
HAL Id: tel-04249805
https://theses.hal.science/tel-04249805

Submitted on 19 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypergraphs and the Maker-Breaker game : a structural
approach

Florian Galliot

To cite this version:
Florian Galliot. Hypergraphs and the Maker-Breaker game : a structural approach. Computer
Science and Game Theory [cs.GT]. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALM028�. �tel-04249805�

https://theses.hal.science/tel-04249805
https://hal.archives-ouvertes.fr

Abstract

This PhD thesis discusses games and hypergraphs. In particular, our focus is
on games played on hypergraphs, whose analysis ends up leading to the study of
hypergraph problems that are interesting on their own. Positional games involve two
players alternately claiming vertices of a hypergraph, with objectives that can vary:
for instance, tic-tac-toe is an example where each player wants to be the first to pick
all the vertices of some edge. In the Maker-Breaker convention, one player ("Maker")
wants to pick all the vertices of some edge, while the other ("Breaker") wants to
prevent this from happening. The main theme is the study of hypergraph structures
and their implications for the Maker-Breaker positional game. We are especially
interested in hypergraphs of rank 3: this means all edges are of size at most 3, which
allows for some structural results and helps understand the Maker-Breaker game
in this case. Another theme is the design of polynomial-time algorithms to solve
games and hypergraph problems. These two themes are very much linked together,
since any structural characterization yields an algorithm which is as efficient as the
structure in question is simple.
Chapter I presents all notions featured in this dissertation, as well as preliminary
results. We provide some state of the art around positional games, and we then
introduce our structural approach to the Maker-Breaker game, centered on a notion of
dangers created by Maker which Breaker must destroy immediately. Some elementary
structures in hypergraphs, particularly in hypergraphs of rank 3, are also studied.
Chapter II carries out the in-depth structural studies at the core of this dissertation.
We obtain a structural characterization for the outcome of the Maker-Breaker game
on hypergraphs of rank 3, as well as optimal strategies for both players, all based on
danger intersections. A direct link appears with a particular connectivity problem
in hypergraphs, for which we give a fine structural description of the associated
connected components. Chapter III reaps the algorithmic rewards of the structural
studies from the previous chapter, along with some further investigations. We explain
how the structural results yield polynomial-time algorithms, firstly to compute the
aforementioned connected components, and secondly to solve the Maker-Breaker
game on hypergraphs of rank 3 as a corollary. Other complexness facets of the
game, besides the algorithmic aspect, are also considered. Chapter IV addresses a
reconfiguration problem on the square grid, of a type that can somewhat be likened
to a one-player version of Maker-Breaker games. We first recall results from Demaine
et al., who introduced this problem. A case which the authors thought was solved
turns out to be complicated, and we bring some contributions towards its study.

Résumé

Cette thèse traite de jeux et d’hypergraphes. Nous nous concentrons tout particuliè-
rement sur des jeux joués dans les hypergraphes, dont l’analyse s’avère conduire à
l’étude de problèmes d’hypergraphes qui sont intéressants en soi. Les jeux position-
nels mettent en scène deux joueurs qui sélectionnent tour à tour des sommets d’un
hypergraphe, avec des objectifs variables : par exemple, au jeu du morpion, chaque
joueur veut être le premier à posséder entièrement l’une des arêtes de l’hypergraphe.
En convention Maker-Breaker, un joueur ("Maker") veut posséder entièrement l’une
des arêtes, tandis que l’autre ("Breaker") veut l’en empêcher. Le thème principal est
l’étude de structures dans les hypergraphes et leurs implications pour le jeu posi-
tionnel Maker-Breaker. En particulier, nous sommes intéressés par les hypergraphes
de rang 3 : cela signifie que toutes les arêtes sont de taille au plus 3, ce qui permet
des résultats structurels et aide à comprendre le jeu Maker-Breaker dans ce cas. Un
autre thème est la conception d’algorithmes en temps polynomial pour résoudre
des jeux et des problèmes d’hypergraphes. Ces deux thèmes sont intimement liés,
puisque toute caractérisation structurelle fournit un algorithme aussi efficace que la
structure en question est simple.
Le Chapitre I présente toutes les notions utilisées dans ce mémoire, ainsi que des
résultats préliminaires. Après un état de l’art autour des jeux positionnels, nous in-
troduisons notre approche structurelle du jeu Maker-Breaker, centrée sur une notion
de dangers créés par Maker et que Breaker doit détruire immédiatement. Certaines
structures élémentaires dans les hypergraphes, de rang 3 en particulier, sont aussi
étudiées. Le Chapitre II réalise les études structurelles approfondies qui sont au
cœur de ce mémoire. Nous obtenons une caractérisation structurelle de l’issue du
jeu Maker-Breaker sur les hypergraphes de rang 3, ainsi que des stratégies optimales
pour les deux joueurs, tout cela basé sur des propriétés d’intersections de dangers.
Un lien direct apparaît avec un problème de connectivité dans les hypergraphes,
pour lequel nous donnons une description structurelle fine des composantes connexes
associées. Le Chapitre III récolte les fruits algorithmiques des études structurelles
du chapitre précédent, et poursuit un peu plus loin. Nous expliquons comment les
résultats structurels impliquent des algorithmes en temps polynomial, d’abord pour
le calcul des composantes connexes susmentionnées, puis pour la résolution du jeu
Maker-Breaker sur les hypergraphes de rang 3 comme corollaire. D’autres aspects
de complexité du jeu, pas seulement algorithmique, sont également considérés. Le
Chapitre IV concerne un problème de reconfiguration dans la grille carrée, d’un
type qui peut être rapproché d’une version à un seul joueur du jeu Maker-Breaker.
Nous rappelons quelques résultats de Demaine et al., qui ont introduit ce problème.
Un cas que les auteurs pensaient résolu s’avère compliqué, et nous apportons notre
contribution à son étude.

« Do not the most moving
moments of our lives find us
all without words ? »

— Marcel Marceau

Contents

Summary in French 9

Introduction 23

I Preparatory notions and preliminary results 29
I.1 The Maker-Breaker game: an introduction . 29

I.1.1 State of the art on positional games . 29
I.1.1.1 Some vocabulary around hypergraphs 29
I.1.1.2 Various conventions and problems 30
I.1.1.3 Achievement vs Avoidance, Strong vs Weak 32
I.1.1.4 Elementary strategies and principles 33
I.1.1.5 Difficulty comparison between conventions 40

I.1.2 State of the art on the Maker-Breaker game 42
I.1.2.1 General results . 42
I.1.2.2 Games played on the edge set or vertex set of a graph 44
I.1.2.3 Our case of interest: hypergraphs of small rank 45

I.1.3 Our approach to the Maker-Breaker game and a few basic results 48
I.1.3.1 Playing the game on marked hypergraphs 48
I.1.3.2 Optimizing time or tokens . 51
I.1.3.3 A reminder on two key principles 53
I.1.3.4 Some operations on marked hypergraphs 53

I.2 Subhypergraph collections and their intersection properties 55
I.2.1 Some notions on marked hypergraphs . 55

I.2.1.1 Intersections and unions of subhypergraph collections 55
I.2.1.2 Pointed marked hypergraphs 57

I.2.2 Dangers in the Maker-Breaker game . 57
I.2.2.1 Definitions and first results . 58
I.2.2.2 Considering a fixed family of dangers 59
I.2.2.3 Danger prevention . 61
I.2.2.4 Restricted obstructions . 64

I.2.3 First results: the example of trivial dangers 64
I.2.3.1 A matter of survival... and more 65
I.2.3.2 General counting results on the biased Maker-Breaker game . . 66
I.2.3.3 An application to a specific game around sums 69

I.3 Elementary structures in (marked) hypergraphs 70
I.3.1 In general hypergraphs . 71

I.3.1.1 Walks and paths . 71
I.3.1.2 Forcing paths . 73

I.3.2 In 3-uniform hypergraphs . 75
I.3.2.1 Chains, cycles and tadpoles . 75
I.3.2.2 Substructure lemmas . 77

6 Contents

I.3.2.3 Projections . 80
I.3.2.4 Union lemmas . 81

II In-depth structural studies in hypergraphs 89
II.1 The Maker-Breaker game: structural results in hypergraphs of rank 3 89

II.1.1 Presentation of the problem and state of the art 89
II.1.2 The game on 3-uniform marked hyperforests 90

II.1.2.1 Solution in terms of nunchakus 90
II.1.2.2 Interpretation in terms of the family of dangers S 91

II.1.3 The game on general 3-uniform marked hypergraphs 92
II.1.3.1 The family of dangers C . 92
II.1.3.2 The family of dangers D0 . 93
II.1.3.3 Statement of the main results 95

II.1.4 Approximating D∗
0 and D∗2

0 . 95
II.1.4.1 The families of dangers T and D1 96
II.1.4.2 The families of dangers D1

O and D2 97
II.1.5 Structure of the D1

O,rest-dangers . 99
II.1.5.1 First properties . 100
II.1.5.2 Union lemmas . 102
II.1.5.3 Inside structure . 107

II.1.6 Proof of the main results... first assuming a key lemma 110
II.1.6.1 Proof of Theorem II.1.12 . 110
II.1.6.2 Proof of Theorem II.1.13 . 112

II.1.7 Proof of the key lemma . 112
II.1.7.1 Preliminary statements . 113
II.1.7.2 Roadmap of the proof . 114
II.1.7.3 Finishing the proof when D is of type (2) 119
II.1.7.4 Finishing the proof when D is of type (1) 120

II.1.8 Conclusion and prospects . 123
II.2 Structure of a (k − 2)-linear connected component 124

II.2.1 Presentation of the problem and state of the art 124
II.2.2 The archipelago structure . 125

II.2.2.1 An overview . 125
II.2.2.2 Compatible walks . 127
II.2.2.3 Islands and archipelagos . 130
II.2.2.4 Archipelago properties . 131

II.2.3 Characterization as unique maximal archipelago 134
II.2.3.1 A-types and statement of the main result 135
II.2.3.2 Augmenting archipelagos . 136
II.2.3.3 Proof of the main result . 140

II.2.4 Conclusion and prospects . 141

III How structure contributes to algorithms and game complexness 143
III.1 Algorithms for connectivity problems in graphs and hypergraphs 143

III.1.1 Presentation of the problem and state of the art 143
III.1.2 The λ-linear connectivity problem HypConk,λ 144

III.1.2.1 A polynomial-time algorithm for the case λ = k − 2 144
III.1.2.2 Reduction to uniform hypergraphs 147

III.1.3 The "Paths Avoiding Forbidden Pairs" problem PAFP 147
III.1.3.1 Reducing HypConk,λ to PAFP 147

Contents 7

III.1.3.2 Reducing some instances of PAFP to HypConk,λ 148
III.1.4 Conclusion and prospects . 149

III.2 The Maker-Breaker game: complexity and bounds on optimization parameters . 150
III.2.1 Presentation of the problem and state of the art 150
III.2.2 A polynomial-time algorithm for the game on hypergraphs of rank 3 . . . 151
III.2.3 When Maker wants to win in a minimum number of rounds 152

III.2.3.1 In hypergraphs of rank 3 . 152
III.2.3.2 In hypergraphs of rank k ≥ 4 154

III.2.4 When Maker wants to win using a minimum number of tokens 156
III.2.4.1 In hypergraphs of rank 3 . 156
III.2.4.2 In hypergraphs of rank k ≥ 4 156

III.2.5 Conclusion and prospects . 162

IV From positional games to reconfiguration problems 165
IV.1 Coin-moving puzzles with 2-adjacency restriction on the square grid 166

IV.1.1 Notations and first observations . 167
IV.1.2 Picking up and dropping coins . 168
IV.1.3 Span of a configuration . 168

IV.1.3.1 Definition and a key necessary condition 168
IV.1.3.2 Structural properties . 169

IV.1.4 Minimal/minimum configurations . 170
IV.1.5 ‘L’s and canonical configurations . 171
IV.1.6 Extra coins and redundant coins . 172

IV.1.6.1 Definitions and first observations 172
IV.1.6.2 A central factor for the game 173

IV.2 The case of two extra coins . 174
IV.2.1 Presentation of the problem and state of the art 174
IV.2.2 Canonicalization process . 174
IV.2.3 A slight improvement on Theorem IV.2.1 176
IV.2.4 The general case with two extra coins . 178

IV.2.4.1 Worst-case puzzles . 178
IV.2.4.2 A new sufficient condition for a puzzle to be solvable 182

IV.2.5 Conclusion and prospects . 186

Conclusion 189

Résumé en français

Introduction

Alors que j’obtenais fièrement mon tout premier résultat de recherche, réfutant une conjecture
du mathémagicien Persi Diaconis sur le jeu de prédiction du mélange dit "américain" d’un jeu
de cartes, la réalisation m’est venue : au fond, ce qui me plaisait n’était pas tant la théorie des
probabilités, mais surtout la combinatoire et les jeux mathématiques. Une brève recherche des
thèses soutenues sur le sujet en France a suffi à faire ressortir un nom, qui semblait apparaître
partout, et j’ai vite compris que je ferais bien de contacter un certain Sylvain Gravier. Une
réponse enthousiaste plus tard, j’ai déménagé à Grenoble, où Sylvain m’a présenté Isabelle
Sivignon. Pour mon stage de master, ils m’avaient préparé ensemble un sujet portant sur des
puzzles de déplacement de jetons, un jeu solitaire sur lequel j’ai fini par revenir pendant ma
thèse (mais je m’avance un peu). Comme récompense en fin de stage, j’ai débloqué un deuxième
joueur, Sylvain et Isabelle m’offrant de poursuivre en thèse avec eux sur le sujet de jeux à deux
joueurs appelés jeux positionnels. C’est le moment où je ressors mon sempiternel exemple :

— Alors, c’est quoi que tu fais exactement ?
— Bon : tu vois le jeu du morpion, j’imagine ?

Le jeu du morpion, ou tic-tac-toe, est le jeu positionnel le plus célèbre. Deux joueurs, Alice
et Bob, choisissent tour à tour des cases d’une grille 3 × 3, dessinant des ronds et des croix
respectivement. Le premier joueur qui aligne trois de ses symboles l’emporte. Si aucun joueur
n’y parvient, ce qui est bien connu pour être le cas lorsque les deux joueurs jouent correctement,
alors la partie est nulle. Imaginons qu’Alice, lassée de toutes ces parties nulles (et avec une
petite idée derrière la tête), offre à Bob de changer légèrement les règles. Elle jouera en premier,
essayant d’aligner trois ronds, et le but de Bob sera "simplement" de l’en empêcher. Comme ça, il
y aura toujours un vainqueur. Le jeu devient ce qu’on appelle un jeu positionnel Maker-Breaker,
puisqu’Alice ("Maker") essaie de construire un alignement tandis que Bob ("Breaker") essaie de
détruire ses rêves. Il se trouve que c’est Alice qui a une stratégie gagnante dans ce cas particulier,
mais ce jeu peut en fait être vastement généralisé, formant la famille des jeux Maker-Breaker
qui sont le sujet principal de ma thèse.

— Attends... t’es quand même pas payé pour jouer, si ?
— Ben, si ça peut te rassurer, on n’est pas payé beaucoup...

Pour comprendre comment marche cette généralisation, il faut voir que le jeu décrit ci-dessus
est fondamentalement défini comme suit : on a neuf positions jouables, que sont les neuf cases,
et huit manières différentes de gagner pour Alice, correspondant aux huit alignements (trois
lignes, trois colonnes, deux diagonales). Comme cette description contient toute l’information
du jeu, considérons une représentation graphique alternative. On dessine neuf points, un pour

10

chaque case, et huit patates, correspondant aux huit alignements gagnants. Au lieu de dessiner
des ronds (resp. des croix), Alice (resp. Bob) colore les points correspondants en rouge (resp.
en bleu). Voir Figure 1. Alice gagne s’il existe une patate dont tous les points sont rouges
à un moment donné, sinon Bob gagne. Maintenant, on peut dessiner un plateau de jeu avec
n’importe quel nombre de points et n’importe quelles patates (de n’importe quelles tailles, pas
nécessairement égales d’ailleurs), jouer avec les mêmes règles, et cela définit un nouveau jeu
Maker-Breaker. Un ensemble de points et de patates s’appelle un hypergraphe : les points sont
appelés sommets et les patates sont appelées arêtes. Il y a autant de jeux Maker-Breaker qu’il y
a d’hypergraphes, c’est-à-dire... beaucoup.

Figure 1 : Deux manières de représenter le même jeu (en cours de partie).

En effet, les hypergraphes sont des objets très généraux : un ensemble V , un ensemble E de
parties de V , et c’est tout. Ainsi, leur structure peut être très complexe. Ceci explique que, dans
la plupart des résultats généraux de la littérature, les hypothèses ne portent pas sur la structure
de l’hypergraphe mais plutôt sur des quantités globales telles que le nombre d’arêtes. L’objectif
principal fixé au début de ma thèse était de contribuer à combler ce vide en obtenant des
résultats structurels sur le jeu Maker-Breaker. Cela signifie identifier des critères pour l’issue du
jeu (quel joueur l’emporte dans une partie optimale ?) qui soient purement liés à la structure de
l’hypergraphe. Un autre centre d’intérêt était l’aspect algorithmique. Il était déjà connu depuis
longtemps qu’il n’existait aucun algorithme efficace pour résoudre le jeu Maker-Breaker en toute
généralité, c’est-à-dire pour déterminer l’issue du jeu sur un hypergraphe donné quelconque. Plus
précisément, et en des termes plus techniques, ce problème de décision est PSPACE-complet
[Sch78].

Par conséquent, l’idée était de se restreindre à des familles d’hypergraphes avec une structure
plus simple : je pourrais alors espérer obtenir des caractérisations structurelles pour l’issue du
jeu, dont il serait peut-être possible de tirer des algorithmes en temps polynomial. Nous avons
identifié deux familles qui pourraient être un bon point de départ pour moi :

– Les hypergraphes de nature géométrique étaient une première idée. On peut notamment
penser aux hypergraphes comme celui du tic-tac-toe, où les sommets peuvent être identifiés
aux cases d’une grille rectangulaire et les arêtes correspondent à des alignements (sans
forcément inclure tous les alignements possibles). Nous avons également pensé à des
hypergraphes représentant des intersections d’objets géométriques dans le plan, par
exemple des rectangles.

– Les hypergraphes de faible rang (taille d’une plus grosse arête) étaient une autre idée.
Plus les arêtes sont petites, plus la structure est simple. On a une bonne compréhension
de la structure des graphes, qui ne sont rien d’autre que les hypergraphes dont toutes les
arêtes sont de taille 2, et le jeu s’avère trivial dans ce cas. Cependant, on savait beaucoup
moins de choses concernant la structure des hypergraphes de rang 3, et une unique étude
de Kutz [Kut04] existait sur le jeu Maker-Breaker dans ce cas (résolvant un sous-cas).
Malgré les sérieuses complications causées par le saut de 2 à 3 en taille des arêtes, j’avais
le sentiment qu’il y avait la place pour des résultats structurels dans les hypergraphes
de rang 3 généraux. D’un autre côté, le point de vue algorithmique tendait à tempérer
cet optimisme, puisqu’il est fréquent d’observer un saut de complexité entre les valeurs 2
et 3 dans les problèmes d’optimisation combinatoire ou de logique propositionnelle. Le

Résumé en français 11

problème de satisfaisabilité booléenne en est un exemple notoire : 2-SAT est résolu en
temps polynomial, mais le problème devient NP-complet lorsqu’on autorise des clauses de
taille 3.

J’ai d’abord considéré des hypergraphes combinant les deux idées ci-dessus. Toutefois, il nous
est apparu que le rang 3 était le facteur déterminant, dans le sens où l’ajout de propriétés
géométriques ne semblait pas faciliter le problème.

Par conséquent, je me suis rapidement concentré sur le jeu Maker-Breaker sur les hypergraphes
de rang 3 généraux. Les travaux de Kutz sont ceux qui ont eu la plus grande influence sur ma
thèse. Son résultat donnait une caractérisation structurelle pour l’issue dans le cas linéaire, c’est-
à-dire lorsque deux arêtes distinctes quelconques s’intersectent en au plus un sommet (comme
c’est le cas au tic-tac-toe par exemple). La structure en question est identifiable efficacement, ce
qui permet de déterminer l’issue en temps polynomial. J’ai souhaité étendre les deux résultats,
structurel et algorithmique, aux hypergraphes de rang 3 généraux. Un des outils utilisés par
Kutz pour démontrer les cas où Maker gagne consiste à exhiber un sommet x tel que, si Maker
joue x comme premier coup, alors cela crée plusieurs menaces urgentes pour Breaker, qui n’a
aucun coup traitant toutes ces menaces à la fois. En d’autres termes, s’il existe un x créant des
menaces, que j’appelle des dangers en x, qui ne s’intersectent pas, alors Maker a une stratégie
gagnante en jouant x comme premier coup. J’ai opté pour un point de vue qui diffère de celui
de Kutz, dans le sens où j’ai fait de cette notion d’intersections de dangers le centre de mon
approche plutôt qu’un outil occasionnel. Cette idée vaut pour n’importe quel hypergraphe, quel
que soit le rang. Cependant, dans les hypergraphes de rang 3 spécifiquement, je pressentais
que l’issue pouvait être lue directement sur l’hypergraphe en termes d’intersections de dangers,
en n’ayant à prendre en compte que certains dangers spécifiques relativement élémentaires.
En particulier, cela donnerait un algorithme en temps polynomial déterminant l’issue du jeu
Maker-Breaker sur les hypergraphes de rang 3, statuant ainsi sur un problème ouvert significatif.
La résolution de cette conjecture et la rédaction des parties liées aux dangers ont accaparé la
majorité de mon temps et de mon énergie au cours de cette thèse. Premièrement, les preuves
sont longues et très techniques. De plus, beaucoup d’arguments de différentes natures sont
utilisés : les identifier, démêler lesquels relèvent du jeu et lesquels relèvent des hypergraphes,
comprendre ce qui les fait fondamentalement fonctionner, tout cela a été un long processus.

Bien que cette thèse parle principalement de jeux, elle porte aussi sur les hypergraphes.
En effet, je me suis retrouvé à étudier des problèmes d’hypergraphes qui, quoique motivés
initialement par le jeu Maker-Breaker dans mon cas, sont davantage que de simples outils
pour le jeu et ont du potentiel pour d’autres applications. En particulier, un type de chemin
linéaire appelé chaîne joue un rôle clé pour le jeu Maker-Breaker sur les hypergraphes de rang 3,
l’existence d’une chaîne entre deux sommets donnés s’avérant être une question cruciale. Ainsi,
nous avons été amenés à étudier ce problème de connectivité dans les hypergraphes, qui est
intéressant en soi : les chaînes sont des chemins naturels à considérer dans les hypergraphes
de rang 3, et elles apparaissaient déjà dans de nombreux articles non liés aux jeux. L’étude
structurelle de la connectivité par chaînes et le problème algorithmique associé représentent
une part importante de cette thèse. Ces questions se sont avérées liées à un problème autour
des line graphs d’hypergraphes, un sujet également très présent dans la littérature. Enfin,
certaines propriétés structurelles d’hypergraphes élémentaires de rang 3 tels que les chaînes et les
cycles, qui sont des lemmes préliminaires essentiels pour nos résultats sur le jeu Maker-Breaker,
pourraient être utiles à n’importe quelle étude structurelle dans les hypergraphes de rang 3.

J’ai également étudié deux paramètres d’hypergraphes en rapport avec le jeu Maker-Breaker,
correspondant chacun à des stratégies de Maker visant à optimiser une certaine quantité. La
première de ces quantités est le nombre de tours : si Maker a une stratégie gagnante, alors
de combien de temps a-t-elle besoin, i.e. quel est le nombre minimum de tours en lequel elle
peut s’assurer d’obtenir une arête monochrome rouge ? Cette question est très étudiée dans la

12

littérature des jeux Maker-Breaker, cependant rien n’était connu sur le cas des hypergraphes à
petites arêtes spécifiquement. La deuxième quantité est le nombre de jetons, dans la variante
suivante du jeu Maker-Breaker que nous inaugurons dans cette thèse. Supposons que Maker,
au lieu de colorer des sommets en rouge de façon indélébile, pose des jetons rouges sur les
sommets qu’elle joue. A chaque tour, elle a le choix entre déplacer un jeton qu’elle avait posé
précédemment (abandonnant alors le contrôle d’un sommet, qui pourra par la suite être subtilisé
par Breaker), ou bien utiliser un nouveau jeton (supposons qu’elle en a une infinité à disposition).
Breaker, quant à lui, colore permanemment les sommets en bleu comme d’habitude. Si Maker
a une stratégie gagnante, quel est le nombre minimum de jetons dont elle a besoin ? Dans le
contexte de cette thèse, je préfère utiliser le point de vue de l’optimisation, mais on pourrait
aussi incorporer ceci aux règles du jeu, pour les deux joueurs en réalité : ils auraient chacun
un nombre fixé (fini ou infini) de jetons rouges et bleus respectivement, pas nécessairement
égal, et on s’intéresserait à l’issue correspondante. Ces deux paramètres sont des indicateurs du
degré de complexité des stratégies gagnantes de Maker sur un hypergraphe donné. Mon but
était d’évaluer les valeurs maximum atteintes par ces paramètres, en fonction de la taille des
arêtes. En particulier, dans les hypergraphes de rang 3, le résultat structurel autour des dangers
mentionné précédemment a permis de répondre facilement à cette question.

Dans la variante du jeu Maker-Breaker avec un nombre limité de jetons, Maker essaie de
réorganiser ses jetons pour que leur configuration couvre une arête, et Breaker tente de l’entraver
en bloquant des sommets (en effet, les sommets occupés par des jetons bleus sont inutilisables
pour Maker). Si ces sommets bloqués, au lieu d’être choisis intelligemment par un deuxième
joueur qui s’adapte aux coups de Maker, étaient déterminés automatiquement par une certaine
règle préétablie, alors le jeu deviendrait un problème de reconfiguration. Ce type de problèmes
de reconfiguration peut ainsi être assimilé à une version à un joueur du jeu Maker-Breaker.
Demaine et al. [DDV02] ont introduit des puzzles de déplacements de pièces dans la grille carrée
qui rentrent dans cette catégorie. La restriction est qu’une pièce ne peut être déplacée que
vers une case vide dont au moins deux cases voisines orthogonales sont déjà occupées par des
pièces. J’avais étudié ce jeu pendant mon stage de master, à la fin duquel j’avais découvert une
imprécision dans le résultat principal de [DDV02], avec trop peu de temps pour regarder cela
plus en détail. Je suis revenu à ce problème pendant la thèse, pour examiner l’étendue de cette
erreur et chercher des résultats alternatifs.

Nous allons maintenant résumer les quatre chapitres de ce mémoire. Le Chapitre I présente
toutes les notions figurant dans ce mémoire, ainsi que des résultats préliminaires préparant
les études des futurs chapitres. Le Chapitre II réalise les études structurelles approfondies qui
sont au cœur de ce mémoire, au sujet du jeu Maker-Breaker sur les hypergraphes de rang 3
puis du problème de connectivité mentionné précédemment. Le Chapitre III récolte les fruits
algorithmiques des études structurelles du chapitre précédent, et poursuit avec l’examen de nos
deux paramètres d’hypergraphes (optimisation en nombre de tours ou de jetons). Le Chapitre
IV porte sur le problème de reconfiguration dans la grille carrée.

Chapitre I : Notions préparatoires et résultats prélimi-
naires

Dans un jeu positionnel, Alice et Bob colorent tour à tour des sommets d’un hypergraphe en
rouge et bleu respectivement, et l’objectif des joueurs dépend de la convention utilisée. Il existe
également une version avec biais : à chaque tour, au lieu que les joueurs choisissent un sommet

Résumé en français 13

chacun, Alice choisit p sommets d’un coup et Bob choisit q sommets d’un coup. Les quatre
principales conventions sont les suivantes :

– Maker-Maker (Chvátal et Erdős, 1978 [CE78]) : le premier joueur qui obtient une arête
monochrome de sa couleur a gagné, et la partie est nulle si aucun joueur n’y parvient
(exemple : le tic-tac-toe).

– Maker-Breaker (Hales et Jewett, 1963 [HJ63]) : Alice ("Maker") gagne si elle obtient une
arête monochrome rouge au cours de la partie, sinon elle perd.

– Avoider-Avoider (Harary, 1981 [Har81]) : le premier joueur qui obtient une arête mono-
chrome de sa couleur a perdu, et la partie est nulle si aucun joueur n’y est contraint.

– Avoider-Enforcer (Lu, 1992 [Lu92]) : Alice ("Avoider") perd si elle obtient une arête
monochrome rouge au cours de la partie, sinon elle gagne.

Pendant cette thèse, j’aurais aimé avoir une référence compilant tous les résultats de base sur
les jeux positionnels en général. Certains sont éparpillés dans la littérature, d’autres sont connus
de la plupart des chercheurs du domaine sans être réellement formulés où que ce soit. C’est
pourquoi j’ai tenu à lister au début de ce mémoire un certain nombre de principes stratégiques
élémentaires, énoncés dans leur contexte de validité le plus général (conventions, biais). Un
exemple est le "vol de stratégie", qui permet notamment de montrer que le deuxième joueur n’a
jamais une stratégie gagnante en convention Maker-Maker sans biais.
On dit que les conventions Maker-Maker et Maker-Breaker définissent des jeux d’accomplissement
(achievement games), tandis que les conventions Avoider-Avoider et Avoider-Enforcer sont leurs
versions misère respectives et définissent des jeux d’évitement (avoidance games). Les jeux
d’accomplissement ont des propriétés agréables qui rendent leur étude plus simple, comme
l’absence de zugzwang : chaque joueur préfère toujours que ce soit à lui/elle de jouer, alors
que cela dépend des situations dans les jeux d’évitement. Selon une deuxième manière de
classifier, les conventions symétriques Maker-Maker et Avoider-Avoider définissent des jeux
forts (strong games) tandis que les conventions antagonistes Maker-Breaker et Avoider-Enforcer
définissent des jeux faibles (weak games). Les jeux faibles sont les plus abordables, ce qui peut
se comprendre intuitivement par le fait qu’il y a un attaquant (Maker/Enforcer) et un défenseur
(Breaker/Avoider) au lieu que les deux joueurs aient à trouver l’équilibre entre attaque et défense.
C’est donc logiquement que le jeu d’accomplissement faible Maker-Breaker est le plus étudié dans
la littérature, et c’est aussi le thème principal de cette thèse. A noter que, quitte à considérer
tous les premiers coups possibles de Breaker lorsqu’il commence, on suppose toujours que Maker
commence : ainsi, lorsqu’on dit par exemple que "Maker gagne sur H", cela signifie que Maker a
une stratégie gagnante pour le jeu Maker-Breaker sur l’hypergraphe H lorsqu’elle joue en premier.
Nous faisons également le choix de jouer dans des hypergraphes marqués, une généralisation
des hypergraphes dans laquelle certains sommets peuvent être marqués (graphiquement, on les
représente entourés). L’idée est que les sommets marqués représentent les sommets possédés par
Maker. Ainsi, plutôt que de colorer des sommets en rouge et bleu, Maker marque des sommets
et Breaker supprime des sommets (supprimer un sommet signifie également supprimer toutes les
arêtes contenant ce sommet). Maker gagne lorsqu’une arête a tous ses sommets marqués. Quitte
à rajouter à certaines arêtes des sommets fictifs marqués d’office, le jeu sur les hypergraphes
de rang k est équivalent au jeu sur les hypergraphes marqués k-uniformes, une classe qui a
notamment l’avantage d’être stable par les coups des deux joueurs.

Dans la plupart des instances du jeu Maker-Breaker étudiées dans la littérature, le jeu est
naturellement formulé comme joué sur les arêtes d’un graphe complet, si bien que l’hypergraphe
est en réalité sous-jacent. Maker veut obtenir un ensemble d’arêtes du graphe qui contienne un
certain objet (un triangle, un arbre couvrant, un couplage parfait...). On a alors des résultats de
nature quantitative, notamment sur la valeur critique du biais à partir de laquelle le vainqueur
du jeu change. Au contraire, nous sommes intéressés par les aspects structurels du jeu Maker-

14

Breaker, le plus souvent sans biais.
La base de notre approche structurelle est une propriété très commode du jeu Maker-Breaker
qu’est la monotonicité (sous-entendu : monotonicité par sous-hypergraphe). Cela signifie que,
pour tout sous-hypergraphe H ′ de H, si Maker gagne sur H ′ alors Maker gagne également sur
H. En effet, si Maker gagne sur H ′, alors il lui suffit de se concentrer uniquement sur H ′ et d’y
appliquer sa stratégie gagnante pour y obtenir une arête entièrement marquée. En particulier,
soit x un sommet non marqué de H, et soit D un sous-hypergraphe de H contenant x sur
lequel Maker gagnerait si x était marqué. Alors, jouer x permet à Maker de créer une menace
urgente : Breaker devrait détruire D immédiatement (i.e. répondre par un sommet de D), sans
quoi Maker gagnerait par monotonicité. On dira que D est un danger en x, un vocabulaire dû
au fait que nous adoptons le point de vue de Breaker.
Considérons désormais plusieurs dangers en un même sommet x. Plus précisément, fixons une
famille F de "modèles" de dangers, et considérons tous les F-dangers en x i.e. les dangers
en x appartenant à cette famille. Alors, si Maker joue x, cela forcera Breaker à répondre
immédiatement dans l’intersection de tous ces dangers (où l’intersection exclut bien sûr x et
les sommets qui sont déjà marqués, puisqu’elle est censée représenter les réponses jouables de
Breaker si Maker joue x). Ce principe se poursuit tout au long de la partie, pendant laquelle les
dangers évoluent : les coups de Maker créent de nouveaux F -dangers en d’autres sommets, et
les coups de Breaker en font disparaître. Pour tout r, en notant Jr(F , H) la propriété affirmant
que "Breaker peut s’assurer que, à chacun des r premiers tours, il pourra détruire les F -dangers
en le sommet joué par Maker", on a donc la condition nécessaire suivante qu’on notera (CN) : si
Breaker gagne sur H, alors Jr(F , H) est vérifiée.
Il se trouve qu’il est possible de voir directement sur l’hypergraphe H si Jr(F , H) est vérifiée ou
non. En effet, pour r = 2 par exemple, il existe une famille F∗ ⊇ F qui fait en quelque sorte la
prévention des problèmes d’intersection des F -dangers que Breaker pourrait avoir au deuxième
tour, si bien que Breaker peut détruire les F -dangers aux deux premiers tours si et seulement si
il peut détruire les F∗-dangers au premier tour. A chaque itération de cet opérateur "étoile",
on étend cette prévention un tour plus loin, d’où l’équivalence Jr(F , H) ⇐⇒ J1(F∗(r−1), H).
La propriété Jr(F , H), dont la définition parcourt un arbre de coups lorsque r ≥ 2, se retrouve
ainsi exprimée au lieu de cela comme une propriété statique de l’hypergraphe H en termes
d’intersections de collections de sous-hypergraphes, au prix d’une famille de dangers plus grande
et plus complexe. Notons que toutes ces considérations s’étendent à la version biaisée du jeu
Maker-Breaker, bien que nous ne l’évoquions pas dans ce résumé.
Nous nous intéressons à la réciproque de (CN) : étant donné une classe H d’hypergraphes
marqués, nous nous demandons pour quels F et r est-ce-que la propriété Jr(F , H) caractérise les
hypergraphes marqués H ∈ H sur lesquels Breaker gagne. En particulier, si r est une constante,
alors décider l’issue du jeu Maker-Breaker sur la classe H se réduit au problème d’existence d’un
élément de F dans un hypergraphe marqué donné : dans le cas d’une famille F "raisonnable",
on obtiendrait alors un algorithme en temps polynomial.

Chapitre II : Etudes structurelles approfondies dans les
hypergraphes

Pour ce qui est des hypergraphes de rang 3, ce qui revient à considérer les hypergraphes marqués
3-uniformes, un article de Rahman et Watson [RW20] laissait à penser qu’une telle caractérisation
pourrait être établie. Les auteurs étudient un jeu plus général que le jeu Maker-Breaker, où
l’hypergraphe est remplacé par une formule logique en forme normale conjonctive. A chaque

Résumé en français 15

tour, chaque joueur choisit une variable et lui assigne une valeur booléenne. Le premier joueur
("False") veut rendre la formule fausse tandis que le deuxième joueur ("True") veut rendre la
formule vraie. Le cas d’une formule positive, i.e. dont tous les littéraux sont positifs, revient au
jeu Maker-Breaker, où les variables sont les sommets et les clauses sont les arêtes. Rahman et
Watson étudient le cas où les clauses sont de taille au plus 3, avec la contrainte que chaque clause
contient une variable qui n’apparaît dans aucune autre clause. Il n’est pas difficile de montrer
que, pour des formules positives, cette contrainte implique en particulier que l’hypergraphe est
linéaire : par conséquent, on retombe dans le cas déjà résolu par Kutz [Kut04]. Cependant, ce
qui nous intéresse est la nature de la caractérisation structurelle obtenue par Rahman et Watson.
Celle-ci, dans le cas des formules positives et traduite en nos termes, affirme que : pour tout
hypergraphe marqué 3-uniforme H satisfaisant la contrainte des auteurs, Breaker gagne sur H
si et seulement si J3(D0, H) est vérifiée, où D0 est une famille de dangers très élémentaires. Les
auteurs conjecturent que cette équivalence reste vraie pour toutes les formules dont les clauses
sont de taille au plus 3, et donc en particulier pour tous les hypergraphes marqués 3-uniformes.
La famille D0 est définie comme suit. Il existe deux types de D0-dangers en un sommet x : le
x-snake et le x-cycle (voir Figure 2, haut). Un x-snake est une chaîne (chemin simple linéaire)
reliant x à un sommet marqué. Un x-cycle est une chaîne reliant x à lui-même (sauf dans le
cas d’un x-cycle de longueur 2, qui n’est pas linéaire puisque formé de deux arêtes {x, y, a}
et {x, y, b}). Un x-snake et un x-cycle sont bien des dangers en x puisque, si Maker joue x,
alors ils deviennent ce qu’on appelle respectivement un nunchaku et un necklace (voir Figure 2,
bas). En effet, Maker gagne sur un nunchaku ou un necklace, avec une technique de forçage.
Maker joue un sommet de degré 2 adjacent à un sommet marqué, ce qui force Breaker à jouer le
troisième sommet de l’arête en question, puis Maker joue un sommet de degré 2 adjacent à son
dernier coup, etc., et Breaker n’a que des coups forcés jusqu’à ce qu’il soit piégé à l’autre bout
du chemin où Maker menacera dans deux arêtes à la fois.

x x

Figure 2 : Un x-snake et un x-cycle (haut), qui deviennent respectivement
un nunchaku et un necklace (bas) si Maker joue x. Chaque "griffe" représente
une arête de taille 3.

Nous démontrons la conjecture de Rahman et Watson pour les formules positives, c’est-à-dire :
pour tout hypergraphe marqué 3-uniforme H, Breaker gagne sur H si et seulement si J3(D0, H)
i.e. J1(D∗2

0 , H) est vérifiée. Il s’agit du résultat le plus central de cette thèse. Nous exhibons
également une sous-classe conséquente d’hypergraphes marqués 3-uniformes sur laquelle la même
caractérisation est vraie avec la propriété J2(D0, H) au lieu de J3(D0, H). Enfin, nous décrivons
les stratégies optimales des deux joueurs en termes d’intersections de dangers. Si Maker gagne,

16

alors tout x tel que l’intersection des D∗2
0 -dangers est vide est un premier coup optimal pour

Maker. Si Breaker gagne, alors tout y dans l’intersection des D∗2
0 -dangers en x, où x est le

premier coup de Maker, est un premier coup optimal pour Breaker. La preuve est longue et
technique, et se fait par récurrence : on montre que si J1(D∗2

0 , ·) est vérifiée par l’hypergraphe
marqué de départ, alors elle l’est encore par l’hypergraphe marqué obtenu après le premier tour
si Breaker a joué un coup optimal. Ainsi, la propriété J1(D∗2

0 , ·) se propage jusqu’à la fin de la
partie, ce qui signifie que Breaker gagne puisqu’en particulier la famille D∗2

0 comprend les snakes
de longueur 1 (qui correspondent aux menaces de victoire au prochain tour de Maker). Cette
preuve est majoritairement constituée d’applications répétées de lemmes structurels élémentaires
énoncés dans le chapitre précédent, portant sur l’existence de chaînes et de cycles à l’intérieur
de certaines unions de chaînes et/ou de cycles dans les hypergraphes 3-uniformes.
Il est également très important de comprendre ce critère du point de vue de Maker. Le fait
que la propriété J3(D0, H) ne soit pas vérifiée signifie que Maker peut s’assurer que, à la fin de
l’un des trois premiers tours, l’hypergraphe marqué mis à jour contiendra un nunchaku ou un
necklace. D’un point de vue algorithmique, le jeu Maker-Breaker sur les hypergraphes de rang 3
se réduit donc (avec un facteur n6 où n est le nombre de sommets) au problème d’existence
d’un nunchaku ou d’un necklace dans un hypergraphe marqué 3-uniforme, qui lui-même se
réduit trivialement au problème d’existence d’une chaîne entre deux sommets donnés dans un
hypergraphe 3-uniforme.

Nous en sommes donc venus à étudier la connectivité par chaînes dans les hypergraphes 3-
uniformes, un problème relevant de la théorie des hypergraphes et non lié au jeu intrinsèquement.
La question algorithmique n’avait jamais été étudiée auparavant. Il existait bien des études sur
les chaînes, et autres types de chemins dans les hypergraphes définis par la taille des intersections
d’arêtes (inférieure ou égale à 1 dans le cas des chaînes), mais il s’agissait toujours de résultats
extrémaux. Dans ce chapitre, nous nous intéressons à l’aspect structurel, qui nous fournira
l’algorithme. Il se trouve que tous les résultats se généralisent aux hypergraphes k-uniformes où
k ≥ 4, en remplaçant la linéarité qui définit les chaînes par une notion de (k− 2)-linéarité : cela
signifie qu’on s’intéresse aux chemins où les intersections d’arêtes sont de taille inférieure ou
égale à k − 2, ou autrement dit qu’on interdit les intersections de taille k − 1.
Nous étudions la structure des composantes connexes (k − 2)-linéaires associées à ce problème
de connectivité. Il est important de noter (et c’est toute la difficulté) que les chemins (k − 2)-
linéaires ne définissent pas une relation transitive : il peut exister des chemins (k − 2)-linéaires
de x à y et de y à z sans qu’il y en ait un de x à z dans l’union des deux. En particulier, les
composantes connexes (k − 2)-linéaires ne forment pas une partition de l’ensemble des sommets.
Nous montrons que le sous-hypergraphe A induit par la composante connexe (k−2)-linéaire d’un
sommet x∗ a une structure très particulière que nous appelons un x∗-archipel. Plus précisément,
A est l’unique x∗-archipel maximal de l’hypergraphe : on en obtient ainsi une caractérisation
structurelle. La structure de x∗-archipel décrit finement l’organisation interne de A (comment
se décomposent les chaînes issues de x∗) ainsi que son interface avec le reste de l’hypergraphe
(quelle forme ont les arêtes de la coupe).

Chapitre III : Contributions de la structure pour les algo-
rithmes et la complexité du jeu

Ce chapitre effectue en premier lieu la transition des aspects structurels aux aspects algorith-
miques. Tout d’abord, la preuve du résultat structurel sur les archipels suggère une procédure

Résumé en français 17

incrémentale pour calculer la composante connexe (k − 2)-linéaire d’un sommet x∗ donné.
Cet algorithme construit un x∗-archipel qui est grossi arête par arête jusqu’à maximalité, et
termine en temps polynomial. On obtient donc un algorithme en temps polynomial capable de
décider, étant donné un hypergraphe k-uniforme et deux sommets x et y, s’il existe un chemin
(k − 2)-linéaire entre x et y. Nous mentionnons deux conséquences de ce résultat algorithmique.
La première conséquence est liée à un problème de théorie des graphes appelé PAFP ou parfois
PFPP ("paths avoiding forbidden pairs"). La question est de savoir, étant donné un graphe
arête-bicoloré bleu/rouge G et deux sommets u et v, s’il existe un chemin induit bleu entre u et
v dans G. Si G est le line graph bicoloré d’un hypergraphe k-uniforme H, défini comme le line
graph standard dont on colore les arêtes en bleu pour une intersection de taille entre 1 et k − 2
ou en rouge pour une intersection de taille k − 1, alors l’existence d’un chemin induit bleu entre
u et v dans G équivaut trivialement à l’existence d’un chemin (k − 2)-linéaire dans H reliant
les deux (hyper)arêtes correspondant à u et v. Ainsi, le problème PAFP, connu comme étant
NP-complet en général [GMO76], est résolu en temps polynomial sur les line graphs bicolorés
pour lesquels on peut efficacement : d’une part les identifier en tant que tels, et d’autre part
reconstruire un hypergraphe antécédent. Malheureusement, ce problème d’identification et de
reconstruction, qui est facile pour les line graphs de graphes, est NP-complet pour les line graphs
d’hypergraphes même 3-uniformes [PRT81]. Cependant, il n’est pas impossible que l’ajout des
couleurs simplifie le problème, et permette parfois d’obtenir une caractérisation par sous-graphes
induits interdits comme il en existe pour les line graphs standards d’hypergraphes dans certains
cas.
La deuxième conséquence est que le jeu Maker-Breaker sur les hypergraphes de rang 3 est résolu
en temps polynomial, puisque, comme expliqué précédemment, il se réduit au cas k = 3 de
notre problème de connectivité (chaînes dans les hypergraphes 3-uniformes). Il s’agit du résultat
algorithmique principal de cette thèse. On sait que décider l’issue du jeu Maker-Breaker sur les
hypergraphes 6-uniformes est PSPACE-complet [RW21], mais la question algorithmique reste
ouverte pour les hypergraphes de rang 4 ou 5.

La complexité du jeu Maker-Breaker ne s’arrête pas nécessairement à l’acception algorithmique
du mot "complexité". En particulier, nous nous intéressons aux deux paramètres d’hypergraphes
présentés dans l’introduction, notés τM et θM (correspondant respectivement à une optimisation
en tours ou en jetons de la part de Maker), qui aident à mesurer à quel point les stratégies
gagnantes de Maker sont complexes. En effet, étant donné un hypergraphe H sur lequel Maker
gagne : une valeur élevée de τM (H) signifie que ces stratégies sont longues, tandis qu’une valeur
élevée de θM(H) signifie en substance que ces stratégies reposent sur un grand nombre de
menaces simultanées. Notre but est d’évaluer quel est le maximum atteint par chacun de ces
paramètres (hors valeur infinie : on suppose que Maker gagne) sur la classe des hypergraphes
de rang k, pour chaque k fixé. Le paramètre τM est très analysé dans la littérature, mais
aucune étude n’avait été faite en fonction du rang. Quant au paramètre θM , il n’avait jamais
été introduit avant cette thèse. Tout d’abord, il est à noter qu’on a trivialement l’inégalité
θM(H) ≤ τM(H) ≤

⌈
|V (H)|

2

⌉
.

Dans les hypergraphes de rang 3, la réponse vient comme corollaire du résultat structurel du
chapitre précédent. Si Maker gagne sur un hypergraphe marqué 3-uniforme H, alors elle peut
faire apparaître un nunchaku/necklace N après au plus trois tours, et on a vu que Maker peut
gagner sur N par forçage. En réalité, le forçage est coûteux en temps, car chaque sommet de N
finira par être joué. Au lieu de cela, Maker peut gagner par dichotomie : Maker joue au centre
de N , ce qui crée deux nunchakus de la moitié de la taille de N , Breaker ne peut pas détruire
les deux, ainsi Maker peut jouer au centre du nunchaku resté intact, etc. Cette méthode permet
à Maker de gagner en O(log(|V (H)|)) tours et en utilisant seulement trois jetons, de plus il est
impossible de faire mieux sur un nunchaku donc ces bornes sont optimales.

18

En revanche, les choses sont très différentes dans les hypergraphes de rang k où k ≥ 4. Il n’est
pas difficile de généraliser le principe de forçage, en remplaçant le nunchaku par un chemin
de forçage (k − 2)-linéaire bien choisi. On constate alors que la méthode par dichotomie n’a
pas son équivalent pour k ≥ 4, si bien que le forçage est la seule manière de gagner sur un tel
chemin : nous obtenons ainsi, pour tout n, un hypergraphe k-uniforme H à n sommets tel que
τM (H) =

⌈
n
2

⌉
, ce qui réalise la borne triviale. En ce qui concerne θM , l’exemple est plus difficile

à construire et à démontrer, mais nous obtenons, pour tout n, un hypergraphe k-uniforme H
à n sommets tel que θM(H) ≥ n

6 , soit le même ordre de grandeur que la borne triviale. En
conclusion, à partir du rang 4, il existe des exemples où Maker a besoin de beaucoup de temps
et de jetons pour mener à bien sa stratégie gagnante, alors que ce n’est jamais le cas pour le
rang 3. On observe ainsi un saut de complexité, et on peut penser qu’il en est de même au
sens algorithmique : ceci conforte l’intuition prédominante dans la communauté selon laquelle
décider l’issue du jeu Maker-Breaker sur les hypergraphes de rang 4 serait PSPACE-complet.

Chapitre IV : Des jeux positionnels aux problèmes de
reconfiguration

Considérons le jeu Maker-Breaker, dans une variante où les deux joueurs ont un nombre de
jetons fixe à leur disposition : α jetons rouges pour Maker, β jetons bleus pour Breaker. On
suppose que α est fini. A noter que le cas β =∞ correspond à l’étude de θM dans le chapitre
précédent, à la différence qu’ici on fixe α plutôt que de chercher la valeur minimum de α telle
que Maker gagne.
Après α tours de jeu, Maker a placé tous les jetons rouges sur un certain ensemble de sommets
A. L’objectif de Maker à partir de là est que, à terme, ses jetons recouvrent entièrement l’une
des arêtes de l’hypergraphe. En notant B l’ensemble des parties de V (H) de taille α contenant
au moins une arête de H, on peut donc formuler la situation comme suit. Alice va déplacer
les jetons rouges, un seul à la fois, pour tenter de les faire passer de la configuration A à une
configuration B ∈ B. A chaque déplacement de jeton, Alice n’a pas de contrainte sur l’origine du
jeton (elle déplace le jeton rouge de son choix), en revanche elle est restreinte sur sa destination
(certaines positions sont interdites).
Bien sûr, dans le jeu que l’on considère ici, la restriction sur la destination est due aux coups
de Bob : les positions interdites sont les sommets sur lesquels il y a un jeton bleu. Cependant,
on peut imaginer d’autres restrictions, définissant autant de jeux différents. En particulier, si
les positions interdites étaient déterminées non pas par un deuxième joueur mais par une règle
"automatique" fixée avant le début de la partie, alors on obtiendrait un type particulier de
problèmes de reconfiguration. Ce terme regroupe les problèmes où, étant donné une certaine
structure discrète munie d’une notion de configuration et d’une règle définissant les déplacements
autorisés entre les configurations, on étudie la possibilité de passer d’une configuration donnée à
une autre par une suite finie de déplacements. Les problèmes de reconfiguration de la forme
ci-dessus, c’est-à-dire les problèmes de déplacements de jetons avec restriction sur la destination,
peuvent être assimilés à une version à un joueur du jeu Maker-Breaker.

Demaine et al. [DDV02] ont introduit des puzzles de déplacements de pièces dans la grille carrée
qui rentrent dans cette catégorie. La restriction est qu’une pièce ne peut être déplacée que
vers une case vide dont au moins deux cases voisines orthogonales sont déjà occupées par des
pièces. Une conséquence de cette restriction est qu’il est impossible, quel que soit le nombre de
déplacements effectués, de placer une pièce en-dehors d’un certain ensemble fini ayant la forme

Résumé en français 19

d’une union de rectangles. Cet ensemble, qui ne dépend que de la configuration de départ A,
est appelé le span de A. En particulier, une condition nécessaire pour pouvoir passer de A à B
est que le span de A contienne celui de B. Demaine et al. ont identifié une notion cruciale de
pièces bonus, qui sont des pièces qu’on pourrait retirer à la configuration A tout en préservant
cette inclusion des spans. Le nombre de pièces bonus d’un puzzle quantifie en quelque sorte
la marge de manœuvre qu’a le joueur pour ses déplacements. Les auteurs séparent les puzzles
non triviaux en deux catégories, selon qu’ils possèdent deux pièces bonus ou bien une seule. Ce
dernier cas est partiellement étudié dans mon mémoire de master [Gal19].
Il est affirmé dans [DDV02] que deux pièces bonus, en plus d’une condition similaire sur la
configuration d’arrivée, sont toujours suffisantes pour résoudre un puzzle. Ce qui a échappé
aux auteurs est que l’inclusion des spans ne suffit pas : des problèmes peuvent survenir lorsque
le puzzle requiert de scinder le span en plusieurs morceaux très éloignés. Nous construisons
ainsi une famille de contre-exemples à cette affirmation, qui montrent même qu’aucun nombre
constant de pièces bonus n’est suffisant pour garantir la résolubilité d’un puzzle. En revanche,
nous montrons que deux pièces bonus suffisent toujours pour les puzzles dont le nombre total
de pièces est suffisamment grand. Notre borne est même serrée dans le sens où, pour tout N
inférieur à cette borne, il existe des puzzles comptant N pièces au total et qui ne sont pas
résolubles. Notre algorithme est en deux parties. La première réutilise la technique de Demaine
et al., qui consiste à utiliser les deux pièces bonus pour transformer une configuration en sa
configuration canonique associée. La deuxième est une méthode nouvelle, à la fois efficace et
naturelle, consistant en un unique balayage du plateau au cours duquel on dépose les pièces aux
positions requises.

Conclusion

Au cours de cette thèse, j’ai étudié divers problèmes autours des jeux et des hypergraphes,
qui n’ont pas tous conduit au même sentiment d’accomplissement.

Tout d’abord, les puzzles de déplacements de pièces sur la grille carrée sont encore loin d’être
entièrement compris, non seulement dans le cas d’une seule pièce bonus [Gal19] mais aussi dans
le cas de deux pièces bonus qui est plus compliqué que ce qui était pensé dans [DDV02]. Nous
avons identifié que la difficulté repose dans le fait de scinder le span, et nous avons montré
comment surpasser cet obstacle dans certains cas. Il s’avère que la quantité même de pièces joue
un grand rôle dans la résolubilité des puzzles, une surprise qui a contrasté avec mes habituelles
considérations structurelles dans les jeux. Au final, de nombreux cas demeurent ouverts, et nous
n’avons pas de réelles pistes pour les attaquer. Nous quittons ainsi ce problème avec davantage
de questions que nous en avions en arrivant.

Au contraire, l’étude du jeu Maker-Breaker sur les hypergraphes de rang 3 a été bien plus
satisfaisante. Nous avons obtenu la caractérisation structurelle de l’issue et la description des
stratégies optimales que nous désirions, en termes d’intersections de dangers. Il est dommage
que la preuve ne soit pas aussi esthétique que le résultat. Je ne peux pas exclure la possibilité
qu’il existe une preuve plus courte et moins technique, concentrant l’essence de ce qui fait
fondamentalement fonctionner le raisonnement. A partir de ce résultat, nous avons obtenu
l’algorithme en temps polynomial que nous espérions. Il n’était pas évident, notamment avec
3-SAT à l’esprit, qu’il n’y aurait pas un saut de complexité entre les rangs 2 et 3. Quant aux
études futures, on peut se demander si l’approche par les dangers pourrait être utile pour
d’autres classes d’hypergraphes. En particulier, pour k ≥ 4, existe-t-il un nombre constant de
tours r(k) tel que Maker gagne sur un hypergraphe de rang k si et seulement si elle peut garantir
l’apparition d’un chemin de forçage pendant les r(k) premiers tours ? Le problème d’existence

20

d’un chemin de forçage étant clairement dans NP, on sait que la réponse est négative pour
k ≥ 6 à moins que NP=PSPACE, puisque décider l’issue du jeu Maker-Breaker dans ce cas est
PSPACE-complet [RW21]. La question reste cependant ouverte pour k ∈ {4, 5}, bien qu’il soit
généralement suspecté que ces cas soient également PSPACE-complets. On pourrait également
considérer d’autres classes d’hypergraphes, qui ne soient pas définies par le rang.

En ce qui concerne les bornes sur les paramètres d’hypergraphes τM et θM (optimisation
en tours et en jetons respectivement) en fonction du rang k, nous avons pratiquement obtenu
des réponses exactes. Pour k = 3, nous avons montré qu’un nombre logarithmique de tours
et seulement trois jetons suffisent toujours à Maker pour mener à bien sa stratégie gagnante
(à savoir, faire apparaître un nunchaku/necklace dans les trois premiers tours puis gagner par
dichotomie), et que ces bornes sont serrées. Pour k ≥ 4, les choses sont radicalement différentes,
puisque la borne triviale (nombre de sommets divisé par deux) est atteinte par τM et quasiment
atteinte par θM . En un certain sens, les stratégies gagnantes de Maker sont donc bien plus
complexes dans le cas k ≥ 4 qu’elles ne le sont lorsque k = 3, ce qui conforte moralement
l’intuition selon laquelle décider l’issue du jeu Maker-Breaker serait PSPACE-complet pour
k ∈ {4, 5}. Pour aller plus loin, une idée pourrait être d’étudier ces bornes dans la version biaisée
du jeu.

Enfin, nous avons exploré certains problèmes d’hypergraphes. Nous avons introduit la notion
de λ-linéarité pour étudier des chemins dans lesquels la taille des intersections d’arêtes est
majorée par un λ fixé. En particulier, nous avons examiné le problème d’existence de chemins
(k − 2)-linéaires dans les hypergraphes de rang k. Nous avons montré que les composantes
connexes associées sont caractérisées par leur structure d’archipel maximal, et qu’elles peuvent
être calculées en temps polynomial. A l’inverse de notre étude du jeu Maker-Breaker sur les
hypergraphes de rang 3, nous avons ici des structures très visuelles et des preuves relativement
simples. Un lien a également été établi avec le problème PAFP, à travers un concept de
line graph bicoloré d’un hypergraphe portant une information supplémentaire sur la taille des
intersections d’(hyper)arêtes.

Dans le futur, j’aimerais également étudier d’autres jeux en lien avec le jeu Maker-Breaker
sur les hypergraphes de rang 3.

Le jeu Maker-Maker sur les hypergraphes de rang 3 est une continuation naturelle. Sa
complexité algorithmique est inconnue. La technique de forçage, qui n’était pas vitale en
convention Maker-Breaker puisqu’on pouvait la supplanter par la technique de dichotomie,
pourrait s’avérer essentielle ici. En effet, elle permet à un joueur de contrôler exactement quels
sommets il/elle laisse à son adversaire, ce qui peut aider à l’empêcher de créer des menaces de
son côté. Il semble important pour le premier joueur de garder l’initiative dans son attaque.
Le deuxième joueur peut parfois s’emparer de l’initiative, et ainsi obtenir une partie nulle,
sans nécessairement détruire tous les hypergraphes qui constituent des dangers en convention
Maker-Breaker. C’est ce qui arrive au tic-tac-toe par exemple. Par conséquent, il existe peut-être
une notion différente d’intersection de dangers en convention Maker-Maker, telle que jouer un
sommet adjacent à un danger soit parfois suffisant pour le détruire.

Le jeu Avoider-Enforcer sur les hypergraphes de rang 3 est un autre sujet d’intérêt. J’étudie
actuellement le cas linéaire conjointement avec Valentin Gledel1 et Aline Parreau2. Tout comme
en convention Maker-Breaker, le cas non linéaire semble plus compliqué. Il est possible que les
lemmes structurels sur les chaînes et les cycles établis dans cette thèse trouvent une nouvelle
utilité ici.

Enfin, je pense que notre idée d’introduire des jetons dans le jeu a du potentiel. On pourrait
étudier des jeux positionnels à jetons, où chaque joueur a un nombre fixé de jetons à sa disposition

1 Université d’Umeå, Suède.
2 CNRS. LIRIS, Université Lyon 1, France.

Résumé en français 21

(fini ou infini, et pas nécessairement le même nombre pour les deux). Cette version est naturelle,
de plus elle est conforme à la manière dont certains jeux positionnels étaient joués historiquement
[Kra42][Gar59]. Nacim Oijid1 et moi-même sommes intéressés par la complexité algorithmique
de ces jeux. Il est probable que le problème reste PSPACE-complet en général pour toutes les
conventions.

Je termine avec une remarque concernant une potentielle unification et généralisation de
certains jeux positionnels.

Un transversal d’un ensemble d’arêtes E est un ensemble de sommets T tel que T ∩ e ̸= ∅
pour tout e ∈ E. Etant donné un ensemble d’arêtes E, soit t(E) l’ensemble des transversaux
minimaux de E (notons que t est une involution). Dans le jeu Maker-Breaker sur un hypergraphe
H, le but de Maker est de colorer une arête de H en rouge, tandis que le but de Breaker revient
à colorer un transversal de E(H) en bleu. Ainsi, l’appellation du jeu est faussement asymétrique
quant aux rôles des deux joueurs : en réalité, ils sont tous les deux "Maker", mais pas sur les
mêmes arêtes. On peut donc définir un jeu plus général où : on a deux ensembles d’arêtes EA

et EB sur le même ensemble de sommets V , Alice colore des sommets en rouge pour obtenir
une arête monochrome rouge dans EA, Bob colore des sommets en bleu pour obtenir une arête
monochrome bleue dans EB, et le premier joueur qui remplit son objectif a gagné. Une partie
peut être nulle. Ceci définirait une famille unifiée des jeux d’accomplissement, contenant les
jeux Maker-Maker et Maker-Breaker mais également tout ce qui existe entre les deux. Le jeu
Maker-Maker correspond au cas EA = EB. Le jeu Maker-Breaker correspond au cas EA = t(EB)
i.e. EB = t(EA).

Il serait instructif de voir, parmi les principes valables dans les conventions Maker-Maker et
Maker-Breaker, lesquels restent vrais pour le jeu d’accomplissement général décrit ci-dessus. En
effet, certains sont dus au lien particulier entre EA et EB, alors que d’autres sont inhérents à
la nature de jeu d’accomplissement. Par exemple, le vol de stratégie continue de s’appliquer,
montrant que les deux joueurs préfèrent jouer en premier et sont toujours contents de jouer plus
de coups. Une autre perspective serait de résoudre le jeu d’accomplissement général pour des
classes d’hypergraphes simples. Je pense que le cas 2-uniforme, c’est-à-dire où tous les éléments
de EA ∪ EB sont de taille 2, serait un bon début. A première vue, les couplages et les chemins
augmentants semblent jouer un rôle significatif.

On pourrait pousser la généralisation encore plus loin, en considérant une version sommet-
partisane où V = VA ∪ VB (pas nécessairement une partition). Alice ne peut colorer que les
sommets de VA, et compléter une arête e ∈ EA signifie pour elle que tous les sommets de e ∩ VA

sont colorés en rouge avant qu’un seul sommet de e ∩ VB ne soit coloré en bleu. Les règles sont
analogues pour Bob, et le premier joueur qui complète une arête a gagné, sans quoi la partie est
nulle. En particulier, cette version inclut des jeux naturels qui ne sont pas classifiés comme des
jeux positionnels autrement, comme par exemple la variante du jeu Maker-Breaker où Breaker
sélectionne des arêtes et non pas des sommets. Ceci signifie que, à chaque tour, Maker choisit
un sommet puis Breaker retire une arête (sans toucher aux sommets de cette arête). Ce jeu peut
être modélisé comme un jeu sommet-partisan, en ajoutant dans chaque arête un sommet qui
n’est jouable que par Bob, le reste n’étant jouable que par Alice.

1 LIRIS, Université Lyon 1, France.

Introduction

As I proudly obtained my first ever research result, solving a conjecture by mathemagician
Persi Diaconis on the riffle-shuffle card-guessing game, I realized something: at heart, what I
enjoyed so much was not really probability theory, but rather combinatorics and mathematical
games. After a quick internet search for PhD theses on the subject in France, the same name
seemed to come up again and again, and it soon became apparent that it would be a good
idea to email a certain Sylvain Gravier. One enthusiastic response later, I was on my way to
Grenoble, where Sylvain introduced me to Isabelle Sivignon. For my Master’s internship, the
two of them had prepared a subject about some coin-moving puzzles, a one-player game which I
ended up coming back to during my PhD (but more on that later). As a reward at the end
of my internship, I unlocked a second player, as Sylvain and Isabelle offered me to pursue my
studies with them on the topic of some two-player games called positional games. Cue the
example I have used countless times in the last few years:

— So, what is it exactly that you do?
— OK: you know what tic-tac-toe is, right?

Tic-tac-toe, also known as Naughts and crosses, is the most famous positional game. Two
players, Alice and Bob, take turns claiming cells of a 3× 3 grid, by drawing naughts and crosses
respectively. The player who first claims three aligned cells wins. If neither player succeeds,
which is the well-known outcome when both players play perfectly, then the game is a draw.
Imagine that, growing tired of all these draws (and with trickery in mind), Alice offers Bob to
change the rules slightly. She will play first, trying to align three naughts, and Bob’s goal will
"simply" be to prevent her from doing so. This way, there will always be a winner. The game
becomes what is called a Maker-Breaker positional game, as Alice ("Maker") attempts to make
an alignment and Bob ("Breaker") tries to break her dreams. It turns out Alice is the one who
has a winning strategy in this particular case, but this game can be greatly generalized, forming
the family of Maker-Breaker games which are the main topic of my PhD thesis.

— Wait... you’re not getting paid to play games, are you?
— Well, if it helps, we’re not being paid much...

To understand how this generalization works, think that the above game is fundamentally
defined as follows: there are nine possible positions that the players can claim, which are the
nine cells, and eight possible ways for Alice to win, which correspond to the eight possible
alignments (three rows, three columns, two diagonals). Since this is the only relevant information
that defines the game, let us consider an alternative graphical representation. We draw nine
dots, one for each cell, and eight potatoes, one for each winning alignment. Instead of drawing
naughts (resp. crosses), Alice (resp. Bob) colors the corresponding dots in red (resp. blue). See
Figure 3. Alice wins if at any point there exists a potato in which all dots are red, otherwise
Bob wins. Now, drawing a board made of any number of dots and any set of potatoes (of any
size, not even the same size for all necessarily), and playing with the same rules, defines a new

24

Maker-Breaker game. A collection of dots and potatoes is called a hypergraph: the dots are
the vertices, the potatoes are the edges. There are as many Maker-Breaker games as there are
hypergraphs, which is to say, a lot.

Figure 3: Two representations of the same game (in progress).

Hypergraphs are very general objects indeed: a set V , a set E of subsets of V , and that is
it. Therefore, their structure can be very complex. This explains why, in most general results
from the literature, assumptions are not related to structure but instead have to do with global
quantities such as the total number of edges. The main goal set at the start of my PhD was to
contribute to filling this void by getting structural results on the Maker-Breaker game. This
means obtaining criteria for the outcome of the game (who wins with optimal play?) based
purely on the hypergraph structure. The algorithmic aspects were another area of interest. It
was long-known already that no efficient algorithm exists to solve the Maker-Breaker game in
all generality i.e. to decide, given any hypergraph, what is the outcome for the Maker-Breaker
game played on that hypergraph. More specifically, and in more technical terms, this problem
is PSPACE-complete [Sch78].

Therefore, the idea was to restrict the problem to some families of hypergraphs with a
simpler structure: I could then hope to get structural characterizations for the outcome, from
which polynomial-time algorithms could potentially be derived. We identified two such families
which could be a good place for me to start:

– Hypergraphs of a geometrical nature were a first idea. For instance, consider hypergraphs
like that of tic-tac-toe, where the vertices can be identified with the cells of a rectangular
grid so that the edges correspond to alignments (not necessarily all possible alignments, but
some of them). We also thought of hypergraphs that represent intersections of geometrical
objects in the plane, such as rectangles.

– Hypergraphs of small rank (size of a biggest edge) were another idea. The smaller the
edges, the less complex the structure. A lot is known about the structure of graphs, which
are nothing but hypergraphs where all edges are of size 2, and the game turns out to be
trivial in this case. However, a lot less was known about the structure of hypergraphs of
rank 3, and just a single paper of Kutz [Kut04] existed about the Maker-Breaker game
in this case (solving a subcase). Despite the jump in edge size from 2 to 3 complicating
things a lot, it still felt like there was room for structural results on general hypergraphs
of rank 3. On the other hand, the algorithmic point of view made us less optimistic, as it
is frequent for problems in combinatorial optimization and propositional logic to display
a complexity gap between the values 2 and 3. The boolean satisfiability problem is a
notorious example of this: 2-SAT is tractable, but allowing clauses of size 3 makes the
problem NP-complete.

I first looked at hypergraphs combining both ideas above. However, it appeared to us that the
rank 3 was the deciding factor, in the sense that adding geometrical traits on top did not seem
to make the problem easier.

Therefore, I quickly turned my focus to the Maker-Breaker game on general hypergraphs
of rank 3. Kutz’s paper was by far my most influential read during this PhD. His result gave
a structural characterization for the outcome in the linear subcase, meaning any two distinct
edges intersect on at most one vertex (as is the case in tic-tac-toe for instance). The structure

Introduction 25

in question is identifiable efficiently, so that the outcome can be determined in polynomial time.
I set out to extend both the structural result and the algorithmic result to general hypergraphs
of rank 3. One of the tools that Kutz uses to establish a Maker win consists in finding some
vertex x such that, if Maker picks x as her first move, then several urgent threats are created
from the point of view of Breaker, who has no move that addresses all these threats at once.
In other words, if there exists some x creating threats, which I call dangers at x, that do not
intersect, then Maker has a winning strategy with x as her first move. I opted for an angle that
differs from Kutz’s in that I made this notion of danger intersections the center of my approach
rather than an occasional tool. This idea is valid for any hypergraph, regardless of the rank.
However, in hypergraphs of rank 3 specifically, I was under the impression that the outcome
could be read directly on the hypergraph in terms of danger intersections, where we would only
need to take into account specific dangers of a somewhat elementary type. In particular, this
would yield a polynomial-time algorithm determining the outcome of the Maker-Breaker game
on all hypergraphs of rank 3, thus solving a valuable open problem. Settling this conjecture
and writing out everything to do with dangers ended up taking up most of my time and effort
throughout my PhD. For one, the proofs are very long and technical. Moreover, many arguments
of a different nature are used: identifying them, sorting out which are game-related and which
are hypergraph-related, understanding what fundamentally makes them work and what is the
most general context in which they apply, was a long process.

Even though this PhD thesis is mainly about games, it is also about hypergraphs. Indeed, I
ended up working on hypergraph problems which, although initially motivated by the Maker-
Breaker game in my case, are more than just a tool to study games and have potential for
applications beyond. Most notably, a type of linear path called a chain plays a key role for the
Maker-Breaker game on hypergraphs of rank 3, with the existence of a chain between two given
vertices proving to be a crucial question. Therefore, we were led to investigate a particular
connectivity problem in hypergraphs, which is interesting on its own: chains are natural paths
to consider in hypergraphs of rank 3, and many papers that are not game-related already
featured chains in other contexts. The structural study around chain connectivity, along with
the associated algorithmic problem, constitutes an important part of this PhD thesis. These
questions turned out to be linked with a problem around line graphs of hypergraphs, a topic
which is also very present in the literature. Finally, some structural properties of elementary
hypergraphs of rank 3 such as chains and cycles, which are key preliminary lemmas for our
results on the Maker-Breaker game, could be useful for any structural study in hypergraphs of
rank 3.

I also studied two hypergraph parameters related to the Maker-Breaker game, both cor-
responding to Maker strategies which optimize a certain quantity. The first quantity is the
number of rounds: if Maker has a winning strategy, then what is the minimum amount of time
that she needs, i.e. what is the minimum number of rounds in which she can ensure that she
will get some edge with all red vertices? This question is vastly studied in the Maker-Breaker
literature, however nothing was known specifically about hypergraphs with small edges. The
second quantity is the number of tokens, in the following variation of the Maker-Breaker game
which we introduce in this PhD thesis. Suppose that Maker, instead of permanently coloring
vertices in red, places red tokens on the vertices that she picks. In each round, she has the choice
between moving a token that she had placed previously (thus losing possession of a vertex,
which may later be stolen by Breaker) or using a new token (say she has infinite tokens at her
disposal). Breaker, on the other hand, permanently colors vertices in blue as usual. If Maker
has a winning strategy, then what is the minimum number of tokens that she needs? In the
context of this PhD thesis, I prefer to use an optimization viewpoint, but this idea could also
be incorporated in the rules of the game, for both players actually: give them a fixed number of
tokens (red and blue respectively) to play with, finite or infinite and not necessarily the same for

26

both, and see who wins. These two parameters are indicators of how complex Maker’s winning
strategies are on a given hypergraph. My goal was to evaluate the maximum value of both
parameters depending on the size of the edges. In particular, for hypergraphs of rank 3, the
structural results around dangers which I alluded to previously proved to be key in answering
this question.

In the version of the Maker-Breaker game played with limited tokens, Maker tries to rearrange
her tokens into any configuration which contains an edge, while Breaker impedes her by blocking
vertices (indeed, vertices occupied by Breaker’s tokens are unavailable for Maker). Now, if these
blocked vertices were not chosen intelligently by a second player adapting to Maker’s moves, but
were instead chosen automatically by some preestablished rule, then the game would become a
reconfiguration problem. This particular type of reconfiguration problem can thus be likened
to a one-player version of the Maker-Breaker game. Demaine et al. [DDV02] introduced some
coin-moving puzzles in the square grid which fall into this category. The restriction rule is that
a coin (i.e. token) can only be moved to an empty square that has at least two orthogonally
adjacent squares occupied by other coins. I had studied this game during my Master’s internship,
and towards the end I discovered an inaccuracy in the main result of [DDV02] with too little
time to delve deeper into it. I came back to this problem during my PhD, to investigate the
extent of the authors’ mistake and look for alternative results.

The organization of this dissertation is as follows. There are four chapters, themselves
divided into sections. Apart from the introductory Chapter I, each chapter corresponds to a
research theme, and each section corresponds to a specific research problem inside that theme.
Moreover, each section begins with a presentation of its associated problem along with some
state of the art, and ends with some concluding remarks and prospects around that problem.

• Chapter I presents all the notions that feature in this dissertation, as well as preliminary
results that prepare the deeper studies from future chapters.
One thing that I felt was missing in the literature was a place compiling all the most
basic results around positional games, not only the Maker-Breaker game but also other
conventions. This is why Section I.1 contains a list of easy strategic principles, stated
in the most general context possible. After that, I provide some state of the art around
the Maker-Breaker game specifically, and I then present my personal approach towards
this game. In particular, marked hypergraphs are introduced, which we use to update the
board throughout the game in a way that keeps track of Maker’s moves.
Section I.2 is dedicated to the aforementioned notion of danger. We adopt Breaker’s point
of view: in short, Breaker must be able to destroy the dangers created by Maker, so those
must intersect. This brings up the topic of intersecting collections of subhypergraphs. If a
collection is not intersecting but it is Breaker’s turn, can he make it intersecting and thus
be safe in the next round? When can Breaker ensure that dangers of a given type will
intersect, not just in the first round, but during several rounds, or during the whole game
as needed?
Finally, Section I.3 explores some elementary structures in hypergraphs, such as paths and
cycles. The emphasis is on hypergraphs of rank 3, where the size of the edges allows us to
establish several structural lemmas that are the building blocks for the next chapter.

• Chapter II carries out the in-depth structural studies in hypergraphs that are at the core
of this dissertation.
First of all, Section II.1 is dedicated to the Maker-Breaker game on hypergraphs of rank 3.
We obtain a structural characterization for the outcome of the Maker-Breaker game on
hypergraphs of rank 3, as well as optimal strategies for both players, all based on danger
intersections. This is probably the most central result of this PhD thesis. More specifically,
we exhibit a family of dangers such that Breaker has a winning strategy if and only if

Introduction 27

those dangers at x intersect for any possible first move x of Maker, in which case any
Breaker answer inside their intersection is optimal. What is remarkable is that we only
ask for the intersection to be nonempty in the first round, but that ends up staying the
case in all subsequent rounds. The dangers in said family are unions of the elementary
structures which we mentioned previously, in such a way that our result has the following
consequence which validates a conjecture by Rahman and Watson [RW20]: Maker wins
if and only if she can ensure that, after at most three rounds of play, she has forced the
appearance of a nunchaku or a necklace. Those two are elementary hypergraphs on which
Maker has a straightforward winning strategy that forces all of Breaker’s moves.
Since a nunchaku is a chain, and a necklace is a cycle i.e. a chain that loops onto itself
basically, this last result shows that, on hypergraphs of rank 3, the Maker-Breaker game
is directly related to questions of existence of chains. We thus explore this connectivity
problem in Section II.2. We show that the connected components associated to this
problem have a very specific structure, which actually characterizes them. All ideas
generalize to hypergraphs of any rank k, when replacing the notion of linearity that defines
chains with a notion of (k − 2)-linearity: consecutive edges of the path must intersect on
at most k − 2 vertices. Therefore, this section is written in the general case.

• Chapter III reaps the algorithmic rewards of the structural studies from the previous
chapter, along with some further investigations.
Section III.1 details how the aforementioned connected components can be computed
efficiently thanks to the structural result. A link is made with the "paths avoiding forbidden
pairs" problem (PAFP), an NP-complete graph connectivity problem from the literature,
for which our algorithm may imply some new tractable cases.
We go back to the Maker-Breaker game in Section III.2. The main algorithmic result
of this PhD thesis is that the outcome of the Maker-Breaker game can be determined
in polynomial time on hypergraphs of rank 3. Indeed, the structural result reduces this
problem to the chain connectivity problem, which is solved in polynomial time by the
previous algorithm. We also address other complexness facets of the game besides the
algorithmic aspect, by studying the two hypergraph parameters that we introduced earlier
(optimization by Maker of the number of rounds and tokens respectively). A corollary of
the structural results from the previous chapter is that, in hypergraphs of rank 3, Maker
never needs more than a logarithmic number of rounds and just three tokens. Things are
very different in hypergraphs of rank 4 or more, where Maker sometimes needs almost the
whole board to be covered before she completes the win.

• Chapter IV contains results obtained when, during my PhD, I came back to the coin-
moving puzzles which I had studied during my Master’s internship.
Section IV.1 is an exception to the organization of this dissertation, in that it does not
contain new significant results on a particular problem, but rather lists some preliminary
properties of this game which are essential for the next section. Most of these results were
already given in [DDV02]. In particular, a crucial information is the number of extra coins
that a puzzle contains, which quantifies a form of margin for maneuvering coins.
Section IV.2 addresses puzzles with (at least) two extra coins. It was roughly claimed
in [DDV02] that all such puzzles were solvable. However, we show that this is untrue.
Actually, we exhibit worst-case puzzles which show that no constant number of extra coins
(let alone two) is sufficient to guarantee solvability. On the other hand, we show that all
puzzles with two extra coins and a "large" number of total coins are solvable. The proof
uses a new algorithm to solve puzzles, which is both natural and efficient.

Chapter I

Preparatory notions and preliminary
results

This chapter introduces all the objects that will be studied in the next two chapters, and all
the notions that will help in that direction. Preexisting concepts are presented together with
some state of the art. A few new concepts are also established, along with some first results
that illustrate their interest or serve as preliminary for the upcoming chapters.

I.1 The Maker-Breaker game: an introduction

The primary object of study in the present dissertation is the Maker-Breaker game, which is
part of the family of positional games. This section provides some background around positional
games in general, and then focuses on the Maker-Breaker game specifically.

I.1.1 State of the art on positional games

I.1.1.1 Some vocabulary around hypergraphs

In positional games, the game board is a hypergraph. Therefore, let us start with some general
(and, mostly, standard) definitions and notations regarding hypergraphs.

Definition I.1.1. A hypergraph H is defined by a finite vertex set V (H) and an edge set E(H)
consisting of subsets of V (H).

Notation I.1.2. A hypergraph H consisting of a single edge e, i.e. such that V (H) = e and
E(H) = {e}, may be simply denoted by e.

Definition I.1.3. Let H be a hypergraph.
• A subhypergraph of H is a hypergraph K such that V (K) ⊆ V (H) and E(K) ⊆ E(H). A

strict subhypergraph of H is a subhypergraph K of H such that K ̸= H. We may say H
contains K, or write K ⊆ H, to signify that K is a subhypergraph of H.

• Let U ⊆ V (H). The subhypergraph of H induced by U is the subhypergraph of H, denoted
by H[U], defined by V (H[U]) = U and E(H[U]) = {e ∈ E(H), e ⊆ U}.

Definition I.1.4. Let H be a hypergraph.

30 I.1. The Maker-Breaker game: an introduction

• We say H is k-uniform if all its edges are of size exactly k.
• The rank of H, denoted by rk(H), is defined as the size of its biggest edge.
• The anti-rank of H, denoted by ark(H), is defined as the size of its smallest edge.

Remark. A 2-uniform hypergraph is a graph.

Definition I.1.5. Let H be a hypergraph.
• Let v1, v2 ∈ V (H) be distinct. We say v1 and v2 are adjacent in H if there exists e ∈ E(H)

such that {v1, v2} ⊆ e.
• Let v ∈ V (H). We say an edge e ∈ E(H) is incident to v if v ∈ e. The degree of v in H is

defined as the number of edges of H that are incident to v.

Definition I.1.6. Let H be a hypergraph, and let v ∈ V (H). We say v is an inner vertex of
H if v is of degree at least 2 in H, otherwise we say v is an outer vertex of H. We denote by
inn(H) (resp. out(H)) the set of all inner (resp. outer) vertices of H.

Let us also introduce a useful notation which is not hypergraph-related in itself:

Notation I.1.7. Let S be a set, and let m be an integer. We denote by Pm(S) the set of all
subsets of S that are exactly of size m.

I.1.1.2 Various conventions and problems

Definition I.1.8. A positional game is a two-player game played on a hypergraph H, in which
Alice and Bob alternate turns coloring previously uncolored vertices of H in red and blue
respectively. In the standard unbiased version, vertices are colored one by one, but it is possible
to introduce a bias (p : q) meaning Alice and Bob respectively color p vertices and q vertices at
once in each round (except possibly for the final round: if there are not enough vertices left
then the player simply colors all the remaining vertices). The result of the game is decided by
one of several conventions, all of which are about monochromatic edges i.e. edges whose vertices
are all of the same color, the main four being the following:

• Maker-Maker convention: the first player to complete a monochromatic edge of their color
wins; if that never happens then the game ends in a draw.

• Maker-Breaker convention: Alice ("Maker") wins if she completes a monochromatic red
edge at any point, otherwise she loses; in particular no draw is possible.

• Avoider-Avoider convention: the first player to complete a monochromatic edge of their
color loses; if that never happens then the game ends in a draw.

• Avoider-Enforcer convention: Alice ("Avoider") loses if she completes a monochromatic
red edge at any point, otherwise she wins; in particular no draw is possible.

Note that we have not specified which of Alice or Bob plays the first move (which is equivalent
to specifying who plays the last move in the case where all vertices end up colored). This
information is important and both cases shall be considered, even in the Maker-Maker and
Avoider-Avoider conventions since the bias may be unbalanced (i.e. p ̸= q) despite the players’
roles being symmetrical.

Remark. Technically, an edge of size 0 is monochromatic of both colors. If ∅ ∈ E(H), then a
positional game on H is over before it begins, and we naturally declare that: Maker-Maker is a
first player win, Maker-Breaker is an Alice (Maker) win, Avoider-Avoider is a second player win,
and Avoider-Enforcer is a Bob (Enforcer) win.

Let us start with a brief history of positional games:

Chapter I. Preparatory notions and preliminary results 31

• The Maker-Maker convention was the first to be introduced in the literature in all generality.
The game of tic-tac-toe, which can be traced back all the way to ancient Egypt, is a well-
known example of it: the nine cells are the vertices, and the eight lines (three horizontal,
three vertical, two diagonal) are the edges. In 1963, Hales and Jewett introduced the
"positional game" terminology as they gave the first general formulation of what we now
call Maker-Maker games [HJ63], even though they only studied a generalized nd tic-tac-toe
with lines of size n and d dimensions (the original tic-tac-toe corresponds to n = 3 and
d = 2). Erdős and Selfridge [ES73] later established the first general results on the Maker-
Maker convention, and several results are compiled in [Bec08] and [HKS+14]. Another
generalization of tic-tac-toe is the game of k-in-a-row which is played on the infinite square
grid and where the winning sets are the lines of size k. Note that k-in-a-row technically
fails our definition since the underlying hypergraph is infinite, even though the edges are
of bounded size. This game is known to end in a first player win for k ≤ 4 and a draw
for k ≥ 8 [GSZ80] if both players play optimally, whereas solving the case 5 ≤ k ≤ 7 is a
famous open problem. Note that 5-in-a-row restricted to a 15× 15 board coincides with
gomoku, another popular Maker-Maker game for which a winning strategy for the first
player has been found with the help of computer assistance [AvH96], however it is unclear
whether this strategy can be adapted to an infinite board.

• The Maker-Breaker convention owes its first general formulation to Chvátal and Erdős in
1978, who studied games played on the edge set of the complete graph Kn where Maker
tries to get some specific subgraph of her color [CE78]. Independently, Schaefer also
introduced Maker-Breaker games (among others) to study their algorithmic complexity
[Sch78], though the description of the game and the terminology used were different. In
1982, Beck obtained the first general results on the Maker-Breaker convention [Bec82]. A
lot of results on Maker-Breaker games are compiled in [Bec08] and [HKS+14]. The board
game Hex, created in 1942, where the players try to connect opposite sides of a board
with hexagonal cells, is an interesting example. It fails to classify under the Maker-Maker
convention since the winning sets are not the same for both players. However, a graph
theory argument shows that every final position of the game contains either a winning
red path or a winning blue path and not both, therefore winning equates to blocking the
opponent, which makes Hex a Maker-Breaker game. Another example is the Shannon
switching game [Gar61][Leh64][CE78], which is played on the edges of a graph with two
special vertices u and v, where one player tries to connect u and v while the other attempts
to prevent them.

• The Avoider-Avoider convention mostly originates from the work of Harary in 1981, who
formulated this convention in a Ramsey context (no possible draw) [Har81] and studied
games played on the edge set of the complete graph Kn where the players must avoid
getting some specific subgraph of their color [Har82]. Some cases of this problem have been
studied very recently [SS23]. The oldest and most famous example of an Avoider-Avoider
instance is Sim, a game introduced by Simmons in 1968 [Sim68], where two players color
the edges of K6 while trying to avoid creating a triangle of their color. It is remarkable
that, despite the apparent innocence of Sim, it is very difficult to describe a winning
strategy that a human can understand and apply. It has been known for a long time that
the second player has a winning strategy [MRH74], but only recently has a significantly
simpler one been found [Wrz20].

• The Avoider-Enforcer convention owes its first general formulation to Lu in 1992 [Lu92],
who designated the players as "anti-Maker" and "anti-Breaker" respectively, and studied
the game played on the edge set of Kn where the losing sets are the hamiltonian cycles.
Other Avoider-Enforcer games played on the edge set of Kn have been studied since,
such as the case where the losing sets are the copies of Kk for example [Bec02], which

32 I.1. The Maker-Breaker game: an introduction

generalizes Sim in an Avoider-Enforcer variant. Many results on Avoider-Enforcer games
are compiled in [Bec08] and [HKS+14]. Likely because of its somewhat counterintuitive
rules, the Avoider-Enforcer convention, unlike the three previous ones, does not have a
simple or notorious historical instance that we know of.

Generally speaking, research on positional games mainly consists in considering some convention
as well as some hypergraph class H and studying the following questions:

– Criteria for the outcome: What is the outcome of the game on H ∈ H i.e. the result when
both players play optimally? Can we at least state some necessary or sufficient conditions
on H ∈ H for such player to win (or not lose) with optimal play?

– Description of optimal strategies: Is there an optimal strategy for such player on H ∈ H
that is intuitive or at least easy to describe? If such player has a winning strategy on
H ∈ H, what is the fastest way to win i.e. what is the minimum number of rounds in
which that player can ensure the win?

– Algorithmic complexity: What is the complexity of deciding whether such player has a
winning strategy on some input hypergraph H ∈ H?

I.1.1.3 Achievement vs Avoidance, Strong vs Weak

The four aforementioned conventions fall into two brackets, as defined by Harary [Har82]:
Maker-Maker and Maker-Breaker are achievement games, whereas Avoider-Avoider and Avoider-
Enforcer are avoidance games. The last two are the respective misère versions of the first two,
since the winning condition becomes the losing condition for both players. Edges can be seen as
winning sets in achievement games and as losing sets in avoidance games.
Another way to categorize positional games is via the vocabulary introduced by Beck and
Csirmaz [BC82]: Maker-Maker and Avoider-Avoider are strong games, whereas Maker-Breaker
and Avoider-Enforcer are weak games. This denomination stems from achievement games seen
from Maker’s point of view, and the following observation: for Maker, it is not more difficult
to face Breaker than to face another Maker, therefore a win against Breaker only represents
a "weak win" for Maker. Let us state this fact formally along with its avoidance counterpart.
Note that these results hold even in the biased version.

Proposition I.1.9. Let H be a hypergraph.
• If the first (resp. second) player has a winning strategy for the Maker-Maker game on H,

then Maker has a winning strategy as first (resp. second) player for the Maker-Breaker
game on H. More specifically: any winning strategy of the first (resp. second) player for
the Maker-Maker game on H is a winning Maker strategy as first (resp. second) player
for the Maker-Breaker game on H.

• If the first (resp. second) player has a winning strategy for the Avoider-Avoider game on H,
then Enforcer has a winning strategy as first (resp. second) player for the Avoider-Enforcer
game on H. More specifically: any winning strategy of the first (resp. second) player for
the Avoider-Avoider game on H is a winning Enforcer strategy as first (resp. second)
player for the Avoider-Enforcer game on H. ■

The converses are not true. Let H be the hypergraph of standard 3× 3 tic-tac-toe for instance.
It is well known that the first player does not have a winning strategy for the Maker-Maker
game on H (which is the usual convention here), however it is very easy to see that Maker
has a winning strategy as first player for the Maker-Breaker game on H: we will come back
to this example in Section II.1. Indeed, the second player’s drawing strategy for tic-tac-toe
heavily relies on the creation of threats that the first player has to defend. On the contrary, in
the Maker-Breaker variant, Breaker aligning three cells becomes irrelevant: the game simply

Chapter I. Preparatory notions and preliminary results 33

continues and Maker (as first player) will end up aligning three cells of her own with optimal
play. Morally, in weak games, one player (Maker or Enforcer) is relinquished of their defensive
duties, which simplifies their task compared to the strong game where a subtle balance between
attack and defense must be found.
We have seen that, in all historical instances of positional games, edges represent some sub-
structures inside a bigger structure (e.g. lines in a grid, subgraphs in a graph). Therefore, it
is not surprising that the field’s pioneers come from extremal graph and hypergraph theory,
which studies the existence of such substructures depending on the size of the ambient structure.
In particular, a typical question in Ramsey theory [Ram30] is whether every partition of said
structure has an element satisfying some property. The possibility of a draw in strong games is
one such problem: can the vertex set be partitioned into red and blue vertices so that there is
no monochromatic edge? This is the hypergraph (vertex-)2-coloring problem.

Definition I.1.10. Let H be a hypergraph. A 2-coloring of H is a function that assigns to
each vertex of H the color red or blue. A partial 2-coloring of H is defined the same except
that some vertices might be uncolored. A (partial) 2-coloring c of H is said to be proper if no
edge of H is monochromatic respective to c, or improper otherwise. We say H is 2-colorable if
there exists a proper 2-coloring of H.

In all positional games, the two players build a partial 2-coloring that evolves as they play
moves. In strong games specifically, there are two possibilities: that partial 2-coloring either
becomes improper at some point, in which case the player responsible for it is then declared the
winner in the Maker-Maker game or the loser in the Avoider-Avoider game, or remains proper
throughout, in which case a draw is declared. In particular, we have the following result, which
holds for any bias:

Proposition I.1.11. If a hypergraph H is not 2-colorable, then a strong game played on H
cannot end in a draw, regardless of the strategies used by both players. ■

The previous proposition can help build examples of hypergraphs on which strong games cannot
end in draws. For example, in a paper on extremal hypergraph theory [EL74], Erdős and Lovász
have studied hypergraphs in which any two distinct edges intersect on at most one vertex,
building ones with as few edges as possible that have no big stable set (i.e. where any set
including at least half the vertices contains an edge). Since such hypergraphs are obviously
not 2-colorable, strong games played on them cannot end in draws, so we see how extremal
hypergraph theory can yield results in positional game theory. It should still be noted that,
in contrast to the graph 2-colorability problem which is easy, hypergraph 2-colorability is an
NP-complete problem even when restricted to hypergraphs of rank 3 [Lov73], which limits the
potential of Proposition I.1.11.

I.1.1.4 Elementary strategies and principles

Several basic results on positional games can be derived from the ability to adapt a winning
strategy from one situation to another. We present a few such strategy constructions and their
consequences. For each one, we proceed as follows: we first describe how the strategy Σ′ is built
from the strategy Σ in all generality and regardless of optimality, then we explain why Σ′ is
a winning strategy if Σ itself is one. We consider games with a bias (p : q) unless otherwise
specified: this includes the unbiased case which corresponds to p = q = 1.

34 I.1. The Maker-Breaker game: an introduction

a) Strategy stealing

The word "stealing" should be generally understood, not as Alice or Bob stealing the other’s
strategy (which, by the way, could only make sense in the case p = q), but rather as the
first player stealing the second player’s strategy: any strategy of Alice (resp. Bob) as second
player may be replicated by Alice (resp. Bob) as first player, as we now explain. On a given
hypergraph, consider some strategy Σ of, say, Alice as second player, and suppose that Alice
plays first. Then Alice can play an arbitrary first move X0, act as second player from there,
and play according to the strategy Σ adapted as follows. Visualize a fictitious game Gfict next to
the real game Greal, where Alice plays second and has not played X0, so that Alice has an extra
set Xextra (initialized to X0) of red vertices in Greal compared to Gfict. Whenever Bob plays in
Greal, Alice transcribes this move in Gfict, answers according to Σ in Gfict, and copies her move
in Greal. Anytime Alice’s fictitious move X intersects Xextra, which prevents her from copying
that exact move in Greal, she plays (X \Xextra) ∪X ′ instead where X ′ is arbitrary. Continuing
so, Alice ensures that, in Greal and at all times before it ends, the blue vertices (Bob’s) are the
same as in Gfict whereas the red vertices (Alice’s) are the same as in Gfict plus the p extra red
vertices of Xextra. In the last round of play on Gfict (where Alice may have to simulate Bob’s
move in part or in full), if it reaches that point, these extra vertices may be shared between
both players, but the final fictitious red vertices will be a subset of the real red vertices.
A fundamental consequence of strategy stealing is that playing first is an advantage in achievement
games:

Proposition I.1.12 (Initiative Principle). In achievement games, both players prefer to play
first. In other words: if Alice (resp. Bob) has a winning strategy on H as second player, then
Alice (resp. Bob) has a winning strategy on H as first player also.

Proof. Suppose Alice has a winning strategy Σ as second player. Then, as first player, Alice
can simply apply the "stolen" strategy described above. Since the red (resp. blue) vertices in
Greal form a superset (resp. a subset) at all times of what they are in Gfict, Alice’s win in Gfict
implies a (possibly quicker) win in Greal. ■

Similar arguments also show that, in achievement games, the players benefit from picking more
vertices in each round:

Proposition I.1.13 (Bias Monotonicity Principle). In achievement games, if Alice has a
winning strategy on H with bias (p : q) as first (resp. second) player then Alice has a winning
strategy on H with bias (p′ : q) as first (resp. second) player for all p′ ≥ p. The same holds for
Bob when exchanging the roles of p and q. ■

As a consequence of Proposition I.1.12, a famous proof by contradiction [HJ63] shows that the
best result the second player can hope for in a Maker-Maker game is a draw (unless the bias is
in the second player’s favor), as is the case in optimal tic-tac-toe for example:

Proposition I.1.14. In Maker-Maker games with a bias (p : q) where p ≥ q, Bob as second
player cannot have a winning strategy, therefore optimal play leads either to a first player win
or a draw.

Proof. We first consider the case p = q. Suppose for a contradiction that Bob has a winning
strategy Σ as second player. By Proposition I.1.12 (Initiative Principle), Bob would then also
have a winning strategy Σ′ were he the first player. Since p = q, Alice can apply Σ′ herself as
first player, and thus win against Bob which is a contradiction. Now, the case p > q ensues by

Chapter I. Preparatory notions and preliminary results 35

Proposition I.1.13 (Bias Monotonicity Principle). ■

The moral of this is, in achievement games, both players are always happy to make moves:
the more vertices of their own color, the better for them. One could think that the reverse
holds in avoidance games: the less vertices of your own color, the better? Unfortunately, this is
not true. Consider the graph H which is the union of a path P3 and an isolated vertex u for
instance. It is easy to see that Alice (Avoider), as first player, wins both the Avoider-Avoider
and the Avoider-Enforcer game on H, by playing u as her first move. However, precolor u in
blue (Bob’s color), and all of a sudden Alice loses both games as first player. Moreover, it is
not difficult to show that avoidance games have no bias monotonicity in general. Nevertheless,
some natural results do hold in Avoider-Enforcer games. Notably, in unbiased Avoider-Enforcer
games, strategy stealing does work (if the number of vertices is even, otherwise it must be
complemented with different arguments) and yields the following:

Proposition I.1.15. In unbiased Avoider-Enforcer games, both players prefer not to play last,
i.e. not to play first if |V (H)| is odd or not to play second if |V (H)| is even. In other words:
if Avoider (resp. Enforcer) has a winning strategy on H as last player, then Avoider (resp.
Enforcer) has a winning strategy on H as second-to-last player also. ■

Nothing of the sort can be said about Avoider-Avoider games: no general rule holds stating that
it is better to play first, or second, or last, or second-to-last, as simple counter-examples exist in
all cases. Therefore, contrary to what strategy stealing implies for Maker-Maker games, all three
outcomes are possible for Avoider-Avoider games: a first player win, a second player win, or a
draw. Very few proofs using strategy stealing exist in the Avoider-Avoider literature, although
some have emerged recently to solve certain positions in a generalization of Sim [Mal20]. Beck
declares that a "general open problem is to find the avoidance version of the strategy stealing
argument" [Bec02].
Finally, even though our description has the first player choosing their extra vertices arbitrarily
throughout, it is possible that strategy stealing with some non-arbitrary way of selecting the
extra vertices could be interesting in some cases. However, we are not aware of any such example.

b) Strategy self-stealing

We now present another simple construction, where the idea of the first player FP is to improve
on an existing strategy of their own. On a given hypergraph, consider a strategy Σ of FP: if
Σ dictates to play X0 as the first move, then FP can play a different first move X ′

0 instead
but then replicate Σ in the subsequent moves, as follows. Again, visualize a fictitious game
Gfict next to the real game Greal: as their first move, FP plays X ′

0 in Greal and X0 in Gfict. Since
|X0\X ′

0| = |X ′
0\X0| =: r, choose numberings X0\X ′

0 = {x1, . . . , xr} and X ′
0\X0 = {x′

1, . . . , x′
r}:

FP is going to update both games in parallel, identifying xi in Greal with x′
i in Gfict for all i.

Whenever the second player SP plays in Greal, FP transcribes this move in Gfict, answers according
to Σ in Gfict, and copies this last move in Greal. Since the xi are taken in Gfict and the x′

i are
taken in Greal, FP makes the following adjustments when transcribing the moves: any xi inside
SP’s move in Greal is replaced by x′

i in Gfict, and any x′
i inside FP’s move in Gfict is replaced by

xi in Greal. By construction, at all times and for all i, FP (resp. SP) owns xi in Greal if and
only if FP (resp. SP) owns x′

i in Gfict. As for the vertices other than x1, . . . , xr, x′
1, . . . , x′

r, their
situation is the same in both games at all times. This construction can be used to show that
some moves are better than others, as we now illustrate.

Proposition I.1.16 (Domination Principle). Let X0 and X ′
0 be two possible first moves for the

first player on H. Suppose that there exist numberings X0 \X ′
0 = {x1, . . . , xr} and X ′

0 \X0 =

36 I.1. The Maker-Breaker game: an introduction

{x′
1, . . . , x′

r} such that, for all 1 ≤ i ≤ r, every edge of H containing xi also contains x′
i (call

this the "domination hypothesis"). Then:
• In achievement games on H, if the first player has a strategy to win (resp. draw) with

first move X0 then the first player has a strategy to win at least as fast (resp. draw) with
first move X ′

0.
• In avoidance games on H, if the first player has a strategy to win (resp. draw) with first

move X ′
0 then the first player has a strategy to win at least as fast (resp. draw) with first

move X0.

Proof. We consider achievement games (the proof is analogous for avoidance games). Let Σ
be a strategy for FP in which X0 is the first move. Let FP play according to the strategy Σ′

constructed from Σ as described above, in which X ′
0 is the first move, with numberings satisfying

the domination hypothesis.
• Firstly, suppose that, at some point, SP gets an edge e of their color in Greal. Since

FP possesses all the x′
i in Greal, we know e contains none of the x′

i. By the domination
hypothesis, this implies e contains none of the xi either. Since all vertices other than
x1, . . . , xr, x′

1, . . . , x′
r have the same owner in both games by construction of Σ′, all vertices

of e also belong to SP in Gfict at that moment.
• Secondly, suppose that, at some point, FP gets an edge e of their color in Gfict. We know

that all vertices of e are in possession of FP in Greal at the same moment apart maybe
from the xi, which we now address. If xi ∈ e for some 1 ≤ i ≤ r, then x′

i ∈ e by the
domination hypothesis, therefore FP possesses x′

i in Gfict which implies that FP possesses
xi in Greal by construction of Σ′. In conclusion, all vertices of e also belong to FP in Greal
at that moment.

All in all, we have shown that FP cannot win slower or lose faster with Σ′ than with Σ. ■

c) Strategy importing

Let H be a subhypergraph of some hypergraph H ′. Given a strategy Σ for Alice or Bob, say
Alice, on H, there are several ways to construct a strategy Σ′ for Alice on H ′. A natural one is
to have Alice play exclusively inside of H during a first phase of play, as follows. Visualize a
fictitious game Gfict played on H next to the real game Greal played on H ′. Whenever Bob plays
a move Y in Greal, Alice transcribes this move in Gfict, replacing it with (Y ∩ V (H)) ∪ Y ′ for
some arbitrary Y ′ ⊆ V (H) if Y ̸⊆ V (H) to make it a valid move for Bob in Gfict, then Alice
answers according to Σ in Gfict and copies her move in Greal. Alice continues doing so until all
vertices of H are colored in Gfict (if we reach that point), after which a second phase of play
starts where Alice plays arbitrarily until the end. Note that the last move played in Gfict may
not have enough vertices to be valid in Greal, in which case Alice completes it into a full move
using arbitrary vertices. This way of importing the strategy Σ ensures that, at all times, the
red vertices inside H are the same in both games, whereas the set of blue vertices inside H in
Greal is a subset of what it is in Gfict since Bob may have picked some vertices outside of the
subhypergraph H. In achievement games, if Σ is a winning strategy on H, then Σ′ is a winning
strategy on H ′ as long as Alice’s local play happens to block Bob globally, which is always the
case in Maker-Breaker games (recall that Alice is Maker and Bob is Breaker in this case):

Proposition I.1.17 (Local Win Principle). Let H be a subhypergraph of some hypergraph H ′,
and suppose that there exists a strategy Σ on H which is winning for Alice as first (resp. second)
player in the Maker-Breaker game (note that, by Proposition I.1.9, this is a weaker assumption
than asking the same in the Maker-Maker game). Let Σ′ be Alice’s strategy on H ′ as first (resp.
second) player imported from Σ as detailed above. Then:

Chapter I. Preparatory notions and preliminary results 37

• For the Maker-Maker game on H ′, either Σ′ is a winning strategy as fast as Σ is on H,
or Σ′ is a losing strategy.

• For the Maker-Breaker game on H ′, Σ′ is a winning strategy as fast as Σ is on H.

Proof. We have mentioned that, by construction, the red vertices inside H are the same in Greal
as in Gfict at all times. Since Σ is a winning Maker strategy for the Maker-Breaker game on H,
Alice is guaranteed to complete a red edge in Greal during the first phase of play (i.e. the phase
where Alice plays exclusively in H), at the same time she does in Gfict. No draw is thus possible
and it becomes a question of whether Bob can win faster or not. For the Maker-Breaker game
on H ′, the fact that Bob cannot prevent the appearance of a red edge in H trivially implies the
same in H ′ since H is a subhypergraph of H ′, so he necessarily loses. Finally, to show that Σ′

is exactly as fast as Σ in the winning case, rather than being "at least as fast", it suffices to
consider the case where Bob’s moves in Greal are all inside H and coincide with the moves that
slow down Alice the most in Gfict. ■

If H is a subhypergraph of H ′, it can happen that the first player has a winning strategy for the
Maker-Maker game on H but has no winning strategy at all for the Maker-Maker game on H ′ (let
alone one obtained via strategy importing). The simplest example may be the following: V (H) =
{x, y1, y2, y3, z1, z2, z3}, E(H) = {{x, y1, y2}, {x, y1, y3}, {x, z1, z2}, {x, z1, z3}}, V (H ′) = V (H),
E(H ′) = E(H) ∪ {{y3, z3}}. For the unbiased Maker-Maker game, the first player FP has a
winning strategy on H, however the second player SP has a drawing strategy on H ′. The game
on H ′ could go as follows: FP picks x (optimal move on H), SP picks y3, now FP would like to
pick z1 (optimal move on H) however the presence of the extra winning set {y3, z3} ruins those
plans and forces FP to pick z3 instead, so SP can pick z1 and clinch a draw. Beck refers to this
phenomenon as the "extra set paradox" [Bec08]. This also explains why the winning strategy for
gomoku does not easily extend to an infinite grid: though the first player can fix some 15× 15
subgrid and emulate this strategy inside the subgrid, it is unclear how to manage the second
player’s outside threats.
Strategy importing does not work as well in avoidance games, where it is important that the
moves made inside the subhypergraph H actually alternate. However, there is a different way
to successfully import a strategy as Enforcer against Avoider under certain conditions:

Proposition I.1.18. Let H be a subhypergraph of some hypergraph H ′ such that |V (H ′)\V (H)|
is even, and suppose that Enforcer has a winning strategy Σ as first (resp. second) player for
the unbiased Avoider-Enforcer game on H. Then Enforcer also has a winning strategy as first
(resp. second) player for the unbiased Avoider-Enforcer game on H ′.

Proof. If Enforcer is the first player, then he plays the first move dictated by Σ (which is inside
H). After that, Enforcer follows Avoider around, as we now explain. Whenever Avoider plays
inside H, Enforcer answers inside H as well according to the winning strategy Σ. Whenever
Avoider plays outside H, Enforcer answers outside H as well with an arbitrary move, which is
always possible because of the parity assumption. The alternation of moves inside H is thus
preserved, so Avoider will complete an edge e of her color inside H. Since e is also an edge of
H ′, this means Enforcer wins on H ′. ■

d) Pairing strategy

Let us start by considering the unbiased case, which is the most natural for pairing strategies.

Definition I.1.19. A pairing is a set Π of pairwise disjoint pairs.

38 I.1. The Maker-Breaker game: an introduction

Definition I.1.20. Let H be a hypergraph and let Π be a pairing. We say Π is complete in H
if every edge of H contains some pair from Π. Otherwise, we say Π is incomplete in H.

Given some pairing Π, a pairing strategy associated with Π is any strategy that satisfies the
following rule: if the opponent has just picked some x ∈ {x, y} ∈ Π where y is free, then answer
by picking y. The first move (if that player plays first), or any move following a move where
the opponent has played outside of Π or played some x ∈ {x, y} ∈ Π where y was already
colored, may be selected in any manner. Usually, these moves are selected arbitrarily: each
selected move then depends solely on the opponent’s last move, whereas general strategies select
moves depending on all the moves made since the beginning of the game. Pairing strategies
are thus among the simplest ones, and they are easy to apply as a human or to implement
computationally using minimum storage space. Using this strategy, a player can ensure to hit
every pair from Π: this is Breaker’s idea against Maker. In contrast, a player can also ensure
that their opponent will hit every pair from Π: this is Avoider’s idea against Enforcer. This is
sufficient to win on H if Π is complete in H:

Proposition I.1.21 (Pairing Principle). Let H be a hypergraph, and suppose that there exists a
pairing Π which is complete in H. Then Breaker (resp. Avoider), as first or second player, has
a winning strategy for the unbiased Maker-Breaker (resp. unbiased Avoider-Enforcer) game on
H. More specifically:

• Any pairing strategy associated with Π is a winning strategy for Breaker, as first or second
player, for the unbiased Maker-Breaker game on H.

• There exists a pairing strategy associated with Π that is a winning strategy for Avoider, as
last player (hence the existence of a winning strategy as second-to-last player also), for the
unbiased Avoider-Enforcer game on H.

Proof. The result for Breaker is clear: any pairing strategy associated with Π ensures that
Breaker hits every pair from Π, and thus hits every edge of H since Π is complete in H, meaning
Breaker wins. On the other hand, Avoider must be careful not to get both vertices of some pair.
Suppose Avoider is the last player. If Avoider is also the first player (i.e. |V (H)| is odd), then
she plays an arbitrary first move outside Π. After that, the number of free vertices outside Π is
even. Therefore, whenever Enforcer plays outside Π, Avoider can answer arbitrarily outside Π
as well. Of course, whenever Enforcer plays inside Π, he is the first to hit the pair in question,
so Avoider can pick the other vertex of that pair. The strategy that we have just described is
a pairing strategy associated with Π, moreover this strategy ensures that Enforcer hits every
pair from Π, and thus hits every edge of H since Π is complete in H, meaning Avoider wins.
By Proposition I.1.15 (strategy stealing), Avoider also has a winning strategy as second-to-last
player. ■

The pairing argument is commonly used with complete pairings, however it can also yield results
with smaller pairings, even ones with a single pair. The following proposition, which presents
some game-neutral operations on hypergraphs, is an example of that:

Proposition I.1.22. Consider the following operations on hypergraphs:
(i) Adding two vertices x, y and adding edges containing both of them.
(ii) Adding two vertices x, y and, for some edge e or several, replacing e with two edges e∪{x}

and e ∪ {y}.
Operation (i) does not affect the outcome of unbiased strong or weak games. Operation (ii) does
not affect the outcome of unbiased weak games.

Proof. Let H be a hypergraph and let H ′ be the hypergraph obtained from H after performing

Chapter I. Preparatory notions and preliminary results 39

operation (i) or (ii). Consider some strategy Σ on H for some player, say Alice (exchange the
players’ names if it is Bob). Then Alice may use the following strategy Σ′ on H ′. If Alice is the
first player, then she plays the first move dictated by Σ, which is a vertex of H. After that,
whenever Bob plays inside H, Alice answers inside H according to Σ. If Bob ever plays x (resp.
y), then Alice answers by playing y (resp. x). It can happen that x and y are the last two
vertices remaining and it is Alice’s turn, in which case she picks one arbitrarily and Bob picks
the other. In all cases, Alice ends up getting exactly one vertex in {x, y} and Bob gets the
other, whereas the other vertices are colored in accordance with Σ. We can now conclude for
each operation:

(i) We consider all games, strong or weak. The edges in E(H ′) \ E(H) contain both x and y
by assumption, so none of them end up monochromatic when the player uses the strategy
Σ′ on H ′, meaning the result of the game only depends on the edges of H. Therefore, if Σ
is a winning (resp. drawing) strategy on H, then Σ′ is a winning (resp. drawing) strategy
on H ′.

(ii) We consider weak games. The result of the game is decided by the existence of a
monochromatic red edge. It thus suffices to show that, when the player (Alice or Bob)
uses the strategy Σ′ on H ′, the final set R of red vertices in H ′ contains an edge of H ′

if and only if it contains an edge of H. If e ∈ E(H) \ E(H ′) is such that e ⊆ R, then
e∪{x} ⊆ R or e∪{y} ⊆ R by construction, which concludes since e∪{x} and e∪{y} are
edges of H ′. If e ∈ E(H ′) \ E(H) is such that e ⊆ R, then e \ {x} ⊆ R and e \ {y} ⊆ R,
which concludes since e \ {x} or e \ {y} is an edge of H. ■

It is interesting to note that operation (ii) in the previous proposition is not neutral for
strong games. As much as this operation does not alter any player’s capacity to make/avoid
monochromatic edges, which is all that is needed in weak games, it does change how fast they
can manage it since the new edges are bigger, which can make a crucial difference in strong
games. For example, take the hypergraph H ′ from our "extra set paradox" illustration (after
Proposition I.1.17): we know the second player has a drawing strategy for the Maker-Maker
game on H ′, but it is not difficult to show that replacing the edge {y3, z3} with two edges
{y3, z3, a} and {y3, z3, b} shifts the game back to being a first player win with optimal play,
because the second player’s threat is not immediate anymore when they play y3 or z3.
In Avoider-Enforcer games, it seems difficult to define a biased version of pairing strategies.
However, in Maker-Breaker games, the pairing principle naturally generalizes to any bias of the
form (1 : q) as follows.

Definition I.1.23. A q-pairing is a set Π of pairwise disjoint sets such that 2 ≤ |π| ≤ 1 + q for
all π ∈ Π.

Remark. A 1-pairing is simply a pairing. Moreover, a q-pairing is a q′-pairing for all q′ ≥ q.

Definition I.1.24. Let H be a hypergraph and let Π be a q-pairing. We say Π is complete in H
if, for all e ∈ E(H), there exists π ∈ Π such that |e ∩ π| ≥ 2. Otherwise, we say Π is incomplete
in H.

Given some q-pairing Π, a q-pairing strategy associated with Π is any Breaker strategy that
satisfies the following rule: if Maker has just picked some x ∈ π ∈ Π, then Breaker’s answer
must contain all the remaining free vertices of π (which is always possible since |π| ≤ 1 + q).
This way, Breaker ensures that Maker gets at most one vertex from each element of Π, which is
sufficient to guarantee that Breaker wins on H if Π is complete in H. Therefore:

Proposition I.1.25. Let H be a hypergraph, and suppose that there exists a q-pairing Π which is

40 I.1. The Maker-Breaker game: an introduction

complete in H. Then any q-pairing strategy associated with Π is a winning strategy for Breaker,
as first or second player, for the Maker-Breaker game on H with bias (1 : q). ■

An alternative point of view on q-pairing strategies, which may also be useful for a general bias
(p : q) with p ≥ 2, will be given in Subsection I.1.2 (page 47).

I.1.1.5 Difficulty comparison between conventions

The previous discussion shows that some natural and convenient properties hold in some
conventions but not in others. First of all, achievement games are easier to handle, notably
because they have the following properties that avoidance games do not have:

– strategy stealing arguments: "more moves is always better";
– importance of "who plays first" rather than "who plays last" (for example, playing first

reduces to playing second up to considering all possibilities of the first move, whereas this
argument has no equivalent for playing last or second-to-last);

– bias monotonicity;
– no parity considerations.

Moreover, weak games prove to be more accessible than strong games:
– question of "existence" rather than "first existence";
– no attack and defense going on simultaneously: it is attacker versus defender;
– subhypergraph monotonicity (this is key).

It also makes sense to mention algorithmic complexity here. For such questions, we consider
the unbiased case. First of all, we should explain how deciding the outcome comes down to
a decision problem (binary output) for each convention. For the Maker-Maker convention,
Proposition I.1.14 ensures that there are only two possible outcomes. For the Maker-Breaker and
Avoider-Enforcer conventions, there are only two possible outcomes once we establish who plays
first (both cases reduce to each other anyway). However, we have seen that the Avoider-Avoider
convention has three possible outcomes, so say we consider the question "Does the first player
have a winning strategy?", of which it can be shown that it is equivalent to the same question
for the second player and hereby equivalent to deciding the outcome.
Now, our observation about the difficulty of weak games as opposed to strong games is comforted
by the following result and its proof, which show that Maker-Breaker games can be seen as a
subcase of Maker-Maker games (this actually holds for any bias).

Proposition I.1.26. [Bys04] Deciding the outcome of Maker-Breaker games reduces to deciding
the outcome of Maker-Maker games.

Proof. Let H be a hypergraph. Create two new vertices x and y, and let H ′ be the hypergraph
defined by V (H ′) = V (H) ∪ {x, y} and E(H ′) = {e ∪ {x}, e ∈ E(H)} ∪ {{x, y}}. Consider the
Maker-Maker game played on H ′. By Proposition I.1.16 (Domination Principle), it is optimal
for the first player to start the game by picking x since all edges of H ′ contain x. Obviously, it
is then optimal for the second player to pick y, otherwise the first player would pick y in the
next round and win on the spot because {x, y} ∈ E(H ′). After this optimal first round of play,
the situation is as follows. The second player cannot threaten anything anymore, since all edges
of H ′ contain x which is already owned by the first player. As for the first player, completing an
edge of H ′ is now equivalent to completing an edge of H, since the set of edges of H ′ that have
not already been hit by the second player is {e ∪ {x}, e ∈ E(H)}. All in all, the Maker-Maker
game on H ′ becomes the Maker-Breaker game on H (where Maker plays first) after one round
of optimal play. Therefore, Maker has a winning strategy as first player for the Maker-Breaker
game on H if and only if the first player has a winning strategy for the Maker-Maker game on

Chapter I. Preparatory notions and preliminary results 41

H ′. ■

Complexity of positional games is studied through discriminating by edge size: the bigger the
edges, the more complicated the game becomes. A simple observation can be made on this
subject when it comes to weak games:

Proposition I.1.27. Let k be a fixed integer. For unbiased weak games, deciding the outcome
for hypergraphs of rank k reduces to deciding the outcome for k-uniform hypergraphs.

Proof. Operation (ii) from Proposition I.1.22 allows to replace any edge e with two edges of
size |e|+ 1 without altering the outcome. Therefore, given a hypergraph of rank k, it suffices to
perform this operation several times until all edges are of size exactly k. ■

Known results about algorithmic complexity of unbiased positional games prior to our work are
summed up in Table I.1. Solving any of the four conventions is PSPACE-complete, even when
restricting the input hypergraph to be 7-uniform.

k Maker-Breaker Maker-Maker Avoider-Enforcer Avoider-Avoider

1
P

[folklore]
P

[folklore]
P

[folklore][GGP+22]

P
[folklore]

2

PSPACE-complete
[FGM+15]

3

unknown
unknown

unknown4

5

6
PSPACE-complete

[RW21]
PSPACE-complete

[GO23]7 PSPACE-complete
[RW21][Bys04]

Table I.1: Complexity classes of unbiased positional games on k-uniform
hypergraphs, for different values of k.

Let us provide a brief history of these results and some specifications regarding Table I.1:
• Some complexity results have long been known for achievement games. In 1978, Schaefer

showed PSPACE-completeness for the Maker-Breaker game even when restricted to
hypergraphs of rank 11 [Sch78]. Byskov later published a much simpler proof in the
general case i.e. with no restriction on the size of the edges [Bys04]. Recently, Rahman
and Watson have improved Schaefer’s result from 11 to 6 [RW21]. This implies PSPACE-
completeness for the Maker-Maker game even when restricted to 7-uniform hypergraphs,
using the reduction from the proof of Proposition I.1.26 and then applying Proposition
I.1.27. On the other end of the spectrum, tractability is trivial for achievement games
when the input H is a graph (i.e. k = 2): the first player wins if and only if H contains
a path P3 on three vertices (for the Maker-Breaker convention, we choose Maker as first
player here). As for the Maker-Breaker game restricted to 3-uniform hypergraphs, which
is flagged as "unknown" here, one of the main results of the present dissertation will be to
show that it is also tractable.

42 I.1. The Maker-Breaker game: an introduction

• Complexity of avoidance games had been elusive until very recently. In 2023, Gledel and
Oijid have shown PSPACE-completeness for the Avoider-Enforcer and Avoider-Avoider
games, even when restricted to 6-uniform and 7-uniform hypergraphs respectively [GO23].
An interesting fact about the Avoider-Avoider convention, however, is that it had actually
been proved for years to be PSPACE-complete even restricted to graphs, without the
positional games community realizing. Indeed, in their founding book on combinatorial
games, Berlekamp et al. have introduced a game named Col [BCG82, p.37], where two
players alternate turns coloring vertices of a graph G in red and blue respectively, with
the constraint that the partial 2-coloring thus built by the players must remain proper
throughout. The first player unable to move, either because all free vertices have a neighbor
of that player’s color or because all vertices of G have been colored already, loses the game.
The only fundamental difference with the Avoider-Avoider game is that no draw is possible
in Col. However, the outcome of the Avoider-Avoider game does imply the outcome of
Col: if the Avoider-Avoider game on G is a draw, then the first player wins Col on G if
and only if the first player is also the last player i.e. |V (G)| is odd. Since Col is known to
be PSPACE-complete [FGM+15][BH19], so is the Avoider-Avoider game on graphs, hence
the rightmost column of Table I.1. This is a striking difference with achievement games
where the case of graphs is trivial. The Avoider-Enforcer game on graphs is nontrivial
either, however there exists a simple proof of its tractability [GGP+22].

In conclusion, Maker-Breaker is the most accessible of the four conventions, since it possesses a
lot of convenient properties from being both an achievement game and a weak game, whereas
Avoider-Avoider is the most difficult without doubt.

I.1.2 State of the art on the Maker-Breaker game

From now on, we will exclusively consider the Maker-Breaker convention, and we will always
assume that Maker plays first (the case where Breaker plays first reduces to that case up to
considering all possibilities of the first move). In the game with bias (p : q), p corresponds to
Maker (Alice, red) and q corresponds to Breaker (Bob, blue).

I.1.2.1 General results

We have just seen several elementary principles on positional games in general. As memorandum,
let us first compile some of them that apply to the Maker-Breaker convention:

Proposition I.1.28. The following properties hold for the Maker-Breaker game on any hyper-
graph H:

• Bias monotonicity: If Maker has a winning strategy on H with bias (p : q), then she also
has a winning strategy on H with bias (p′ : q′) for any p′ ≥ p and q′ ≤ q. If Breaker has a
winning strategy on H with bias (p : q), then he also has a winning strategy on H with
bias (p′ : q′) for any p′ ≤ p and q′ ≥ q.

• Subhypergraph monotonicity: If Maker has a winning strategy on some subhypergraph of
H with bias (p : q), then Maker also has a winning strategy on H with bias (p : q).

• If H admits a complete q-pairing, then Breaker has a winning strategy on H with bias
(1 : q) .

• If H is not 2-colorable, then Maker has a winning strategy on H with bias (p : q) for any
p ≥ q.

Proof. We should briefly discuss the last item, which was not exactly stated as such previously.

Chapter I. Preparatory notions and preliminary results 43

On the one hand, since p ≥ q, Bob cannot win the Maker-Maker game on H as second player
by Proposition I.1.14. On the other hand, since H is not 2-colorable, no draw is possible in the
Maker-Maker game on H by Proposition I.1.11. Putting the two together, we see that Alice wins
the Maker-Maker game on H as first player, therefore she (Maker) also wins the Maker-Breaker
game on H by Proposition I.1.9. ■

Proposition I.1.29. [Sch78][RW21] Deciding the outcome of the unbiased Maker-Breaker game
is a PSPACE-complete problem, even when restricted to 6-uniform hypergraphs. ■

Aside from these few properties, and despite Maker-Breaker being the most favorable convention
to study as we have mentioned, very few results are known that hold in all generality. There
are basically two, which give a sufficient condition for Breaker and Maker respectively to have a
winning strategy. Historically, the former is due to Erdős and Selfridge [ES73]. They stated it
as a sufficient condition for the second player to have a drawing strategy in the Maker-Maker
game, as the Maker-Breaker convention had not yet been introduced. Since their strategy
consists in blocking the first player, it actually constitutes a winning strategy for Breaker in
the Maker-Breaker game. Beck realized this and published the Maker-Breaker version of the
Erdős-Selfridge theorem, which he generalized to the biased game as follows:

Theorem I.1.30 (Erdős-Selfridge Theorem). [Bec82] A sufficient condition for Breaker to have
a winning strategy for the Maker-Breaker game with bias (p : q) on a hypergraph H is:∑

e∈E(H)
(1 + q)− |e|

p <
1

1 + q
.

For a k-uniform hypergraph H, this condition can be rewritten as:

|E(H)| < (1 + q)
k
p

−1.

In the same paper, Beck also gave a sufficient condition for Maker to have a winning strategy:

Theorem I.1.31. [Bec82] A sufficient condition for Maker to have a winning strategy for the
Maker-Breaker game with bias (p : q) on a hypergraph H is:

∑
e∈E(H)

(
1 + q

p

)−|e|

>
p2q2

(p + q)3 ∆2(H)|V (H)|,

where ∆2(H) denotes the maximum number of edges of H containing x and y over all pairs
{x, y} ⊆ V (H). For a k-uniform hypergraph H, this condition can be rewritten as:

|E(H)| > (p + q)k−3q2

pk−2 ∆2(H)|V (H)|.

The proofs of these results are rather short and both use the same technique. At any point
during the game, each edge e is assigned a "potential": the closer Maker is from completing the
edge e, the higher the potential. If e contains a blue vertex, then its potential is obviously 0,
otherwise its potential is a well-chosen decreasing function of its number of uncolored vertices.
Each vertex x is also assigned a potential, equal to the sum of the potentials of the edges
incident to x. The strategy, be it for Breaker (Theorem I.1.30) or for Maker (Theorem I.1.31),
then simply consists in always picking vertices of maximum potential. In the assumptions of
both theorems, the inequality is conveniently chosen so that this strategy is indeed winning, as
shown after some calculations.
Since general criteria are difficult to obtain, most studies focus on some particular type of
Maker-Breaker game i.e. on a specific hypergraph class. Let us mention some of the main ones.

44 I.1. The Maker-Breaker game: an introduction

I.1.2.2 Games played on the edge set or vertex set of a graph

The hypergraph representation is not always the most intuitive one for a positional game. Indeed,
a lot of games have a natural description that does not use hypergraphs explicitly, although they
do categorize as positional games through some underlying hypergraph. For example, tic-tac-toe
and its generalizations have a geometrical representation by essence: the game board is a grid,
and the winning sets are lines.

a) Games played on the edge set of a complete graph

An important part of the Maker-Breaker literature revolves around instances where the game
board is the complete graph Kn in which the players color the edges alternately, and Maker
wants the subgraph formed by her edges to satisfy some increasing graph property P (which
may depend on n). These are game adaptations of problems studied notably by the Hungarian
school of extremal graph theory, which ask the question of how many edges are needed to
ensure some property P. The underlying hypergraph H

(n)
P may then be defined as follows:

V (H(n)
P) = E(Kn), and E(H(n)

P) is the set of all minimal subgraphs of Kn satisfying property
P. This corresponds to the study of the hypergraph class HP = {H(n)

P , n ≥ 1}. The founding
paper on Maker-Breaker games by Chvátal and Erdős introduces three such examples:

– Connectivity game [CE78]: P is "contain a spanning subtree";
– Hamiltonian cycle game [CE78]: P is "contain a hamiltonian cycle";
– Clique game [CE78]: P is "contain a clique of size k" for some fixed k.

Other properties have been studied since then, including the following:
– H-game [BL00]: P is "contain a copy of H" for some fixed graph H that does not depend

on n (the case H = Kk corresponds to the clique game);
– Minimum-degree game [KS08]: P is "have minimum degree at least d" for some fixed d;
– k-Connectivity game [KS08]: P is "contain a k-vertex-connected spanning subgraph";
– Non-planarity game [HKS+08]: P is "be non-planar";
– Non-k-colorability game [HKS+08]: P is "be non-k-colorable" for some fixed k;
– Perfect matching game [HKS+09]: P is "contain a perfect matching";

For almost all of the games above, it is easy to show that Maker has a winning strategy in the
unbiased case. For this reason, these games are studied with a (1 : q) bias to make them more
interesting. The bias monotonicity ensures that, provided all edges are of size at least 2 (failing
which Maker trivially wins whatever the bias since we assume she plays first), there exists a
value of q under which Maker has a winning strategy and over which Breaker has a winning
strategy:

Definition I.1.32. Let H be a hypergraph such that ark(H) ≥ 2. The threshold bias of H,
denoted by qthr(H), is defined as the smallest integer q ≥ 1 such that Breaker has a winning
strategy for the Maker-Breaker game on H with bias (1 : q).

Determining the value (or, at least, the behavior asymptotically in n) of qthr(H(n)
P) is the central

question. Several bounds on the threshold bias for the games listed above are featured in
[HKS+14]. The probabilistic intuition is a heuristic argument introduced by Chvátal and Erdős
[CE78] to predict the asymptotic behavior of the threshold bias: it expresses the idea that the
threshold value of q where the winner of the game switches might be the same with optimal play
as it would be with random play. For games played on the edge set of Kn with bias (1 : q), Maker
gets a total of N(n, q) :=

⌈ (n
2)

1+q

⌉
edges of Kn (assuming all edges end up colored). Therefore, the

probabilistic intuition suggests that the threshold bias is approximately the value of q where

Chapter I. Preparatory notions and preliminary results 45

the probability that the Erdős-Rényi random graph G(n, N(n, q)) has property P switches from
1− o(1) to o(1). This phenomenon is not very well understood, as it holds for numerous natural
instances but also fails for some. Indeed, the probabilistic intuition is correct for most of the
aforementioned games, but it is incorrect for the triangle game (clique game with k = 3).
Finally, for values of the bias where Maker has a winning strategy, the number of rounds in
which Maker can ensure to win has also been studied extensively in the literature. Again, many
such results are compiled in [HKS+14].

b) Games played on the edge set or vertex set of a general graph

Instead of introducing a bias for the games played on the edge set of Kn, another way to give
Breaker a fair chance is to replace Kn with a sparse graph G. For instance, a lot of results are
known about games played on an Erdős-Rényi random graph G(n, p) [NSS16][CFK+12][HKS+14].
The case of a general (non-random) graph G has not been studied as much, but it has gathered
interest very recently: Duchêne et al. [DGM+23] have obtained a structural characterization of
the outcome for the P4-game on any graph G and for the star-game when G is a tree (for any
fixed star K1,l), yielding linear-time algorithms to solve both. They also show that deciding the
outcome of the connectivity game on general graphs can be done in polynomial time, whereas
the same problem is NP-complete for the perfect matching game and the H-game for some
choices of H.
Contrary to complete graphs, in which all vertex subsets of a given size are the same, it makes
sense in general graphs to also consider Maker-Breaker games where the players pick vertices of
G rather than edges. Let us mention a few of them:

– Domination game [DGP+20]: the winning sets are the dominating sets of G i.e. the
subsets U ⊆ V (G) such that every vertex of G either is in U or has a neighbor in U . It is
shown that the outcome can be decided in polynomial time on trees and cographs, whereas
this problem is NP-complete on bipartite graphs and split graphs. Fast-winning Maker
strategies have also been studied [GIK19].

– Total domination game [GHI+20]: the winning sets are the total dominating sets of G
i.e. the subsets U ⊆ V (G) such that every vertex of G has a neighbor in U . The game is
solved on grids and cacti, whereas deciding the outcome is an NP-complete problem on
bipartite graphs and split graphs.

– Resolving game [KKY20]: the winning sets are the resolving sets of G i.e. the subsets
U ⊆ V (G) such that, for any distinct u, v ∈ V (G), there exists w ∈ V (G) satisfying
distG(u, w) ̸= distG(v, w). On several graph classes, including trees and grids, the game is
solved and fastest-winning Maker strategies are obtained.

– Largest connected subgraph game [BFM+23]: the winning sets are the subsets U ⊆ V (G)
such that G[U] has a connected component of size at least k, for some fixed k. It is
shown that the outcome can be decided in polynomial time on cographs, whereas this
problem is NP-complete on bipartite graphs of diameter 4, split graphs and planar graphs.
Surprisingly, the case of trees remains open.

I.1.2.3 Our case of interest: hypergraphs of small rank

We have just presented a variety of Maker-Breaker games that, truly, are played on a game
board which is a graph even though they can also be represented by a hypergraph. Their study
is much helped by the graph structures in action. What about Maker-Breaker games on a
general hypergraph H, with no geometrical or graph-related structure behind it? Hypergraphs
of small rank are a natural place to start with: the smaller the edges, the more structure there
is, so the easier it should be to get results.

46 I.1. The Maker-Breaker game: an introduction

First of all, the case of hypergraphs containing the empty edge is trivial: Maker wins before the
game even begins. The case where there exists a singleton edge e = {x} is also straightforward:
since Maker plays first, she can pick x and win immediately, whatever the bias. Next, we should
consider 2-uniform hypergraphs i.e. graphs.

a) Solution of the game on graphs

Note that this is very different from the games played on graphs that we have presented
previously: this time, the winning sets are the actual edges of the graph, which is much easier
than the case where the winning sets are, say, the dominating sets of the graph. The solution is
simple:

Theorem I.1.33. Consider the Maker-Breaker game with bias (p : q) on a graph G. If at least
one of the following conditions is satisfied, then Breaker has a winning strategy:

(i) E(G) = ∅.
(ii) p = 1 and q ≥ ∆(G), where ∆(G) denotes the maximum degree of G.

Otherwise, Maker has a winning strategy which wins in just two rounds if p = 1 or one round if
p ≥ 2.

Proof. Obviously, Breaker wins if E(G) = ∅, so assume E(G) ̸= ∅. If p ≥ 2 then Maker wins
on her first move by picking both vertices of some edge, so also assume p = 1. If q < ∆(G),
then Maker wins in two rounds: she can pick a vertex x of maximum degree, Breaker cannot
pick all the neighbors of x at once since q < ∆(G), therefore Maker can pick one of them herself
as her second move and win. If q ≥ ∆(G) then Breaker can always pick all the neighbors of
the vertex that Maker has just picked (completing his move with arbitrary vertices if needed),
which obviously is a winning strategy since it prevents Maker from ever getting both vertices of
any edge. ■

Let us mention that a study of scoring positional games has been initiated recently by Bagan
et al. [BDD+22]. For the Maker-Breaker convention, the score is defined as the number of
winning sets that Maker completes. For the Maker-Maker convention, the score is defined as the
number of winning sets that the first player completes minus the number of winning sets that
the second player completes. In all cases, the game continues until all vertices are colored, and
the first (resp. second) player aims at maximizing (resp. minimizing) the score. The authors
study the scoring game on graphs with no bias, and they obtain a surprising result: in the
scoring version, in contrast with standard positional games, the strong game is easier than
the weak game. Indeed, the problem of determining whether the score with optimal play is
at least k is PSPACE-complete for Maker-Breaker but tractable for Maker-Maker. However,
the Maker-Breaker score with optimal play can be computed in polynomial time for paths and
cycles.

b) The game on hypergraphs of rank 3

Back to the standard Maker-Breaker game, the next case to consider should be hypergraphs of
rank 3, starting with the unbiased version. Things become much more complicated, and very
few publications have tackled the subject prior to our work. There exist mainly two, which both
address restricted subcases simplifying the hypergraph structure: Kutz added the constraint
that any two distinct edges must intersect on at most one vertex [Kut04], whereas Rahman
and Watson (actually studying a more general game) added the constraint that every edge
must contain a vertex of degree 1 [RW20]. Both papers give a structural characterization of the
outcome, from which they derive a polynomial-time algorithm to solve the game under these

Chapter I. Preparatory notions and preliminary results 47

respective constraints. We will go back to these two results in detail at the beginning of Section
II.1, in which we will prove one of the main results of this dissertation, namely a structural
characterization of the outcome for general hypergraphs of rank 3.

c) An alternative view on q-pairing strategies

We conclude with a remark on q-pairing strategies. It starts from a straightforward observation,
which holds for any bias (p : q):

Notation I.1.34. Let H and H ′ be hypergraphs. We write H ′ ≤ H if V (H) = V (H ′) and, for
all e ∈ E(H), there exists e′ ∈ E(H ′) such that e′ ⊆ e.

Proposition I.1.35. Let H and H ′ be hypergraphs such that H ′ ≤ H. Then any winning
strategy for Maker on H is also winning on H ′, and any winning strategy for Breaker on H ′ is
also winning on H. ■

The fact that H ′ ≤ H means H ′ can be obtained from H by shrinking edges. Such an operation
is not neutral in general (it can only benefit Maker, as per Proposition I.1.35) but it simplifies the
hypergraph, since it reduces the size of some edges and edge intersections. Given a hypergraph
H, an idea for Breaker could then be to: virtually shrink some edges, evaluate the outcome on
the resulting simpler hypergraph H ′, and if he has a winning strategy on H ′ then follow the
same strategy on H to ensure a win.
In particular, since the game is solved on graphs, an idea is to turn H into a graph G by
shrinking each edge into an edge of size 2. Note that this is only useful in the case p = 1,
otherwise all graphs are losing for Breaker. We get:

Proposition I.1.36. Let H be a hypergraph. If there exists a graph G ≤ H such that ∆(G) ≤ q,
then Breaker has a winning strategy for the Maker-Breaker game on H with bias (1 : q).

Proof. Theorem I.1.33 ensures that Breaker wins on G, so Breaker wins on H by Proposition
I.1.35. ■

It turns out q-pairing strategies are a particular case of this principle:

Proposition I.1.37. A hypergraph H admits a complete q-pairing if and only if there exists a
graph G ≤ H in which all connected components are of size at most 1 + q.

Proof. Let F be the set of all functions f : E(H) → P2(V (H)) such that f(e) ⊆ e for all
e ∈ E(H). Then, the existence of a complete q-pairing in H can be formulated as follows: there
exists a q-pairing Π, and there exists f ∈ F , such that: for all e ∈ E(H), there exists π ∈ Π
satisfying f(e) ⊆ π. Since F describes all the ways to shrink H into a graph, swapping the first
two existential quantifiers yields a formulation of the existence of a graph G ≤ H whose edges
can be put in bags of size at most q + 1 (the bags being the elements of the q-pairing). ■

A q-pairing strategy for Breaker can thus be understood as follows: virtually shrink H into a
graph G in which all connected components are of size at most 1 + q, and, each time Maker
picks a vertex x, pick all free vertices in the connected component of x. Proposition I.1.36 is
stronger, as it recognizes that picking all free neighbors of x suffices.
Moreover, whereas q-pairing strategies have no natural extension to the case p ≥ 2, Proposition
I.1.35 is valid for any bias. If p = 2 for instance, then graphs are useless since Maker always
wins, but an idea could be to shrink H into a 3-uniform hypergraph H ′. However, unlike the

48 I.1. The Maker-Breaker game: an introduction

outcome on graphs, the outcome on general 3-uniform hypergraphs with a bias (2 : q) is not
known.

I.1.3 Our approach to the Maker-Breaker game and a few basic
results

Up to this point, we have maintained somewhat of an external point of view and kept any
formalism to a minimum. For our own upcoming study of Maker-Breaker games, we now need
to make choices in terms of definitions, notations, and overall approach. Some notions are new,
while some are reformulations of standard concepts adapted to our approach.

I.1.3.1 Playing the game on marked hypergraphs

To justify our assumption that Maker plays first, we have said that we can always reduce to
that case anyway up to considering all possibilities of Breaker’s first move if he plays first. This
actually calls for an explanation, as the game is supposed to start on a hypergraph that is not
precolored. The important point is that the precolored case reduces to the non-precolored case.
Indeed, instead of coloring the vertices in red and blue, another way of updating the hypergraph
throughout the moves is the following (e.g. [Kut04]). When Maker picks a vertex x, that vertex
is removed from the hypergraph and any edge e containing x is replaced by e \ {x}. When
Breaker picks a vertex y, that vertex is removed from the hypergraph and any edge e that
contained y is deleted. That way, the updated edges represent what remains to be done for
Maker to complete the original edges, and Maker wins if and only if some edge gets shrunk all
the way to size 0. Note that the same principle works for the Avoider-Enforcer convention when
replacing Maker with Avoider and Breaker with Enforcer, but not for strong games, in which
precolored positions really are a case in their own right (another reason why weak games are
easier to handle).
Our point of view is in between, as we adopt the above way of updating the hypergraph for
Breaker but not for Maker. Rather than the "shrink and delete" update, we use "mark and
delete":

• Maker marks vertices. This means that vertices picked by Maker are not removed from
the hypergraph, instead they are marked so as to signal that Maker owns them and that
they are not playable anymore. This is fundamentally the same as coloring them in red,
however there will only be one color involved, so it is really just a marking of the vertices.

• Breaker deletes vertices. This means that vertices picked by Breaker are removed from
the hypergraph as well as all edges containing any of them.

Therefore, we consider the game as played on marked hypergraphs, which are a superclass of
hypergraphs:

Definition I.1.38. A marked hypergraph H is defined by:
– a finite vertex set V (H);
– an edge set E(H) consisting of subsets of V (H);
– a set of marked vertices M(H) ⊆ V (H).

A marked hypergraph H with M(H) = ∅ may be referred to as a non-marked hypergraph.

Definition I.1.39. Let H be a marked hypergraph. The non-marked reduction of H is the
hypergraph H ′ defined by V (H ′) = V (H) \M(H) and E(H ′) = {e \M(H), e ∈ E(H)}.

Because of the obvious correspondence between standard hypergraphs and non-marked hyper-

Chapter I. Preparatory notions and preliminary results 49

graphs, all notions that we are about to define for marked hypergraphs apply to hypergraphs
as well. Conversely, we extend all definitions and notations given for hypergraphs at the very
beginning of this chapter to marked hypergraphs, by applying them to the underlying hypergraph
(ignoring the marked vertices), apart from the notion of subhypergraph which is defined as
follows:

Definition I.1.40. Let H be a marked hypergraph. A subhypergraph of H is a marked
hypergraph K such that: V (K) ⊆ V (H), E(K) ⊆ E(H) and M(K) = V (K)∩M(H). We may
say H contains K, or write K ⊆ H, to signify that K is a subhypergraph of H.

We can now give a formal definition for the Maker-Breaker game played on a marked hypergraph,
which clearly coincides with the usual game in the non-marked case.

Definition I.1.41. Let H be a marked hypergraph. Note that some vertices may be marked
already before the game starts. The Maker-Breaker (p : q)-game on H, or simply (p : q)-game
on H, is defined as follows. In each round, Maker selects p non-marked vertices and marks them,
then Breaker selects q non-marked vertices and deletes them. During the last round, if some
player cannot play a full move because there are not enough non-marked vertices left, then that
player simply marks (resp. deletes) all the remaining non-marked vertices. Maker wins if and
only if some edge has all its vertices marked at some point, otherwise Breaker wins.

Remark. It is technically true that an empty edge has all its vertices marked, so if ∅ ∈ E(H)
then Maker automatically wins before the game even begins.

Example. An example of the (1 : 1)-game on the "tic-tac-toe hypergraph" is given in Figure I.1
(with optimal play, actually): here, we see that Maker wins by completing the middle row.

M

M M MB B B

Figure I.1: Evolution of the marked hypergraph during a game. The marked
vertices are circled, as they will be in all figures, and should not be mistaken
for edges of size 1 (this ambiguity will not exist in subsequent figures, where
edges will be represented differently).

The "shrink and delete" update would correspond to playing on the non-marked reductions.
Instead, playing on marked hypergraphs has some advantages. For one, it prevents loss of
information as to past moves of Maker: marking a vertex is a reversible operation, whereas
the original hypergraph cannot be reconstructed after shrinking edges. In particular, edge
intersections are preserved throughout the game (for edges that Breaker has not hit, which are
the only relevant edges to look at anyway), which will be useful later. Moreover, it preserves

50 I.1. The Maker-Breaker game: an introduction

uniformity, meaning a k-uniform marked hypergraph remains k-uniform when updated during
the game: this will be very useful to limit cases in our structural studies. Conversely, non-uniform
hypergraphs can be made uniform by adding marked vertices to all edges of size smaller than
the rank. Now, let us introduce some useful notations:

Notation I.1.42. Let H be a marked hypergraph, and let X, Y ⊆ V (H) \M(H).
• We denote by H+X the marked hypergraph obtained from H by marking the vertices in

X, i.e.: V (H+X) = V (H), E(H+X) = E(H), M(H+X) = M(H) ∪X.
By convention, if K ⊆ H does not entirely contain X then we define K+X = K+(X∩V (K)).

• We denote by H−Y the marked hypergraph obtained from H by deleting the vertices in
Y , i.e.: V (H−Y) = V (H) \ Y , E(H−Y) = {e ∈ E(H), Y ∩ e = ∅}, M(H−Y) = M(H).
By convention, if K ⊆ H does not entirely contain Y then we define K−Y = K−(Y ∩V (K)).

• We may combine these notations, as in H+X−Y = (H+X)−Y = (H−Y)+X if X and Y are
disjoint for instance.

If X = {x} is a singleton then we may write H+x instead of H+X , and the same goes for all the
above notations.

Remark. It should be noted that H−Y is a subhypergraph of H, while H+X is not because of
the additional marked vertices.

When considering the Maker-Breaker game, Notation I.1.42 can be used to update the marked
hypergraph during the game. Indeed, the operators +X and −Y signify the effect of Maker picking
X and Breaker picking Y respectively, so that after a round of play on a marked hypergraph H
where Maker marks X and Breaker deletes Y , it is as though a new game starts on the marked
hypergraph H+X−Y . Using these notations, we can give a recursive definition for the outcome
of the Maker-Breaker game.
First of all, we identify a trivial case, which corresponds to situations where Maker either has
already won (i.e. e ⊆ M(H) for some edge e) or can win with her first move by picking all
remaining non-marked vertices of some edge (i.e. 1 ≤ |e \M(H)| ≤ p for some edge e):

Definition I.1.43. Let H be a marked hypergraph. We say H is a trivial (p : q)-Maker win if
some edge e ∈ E(H) satisfies |e \M(H)| ≤ p. In the unbiased case p = q = 1, we simply say
trivial Maker win.

Remark. Note that the definition of a trivial (p : q)-Maker win actually does not depend on q,
as Breaker does not get to play in this case.

We define the outcome as follows, depending on the number of non-marked vertices. If there is
less than a full round to play (base case), then Maker wins if and only if we are in the trivial
case of Definition I.1.43. If there is at least one full round to play (recursive case), then Maker
wins if and only if she can ensure that she wins after the first round i.e.: there exists a first
move of Maker such that, for any first move of Breaker, Maker wins on the resulting marked
hypergraph. Let us write this formally:

Definition I.1.44. Let H be a marked hypergraph. The fact that H is a (p : q)-Maker win is
defined recursively as follows:

(1) If |V (H) \M(H)| < p + q, then H is a (p : q)-Maker win if and only if H is a trivial
(p : q)-Maker win.

(2) If |V (H) \M(H)| ≥ p + q, then H is a (p : q)-Maker win if and only if there exists
X ∈ Pp(V (H) \ M(H)) such that, for all Y ∈ Pq(V (H+X) \ M(H+X)), H+X−Y is a
(p : q)-Maker win.

Chapter I. Preparatory notions and preliminary results 51

Otherwise, we say H is a (p : q)-Breaker win. In the unbiased case p = q = 1, we simply say
Maker win or Breaker win.

Remark. In a way, this definition assumes that the game continues even if Maker has already
won, until all vertices are taken. Indeed, H might be a trivial (p : q)-Maker win even in the
recursive case.

I.1.3.2 Optimizing time or tokens

When Maker has a winning strategy for the (p : q)-game on H, she may challenge herself by
trying to "optimize" her win in some way. We now present two (marked) hypergraph parameters
that correspond to two different optimization goals. We have already mentioned the first one
before: it is about time optimization i.e. winning in as few rounds as possible (this time, of
course, we consider that the game stops when Maker gets a fully marked edge). The following
notation is introduced in [HKS+14], and we adapt it to marked hypergraphs.

Notation I.1.45. Let H be a marked hypergraph. We define τ
(p:q)
M (H) as the minimum number

of rounds in which Maker can guarantee to get a fully marked edge when playing the (p : q)-game
on H, with τ

(p:q)
M (H) =∞ by convention if H is a (p : q)-Breaker win.

Equivalently, τ
(p:q)
M (H) may be defined recursively as follows:

(0) If H is a trivial (p : q)-Maker win, then define τ
(p:q)
M (H) = 0 if H has a fully marked edge

or τ
(p:q)
M (H) = 1 otherwise.

(1) If H is not a trivial Maker win and |V (H) \M(H)| < p + q, then define τ
(p:q)
M (H) =∞.

(2) If H is not a trivial Maker win and |V (H) \M(H)| ≥ p + q, then define

τ
(p:q)
M (H) = 1 + min

X∈Pp(V (H)\M(H))
max

Y ∈Pq(V (H+X)\M(H+X))
τ

(p:q)
M (H+X−Y).

In the unbiased case p = q = 1, we may simply write τM(H).

Proposition I.1.46. A marked hypergraph H is a trivial (p : q)-Maker win if and only if
τ

(p:q)
M (H) ≤ 1. ■

Studying fast-winning strategies makes sense in a lot of two-player games. On the contrary, we
now introduce our second parameter, which is very specific to positional games and has not
appeared in the literature before to our knowledge. Suppose that Maker, additionally to her
normal moves and at will during the game, is allowed to unmark vertices that she had previously
marked. Since this action does not benefit Maker, the outcome is obviously unchanged, however
Maker can now try and win with as few simultaneous marked vertices as possible:

Notation I.1.47. Let H be a marked hypergraph. Consider the (p : q)-game played on H with
the added rule that Maker, on her turn and before making her normal move, can unmark any
number of vertices that she had previously marked. We define θ

(p:q)
M (H) as the minimum N

such that Maker has a winning strategy ensuring that the updated marked hypergraph has
at most |M(H)|+ N marked vertices throughout, with θ

(p:q)
M (H) =∞ by convention if H is a

(p : q)-Breaker win.
In the unbiased case p = q = 1, we may simply write θM(H).

This can be seen as a version of the Maker-Breaker game played with tokens. Suppose that
Breaker deletes vertices as usual but that Maker, instead of marking vertices, places tokens on
them. To place a token on a vertex, Maker may either move a token that was already placed
and put it somewhere else, or use a new token. Maker wins if and only if, at any point during

52 I.1. The Maker-Breaker game: an introduction

the game, all the vertices of some edge either are marked (meaning they were marked before the
game began) or have tokens on them. Then, θ

(p:q)
M (H) is understood as the minimum number

of tokens that Maker needs in order to win the game with bias (p : q). This interpretation in
terms of tokens is the main one we will use when considering this parameter. Although we do
not study it here, it also seems interesting to consider a version of the game where Maker and
Breaker both have a fixed number of tokens at their disposal, say α and β respectively: θ

(p:q)
M (H)

would then equal the minimum α so that Maker has a winning strategy on H when β =∞.
Such "token positional games" do have some history. In the Roman Empire, people reportedly
played a version of 3× 3 tic-tac-toe called Terni Lapilli [Zas82], where each player had three
tokens that they would place in the first three rounds and move around afterwards (until one
player would align their three tokens, which would never happen with optimal play). However,
a token could only be moved to a square adjacent to it either orthogonally or along one of the
two main diagonals, like a wheel graph. Kraitchik and Gardner mention that the same game
without the adjacency restriction exists in France, under the name Les Pendus [Kra42][Gar59].
The game of Nine Men’s Morris, which likely dates back to the Roman Empire as well [Wal14],
has a similar nature but is a more distant cousin since aligning three tokens simply allows to
remove one of the opponent’s tokens instead of winning the game on the spot.
Back to our two optimization parameters, it is important to note that they are linked together.
Indeed, we have the following inequalities:

Proposition I.1.48. Let H be a (p : q)-Maker win. Then:

θ
(p:q)
M (H)

p
≤ τ

(p:q)
M (H) ≤

⌈
|V (H) \M(H)|

p + q

⌉
.

Moreover, if H is non-marked then we also have ark(H) ≤ θ
(p:q)
M (H).

Proof. Since p + q non-marked vertices are picked in every round (except possibly for the very
last round), we obviously have τ

(p:q)
M (H) ≤

⌈
|V (H)\M(H)|

p+q

⌉
. Moreover, after τ

(p:q)
M (H) rounds of

play, Maker has picked at most pτ
(p:q)
M (H) vertices in total, hence why pτ

(p:q)
M (H) tokens are

sufficient for Maker i.e. θ
(p:q)
M (H) ≤ pτ

(p:q)
M (H). Finally, if H is non-marked then Maker needs at

least as many tokens as the size of a smallest edge in order to fully cover an edge with tokens,
hence the final assertion. ■

In the unbiased non-marked case, we get a simplified statement:

Corollary I.1.49. Let H be a non-marked Maker win. Then:

ark(H) ≤ θM(H) ≤ τM(H) ≤
⌈
|V (H)|

2

⌉
. ■

Remark. For any k ≥ 1 and any n ≥ 2k− 1, there exists a k-uniform non-marked hypergraph H
on n vertices such that k = θM(H) = τM(H), thus achieving the lower bound from Corollary
I.1.49 for both θM and τM . Indeed, simply consider the complete k-uniform hypergraph on n
vertices i.e. E(H) = Pk(V (H)). Maker can play arbitrary moves, and her first k picks will
necessarily form an edge.

We will further investigate these bounds in Section III.2.

Chapter I. Preparatory notions and preliminary results 53

I.1.3.3 A reminder on two key principles

Let us insist on two very important principles mentioned at the beginning of this section, which
we now re-state in terms of the definition and notations that we have just introduced. These
results give a sufficient condition for Maker and Breaker to win respectively. The former will
be absolutely crucial in our study. It states that winning on a marked hypergraph cannot
necessitate more rounds or tokens that winning on any of its subhypergraphs:

Lemma I.1.50 (Monotonicity Lemma). Let H be a marked hypergraph, and let K be a subhy-
pergraph of H. If K is a (p : q)-Maker win, then H is a (p : q)-Maker win also. More precisely,
we have τ

(p:q)
M (H) ≤ τ

(p:q)
M (K) and θ

(p:q)
M (H) ≤ θ

(p:q)
M (K).

Proof. Assume K is a (p : q)-Maker win, otherwise there is nothing to show. Let Στ be a
fastest-winning Maker strategy for the (p : q)-game on K. We use strategy importing and
Proposition I.1.17 (Local Win Principle): the strategy Σ′

τ imported from Στ on H wins as fast
as Στ does on K, so τ

(p:q)
M (H) ≤ τ

(p:q)
M (K). The idea is the same when it comes to tokens: by

taking a winning Maker strategy Σθ on K that uses a minimum number of tokens and importing
it on H, we get a winning Maker strategy on H which plays the same moves as Σθ until the win
and therefore uses the same number of tokens. ■

The latter is about pairing strategies for Breaker in the unbiased case, which we adapt to marked
hypergraphs:

Definition I.1.51. Let H be a marked hypergraph and let Π be a pairing.
• Let e ∈ E(H). We say Π covers e in H if there exists π ∈ Π such that π ⊆ e \M(H).
• We say Π is complete in H if Π covers e in H for all e ∈ E(H), otherwise we say Π is

incomplete in H.

Proposition I.1.52. Let H be a marked hypergraph. If H admits a complete pairing, then H is
a Breaker win.

Proof. This is simply the marked counterpart of the assertion on Maker-Breaker games from
Proposition I.1.21 (Pairing Principle). ■

I.1.3.4 Some operations on marked hypergraphs

We should mention two elementary game-neutral operations on marked hypergraphs:

Proposition I.1.53. The following operations on marked hypergraphs do not affect the outcome
of the Maker-Breaker game for any bias, and they even preserve both τ

(p:q)
M and θ

(p:q)
M :

(i) Adding a new vertex m which is marked and, for some edge e or several, replacing e with
e ∪ {m}.

(ii) Deleting a marked vertex m and replacing each edge e that contained it with an edge
e \ {m}.

Proof. It suffices to address operation (ii), since operation (i) is its reverse. Let H be a marked
hypergraph, and let H ′ be obtained from H by deleting some m ∈M(H) and replacing each
edge e that contained m with an edge e \ {m}. Since marked vertices are not playable, the array
of available moves is the exact same in H as in H ′. Moreover, given the same sequence of moves
played on H and H ′, Maker has completed an edge on H if and only if she has completed an
edge on H ′. Therefore, the result is straightforward. ■

54 I.1. The Maker-Breaker game: an introduction

Playing on a marked hypergraph is thus equivalent to playing on its non-marked reduction,
even when it comes to optimizing time or tokens:

Corollary I.1.54. Replacing a marked hypergraph by its non-marked reduction does not affect
the outcome of the Maker-Breaker game for any bias, and it even preserves both τ

(p:q)
M and θ

(p:q)
M .

Proof. This is just iterating operation (ii) from Proposition I.1.53 until there are no more marked
vertices. ■

A consequence is that it is algorithmically equivalent to consider hypergraphs that are marked
or non-marked, uniform or non-uniform:

Proposition I.1.55. Let k ≥ 1 be an integer. The problems of deciding the outcome of the
unbiased Maker-Breaker game for the following four classes all reduce to each other:

(1) hypergraphs of rank k;
(2) k-uniform hypergraphs;
(3) marked hypergraphs of rank k;
(4) k-uniform marked hypergraphs.

Proof. Proposition I.1.27 gives the reduction from (1) to (2). Obviously, (2) reduces to (3),
being a subclass. Iterating operation (i) from Proposition I.1.53 reduces (3) to (4). Finally,
Corollary I.1.54 reduces (4) to (1). ■

Note that the "uniformization" reduction is not as innocent for non-marked hypergraphs ((1) to
(2)) as it is for marked hypergraphs ((3) to (4)), since it alters the hypergraph structure and
edge intersections in particular. Moreover, uniform hypergraphs are not as handy as they look,
because they cannot be made stable under Maker’s moves: they become either non-uniform
(with the "shrinking" update) or marked (with our "marking" update). For both these reasons,
we usually prefer considering the class of k-uniform marked hypergraphs.
We conclude this section with a construction that will prove useful in Chapter III:

Proposition I.1.56. Let k ≥ 1 be an integer. For every k-uniform non-marked Maker win
H, there exists a (k + 1)-uniform non-marked Maker win H ′ such that: |V (H ′)| = |V (H)|+ 2,
τM(H ′) = τM(H) + 1, θM(H ′) = θM(H) + 1.

Proof. First note that |V (H)| ≥ 2k − 1: indeed, Maker winning means she picks at least k
vertices in total since M(H) = ∅, so Breaker picks at least k − 1 vertices in the meantime. Let
H ′ be defined by: V (H ′) = V (H)∪{v, v} where v and v are new vertices, and E(H ′) = E1 ∪E2
where E1 := {e ∪ {v}, e ∈ E(H)} and E2 := {{v, v} ∪ U, U ⊆ V (H), |U | = k − 1}. We have
|V (H ′)| = |V (H)|+ 2 ≥ 2k + 1, so Maker will get to pick at least k + 1 vertices in total.

Claim 1. Be it in terms of number of rounds or number of tokens, an optimal first round of
play on H ′ is Maker picking v and Breaker picking v.

Proof of Claim 1. Maker has to pick v, otherwise Breaker can pick v himself and win since all
edges of H ′ contain v. Now, if Breaker does not answer by picking v, then Maker can pick v
herself in the second round and play arbitrarily in the k − 1 following rounds: the definition of
E2 guarantees that Maker wins, having only used k + 1 rounds and k + 1 tokens which is best
for her since H ′ is a (k + 1)-uniform hypergraph. □

Claim 1 yields τM(H ′) = 1 + τM((H ′)+v−v) and θM(H ′) = 1 + θM((H ′)+v−v), where the latter
equality comes from the fact that Maker’s token on v is immobilized eternally since all edges

Chapter I. Preparatory notions and preliminary results 55

of H ′ contain v. To conclude, it thus suffices to show that τM((H ′)+v−v) = τM(H) and
θM((H ′)+v−v) = θM(H). This is given by Corollary I.1.54: indeed, we have V ((H ′)+v−v) =
V (H) ∪ {v}, E((H ′)+v−v) = E1 and M((H ′)+v−v) = {v}, so the definition of E1 ensures that
the non-marked reduction of (H ′)+v−v is none other than H. ■

I.2 Subhypergraph collections and their intersection prop-
erties

Any potential move X of Maker possibly comes with urgent threats to Breaker, in the form of
subhypergraphs where Maker would win if Breaker failed to answer the menace immediately.
Our approach to the Maker-Breaker game is centered around the following question: given some
family F of identified danger types, is there, for any possible first move X of Maker, a Breaker
answer Y that hits all associated dangers of type F? Therefore, we are interested in collections
of subhypergraphs and whether they intersect in some sense. In this section, we introduce
hypergraph notions that address such questions, and then we apply them to the Maker-Breaker
game to express the aforementioned idea of Maker’s danger creation and Breaker’s ability to
answer it.

I.2.1 Some notions on marked hypergraphs

I.2.1.1 Intersections and unions of subhypergraph collections

Let us start with the union, whose definition is standard.

Definition I.2.1. Let K = {K1, . . . , Ks} be a finite collection of marked hypergraphs. The
union of K, denoted by ⟨K⟩, is the marked hypergraph defined by: V (⟨K⟩) = ⋃

K∈K V (K),
E(⟨K⟩) = ⋃

K∈K E(K) and M(⟨K⟩) = ⋃
K∈K M(K). We may also use the notation ⟨K⟩ =

K1 ∪ . . . ∪Ks.

Remark. It is possible for two elements of K to share a vertex that is marked in one and
non-marked in the other, in which case that vertex is marked in the union. However, this
will not happen in practice, since we will always consider collections whose elements are all
subhypergraphs of some common marked hypergraph.

When it comes to intersections, we only want to consider non-marked vertices since they are the
only playable ones in the Maker-Breaker game, hence the following definition.

Notation I.2.2. Let K be a collection of marked hypergraphs, and let Y be a set. We define
K − Y := {K ∈ K, V (K) ∩ Y = ∅}.

Definition I.2.3. Let q ≥ 1 be an integer. Let K be a collection of marked hypergraphs and
let H be a marked hypergraph.

• A q-transversal of K in H is a set Y ∈ Pq(V (H) \M(H)) such that K − Y = ∅ i.e.
Y ∩ V (K) ̸= ∅ for all K ∈ K.

• The q-intersection of K in H is the set I
(q)
H (K) of all q-transversals of K in H. In the case

q = 1, we simply call it the intersection of K in H and we write I
(1)
H (K) = IH(K), which

56 I.2. Subhypergraph collections and their intersection properties

we see as a set of vertices rather than a set of singletons to alleviate notations.
• We say K is q-intersecting in H, or simply intersecting in H in the case q = 1, if

I
(q)
H (K) ̸= ∅.

Remark. For K = ∅, we have I
(q)
H (∅) = Pq(V (H) \M(H)). For K ̸= ∅ and q = 1, note that we

simply have IH(K) = (⋂K∈K V (K)) \M(H).

Proposition I.2.4. Let q ≥ 1 be an integer. Let K and K′ be collections of marked hypergraphs,
and let H be a marked hypergraph. If K ⊆ K′, then I

(q)
H (K′) ⊆ I

(q)
H (K). ■

We can state a straightforward characterization of q-intersecting collections in terms of what we
call q-obstructions:

Definition I.2.5. Let q ≥ 1 be an integer. Let K be a collection of marked hypergraphs and
let H be a marked hypergraph. A q-obstruction of K in H is a subcollection O ⊆ K such that
I

(q)
H (O) = ∅. The set of all q-obstructions of K in H is denoted by O(q)

H (K). In the case q = 1,
we simply call this an obstruction of K in H and we write O(1)

H (K) = OH(K).

Proposition I.2.6. Let q ≥ 1 be an integer. Let K be a collection of marked hypergraphs and
let H be a marked hypergraph. Then I

(q)
H (K) = ∅ if and only if O(q)

H (K) ̸= ∅.

Proof. If I
(q)
H (K) = ∅, then K ∈ O(q)

H (K) hence O(q)
H (K) ̸= ∅. Conversely, if K is q-intersecting

in H, then so are all of its subcollections by Proposition I.2.4 hence O(q)
H (K) = ∅. ■

If a collection is not q-intersecting, when is it possible to make it q-intersecting by removing q′

non-marked vertices, given some q′ (not necessarily related to q)? This question can also be
answered in terms of q-obstructions. By Proposition I.2.6, the fact that a collection K is not
q-intersecting in H equates to K admitting q-obstructions in H. We now show that K can be
made q-intersecting in H, by removing q′ non-marked vertices, if and only if the unions of its
q-obstructions in H form a q′-intersecting collection in H. More precisely:

Proposition I.2.7. Let q, q′ ≥ 1 be integers. Let K be a finite collection of marked hypergraphs
and let H be a marked hypergraph. Let Y ∈ Pq′(V (H) \M(H)). Then I

(q)
H (K − Y) ̸= ∅ if and

only if Y ∈ I
(q′)
H

(
{⟨O⟩,O ∈ O(q)

H (K)}
)
.

Proof. If I
(q)
H (K − Y) = ∅, then defineO := K−Y ⊆ K: we haveO ∈ O(q)

H (K) and Y ∩V (⟨O⟩) =
∅, so Y ̸∈ I

(q′)
H

(
{⟨O⟩,O ∈ O(q)

H (K)}
)
. Conversely, if Y ̸∈ I

(q′)
H

(
{⟨O⟩,O ∈ O(q)

H (K)}
)
, then let

O ∈ O(q)
H (K) such that Y ∩V (⟨O⟩) = ∅: we have O ⊆ K−Y , so I

(q)
H (K − Y) ⊆ I

(q)
H (O) = ∅. ■

Remark. The fact that the collection K is finite ensures that its q-obstructions also are, so
that their unions are well defined. In practice, as mentioned before, we will only consider
collections whose elements are all subhypergraphs of some common marked hypergraph, and
such collections are obviously finite.

Example. Figure I.2 illustrates Proposition I.2.7 on an example, in the case q = q′ = 1. The edges
inside hypergraphs are not represented as they are irrelevant to intersections. We consider the
collection K = {H1, H2, H3, H4} (left of Figure I.2) where H1, H2, H3 and H4 are subhypergraphs
of some common marked hypergraph H (not drawn).

• On the one hand, we can see that K is not intersecting in H, but there are four non-marked
vertices y such that K − y is intersecting in H: those are y1, y2, y3 and y4. For instance,

Chapter I. Preparatory notions and preliminary results 57

IH(K − y1) = IH({H3, H4}) = {y3} ≠ ∅. Note that, if y5 denotes the bottom-right vertex,
we have IH(K − y5) = IH({H1, H4}) = ∅ because the only common vertex of H1 and H4
is marked, hence why y5 is not on the list.

• On the other hand, there are six obstructions of K in H: O1 = {H1, H2, H3, H4} = K,
O2 = {H1, H4}, O3 = {H1, H2, H3}, O4 = {H1, H2, H4}, O5 = {H1, H3, H4}, O6 =
{H2, H3, H4}. Their respective unions, which are represented on the right of Figure I.2,
have exactly four common non-marked vertices: y1, y2, y3 and y4. In other words, we have
IH({⟨O⟩,O ∈ OH(K)}) = {y1, y2, y3, y4}, in accordance with Proposition I.2.7.

H3

Figure I.2: Left: definition of H1, H2, H3, H4. Right (top row then bottom
row, from left to right): ⟨O1⟩, ⟨O2⟩, ⟨O3⟩, ⟨O4⟩, ⟨O5⟩, ⟨O6⟩.

I.2.1.2 Pointed marked hypergraphs

Definition I.2.8. A pointed marked hypergraph is a pair (H, X) where H is a marked hypergraph
and X ⊆ V (H) \M(H) is nonempty. When X = {x} is a singleton, the pair is usually written
as (H, x).

Definition I.2.9. We say two pointed marked hypergraphs (H, X) and (H ′, X ′) are isomorphic,
and we write (H, X) ∼ (H ′, X ′), if there exists a bijection φ : V (H)→ V (H ′) such that:

• For all e ⊆ V (H): e ∈ E(H) ⇐⇒ φ(e) ∈ E(H ′).
• For all v ∈ V (H): v ∈M(H) ⇐⇒ φ(v) ∈M(H ′).
• φ(X) = X ′.

Notation I.2.10. Let F be a family of pointed marked hypergraphs. Let H be a marked
hypergraph, and let X ⊆ V (H) \M(H) be nonempty. We denote by XF(H) the collection of
all subhypergraphs K of H such that X ⊆ V (K) and (K, X) is isomorphic to an element of F .

I.2.2 Dangers in the Maker-Breaker game

Back to the Maker-Breaker game, we adopt Breaker’s point of view. The idea is to consider
strategies for Breaker that consist, on each turn, in focusing solely on some identified immediate
threats and playing a move that eliminates all these specific threats (if possible). Let (p : q) be

58 I.2. Subhypergraph collections and their intersection properties

any fixed bias.

I.2.2.1 Definitions and first results

Definition I.2.11. A danger is a pointed marked hypergraph (D, X) where |X| = p such that
D+X is a (p : q)-Maker win.

Remark. Even though this definition depends on the bias (p : q), we prefer to avoid a more
rigorous but heavier denomination such as "(p : q)-danger".

Definition I.2.12. Let H be a marked hypergraph and X ∈ Pp(V (H) \M(H)). A danger at
X in H is a subhypergraph D of H containing X such that (D, X) is a danger.

Dangers at X constitute urgent threats for Breaker in the case Maker plays X. Indeed, if Maker
plays X then any danger D at X must be immediately destroyed i.e. Breaker must play some Y
such that Y ∩ V (D) ̸= ∅ next, otherwise the resulting marked hypergraph would contain D+X

and thus be a (p : q)-Maker win according to Monotonicity Lemma I.1.50. Therefore, if KX is
any collection of dangers at X in H and Maker plays X, then Breaker is forced to "destroy"
all elements of KX i.e. answer with some Y in the q-intersection of KX in H+X (the reason
why the q-intersection is taken in H+X is because the vertices in X are no longer playable for
Breaker after Maker has played X). We thus introduce the following key property, which is
necessary for Breaker to win:

Notation I.2.13. Let H be a marked hypergraph such that |V (H) \M(H)| ≥ p + q. For
all X ∈ Pp(V (H) \ M(H)), let KX be a collection of dangers at X in H. We denote by
J (p:q)((KX)X , H) the following property:

∀X ∈ Pp(V (H) \M(H)), I
(q)
H+X (KX) ̸= ∅.

Remark. Dangers are not relevant when there is less than one full round of play left, hence the
assumption that |V (H) \M(H)| ≥ p + q. This also avoids some dull cases where the property
would fail on a technicality: indeed, if KX = ∅ then I

(q)
H+X (KX) = Pq(V (H+X) \M(H+X)),

which is nonempty if and only if |V (H) \M(H)| ≥ p + q.

Proposition I.2.14. Let H be a marked hypergraph such that |V (H) \M(H)| ≥ p + q. For
all X ∈ Pp(V (H) \ M(H)), let KX be a collection of dangers at X in H. Then, for all
X ∈ Pp(V (H) \M(H)) and for all Y ∈ Pq(V (H+X) \M(H+X)) such that Y ̸∈ I

(q)
H+X (KX),

H+X−Y is a (p : q)-Maker win.

Proof. Since Y ̸∈ I
(q)
H+X (KX), there exists D ∈ KX such that Y ∩ V (D) = ∅. By definition

of a danger at X, D+X is a (p : q)-Maker win, and it is a subhypergraph of H+X−Y because
Y ∩ V (D) = ∅. Therefore, H+X−Y is a (p : q)-Maker win by Monotonicity Lemma I.1.50. ■

Corollary I.2.15. Let H be a marked hypergraph such that |V (H) \M(H)| ≥ p + q. For all
X ∈ Pp(V (H) \M(H)), let KX be a collection of dangers at X in H. If H is a (p : q)-Breaker
win, then J (p:q)((KX)X , H) holds.

Proof. suppose J (p:q)((KX)X , H) does not hold. Maker can then play some X such that
I

(q)
H+X (KX) = ∅, so that Breaker’s answer Y cannot be in I

(q)
H+X (KX), thus ensuring that

H+X−Y is a (p : q)-Maker win by Proposition I.2.14. Therefore, H is a (p : q)-Maker win. ■

When considering the collection of all dangers at each X, this condition is also sufficient:

Chapter I. Preparatory notions and preliminary results 59

Theorem I.2.16. Let H be a marked hypergraph such that |V (H) \M(H)| ≥ p + q. For all
X ∈ Pp(V (H) \ M(H)), let KX be the collection of all dangers at X in H. Then H is a
(p : q)-Breaker win if and only if J (p:q)((KX)X , H) holds.

Proof. The "only if" direction is given by Corollary I.2.15, so we show the "if" direction. Suppose
J (p:q)((KX)X , H) holds. Maker plays some X ∈ Pp(V (H) \M(H)), and Breaker answers with
some Y ∈ I

(q)
H+X (KX). Since Y ∩ V (H−Y) = ∅, we have H−Y ̸∈ KX i.e. H−Y is not a danger

at X in H. By definition, this means (H−Y)+X = H+X−Y is a (p : q)-Breaker win, so H is a
(p : q)-Breaker win. ■

I.2.2.2 Considering a fixed family of dangers

Theorem I.2.16 is unlikely to be useful from an algorithmic point of view, since identifying
general dangers at a given X is as difficult as identifying (p : q)-Maker wins. We would like
the same equivalence to hold for smaller collections KX so that property J (p:q)(· , ·) is easier to
check. A natural idea is to consider dangers at X of the same type for all X, belonging to some
fixed family of dangers F that would be independent of X and easy to recognize:

Definition I.2.17. Let F be a family of dangers. An element of F may be referred to as an
F-danger. If H is a marked hypergraph and X ∈ Pp(V (H) \M(H)), then an element of the
collection XF(H) (recall Notation I.2.10) is called an F-danger at X in H.

For any family of dangers F , Breaker needs the ability to destroy all F -dangers at whatever X
that Maker plays on her first move, according to Corollary I.2.15. Actually, this remains true for
all subsequent rounds, hence the following notation and necessary condition for a Breaker win:

Notation I.2.18. Let F be a family of dangers. Let r ≥ 1 be an integer, and let H be a marked
hypergraph such that |V (H) \M(H)| ≥ r(p + q). We recursively define the following properties:

• Property J
(p:q)
1 (F , H) refers to property J (p:q)((XF(H))X , H) i.e.:

∀X ∈ Pp(V (H) \M(H)), I
(q)
H+X (XF(H)) ̸= ∅.

• Property J (p:q)
r (F , H), for r ≥ 2, means that:

∀X ∈ Pp(V (H) \M(H)), ∃ Y ∈ I
(q)
H+X (XF(H)) such that J

(p:q)
r−1 (F , H+X−Y) holds.

In the unbiased case p = q = 1, we will simply write Jr(F , H) instead of J (p:q)
r (F , H). For

any r ≥ 1, property J (p:q)
r (F , H) should be understood as: "in each of the first r rounds of the

Maker-Breaker game played on H, Breaker will be able to destroy all F -dangers at the subset
that Maker has just played".

Proposition I.2.19. Let F be a family of dangers. Let r ≥ 1 be an integer, and let H be a
marked hypergraph such that |V (H) \M(H)| ≥ r(p + q). If H is a (p : q)-Breaker win, then
J (p:q)

r (F , H) holds.

Proof. We proceed by induction on r. For r = 1, this is simply Corollary I.2.15 with KX =
XF(H). Now let r ≥ 2 such that property J

(p:q)
r−1 (F , ·) is necessary for Breaker to win. Let

X ∈ Pp(V (H) \M(H)): the condition Y ∈ I
(q)
H+X (XF(H)) is necessary by Proposition I.2.14,

and the condition that J
(p:q)
r−1 (F , H+X−Y) holds is necessary by the induction hypothesis, which

concludes. ■

We can make some observations:

60 I.2. Subhypergraph collections and their intersection properties

Proposition I.2.20. Let F be a family of dangers. Let r ≥ 1 be an integer, and let H be a
marked hypergraph such that |V (H) \M(H)| ≥ r(p + q).

(i) For any integer 1 ≤ s ≤ r: J (p:q)
r (F , H) =⇒ J (p:q)

s (F , H).
(ii) For any family of dangers G ⊆ F : J (p:q)

r (F , H) =⇒ J (p:q)
r (G, H).

(iii) For any subhypergraph K ⊆ H such that |V (K) \M(K)| ≥ r(p + q): J (p:q)
r (F , H) =⇒

J (p:q)
r (F , K).

Proof. Item (i) is straightforward. Item (ii) comes from the fact that, for all X ∈ Pp(V (H) \
M(H)), we have XG(H) ⊆ XF(H) hence I

(q)
H+X (XF(H)) ⊆ I

(q)
H+X (XG(H)). Let us now prove

item (iii) by induction on r.
– Let us first show the implication for r = 1. Suppose J

(p:q)
1 (F , H) holds. Let X ∈

Pp(V (K)\M(K)): we want to show that there exists Y ∈ I
(q)
K+X (XF(K)). By J

(p:q)
1 (F , H),

there exists Y ′ ∈ I
(q)
H+X (XF(H)). We would like to define Y := Y ′, but we might not have

Y ′ ⊆ V (K). Instead, let Y ∈ Pq(V (K+X) \M(K+X)) such that Y ′ ∩ V (K) ⊆ Y . For
all D ∈ XF(K) ⊆ XF(H), we have Y ′ ∩ V (D) ̸= ∅ since Y ′ ∈ I

(q)
H+X (XF(H)) hence

Y ∩ V (D) ̸= ∅, therefore Y ∈ I
(q)
K+X (XF(K)).

– Now, let r ≥ 2 such that the implication is true for J
(p:q)
r−1 (F , ·). Suppose J (p:q)

r (F , H) holds.
Let X ∈ Pp(V (K) \M(K)): we want to show that there exists Y ∈ I

(q)
K+X (XF(K)) such

that J
(p:q)
r−1 (F , K+X−Y) holds. By J (p:q)

r (F , H), there exists Y ′ ∈ I
(q)
H+X (XF(H)) such that

J
(p:q)
r−1 (F , H+X−Y ′) holds. Again, let Y ∈ Pq(V (K+X)\M(K+X)) such that Y ′∩V (K) ⊆ Y .

For all D ∈ XF(K) ⊆ XF(H), we have Y ′ ∩ V (D) ̸= ∅ since Y ′ ∈ I
(q)
H+X (XF(H)) hence

Y ∩ V (D) ̸= ∅, therefore Y ∈ I
(q)
K+X (XF(K)). Moreover, the fact that Y ′ ∩ V (K) ⊆ Y

ensures that K+X−Y is a subhypergraph of H+X−Y ′ , so the fact that J
(p:q)
r−1 (F , H+X−Y ′)

holds implies that J
(p:q)
r−1 (F , K+X−Y) also holds by the induction hypothesis. ■

In general, J (p:q)
r (F , H) is stronger than J

(p:q)
r−1 (F , H), because dangers can appear during the

game: every time Maker plays some X, that might create new F -dangers elsewhere since the
vertices in X are now marked. Of course, dangers can also disappear during the game: every
time Breaker plays some Y , that removes all F -dangers intersecting Y .

Example. The (non-marked) hypergraph H from Figure I.3 illustrates the difference between
properties J

(p:q)
1 (F , H) and J

(p:q)
2 (F , H). Assume p = q = 1, and suppose the F -dangers in H are

as follows: xF(H) = {D1, D2}, zF(H) = {D3, D4}, and aF(H) = ∅ for all a ∈ V (H) \ {x, z}.
Since IH+x(xF(H)) = {y} ̸= ∅ and IH+z(zF(H)) = {u, v} ̸= ∅, property J1(F , H) holds.
Suppose that Maker picks x: Breaker has to pick y to destroy the F -dangers at x. Now suppose
that, though C was not an F-danger at z, C+x is one: this means that, by picking x in the
first round, Maker has created a third F-danger at z in addition to the already existing ones
D3 and D4. Since y ̸∈ V (D3) ∪ V (D4) ∪ V (C+x), we have zF(H+x−y) = {D3, D4, C+x} hence
IH+x−y+z(zF(H+x−y)) = ∅, so J1(F , H+x−y) does not hold and neither does J2(F , H). After
the first round, Maker can simply pick z and go on to win.

Given a class H of marked hypergraphs, which we will usually assume contains no trivial
(p : q)-Maker wins, we would like to find a family of dangers F as simple as possible and a
constant r as small as possible such that the necessary condition from Proposition I.2.19 is
actually sufficient on H, that is:

For all H ∈ H: H is a (p : q)-Breaker win if and only if J (p:q)
r (F , H) holds. (∗)

Since property J (p:q)
r (F , H) does not seem to guarantee anything after the first r rounds, a

statement such as (∗) is very strong. In particular, if F is efficiently identifiable i.e. deciding

Chapter I. Preparatory notions and preliminary results 61

V (D1) V (D2) V (D3) V (D4)

V (C)

Figure I.3: Some vertex subsets in a hypergraph. The edges are not represented.

whether there exists an F-danger at a given X in a given H ∈ H on n vertices can be
done in polynomial time P (n), then (∗) would yield a O(n2rP (n)) polynomial-time algorithm
determining the outcome of the Maker-Breaker game on the class H.
One of the main results of this dissertation will be to exhibit a simple and efficiently identifiable
family of dangers F such that (∗) holds for p = q = 1 and r = 3 on the class H of all 3-uniform
marked hypergraphs.

I.2.2.3 Danger prevention

The goal of this segment is to show that J (p:q)
r (F , H) is equivalent to J

(p:q)
1 (F∗(r−1), H) for some

family of dangers F∗(r−1) that we are going to introduce. In other words, preventing issues with
the F -dangers that could arise in the first r rounds comes down to dealing with a larger family
of dangers as soon as the first round. Even though all arguments generalize to any bias, we set
p = q = 1 to not aggravate the notations, which is enough for us anyway since the results below
will only be applied in the unbiased case.
The idea is the following. Say Breaker wants to be able to manage the F-dangers in the
second round. Maker now picks x. As Breaker ponders his answer y, he already needs to
think about the (yet unknown) vertex z that Maker is going to pick next. Now that x is
marked, the collection of F -dangers at z is zF(H+x): Breaker must choose a vertex y such that
zF(H+x) − y is intersecting, so as to be able to destroy all the remaining F-dangers at z in
the next round. By Proposition I.2.7, this means y must hit all unions of obstructions of the
collection zF(H+x), or equivalently (from the viewpoint of H rather than H+x) of the collection
{K ⊆ H, K+x ∈ zF(H+x)}. This must hold for all possibilities of Maker’s next pick z. Here is
the rigorous result:

Proposition I.2.21. Let F be a family of dangers. Let H be a marked hypergraph such that
|V (H) \M(H)| ≥ 4, and let x ∈ V (H) \M(H) and y ∈ V (H+x) \M(H+x). Then the following
two assertions are equivalent:

(a) J1(F , H+x−y) holds.

(b) y ∈ IH+x

 ⋃
z∈V (H+x)\M(H+x)

{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})}
.

Proof. We make a series of innocuous rewritings before applying Proposition I.2.7. First of all,
recall that by definition:

(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y), IH+x−y+z

(
zF(H+x−y)

)
̸= ∅.

The subhypergraphs of H+x−y are exactly the subhypergraphs of H+x that do not contain y, so:
(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y), IH+x−y+z

(
zF(H+x)− y

)
̸= ∅.

Consider the collection zF(H+x)− y: since its elements do not contain y, if it is nonempty then

62 I.2. Subhypergraph collections and their intersection properties

its intersection in H+x−y+z is the same as in H+x+z. Therefore:
(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y), IH+x+z

(
zF(H+x)− y

)
̸= ∅.

Since the intersection of a collection does not depend on the marked vertices of its elements,
this can be reformulated in terms of subhypergraphs of H rather than H+x:

(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y), IH+x+z

(
{K ⊆ H, K+x ∈ zF(H+x)} − y

)
̸= ∅.

We now use Proposition I.2.7 applied in H+x+z with q = q′ = 1 and K = {K ⊆ H, K+x ∈
zF(H+x)}, which yields:

(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y),
y ∈ IH+x+z

(
{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})}

)
.

Since y ̸= z, this can be rewritten as:
(a) ⇐⇒ ∀ z ∈ V (H+x−y) \M(H+x−y),

y ∈ IH+x

(
{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})}

)
.

Finally, the assertion "y ∈ IH+x({⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})})" would triv-
ially be true for z = y since all elements of {K ⊆ H, K+x ∈ zF(H+x)} contain z. Therefore:

(a) ⇐⇒ ∀ z ∈ V (H+x) \M(H+x),
y ∈ IH+x

(
{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})}

)
⇐⇒ y ∈ IH+x

 ⋃
z∈V (H+x)\M(H+x)

{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)})}
.■

The subhypergraphs ⟨O⟩ from Proposition I.2.21 that contain x may thus be interpreted as
dangers at x, since Breaker has to destroy them. We will call them F O-dangers at x:

Notation I.2.22. Let F be a family of dangers. We denote by F O the family of all pointed
marked hypergraphs (D, x) such that, for some non-marked z ̸= x which we call an F-dangerous
vertex in (D, x), we can write D = ⟨O⟩ where the collection O satisfies the following properties:

– each K ∈ O containing x is such that K+x is an F -danger at z;
– each K ∈ O not containing x is already an F -danger at z;
– ID+x+z(O) = ∅.

In other words, given a marked hypergraph H and a vertex x ∈ V (H) \M(H), we have:

xF O(H) =
⋃

z∈V (H+x)\M(H+x)
{⟨O⟩,O ∈ OH+x+z({K ⊆ H, K+x ∈ zF(H+x)}), x ∈ V (⟨O⟩)}.

Example. Going back to the example in Figure I.3, we have {D3, D4, C+x} ⊆ zF(H+x) i.e.
O := {D3, D4, C} ⊆ {K ⊆ H, K+x ∈ zF(H+x)}, moreover IH+x+z(O) = ∅ so D := ⟨O⟩ =
D3 ∪D4 ∪ C ∈ xF O(H).

Proposition I.2.23. Let F and G be families of dangers. If G ⊆ F , then GO ⊆ F O.

Proof. This is clear since a G-danger at z is also an F -danger at z. ■

Proposition I.2.24. Let F be a family of dangers. Then F O is a family of dangers.
More precisely: for all (D, x) ∈ F O, if |V (D+x) \M(D+x)| ≥ 2 then J1(F , D+x) does not hold
so D+x is a Maker win, otherwise D+x is a trivial Maker win.

Proof. Let (D, x) ∈ F O, and write D = ⟨O⟩ as in the definition with z an F -dangerous vertex in

Chapter I. Preparatory notions and preliminary results 63

(D, x). If |V (D+x)\M(D+x)| ≥ 2, then we can apply Proposition I.2.19: since O+x ⊆ zF(D+x),
we have ID+x+z(zF(D+x)) ⊆ ID+x+z(O+x) = ID+x+z(O) = ∅, therefore J1(F , D+x) does not
hold so D+x is a Maker win. If |V (D+x) \M(D+x)| ≤ 1 i.e. V (D+x) \M(D+x) = {z}, then let
K ∈ O: (K+x)+z is a Maker win whose vertices are all marked, so (K+x)+z has a fully marked
edge, therefore K+x is a trivial Maker win and so is D+x ⊇ K+x. ■

Proposition I.2.21 instantly yields the following result:

Proposition I.2.25. Let F be a family of dangers. Let H be a marked hypergraph such that
|V (H) \M(H)| ≥ 4, and let x ∈ V (H) \M(H) and y ∈ V (H+x) \M(H+x). Moreover, suppose
that J1(F , H) holds. Then the following two assertions are equivalent:

(a) J1(F , H+x−y) holds.
(b) y ∈ IH+x

(
xF O(H)

)
.

Proof. Given the characterization of xF O(H) from Notation I.2.22, the only difference with
Proposition I.2.21 is that the subhypergraphs ⟨O⟩ from Proposition I.2.21 do not necessarily
contain x, whereas F O-dangers at x do. This is where we use the additional assumption
that J1(F , H) holds. It is impossible that x ̸∈ V (⟨O⟩) for some O ∈ OH+x+z({K ⊆ H, K+x ∈
zF(H+x)}): indeed, we would then have O ⊆ zF(H) hence IH+z(zF(H)) ⊆ IH+z(O) = ∅,
contradicting J1(F , H). Therefore, under property J1(F , H), the collection from item (b) in
Proposition I.2.21 coincides exactly with xF O(H). ■

Let us now introduce the families of dangers that correspond to the multiple-round prevention
of intersection issues with F -dangers.

Notation I.2.26. Let F be a family of dangers. For all r ∈ N, we define a family of dangers
F∗r, recursively as follows:

• F∗0 := F .
• For r ≥ 1: F∗r := F ∪ (F∗(r−1))O. The family F∗1 = F ∪ F O may be denoted as F∗.

Proposition I.2.27. Let F be a family of dangers, and let r ∈ N.
(i) For any family of dangers G ⊆ F : G∗r ⊆ F∗r.
(ii) For any integer 0 ≤ s ≤ r: F∗s ⊆ F∗r.
(iii) F∗r = (F∗(r−1))∗.

Proof. (i) We proceed by induction on r. For r = 0, there is nothing to show. Now
suppose that r ≥ 1 and that the result holds for r − 1. Let G ⊆ F . By definition:
G∗r = G ∪ (G∗(r−1))O. We have G ⊆ F , moreover G∗(r−1) ⊆ F∗(r−1) by the induction
hypothesis hence (G∗(r−1))O ⊆ (F∗(r−1))O, so in conclusion G∗r ⊆ F ∪ (F∗(r−1))O = F∗r.

(ii) Again, we proceed by induction on r. For r = 0, there is nothing to show. Now suppose
that r ≥ 1 and that the result holds for r − 1. Let 0 ≤ s ≤ r be an integer: we have
F∗s = F ∪ (F∗(s−1))O by definition. Moreover, the induction hypothesis ensures that
F∗(s−1) ⊆ F∗(r−1) hence (F∗(s−1))O ⊆ (F∗(r−1))O, therefore F∗s ⊆ F ∪ (F∗(r−1))O = F∗r.

(iii) Since F ⊆ F∗(r−1), we have F∗r = F ∪ (F∗(r−1))O ⊆ F∗(r−1) ∪ (F∗(r−1))O = (F∗(r−1))∗.
On the other hand, we have F∗(r−1) ⊆ F∗r by item (ii) and (F∗(r−1))O ⊆ F∗r by definition
of F∗r, therefore (F∗(r−1))∗ = F∗(r−1) ∪ (F∗(r−1))O ⊆ F∗r. ■

We can now rephrase our intersection property in terms of dangers in the first round only:

Proposition I.2.28. Let F be a family of dangers and let r ≥ 1 be an integer. Then, for all
marked hypergraph H such that |V (H)\M(H)| ≥ 2r, the properties Jr(F , H) and J1(F∗(r−1), H)
are equivalent.

64 I.2. Subhypergraph collections and their intersection properties

Proof. We proceed by induction on r. For r = 1, this statement is a tautology. Let r ≥ 2 such
that the equivalence holds for r − 1. By definition, Jr(F , H) means that:

∀x ∈ V (H) \M(H) ,∃ y ∈ IH+x(xF(H)) such that Jr−1(F , H+x−y) holds
ind. hyp.⇐⇒ ∀x ∈ V (H) \M(H) ,∃ y ∈ IH+x(xF(H)) such that J1(F∗(r−2), H+x−y) holds

Pro. I.2.25⇐⇒ ∀x ∈ V (H) \M(H) ,∃ y ∈ IH+x(xF(H)) such that y ∈ IH+x

(
x(F∗(r−2))O(H)

)
⇐⇒ ∀x ∈ V (H) \M(H) ,∃ y ∈ IH+x

(
x(F ∪ (F∗(r−2))O)(H)

)
⇐⇒ J1(F ∪ (F∗(r−2))O, H)
⇐⇒ J1(F∗(r−1), H).

The use of Proposition I.2.25 is justified by the fact that both Jr(F , H) and J1(F∗(r−1), H) imply
J1(F∗(r−2), H): indeed, Jr(F , H) implies Jr−1(F , H) which is equivalent to J1(F∗(r−2), H) by the
induction hypothesis, while J1(F∗(r−1), H) implies J1(F∗(r−2), H) because F∗(r−1) ⊇ F∗(r−2). ■

The advantage of J1(F∗(r−1), H) over the equivalent property Jr(F , H) is that we study a single
fixed hypergraph H, instead of having to consider all hypothetical evolutions of H during r
rounds. However, this is done at the cost of a bigger and possibly much more complex family
of dangers. If F∗(r−1) is somewhat manageable, then we will prefer to work with property
J1(F∗(r−1), H).

I.2.2.4 Restricted obstructions

There can be redundancies in the family F∗ = F ∪ F O, in the sense that an F O-danger at x
might contain an F -danger at x. Such F O-dangers may be ignored:

Notation I.2.29. Let F be a family of dangers. We denote by F O,rest ⊆ F O the family of all
(D, x) ∈ F O such that D contains no F -danger at x.

Proposition I.2.30. Let F is a family of dangers. Let H be a marked hypergraph and let
x ∈ V (H) \M(H). Then IH+x(xF∗(H)) = IH+x

(
x(F ∪ F O,rest)(H)

)
.

Proof. Obviously, IH+x(xF∗(H)) ⊆ IH+x

(
x(F ∪ F O,rest)(H)

)
since F∪F O,rest ⊆ F∗. Moreover,

let y ∈ IH+x

(
x(F ∪ F O,rest)(H)

)
: for all D ∈ xF∗(H), either D contains an F-danger D′ at

x hence y ∈ V (D′) ⊆ V (D), or by definition D ∈ xF O,rest(H) hence y ∈ V (D). Therefore
IH+x

(
x(F ∪ F O,rest)(H)

)
⊆ IH+x(xF∗(H)), which concludes. ■

I.2.3 First results: the example of trivial dangers

As a concrete example, let us consider one of the simplest families of dangers imaginable: dangers
that have exactly one edge. Let (p : q) be any fixed bias.

Definition I.2.31. A p-trivial danger of size k is a pointed marked hypergraph (D, X) with
|X| = p such that: D has exactly one edge e, V (D) = X ∪ e, |e| = k, |e \M(e)| > p and
|e \ (M(e) ∪X)| ≤ p. In the case p = 1, we may simply call this a trivial danger of size k.

Notation I.2.32. We denote by F (p)
triv the family of all p-trivial dangers (of all sizes).

Chapter I. Preparatory notions and preliminary results 65

Remark. A p-trivial danger (D, X) is indeed a danger for any q, since D+X contains an edge
with between 1 and p non-marked vertices and thus is a trivial (p : q)-Maker win. For p = 1,
there exists a unique trivial danger (D, x) of given size up to isomorphism: D consists of a
single edge e that has exactly two non-marked vertices including x (see Figure I.4). For p ≥ 2,
there is no unicity (see Figure I.5).

x

e

Figure I.4: The trivial danger (D, x) of size 5.

X e eX X e

Figure I.5: Examples of 3-trivial dangers (D, X) of size 5.

I.2.3.1 A matter of survival... and more

Proposition I.1.46 has already stated the straightforward observation that Breaker survives the
first round (i.e. τ

(p:q)
M (H) ≥ 2) if and only if H is not a trivial (p : q)-Maker win (i.e. all edges of

H have more than p non-marked vertices). So, when does Breaker survive the first two rounds?
For this, he needs all edges to have more than p non-marked vertices, not only in H, but also
in the updated marked hypergraph obtained after the first round: therefore, his first move Y
must destroy all p-trivial dangers at Maker’s first move X. More generally, the exact value of
τ

(p:q)
M (H) is determined by how long Breaker can cope with the p-trivial dangers for. For as long

as Breaker destroys the p-trivial dangers at each X that Maker plays, he cannot lose, since all
edges have more than p non-marked vertices after his move. Conversely, as soon as Breaker fails
to destroy all the p-trivial dangers at some X played by Maker, he loses, since this means some
edge will have at most p non-marked vertices after his move: Maker can win by simply taking
all of them in the next round. Formally, this reasoning yields:

Proposition I.2.33. Let H be a marked hypergraph that is not a trivial (p : q)-Maker win, and
let r ≥ 1 be an integer. Then τ

(p:q)
M (H) ≥ r + 2 if and only if J (p:q)

r (F (p)
triv, H) holds. ■

Corollary I.2.34. Let H be a marked hypergraph that is not a trivial (p : q)-Maker win. Then
H is a (p : q)-Breaker win if and only if J

(p:q)
R (F (p)

triv, H) holds, where R :=
⌊

|V (H)\M(H)|
p+q

⌋
− 1.

Proof. Since
⌊

|V (H)\M(H)|
p+q

⌋
is the total number of rounds played when all vertices are taken, H

is a (p : q)-Breaker win if and only if τ
(p:q)
M (H) >

⌊
|V (H)\M(H)|

p+q

⌋
, hence the result by Proposition

I.2.33. ■

Putting together Corollary I.2.34 and Theorem I.2.16, we now have two equivalences satisfying
the type (∗) that we are interested in. Indeed, denoting by Fall the family of all dangers, we get
for all H that is not a trivial (p : q)-Maker win:

H is a (p : q)-Breaker win⇐⇒ J
(p:q)
1 (Fall, H) holds,

⇐⇒ J
(p:q)
⌊ |V (H)\M(H)|

p+q ⌋−1
(F (p)

triv, H) holds.

66 I.2. Subhypergraph collections and their intersection properties

Unsurprisingly given how extreme these two families of dangers are, neither of the two equiva-
lences above is satisfactory: the first one because Fall is huge and not understood, the second one
because the number of rounds is unbounded. Their interest, be it structurally or algorithmically,
is therefore very limited. As we have mentioned before, given some class H of marked hyper-
graphs, we would like a perfect middle ground: a family F whose elements are well understood
and efficiently identifiable (like F (p)

triv) but also satisfies the equivalence for some constant r (like
Fall), so that in particular we get a polynomial-time algorithm solving the game on the class H.
An easy example is the class of 2-uniform hypergraphs i.e. graphs. The solution of the Maker-
Breaker game on graphs is straightforward and has already been stated in Theorem I.1.33. In
the case p ≥ 2, the (p : q)-Maker wins are exactly the trivial (p : q)-Maker wins i.e. the graphs
containing at least one edge. For p = 1, the result can be formulated in terms of trivial dangers,
so that we get (∗) with F = F (1)

triv and r = 1:

Theorem I.2.35. Let G be a graph on at least 1 + q vertices. Then G is a (1 : q)-Breaker win
if and only if J

(1:q)
1 (F (1)

triv, G) holds.

Proof. Let x ∈ V (G). The collection xF (1)
triv(G) is precisely the set of edges of G incident to

x, so its q-transversals in G+x are the Y ∈ Pq(V (G) \ {x}) that contain all neighbors of x in
G. Therefore, we have IG+x

(
xF (1)

triv(G)
)
̸= ∅ if and only if the degree of x in G is at most q.

In conclusion, J
(1:q)
1 (F (1)

triv, G) holds if and only if q ≥ ∆(G), which is equivalent to G being a
(1 : q)-Breaker win according to Theorem I.1.33. ■

Corollary I.2.36. Any graph G that is a (1 : q)-Maker win satisfies τ
(1:q)
M (G) = θ

(1:q)
M (G) = 2.

Proof. Proposition I.1.48 ensures that 2 ≤ θ
(1:q)
M (G) ≤ τ

(1:q)
M (G) for any graph G. If G is a

(1 : q)-Maker win, then J
(1:q)
1 (F (1)

triv, G) does not hold by Theorem I.2.35, so τ
(1:q)
M (G) < 3 by

Proposition I.2.33 which concludes. ■

For hypergraphs of rank k ≥ 3 however, the p-trivial dangers are not sufficient on their own to
get (∗) for any constant r. Indeed, by Proposition I.2.33, such a statement would imply that τM

is bounded over all (p : q)-Maker wins from the considered class, and it is not difficult to show
that this is false if k = 3 and p = q = 1 for instance (see Subsection III.2.3).
Nevertheless, given some class H, suppose that we can find a family F containing F (p)

triv and such
that the property is eventually hereditary, meaning that there exists r such that J (p:q)

r (F , H)
implies J

(p:q)
r+1 (F , H). By induction, this means J (p:q)

r (F , H) implies J (p:q)
s (F , H) for all s and

thus implies that H is a (p : q)-Breaker win by Corollary I.2.34. Therefore, F and r then satisfy
(∗) for H. This is how we are going to proceed in Section II.1 when dealing with the class H of
3-uniform marked hypergraphs.

I.2.3.2 General counting results on the biased Maker-Breaker game

We consider the following Breaker strategy: in each round, if it is possible, Breaker plays any
move Y that destroys the p-trivial dangers at whatever X Maker has just played, otherwise he
plays arbitrarily. How does that very naive short-term strategy perform? We know it is optimal
in graphs, and even though it is obviously not the best in general, we will see that it can do
surprisingly well. Our results use counting arguments involving the following generalization of
the maximum degree:

Notation I.2.37. Let H be a (marked) hypergraph.
• Let U ⊆ V (H). The degree of U in H is defined as dH(U) := |{e ∈ E(H), U ⊆ e}|.

Chapter I. Preparatory notions and preliminary results 67

• Let 1 ≤ j ≤ |V (H)| be an integer. The maximum j-degree of H is defined as ∆j(H) :=
max

U⊆V (H),|U |=j
dH(U).

Interestingly, it is intuitively unclear how a parameter such as ∆j(H) should influence the game.
On the one hand, a low value of ∆j(H) could be seen as beneficial to Breaker, as it means that
Maker cannot create too many simultaneous threats. For instance, Theorem I.1.33 about graphs
illustrates this with j = 1. On the other hand, a low value of ∆j(H) could just as well be seen
as beneficial to Maker, as it means that Breaker cannot hit too many of the edges that she has
played in herself. For instance, Theorem I.1.31 illustrates this with j = 2, as it features ∆2(H)
on the lesser side of the inequality.
We are now going to further illustrate the former case: a low value of ∆j(H) helps Breaker
survive longer (sometimes, the entire game) with the naive strategy consisting in addressing
nothing but the p-trivial dangers. We are going to give results in the form of lower bounds
on our hypergraph parameters τ

(p:q)
M and θ

(p:q)
M (corresponding to time optimization and token

optimization respectively), which imply results on the winner of the game by Proposition I.1.48.
The key is the following lemma, which gives an upper bound on the number of p-trivial dangers
that can exist simultaneously. Recall that ark(H) denotes the anti-rank of H i.e. the size of a
smallest edge in H, where we count the marked vertices as well.

Lemma I.2.38. Let H be a marked hypergraph, and let 1 ≤ j ≤ ark(H) − p be an integer.
Then, for all X ∈ Pp(V (H) \M(H)), we have |XF (p)

triv(H)| ≤ p
(

|M(H)|+p−1
j−1

)
∆j(H).

Proof. The lone edge e of a p-trivial danger at X in H has at least |e| − p ≥ j vertices in
M(H) ∪X, including at least 1 vertex in X. There are p choices of x ∈ X and

(
|M(H)|+p−1

j−1

)
choices of x1, . . . , xj−1 ∈M(H) ∪ (X \ {x}), and for each possibility there exist at most ∆j(H)
edges containing x, x1, . . . , xj−1, hence the result. ■

Suppose that H is not a trivial (p : q)-Maker win. Since Breaker survives in the (p : q)-game
for as long as he can destroy the p-trivial dangers, and since the maximum j-degree obviously
does not increase during play, Lemma I.2.38 ensures that Breaker wins if the number of marked
vertices never becomes too big throughout the game. When is that number capped? For
instance, it is if we are only considering a given finite number of rounds T , since the number
of marked vertices then cannot exceed |M(H)|+ pT : this gives us a lower bound for τ

(p:q)
M (H).

It also is if we are only considering Maker strategies that use a given finite number of tokens
N , since the number of marked vertices then cannot exceed |M(H)|+ N : this gives us a lower
bound for θ

(p:q)
M (H). Note that θ

(p:q)
M is the more relevant of the two parameters here: indeed, we

are counting a number of threats that Maker creates, which is a function of how many vertices
she possesses simultaneously, and this is precisely what the game with tokens accounts for. The
result on θ

(p:q)
M then implies the one on τ

(p:q)
M .

Proposition I.2.39. Let H be a marked hypergraph that is not a trivial (p : q)-Maker win,
and let 1 ≤ j ≤ ark(H) − p be an integer. Let N ≥ p be an integer, and suppose that
q ≥ p

(
|M(H)|+N−1

j−1

)
∆j(H). Then θ

(p:q)
M (H) ≥ N + 1 and τ

(p:q)
M (H) ≥ N+1

p
. In particular, if

N+1
p

>
⌈

|V (H)|−|M(H)|
p+q

⌉
then H is a (p : q)-Breaker win.

Proof. Suppose that Maker’s strategy uses at most N tokens. Breaker’s strategy in each round
is, if possible, to destroy all p-trivial dangers at the subset X that Maker has just played, and
for the rest he picks arbitrary vertices. Let the (p : q)-game on H play out. When Maker
moves tokens that were already placed, we decompose the move into two consecutive actions:
Maker removes tokens then places tokens, where we consider the "remove" action as part of the

68 I.2. Subhypergraph collections and their intersection properties

previous round, so that at the end of each round she has at least p tokens in hand ready for the
next round. Defining Ht as the marked hypergraph obtained at the end of round t ≥ 1 (with
H0 := H), this implies |M(Ht)| ≤ |M(H)|+ N − p for all t ≥ 0. Also note that t 7→ ∆j(Ht) is
nonincreasing since E(Ht+1) ⊆ E(Ht) for all t ≥ 0.

Claim 2. For all t ≥ 0 and for all e ∈ E(Ht), we have |e \M(Ht)| > p.

Proof of Claim 2. We proceed by induction on t. For t = 0, this is simply our assumption that
H is not a trivial (p : q)-Maker win. Now, let t ≥ 1 and suppose the result holds for t − 1:
this means that, in the marked hypergraph Ht−1 obtained at the end of round t− 1 i.e. at the
beginning of round t, all edges have more than p non-marked vertices. The edges that will
have at most p non-marked vertices after Maker’s move are by definition the edges of p-trivial
dangers at X in Ht−1, where X is the subset of vertices on which Maker places tokens in round
t. By Lemma I.2.38:

|XF (p)
triv(Ht−1)| ≤ p

(
|M(Ht−1)|+ p− 1

j − 1

)
∆j(Ht−1) ≤ p

(
|M(H)|+ N − 1

j − 1

)
∆j(H) ≤ q.

Following his strategy, Breaker thus picks q vertices that hit all p-trivial dangers at X. This
ensures that, at the end of round t, all remaining edges are back to having more than p
non-marked vertices. □

For all t ≥ 1, there is no edge with at most p non-marked vertices at the beginning of round t
according to Claim 2, so Maker does not complete an edge during round t. This ensures that
Breaker wins. In conclusion, we have θ

(p:q)
M (H) ≥ N + 1, and the rest ensues by Proposition

I.1.48. ■

For j = 1, where the maximum j-degree coincides with the standard notion of maximum degree
which we have already used in the case of graphs, the result from Proposition I.2.39 is obvious.
Indeed, since the binomial coefficient equals 1 for all N , it simply states that if q ≥ p∆1(H)
then H is a (p : q)-Breaker win. This is clear since, in each round, Breaker can then hit all
edges incident to the vertices Maker has just picked. For j ≥ 2 however, we get the following
nontrivial lower bounds, which hold in all generality:

Corollary I.2.40. Let H be a marked hypergraph that is not a trivial (p : q)-Maker win, and let
2 ≤ j ≤ ark(H)− p be an integer. Then:

• θ
(p:q)
M (H) ≥

(q(j − 1)!
p∆j(H)

) 1
j−1
− |M(H)|+ 2.

• τ
(p:q)
M (H) ≥ 1

p

(q(j − 1)!
p∆j(H)

) 1
j−1
− |M(H)|+ 2

.

Proof. Assume N :=
⌊(

q(j−1)!
p∆j(H)

) 1
j−1
⌋
− |M(H)|+ 1 ≥ p. We have |M(H)|+ N − 1 ≤

(
q(j−1)!
p∆j(H)

) 1
j−1

hence q ≥ p (|M(H)|+N−1)j−1

(j−1)! ∆j(H) ≥ p
(

|M(H)|+N−1
j−1

)
∆j(H). Therefore, Proposition I.2.39 con-

cludes that θ
(p:q)
M (H) ≥ N + 1 and τ

(p:q)
M (H) ≥ N+1

p
. ■

A final consequence of Proposition I.2.39 is a lower bound on the threshold bias, defined as the
smallest q such that Breaker wins the (1 : q)-game. To simplify computations, we state it for
non-marked hypergraphs.

Chapter I. Preparatory notions and preliminary results 69

Corollary I.2.41. Let H be a non-marked hypergraph that is not a trivial Maker win, and let
1 ≤ j ≤ ark(H)− 1 be an integer. Then:

qthr(H) ≤
|V (H)|1− 1

j

(
∆j(H)
(j − 1)!

) 1
j

.

Proof. We must show that H is a (1 : q)-Breaker win where q :=
⌈
|V (H)|1− 1

j

(∆j(H)
(j−1)!

) 1
j

⌉
. Let

N :=
⌈

|V (H)|
1+q

⌉
. The definition of q yields qj ≥ |V (H)|j−1

(j−1)! ∆j(H), from which we have:

q ≥

(
|V (H)|

q

)j−1

(j − 1)! ∆j(H) ≥

(
|V (H)|

1+q

)j−1

(j − 1)! ∆j(H) ≥ (N − 1)j−1

(j − 1)! ∆j(H) ≥
(

N − 1
j − 1

)
∆j(H).

Since N +1 >
⌈

|V (H)|
1+q

⌉
by our choice of N , Proposition I.2.39 concludes that H is a (1 : q)-Breaker

win. ■

I.2.3.3 An application to a specific game around sums

We introduce a game played on integers, where Maker aims at claiming k of them that form a
sum:

Notation I.2.42. For any k ≥ 3 and any n ≥ 1, define Hsum
k,n by V (Hsum

k,n) = {1, . . . , n} and
E(Hsum

k,n) = {{x1, . . . , xk} ⊆ {1, . . . , n}, x1 + . . .+xk−1 = xk}. The xi are assumed to be pairwise
distinct in each edge, so that Hsum

k,n is a k-uniform hypergraph on n vertices.

Proposition I.2.43. For all k ≥ 3, the following holds, where the multiplicative constants
depend on k:

• |E(Hsum
k,n)| = Θ(nk−1).

• ∆j(Hsum
k,n) = Θ(nk−1−j) for all 1 ≤ j ≤ k − 1.

For k = 3, we have more specifically: |E(Hsum
3,n)| = (n−1)2

4 for all odd n ≥ 1, |E(Hsum
3,n)| = n(n−2)

4
for all even n ≥ 2, and ∆2(Hsum

3,n) = 2 for all n ≥ 4.

Proof. Since a sum x1 + . . . + xk−1 = xk is entirely determined by the choice of x1, . . . , xk−1,
we have |E(Hsum

k,n)| = O(nk−1). Moreover, every choice of pairwise distinct x1, . . . , xk−1 between
1 and n

k−1 (for example) defines a different sum, so |E(Hsum
k,n)| = Ω(nk−1) hence |E(Hsum

k,n)| =
Θ(nk−1). Similarly, there are O(nk−1−j) sums containing any fixed x1, . . . , xj and there are
Ω(nk−1−j) sums containing 1, . . . , j for instance, hence ∆j(Hsum

k,n) = Θ(nk−1−j).
Now suppose k = 3. For each integer 1 ≤ x < n

2 , there are exactly n − 2x sums that have
x as their smallest addend. This yields |E(Hsum

3,n)| = (n − 2) + (n − 4) + . . . + 1 = (n−1)2

4 for
odd n and |E(Hsum

3,n)| = (n− 2) + (n− 4) + . . . + 2 = n(n−2)
4 for even n. Finally, for any fixed

1 ≤ x < y ≤ n, there are at most two sums containing both x and y which are x + y = (x + y)
and x + (y − x) = y, moreover these two sums are valid for x = 1 and y = 3 provided that
n ≥ 4, hence ∆2(Hsum

3,n) = 2 in that case. ■

Theorems I.1.30 and I.1.31 are the go-to for early bounds, upper and lower respectively, on the
threshold bias of any hypergraph. However, applying Theorem I.1.30 on Hsum

k,n , we get an upper
bound O(n), which is trivial on n vertices. On the contrary, as we are about to show, Corollary
I.2.41 applied on Hsum

k,n yields a nontrivial upper bound O(n1− 1
k−1). Therefore, the sum game

constitutes an example where our result gives a better bound on the threshold bias than the
Erdös-Selfridge criterion. Applying Theorem I.1.31 on Hsum

k,n , we get a lower bound Ω(n
1

k−1). In

70 I.3. Elementary structures in (marked) hypergraphs

conclusion, we have lower and upper bounds in the order of
√

n for k = 3, whereas a significant
gap subsists for k ≥ 4:

Proposition I.2.44. The threshold bias of Hsum
k,n satisfies the following:

• For k = 3: qthr(Hsum
3,n) = Θ(

√
n), and more precisely

⌈√
n−2

8

⌉
≤ qthr(Hsum

3,n) ≤
⌈√

2n
⌉
.

• For k ≥ 4: qthr(Hsum
k,n) = Ω(n

1
k−1) and qthr(Hsum

k,n) = O(n1− 1
k−1).

Proof. Applying Corollary I.2.41 with j = k − 1, we get qthr(Hsum
k,n) ≤

⌈
n1− 1

k−1
(

∆k−1(H)
(k−2)!

) 1
k−1
⌉
.

Using Proposition I.2.43, this yields qthr(Hsum
k,n) = O(n1− 1

k−1), and for k = 3 we get qthr(Hsum
3,n) ≤⌈

n1− 1
2
(

2
1!

) 1
2
⌉

=
⌈√

2n
⌉
. Applying Theorem I.1.31, a necessary condition for a (1 : q)-Breaker

win is that (1 + q)k−3q2 ≥ |E(Hsum
k,n)|

∆2(Hsum
k,n

)n . Using Proposition I.2.43, this yields qthr(Hsum
k,n) = Ω(n

1
k−1),

and for k = 3 we get qthr(Hsum
3,n) ≥

√
n(n−2)
4×2n

=
√

n−2
8 . ■

Remark. Let us make a couple of observations in the case k = 3 (3-sum game):

• The naive Breaker strategy consisting in addressing nothing but the trivial dangers is
actually optimal for the (1 : q)-game on Hsum

3,n , except perhaps for the small window
q ∈

[⌈√
n−2

8

⌉
,
⌈√

2n
⌉[

. Indeed, if q ≥
⌈√

2n
⌉

then Breaker wins with that strategy, and if
q <

⌈√
n−2

8

⌉
then Maker wins against any Breaker strategy.

• The 3-sum game is an example where the probabilistic intuition is wrong. Since Maker
picks a total of N :=

⌈
n

1+q

⌉
vertices during the (1 : q)-game, it comes down to the

proportion of subsets of {1, . . . , n} of size N that contain a 3-sum (also called a Schur
triple in the literature). It is known [AMS+19] that this proportion is o(1) if N = o(n 1

3)
and 1− o(1) if N = ω(n 1

3), so the switch happens towards q = n
2
3 , whereas we have seen

that qthr(Hsum
3,n) = Θ(

√
n).

I.3 Elementary structures in (marked) hypergraphs

The short study that we have just performed around p-trivial dangers gave results of a purely
quantitative nature, which say basically nothing about the unbiased case and are not relevant
to sparse hypergraphs. To address all types of hypergraphs, and to hopefully get an efficient
algorithm for the 3-uniform case which we are particularly interested in, quantities such as
the number of edges or the maximum j-degree are not enough: we need to delve into the
hypergraph structure. This section provides definitions, notations and preliminary results which
the in-depth structural studies of Chapter II will be based upon. Since this section is about
hypergraph structure, marked vertices will often be irrelevant, so most of it will be stated for
hypergraphs despite extending to marked hypergraphs (via the structure of the underlying
hypergraph obtained when ignoring which vertices are marked). For example, a central definition
will be that of a path, which is a type of hypergraph, but a path in which some vertices are
marked will also be called a path.

Chapter I. Preparatory notions and preliminary results 71

I.3.1 In general hypergraphs

I.3.1.1 Walks and paths

Definition I.3.1. A walk is a finite sequence −→W = (U0, . . . , Ul), where U0, . . . , Ul are subsets of
some common set, such that Ui ∩ Ui+1 ̸= ∅ for all 0 ≤ i ≤ l − 1. We define the vertex set of −→W
as V (−→W) := ⋃

0≤i≤l Ui, and the edge set of −→W as E(−→W) := {Ui , 0 ≤ i ≤ l and |Ui| ≥ 2}.

Notation I.3.2. In a walk, a singleton Ui = {x} might be simply denoted as x.

We are going to use walks as a way to navigate inside hypergraphs. They also help defining
some elementary structures whose edge sets have a natural ordering. Usually, the elements of
the walk will correspond to edges, plus some singletons which are useful to give information
about intersections: for example, if a subsequence (. . . , e, x, e′, . . .) appears inside of a walk
where e and e′ are edges and x is a vertex, then we know that x ∈ e ∩ e′. Note that elements of
a walk are not necessarily pairwise distinct.

Definition I.3.3. Two walks are said to be equivalent if they have the same vertex set and they
coincide when removing all their singleton elements.

Notation I.3.4. Let −→W = (U0, . . . , Ul) be a walk.
• Provided U0, . . . , Ul are not all singletons, we denote by start(−→W) (resp. end(−→W)) the

non-singleton element Ui of smallest (resp. largest) index i.
• We define the reverse walk ←−W = (Ul, . . . , U0).
• If

−→
W ′ = (U ′

0, . . . , U ′
l′) is another walk such that Ul∩U ′

0 ≠ ∅, then we define the concatenated
walk −→W ⊕

−→
W ′ = (U0, . . . , Ul, U ′

0, . . . , U ′
l′).

• Given a set Z such that Z ∩V (−→W) ̸= ∅, we define −→W |Z = (U0, . . . , Uj) where j = min{0 ≤
i ≤ l, Z ∩ Ui ̸= ∅}.

As alluded to before, some elementary hypergraphs can be defined as induced by a walk:

Definition I.3.5. The hypergraph induced by a walk −→W is the hypergraph, denoted by [−→W],
defined by V ([−→W]) = V (−→W) and E([−→W]) = E(−→W).

Remark. It is important to note that, by definition, E(−→W) does not include singletons. In
particular, [−→W] always has anti-rank at least 2.

Paths are the main hypergraph structure that we are going to consider. Berge’s definition of
a path in a hypergraph [Ber73] corresponds to walks of the form (v1, e1, v2, e2, . . . , vL, eL, vL+1)
alternating between vertices and edges that are pairwise distinct. Instead, we define a path as a
type of hypergraph, and we always keep the distinction between the two kinds of mathematical
objects: the sequences of edges/vertices (walks) on one side, and the hypergraphs that they
induce (e.g. paths) on the other.

Definition I.3.6. Let P be a hypergraph, and let a, b ∈ V (P). We say P is an ab-path if there
exists a walk inducing P of the form (a, e1, . . . , eL, b) where the ei are pairwise distinct and of
size at least 2. We then say L = |E(P)| is the length of P . An ab-path may also be referred to
as an a-path if we desire to highlight just one end point, or a path if we desire to highlight none.

72 I.3. Elementary structures in (marked) hypergraphs

Remark. Any ab-path is also a ba-path (take the reverse walk in the definition), an a-path, a
b-path and a path. Note that the case a = b is not excluded, and neither is the case L = 0
which implies a = b by definition of a walk since we then get (a, b). In particular, a hypergraph
P with V (P) = {a} and E(P) = ∅ is an aa-path of length 0.

This definition of a path is very loose (even looser than Berge’s, in the absence of the intermediate
vertices). In practice however, we will only consider paths having more specific properties, which
are inspired by the Maker-Breaker game. In particular, the size of edge intersections will prove
to be a crucial factor. Several paths defined by such restrictions have been studied in extremal
hypergraph theory. For instance, a t-tight path (resp. a t-quasi-linear path) is one where any
two consecutive edges intersect on at least (resp. exactly) t vertices [GKL10][Tom12]. On the
contrary, we are interested in upper bounded edge intersection sizes. A linear path (sometimes:
loose path), is one where any two consecutive edges intersect on exactly one vertex [FJS14]. The
following global definition also exists: a linear (sometimes: almost-disjoint) hypergraph is one
where any two distinct edges intersect on at most one vertex [NRS+82]. For reasons that we
are going to explain very shortly, our main focus is on linear paths in 3-uniform hypergraphs,
and we introduce the following notion in general hypergraphs which is the upper bounded
counterpart of t-tightness (note that the case λ = 1 corresponds to the usual notion of linearity
in hypergraphs):

Definition I.3.7. Let λ be an integer.
• We say a hypergraph H is λ-linear if |e ∩ e′| ≤ λ for all distinct e, e′ ∈ E(H).
• We say a walk −→W is λ-linear if its induced hypergraph [−→W] is λ-linear.

For λ = 1, we may simply say linear instead of "1-linear".

Another important notion is that of simplicity, which is a property of walks first and foremost:

Definition I.3.8. Let −→W = (U0, . . . , Ul) be a walk.
• Let x ∈ V (−→W). We say x is a repeated vertex in −→W if there exist indices i, j such that
|i− j| ≥ 2 and x ∈ Ui ∩ Uj.

• We say −→W is simple if there is no repeated vertex in −→W , i.e. if Ui ∩Uj = ∅ for all i, j such
that |i− j| ≥ 2.

Simplicity for paths is defined by asking the walk to be simple in Definition I.3.6. Note that
this is dependent on the choice of a and b. We get:

Definition I.3.9. Let P be a hypergraph, and let a, b ∈ V (P). We say P is an ab-simple-path
if there exists a simple walk inducing P of the form (a, e1, . . . , eL, b) where each ei is of size at
least 2. An ab-simple-path may also be referred to as an a-simple-path if we desire to highlight
just one end point, or a simple path if we desire to highlight none. See Figure I.6.

Remark. Any ab-simple-path is also a ba-simple-path (take the reverse walk in the definition),
an a-simple-path, a b-simple-path and a simple path. Note that we have L = 0 if and only if
a = b this time: indeed, if a = b then the two singletons must be consecutive for the walk to be
simple hence L = 0.

Notation I.3.10. We introduce notations to retrieve the walk from the path, which will often
be useful.

• Let P be an ab-simple-path. For fixed a and b, there is a unique walk (a, e1, . . . , eL, b)
satisfying Definition I.3.9, since simplicity forces the ordering of the edges. That walk will

Chapter I. Preparatory notions and preliminary results 73

e1 e4e2 e3 e5

Figure I.6: An ab-simple-path of length L = 5. This particular one is 3-linear,
as the biggest intersection between two edges is of size 3.

be denoted by −−→aPb.
• Let P be an a-simple-path. For fixed a, the walks satisfying Definition I.3.9 can only

differ in the choice of the final singleton b, since simplicity forces the ordering of the edges.
Their common part (a, e1, . . . , eL), without the final singleton, will be denoted by −→aP .

Proposition I.3.11. Any ab-path contains an ab-simple-path, and any λ-linear ab-path contains
a λ-linear ab-simple-path.

Proof. The second assertion directly ensues from the first since a subhypergraph of a λ-linear
hypergraph is obviously λ-linear. Therefore, let us prove the first assertion. Let P be an ab-path.
Assume a ̸= b, otherwise the edgeless subhypergraph of P consisting of the single vertex a = b
is an ab-simple-path which concludes. Consider walks of the form (a, e1, . . . , eL, b) satisfying the
following condition (C): e1, . . . , eL are pairwise distinct edges of P .
We know there exists a walk satisfying (C): indeed, by definition of an ab-path, there even exists
one that induces P . Now, let −→W = (a, e1, . . . , eL, b) be a walk satisfying (C) with minimum L.
Note that −→W does not necessarily induce P , but it induces an ab-path which is a subhypergraph
of P . To finish the proof, it thus suffices to show that −→W is simple. We know a ̸= b, moreover it
is impossible that a ∈ ei for some 2 ≤ i ≤ L because the walk W ′ := (a, ei, . . . , eL, b) would then
satisfy (C) and contradict the minimality of −→W , therefore a is not a repeated vertex in −→W . An
analogous reasoning shows that b is not a repeated vertex in −→W . Finally, it is impossible that
ei ∩ ej ≠ ∅ for some i, j such that j − i ≥ 2, because the walk W ′ := (a, e1, . . . , ei, ej, . . . , eL, b)
would then satisfy (C) and contradict the minimality of −→W . ■

I.3.1.2 Forcing paths

Our interest in 3-uniform linear paths comes from the role of the following elementary marked
hypergraph in the unbiased Maker-Breaker game. In Figure I.7, the marked vertices are circled,
and each edge of size 3 is represented by a "claw" shape joining its three vertices: this graphical
representation will be used throughout this dissertation.

Definition I.3.12. An ab-nunchaku is a 3-uniform linear ab-simple-path N of positive length
such that M(N) = {a, b}. An ab-nunchaku may also be referred to as an a-nunchaku or a
nunchaku. See Figure I.7.

aL

bL−1 bL

aL−1a2 a3

b1 b2

.

.

a=a1 aL+1=b

bL−1 bL

aL−1a2 a3

b1 b2

.

.

aL

Figure I.7: An ab-nunchaku of length L (here L = 8), with its non-marked
reduction below.

74 I.3. Elementary structures in (marked) hypergraphs

Nunchakus are named after their non-marked reduction in the case where the length is at least
2 (failing which the non-marked reduction is a single edge of size 1): the two edges of size 2 are
like two handles with a chain between them. Their importance for the Maker-Breaker game on
3-uniform marked hypergraphs, or rather (equivalently) the importance of their non-marked
reduction for the Maker-Breaker game on hypergraphs of rank 3, has been first identified in
[Kut04]. An analogous object in a more general context is defined in [RW20] as a manriki, after
another japanese weapon. We will go back to both these papers in detail in Subsection II.1.1:
for now, we are mainly giving definitions. The key idea is that a nunchaku is a basic example of
a Maker win of rank 3, and there exists a winning "forcing strategy" where Maker forces all of
Breaker’s moves along the nunchaku starting from one end until Breaker is trapped at the other
end.

Proposition I.3.13. Any nunchaku is a Maker win.

Proof. Let N be a nunchaku of length L. If L = 1 then N is obviously a trivial Maker win.
Therefore, assume L ≥ 2 and define a = a1, b1, a2, b2, . . . , aL, bL, aL+1 = b as in Figure I.7. Maker
picks a2, threatening to complete the edge {a, b1, a2} on her next go: Breaker is forced to pick
b1. Maker continues to force all of Breaker’s picks along the path, by picking a3, a4, . . . , aL−1
successively which forces Breaker to pick b2, b3, . . . , bL−2 successively. Maker now picks aL,
threatening to pick either bL−1 or bL on her next go, which would see her complete the edge
{aL−1, bL−1, aL} or {aL, bL, b} respectively. Breaker will lose in the next round as he cannot
address both threats at once. ■

Remark. Two remarks regarding this forcing principle:
• In a 3-uniform marked hypergraph that has a linear ab-simple-path as a strict subhyper-

graph, this forcing technique might also be useful if a is marked but not b: it will not
be enough to win the game, but it is a way for Maker to get all of a2, a3, . . . , aL+1 while
making sure that Breaker gets exactly b1, b2, . . . , bL in the meantime.

• Maker actually has a faster way to win on a nunchaku, by essentially cutting it in half
each round: we will come back to this in Subsection III.2.3.

For k ≥ 4, it is also possible to define a type of path that generalizes this idea. As we need more
edges and bigger edge intersections for Breaker’s moves to be forced compared to the 3-uniform
case, this path is neither linear nor simple. However, it does satisfy a relaxed version of both
notions: it is (k − 2)-linear, and each vertex is in at most k − 1 consecutive edges of the path
(exactly k − 1 for those that Maker will pick bar the last one). The general definition is as
follows:

Definition I.3.14. Let k ≥ 3 be an integer. A k-uniform forcing path is a marked hypergraph
P so that we can write: V (P) = {a1, . . . , aL+k−2, b1, . . . , bL}, M(P) = {a1, . . . , ak−2, aL+k−2}
and E(P) = {e1, . . . , eL} where ei = {ai, . . . , ai+k−2, bi} for all 1 ≤ i ≤ L. It is indeed a path,
of length L, represented by the walk −→W = (e1, . . . , eL) for example. A 3-uniform forcing path is
simply a nunchaku. See Figure I.8 for an illustration of the case k = 4.

Proposition I.3.15. Any forcing path is a Maker win.

Proof. With the same notations as in Definition I.3.14, Maker can pick ak−1, ak, . . . , aL+k−4
successively, forcing Breaker to pick b1, b2, . . . , bL−2 respectively. Maker now picks aL+k−3,
threatening to complete an edge on her next go by picking either bL−1 or bL, and Breaker cannot
address both threats at once. ■

Chapter I. Preparatory notions and preliminary results 75

bL

bL−1
aL+2

aL+1

aL

a1 a2

a3b1

b3

a4

a5
a6

b5

b2

b4

Figure I.8: A 4-uniform forcing path of length L (here L = 12). Each cross-
brace joining 4 vertices represents an edge.

We will see in Subsection III.2.3 that, in the case k ≥ 4, a k-uniform forcing path actually
constitutes a slowest Maker win. However, our main focus by far will be on the case k = 3, with
nunchakus being at the core of the structural study of the unbiased Maker-Breaker game on
3-uniform marked hypergraphs which will be the subject of Section II.1.

I.3.2 In 3-uniform hypergraphs

Before we can perform this structural study, we need to introduce some notions that are specific
to the 3-uniform case.

I.3.2.1 Chains, cycles and tadpoles

Let us start by introducing the basic structures that we are going to consider in 3-uniform
(marked) hypergraphs. The most central ones are chains, for which our definition coincides with
that of [RW20]. An ab-chain is a 3-uniform linear ab-simple-path (note that, if a and b are the
only marked vertices, then we exactly get an ab-nunchaku). To underline which properties this
asks of the underlying walk, we also give the following definition which is equivalent:

Definition I.3.16. Let P be a hypergraph, and let a, b ∈ V (P). We say P is an ab-chain if
there exists a walk inducing P of the form −→W = (a, e1, . . . , eL, b) where:

• e1, . . . , eL are of size exactly 3;
• −→W is linear;
• −→W is simple.

Any walk −→W that satisfies this definition or is equivalent to one that does is then said to represent
P . An ab-chain may also be referred to as an a-chain if we desire to highlight just one end
point, or a chain if we desire to highlight none. See Figure I.9.

Remark. Any ab-chain is also a ba-chain (take the reverse walk in the definition), an a-chain, a
b-chain and a chain. Recall that Notation I.3.10 allows us to refer to the following useful walks
that all represent an ab-chain P : −−→aPb, −−→bPa =←−−aPb, −→aP , −→bP .

Definition I.3.17. An a-snake is an ab-chain S of positive length for some marked vertex b.
We may also refer to S as an ab-snake or simply a snake.

76 I.3. Elementary structures in (marked) hypergraphs

a=b ba a inn(P)

o(a,
−−→
aPb)

b

o(b,
←−−
aPb)o(a,

−−→
aPb)=o(b,

←−−
aPb)

Figure I.9: An ab-chain P of length 0 (left), length 1 (middle), length 5 (right).

Remark. A snake might have more than one marked vertex. For example, a nunchaku is
technically a snake.

Recall Definition I.1.6 as to inner and outer vertices in a general hypergraph. For chains, we
introduce the following notation to designate specific outer vertices which we will often refer to
in practice:

Notation I.3.18. Let P be an ab-chain of positive length. We denote by o(a,
−−→
aPb) the only

vertex in start(−−→aPb) \ (inn(P) ∪ {a, b}). See Figure I.9.

Next up, we introduce cycles. Our definition coincides with that of [Kut04] (for cycles of length
at least 3) and [RW20].

Definition I.3.19. Let C be a hypergraph, and let a ∈ V (C). We say C is an a-cycle if there
exists a walk inducing C of the form −→W = (a, e1, . . . , eL, a) where:

• e1, . . . , eL are of size exactly 3;
• L ≥ 2;
• if L ≥ 3 then −→W is linear, and if L = 2 then |e1 ∩ e2| = 2;
• a is the only repeated vertex in −→W , and {1 ≤ i ≤ L, a ∈ ei} = {1, L}.

Any walk −→W that satisfies this definition or is equivalent to one that does is then said to represent
C. We say L = |E(C)| is the length of C. An a-cycle may simply be referred to as a cycle. See
Figure I.10.

a aa

Figure I.10: An a-cycle C of length 2 (left), length 3 (middle), length 5 (right).
The outer vertices are highlighted, the others are inner vertices.

Remark. Note that a cycle is a linear hypergraph except if it is of length 2.

Notation I.3.20. Let C be an a-cycle. For fixed a, there are exactly two walks satisfying Defini-
tion I.3.19: if the first one is written as (a, e1, . . . , eL, a), then the second one is (a, eL, . . . , e1, a).
We denote the former by

−−−−−−→
(a− e1)C and the latter by

−−−−−−→
(a− eL)C. When wishing to consider one

of the two arbitrarily, we may use the notation −→aC.

Remark. An a-cycle C is also a b-cycle for any b ∈ inn(C) (note that a ∈ inn(C) for instance),
however it is not a b-cycle if b ∈ out(C).

Chapter I. Preparatory notions and preliminary results 77

Definition I.3.21. An a-necklace is an a-cycle C such that M(C) = {a}. An a-necklace may
simply be referred to as a necklace.

Definition I.3.22. A 3-uniform hyperforest is a 3-uniform hypergraph that contains no cycle.

Remark. Obviously, a 3-uniform hypergraph is linear if and only if it contains no cycle of length
2. In particular, 3-uniform hyperforests are linear.

Finally, we introduce tadpoles, a less standard hypergraph structure which we have not seen
defined anywhere else but that will also play a prominent part in our structural studies. This
terminology is inspired from graph theory, in which a tadpole graph is defined as the union of a
path and a cycle whose only shared vertex is one of the extremities of the path.

Definition I.3.23. Let T be a hypergraph, and let a ∈ V (T). We say T is an a-tadpole if there
exists a walk inducing T of the form −→W = (a, e1, . . . , es, b, es+1, . . . , et, b) where:

• a and b are the only singletons;
• e1, . . . , et are of size exactly 3;
• (a, e1, . . . , es, b) represents an ab-chain PT ;
• (b, es+1, . . . , et, b) represents a b-cycle CT ;
• V (PT) ∩ V (CT) = {b}.

Any walk −→W that satisfies this definition or is equivalent to one that does is then said to represent
T . We may simply say T is a tadpole. The ab-chain PT and the b-cycle CT are clearly unique,
so we may keep these notations. It is important to note that an a-cycle is a particular case of
an a-tadpole, where s = 0 i.e. a = b. See Figure I.11.

Remark. In other words, an a-tadpole is the union, for some vertex b, of an ab-chain and a
b-cycle whose only common vertex is b. Also note that a tadpole T is a linear hypergraph except
if CT is of length 2.

b
a

PT

CT

a
b

PT

CT

Figure I.11: An a-tadpole T (that is not an a-cycle), two examples.

Notation I.3.24. Let T be an a-tadpole. For fixed a, there are exactly two walks satisfying
Definition I.3.23: if the first one is written as (a, e1, . . . , es, b, es+1, . . . , et, b), then the second
one is (a, e1, . . . , es, b, et, et−1, . . . , es+1, b). The notation −→aT refers to any of the two arbitrarily.

I.3.2.2 Substructure lemmas

We now address the existence, and sometimes unicity, of chains and tadpoles inside other chains
and tadpoles. These results are easy and intuitive, but we give rigorous proofs using walks.

Lemma I.3.25. Let P be a chain and let u, v ∈ V (P). Then there exists a unique uv-chain in
P .

Proof. Let a, b such that P is an ab-chain, and write −−→aPb = (a, e1, . . . , eL, b).

78 I.3. Elementary structures in (marked) hypergraphs

• Firstly, suppose u = v. Then that single vertex forms the only uv-chain in P .
• Secondly, suppose u ̸= v and there exists some 1 ≤ i ≤ L such that {u, v} ⊆ ei (note that

i is unique since two distinct edges of a chain cannot intersect on two vertices). Then
(u, ei, v) represents a uv-chain. Moreover, if some walk

−→
W ′ represents a uv-chain in P ,

then we have u ∈ start(
−→
W ′) and v ∈ end(

−→
W ′), so start(

−→
W ′) = end(

−→
W ′) = ei hence the

unicity.
• Finally, suppose u ≠ v and no edge of P contains both u and v. For x ∈ {u, v}, define

j(x) = min{1 ≤ i ≤ L, x ∈ ei} and j′(x) = max{1 ≤ i ≤ L, x ∈ ei}: note that
j′(x) = j(x) + 1 if x ∈ inn(P) and j′(x) = j(x) otherwise. Up to swapping the roles
of u and v, assume j(u) ≤ j(v): we actually have j(u) < j(v), otherwise ej(u) = ej(v)
would contain both u and v. Since j′(u) ∈ {j(u), j(u) + 1}, this yields j′(u) ≤ j(v) hence
j′(u) < j(v) for the same reason. We claim that −→W := (u, ej′(u), ej′(u)+1, . . . , ej(v), v) is a
walk that represents a uv-chain. Indeed:

– The fact that −−→aPb is a linear walk by definition of a chain, coupled with the fact that
u ∈ ej′(u) and v ∈ ej(v), implies that −→W is a linear walk.

– The fact that the walk −−→aPb is simple by definition of a chain, coupled with the
maximality of j′(u) and the minimality of j(v), implies that −→W is also simple.

Let us now address the unicity. Let
−→
W ′ := (u, ei1 , ei2 , . . . , eit , v) be a walk representing a

uv-chain in P , where i1, . . . , it are pairwise distinct indices in {1, . . . , L}. Since u ∈ ei1 and
v ∈ eit , we have i1 ∈ {j(u), j′(u)} and it ∈ {j(v), j′(v)}. We have seen that j′(u) < j(v),
so i1 < it. For all 1 ≤ s ≤ t − 1, we have |eis ∩ eis+1| = 1 by definition of a chain
hence |is − is+1| = 1. Since i1 < it and the indices i1, . . . , it are pairwise distinct, this
implies is+1 = is + 1 for all 1 ≤ s ≤ t − 1. To conclude that

−→
W ′ = −→W , it only remains

to show that i1 = j′(u) and it = j(v). We have mentioned that i1 ∈ {j(u), j′(u)}: if
i1 = j(u) = j′(u)− 1, then ei2 = ej′(u) ∋ u, hence a repetition in

−→
W ′ which contradicts the

definition of a chain. Therefore i1 = j′(u), and an analogous reasoning yields it = j(v). ■

We are also interested in the existence of chains inside cycles. First of all, we need to describe
what happens when we delete a vertex from a cycle:

Lemma I.3.26. Let C be a cycle and let w ∈ V (C). Let w1, w2 be the two inner vertices of C
that are adjacent to w in C (if C is of length 2 and w ∈ inn(C) then w1 = w2).

• If w ∈ out(C) then C−w is a w1w2-chain.
• If w ∈ inn(C) then C−w is the union of a w1w2-chain and two isolated vertices which are

the two outer vertices of C that are adjacent to w in C.

Proof. Let us first address the case where C is of length 2. If w ∈ out(C), then write E(C) =
{{w1, w, w2}, {w1, u, w2}}: C−w consists of the edge {w1, u, w2}, which forms a w1w2-chain. If
w ∈ inn(C), then write E(C) = {{w, u1, w1}, {w, u2, w1}}: C−w consist of the three isolated
vertices w1 = w2, u1 and u2.
Now assume that C is of length at least 3. Let e be the edge of C containing both w and w1,
and write

−−−−−−→
(w1 − e)C = (w1, e = e1, e2 . . . , eL, w1). We have e1 ∩ eL = {w1}. If w ∈ out(C), then

e1 = {w1, w, w2} so e1 ∩ e2 = {w2}. If w ∈ inn(C), then e1 ∩ e2 = {w} hence e2 ∩ e3 = {w2}
since w2 is adjacent to w. Therefore, defining i = 2 if w ∈ out(C) and i = 3 if w ∈ inn(C),
the only edges of C containing w2 are ei−1 and ei. We claim that −→W := (w2, ei, . . . , eL, w1) is a
linear simple walk. Indeed:

– By definition of a cycle, the walk
−−−−−−→
(w1 − e)C is linear since C is of length at least 3, and w1

is its only repeated vertex with {1 ≤ i ≤ L, w1 ∈ ei} = {1, L}. Therefore, its subsequence
(ei, . . . , eL, w1) is also a linear walk, and has no repeated vertex since it does not contain

Chapter I. Preparatory notions and preliminary results 79

the edge e1.
– The addition of w2 at the start of (ei, . . . , eL, w1) preserves the fact that it is a linear walk

since w2 ∈ ei, and also preserves the absence of any repeated vertex since w2 ̸∈ ej for all
j > i.

Therefore, by definition, −→W represents a w2w1-chain. We can now conclude:
• If w ∈ out(C), then V (C−w) = V (C) \ {w} = e2 ∪ . . . ∪ eL = V (−→W) and E(C−w) =

E(C) \ {e1} = {e2, . . . , eL} = E(−→W), so C−w is the w1w2-chain represented by −→W .
• If w ∈ inn(C), then let u1 and u2 be the outer vertices of C in e1 and e2 respectively:

we have V (C−w) = V (C) \ {w} = (e3 ∪ . . . ∪ eL) ∪ {u1, u2} = V (−→W) ∪ {u1, u2} and
E(C−w) = E(C) \ {e1, e2} = {e3, . . . , eL} = E(−→W), so C−w is the union of the w1w2-chain
represented by −→W and the two isolated vertices u1 and u2. ■

We can now conclude about the existence of chains between two given vertices of a cycle, first
when trying to avoid a third vertex, then in general.

Lemma I.3.27. Let C be a cycle and let u, v, w ∈ V (C) with w ̸= u, v. Then there exists a
unique uv-chain in C that does not contain w, unless all the following hold: w ∈ inn(C), u ̸= v,
and u or v is an outer vertex of C that is adjacent to w (in which case there exists none).

Proof. First of all, note that a uv-chain in C that does not contain w is exactly a uv-chain
in C−w. Assume u ̸= v, otherwise the result is trivial. If w ∈ out(C), then C−w is a chain
according to Substructure Lemma I.3.26, which contains a unique uv-chain by Substructure
Lemma I.3.25. Now assume w ∈ inn(C): then C−w is the union of a chain P and two isolated
vertices u1, u2 that are the two outer vertices of C adjacent to w according to Substructure
Lemma I.3.26. If u ∈ {u1, u2} or v ∈ {u1, u2}, then there obviously cannot exist a uv-chain in
C−w. Otherwise u, v ∈ V (P), so there exists a unique uv-chain in P (and in C−w as a result)
by Substructure Lemma I.3.25. ■

Lemma I.3.28. Let C be a cycle and let u, v ∈ V (C). Then there exists a uv-chain in C,
unless C is of length 2 and out(C) = {u, v}.

Proof. If C is of length 2 and out(C) = {u, v}, then there is no uv-chain in C, because
|eu ∩ ev| = 2 where eu (resp. ev) denotes the only edge of C containing u (resp. v). Otherwise,
there exists w ∈ out(C) \ {u, v}: by Substructure Lemma I.3.27, there exists a unique uv-chain
in C that does not contain w, so in particular C contains a uv-chain. ■

We now give analogous results for tadpoles.

Lemma I.3.29. Let T be a tadpole and let u, v, w ∈ V (T). If w ∈ out(CT) \ {u, v}, then there
exists a uv-chain in T that does not contain w.

Proof. Note that w ̸∈ V (PT), so that Substructure Lemma I.3.25 concludes if u, v ∈ V (PT). If
u, v ∈ V (CT), then Substructure Lemma I.3.27 concludes. Therefore, assume u ∈ V (PT) and
v ∈ V (CT). Let b be the only vertex in V (PT) ∩ V (CT). By Substructure Lemma I.3.25, there
exists a ub-chain Pub in PT , that does not contain w since w ̸∈ V (PT). By Substructure Lemma
I.3.27, there exists a bv-chain Pbv in CT that does not contain w. Since V (Pub) ∩ V (Pbv) = {b},
it is clear that −−−→uPubb⊕

−−−→
bPbvv represents a uv-chain in T that does not contain w. ■

Lemma I.3.30. Let T be a tadpole and let u, v ∈ V (T). Then there exists a uv-chain in T ,
unless CT is of length 2 and out(CT) = {u, v}.

80 I.3. Elementary structures in (marked) hypergraphs

Proof. If CT is of length 2 and out(CT) = {u, v}, then there is no uv-chain in T , because
|eu ∩ ev| = 2 where eu (resp. ev) denotes the only edge of T containing u (resp. v). Otherwise,
there exists w ∈ out(C) \ {u, v}: by Substructure Lemma I.3.29, there exists a uv-chain in T
that does not contain w, so in particular T contains a uv-chain. ■

On the subject of tadpoles, let us make one final remark:

Lemma I.3.31. Let T be a tadpole and let u ∈ V (T) \ out(CT). Then T contains a u-tadpole.

Proof. Let b be the only vertex in V (PT) ∩ V (CT). Since u ̸∈ out(CT), we have u ∈ inn(CT) or
u ∈ V (PT). If u ∈ inn(CT), then CT is a u-cycle. If u ∈ V (PT), then there exists a ub-chain Pub

in PT by Substructure Lemma I.3.25, so −−−→uPubb⊕
−−→
bCT represents a u-tadpole. ■

I.3.2.3 Projections

One of the most common tools that we will use is, inside a chain or a tadpole, to follow a
subchain starting from some vertex u until reaching some vertex set Z, as made possible by the
previous results:

Proposition I.3.32. Let H be a hypergraph. Let K be a chain or a tadpole in H, let u ∈ V (K),
and let Z ⊆ V (H) such that Z ∩ V (K) ̸= ∅. In the case where K is a tadpole with CK of length
2 and u ∈ out(CK), also suppose that Z ∩ V (K) ̸= out(CK) \ {u}. Then there exists a u-chain
PZ(u, K) in K such that:

• If u ∈ Z, then PZ(u, K) is of length 0.
• If u ̸∈ Z, then PZ(u, K) is of positive length and its only edge intersecting Z is

end(
−−−−−−−→
uPZ(u, K)), with |end(

−−−−−−−→
uPZ(u, K)) ∩ Z| ∈ {1, 2}.

See Figure I.12.

Proof. Let us start by showing the existence of w ∈ Z ∩ V (K) such that there exists a uw-chain
in K. If K is a chain, then any w ∈ Z ∩ V (K) is suitable by Substructure Lemma I.3.25. If K
is a tadpole, then any w ∈ Z ∩ V (K) is suitable by Substructure Lemma I.3.30, unless CK is of
length 2 and u ∈ out(CK) in which case we choose w ∈ Z ∩ V (K) \ (out(CK) \ {u}) as allowed
by the assumption.
Let w ∈ Z ∩ V (K) minimizing the length of a shortest uw-chain in K, and let P be a shortest
uw-chain in K. We claim that PZ(u, K) := P has the desired properties. Clearly, P is of
positive length if and only if u ̸∈ Z. Assume u ̸∈ Z. By definition, the walk −→uP |Z only has one
edge intersecting Z, which is end(−→uP |Z), so in particular |end(−→uP |Z)∩Z| ∈ {1, 2}. Therefore, it
suffices to show that −→uP |Z = −→uP to finish the proof. Let w′ ∈ end(−→uP |Z). The walk −→uP |Z induces
a uw′-chain, which cannot be shorter than P by minimality of w, hence why −→uP |Z = −→uP . ■

Remark. There is not necessarily unicity, even if K is a chain: indeed, it is possible that there
are vertices of Z on both sides of u in the chain.

Definition I.3.33. For K, u, Z satisfying the required conditions, a u-chain PZ(u, K) from
Proposition I.3.32 is called a projection of u onto Z in K. As there is no unicity in general, we
will consider that the notation PZ(u, K) always refers to the same chain for given K, u, Z. We
normally use the notation once anyway, to give ourselves one arbitrary such projection and then
work with that one.

Chapter I. Preparatory notions and preliminary results 81

u

Z
PZ(u,K) u

Z

PZ(u,K)

Figure I.12: Examples of projections. Left: K is a chain and |end(
−−−−−−−→
uPZ(u, K))∩

Z| = 1. Right: K is a tadpole and |end(
−−−−−−−→
uPZ(u, K)) ∩ Z| = 2.

I.3.2.4 Union lemmas

We now look at some structures that appear in unions of chains and tadpoles. The following
three lemmas are immediately deduced from the concatenation of the walks representing the
chains, cycles and tadpoles involved in their statements. We will use them often without
necessarily referencing them.

Lemma I.3.34. If P is an ab-chain and P ′ is a bc-chain such that V (P) ∩ V (P ′) = {b}, then
P ∪ P ′ is an ac-chain.

Lemma I.3.35. If P and P ′ are ab-chains such that V (P) ∩ V (P ′) = {a, b}, then P ∪ P ′ is an
a-cycle and a b-cycle.

Lemma I.3.36. If P is an ab-chain and T is a b-tadpole such that V (P) ∩ V (T) = {b}, then
P ∪ T is an a-tadpole.

However, when the intersection of the two objects is more complex, it is less clear what their
union contains. For example, Figure I.13 illustrates the fact that the union of an ab-chain and a
bc-chain does not necessarily contain an ac-chain.

a b

c

Figure I.13: The ac-path is not linear: there is an edge intersection of size 2.

Let us first consider the union of an ab-chain P of positive length and an edge e∗ such that
e∗ ∩ V (P) ̸= ∅ and there exists u ∈ e∗ \ V (P). When is it possible to prolong a subchain of P
with the edge e∗ to get an au-chain and/or a bu-chain?
If |e∗ ∩ V (P)| = 1, then we get both an au-chain and a bu-chain, represented by the walks
−−→
aPb|e∗ ⊕ (e∗, u) and ←−−aPb|e∗ ⊕ (e∗, u) respectively, as illustrated in Table I.2.
If |e∗ ∩ V (P)| = 2 though, then the walk −−→aPb|e∗ ⊕ (e∗, u) does not necessarily represent an
au-chain (same for b). If a ∈ e∗ i.e. −−→aPb|e∗ = (a), then it obviously does. But if a ̸∈ e∗ i.e.
−−→
aPb|e∗ represents a chain of positive length, then it does if and only if |e∗ ∩ end(−−→aPb|e∗)| = 1.
We see a key notion appearing here:

82 I.3. Elementary structures in (marked) hypergraphs

e
∗

a b

u

▷ au-chain [−−→aPb|e∗ ⊕ (e∗, u)]
▷ bu-chain [←−−aPb|e∗ ⊕ (e∗, u)]

Table I.2: An edge e∗ intersecting an ab-chain P on one vertex.

e∗ ̸⊥
←−−
aPb e∗ ⊥

←−−
aPb

e∗ ̸⊥
−−→
aPb b

e
∗

a

u

b

e
∗

u

a

▷ au-chain [−−→aPb|e∗ ⊕ (e∗, u)] ▷ au-chain [−−→aPb|e∗ ⊕ (e∗, u)]
▷ bu-chain [←−−aPb|e∗ ⊕ (e∗, u)] ▷ a-tadpole [−−→aPb|e∗ ⊕ (e∗, end(←−−aPb|e∗))]

e∗ ⊥
−−→
aPb a

e
∗

u

b impossible

▷ bu-chain [←−−aPb|e∗ ⊕ (e∗, u)]
▷ b-tadpole [←−−aPb|e∗ ⊕ (e∗, end(−−→aPb|e∗))]

Table I.3: An edge e∗ intersecting an ab-chain P on two vertices: all cases.
The a-tadpole or b-tadpole, when one appears, is highlighted.

Notation I.3.37. Let P be an ab-chain of positive length and let e∗ be an edge. Write−−→
aPb = (a, e1, . . . , eL, b). The notation e∗ ⊥

−−→
aPb (or e∗ ⊥

−→
aP equivalently) means that either

e1 \ {a} ⊆ e∗ or ei \ ei−1 ⊆ e∗ for some 2 ≤ i ≤ L. See Figure I.14.

Remark. Note that it is technically possible to have both e∗ ⊥
−−→
aPb and e∗ ⊥

←−−
aPb. This is the

case if, for some j, we have e∗ = ej or e∗ = {oj, oj+1} ∪ (ej ∩ ej+1) where oi denotes the only
vertex in ei \ ({a, b} ∪ inn(P)). However, this will never happen for us, as in practice we will
always have either e∗ ̸⊆ V (P) or a ∈ e∗.

a b

a b

Figure I.14: We have e∗ ⊥
−−→
aPb (resp. e∗ ⊥

←−−
aPb) if and only if e∗ contains one

of the pairs of vertices highlighted at the top (resp. at the bottom).

In the case at hand |e∗ ∩ V (P)| = 2, we can see that e∗ ⊥
−−→
aPb if and only if a ̸∈ e∗ and

|e∗ ∩ end(−−→aPb|e∗)| = 2. Therefore, the walk −−→aPb|e∗ ⊕ (e∗, u) represents an au-chain if and only if
e∗ ̸⊥

−−→
aPb, and similarly the walk ←−−aPb|e∗ ⊕ (e∗, u) represents a bu-chain if and only if e∗ ̸⊥

←−−
aPb.

All of this is illustrated in Table I.3: note that, if no au-chain (resp. no bu-chain) appears, then
we get a b-tadpole (resp. an a-tadpole).

Chapter I. Preparatory notions and preliminary results 83

Let us now consider the union of an ab-chain P of positive length and some edge e∗ ̸= start(−−→aPb)
that intersects P on at least two vertices including a: do we get an a-cycle? If |e∗ ∩ V (P)| = 2
then the answer is yes, as illustrated in Table I.4. If |e∗ ∩ V (P)| = 3 then Table I.5 shows that
it is possible that no a-cycle appears, in which case we get a b-tadpole.

b

e
∗

a

▷ a-cycle [−−→aPb|e∗\{a} ⊕ (e∗, a)]

Table I.4: An edge e∗ intersecting an ab-chain P on two vertices including a.
The a-cycle is highlighted.

e∗ ̸⊥
←−−
aPb e∗ ⊥

←−−
aPb

e∗ ̸⊥
−−→
aPb

b

e
∗

a b

e
∗

a

▷ a-cycle [−−→aPb|e∗\{a} ⊕ (e∗, a)] ▷ a-cycle [−−→aPb|e∗\{a} ⊕ (e∗, a)]

e∗ ⊥
−−→
aPb

b

e
∗

a
impossible

▷ b-tadpole [←−−aPb|e∗⊕ (e∗, end(−−→aPb|e∗\{a}))]

Table I.5: An edge e∗ intersecting an ab-chain P on three vertices including a

(and e∗ ̸= start(−−→aPb)): all cases. The a-cycle or b-tadpole is highlighted.

Using these tables, we get the following four union lemmas, which are fundamental in our
structural study of 3-uniform hypergraphs. They give us some basic information about the
union of two chains or the union of a chain and a tadpole.

Lemma I.3.38. Let a, b, c be distinct vertices. Let Pab be an ab-chain, and let Pc be a c-chain
such that c ̸∈ V (Pab) and V (Pc) ∩ V (Pab) ̸= ∅. In particular, e∗ := end(

−−−−−−−−−−→
cPV (Pab)(c, Pc)) is

well defined. Suppose there is no ca-chain in Pab ∪ Pc. Then |e∗ ∩ V (Pab)| = 2 and e∗ ⊥
−−→
aPb,

moreover there is a cb-chain in Pab ∪ Pc and a b-tadpole in Pab ∪ e∗ ⊆ Pab ∪ Pc. See Figure I.15.

Proof. By definition of a projection, we have |e∗∩V (Pab)| ∈ {1, 2}. Let u ∈ e∗\V (Pab). All ways
that e∗ might intersect Pab are summarized in Tables I.2 and I.3. There is no au-chain Pau in
Pab∪ e∗, otherwise the walk −→cPc|{u}⊕

−−−→
uPaua would represent a ca-chain in Pab∪Pc, contradicting

the assumption of the lemma. Therefore, we are necessarily in the bottom-left case of Table I.3,
which means that: |e∗ ∩ V (Pab)| = 2, e∗ ⊥

−−→
aPb, there is a b-tadpole in Pab ∪ e∗, and there is a

bu-chain Pbu in Pab ∪ e∗. The walk −→cPc|{u} ⊕
−−−→
uPbub represents a cb-chain in Pab ∪ Pc. ■

84 I.3. Elementary structures in (marked) hypergraphs

e
∗

u

ba

c

Figure I.15: Illustration of Lemma I.3.38. The represented chains are Pab and
PV (Pab)(c, Pc). The b-tadpole is highlighted.

Lemma I.3.39. Let a, b, c be distinct vertices, where b is marked. Let Sab be an ab-snake, and
let Pc be a c-chain such that c ̸∈ V (Sab) and V (Pc) ∩ V (Sab) ̸= ∅.

• Suppose there is no c-snake in Sab ∪ Pc. Then there is both a ca-chain and an a-tadpole in
Sab ∪ Pc.

• Suppose there is no ca-chain in Sab ∪ Pc. Then there is both a cb-snake and a b-tadpole in
Sab ∪ Pc.

Proof. The second item is exactly Lemma I.3.38. The first item is Lemma I.3.38 where the roles
of a and b are reversed. ■

c

a

c

b a b

Figure I.16: Illustration of Lemma I.3.39 (first item on the left, second item on
the right). The represented chains are Sab and PV (Sab)(c, Pc).

Lemma I.3.40. Let a, b be distinct vertices. Let Pab be an ab-chain, and let Pa be an a-
chain such that start(−−→aPa) ̸= start(−−−→aPabb) and V (Pa) ∩ (V (Pab) \ {a}) ̸= ∅. In particular,
e∗ := end(

−−−−−−−−−−−−−→
aPV (Pab)\{a}(a, Pa)) is well defined. Suppose there is no a-cycle in Pab ∪ Pa. Then

e∗ ⊥
−−→
aPb and there is a b-tadpole in Pab ∪ e∗ ⊆ Pab ∪ Pa. See Figure I.17.

Proof. We distinguish between two cases:
• First suppose a ∈ e∗. Since e∗ ̸= start(−−−→aPabb), all ways that e∗ might intersect Pab are

summarized in Tables I.4 and I.5. Since there is no a-cycle in Pab ∪ Pa ⊇ Pab ∪ e∗ by
assumption, we are necessarily in the bottom-left case of Table I.5, so e∗ ⊥

−−→
aPb and there

is a b-tadpole in Pab ∪ e∗.
• Now suppose a ̸∈ e∗, meaning the projection PV (Pab)\{a}(a, Pa) is of length at least 2. Write

start(−−→aPa) = {a, c, c′} where c ∈ inn(Pa), as in Figure I.17. Define the c-chain Pc := P −a−c′
a :

we have c ̸∈ V (Pab) and e∗ = end(
−−−−−−−−−−→
cPV (Pab)(c, Pc)), so the idea is to apply Lemma I.3.38 to

Pab and Pc. If there was a ca-chain Pca in Pab ∪ Pc, then (a, start(−−→aPa), c)⊕−−−→cPcaa would

Chapter I. Preparatory notions and preliminary results 85

represent an a-cycle in Pab ∪ Pa, contradicting the assumption of the lemma. Therefore,
there is no ca-chain in Pab ∪ Pc, so Lemma I.3.38 ensures that e∗ ⊥

−−→
aPb and that there is

a b-tadpole in Pab ∪ e∗. ■

e
∗

ba

cc
′

Figure I.17: Illustration of Lemma I.3.40. The represented chains are Pab and
PV (Pab)\{a}(a, Pa). The b-tadpole is highlighted.

Lemma I.3.41. Let a, c be distinct vertices. Let T be an a-tadpole, and let Pc be a c-chain such
that c ̸∈ V (T) and V (Pc) ∩ V (T) ̸= ∅. In particular, e∗ := end(

−−−−−−−−−→
cPV (T)(c, Pc)) is well defined.

Suppose there is no ca-chain in T ∪ Pc. Then T is not a cycle, |e∗ ∩ V (T)| = 2 and e∗ ⊥
−−→
aPT ,

moreover there is a c-tadpole in T ∪ Pc. See Figure I.18.

Proof. Up to replacing Pc with the projection PV (T)(c, Pc), assume that e∗ is the only edge of
Pc intersecting T . Let b be the only vertex in V (PT) ∩ V (CT).

Claim 3. e∗ ∩ (V (PT) \ {a}) ̸= ∅.

Proof of Claim 3. We already know a ̸∈ e∗, otherwise Pc would be a ca-chain, contradicting
the assumption of the lemma. Therefore we must show that e∗ ∩ V (PT) ̸= ∅. Suppose for a
contradiction that e∗ ∩ V (PT) = ∅. There are two possibilities:

• Suppose |e∗ ∩ V (CT)| = 1, and write e∗ ∩ V (CT) = {v}. Note that Pc is a cv-chain. By
Substructure Lemma I.3.28 (with u = b), there exists a bv-chain Pbv in CT . The walk
−−→
cPcv ⊕

−−−→
vPbvb⊕

−−−→
bPT a represents a ca-chain in T ∪ Pc, contradicting the assumption of the

lemma.
• Suppose |e∗∩V (CT)| = 2, and write e∗∩V (CT) = {v, w}. Note that Pc is both a cv-chain

and a cw-chain. Up to swapping the roles of v and w, we can assume that w ∈ out(CT) or
v ∈ inn(CT). Since b ∈ inn(CT) and b ̸= w (indeed b ∈ V (PT) whereas e∗ ∩ V (PT) = ∅),
Substructure Lemma I.3.27 (with u = b) thus ensures that there exists a bv-chain Pbv in
CT that does not contain w. The fact that w ̸∈ V (Pbv) implies that V (Pc)∩ V (Pbv) = {v}.
The walk −−→cPcv ⊕

−−−→
vPbvb ⊕

−−−→
bPT a thus represents a ca-chain in T ∪ Pc, contradicting the

assumption of the lemma. □

Claim 3 implies that V (PT) \ {a} ≠ ∅ i.e. PT is of positive length i.e. T is not a cycle. It
also implies that V (Pc) ∩ V (PT) ̸= ∅, so we can apply Lemma I.3.38 with Pc and the ab-chain
Pab = PT . Since there is no ca-chain in T ∪ Pc ⊇ PT ∪ Pc by assumption, Lemma I.3.38 tells us
that: |e∗∩V (PT)| = 2, e∗ ⊥

−−−→
aPT b, and there is a cb-chain Pcb in PT ∪Pc. Since |e∗∩V (PT)| = 2,

we have e∗ ∩ (V (CT) \ {b}) = ∅, hence V (Pcb)∩ V (CT) = {b}. Therefore Pcb ∪CT is a c-tadpole
in T ∪ Pc, which concludes. ■

In linear hypergraphs, the above considerations are trivialized since the "⊥" cases do not exist.
Therefore, we get simplified versions of the union lemmas in the linear case, the most important
ones being the following two.

86 I.3. Elementary structures in (marked) hypergraphs

e
∗

ba

c

Figure I.18: Illustration of Lemma I.3.41. The represented objects are T and
PV (T)(c, Pc). The c-tadpole is highlighted.

Corollary I.3.42. Let H be a linear hypergraph, and let a, b, c ∈ V (H) be distinct. Let Pab be
an ab-chain in H, and let Pc be a c-chain in H such that c ̸∈ V (Pab) and V (Pc) ∩ V (Pab) ̸= ∅.
Then there is both a ca-chain and a cb-chain in Pab ∪ Pc.

Proof. This is an immediate consequence of Lemma I.3.38. ■

Corollary I.3.43. Let H be a linear hypergraph, and let a, b ∈ V (H) be distinct. Let Pab

be an ab-chain in H, and let Pa be an a-chain in H such that start(−−→aPa) ̸= start(−−−→aPabb) and
V (Pa) ∩ (V (Pab) \ {a}) ̸= ∅. Then there is an a-cycle in Pab ∪ Pa.

Proof. This is an immediate consequence of Lemma I.3.40. ■

In 3-uniform hyperforests, which are a subcase of 3-uniform linear hypergraphs, another corollary
of the union lemmas is the following natural property:

Corollary I.3.44. In a 3-uniform hyperforest, there exists at most one ab-chain for given
vertices a and b.

Proof. Suppose for a contradiction that there exist distinct chains P and P ′ that are ab-chains
for the same vertices a and b (in particular a ≠ b, otherwise P and P ′ would both consist of
the single vertex a = b). Choose P and P ′ such that the sum of the two lengths is minimum.
Write −−→aPb = (a, e1, . . . , eL, b) and

−−→
aP ′b = (a, e′

1, . . . , e′
M , b). If e1 ̸= e′

1 then P ∪ P ′ contains an
a-cycle by Corollary I.3.43, contradicting the definition of a hyperforest. Therefore e1 = e′

1,
hence L, M ≥ 2. Let c be the only vertex in e1 ∩ e2, and let Pcb be the cb-chain represented by
the walk (c, e2, . . . , eL, b). There are two cases:

a b
e1=e

′

1

e2
c

e
′

2

a b
e1=e

′

1

e2
c

e
′

2

Figure I.19: Left: e′
1 ∩ e′

2 = {c}. Right: e′
1 ∩ e′

2 ̸= {c}.

• If e′
1 ∩ e′

2 = {c} (Figure I.19, left), then (c, e′
2, . . . , e′

M , b) represents a cb-chain P ′
cb. Since

P ̸= P ′ and e1 = e′
1, we have Pcb ̸= P ′

cb. In conclusion, Pcb and P ′
cb are distinct cb-chains,

contradicting our choice of P and P ′ since the sum of lengths is (L−1)+(M−1) < L+M .

Chapter I. Preparatory notions and preliminary results 87

• If e′
1 ∩ e′

2 ̸= {c} i.e. c = o(a,
−−→
aP ′b) (Figure I.19, right), then P ′ is a cb-chain. Since

start(
−−→
cP ′b) = e′

1 = e1 ̸= e2 = start(−−−→cPcbb), we have Pcb ≠ P ′. In conclusion, Pcb and P ′

are distinct cb-chains, contradicting our choice of P and P ′ since the sum of lengths is
(L− 1) + M < L + M . ■

Chapter II

In-depth structural studies in
hypergraphs

We are about to explore hypergraph structures in much detail to obtain the main results of this
dissertation. This chapter is the most important, and also the most technical. It is important
at this point to be familiar with all preliminary notions from Chapter I, which will be used
extensively, as well as its (sometimes heavy) notations which will be necessary to carry out
the proofs with the required care and precision. Section II.1 is dedicated to the unbiased
Maker-Breaker game on hypergraphs of rank 3. The crucial role of chains in this game calls for
a study of linear connectivity in 3-uniform hypergraphs: this is the subject of Section II.2, in a
more general version which addresses (k − 2)-linear connectivity in k-uniform hypergraphs.

II.1 The Maker-Breaker game: structural results in hy-
pergraphs of rank 3†

II.1.1 Presentation of the problem and state of the art

The main goal of this section is to obtain a structural characterization of the outcome for the
unbiased Maker-Breaker game on hypergraphs of rank 3, based on danger intersections. We
would like to get an equivalence of type (∗) for this class i.e. to find an elementary family of
3-uniform dangers F and a constant number of rounds r such that Breaker wins if and only if
Jr(F , ·) holds. Let us talk about previous work on this specific class and why it gives us hope
that such an equivalence does exist.
The first results on hypergraphs of rank 3 are due to Kutz [Kut04], who studied the linear
case exclusively. He first reduces to the subclass H of linear hypergraphs of rank 3 that: are
connected, have no articulation vertex, and contain exactly one edge of size 2. He then gives a
structural characterization of Breaker wins on the class H, providing an exact description of
their structure which we shall denote by Σ. The definition of the structure Σ is centered on the
types of connections that exist in the hypergraph between the two vertices of the edge of size 2.
Unfortunately, Kutz’s approach seems very difficult to adapt to the non-linear case, where the
possibilities multiply as to how linear objects may intersect, as we have seen with our union
lemmas from Subsection I.3.2. Nevertheless, reading Kutz’s proof that any hypergraph H ∈ H
which does not have the structure Σ is a Maker win, some interesting observations can be made.

† These results are part of the article [GGS22b], which has been submitted to Journal of Combinatorial
Theory, Series A.

90 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

The idea of danger intersections is present between the lines, although not truly identified by the
author. Indeed, in all cases, the conclusion that H is a Maker win comes down to the existence
of some vertex x and of some elementary subhypergraphs containing x with no common vertex
apart from x itself and in which Breaker would be forced to answer if Maker picked x. It can
thus be derived from Kutz’s proof, and we will actually give an independent proof of it in this
section, that a hypergraph H ∈ H is a Breaker win if and only if J1(D1, H) holds, where D1
is a very simple family of dangers. Even though it is not difficult to find counterexamples to
this equivalence outside of the subclass H (even linear ones), this new characterization has the
potential to be adapted to general hypergraphs of rank 3, unlike the characterization via the
structure Σ which is too specific to the linear case. This interpretation of Kutz’s proof is the
inspiration behind our danger-based approach of Maker-Breaker games.
More recently, the paper by Rahman and Watson [RW20] is just as relevant. They study a more
general game, which is played on a CNF formula instead of a hypergraph. Two players take
turns picking variables and assigning them a truth value of their choice: the first player (False)
wants the formula to be false while the second player (True) wants the formula to be true. If
the formula is positive i.e. all its literals are positive, then False always assigns the value 0 to
the variable she picks, and True always assigns the value 1 to the variable he picks, so that the
game is equivalent to the Maker-Breaker game: False is Maker, True is Breaker, and clauses
correspond to edges. Rahman and Watson study the game played on a 3-CNF formula, meaning
all clauses are of size at most 3, with the added constraint that each clause must possess a
"spare variable" which appears in no other clause. This is a very strong constraint, and it may
seem that this study is of no use to us, since for positive formulas it reduces to the linear case
already settled by Kutz. Indeed, if there exist edges e1 = {a, b, c} and e2 = {b, c, d}, then a
and d appear in no other edge by the spare variable constraint, so item (ii) from Proposition
I.1.22 ensures that these two edges may be replaced by a single edge {b, c} without affecting the
outcome. Nevertheless, Rahman and Watson’s paper is still very interesting to us because of
the methods that are used. Indeed, they define some "obstacles" for True, which are elementary
subformulas on which False wins: again, this relates to our notion of danger. The main one
is called a manriki, which in the positive case is none other than the non-marked reduction of
a nunchaku, as mentioned before (recall Figure I.7). The authors show that, in all nontrivial
cases, True wins if and only if he can break any manriki that appears during the first three
rounds of play. They conjecture that this remains true for general 3-CNF formulas, without the
spare variable constraint. For positive 3-CNF formulas, using our terminology on 3-uniform
marked hypergraphs, this conjecture means that Breaker wins if and only if J3(D0, H) holds,
where D0 is the family of dangers corresponding to nunchakus (i.e. the dangers (D, x) such that
D+x is a nunchaku or at least has the same non-marked reduction as a nunchaku). The main
result of this section validates this conjecture and provides optimal strategies for both players
based on danger intersections.

II.1.2 The game on 3-uniform marked hyperforests

Let us start with a simple subclass of 3-uniform marked hypergraphs, namely hyperforests.

II.1.2.1 Solution in terms of nunchakus

Being linear, 3-uniform marked hyperforests fall under Kutz’s study. However, they admit the
following criterion characterizing the winner of the Maker-Breaker game, which is much easier
than the general result of Kutz:

Chapter II. In-depth structural studies in hypergraphs 91

Theorem II.1.1. Let H be a 3-uniform marked hyperforest with no fully marked edge. Then H
is a Maker win if and only if H contains a nunchaku.

Proof. The "if" direction is already known: a nunchaku is a Maker win by Proposition I.3.13,
so any H containing a nunchaku is a Maker win by Monotonicity Lemma I.1.50. Let us
show the "only if" direction, by induction on |V (H) \ M(H)|. If H is a Maker win with
|V (H) \M(H)| ≤ 1, then H is a trivial Maker win: since H contains no fully marked edge, this
means H contains an edge with exactly two marked vertices i.e. a nunchaku of length 1. Now,
assume |V (H) \M(H)| ≥ 2 and the implication to be true for all 3-uniform marked hyperforests
with less non-marked vertices than H. We show the contrapositive: suppose that H contains
no nunchaku. We want to show that Breaker can ensure that there is still no nunchaku after
one round. Let x ∈ V (H) \ V (H). Since H contains no nunchaku, all nunchakus in H+x are
x-nunchakus. Moreover, since H is linear, there cannot exist an xm1-chain and an xm2-chain in
H for some distinct m1, m2 ∈M(H): indeed, by Corollary I.3.42, the union of the two would
contain an m1m2-nunchaku in H, a contradiction. Finally, since H is a hyperforest, there cannot
exist two distinct xm-chains in H for some m ∈ V (H) by Corollary I.3.44. In conclusion, H+x

contains at most one nunchaku. If that nunchaku exists, then it has at least one non-marked
vertex y. Otherwise, let y ∈ V (H+x) \M(H+x) be arbitrary. In both cases, H+x−y contains no
nunchaku and no fully marked edge, so it is a Maker win by the induction hypothesis. Therefore,
H is a Maker win. ■

II.1.2.2 Interpretation in terms of the family of dangers S

Notation II.1.2. We define the family S of all pointed marked hypergraphs (S, x) such that S
is an x-snake and |M(S)| = 1. See Figure II.1.

x

Figure II.1: An example of an S-danger at x.

From Breaker’s point of view, the fact that a nunchaku is a Maker win may be reformulated as
follows:

Proposition II.1.3. S is a family of dangers.

Proof. Let (S, x) ∈ S: S+x is a nunchaku, therefore it is a Maker win by Proposition I.3.13 i.e.
(S, x) is a danger. ■

Moreover, we get the equivalence (∗) for the class of 3-uniform marked hyperforests, with F = S
and r = 1:

Proposition II.1.4. Let N be a nunchaku of length at least 2. Then J1(S, N) does not hold.

Proof. Since N is of length at least 2, we have inn(N) ̸= ∅. Let x ∈ inn(N): N is the union
of two x-snakes S1 and S2 such that V (S1) ∩ V (S2) = {x}. We have S1, S2 ∈ xS(N) hence
IN+x(xS(N)) = ∅, so J1(S, N) does not hold. ■

Theorem II.1.5. Let H be a 3-uniform marked hyperforest that is not a trivial Maker win,
with |V (H) \M(H)| ≥ 2. Then H is a Breaker win if and only if J1(S, H) holds.

92 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

Proof. Recall that the "only if" direction is automatic by Proposition I.2.19. Suppose that H is
a Maker win: since H is not a trivial Maker win, H has no fully marked edge, therefore Theorem
II.1.1 ensures that H contains a nunchaku N . Again, since H is not a trivial Maker win, N is of
length at least 2. By Proposition II.1.4, J1(S, N) does not hold, so neither does J1(S, H). ■

II.1.3 The game on general 3-uniform marked hypergraphs

In general 3-uniform marked hypergraphs, with cycles allowed, the equivalence from Theorem
II.1.5 does not hold. For instance, there exist 3-uniform Maker wins that have no marked vertex
(so they trivially contain no nunchakus). A famous example, which we have already mentioned,
is the 3× 3 tic-tac-toe hypergraph.

II.1.3.1 The family of dangers C

An important observation is that nunchakus have a cycle counterpart: necklaces. Recall that
a necklace is a cycle where one inner vertex is marked and all other vertices are non-marked.
On an x-necklace, the same forcing technique used for nunchakus works (the only difference is
that we come back to x at the end). Fundamentally, when Maker plays x, the x-snakes become
x-nunchakus and the x-cycles become x-necklaces. Therefore, cycles are also dangers:

Notation II.1.6. We define the family C of all pointed marked hypergraphs (C, x) such that C
is an x-cycle and M(C) = ∅.

Proposition II.1.7. A nunchaku and a necklace of same length have the same non-marked
reduction.

Proof. This is straightforward. See Figure II.2. ■

Proposition II.1.8. C is a family of dangers.

Proof. Let (C, x) ∈ C. Since C+x is a necklace, it has the same non-marked reduction as a
nunchaku, so the outcome for the game is the same for both according to Corollary I.1.54. Since
a nunchaku is a Maker win, C+x is also a Maker win i.e. (C, x) is a danger. ■

u

v

a

b

u

v

a

b

uab v

Figure II.2: Top: a nunchaku and a necklace, both of length 6. Bottom: their
common non-marked reduction. Some vertices are named to help identification.

A necklace can also be seen as a union of two snakes:

Proposition II.1.9. Let C be a necklace. Then J1(S, C) does not hold.

Chapter II. In-depth structural studies in hypergraphs 93

Proof. Let x be the only marked vertex of C and let z ∈ inn(C) \ {x}. Since x and z are
distinct inner vertices of C, we can write C = S1 ∪ S2 where V (S1) ∩ V (S2) = {z, x}, as in
Figure II.3. Since M(C) = {x}, we have S1, S2 ∈ zS(C) hence IC+z(zS(C)) = ∅, so J1(S, C)
does not hold. ■

x z

S1

S2

Figure II.3: An x-necklace C as a union of two z-snakes whose intersection in
C+z is empty.

Example. Consider the 3× 3 tic-tac-toe hypergraph H. The C-dangers help understand why
and how Maker wins on H. Indeed, let u be the center vertex: it is not difficult to exhibit
four u-cycles in H that have no common vertex apart from u (see Figure II.4, top). Therefore,
IH+u(uC(H)) = ∅, so J1(C, H) does not hold. Actually, the same is true for any corner vertex v
(see Figure II.4, bottom). This means Maker can win by picking the center vertex or any corner
vertex as her first move, and then force her way along whichever cycle has been left intact by
Breaker’s first move.

u
u

u
u

v v vv

Figure II.4: Some cycles in the tic-tac-toe hypergraph. For clarity, we make an
exception to our usual representation of edges in 3-uniform hypergraphs.

II.1.3.2 The family of dangers D0

All in all, the elementary family of dangers that we are going to consider comprises snakes and
cycles:

Notation II.1.10. We define the family of dangers D0 := S ∪ C. See Figure II.5.

Remark. Note that D0 contains the trivial danger of size 3, which is nothing but an S-danger of
length 1.

94 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

x x

Figure II.5: Examples of D0-dangers at x.

All the basic 3-uniform examples that we have looked at so far, namely hyperforests and the
tic-tac-toe hypergraph, have the property that H is a Breaker win if and only if J1(D0, H) holds.
Could this be true in general? Unfortunately, the answer is no. In fact, not only is J1(D0, H)
not sufficient for H to be a Breaker win in general, but even J2(D0, H) is not. Figure II.6 (left)
features an instance of a 3-uniform Maker win H such that it can be checked that J2(D0, H)
holds but not J3(D0, H). Note that this counterexample is even linear.

y2

x1

y1

y3

x3

x2

Figure II.6: H is on the left, H+x1−y1+x2−y2+x3−y3 is on the right (the necklace
is highlighted).

From Maker’s point of view, property Jr(D0, H) not holding means that Maker can force the
appearance of a nunchaku or a necklace after at most r rounds of play (we are talking about
full rounds of play, i.e. the marked hypergraph updated after Breaker has played contains a
nunchaku or a necklace):

Proposition II.1.11. Let r ≥ 1 be an integer. Let H be a 3-uniform marked hypergraph that
is not a trivial Maker win, with |V (H) \M(H)| ≥ 2r. Then Jr(D0, H) does not hold if and
only if Maker has a strategy ensuring that, after r rounds of play on H with successive picks
x1, y1, . . . , xr, yr, the updated marked hypergraph H+x1−y1+...+xr−yr contains a fully marked edge,
a nunchaku or a necklace.
(We make the harmless assumption that the players complete r rounds of play, even in the case
where Maker has actually won during the first r − 1 rounds.)

Proof. Suppose Jr(D0, H) holds. In particular J1(S, H) holds, so H contains no necklace by
Proposition II.1.9 and no nunchaku of length at least 2 by Proposition II.1.4. Since H is not a
trivial Maker win, this means H contains no nunchaku at all (and no fully marked edge). When
Maker picks xi, the nunchakus and necklaces that he creates are exactly all the D+xi where D is
a D0-danger at xi. By definition of Jr(D0, H), Breaker is thus able, in each of the first r rounds,
to destroy all the nunchakus and necklaces that Maker has just created. For the nunchakus of
length 1, this means Maker never gets a fully marked edge.
Conversely, suppose Jr(D0, H) does not hold. Then Maker can ensure that the updated
hypergraph at the end of one of the first r rounds will contain a nunchaku or a necklace. If it
happens before the r-th round, then Maker may for instance use the dichotomy strategy to get
a nunchaku (or, eventually, a fully marked edge) at the end of each subsequent round as well,

Chapter II. In-depth structural studies in hypergraphs 95

until r rounds are played. ■

In the hypergraph from Figure II.6 (left), Maker needs exactly three rounds to guarantee the
appearance of a nunchaku or a necklace: an example of the first three picks by both players is
shown on the right. We will soon explain how we have come up with such a hypergraph for this
example.

II.1.3.3 Statement of the main results

We have now introduced all concepts and notations needed to state our two main results about
the Maker-Breaker game on 3-uniform marked hypergraphs, which we will prove in this section.
As we have just seen, property J2(D0, H) is not equivalent to H being a Breaker win in general.
However, a central result of this dissertation certifies that property J3(D0, H) is, proving the
conjecture by Rahman and Watson [RW20] in the case of positive 3-CNF formulas. We can
even give optimal strategies for both players based on the intersection of the D∗2

0 -dangers:

Theorem II.1.12. Let H be a 3-uniform marked hypergraph that is not a trivial Maker win,
with |V (H)\M(H)| ≥ 6. Then H is a Breaker win if and only if J3(D0, H) holds i.e. J1(D∗2

0 , H)
holds. More precisely:

(i) If J1(D∗2
0 , H) does not hold, then H is a Maker win and: any x1 ∈ V (H) \M(H) such

that IH+x1 (x1D∗2
0 (H)) = ∅ is a winning first pick for Maker.

(ii) If J1(D∗2
0 , H) holds then H is a Breaker win and: for any first pick x1 ∈ V (H) \M(H) of

Maker, any y1 ∈ IH+x1 (x1D∗2
0 (H)) is a winning answer for Breaker.

Therefore, H is a Maker win if and only if Maker has a strategy ensuring that, after three
rounds of play on H with successive picks x1, y1, x2, y2, x3, y3, the updated marked hypergraph
H+x1−y1+x2−y2+x3−y3 contains a fully marked edge, a nunchaku or a necklace.

We also exhibit a substantial subclass in which two rounds are sufficient instead of three, as our
second main result:

Theorem II.1.13. Let H be a 3-uniform marked hypergraph that is not a trivial Maker win,
with |V (H) \M(H)| ≥ 4. Suppose that, for any x ∈ V (H) \M(H), there exists an x-snake in
H. Then H is a Breaker win if and only if J2(D0, H) holds i.e. J1(D∗

0, H) holds. Therefore, H
is a Maker win if and only if Maker has a strategy ensuring that, after two rounds of play on
H with successive picks x1, y1, x2, y2, the updated marked hypergraph H+x1−y1+x2−y2 contains a
fully marked edge, a nunchaku or a necklace.

II.1.4 Approximating D∗0 and D∗20

In order to tackle Theorem II.1.12, we can choose which property to consider between J3(D0, H)
and J1(D∗2

0 , H), which are equivalent according to Proposition I.2.28. As explained in Subsection
I.2.2, J1(D∗2

0 , H) is preferable as long as we get a reasonable understanding of the family D∗2
0 .

In this subsection, we exhibit subfamilies D1 ⊆ D∗
0 and D2 ⊆ D∗2

0 which will be sufficient
approximations, in the sense that Theorems II.1.12 and II.1.13 will actually hold in a stronger
version where D∗2

0 and D∗
0 are replaced by their respective approximations D2 and D1:

Theorem II.1.14. Let H be a 3-uniform marked hypergraph that is not a trivial Maker win,
with |V (H) \M(H)| ≥ 2. Then H is a Breaker win if and only if J1(D2, H) holds. More
precisely:

96 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

(i) If J1(D2, H) does not hold, then H is a Maker win and: any x1 ∈ V (H) \M(H) such that
IH+x1 (x1D2(H)) = ∅ is a winning first pick for Maker.

(ii) If J1(D2, H) holds, then H is a Breaker win and: for any first pick x1 ∈ V (H) \M(H) of
Maker, any y1 ∈ IH+x1 (x1D2(H)) is a winning answer for Breaker.

Theorem II.1.15. Let H be a 3-uniform marked hypergraph that is not a trivial Maker win,
with |V (H) \M(H)| ≥ 2. Suppose that, for any x ∈ V (H) \M(H), there exists an x-snake in
H. Then H is a Breaker win if and only if J1(D1, H) holds.

Note that Theorem II.1.15 applies in particular to any 3-uniform marked hypergraph that is
linear connected and has at least one marked vertex (i.e. its non-marked reduction has at
least one edge of size 2). Therefore, Theorem II.1.15 contains the result on linear 3-uniform
hypergraphs of which we mentioned in Subsection II.1.1 that it could be deduced from Kutz’s
proof [Kut04].
Let us now define D1 and D2. Recall that D0 ⊆ D∗

0 ⊆ D∗2
0 . To build D1 from D0, we are only

going to add the most elementary new dangers that appear in the jump from D0 to D∗
0, which

are tadpoles.

II.1.4.1 The families of dangers T and D1

Recall that D∗
0 = D0 ∪ D0

O by definition. When looking for basic examples of D0
O-dangers, we

can see tadpoles appear:

Notation II.1.16. We define the family T ⊇ C of all pointed marked hypergraphs (T, x) such
that T is an x-tadpole and M(T) = ∅. We also define D1 := D0 ∪ T = S ∪ T . See Figure II.7.

x x x

Figure II.7: Examples of D1-dangers at x.

Proposition II.1.17. We have T \ C ⊆ D0
O. In particular: D1 ⊆ D∗

0, so D1 is a family of
dangers.

Proof. Let (T, x) ∈ T \C, and let z be the only vertex in V (PT)∩V (CT). Note that z ̸= x since T
is not a cycle. We can write T = ⟨O⟩ with O := {PT , CT}. Since V (PT)∩V (CT) = {z}, we have
IT +x+z(O) = ∅. Moreover, since M(PT) = M(CT) = ∅, we have P +x

T ∈ zS(T +x) ⊆ zD0(T +x)
and C+x

T = CT ∈ zC(T +x) ⊆ zD0(T +x) i.e. O ⊆ {K ⊆ T, K+x ∈ zD0(T +x)}. See Figure II.8.
In conclusion, we get O ∈ OT +x+z({K ⊆ T, K+x ∈ zD0(T +x)}).
This proves that T \ C ⊆ D0

O ⊆ D∗
0. Since D0 ⊆ D∗

0, this yields D1 ⊆ D∗
0. ■

Although the tadpoles from T (resp. the snakes from S) are required to have exactly 0 (resp. 1)
marked vertex by definition, the next proposition ensures that in practice we will never have to
worry about the number of marked vertices in a tadpole or a snake.

Chapter II. In-depth structural studies in hypergraphs 97

z
x

z
x

P
+x
T

C
+x
T =CT

Figure II.8: Left: (T, x) ∈ T \ C. Right: T +x is the union of two D0-dangers
at z whose intersection in T +x+z is empty.

Proposition II.1.18. Let H be a marked hypergraph that is not a trivial Maker win, and
let u ∈ V (H) \M(H). Then any u-tadpole or u-snake in H contains a D1-danger at u. In
particular, if u′ ∈ IH+u(uD1(H)), then any u-tadpole or u-snake in H contains u′.

Proof. Let K be a u-tadpole or u-snake in H. If M(K) = ∅, then K is necessarily a u-
tadpole, and K ∈ uT (H) ⊆ uD1(H). Therefore, assume that M(K) ̸= ∅, so that the chain
S := PM(K)(u, K) ⊆ K is well defined. By definition of a projection, the only edge of S that
intersects M(K) is end(−→uS). Moreover, since H is not a trivial Maker win, that edge contains
exactly one marked vertex hence S ∈ uS(H) ⊆ uD1(H).
The final assertion of this proposition ensues immediately: all u-snakes and u-tadpoles contain
some D ∈ uD1(H), and u′ ∈ V (D) since u′ ∈ IH+u(uD1(H)). ■

Let us also mention another useful property:

Proposition II.1.19. Let H be a marked hypergraph that is not a trivial Maker win, with
|(V (H) \M(H)| ≥ 2, and suppose J1(D0, H) holds. Then, for any m ∈ M(H), there is no
m-tadpole and no m-snake in H.

Proof. Suppose for a contradiction that there exists a subhypergraph K of H that is an m-
tadpole or an m-snake for some marked vertex m. Let H0 (resp. K0) be the same as H (resp.
K) except that m is non-marked. By Proposition II.1.18 applied to K0 with u = m, there exists
some D ⊆ K0 such that (D, m) ∈ D1. We have D+m ⊆ K ⊆ H.

• First suppose (D, m) ∈ S i.e. D+m is a nunchaku. Since H is not a trivial Maker win,
D+m is of length at least 2, so J1(S, D+m) does not hold according to Proposition II.1.4.
Therefore, J1(S, H) and J1(D0, H) do not hold either, a contradiction.

• Now suppose (D, m) ∈ C. By Proposition II.1.9, J1(S, D+m) does not hold. Therefore,
J1(S, H) and J1(D0, H) do not hold either, a contradiction.

• Finally, suppose (D, m) ∈ T \C. By Proposition II.1.17, we have (D, m) ∈ D0
O. Moreover,

since D is a tadpole that is not a cycle, we have |V (D)| ≥ 6 hence |V (D+m) \M(D+m)| =
|V (D)| − 1 ≥ 5 ≥ 2, so Proposition I.2.24 ensures that J1(D0, D+m) does not hold.
Therefore, J1(D0, H) does not hold either, a contradiction. ■

II.1.4.2 The families of dangers D1
O and D2

We want to define D2 ⊆ D∗2
0 such that property J1(D2, H) is sufficient for a 3-uniform marked

hypergraph H to be a Breaker win. The idea is to prove this sufficiency result by induction, as
follows:

1. Assume J1(D2, H) holds. Maker picks some x, Breaker picks some y ∈ IH+x(xD2(H)).
2. If we have chosen D2 ⊇ D1 in such a way that IH+x(xD2(H)) ⊆ IH+x

(
xD1

O(H)
)
, then

y ∈ IH+x

(
xD1

O(H)
)
, therefore J1(D1, H+x−y) holds by Proposition I.2.25.

3. To complete the induction step, it remains to show that J1(D1, H+x−y) implies J1(D2, H+x−y),
which will be the difficult part of the proof.

98 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

Therefore, for step 2 above, we must define D2 ⊇ D1 so that destroying the D2-dangers destroys
the D1

O-dangers as well. This will force us to include (almost) all of D1
O inside of D2. As a

consequence, we need to understand the structure of the D1
O-dangers in all generality.

A D1
O-danger at x is by definition a union of subhypergraphs having the common property

that they will be D1-dangers at some common z after x is marked. Which subhypergraphs
have this property? The following result is elementary and answers this question: those not
containing x are D1-dangers at z already, while those containing x are zx-chains (which will
become zx-snakes after x is marked).

Notation II.1.20. Let H be a marked hypergraph and u, v ∈ V (H). We denote by Puv(H)
the set of all uv-chains P in H such that M(P) = ∅.

Proposition II.1.21. Let H be a marked hypergraph and let x, z ∈ V (H) \M(H) be distinct.
We have {K ⊆ H, K+x ∈ zD1(H+x)} = zD1(H−x) ∪ Pzx(H).

Proof. Let K ⊆ H such that K+x ∈ zD1(H+x). There are two possibilities:
• Suppose x ̸∈ V (K): then K = K+x is a D1-danger at z in H+x, moreover K ⊆ H−x so

K ∈ zD1(H−x).
• Suppose x ∈ V (K). By definition of D1, the only D1-dangers containing a marked vertex

are the S-dangers, and they contain exactly one marked vertex. Therefore K+x is a
zx-snake whose only marked vertex is x, so K is a zx-chain with no marked vertex i.e.
K ∈ Pzx(H). ■

Remark. The notation zD1(H−x) is just a compact way to refer to the collection of all D1-dangers
at z in H that do not contain x.

From this, we deduce the structural characterization of the D1
O-dangers.

Notation II.1.22. Let D be a marked hypergraph and let x, z ∈ V (D) \M(D) be distinct. We
define the collection Ox,z(D) := zD1(D−x) ∪ Pzx(D) = zT (D−x) ∪ zS(D−x) ∪ Pzx(D).

Proposition II.1.23. A pointed marked hypergraph (D, x) is in D1
O, with D1-dangerous vertex

z, if and only if D = ⟨Ox,z(D)⟩ and ID+x+z(Ox,z(D)) = ∅.

Proof. By definition of the family D1
O: a pointed marked hypergraph (D, x) is in D1

O, with
D1-dangerous vertex z, if and only if D = ⟨O⟩ for some O ⊆ {K ⊆ D, K+x ∈ zD1(D+x)} such
that ID+x+z(O) = ∅. Moreover, we have {K ⊆ D, K+x ∈ zD1(D+x)} = Ox,z(D) by Proposition
II.1.21. Therefore: a pointed marked hypergraph (D, x) is in D1

O, with D1-dangerous vertex z,
if and only if D = ⟨O⟩ for some O ⊆ Ox,z(D) such that ID+x+z(O) = ∅. Finally, since Ox,z(D)
is a collection of subhypergraphs of D, we always have D ⊇ ⟨Ox,z(D)⟩, so saying that D = ⟨O⟩
for some O ⊆ Ox,z(D) is obviously equivalent to saying that D = ⟨Ox,z(D)⟩. ■

Example. Figure II.9 features some examples of D1
O-dangers. The middle one was actually

used to build the example H from Figure II.6: it has been "duplicated" at x = x1 so that
IH+x1

(
x1D1

O(H)
)

= ∅, ensuring that J1(D1
O, H) does not hold from which J1(D∗2

0 , H) i.e.
J3(D0, H) does not hold either.

Instead of defining D2 as D1 ∪ D1
O = D∗

1, we have seen in Subsection I.2.2 (page 64) that we
can actually avoid some redundancies by defining it as follows:

Notation II.1.24. We define D2 := D1 ∪ D1
O,rest.

Chapter II. In-depth structural studies in hypergraphs 99

zx

zx

zx

zx

x

z

x

z

x

z

x

x

z

z

x

z

x

z

x

z

x

z

Figure II.9: Three examples of D1O-dangers (D, x). Each one is the union of
the subhypergraphs highlighted below it, which only intersect at z.

Indeed, destroying the D1-dangers automatically destroys the (D1
O \ D1

O,rest)-dangers as well.
As a concrete example, take T \ C for instance: we have T \ C ⊆ D0

O ⊆ D1
O, however we

already have T \ C ⊆ D1, so defining D2 = D1 ∪ D1
O,rest instead of D2 = D1 ∪ D1

O means we
do not consider the (T \ C)-dangers twice in a way.

Proposition II.1.25. We have D2 ⊆ D∗2
0 .

Proof. We have D2 = D1 ∪ D1
O,rest ⊆ D1 ∪ D1

O = D∗
1 ⊆ (D∗

0)∗ = D∗2
0 . ■

II.1.5 Structure of the D1
O,rest-dangers

The family D2 = D1 ∪ D1
O,rest ⊆ D∗2

0 will be our approximation for the pivotal family D∗2
0 .

While the D1-dangers are very basic objects, the D1
O,rest-dangers must be studied as to better

understand their shape and structural behavior. We have just given the general structure of

100 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

the elements of D1
O, but the restriction that defines the family D1

O,rest compared to the family
D1
O comes with added structural properties, which are the subject of this segment.

II.1.5.1 First properties

a) General properties

Proposition II.1.26. Let (D, x) ∈ D1
O,rest, with D1-dangerous vertex z. We have the following

properties:
(a) D = ⟨Ox,z(D)⟩ = ⟨zD1(D−x) ∪ Pzx(D)⟩.
(b) ID+z(Ox,z(D)) = ∅.
(c) zD1(D−x) ̸= ∅.
(d) Pzx(D) ̸= ∅.
(e) D is not a trivial Maker win.
(f) There is no x-tadpole and no x-snake in D.
(g) There exists a z-cycle in D.

Proof. Let us start with items (a), (d) and (e), which actually hold for general D1
O-dangers.

Proposition II.1.23 gives us item (a). As for item (d), it is impossible that Pzx(D) = ∅,
because we would get D = ⟨zD1(D−x)⟩, contradicting the fact that D contains x while the
subhypergraphs in the collection zD1(D−x) do not. Finally, the elements of the collection
zD1(D−x) have no edge with more than one marked vertex by definition of D1, and the elements
of the collection Pzx(D) have no marked vertex by definition, hence item (e).
We now check the remaining properties. Before this, using item (d), let Pzx ∈ Pzx(D) be
shortest, and define v := o(x,

−−−→
xPzxz) and w := o(z,

←−−−
xPzxz): this chain will be useful. Note that

M(Pzx) = ∅ by definition of the collection Pzx(D).

• Item (f) is straightforward. Since D is not a trivial Maker win by item (e), Proposition
II.1.18 ensures that if there was an x-tadpole or an x-snake in D then D would contain a
D1-danger at x, contradicting the definition of the restricted family D1

O,rest.
• Let us prove item (c). Suppose for a contradiction that zD1(D−x) = ∅ hence D = ⟨Pzx(D)⟩.

We are going to use the chain Pzx. We know ID+x+z(Ox,z(D)) = ∅ by Proposition II.1.23,
so v ̸∈ ID+x+z(Ox,z(D)). Since v ̸∈M(D+x+z), this means some element of the collection
Ox,z(D) = Pzx(D) does not contain v: let P v ∈ Pzx(D) such that v ̸∈ V (P v). We have
start(

−−−→
xP vz) ̸= start(−−−→xPzxz) ∋ v and V (P v) ∩ (V (Pzx) \ {x}) ⊇ {z} ̸= ∅, so we can apply

Union Lemma I.3.40: since Pzx ∪ P v ⊆ D contains no x-cycle by item (f), it contains a
z-tadpole T . If x ̸∈ V (T) as on the left of Figure II.10, then T ∈ zT (D−x), contradicting
the fact that zD1(D−x) = ∅. If x ∈ V (T), then the only possibility is that the projection
PV (Pzx)\{x}(x, P v) consists of a single edge e as illustrated on the right of Figure II.10:
since v ̸∈ e, we get a zx-chain P ′

zx that is strictly shorter than Pzx, a contradiction.

zx

T

zx

v v ww
e P

′

zx

Figure II.10: The contradiction that yields item (c), if x ̸∈ V (T) (left) or if x ∈
V (T) (right). The represented chains are Pzx (bottom) and PV (Pzx)\{x}(x, P v).

Chapter II. In-depth structural studies in hypergraphs 101

• Item (b) directly ensues from item (c). Indeed, we already know that ID+x+z(Ox,z(D)) = ∅
by Proposition II.1.23, hence ID+z(Ox,z(D)) ⊆ {x}. Since the collection zD1(D−x)
is nonempty and none of its elements contain x, we have x ̸∈ ID+z(zD1(D−x)) ⊇
ID+z(Ox,z(D)), so in conclusion ID+z(Ox,z(D)) = ∅.

• Finally, let us prove item (g). We are going to use the chain Pzx again. We know
ID+z(Ox,z(D)) = ∅ by item (b), so w ̸∈ ID+z(Ox,z(D)). Since w ̸∈ M(D+z), this means
some element of the collection Ox,z(D) does not contain w: let Kw ∈ Ox,z(D) such that
w ̸∈ V (Kw). By definition Ox,z(D) = zT (D−x) ∪ zS(D−x) ∪ Pzx(D), so there are three
possibilities for Kw, and we claim that V (Kw) ∩ (V (Pzx) \ {z}) ̸= ∅ for all of them:

– If Kw ∈ Pzx(D), then this is obvious because x ∈ V (Kw).
– If Kw ∈ zT (D−x), then this is true because otherwise Pzx∪Kw would be an x-tadpole

in D, contradicting item (f).
– If Kw ∈ zS(D−x), then this is true because otherwise Pzx ∪Kw would be an x-snake

in D, contradicting item (f).
Therefore, the projection P := PV (Pzx)\{z}(z, Kw) is well defined. Since w ̸∈ V (P) and
w ∈ start(←−−−xPzxz), we have start(−→zP) ̸= start(←−−−xPzxz) so we can apply Union Lemma I.3.40:
since Pzx ∪ P ⊆ D contains no x-tadpole by item (f), it contains a z-cycle. ■

The proofs of items (c) and (g) are typical of the methods that we will use extensively. The
key is that, thanks to item (b), for any non-marked vertex u ̸= z there exists some element of
Ox,z(D) that does not contain u. Therefore, item (b) is a powerful existence tool, providing us
with subhypergraphs of D which we can use to partially reconstruct D and establish structural
properties.
Beyond these basic characteristics, it is difficult to say much about the structure of D1

O,rest-
dangers in general. However, we now give additional properties that hold in all interesting
cases.

b) Additional properties when IH+z(zD1(H)) ̸= ∅

In practice, we will always consider D1
O,rest-dangers in some hypergraph H such that J1(D1, H)

is satisfied. Given some D1
O,rest-danger D at x in H, with z a D1-dangerous vertex in (D, x),

this implies that IH+z(zD1(H)) ̸= ∅. In other words, even though the intersection in H+z of
zD1(H) ∪ Pzx(H) is empty by Proposition II.1.26, the intersection in H+z of zD1(H) alone is
not: it contains some s. This vertex s will often be useful.

Proposition II.1.27. Let H be a marked hypergraph that is not a trivial Maker win. Let D
be a D1

O,rest-danger at some x in H, and let z be a D1-dangerous vertex in (D, x). Suppose
IH+z(zD1(H)) ̸= ∅, and let s ∈ IH+z(zD1(H)). Then:

• Any z-tadpole or z-snake in H contains s.
• s ∈ V (D) \ (M(D) ∪ {x, z}).
• There exists P s ∈ Pzx(D) such that s ̸∈ V (P s). Moreover, the edges start(

−−−→
xP sz) and

end(
−−−→
xP sz) are the same for any choice of P s.

Proof. We prove all three assertions separately:
• Since s ∈ IH+z(zD1(H)) and H is not a trivial Maker win by assumption, Proposition

II.1.18 applies with u = z and u′ = s, hence the first assertion.
• By definition of IH+z(·), we have s ̸∈M(H+z) = M(H) ∪ {z}. Let K ∈ zD1(D−x), which

exists by Proposition II.1.26(c): since zD1(D−x) ⊆ zD1(H) and s ∈ IH+z(zD1(H)), we
have s ∈ V (K) ⊆ V (D−x) = V (D) \ {x}. All in all, we get s ∈ V (D) \ (M(D) ∪ {x, z}).

102 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

• Since s ̸∈ M(H+z), Proposition II.1.26(b) ensures the existence of some Ks ∈ Ox,z(D)
such that s ̸∈ V (Ks). Since s ∈ IH+z(zD1(H)) ⊆ IH+z(zD1(D−x)), it is impossible that
Ks ∈ zD1(D−x), so necessarily Ks ∈ Pzx(D). Finally, let P s

1 , P s
2 ∈ Pzx(D) such that

s ̸∈ V (P s
1) and s ̸∈ V (P s

2). Suppose for a contradiction that start(
−−−→
xP s

1 z) ̸= start(
−−−→
xP s

2 z):
by Union Lemma I.3.40, P s

1 ∪ P s
2 ⊆ D contains an x-cycle (contradicting Proposition

II.1.26(f)) or a z-tadpole (which does not contain s, also a contradiction). Similarly,
suppose for a contradiction that end(

−−−→
xP s

1 z) ̸= end(
−−−→
xP s

2 z) i.e. start(
←−−−
xP s

1 z) ̸= start(
←−−−
xP s

2 z):
by Union Lemma I.3.40, P s

1 ∪ P s
2 ⊆ D contains an x-tadpole (contradicting Proposition

II.1.26(f)) or a z-cycle (which does not contain s, also a contradiction). ■

We now establish some important properties of the D1
O,rest-dangers in an ambient hypergraph

H where IH+z(zD1(H)) ̸= ∅, or sometimes under the stronger assumption that J1(D1, H) holds.
We will also make the costless assumption that H is not a trivial Maker win, as we have already
done in Proposition II.1.27.

II.1.5.2 Union lemmas

The next two lemmas are the analog for D1
O,rest-dangers of the union lemmas from Subsection

I.3.2. We look at what happens in the union of a D1
O,rest-danger and a chain.

Lemma II.1.28. Let H be a marked hypergraph that is not a trivial Maker win, and let
x ∈ V (H) \M(H). Let D be a D1

O,rest-danger at x in H, with z a D1-dangerous vertex in
(D, x). Let c ∈ V (H) \ V (D), and let Pc be a c-chain such that V (Pc) ∩ V (D) ̸= ∅.

(i) If IH+z(zD1(H)) ̸= ∅, then there is a c-tadpole, a c-snake or a cx-chain in D ∪ Pc.
(ii) If J1(D1, H) holds, then there is a c-tadpole or a cx-chain in D ∪ Pc.

Proof. First of all, we can assume that Pc consists of a single edge e. Indeed, let e :=
end(
−−−−−−−−−→
cPV (D)(c, Pc)) and c′ ∈ e \ V (D):

• If there is a c′x-chain P in D ∪ e, then −→cPc|{c′} ⊕
−−→
c′Px represents a cx-chain in D ∪ Pc.

• If there is a c′-snake S in D ∪ e, then −→cPc|{c′} ⊕
−→
c′S represents a c-snake in D ∪ Pc.

• If there is a c′-tadpole T in D ∪ e, then −→cPc|{c′} ⊕
−→
c′T represents a c-tadpole in D ∪ Pc.

Therefore, we are working in D ∪ Pc = D ∪ e. Now suppose for a contradiction that:
D ∪ e contains no c-tadpole and no cx-chain, and also no c-snake in the case of item (i). (C)

Since IH+z(zD1(H)) ̸= ∅ by assumption, let s ∈ IH+z(zD1(H)), and let P s ∈ Pzx(D) such that
s ̸∈ V (P s) as per Proposition II.1.27. Define w := o(z,

←−−−
xP sz). These notations are summed up

in Figure II.11.
The key to the proof is the fact that every z-tadpole contains s, whereas P s does not. For
example, we can start by making a simple observation:

Claim 4. Let Pcz be a cz-chain in D ∪ e, and write
−−−−−−−−−−→
cPV (P s)(c, Pcz) = (c, e1, . . . , ej). Then:

j > 1, ej ⊥
−−−→
xP sz, and ej−1 ∩ ej = {s}. In particular, the cs-chain in Pcz is disjoint from P s.

Proof of Claim 4. Since there is no cx-chain in D ∪ e by (C), we apply Union Lemma I.3.38
with a = x, b = z, Pab = P s. Note that ej is precisely the edge e∗ := end(

−−−−−−−−−−→
cPV (P s)(c, Pcz)) from

Union Lemma I.3.38. We get that: |ej ∩ V (P s)| = 2, ej ⊥
−−−→
xP sz, and there is a z-tadpole T in

P s ∪ ej.
Since |ej ∩ V (P s)| = 2, there is exactly one vertex of T that is not in P s. That vertex is

Chapter II. In-depth structural studies in hypergraphs 103

x z

w
P

s

c

e

D

s

Figure II.11: D is only partially represented. In this picture we have |e ∩
V (D)| = 2, but it is also possible that |e ∩ V (D)| = 1.

necessarily s, as pictured on the left of Figure II.12: indeed, we know s ∈ V (T) by definition of
s, and s ̸∈ V (P s) by definition of P s. In particular, since c ̸= s (s ∈ V (D) whereas c ̸∈ V (D)),
we get j > 1. We know (e1 ∪ . . . ∪ ej−1) ∩ V (P s) = ∅ by definition of a projection, therefore
ej−1 ∩ ej = {s} and (e1, . . . , ej−1) represents the unique cs-chain in Pcz, which is disjoint from
P s. □

s

x

c

T
ej

s

x

c

e1=e

s

z

w

z

w

el

P1

P2

eL

e1=e

ej

Figure II.12: Left: illustration of Claim 4. Right: the desired contradiction,
with s having two different locations at once.

Therefore, the idea of the proof is the following, which is illustrated on the right of Figure II.12.
We want to show that there exists a cz-chain P w

cz in D ∪ e that does not contain w. Indeed,
suppose we manage to exhibit one. On the one hand, following P w

cz starting from c until touching
P s, we get a chain P1 which contains s as in Claim 4. On the other hand, following P w

cz starting
from z until touching P s again, we get a chain P2 which creates a z-cycle and thus must also
contain s. This is a contradiction about the location of s. We now proceed with the proof, in
three steps. We prove items (i) and (ii) jointly: there are only two times during the proof where
we will have to differentiate the two very briefly to make separate arguments.

1) Firstly: we show there exists a cz-chain Pcz in D ∪ e.
Since e ∩ V (D) ̸= ∅, there exists K ∈ Ox,z(D) such that e ∩ V (K) ̸= ∅. By definition of
Ox,z(D), there are three possibilities for K, and for each of them we can use an adequate
union lemma from Subsection I.3.2:

104 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

• Suppose K =: T ∈ zT (D−x). Since there is no c-tadpole in D ∪ e ⊇ T ∪ e by (C),
Union Lemma I.3.41 ensures that there is a cz-chain in T ∪ e.

• Suppose K =: S ∈ zS(D−x). We address items (i) and (ii) separately. For (i), there
is no c-snake in D ∪ e ⊇ S ∪ e by (C). For (ii), let m be the marked vertex such
that S is a zm-snake: since J1(D1, H) holds, Proposition II.1.19 tells us there is no
m-tadpole in D ∪ e ⊇ S ∪ e. In both cases, Union Lemma I.3.39 ensures that there
is a cz-chain in S ∪ e.

• Suppose K =: P ∈ Pzx(D). Since there is no cx-chain in D ∪ e ⊇ P ∪ e by (C),
Union Lemma I.3.38 ensures that there is a cz-chain in P ∪ e.

In all cases, we get a cz-chain Pcz in D ∪ e.

2) Secondly: we show there exists a cz-chain P w
cz in D ∪ e that does not contain w.

Recall that, by Claim 4, Pcz contains a cs-chain Pcs such that V (Pcs) ∩ V (P s) = ∅: in
particular w ̸∈ V (Pcs). Moreover, since w is non-marked (otherwise P s would contain an
x-snake, contradicting Proposition II.1.26(f)), Proposition II.1.26(b) ensures that there
exists Kw ∈ Ox,z(D) such that w ̸∈ V (Kw). We thus find P w

cz inside Pcs ∪Kw:
• Suppose Kw =: T ∈ zT (D−x). In particular s ∈ V (T), so V (Pcs)∩ V (T) ̸= ∅. Since

D ∪ e ⊇ Pcs ∪ T does not contain a c-tadpole by (C), Union Lemma I.3.41 ensures
that Pcs ∪ T contains a cz-chain.

• Suppose Kw =: S ∈ zS(D−x). In particular s ∈ V (S), so V (Pcs) ∩ V (S) ̸= ∅. For
the second and last time in this proof, we address items (i) and (ii) separately. For
(i), there is no c-snake in D ∪ e ⊇ Pcs ∪ S by (C). For (ii), let m be the marked
vertex such that S is a zm-snake: Proposition II.1.19 tells us there is no m-tadpole in
D ∪ e ⊇ Pcs ∪ S. In both cases, Union Lemma I.3.39 ensures that there is a cz-chain
in Pcs ∪ S.

• Suppose Kw =: P ∈ Pzx(D). Since w ̸∈ V (P), we have w ̸∈ start(←−−xPz) hence
start(←−−xPz) ̸= start(

←−−−
xP sz). By the final assertion of Proposition II.1.27, this implies

s ∈ V (P), so V (Pcs)∩ V (P) ̸= ∅. Since D ∪ e ⊇ Pcs ∪P does not contain a cx-chain
by (C), Union Lemma I.3.38 ensures that Pcs ∪ P contains a cz-chain.

In all cases, we get a cz-chain P w
cz in Pcs ∪Kw ⊆ D ∪ e, that does not contain w since

neither Pcs nor Kw does.

3) Finally: we conclude by getting the desired contradiction illustrated on the right of Figure
II.12. We now work exclusively inside P w

cz ∪ P s.
We start by defining the chains P1 and P2 pictured on the right of Figure II.12. Define the
projection P1 := PV (P s)(c, P w

cz). By (C), it is impossible that V (P w
cz)∩V (P s) = {z}, because

P w
cz ∪ P s would then be a cx-chain. Therefore, the projection P2 := PV (P s)\{z}(z, P w

cz)
is also well defined. Write

−−−→
cP w

czz = (c, e1, . . . , eL, z), −→cP1 = (c, e1, . . . , ej), and −→zP2 =
(z, eL, eL−1, . . . , el), i.e. j = min{1 ≤ i ≤ L, ei ∩ V (P s) ̸= ∅} and l = max{1 ≤ i ≤
L, ei ∩ (V (P s) \ {z}) ̸= ∅}. Note that necessarily e1 = e, since e is the only edge incident
to c.

• First of all, we show that 1 < j < l and that s ∈ ej−1. By Claim 4, we have: j > 1,
ej ⊥

−−−→
xP sz, and ej−1 ∩ ej = {s}. Moreover, since w ̸∈ V (P w

cz), we have w ̸∈ ej: since
ej ⊥

−−−→
xP sz, this implies z ̸∈ ej. Therefore j < L, so we can consider the edge ej+1.

Since s ∈ ej−1 ∩ ej, we have s ̸∈ ej+1, so ej ∩ ej+1 ⊆ ej \ {s} ⊆ V (P s) \ {z}: in
particular j < l by maximality of l.

• Finally, we show that s ∈ ei for some l ≤ i ≤ L i.e. s ∈ V (P2). Note that P2 ⊆ D:
indeed, we have P2 ⊆ P w

cz ⊆ D ∪ e, and e = e1 is not an edge of P2 because l ≥ 2.

Chapter II. In-depth structural studies in hypergraphs 105

Since P2 ⊆ P w
cz does not contain w, we have start(−→zP2) ̸= start(

−−→
zP s), so we can apply

Union Lemma I.3.40. There is no x-tadpole in P2 ∪P s ⊆ D by Proposition II.1.26(f),
so we get a z-cycle C in P2∪P s. Since C must contain s, we have s ∈ V (P2)∪V (P s)
hence s ∈ V (P2).

Since j < l, ej−1 is disjoint from el, . . . , eL by definition of a chain. However, we have just
shown that s ∈ ej−1 and s ∈ ei for some l ≤ i ≤ L. This is a contradiction. ■

Lemma II.1.29. Let H be a marked hypergraph that is not a trivial Maker win, and let
x ∈ V (H) \M(H). Let D be a D1

O,rest-danger at x in H, with z a D1-dangerous vertex in
(D, x) such that IH+z(zD1(H)) ̸= ∅. Then there is a unique edge ex in D that is incident to x.
Moreover, let Px be an x-chain in H such that V (Px) ∩ (V (D) \ {x}) ̸= ∅ and start(−−→xPx) ̸= ex:
then D ∪ Px contains an x-snake or an x-tadpole.

Proof. Let s ∈ IH+z(zD1(H)), and let P s ∈ Pzx(D) such that s ̸∈ V (P s) as per Proposition
II.1.27. We define ex := start(

−−−→
xP sz). We will show at the end of the proof that ex is the unique

edge of D containing x.
For now, let Px be an x-chain in H such that V (Px) ∩ (V (D) \ {x}) ̸= ∅ and start(−−→xPx) ̸= ex.
Up to replacing Px with the projection PV (D)\{x}(x, Px), assume that end(−−→xPx) is the only edge
of Px that intersects V (D) \ {x}. Suppose for a contradiction that:

There is no x-snake and no x-tadpole in D ∪ Px. (C)

Let e := start(−−→xPx). We distinguish between two cases.

a

c

x

e
D

x

D

e

e
c

x

D

e

e

c

a

b
a

b

Case 1 Case 2
Pc

Figure II.13: Case 1: e∩V (D) = {x}. Case 2: |e∩V (D)| = 2 or |e∩V (D)| = 3.

(1) Case 1: Px is of length at least 2, i.e. e ∩ V (D) = {x}.
Write e = {x, a, c} where c is the only vertex in inn(Px) ∩ e, and let Pc be the c-chain
defined as Pc = P −x−a

x (see Figure II.13). Since H is not a trivial Maker win and
IH+z(zD1(H)) ≠ ∅, we can apply item (i) of Union Lemma II.1.28 in H to D and Pc,
which tells us that D ∪ Pc contains one of the following:

• a cx-chain P . Then the walk (x, e, c)⊕−−→cPx represents an x-cycle in D ∪ Px.
• a c-tadpole T . If x ∈ V (T), then T contains a cx-chain so we simply go back to that

case. If x ̸∈ V (T), then the walk (x, e, c)⊕−→cT represents an x-tadpole in D ∪ Px.
• a c-snake S. If x ∈ V (S), then S contains a cx-chain so we simply go back to that

case. If x ̸∈ V (S), then the walk (x, e, c)⊕−→cS represents an x-snake in D ∪ Px.
All three possibilities contradict (C).

(2) Case 2: Px = e is of length 1, i.e. |e ∩ V (D)| ≥ 2.
Write e = {x, a, b}. As a gadget, we create a new non-marked vertex c and an edge
e = {a, b, c} (see Figure II.13).

106 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

Claim 5. Let K be a subhypergraph of D ∪ e such that e ∈ E(K) and x ̸∈ V (K), and
define the subhypergraph φ(K) of D ∪ e obtained from K by replacing c with x and e with
e. Then we have the isomorphisms of pointed marked hypergraphs: (K, c) ∼ (φ(K), x) and
(K, v) ∼ (φ(K), v) for all v ∈ V (K) \ (M(K) ∪ {c}).

Proof of Claim 5. This is straightforward. □

The idea is to apply Union Lemma II.1.28 in D ∪ e to D and Pc := e, and then contradict
(C) through replacing e with e in the obtained subhypergraph as per Claim 5. To do so,
we need to check that D∪ e is not a trivial Maker win and that I(D∪e)+z(zD1(D ∪ e)) ̸= ∅.
The former is clear: we know D ⊆ H is not a trivial Maker win, moreover there is no
x-snake in Px by (C) so M(e) = ∅ hence M(e) = ∅, so D ∪ e is not a trivial Maker win
either.
The latter is more difficult, because the addition of e may create new D1-dangers at z.
However, we now show that they all contain s i.e. s ∈ I(D∪e)+z(zD1(D ∪ e)). Indeed, let
K be a D1-danger at z in D ∪ e: we want to show that s ∈ V (K).

• Suppose e ̸∈ E(K). Then K ∈ zD1(H), hence s ∈ V (K) by definition of s.
• Suppose e ∈ E(K) and x ̸∈ V (K). By Claim 5, we have (K, z) ∼ (φ(K), z), therefore

φ(K) is a D1-danger at z in D ∪ e hence s ∈ V (φ(K)). Since s ̸= x by Proposition
II.1.27, this yields s ∈ V (K).

• Finally, suppose e ∈ E(K) and x ∈ V (K). In particular, we have c, x ∈ V (K).
– If there exists a cx-chain P in K, then necessarily start(−−→cPx) = e since e is

the only edge incident to c in D ∪ e. Either a or b, say b, is an inner vertex of
P , so that P −c−a is a bx-chain in D that does not contain a. This means that
P −c−a ∪ e is an x-cycle in D ∪ e, contradicting (C).

– If there is no cx-chain in K, then the only possibility according to Substructure
Lemmas I.3.25 and I.3.30 is that K =: T is a z-tadpole such that CT is of length 2
and out(CT) = {c, x} as in Figure II.14. Therefore, the edges incident respectively
to c and x in T intersect on two vertices. Since the edge incident to c in T is
necessarily e = {a, b, c}, the edge incident to x in T is precisely {a, b, x} = e.
Define the zx-chain P := T −c, as in Figure II.14. Since T ⊆ D∪e, we have P ⊆ D

i.e. P ∈ Pzx(D). Moreover start(−−→xPz) = e ̸= ex = start(
−−−→
xP sz) by assumption,

so the last assertion of Proposition II.1.27 ensures that s ∈ V (P) ⊆ V (K).

z
b

c

x

a e

e
P

Figure II.14: Illustration of K = T if there is no cx-chain in K.

Now that we have shown that I(D∪e)+z(zD1(D ∪ e)) ̸= ∅, we can apply Union Lemma
II.1.28 in D ∪ e to D and Pc = e, which tells us that D ∪ e contains one of the following:

• a cx-chain P . In this case, taking P and replacing e with e yields an x-cycle. Indeed,
write −−→cPx = (c, e1, . . . , eL, x): since e is the only edge incident to c, we have e1 = e,
so (x, e, e2, . . . , eL, x) represents an x-cycle in D ∪ e.

• a c-tadpole T . Since e is the only edge incident to c, we have e ∈ E(T). If x ∈ V (T),
then T contains a cx-chain so we simply go back to that case. If x ̸∈ V (T), then by
Claim 5 we have (T, c) ∼ (φ(T), x), so φ(T) is an x-tadpole in D ∪ e.

Chapter II. In-depth structural studies in hypergraphs 107

• a c-snake S. Since e is the only edge incident to c, we have e ∈ E(S). If x ∈ V (S),
then S contains a cx-chain so we simply go back to that case. If x ̸∈ V (S), then by
Claim 5 we have (S, c) ∼ (φ(S), x), so φ(S) is an x-snake in D ∪ e.

All three possibilities thus contradict (C), which concludes the proof of the final assertion
of this lemma.
Finally, we prove that ex is the only edge of D that is incident to x: suppose for a
contradiction that there exists e′

x ∈ E(D) such that x ∈ e′
x and e′

x ̸= ex. Define Px := e′
x:

we have V (Px) ∩ (V (D) \ {x}) = e′
x \ {x} ̸= ∅ and start(−−→xPx) = e′

x ̸= ex. Therefore, we
can apply what we have shown above to the chain Px: we get an x-snake or an x-tadpole
in D ∪ Px = D, contradicting Proposition II.1.26(f). ■

II.1.5.3 Inside structure

The two previous lemmas are about the union of a D1
O,rest-danger and a chain. We now look

at a D1
O,rest-danger alone. In Figure II.9, all featured examples were unions of z-tadpoles and

zx-chains only, no z-snakes. Also, x was of degree 1 in all of them. We can now show these
properties hold in all interesting cases:

Proposition II.1.30. Let (D, x) ∈ D1
O,rest, with D1-dangerous vertex z. If J1(D1, D) holds,

then M(D) = ∅. In particular, we have Ox,z(D) = zT (D−x) ∪ Pzx(D).

Proof. Suppose for a contradiction that there exists some m ∈ M(D). As a gadget, we add
two new non-marked vertices a and c as well as a new edge e = {a, c, m}. This does not create
any new D1-danger at z: indeed, it is obvious that a z-snake or a z-tadpole cannot contain an
edge with two non-marked vertices of degree 1 other than z. For that reason, the fact that
J1(D1, D) holds implies that J1(D1, D ∪ e) holds as well. Moreover, since D is not a trivial
Maker win by Proposition II.1.26(e), D ∪ e is not either. Therefore, item (ii) of Union Lemma
II.1.28 applied to D and Pc := e ensures that D ∪ e contains a cx-chain or a c-tadpole. Since e
is the only edge containing c, it is easy to see by removing e that D contains an mx-chain or an
m-tadpole respectively (see Figure II.15). The former is impossible because an mx-chain in D
is an x-snake in D, which cannot exist by Proposition II.1.26(f). The latter is impossible by
Proposition II.1.19. We can conclude that M(D) = ∅, which implies zS(D−x) = ∅ hence the
last assertion. ■

D

c

m

a

e

x

D

c

m

a

e

Figure II.15: Left: a cx-chain yields an xm-snake. Right: a c-tadpole yields an
m-tadpole.

Proposition II.1.31. Let (D, x) ∈ D1
O,rest, with D1-dangerous vertex z. If ID+z(zD1(D)) ̸= ∅,

then x is of degree 1 in D.

Proof. This is the first assertion of Union Lemma II.1.29 applied in H = D. ■

108 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

The next result delves into the inside structure of the D1
O,rest-dangers with much more precision.

Proposition II.1.32. Let (D, x) ∈ D1
O,rest, with D1-dangerous vertex z. Suppose that J1(D1, D)

holds. Then D is of at least one of the two following types (see Figure II.16):
(1) D contains:

• a z-cycle C such that x ̸∈ V (C);
• an xw-chain Pxw for some w ∈ out(C) such that V (Pxw) ∩ V (C) = {w};
• some K ∈ Ox,z(D) such that V (K) ∩ V (Pxw) ̸= ∅ and e \ {w} ̸⊆ V (K) where e

denotes the unique edge of C containing w.
(2) D contains:

• a z-cycle C such that x ̸∈ V (C);
• an xw-chain Pxw for some w ∈ V (C) such that V (Pxw) ∩ V (C) = {w, w′} where

w′ := o(w,
←−−−−
xPxww).

x

z

w

Pxw

X

C

zx

C

Pxw
e

w
′

w

Figure II.16: Two D1O,rest-dangers. The left one is of type (1) only (same for
the other two from Figure II.9). The right one is of type (2) only.

Proof. Assume that D is not of type (2): we show that D is of type (1).

Claim 6. There exists a pair (C, Pxw) where C is a z-cycle and Pxw is an xw-chain for some
w ∈ out(C) such that V (Pxw) ∩ V (C) = {w}.

Proof of Claim 6. The existence of C is given by Proposition II.1.26(g). The existence of Pxw

is also straightforward:
• Suppose x ∈ V (C). Necessarily x ∈ out(C), otherwise C would be an x-cycle, contradicting

Proposition II.1.26(f). Therefore, simply take w := x and Pxw of length 0.
• Suppose x ̸∈ V (C). Let P ∈ Pzx(D) and define Px := PV (C)(x, P). By definition of a

projection: |end(−−→xPx) ∩ V (C)| ∈ {1, 2}. We cannot have |end(−−→xPx) ∩ V (C)| = 2 because
D would be of type (2), therefore |end(−−→xPx) ∩ V (C)| = 1. Let w be the only vertex
in end(−−→xPx) ∩ V (C). Necessarily w ∈ out(C), otherwise Px ∪ C would be an x-tadpole,
contradicting Proposition II.1.26(f). Take Pxw := Px. □

Of all pairs (C, Pxw) as in Claim 6, we choose one where Pxw is longest. This choice ensures
that:

Claim 7. For any z-cycle C ′ in D, we have V (C ′) ∩ V (Pxw) ̸= ∅.

Proof of Claim 7. Suppose for a contradiction that there exists a z-cycle C ′ such that V (C ′) ∩
V (Pxw) = ∅. Since z ∈ V (C ′) ∩ (V (C) \ out(C)), the projection P := PV (C′)(w, C) is well
defined, and it is of positive length because w ̸∈ V (C ′). Therefore, the chain P ′

x := [−−−−→xPxww⊕
−→
wP]

is strictly longer than Pxw. For the same reason as Px in the proof of Claim 6 above, P ′
x satisfies

Chapter II. In-depth structural studies in hypergraphs 109

end(
−−→
xP ′

x)∩ V (C ′) = {w′} for some w′ ∈ out(C ′), and P ′
x is an xw′-chain. The pair (C ′, P ′

x) thus
contradicts the maximality of the length of Pxw. □

We will show that x ̸∈ V (C) at the end of the proof. For now, let e be the only edge of C
containing w, and let us show the existence of K ∈ Ox,z(D) such that V (K) ∩ V (Pxw) ̸= ∅ and
e \ {w} ̸⊆ V (K).
Let us first address the case z ∈ e. Since z ∈ inn(C) and w ∈ out(C), we have z ̸= w. Let v be
the third vertex of e, so that e = {w, z, v}. By Proposition II.1.26(b), there exists Kv ∈ Ox,z(D)
such that v ̸∈ V (Kv), which implies e \ {w} ̸⊆ V (Kv). Suppose for a contradiction that
V (Kv) ∩ V (Pxw) = ∅. In particular Kv is not a zx-chain. We also know Kv is not a z-snake
by Proposition II.1.30, so Kv =: T is a z-tadpole. Since V (T) ∩ (V (Pxw) ∪ e) = {z}, the walk
−−−−→
xPxww ⊕ (w, e, z)⊕−→zT represents an x-tadpole in D, contradicting Proposition II.1.26(f). In
conclusion, we have V (Kv) ∩ V (Pxw) ̸= ∅.
We can now assume that z ̸∈ e. Write −→zC = (z, e1, . . . , eL, z): we have e = ei for some 1 ≤ i ≤ L.
Actually, since z ̸∈ e, we have L ≥ 3 and 2 ≤ i ≤ L − 1. We can thus define w1 (resp. w2)
as the only vertex in ei−1 ∩ ei (resp. in ei ∩ ei+1), and we have e = {w, w1, w2}. Therefore,
P1 := [(z, e1, . . . , ei−1, w1)] is a zw1-chain and P2 := [(z, eL, eL−1, . . . , ei+1, w2)] is a zw2-chain.
These notations are summed up in Figure II.17.

w

w1

w2

z

Pxw

x e=ei

e1

eL

P1

P2

C

Figure II.17: Summary of the notations in place.

Since z ̸∈ e, we have w1, w2 ̸= z. By Proposition II.1.26(b), for all j ∈ {1, 2}, there exists
Kwj ∈ Ox,z(D) such that wj ̸∈ V (Kwj), which implies e\{w} ̸⊆ V (Kwj). We choose Kw1 = Kw2

if possible i.e. if there exists an element of Ox,z(D) containing neither w1 nor w2. Suppose for a
contradiction that V (Kw1) ∩ V (Pxw) = ∅ and V (Kw2) ∩ V (Pxw) = ∅.
In particular, Kw1 and Kw2 are not zx-chains, moreover they are not z-snakes by Proposition
II.1.30 and they are not z-cycles by Claim 7. Therefore, Kw1 =: T w1 and Kw2 =: T w2 are
z-tadpoles that are not cycles. We distinguish between two cases, obtaining a contradiction for
both.

• First case: eL ̸∈ E(T w1) or e1 ̸∈ E(T w2). By symmetry, assume that eL ̸∈ E(T w1).
It is impossible that V (T w1)∩V (P2) = {z}, otherwise we would have V (T w1)∩ (V (Pxw)∪
e ∪ V (P2)) = {z} so the walk −−−−→xPxww ⊕ (w, e, w2) ⊕

−−−→
w2P2z ⊕

−−−→
zT w1 would represent an

x-tadpole in D, contradicting Proposition II.1.26(f). Therefore, the projection P w1 :=
PV (P2)\{z}(z, T w1) is well defined. Since P w1 ⊆ T w1 , we have V (P w1)∩ (V (Pxw)∪{w1}) =
∅ and eL ̸∈ E(P w1). In particular start(

−−−→
zP w1) ̸= eL = start(−−−→zP2w2), so we can apply

Union Lemma I.3.40. Since P2 ∪ P w1 cannot contain a z-cycle by Claim 7, it contains a
w2-tadpole T . We have V (T) ⊆ V (P2) ∪ V (P w1) hence V (T) ∩ (V (Pxw) ∪ e) = {w2}, so
the walk −−−−→xPxww⊕ (w, e, w2)⊕−−→w2T represents an x-tadpole in D, contradicting Proposition
II.1.26(f).

• Second case: eL ∈ E(T w1) and e1 ∈ E(T w2).
Since T w1 and T w2 are not cycles, z is of degree 1 in both of them, hence e1 ̸∈ E(T w1) and

110 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

eL ̸∈ E(T w2). Since e1 ∈ E(T w2) and e1 ̸∈ E(T w1), we have T w1 ̸= T w2 , so our initial
choice of T w1 and T w2 ensures that w2 ∈ V (T w1) and w1 ∈ V (T w2).

– Firstly, suppose that w2 ̸∈ out(CT w1) or w1 ̸∈ out(CT w2). By symmetry, assume
that w2 ̸∈ out(CT w1). By Substructure Lemma I.3.31, T w1 contains a w2-tadpole T .
Since V (T)∩ (V (Pxw)∪ e) = {w2}, the walk −−−−→xPxww⊕ (w, e, w2)⊕−−→w2T represents an
x-tadpole in D, which contradicts Proposition II.1.26(f).

– Finally, suppose that w2 ∈ out(CT w1) and w1 ∈ out(CT w2). Since J1(D1, D) holds,
there exists s ∈ ID+z(zD1(D)). In particular, s ∈ V (T w1)∩V (C). Since w ̸∈ V (T w1),
we have s ̸= w, hence s ∈ V (P1) or s ∈ V (P2). By symmetry, assume s ∈ V (P1).
In particular, s ̸= w2: by Substructure Lemma I.3.29, the fact that w2 ∈ out(CT w1)
thus ensures the existence of a zs-chain P w2

zs in T w1 that does not contain w2. Since
e1 ̸∈ E(T w1), we have e1 ̸∈ E(P w2

zs). Therefore start(
−−−→
zP w2

zs) ̸= e1 = start(−−−→zP1w1),
moreover V (P w2

zs) ∩ (V (P1) \ {z}) ⊇ {s} ≠ ∅ so we can apply Union Lemma I.3.40:
since P1 ∪ P w2

zs cannot contain a z-cycle by Claim 7, it contains a w1-tadpole T .
We have V (T) ⊆ V (P1) ∪ V (P w2

zs) hence V (T) ∩ (V (Pxw) ∪ e) = {w1}, so the walk
−−−−→
xPxww ⊕ (w, e, w1)⊕

−−→
w1T represents an x-tadpole in D, contradicting Proposition

II.1.26(f).

In conclusion, we have shown the existence of K ∈ Ox,z(D) such that V (K) ∩ V (Pxw) ̸= ∅ and
e\{w} ̸⊆ V (K). To prove that D is of type (1), it only remains to show that x ̸∈ V (C). Suppose
for a contradiction that x ∈ V (C) i.e. x = w i.e. V (Pxw) = {x}. Since V (K) ∩ V (Pxw) ̸= ∅ by
definition of K, we get x ∈ V (K), so there exists an edge e′ of K that is incident to x. Moreover,
e is also incident to w = x. Since e ̸∈ E(K) by definition of K, we have e′ ̸= e. Therefore, e
and e′ are two distinct edges of D that are incident to x, contradicting Proposition II.1.31. This
ends the proof. ■

II.1.6 Proof of the main results... first assuming a key lemma

Theorems II.1.12 and II.1.13 can be deduced relatively easily from the following intermediate
result, which we will prove to round off this section:

Lemma II.1.33. Let H be a 3-uniform marked hypergraph that is not a trivial Maker win, with
|V (H) \M(H)| ≥ 2. Suppose that J1(D1, H) holds. Then, for any x ∈ V (H) \M(H) such that
there exists an x-snake in H, we have IH+x(xD2(H)) ̸= ∅.

In other words, under the assumptions of Lemma II.1.33, if x sees a marked vertex then not
only do its D1-dangers intersect (which is a given, since J1(D1, H) holds) but actually even its
D2-dangers do.

II.1.6.1 Proof of Theorem II.1.12

As announced, we actually prove Theorem II.1.14 first, which uses the approximation D2.
Theorem II.1.12 then follows as a corollary.

Proof of Theorem II.1.14 assuming Lemma II.1.33. Item (i) is a direct consequence of Proposi-
tion I.2.14. We now show item (ii) by induction on |V (H) \M(H)|.
Let us start with the base case |V (H) \ M(H)| ∈ {2, 3}. Let x1 ∈ V (H) \ M(H) and
y1 ∈ IH+x1 (x1D2(H)), which exists since J1(D2, H) holds. The trivial danger of size 3 is in
S ⊆ D2, therefore all trivial dangers at x1 in H contain y1, so the fact that H is not a trivial Maker

Chapter II. In-depth structural studies in hypergraphs 111

win implies that H+x1−y1 is not a trivial Maker win either. Since |V (H+x1−y1)\M(H+x1−y1)| ≤ 1,
this means H+x1−y1 is a Breaker win, so H is a Breaker win.
For the induction step, assume |V (H) \ M(H)| ≥ 4 and the implication to be true for
marked hypergraphs with less non-marked vertices than H. Let x1 ∈ V (H) \ M(H) and
y1 ∈ IH+x1 (x1D2(H)), which exists since J1(D2, H) holds: we must show that H+x1−y1 is a
Breaker win. Let us first list a few important properties of H+x1−y1 :

(a) |V (H+x1−y1) \M(H+x1−y1)| = |V (H) \M(H)| − 2 ≥ 2.
(b) H+x1−y1 is not a trivial Maker win. Indeed, the trivial danger of size 3 is in S ⊆ D2,

therefore all trivial dangers at x1 in H contain y1, so the fact that H is not a trivial Maker
win implies that H+x1−y1 is not a trivial Maker win either.

(c) J1(D1, H+x1−y1) holds. Indeed, J1(D1, H) holds because D1 ⊆ D2 and J1(D2, H) holds.
Besides, since D2 = D1∪D1

O,rest by definition, we have IH+x1 (x1D2(H)) = IH+x1 (x1D∗
1(H))

by Proposition I.2.30 hence y1 ∈ IH+x1 (x1D∗
1(H)) ⊆ IH+x1

(
x1D1

O(H)
)
. Therefore, Propo-

sition I.2.25 with F = D1 ensures that J1(D1, H+x1−y1) holds.
Thanks to (a) and (b), checking that property J1(D2, H+x1−y1) holds is sufficient to prove
that H+x1−y1 is a Breaker win, according to the induction hypothesis. Let x ∈ V (H+x1−y1) \
M(H+x1−y1): we want to show that I(H+x1−y1)+x(xD2(H+x1−y1)) ̸= ∅. Assume that there
exists some D0 ∈ xD2(H+x1−y1), otherwise I(H+x1−y1)+x(xD2(H+x1−y1)) = I(H+x1−y1)+x(∅) =
V ((H+x1−y1)+x) \M((H+x1−y1)+x) ̸= ∅ trivially since |V (H) \M(H)| ≥ 4.

1) First case: there is no xx1-snake in H+x1−y1 .
What happens here is that any vertex that hits all the D2-dangers at x in H still works in
H+x1−y1 , because the marking of x1 has not created any new D2-danger at x. Indeed, for
all D ∈ xD2(H+x1−y1) (recall that D2 = S ∪ T ∪ D1

O,rest by definition):

– If (D, x) ∈ S, then x1 ̸∈ V (D) since we are assuming that there is no xx1-snake in
H+x1−y1 .

– If (D, x) ∈ T , then x1 ̸∈ V (D) since M(D) = ∅ by definition of the family T .
– If (D, x) ∈ D1

O,rest, then x1 ̸∈ V (D) since M(D) = ∅ by Proposition II.1.30 (which
(c) allows us to use).

Therefore, we have xD2(H+x1−y1) ⊆ xD2(H−x1−y1) ⊆ xD2(H). Now, let y ∈ IH+x(xD2(H)).
To show that y ∈ I(H+x1−y1)+x(xD2(H+x1−y1)), since xD2(H+x1−y1) ⊆ xD2(H), it suf-
fices to check that y ̸∈ {x1, y1}. For this, we use D0. On the one hand, we have
D0 ∈ xD2(H+x1−y1) ⊆ xD2(H) hence y ∈ V (D0). On the other hand, we have D0 ∈
xD2(H+x1−y1) ⊆ xD2(H−x1−y1) hence x1, y1 ̸∈ V (D0). In conclusion, we do have y ̸∈
{x1, y1}, so y ∈ I(H+x1−y1)+x(xD2(H+x1−y1)) hence I(H+x1−y1)+x(xD2(H+x1−y1)) ̸= ∅.

2) Second case: there is an xx1-snake in H+x1−y1 .
Here, we have the x-snake that is necessary to apply Lemma II.1.33 to H+x1−y1 . The
other assumptions of this lemma are also verified thanks to (a), (b) and (c). In conclusion,
Lemma II.1.33 applies and yields I(H+x1−y1)+x(xD2(H+x1−y1)) ̸= ∅ as desired. ■

Proof of Theorem II.1.12 assuming Lemma II.1.33. Item (i) is a direct consequence of Proposi-
tion I.2.14. Item (ii) follows from Theorem II.1.14: indeed, since D2 ⊆ D∗2

0 , J1(D∗2
0 , H) implies

J1(D2, H) and IH+x1 (x1D2(H)) ⊇ IH+x1 (x1D∗2
0 (H)). As for the equivalence between J1(D∗2

0 , H)
and J3(D0, H), it is given by Proposition I.2.28. Finally, the ultimate assertion of Theorem
II.1.12 is simply Proposition II.1.11 with r = 3. ■

112 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

II.1.6.2 Proof of Theorem II.1.13

Similarly, we actually prove Theorem II.1.15 first, which uses the approximation D1. Theorem
II.1.13 then follows as a corollary.

Proof of Theorem II.1.15 assuming Lemma II.1.33. If H is a Breaker win then J1(D1, H) holds
by Proposition I.2.19. Now assume that J1(D1, H) holds. We claim that, actually, J1(D2, H)
holds: indeed, for all x ∈ V (H) \M(H), there exists an x-snake in H by assumption hence
IH+x(xD2(H)) ≠ ∅ by Lemma II.1.33. Therefore, H is a Breaker win according to Theorem
II.1.14. ■

Proof of Theorem II.1.13 assuming Lemma II.1.33. The "only if" direction is given by Proposi-
tion I.2.19. The "if" direction follows from Theorem II.1.15 since J1(D∗

0, H) implies J1(D1, H).
Finally, the ultimate assertion of Theorem II.1.13 is simply Proposition II.1.11 with r = 2. ■

II.1.7 Proof of the key lemma

As we have just seen, all structural results will be proved once Lemma II.1.33 is. Let H be a
3-uniform marked hypergraph that is not a trivial Maker win, and suppose that J1(D1, H) holds.
Let x ∈ V (H) \M(H) and m ∈ M(H) such that there exists an xm-snake in H: we want to
find some y ∈ IH+x(xD2(H)) = IH+x

(
x(D1 ∪ D1

O,rest)(H)
)
. Since J1(D1, H) holds, we already

know that IH+x(xD1(H)) ̸= ∅, however picking an arbitrary y ∈ IH+x(xD1(H)) does not work
in general, as shown in Figure II.18. In this example, we can see that H satisfies the conditions
of Lemma II.1.33, and that the only D1-dangers at x in H are two xm-snakes whose intersection
IH+x(xD1(H)) is represented by the vertices in square boxes. We can see that several of them
are not in IH+x(xD2(H)), because they miss D which is a D1

O,rest-danger at x: this is the case
for the vertex y′ for instance.

zx

m

D

y

y′

Figure II.18: In this example, we have y ∈ IH+x(xD2(H)), but y′ ∈
IH+x(xD1(H)) \ IH+x(xD2(H)) since y′ ̸∈ V (D).

This inspires us to choose y ∈ IH+x(xD1(H)) furthest away from m, as in Figure II.18 for
example:

Notation II.1.34. For all a, b ∈ V (H), we denote by sepH(a, b) the length of a shortest ab-chain
in H, where sepH(a, b) =∞ by convention if there exists none.

We now fix y ∈ IH+x(xD1(H)) maximizing sepH(y, m), and we suppose for a contradiction that
y ̸∈ IH+x(xD2(H)): there exists D ∈ xD1

O,rest(H) such that y ̸∈ V (D). The idea of the proof is
to eventually exhibit a vertex w ∈ V (D) such that IH+w(wD1(H)) = ∅, contradicting the fact

Chapter II. In-depth structural studies in hypergraphs 113

that J1(D1, H) holds.
Let z be a D1-dangerous vertex in (D, x).

II.1.7.1 Preliminary statements

Since H is not a trivial Maker win and J1(D1, H) holds, all results from Subsection II.1.5 apply
to D. In particular:

Proposition II.1.35. D has the following properties:
• M(D) = ∅. In particular, m ̸∈ V (D).
• Ox,z(D) = zT (D−x) ∪ Pzx(D).
• There is exactly one edge of D that is incident to x: we call it ex.

Proof. This is given by Propositions II.1.30 and II.1.31. ■

The next two properties can be summed up as follows:
– When following a chain starting from m, we cannot enter D strictly before encountering y.
– When following a chain starting from x by an edge other than ex, we cannot re-enter D

strictly before encountering y.

Proposition II.1.36. Any m-chain Pm in H such that V (Pm) ∩ V (D) ̸= ∅ contains y.

Proof. Since J1(D1, H) holds and m ̸∈ V (D), Union Lemma II.1.28 with c = m ensures that
D ∪ Pm contains an m-tadpole or an mx-chain (i.e. an xm-snake). There cannot be an m-
tadpole in H according to Proposition II.1.19, therefore D ∪ Pm contains an xm-snake. Since
y ∈ IH+x(xD1(H)), that xm-snake must contain y, moreover y ̸∈ V (D) by assumption so
y ∈ V (Pm). ■

Proposition II.1.37. Any x-chain Px in H such that start(−−→xPx) ̸= ex and V (Px) ∩ (V (D) \
{x}) ̸= ∅ contains y.

Proof. Since J1(D1, H) holds, we have IH+z(zD1(H)) ̸= ∅, so Union Lemma II.1.29 ensures that
D ∪ Px contains an x-tadpole or an x-snake. In both cases, it contains y, moreover y ̸∈ V (D)
by assumption, so y ∈ V (Px). ■

We now state a useful preliminary lemma:

Lemma II.1.38. Any v ∈ V (D) \ {x} satisfies sepH(v, m) ≥ sepH(y, m), moreover:
• If sepH(v, m) > sepH(y, m), then there exists an xm-snake Sv

xm in H that does not contain
v.

• If sepH(v, m) = sepH(y, m), then any shortest vm-snake Svm in H satisfies V (Svm) ∩
V (D) = {v} and o(v,

−−−−→
vSvmm) = y, moreover there is no v-tadpole in D.

Proof. The fact that sepH(v, m) ≥ sepH(y, m) is a direct consequence of Proposition II.1.36:
since v ∈ V (D), any vm-snake in H contains y.

• Suppose sepH(v, m) > sepH(y, m).
Let Sym be a shortest ym-snake in H: note that there does exist one, since there exists
an xm-snake by assumption, which must contain y and therefore contains a ym-snake by
Substructure Lemma I.3.25. Since Sym is shortest and sepH(v, m) > sepH(y, m), we have
v ̸∈ V (Sym).
We necessarily have v ̸∈ IH+x(xD1(H)), otherwise the fact that sepH(v, m) > sepH(y, m)
would contradict our choice of y. Since v is non-marked (recall that M(D) = ∅) and

114 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

distinct from x, this means there exists some K ∈ xD1(H) such that v ̸∈ V (K). On the
other hand, since y ∈ IH+x(xD1(H)), we have y ∈ V (K) hence y ∈ V (K) ∩ V (Sym). This
allows us to use the adequate union lemma in K ∪ Sym to find the desired xm-snake Sv

xm

(ensuring that v ̸∈ V (Sv
xm) since v ̸∈ V (K) ∪ V (Sym)):

– Suppose K =: S ∈ xS(H). If the marked vertex of S is m, then Sv
xm := S is the

desired xm-snake. Otherwise m ̸∈ V (S), so apply Union Lemma I.3.39 with a = x,
Sab = S, c = m and Pc = Sym. Since S ∪ Sym ⊆ H cannot contain an m-snake by
Proposition II.1.19, it contains an mx-chain i.e. an xm-snake Sv

xm.
– Suppose K =: T ∈ xT (H). We have M(T) = ∅ hence m ̸∈ V (T), so apply Union

Lemma I.3.41 with a = x, c = m and Pc = Sym. Since T ∪ Sym ⊆ H cannot contain
an m-tadpole by Proposition II.1.19, it contains an mx-chain i.e. an xm-snake Sv

xm.
• Suppose sepH(v, m) = sepH(y, m).

Let Svm be a shortest vm-snake in H. Since v ∈ V (D), we have y ∈ V (Svm) by Proposition
II.1.36. If y ̸= o(v,

−−−−→
vSvmm) (see Figure II.19, top), then Svm contains a ym-snake that

is shorter than Svm: this is impossible since sepH(v, m) = sepH(y, m) and Svm has been
chosen shortest. Therefore y = o(v,

−−−−→
vSvmm) (see Figure II.19, bottom). The m-chain

S−y−v
vm does not contain y and thus contains no vertex in D by Proposition II.1.36, hence

why V (Svm)∩ V (D) = {v}. Finally, there cannot be a v-tadpole T in D, because Svm ∪ T
would then be an m-tadpole in H since V (Svm) ∩ V (T) = {v}, contradicting Proposition
II.1.19. ■

v
y

m

v

y

m

Figure II.19: The snake Svm if y ̸= o(v,
−−−−→
vSvmm) (top, the contradictory ym-

snake is highlighted) or if y = o(v,
−−−−→
vSvmm) (bottom, the snake S−y−v

vm is
highlighted).

As we have often done in Subsection II.1.5, we fix a vertex s ∈ IH+z(zD1(H)), given by
Proposition II.1.27 (which also tells us that s ∈ V (D)). Before we engage in the core of the
proof, let us summarize the objects involved and some of their basic properties that will be used
thereafter, with Table II.1:

II.1.7.2 Roadmap of the proof

As previously stated, the idea of the proof is to eventually exhibit a vertex w ∈ V (D) such that
IH+w(wD1(H)) = ∅, contradicting the fact that J1(D1, H) holds. The roadmap to achieve this
is given by the following result, which we will prove in this segment:

Proposition II.1.39. Let w ∈ V (D) \ {x}. Suppose that D contains the following three
subhypergraphs:

(i) a z-cycle C containing w;
(ii) an xw-chain Pxw such that V (Pxw) ∩ inn(C) ⊆ {w};
(iii) a w-tadpole that does not contain s.

Then IH+w(wD1(H)) = ∅.

Showing that IH+w(wD1(H)) = ∅ in the proof of Proposition II.1.39 will require the ability,
for every non-marked vertex v ≠ w, to exhibit a D1-danger at w that does not contain v. The

Chapter II. In-depth structural studies in hypergraphs 115

H · not a trivial Maker win

x z

D
s

y
m

ex

· J1(D1, H) holds
x · x ∈ V (H) \M(H)
D · D1

O,rest-danger at x in H
· Ox,z(D) = zT (D−x) ∪ Pzx(D)

z · D1-dangerous vertex in (D, x)
m · m ∈M(H)

· m ̸∈ V (D)
y · y ∈ IH+x(xD1(H))

· y ̸∈ V (D)
s · s ∈ IH+z(zD1(H))

· s ∈ V (D)
ex · unique edge incident to x in D

Table II.1: The objects involved and some of their properties.

following lemma applied to d = w gives us that object under certain conditions.

Lemma II.1.40. Let d, v ∈ V (D) \ {x}. Suppose that sepH(v, m) > sepH(y, m) and that there
exists a dx-chain P v

dx in D that does not contain v. Then there exists a dm-snake in H that
does not contain v.

Proof. Suppose for a contradiction that:
All dm-snakes in H contain v. (C)

We are going to exhibit an m-tadpole in H, contradicting Proposition II.1.19. This m-tadpole
will be obtained inside the union of an xy-chain and an xm-snake having specific properties,
whose existence is given by the following two claims which we prove independently from each
other. Define t := o(x,

−−−→
xP v

dxd), and note that start(
−−−→
xP v

dxd) = ex since ex is the only edge incident
to x in D.

Claim 8. There exists an xy-chain P v
xy in H such that:

• V (P v
xy) ⊆ V (P v

dx) ∪ {y}.
• o(x,

−−−→
xP v

xyy) = t.

Proof of Claim 8. We have sepH(v, m) > sepH(y, m) by assumption, so by Lemma II.1.38 there
exists an xm-snake Sv

xm in H that does not contain v. Since P v
dx ⊆ D and m ̸∈ V (D), the

edge e∗ := end(
−−−−−−−−−−−−−→
mPV (P v

dx
)(m, Sv

xm)) is well defined. According to (C), there is no dm-snake in
P v

dx ∪ Sv
xm. Therefore, by Union Lemma I.3.38 applied to a = d, b = x, c = m, Pab = P v

dx and
Pc = Sv

xm: |e∗ ∩ V (P v
dx)| = 2, e∗ ⊥

←−−−
xP v

dxd, moreover there is an x-tadpole T in P v
dx ∪ e∗. Since

|e∗ ∩ V (P v
dx)| = 2, there is exactly one vertex of T that is not in P v

dx. That vertex is necessarily
y, as illustrated in Figure II.20: indeed, we know y ∈ V (T) because y ∈ IH+x(xD1(H)), and
y ̸∈ V (D) ⊇ V (P v

dx). By Substructure Lemma I.3.30, T contains an xy-chain P v
xy, and we have

V (P v
xy) ⊆ V (T) ⊆ V (P v

dx) ∪ {y}. See Figure II.20.

Finally, let us check that o(x,
−−−→
xP v

xyy) = t. Since |e∗ ∩ V (P v
dx)| = 2 and e∗ ⊥

←−−−
xP v

dxd, there are
two possibilities:

– First possibility: {x, t} ⊆ e∗. Then P v
xy consists of the single edge e∗ = {x, t, y}, so

obviously o(x,
−−−→
xP v

xyy) = t.

116 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

T

d

e∗

x

t

ex

m

y
P v
xy

Figure II.20: Definition of P v
xy. The represented chains are P v

dx (horizontal)
and PV (P v

dx
)(m, Sv

xm) (vertical).

– Second possibility: {x, t} ∩ e∗ = ∅. Then start(
−−−→
xP v

xyy) ̸= e∗, so start(
−−−→
xP v

xyy) =
start(

−−−→
xP v

dxd) = ex ∋ t. Moreover t is of degree 1 in P v
dx ∪ e∗ ⊇ P v

xy, so necessarily
t ̸∈ inn(P v

xy) hence t = o(x,
−−−→
xP v

xyy). □

Claim 9. There exists an xm-snake St
xm in H such that:

• t ̸∈ V (St
xm).

• y ∈ inn(St
xm). (We define P t

xy, resp. St
ym, as the unique xy-chain, resp. ym-snake, in

St
xm.)

• (V (St
xm) ∩ V (P v

dx)) \ {x} ⊆ {u} where u := o(y,
←−−−
xP t

xyy).

Proof of Claim 9. It is impossible that sepH(t, m) = sepH(y, m): indeed, a shortest tm-snake
Stm in H would then satisfy V (Stm) ∩ V (D) = {t} by Lemma II.1.38, hence v ̸∈ V (Stm), so the
walk

−−−→
dP v

dxt⊕
−−−−→
tStmm would represent a dm-snake in H that does not contain v, contradicting

(C). Therefore, Lemma II.1.38 ensures that sepH(t, m) > sepH(y, m), and that there exists
an xm-snake St

xm in H such that t ̸∈ V (St
xm). Since y ∈ IH+x(xD1(H)), we obviously have

y ∈ V (St
xm).

Write
−−−−→
xSt

xmm = (x, e1, . . . , eL, m). Recalling Notation I.3.4, write
−−−−→
xSt

xmm|{y} = (x, e1, . . . , ei)
and
←−−−−
xSt

xmm|{y} = (m, eL, eL−1, . . . , ej). Note that j = i + 1 if y ∈ inn(St
xm) and j = i otherwise.

– By definition of the walk
−−−−→
xSt

xmm|{y}, the x-chain [(x, e1, . . . , ei−1)] does not contain y.
Moreover e1 ̸= ex because t ̸∈ V (St

xm) ⊇ e1. Therefore, (e1∪ . . .∪ei−1)∩ (V (D)\{x}) = ∅
by Proposition II.1.36.

– By definition of the walk
←−−−−
xSt

xmm|{y}, the m-chain [(m, eL, eL−1, . . . , ej+1)] does not contain
y. Therefore, (ej+1 ∪ . . . ∪ eL) ∩ V (D) = ∅ by Proposition II.1.37.

Suppose that y ̸∈ inn(St
xm): then i = j hence V (St

xm) = e1 ∪ . . . ∪ ei−1 ∪ {y} ∪ ej+1 ∪ . . . ∪ eL.
By the above, this yields V (St

xm) ∩ V (D) = {x} and in particular v ̸∈ V (St
xm), therefore the

walk
−−−→
dP v

dxx⊕
−−−−→
xSt

xmm represents a dm-snake that does contain v. This contradicts (C).
Therefore, we have y ∈ inn(St

xm). Let P t
xy (resp. St

ym) be the unique xy-chain (resp. ym-

snake) in St
xm, and define u := o(y,

←−−−
xP t

xyy) and u′ := o(y,
−−−−→
ySt

ymm), as in Figure II.21. Since
y ∈ inn(St

xm), we have j = i + 1 hence V (St
xm) = e1 ∪ . . .∪ ei−1 ∪ {u, y, u′} ∪ ej+1 ∪ . . .∪ eL. By

the above, this yields (V (St
xm)∩V (D))\{x} ⊆ {u, u′}, hence (V (St

xm)∩V (P v
dx))\{x} ⊆ {u, u′}.

Finally, it is impossible that u′ ∈ V (P v
dx): indeed, this would imply that V (St

ym)∩V (P v
dx) = {u′}

and that u′ ̸= v hence v ̸∈ V (St
ym), so the walk

−−−→
dP v

dxx|{u′}⊕
−−−−−→
u′St

ymm would represent a dm-snake

Chapter II. In-depth structural studies in hypergraphs 117

x m
y

u

eie1 ej eL

u′
P t
xy St

ym

Figure II.21: The xm-snake St
xm.

not containing v, contradicting (C). Therefore (V (St
xm)∩ V (P v

dx)) \ {x} ⊆ {u}, which concludes
the proof of the claim. □

We can now conclude by exhibiting an m-tadpole in H, which contradicts Proposition II.1.19
since H is not a trivial Maker win and J1(D1, H) holds.
Let P v

xy be as in Claim 8, and let St
xm, P t

xy, St
ym, u be as in Claim 9. We have V (P v

xy) ⊆ V (P v
dx)∪

{y} by Claim 8, and (V (St
xm)∩ V (P v

dx)) \ {x} ⊆ {u} by Claim 9: therefore, V (St
xm)∩ V (P v

xy) =
{x, y} or V (St

xm) ∩ V (P v
xy) = {x, y, u}.

• Case 1: V (St
xm) ∩ V (P v

xy) = {x, y}. The walk
←−−−−
ySt

ymm⊕
←−−−
yP t

xyx⊕
−−−→
xP v

xyy clearly represents
an m-tadpole (see Figure II.22, top).

x m
y

u

x m
y

t

t u

eu

Puy

Figure II.22: Conclusion of Lemma II.1.40. The represented chains are St
xm

(horizontal) and P v
xy. Top: Case 1. Bottom: Case 2.

• Case 2: V (St
xm) ∩ V (P v

xy) = {x, y, u}. Let eu be the edge of St
xm containing u, and let

Puy be the unique uy-chain in P v
xy. Since u ̸= t, we have x ̸∈ V (Puy), therefore the walk

←−−−−
ySt

ymm⊕ (y, eu, u)⊕−−−→uPuyy represents an m-tadpole (see Figure II.22, bottom). ■

Corollary II.1.41. We have sepH(s, m) = sepH(y, m).

Proof. Since s ∈ IH+z(zD1(H)), there can be no zm-snake in H that does not contain s.
Therefore, we can apply the contrapositive of Lemma II.1.40 to d = z and v = s, which tells us
that sepH(s, m) ≤ sepH(y, m) or there is no zx-chain in D that does not contain s. We know
the latter is false: such a chain P s is given by Proposition II.1.27. Therefore, the conclusion is
that sepH(s, m) ≤ sepH(y, m) hence sepH(s, m) = sepH(y, m) by Lemma II.1.38. ■

The previous corollary has a simple consequence which we will use extensively:

Proposition II.1.42. There is no s-tadpole in D. In particular, any z-tadpole T in D satisfies
s ∈ out(CT).

Proof. We have sepH(s, m) = sepH(y, m) by Corollary II.1.41, so there is no s-tadpole in D
according to Lemma II.1.38. Let T be a z-tadpole in D: we know s ∈ V (T) by definition of s.

118 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

If we had s ̸∈ out(CT), then there would be an s-tadpole in T ⊆ D by Substructure Lemma
I.3.31, therefore s ∈ out(CT). ■

For example, one application of the previous proposition is the following:

Proposition II.1.43. There is no z-cycle of length 2 in D.

Proof. Suppose for a contradiction that there exists a z-cycle C of length 2 in D. We have
s ∈ out(C) by Proposition II.1.42: write V (C) = {z, s, u, v} and E(C) = {e1, e2} where
e1 = {z, u, s} and e2 = {z, u, v}. By Proposition II.1.26(b), we know there exists some
Ku ∈ Ox,z(D) such that u ̸∈ V (Ku).

• First suppose s ∈ V (Ku). By Substructure Lemma I.3.25 (if Ku is a zx-chain) or
Substructure Lemma I.3.30 (if Ku is a z-tadpole), there exists a zs-chain Pzs in Ku. Since
u ̸∈ V (Pzs), we get an s-cycle Pzs ∪ e1 in D, contradicting Proposition II.1.42.

• Now suppose s ̸∈ V (Ku). Since s ∈ IH+z(zD1(H)), this implies that Ku =: P is a
zx-chain. If v ̸∈ V (P), then V (C) ∩ V (P) = {z}, therefore P ∪ C is an x-tadpole in D,
contradicting Proposition II.1.26(f). If v ∈ V (P), then there exists a zv-chain Pzv in P by
Substructure Lemma I.3.25, and we get a z-cycle Pzv ∪ e2 in D that does not contain s,
also a contradiction. ■

We can now prove Proposition II.1.39.

Proof of Proposition II.1.39. Let w ∈ V (D) \ {x} such that D contains the following three
subhypergraphs:

(i) a z-cycle C containing w;
(ii) an xw-chain Pxw such that V (Pxw) ∩ inn(C) ⊆ {w};
(iii) a w-tadpole T that does not contain s.

We are going to consider C, Pxw and T successively. Each of these three objects will imply
the existence of some D1-dangers at w, which will improve our upper bound on IH+w(wD1(H))
until we get the desired conclusion that IH+w(wD1(H)) = ∅.

1) Step 1: we show that IH+w(wD1(H)) ⊆ inn(C) ∪ {s} ∪ (V (H) \ V (D)).
In this step, we use C. Recall that s ∈ out(C) by Proposition II.1.42 and that C is of
length at least 3 by Proposition II.1.43.

Claim 10. We have IH+w(wD1(H)) ⊆ IC+w(Pws(C)) ∪ (V (H) \ V (D)).

Proof of Claim 10. We know sepH(s, m) = sepH(y, m) by Corollary II.1.41. Let Ssm

be a shortest sm-snake in H: Lemma II.1.38 thus ensures that V (Ssm) ∩ V (D) = {s}
hence V (Ssm) ∩ V (C) = {s}. Therefore, any ws-chain Pws in C yields a wm-snake
Swm := Pws ∪ Ssm in H and:

IH+w(wD1(H)) ⊆ V (Swm) \ {w}
⊆ (V (Pws) \ {w}) ∪ (V (Ssm) \ {s})
⊆ IC+w(Pws(C)) ∪ (V (H) \ V (D)). □

Using Claim 10, it suffices to show that IC+w(Pws(C)) ⊆ inn(C) ∪ {s}. This is a straight-
forward fact that actually holds in general for any two vertices w, s in a cycle C, but we
do give a rigorous proof of it using walks:

• Suppose w ∈ inn(C), and write −→wC = (w, e1, . . . , eL, w). Let 1 ≤ i ≤ L be the unique
index such that s ∈ ei. See Figure II.23 (left).

Chapter II. In-depth structural studies in hypergraphs 119

– If i ∈ {1, L}, then w ∈ ei, so ei is a ws-chain of length 1 in C hence IC+w(Pws(C)) ⊆
ei \ {w} ⊆ inn(C) ∪ {s}.

– If i ̸∈ {1, L}, then P1 := [(w, e1, . . . , ei)] and P2 := [(w, eL, eL−1, . . . , ei)] are two
ws-chains in C, so IC+w(Pws(C)) ⊆ (V (P1) ∩ V (P2)) \ {w} = ei ⊆ inn(C) ∪ {s}.

• Suppose w ∈ out(C), and let e be the only edge of C containing w. Write e =
{w, w1, w2} (we have w1, w2 ∈ inn(C)) and −−→w1C = (w1, e1, . . . , eL, w1). We have
e ∈ {e1, eL}: without loss of generality, assume e = e1. Since L ≥ 3, we have
e1 ∩ e2 = {w2} and e1 ∩ eL = {w1}. Let 1 ≤ i ≤ L be the unique index such that
s ∈ ei. See Figure II.23 (right).

– If i = 1 then w = s, so [(w)] is a ws-chain of length 0 in C, hence IC+w(Pws(C)) =
∅ ⊆ inn(C) ∪ {s}.

– If i ∈ {2, L}, then [(w, e1, ei, s)] is a ws-chain of length 2 in C (because L ≥ 3),
so IC+w(Pws(C)) ⊆ (e1 ∪ ei) \ {w} ⊆ inn(C) ∪ {s}.

– If 3 ≤ i ≤ L − 1, then C contains two ws-chains P1 := [(w, e1, e2, . . . , ei)] and
P2 := [(w, e1, eL, eL−1, . . . , ei)], so IC+w(Pws(C)) ⊆ (V (P1) ∩ V (P2)) \ {w} =
(e1 ∪ ei) \ {w} ⊆ inn(C) ∪ {s}.

We have IC+w(Pws(C)) ⊆ inn(C) ∪ {s} in all cases, so this concludes Step 1.

w

s

e1

eL

ei

w1 w2

e2eL

e1=e

ei

s

w

Figure II.23: The cycle C if w ∈ inn(C) (left) or w ∈ out(C) (right). The
vertices in square boxes represent the intersection of the ws-chains in C.

2) Step 2: we show that IH+w(wD1(H)) ⊆ {s} ∪ (V (H) \ V (D)).
In this step, we use Pxw. Comparing with Step 1, we need to show that IH+w(wD1(H))
is disjoint from inn(C). Let v ∈ inn(C). If v = w, then obviously v ̸∈ IH+w(wD1(H)), so
assume v ̸= w. By definition of Pxw, we then have v ̸∈ V (Pxw), therefore Lemma II.1.40
applies with: d = w, our vertex v, and Pdx = Pxw. We get a wm-snake in H that does not
contain v, hence v ̸∈ IH+w(wD1(H)), which concludes Step 2.

3) Step 3: we show that IH+w(wD1(H)) = ∅.
In this step, we use T . We already know that IH+w(wD1(H)) ⊆ {s} ∪ (V (H) \ V (D)).
Moreover, IH+w(wD1(H)) ⊆ V (T) because T is a w-tadpole, where V (T) is disjoint from
{s} ∪ (V (H) \ V (D)) by definition. In conclusion, IH+w(wD1(H)) = ∅. ■

Our goal is now to show that, for a suitable vertex w, D contains all three subhypergraphs listed
in Proposition II.1.39. A lot of the work has already been done through Proposition II.1.32: we
now separate the case where D is of type (1) from the case where D is of type (2).

II.1.7.3 Finishing the proof when D is of type (2)

We first suppose that D is of type (2). By definition (recall Proposition II.1.32), this means D
contains a z-cycle C such that x ̸∈ V (C) as well as an xw-chain Pxw, for some w ∈ V (C), such

120 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

that V (Pxw) ∩ V (C) = {w, w′} where w′ := o(w,
←−−−−
xPxww).

Recall that C is of length at least 3 by Proposition II.1.43, and that s ∈ out(C) by Proposition
II.1.42. Define e∗ := end(−−−−→xPxww).
Note that s ̸∈ {w, w′}: indeed, let P be a ww′-chain in C (which exists by Substructure Lemma
I.3.28), if we had s ∈ {w, w′} then P ∪ e∗ would be an s-cycle in D, contradicting Proposition
II.1.42. Therefore, since s ∈ out(C), Substructure Lemma I.3.27 ensures that there exists a
unique ww′-chain Pww′ in C that does not contain s.
Define C ′ := Pww′ ∪ e∗: C ′ is both a w-cycle and a w′-cycle in D, and it does not contain s.
Moreover, we have z ̸∈ V (Pww′): indeed, we would otherwise have z ∈ inn(C) ∩ V (Pww′) =
{w, w′} ∪ inn(Pww′) = inn(C ′), so C ′ would be a z-cycle not containing s, contradicting Proposi-
tion II.1.42. See Figure II.24.

x
e
∗

s

w

z

w
′

Pww′

Figure II.24: The cycle C (on the far right) and the chain Pxw. In this drawing,
we have w ∈ inn(C) and w′ ∈ out(C).

Claim 11. w ∈ out(C) or w′ ∈ out(C).

Proof of Claim 11. Suppose for a contradiction that w, w′ ∈ inn(C). Write−→zC = (z, e1, . . . , eL, z).
Since L ≥ 3 and w, w′ ∈ inn(C) \ {z}, there exist 1 ≤ i ̸= i′ ≤ L− 1 such that ei ∩ ei+1 = {w}
and ei′ ∩ ei′+1 = {w′}. Since w and w′ have symmetrical roles, assume i < i′. Let 1 ≤ j ≤ L be
the unique index such that s ∈ ej.
Since e1 and eL are the only edges of C containing z, the ww′-chain represented by the walk
(w, ei+1, ..., ei′ , w′) does not contain z, so it is necessarily Pww′ according to the unicity statement
of Substructure Lemma I.3.27. Since s ̸∈ V (Pww′), this yields 1 ≤ j ≤ i or i′ + 1 ≤ j ≤ L: by
symmetry, assume i′ + 1 ≤ j ≤ L. Then (z, e1, . . . , ei, w)⊕

−−−−−→
wPww′w′ ⊕ (w′, e∗, w) represents a

z-tadpole not containing ej i.e. not containing s, a contradiction which concludes the proof of
the claim. □

Using Claim 11, assume w′ ∈ out(C) by symmetry. This ensures that V (Pxw) ∩ inn(C) ⊆ {w}.
In conclusion, we can apply Proposition II.1.39 to the vertex w, with: the z-cycle C containing
w, the xw-chain Pxw which satisfies V (Pxw) ∩ inn(C) ⊆ {w}, and the w-cycle C ′ which does
not contain s. We get IH+w(wD1(H)) = ∅, contradicting property J1(D1, H). This ends the
proof of Lemma II.1.33 when D is of type (2).

II.1.7.4 Finishing the proof when D is of type (1)

We now suppose that D is of type (1). By definition (see Proposition II.1.32), this means D
contains:

• a z-cycle C such that x ̸∈ V (C);
• an xw-chain Pxw for some w ∈ out(C) such that V (Pxw) ∩ V (C) = {w};

Chapter II. In-depth structural studies in hypergraphs 121

• some K ∈ Ox,z(D) such that V (K) ∩ V (Pxw) ̸= ∅ and {w1, w2} ̸⊆ V (K) where e =
{w, w1, w2} denotes the unique edge of C containing w.

Recall that C is of length at least 3 by Proposition II.1.43 and that s ∈ out(C) by Proposition
II.1.42.
Since C contains w and V (Pxw)∩ inn(C) = ∅ ⊆ {w}, the only subhypergraph in D that we are
missing to apply Proposition II.1.39 is a w-tadpole that does not contain s. The rest of the
proof consists in finding a w-cycle in D that does not contain s.

Claim 12. There exists a w-chain Pw in D such that:
(a) The only edge of Pw that intersects V (C)\{w} is e∗ := end(−−→wPw). In particular: |V (Pw)∩

(V (C) \ {w})| = |e∗ ∩ (V (C) \ {w})| ∈ {1, 2}.
(b) {w1, w2} ̸⊆ V (Pw).
(c) s ̸∈ V (Pw).

Proof of Claim 12. Since V (K) ∩ V (Pxw) ̸= ∅, the projection PV (Pxw)(z, K) is well defined.
There is no x-tadpole in D ⊇ Pxw ∪PV (Pxw)(z, K) by Proposition II.1.26(f), so Union Lemma
I.3.38 with a = w, b = x and c = z ensures that Pxw ∪PV (Pxw)(z, K) contains a wz-chain Pwz.
Now, since V (Pwz) ∩ (V (C) \ {w}) ⊇ {z} ≠ ∅, the projection Pw := PV (C)\{w}(w, Pwz) is well
defined.
Define e∗ := end(−−→wPw): by definition of a projection, the edge e∗ is the only edge of Pw that
intersects V (C) \ {w}, and |e∗ ∩ (V (C) \ {w})| ∈ {1, 2}, hence item (a).
Since Pw ⊆ Pwz ⊆ K∪Pxw, where {w1, w2} ̸⊆ V (K) by definition of K and {w1, w2}∩V (Pxw) =
∅, we have {w1, w2} ̸⊆ V (Pw) i.e. item (b).
Finally, suppose for a contradiction that s ∈ V (Pw):

• First suppose s = w. By Substructure Lemma I.3.26, C−s is a w1w2-chain. By Union
Lemma I.3.38 with a = w1, b = w2 and c = w = s, C−s ∪ Pw contains an sw1-chain or an
sw2-chain. Take a shortest sw1-chain or sw2-chain in C−s ∪ Pw: by symmetry, assume it
is an sw1-chain Psw1 . The minimality of the length ensures that either w2 ̸∈ V (Psw1) or
w2 = o(w1,

←−−−−−
sPsw1w1).

– If w2 ̸∈ V (Psw1), then Psw1 ∪ e is an s-cycle in D, contradicting Proposition II.1.42.
– If w2 = o(w1,

←−−−−−
sPsw1w1), then end(−−−−−→sPsw1w1) is an edge of C−s ∪ Pw containing both

w1 and w2. However, there is no such edge in C−s because C−s is a w1w2-chain of
length at least 2 (indeed, recall that C is of length at least 3), and there is no such
edge in Pw because {w1, w2} ̸⊆ V (Pw) by item (b). We have a contradiction.

• Now suppose s ̸= w. By item (a), e∗ := end(−−→wPw) is the only edge of Pw that intersects
V (C) \ {w}, so Pw is a ws-chain and either V (Pw) ∩ V (C) = {w, s} or V (Pw) ∩ V (C) =
{w, s, o(s,

−−−→
sPww)}.

– If V (Pw)∩V (C) = {w, s}, then let Pws be a ws-chain in C (which exists by Substruc-
ture Lemma I.3.28): since Pw and Pws are both ws-chains and V (Pw) ∩ V (Pws) =
{w, s}, we get an s-cycle Pw ∪ Pws, contradicting Proposition II.1.42.

– If V (Pw) ∩ V (C) = {w, s, t} where t := o(s,
−−−→
sPww) ∈ e∗, then let Pst be an st-chain

in C that does not contain w (which exists by Substructure Lemma I.3.27 because
w ∈ out(C)): since V (Pst) ∩ e∗ = {s, t}, we get an s-cycle Pst ∪ e∗, contradicting
Proposition II.1.42.

We have a contradiction in all cases, hence item (c). □

From now on, the action takes place in C ∪ Pw exclusively: we are going to exhibit a w-cycle
in C ∪ Pw that does not contain s. The idea is simply to get such a cycle by using Pw to go
from w to C and then rejoining w by rotating along C in the correct direction so as to avoid s

122 II.1. The Maker-Breaker game: structural results in hypergraphs of rank 3

(for instance, see Figure II.25, left and middle). This is always possible, unless this direction is
blocked by a cycle of length 2, which cannot happen because there would then be an s-tadpole,
contradicting Proposition II.1.42 (for instance, see Figure II.25, right). We now carry out the
rigorous proof of this, distinguishing between two cases.

sw
e

w1

w2

e
∗

sw

w1

w2

e
∗e

sw

w1

w2

e
∗

e

Figure II.25: Represented here are C and Pw. In the left and middle examples,
there is a w-cycle not containing s. In the right example, there is none but
there is an s-tadpole (highlighted).

1) Case 1: w1 ∈ V (Pw) or w2 ∈ V (Pw).
By symmetry, assume w1 ∈ V (Pw). By Claim 12(b), we have {w1, w2} ̸⊆ V (Pw) hence
w2 ̸∈ V (Pw). Therefore, Pw is a ww1-chain that does not contain w2, so C ′ := Pw ∪ e is
a w-cycle. Moreover, s ̸∈ V (C ′) = V (Pw) ∪ {w2}: indeed, we have s ̸∈ V (Pw) by Claim
12(c), and s ∈ out(C) whereas w2 ∈ inn(C). Therefore, C ′ is the desired cycle.

2) Case 2: w1, w2 ̸∈ V (Pw).
By Substructure Lemma I.3.26, C−w is a w1w2-chain. Write

−−−−−−→
w1C

−ww2 = (w1, e1, . . . , eL, w2).
We have s ∈ out(C), moreover s ̸= w by Claim 12(c), so there exists a unique index
1 ≤ i ≤ L such that s ∈ ei. If i ̸= 1, define s1 as the only vertex in ei−1 ∩ ei and
P1 := [(w1, e1, . . . , ei−1, s1)], otherwise define s1 = w1 and P1 := [(w1)]. Similarly, if
i ̸= L, define s2 as the only vertex in ei ∩ ei+1 and P2 := [(w2, eL, eL−1, . . . , ei+1, s2)],
otherwise define s2 = w2 and P2 := [(w2)]. For all j ∈ {1, 2}, Pj is a wjsj-chain in C, and
V (P1) ∩ V (P2) = ∅. These notations are summed up in Figure II.26.

sw

e1

eL

ei

w1

w2

e

s1

s2

ei−1

ei+1

P1

P2

Figure II.26: The cycle C.

By Claim 12(a), we have |V (Pw)∩(V (C)\{w})| ∈ {1, 2}. Note that V (C)\{w} = V (P1)∪
V (P2) ∪ {s}. Since s ̸∈ V (Pw) by Claim 12(c), we obtain that |V (Pw) ∩ V (P1)| ∈ {1, 2}
or |V (Pw) ∩ V (P2)| ∈ {1, 2}. By symmetry, assume that |V (Pw) ∩ V (P1)| ∈ {1, 2}.

Chapter II. In-depth structural studies in hypergraphs 123

• First suppose |V (Pw) ∩ V (P1)| = 1. Let u be the only vertex in V (Pw) ∩ V (P1):
in particular, Pw is a wu-chain. Recall that w2 ̸∈ V (Pw) by assumption, moreover
w2 ̸∈ V (P1) by definition of P1. Therefore, the walk (w, e, w1) ⊕

−−−→
w1P1|{u} ⊕

−−−→
uPww

represents a w-cycle in C ∪Pw, which does not contain s since s ̸∈ e∪V (P1)∪V (Pw).
This is the desired cycle.

• Now suppose |V (Pw) ∩ V (P1)| = 2. Since V (P1) ∩ V (P2) = ∅, this yields V (Pw) ∩
V (P2) = ∅ by Claim 12(a). In particular s2 ̸∈ V (Pw), so there cannot be an s1-
tadpole T in Pw ∪ P1: indeed, since s, s2 ̸∈ V (Pw) ∪ V (P1), the walk (s, ei, s1)⊕−−→s1T
would otherwise represent an s-tadpole in D, contradicting Proposition II.1.42.
Therefore, Union Lemma I.3.38 with a = w1, b = s1 and c = w ensures that P1 ∪ Pw

contains a ww1-chain Pww1 . Since w2 ̸∈ V (P1), and w2 ̸∈ V (Pw) by assumption,
the walk −−−−−−→wPww1w1 ⊕ (w1, e, w) represents a w-cycle, which does not contain s since
s ̸∈ e ∪ V (Pww1). This is the desired cycle.

In conclusion, Proposition II.1.39 applies and yields IH+w(wD1(H)) = ∅, contradicting property
J1(D1, H). This ends the proof of Lemma II.1.33, so that all results of this section are now
proved.

II.1.8 Conclusion and prospects

Section I.2 introduced a toolkit for a structural study of the Maker-Breaker game, based on
dangers and their intersections. In this section, we have applied these ideas in 3-uniform marked
hypergraphs i.e. hypergraphs of rank 3. We have shown that Breaker wins if and only if he
can destroy the D∗2

0 -dangers in the first round, and more precisely, that Breaker’s first pick is a
winning move if and only if it destroys the D∗2

0 -dangers at Maker’s first pick. This is equivalent
to saying that Breaker can destroy the D0-dangers during three rounds i.e. can ensure that no
nunchaku or necklace is present at the end of each of the first three rounds.
In particular, all specific instances of games with winning sets of size at most 3 which were
studied on their own fall within the scope of our results. An example is the H-game on the
edge set of a general graph G in the case |E(H)| ≤ 3, like the triangle game or the P4-game for
instance. Regarding the latter, [DGM+23] provides a different structural characterization of the
outcome which is read on the graph G directly. Another example is the total domination game
on a general graph G of maximum degree at most 3, notably cubic graphs, for which [FM22]
gave a partial structural characterization of the outcome.
Can we find new classes of hypergraphs such that property Jr(F , ·) characterizes Breaker wins,
for some well-chosen family of dangers F and some constant number of rounds r? Hypergraphs
of rank 4 immediately come to mind, possibly with dangers based on 4-uniform forcing paths,
the same way D0 was based on nunchakus. However, the proof in the 3-uniform case heavily
relied on our unions lemmas from Subsection I.3.2, whose 4-uniform counterpart would likely
be too complicated to be exploitable. Instead of raising the rank, another avenue may be
to introduce a bias, and look at the biased game on 3-uniform marked hypergraphs from a
danger-based point of view.
Subsection II.1.1 mentioned a more general version of the game, played on a CNF formula
instead of a hypergraph. The concept of danger and the results from Subsection I.2.2 should
translate well to this version, except that there would be two types of dangers at x depending
on which value False must assign to x. Property Jr(· , ·) should then be checked for both types
of dangers. It is possible that our proofs generalize to this version, in which case this would
show that, apart from some trivial cases, True wins if and only if he can break any manriki
that appears during the first three rounds of play, thus fully validating Rahman and Watson’s

124 II.2. Structure of a (k − 2)-linear connected component

conjecture [RW20]. However, we have not looked into it. For now, we have only proved that
this conjecture is true for positive 3-CNF formulas.
Finally, our structural result suggests an algorithm solving the Maker-Breaker game on hyper-
graphs of rank 3. Indeed, we now know that this problem reduces to the problem of detecting
nunchakus and necklaces in a 3-uniform marked hypergraph, which itself boils down to deter-
mining whether there exists an ab-chain for given vertices a and b in a 3-uniform hypergraph.
Therefore, the chain existence problem, which has not been studied before, now becomes a main
preoccupation for us. We thus proceed with Section II.2, in which we explore the structure of the
connected components associated with chains in a 3-uniform hypergraph (actually generalized
to k-uniform hypergraphs). The algorithmic rewards will be reaped in Chapter III.

II.2 Structure of a (k − 2)-linear connected component†

II.2.1 Presentation of the problem and state of the art

With motivation coming from its crucial importance in the Maker-Breaker game on hypergraphs
of rank 3, which we have just established in Section II.1, we are interested in the chain existence
problem in 3-uniform hypergraphs. The tools that we are going to develop actually generalize to
the (k − 2)-linear path existence problem in k-uniform hypergraphs. In other words, we forbid
edge intersections that are maximum i.e. of size k − 1.
Studies around the existence of paths with restriction on the size of edge intersections do exist
in the hypergraph theory literature, however these are all extremal results. Let us mention some
of them. Linear simple paths in k-uniform hypergraphs are the most studied [FJS14][GLS20],
with particular emphasis on k = 3 i.e. the case of chains [OS14][Jac15][JPR16][WP21]: for
instance, [JPR16] determines the Turán number of the chain of length 3, so that a 3-uniform
hypergraph on n ≥ 8 vertices with at least

(
n−1

2

)
edges necessarily contains a chain of length 3.

Simple paths where any two consecutive edges must intersect on at least t vertices [GKL10], or
exactly t vertices [Tom12][DLM+17], have also been studied.
In general hypergraphs, which are potentially sparse, the existence of such paths cannot be
determined using extremal results. The goal of this section is to initiate this study by giving a
fine description of the connected components associated to (k − 2)-linear paths: how they are
structured internally, and how they interact with the rest of the hypergraph.

Definition II.2.1. Let H be a hypergraph and let λ ≥ 1 be an integer. For all x∗ ∈ V (H), we
define the λ-linear connected component of x∗ in H as:

CC λ
H(x∗) := {y ∈ V (H) such that there exists a λ-linear x∗y-path in H}.

By extension, when it comes to structural considerations, the term may refer to the induced
subhypergraph H[CC λ

H(x∗)]. In the absence of ambiguity regarding the considered k-uniform
hypergraph H and in the case λ = k − 2, as will be the case throughout this section, we will
simply write CC(x∗) to alleviate notations.

It should be noted that these particular connected components do not form a partition of the
vertex set. Indeed, (k − 2)-linear connectivity defines a relation that is reflexive and symmetric
but not transitive: for k = 3, we have already seen that the union of an ab-chain and a bc-chain

† These results are part of the article [GGS22a], which has been submitted to Discrete Mathematics &
Theoretical Computer Science.

Chapter II. In-depth structural studies in hypergraphs 125

does not necessarily contain an ac-chain, and it is not difficult to generalize the counterexample
to k ≥ 4. This is why our problem is nontrivial from an algorithmic point of view: we will
address algorithmic questions in Section III.1.
Also recall that, by Proposition I.3.11, any (k − 2)-linear x∗y-path contains a (k − 2)-linear
x∗y-simple-path. Therefore, it suffices to consider simple paths, which are more natural.

II.2.2 The archipelago structure

From now on, we fix an integer k ≥ 3, a k-uniform hypergraph H, and a vertex x∗ ∈ V (H)
whose (k − 2)-linear connected component we are going to study.

II.2.2.1 An overview

Let A := H[CC(x∗)]. This segment aims at presenting the challenges at hand and providing
an intuition of the "archipelago" structure of A that we are going to establish. Since the case
k = 3 encapsulates the idea and makes it easier to visualize things, assume k = 3: we are then
interested in linear simple paths i.e. chains.
Our problem is about chains between given vertices in H. As we know, a major difficulty is that
the union of an ab-chain and a bc-chain is not necessarily an ac-chain, even if the edges incident
to b in the respective chains are the only ones that intersect: indeed, they may intersect on two
vertices, as in Figure II.27.

a b c

Figure II.27: An ab-chain and a bc-chain do not necessarily form an ac-chain.

Therefore, just as important as the notion of chain connecting two vertices, is the more general
notion of chain connecting two sets of vertices X and Y of size 1 or 2, where if X (resp. Y) is
a pair then the chain must contain one of its vertices and avoid the other. This way, even an
edge containing all of X (resp. all of Y) would prolong the chain in a linear manner. Using our
vocabulary around walks, the existence of such a chain for given X and Y can be expressed
as follows: there exists a walk −→W , whose elements are edges of H, such that (X) ⊕ −→W ⊕ (Y)
is a linear simple walk. Indeed, the fact that this is a walk means that the chain P := [−→W]
connects X and Y , while linearity and simplicity mean that P only contains one vertex of X

and one vertex of Y . Such a walk −→W will be deemed (X, Y)-compatible. See Figure II.28 for an
illustration.

X Y

e1 eLe2

e e
′

Figure II.28: The walk (e1, . . . , eL) is (X, Y)-compatible, so that the edges e
and e′ prolong the induced chain in a linear manner.

Since we are considering the linear connected component of a fixed vertex x∗, the case X = {x∗}
is of natural interest. The singletons Y = {y} such that there exists an (x∗, y)-compatible walk
are precisely the elements of CC(x∗). The pairs Y such that there exists an (x∗, Y)-compatible
walk are those that can be "separated", or to state the negative: the pairs Y such that there
does not exist an (x∗, Y)-compatible walk are those that cannot be separated from the point of

126 II.2. Structure of a (k − 2)-linear connected component

view of x∗, in the sense that when following an x∗-chain, it is impossible to reach one vertex of
Y without reaching the other at the same time. Let ε2, . . . , εN denote all the pairs Y in A such
that there does not exist an (x∗, Y)-compatible walk. For reasons that will become clearer later,
we start the indexing at 2 to make way for the special ε1 := {x∗}.
The importance of these "inseparable pairs" is apparent when looking at the interface between A
and the rest of the hypergraph. Indeed, consider a "cut" edge i.e. an edge e ∈ E(H) intersecting
both V (A) and V (H) \ V (A). Let y ∈ e \ V (A). Since y ̸∈ V (A) = CC(x∗), there does not
exist an x∗y-chain in H, so it is impossible to prolong an x∗-chain in A with the edge e to reach
y. This means that the other two vertices of e are in A and form an inseparable pair. Therefore,
all cut edges are of the form εi ∪ {y} for some 2 ≤ i ≤ N and some y ̸∈ V (A). See Figure II.29.

ε1={x
∗}

ε2

ε4

ε3

ε5

ε6

Figure II.29: An example hypergraph H where k = 3. Inside the dashed line
is A. The blue edges are the cut edges.

As for the inside structure of A, we will see that it is articulated around the εi:
• First of all, there is the subhypergraph I1 containing all that can be reached from ε1 := {x∗}

and without going through any of the other εi. Inside I1, there exist (x∗, Y)-compatible
walks for all Y . This convenient property defines what we will call an island with entry ε1.

• On the other hand, some vertices are only reachable from x∗ by going through some
of the εi (2 ≤ i ≤ N) on the way. For example, consider an (x∗, Y)-compatible walk
(e1, . . . , eL) that goes through ε2 but does not intersect ε3, . . . , εN , as in Figure II.30. Let
j be the index such that ε2 ⊆ ej. All edges before ej are in I1. All edges after ej are in
the subhypergraph I2 containing all that can be reached after arriving at ε2 and without
going through any other εi (i ≥ 3). Inside I2, there exist (ε2, Y)-compatible walks for all
Y . This convenient property defines what we will call an island with entry ε2.

Y

ε2

ε1={x
∗}

︸ ︷︷ ︸ ︸ ︷︷ ︸

in I1 in I2

e1 ej eL

Figure II.30: An (x∗, Y)-compatible walk going through ε2.

Chapter II. In-depth structural studies in hypergraphs 127

• All in all, A can be divided into islands I1, . . . , IN , with respective entries ε1, . . . , εN , plus
crossing edges allowing to jump from one island to the entry of another (in the previous
example, the edge ej allowed to jump from I1 to I2 for instance). We will say that A is
an archipelago. For the hypergraph from Figure II.29, the decomposition into islands is
shown in Figure II.31.

x
∗

I1

I2

I3

I4

I5

I6

Figure II.31: Decomposition of the archipelago A from Figure II.29. The red
edges will always represent the crossing edges. The grey hatched area at the
top of an island will always represent its entry.

We now proceed with the formal definitions.

II.2.2.2 Compatible walks

The above principles generalize to any k ≥ 4. Linearity is replaced by (k − 2)-linearity. The key
ability to separate pairs of vertices becomes the ability to separate sets of vertices X and Y of
size k − 1: if a path connects X and Y while avoiding at least one vertex in each, then it can
be prolonged at both ends with edges containing X and Y respectively while maintaining the
(k − 2)-linearity. Therefore, the relevant definition of (X, Y)-compatibility is the following:

Definition II.2.2. Let H ′ be a k-uniform hypergraph, and let X, Y ⊆ V (H ′) (if X = {x} is a
singleton then we may write X = x, and same goes for Y). An (X, Y)-compatible walk in H ′

is a walk −→W whose elements are edges of H ′ and such that (X)⊕−→W ⊕ (Y) is a (k − 2)-linear
simple walk.

Remark. Note that the empty walk () is (X, Y)-compatible if and only if 1 ≤ |X ∩ Y | ≤ k − 2
(in which case it is the only one). In particular, if X and Y are equal and of size k − 1, then
there can exist no (X, Y)-compatible walk.

As always, we have the choice between walks or paths (or a bit of both) to describe structures.
Throughout this section, the sequence of edges will be more relevant than the induced hypergraph
itself, so we will express everything in terms of compatible walks. This is possible because all
existence questions of (k− 2)-linear simple paths boil down to the existence of compatible walks:

128 II.2. Structure of a (k − 2)-linear connected component

Proposition II.2.3. Let H ′ be a k-uniform hypergraph. For all disjoint X, Y ⊆ V (H ′), the
following two assertions are equivalent:

(i) There exists an (X, Y)-compatible walk in H ′.
(ii) There exists a (k − 2)-linear xy-simple-path P in H ′, for some x ∈ X and y ∈ Y , such

that: start(−−→xPy) is the only edge of P intersecting X and does so on at most k−2 vertices,
and end(−−→xPy) is the only edge of P intersecting Y and does so on at most k − 2 vertices.

In particular, for all x, y ∈ V (H), there exists an (x, y)-compatible walk in H ′ if and only if
there exists a (k − 2)-linear xy-simple-path in H ′.

Proof. Let X, Y ⊆ V (H ′) be disjoint.
• (i) =⇒ (ii). Let −→W = (e1, . . . , eL) be an (X, Y)-compatible walk in H ′ i.e. (X, e1, . . . , eL, Y)

is a (k−2)-linear simple walk. Since X and Y are disjoint, we know L ≥ 1. Let x ∈ X ∩e1
and let y ∈ Y ∩ eL. Clearly, (x, e1, . . . , eL, y) is also a (k − 2)-linear simple walk, so by
definition it induces a (k− 2)-linear xy-simple-path P . By (k− 2)-linearity and simplicity
of (X, e1, . . . , eL, Y): e1 is the only edge of P intersecting X and does so on at most k − 2
vertices, and eL is the only edge of P intersecting Y and does so on at most k− 2 vertices.

• (ii) =⇒ (i). Let x, y, P as in (ii), and write −−→xPy = (x, e1, . . . , eL, y). Since X and Y are
disjoint, we know L ≥ 1. Since the walk −−→xPy is simple by definition, the fact that e1 (resp.
eL) is the only edge of P intersecting X (resp. Y) ensures that the walk (X, e1, . . . , eL, Y)
is also simple. Since the walk −−→xPy is (k − 2)-linear, the fact that |e1 ∩X| ≤ k − 2 and
|eL ∩ Y | ≤ k − 2 ensures that the walk (X, e1, . . . , eL, Y) is also (k − 2)-linear. ■

Corollary II.2.4. Let H ′ be a k-uniform hypergraph. For all x, y ∈ V (H ′), there exists an
(x, y)-compatible walk in H ′ if and only if there exists a (k − 2)-linear xy-simple-path in H ′. In
particular, CC(x∗) = {y ∈ V (H) such that there exists an (x, y)-compatible walk in H}.

Proof. Let x, y ∈ V (H). If x = y, then () is an (x, y)-compatible walk in H ′, and the lone vertex
x = y constitutes an xy-simple-path in H ′. If x ̸= y, then Proposition II.2.3 with X = {x} and
Y = {y} concludes. ■

We now present three useful "compatibility lemmas", which are useful to deduce the existence of
compatible walks from some already known ones. They are illustrated in Figures II.32, II.33
and II.34 respectively.

Lemma II.2.5. Let H ′ be a k-uniform hypergraph. Let α, β ⊆ V (H ′) and let −→W be an (α, β)-
compatible walk in H ′.

• If β′ ⊆ V (H ′) satisfies β ⊆ β′ and β′ ∩ ((α ∪ V (−→W)) \ β) = ∅, then −→W is an (α, β′)-
compatible walk in H ′.

• If α′ ⊆ V (H ′) satisfies α ⊆ α′ and α′ ∩ ((V (−→W) ∪ β) \ α) = ∅, then −→W is an (α′, β)-
compatible walk in H ′.

Lemma II.2.6. Let H ′ be a k-uniform hypergraph. Let α, β ⊆ V (H ′) and let −→W be an (α, β)-
compatible walk in H ′.

• If e ∈ E(H ′) satisfies β ⊆ e and e ∩ ((α ∪ V (−→W)) \ β) = ∅, then for all γ ⊆ e \ β such
that 1 ≤ |γ| ≤ k − 2: −→W ⊕ (e) is an (α, γ)-compatible walk in H ′.

• If e ∈ E(H ′) satisfies α ⊆ e and e ∩ ((V (−→W) ∪ β) \ α) = ∅, then for all γ ⊆ e \ α such
that 1 ≤ |γ| ≤ k − 2: (e)⊕−→W is a (γ, β)-compatible walk in H ′.

Chapter II. In-depth structural studies in hypergraphs 129

Lemma II.2.7. Let H ′ be a k-uniform hypergraph. Let α, β, γ, δ ⊆ V (H ′), let −→W be an (α, β)-
compatible walk in H ′, and let

−→
W ′ be a (γ, δ)-compatible walk in H ′. We assume that α∪V (−→W)∪β

and γ ∪ V (
−→
W ′) ∪ δ are disjoint. If e ∈ E(H ′) satisfies β ⊆ e, e ∩ ((α ∪ V (−→W)) \ β) = ∅, γ ⊆ e

and e ∩ ((V (
−→
W ′) ∪ δ) \ γ) = ∅, then −→W ⊕ (e)⊕

−→
W ′ is an (α, δ)-compatible walk in H ′.

α β

β′

e1 eL· · · · · ·

Figure II.32: Illustration of Lemma II.2.5.

α β ee1 eL· · · · · · γ

Figure II.33: Illustration of Lemma II.2.6.

α β

δ
e

e1 eL· · · · · ·

e
′

M e
′

1· · ·· · ·

Figure II.34: Illustration of Lemma II.2.7.

Proof of Lemma II.2.5. By symmetry, proving the first assertion is sufficient. Write −→W =
(e1, . . . , eL) with L ≥ 0. The assumption on β′ ensures that α∩β′ = α∩β and ei∩β′ = ei∩β for
all 1 ≤ i ≤ L. Therefore, the fact that (α)⊕−→W ⊕ (β) is a (k− 2)-linear simple walk immediately
implies that (α)⊕−→W ⊕ (β′) is a (k − 2)-linear simple walk as well. ■

Proof of Lemma II.2.7. Write −→W = (e1, . . . , eL) and
−→
W ′ = (e′

1, . . . , e′
M) with L, M ≥ 0. We

know that (α) ⊕ −→W ⊕ (β) and (γ) ⊕
−→
W ′ ⊕ (δ) are both (k − 2)-linear simple walks and have

disjoint vertex sets. Therefore, to show that (α)⊕−→W ⊕ (e)⊕
−→
W ′ ⊕ (δ) also is a (k − 2)-linear

simple walk, the only intersections that need to be checked are those involving the middle edge
e. Since β ⊆ e and e ∩ ((α ∪ V (−→W)) \ β) = ∅, we have α ∩ e = α ∩ β and ei ∩ e = ei ∩ β for all
1 ≤ i ≤ L, therefore the fact that (α)⊕−→W ⊕ (β) is a (k − 2)-linear simple walk ensures that
all intersections between e and an element from (α)⊕−→W are good. Similarly, since γ ⊆ e and
e∩ ((V (

−→
W ′)∪ δ) \ γ) = ∅, we have e∩ e′

j = γ ∩ e′
j for all 1 ≤ j ≤M and e∩ δ = γ ∩ δ, therefore

the fact that (γ)⊕
−→
W ′⊕ (δ) is a (k− 2)-linear simple walk ensures that all intersections between

e and an element from
−→
W ′ ⊕ (δ) are good. ■

Proof of Lemma II.2.6. By symmetry, proving the first assertion is sufficient. Since 1 ≤ |γ| ≤
k − 2, we know the empty walk () is a (γ, γ)-compatible walk. Applying Lemma II.2.7 with
δ = γ and

−→
W ′ = () yields Lemma II.2.6. ■

130 II.2. Structure of a (k − 2)-linear connected component

II.2.2.3 Islands and archipelagos

Definition II.2.8. Let I be a k-uniform hypergraph, and let ε ⊆ V (I) such that 1 ≤ |ε| ≤ k−1.
We say I is an island with entry ε if, for all X ⊆ V (I) satisfying 1 ≤ |X| ≤ k − 1 (and X ̸= ε if
|ε| = k − 1), there exists an (ε, X)-compatible walk in I.

Example. The deserted island with entry ε, where 1 ≤ |ε| ≤ k − 1, is the island I with entry
ε defined by V (I) = ε and E(I) = ∅. It is an island because, for all X ⊆ V (I) satisfying
1 ≤ |X| ≤ k − 1 (and X ̸= ε if |ε| = k − 1), −→W = () is an (ε, X)-compatible walk in I. This
example is illustrated at the far left of Figure II.35.

Figure II.35: Some islands for k = 3, except the far right one where k = 4
(with the same "claw" representation for edges). For three of them, we show
an (ε, X)-compatible walk (in blue) for some X of size k − 1 (circled in blue).

Definition II.2.9. Let I and I ′ be disjoint islands in H, where I ′ has an entry ε of size k − 1.
An edge e ∈ E(H) of the form e = {x} ∪ ε for some x ∈ V (I) is called a crossing edge from I
to I ′. We denote by C(I, I ′) ⊆ E(H) the set of all crossing edges from I to I ′ in H. If A is a
subhypergraph of H containing I and I ′, we use the notation CA(I, I ′) := C(I, I ′) ∩ E(A).

Remark. The above definition depends on the choice of ε (an island might have several possible
entries suiting the definition). However, we will always specify the entries when defining islands
and therefore consider crossing edges for those specific entries.

Definition II.2.10. An x∗-archipelago is a subhypergraph A of H such that there exist subhy-
pergraphs I1, . . . , IN of A that are pairwise disjoint islands with respective entries ε1, . . . , εN

satisfying the following properties:
• ε1 = {x∗}.
• |εi| = k − 1 for all 2 ≤ i ≤ N .
• V (A) = V (I1) ∪ . . . ∪ V (IN).
• All edges in E(A) \ (E(I1) ∪ . . . ∪ E(IN)) are crossing edges between some of the Ii, such

that the digraph G defined by V (G) = {I1, . . . , IN} and E(G) = {(Ii, Ij), CA(Ii, Ij) ̸= ∅}
contains a spanning arborescence rooted at I1.

Since x∗ is fixed, we usually call A an archipelago for short.

Remark. By definition of a crossing edge, there cannot exist a crossing edge from some Ii to I1
in an archipelago since |ε1| = 1 ̸= k − 1. In other words, I1 has in-degree zero in G.

Therefore, an archipelago is a union of pairwise disjoint islands and crossing edges between
some of them, satisfying specific properties. See Figure II.36 for an example (for clarity, all
figures will illustrate the case k = 3 from now on). We will later see that an archipelago has a

Chapter II. In-depth structural studies in hypergraphs 131

unique decomposition into islands, but for now we have to give ourselves islands and entries
suiting the definition whenever we consider an archipelago.

x
∗

I1

I2

I3

I4

I5

I6

I1

I2 I3

I5 I6I4

Figure II.36: An archipelago, with the digraph G on the right.

II.2.2.4 Archipelago properties

The next two results show how compatible walks in A are related to directed paths in the
digraph G. Obviously, by definition of an archipelago, an (x∗, x)-compatible walk necessarily
visits successive islands, using crossing edges to jump from one island to another. The following
proposition states that, additionally, a crossing edge can only be used in one direction which is
given by the digraph G, therefore each island is entered through its entry (hence the terminology)
and it is impossible to reenter an island after leaving it.

Definition II.2.11. Let G be a digraph and let v, v′ ∈ V (G). A dipath (short for directed
path) from v to v′ in G is a sequence denoted by v = v0 → v1 → . . . → vl = v′ (l ≥ 0) where
v0, . . . , vl ∈ V (G) are pairwise distinct and (vi, vi+1) ∈ E(G) for all 0 ≤ i ≤ l − 1.

Proposition II.2.12. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN , G suiting the defini-
tion. Let x ∈ V (Ii) for some 1 ≤ i ≤ N , and let −→W be an (x∗, x)-compatible walk in A. Then
the islands visited by −→W form a dipath I1 = Ii1 → . . .→ IiM

= Ii in G, and −→W is of the form
−→
W = −→W1 ⊕ (e1,2)⊕

−→
W2 ⊕ (e2,3)⊕ . . .⊕

−−−→
WM−1 ⊕ (eM−1,M)⊕−−→WM where:

• For all 1 ≤ p ≤M : E(−→Wp) ⊆ E(Iip).
• For all 2 ≤ p ≤M : ep−1,p ∈ CA(Iip−1 , Iip).

In particular, if −→W ̸= () i.e. x ̸= x∗, then for all 1 ≤ p ≤M there is an edge of −→W that contains
εip.

Proof. That last assertion is clear: for p = 1 we have εip = ε1 = {x∗} ⊆ e1, and for p ≥ 2 we
have εip ⊆ ep−1,p by definition of CA(Iip−1 , Iip). Let us now prove the main assertion. Write
−→
W = (e1, . . . , eL).
We proceed by induction on L. The case L = 0 is trivial: we have x = x∗ so we can set M = 1
and −→W1 = −→W = (). Let L ≥ 1 and assume the result to be true for walks with less edges than

132 II.2. Structure of a (k − 2)-linear connected component

−→
W . The idea is to separate two simple cases: either we are currently visiting the island Ii (case
eL ∈ E(Ii)) or we have just jumped onto Ii from another island (case eL ̸∈ E(Ii)).
Let y ∈ eL−1 ∩ eL if L ≥ 2, or define y = x∗ if L = 1, so that in both cases −→U := (e1, . . . , eL−1)
is an (x∗, y)-compatible walk in A. We have y ∈ V (Ij) for some 1 ≤ j ≤ N . By the induction
hypothesis, there exists a dipath I1 = Ii1 → . . . → IiM

= Ij in G such that we can write
−→
U = −→U1 ⊕ (e1,2) ⊕

−→
U2 ⊕ (e2,3) ⊕ . . . ⊕

−−−→
UM−1 ⊕ (eM−1,M) ⊕ −→UM where E(−→Up) ⊆ E(Iip) for all

1 ≤ p ≤M and ep−1,p ∈ CA(Iip−1 , Iip) for all 2 ≤ p ≤M .

x∗

Ii1 = I1

e1,2

Ii2 IiM = Ij

eLeM−1,M

Ii

y

x

−→
U1

−→
U2

−→
UM

x∗

Ii1 = I1

e1,2

Ii2 IiM = Ij = Ii

eM−1,M

−→
U1

−→
U2 eL

y

x
−→
UM

Figure II.37: Top: eL ∈ E(Ii). Bottom: eL ̸∈ E(Ii).

• First suppose that eL ∈ E(Ii) (see Figure II.37, top). Since y ∈ eL, this implies i = j,
so −−→WM := −→UM ⊕ (eL) satisfies E(−−→WM) ⊆ E(Ii). Therefore, the following writing of −→W
completes the proof: −→W = −→U ⊕(eL) = −→U1⊕(e1,2)⊕−→U2⊕(e2,3)⊕. . .⊕

−−−→
UM−1⊕(eM−1,M)⊕−−→WM .

• Now suppose eL ̸∈ E(Ii) (see Figure II.37, bottom), then by definition of an archipelago
we have either eL ∈ CA(Ii, Ij) or eL ∈ CA(Ij, Ii).
Suppose for a contradiction that eL ∈ CA(Ii, Ij) i.e. eL = {x} ∪ εj: in particular j ̸= 1
(and |εj| = k − 1), so the fact that εj ⊆ eM−1,M contradicts the (k − 2)-linearity of −→W
since εj ⊆ eL.
Therefore eL ∈ CA(Ij, Ii). In particular i ̸= 1 (and |εi| = k − 1), so it is impossible that Ii

has been visited before: if we had i ∈ {i1, . . . , iM} then some edge of −→U would contain εi

which would contradict the (k−2)-linearity of −→W once again. Setting iM+1 := i, this ensures
that the islands visited by −→W form a dipath I1 = Ii1 → . . .→ IiM

= Ij → IiM+1 = Ii in G,
and we can write −→W = −→U ⊕ (eM,M+1)⊕

−−−→
WM+1 where eM,M+1 := eL ∈ CA(IiM

, IiM+1) and
−−−→
WM+1 := (), which concludes. ■

Conversely, dipaths in G yield compatible walks in A. The following proposition is a generaliza-
tion to archipelagos of the property that defines an island.

Proposition II.2.13. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN , G suiting the defini-
tion. Let X ⊆ V (A) such that 1 ≤ |X| ≤ k − 1 and X ̸∈ {ε2, . . . , εN}. For all 1 ≤ j ≤ N and
for every dipath Ij = Ii1 → . . . → IiM

in G satisfying X ∩ V (IiM
) ̸= ∅ and X ∩ V (Iip) = ∅

Chapter II. In-depth structural studies in hypergraphs 133

for all 1 ≤ p ≤ M − 1, there exists an (εj, X)-compatible walk −→W in A of the form −→W =
−→
W1 ⊕ (e1,2)⊕

−→
W2 ⊕ (e2,3)⊕ . . .⊕

−−−→
WM−1 ⊕ (eM−1,M)⊕−−→WM where:

• For all 1 ≤ p ≤M : E(−→Wp) ⊆ E(Iip).
• For all 2 ≤ p ≤M : ep−1,p ∈ CA(Iip−1 , Iip).

Proof. We proceed by induction on M .
• First suppose M = 1: we need to show that if X ∩ V (Ij) ̸= ∅ then there exists an

(εj, X)-compatible walk in Ij . This is basically the definition of an island, except that X is
not necessarily entirely included in V (Ij). This is not a problem: since X ̸∈ {ε2, . . . , εN}
by assumption, there exists an (εj, X ∩ V (Ij))-compatible walk −→W in Ij by definition of
an island, and −→W is also (εj, X)-compatible by Compatibility Lemma II.2.5.

• Now suppose M ≥ 2 and assume the result to be true for all shorter dipaths in G. We
build the desired (εi1 , X)-compatible walk by assembling three parts:

(1) By the induction hypothesis, there exists an (εi2 , X)-compatible walk
−→
W ′ in A of

the form
−→
W ′ = −→W2 ⊕ (e2,3) ⊕

−→
W3 ⊕ (e3,4) ⊕ . . . ⊕

−−−→
WM−1 ⊕ (eM−1,M) ⊕ −−→WM where

E(−→Wp) ⊆ E(Iip) for all 2 ≤ p ≤M and ep−1,p ∈ CA(Iip−1 , Iip) for all 3 ≤ p ≤M .
(2) Let e1,2 ∈ CA(Ii1 , Ii2), which exists since (Ii1 , Ii2) ∈ E(G): we have e1,2 = {x} ∪ εi2

for some x ∈ V (Ii1).

(3) Finally, by definition of an island, there exists an (εi1 , x)-compatible walk −→W1 in Ii1 .

X

IiMIi1 Ii2

e1,2

x

−→
W1

Figure II.38: An (εi1 , X)-compatible walk in an archipelago.

Let −→W := −→W1 ⊕ (e1,2) ⊕
−→
W ′ as in Figure II.38. Compatibility Lemma II.2.7 applied to

H ′ = A, α = εi1 , β = {x}, γ = εi2 and δ = X ensures that −→W is an (εi1 , X)-compatible
walk in A. ■

We get the following characterization for the entries of an archipelago:

Proposition II.2.14. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN suiting the definition.
Let X ⊆ V (A) such that 1 ≤ |X| ≤ k − 1. There exists an (x∗, X)-compatible walk in A if and
only if X ̸∈ {ε2, . . . , εN}.

Proof. We distinguish both cases:
• Suppose X = εi for some 2 ≤ i ≤ N . Suppose for a contradiction that there exists

an (x∗, εi)-compatible walk −→W = (e1, . . . , eL) in A. Let x ∈ eL ∩ εi: in particular, −→W is
an (x∗, x)-compatible walk in A, so some edge of −→W contains εi by Proposition II.2.12.
Therefore, the walk (x∗)⊕−→W ⊕ (εi) is not (k − 2)-linear, contradicting the fact that −→W is
(x∗, εi)-compatible.

134 II.2. Structure of a (k − 2)-linear connected component

• Suppose X ̸∈ {ε2, . . . , εN}. Out of all the dipaths in G from I1 to one of the islands
intersecting X (recall that G contains a spanning arborescence rooted at I1, so there exists
at least one), consider a shortest one, so that X only intersects the last island of that
path. We can now apply Proposition II.2.13: there exists an (ε1, X)-compatible walk in
A, which concludes since ε1 = {x∗}. ■

Corollary II.2.15. Let A be an archipelago in H. For all x ∈ V (A), there exists an (x∗, x)-
compatible walk in A. In particular, V (A) ⊆ CC(x∗).

Proof. It suffices to apply Proposition II.2.14 with X = {x}. ■

Finally, we show that an archipelago has a unique decomposition.

Proposition II.2.16. Any archipelago A has unique islands and entries suiting the definition.

Proof. Let ε1, . . . , εN be entries suiting the definition: we have ε1 = {x∗}, moreover {ε2, . . . , εN}
is exactly the set of all subsets X ⊆ V (A) such that 1 ≤ |X| ≤ k − 1 and there exists no
(x∗, X)-compatible walk in A by Proposition II.2.14, so these entries are unique. Suppose for
a contradiction that {I1, . . . , IN} and {I ′

1, . . . , I ′
N} are two distinct sets of islands suiting the

definition, where Ii and I ′
i have the same entry εi for all 1 ≤ i ≤ N . Since islands are induced

subhypergraphs of A, {V (I1), . . . , V (IN)} and {V (I ′
1), . . . , V (I ′

N)} are two distinct partitions
of V (A), so there exists 1 ≤ i ≤ N such that V (Ii) ̸⊆ V (I ′

i). Let x ∈ V (Ii) \ V (I ′
i), and let

1 ≤ j ≤ N be the unique index such that x ∈ V (I ′
j), so that x ∈ V (Ii) ∩ V (I ′

j) where i ̸= j.
• Using the first decomposition, there exists an (εi, x)-compatible walk −→W = (e1, . . . , eL) in

Ii by definition of an island. For all 2 ≤ l ≤ N , no edge of −→W contains εl: if l = i then
this comes the definition of an (εi, x)-compatible walk, and if l ̸= i then this is obvious
since V (Ii) is disjoint from εl.

• Using the second decomposition, since x ∈ V (I ′
j) and εi is disjoint from V (I ′

j), we can
define r := inf{1 ≤ p ≤ L, ep ̸⊆ V (I ′

j)}. We have er ̸⊆ V (I ′
j), however er intersects V (I ′

j)
by minimality of r, therefore er is necessarily a crossing edge for the second decomposition.
This means that εl ⊆ er for some 2 ≤ l ≤ N , which contradicts what we have just
established. ■

Notation II.2.17. Let A be an archipelago. Proposition II.2.16 allows us to define without
ambiguity:

• I(A): the set of islands of A.
• ε(A): the set of entries of the islands of A.
• G(A): the digraph from the definition of an archipelago.

By definition of an archipelago, the digraph G(A) contains a spanning arborescence (rooted at
the island containing x∗). We introduce the following terminology for the case where G(A) is
exactly an arborescence:

Definition II.2.18. An archipelago A is said to be arborescent if G(A) is an arborescence.

II.2.3 Characterization as unique maximal archipelago

We are going to establish the main result of this section: H[CC(x∗)] is an archipelago, moreover
it is the unique maximal archipelago in H.

Chapter II. In-depth structural studies in hypergraphs 135

II.2.3.1 A-types and statement of the main result

Definition II.2.19. An x∗-archipelago A in H is said to be maximal if there is no x∗-archipelago
in H that has A as a strict subhypergraph.

An archipelago A is maximal if and only if there exists no edge e ∈ V (H) \ V (A) such that
A ∪ e is an archipelago. The nature of A ∪ e depends on how A and e interact with each other.
We distinguish five situations:

Definition II.2.20. Let A be an archipelago. An edge e ∈ E(H)\E(A) is of one of five A-types:
1. "exterior": |e ∩ V (A)| = 0.
2. "new crossing": |e ∩ V (A)| = 1.
3. "crossing": e is a crossing edge between two islands of A.
4. "cut": e is of the form e = ε∪{x}, where ε is an entry of A of size k−1 and x ∈ V (H)\V (A).
5. "other": e is none of the above.

Those are well defined because the islands and entries of an archipelago are unique by Proposition
II.2.16. The five A-types are illustrated in Figure II.39.

e2

e1

e4

e3

e5
e
′

5

e
′′

5

e
′′′

5

x
∗

e
′′′′

5

Figure II.39: An arborescent archipelago A (the inside of the islands is not
detailed), and some edges in E(H) \E(A) (in purple). The names of the edges
follow the numbering from Definition II.2.20: e1 is of A-type "exterior", e2 is
of A-type "new crossing", etc.

We can now state the main result of this section:

Theorem II.2.21. Let A be an x∗-archipelago. The following three assertions are equivalent:
(i) A = H[CC(x∗)].
(ii) A is maximal.
(iii) All edges in V (H) \ V (A) are of A-type "cut" or "exterior".

The difficult implication is (ii) =⇒ (iii). We are going to establish the contrapositive: any edge
that is of A-type "new crossing", "crossing" or "other" can be added to A while maintaining an
archipelago structure. This point of view suggests an incremental algorithm to build H[CC(x∗)],

136 II.2. Structure of a (k − 2)-linear connected component

consisting in adding edges of these three A-types until reaching maximality. We will come back
to these algorithmic considerations in Section III.1.

II.2.3.2 Augmenting archipelagos

We now show why A ∪ e is still an archipelago when e is of A-type "crossing", "new crossing",
or "other" (in that order: easiest to hardest). We must exhibit a suitable decomposition of
A ∪ e into islands for each case. Let us fix an archipelago A with islands I1, . . . , IN and entries
ε1, . . . , εN (with ε1 = {x∗} as usual).
First of all, the A-type "crossing" is straightforward: e is added as a crossing edge, and the
decomposition remains the same as that of A. See e = e3 from Figure II.39 for example. Note
that A ∪ e might not be arborescent even if A is.

Proposition II.2.22. Let e ∈ V (H) \ V (A) be of A-type "crossing" i.e. e ∈ C(Ii, Ij) for some
1 ≤ i, j ≤ N . Then A ∪ e is an archipelago with:

• I(A ∪ e) = I(A).
• ε(A ∪ e) = ε(A).
• G(A ∪ e) the digraph obtained from G(A) by adding an arc (Ii, Ij) if there was not one

already.

Proof. This is straightforward. Obviously, G(A ∪ e) contains a spanning arborescence rooted at
I1 since G(A) does. ■

The A-type "new crossing" is not much more challenging: a new island is created, with e being
the crossing edge that connects it to the rest (see Figure II.40). This time, if A is arborescent
then A ∪ e also is.

IN+1

e

x
∗

Ii0

I1 I1

Ii0

I1

Ii0

IN+1

Figure II.40: The archipelago A ∪ e, where A and e = e2 are as in Figure II.39.
On the right: the digraphs G(A) (top) and G(A ∪ e) (bottom).

Proposition II.2.23. Let e ∈ V (H) \ V (A) be of A-type "new crossing". Let 1 ≤ i0 ≤ N be
the index of the only island that intersects e, and let IN+1 be the deserted island with entry

Chapter II. In-depth structural studies in hypergraphs 137

εN+1 := e \ V (Ii0). Then A ∪ e is an archipelago with:
• I(A ∪ e) = I(A) ∪ {IN+1}.
• ε(A ∪ e) = ε(A) ∪ {εN+1}.
• G(A∪e) the digraph obtained from G(A) by adding a new node IN+1 and an arc (Ii0 , IN+1).

Proof. Clearly, e is a crossing edge from Ii0 to IN+1, hence the new arc in G(A ∪ e). Moreover,
taking a spanning arborescence of G(A) rooted at I1 and adding this new arc yields a spanning
arborescence of G(A ∪ e) rooted at I1. ■

Finally, let us consider the case of an edge e of A-type "other". Recall that, by definition, this
means that: |e∩ V (A)| ≥ 2, e is not a crossing edge, and e is not of the form ε∪ {x} where ε is
an entry of A of size k − 1 and x ∈ V (H) \ V (A).
This case is more complicated. Consider Figure II.39. If e only intersects one island (e = e′

5 or
e = e′′′

5 for instance), then it should be easy to show that this island plus e is still an island.
If e links several islands however, then the way to redefine islands is not as straightforward,
since e is not a crossing edge. Suppose e = e5 for instance, as in Figure II.41. The fact that e
acts as a bridge between several islands creates new compatible walks: for example, we have
an (x∗, ε6)-compatible walk in A ∪ e (represented schematically in Figure II.41), therefore ε6
would not be an entry of A ∪ e (recall Proposition II.2.14). Actually, it can be shown that
the subhypergraph I, formed by the union of I2, I4, I5, I6, I8, I9 and the crossing edges between
them as well as e, is an island with entry ε2. Therefore, A ∪ e is an archipelago with five
islands: I1, I3, I7, I10, I. On this example, we see how adding en edge can merge islands together.
We are now going to generalize this argument for arborescent archipelagos, then address the
non-arborescent case.

e

x∗I1

I2 I3

I10

I4 I5 I6

I7 I8 I9

I1

I1

I3I2

I4 I5 I6

I7 I8 I9 I10

I3I2

I7 I10

I =

new I2

x

y

Figure II.41: The archipelago A ∪ e, where A and e = e5 are as in Figure II.39.
On the right: the digraphs G(A) (top) and G(A ∪ e) (bottom).

Definition II.2.24. Let G be an arborescence rooted at some v∗ ∈ V (G), and let U =
{v1, . . . , vr} ⊆ V (G). For all 1 ≤ i ≤ r, let v∗ = vi,1 → . . . → vi,li = vi be the unique dipath
from v∗ to vi in G. Define i0 := sup{1 ≤ p ≤ min1≤i≤r li | v1,p = . . . = vr,p}. The lowest common
ancestor of U in G is defined as LCAG(U) := vi0 .

138 II.2. Structure of a (k − 2)-linear connected component

Definition II.2.25. Let G be an arborescence and let v ∈ V (G). For all 1 ≤ i ≤ r, let v =
vi,1 → . . .→ vi,li = vi be a dipath from v to some vi ∈ V (G) in G. Let U := ⋃

1≤i≤r{vi,1, . . . , vi,li}
be the set of all nodes on these dipaths. Merging U into v means:

• deleting all nodes in U \ {v};
• deleting all arcs between nodes in U ;
• replacing every arc (u, w) ∈ (U \ {v})× (V (G) \ U) with an arc (v, w).

Example. Figure II.41 features a merging process on the right. The three considered dipaths are:
I2 ← I4, I2 ← I5 ← I8, I2 ← I6 ← I9. The set U = {I2, I4, I5, I6, I8, I9} has been merged into
v = I2.

Proposition II.2.26. Assume A is arborescent. Let e ∈ V (H) \ V (A) be of A-type "other".
Define:

• J0 := {1 ≤ i ≤ N, V (Ii) ∩ e ̸= ∅}, the set of indices of the islands that e intersects.
• i0 the index such that Ii0 := LCAG(A)({Ii, i ∈ J0}).
• J := ⋃

i∈J0{1 ≤ j ≤ N | Ij is on the dipath from Ii0 to Ii in G(A)} ⊇ J0.
• I := A[⋃j∈J V (Ij)], the island that will replace Ii0 (with the same entry εi0).

Then A ∪ e is an arborescent archipelago with:
• I(A ∪ e) = (I(A) \ {Ij, j ∈ J}) ∪ {I}.
• ε(A ∪ e) = ε(A) \ {εj, j ∈ J \ {i0}}.
• G(A ∪ e) the digraph obtained from G(A) by merging {Ij, j ∈ J} into Ii0.

Proof. For visual help, refer to Figure II.41: in this example we have J0 = {4, 8, 9}, i0 = 2,
J = {2, 4, 5, 6, 8, 9}. The merging process that defines G(A ∪ e) clearly preserves the fact that
the digraph is an arborescence. To complete the proof, it remains to show that I is an island
with entry εi0 . Therefore, let X ⊆ V (I) such that 1 ≤ |X| ≤ k − 1 (and X ̸= εi0 if i0 ≠ 1): we
need to find an (εi0 , X)-compatible walk in I. As visible in Figure II.39, e might or might not
be included in V (A), so in general we have V (I) = ⋃

j∈J V (Ij) ∪ e. There are four cases, which
we address separately.

1) Case 1: X ⊆ ⋃j∈J V (Ij) and X ̸∈ {εj, j ∈ J \ {i0}}.
Of all dipaths in G(A) from Ii0 to an island intersecting X, let Ii0 = Ij1 → . . . → IjM

be a shortest one, so that X ∩ V (IjM
) ̸= ∅ and X ∩ V (Ijp) = ∅ for all 1 ≤ p ≤ M − 1.

Note that, by definition of J , we have {j1, . . . , jM} ⊆ J , so the islands Ij1 , . . . , IjM

are all subhypergraphs of I and all crossing edges between them in A are edges of
I. By Proposition II.2.13, there exists an (εi0 , X)-compatible walk −→W in A such that
E(−→W) ⊆ ⋃M

p=1 E(Ijp) ∪ ⋃M
p=2 CA(Ijp−1 , Ijp) ⊆ E(I), which concludes.

2) Case 2: X intersects both ⋃j∈J V (Ij) and e \ ⋃j∈J V (Ij).
Define X ′ := X ∩ ⋃j∈J V (Ij), we have 1 ≤ |X ′| ≤ k − 1. Case 1 applied to X ′ gives us
an (εi0 , X ′)-compatible walk −→W in I, which is also (εi0 , X)-compatible by Compatibility
Lemma II.2.5 applied to H ′ = I, α = εi0 , β = X ′ and β′ = X.

3) Case 3: X ⊆ e \ ⋃j∈J V (Ij).
Define X ′ := e ∩ ⋃j∈J V (Ij), we have 2 ≤ |X ′| ≤ k − 1 hence 1 ≤ |X| ≤ k − 2: indeed
|X ′| ≥ 2 by definition of the A-type "other", and |X ′| ≤ k−1 because e\⋃j∈J V (Ij) ⊇ X ≠
∅. Moreover X ′ ̸∈ {εj, j ∈ J \ {i0}}, otherwise e would be of A-type "cut". We can thus
apply Case 1 to X ′, which gives us an (εi0 , X ′)-compatible walk −→W in I. Compatibility
Lemma II.2.6 applied to H ′ = I, α = εi0 , β = X ′ and γ = X ensures that −→W ⊕ (e) is an
(εi0 , X)-compatible walk in I.

Chapter II. In-depth structural studies in hypergraphs 139

4) Case 4: X = εj for some j ∈ J \ {i0}.
In particular |J | ≥ 2, so e intersects several islands. Note that, since Ii0 is a strict ancestor
of Ij in G(A), we have j ̸= 1. Remember our example from Figure II.41: we considered
X = ε6, and the (ε2, X)-compatible walk was obtained by going from ε2 to e∩V (I4) = {y},
then using e to jump from I4 to I9, then going from e ∩ V (I9) = {x} to X. Let us now
build this walk in general.

e

Ij′
0

α

β

γ

δ

Ij0

Ij

Ii0

Figure II.42: Illustration of Case 4 from Proposition II.2.26. The bold walks
(in red and black) are −→W on the right and

−→
W ′ on the left.

• Let j0 ∈ J0 such that the dipath Ij = Ii1 → . . .→ IiM
= Ij0 in G(A) is shortest, so

that ip ̸∈ J0 for all 1 ≤ p ≤M−1. This means e∩V (IiM
) ̸= ∅ and e∩V (Iip) = ∅ for

all 1 ≤ p ≤M−1. Since e intersects several islands, we know 1 ≤ |e∩V (Ij0)| ≤ k−1.
Moreover the fact that j ̸= 1 implies that j0 ̸= 1, so e∩V (Ij0) ̸= εj0 , otherwise e would
be of A-type "crossing". We can thus apply Proposition II.2.13 and get an (εj, e ∩
V (Ij0))-compatible walk −→W in A such that E(−→W) ⊆ ⋃M

p=1 E(Iip) ∪⋃M
p=2 CA(Iip−1 , Iip),

hence E(−→W) ⊆ E(I) since {i1, . . . , iM} ⊆ J by definition of J . See Figure II.42 (walk
on the right).

• Since the lowest common ancestor of {Ii, i ∈ J0} is Ii0 and not Ij, there exists
j′

0 ∈ J0 \ {j0} such that Ij is not an ancestor of Ij′
0
, so the dipath Ii0 = Ii′

1
→ . . .→

Ii′
M′

= Ij′
0

from Ii0 to Ij′
0

in G(A) satisfies {i1, . . . , iM}∩{i′
1, . . . , i′

M ′} = ∅ (see Figure
II.42 for the relative positions of the four islands in play: Ii0 , Ij, Ij0 , Ij′

0
). As usual,

we choose j′
0 so that this dipath is shortest, this way we have e ∩ V (Ii′

M′
) ̸= ∅ and

e ∩ V (Ii′
p
) = ∅ for all 1 ≤ p ≤ M ′ − 1. Since e intersects several islands, we know

1 ≤ |e∩V (Ij′
0
)| ≤ k−1. Moreover, if j′

0 ≠ 1 then e∩V (Ij′
0
) ̸= εj′

0
otherwise e would be

of A-type "crossing". We can thus apply Proposition II.2.13 and get an (εi0 , e∩V (Ij′
0
))-

compatible walk
−→
W ′ in A such that E(

−→
W ′) ⊆ ⋃M ′

p=1 E(Ii′
p
) ∪ ⋃M ′

p=2 CA(Ii′
p−1

, Ii′
p
), hence

E(
−→
W ′) ⊆ E(I) since {i′

1, . . . , i′
M ′} ⊆ J by definition of J . See Figure II.42 (walk on

the left).
• Since −→W is an (εj, e∩V (Ij0))-compatible walk,←−W is an (e∩V (Ij0), εj)-compatible walk.

Compatibility Lemma II.2.7 applied to H ′ = I, α = X = εi0 , β = e∩ V (Ij′
0
), γ = e∩

140 II.2. Structure of a (k − 2)-linear connected component

V (Ij0) and δ = εj , whose conditions are fulfilled since {i1, . . . , iM}∩{i′
1, . . . , i′

M ′} = ∅,
ensures that

−→
W ′ ⊕ (e)⊕←−W is an (εi0 , εj)-compatible walk in I which concludes. ■

The non-arborescent case also features a merging of islands, but its description is not as
convenient as what we have just seen in the arborescent case (with the lowest common ancestor).
We thus state the following corollary without specifying the exact decomposition.

Corollary II.2.27. Let e ∈ V (H) \ V (A) be of A-type "other". Then A ∪ e is an archipelago.

Proof. If A is arborescent, then this is simply Proposition II.2.26. Otherwise, let A0 be an
arborescent archipelago obtained from A by removing some crossing edges e1, . . . , er. Since
A0 has the same islands and entries as A, the notions of A-type and A0-type coincide, so
e1, . . . , er are of A0-type "crossing" and e is of A0-type "other". In particular, A1 := A0 ∪ e is
an arborescent archipelago by Proposition II.2.26. Now, the edges e1, . . . , er may not all be of
A1-type "crossing", depending on which islands have been merged together when going from A0
to A1. However, we have e1, . . . , er ⊆ V (A) = V (A1), so there are only two possible A1-types
for each ei: "crossing" or "other".

• If e1, . . . , er are all of A1-type "crossing", then A1 ∪ e1 ∪ . . . ∪ er = A ∪ e is an archipelago
by successive applications of Proposition II.2.22, so the proof is over.

• If some edge among e1, . . . , er, say e1, is of A1-type "other", then A2 := A1 ∪ e1 is an
arborescent archipelago by Proposition II.2.26. We then repeat this process: if e2, . . . , er

are all of A2-type "crossing" then the proof is over, otherwise we add one of A2-type
"other", etc. until none of the ei remains. In the end, all ei will have been put back in the
archipelago. ■

The proof of Corollary II.2.27 is instructive: to show that it is possible to add an edge e of
A-type "other", we first go backwards by removing some crossing edges to make the archipelago
arborescent, then add e, then put the removed edges back in. With the idea in mind to design
an efficient incremental algorithm to build a maximal archipelago, this suggests that the edges
of type "crossing" should be added last, so that the archipelago remains arborescent for as long
as possible. This is exactly what we are going to to in Section III.1, right after we are done
proving Theorem II.2.21.

II.2.3.3 Proof of the main result

We can finally prove our main structural result on (k − 2)-linear connected components.

Proof of Theorem II.2.21. We establish (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
• (i) =⇒ (ii). This is the easiest implication of the three. Suppose A = H[CC(x∗)], and

let A′ be an archipelago. By Corollary II.2.15, we have V (A′) ⊆ CC(x∗), therefore
A′ ⊆ H[CC(x∗)] = A.

• (iii) =⇒ (i). Suppose that all edges in V (H) \V (A) are of A-type "cut" or "exterior". Since
edges of these two A-types cannot have all their vertices in A, we know A is a induced
subhypergraph of H. Moreover V (A) ⊆ CC(x∗) by Corollary II.2.15, so it remains to verify
that CC(x∗) ⊆ V (A). Suppose for a contradiction that there exists x ∈ CC(x∗) \ V (A).
Let −→W = (e1, . . . , eL) be an (x∗, x)-compatible walk in H. Since x ̸∈ V (A), we can define
M := inf{1 ≤ p ≤ L, ep ̸⊆ V (A)}. An edge incident to x∗ cannot be of A-type "cut"
or "exterior", therefore e1 ∈ E(A), from which e1 ⊆ V (A) hence M ≥ 2. Moreover eM

intersects eM−1 ⊆ V (A), so eM is of A-type "cut": this yields eM ∩V (A) = ε for some entry
ε of A of size k − 1. Let y ∈ eM ∩ eM−1 ⊆ ε: since (e1, . . . , eM−1) is an (x∗, y)-compatible

Chapter II. In-depth structural studies in hypergraphs 141

walk in A, Proposition II.2.12 ensures that ε ⊆ eM−1. Since ε ⊆ eM , this contradicts the
(k − 2)-linearity of −→W .

• (ii) =⇒ (iii). This is the most difficult implication, but the work has already been
done: Propositions II.2.22 and II.2.23 along with Corollary II.2.27 show that archipelagos
such that there exists an edge of A-type "crossing", "new crossing", or "other" are not
maximal. ■

II.2.4 Conclusion and prospects

We have obtained a fine description of how the (k − 2)-linear connected component of a
vertex x∗ is structured, both in terms of internal organization and interaction with the outside.
The structure in question is that of maximal x∗-archipelago. Since this structure actually
characterizes the (k − 2)-linear connected component of x∗, we will be able to compute this
component efficiently, by building a maximal x∗-archipelago.
It is natural to ask the question about λ-linear connected components for values of λ lesser than
k−2. The linear case λ = 1 is of particular interest, since linear paths appear in numerous other
problems. However, it is unclear how to generalize the notion of archipelago. As an illustration
of the difficulties that can be encountered, consider k = 4 and λ = 1. Suppose that we have
adapted our structures to this case, settling on some definition of an archipelago as a union of
pairwise disjoint islands with crossing edges between them. Say we have a 4-uniform hypergraph
H, an x∗-archipelago A in H and an edge e = {a, b, c, d} ∈ E(H) where: a, b ∈ V (A) are in
different islands, and c, d ̸∈ V (A). See Figure II.43. The edge e ensures that c, d ∈ CC 1

H(x∗), so
A ∪ e should be an x∗-archipelago, but what would its decomposition be? On the one hand, e
forms a bridge between the islands containing a and b, in such a way that e should be part of a
new merged island. On the other hand, c and d form an "inseparable" pair (indeed, all linear
paths from x∗ to c or d in A ∪ e end with the edge e, which contains both c and d), so e should
be a crossing edge towards a new island with entry {c, d}. There seems to be a contradiction.

aIi Ijb

c d

Figure II.43: Illustration of the problematic situation with edges of size 4.

Nevertheless, it might still be possible to define an adequate structure for some values of λ lesser
than k − 2. Such a structure would likely need to contain more information on the existence
of certain paths, and would thus be more complex. For instance, there could be overlapping
islands carrying different bits of information about the same vertices.

Chapter III

How structure contributes to
algorithms and game complexness

This chapter presents results about connectivity problems and the Maker-Breaker game that can
be derived from the structural studies performed in the previous chapter, and illustrates how
these results compare with other results around the same problems. Most of these consequences
come in the form of polynomial-time algorithms. As regards the Maker-Breaker game on
hypergraphs of rank 3, the implications go beyond the algorithmic complexity: we also get exact
bounds on some hypergraph parameters which help measure how intricate optimal strategies
are, so that we get a strong grasp on the complexness of the game as a whole.

III.1 Algorithms for connectivity problems in graphs and
hypergraphs†

Let us start where we left off in the previous chapter, by considering algorithmic aspects of the
λ-linear connectivity problem in hypergraphs.

III.1.1 Presentation of the problem and state of the art

We are interested in the algorithmic complexity of the following decision problem:

HypConk,λ

Input : a k-uniform hypergraph H and two distinct vertices x, y of H.
Output : YES if and only if there exists a λ-linear xy-path in H.

In the literature, most algorithmic problems about paths in hypergraphs are based on optimiza-
tion rather than existence, generalizing known graph problems [GLP93][GZR+15][AL17][BCM+18].
The few existence problems that have been studied seem to either concern directed hypergraphs
[TT09] or be very specific to some applied purpose [GPR+14]. To our knowledge, no existence
problem on a type of path defined by intersection constraints has been studied before.
However, we will see that our problem has links with the following connectivity problem in
graphs, which was first introduced in [KSG73]:

† These results are part of the article [GGS22a], which has been submitted to Discrete Mathematics &
Theoretical Computer Science.

144 III.1. Algorithms for connectivity problems in graphs and hypergraphs

PAFP ("Paths Avoiding Forbidden Pairs")
Input : a bicolored graph G (all edges are blue or red), and x, y ∈ V (G).
Output : YES if and only if there exists a blue induced path between x and y in G.

It has been proved that PAFP (sometimes referred to as PFPP) is NP-complete in general
[GMO76]. In fact, unless P=NP, there is no linear approximation ratio for the minimum number
of red edges induced by a blue path between two given vertices [HKK+12]. For the problem
on digraphs (the blue edges are directed arcs), which is by far the most studied version in the
literature, a few tractable cases are known [Yin97][CKT+01][KP09], of which only the first one
can be adapted to undirected graphs.
In this section, we provide a polynomial-time algorithm for HypConk,k−2 and we explain how
this has the potential to unearth new tractable cases for PAFP.

III.1.2 The λ-linear connectivity problem HypConk,λ

A stronger algorithm for HypConk,λ consists in computing the entire λ-linear connected
component: indeed, determining CC λ

H(x∗) for some fixed x∗ solves the λ-linear x∗y-path
existence question for all possibilities of y at once. This is what we are going to do for λ = k− 2.

III.1.2.1 A polynomial-time algorithm for the case λ = k − 2

For λ = k − 2, a polynomial-time incremental algorithm to compute CC k−2
H (x∗) can readily be

derived from Theorem II.2.21 and its proof. The algorithm ComputeCC (Algorithm 1) takes
a k-uniform hypergraph H and a vertex x∗ as an input, and returns CC k−2

H (x∗). Actually, it
does more: it even computes the archipelago H[CC k−2

H (x∗)] with its full decomposition. Islands
are simply implemented as vertex sets, because their edge sets are never used.

Algorithm 1 ComputeCC(H, x∗)
1: initialize V (I1)← {x∗}
2: define ε1 ← {x∗}
3: initialize the archipelago A with:
4: E(A)← ∅
5: I(A)← {V (I1)}
6: ε(A)← {ε1}
7: G(A)← a digraph with only one node, labelled I1
8: initialize N ← 1 (index of the last created island)
9: while there exists e ∈ E(H) \ E(A) of A-type "new crossing" or "other" do

10: if e is of A-type "new crossing" then
11: update A as A ∪ e by performing Add_NewCrossing
12: else
13: update A as A ∪ e by performing Add_Other
14: end if
15: end while
16: while there exists e ∈ E(H) \ E(A) of A-type "crossing" do
17: update A as A ∪ e by performing Add_Crossing
18: end while
19: return ⋃

V (Ii)∈I(A) V (Ii)

Chapter III. How structure contributes to algorithms and game complexness 145

Algorithm 2 Add_NewCrossing
1: define 1 ≤ i0 ≤ N as the only index such that e ∩ V (Ii0) ̸= ∅
2: initialize V (IN+1)← e \ V (Ii0)
3: define εN+1 ← e \ V (Ii0)
4: update the archipelago A as follows:
5: E(A)← E(A) ∪ {e}
6: I(A)← I(A) ∪ {V (IN+1)}
7: ε(A ∪ e)← ε(A) ∪ {εN+1}
8: G(A ∪ e)← the digraph obtained from G(A) by adding a new node labelled IN+1 and

an arc (Ii0 , IN+1)
9: N ← N + 1

Algorithm 3 Add_Other
1: define J0 := {1 ≤ i ≤ N, V (Ii) ∩ e ̸= ∅}
2: define 1 ≤ i0 ≤ N such that Ii0 = LCAG(A)({Ii, i ∈ J0})
3: define J := ⋃

i∈J0{1 ≤ j ≤ N such that Ij is on the dipath from Ii0 to Ii in G(A)}
4: V (Ii0)← ⋃

i∈J V (Ij)
5: update the archipelago A as follows:
6: E(A)← E(A) ∪ {e}
7: I(A)← I(A) \ {V (Ij), j ∈ J \ {i0}}.
8: ε(A)← ε(A) \ {εj, j ∈ J \ {i0}}.
9: G(A) ← the digraph obtained from G(A) by merging the nodes {Ij, j ∈ J} into the

node Ii0 .

Algorithm 4 Add_Crossing
1: update the archipelago A as follows:
2: E(A)← E(A) ∪ {e}

Let us explain the algorithm. At the start, the archipelago A consists of the deserted island
with entry {x∗}. We then augment A one edge at a time, by adding firstly the edges of
A-type "new crossing" or "other" and then the edges of A-type "crossing". The procedures
Add_NewCrossing, Add_Other and Add_Crossing (Algorithms 2, 3 and 4) are nothing
but algorithmic translations of Propositions II.2.23, II.2.26 and II.2.22 respectively.

• Throughout the first While loop, A is an arborescent archipelago, as guaranteed by
Propositions II.2.23 and II.2.26. The arborescence G(A) is kept updated, as it is needed
to merge islands in Add_Other. It is important to understand that, every time A is
augmented in that loop, the islands and entries of A may change, so the A-types of the
remaining edges may change as well: the A-types of the edges in E(H) \ E(A) must be
redetermined at each iteration of that loop.

• Throughout the second While loop, A is an archipelago, as guaranteed by Proposition
II.2.22. The digraph G(A) is not kept updated as it is not useful anymore. This time, the
decomposition in islands remains the same during the entire loop (we are adding crossing
edges between already existing islands) so the A-types of the remaining edges do not
change.

That last remark proves that, after the two While loops, all edges in E(H) \E(A) are of A-type
either "cut" or "exterior" (the A-types "new crossing" and "other" have not reappeared during
the second While loop). By Theorem II.2.21, this means maximality has been reached and A

146 III.1. Algorithms for connectivity problems in graphs and hypergraphs

coincides with H[CC k−2
H (x∗)], ensuring that the algorithm is correct.

Finally, let us determine the time complexity of ComputeCC. Set n = |V (H)| and m = |E(H)|.

• Let us first consider the three procedures Add_NewCrossing, Add_Other and
Add_Crossing, to figure out how much time each update of A takes. Since basic
operations on data structures can be language-dependent, let us clarify: when we use a
list, what matters is the ability to remove the current element in O(1) time; when we use
an array, what matters is the ability to access and modify any element in O(1) time.

– E(H)\E(A) can be implemented as a list. Indeed, it is sensible to store E(H)\E(A)
rather than E(A) since this is the set in which edges are searched for throughout.
Each update consists in removing the current edge which is done in O(1) time.

– I(A) can be implemented as an array of size n which contains, for each vertex
x ∈ V (H), the index of the island containing x (or 0 if x ̸∈ V (A)). Each update
requires going through the array once and is therefore done in O(n) time.

– ε(A) can be implemented as an array of size n which contains, for each vertex
x ∈ V (H), a 1 if x is in an entry of A or a 0 otherwise. Each update requires going
through the array once and is therefore done in O(n) time.

– G(A) is an arborescence on the set of islands for the entire time that it is kept updated.
Since O(n

k
) islands are created in total (a new island can only be created during

Add_NewCrossing, and this requires k−1 previously undiscovered vertices), G(A)
can be implemented as an array of size O(n

k
) containing the parent of each island,

i.e. for all index i ̸= 1 it contains the only index j such that (Ij, Ii) ∈ E(G(A)). In
Add_NewCrossing, updating G(A) is clearly done in O(1) time. In Add_Other,
updating G(A) is done in O(n) time: indeed, computing |J0| ≤ k dipaths from the
root takes O(k × n

k
) = O(n) time, going through them a second time to compute i0

and J takes O(k× n
k
) = O(n) time again, and finally the merging process is performed

in O(n
k
) time since it only requires going through the array once.

All in all, performing Add_Crossing, Add_NewCrossing or Add_Other once is
done in O(n) time.

• Determining the A-type of a given edge e is easily done in O(k) time since it boils down
to determining, for all x ∈ e, which island/entry (if any) contains x.

• We can now conclude on the time complexity of ComputeCC:
– The initializations before the While loop are done in O(m + n) time.
– During the first While loop, finding an edge of A-type "new crossing" or "other" and

then adding it takes O(mk + n) time: indeed, at most m edges are gone through
(with the A-type being determined for each one in O(k) time as we have just seen)
before finally finding one of A-type "new crossing" or "other" which is added in O(n)
time as shown above. Since at most m edges of A-type "new crossing" or "other" are
added in total, the While loop ends in O(m(mk + n)) = O(m2k + mn) time.

– During the second While loop, no A-types need to be redetermined, and each update
of A is done in O(1) time so that this loop ends in O(m) time.

All in all, ComputeCC runs in O(m2k+mn) time. Since the (k−2)-linear connected component
is a subset of the connected component, it is reasonable to assume that H is connected, which
implies that m ≥ n−1

k−1 . Therefore, we can simplify O(m2k + mn) as O(m2k), so that our main
algorithmic result on (k − 2)-linear connectivity can be stated as follows:

Theorem III.1.1. There exists an algorithm that computes the (k − 2)-linear connected compo-
nent of a given vertex in a k-uniform hypergraph H, and thus solves HypConk,k−2, in O(m2k)
time where m = |E(H)|. ■

Chapter III. How structure contributes to algorithms and game complexness 147

Remark. We end with two observations about the above algorithm:
• Note that the running time remains polynomial even if k is considered as part of the input.

Therefore, this algorithm is also efficient in k(n)-uniform hypergraphs on n vertices where
k(n)→∞.

• It is not difficult to tweak the algorithm so as to also return an (x∗, x)-compatible walk for
each x ∈ CC k−2

H (x∗). Indeed, it suffices, throughout the algorithm, to store in memory an
(x∗, X)-compatible walk in A for each X ⊆ V (A) such that 1 ≤ |X| ≤ k−1 and X ̸∈ ε(A),
which is possible by following the construction given in the proof of Proposition II.2.26.
This version would also run in polynomial time, unless k is considered as part of the input.

III.1.2.2 Reduction to uniform hypergraphs

It should be noted that, even though we have defined HypConk,λ for a k-uniform input,
non-uniform hypergraphs are not more difficult:

Proposition III.1.2. The λ-linear connectivity problem on hypergraphs of rank k admits a
polynomial reduction to the same problem on k-uniform hypergraphs i.e. to HypConk,λ.

Proof. Let H be a hypergraph of rank k, and let H ′ be the k-uniform hypergraph obtained
from H by adding k − |e| new vertices to each edge e. Since edge intersections are unchanged,
it is clear that there exists a λ-linear xy-path in H if and only if there exists one in H ′. ■

Therefore, Theorem III.1.1 actually holds for all hypergraphs of rank k.

III.1.3 The "Paths Avoiding Forbidden Pairs" problem PAFP

We now explore the strong link between HypConk,λ and PAFP.

III.1.3.1 Reducing HypConk,λ to PAFP

Suppose one is only interested in the algorithmic aspect of λ-linear connectivity, and does not
possess the structural results from Section II.2. How to tackle the algorithmic complexity of
HypConk,λ? A reasonable attempt is to think in terms of line graphs, in which case PAFP
appears naturally through the following reduction. For clarity, since we are manipulating
graphs and hypergraphs simultaneously, the word hyperedge may be used to refer to edges of
hypergraphs as opposed to graphs.

Notation III.1.3. Let φk,λ be the function that associates to a k-uniform hypergraph H the
bicolored graph G defined by:

• V (G) = E(H);
• For all distinct e1, e2 ∈ V (G), there is a blue (resp. red) edge between e1 and e2 in G if

and only if 1 ≤ |e1 ∩ e2| ≤ λ (resp. if and only if |e1 ∩ e2| > λ).
Therefore, G is simply the line graph of H with added colors on its edges that carry information
on the size of hyperedge intersections. See Figure III.1 for an example.

Proposition III.1.4. For all k ≥ 3 and 1 ≤ λ ≤ k − 2, HypConk,λ admits a polynomial
reduction to PAFP.

Proof. By definition, a sequence (e1, . . . , eL) of hyperedges of H is a λ-linear simple walk if and
only if it is a blue induced path in φk,λ(H). Indeed, "blue" means two consecutive hyperedges

148 III.1. Algorithms for connectivity problems in graphs and hypergraphs

intersect on between 1 and λ vertices (this defines a "λ-linear walk"), while "induced" means two
non-consecutive hyperedges do not intersect (this defines "simple"). Therefore, there exists a
λ-linear xy-simple-path in H (x ̸= y) if and only if there exist hyperedges ex ∋ x and ey ∋ y in
H such that there exists a blue induced path between ex and ey in φk,λ(H). ■

e1

e4

e5

e3e2

e6 e7

e9 e10

e8

Figure III.1: On the left: a 3-uniform hypergraph H. On the right: the
bicolored graph G = φ3,1(H).

Unfortunately, as we have mentioned when introducing this problem, PAFP is known to
be NP-complete in general. The only notable tractable case in undirected graphs (stated in
digraphs, but adaptable) is that of [Yin97]: it states that PAFP is solved in polynomial time
on bicolored graphs where the red edges form a matching and a skew symmetry condition is
satisfied. However, this result is of no help here, since general elements of Im(φk,λ) do not
satisfy these conditions and nor do they easily reduce to bicolored graphs that do. Therefore,
the previous reduction does not lead anywhere.

III.1.3.2 Reducing some instances of PAFP to HypConk,λ

Instead, now that we know HypConk,k−2 is solvable in polynomial time for all k ≥ 3, it is
interesting to turn the tables and examine the implications on PAFP:

Theorem III.1.5. PAFP is tractable on bicolored graphs in ⋃
k≥3 Im(φk,k−2) for which a

preimage can be computed in polynomial time.

Proof. Let G = φk,k−2(H) for some k-uniform hypergraph H, and let e, e′ ∈ V (G) = E(H) be
distinct. As we have seen before, the blue induced paths between e and e′ in G are exactly
the (k − 2)-linear simple walks (e = e1, . . . , eL = e′) in H. Since HypConk,k−2 requires a
start vertex and an end vertex in its input, define, for all (x, y) ∈ e× e′, the hypergraph Hx,y

obtained from H by removing all hyperedges incident to x and y other than e and e′, so that
any (k− 2)-linear xy-simple-path in Hx,y necessarily starts with e and ends with e′. There exists
a blue induced path between e and e′ in G if and only if there exists (x, y) ∈ e× e′ such that
there is a (k − 2)-linear xy-simple-path in Hx,y, which concludes since HypConk,k−2 is solvable
in polynomial time according to Theorem III.1.1. ■

Thanks to Theorem III.1.5, any sufficient condition for a bicolored graph G to be in Im(φk,k−2)
for some k ≥ 3, if it can be checked in polynomial time and comes with a way to reconstruct a
preimage hypergraph in polynomial time, would add to the very short list of known tractable
cases for PAFP.
For standard (i.e. non-colored) line graphs, the recognition problem has been studied extensively.
Line graphs of graphs are characterized by a finite list of forbidden induced subgraphs ("FIS")
[Bei70]. Line graphs of hypergraphs, on the other hand, are notoriously difficult to recognize.

Chapter III. How structure contributes to algorithms and game complexness 149

There is no finite FIS characterization for line graphs of k-uniform hypergraphs if k ≥ 3 [Lov77],
and this recognition problem is even known to be NP-complete for k = 3 [PRT81]. However,
adding information about the size of the pairwise intersections of hyperedges, instead of simply
telling which ones are non-empty, changes the problem. For example, if all these sizes are given
and in {0, 1} (which is equivalent to asking that the hypergraph is linear) then, while remaining
NP-complete for k = 3 [PRT81][HK97], the problem becomes easier in some cases:

• For k = 3, there is a finite FIS characterization for line graphs of 3-uniform linear
hypergraphs if the minimum vertex-degree of the graph is at least 69, as well as a
polynomial time algorithm to reconstruct the hypergraph in the positive case [NRS+82].
This bound has since been improved from 69 to 16 for the finite FIS characterization and
10 for the tractability of the recognition problem [SST09]. No analogous result can exist
for k ≥ 4, no matter what constant lower bound is put on the minimum vertex-degree
[MT97].

• For any k ≥ 3, there is a finite FIS characterization for line graphs of k-uniform linear
hypergraphs if the minimum edge-degree of the graph is at least f(k), where f is a
polynomial function, as well as a polynomial-time (where the power increases with k)
algorithm to reconstruct the hypergraph in the positive case [NRS+82]. This result has
been generalized by replacing the linearity of the hypergraph with any constant upper
bound on its multiplicity [BGM+21].

III.1.4 Conclusion and prospects

These last few results bring some hope of a finite FIS characterization for bicolored line graphs
under some similar restriction on the minimum vertex-degree or edge-degree of the graph, and of
a way to reconstruct a preimage in polynomial time, which would mean that PAFP is solvable
in polynomial time on such bicolored graphs. Their proof uses the characterization of line graphs
of hypergraphs by a Krausz partition in cliques [NRS+82], which generalizes to the bicolored
version. Figure III.2 features some induced subgraphs that cannot appear in a bicolored graph
from ⋃

k≥3 Im(φk,k−2). The case k = 3 is the most promising because the exact size of each
intersection is also given (in {0, 1, 2}: 0 = no edge, 1 = blue edge, 2 = red edge), although it is
NP-complete in general since instances with all blue edges correspond to the 3-uniform linear
case for standard line graphs which we know is NP-complete. Looking beyond applications to
PAFP, a general weighted line graph recognition problem, where each edge of the graph would
wear a number between 1 and k − 1 indicating the exact size of the corresponding intersection,
seems interesting in itself.

...

edges
k + 1

Figure III.2: Some induced subgraphs that cannot appear in G ∈ Im(φk,k−2).
For instance, the left one is impossible because, in a k-uniform hypergraph
with k ≥ 3, if |e1 ∩ e2| = |e2 ∩ e3| = k − 1 then |e1 ∩ e3| ≥ k − 2 > 0.

As for the λ-linear connectivity problem, our polynomial-time algorithm for λ = k − 2 relies
on the archipelago structure, of which we have mentioned in Subsection II.2.4 that it does not
seem to generalize to λ < k − 2. Another approach would likely be needed if ones wishes to
extend tractability to smaller values of λ. The linear case λ = 1 is of particular interest, as

150 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

linear paths appear a lot in the literature, however it might be difficult since we have seen that
all values of λ reduce to this case. Finally, there is the question of the best possible algorithm
for λ = k − 2. Our time complexity in O(m2k) might be optimal, since it seems difficult to
avoid an "accept or put aside" process on the edges where each edge is potentially examined
O(m) times, and the mere computation of the intersection of two edges is in O(k) time.

III.2 The Maker-Breaker game: complexity and bounds
on optimization parameters

In this section, we explore some consequences of the structural study from Section II.1 regarding
the unbiased Maker-Breaker game on hypergraphs of rank 3, and we look at what happens for
higher ranks in comparison.

III.2.1 Presentation of the problem and state of the art

The algorithmic complexity of the Maker-Breaker game is vastly studied in the literature.
The question can be asked for any particular class of hypergraphs. We are interested in the
complexity depending on the size of the edges:

MakerBreakerk

Input : a hypergraph H of rank k.
Output : YES if and only if H is a Maker win.

We have already mentioned the previously known results on this problem in Section I.1:

Theorem. [RW21] MakerBreaker6 is PSPACE-complete. ■

Theorem. [Kut05] MakerBreaker3 is solvable in polynomial time when restricted to linear
hypergraphs. ■

Rahman and Watson [RW20] have since conjectured tractability without this linearity constraint,
even for the more general game played on 3-CNF formulas which we mentioned in Subsection
II.1.1. In particular:

Conjecture. MakerBreaker3 is solvable in polynomial time.

Kutz proved his result on linear hypergraphs of rank 3 by providing an exact structural
description of Breaker wins which is recognizable efficiently. Similarly, we are going to derive a
polynomial-time algorithm on general hypergraphs of rank 3 from our structural result from
Section II.1, combined with the chain recognition algorithm from Section III.1. This validates
the above conjecture the exact way that Rahman and Watson suspected it could be proved.
Overall complexness of the Maker-Breaker game does not stop at algorithmic complexity. For
instance, it is also interesting, on a given class of hypergraphs, to gauge what optimal strategies
look like and how complicated they are. The range of values attained by the hypergraph
parameters τM and θM on said class is a good indicator of this. Recall that τM(H) (resp.
θM (H)) is defined as the minimum number of rounds (resp. tokens) in a winning Maker strategy
on H. Therefore, τM measures the minimum length of a winning Maker strategy, whereas θM

Chapter III. How structure contributes to algorithms and game complexness 151

somewhat measures the quantity of simultaneous threats that Maker must create in order to
win. While θM had never been introduced prior to the present dissertation, τM is frequently
studied in the literature. When it comes to hypergraph classes defined by edge size, which is
our area of interest, it has been proved for example that the minimum value attained by τM

over all k-uniform linear hypergraphs is approximately 2k [EL74][Bec81]. However, we are not
looking for asymptotic results in function of k, but rather for results in function of the number
n of vertices with fixed k ≥ 3. Corollary I.1.49 implies that any k-uniform hypergraph H on n
vertices satisfies the straightforward inequalities k ≤ θM(H) ≤ τM(H) ≤

⌈
n
2

⌉
, where the lower

bound k is trivially tight for both parameters. To our knowledge, the question of the maximum
value attained by τM and θM for fixed k as a function of n has not been studied before.
We are going to explain how the structural results from Section II.1 allow us to solve this
question for k = 3, and how these values differ greatly from those that hold for rank k ≥ 4.

III.2.2 A polynomial-time algorithm for the game on hypergraphs
of rank 3†

The idea is simple. The algorithm comes as a joint corollary of the structural result on the
Maker-Breaker game and the algorithmic result on chains. Indeed, Theorem II.1.12 tells us
that it is all a question of whether a nunchaku/necklace appears in the first three rounds.
Therefore, up to a factor O(n6) corresponding to all possibilities of both players’ first three
picks, MakerBreaker3 reduces to the problem of identifying nunchakus and necklaces: this
boils down to HypCon3,1 which is in polynomial time by Theorem III.1.1. Let us now give the
detailed algorithm and its exact complexity.

Theorem III.2.1. There is an algorithm that solves MakerBreaker3 in O(max(n5m2, n6∆))
time where n = |V (H)|, m = |E(H)| and ∆ = ∆1(H).

Proof. First of all, let us transform the input (non-marked) hypergraph of rank 3 into a (still
non-marked) 3-uniform hypergraph. We can assume that all edges are of size 2 or 3, otherwise
we have a trivial Maker win. We use item (ii) of Proposition I.1.22: if there are edges of size 2,
then we can add two vertices x and y, and replace each edge e of size 2 with two edges e ∪ {x}
and e∪ {y} of size 3. At most, we have added two vertices and doubled the number of edges, so
all relevant orders of magnitude are preserved. All in all, up to a preprocessing step in O(m)
time, we can assume that H is a non-marked 3-uniform hypergraph.
Since MakerBreaker3 is obviously in O(1) time on hypergraphs with less than 6 vertices,
further assume |V (H)| ≥ 6. By Theorem II.1.12, H is a Maker win if and only if:

∃ x1 ∈ V (H), ∀ y1 ∈ V (H+x1) \M(H+x1), ∃ x2 ∈ . . . , ∀ y2 ∈ . . . , ∃ x3 ∈ . . . , ∀ y3 ∈ . . . ,

H+x1−y1+x2−y2+x3−y3 contains a fully marked edge, a nunchaku or a necklace.
Suppose that we are given some x1, y1, x2, y2, x3, y3, and consider the marked hypergraph
H+x1−y1+x2−y2+x3−y3 , in which x1, x2, x3 are the only marked vertices:

• Clearly, H+x1−y1+x2−y2+x3−y3 contains a fully marked edge or a nunchaku if and only if it
contains a chain between two marked vertices. This can be tested in O(m2) time: for all
i ∈ {1, 2, 3}, compute CC1

H−y1−y2−y3 (xi) using Algorithm ComputeCC and check whether
it contains some xj ̸= xi.

• If H+x1−y1+x2−y2+x3−y3 contains no fully marked edge and no nunchaku, then it contains
a necklace if and only if it contains some edge e = {x, a, b} with x marked such that

† These results are part of the article [GGS22b], which has been submitted to Journal of Combinatorial
Theory, Series A.

152 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

there exists an xb-chain P that does not contain a (the necklace is then P ∪ e). This can
be tested in O(∆m2) time: for all i ∈ {1, 2, 3} and for all edge e = {xi, a, b}, compute
CC1

H−y1−y2−y3−a(xi) using Algorithm ComputeCC and check whether it contains b, then
repeat when exchanging the roles of a and b.

This yields a O(n6(m2 + ∆m2)) = O(n6∆m2) time algorithm for MakerBreaker3. However,
we can easily apply a slight improvement to it. Indeed, since the linear connected components
that we require do not depend on the xi, it is redundant to compute them inside of the 6 nested
loops. Instead, it is better to compute all of them once and for all at the beginning of the
algorithm, store them all and then access them when needed. Computing CC1

H−y1−y2−y3 (x) and
CC1

H−y1−y2−y3−a(x) for all possibilities of y1, y2, y3, a, x is done in O(n5m2) time, so the eventual
running time is O(n5m2 + n6∆). ■

III.2.3 When Maker wants to win in a minimum number of rounds

We now look at the maximum value attained by τM for a fixed edge size and as a function of
the number of vertices.

III.2.3.1 In hypergraphs of rank 3†

Theorem II.1.12 states that, if Maker wins, then she can guarantee the appearance of a nunchaku
or a necklace after at most three rounds of play. Therefore, it all comes down to determining
the value of τM on nunchakus (it is the same on necklaces).
The forcing strategy described in Proposition I.3.13 uses Θ(n) rounds, where n in the number of
vertices of the considered forcing path, since Maker makes her way from one end of the path to
the other one edge at a time and all vertices end up being picked. However, when k = 3, Maker
can win faster by using a "dichotomy strategy" which halves the length of the nunchaku each
round and yields a win in just Θ(log2(n)) rounds for a nunchaku on n vertices. We now prove
that this dichotomy strategy is optimal, from which we get the exact value of τM on nunchakus.
We actually state the result for the more general case of 3-uniform marked hyperforests i.e.
3-uniform marked hypergraphs with no cycle, as it is no more complicated than the case of
nunchakus. The idea is that Maker uses the above dichotomy strategy on a shortest nunchaku
in the hyperforest.

Notation III.2.2. Let H be a 3-uniform marked hypergraph. We denote by L(H) the length
of a shortest nunchaku in H. If H contains no nunchaku, then L(H) =∞ by convention.

Proposition III.2.3. Let H be a 3-uniform marked hyperforest with no fully marked edge. If
H contains a nunchaku then τM(H) = 1 + ⌈log2(L(H))⌉, otherwise τM(H) =∞.

Proof. Theorem II.1.1 states that H is a Maker win if and only if H contains a nunchaku.
Therefore, it remains to show that if H contains a nunchaku then τM(H) = 1 + ⌈log2(L(H))⌉.
We proceed by induction on L(H) ≥ 1. First suppose L(H) = 1: since a nunchaku of length 1
consists of a single edge, which contains exactly one non-marked vertex, H is a trivial Maker
win hence τM (H) ∈ {0, 1}. Moreover H has no fully marked edge, so τM (H) = 1 = 1 + ⌈log2(1)⌉.
Now suppose L(H) ≥ 2 (in particular H is not a trivial Maker win) and assume the result holds
for all H ′ with L(H ′) < L(H). Maker can ensure that the length of a shortest nunchaku is at
least halved after one round:

† These results are part of the article [GGS22b], which has been submitted to Journal of Combinatorial
Theory, Series A.

Chapter III. How structure contributes to algorithms and game complexness 153

Claim 13. There exists x ∈ V (H) \M(H) such that, for all y ∈ V (H+x) \M(H+x), we have
L(H+x−y) ≤

⌈
L(H)

2

⌉
.

Proof of Claim 13. Let N be a shortest nunchaku in H. Let x ∈ inn(N) be in the exact middle
of N if N is of even length, or as close to the middle as possible if N is of odd length. By
picking x, Maker creates two nunchakus of length at most

⌈
L(H)

2

⌉
whose sole common vertex is

x, so Breaker’s answer y cannot be contained in both of them at once. Therefore, at least one
of these two nunchakus will be present in H+x−y. □

On the other hand, Breaker can ensure that the length of a shortest nunchaku is not more than
halved after one round:

Claim 14. For all x ∈ V (H)\M(H), there exists y ∈ V (H+x)\M(H+x) such that L(H+x−y) ≥⌈
L(H)

2

⌉
.

Proof of Claim 14. Let x ∈ V (H) \M(H). Note that, for any y, the nunchakus in H+x−y are
exactly the nunchakus in H+x that do not contain y. Therefore, let N be the collection of all
nunchakus in H+x whose length is less than

⌈
L(H)

2

⌉
: proving the claim comes down to showing

the existence of some y ∈ V (H+x) \M(H+x) such that all elements of N contain y. We can
assume N ̸= ∅, otherwise there is nothing to show.
First of all, notice that all elements of N are x-nunchakus. Indeed, if some element of N
was not an x-nunchaku i.e. did not contain x, then it would be a nunchaku in H, which is
impossible since it is of length less than

⌈
L(H)

2

⌉
< L(H). Therefore, let Nx ∈ N : we know

Nx is an xm-nunchaku for some m ∈ M(H). We now show that all elements of N contain
y := o(x,

−−−→
xNxm), which is non-marked since M(Nx) = {x, m}. Suppose for a contradiction

that there exists N ′
x ∈ Nx such that y ̸∈ V (N ′

x): we know N ′
x is an xm′-nunchaku for some

m′ ∈M(H).
– Suppose V (Nx) ∩ V (N ′

x) ̸= {x}. Since y ̸∈ V (N ′
x), we have start(−−−→xNxm) ̸= start(

−−−−→
xN ′

xm′),
therefore Union Lemma I.3.40 ensures that Nx ∪N ′

x contains an x-cycle or an m-tadpole.
Both possibilities contradict the fact that H is a hyperforest.

– Suppose V (Nx)∩V (N ′
x) = {x}. Then Nx∪N ′

x is an mm′-chain in H+x and M(Nx∪N ′
x) =

{m, m′, x}. Let N be the same as Nx∪N ′
x except that x is non-marked: since Nx∪N ′

x is a
subhypergraph of H+x, N is a subhypergraph of H. Therefore N is an mm′-nunchaku in
H, of length equal to the sum of the lengths of Nx and N ′

x. By definition of N , Nx and N ′
x

are both of length less than
⌈

L(H)
2

⌉
, therefore N is of length less than L(H), contradicting

the definition of L(H). □

Recall that τM(H) = 1 + min
x∈V (H)\M(H)

max
y∈V (H+x)\M(H+x)

τM(H+x−y). Let x0, y0 min-maxing this

formula. Claim 13 and minimality of x0 ensure that L(H+x0−y0) ≤
⌈

L(H)
2

⌉
. Claim 14 and

maximality of y0 ensure that L(H+x0−y0) ≥
⌈

L(H)
2

⌉
. All in all, we get L(H+x0−y0) =

⌈
L(H)

2

⌉
<

L(H) hence τM(H+x0−y0) = 1 + ⌈log2(L(H+x0−y0))⌉ = 1 +
⌈
log2

(⌈
L(H)

2

⌉)⌉
= ⌈log2(L(H))⌉

by the induction hypothesis applied to H+x0−y0 . Therefore τM(H) = 1 + τM(H+x0−y0) =
1 + ⌈log2(L(H))⌉, which concludes. ■

Corollary III.2.4. For any nunchaku or necklace N of length L, we have τM (N) = 1+⌈log2(L)⌉.

Proof. Nunchakus are hyperforests, so they are covered by Proposition III.2.3. Moreover,
Proposition II.1.7 ensures that a necklace of length L and a nunchaku of length L have the
same non-marked reduction, hence the result for necklaces by Corollary I.1.54. ■

154 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

We can now conclude for general 3-uniform marked hypergraphs: Maker can make a nun-
chaku/necklace N appear after at most 3 rounds, and then she can focus exclusively on N to
win in a further logarithmic number of rounds. The case of nunchakus attests that the obtained
upper bound is basically tight.

Theorem III.2.5. Let H be a 3-uniform marked hypergraph such that |V (H) \M(H)| ≥ 6.
If H is a Maker win, then τM(H) ≤ 3 + ⌈log2(|V (H) \M(H)| − 5)⌉. Moreover, for all n ≥ 3,
there exists a 3-uniform marked hypergraph on n vertices that attains this upper bound up to an
additive 3 rounds.

Proof. By Theorem II.1.12, Maker has a strategy ensuring that, after three rounds of play with
successive picks x1, y1, x2, y2, x3, y3, there is a fully marked edge, a nunchaku or a necklace in
H+x1−y1+x2−y2+x3−y3 . Monotonicity Lemma I.1.50 thus ensures that, to conclude the proof of
the first assertion, it suffices to show that any nunchaku or necklace N in H+x1−y1+x2−y2+x3−y3

satisfies τM(N) ≤ ⌈log2(|V (H) \M(H)| − 5)⌉:
• A nunchaku N is of length |V (N)|−1

2 , so it satisfies τM(N) = ⌈log2(|V (N)| − 1)⌉ according
to Corollary III.2.4. Moreover, a nunchaku N in H+x1−y1+x2−y2+x3−y3 has two marked
vertices and all its other vertices are in V (H) \ (M(H) ∪ {x1, y1, x2, y2, x3, y3}), so it
satisfies |V (N)| ≤ 2 + (|V (H) \M(H)| − 6) hence τM(N) ≤ ⌈log2(|V (H) \M(H)| − 5)⌉.

• A necklace N is of length |V (N)|
2 , so it satisfies τM(N) = ⌈log2(|V (N)|)⌉ according to

Corollary III.2.4. Moreover, a necklace N in H+x1−y1+x2−y2+x3−y3 has one marked vertex
and all its other vertices are in V (H) \ (M(H) ∪ {x1, y1, x2, y2, x3, y3}), so it satisfies
|V (N)| ≤ 1 + (|V (H) \M(H)| − 6) hence τM(N) ≤ ⌈log2(|V (H) \M(H)| − 5)⌉.

As for the final assertion, it suffices to consider nunchakus. ■

Remark. Let us make two observations on Theorem III.2.5:
• It is not difficult to find a 3-uniform non-marked hypergraph on n vertices that also attains

the upper bound up to an additive 3 rounds, for n large enough. For example, consider
the union of two x-cycles of equal length whose only common vertex is x.

• We have already seen, through Theorem III.2.1, that the outcome of the Maker-Breaker
game on 3-uniform marked hypergraphs can be determined in polynomial time. However,
it should be noted that Theorem III.2.5 alone is enough to obtain a quasi-polynomial
time nO(log(n)) = eO(log2(n)), without using any of the results about existence of chains from
Sections II.2 and III.1. Indeed, it suffices to check all sequences of 5 + 2⌈log2(|V (H) \
M(H)| − 5)⌉ moves to see if Maker has a winning strategy.

III.2.3.2 In hypergraphs of rank k ≥ 4

We have just seen that, on 3-uniform marked hypergraphs, the maximum value of τM for Maker
wins is basically attained by forcing paths i.e. nunchakus, and that this value is roughly log2(n)
where n is the number of vertices. On k-uniform marked hypergraphs i.e. hypergraphs of rank k
where k ≥ 4, we are about to see that the maximum value of τM for Maker wins is also attained
by forcing paths, however it coincides with the trivial upper bound

⌈
n
2

⌉
. This comes from the

fact that the dichotomy strategy used for k = 3 has no equivalent for k ≥ 4: the forcing strategy
happens to be the only winning strategy for Maker, and it uses up all the vertices in presence.

Proposition III.2.6. Let k ≥ 4. A k-uniform forcing path P of length L ≥ 1 satisfies
τM(P) = L.

Proof. We proceed by induction on L. The result is obvious for L = 1, so assume L ≥ 2 and the

Chapter III. How structure contributes to algorithms and game complexness 155

result to be true for k-uniform forcing paths of length less than L. By definition of a forcing path
of length L, we can write: V (P) = {a1, . . . , aL+k−2, b1, . . . , bL}, M(P) = {a1, . . . , ak−2, aL+k−2}
and E(P) = {e1, . . . , eL} where ei = {ai, . . . , ai+k−2, bi} for all 1 ≤ i ≤ L.

Claim 15. The only winning first pick for Maker on P is ak−1.

Proof of Claim 15. We already know that ak−1 is a winning first pick for Maker (forcing strategy).
The idea is that, if Maker does not pick ak−1 in the first round, then Breaker can pick ak−1
himself in the first round and win the game. Therefore, let x ∈ V (P) \ (M(P) ∪ {ak−1}): we
want to show that P +x−ak−1 is a Breaker win. If L < k then this is trivial since all edges of P
contain ak−1, so assume L ≥ k hence E(P +x−ak−1) = {ek, . . . , eL} ≠ ∅. By Proposition I.1.52,
it suffices to exhibit a pairing Π which is complete in P +x−ak−1 . When defining Π, we have to
be careful that it does not use the vertex x which is now marked:

• If x = aj for some k ≤ j ≤ L + k − 3, then define Π := {{ai, bi}, k ≤ i ≤ j − 1} ∪
{{ai+1, bi}, j ≤ i ≤ L} (see Figure III.3).

• If x = bj for some k ≤ j ≤ L, then define Π := {{ai, bi}, k ≤ i ≤ j − 1} ∪ {aj, aj+1} ∪
{{ai+1, bi}, j + 1 ≤ i ≤ L}.

• Otherwise i.e. if x is isolated in P +x−ak−1 , then define Π := {{ai, bi}, k ≤ i ≤ L}.

a1 a2

a3b1

b3

a4

a5
a6

bL

bL−1 aL+2

aL+1

aL

b5

b2

b4

b6

aj

Figure III.3: Definition of Π if x = aj , for k = 4.

In all cases, Π is complete in P +x−ak−1 . □

Therefore, Maker must pick ak−1 in the first round, and obviously b1 is a Breaker answer that
maximizes the duration of the game since it is now the only non-marked vertex of e1. In
conclusion, we have τM(P) = 1 + τM(P +ak−1−b1). Since P +ak−1−b1 consists of a forcing path
of length L − 1 plus the inconsequential isolated vertex a1, the induction hypothesis yields
τM(P +ak−1−b1) = L− 1 hence τM(P) = L, which concludes. ■

Theorem III.2.7. For all k ≥ 4 and for all n ≥ 1, there exists a non-marked hypergraph H of
rank k on n vertices satisfying τM(H) =

⌈
n
2

⌉
.

Proof. Let P be a k-uniform forcing path of length L :=
⌈

n
2

⌉
. We know that τM(P) =

⌈
n
2

⌉
by

Proposition III.2.6. Let H be the non-marked reduction of P , plus an isolated vertex if n is
even. Since |V (P) \M(P)| = (2L + k− 2)− (k− 1) = 2

⌈
n
2

⌉
− 1, we have |V (H)| = n. Moreover,

by Corollary I.1.54, we have τM(H) = τM(P) =
⌈

n
2

⌉
. ■

156 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

Remark. Theorem III.2.7 actually still holds, for n large enough, if we ask for the hypergraph to
be k-uniform. First of all, notice that addressing the case k = 4 suffices thanks to Proposition
I.1.56. Now, for k = 4, it is not too difficult to get rid of the three marked vertices in the
forcing path. Let us use the same notations as in the proof of Proposition III.2.6, so that
M(P) = {a1, a2, aL+1}. The idea is to unmark these three vertices, but create three new vertices
a1, a2, aL+1 and add a few well-chosen edges such that the following action is optimal in the first
three rounds: Maker picks aL+1, Breaker picks aL+1, Maker picks a1, Breaker picks a1, Maker
picks a2, Breaker picks a2. We claim that this can be achieved by adding the following edges:

– all edges of size 4 containing aL+1 and aL+1;
– all edges of size 4 containing aL+1, a1 and a1;
– the edge {aL+1, a1, a2, a2}.

After that, what remains is a forcing path, so play goes on according to the forcing strategy and
all vertices end up being picked.

III.2.4 When Maker wants to win using a minimum number of tokens

We now look at the maximum value attained by θM for a fixed edge size and as a function of
the number of vertices.

III.2.4.1 In hypergraphs of rank 3

On hypergraphs of rank 3 i.e. 3-uniform marked hypergraphs, a remarkable consequence of our
structural result is that if Maker wins then three tokens are always sufficient:

Theorem III.2.8. Let H be a 3-uniform marked hypergraph. If H is a Maker win, then
θM(H) = 3. Actually, the following stronger result holds: if H is a Maker win, then Maker has
a winning strategy that uses 3 tokens and at most 3 + ⌈log2(|V (H) \M(H)| − 5)⌉ rounds.

Proof. By Theorem II.1.12, Maker has a strategy ensuring that, after at most three rounds of
play on H, either Maker has won or there is a nunchaku/necklace N . We can assume the latter.

• First suppose N is a vw-nunchaku. Each of v and w was either already marked in H or has
a token on it, so assume the worst-case scenario for Maker in terms of token usage, which
is that v and w both have tokens on them. We claim that the dichotomy strategy from
Theorem III.2.5 still works with only three tokens. Indeed, Maker can place a third token
(which was possibly placed already somewhere outside N) on x defined as the centermost
inner vertex of N , creating a vx-nunchaku and an xw-nunchaku. At least one of the two,
say the former, is left intact by Breaker’s answer. This frees up the token on w for Maker
to place at the center of the vx-nunchaku, etc.

• Now suppose N is a v-necklace. Maker can place a second token (which was possibly
placed already somewhere outside N) on an inner vertex of N other than v, creating two
nunchakus. Breaker cannot destroy both, so we are back in the previous case after this
round. ■

III.2.4.2 In hypergraphs of rank k ≥ 4

Since Maker never needs more than three tokens on hypergraphs of rank 3, we ask a natural
question: is there, for all k, some constant f(k) so that every Maker win H of rank k satisfies
θM(H) ≤ f(k)? It turns out the answer is negative: for k ≥ 4, in general, θM does not depend
solely on the size of the edges, it also depends on the number of vertices. To prove this, we

Chapter III. How structure contributes to algorithms and game complexness 157

build an example of a k-uniform hypergraph on which Maker needs a number of tokens that is
linear in the number of vertices (recall that

⌈
n
2

⌉
is the trivial upper bound on n vertices, so a

linear dependence is the most we could have got). The difficult case is k = 4, from which we
easily derive an example for k ≥ 5.

Notation III.2.9. For any N ≥ 2, we define the 4-uniform non-marked hypergraph H4,N on
6N + 8 vertices constructed as follows (see Figure III.4):

1. Start from vertices v, w, a1, . . . , a2N−1, b1, . . . , b2N , c1, . . . , cN and edges e1, . . . , e2N defined
by:

• e1 = {v, a1, b1, c1};
• ei = {ai−1, ai, bi, ci} for all 2 ≤ i ≤ N ;
• ei = {ai−1, ai, bi, ci−N} for all N + 1 ≤ i ≤ 2N − 1;
• e2N = {a2N−1, b2N , cN , w}.

2. Add vertices v, w, c1, . . . , cN , d1, d2, d3, d4, d5 and, for each u ∈ {v, w, c1, . . . , cN}, add
the edges of Du which is defined by V (Du) = {u, u, d1, d2, d3, d4, d5} and E(Du) =
{{u, u, di, dj}, 1 ≤ i < j ≤ 5}.

We also define the following pairing, which is incomplete in H4,N as it covers all edges in H4,N

apart from eN (see Figure III.4):
ΠN := {{v, v}, {w, w}} ∪

⋃
1≤i≤N

{{ci, ci}} ∪
⋃

1≤i≤N−1
{{bi, ai}} ∪

⋃
N≤i≤2N−1

{{ai, bi+1}}.

c1

c1

c2

c2

v v
a1 a2

b1

ww

b2N

cN

cN

aN

bN+1

a2N−1

b2 bN

Dc1
DcN

DwDv

Figure III.4: The hypergraph H4,N and the pairing ΠN (bold dash lines
represent the pairs). For clarity, the vertices d1, d2, d3, d4, d5 and all edges of
the Du are not represented.

By design, each Du in the hypergraph H4,N is a danger at u with the following property:

Lemma III.2.10. Let D be a non-marked hypergraph defined by V (D) = {u, u, d1, d2, d3, d4, d5}
and E(D) = {{u, u, di, dj}, 1 ≤ i < j ≤ 5}. Then, for all 1 ≤ i ≤ 5, we have τM(D+u−di) = 3.
In other words, playing on D, if Maker picks u and Breaker does not immediately answer by
picking u, then Maker wins in three further rounds.

Proof. Suppose that, in the first round of the game played on D, Maker picks u and Breaker
picks some di. Then Maker picks u. Whatever happens next, the four vertices picked by Maker
in total will form an edge by definition of D. ■

Now, let us explain the role of the subhypergraphs Du in the hypergraph H4,N .
• If, in place of step 2 in the construction of H4,N , we had simply marked the vertices

v, w, c1, . . . , cN , then we would have obtained a "nunchaku" (with the ci being marked, it

158 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

is as if the edges ei did not contain them i.e. as if they formed a true nunchaku), on which
we know Maker wins.

• Instead of marking u ∈ {v, w, c1, . . . , cN}, we use the gadget Du which, to an extent,
emulates a token sitting on u. Indeed, suppose that no move has been played inside Du

for some u, and that Maker places a token on u. By Lemma III.2.10, this forces Breaker
to pick u if he wants to avoid a quick defeat. Now, as a result: there is a token on u, all
edges of Du are destroyed, and it is Maker’s turn. In conclusion, everything is as if we had
simply marked u in our initial construction of H4,N instead of attaching Du to it, except
for one important thing: this has come to the cost of one token for Maker.

So, how many tokens does Maker need? An easy way to win using N + 3 tokens is to start
by placing one on each of v, w, c1, . . . , cN and then use the extra token to win on the resulting
"nunchaku". Actually, as we are about to show comfortably, N + 2 tokens suffice with a slight
modification of this method. We will then show that N + 2 tokens are also necessary for Maker,
which is more difficult.

Proposition III.2.11. For all N ≥ 2, we have θM(H4,N) ≤ N + 2.

Proposition III.2.12. For all N ≥ 2, we have θM(H4,N) ≥ N + 2.

Corollary III.2.13. For all N ≥ 2, we have θM(H4,N) = N + 2.

Proof of Proposition III.2.11. We describe a winning strategy for Maker using only N +2 tokens.
She starts by placing a token on v. We can assume that Breaker picks v: indeed, if he fails to
do so, then Maker uses three tokens other than the one on v (note that N + 2 ≥ 4) to win in
three further rounds as per Lemma III.2.10. Maker then places a second token on c1: similarly,
if Breaker fails to pick c1 then Maker wins in three further rounds. Continuing so, Maker places
tokens on c2, . . . , cN and we can assume that Breaker responds by picking c2, . . . , cN respectively.
Maker now places a final token on a1, threatening to complete e1 on her next go, thus forcing
Breaker to pick b1. At this point, Maker has placed a total of N + 2 tokens on v, c1, . . . , cN , a1.
She will not use any additional token, so in each round to follow she will move a token that
was already placed. For the next 2N − 1 rounds, Maker moves a token respectively: from v to
a2, from a1 to a3, from a2 to a4,. . ., from a2N−3 to a2N−1, from a2N−2 to w. This forces Breaker
to pick b2, b3, b4 . . . , b2N−1, b2N respectively in order not to lose in the next round each time.
Finally, now that Maker has a token on w, she uses three of the other tokens to play her next
three moves inside Dw and win as per Lemma III.2.10. ■

Proof of Proposition III.2.12. To alleviate notations, write H = H4,N and Π = ΠN . Suppose
that Maker adopts a strategy using at most N + 1 tokens, and that Breaker adopts the following
two-phase strategy (where it remains to be seen that Phase 2, which wins the game according
to Proposition I.1.52, is actually reached):

Phase 1: If Breaker can pick a vertex such that the resulting marked hypergraph admits a
complete pairing, then he picks an arbitrary such vertex and switches to Phase
2.
Otherwise, Breaker plays according to the incomplete pairing Π. This means
that, if Maker has just placed a token on a vertex of a pair from Π, then Breaker
answers by picking the other vertex of that pair. If Maker’s pick is in no pair
from Π, or if it is but its twin has already been picked by Breaker (which can
happen since Maker can vacate a vertex and then re-place a token on it later),
then Breaker picks an arbitrary vertex.

Phase 2: Breaker follows a complete pairing until the end.

Chapter III. How structure contributes to algorithms and game complexness 159

Now, let the game play out. As we have done before, when Maker moves a token that was
already placed, we decompose the move into two consecutive actions: Maker removes a token
then places a token, where we consider the "remove" action as part of the previous round.
Therefore, the action during round t ≥ 1 goes as follows, in that order:

1. Maker places a token on some free vertex xt. (We define Xt ⊆ {x1, . . . , xt} as the set of
all vertices on which Maker has tokens at this point, with X0 := ∅.)

2. Breaker deletes some free vertex yt. (We define Yt := {y1, . . . , yt}, with Y0 := ∅.)
3. Optionally, Maker removes one of her tokens. (We define Ht as the updated marked

hypergraph at the end of round t, with H0 := H.)
Suppose for a contradiction that Maker wins. Let T be the duration of the game i.e. Maker
completes an edge during round T . Note that xt, Xt are defined for 0 ≤ t ≤ T while yt, Yt, Ht

are defined for 0 ≤ t ≤ T − 1.

Claim 16. All of Breaker’s picks are made according to the incomplete pairing Π and, for
all 1 ≤ t ≤ T and for all y ∈ V (H+xt

t−1) \M(H+xt
t−1), the marked hypergraph H+xt−y

t−1 admits no
complete pairing. Moreover, for all 0 ≤ t ≤ T − 1, Π covers all edges in Ht apart from eN .

Proof of Claim 16. Maker winning means Breaker is stuck in Phase 1 for the whole duration of
the game. As for the last assertion, we know it holds for t = 0, and the fact that Breaker plays
according to Π ensures that it remains true throughout the game. □

The definition of Π means that the edge completed by Maker is necessarily eN , and that Maker
only places a token on bN as her very last move:

Claim 17. We have eN ⊆ XT , moreover x1, . . . , xT −1 ̸= bN and xT = bN .

Proof of Claim 17. Since Breaker plays according to Π which covers all edges in H apart from
eN , the only edge that Maker can complete is eN . Now, suppose for a contradiction that xt = bN

for some 1 ≤ t ≤ T − 1. Since t < T , there exists y ∈ eN \Xt. We know Π covers all edges
in Ht−1 apart from eN , moreover Π does not use bN and eN ̸∈ E(H+xt−y

t−1), so Π is complete in
H+xt−y

t−1 . This contradicts Claim 16. □

Let us introduce the following notations, for all 1 ≤ i ≤ N (see Figure III.5):
• IL

i := {ai, . . . , aN−1} ∪ {bi, . . . , bN};
• IR

i := {aN , . . . , aN+i−1} ∪ {bN , . . . , bN+i};
• Ii := IL

i ∪ IR
i ;

• t(i) := inf{1 ≤ t ≤ T, xt ∈ Ii} = inf{1 ≤ t ≤ T, Xt ∩ Ii ̸= ∅}.
Note that t(i) is well defined since bN ∈ Ii for all 1 ≤ i ≤ N and bN ∈ XT by Claim 17.

ci

ai

bi

aN

bN

aN−1 aN+i−1

bN+i

eN

I
L
i I

R
i

Figure III.5: Definition of IL
i and IR

i .

In the proof of Proposition III.2.11, we have seen how controlling the ci (i.e. having tokens on
c1, . . . , cN) was key for Maker: it allowed her to force all of Breaker’s moves and thus make

160 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

progress from left to right until she won the game. We use the same principle here. The idea for
the end of the proof is as follows. The first time that Maker plays some xt inside the "interval"
Ii, Maker must control ci (Claim 18), otherwise Breaker could answer by picking ci himself
which breaks the path on both sides of xt and creates a complete pairing. Since bN ∈ Ii for all i,
this means each ci is controlled by Maker at some point. However, Maker uses at most N + 1
tokens in total, therefore she necessarily removes a token from some ci during the game (Claim
19). The first time this happens, said ci is freed up to help building a complete pairing since
Breaker has picked ci already. We now proceed with the details.

Claim 18. For all 1 ≤ i ≤ N , we have ci ∈ Xt(i)−1.

Proof of Claim 18. Suppose for a contradiction that ci ̸∈ Xt(i)−1 for some 1 ≤ i ≤ N . Using
the fact that Ht(i)−1 has no marked vertex in Ii by minimality of t(i), we are going to build a
complete pairing in H

+xt(i)−ci

t(i)−1 from Π by modifying only the pairs inside Ii (see Figure III.6):
• First case: xt(i) = bi (the case xt(i) = bN+i is analogous). Let Π′ be the same as Π except

that the pairs inside Ii are replaced by the pairs {bl, al} for i + 1 ≤ l ≤ N + i− 1.
• Second case: xt(i) = bj for some i < j < N + i. Let Π′ be the same as Π except that the

pairs inside Ii are replaced by the pairs {aj−1, aj}, {al, bl+1} for i ≤ l ≤ j − 2, {bl, al} for
j + 1 ≤ l ≤ N + i− 1.

• Third case: xt(i) = aj for some i ≤ j ≤ N + i − 1. Let Π′ be the same as Π except
that the pairs inside Ii are replaced by the pairs {al, bl+1} for i ≤ l ≤ j − 1, {bl, al} for
j + 1 ≤ l ≤ N + i− 1.

In all cases, the newly defined pairs cover the edges ei+1, . . . , eN+i−1 in H
+xt(i)−ci

t(i)−1 (note that this
includes eN which was the only edge not covered by Π). Moreover ei, eN+i ̸∈ E(H+xt(i)−ci

t(i)−1) since
ci ∈ ei ∩ eN+i, therefore Π′ covers all edges in H

+xt(i)−ci

t(i)−1 . This contradicts Claim 16. □

ai

bi

aN+i−1

bN+i

Ii

ai

bi

aN+i−1

bN+i

Ii
bj

ai

bi

aN+i−1

bN+i

Ii

aj

bi+1

ai+1

bN+i−1

bN+i−1bi+1

ajaj−1

bi+1 bN+i−1

aj−1 aj+1

bj+1bj

Figure III.6: The pairing used inside Ii in the proof of Claim 18. Three cases
from top to bottom: xt(i) = bi, xt(i) = bj (i < j < N + i), xt(i) = aj .

Claim 19. There exist 0 ≤ t ≤ T − 1 and 1 ≤ i ≤ N such that ci ∈ Xt and ci ̸∈ Xt+1: in other
words, at some point during the game, Maker removes a token from some ci. Moreover, for such
(t, i) with t minimal, we have Xt ∩ IL

i = ∅ or Xt ∩ IR
i = ∅.

Chapter III. How structure contributes to algorithms and game complexness 161

Proof of Claim 19. Suppose for a contradiction that the first assertion is false: then ci ∈ XT for
all 1 ≤ i ≤ N by Claim 18. Since eN ⊆ XT by Claim 17, we get |XT | ≥ N + 3, contradicting
the fact that Maker only uses N + 1 tokens.
As for the second assertion, let (t, i) such that ci ∈ Xt and ci ̸∈ Xt+1, with t minimal. Suppose
for a contradiction that there exist uL ∈ Xt ∩ IL

i and uR ∈ Xt ∩ IR
i . Note that uL ̸= uR: indeed,

IL
i ∩ IR

i = {bN} by definition, and Claim 17 ensures that bN ̸∈ Xt since t < T . Now, for all
1 ≤ j ≤ N :

• We have t ≥ t(j). Indeed, if j ≤ i then Ij ⊇ IL
j ⊇ IL

i ∋ uL, and if j ≥ i then
Ij ⊇ IR

j ⊇ IR
i ∋ uR.

• We know cj ∈ Xt(j)−1 by Claim 18. By minimality of t, this token on cj is not removed
before round t, hence cj ∈ Xt.

In conclusion, we have {c1, . . . , cN , uL, uR} ⊆ Xt hence |Xt| ≥ N + 2, again contradicting the
fact that Maker only uses N + 1 tokens. □

Let (t, i) satisfying Claim 19, with t minimal, and suppose that Xt∩IL
i = ∅ (the case Xt∩IR

i = ∅
is analogous). We are going to build a complete pairing in Ht, using several facts:

• Recall that Ht is the marked hypergraph obtained at the end of round t i.e. just after the
token on ci has been removed, so M(Ht) = Xt \ {ci}. In particular all vertices in IL

i ∪{ci}
are non-marked in Ht and can thus be used in the pairing.

• Since ci ∈ Xt, there exists 1 ≤ t′ ≤ t such that xt′ = ci. This implies yt′ = ci because
Breaker plays according to Π. As a result, Ht′ has no edge inside Dci

, and neither does
Ht since t ≥ t′.

Let Π′ be the same as Π except that {ci, ci} and the pairs inside IL
i are replaced by {ci, bi} and

{al, bl+1} for i ≤ l ≤ N − 1, as in Figure III.7.

ci

ai

bi

aN

bN

aN−1 aN+i−1

bN+i

eN

I
L
i

Figure III.7: The pairing used inside IL
i ∪ {ci} if Xt ∩ IL

i = ∅.

These new pairs cover ei, . . . , eN in Ht, so the above facts ensure that Π′ is complete in Ht. In
particular, if y denotes the twin of xt+1 in Π′ (or an arbitrary vertex if xt+1 is in no pair of Π′),
then Π′ is also complete in H

+xt+1−y
t , which contradicts Claim 16. ■

Notation III.2.14. For any k ≥ 5 and any N ≥ 2, we define the k-uniform non-marked
hypergraph Hk,N built from H4,N through k − 4 consecutive applications of the construction
from Proposition I.1.56.

Proposition III.2.15. For all k ≥ 4 and for all N ≥ 2, we have |V (Hk,N)| = 6N + 2k and
θM(Hk,N) = N + k − 2.

Proof. By Proposition I.1.56, we have |V (Hk,N)| = |V (H4,N)|+ 2(k − 4) = 6N + 8 + 2(k − 4) =
6N + 2k and θM(Hk,N) = θM(H4,N) + (k − 4) = N + 2 + (k − 4) = N + k − 2 using Corollary
III.2.13. ■

162 III.2. The Maker-Breaker game: complexity and bounds on optimization parameters

Theorem III.2.16. For all k ≥ 4 and for all n large enough, there exists a k-uniform non-
marked hypergraph H on n vertices satisfying

⌊
n
6

⌋
≤ θM(H) ≤

⌈
n
2

⌉
.

Proof. Let k ≥ 4 and let n ≥ 2k + 12. Set N :=
⌊

n−2k
6

⌋
≥ 2, so that |V (Hk,N)| = 6N + 2k ≤ n.

By Proposition III.2.15, we have θM (Hk,N) = N +k−2 =
⌊

n−2k
6

⌋
+k−2 ≥

⌊
n
6

⌋
. If |V (Hk,N)| < n

then it suffices to add n−|V (Hk,N)| isolated vertices to get a hypergraph on exactly n vertices. ■

Remark. It is probably possible to make the hypergraph linear and still get a value of θM that is
Ω(n) (where the multiplicative constant depends on k), which would show that high values for
θM can be reached with edge intersections of any size. This would require a direct definition
of the hypergraph for all k instead of using Proposition I.1.56 to go from k = 4 to general k,
since this construction does not preserve linearity. Note that the Du can be made pairwise
vertex-disjoint, by giving each Du its own vertices d1, d2, d3, d4, d5, which should help. For k = 4,
it would then suffice to make the Du linear. For k ≥ 5, the idea would be to replace ci with
ci,1, . . . , ci,k−3 and attach some linear Dci,j

to each ci,j.

III.2.5 Conclusion and prospects

We have shown that deciding the winner of the unbiased Maker-Breaker game on hypergraphs
of rank 3 can be done in polynomial time. Since this problem is known to be PSPACE-complete
on 6-uniform hypergraphs, the next question is: what about hypergraphs of rank 4 or 5? An
indication on the answer may be provided by the results that we have just established on τM

and θM , which give us Table III.1 (the case k = 2 is simply given by Theorem I.1.33).

θM τM

k = 2 2 2

k = 3 3 log2(n)+O(1)

k ≥ 4 Ω(n)
⌈

n
2

⌉
Table III.1: Maximum value attained by θM , τM over all k-uniform non-marked
Maker wins on n vertices.

For both τM and θM , we can observe a significant gap in maximum value between the case
k = 3 and the case k ≥ 4. This indicates that Maker’s winning strategies become more complex
from rank 4, as they can be very long and rely on many simultaneous threats. This jump may
translate in terms of algorithmic complexity, which reinforces the commonplace intuition within
the community that deciding the winner of the unbiased Maker-Breaker game on hypergraphs
of rank 4 should be PSPACE-complete.
Our work on the exact maximum values attained by τM and θM is basically complete. One
thing of note is that the gap between these two parameters can be arbitrarily large, as shown
by nunchakus: three tokens are sufficient for Maker whatever the number of vertices n of
the nunchaku, whereas the number of rounds that she needs to win is logarithmic in n (note
that k-uniform forcing paths are an even more extreme example when k ≥ 4, since k tokens
are sufficient but around n

2 rounds are needed). When it comes to remaining open questions,
it would be interesting to know if θM attains the upper bound

⌈
n
2

⌉
for k ≥ 4, as the most

Chapter III. How structure contributes to algorithms and game complexness 163

token-consuming example we have found so far only reaches n
6 .

Chapter IV

From positional games to
reconfiguration problems†

Consider the unbiased Maker-Breaker game on some hypergraph H, in a version where Maker
and Breaker respectively have α and β tokens at their disposal. Assume α is finite. We do not
require that β is finite. Actually, the case β = ∞ corresponds to the study from Subsection
III.2.4, except that we fix α here instead of trying to find the minimum value of α such that
Maker wins.
Let us look at the state of the game after the first α rounds. Maker has now placed all her tokens:
let A be the configuration formed by Maker’s tokens at this point i.e. the set of all vertices on
which Maker has tokens. From now on, Maker will move one of her tokens in each round, trying
to complete an edge. Therefore, she wants her tokens to eventually form some configuration
B ∈ B, where B is the set of all B ∈ Pα(V (H)) such that e ⊆ B for some e ∈ E(H). The game
thus obeys the following ruleset template:

– We have a set of positions S.
– We have a starting configuration of tokens A ⊆ S.
– We have some target configurations of tokens B ⊆ S with |B| = |A|.
– Alice wants to go from A to some target B, moving tokens one at a time.
– There is no restriction for the move’s origin: Alice can freely choose the token that she

moves.
– However, there is a restriction (R) for the move’s destination: Alice cannot move that

token anywhere she wants, as some positions are prohibited. These forbidden destinations
can evolve during the game, for example they may depend on the current configuration of
Alice’s tokens.

Each possible restriction (R) defines a different game. For example, if there is a second player
alternating moves with Alice who is blocking some positions with tokens of his own, then we
get the Maker-Breaker game (with tokens, as above): the forbidden destinations are simply
the ones that are already occupied by Bob’s tokens. What about other restrictions? If the
forbidden destinations, instead of being chosen by a second player as the game goes, obey some
preestablished rule fixed before the game begins, then we get a one-player game which classifies
as a reconfiguration problem.
In general, a reconfiguration problem can be seen as a one-player game played on some discrete
structure. A notion of configuration on said structure is defined in some way, as well as a rule
determining what constitutes an authorized move from one configuration to another. Given two
configurations A and B, the question is asked whether there exists a finite sequence of moves
that leads from A to B. A popular example is the Rubik’s Cube game, where the player wants
to go from a mixed up configuration A to the target configuration B where all colors are sorted.

† These results are part of the article [GGS21], which has been accepted in Games of No Chance, vol. 6.

166 IV.1. Coin-moving puzzles with 2-adjacency restriction on the square grid

Reconfiguration problems on graphs, where configurations and moves are defined according
to some graph properties, represent an important part of this field. The literature includes
problems where the configurations are vertex-colorings [BCv+07], dominating sets [SMN16] or
cliques [IOO23] for instance.
In this chapter, we study a specific reconfiguration problem on graphs (more specifically: on the
square grid), which satisfies the positional-type ruleset template above, where the restriction (R)
is the 2-adjacency rule. This means that a token’s destination must have at least two neighbors
already occupied by other tokens. For consistency with the existing literature, we hereafter use
the "coin" terminology rather than "token".

IV.1 Coin-moving puzzles with 2-adjacency restriction
on the square grid

We study a one-player game played on a graph G = (V, E) referred to as the board. Throughout
the game, there will be coins sitting on some of the vertices of G (at most one per vertex).
The coins are indistinguishable and define a configuration, i.e. a finite subset C ⊆ V where we
see each element of C as a coin sitting on the corresponding vertex. A legal move consists in
moving a single coin to a free vertex so that, after the move, that coin has at least two other
coins adjacent to it. This is called the 2-adjacency restriction. Given two configurations A and
B, we want to know whether the puzzle A

?−→ B is solvable: starting from A, is it possible to
reach B using only legal moves? In the positive case, we would like an explicit winning sequence
of moves.
Instances of this game, or rather a variation with tightly packed coins that can only be slid in
the plane without collision, appear in the literature as early as the 1950s in [Lan51] and [Lan53].
Figure IV.1 features a couple of classic puzzles on the triangular grid as well as a rarer puzzle
on the square grid. Such examples also appear in [Gar75] and [BCG82, pp.863–864] among
others, but it is not until 2002 that general puzzles with these rules have been analyzed, by
Demaine et al. [DDV02]. Their study serves as foundation for the master’s thesis [Gal19] and
for the present chapter. The authors give a full characterization for solvable puzzles on the
triangular grid (up to a minor omission which is easily settled: see [Gal19]). Furthermore, they
address a large family of puzzles on the square grid. Their proofs are constructive and provide
polynomial-time solving algorithms. Note that a version of this game with labelled coins also
exists, where each coin must end up at its own specific place: we do not address this version
here, but some results are known [DDV02][Gal19].

? ? ?

Figure IV.1: The board is the triangular grid in the left and middle puzzles,
and the square grid in the right puzzle. The left (resp. middle, resp. right)
puzzle is solvable in 2 (resp. 3, resp. 4) moves.

We focus exclusively on the case where G is the square grid. Let us clarify that this refers to the
infinite square grid, where each vertex has exactly four neighbors: left, right, top, bottom. This
section lists some easy but important notions around this game, most of which are introduced
in [DDV02], in which the authors identify that the game subdivides into two main cases as we
are about to see. One of these cases is partially investigated in [Gal19], while the other is the

Chapter IV. From positional games to reconfiguration problems 167

subject of Section IV.2.

IV.1.1 Notations and first observations

We use the (self-)dual grid for graphical representations of the game: each vertex, or position, is
seen as a square and coins are placed at the center of squares. See Figure IV.2.

c

p2

p3

p1

Figure IV.2: A configuration C with 9 coins. From C, a possible move would
be c 7→ p1 or c 7→ p2 for example. However, c cannot be moved to p3, because
that position only has one neighboring coin other than c.

Notation IV.1.1. We introduce the following notations:
• Moving a coin c to a valid destination p is denoted by c 7→ p. Note that a coin c is simply

an element of V representing its location (since the coins are indistinguishable, a coin c
is nothing but an occupied position p). Typically, the notation c is used to designate an
occupied position, and the notation p is used for a position that is either unoccupied or
not necessarily occupied.

• If there is a single move c 7→ p from A to B, we write A
c 7→p7−−→ B or simply A 7→ B.

• If there exists a sequence of moves from A to B, we write A → B, otherwise we write
A ̸→ B. By convention, an empty sequence of moves is allowed so that A→ A.

• If A→ B and B → A then we may write A↔ B.

Let us start by making two immediate observations:

Proposition IV.1.2. Let A ̸= B be configurations. If A → B then there exists a coin in B
that has at least two neighboring coins in B.

Proof. The last moved coin has at least two neighboring coins by the 2-adjacency rule. ■

Proposition IV.1.3. Let A ̸= B be configurations. If there exists a coin b ∈ B such that
B \ {b} consists of all isolated coins, then A→ B if and only if A 7→ B.

Proof. Suppose that A = A0
c1 7→p17−−−−→ A1

c2 7→p27−−−−→ . . .
cT 7→pT7−−−−→ AT = B and that B \ {b} consists of

all isolated coins. In particular all coins in B \ {b} have at most one neighboring coin in B, so
pT = b by the 2-adjacency rule. Since AT −1 \{cT} = B \{pT}, this means AT −1 \{cT} consists of
all isolated coins. In particular all coins in AT −1\{cT} have at most one neighboring coin in AT −1,
so pT −1 = cT by the 2-adjacency rule. Continuing so, we get pT −1 = cT , pT −2 = cT −1, . . . , p1 = c2.
In conclusion, we have moved the same coin each time, so we could have moved it just once
instead and got A

c1 7→pT7−−−−→ B. ■

168 IV.1. Coin-moving puzzles with 2-adjacency restriction on the square grid

IV.1.2 Picking up and dropping coins

A move can be decomposed into two parts: a coin is picked up, and then dropped back on the
board.

Definition IV.1.4. [DDV02] We define the following actions:
• Pick up a coin: remove a coin from the board, without any restriction on its position.
• Drop a coin: put a previously picked up coin back on the board, with the 2-adjacency

restriction.
Picked up coins that have not yet been dropped may be referred to as coins in hand.

It is shown in [DDV02] that the game is unchanged if the player is allowed to pick up and drop
coins as individual actions:

Proposition IV.1.5. [DDV02] A puzzle is solvable (by moving coins) if and only if it is solvable
by moving, picking up and dropping coins. ■

Notation IV.1.6. In this variation, the state of the game at any given moment is described by
the configuration A on board and the number k of coins in hand: we denote this information by
A+k. For example, the notation A+k → B+k′ means that, from the configuration A with k coins
in hand at the start, it is possible (via moving, picking up and dropping coins) to reach the
configuration B with k′ = k + |A| − |B| coins in hand at the end.

IV.1.3 Span of a configuration

IV.1.3.1 Definition and a key necessary condition

A first natural question is: starting from some configuration A, what positions can we reach?
A central observation, which is an immediate consequence of the 2-adjacency restriction, is
the following: during the moves, all coins remain inside of the finite set obtained from A by
including all vertices that have at least two neighbors in A and iterating this process until no
more vertex can be included. We call this the span of A (see Figure IV.3 for an example):

Notation IV.1.7. Let C be a configuration, we denote by Adj(C) ⊆ V \ C the set of all
positions outside C that have at least two neighbors in C.

Definition IV.1.8. [DDV02] The span of a configuration C, denoted by span(C), is the limit
of the non-decreasing sequence of configurations (Ci)i≥0 defined recursively by C0 = C and
Ci+1 = Ci ∪ Adj(Ci). In other words, span(C) is the set of all positions that could be reached
from C if we had unlimited coins to add to the board at successive positions satisfying the
2-adjacency rule.

Therefore, any configuration B that we wish to obtain from A must therefore satisfy B ⊆ span(A),
which implies span(B) ⊆ span(A). This result is absolutely essential.

Proposition IV.1.9. [DDV02] The span never increases during moves: if A → B then
span(A) ⊇ span(B). ■

Chapter IV. From positional games to reconfiguration problems 169

Figure IV.3: The span of a configuration. In this example, there are four
components.

IV.1.3.2 Structural properties

Note that the span of any configuration C is finite i.e. the sequence (Ci)i≥0 from Definition
IV.1.8 is eventually constant. For one, the smallest rectangle R enclosing C clearly contains
the span, since each square outside R has at most one neighboring square inside R. This is a
fundamental difference with the game on the triangular grid for instance, where the span is the
entire grid for all nontrivial configurations. More specifically, it is easy to see that the span is
always a union of rectangles at distance at least 3 from each other:

Definition IV.1.10. Identifying the square grid as Z2, an m×n rectangle R is a set of positions
of the form I × J where I and J are intervals of cardinality m and n respectively, so that each
row of R contains m positions and each column of R contains n positions. We say R is even
(resp. odd) if its half-perimeter m + n is even (resp. odd).

Notation IV.1.11. We consider the usual distance i.e. the geodesic distance in the square grid,
denoted by dist.

Proposition IV.1.12. [DDV02] The span of any configuration C is a union of rectangles, such
that the distance between any two of these rectangles is at least 3 (these rectangles are called the
components of span(C)). ■

We add the following structural property of configurations, which will be useful later:

Proposition IV.1.13. Let C be a configuration and let R be a component of span(C). Then C
contains at least one coin in each of the following: the top row of R, the bottom row of R, the
leftmost column of R, the rightmost column of R, any union of two consecutive rows in R, any
union of two consecutive columns in R.

Proof. Using the symmetries, we only address the case of the top row and the union of two
consecutive rows. Let C = C0, C1, . . . , Cs = span(C) as in Definition IV.1.8 (indeed, the
sequence (Ci)i≥0 is eventually constant by finiteness of the span).

• Suppose for a contradiction that the top row R′ contains no coin in C i.e. C ∩ R′ = ∅.
Let 0 ≤ i ≤ s be smallest such that Ci ∩ R′ ≠ ∅: we have i ≥ 1 and Ci−1 ∩ R′ = ∅.
Obviously, any position in R′ has at most one neighbor in R \R′, so Adj(Ci−1) ∩R′ = ∅.
Since Ci = Ci−1 ∪ Adj(Ci−1), we get Ci ∩R′ = ∅ which is a contradiction.

• The previous proof still works if we replace R′ with any union of two consecutive rows,
since the key argument that any position in R′ has at most one neighbor in R \R′ still
holds. ■

170 IV.1. Coin-moving puzzles with 2-adjacency restriction on the square grid

IV.1.4 Minimal/minimum configurations

Definition IV.1.14. [DDV02] A configuration C is said to be minimal if the removal of any
coin in C decreases the span.

Picking up a coin from a minimal configuration decreases the span, and dropping it back
afterwards cannot increase the span because of the 2-adjacency restriction. Therefore:

Proposition IV.1.15. [DDV02] Any move played from a minimal configuration decreases the
span. ■

Definition IV.1.16. A configuration C is said to be minimum if there is no configuration C ′

with same span as C such that |C ′| < |C| (in particular, C is then minimal).

As noticed in [DDV02], the cardinality of minimum configurations (as well as a lot of information
on their structure) is well known thanks to the following classic problem from folklore. In a
rectangular parcel R consisting of small squares arranged in a grid, some squares are initially
invaded by weeds. Time passes, and at each time step, any square that is adjacent to at least
two weeds-covered squares gets invaded in turn. How many squares need to be covered initially
for the entire parcel to be invaded in the end? Since the rule for the propagation of the weeds is
exactly the same as for the construction of the span, the answer coincides with the cardinality
of a minimum configuration with span R. This problem was first published in [Kva86] for a
10× 10 parcel. An elegant solution is obtained via an invariant which is the perimeter of the
invaded area:

Proposition IV.1.17. Let R be an m× n rectangle and let M be a minimum configuration
with span R. We have |M | =

⌈
m+n

2

⌉
. Moreover:

• If R is even, then all coins in M are isolated.
• If R is odd, then all coins in M are isolated except possibly for a single pair of adjacent

coins.

Proof. Define Perim(C) as the perimeter of the union of unit squares on board corresponding
to all occupied positions in a configuration C. For any configuration C and any p ̸∈ C, we
have Perim(C ∪ {p}) = Perim(C) + 4 − 2k where k is the number of coins in C that are a
neighbor of p: indeed, in terms of the perimeter, each side of p removes 1 if it neighbors a coin
in C or adds 1 if it does not. Therefore, any configuration C satisfies Perim(C) = 4|C| − 2l
where l is the number of pairs of adjacent coins in C. Moreover, the perimeter cannot increase
during the construction of the span, since each added coin has at least two neighbors amongst
the coins that are already present: this implies that any configuration C with span R satisfies
2(m + n) = Perim(span(C)) ≤ Perim(C) ≤ 4|C| hence |C| ≥

⌈
m+n

2

⌉
. Conversely, it is easy

to find configurations with span R that have exactly
⌈

m+n
2

⌉
coins (think of a diagonal of

coins if m = n, or more generally an ‘L’ shape as in Definition IV.1.20), so the cardinality
of minimum configurations with span R is exactly

⌈
m+n

2

⌉
. Finally, let M be a minimum

configuration with span R and let l be the number of pairs of adjacent coins in M , we have
2(m + n) ≤ Perim(M) = 4

⌈
m+n

2

⌉
− 2l, so in conclusion:

• If R is even, then 2(m + n) ≤ 4m+n
2 − 2l hence l = 0 i.e. all coins in M are isolated.

• If R is odd, then 2(m + n) ≤ 4m+n+1
2 − 2l hence l ∈ {0, 1} i.e. all coins in M are isolated

except possibly for a single pair of adjacent coins. ■

Chapter IV. From positional games to reconfiguration problems 171

IV.1.5 ‘L’s and canonical configurations

In order not to clash with the terminology from the previous chapters, the notion of "chain"
defined in [DDV02] will be renamed here as a "string":

Definition IV.1.18. [DDV02, as chain] A string between some coins c and c′ is the configuration
denoted by [c1, . . . , cN] which is formed by a sequence of coins (c = c1, c2, . . . , cN = c′) such that
dist(ci, ci+1) ∈ {1, 2} for all 1 ≤ i ≤ N − 1.

Proposition IV.1.19. [DDV02] The span of a string coincides with its smallest enclosing
rectangle. ■

In [DDV02], the authors define a reference minimum configuration for a given span, where the
coins in each component form an L shape:

Definition IV.1.20. [DDV02] An ‘L’ of size m×n is a minimum string L between two opposite
corners of an m×n rectangle R and hugging two consecutive sides of R. We say L is even (resp.
odd) if R is even (resp. odd) i.e. if m + n is even (resp. odd). See Figure IV.4.

Remark. In accordance with Proposition IV.1.17, an m × n ‘L’ has cardinality
⌈

m+n
2

⌉
, and

consecutive coins in an even ‘L’ are at distance exactly 2 whereas consecutive coins in an odd
‘L’ are at distance exactly 2 except for a single pair of adjacent coins. An even ‘L’ is entirely
defined by its span and orientation, whereas for an odd ‘L’ we also need the localization of the
two adjacent coins. By Proposition IV.1.19, the span of an ‘L’ is its smallest enclosing rectangle
i.e. R in Definition IV.1.20.

Figure IV.4: Eight examples of ‘L’s with various sizes and orientations.

Definition IV.1.21. [DDV02] Let R be an m× n rectangle: the canonical ‘L’ with span R is
the ‘L’ with span R that is oriented like the letter L, with the additional property if R is odd
that the two adjacent coins are in the top-left corner (if n is even) or bottom-right corner (if m
is even). Let C be a configuration with span ⋃s

i=1 Ri where R1, . . . , Rs are rectangles at distance
at least 3 from each other, as per Proposition IV.1.12: the canonical configuration associated to
C is the configuration denoted by LC with same span as C such that, for all 1 ≤ i ≤ s, LC ∩Ri

is the canonical ‘L’ with span Ri. See Figure IV.5.

172 IV.1. Coin-moving puzzles with 2-adjacency restriction on the square grid

Figure IV.5: Left: a configuration C. Right: the associated canonical con-
figuration LC (the top-left and bottom-left ‘L’s are even, the top-right and
bottom-right ‘L’s are odd).

IV.1.6 Extra coins and redundant coins

IV.1.6.1 Definitions and first observations

Proposition IV.1.9 stated that, for a puzzle A
?−→ B to be solvable, it is necessary that

span(B) ⊆ span(A). In the study that is made in [DDV02], a key information is the number
of "extra coins" i.e. coins that can be removed from A while maintaining a span containing
that of B. The more extra coins at our disposal, the more flexibility with respect to the span
constraint, hence, the easier a puzzle.

Definition IV.1.22. Let A be a configuration and k ∈ N.
• A set of extra coins in A is a subset A′ ⊆ A such that span(A \A′) = span(A). We say A

has k extra coins if it contains a set of k extra coins. For example, A has 1 extra coin if
and only if A is not minimal.

• Let B be a configuration. A set of extra coins in A relatively to B is a subset A′ ⊆ A such
that span(A \ A′) ⊇ span(B). We say A has k extra coins relatively to B if it contains
a set of k extra coins relatively to B. If A and B have same span, then this definition
coincides with the previous one.

Remark. Notice that the phrase "A has k extra coins" is understood in the "at least" sense as
opposed to "exactly".

?

b1

b2

a1

a2

Figure IV.6: An example of a puzzle with 2 extra coins a1, a2 (Definition
IV.1.22) and 2 redundant coins b1, b2 (Definition IV.1.24).

Example. In the puzzle A
?−→ B from Figure IV.6, {a1, a2} is a set of extra coins in A (in

particular, it is also a set of extra coins in A relatively to B).

Proposition IV.1.23. Let A and B be distinct configurations. If A→ B then A has 1 extra
coin relatively to B.

Chapter IV. From positional games to reconfiguration problems 173

Proof. Suppose A does not have 1 extra coin relatively to B, and consider the first move c 7→ p
made from A. This move can be decomposed as follows: first we remove c from the board, then
we put it back at p. After removing c from the board, the span is span(A \ {c}). When we put
the coin back, the span stays the same because of the 2-adjacency rule. Therefore the span
after the first move is span(A \ {c}), which does not contain span(B) because {c} is not a set of
extra coins relatively to B. By Proposition IV.1.9, the span cannot increase during the moves,
hence A ̸→ B. ■

We now introduce the notion of redundant coins, which is also present in [DDV02] (though
unnamed). They are, to the target configuration B, the relevant analogue of what extra coins
are to the starting configuration A.

Definition IV.1.24. Let B be a configuration. A set of redundant coins in B is a subset
B′ ⊆ B of the form B′ = {b1, . . . , bk} where, for all 1 ≤ i ≤ k, bi has at least two neighbors in
B \ {b1, . . . , bi−1}. We say B has k redundant coins if it contains a set of k redundant coins.

Example. In the puzzle A
?−→ B from Figure IV.6, {b1, b2} is a set of redundant coins in B.

Remark. Note that redundant coins are extra coins, but the converse is not true in general (think
of a1 and a2 in Figure IV.6).

Proposition IV.1.25. Let A and B be distinct configurations. If A → B then B has one
redundant coin.

Proof. This is exactly Proposition IV.1.2. ■

Proposition IV.1.26. Let B be a configuration and let B′ = {b1, . . . , bk} be a set of redundant
coins in B, ordered as in the definition. Then B ↔ (B \ B′)+k. In particular, for any
configuration A, we have A→ B if and only if A→ (B \B′)+k.

Proof. We perform B → (B \ B′)+k by picking up the coins in B′, and (B \ B′)+k → B by
dropping the coins in hand at bk, bk−1, . . . , b1 successively (which respects the 2-adjacency rule
since bi has at least two neighbors in B \ {b1, . . . , bi−1}). ■

Therefore, more redundant coins can only make a puzzle easier. One can think of extra coins in
A (or extra coins in A relatively to B) as the first coins that we move, and of redundant coins
in B as the last coins that we place.

IV.1.6.2 A central factor for the game

Denoting by e the number of extra coins in the starting configuration relatively to the target
configuration, the verdict made in [DDV02] is roughly the following:

• All puzzles with e = 0 are unsolvable (this is Proposition IV.1.23).
• Puzzles with e = 1 are difficult to assess in general.
• Almost all puzzles with e ≥ 2 are solvable.

It actually turns out that such a statement for e = 2 is overly optimistic. We now address this
case in Section IV.2. Before that, let us briefly mention the case e = 1. Its study has been
initiated in [Gal19], with the additional assumption that A and B have same span and are both
minimum+1 i.e. consist of a minimum configuration plus one extra coin. It is shown that the
game then reduces to a pushing game where, instead of the 2-adjacency rule, a coin can be slid
onto a neighboring square under certain conditions. This pushing game is played directly on
the minimum configurations obtained by removing the extra coin in A and B. One result on

174 IV.2. The case of two extra coins

the pushing game is that the configurations that can be reached from a minimum string M are
exactly all minimum strings between the same vertices as M .

IV.2 The case of two extra coins

IV.2.1 Presentation of the problem and state of the art

The best part of [DDV02] is dedicated to puzzles A
?−→ B where A has 2 extra coins relatively

to B. The authors design an algorithm that goes from A to B by routing through the canonical
configuration: Subsection IV.2.2 will provide details on this procedure, which we are going to
use ourselves. Their main result is the following:

Theorem IV.2.1. [DDV02] Let A and B be configurations such that |A| = |B|, and suppose
that:

(i) span(A) = span(B).
(ii) A has 2 extra coins relatively to B.
(iii) B has 2 redundant coins.

Then A→ B. ■

Example. The puzzle from Figure IV.6 is solvable according to Theorem IV.2.1, with {a1, a2} as
the set of extra coins in A relatively to B and {b1, b2} as the set of redundant coins in B.

In fact, a stronger version of this theorem is stated in [DDV02], where condition (i) is omitted
altogether. We show in Subsection IV.2.3 that the authors’ claim is incorrect, but that an
in-between version does hold, where condition (i) is relaxed so as to require that each component
of span(A) contains at most one component of span(B). Subsection IV.2.4 then investigates
what happens when this requirement is not satisfied. We show that, if condition (i) is omitted
in Theorem IV.2.1, then the theorem does not hold for any constant number of extra coins or
redundant coins that we ask for in conditions (ii) and (iii), let alone just two. On the positive
side, we obtain a new sufficient condition for a puzzle to be solvable, using a different algorithm.

IV.2.2 Canonicalization process

Let us start by explaining the algorithm behind Theorem IV.2.1. The key to the proof in
[DDV02] is that two coins in hand are enough to turn any ‘L’ into another ‘L’ of same span:

Proposition IV.2.2. [DDV02] Let L1 and L2 be two ‘L’s with the same m × n span. Then
L+2

1 ↔ L+2
2 in O(mn) moves. ■

In particular, two coins in hand are enough to flip any ‘L’, which means turning it into the
mirrored ‘L’ hugging the other two sides of the span. Let us detail the method used for this
specific transformation, as we will call on it later. Figure IV.8 explains how to flip an even ‘L’
with two coins in hand, using the subroutines from Figure IV.7. Figure IV.11 explains how to
flip an even ‘L’ with one coin in hand, using the subroutines from Figure IV.10 as well as the
leapfrog technique described in Figure IV.9: this means relocating the unique pair of adjacent
coins inside an odd ‘L’. In all figures throughout this chapter, an encircled coin represents a coin

Chapter IV. From positional games to reconfiguration problems 175

that has just been dropped, while a crossed out coin represents a coin that we pick up.

Figure IV.7: Subroutines used to flip an even ‘L’. The bottom subroutine is
only used if both sides are even.

induction

Figure IV.8: Flipping an even ‘L’, with odd sides (top) or even sides (bottom).

Figure IV.9: A leapfrog. Intermediary states cover all possible locations of the
pair of adjacent coins.

Figure IV.10: Subroutines used to flip an odd ‘L’.

With two coins in hand, using successive transformations of ‘L’s which include reorientations as in
Proposition IV.2.2, the authors design a "canonicalization process" that turns any configuration
into its associated canonical configuration in a reversible manner:

Lemma IV.2.3. [DDV02] For any configuration C, we have C+2 ↔ L
+2+|C|−|LC |
C in O(N3)

moves where N := |C|. ■

176 IV.2. The case of two extra coins

leap
frog

induction

Figure IV.11: Flipping an odd ‘L’.

From there, a method to solve a puzzle A
?−→ B would roughly be to: pick up two coins in A;

canonicalize; reverse into B minus two coins; drop two coins to finish B. To do this however:
– We need two coins in A that we can pick up without breaking the inclusion of spans at

the start. In other words, we need 2 extra coins in A relatively to B.
– We need two appropriate spots in B to drop our two coins in hand at the end. In other

words, we need 2 redundant coins in B.
Moreover, unless the spans are equal once the first two coins {a1, a2} have been picked up, we
need a way to go from LA\{a1,a2} to LB. This reasoning can be summed up as follows:

Corollary IV.2.4. Let A and B be configurations such that |A| = |B| =: N , and suppose that:
(i) A has 2 extra coins relatively to B.
(ii) B has 2 redundant coins.

Let A0 := A \ {a1, a2} where {a1, a2} is a set of extra coins in A relatively to B.
If L

+|A|−|LA0 |
A0 → L

+|B|−|LB |
B , then A→ B in O(N3) moves.

Proof. Let B0 := B\{b1, b2} where {b1, b2} is a set of redundant coins in B. Note that LB = LB0

since span(B) = span(B0). We go from A to B in five steps:
• We get A→ A+2

0 by picking up a1 and a2.
• Lemma IV.2.3 ensures that A+2

0 → L
+2+|A0|−|LA0 |
A0 .

• We have L
+2+|A0|−|LA0 |
A0 = L

+|A|−|LA0 |
A0 → L

+|B|−|LB |
B = L

+2+|B0|−|LB0 |
B0 by assumption.

• Lemma IV.2.3 ensures that L
+2+|B0|−|LB0 |
B0 → B+2

0 .
• Finally, Proposition IV.1.26 yields B+2

0 → B. ■

IV.2.3 A slight improvement on Theorem IV.2.1

The condition that L
+|A|−|LA0 |
A0 → L

+|B|−|LB |
B in Corollary IV.2.4 is what the authors have missed

in [DDV02]. If span(A) = span(B), then LA = LA0 = LB, so this condition is trivially satisfied
hence why Theorem IV.2.1 is correct. However, for the stronger version that they claim, the
authors reduce to the case where span(A) = span(B) by picking up all coins in A \ span(B),
which is incorrect since this may cause the span to become strictly smaller than that of B. It
turns out that, without the added condition (i) in Theorem IV.2.1, some puzzles are solvable
and some are not, as illustrated in Figure IV.12. The puzzle on the left is solvable in 12 moves.
The puzzle on the right is unsolvable (as we will later prove) and therefore is a counterexample
to the version of the theorem in [DDV02]. It is easy to check that no smaller counterexample
exists, be it in terms of number of coins or half-perimeter of the starting span. A generalized
family of counterexamples will be exhibited in Subsection IV.2.4: in all of them, the problem
comes from the fact that span(B) is split into two far apart components.
So, how can we improve on Theorem IV.2.1 using the same canonicalization process i.e. using

Chapter IV. From positional games to reconfiguration problems 177

? ?

Figure IV.12: Two puzzles satisfying conditions (ii) and (iii) of Theorem IV.2.1
but not (i), since span(A) ⊋ span(B). The left one is solvable but the right
one is not.

Corollary IV.2.4? We do not actually need the spans to be equal: it is sufficient that, after
picking up two coins, each component of the span contains at most one component of the target
span. We can then simply: pick up two adequate coins, reach the canonical configuration, shrink
some of the ‘L’s if needed to get the same span as B, and then reverse into B. Indeed, while
splitting an ‘L’ into two separate components can be difficult (as we have just seen), shrinking
an ‘L’ with two coins in hand is not a problem:

Lemma IV.2.5. [Gal19] If L1 and L2 are canonical ‘L’s with span(L1) ⊇ span(L2), then
L+2

1 → L
+2+|L1|−|L2|
2 in O(mn) moves, where m× n is the size of span(L1).

Proof. First of all, we trim L1 to the right if needed, as follows (see Figure IV.13):
1. If L1 is odd, we use a leapfrog to put the pair of adjacent coins to the far right.
2. We make sure there is a coin c at the rightmost position that we want to keep, by dropping

one there if needed.
3. We finish by simply picking up all coins that are further right than c.

1 3

1 2 3

Figure IV.13: Trimming a 7× 4 ‘L’ to its right, making it 4× 4 (top) or 5× 4
(bottom). The numbers above the arrows refer to the three steps.

We then trim our ‘L’ at the top, in analogous fashion. We now flip it, so it is now ready to be
trimmed to the left and at the bottom. Once this is done, we flip it back and use a leapfrog if
needed to make it canonical. ■

All in all, Theorem IV.2.1 can be improved as follows:

Theorem IV.2.6. [Gal19] Let A and B be configurations such that |A| = |B| =: N , and suppose
that:

(i) A has 2 extra coins relatively to B, and more precisely: there exist a1 ̸= a2 in A such that
span(A \ {a1, a2}) ⊇ span(B) and each component of span(A \ {a1, a2}) contains at most
one component of span(B).

(ii) B has 2 redundant coins.
Then A→ B in O(N3) moves.

178 IV.2. The case of two extra coins

Proof. Let A0 := A \ {a1, a2}. By Corollary IV.2.4, it suffices to show that L
+|A|−|LA0 |
A0 →

L
+|B|−|LB |
B . Since each component of span(A0) contains at most one component of span(B), we

can use Lemma IV.2.5 to shrink each ‘L’ in LA0 to the size of the corresponding ‘L’ in LB0 . This
is always possible, because we start off with |A| − |LA0 | ≥ |A| − |A0| = 2 coins in hand and this
number cannot decrease each time we shrink an ‘L’. ■

Note that puzzles satisfying condition (i) of Theorem IV.2.6 but not condition (ii) (while still
satisfying the fact that B has 1 redundant coin, otherwise we would be in a trivially unsolvable
case by Proposition IV.1.25) also may or may not be solvable as shown in Figure IV.14.

? ?

Figure IV.14: Two puzzles satisfying condition (i) of Theorem IV.2.6 but not
(ii). The left puzzle is solvable in 4 moves, while the right puzzle is unsolvable.

IV.2.4 The general case with two extra coins

What if some component of span(A) contains two or more components of span(B), so that
Theorem IV.2.6 does not apply? A first natural guess would be that we then need more extra
coins and/or more redundant coins than just two. Nevertheless, we now exhibit a family of
unsolvable puzzles which proves that, even with the inclusion of spans, no constant number of
extra coins in A (relatively to B or not) or redundant coins in B can guarantee that a puzzle is
solvable in general. Next, we present a new sufficient condition for a puzzle to be solvable, which
shows in particular that the aforementioned family consists of just about worst-case puzzles.

IV.2.4.1 Worst-case puzzles

Puzzles like those from Figure IV.12 require to split the span, at some point during the moves,
in a way that we now prove impossible without a certain total number of coins relative to the
size of the rectangles involved.

Definition IV.2.7. Let R1 and R2 be rectangles at distance at least 3 from each other, and let
A be a configuration such that R1 and R2 are included in the same component of span(A). An
(R1, R2)-split of A is a sequence of moves A = A0 7→ A1 7→ . . . 7→ AT (T ≥ 1 necessarily) such
that R1 and R2 are included in two separate components of span(AT).

Proposition IV.2.8. Let R1 and R2 be rectangles of size m1 × n1 and m2 × n2 respectively,
whose projections on the x axis intersect, and whose projections on the y axis do not intersect
with a gap of h ≥ 2 rows separating them. Let A be a configuration such that R1 and R2
are included in the same component of span(A). If there exists an (R1, R2)-split of A, then
|A| ≥ m1+n1+m2+n2+h−1

2 .

Proof. Let A = A0 7→ A1 7→ . . . 7→ AT be an (R1, R2)-split of A with minimum number of
moves, so that R1 and R2 are included in the same component R of span(AT −1) but in two
separate components R′

1 and R′
2 of span(AT) (see Figure IV.15). If R′

1 is of size m′
1× n′

1 and R′
2

is of size m′
2 × n′

2 with a gap of h′ rows separating them, then we have m′
1 ≥ m1, m′

2 ≥ m2 and
n′

1 + n′
2 + h′ ≥ n1 + n2 + h hence m′

1+n′
1+m′

2+n′
2+h′−1

2 ≥ m1+n1+m2+n2+h−1
2 . Therefore, the worst

Chapter IV. From positional games to reconfiguration problems 179

case for what we want to prove is if R1 = R′
1 and R2 = R′

2, which is what we assume from now
on.

n1

n
′

1

n2 n
′

2

h
′

h

m2

m
′

2

m1

m
′

1R

R
′

1

R
′

2

R1

R2

Figure IV.15: Illustration of R, R1, R2, R′
1, R′

2.

We use AT −1 to count the coins and carry out the proof. We have:
|A| = |AT −1| = |AT −1 ∩R1|+ |AT −1 ∩R2|+ |AT −1 \ (R1 ∪R2)|. (IV.1)

Moreover:
• The only coin in AT ∩R1 that might not be in AT −1 ∩R1 is the coin that has been moved

to go from AT −1 to AT , however that coin does not contribute to the span since it has
at least two coins adjacent to it in AT ∩ R1. Since span(AT ∩ R1) = R1, we thus get
span(AT −1 ∩R1) = R1. In particular, Proposition IV.1.17 yields:

|AT −1 ∩R1| ≥
⌈

m1 + n1

2

⌉
. (IV.2)

• Similarly, span(AT −1 ∩R2) = R2 and:

|AT −1 ∩R2| ≥
⌈

m2 + n2

2

⌉
. (IV.3)

• By Proposition IV.1.13, there cannot be two consecutive rows of R without a coin in AT −1.
Since there is a gap of h rows between R1 and R2, this yields:

|AT −1 \ (R1 ∪R2)| ≥
⌊

h

2

⌋
. (IV.4)

Combining (IV.1) with inequalities (IV.2), (IV.3) and (IV.4), we get:

|A| ≥
⌈

m1 + n1

2

⌉
+
⌈

m2 + n2

2

⌉
+
⌊

h

2

⌋
≥ m1 + n1 + m2 + n2 + h− 1

2 . ■

Corollary IV.2.9. Let n ≥ 9. We define configurations An and Bn as in Figure IV.16:
• An consists of an n× n ‘L’ with

⌊
n−2

2

⌋
coins added to the bottom row.

• Bn has the same smallest enclosing rectangle as An and contains an n× 1 ‘L’ in both the
top and bottom rows with

⌊
n−5

2

⌋
coins added to the bottom row.

Then An ̸→ Bn even though: An has
⌊

n−2
2

⌋
extra coins, Bn has

⌊
n−5

2

⌋
redundant coins, and

span(An) ⊇ span(Bn).

Proof. Let R1 (resp. R2) be the top row (resp. the bottom row) of span(An): R1 and R2 are of
size n× 1 and separated by a gap of n− 2 rows. Solving this puzzle would mean performing an
(R1, R2)-split of An, which is impossible by Proposition IV.2.8 because:

180 IV.2. The case of two extra coins

?

An Bn

Figure IV.16: Definition of the puzzle An
?−→ Bn (here n = 9). The shaded

coins represent the extra/redundant coins.

• If n is odd then n + n−3
2 = |An| = |Bn| = 2n+1

2 + n−5
2 = 3n−3

2 < n+1+n+1+(n−2)−1
2 .

• If n is even then n + n−2
2 = |An| = |Bn| = 2n+2

2 + n−6
2 = 3n−2

2 < n+1+n+1+(n−2)−1
2 . ■

Corollary IV.2.10. For any k ∈ N, there exist configurations A and B with |A| = |B| such
that:

• span(A) ⊇ span(B).
• A has k extra coins.
• B has k redundant coins.
• A ̸→ B. ■

Proposition IV.2.8 can actually be improved: we now give a refined bound that even applies
to the puzzle on the right of Figure IV.12 which, as previously mentioned, is the smallest
counterexample to the version of Theorem IV.2.1 in [DDV02].

Proposition IV.2.11. Let R1, R2 and A be as in Proposition IV.2.8. If there exists an
(R1, R2)-split of A but none in two moves or less, then |A| ≥ m1+n1+m2+n2+h+2

2 .

Proof. Let us pick up where the proof of Proposition IV.2.8 ended. Since there exists no
(R1, R2)-split of A in two moves or less, we have T ≥ 3. We use the fact that AT −1 then has the
following properties:

(i) AT −1 contains a coin that is adjacent to at least two other coins.
(ii) For all c ∈ AT −1, AT −1 \ {c} does not consist of all isolated coins.

Property (i) comes from Proposition IV.1.2 since T − 1 ≥ 1, and property (ii) comes from
Proposition IV.1.3 since T − 1 ≥ 2 (indeed A ̸7→ AT −1 because our sequence of moves has been
chosen shortest). We distinguish between four cases:

1) Case 1: R1 and R2 are both odd; h is even.
This is the easiest case:

|A| ≥
⌈

m1 + n1

2

⌉
+
⌈

m2 + n2

2

⌉
+
⌊

h

2

⌋
= m1 + n1 + 1

2 + m2 + n2 + 1
2 + h

2

= m1 + n1 + m2 + n2 + h + 2
2 .

2) Case 2: At least one of R1 or R2 is even (say R2 is even); h is even.
We just have to find one coin more than what inequalities (IV.2), (IV.3) and (IV.4) give

Chapter IV. From positional games to reconfiguration problems 181

us combined, because if we do then we can conclude that:

|A| ≥
⌈

m1 + n1

2

⌉
+
⌈

m2 + n2

2

⌉
+
⌊

h

2

⌋
+ 1

≥ m1 + n1

2 + m2 + n2

2 + h

2 + 1 = m1 + n1 + m2 + n2 + h + 2
2 .

Therefore, suppose for a contradiction that inequalities (IV.2), (IV.3) and (IV.4) are all
tight. For (IV.4), this means that AT −1 \ (R1 ∪R2) consists exactly of one coin every two
rows in the gap between R1 and R2. For (IV.2) and (IV.3), this means AT −1 ∩ R1 and
AT −1 ∩R2 are both minimum: by Proposition IV.1.17, all coins in AT −1 ∩R2 are isolated
and all coins in AT −1 ∩R1 are isolated except possibly for a single pair of adjacent coins.
We can see that the only way to satisfy property (i) is if AT −1 ∩R1 contains a pair {c1, c2}
of adjacent coins such that c1 is adjacent to one of the coins in AT −1 \ (R1 ∪ R2), as in
Figure IV.17 (left). However, c1 then violates property (ii), a contradiction.

c1c2

R1

R2

R1

R2

c

R1

R2

Figure IV.17: The configuration AT −1: a contradiction in Case 2 (left), Case 3
(middle) and Case 4 (right).

3) Case 3: At least one of R1 or R2 is odd (say R2 is odd); h is odd.
Again, we just have to find one coin more than what inequalities (IV.2), (IV.3) and (IV.4)
give us combined, because if we do then we can conclude that:

|A| ≥
⌈

m1 + n1

2

⌉
+
⌈

m2 + n2

2

⌉
+
⌊

h

2

⌋
+ 1

≥ m1 + n1

2 + m2 + n2 + 1
2 + h− 1

2 + 1 = m1 + n1 + m2 + n2 + h + 2
2 .

Therefore, suppose for a contradiction that inequalities (IV.2), (IV.3) and (IV.4) are all
tight. For (IV.2) and (IV.3), this means that AT −1∩R1 and AT −1∩R2 are both minimum:
in particular, neither contains three coins such that one is adjacent to the other two. For
(IV.4), this means that AT −1 \ (R1 ∪ R2) consists exactly of one coin every two rows in
the gap between R1 and R2, none of which is adjacent to R1 or R2 since h is odd. See
Figure IV.17 (middle). All in all, property (i) is violated, a contradiction.

4) Case 4: R1 and R2 are both even; h is odd.
In this case, we have to find two coins more than what inequalities (IV.2), (IV.3) and

182 IV.2. The case of two extra coins

(IV.4) give us combined, because if we do then we can conclude that:

|A| ≥
⌈

m1 + n1

2

⌉
+
⌈

m2 + n2

2

⌉
+
⌊

h

2

⌋
+ 2

≥ m1 + n1

2 + m2 + n2

2 + h− 1
2 + 2 = m1 + n1 + m2 + n2 + h + 3

2 .

First of all, the same proof as in Case 3 shows that inequalities (IV.2), (IV.3) and
(IV.4) cannot all be tight: there needs to be some coin c in At−1 that has (at least) two
coins adjacent to it. Now suppose for a contradiction that all three inequalities become
tight if we remove c i.e.: |(AT −1 \ {c}) ∩ R1| =

⌈
m1+n1

2

⌉
, |(AT −1 \ {c}) ∩ R2| =

⌈
m2+n2

2

⌉
,

|(AT −1 \ {c}) \ (R1 ∪R2)| =
⌊

h
2

⌋
. See Figure IV.17 (right). If c ∈ R1 then the two coins

adjacent to c in AT −1 are inside R1 as well (indeed, as we have seen in Case 3, the fact that
h is odd means that none of the ⌊h

2⌋ coins in AT −1 \ (R1∪R2) is adjacent to R1). Therefore
(AT −1 \ {c}) ∩ R1 has span R1, and is minimum since |(AT −1 \ {c}) ∩ R1| =

⌈
m1+n1

2

⌉
.

Similarly, (AT −1 \ {c}) ∩ R2 has span R2 and is minimum. By Proposition IV.1.17, all
coins in (AT −1 \ {c}) ∩ R1 and (AT −1 \ {c}) ∩ R2 are thus isolated. Since h is odd, the
⌊h

2⌋ coins in (AT −1 \ {c}) \ (R1 ∪R2) are also isolated. This contradicts property (ii). ■

Corollary IV.2.12. The puzzle on the right of Figure IV.12 is unsolvable.

Proof. Let R1 (resp. R2) be the top row (resp. the bottom row) of the starting span: R1
and R2 are of size 3 × 1 and separated by a three row gap. Solving this puzzle would mean
performing an (R1, R2)-split of the starting configuration, which is impossible by Proposition
IV.2.11: indeed, we can easily check that it is impossible in two moves or less, and the puzzle
contains 6 < 3+1+3+1+3+2

2 coins. ■

IV.2.4.2 A new sufficient condition for a puzzle to be solvable

We now present a result that holds even when some component of span(A) contains two or more
components of span(B).

Notation IV.2.13. Let C be a configuration. We denote by minC the cardinality of minimum
configurations with same span as C. Note that, if this span is an m × n rectangle, then
minC =

⌈
m+n

2

⌉
by Proposition IV.1.17.

Theorem IV.2.14. Let A and B be configurations such that |A| = |B| =: N , and suppose that:
(i) span(A) ⊇ B is a single m× n rectangle.
(ii) A has 2 extra coins.
(iii) B has 2 redundant coins.
(iv) N ≥ 3

2 max(minA, minB) + 2.
Then A→ B in O(N3) moves.

We would have liked conditions (i) and (ii) to be replaced by the sole condition that A has
2 extra coins relatively to B, however we are not sure how the proof would work in that
case. Apart from that, the additional assumption compared to Theorem IV.2.1 is condition
(iv), which is not about the quality of the coins involved (extra/redundant) but purely about
their quantity, as was suggested by the worst-case puzzles from Corollary IV.2.9. Moreover,
these puzzles also show that the bound from condition (iv) is almost tight: indeed, if n is odd
for instance, we have minAn = n and minBn = n + 1 so that the puzzle An

?−→ Bn satisfies
N = 3n−3

2 = 3
2 max(minAn , minBn)− 3, just 5 coins away from this bound.

Chapter IV. From positional games to reconfiguration problems 183

We now proceed with the proof of Theorem IV.2.14. As usual, we are going to route through
the canonical configurations, which means the challenge is to go from LA to LB. The proof
relies on an intuitive way to do so, which consists in forming a wave of coins (by flipping ‘L’s)
to sweep across the board while dropping coins at all positions in LB, as detailed in the proof
of the following lemma. Note that this lemma is more general than we use, since the target
configuration is not required to be canonical.

Lemma IV.2.15. Let m, n ≥ 1 and let L be the canonical ‘L’ of size m × n. Let k ∈ N. If
a configuration C ⊆ span(L) satisfies |C| < min

(⌈
m+n

2

⌉
−
⌈

min(m,n)
2

⌉
+ (k − 1), 2(k − 1)

)
, then

L+k → C+k+|L|−|C| in O(mn) moves.

Proof. We proceed by induction on the half-perimeter m + n. If m = n = 1, then C = L
or C = ∅ so the result is obvious. Suppose m + n ≥ 3 and assume the result holds for any
half-perimeter lesser than m + n. Up to a 90 degree rotation of the board, also assume m ≤ n.
We divide R := span(L) into two rectangles: a bottom half R1 and a top half R2 (if n is even
then both halves are equal, otherwise we choose one of them arbitrarily to be bigger than the
other by one row). Define C1 := C ∩R1 and C2 := C ∩R2. Up to swapping the roles of R1 and
R2, assume |C1| ≤ |C2|. Let n′ ∈

{⌊
n
2

⌋
,
⌈

n
2

⌉}
be the number of rows of R2, so that R2 is of size

m× n′. To reach C, we build the bottom half C1 first, then the top half C2.

1 We start by building the bottom half of C. We show that L+k → C+k′

0 where k′ :=
k+|L|−|C0| and C0 is the configuration defined as follows: C0∩R1 = C1, and C0∩R2 = L2
is the canonical ‘L’ of size m× n′. See Figure IV.18.

n

m

n
′

Figure IV.18: An example of a configuration C (left) with its associated
configuration C0 (right).

By our assumption on C, we have k− 1 > |C|
2 ≥ |C1| (recall that we have assumed without

loss of generality that |C1| ≤ |C2| i.e. C1 contains at most half of the coins in C) so
k ≥ |C1|+ 2. This allows us to view our k coins in hand as follows:

• We have 2 supporting coins that we will use to transform strings.
• We have |C1| building coins that we will drop at the right positions to build C1.
• If k > |C1|+ 2, the remaining k − |C1| − 2 coins will be kept in hand.

Note that the supporting coins might not remain the same throughout the moves. For
example, we might drop a supporting coin, perform some moves, and then pick up a coin:
in that case, the picked up coin becomes a supporting coin even if it is not "physically"
the same coin that we dropped initially. We proceed in four steps.

(a) Let p be the bottom-left corner of R2: we want to make sure there is a coin at p.

184 IV.2. The case of two extra coins

– Case (a1): even R, odd n′. There already is a coin at p.
– Case (a2): even R, even n′. We drop one of our supporting coins at p.
– Case (a3): odd R. If needed, we use a leapfrog to put one of the two adjacent

coins at p. Recall that a leapfrog only uses one supporting coin.

Figure IV.19: The board after step (a). From left to right: case (a1), case (a2),
case (a3).

(b) The board now contains an ‘L’ whose extremal coins are at the bottom-left corner of
R2 and the bottom-right corner of R1, as highlighted in Figure IV.19. We now use
our supporting coin(s) to flip this ‘L’, while building C1 in the process (see Figure
IV.21 for the desired result). To achieve this, we take advantage of the fact that the
flip sweeps over the entirety of R1. In the subroutines from Figures IV.7 and IV.10,
some positions are highlighted by a black outline: whenever one of these positions
contains a coin in C1, we drop a building coin there at the appropriate moment
during the subroutine (one example is detailed in Figure IV.20). Over the flip as a
whole, these positions cover all of R1 except its rightmost column, so that all of C1
is correctly replicated at the end of this step apart from the coins in the rightmost
column. Note that the ‘L’ that we flip is odd in case (a2), so that the lone remaining
supporting coin is indeed enough to flip it. See Figure IV.21.

Figure IV.20: How to drop a building coin at any desired position (here we
drop four of them, but we can drop less). The building coins are shaded.

Figure IV.21: Left: a configuration C (the same example as in Figure IV.18).
Middle: the board after step (a). Right: the board after step (b).

Chapter IV. From positional games to reconfiguration problems 185

(c) We now make sure there is a coin in the bottom-right corner of R2. If the newly
flipped ‘L’ is odd, this is done with a leapfrog. If it is even, in particular we are not in
case (a2), so we can afford to drop one of our two supporting coins at the bottom-right
corner of R2 if needed. In both cases, we still have at least one supporting coin at
our disposal. We now correct the rightmost column of R1: we drop building coins
where they are needed in the holes in-between the coins that are already on board,
and then we pick up all coins in that column that are not in C1.

(d) At this point, R2 either contains an ‘L’ or a string that is almost an ‘L’ apart from
the fact it has two pairs of adjacent coins (this can happen if we have dropped a
supporting coin at the bottom-right corner of R2 in step (c)). In this latter case, we
use a leapfrog to retrieve the coin in excess so that R2 contains a true ‘L’. Finally, we
leapfrog if needed to make this ‘L’ canonical, so that the full configuration on board
is now exactly C0. These leapfrogs are always possible because we have at least one
supporting coin at our disposal. See Figure IV.22.

Figure IV.22: Step (d) performed as follow-up to Figure IV.21.

As to the number of moves, since flipping an m× n ‘L’ is done in O(mn) moves, we have
just reached C0 in O(mn) moves also.

2 We now build the top half of C. Since the bottom half is already built, we will not touch it,
therefore we want to show that L+k′

2 → C
+k′+|L2|−|C2|
2 in O(mn) moves. By our induction hy-

pothesis, since R2 is of half-perimeter m+n′ < m+n (recall that m+n ≥ 3, so n ≥ 2 hence
n′ < n), it suffices to show that |C2| < min

(⌈
m+n′

2

⌉
−
⌈

min(m,n′)
2

⌉
+ (k′ − 1), 2(k′ − 1)

)
. We

now show both inequalities. Beforehand, since the total number of coins at our disposal is
|L|+ k and |C1|+ |L2| of them are on the board at this point, note that:

k′ = (|L|+ k)− (|C1|+ |L2|) =
(⌈

m + n

2

⌉
+ k

)
−
(
|C1|+

⌈
m + n′

2

⌉)
. (IV.5)

• By our assumption on C, we have |C1| = |C|−|C2| <
⌈

m+n
2

⌉
−
⌈

min(m,n)
2

⌉
+(k−1)−|C2|.

Using equality (IV.5), we get:

k′ > |C2|+ 1 +
⌈

min(m, n)
2

⌉
−
⌈

m + n′

2

⌉
≥ |C2|+ 1 +

⌈
min(m, n′)

2

⌉
−
⌈

m + n′

2

⌉
,

where the last inequality comes from the fact that n > n′. We thus get the first
desired inequality: |C2| <

⌈
m+n′

2

⌉
−
⌈

min(m,n′)
2

⌉
+ (k′ − 1).

• By our assumption on C, we have k−1 > |C|
2 ≥ |C1| hence k−1−|C1| > 0. Moreover

k − 1− |C1| = k − 1− |C|+ |C2| > |C2| −
⌈

m+n
2

⌉
+
⌈

min(m,n)
2

⌉
= |C2| −

⌈
m+n

2

⌉
+
⌈

m
2

⌉
.

Since all integers x > y with x > 0 satisfy x ≥ y
2 + 1, we get k − 1 − |C1| ≥

186 IV.2. The case of two extra coins

1
2

(
|C2| −

⌈
m+n

2

⌉
+
⌈

m
2

⌉)
+ 1.

Recall that k′ − 1 = (k − 1− |C1|) +
⌈

m+n
2

⌉
−
⌈

m+n′

2

⌉
by equality (IV.5). Therefore:

k′ − 1 ≥ |C2|
2 + 1

2

⌈
m + n

2

⌉
+ 1

2

⌈
m

2

⌉
−
⌈

m + n′

2

⌉
+ 1

≥ |C2|
2 + m + n

4 + m

4 −
m + n+1

2 + 1
2 + 1 = |C2|

2 + 1
4

>
|C2|

2 ,

from which |C2| < 2(k′ − 1) which concludes. ■

Proof of Theorem IV.2.14. In fact, we prove a more general result where condition (iv) is
replaced by the following double inequality:

N > minA + minB

2 + 1 (IV.6)

N > minB +
⌈

min(m, n)
2

⌉
+ 1 (IV.7)

Let us first check that this assumption is indeed weaker. Suppose that (iv) holds, then:
• N ≥ minA +minB

2 + 2. Therefore, (IV.6) holds.
• N ≥ minB +minA

2 + 2. Since N is an integer, this yields N ≥ minB +
⌈

minA

2

⌉
+ 2. Moreover⌈

minA

2

⌉
=
⌈

1
2

⌈
m+n

2

⌉⌉
=
⌈

m+n
4

⌉
≥
⌈

min(m,n)
2

⌉
, where we have used the fact that any real

number x satisfies
⌈

x
2

⌉
=
⌈

⌈x⌉
2

⌉
. Therefore, we get N ≥ minB +

⌈
min(m,n)

2

⌉
+ 2, so (IV.7)

holds.
Assume that conditions (i),(ii),(iii),(IV.6),(IV.7) all hold. As already mentioned, we want
to use Corollary IV.2.4 (in this case LA0 = LA because of our assumption that A has
2 extra coins) so we need to show that L+k

A → L
+k+|LA|−|LB |
B where k := |A| − |LA| =

N − minA = N −
⌈

m+n
2

⌉
. By Lemma IV.2.15, it suffices to show that minB = |LB| <

min
(⌈

m+n
2

⌉
−
⌈

min(m,n)
2

⌉
+ (k − 1), 2(k − 1)

)
.

• By (IV.6), we have minB < 2(N −minA−1) = 2(k − 1).
• By (IV.7), we have minB < N −

⌈
min(m,n)

2

⌉
− 1 =

⌈
m+n

2

⌉
−
⌈

min(m,n)
2

⌉
+ (k − 1). ■

IV.2.5 Conclusion and prospects

The case of 2 extra coins turns out to be worse than initially thought. It was believed in
[DDV02] that all puzzles with 2 extra coins and 2 redundant coins were solvable, but this is
actually not true. The dichotomy between the case of 1 extra coin and the case of 2 extra coins
is thus called into question: the case of 3 extra coins, for example, may be just as relevant.
Since the canonicalization process only needs 2 extra coins to work, algorithms specializing in
the case of 3 or more extra coins likely would not use it, unlike all solving methods that we
know of so far: therefore, brand new ideas would be needed to pursue in this direction.
In the case where there are 2 extra coins in A and 2 redundant coins in B, Theorem IV.2.14
gives a sufficient condition that involves the total number of coins and the perimeters of the
spans of A and B. The worst-case puzzles described in Corollary IV.2.9 show that the bound
from Theorem IV.2.14 is tight in the case of a square span, up to an additive factor O(1).
However, for a rectangular m× n span in general, it looks like discrepancy between m and n
tends to make puzzles easier. For instance, and provided we have the inclusion of spans, if n = 1

Chapter IV. From positional games to reconfiguration problems 187

then it seems easy to show that 1 extra coin and 1 redundant coin are always sufficient, and if
n = 2 then we suspect that 2 extra coins and 2 redundant coins are always sufficient. In general,
we think that it could be possible to improve Theorem IV.2.14 by using only min(m,n)

2 + O(1)
additional coins.
We now know of two methods to solve general puzzles with 2 extra coins in A and 2 redundant
coins in B: the one from Theorem IV.2.1 consists in going from A to ‘L’s then reverse into B,
while the one from Theorem IV.2.14 consists in going from A to an ‘L’ then sweep across the
board and drop coins to create B. It would be good to design other solving methods that would
apply to some puzzles that do not meet the conditions of either theorem, such as the puzzle on
the left of Figure IV.12.

Conclusion

In this PhD thesis, I have studied several problems around games and hypergraphs, with
varying degrees of fulfillment.

First of all, the coin-moving puzzles on the square grid are still far from sorted, not only in
the case of one extra coin [Gal19] but also in the case of two extra coins which is much more
complicated than what was believed in [DDV02]. We have identified that the difficulty lies in
splitting the span, and we have shown how to overcome this in some cases. It turns out the
sheer quantity of coins plays a big role in the solvability of puzzles, which came as a surprise
and contrasted with my usual structural considerations in games. Overall, several open cases
remain for these puzzles, and we lack serious leads as to how to handle them. We thus leave
with more questions than we had going into this problem.

On the contrary, the study of the Maker-Breaker game on hypergraphs of rank 3 was
much more satisfactory. We managed to obtain the desired structural characterization for the
outcome and description of both players’ optimal strategies, based on danger intersections. It is
unfortunate that the proof is not as beautiful as the result. I cannot exclude the possibility
that there exists a shorter and less technical proof, and that I may not have fully grasped the
essence of what makes it all work. From this result, we were also able to get the polynomial-time
algorithm that we were hoping for. It was not obvious, with 3-SAT in mind for instance, that
the problem would remain tractable when making the jump from rank 2 to rank 3. As for
future studies, there is a question as to whether the danger approach can be useful for other
hypergraph classes. In particular, for k ≥ 4, is there a constant number of rounds r(k) such
that Maker wins on a hypergraph of rank k if and only if she can guarantee the appearance of a
k-uniform forcing path during the first r(k) rounds? Since the k-uniform forcing path existence
problem is clearly in NP, we know the answer is negative for k ≥ 6 unless NP=PSPACE, because
deciding the outcome of the Maker-Breaker game is PSPACE-complete in that case [RW21].
The question remains open for k ∈ {4, 5}, even though it is believed within the community that
these cases are also PSPACE-complete. Other hypergraph classes, not defined by rank, could
also be considered.

When it comes to bounds on the hypergraph parameters τM and θM (optimization of the
number of rounds and tokens respectively) depending on the rank k, we basically got exact
answers. For k = 3, we have shown that a logarithmic number of rounds and just three tokens
always suffice for Maker to carry out her winning strategy (which is to make a nunchaku or
necklace appear during the first three rounds and then win by dichotomy), and that these bounds
are tight. For k ≥ 4, things are radically different: we have exhibited worst-case hypergraphs
for Maker, which show that the trivial bound (number of vertices divided by two) is reached
by τM and almost reached by θM . In a sense, this means Maker’s winning strategies are much
more complex in the case k ≥ 4 than they are for k = 3, morally comforting the intuition that
deciding the outcome of the game is PSPACE-complete for k ∈ {4, 5}. A prospect could be to
evaluate these bounds in the biased case.

Finally, we have explored some hypergraph problems. We have introduced the notion of
λ-linearity to study paths with edge intersections of upper-bounded size. Other paths defined by
some restriction on the size of edge intersections existed in the literature, but there only seemed

190

to be extremal results. Instead, we have inspected the (k − 2)-linear path existence problem
in general hypergraphs of rank k. We have shown that the associated connected components
are characterized by the maximal archipelago structure, and that they can be computed in
polynomial time. In contrast with our study of the Maker-Breaker game on hypergraphs of rank
3, the structures are very visual and the proofs are not too complicated. We have also established
a link with the PAFP problem, through a notion of bicolored line graph of a hypergraph. I
would be interested in investigating the recognition problem of such line graphs, which carry
additional information on the size of (hyper)edge intersections.

I would also like to study some other games related to the Maker-Breaker game on hypergraphs
on rank 3.

The Maker-Maker game on hypergraphs of rank 3 is a natural continuation. The algorithmic
complexity of this problem is unknown. The forcing technique, which was not vital in the
Maker-Breaker convention since it could be supplanted by the dichotomy technique, could
prove essential here. Indeed, it allows the player to control exactly which vertices are taken
by the opponent, which helps prevent them from creating threats of their own. There seems
to be an importance of keeping the initiative in the attack for the first player, and the second
player can regain that initiative (and thus draw the game) without necessarily destroying all
subhypergraphs that would be dangers in the Maker-Breaker game. This is what happens in
3× 3 tic-tac-toe for example. Therefore, there might be a different notion of danger intersection
for the Maker-Maker convention, such that picking a vertex that is adjacent to a danger is
sometimes enough to destroy it.

The Avoider-Enforcer game on hypergraphs of rank 3 is another topic of interest. Joint work
with Valentin Gledel1 and Aline Parreau2 is currently ongoing in the linear case. It turns out
chains play a key role in this convention also. Similarly to the Maker-Breaker convention, the
non-linear case seems to be more difficult. It is possible that the structural lemmas about chains
and cycles from this PhD thesis will end up being useful again.

Finally, I believe our idea of introducing tokens into the game has potential. One could
study "token positional games", where both players have a fixed number of tokens to play with
(finite or infinite, and not necessarily the same for both). This version is natural, moreover
it is in line with the way some positional games were played historically. Along with Nacim
Oijid3, I am currently interested in the algorithmic complexity of such games. It is likely that
all conventions remain PSPACE-complete in general.

I will conclude this dissertation with a remark on a potential unification and generalization
of some positional games.

A transversal of an edge set E is a set of vertices T such that T ∩ e ≠ ∅ for all e ∈ E.
Given an edge set E, let t(E) denote the set of all minimal transversals of E (note that t is an
involution). In the Maker-Breaker game on a hypergraph H, Maker’s goal is to color some edge
of H in red, and Breaker’s goal amounts to coloring some transversal of E(H) in blue. Therefore,
the denomination of the game is falsely asymmetrical as to the player’s roles: both of them are
actually "Maker", except they are not making the same edges. A more general game could thus
be defined, where: we have two edge sets EA and EB on the same vertex set V , Alice colors
vertices in red trying to make a monochromatic red edge in EA, Bob colors vertices in blue
trying to make a monochromatic blue edge in EB, and the first player to accomplish their goal
wins. Draws are possible. This would define a unified family of achievement positional games,
containing Maker-Maker games, Maker-Breaker games, and everything in between. Maker-Maker

1 Umeå University, Sweden.
2 Centre National de la Recherche Scientifique. LIRIS, University Lyon 1, France.
3 LIRIS, University Lyon 1, France.

Conclusion 191

games correspond to the particular case EA = EB. Maker-Breaker games correspond to the
particular case EA = t(EB) i.e. EB = t(EA). Similarly, we can define a unified family of
avoidance positional games.

It would be instructive to see which principles, out of all those that hold for Maker-Breaker
and Maker-Maker games, are still valid for the general achievement game described above.
Indeed, some rely on the specific link between EA and EB, whereas some purely stem from
the achievement nature of the game. For instance, strategy stealing still applies to show that
more moves is always better and that both players prefer to start. Another prospect would
be to solve the general achievement game for simple hypergraph classes. I think the unbiased
2-uniform case, meaning all elements of EA ∪ EB are of size 2, would be a good place to start.
At first glance, it looks like matchings and augmenting paths play a significant role.

To generalize even further, one could consider a vertex-partizan version where V = VA ∪ VB

(not necessarily a partition). Alice can only pick vertices in VA, and Alice completing an edge
e ∈ EA means that all vertices in e ∩ VA are colored in red before any vertex in e ∩ VB is
colored in blue. The rules are analogous for Bob, and the first player to complete an edge wins,
otherwise the game ends in a draw. In particular, this version includes some natural games
which are not otherwise considered as positional games. For instance, consider a variation of
the Maker-Breaker game where Breaker selects edges rather than vertices. This means that, in
each round, Maker picks a vertex (as usual) whereas Breaker removes an edge (but its vertices
remain). This game can be modelled as a vertex-partizan game, by adding one vertex per edge
which is only playable by Bob, while the rest is only playable by Alice.

Bibliography

[AL17] G. Ausiello, L. Laura. Directed hypergraphs: introduction and fundamental
algorithms — a survey. Theoret. Comput. Sci., 658(B), 2017, pp. 293–306.
http://dx.doi.org/10.1016/j.tcs.2016.03.016.

[AMS+19] N. Alon, R. Morris, W. Samotij, F. Galliot. Private exchanges, 2019.

[AvH96] L. V. Alus, H. J. van den Herik, M. P. H. Huntjens. Go-moku solved by new search
techniques. Comput. Intell., 12(1), 1996, pp. 7–23. http://dx.doi.org/10.1111/
j.1467-8640.1996.tb00250.x.

[BC82] J. Beck, L. Csirmaz. Variations on a game. J. Comb. Theory, Ser. A, 33(3), 1982,
pp. 297–315. http://dx.doi.org/10.1016/0097-3165(82)90042-5.

[BCG82] E. R. Berlekamp, J. H. Conway, R. K. Guy. Winning Ways for your Mathematical
Plays. Academic Press, London, 2nd ed., 1982. ISBN 1-56881-130-6.

[BCM+18] K. Böhmová, J. Chalopin, M. Mihalák, G. Proietti, P. Widmayer. Sequence
hypergraphs: paths, flows, and cuts. In Adventures Between Lower Bounds
and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of
His 60th Birthday. Springer International Publishing, Cham, 2018, pp. 191–215.
http://dx.doi.org/10.1007/978-3-319-98355-4_12.

[BCv+07] P. Bonsma, L. Cereceda, J. van den Heuvel, M. Johnson. Finding paths between
graph colourings: computational complexity and possible distances. In Electron.
Notes Discrete Math., proc. 7th European Conference on Combinatorics, Graph
Theory and Applications (EuroComb’07), vol. 29, 2007. pp. 463–469. http://dx.
doi.org/10.1016/j.endm.2007.07.073.

[BDD+22] G. Bagan, Q. Deschamps, E. Duchêne, B. Durain, B. Effantin, V. Gledel, N. Oijid,
A. Parreau. Incidence, a scoring positional game on graphs. 2022. Preprint: https:
//arxiv.org/abs/2211.01083.

[Bec81] J. Beck. On positional games. J. Comb. Theory, Ser. A, 30(2), 1981, pp. 117–133.
http://dx.doi.org/10.1016/0097-3165(81)90001-7.

[Bec82] J. Beck. Remarks on positional games. Acta Math. Hungar., 40(1-2), 1982, pp.
65–71. http://dx.doi.org/10.1007/BF01897304.

[Bec02] J. Beck. Ramsey games. Discrete Math., 249(1-3), 2002, pp. 3–30. http://dx.doi.
org/10.1016/S0012-365X(01)00224-2.

[Bec08] J. Beck. Combinatorial Games: Tic-Tac-Toe Theory. Academic Press, Cambridge,
2008. ISBN 978-0-521-46100-9.

http://dx.doi.org/10.1016/j.tcs.2016.03.016
http://dx.doi.org/10.1111/j.1467-8640.1996.tb00250.x
http://dx.doi.org/10.1111/j.1467-8640.1996.tb00250.x
http://dx.doi.org/10.1016/0097-3165(82)90042-5
http://dx.doi.org/10.1007/978-3-319-98355-4_12
http://dx.doi.org/10.1016/j.endm.2007.07.073
http://dx.doi.org/10.1016/j.endm.2007.07.073
https://arxiv.org/abs/2211.01083
https://arxiv.org/abs/2211.01083
http://dx.doi.org/10.1016/0097-3165(81)90001-7
http://dx.doi.org/10.1007/BF01897304
http://dx.doi.org/10.1016/S0012-365X(01)00224-2
http://dx.doi.org/10.1016/S0012-365X(01)00224-2

194 Bibliography

[Bei70] L. W. Beineke. Characterizations of derived graphs. J. Combin. Theory, 9(2), 1970,
pp. 129–135. http://dx.doi.org/10.1016/S0021-9800(70)80019-9.

[Ber73] C. Berge. Graphs and Hypergraphs, vol. 6 of North-Holland Mathematical Li-
brary. Elsevier, 1973. ISBN 978-0-444-87603-4. http://dx.doi.org/10.1016/
s0924-6509(09)x7013-3.

[BFM+23] J. Bensmail, F. Fioravantes, F. Mc Inerney, N. Nisse, N. Oijid. The Maker-Breaker
largest connected subgraph game. Theoret. Comput. Sci., 943, 2023, pp. 102–120.
http://dx.doi.org/10.1016/j.tcs.2022.12.014.

[BGM+21] A. Bhattacharya, A. Godinho, P. Majumder, N. M. Singhi. Reconstruction of
hypergraphs from line graphs and degree sequences. 2021. Preprint: https://
arxiv.org/abs/2104.14863.

[BH19] K. Burke, R. A. Hearn. PSPACE-complete two-color planar placement games.
Internat. J. Game Theory, 48, 2019, pp. 393–410. http://dx.doi.org/10.1007/
s00182-018-0628-8.

[BL00] M. Bednarska, T. Luczak. Biased positional games for which random strategies
are nearly optimal. Combinatorica, 20, 2000, pp. 477–488. http://dx.doi.org/10.
1007/s004930070002.

[Bys04] J. M. Byskov. Maker-Maker and Maker-Breaker games are PSPACE-complete.
BRICS Report Series, 11(14). http://dx.doi.org/10.7146/brics.v11i14.21839.

[CE78] V. Chvátal, P. Erdős. Biased positional games. Ann. Disc. Math., 2, 1978, pp.
221–229. http://dx.doi.org/10.1016/S0167-5060(08)70335-2.

[CFK+12] D. Clemens, A. Ferber, M. Krivelevich, A. Liebenau. Fast strategies in
Maker–Breaker games played on random boards. Combin. Probab. Comput., 21(6),
2012, pp. 897–915. http://dx.doi.org/10.1017/S0963548312000375.

[CKT+01] T. Chen, M.-Y. Kao, M. Tepel, J. Rush, G. M. Church. A dynamic pro-
gramming approach to de novo peptide sequencing via tandem mass spectrom-
etry. J. Comput. Biol., 8(3), 2001, pp. 325––337. http://dx.doi.org/10.1089/
10665270152530872.

[DDV02] E. D. Demaine, M. L. Demaine, H. A. Verill. Coin-moving puzzles. In More Games
of No Chance. Cambridge University Press. ISBN 978-0521808323, pp. 405–431.

[DGM+23] E. Duchêne, V. Gledel, F. Mc Inerney, N. Nisse, N. Oijid, A. Parreau, M. Stojaković.
Complexity of Maker-Breaker games on edge sets of graphs. 2023. Preprint: https:
//arxiv.org/abs/2302.10972.

[DGP+20] E. Duchêne, V. Gledel, A. Parreau, G. Renault. Maker-Breaker domination
game. Discrete Math., 343(9), 111955. http://dx.doi.org/10.1016/j.disc.2020.
111955.

[DLM+17] A. Dudek, S. La Fleur, D. Mubayi, V. Rödl. On the size-Ramsey number of
hypergraphs. J. Graph Theory, 86(1), 2017, p. 104–121. http://dx.doi.org/10.
1002/jgt.22115.

[EL74] P. Erdős, L. Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. Coll. Math. Soc. J. Bolyai, 10.

http://dx.doi.org/10.1016/S0021-9800(70)80019-9
http://dx.doi.org/10.1016/s0924-6509(09)x7013-3
http://dx.doi.org/10.1016/s0924-6509(09)x7013-3
http://dx.doi.org/10.1016/j.tcs.2022.12.014
https://arxiv.org/abs/2104.14863
https://arxiv.org/abs/2104.14863
http://dx.doi.org/10.1007/s00182-018-0628-8
http://dx.doi.org/10.1007/s00182-018-0628-8
http://dx.doi.org/10.1007/s004930070002
http://dx.doi.org/10.1007/s004930070002
http://dx.doi.org/10.7146/brics.v11i14.21839
http://dx.doi.org/10.1016/S0167-5060(08)70335-2
http://dx.doi.org/10.1017/S0963548312000375
http://dx.doi.org/10.1089/10665270152530872
http://dx.doi.org/10.1089/10665270152530872
https://arxiv.org/abs/2302.10972
https://arxiv.org/abs/2302.10972
http://dx.doi.org/10.1016/j.disc.2020.111955
http://dx.doi.org/10.1016/j.disc.2020.111955
http://dx.doi.org/10.1002/jgt.22115
http://dx.doi.org/10.1002/jgt.22115

Bibliography 195

[ES73] P. Erdős, J. Selfridge. On a combinatorial game. J. Comb. Theory, Ser. A, 14(3),
1973, pp. 298–301. http://dx.doi.org/10.1016/0097-3165%2873%2990005-8.

[FGM+15] S. A. Fenner, D. Grier, J. Messner, L. Schaeffer, T. Thierauf. Game values and
computational complexity: an analysis via black-white combinatorial games. In
Algorithms and Computation, vol. 9472 of LNCS. Springer, Berlin, Heidelberg, 2015,
pp. 689–699. http://dx.doi.org/10.1007/978-3-662-48971-0_58.

[FJS14] Z. Füredi, T. Jiang, R. Seiver. Exact solution of the hypergraph Turán problem for
k-uniform linear paths. Combinatorica, 34(3), 2014, pp. 299–322. http://dx.doi.
org/10.1007/s00493-014-2838-4.

[FM22] J. Forcan, M. Mikalaćki. Maker-Breaker total domination game on cubic graphs.
Discrete Math. Theor. Comput. Sci., 24(1). http://dx.doi.org/10.46298/dmtcs.
8529.

[Gal19] F. Galliot. A coin-moving game on graphs. 2019. Master’s thesis: https://dumas.
ccsd.cnrs.fr/dumas-03160998.

[Gar59] M. Gardner. Hexaflexagons and Other Mathematical Diversions, chap. Ticktacktoe.
University Of Chicago Press, 2nd ed. ISBN 978-0226282541, 1959. pp. 38–40.

[Gar61] M. Gardner. The second scientific american book of mathematical puzzles and
diversions, chap. Recreational Topology. University Of Chicago Press, 2nd ed. ISBN
978-0226282534, 1961. pp. 84–87.

[Gar75] M. Gardner. Mathematical Carnival, chap. Penny Puzzles. Alfred A. Knopf, New
York, 1975. pp. 12–26.

[GGP+22] V. Gledel, S. Gravier, A. Parreau, F. Galliot. Private exchanges, 2022.

[GGS21] F. Galliot, S. Gravier, I. Sivignon. An update on the coin-moving game on the
square grid. 2021. Preprint: https://hal.science/hal-03157069. Accepted in
Games of No Chance, vol. 6.

[GGS22a] F. Galliot, S. Gravier, I. Sivignon. (k − 2)-linear connected components in hyper-
graphs of rank k. 2022. Preprint: https://hal.science/hal-03412083. Submitted
to Discrete Math. Theor. Comput. Sci., special issue for the 11th International Col-
loquium on Graph Theory and combinatorics (ICGT 2022), Montpellier, France.

[GGS22b] F. Galliot, S. Gravier, I. Sivignon. Maker-Breaker is solved in polynomial time
on hypergraphs of rank 3. 2022. Preprint: https://arxiv.org/abs/2209.12819.
Submitted to J. Comb. Theory, Ser. A.

[GHI+20] V. Gledel, M. A. Henning, V. Irśić, S. Klavźar. Maker-Breaker total domination
game. Discrete Appl. Math., 282, 2020, pp. 96–107. http://dx.doi.org/10.1016/
j.dam.2019.11.004.

[GIK19] V. Gledel, V. Irśić, S. Klavźar. Maker-Breaker domination number. Bull.
Malays. Math. Sci. Soc., 42, 2019, pp. 1773–1789. http://dx.doi.org/10.1007/
s40840-019-00757-1.

[GKL10] E. Győri, G. Y. Katona, N. Lemons. Hypergraph extensions of the Erdős-Gallai
theorem. Electron. Notes Discrete Math., 36, 2010, pp. 655–662. http://dx.doi.
org/10.1016/j.endm.2010.05.083.

http://dx.doi.org/10.1016/0097-3165%2873%2990005-8
http://dx.doi.org/10.1007/978-3-662-48971-0_58
http://dx.doi.org/10.1007/s00493-014-2838-4
http://dx.doi.org/10.1007/s00493-014-2838-4
http://dx.doi.org/10.46298/dmtcs.8529
http://dx.doi.org/10.46298/dmtcs.8529
https://dumas.ccsd.cnrs.fr/dumas-03160998
https://dumas.ccsd.cnrs.fr/dumas-03160998
https://hal.science/hal-03157069
https://hal.science/hal-03412083
https://arxiv.org/abs/2209.12819
http://dx.doi.org/10.1016/j.dam.2019.11.004
http://dx.doi.org/10.1016/j.dam.2019.11.004
http://dx.doi.org/10.1007/s40840-019-00757-1
http://dx.doi.org/10.1007/s40840-019-00757-1
http://dx.doi.org/10.1016/j.endm.2010.05.083
http://dx.doi.org/10.1016/j.endm.2010.05.083

196 Bibliography

[GLP93] G. Gallo, G. Longo, S. Pallottino. Directed hypergraphs and applications. Dis-
crete Appl. Math., 42(2-3), 1993, pp. 177–201. http://dx.doi.org/10.1016/
0166-218X(93)90045-P.

[GLS20] R. Gu, J. Li, Y. Shi. Anti-Ramsey numbers of paths and cycles in hypergraphs.
SIAM J. Discrete Math., 34(1), 2020, pp. 271–307. http://dx.doi.org/10.1137/
19M1244950.

[GMO76] H. N. Gabow, S. N. Maheswari, L. J. Osterweil. On two problems in the generation
of program test paths. IEEE Trans. Softw. Eng., 2(3), 1976, pp. 227–231. http:
//dx.doi.org/10.1109/tse.1976.233819.

[GO23] V. Gledel, N. Oijid. Avoidance games are PSPACE-complete. In 40th International
Symposium on Theoretical Aspects of Computer Science (STACS 2023), vol. 254 of
LIPIcs. Dagstuhl, Germany, 2023, pp. 34:1–34:19. http://dx.doi.org/10.4230/
LIPIcs.STACS.2023.34.

[GPR+14] A. Guzzo, A. Pugliese, A. Rullo, D. Saccà. Intrusion detection with hypergraph-based
attack models. In Graph Structures for Knowledge Representation and Reasoning,
proc. Third International Workshop, GKR 2013, Beijing, China, vol. 8323 of LNCS.
Springer International Publishing, Cham, 2014, pp. 58–73. http://dx.doi.org/
10.1007/978-3-319-04534-4_5.

[GSZ80] R. K. Guy, J. L. Selfridge, T. G. L. Zetters. S10. The American Mathematical
Monthly, 87(7), 1980, pp. 575–576. http://dx.doi.org/10.2307/2321433.

[GZR+15] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, A. Bar-Noy. Dynamic
shortest path algorithms for hypergraphs. IEEE/ACM Trans. Netw., 23(6), 2015,
pp. 1805–1817. http://dx.doi.org/10.1109/TNET.2014.2343914.

[Har81] F. Harary. Achievement and avoidance games designed from theorems. Rendiconti
del Seminario Matematico e Fisico di Milano, 51, 1981, pp. 163–172. http://dx.
doi.org/10.1007/BF02924819.

[Har82] F. Harary. Achievement and avoidance games for graphs. North-Holland Mathematics
Studies, 62, 1982, pp. 111–119. http://dx.doi.org/10.1016/S0304-0208(08)
73554-0.

[HJ63] A. W. Hales, R. I. Jewett. Regularity and positional games. Trans. Amer. Math. Soc.,
106, 1963, pp. 222–229. http://dx.doi.org/10.1007/978-0-8176-4842-8_23.

[HK97] P. Hlineny, J. Kratochvil. Computational complexity of the Krausz dimension of
graphs. In Graph-Theoretic Concepts in Computer Science, proc. 23rd International
Workshop, WG’97, Berlin, Germany, vol. 1335 of LNCS. Springer, Berlin, 1997, pp.
214–228. http://dx.doi.org/https://doi.org/10.1007/BFb0024500.

[HKK+12] M. T. Hajiaghayi, R. Khandekar, G. Kortsarz, J. Mestre. The checkpoint problem.
Theoret. Comput. Sci., 452, 2012, pp. 88–99. http://dx.doi.org/10.1016/j.tcs.
2012.05.021.

[HKS+08] D. Hefetz, M. Krivelevich, M. Stojaković, T. Szabó. Planarity, colorability, and
minor games. SIAM J. Discrete Math., 22(1), 2008, pp. 194–212. http://dx.doi.
org/10.1137/060654414.

http://dx.doi.org/10.1016/0166-218X(93)90045-P
http://dx.doi.org/10.1016/0166-218X(93)90045-P
http://dx.doi.org/10.1137/19M1244950
http://dx.doi.org/10.1137/19M1244950
http://dx.doi.org/10.1109/tse.1976.233819
http://dx.doi.org/10.1109/tse.1976.233819
http://dx.doi.org/10.4230/LIPIcs.STACS.2023.34
http://dx.doi.org/10.4230/LIPIcs.STACS.2023.34
http://dx.doi.org/10.1007/978-3-319-04534-4_5
http://dx.doi.org/10.1007/978-3-319-04534-4_5
http://dx.doi.org/10.2307/2321433
http://dx.doi.org/10.1109/TNET.2014.2343914
http://dx.doi.org/10.1007/BF02924819
http://dx.doi.org/10.1007/BF02924819
http://dx.doi.org/10.1016/S0304-0208(08)73554-0
http://dx.doi.org/10.1016/S0304-0208(08)73554-0
http://dx.doi.org/10.1007/978-0-8176-4842-8_23
http://dx.doi.org/https://doi.org/10.1007/BFb0024500
http://dx.doi.org/10.1016/j.tcs.2012.05.021
http://dx.doi.org/10.1016/j.tcs.2012.05.021
http://dx.doi.org/10.1137/060654414
http://dx.doi.org/10.1137/060654414

Bibliography 197

[HKS+09] D. Hefetz, M. Krivelevich, M. Stojaković, T. Szabó. Fast winning strategies in
Maker-Breaker games. J. Comb. Theory, Ser. B, 99(1), 2009, pp. 39–47. http:
//dx.doi.org/10.1016/j.jctb.2008.04.001.

[HKS+14] D. Hefetz, M. Krivelevich, M. Stojaković, T. Szabó. Positional games. Springer,
Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0825-5.

[IOO23] T. Ito, H. Ono, Y. Otachi. Reconfiguration of cliques in a graph. Discrete Appl.
Math., 333, 2023, pp. 43–58. http://dx.doi.org/10.1016/j.dam.2023.01.026.

[Jac15] E. Jackowska. The 3-color Ramsey number for a 3-uniform loose path of length 3.
Australas. J. Combin., 63(2), 2015, pp. 314–320.

[JPR16] E. Jackowska, J. Polcyn, A. Ruciński. Turán numbers for 3-uniform linear paths
of length 3. Electron. J. Combin., 23(2), 2016, p. P2.30. http://dx.doi.org/10.
37236/5320.

[KKY20] C. X. Kang, S. Klavźar, I. G. Yero. Maker-Breaker resolving game. Bull.
Malays. Math. Sci. Soc., 44, 2020, pp. 2081–2099. http://dx.doi.org/10.1007/
s40840-020-01044-0.

[KP09] P. Kolman, O. Pangrac. On the complexity of paths avoiding forbidden pairs.
Discrete Appl. Math., 157(13), 2009, pp. 2871–2876. http://dx.doi.org/10.1016/
j.dam.2009.03.018.

[Kra42] M. Kraitchik. Mathematical Recreations, chap. Positional games. W.W. Norton &
Company inc., New York, 2nd ed., 1942. pp. 290–292.

[KS08] M. Krivelevich, T. Szabó. Biased positional games and small hypergraphs with large
covers. Electron. J. Combin., 15, R70. http://dx.doi.org/10.37236/794.

[KSG73] K. Krause, R. Smith, M. Goodwin. Optimal software test planning through auto-
mated network analysis. Proc. IEEE Symp. on Computer Software Reliability, 1973,
pp. 18–22.

[Kut04] M. Kutz. Weak positional games. In The angel problem, positional games, and
digraph roots, PhD dissertation, Freie Universität Berlin, 2004.

[Kut05] M. Kutz. Weak positional games on hypergraphs of rank three. In Discrete
Math. Theor. Comput. Sci., proc. 3rd European Conference on Combinatorics,
Graph Theory and Applications (EuroComb’05), vol. AE, 2005. pp. 31–36. http:
//dx.doi.org/10.46298/dmtcs.3422.

[Kva86] Problems from the 49th Moscow mathematical olympiad. Kvant, 9, 1986, p. 57. In
Russian.

[Lan51] H. Langman. Curiosa 261: a disc puzzle. Scr. Math., 17(1-2), 1951, p. 144.

[Lan53] H. Langman. Curiosa 342: easy but not obvious. Scr. Math., 19(4), 1953, p. 242.

[Leh64] A. Lehman. A solution of the Shannon switching game. J. Soc. Indust. Appl. Math.,
12(4), 1964, pp. 687–725. http://dx.doi.org/10.1137/0112059.

[Lov73] L. Lovász. Coverings and colorings of hypergraphs. In Proc. 4th Southeastern Conf.
on Comb, vol. 8 of Congressus Numerantium. Utilitas Mathematica, 1973, pp. 3–12.

http://dx.doi.org/10.1016/j.jctb.2008.04.001
http://dx.doi.org/10.1016/j.jctb.2008.04.001
http://dx.doi.org/10.1007/978-3-0348-0825-5
http://dx.doi.org/10.1016/j.dam.2023.01.026
http://dx.doi.org/10.37236/5320
http://dx.doi.org/10.37236/5320
http://dx.doi.org/10.1007/s40840-020-01044-0
http://dx.doi.org/10.1007/s40840-020-01044-0
http://dx.doi.org/10.1016/j.dam.2009.03.018
http://dx.doi.org/10.1016/j.dam.2009.03.018
http://dx.doi.org/10.37236/794
http://dx.doi.org/10.46298/dmtcs.3422
http://dx.doi.org/10.46298/dmtcs.3422
http://dx.doi.org/10.1137/0112059

198 Bibliography

[Lov77] L. Lovász. Problem 9. In Beiträge zur Graphentheorie und deren Anwendungen,
proc. Internationalen Kolloquium, Oberhof, DDR, 1977. p. 313.

[Lu92] X. Lu. Hamiltonian games. J. Comb. Theory, Ser. B, 55(1), 1992, pp. 18–32.
http://dx.doi.org/10.1016/0095-8956(92)90030-2.

[Mal20] A. Malekshahian. Strategy stealing in triangle avoidance games. 2020. Preprint:
https://arxiv.org/abs/2001.10116.

[MRH74] E. Mead, A. Rosa, C. Huang. The game of Sim: a winning strategy for the second
player. Math. Mag., 47(5), 1974, pp. 243–247. http://dx.doi.org/10.1080/
0025570X.1974.11976415.

[MT97] Y. Metelsky, R. I. Tyshkevich. On line graphs of linear 3-uniform hypergraphs.
J. Graph Theory, 25(4), 1997, pp. 243–251. http://dx.doi.org/10.1002/(SICI)
1097-0118(199708)25:4<243::AID-JGT1>3.0.CO;2-K.

[NRS+82] R. N. Naik, S. B. Rao, S. S. Shrikhande, N. M. Singhi. Intersection graphs of
k-uniform linear hypergraphs. European J. Combin., 3, 1982, pp. 159–172. http:
//dx.doi.org/10.1016/S0195-6698(82)80029-2.

[NSS16] R. Nenadov, A. Steger, M. Stojaković. On the threshold for the Maker-Breaker
H-game. Random Structures Algorithms, 49(3), 2016, pp. 558–578. http://dx.doi.
org/10.1002/rsa.20628.

[OS14] G. R. Omidi, M. Shahsiah. Ramsey numbers of 3-uniform loose paths and loose
cycles. J. Combin. Theory Ser. A, 121, 2014, pp. 64–73. http://dx.doi.org/10.
1016/j.jcta.2013.09.003.

[PRT81] S. Poljak, V. Rödl, D. Turzík. Complexity of representation of graphs by set
systems. Discrete Appl. Math., 3(4), 1981, pp. 301–312. http://dx.doi.org/10.
1016/0166-218X(81)90007-X.

[Ram30] F. P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc., s2-30(1),
1930, pp. 264–286. http://dx.doi.org/https://doi.org/10.1112/plms/s2-30.
1.264.

[RW20] M. L. Rahman, T. Watson. Tractable unordered 3-CNF games. In LATIN 2020:
Theoretical Informatics, proc. Latin American Symposium on Theoretical Informatics,
vol. 12118 of Lecture Notes in Comput. Sci. Springer International Publishing, Cham,
2020, pp. 360–372. http://dx.doi.org/10.1007/978-3-030-61792-9_29.

[RW21] M. L. Rahman, T. Watson. 6-uniform Maker-Breaker game is PSPACE-complete.
In 38th International Symposium on Theoretical Aspects of Computer Science
(STACS 2021), vol. 187 of LIPIcs. Schloss Dagstuhl, Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2021, pp. 57:1–57:15. http://dx.doi.org/10.4230/LIPIcs.
STACS.2021.57.

[Sch78] T. J. Schaefer. On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci., 16(2), 1978, pp. 185–225. http://dx.doi.org/10.1016/
0022-0000(78)90045-4.

[Sim68] G. J. Simmons. The game of SIM. In Mathematical Solitaires and Games. Rout-
ledge, New York. ISBN 978-0895030177, 1968. http://dx.doi.org/10.4324/
9781315224169-11.

http://dx.doi.org/10.1016/0095-8956(92)90030-2
https://arxiv.org/abs/2001.10116
http://dx.doi.org/10.1080/0025570X.1974.11976415
http://dx.doi.org/10.1080/0025570X.1974.11976415
http://dx.doi.org/10.1002/(SICI)1097-0118(199708)25:4<243::AID-JGT1>3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1097-0118(199708)25:4<243::AID-JGT1>3.0.CO;2-K
http://dx.doi.org/10.1016/S0195-6698(82)80029-2
http://dx.doi.org/10.1016/S0195-6698(82)80029-2
http://dx.doi.org/10.1002/rsa.20628
http://dx.doi.org/10.1002/rsa.20628
http://dx.doi.org/10.1016/j.jcta.2013.09.003
http://dx.doi.org/10.1016/j.jcta.2013.09.003
http://dx.doi.org/10.1016/0166-218X(81)90007-X
http://dx.doi.org/10.1016/0166-218X(81)90007-X
http://dx.doi.org/https://doi.org/10.1112/plms/s2-30.1.264
http://dx.doi.org/https://doi.org/10.1112/plms/s2-30.1.264
http://dx.doi.org/10.1007/978-3-030-61792-9_29
http://dx.doi.org/10.4230/LIPIcs.STACS.2021.57
http://dx.doi.org/10.4230/LIPIcs.STACS.2021.57
http://dx.doi.org/10.1016/0022-0000(78)90045-4
http://dx.doi.org/10.1016/0022-0000(78)90045-4
http://dx.doi.org/10.4324/9781315224169-11
http://dx.doi.org/10.4324/9781315224169-11

Bibliography 199

[SMN16] A. Suzuki, A. E. Mouawad, N. Nishimura. Reconfiguration of dominating
sets. J. Comb. Optim., 32, 2016, pp. 1182–1195. http://dx.doi.org/10.1007/
s10878-015-9947-x.

[SS23] M. Stojaković, J. Stratijev. On strong avoiding games. Discrete Math., 346(3),
113270. http://dx.doi.org/10.1016/j.disc.2022.113270.

[SST09] P. V. Skums, S. V. Suzdal, R. I. Tyshkevich. Edge intersection graphs of linear
3-uniform hypergraphs. Discrete Math., 309(11), 2009, pp. 3500–3517. http:
//dx.doi.org/10.1016/j.disc.2007.12.082.

[Tom12] I. Tomescu. Some results on chromaticity of quasi-linear paths and cycles. Electron.
J. Combin., 19(2), P23. http://dx.doi.org/10.37236/2370.

[TT09] M. Thakur, R. Tripathi. Linear connectivity problems in directed hypergraphs.
Theoret. Comput. Sci., 410(27-29), 2009, pp. 2592–2618. http://dx.doi.org/10.
1016/j.tcs.2009.02.038.

[Wal14] D. G. Walker. A Book of Historic Board Games. Lulu, 2014. ISBN 978-1326034801.

[WP21] B. Wu, Y. Peng. Lagrangian densities of short 3-uniform linear paths and Turán
numbers of their extensions. Graphs Combin., 37(3), 2021, pp. 711–729. http:
//dx.doi.org/10.1007/s00373-020-02270-w.

[Wrz20] W. Wrzos-Kaminska. A simpler winning strategy for Sim. 2020. Preprint: https:
//arxiv.org/abs/2001.04024.

[Yin97] H. Yinnone. On paths avoiding forbidden pairs of vertices in a graph. Discrete Appl.
Math., 74(1), 1997, pp. 85–92. http://dx.doi.org/10.1016/S0166-218X(96)
00017-0.

[Zas82] C. Zaslavsky. Tic Tac Toe: and Other Three-In-A Row Games from Ancient Egypt
to the Modern Computer. Harpercollins, 1982. ISBN 978-0690043167.

http://dx.doi.org/10.1007/s10878-015-9947-x
http://dx.doi.org/10.1007/s10878-015-9947-x
http://dx.doi.org/10.1016/j.disc.2022.113270
http://dx.doi.org/10.1016/j.disc.2007.12.082
http://dx.doi.org/10.1016/j.disc.2007.12.082
http://dx.doi.org/10.37236/2370
http://dx.doi.org/10.1016/j.tcs.2009.02.038
http://dx.doi.org/10.1016/j.tcs.2009.02.038
http://dx.doi.org/10.1007/s00373-020-02270-w
http://dx.doi.org/10.1007/s00373-020-02270-w
https://arxiv.org/abs/2001.04024
https://arxiv.org/abs/2001.04024
http://dx.doi.org/10.1016/S0166-218X(96)00017-0
http://dx.doi.org/10.1016/S0166-218X(96)00017-0

	Summary in French
	Introduction
	Preparatory notions and preliminary results
	The Maker-Breaker game: an introduction
	State of the art on positional games
	Some vocabulary around hypergraphs
	Various conventions and problems
	Achievement vs Avoidance, Strong vs Weak
	Elementary strategies and principles
	Difficulty comparison between conventions

	State of the art on the Maker-Breaker game
	General results
	Games played on the edge set or vertex set of a graph
	Our case of interest: hypergraphs of small rank

	Our approach to the Maker-Breaker game and a few basic results
	Playing the game on marked hypergraphs
	Optimizing time or tokens
	A reminder on two key principles
	Some operations on marked hypergraphs

	Subhypergraph collections and their intersection properties
	Some notions on marked hypergraphs
	Intersections and unions of subhypergraph collections
	Pointed marked hypergraphs

	Dangers in the Maker-Breaker game
	Definitions and first results
	Considering a fixed family of dangers
	Danger prevention
	Restricted obstructions

	First results: the example of trivial dangers
	A matter of survival... and more
	General counting results on the biased Maker-Breaker game
	An application to a specific game around sums

	Elementary structures in (marked) hypergraphs
	In general hypergraphs
	Walks and paths
	Forcing paths

	In 3-uniform hypergraphs
	Chains, cycles and tadpoles
	Substructure lemmas
	Projections
	Union lemmas

	In-depth structural studies in hypergraphs
	The Maker-Breaker game: structural results in hypergraphs of rank 3[2]These results are part of the article GGSMB, which has been submitted to Journal of Combinatorial Theory, Series A.
	Presentation of the problem and state of the art
	The game on 3-uniform marked hyperforests
	Solution in terms of nunchakus
	Interpretation in terms of the family of dangers S

	The game on general 3-uniform marked hypergraphs
	The family of dangers C
	The family of dangers D0
	Statement of the main results

	Approximating D0* and D0*2
	The families of dangers T and D1
	The families of dangers D1O and D2

	Structure of the D1O,rest-dangers
	First properties
	Union lemmas
	Inside structure

	Proof of the main results... first assuming a key lemma
	Proof of Theorem II.1.12
	Proof of Theorem II.1.13

	Proof of the key lemma
	Preliminary statements
	Roadmap of the proof
	Finishing the proof when D is of type (2)
	Finishing the proof when D is of type (1)

	Conclusion and prospects

	Structure of a (k-2)-linear connected component[2]These results are part of the article GGSarchipels, which has been submitted to Discrete Mathematics & Theoretical Computer Science.
	Presentation of the problem and state of the art
	The archipelago structure
	An overview
	Compatible walks
	Islands and archipelagos
	Archipelago properties

	Characterization as unique maximal archipelago
	A-types and statement of the main result
	Augmenting archipelagos
	Proof of the main result

	Conclusion and prospects

	How structure contributes to algorithms and game complexness
	Algorithms for connectivity problems in graphs and hypergraphs[2]These results are part of the article GGSarchipels, which has been submitted to Discrete Mathematics & Theoretical Computer Science.
	Presentation of the problem and state of the art
	The -linear connectivity problem HypConk,
	A polynomial-time algorithm for the case =k-2
	Reduction to uniform hypergraphs

	The "Paths Avoiding Forbidden Pairs" problem PAFP
	Reducing HypConk, to PAFP
	Reducing some instances of PAFP to HypConk,

	Conclusion and prospects

	The Maker-Breaker game: complexity and bounds on optimization parameters
	Presentation of the problem and state of the art
	A polynomial-time algorithm for the game on hypergraphs of rank 3[2]These results are part of the article GGSMB, which has been submitted to Journal of Combinatorial Theory, Series A.
	When Maker wants to win in a minimum number of rounds
	In hypergraphs of rank 3[2]These results are part of the article GGSMB, which has been submitted to Journal of Combinatorial Theory, Series A.
	In hypergraphs of rank k 4

	When Maker wants to win using a minimum number of tokens
	In hypergraphs of rank 3
	In hypergraphs of rank k 4

	Conclusion and prospects

	From positional games to reconfiguration problems[2]These results are part of the article GGScoins, which has been accepted in Games of No Chance, vol. 6.
	Coin-moving puzzles with 2-adjacency restriction on the square grid
	Notations and first observations
	Picking up and dropping coins
	Span of a configuration
	Definition and a key necessary condition
	Structural properties

	Minimal/minimum configurations
	‘L’s and canonical configurations
	Extra coins and redundant coins
	Definitions and first observations
	A central factor for the game

	The case of two extra coins
	Presentation of the problem and state of the art
	Canonicalization process
	A slight improvement on Theorem IV.2.1
	The general case with two extra coins
	Worst-case puzzles
	A new sufficient condition for a puzzle to be solvable

	Conclusion and prospects

	Conclusion

