Rydberg preparation. By comparing its
results to the data, we identify the source of errors as the low-ℓ interactions emerging
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right before the circularization. We then implement a new, reőned atomic preparation
to mitigate these interactions and recover data in excellent agreement with theoretical
expectations, even in strongly-interacting regimes.

IV.3.1 Preparation errors in strongly-interacting regimes

We try in this section to characterize the effects we witnessed more comprehensively, so
as to understand their origin and eliminate them. To do so, we implement additional
experimental investigations that we couple to numerical simulations.

The deleterious effects cannot be attributed to the circular-circular interactions, as
those only emerge at the time of the microwave pulse, which constitutes the probe of
the system. We therefore suspect that the errors originate from dipole-dipole interac-
tions between the atoms before the adiabatic passage. Indeed, when the electric őeld
F is ramped up to branch |52F ⟩ to the starting level of the circularization, the łclassi-
calž atomic dipole goes from zero to a large value of about 4000(ea0), as per the Stark
effect and parabolic basis discussions of chapter 1. The dipole is then shrunk back to
zero by the adiabatic passage, which brings the atom to |52C⟩, where no static dipole
is apparent. The evolution of a single static dipole during the preparation is visualized
in őgure IV.7, where we represent its different values throughout the evolution from
|52F ⟩ to |52C⟩.

During the time that the atoms spend in low-ℓ states, they can therefore strongly
interact through classical dipole-dipole interactions. Although trapped, these low-ℓ in-
teractions can induce signiőcant motion, which we believe is the origin of the deviations
from the theory that we saw via the microwave spectroscopy of the circular-circular
interactions, in őgure IV.5 for instance. Moreover, nothing prevents cross-talk be-
tween the two atoms during the adiabatic passage. Spatial proximity between the two
atoms could very well affect the circularization itself, and therefore explain the purity
reduction. In other words, we suspect that the low-ℓ interactions induce position and
preparation errors, which we then witness when probing the circular-circular interac-
tions.

To corroborate this hypothesis, we implement a numerical model simulating the
atomic evolution from the electric őeld onset until the end of the sequence, based on a
semi-classical approach. We consider two atoms, each trapped in a harmonic potential
approximating the bottle beam, of estimated trapping frequency 50.5 kHz (2 BoBs ś
see őg. III.7 of chapter 3). The atomic state of each atom is described by the two
vectors Ja and Jb, introduced in chapter 1. We remind that, in static parallel őelds F
and B and per equations (I.27) and (I.28), these angular momenta precess around the
quantization axis. The atomic dipole, in manifold n, is also written

d =
3

2
nea0(Ja − Jb). (IV.10)

To simulate the evolution of the internal state of the atoms, we neglect the quantum
defects and assume a purely hydrogenic behavior. We consider that the two atoms are
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Figure IV.7: Simpliőed evolution of the classical atomic dipole d throughout the
preparation of a single atom. The atom is excited to |52F ⟩ in zero electric őeld, such
that the static dipole only emerges when ramping F up, to branch the low-ℓ state onto
the state |52,m = 2, k = −47⟩ of the manifold, written in the parabolic basis. Then,
the dipole is independent of F and proportional to Ja−Jb. During the circularization,
d shrinks while precessing around the quantization axis as Jb evolves (mb grows) to
reach the circular state, where the static dipole is zero (up to őrst order in F). We
suspect that the interactions between the classical dipoles of the two atoms in the pair
lead to signiőcant motion, induced before the adiabatic passage.

initially in the level |ma = J,mb = −J⟩ of the parabolic basis, where J = (n−1)/2. It
is the level at the very bottom of the manifold6. We recall that, during the adiabatic
passage, the Jb angular momentum, of constant norm, rotates over time to reach the
circular state |ma = J,mb = J⟩, as shown in őgure IV.7. In the numerical model,
we simultaneously implement the two actions governing the behavior of the internal
state of the two atoms. First, we simulate the effect of the radio-frequency őeld
and of the electric őeld ramps, described by Hamiltonian (I.30) in chapter 1. The
adiabatic passage parameters (timings, electric őeld ramp amplitude, RF power) are
taken to match the real time evolution of the electric őeld and RF Rabi frequency in
the experiment. Secondly, we simultaneously simulate the interactions between the
angular momenta of the two atoms throughout the preparation, via the dipole-dipole
Hamiltonian:

V̂dd =
1

4πε0r3

(

3

2
nea0

)2

{
(

Ĵ(1)
a − Ĵ

(1)
b

)

·
(

Ĵ(2)
a − Ĵ

(2)
b

)

− 3
[(

Ĵ(1)
a − Ĵ

(1)
b

)

· e
] [(

Ĵ(2)
a − Ĵ

(2)
b

)

· e
]

}.
(IV.11)

Here, e is the unit vector along the inter-atomic axis, and the 1 and 2 indices designate
the atoms. Using Ehrenfest theorem, we can then write the system of coupled differ-
ential equations ruling the evolution of Ja and Jb for both atoms [136]. Thanks to the
symmetry of the coupling, the atoms are interchangeable and will undergo the same
evolution, which simpliőes the model. The system and its equations are presented in
more details in appendix A. We solve these equations numerically, which allows us to
estimate the purity of the atoms (equation (A.8) of the dedicated appendix) in the

6It technically does not correspond to the actual starting point of the adiabatic passage but
constitutes a good approximation of it.
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Figure IV.8: Numerical simulation of the motion and state evolution, for a pair of
atoms, with d = 10 µm and θm = π/2. (a) Input electric őeld and RF Rabi frequency
evolution, replicating the ones of the real experimental sequences. Here, the electric
őeld ramp is decreasing to match the old settings of the procedure, used in the mea-
surements of this section. (b) Components of Jb, for one of the atoms, in the rotating
frame. During the circularization, Jb,z changes sign to reach the circular level. (c)
Circular state purity for each atom within the pair, which grows to 1 as the adiabatic
passage ends. The atomic dipole, on the other hand, shrinks to zero. (d) Simulated
motion and real measurements of the atomic distance. The excellent agreement con-
őrms the validity of the numerical model.

pair at the end of the adiabatic passage, for any geometric conőguration. The result
for d = 10 µm and θm = π/2 is shown in őgure IV.8 (a)-(c). There, we plot (a) the
simulated electric őeld and RF Rabi frequency ramps, (b) the evolution over time of
the three components of Jb for either one of the atoms, and (c) the atomic dipole d and
probability to be in |52C⟩, η(2)52C , again for either one of the atoms. According to the
numerical results, in this conőguration, the pair circularization seems to be working
properly, with no interaction-induced loss in purity.

Within the same numerical model, we simulate the atomic motion during the
preparation by a simple mechanical description of the force exerted on each atom,
derived from the classical version of the dipole-dipole interaction (IV.11). The energy
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is strongest right as the dipoles emerge, when the electric őeld is turned on, before the
adiabatic passage. This is when the motion is initiated, as pictured in the simulation
of the atomic distance r over time in panel (d) of őgure IV.8.

We compare the simulated motion with a real measurement of the inter-atomic
distance at several instants in the sequence. To do so, we carry out the acquisition
of the interaction spectrum of the pair, in the (d = 10 µm, θm = π/2) conőguration,
and we vary the time at which we apply the microwave probe pulse. This provides
a direct measurement of the atomic distance over time, computed from the position
of peak 2 in each acquisition (relative to the position of a single-atom reference line).
The distance is computed by inverting equation (IV.2), which yields, in the current
geometry, r = (2A/∆ν)1/3.

The experimental results match the simulated evolution very well, as shown in őg-
ure IV.8 (d). It must be noted that the simulation was run with an inter-trap distance
of 9.8 µm instead of 10 µm. It is the only parameter adjusted to match the data,
and could be explained by a slight 2% error in the distance calibration of the SLM
phase masks. We recall here a remark we made when introducing the deőnition of the
trapping arrays in chapter 2, where we signaled the possibility of a slight error in the
camibration of the magniőcation of the trapping optical path. We potentially witness
here such a misestimation, most probably in the aspheric lens’ focal length. Neverthe-
less, the excellent agreement between the experimental data and the numerical results
indicates that we have properly identiőed the source of motion and the origin of the
deviations initially observed.

IV.3.2 Inhibition of low-ℓ interactions

We ultimately want to get rid of the unwanted motion induced by the low-ℓ inter-
actions, so as to recover circular-circular interactions in agreement with the designed
atomic geometries. To do so, we take advantage of two things: the geometric depen-
dence of the classical dipole-dipole interactions and the őne three-dimensional control
of the electric őeld allowed by the setup. Let us state that, from now on, the circular-
ization adiabatic passage corresponds to the one described in chapter 3, its recent and
most efficient version. Its obsolete, less-efficient settings were only used in preliminary
data of this chapter, presented up until here.

As explained in the previous section, we associate the motion-inducing low-ℓ in-
teractions to the attraction or repulsion between two classical dipoles. They emerge
when the electric őeld is ramped up after the microwave transfer to |52F ⟩ and disa-
pear during the adiabatic passage. By writing θp the angle between the quantization
and interatomic axes during the preparation stages of the experiment, the classical
interaction energy for a pair writes:

Vdd =
1

4πε0

∥d∥2
r3

[

1− 3 cos2 (θp)
]

, (IV.12)
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Figure IV.9: Improved preparation procedure. (a) The low-ℓ atoms of the pair are
positioned with the preparation angle θp = θ0 so that their classical dipoles do not
interact and no motion is initiated. (b) Conőguration at the end of the adiabatic
passage, with the quantization axis still along x. (c) System after the rotation of F in
the (x− z) plane by an arbitrary angle, so as to reach any measurement angle θm.

where ∥d∥ is the norm of the dipole exhibited by each of the two atoms, computed
from (IV.10). Interestingly, the interaction energy vanishes when θp = θ0 ≃ 54.7◦, an
angle already introduced for circular-circular interactions and used in several experi-
ments.7 By conducting the atomic preparation with θp = θ0, we can inhibit the low-ℓ
interactions and make sure that no atomic motion emerges in the bottle beams. We
can do so by setting the pairs at that precise angle with the x axis, along which the
electric őeld is directed throughout the circularization. We do this via the trapping
array design, as in several of the experiments carried out with non-interacting circular
atoms in chapter 3. The geometry is pictured in őgure IV.9 (a) and (b). In (a), we
schematically represent, for a single pair, the classical dipoles displayed by the atoms
in |52,m = 2, k = −47⟩, as the electric őeld has been switched on. The second panel
represents the pair of circular atoms in |52C⟩ at the end of the adiabatic passage, with
which we want to investigate the circular-circular interactions.

7This is the same angle at which circular atoms in the {|nC⟩, |(n+ 1)C⟩} configuration do not
interact, as first mentioned in chapter 1. The fact that low-ℓ levels and circular states share the same
θ0 feature is not a priori trivial. On the one hand, low-ℓ atoms display a classical dipole, aligned with
the directing electric field, which defines the quantization axis. On the other hand, the interaction
energy in the |+⟩ and |− ⟩ states of the circular pair can be seen as that of dipoles rotating like clock
hands, in the plane perpendicular to the electric field, as discussed in the geometrical interpretation
of the resonant dipole-dipole case in the first chapter. In the circular case, the averaging of the
interactions over the clock hands rotation leads to the same angular dependence as classical dipoles
aligned with F, up to the global sign of the interaction.
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To not be restrained to the measurement angle θm = θ0, we then make use of the
electric őeld control allowed by the sets of electrodes in the setup (see őgure II.2 of
chapter 2 for the depiction of the electrodes). Up until now, we only worked with an
electric őeld ś and quantization axisś aligned with the x-axis of the setup. However,
the four RF and two Stark electrodes allow, via the input of DC voltages, to control
the static electric őeld in the three spatial directions. With careful calibrations, we are
therefore able to rotate F in the (x− z) plane, so as to change the orientation of the
quantization axis. These calibrations, based on atomic measurements, are presented
in appendix C. By rotating F after the circularization, we can switch to any desired
measurement angle θm to probe the circular-circular interactions. The process is drawn
in panel (c) of őgure IV.11, where we show the change in quantization axis due to the
őeld rotation. It takes less than two microseconds to rotate the őeld, and the precision
granted by the electrodes ensures that it keeps the same norm independently of its
orientation (but not necessarily during its rotation). The magnetic őeld, however, is
kept parallel to the x-axis and never rotated. We therefore have to keep in mind that,
when F is no longer aligned with B, the Zeeman effect will shift the probed transi-
tions by an amount proportional to the projection of B onto the quantization axis,
i.e., F. This is due to the fact that the Stark shift always remains much larger than
the Zeeman effect, which ensures that the quantization axis follows the orientation of F.

With this new preparation procedure, we should be able to cancel the atomic
motion witnessed in strongly-interacting geometries. By choosing θp = θ0 via the
trapping lattice design and then setting θm to any angle thanks to the őeld rotation,
we can now explore any circular-circular interaction geometry without having to deal
with unwanted preparation errors. We took advantadge of this new preparation to
re-optimize the adiabatic passage, and that is when we set up its more efficient B
version, presented in chapter 3. The rest of the experiments presented in this chapter
were carried out with the recent, upgraded version of the circularization.

IV.3.3 Motion control

We conőrm the validity of the new preparation procedure through new measurements
of the atomic motion, as carried out in the section before last. We work here with three
pairs of atoms and maximal laser power in the BoBs, so that the expected trapping
frequency is approximately ωt = 2π × 25 kHz. In each pair, the inter-trap distance is
d = 13 µm.

We run three experiments, each one with a different preparation angle θp. To
explore the full range of low-ℓ interactions available, we choose: (i) θp = θ0, where
any motion should be prevented, (ii) θp = 0, where the interaction is strongest and
attractive, and (iii) θp = π/2, where the interaction is weaker but repulsive. These
angles are set from the design of the trapping array, so that in all three cases the cir-
cularization is carried out in standard fashion, with the electric őeld, i.e., quantization
axis, along x. We then probe the inter-atomic distance over time via the | ↑↑⟩ → |+⟩
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spectroscopy. We remind that we compute the distance at the time of the microwave
probe pulse from the frequency difference between peak 1 and peak 2, which provides
here a result averaged over the three different pairs. To be able to do so in the case
θp = θ0, we rotate F after the circularization to reach θm = π/2. In the other two
conőgurations, we keep the őeld as it is, along x, as their geometries already yield mea-
surement conőgurations in which we can properly conduct the microwave spectroscopy.

The data measured in each conőguration is shown in őgure IV.10, where we plot
the computed atomic distance as a function of the microwave pulse time. The pulses
used were 4 µs-long, and we take the center of the pulse as the time of each point. The
x-axis origin is the time at which the electric őeld is switched on in the experimental
sequence. We overlap onto each dataset a numerical simulation of the corresponding
atomic evolution, computed using the semi-classical model described earlier. As in
the previous example of such a simulation, the only parameter empirically adjusted
here is the inter-trap distance, taken to be 12.75 µm instead of 13 µm to match the
common average value of the three sets of data. We recognize here the same ∼ 2%
error in the lattice deőnition as noted earlier. Other than that, all the parameters of
the simulations (sequence timings, interaction geometry, trap frequency, initial atomic
level) are pre-deőned in agreement with the corresponding experimental conditions.
The numerical output matches the data, as can be seen in the three sets of results
plotted in őgure IV.10.

In the θp = θ0 geometry, the simulation predicts, as expected, a constant inter-
atomic distance over time. We indeed measure a quasi-vanishing motion in this con-
őguration, with some residual excursions of less than 100 nm away from the baseline.
They might be due to an imperfect angular calibration of the trapping array, in line
with the 2% error in the trapping system’s magniőcation. We nevertheless obtain
a clearly reduced motional amplitude compared to the initial θp = π/2 preparation
(cf. őgure IV.8), where the oscillations extended to more than 12% of the inter-trap
distance. The new preparation method is deőnitely accurate in preventing unwanted
atomic motion, and should allow a more precise investigation of the circular-circular
interactions.

Conversely, in the θp = 0 and θp = π/2 cases, we measure signiőcant oscillations
of r over time. Both measurements are, again, in good agreement with the ab initio
simulations. As expected from the [1− 3 cos2(θp)] term in the expression of the dipole-
dipole energy, the θp = 0 case leads to an amplitude twice as large as the θp = π/2
conőguration. The signs of the initial interaction (repulsive or attractive) also concur
with the theory. These results explicitly show the őne control on the atomic motion
brought about by the choice of the preparation geometry, which is ultimately indepen-
dent of the measurement geometry thanks to the őeld rotation.

In conclusion, we are able to not only prevent any motion of circular atoms, but
also to control it. This new possibility opens up interesting prospects, that we unfor-
tunately do not have time to tackle in the present work. Through a longer waiting
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Figure IV.10: Control and characterization of the atomic motion, in three different
preparation geometries, and for three pairs of atoms. (a) Experimental sequence. (b)
Overlap of the data and numerical results. The origin of the x-axis is the initial activa-
tion of the electric őeld, after the microwave D → F transfer. For each measurement
(dots), we run an ab initio numerical simulation (solid lines) of the corresponding con-
őguration. The θp = θ0 case leads to a quasi-vanishing motion, as expected. In the
two other cases, signiőcant motion is induced and matches the simulations with good
agreement.

time in the low-ℓ interacting states, one could imagine exciting motional modes of
larger amplitude. With more than two atoms, we might also excite more complex
states of motion. It will also be interesting to see the interplay between motion and
circular-circular interactions in this system. The spin-phonon model elaborated in the
őrst chapter is directly linked to these ideas. The level of experimental control reached
with these results could hopefully lead to explicit implementations of the cat states
or thermometry proposals that we introduced with this theoretical system in chapter 1.

IV.3.4 Unperturbed interactions

Equipped with the new distinction between preparation geometry and measurement
geometry, we return to the investigation of the spatial dependence of the circular-
circular interactions. From now on, we keep θp = θ0, so that the atomic motion is kept
at a minimum and does not perturb the subsequent characterizations. For the rest
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of the analyses presented here, we also systematically take into account magniőcation
error of the optical trapping setup that the motion measurements revealed. Our best
empirical estimate of its value, derived from the data, is -2.3%. For a user-deőned
inter-trap distance d, we now compute the corresponding interactions using the cor-
rected value αd, where α = 0, 977.

Distance dependence

We start with the renewed measurement of the distance dependence in the reso-
nant dipole-dipole interaction. We still work with three pairs of atoms, and set the
measurement angle to θm = π/2 through the rotation of F after the end of the adi-
abatic passage. We therefore recover the same measurement conditions as in section
IV.2.1, but without any atomic motion. For distances ranging from 8 to 16 µm, we
acquire the two-peak microwave spectrum of the system. The spectra are plotted in
őgure IV.11 (a). In each acquisition, the frequency scan range spans the two peaks
(1 and 2) but, for clarity purposes, we plot peak 1 for the 15 µm conőguration only.
Peak 2 is however shown for all distances. The microwave pulse duration and power
are adjusted in each conőguration so that the spectra always take the same amount
of time to record. At large distances, a long pulse allows good discrimination between
peak 1 and peak 2 over the short range of frequencies they span. The 16 µm spectrum
is for instance acquired with a pulse duration of 4.3 µs. At short distances, peak 2
is further away from peak 1: a shorter pulse with more microwave power allows to
still have good peak deőnition but with larger frequency steps, and thus the same
total acquisition time. At 8 µm, we therefore use a 0.9 µs microwave duration. These
adjustments explain the different line-widths of the spectra.

Except for the 9 µm and 10 µm conőgurations, the height of peak 2 remains con-
stant and above 30%, indicating a good circular purity independently of the geometry.
Thanks to the preparation process at θp = θ0, which not only inhibits motion but
also prevents any interaction-induced defects in the circularization, we recover a good
purity regardless of the measurement geometry.

In panel (b) of őgure IV.11, we plot the interaction energy, computed from the
peak separation of the spectra, as a function of the inter-trap distance. With this
new atomic preparation, we get a much better agreement between data and theory
than in the őrst version of the experiment. Only one point, at strongest interactions,
falls just below the theoretical expected value. We recall that we take into account
the α = 0.977 correction factor to compute the theoretical interaction energies from
the distances. By including this slight correction in the theory-data comparison, we
obtain a perfect agreement between the two.
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Figure IV.11: Measurement of the circular-circular interaction as a function of the
inter-atomic distance, with a preparation tailored to inhibit atomic motion and using
three identical pairs of trapped atoms. (a) Microwave spectra of the | ↑↑⟩ → |+⟩
transition for different distances. For each conőguration, we only plot the interaction-
dependent peak, labeled 2 in the previous sections. Peak 1 of the 15 µm conőguration
is plotted to show the position of the frequency reference ν0, taken as the x-axis
origin. The inset illustrates, with a single pair, the geometry implemented for the
microwave measurement, after rotating the electric őeld. (b) Computed interaction
energy ∆ν, as a function of the inter-trap distance. The data follows the expected
theoretical evolution (dashed grey line, computed by taking into account α = 0.977)
with excellent agreement. The errorbars are smaller than the markers.

Angular dependence

We now switch to the examination of the angular dependence. We set the distance
to 13 µm and still use three pairs of atoms. The preparation is done with θp = θ0, but
we scan the measurement angle θm from 0 to π/2 via the rotation of F executed before
the microwave probe pulse. The recorded spectra are shown in őgure IV.12 (a). As
in the distance experiment, to avoid overcrowding the őgure we plot peak 1 for only
one of the geometric conőgurations, while peak 2 is plotted for all of them. The x-axis
origin is, once more, the shared position of peak 1.

We subtracted here on all spectra an additional, angle-dependent global frequency
shift caused by the angle between the quantization axis and the magnetic őeld. As we
change the orientation of F in each of the measurements, the projection of B onto the
quantization axis changes accordingly. The angle changes result in different Zeeman
effects in the different conőgurations. The Zeeman shift acts on both peaks, ranges
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from 0 to 10 MHz, and goes as the cosine of the angle between F and B, as veriőed
with the raw spectra. We subtracted the shift, irrelevant in this study, to properly
overlap the spectra and focus on their interaction-induced features only.
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Figure IV.12: Measurement of the circular-circular interaction as a function of the
pair orientation, performed with 3 pairs of atoms, θp = θ0, and with a őxed distance
d = 13 µm. (a) Microwave spectra of the | ↑↑⟩ → |+⟩ transition for different angles
θm. For each conőguration, we only plot the interaction-dependent peak, except for
θm = 70◦, where we also show peak 1, taken as the common frequency origin ν0. The
inset shows the geometry of a single pair. (b) Computed interaction energy ∆ν, as a
function of θm. The data follows the expected theoretical evolution (dashed grey line)
with perfect agreement when taking into account the minor α magniőcation error.

While acquiring this data, we witnessed that the microwave efficiency is strongly
dependent on the orientation of the quantization axis. When θm is close to 20◦ we
can barely make out the peaks, even at maximal microwave power. We suspect that
locally, because of speciőc patterns of microwave modes in the electrode-covered sap-
phire structure, in some directions their is no σ+ polarization. Such a polarization
strictly prevents any transfer between |52C⟩ and |51C⟩, a σ+ transition. Along other
directions, the local polarization is a mixture of different states and the microwave
transfer works appropriately. The issue is linked to the power inhomogeneities men-
tioned several times in this work. Having a microwave horn shining radiation through
one of the windows creates, between the gilded electrodes, a complex distribution of
power and polarization, that we have no control over8. It is therefore harder to draw
any conclusion on the circular pair purity from the height of the peaks shown here.

8In the future version of the setup, the horn will be placed in the vacuum chamber as close to the
atoms as possible, in order to minimize these effects.
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And again, the widths of the peak differ between the various conőgurations because
of the adjusted pulse durations, set to take a constant acquisition time while keeping
correct peak deőnition.

The recorded interaction energies are plotted as a function of θm in panel (b) of őg-
ure IV.11. Measurements are missing close to 20◦ because of the unfavorable microwave
polarization in that conőguration, and close to θ0 because of vanishing interactions,
which make the two peaks indiscernible. In the rest of the θm values implemented, the
agreement with the theory is, again, perfect.

Thanks to the inhibition of the low-ℓ interactions, we now implement interac-
tions between circular atoms with great precision. We successfully characterized here
controlled dipole-dipole interactions between circular atoms. Through deterministic
changes in the lattice deőnitions, and therefore in the geometry of the system, we
are able to őnely strengthen, weaken, and change the sign of the resonant-dipole cou-
plings exhibited in the pairs of circular atoms, and their behavior perfectly matches
the theoretical predictions.

IV.4 Spin exchange between two circular atoms

Now that we have a good understanding of how to master pair interactions, we under-
take one last experiment. We demonstrate here the observation of spin exchange
between two circular atoms in the {|51C⟩, |52C⟩} spin space, once more written
{|↓⟩, |↑⟩}. By bringing together all of the setup’s functionalities presented so far
and then some, we are indeed able to witness several cycles of coherent excitation
transfer between two atoms. Although these results do not uncover any new feature
of circular-circular interactions, they constitute an important proof of principle on the
path towards full-scale quantum simulations, which will necessarily rely on the obser-
vation of energy exchanges within larger ensembles of atoms.

The idea is straightforward: we want to initialize a pair of circular atoms in state
| ↑↓⟩ and then measure its evolution over time. In the eigenbasis of the interacting
pair, the initial state vector writes:

|ψ(0)⟩ = 1√
2
(|+⟩+ |−⟩) (IV.13)

According to the system’s eigenenergies (cf. equation (IV.1) and őgure IV.2 [d]), the
pair then evolves as

|ψ(t)⟩ = 1√
2

(

e−i2Jt|+⟩+ ei2Jt|−⟩
)

, (IV.14)

which we revert to the measurement basis

|ψ(t)⟩ = cos(2Jt)| ↑↓⟩ − i sin(2Jt)| ↓↑⟩. (IV.15)

From the amplitudes, we deduce that the probability to measure | ↑↓⟩ oscillates over
time with frequency 4J , perhaps the most basic result in the most basic sytem in
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quantum mechanics.

Its implementation with circular Rydberg atoms is however a lot less trivial. With
the setup in its current conőguration, we can create pairs of circular atoms with
good preparation ődelity, control their interactions, keep them still for several hun-
dred microseconds with optical traps, and measure their probability to be in |52C⟩
with single-site resolution, as demonstrated in the last part of chapter 3. The tricky
additional requirement that arises here is the spin state initialization. Until now, we
had no way of discriminating atoms in the preparation protocols, which is what we
now need to do to prepare | ↑↓⟩. To overcome this issue, we take advantage of the
dipole blockade mechanism. We detail this new technique in the next section, before
moving on to the presentation of the results.

IV.4.1 Pair state preparation via the dipole blockade mecha-
nism

In order to prepare the state |↑↓⟩ in a pair, we use a third, auxilliary atom, in charge
of singling out one atom of the pair via the dipole blockade mechanism. We activate or
inhibit the dipole blockade through the orientation of the electric őeld. By orientating
F along speciőc axes, we can switch the dipole blockade on and off, which allows us
to implement a sequence of events leading to the preparation of |↑↓⟩.

To carry it out, we őrst prepare 3 circular atoms in |↑⟩ = |52C⟩, labeled A, B and
C, placed at the vertices of a ŕattened triangle, and each trapped in a bottle beam.
The atomic arrangement is shown in őgure IV.13 (a). The end goal is to observe the
spin exchange with the pair made up of atoms A and B. Atom C will be used to block-
ade A during the preparation. We set the geometry so that A and C are 20 µm apart9,
and the angle between their inter-atomic axis and the x axis is θ0. When F is along
x, i.e., throughout the circularization and de-circularization, A and C cannot interact.
Atom B is 40 µm away from A, on the opposite side of C. Its angular position with
respect to A is set by various constraints in the regularity of the underlying tweezer
lattice. When F is parallel to x, A and B are coupled, with an interaction frequency
4J/(2π) = 99.0 kHz. Atoms B and C are separated by 57 µm, so that their interaction
is 4J/(2π) = 25.4 kHz when the electric őeld is along x. With this geometry in mind,
we can now go over the successive preparation steps, pictured in the four panels of
őgure IV.13:

1. All three atoms are initialized in |52C⟩ following the standard procedure. The
electric őeld is along x, C and A do not interact, while A and B do. Their inter-
action strength is however relatively small, so that the motion induced during
the preparation is very limited (∼ 10 nm amplitude according to simulations).
This is the conőguration drawn in panel (a).

9We give the distances as the user-defined ones in the trapping system, but we make sure to take
the -2% magnification error into account when estimating the actual interaction energies.
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Figure IV.13: Dipole-blockade-based preparation for site selectivity. (a) Three atoms
are initially prepared in |↑⟩ (blue wavefunctions). At the end of the circularization (F ∥
x), A and B interact weakly (yellow dotted line connecting them). A and C are placed
so that, in this őeld conőguration, their interaction is inhibited. (b) Rotation of the
elecric őeld to prevent A-B interactions, while A and C are coupled (red dotted line).
(c) A microwave pulse (green arrows) transfers atom B to | ↓⟩ (green wavefunction),
while A and C, being in the dipole-blocakde regime, each remain in |↑⟩. The microwave
pulse parameters also prevent the two-photon process to | ↓↓⟩. (d) F is rotated back
to x, A and C no longer interact, while A and B start evolving from | ↑↓⟩ (blue and
green wavefunction).

2. The electric őeld is rotated to inhibit interactions between A and B, as shown
in panel (b). Atoms A and C interact, with an energy 2J/(2π) = 396 kHz.

3. A 14 µs-long microwave pulse, set on the single-atom |52C⟩ → |51C ⟩ transition
frequency ν0, is applied to the atoms. Atom B, whose interaction with A is
inhibited, is transferred to | ↓⟩. Atom A is in the dipole blockade regime, due
to its interaction with C. Their one-photon transition | ↑↑⟩ → |+⟩ lies 396 kHz
away from the microwave pulse frequency, whose duration imposes a spectral
width of less than 80 kHz (checked in preliminary tests). This transition thus
cannot take place. The two-photon | ↑↑⟩ → | ↓↓⟩ transfer is also negligible.
Assuming that it is an effective two-level system with far-detuned (396 kHz)
indetermediate level |+⟩, we estimate its Rabi frequency to be 3.2 kHz. The
microwave pulse, although resonant on the two-photon process, is therefore too
short to signiőcantly adress it. All in all, A and C each remain in | ↑⟩, while
atom B is transfered to | ↓⟩. This is depicted in panel (c) of the őgure.
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4. The őeld is rotated back to its initial angle, along x. This is done in 0.5 µs, a
short timescale compared to the interaction energy of A and B (99.0 kHz, i.e.,
a ∼ 10 µs characteristic time). Their interaction is therefore switched on in a
diabatic manner, so that the interacting system is properly initialized in | ↑↓⟩.
In this őeld conőguration, A and C no longer interact.

We then let the atoms evolve for a variable amount of time, after which we carry
out the de-circularization and recapture in the tweezers. Only atoms in | ↑⟩ can be
de-excited back to their ground state and recaptured, so that we obtain an effective
measurement of the spin levels. A recapture event signals that the atom was in | ↑⟩,
while no recapture means that the atom was in another state ś most probably | ↓⟩ in
the case of atoms A and B at short timescales.

IV.4.2 Observation of coherent spin exchanges

With this preparation in mind, we move on to the presentation of the results. In
őgure IV.14 (c), we display the recapture probabilities for atoms A and B, cast as
P↑, the probability to measure | ↑⟩, as functions of the waiting time ∆t. The waiting
time is taken as the delay between the end of the second őeld rotation (i.e., when the
interaction between A and B is switched on), and the center of the de-circularizing
radio-frequency pulse (when the atoms being de-excited are no longer in a circular
state and the resonant spin exchange stops). Panel (a) of the őgure illustrates the
timings of the sequence and the deőnition of ∆t. In the anlysis of the recapture signal,
we post-process the data to discard repetitions in which the rearranging process made
a mistake and did not properly initialize the system of three atoms.

The data shows clear oscillations in P↑(A) and P↑(B), with opposite phases. We
őt each of them with the following function:

f(t) = y0 + αe−t/τL + βe−t/τC cos (2πνt) . (IV.16)

The őrst exponential term accounts for the black-body radiation-induced decay. The
time constant τL is not a őtting parameter, it is empirically taken as the average of
the lifetimes of |52C⟩ and |51C⟩: τL = 138 µs. The oscillating term also has an ex-
ponential pre-factor, which covers the loss of coherence over time, i.e., the decay in
oscillation amplitudes. The őtting routine yields the two decay rates τ (A)C = 43 ± 9 µs
and τ (B)

C = 36 ±7 µs. Both times are shorter than the estimated pair lifetime, of about
70 µs, indicating the presence of decoherence effects. The coupling strength J being
independent of the static electric and magnetic őelds, the decoherence might be ex-
plained by other effects, such as residual couplings to atom C or undesirable outcomes
of the microwave preparation pulse. The spin-motion interplay addressed in chapter
1 could also explain the loss of contrast over time. However, given the 6 µK atomic
temperature and weak interaction strength, numerical simulations indicate that this
effect should not be visible at such timescales.
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Figure IV.14: Spin exchange between two circular atoms interacting in the resonant
dipole regime. (a) Depiction of the experimental sequence, where the rearranger is
not shown. The orientation of the electric őeld is plotted to illustrate its change of
orientation to prepare atom B in | ↓⟩, thanks to the dipole-blockade enacted on A
by atom C. (b) Representation of the arrangement of the atoms. Atom C has an
auxilliary role in the sequence, it is only used to shift A out of resonance when shining
the microwave őeld. (c) Recapture probabilities for atoms A and B as functions of
the waiting time ∆t. We overlap the data (dots) with őt functions (solid lines). The
results clearly show more than a dozen spin exchanges between the two circular atoms.
(c) Recapture probability for atom C, indicating residual interactions between A and
C during the evolution.
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More importantly, we őnd the common oscillation frequency to be ν = 102.2± 0.5 kHz.
It is in excellent agreement with the predicted value 4J/(2π) = 99.0 kHz. The results
indicate that we have properly witnessed the coherent spin exchange taking place in
the pair.

We plot in panel (d) the recapture probability of atom C. We also őt it with the
function of equation (IV.16), but now taking τL = τ52C = 140 µs, the lifetime of |52C⟩
only. The result shows that the black-body radiation-induced decay is modulated by
slow oscillations at 20.3 ± 0.6 kHz. The frequency is of the order of the A-C interac-
tion, where we expect 4J/(2π) = 25.2 kHz. The fact that we observe this oscillation
indicates that the interaction between atoms A and C is not totally negligible in the
evolution of the system.

A more in-depth analysis would have to be carried out to explain all the features
of the data and the quantities obtained from the őtting results. At őrst glance, the
initial recapture of atom A matches that of the circular-atom trapping experiment,
discussed in chapter 3. The 20% initial recapture of atom B is harder to explain
without additional, more detailed considerations. By taking into account the circular-
ization and de-circularization success rates, the microwave pulse efficiency and other
error-inducing technicalities (e.g., the residual A-C interaction, the effect of the de-
circularization on |51C⟩, etc), and with a less empirical őtting routine, one should be
able to explain the various features of the plots.

These results are still at their preliminary stage and we unfortunately lack the
time to address them in more details in the context of this thesis. They nonetheless
constitute a satisfying achievement. We basically observed two circular atoms, sep-
arated by a distance equivalent to the diameter of a human hair, exchange a single
photon in a back and forth manner. Perhaps more pragmatically, the experiment of
this last section proves the feasibility of using circular atoms to emulate spin systems
ś although extremely basic ones at this stage.
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Conclusion of chapter 4

We presented in this őnal chapter the main results of this thesis, dedicated to the mea-
surement and control of interactions between circular atoms. The investigations were
conducted with pairs of atoms individually trapped in optical beams. We thoroughly
explored their resonant dipole-dipole interactions in the {|51C⟩, |52C⟩} spin states.

The microwave spectroscopy of the |↑↑⟩ → |+⟩ transition proved to be an efficient
technique to probe and characterize the interaction regime in any geometry (d, θm).
It not only provided a direct proof of the coupling between the two atoms, but also
yielded useful information on the state of the pair at the time of the measurement.
Thanks to a simple toy model of the atomic evolution, one can derive from the mi-
crowave spectra (and their corresponding Rabi oscillations) the atomic positions and
state purity. The study of the variations of the interaction energy with the geometri-
cal parameters of the system followed the general expected behavior, but highlighted
preparation errors induced in strongly-interacting regime.

Thanks to a semi-classical simulation, we attributed these errors to dipole-dipole
interactions occurring when the atoms are in low-ℓ states before the circularization
procedure. The numerical results predicting atomic motion matched the one we mea-
sured through the microwave probe. We were able to overcome this bottleneck by
exciting the pairs to circular states while in an interaction-inhibiting geometry. The
subsequent rotation of the electric őeld nonetheless allowed us to explore any circular-
circular interaction regime. We then demonstrated precise control of the resonant
dipole-dipole interactions, still relying on the microwave spectroscopy to do so. Inci-
dentally, the precision of the measurements revealed a small error in the magniőcation
of the optical trapping setup. The distances between the lattice sites are actually 2%
shorter than what we aim for when designing the SLM phase masks. The measured
discrepancy is attributed to a slight misestimation of the aspheric lens’ focal length.
Far from being detrimental, this minor error and the fact that we are able to discern
it further prove the quality of the optical trapping system.

The reőned preparation protocol, where the quantization axis is not the same in
the excitation and measurement phases of the experiments, allowed us to demonstrate
control over the motion of the atoms in their traps. Through various preparation ge-
ometries, we were able to exhibit different regimes of motion. The data is in excellent
agreement with numerical simulations, proving both our good understanding of the
phenomena at stake and the őne atomic control allowed by the setup’s functionalities.

The observation of coherent spin exchange between two circular atoms concluded
the investigation addressed here. By taking advantage of the dipole blockade vol-
ume induced by a third, auxilliary atom, we recorded the evolution of a pair initially
prepared in |52C, 51C⟩. We witnessed several cycles of spin exchange, in excellent
agreement with the expected interaction frequency. Although at a preliminary stage,
these last results unequivocally lay the foundations for a future circular-atom quantum
simulator.
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Conclusion

I presented in this dissertation the experimental investigation of dipole-dipole inter-
actions between optically-trapped circular Rydberg atoms. Thanks to our new setup,
designed to create arbitrary arrays of circular atoms in a room-temperature environ-
ment, we were able to implement, control and measure the resonant exchange coupling
exhibited within pairs of such atoms, individually trapped in bottle beams. The exper-
imental technicality and promising results discussed here undeniably lay the ground-
work for the long-term goal of creating a quantum simulator based on circular atoms.
Over the course of my őve-year PhD studies, we successfully bridged the gap between
theoretical proposal [117] and experimental implementation, although the setup in
its current state is still far from its desired capabilities. Nevertheless, one could ar-
gue that, by observing cycles of resonant spin exchange between two trapped circular
atoms, we technically implemented a quantum simulation of the simplest imaginable
spin system.

We were able to reach the conclusions presented here through an exhaustive up-
grade of our setup, coupled to the development of new technical skills, the design of
several tailor-made software and in conjunction with reőned theoretical predictions
and numerical modeling. This long-term project, of which we showed here some of
the őrst outcomes, will hopefully bolster the renewed interest in circular atoms in the
context of quantum simulation efforts [116, 195], almost exactly a hundred years after
Niels Bohr received his Nobel Prize for his őrst intuition of these remarkable atomic
states.

We dedicated the őrst chapter of this dissertation to the formal introduction of
circular Rydberg atoms, their individual properties and the main characteristics of
their interactions. The circular states, distinguished by their large principal quantum
number and maximal orbital and magnetic angular momenta, are best understood
from the standpoint of the parabolic basis and in the hydrogenic approximation. This
formalism is tailored to the description of the Rydberg manifolds of alkali atoms evolv-
ing in static electric and magnetic őelds. Within this framework, we underlined the
distinctive features of individual circular Rydberg atoms, speciőcally focusing on state
|52C⟩, the level we work with in the experiments. Their strong dipole couplings, al-
most exclusively to other circular states and in the microwave domain, justify their
use as spin-encoding levels for simulations. This peculiar level structure also accounts
for their lifetimes, outstanding among other Rydberg levels but highly dependent on
black-body radiation. The third important property of circular atoms we addressed
here is their sensitivity to the ponderomotive force, which enables their individual
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optical trapping.
When two circular atoms are close to each other, they interact via the dipole-

dipole coupling. Two possible behaviors then emerge, depending on the speciőc levels
involved. On the one hand, if the atoms are in two dipole-coupled states, the inter-
action is of the őrst order kind, and leads to the direct, spin exchange regime. On
the other hand, if the atoms are in levels that are not dipole-coupled, their coupling
is ruled by second-order processes, called the van der Waals regime. The two conőg-
urations display energy scales that differ by several orders of magnitude. Although
the second one is the target regime of our proposed quantum simulation platform, we
focused here on the direct exchange interaction, because of experimental constraints
and as our őrst step in the őeld of trapped, interacting Rydberg atoms.

To carry out the experimental investigation of said interactions, we rely on the
functionalities of our new setup, which we presented in the second chapter of this
work. Among its many features, the electric-őeld control apparatus and the optical
trapping system are of crucial importance. Thanks to standard laser-cooling tech-
niques (magneto-optical trapping, optical molasses, adiabatic cooling), we create ho-
mogeneous arrays of individually-trapped atoms, with 65% single-site initial loading
probability and cooled to 5 µK. We recently added a rearranging beam to the experi-
ment, used to move the loaded atoms between static tweezers, so as to reach arbitrary,
defect-free in our atomic lattices.

In chapter 3, we presented some of the őrst results of this thesis, on the trapping
and manipulation of individual circular Rydberg atoms. We started with the descrip-
tion of the excitation procedure to transfer ground-state atoms to |52C⟩, which has a
73% success rate and is performed in about 10 µs. Thanks to our site-resolved optical
detection method, we then proved that the atoms, while in the circular state, stay
conőned in their individual bottle beams. We wrapped up chapter 3 by discussing two
experiments that demonstrate other applications of the optical detection to circular
state manipulations. We notably implemented the coherent transfer of the atoms be-
tween two circular states, which we detect with single-site resolution.

Equipped with arbitrary arrays of trapped |52C⟩ atoms, we őnally tackled in chap-
ter 4 the experimental study of the dipole-dipole coupling between circular states. We
restricted our investigations to the case of pairs of atoms and to the resonant, őrst-
order interaction regime. Via a microwave spectroscopy probe of the pair transitions,
we explicitly demonstrated the emergence of circular-circular interactions, matching
the expected theoretical predictions. To implement highly-controlled interactions, we
however need to inhibit any atomic motion that can be induced in the traps during
the preparation procedure. We therefore circularize the pairs of atoms in a geomet-
rical conőguration that prevents any interaction. Then, once the atoms are properly
brought to |52C⟩, we rotate the quantization axis to be able to scrutinize any tar-
geted interaction geometry, without the presence of perturbative motion. With this
upgraded preparation protocol, the atomic motion is completely de-correlated from
the circular-circular interaction conőguration we want to probe.
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We concluded the fourth chapter with the time-resolved observation of spin ex-
changes between two circular atoms, still in the resonant, őrst order interaction regime.
Using a third atom and its Rydberg blockade volume, we are able to initialize the pair
in |51C, 52C⟩ and record its subsequent evolution, which matches the expected behav-
ior with good accuracy.

Throughout this dissertation, we stressed the importance of several technical fea-
tures that underlie the scientiőc achievements on circular atom manipulation and
circular-circular interactions. These technicalities correspond to various ingredients
that make up the recipe for an efficient quantum simulation platform. In that context,
we can mention the following accomplishments: the creation of arbitrary spin ge-
ometries (thanks to the rearranging beam), the implementation of long-lived spin-1/2
elements (in the form of individually-trapped circular atoms) interacting in a highly
controlled fashion (via the geometry of the dipole-dipole interactions), measurable
with site resolution (thanks to the optical detection) and individually addressable for
state initialization (through the dipole blockade trick). All in all, by overcoming these
various technical challenges, we explicitly demonstrated the feasibility of using circular
atoms for quantum simulation experiments.

Although much work is still required to reach advanced simulation schemes, this
new setup already opens up interesting investigation prospects, that can be directly
built upon these őrst results. Following the results of the fourth chapter, the resonant
spin exchange could be implemented in larger ensembles of atoms. With the straight-
forward tool of microwave spectroscopy at hand, it seems feasible to probe couplings
within groups of three or more atoms, which should display clear signs of interactions
in the same fashion as a pair. The driven Rabi oscillations of N atoms, for instance,
should display, under the right conditions, oscillations at

√
N times the frequency of

the single-atom ones. Thanks to the dipole blockade preparation, we could also imag-
ine observing the propagation of a single spin excitation in a chain of circular atoms,
through a careful choice of the geometry.

Furthermore, the investigation of van der Waals interactions could also be within
reach in this current experimental platform. We should indeed be able to reach a
precision in our microwave spectroscopy which falls into the scale of second-order van
der Waals couplings, where interaction-induced energy shifts in pair states are of the
order of 10 kHz at our standard inter-atomic distances. The van der Waals interactions
display a richer behavior than the resonant regime. It exhibits both longitudinal and
transverse spin couplings, where the resonant case only feature the latter. Importantly,
these couplings depend on the static electric and magnetic őeld. Witnessing such
van der Waals interactions and checking their dependence on the static őelds would
constitute signiőcant achievements.

The motional state of the circular atoms took on an unexpectedly important role in
this work, whether through the theoretical spin-phonon model of the őrst chapter [124]
or in obtaining the main experimental results of chapter four. The investigation of spin
and motion interplay could also be pushed further in the near future, whether to probe
the temperature of the circular atoms or to create motional Schrödinger cat states, as
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proposed in chapter 1.
Finally, one could envision the realization of quantum non-destructive (QND) mea-

surements of circular states in our setup, as proposed in [116]. It is possible to őnd,
in the right őeld conditions, two low-ℓ Rydberg states that are dipole-coupled at the
same frequency as two circular states. To measure the state of an atom in these circu-
lar levels, we can then use an ancillary atom placed in the low-ℓ levels. Through the
resonant interaction between the two atoms, the state of the low-ℓ atom can be made
dependent on that of the circular one. If one of the low-ℓ levels is laser-coupled to
the ground state, the optical detection of the ancillary atom then yields a QND mea-
surement of the circular atom. The trapping and individual addressing requirements
for such a scheme are more involved than what we are currently doing, but should be
within reach for our system.

Various technical improvements will nevertheless have to be eventually undertaken
in our current platform. We mention them here, following the order of their respec-
tive timescales, as prospective evolutions of the setup that should allow it to reach its
full potential. First, short-term improvements of the circularization protocol might be
considered. As mentioned at the end of chapter 3, other atomic excitation techniques
could lead to a circular preparation efficiency greater than the current one, and more
suitable for larger ensembles of atoms. In the coming years, the setup will then be
transferred to a cryogenic environment, which will allow us to fully harness the prop-
erties of circular atoms, by getting rid of most of the black-body-induced decays. With
longer lifetimes, the proper implementation and investigation of van der Waals inter-
actions should be immediately within reach in a cryostat. Finally, by adding a plane
capacitor around the atoms [119], individual lifetimes of the order of the minute could
be achieved, at which point the investigation of unexplored many-body phenomena
should become accessible.

From that perspective, the achievements we presented here are only the őrst of
many steps on the road to novel quantum simulations. And in that sense, the comple-
tion of this PhD was not really an end in itself, but hopefully an important beginning.



Appendix A

Numerical models

In our experimental work, we constantly rely on numerical simulations to predict and
corroborate results. The different programs that run these simulations cover a large
scope of applications and vary widely in complexity. They range from simple Python
scripts used to estimate atomic transition frequencies based on open-source libraries
[95], to intricate Monte-Carlo simulations of single-atom motion in tweezers or bottle
beams, to extensive diagonalization of pair Hamiltonians for interaction energy compu-
tations, to ab initio electric őeld estimations. We choose to discuss here only two such
numerical models. We őrst present the simulation of circular-state evolution under
black-body transfers, as the estimated lifetime of |52C⟩ is omnipresent in discussions
throughout this work. We then detail the semi-classical model used to strengthen the
main results of this thesis and which is useful for understanding parts of chapter 4. It
emulates low-ℓ dipole-dipole interactions in realistic experimental conditions, and al-
lows us to estimate the evolution of both the internal and external degrees of freedoms
of the atoms during experimental sequences.

A.1 Lifetime of circular atoms

To analyze experimental data, we often need to estimate the black-body-induced decay
of circular atoms to neighboring manifolds. To do so, we compute the statistical evolu-
tion of circular population over time, driven by spontaneous emission, absorption and
stimulated emission processes. A single circular level |nC is dipole-coupled to mainly
six other states, pictured in A.2: its adjacent elliptical levels |nE+⟩ and |nE−⟩, the cir-
cular levels of the nearest manifolds |(n−1)C⟩ and |(n+1)C⟩, and two elliptical levels
of the n+1 manifold, |(n+1)E−⟩ and |(n+1)E−−⟩ (not pictured in the őgure)1. The
natural radiative rates of transfer to any of these levels |r⟩ are given by the Einstein
coefficient Γ

(0)
nC−r = 4αω3|⟨r|r̂|nC⟩|2/(3c2) [139]. From the frequency dependency of

these rates, we őrst neglect the transitions to |nE±⟩, whose frequencies lie in the radio-
frequency range, compared to microwave transitions to the n ± 1 manifolds. Then,
the computation of the dipole matrix elements indicates that the transitions to the el-
liptical states n+1 can also be neglected when compared to circular-circular couplings.

1State |nC⟩ is also technically coupled to high-ℓ levels of other n + q, q > 1 manifolds, but the
couplings are negligible.
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Figure A.1: Most signiőcant dipole-allowed transitions between circular states that
contribute to black-body population decay. The circular-circular transitions (orange
arrows) have the strongest dipole matrix elements. The π transition between |nC⟩
and |(n+ 1)E−⟩ (pink dotted arrow) has a rate that is barely 10% of that of |nC⟩ →
|(n+1)C⟩, and is discarded in the computations. Other transitions to elliptical states
(not pictured here) are completely negligible.

In our numerical model, we therefore only consider transitions between adjacent
circular states. We want to estimate the population evolution, starting from any sta-
tistical distribution within circular levels and for a given black-body temperature. We
write νn,n±1 the microwave transition frequencies between circular levels and Γ

(0)
n the

natural spontaneous emission rate of circular level |nC⟩, computed from the Einstein
coefficient:

Γ(0)
n =

4α(2πνn−1,n)
3

3c2
|⟨(n− 1)C|r̂|nC⟩|2. (A.1)

The absrption and stimulated emission rates of this transition are then computed from:

Γ(1)
n = s(νn−1,n)Γ

(0)
n , (A.2)

where s(νn−1,n) is the average mode of photons in the relevant mode, given by Planck’s
law:

s(ν) =
1

ehν/kBT − 1
. (A.3)

We write pnC the population in level |nC⟩. From the discussed transition processes,
the population evolution over an inőnitesimal time dt writes, for state |nC⟩:
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pnC(t+ dt)− pnC(t) = −(Γ(0)
n + Γ(1)

n )pnC(t)dt

− Γ
(1)
n+1pnC(t)dt

+ (Γ
(0)
n+1 + Γ

(1)
n+1)p(n+1)C(t)dt

+ Γ(1)
n p(n−1)C(t)dt.

(A.4)

The four successive terms correspond, respectively, to: the spontaneous and stimulated
emission to n − 1, the absorption to n + 1, the spontaneous and stimulated emission
from n+ 1, the absorption from n− 1.

We can therefore write a system of coupled differential equations ruling the evolu-
tion of the circular populations that we can solve numerically. To estimate the lifetime
of |52C⟩, we consider all circular states from |48C⟩ to |56C⟩, restraining the popula-
tion transfers to these 9 states. We check a posteriori that the edge levels are not
signiőcantly populated during the evolution, which would indicate that the subspace
considered is too small and should include additional circular levels. We set the initial
population to pure |52C⟩ and numerically compute the evolution over 1000 µs for a
temperature of 300 K. The result is shown in őgure A.2, where, in the left panel, we
plot all the states’ computed populations, and in the right-hand panel focus on |52C⟩
at shorter timescales. We see that, as t reaches 1 ms, population in |56C ⟩ and |48C⟩
becomes signiőcant, indicating that more levels should be taken into account for longer
simulations.
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Figure A.2: Simulated population evolution for an initially pure |52C ⟩ system, at
300 K. The |52C⟩ population is halved in approximately 150 µs. Although the decay
process is multi-exponential, we can őt the evolution at short timescales with a simple
exponential model (right panel).



162 APPENDIX A. NUMERICAL MODELS

To extract a quantitative characterization of the lifetime of |52C⟩, we őt the őrst
50 µs of its evolution with a basic exponential decay. At longer times, the population
strongly deviates from this model, but most of the experiments presented in this work
occur at short timescales, within the initial 50 µs duration. In this approximation, we
obtain the 300 K lifetime:

τ52C = 140.3± 0.4 µs. (A.5)

This is the estimate we use throughout the main text to derive information from the
results of the measurements.

We őnally carry out the same simulation, but starting from |51C⟩, the other circular
state of interest in the scope of this work. In this case, the same procedure yields the
room-temperature lifetime:

τ51C = 135.4± 0.4 µs. (A.6)
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A.2 Simulation of low-ℓ interactions

The interactions between Rydberg atoms that take place throughout their preparation
play a key role in the discussions of chapter 4. We detail here the semi-classical model
that allows us to predict these interactions and their effects on the atoms.

A.2.1 Single-atom model

We describe each atom in the hydrogenic approximation, by neglecting the quantum
defects, and in a static directing electric őeld making the parabolic basis the relevant
one for computations. The internal atomic state is described by the two angular mo-
menta Ĵa = (L̂− Â/2) and Ĵb = (L̂−+Â/2), where Â is the symmetric Runge-Lenz
vector (see chapter 1). Within the manifold of principal quantum number n, these
angular momenta have a magnitude Ja = Jb = J = (n− 1)/2. Taking z as the quanti-
zation axis, the quantum eigenstates of the atom are |ma,mb⟩, and the total magnetic
quantum number is therefore m = ma +mb. The lowest-lying state of the manifold is
therefore |J,−J⟩, while the circular state of interest is |J, J⟩. For σ = a, b, the ladder
operators Ĵσ,± = Ĵσ,x ± iĴσ,y increase or decrease mσ by single units.

From the deőnitions of Ĵa,b, we get the deőnition of the atomic dipole moment from
the angular momenta:

d̂ = (3nea0/2)(Ĵa − Ĵb). (A.7)

One can also show [135] that PC , the probability to be in the circular state, writes:

PC =

(

(1 + Ja,z/J)(1 + Jb,z/J)

4

)2J

, (A.8)

where Ja(b),z are the expectations values of Ĵa(b),z.

In colinear static őelds F and B that deőne the quantization axis z, the single-atom
Hamiltonian writes:

Ĥ = −(ωS − ωZ)Ĵa,z + (ωS + ωZ)Ĵb,z, (A.9)

where ωZ = µBBz/ℏ and ωS = (3nea0/2)Fz/ℏ are respectively the Zeeman and Stark
frequencies. By adding a σ+-polarized radio-frequency őeld of frequency ωRF/(2π),
which drives the mb → mb ± 1 transitions, the single-atom Hamiltonian becomes:

Ĥ = −ωaĴa,z −∆bĴb,z + Ωb(Ĵb,+ + Ĵb,−), (A.10)

where ∆b = −ωb+ωRF and Ωb ∝ F is the Rabi frequency of the Ĵb,± transitions. Using
the Ehrenfest theorem and the canonical commutation relations

[Ĵa(b),α, Ĵa(b),β] = iℏϵαβγ Ĵa(b),γ, (A.11)



164 APPENDIX A. NUMERICAL MODELS

we obtain the equations ruling the evolution of the expectation values Ja, in the frame
rotating at ωRF:

dJa,x
dt

= ωaJa,y,

dJa,y
dt

= −ωaJa,x,
dJa,z
dt

= 0,

(A.12)

and those of Jb:
dJb,x
dt

= ∆bJb,y,

dJb,y
dt

= −∆bJb,x − 2ΩbJb,z

dJb,z
dt

= 2ΩbJb,y.

(A.13)

To numerically simulate the evolution of the atom during the circularization, we
will initialize the atomic state as |J,−J ⟩. According to the equations, Ja will remain
constant and aligned with z, while Jb will precess around a vector Ω = (2Ωb, 0,− ∆b).
In this picture, the inversion of the detuning that occurs during the RF adiabatic
passage takes a more visual interpretation, as it drives Jb from one pole of the Bloch
sphere to the other. We depict in őgure A.3 the evolution of the angular momenta,
from |J,−J ⟩ to |nC⟩, through the adiabatic passage.

~Ja

~Jb

~d ∝ ~Ja − ~Jb

~Ja ~Jb

~d = ~0

~d ~Jb

~Ja

Rotating frame

~Ja

~Jb

~d

(a) |n,m = 0⟩ (b) Adiabatic passage (c) |nC⟩

Figure A.3: Simpliőed representation, in the hydrogenic picture, of the angular mo-
menta and dipole moment (a) before, (b) during and (c) after the circularizing adi-
abatic passage. In the circularization stage, we show the rotation of Jb from pole to
pole as the detuning changes (over microseconds) and its rotation at ωRF around the
quantization axis. For clarity, we however do not display the part of its motion that
precesses around Ω at the Ωb timescale.
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Figure A.4: Numerical simulation of the single-atom evolution during the adiabatic
passage, following equations (A.12) and (A.13). (a) Simulated time-evolution of the
RF Rabi frequency and electric őeld amplitude, corresponding to their real experi-
mental implementation ś as presented in chapter 3. (b) Expectation values for the
three components of Jb, in the frame rotating at the RF frequency. (c) Atomic dipole
moment and single-atom circular state purity η(1)52C , which corresponds to PC .

We solve the differential equations numerically, by making sure to have ∆b(t) and
Ωb(t) vary as in the adiabatic passage’s őeld and RF amplitude evolutions in the
experiments. We obtain the simulated circularization plotted in őgure A.4 using the
real parameters of the setup and for the n = 52 manifold. The atomic dipole moment
only starts decreasing midway through the adiabatic passage, while the probability to
be in |52C⟩ rises to 1 at the end of the process.
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A.2.2 Pair evolution

We now consider two atoms undergoing the same adiabatic passage and each trapped
in a harmonic potential of frequency ωt. We label them with the indices i = 1, 2.
The goal of the simulation is two-fold. We őrst want to estimate the impact on the
purity of the spatial proximity between the atoms. We also want to simulate the
interaction-induced atomic motion. We carry on with a semi-classical approach. We
tackle the computation of the internal state of the atoms via Ehrenfest theorem, as in
the single-atom picture. We however simulate the motion in a fully classical manner,
via the interaction energy of the two atoms and the resulting evolution of the atomic
positions in their traps.

As in the main text, we consider that a distance d separates the two traps. We
write r the distance between the two atoms and consider that they are in the x − z
plane, with z the quantization axis. We denote by θ the angle between the inter-atomic
axis and the quantization axis. The unit vector along the inter-atomic axis is then
e = (sin θ, 0, cos θ).

Simulation of the internal degree of freedom

As per the dipole-dipole interaction formula, the coupling between the two angular
momenta of the two atoms writes:
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(2)
b

)

− 3
[(
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(2)
b

)

· e
]

}.
(A.14)

By developing this expression and applying once more the Ehrenfest theorem, we can
write the system of differential equations coupling the expectation values of the four
angular momenta (two per atom). By writing A = (3nea0/2)/(4πε0r

3), we get the
following equations, valid in the reference frame:
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(A.15)

dJ
(1)
a,y

dt
= A{ − (1− 3 sin2 θ)J (1)

a,z (J
(2)
a,x − J

(2)
b,x )

+ (1− 3 cos2 θ)J (1)
a,x(J

(2)
a,z − J

(2)
b,z )

+ 3 cos θ sin θJ (1)
a,z (J

(2)
a,z − J

(2)
b,z )

− 3 cos θ sin θJ (1)
a,x(J

(2)
a,x − J

(2)
b,x )},

(A.16)
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The Jb equations are obtained by inverting a and b in the above expressions. The
interaction being symmetric for the two atoms, the coupling equations of atom 2 are
exactly the same, up to the inversion 1 ↔ 2. This feature simpliőes the resolution.
Since the two atoms undergo the same evolution, we constantly have J(1)

a(b) = J
(2)
a(b). The

system is then reduced to the computation of only two angular momenta Ja and Jb,
each coupled to itself and to the other. By adding the single-atom equations (written
in the frame rotating at the RF frequency), we obtain a set of differential equations
that we can solve numerically. Let us note that, in the coupling equations, the inter-
atomic distance is r and is allowed to change over time, to account for the atomic
motion.

Simulation of the external degree of freedom

Modeling the motion of the atoms is simpler. We treat this part of the problem in a
classical picture. In this context, the interaction energy between the two atoms writes

Vdd =
1

4πε0r3
{

d(1) · d(2) − 3
(

d(1) · e
) (

d(2) · e
)}

(A.18)

At any given time during the circularization, the atomic dipole moment of the atoms
writes

d(i) =





d⊥ cosαRF

d⊥ sinαRF

d∥



 (A.19)

The components d⊥ and d∥ are deőned by the norm of the dipole and can be com-
puted from Ja and Jb. They evolve at the timescale of the adiabatic passage, i.e.,
over fractions of microseconds (see őgure A.4). The oscillating terms in the x and y
components accounts for the precession of the dipole around the quantization axis,
driven by that of Jb. The angle αRF evolves at the RF frequency of 225 MHz, i.e. at
the nanosecond scale. For each instant at which we compute the classical dipole-dipole
interaction energy, we therefore average the oscillations of the x and y components of
the dipoles. When doing so after some re-writing of equation (A.18), we get:

Vdd(t) =
1

4πε0r3
(1− 3 cos2 θ)(d∥(t)

2 − d⊥(t)
2/2) (A.20)

We note that the angular dependency in the equation indicates that, at θ = θ0 ≃ 54, 7◦,
no motion is induced. The motion occurs along the inter-atomic axis, in the x−z plane.
Thanks to the simpliőed energy formula, we can numerically simulate the evolution
of r, the inter-atomic distance, during and after the adiabatic passage. We take into
account the harmonic trapping potential of each atom, so that the equation of motion
of r, the inter-atomic distance, writes:

d2r

dt2
= −ω2

t r(t)−
1

µ

dVdd
dr

(t). (A.21)
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Figure A.5: Numerical simulation of the pair evolution during the adiabatic passage.
(a) Time-evolution of the simulated RF Rabi frequency and electric őeld amplitude.
(b) Atomic dipole moment of each atom and pair circular-state purity η(2)52C , i.e., prob-
ability for each atom to be in |52C⟩. The interactions hinder the proper circularization
as η(2)52C caps at 80%. (c) Simulated atomic motion: variation of the inter-atomic dis-
tance r over time. The trapping frequency of the traps is set to 100 kHz.

Here, µ = M/2 is the reduced mass of the pair of atoms, and Vdd(t) evolves over
time according to the circularization and angular momenta interactions.

Once the motion is coupled to equations (A.15), (A.16), and (A.17) (where the
single-atom adiabatic evolution should be added), we obtain the full description of
the pair during the circularization, with the interaction-induced effects taken into
account. We show in őgure A.5 the result of a numerical resolution of the system.
To force the emergence of interaction phenomena, we take a short inter-trap distance
of 5 µm, but tightly trap the atoms in ωt = 2π × 100 kHz potentials. In this case,
the interactions prevent the circularization from reaching a good circular purity in
the pair. The pair preparation efficiency η

(
52C2) only rises to 81% at the end of the

process, when the same procedure applied to single atoms is estimated to reach a
100% purity (cf. őgure A.4). The simulation also predicts a signiőcant motion, with
an inter-atomic distance varying by microns despite the tight trapping potentials. The
motion is kicked-off by the strong low-ℓ interactions before the adiabatic passage. It
results in oscillations of r at the trapping frequency for the rest of the evolution. In
chapter 4 of the main text, we make use of this numerical model on several occasions
to explain the measured phenomena. We mostly rely on it to estimate the motion of
the atoms and corroborate its real measurements.



Appendix B

Stability of the spin-phonon system

Within the framework of chapter 1, the effective potentials exerted on the relative
position of two circular atoms trapped in harmonic wells write, for each of the two
pair states |+X⟩ and | −X⟩:

V±(x) =
1

2
µω2x2 + ℏUm(x)(±2J −∆), (B.1)

where x is the relative position x = x2 − x1, µ the reduced mass and Um(x) =
(1 + x/d)−m accounts for the distance-dependence of the interaction. The distance
between the two traps is d, while J and ∆ are the interaction coefficients in the given
conőguration. They depend on the geometry of the system, on the static őelds and
on the subspace of atomic levels considered. We recall that, if the states evolve in
{|nC⟩, |(n+ 1)C⟩}, ∆ is negligible compared to J , which goes as 1/r3, i.e., m = 3. If
the atomic subspace is {|nC⟩, |(n+ 2)C⟩}, both coefficients are comparable andm = 6.

The second term in V± diverges as 1/rm. If large and negative, this contribution
can dominate the quadratic term of the trapping potential. More precisely, if the in-
teraction is attractive and too strong compared to the trapping potential, the atoms
will not be conőned to their traps and will collapse onto each other. In this case, the
effective potential does not display a local minimum. We study in this appendix such
instabilities and try to quantify them so as to be able to avoid them experimentally.

We focus here on the experimental conditions close to the ones implemented in
the experiments of this thesis. We take n′ = n + 1, so that the atoms interact in
the direct exchange regime, and we make the approximation ∆ ≃ 0 accordingly. To
remain within the scope of our study on the spin-phonon system, we also take the
quantization axis to be orthogonal to the inter-atomic axis: the atoms are positioned
as two plates next to each other on a table. The stability conditions derived here,
with this strong interaction conőguration, can be easily adapted to other geometries
and interaction regimes. In particular, the van der Waals interactions are weaker and
should therefore lead to less demanding stability conditions.

In the considered system, we have J < 0 (cf. őgure I.4 at θ = π/2). Of the two
effective potentials, only V+ then displays a negative divergence. We therefore study
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this potential only, as no instability issue will arise with V−. Given the hypotheses on
the system, the problematic effective potential writes:

V+(x) =
1

2
µω2x2 − 2ℏ|J |

(1 + x/d)3
. (B.2)
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Figure B.1: Stability of the spin-phonon system, in the ∆n = 1 and θ = π/2 regime.
(a) Bare harmonic traps (dotted lines) and effective potentials V+(solid lines), plotted
as functions of the relative distance between the two atoms x, for three conőgurations
illustrating the different behaviors of the system. At large trapping frequency (green),
the interaction does not affect the shape of the trap at the relevant scales. In the
intermediate regime (orange), the effective potential displays a łwallž of a few hundred
µK. For a low trapping frequency (grey), the effective potential cannot trap atoms.
(b) Map of the wall height as a function of d and ω. The grey region indicates where
the system is fully unstable. Experimental parameters should always be taken outside
of this region.

Close to x = −d, the second term always dominates and V+ → −∞. The trapping
potential is then characterized, for negative values of x, by a łwallž height. For weak in-
teractions and large trapping frequencies, this wall is extremely high and the trapping
potential can be considered fully harmonic. When both terms of V+ are comparable,
the wall can be of reduced amplitude. Knowing its height is crucial for implemen-
tations of such experiments. The temperature of the atoms should always be lower
than this wall height to prevent them from escaping. Finally, if the interaction is too
strong compared to the trapping strength, the effective potential does not even display
a local minimum and the atoms are not trapped at all. This conőguration should be
avoided altogether experimentally. The three possibilities are plotted in őgure B (a),
where we show both the bare harmonic trap and its associated effective potential V+
as functions of x. The graphs are computed with d = 10 µm and for three different
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trapping frequencies of 5 kHz, 10 kHz and 20 kHz. In panel (b), we plot the wall
height as a function of both ω and d. The instability domain, where no trapping can
occur, is őlled in grey. This plot reveals the highly sensitive character of the system’s
stability, especially with respect to ω. For an increase of the trapping frequency by a
factor 2 or 3, the growth of the wall height can be ten-fold. These results, computed
numerically, roughly indicate the geometrical parameters that guarantee the stability
of the system. These conditions are important to properly manage experiments on
interactions. It is for instance quite useful to know, given an atomic temperature, an
inter-atomic distance and an interaction strength, the requirement on the trapping
frequency (and through it on the laser power per trap) to avoid losses or the collapse
of the system.

To be more quantitative, we can also derive analytically the condition on the spin-
motion coupling to avoid the unstable regime. Through basic math on V+, we őnd
that the critical coupling for which the local minimum disappears is:

gc = 3.4×10−3 ×
√

ω

|J | . (B.3)

We remind that the coupling g is deőned as g = x0/d, with x0 the spatial extent of the
ground state in the harmonic trap. The numerical factor is dimensionless and comes
from the mathematical manipulations. From this critical coupling, we can express in
a more convenient way the instability condition. Re-writing it using d and ω only, we
obtain the critical trapping frequency for a given distance:

ωc = 3.3×10−4 ×
√

|J |
d

. (B.4)

This equation gives a practical lower-bound on the trapping frequency that should
be used in a speciőc conőguration. For instance, in this direct-exchange setup with
n = 51, n′ = 52, d = 10 µm and J = −2π × 830 kHz, the critical trapping frequency
is ωc = 2π × 12 kHz.

These considerations can easily be extended to other conőgurations, when θ = 0
for instance (stronger interaction) or when ∆n = 2 (weaker interaction). However, in
real experimental setups, the traps are never harmonic. Some extra care has to be
added to these stability conditions, to take into account the őnite character of the real
trapping potentials. These estimations nevertheless remain helpful when the trap can
be accurately approximated by a harmonic well over a large region surrounding its
center, as it is the case in our experiments with bottle beams.
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Appendix C

Electric field control

The electric őeld plays a central role in all of the experiments carried out in this thesis.
Among the electric őeld properties required for proper atomic manipulations, we can
cite: a precise control of its value in the three spatial dimensions, low temporal noise,
good homogeneity, i.e., low gradients across the whole atomic manipulation volume,
fast temporal response, and the possibility to reach high values to ionize the Rydberg
atoms. We address in this appendix some of the technical features of the setup designed
to meet these requirements.

C.1 Numerical model

We recall in őgure C.1 the set of 12 electrodes surrounding the volume where the ex-
periments take place: 2 Stark electrodes, 2 Stark support electrodes, 4 radio-frequency
electrodes, 2 lens-holding electrodes and the 2 ITO-coated lenses themselves. A Simion
simulation predicts the őeld response to any conőguration of potentials applied to the
12 electrodes. We use it to choose the voltages that need to be applied to the elec-
trodes to reach a speciőc őeld conőguration. In practice, we control the őeld with only
6 electrodes: the 2 Stark and 4 RF ones. The other components mainly impact the
őeld gradients and are not convenient to use to set precise F values.

To make the estimation of the őeld more intuitive, we work with linear combina-
tions of voltages applied to the electrodes, instead of considering each of them inde-
pendently. We deőne 6 voltage components: Vref , V0, V+, Vx, Vy, Vz. Vref is the sum of
the 6 electrodes. It corresponds to a global potential shift. The component V0 is the
sum of the 4 RF electrodes and produces a quadrupolar őeld in the x − y plane (cf.
the legend of őgure C.1 for the deőnition of the axes). V+ is another combination of
the RF electrodes, in which two of their voltages are counted positively and the two
others negatively. It creates a quadrupolar őeld in the y − z plane. Vx creates a őeld
in the x direction and corresponds to a positive voltage on the Stark +x electrode and
a negative one on the Stark −x electrode. Vy creates a őeld along y, and is deőned
by a positive voltage on the two +y RF electrodes and a negative one on the two −y
RF electrodes. Finally, Vz creates a vertical electric őeld, and corresponds to a pos-
itive voltage on the two higher RF electrodes and a negative one on the two lower ones.
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Figure C.1: Exploded view of the electrodes involved in the electric őeld control. We
mainly act on the two Stark electrodes (pink) and four RF electrodes (yellow) to
control F during the experimental sequences. Other components are set to constant
values chosen to minimize őeld gradients in the region of the atoms. The x-axis goes
through the Stark electrodes, the y-axis goes through the two lenses (in their red
supports), and the z-axis is along the vertical.

We give in table C.1 the simulated electric őeld response to 1 V being applied on
each of the deőned voltage components.

Table C.1: Field response at the center of the setup, for 1V applied on each
voltage component. All other electrodes are grounded.

Voltage component
Field response (V cm−1) Gradient response (V cm−2)

Fx Fy Fz ∂x∥F∥ ∂y∥F∥ ∂z ∥F∥
Vref 0 0 0 0.145 −0.111 0
V0 0 0 0 −0.857 0.849 0
V+ 0 0.142 0 0 0.252 1.149
Vx −0.818 0 0 0.138 0 0
Vy 0 −0.787 0 0 0.252 0
Vz 0 0 −0.548 0 0 −0.049

This prediction allows us to easily őgure out the 6 voltages that a priori best reach
any given őeld conőguration. In the regular őeld settings implemented for experiments,
we predict a őeld gradient of -0.138 V/cm/cm in the x-direction in the setup. Across
the ∼ 100 µm-wide trapping region where we manipulate atoms, this amounts to őeld
variations of 1.38 mV/cm. They are of the same order as the őeld noise (see below)
and we therefore do not try to reduce the gradients any further.
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C.2 Electrical setup and LV/HV switch

xy

z

-380 V

x 50

TRIG

HV IN

LV IN

OUT

TRIG

HV IN

LV IN

OUT
x 50

TRIG

HV IN

LV IN

OUT

TRIG

HV IN

LV IN

OUT

Keysight 33612A

Agilent 33250A

Agilent 33250A

Falco

Systems

WMA-300

Trek

Model 2205

Stanford

Research Systems

PS310

HV-LV Switch

Figure C.2: Electrical circuitry and instruments controlling the Stark electrodes sys-
tem. Tailored-made switch circuits allow to go from a low-voltage control to high őelds
for the ionic detection. The guiding tube (shown in blue) is also subjected to a high
potential during the ionic detection.

Many technical elements are involved in the control of the 6 central electrodes.
The 4 DC voltages applied to the RF electrodes are set via bias-tees placed in their
radio-frequency circuitry. Each of them is independently controlled from a computer-
controlled digital-to-analog converter (DAC), with a potential range of -10 V to +10 V.
The instruments controlling the Stark electrodes are more intricate. Their electrical
scheme is represented in őgure C.2. They are the electrodes onto which high voltages
are applied to ionize the atoms. They should therefore allow two different modes of
operation: low-noise, precise, low-őeld control for atomic manipulation, and high-őeld
(hundreds of Volts) control for the ionization part of the experiments. Electrical cir-
cuits designed in-house by Brice Ravon are used to switch between the two regimes.
The technical details regarding their components and operation can be found in his
thesis [123]. Digitally-controlled triggers signal the switches between low and high
voltages. In both cases, the temporal variation of the potentials can be arbitrarily de-
őned thanks to arbitrary waveform generators. They allow, for instance, the deőnition
of both the electric őeld ramps used in the circularization adiabatic passage and the
ionization ramps.
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C.3 Field measurements and calibrations

To measure the real value of the electric őeld in the setup, we use in situ atomic
measurements. We rely on the microwave spectroscopy of the |52C⟩ → |53E+⟩ tran-
sition. With ∆m = 0, its frequency is insensitive to the magnetic őeld. However,
the elliptical level |53E+⟩ has a linear Stark shift of 101.72 MHz/(V/cm), so that the
resonance frequency of the transition yields the value of the electric őeld norm. A
small differential quadratic Stark shift of 0.42 MHz/(V/cm)2 also shifts the transition.
The level structure involved in the spectroscopy is shown in őgure C.3 (a). A typical
spectrum of the transition is plotted in panel (b) of the same őgure.

To thoroughly calibrate the őeld response, we start by studying the resonance
frequency as a function of the Vx component of the voltage settings. Thanks to the
numerical model of the electrodes, we roughly cancel the őeld in the y and z directions.
We then measure the resonance frequency of the transition as a function of Vx. We
concert the measured frequencies to electric őeld values thanks to the Stark shift coef-
őcients of the transition. The end result is plotted in the őrst graph of őgure C.3 (c).
We oberve a linear relationship between the őeld response Fx and the applied voltage
Vx, as the quadratic shift of the transition is negligible in this range of values.

We then carry out the same procedure with Vy and Vz. We derive, using the now
known Fx component, the values of Fy and Fz as functions of the applied voltages. The
results are also plotted in őgure C.3 (c). We őt each of the three results with linear
functions, which yield the precise őeld calibration needed to carry out the experiments.

We also use this transition to estimate the őeld noise. By tuning the microwave
power so that the transition π−pulse occurs at for a pulse duration of 12 µs, we measure
a linewidth of 89± 5 kHz. We do this with F aligned with x, the conőguration most
prominent in the experiments. From the linewidth, we derive the amplitude of the Fx
ŕuctuations in the setup: 0,9 mV/cm. It corresponds to a differential voltage noise of
about 1.6 mV on the Stark electrodes, which is compatible with the 1.2 mV precision
of their waveform generators.
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Figure C.3: Electric őeld measurement and calibration. (a) Level structure of the
atomic transition used to probe the electric őeld. (b) Example of a |52C⟩ → |53E+⟩
microwave spectrum. Knowing the linear and quadratic Stark shift of the transition,
the resonance frequency provides a precise estimation of the electric őeld’s norm. (c)
Calibration of the őeld response, in the three directions, as functions of the applied
potential components. Fx is measured with the other components a priori set to zero,
while Fy and Fz are then reconstructed thanks to the knowledge of Fx.
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Appendix D

Laser systems

Our experiments essentially rely on the manipulation of light to control atoms. In
daily operations, over ten different laser beams are used to prepare and carry out
measurements on the atoms, each with its own speciőc wavelength, size and power.
Most of them must have a stable frequency, that sometimes needs to be dynamically
controllable. This appendix gives an overview of the optical systems designed and
built to meet the needs of the experiment. The őgures shown here are reproduced
from B. Ravon’s PhD dissertation [123], with whom I worked on the design, assembly
and optimization of most of the laser systems. They can be divided in three categories:

• The ground-state lasers: they address various transitions in the hyperőne struc-
ture of the D2 line of Rb for ground-state manipulation of the atoms.

• The trapping laser: it generates the three trapping beams of the experiment
(tweezers, bottle beams and moving tweezer).

• The Rydberg lasers: their purpose is to excite the ground-state atoms to Rydberg
levels. They must be both powerful and őnely stabilized in frequency.

The trapping and Rydberg lasers are both new systems in our setup. The ground-state
laser scheme had been implemented years ago for past experiments but was recently
completely rebuilt and improved to őt the current needs of the setup. I personally set
up from scratch the Rydberg lasers and the cavity locking scheme, through which we
stabilize the frequency of the lasers. The trapping laser system is rather simple and
depicted in őgure II.3 of chapter 2. We detail here the organization of the ground-state
and Rydberg lasers and their locking scheme.
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D.1 Ground-state laser system

Three different lasers are involved in the ground-state manipulations of the atoms:
the łMOPAž, the łrepumperž and the łspectrož, as per their given names in the lab.
Figure D.1 summarizes their respective frequencies with respect to the D2 transition
of Rb. We show in őgure D.2 simpliőed drawings of their optical schemes.

The łspectrož laser is a Toptical DL Pro, locked through the external cavity onto
the 5S1/2, F = 2 → 5P3/2, F

′ = 3 transition. It is used, through two beat-lock setups,
as a frequency reference for the other two ground-state lasers. From the łspectrož
laser, we also generate two beams used in the experiments:

• The łprobež beam: used at low power for the optical pumping of the atoms
and at higher power to kick them when needed (in the light-shift and Raman
spectroscopy experiments). Its frequency is tunable via a double-pass AOM
[196].

• The łRaman F2ž beam, used in the Raman spectroscopy measurements. In the
same manner as the probe, a double-pass AOM tunes its frequency.

The łrepumperž laser is also a Toptica DL Pro. It is frequency-locked, through the
łspectrož reference, on the F = 1 → F ′ = 2 transition. Three beams are generated
from this laser:

• The łstatic repumperž: with őxed frequency set on F = 1 → F ′ = 2, it is
overlapped with the cooling beams to avoid loosing atoms to the dark state
F = 1 during the cooling process.

• The łtunable repumperž: with adjustable frequency thanks to a double-pass
AOM, this beam is used to re-pump trapped atoms. The tunable frequency
allows us to compensate for the light-shift generated by the tweezers on the
transition. It is involved in the measurement of the trap depths and in the
optical pumping of the atoms. It is overlapped with the łprobež beam before
reaching the experiment.

• The łRaman F1ž beam, of tunable frequency, used in the Raman spectroscopy
measurements.

Finally, the łMOPAž laser is a Toptica TA 100, outputting 1 W of laser power. Thanks
to a speciőc beat-lock scheme using the łspectrož as a reference, its frequency is quickly
tunable over tens of MHz around the F = 2 → F ′ = 3 transition. It is used to cool
the atoms when its frequency is set to its MOT or molasses values. It also makes the
atoms ŕuoresce for their imaging. Three beams are derived from it:

• Two 2D-MOT beams, of őxed frequency and sent to the 2D-MOT structure for
the initial transverse cooling of the atoms.

• One 3D-MOT beam, of tunable frequency, divided into 6 different beams via
a Schäfter-Kirchhoff cluster system, in order to create the six cooling/imaging
beams.
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D.2 Rydberg lasers system

To excite atoms to Rydberg states via a two-photon transition, we operate two lasers
setups, one emitting light at 420 nm (blue Rydberg beam) and the other at 1015 nm
(red Rydberg beam). Their optical designs are shown in őgure D.3. Both are titanium-
sapphire lasers (Equinox + SolsTiS, MSquared), in which a 532 nm pump laser feeds
the titanium-sapphire system.

In the 1015 nm system, an output of small power is sent to the external locking
ultra-stable cavity to stabilize its frequency via a Pound-Drever-Hall (PDH) scheme.
The main 2 W output of the laser goes through a double-pass AOM for őne frequency
tuning before being sent to the experiment.

For the blue beam, the wavelength of the titanium-sapphire output is set at 840 nm.
Again, a small fraction of its light is dedicated to its frequency stabilization via a PDH
scheme through the external ultra-stable cavity. Its main output is then doubled in
frequency (ECD-X, MSquared) to create 420 nm light of őxed wavelength, with a total
power of 2 W.

Both beams are speciőcally shaped by cylindrical lenses before reaching the atoms
to maximize their intensity in the plane of the atomic arrays.

D.3 Laser locking scheme

The łspectrož and both Rydberg lasers are stabilized in frequency on an ultra-stable
cavity through the Pound-Drever Hall (PDH) method [197]. For each laser, its output
dedicated to the lock has its frequency modulated by an Electro-Optical Modulator
(EOM). The EOMs produce the modulation needed to generate the locking signal at
the required frequency. The three beams are overlapped before being sent into the cav-
ity. Their reŕections are recorded onto three photo-diodes, which feed the electronics
of the feedback loops. The optical design of the locking system is depicted in őgure D.1.

The łspectrož, once properly locked, is used to stabilize the frequencies of the
łrepumperž and łMOPAž. The łrepumperž is beat-locked onto the łspectrož with a
őxed offset of 6.914 GHz to reach its appropriate hyperőne transition. The łMOPAž
is also beat-locked onto the łspectrož, but with a tunable frequency spanning several
tens of MHz around a 200 MHz offset. Its frequency is dynamically controlled during
experiments to switch from the MOT to the molasses and imaging frequencies.
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Figure D.1: Level structure of 87Rb D2-line and relative frequencies of the łground-
state lasersž. Owing to its particular locking scheme, the main MOPA laser beam
(represented with a dashed red line) has its frequency tuned dynamically during the
experimental sequence. We represent the frequency (relative to the łspectrož laser) of
the relevant beams during the corresponding parts of the sequence as a solid red line.
Unless otherwise speciőed, the frequencies are expressed in MHz.
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Figure D.2: Laser system for the ground-state beams.
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Figure D.3: Laser system for the Rydberg excitation beams.
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Figure D.4: Pound-Drever-Hall locking scheme of the Rydberg lasers and of the łspec-
trož laser on an ultra-stable cavity.



Appendix E

Raman spectroscopy

To assess the performance of the optical pumping to |5S1/2,mF = +2⟩, we implement
a Raman spectroscopic measurement. We present here its experimental sequence and
the results it produced regarding the purity of the ground-state hyperőne population
after optimization of the optical pumping.

The experiment involves several of the ground-state beams, some of them already
mentioned in the main text. A description of their respective laser systems can be
found in appendix D. The łprobež propagates along the quantization axis x (deőned
by Bx). It is set on resonance with the F = 2 → F ′ = 3 transition and is σ+-
polarized. At low power and for tweezer-trapped atoms, it is used to optically pump
the atoms into |5S1/2,mF = +2⟩ via cycles of σ+ excitation and random σ+, σ−, π
decay. At higher power, it is used to kick the F = 2 atoms out of their trapping
region when turning the traps off. The łtunable repumperž, set at resonance on the
F = 1 → F ′ = 2 transition, avoids the loss of atoms to F = 1 during the opti-
cal pumping. The two Raman beams, named łRaman F1ž and łRaman F2ž, couple
|5S1/2, F = 1⟩ and |5S1/2, F = 2⟩ via a two-photon process through the intermediate
state 5P3/2. They co-propagate at 45° in the y− z plane of the experiment, along one
of the cooling beams, with the same circular polarization. The Raman F1 beam is
blue-detuned by 759 MHz with respect to F = 1 → F ′ = 1 and the Raman F2 beam
by 602 MHz with respect to F = 2 → F ′ = 2. Both of their frequencies are tunable
thanks to double-pass AOMs. Figure E.1 (b) shows a recap of the level structure in the
D2 line, along with the Raman transitions implemented here. The two-photon process
addresses the 6 different σ transitions between F = 1 and F = 2, corresponding to 4
different frequencies shown in various colors in the level structure.

The experimental sequence, including the preliminary optical pumping stage, is
pictured in őgure E.1 (a). To help understand the purpose of each event, the 5S1/2

hyperőne level population is also schematically drawn at various moments in the se-
quence, for a Raman transfer from |F = 2,mF = 2⟩ to |F = 1,mF = 1⟩. Right after
the őrst image and for the rest of the sequence, the magnetic őeld is set to 7 G, which
deőnes the quantization axis and lifts the level degeneracy via the Zeeman effect. We
consider the initial atomic population to be evenly spread between the mF sub-levels
of 5S1/2. The series of events then goes as follows:
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1. Optical pumping: with the łprobež and łrepumperž beam turned on during
400 µs, the atoms are pumped to mF = +2. The łrepumperž is left on for a
slightly longer time to make sure that the F = 1 population is empty at the end
of the process.

2. Raman pulse: the two Raman beams are turned on for 4 µs. If their frequencies
are resonant with one of the Raman transitions, the corresponding atoms are
transfered from F = 2 to F = 1.

3. Kick: the tweezers are turned off and the łprobež, set on resonance with the
non-light-shifted F = 2 → F ′ = 3 transition, kicks the F = 2 atoms out of
their trapping region. We therefore only recapture at the end of the sequence
the atoms that were in F = 1, i.e., those that underwent a Raman transition.

By plotting the recapture probability as a function of the frequency of one of the
Raman beams (the other being őxed), we obtain a snapshot of the hyperőne level
population resulting from the optical pumping. When the optical pumping is not
properly optimized, we observe four peaks, corresponding to the four Raman transi-
tion frequencies of the six σ allowed transitions. The four peaks are plotted in various
colors in őgure E.1 (c). Incidentally, the regular spacing between the four peaks gives
a direct measurement of the magnetic őeld strength. In the spectrum shown here, the
origin of the x-axis corresponds to the frequency at which the peaks collapse when the
magnetic őeld goes to zero. The respective heights of the four peaks are related to the
population distribution in the F = 2 sub-levels. The right-most peak is directly pro-
portional to the occupancy of mF = +2. To optimize the optical pumping efficiency,
we therefore maximize the height of that peak. The best optical pumping conőgura-
tion we could reach produced the blue spectra of the őgure. In this conőguration, the
łprobež and łrepumperž pulses last approximately 400 µs and their respective intensi-
ties are around 0.02 mW/cm2 and 200 mW/cm2. While tuning the optical pumping
parameters, we also monitored the heating it induces on the atoms, via the dedicated
experiment presented in the main text. In the őnal conőguration, the optical pumping
process raises the atomic temperature by 9 µK.

By őtting the two high-frequency peaks with Lorentzian line shapes, we get the
amplitudes Am=2 = 0.72 ± 0.01 and Am<2 = 0.018 ± 0.002. From them, we deduce
the purity of the mF = +2 sub-level, i.e., the efficiency of the optical pumping ηOP =
Am=2/(Am=2 + Am<2). We evaluate it and őnd:

ηOP = 0.97± 0.01. (E.1)

This level of purity was reached after a meticulous optimization of all the relevant
parameters: łprobež and łrepumperž powers, frequencies, pulse durations and beam
positions. However, these settings are quite sensitive. The very low power of the
łprobež is subject to ŕuctuations (due to its optical őber or polarization ŕuctuations).
Changes on inhomogeneities in the trap depths also alter the efficiency, as the opti-
mal łprobež frequency depends on the tweezer-induced light-shift. Although careful
re-optimization allows us to reach the best purity presented here, its value in daily
experiments lies around 90%.
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Figure E.1: Raman spectroscopy experiment. (a) Sequence of events for Raman
spectroscopy. The evolution of the population within the Zeeman sub-levels of 5S1/2

is shown below when the Raman transition is resonant with |F = 2,mF = 2⟩ → |F =
1,mF = 1⟩. (b) Level structure and Raman transitions involved in the experiment.
The six accessible Raman transitions are shown in various colors. (c) Raman spectra
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Paul MÉHAIGNERIE 6 Octobre 2023

Sujet : Interactions entre atomes de Rydberg circulaires
piégés pour la simulation quantique

Résumé : Les atomes de Rydberg circulaires, de par leur long temps de vie et fortes interac-
tions dipolaires ajustables, sont des candidats prometteurs pour l’implémentation de simulations
quantiques dans des régimes jusqu’à présent hors d’atteinte. Un nouveau paradigme de simula-
teur quantique, basé sur un encodage des qubits dans des états circulaires, implémenterait ainsi
un hamiltonien XXZ de spins 1/2 dont les paramètres seraient ajustables dynamiquement et sur
une large gamme de valeurs. Cette thèse traite des premières étapes dans la construction de ce
simulateur quantique. Nous présentons tout d’abord la réalisation de réseaux bi-dimensionnels, à
géométrie arbitraire, d’atomes de Rydberg circulaires piégés optiquement. Nous préparons dans
ce but un tableau d’atomes de rubidium ultra-froids, piégés individuellement dans des pinces
optiques. Un faisceau additionnel de position ajustable nous permet de réarranger les atomes
au sein du tableau, afin d’implémenter la géométrie voulue de façon déterministe. Nous excitons
ensuite les atomes vers l’état circulaire n=52, tout en les piégeant à ce stade dans des faisceaux
creux par le biais de la force pondéromotrice. Ces capacités expérimentales nous ont permis de
mesurer, pour la première fois, les interactions dipolaires entre atomes circulaires, au sein de paires
d’atomes piégés côte à côte. Nous avons vérifié le bon accord de ces mesures avec les attentes
théoriques et mis en évidence leur variation en fonction de la géométrie du système. Cette étude
expérimentale est couplée à une investigation du mouvement des atomes circulaires au sein de
leurs pièges.

Mots clés : atomes froids, atomes de Rydberg, pinces optiques, interactions dipolaires,
simulation quantique

Subject : Interactions between trapped circular Rydberg
atoms for quantum simulation

Abstract: Circular Rydberg atoms, with their long lifetimes and adjustable strong dipolar
interactions, are promising candidates for the implementation of quantum simulations in regimes
that were previously out of reach. A new quantum simulator paradigm, based on qubits encoded
in circular states, would implement an XXZ spin-1/2 Hamiltonian with dynamically adjustable
parameters over a wide range of values. This thesis addresses the preliminary steps in constructing
such a quantum simulator. First, we present the realization of two-dimensional arrays of optically-
trapped circular Rydberg atoms with arbitrary geometries. For this purpose, we prepare arrays
of ultra-cold rubidium atoms, individually trapped in optical tweezers. An additional beam
with adjustable position allows us to rearrange the atoms within the array to implement the
desired geometry in a deterministic manner. We then excite the atoms to the circular state with
principal quantum number n=52, while trapping them in hollow beams using the ponderomotive
force. These experimental capabilities allowed us to control and characterize, for the first time,
the dipolar interactions between circular states, within pairs of individually trapped atoms. We
showed the good agreement of these measurements with theoretical expectations and highlighted
their variation depending on the system’s geometry. This experimental study is coupled to an
investigation of the motion of the circular atoms within their traps.

Keywords : cold atoms, Rydberg atoms, optical tweezers, dipole interactions, quantum
simulation
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