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This thesis studies cell population dynamics. A particularity of the models considered is that they take into account certain types of cell-to-cell variability that influence the global dynamics of the population.

First, we are interested in heterogeneity in the way cells grow. Each cell grows in size according to a rate attributed at birth among a finite set of growth rates, and divides into two cells of equal size. Death being neglected, the number of individuals increases over time. The question, directly coming from biology, is then to know how the individual parameters of growth and division, and in particular the variability in the growth rate and its transmission law, influence the growth of the population. We formulate it in the framework of growth-fragmentation equations, considering an equation structured in size and growth rate. Existence and uniqueness of the Perron eigenvalue λ and associated eigenvectors are stated under general assumptions including the case of exponential individual growth, for which uniqueness is not verified in the absence of variability. We then show that the population grows exponentially, at the rate λ, and converges in size to a steady profile. Finally, we analyze the dependence of the Malthus parameter λ on the coefficients of the equation. Under certain conditions on the coefficients, we show that the dependence is monotonous. By considering specific classes of coefficients, we finally obtain quantitative results on the value of the Malthus parameter with respect to the parameters of the equation: numerically, using an suitable scheme, and theoretically (which allows in particular a generalization to the case of a continuous set of growth rates).

In a second part, we study the dynamics of cell death specific to the replicative senescence. At the population level, replicative senescence is characterized by a progressive decrease in cell growth and an increase in death. Individually, on the other hand, cells enter senescence abruptly (their cycle time does not increase progressively over generations but suddenly, a few generations before death) and asynchronously with each other (at variable times and generations). For this reason, we propose a model (based on Markov processes) of replicative senescence that integrates not only the intracellular molecular mechanisms responsible for the senescence, but also for the cell-to-cell heterogeneity in cell cycle time and generation of arrest (with abnormally long cell cycle) by allowing two "phenotypes" of entry into senescence. After calibrating the model with experimental (microfluidic) data, simulation allows to study the influence of some parameters on the lineage and population dynamics, often inaccessible experimentally, and gain v deeper understanding of the mechanisms of replicative senescence and of the link between lineage and population observations.

Résumé

Cette thèse a pour objectif l'étude de dynamiques de populations cellulaires. Une particularité des modèles étudiés est qu'ils tiennent compte de certains types de variabilité inter-cellulaire qui influent sur la dynamique globale de la population.

Dans un premier temps nous nous intéressons à l'hétérogénéité dans la façon de grandir. Chaque cellule grandit en taille selon un taux attribué à la naissance, parmi un ensemble fini de taux de croissance, et se divise en deux cellules de taille égale. La mort étant négligée, le nombre d'individus augmente au cours du temps. La question, directement issue de la biologie, est alors de savoir comment les paramètres individuels de croissance et de division, et notamment la variabilité du taux de croissance et sa loi de transmission, influent sur la croissance de la population. Nous l'étudions à l'aide du formalisme des équations de croissancefragmentation, en considérant une équation structurée en taille et en taux de croissance. L'existence et l'unicité de la valeur propre de Perron λ et des vecteurs propres associés sont établies sous des hypothèses générales incluant le cas où les individus suivent une croissance exponentielle, pour lequel l'unicité n'est pas vérifiée en absence de variabilité. Nous montrons ensuite que la population croit exponentiellement, au taux λ, et converge en taille vers un profil stationnaire. Enfin, nous analysons la dépendance du paramètre de Malthus λ par rapport aux coefficients de l'équation. Sous certaines conditions sur les coefficients, nous montrons que la dépendance est monotone. En se plaçant dans des cas particuliers, nous obtenons ensuite des résultats quantitatifs sur la valeur du paramètre de Malthus en fonction des paramètres de l'équation : de façon numérique, à l'aide d'un schéma adapté, et théorique (permettant en particulier une généralisation au cas d'un ensemble continu de taux de croissance).

Dans un second temps, nous étudions les dynamiques de mort cellulaire propres à la sénescence réplicative. À l'échelle de la population, la sénescence réplicative se caractérise par la diminution progressive de la croissance cellulaire et l'augmentation de la mortalité. Individuellement en revanche, les cellules entrent en sénescence de façon abrupte (leur temps de cycle n'augmente pas progressivement au cours des générations mais soudainement, quelques générations avant la mort) et asynchrone les unes par rapport aux autres (à des instants et des générations variables). Pour cette raison, nous proposons un modèle (basé sur des processus de Markov) de la sénescence réplicative qui intègre non seulement des mécanismes moléculaires à l'origine de la senescence, mais aussi de l'hétérogénéité inter-cellulaire du temps de cycle et des générations d'arrêt (celles associées à un temps de cycle anormalement iii long) en autorisant notamment deux « phénotypes » d'entrée en sénescence. Une fois le modèle calibré à l'aide de données (microfluidiques) expérimentales, la simulation permet d'étudier l'influence de certains paramètres sur la dynamique en lignée et en population, souvent inaccessible expérimentalement, et d'approfondir la compréhension des mécanismes de la sénescence réplicative et du lien entre l'observation de lignées et de populations.

Introduction 1. Brief excursion into the modeling of cell division

Far from being exhaustive, the present part goes through some major types of models of the cell cycle and a few associated biological questions while introducing most of the notations used in the thesis.

A variety of biological scales and mathematical models

If biology deals with the general question of life, it covers very different scales, each associated to a certain degree of complexity, leading to a large range of mathematical models.

Intracellular scale

To the apparently simple question What makes a cell divide in a sustainable way? molecular biology for example tries to answer at the genomic or molecular scale, investigating the biochemistry of the cell cycle regulation. Under this point of view, the cell is commonly seen as a complex system represented diagrammatically [START_REF] Kaizu | A comprehensive molecular interaction map of the budding yeast cell cycle[END_REF] in a regulatory network [START_REF] Ferrell | Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?[END_REF][START_REF] Machado | Modeling formalisms in Systems Biology[END_REF][START_REF] Tyson | Modeling the dynamic behavior of biochemical regulatory networks[END_REF].

When each component of the network is associated with a discrete variable (usually boolean, i.e. either active or inactive) and interact only by activation/deactivation, we talk about Boolean models, reviewed in [START_REF] Abou-Jaoudé | Logical Modeling and Dynamical Analysis of Cellular Networks[END_REF] (see references of Table 2). Typically, they model gene regulatory networks.

A more quantitative way to describe intracellular dynamics (generally rather metabolic and signaling networks) is to use ordinary differential equation (ODE) models [START_REF] Sible | Mathematical modeling as a tool for investigating cell cycle control networks[END_REF][START_REF] Tyson | A Dynamical Paradigm for Molecular Cell Biology[END_REF][START_REF] Adler | A yeast cell cycle model integrating stress, signaling, and physiology[END_REF][START_REF] Chen | Integrative Analysis of Cell Cycle Control in Budding Yeast[END_REF]. Instead of being converted into logic (Boolean model), the biochemical relationships of the reaction network are translated to rate equations (ODEs) that describe the time evolution of the concentration (or activity), say (x i ) 1≤i≤n , of each biochemical entity in relation to the others; namely: dx i dt = f i x 1 , . . . , x n ; p 1 , . . . , p m , i ∈ {1, . . . , n},
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1. Brief excursion into the modeling of cell division where p j is the value of the jth parameter. Possibly one can add time delay τ j to account for some retroactive mechanisms using delay differential equations (DDE):

dx i dt = f i x 1 (t), .
. . , x j (t -τ j ); p 1 , . . . , p m , i ∈ {1, . . . , n}.

These two classical approaches have been extended in many ways -stochastic framework, with stochastic differential equation or stochastic boolean models (defining Markov processes on the discrete relational network [START_REF] Stoll | Continuous time boolean modeling for biological signaling: application of Gillespie algorithm[END_REF][START_REF] Laomettachit | A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle[END_REF]), hybrid models (boolean and ODEs), etc.-with varying complexity up to comprehensive or whole-cell models [START_REF] Chen | Integrative Analysis of Cell Cycle Control in Budding Yeast[END_REF][START_REF] Karr | A Whole-Cell Computational Model Predicts Phenotype from Genotype[END_REF][START_REF] Münzner | A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae[END_REF][START_REF] Adler | A yeast cell cycle model integrating stress, signaling, and physiology[END_REF]. For example, Münzer et al.'s 2019 model [START_REF] Münzner | A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae[END_REF] unifies currently validated models of the yeast cell cycle into a network model encompassing over 357 components that take part in 790 elementary reactions.

When the system is simple enough, theoretical analysis investigate which parameter values or network features (feedback loop, time delay, non-linearity. . . ) are able to generate specific system-level properties (most notably oscillations); see e.g. logical analysis [START_REF] Abou-Jaoudé | Logical Modeling and Dynamical Analysis of Cellular Networks[END_REF] and bifurcation analysis [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF][START_REF] Tyson | A Dynamical Paradigm for Molecular Cell Biology[END_REF] for Boolean and ODEs models, respectively. For more complex system, this is achieved with computational algorithms, a classical one being the Gillespie algorithm for stochastic models, and, providing that a large amount of data is available, machine learning methods [START_REF] Camacho | Next-Generation Machine Learning for Biological Networks[END_REF][START_REF] Erbe | The use of machine learning to discover regulatory networks controlling biological systems[END_REF][START_REF] Kwon | Modeling regulatory networks using machine learning for systems metabolic engineering[END_REF].

Cellular scale

Besides focusing on what regulates and controls the progression of the cell cycle at the intracellular scale one can investigate what regulates phenotypic variables (like size, age or growth rate), not only during the cell cycle but also across generations.

One way to do it is to rely on an intracellular description of the cell cycle. Although theory and simulation can reveal interesting system-level properties emerging from a few intracellular interactions, the models able to predict observable cellular behaviors or phenotypes are generally complex (see the whole-cell model [START_REF] Karr | A Whole-Cell Computational Model Predicts Phenotype from Genotype[END_REF]).

The other way, the "reductionist" approach, rather forgets about the intracellular complexity and focuses directly on the phenotypic variables of interest.

Ensuring size homeostasis.

A long-standing fundamental question related to the regulation of the cell cycle is to determine how it is coupled to growth in a way that ensures size homeostasis 1 [118, 171, 105, 10, 207]. Interestingly, if the cell cycle regulatory networks have been extensively characterized, the molecular mechanisms of the cell-size control are still not completely clear [START_REF] Zatulovskiy | On the Molecular Mechanisms Regulating Animal Cell Size Homeostasis[END_REF]. The main barrier is technical, due to the difficulties in obtaining precise single-cell measurements under well-controlled experimental conditions only recently overcome -notably with microfluidic experiments [START_REF] Wang | Robust Growth of Escherichia coli[END_REF][START_REF] Jia | Cell size distribution of lineage data: Analytic results and parameter inference[END_REF][START_REF] Yu | Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing[END_REF][START_REF] Cadart | Size control in mammalian cells involves modulation of both growth rate and cell cycle duration[END_REF][START_REF] Soifer | Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy[END_REF][START_REF] Campos | A Constant Size Extension Drives Bacterial Cell Size Homeostasis[END_REF][START_REF] Garmendia-Torres | Multiple inputs ensure yeast cell size homeostasis during cell cycle progression[END_REF][START_REF] Cermak | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays[END_REF] (see Chapter 3). In addition, size can refer to distinct quantities (the mass, amount of DNA content, surface or volume. . . ) but not all of them are equivalent and equally reliable in describing the cell size [START_REF] Tanaka | Regulation of the Total Cell Surface Area in Dividing Dictyostelium Cells[END_REF][START_REF] Tanaka | A 'dynamic adder model' for cell size homeostasis in Dictyostelium cells[END_REF][START_REF] Rhind | Cell-size control[END_REF][START_REF] Bryan | Measurement of mass, density, and volume during the cell cycle of yeast[END_REF].

Therefore, many studies address cell-size control through reductionist modeling approach which sees cell size as the result of a balance between growth and division.

Nevertheless, the following cell-level models are driven by molecular considerations that we do not discuss here.

Modeling individual growth accurately has a long history [START_REF] Mitchison | Growth During the Cell Cycle[END_REF][START_REF] Cooper | Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research[END_REF]. It consists in finding a growth rate τ that properly describes the time evolution of the cell size x:

dx(t) dt := τ x(t) , t > 0. (I.1)
Possibly, τ can be stochastic, depend on additional variables like the phase (or progression in the cell cycle, 0 being birth and 1 division), the age or another physiological trait, some behavioral trait, the cell concentration or nutrient supply etc.

As for the modeling of division, three paradigms have been considered [START_REF] Amir | Is cell size a spandrel?[END_REF][START_REF] Ho | Modeling Cell Size Regulation: From Single-Cell-Level Statistics to Molecular Mechanisms and Population-Level Effects[END_REF][START_REF] Campos | A Constant Size Extension Drives Bacterial Cell Size Homeostasis[END_REF].

• Timer models. Introduced in 1968 by Cooper and Helmstetter [START_REF] Cooper | Chromosome replication and the division cycle of Escherichia coli Br[END_REF] and reported for C. crescentus [START_REF] Iyer-Biswas | Scaling laws governing stochastic growth and division of single bacterial cells[END_REF] and early frog embryos [START_REF] Wang | Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis[END_REF], they consider that division occurs after a certain amount T of time since birth. Under linear growth

x(t) = x(0) + λt, i.e. τ : x → λ , t ≥ 0, λ > 0, a timer model is then sufficient to maintain cell size: the size at birth X n converges as the generation n goes to infinity (towards λT from X n+1 := (X n + λT )/2 in the case of equal mitosis (i.e. equal splitting of the mother size at division).

Single-cell experiments however indicate that most cells rather exhibit exponential growth (i.e. have linear growth rate) in a constant environment (e.g. bacteria [START_REF] Campos | A Constant Size Extension Drives Bacterial Cell Size Homeostasis[END_REF][START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF][START_REF] Wang | Robust Growth of Escherichia coli[END_REF][START_REF] Cermak | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays[END_REF][START_REF] Iyer-Biswas | Universality in Stochastic Exponential Growth[END_REF], yeast [START_REF] Cermak | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays[END_REF][START_REF] Godin | Using buoyant mass to measure the growth of single cells[END_REF][START_REF] Cooper | Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research[END_REF], and mammalian cells [START_REF] Sinclair | Modes of Growth in Mammalian Cells[END_REF][START_REF] Cermak | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays[END_REF]), namely:

x(t) = x(0) e λt , i.e. τ : x → λx , t ≥ 0, λ > 0.

Provided that λ is common to all cells, mother and daughter cells' size at birth (or division) are correlated iff their cell cycle times are. Therefore, timer models -where the cell cycle time is constant (or possibly perturbed with random noise [START_REF] Amir | Cell Size Regulation in Bacteria[END_REF])no longer provide size control.

• Sizer models. To achieve size homeostasis, exponentially growing cells should thus vary their cycle duration such that to divide when reaching a certain size.

This corresponds to sizer models [START_REF] Donachie | Relationship between Cell Size and Time of Initiation of DNA Replication[END_REF][START_REF] Koch | A Model for Statistics of the Cell Division Process[END_REF], experimentally identified for example in fission yeast (1977) [START_REF] Fantes | Control of cell size and cycle time in Schizosaccharomyces pombe[END_REF][START_REF] Sveiczer | The size control of fission yeast revisited[END_REF] for which sizer molecular mechanisms were found [START_REF] Facchetti | Controlling cell size through sizer mechanisms[END_REF][START_REF] Schmoller | Dilution of the cell cycle inhibitor Whi5 controls budding-yeast cell size[END_REF][START_REF] Keifenheim | Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast[END_REF], or more recently in mouse epidermal stem cells (2020) [START_REF] Xie | A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis[END_REF].

• Adder models. Eventually, Adder, or incremental, models postulate that cells divide after having grown a certain amount of cell size (mass, volume, surface area. . . ) independent of their size at birth [START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF][START_REF] Campos | A Constant Size Extension Drives Bacterial Cell Size Homeostasis[END_REF][START_REF] Soifer | Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy[END_REF]. First formulated by Voorn and Koppes, 1998 [START_REF] Voorn | Skew or third moment of bacterial generation times[END_REF], and later Amir, 2004 [START_REF] Amir | Cell Size Regulation in Bacteria[END_REF] adder models were found to best account for size regulation in a lot of species but are less well explained molecularly [START_REF] Chandler-Brown | The Adder Phenomenon Emerges from Independent Control of Pre-and Post-Start Phases of the Budding Yeast Cell Cycle[END_REF].

• Extensions. In fact, most species do not generally exhibit perfect timer, sizer or adder size control and alternative mechanisms have been proposed within these paradigms (intermediate timer-sizer [START_REF] Osella | Concerted control of Escherichia coli cell division[END_REF] or adder-sizer models [START_REF] Walldén | The Synchronization of Replication and Division Cycles in Individual E. coli Cells[END_REF][START_REF] Vargas-Garcia | Modeling homeostasis mechanisms that set the target cell size[END_REF] appearing e.g. when dividing the cell cycle in distinct size control steps or when allowing cell-to-cell variability in growth rate; stochastic or "sloppy" versions [START_REF] Osella | Concerted control of Escherichia coli cell division[END_REF][START_REF] Tyson | Sloppy size control of the cell division cycle[END_REF]. . . ).

The same initial question, "what makes a cell divide in a sustainable way?", can thus be answered at the scale of the cell within the time scale of several generations rather than of a single cell cycle.

Another question that arises when looking at the lineage time scale is death: what prevents most lineages from being immortal? What kind of memory mechanisms? At the core of Chapter 3, the question is answered at a molecular level by the existence, in most normal cells, of some intracellular division counter (the length of telomeres) that keeps track of the generation. At the very heart of the life process, death is crucial to achieve another kind of homeostasis: homeostasis in number of cells constitutive of an organism. Not only does division ensure for example the renewal of tissues and organs but cell death regulates their size and stability over time. This leads us to the next scale.

Population scale

The last scale that interests us particularly in this work is the scale of the population, which again opens up new questions. Among the most fascinating questions are the ones raised by developmental biology whose objects of study, organisms or part of them, are roughly speaking heterogeneous populations of cells. What kind of intra/intercellular organization makes possible one cell to turn into a whole organism over division and differentiation? Again, one can look for explanations at the lower scale. For example, the cellular aging/death process of senescence, studied in Chapter 3, was shown to participate in tissue remodeling during the development of the mammalian embryo [START_REF] Muñoz-Espín | Cellular senescence: from physiology to pathology[END_REF]. How it participates in organismal aging is a concern that goes back to early research in senescence [START_REF] Di Micco | Cellular senescence in ageing: from mechanisms to therapeutic opportunities[END_REF]; similarly with the link between cellular and organismal size control, suggested by Haldane in its 1926 article [START_REF] Haldane | On being the right size[END_REF].

Let us present a few ways to model (structured) populations based on an intracellular or cellular description, the individual model; see Doumic and Hoffmann [START_REF] Doumic | Individual and Population Approaches for Calibrating Division Rates in Population Dynamics: Application to the Bacterial Cell Cycle[END_REF] and references therein for a more in-depth review. We adopt the notation of [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF] where the prefix i-and p-stand for the individual and population level.

Formalism for the individual model. The i-model should provide laws associated with a minimal set of i-states X = (X 1 , . . . X m ) ∈ Ω ⊂ R m sufficient to fully describe a cell and its (possibly stochastic) evolution from birth to division or death, under given environmental conditions. Note that we refer here to a population of cells but this could be anything else (polymers, microtubules, etc). Similarly, other mechanisms than growth and division could be considered (coagulation, adaptation. . . ), but we keep focusing on these two not to be too abstract. Also, we focus on two types of individual dynamics:

• Discrete stochastic evolution, or jumps, like birth/division or death events, described by state-dependent division and death rates γ and d, resp. (see Remark I.2 below for a stochastic interpretation of γ when X ∈ R + is the age). • Continuous deterministic evolution of the i-states, like aging or growth (if cell size is described by the kth i-state, this could be t → X k (t) satisfying (I.1) between two jumps).

Once individual laws have been fixed, we can switch to population modeling.

Stochastic individual-base models. One the one hand, individual-based models (IBM) keep track of the trajectories (in the state space Ω) of each individual in the population. When i-dynamics incorporate stochasticity (we refer to stochastic IBM ), the whole population can be represented by the stochastic process X [Nt] (t) := X 1 (t), . . . , X Nt (t) , with values in ∞ k=1 Ω k describing the evolution of the N t living individuals at time t (arbitrarily ordered). Generally, the population dynamics are then expressed equivalently as a Markov process with values in finite point measures on Ω:

Z t = Nt i=1 δ X i (t)
which represents the empirical measure of the process X [Nt] (t) t≥0 .

In our case, the individual evolution between two random jumps being deterministic, the underlying Markov process is said piecewise deterministic (PDMP) [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF][START_REF] Cloez | Probabilistic and Piecewise Deterministic models in Biology[END_REF]. Likewise, fragmentation mechanisms rely more specifically on branching processes, 1. Brief excursion into the modeling of cell division see e.g. [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF][START_REF] Harris | Branching Processes[END_REF][START_REF] Haccou | Branching Processes: Variation, Growth, and Extinction of Populations[END_REF][START_REF] Champagnat | From Individual Stochastic Processes to Macroscopic Models in Adaptive Evolution[END_REF][START_REF] Harris | The Theory of Branching Processes[END_REF][START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] in the time-continuous case.

Remark I.1. When the population is not followed over time but over successive generations n, another formalism is to "index" cells by their (uniquely defined) position in an infinite genealogical tree T. Then the Markov process can be directly embedded in the tree: (X u (n)) u∈Tn , where T n ⊂ T is e.g. the genealogical tree up to the nth generation ( full tree case) or along a given lineage with n individuals ( sparse tree case), as used e.g. in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF], or a more general incomplete tree [START_REF] Hoffmann | Statistical estimation in a randomly structured branching population[END_REF].

These models can be directly simulated. Simulation is particularly suited whenever the population is small, or Ω is high-dimensional or most of the parameters of the i-model are known. It provides a refined quantitative description of the population but often at a certain computational cost (see Chapter 3).

Structured-population equations. On the other hand, structured-population equations bridge the gap between individual behaviors and the population dynamics by considering intuitively that the number of individuals is sufficiently large for the evolution of the population to become deterministic even when individual trajectories are described by stochastic processes 2Typically, one can rigorously derive them from the underlying stochastic process Z t by taking the expectation of Z t over smooth test functions ϕ : Ω → R:

n(t, •), ϕ = E Z t , ϕ = E Nt i=0 ϕ X i (t)
and proving that it satisfies in the weak sense of measures a deterministic equation on n(t, •). See for instance [START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF][START_REF] Marguet | Uniform sampling in a structured branching population[END_REF][START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] for general introductions to these techniques and [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF][START_REF] Campillo | Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models[END_REF] for a derivation in specific cases, close to the growthfragmentation equation studied in Chapters 1 and 2.

Many-to-one formulas provides us with a Markov process (with same expectation) describing the evolution in the state space, not of every individuals, but of the "typical" one. In some cases, this typical individual can be obtained as a uniformly sampled individual in a large population approximation [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] which justifies the above intuition given for such equations.

In this framework, individual trajectories are forgotten and what remains at any time t is the distribution n(t, dX) of the i-states in the population. The population is then "structured", or partitioned, in subpopulations of unrecognizable individuals of same state. A discrete state space Ω gives rise to a system of ODEs (e.g. the preypredator model and the first chemostat model described in Perthame's book [START_REF] Perthame | Transport Equations in Biology[END_REF] 1. Brief excursion into the modeling of cell division among other examples). Otherwise, the model consists in a partial differential equation (PDE) -or possibly a system of PDEs if some i-states take discrete valuesand the X i are called structuring variables.

Examples of structured-population PDEs. The structure of the population depends on how division is modeled at the individual level.

• Sizer paradigm. In the first two chapters, we deal with size-structured equations, often referred to as growth-fragmentation equations and based on the assumption that cell size triggers division. In its simplest form, i.e. linear under equal mitosis and death neglected, the equation is (in a weak sense) ∂ ∂t n(t, x) + ∂ ∂x τ (x)n(t, x) + γ(x)n(t, x) = 4γ(2x)n(t, 2x), τ (0)n(t, 0) = 0, n(0, x) = n in (x), (I.2)

where n(t, x) is the density (or abusively number) of cells of size x > 0 at time t ≥ 0, τ the growth rate and γ the division rate. Formally, it can be understood by integrating on an arbitrary interval [a, b] of [0, +∞): -The difference between the growing cells reaching size a and those exceeding size b time t; expressed by the first two terms of the right-hand side, -Minus the number of cells of size [a, b] that divide at time t; given by the third term, -Plus newborn cells of size in [a, b]; they are coming from the division of cells twice as big (of size in [2a, 2b]) not forgetting that the division of one cell of size 2x gives two cells of size x hence the last term with a factor 2.

The same ideas apply to a mass balance, when the equation is multiplied by x before integration. In both cases, letting a and b tend towards 0 and infinity, respectively, reveals conservation laws encompassed by the model:

       N (t) := d dt ∞ 0 n(t, x) dx = ∞ 0 γ(x)n(t, x) dx , M (t) := d dt ∞ 0 xn(t, x) dx = ∞ 0 τ (x)n(t, x) dx . (I.3)
This accounts for the fact that the variation of the total number of cells N is not 1. Brief excursion into the modeling of cell division modified by individual growth (expressed through the transport term ∂ ∂x (τ n)) but only by the fragmentation process, that increases it at the rate γ. Conversely, the total mass of cells M is increased by growth but left unchanged by fragmentation. Because based on different balance laws, Equation (I.2) and the following are often referred to as population balanced equations.

Slight modifications of the right-hand side of Equation (I.2) can account for other types of division. Either deterministic division in unequal parts (general mitosis) [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF] with source term:

1 σ γ x σ n t, x σ + 1 1 -σ γ x 1-σ n t, x 1-σ ,
or general fragmentation [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF], possibly stochastic, with instead which means that the average total mass of newborn cells at division is the total mass of the cells that gave birth to them. In our case m = 2 but this could be different for other biological systems than a reproducing population of cells.

Also, we recover the previous cases by taking k(y, x) = 1 with n(t, a) the number of cells of age a > 0 at time t ≥ 0, γ the division rate, and d the death rate (set to zero in (I.2)).

• Adder paradigm. Eventually, under equal mitosis and the modeling assumption γ := βτ (discussed in Chapter 1), the incremental model [START_REF] Kendrick | Applications of Mathematics to Medical Problems[END_REF][START_REF] Franco | Modelling physiologically structured populations: renewal equations and partial differential equations[END_REF][START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF][START_REF] Madrid | Exponential ergodicity of a degenerate age-size piecewise deterministic process[END_REF], structured by size x > 0 and size increment a ∈ (0, x) since birth, corresponds to

    
∂ ∂t n(t, a, x) + ∂ ∂a τ (x)n(t, a, x) + ∂ ∂x τ (x)n(t, a, x) + β(a)τ (x)n(t, a) = 0, τ (x)n(t, 0, x) = 4τ (2x) ∞ 0 β(a)n(t, a, 2x) da , n(0, a) = n in (a),

These models have been extensively studied and extended in multiple directions, some of them presented in Section 1.2. In particular, we only considered linear versions but non-linear ones have been formulated, for instance to account for cell-to-cell interactions through the cell concentration (N (t) := n(t, dX)). A spacial structure, fluctuating environment or resources can also be taken into account. We refer to the textbooks [START_REF] Meleard | Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior[END_REF] and [START_REF] Perthame | Transport Equations in Biology[END_REF][START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF] for a review of structuredpopulation models in the stochastic and deterministic frameworks, respectively, and to Gyllenberg's review [START_REF] Gyllenberg | Mathematical aspects of physiologically structured populations: the contributions of J. A. J. Metz[END_REF] for a detailed historical point of view on structuredpopulation equations.

From single-cell to population dynamics: the question of cell-to-cell heterogeneity

At the heart of many studies is the question of cell-to-cell phenotypic heterogeneity (e.g. in gene expression, size, growth rate, etc.). In fact, it appears as an intrinsic property of cell populations, present even within clonal cultures [START_REF] Symmons | What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism[END_REF][START_REF] Elowitz | Stochastic Gene Expression in a Single Cell[END_REF].

What generates it? To answer the question one can look at the intracellular scale for molecular mechanisms responsible for phenotypic fluctuations, reviewed for example in [START_REF] Eldar | Functional roles for noise in genetic circuits[END_REF]. Mantzaris notably distinguishes in [START_REF] Mantzaris | From Single-Cell Genetic Architecture to Cell Population Dynamics: Quantitatively Decomposing the Effects of Different Population Heterogeneity Sources for a Genetic Network with Positive Feedback Architecture[END_REF] two sources of heterogeneity at the intracellular scale: "unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular reactions".

Another complementary way to tackle this question is to look at the population scale. The angle of adaptive dynamics [START_REF] Rochman | To grow is not enough: impact of noise on cell environmental response and fitness[END_REF][START_REF] Levien | Non-genetic variability in microbial populations: survival strategy or nuisance[END_REF] would rather be to wonder: what for? Under this point of view, the cell-to-cell variability is thought of as a (population-level) strategy that benefits to the proliferation and the survival of the whole population.

The first two chapters of the present thesis rather focus on the second point of view, while the the third chapter mixes both. If modeling cell populations requires to average individual behaviors, we emphasize here that keeping track of a minimal cell-to-cell heterogeneity can be crucial to capture certain population dynamics.

Variability in cell cycle time: age structure

Identifying heterogeneous individual behaviors from the observation of cell populations is a difficult task. If hardly characterizable at the population scale, inter-cell variability might nevertheless greatly influence the population dynamics, intricate with competition dynamics between individuals.

The major type of cell-to-cell variability that interests us in this thesis is the variability in cell cycle duration time (the time that a cell takes to divide, sometimes shortened to cell cycle time or duration), extensively reported experimentally [START_REF] Campos | A Constant Size Extension Drives Bacterial Cell Size Homeostasis[END_REF][START_REF] Soifer | Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy[END_REF][START_REF] Walldén | The Synchronization of Replication and Division Cycles in Individual E. coli Cells[END_REF][START_REF] Sandler | Lineage correlations of single cell division time as a probe of cell-cycle dynamics[END_REF][START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF]. Indeed, we only consider cell populations whose individuals are assumed to evolve independently and under constant environment. In such a situation, individuals compete through the only variable of their cycle duration.

To illustrate this idea let us consider a simple example. Take at time t = 0 two cells with distinct cell cycle times T A and T B < T A , and assume perfect heredity: cells with cycle duration time T A , or type A cells, give birth only to other type A cells, similarly with B. Then neglecting death, we would count 2 n cells of each type at generation n and the average cell cycle time at generation n would still be T A +T B
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. Now, fix a time t rather than a generation. The generation reached by A cells at time t, namely t/T A , would be smaller than the generation of B cells, resulting in less type A cells than type B (2 t/T B > 2 t/T A as soon as t ≥ T A ). As t goes to infinity it is clear that B cells would take over the population meanwhile the population average cell cycle time would tend towards T B .

In other words, the statistics along lineages (i.e. with respect to the generation axis) differs from the statistics in a population (with respect to the time axis) as soon as cells exhibit variability in their cell cycle times.

At the complete opposite of our example, Powell [START_REF] Powell | Growth Rate and Generation Time of Bacteria, with Special Reference to Continuous Culture[END_REF] (1956) assumed no heredity: the cell cycle time can vary among cells but is drawn at birth independently from the cycle time of the mother cell, from a distribution f . Owing to recent technical progress, which enabled precise observation of cell cycles along single-lineages (see e.g. mother-machine or microfluidic devices [START_REF] Wang | Robust Growth of Escherichia coli[END_REF]), Powell's seminal work has more recently gained interest and his results have been extended in various directions [START_REF] Thomas | Single-cell histories in growing populations: relating physiological variability to population growth[END_REF][START_REF] Lin | The Effects of Stochasticity at the Single-Cell Level and Cell Size Control on the Population Growth[END_REF][START_REF] Genthon | Fluctuation relations and fitness landscapes of growing cell populations[END_REF][START_REF] Hashimoto | Noise-driven growth rate gain in clonal cellular populations[END_REF][START_REF] Levien | Non-genetic variability in microbial populations: survival strategy or nuisance[END_REF][START_REF] Genthon | Analytical cell size distribution: lineage-population bias and parameter inference[END_REF]. Two main questions, tackled in this thesis, are raised:

• How does the variability in cell cycle time influence population growth? • How are single-cell statistics (obtained from single-lineage observation) and population statistics, biased by competition, related?

Let us summarize, with the formalism of structured equations, the answers brought in Powell's setting of no heredity. We consider the (age-structured) renewal equation 1. Brief excursion into the modeling of cell division in its conservative (i = 1) and non conservative (i = 2) forms:

     ∂ ∂t n i (t, a) + ∂ ∂a n i (t, a) + γ(a)n i (t, a) = 0, n i (t, 0) = i ∞ 0 γ(s)n i (t, s) ds , n i (0, a) = n 0 i (a).
(I.6)

The lineage (or genealogical) viewpoint, in which only one daughter cell is tracked at each division, amounts to choose i = 1 in the boundary condition which stands for newborn cells. As a result, the total number of individuals ∞ 0 n 1 (t, a) da is conserved through time. On the contrary, for i = 2 the two daughter cells are kept at division. Therefore, the whole population is followed through time, and death being neglected it grows (in number of individuals) exponentially at a rate λ 2 .

In addition, we expect the age distribution to converge to a stationary profile (see Section 2.1.2 below), such that:

n i (t, a) ∼ t→∞ e λ i t N i (a), i ∈ {1, 2}, λ 1 = 0, λ 2 > 0,
where (λ i ≥ 0, N i ) is the unique solution to

     ∂ ∂a N i (a) + λ i + γ(a) N i (a) = 0, N i (0) = i ∞ 0 γ(s)N i (s) ds , N i ≥ 0, ∞ 0 N i (s) ds = 1. (I.7)
Remark I.2. Relating the distribution f of cell cycle time to the rate of dividing cells γ can be done in two different ways, depending on how the division process (assumed common to all cells, independent of the viewpoint i = 1 or 2) is interpreted.

1. Stochastic interpretation. Let X be the random variable expressing the cycle time of a newborn cell, then we have • f (a) da = P X ∈ (a, a + da) : the probability for a cell to divide between age a and a + da (equivalently to have a cell cycle time equal to a). • γ(a) da = P(X ∈ (a, a + da) | X ≥ a): the probability for a cell to divide between age a and age a + da given that it has reached age a without dividing. • F (a) = P(X ≥ a): the probability for a cell to reach age a without dividing. By definition, all are linked together by

F (a)γ(a) = f (a), F (a) = ∞ a f (s) ds .
We get that F verifies F = -F γ so that finally: 2. Deterministic interpretation. Having in mind that (I.7) describes a population 1. Brief excursion into the modeling of cell division that have reached equilibrium, i.e. where division at rate γ and growth at rate τ do not modify its age distribution anymore, it provides the exact individual statistics under lineage or population observation (i = 1 or 2, resp.). In particular f (a) = γ(a)N 1 (a) γ(s)N 1 (s) ds , which is nothing but the distribution of cell cycle time evaluated at a being equal to the proportion of cells with age a that are dividing among all dividing cells in the population at equilibrium, when i = 1 (see Remark I.3).

F (a) = e
From (I.7) we find

N i (a) = N i (0) e - a 0
γ(s)ds-λ i a . (I.8)

Multiplying by iγ(a) and integrating on R + , provides thanks to the boundary condition on N i an implicit expression for λ i :

1 = i ∞ 0 γ(a) e -a 0 γ(s)ds-λ i a da = i ∞ 0 f (a) e -λ i a da . (I.9)
Notably, the integral term decreases in λ i , reaching 1 when λ i = λ 1 = 0 since f is a density. This ensures that λ 2 is positive and uniquely defined by (I.9).

Effect of variability on population growth.

We recall that cell cycle times are considered to be distributed at birth from the distribution f . Denote by T the average cell cycle time attributed at birth

T := ∞ 0 af (a) da = E f [X].
and notice that equality (I.9) for i = 2 is nothing but

1 = 2M f (-λ f ) = 2E f e -λ f X , (I.10)
where M f denotes the moment-generating function associated to the density f .

In the absence of cell-to-cell variability in cell cycle time, i.e. f (a) = δ a-T , equality (I.10) brings that the population growth rate, say λ δ , is

λ δ = ln(2) T
, meaning that doubling time ln(2) λ δ (time taken by the population to double) is exactly the individual cell cycle time.

Assume now that cell cycle times vary from cell to cell. Let us consider the examples given in [START_REF] Levien | Non-genetic variability in microbial populations: survival strategy or nuisance[END_REF][START_REF] Levien | Large Deviation Principle Linking Lineage Statistics to Fitness in Microbial Populations[END_REF][START_REF] Lin | From single-cell variability to population growth[END_REF] where cell cycle times are distributed from f ∼ N (T, σ 2 T ) (a Gaussian distribution with mean T and variance σ 2 T ) or f ∼ E 1

T

(which corresponds to a constant division rate γ(a) = 1 T , still with average cell cycle time T ). It follows from (I.10) that:

λ N = 2 ln(2) T + T 2 -2 ln(2)σ 2 T , λ E = 1 T
.

In both cases, the population growth rate is higher in the presence of variability in cell cycle time (in particular λ N increases with the variance σ 2 T ) than in the homogeneous population with the same average cell cycle time. This suggests that when there is no correlation between the mother and daughter cell cycle time (i.e. no heredity), variability is beneficial to population growth. We refer to [START_REF] Lin | From single-cell variability to population growth[END_REF] for similar considerations in the presence of correlations.

Lineage vs population viewpoints: competition bias. Denote by f 1 and f 2 the distribution of division time retrieved from the observation of either lineages or a population, respectively, when equilibrium is reached. From the above remark, the probability to observe a cell with cycle time a reads as

f i (a) = γ(a)N i (a) γ(s)N i (s) ds = iγ(a) e - a 0 γ(s)ds-λ i a = if (a) e -λ i a
where the second equality is a result of (I.8) and (I.9). Comparing both probability densities for some a > 0 eventually brings [START_REF] Hashimoto | Noise-driven growth rate gain in clonal cellular populations[END_REF][START_REF] García-García | Linking lineage and population observables in biological branching processes[END_REF] 

f 1 (a) < f 2 (a) ⇐⇒ 1 < 2 e -λ 2 a ⇐⇒ a < ln(2) λ 2 = T d (I.11)
where T d is the doubling time of a population growing exponentially at the rate λ 2 .

This means that within a population, any cell which takes longer to divide than the population takes to double, are less represented that it would have been looking along a lineage.

Remark I.3. This proves that f 1 coincides with f : statistics along lineages and statistics of the division process are the same. On the contrary, population observation is biased: the factor 2 e -λ 2 a appearing in f 2 accounts for the competition between fast and slow reproducing individuals.

Variability in cell cycle time: size structure

Now assume that division is triggered by the cell size. If all the cells are assumed to grow the same way, the variability in cell cycle time can be modeled considering that the size at division is stochastic. Consider that the growth rate τ is linear (i.e. cell sizes grow exponential). Following the same reasoning as above brings us to 2. Content of the thesis consider a growth-fragmentation equation, and more specifically its eigenproblem

     ∂ ∂x xN i (x) + λ i + γ(x) N i (x) = 2iγ(2x)N i (2x), τ (0)N i (0) = 0, N i ≥ 0, ∞ 0 N i (s) ds = 1,
with again i = 1 under the lineage viewpoint and i = 2 for the population one. One verifies easily that xN 2 satisfies the equation on N 1 , so that formally

xN 2 (x) = CN 1 (x), C = xN 2 (x) dx ,
with the normalizing constant C being the average cell size in the population.

The population size distribution is therefore biased towards small and large sizes compared to the lineage statistics. Then we can easily recover [START_REF] Genthon | Analytical cell size distribution: lineage-population bias and parameter inference[END_REF] xN

1 dx = xN 2 (x) dx + 1 C (x -C) 2 N 2 (x) dx ≥ xN 2 (x) dx .
The meaning is similar to what told us (I.11): the average cell size is larger in lineage than in population. In other words, cells with small size (age in the previous setting) are more represented in population than in lineage. This can be explained by the fact that fast dividing cells, that proliferate more, are on average smaller (younger, resp.); and conversely for large, slow dividing cells.

Content of the thesis

The thesis is structured in two main works that have in common the study of growing populations of cells that exhibit variability.

The first axis consists in the study of a certain growth-fragmentation equation, formulated in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] to account for cell-to-cell variability in growth rate. We explore its long-time behavior theoretically and numerically. In particular we wonder how population growth is affected not only by cell-to-cell variability (as seen in Section 1.2) but also by the way growth rates are inherited. The second axis is part of a collaboration with the biologists Teresa Teixeira and Zhou Xu that continues the PhD work of Thibault Bourgeron, Sarah Eugène and Hugo Martin under the supervision of Marie Doumic. We build and study a model of replicative senescence at the population level from laws at the cellular level, calibrated on the basis of microfluidics data (observation along individual lineages).

Growth-fragmentation model for a population presenting heterogeneity in growth or aging rate

In Section 1.2, we saw how cell-to-cell variations in the cell cycle time could, by introducing competition, greatly influence the overall dynamics of the population. Different mechanisms can account for the variability in cell cycle time:

• One can assume that all cells age and grow (for the timer and sizer paradigms, resp.) at the same rate but consider a stochastic (age or size dependent) division rate γ, as we did in Section 1.2.2. • Or also account for the variability in aging or growth rate τ . If division is deterministic (occurring at fixed age/size) it is clear that heterogeneous growth/aging rate yields heterogeneous cell cycle time (the fastest cells divide first). More generally, the instantaneous probability to divide γ(s) dt = γ(s) τ (s) ds is modified if τ is allowed to vary so that variability in the rate τ affect cell cycle times.

We focus on the variability in growth rate, little studied by mathematicians although reported and discussed among biologists [START_REF] Cermak | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays[END_REF][START_REF] Godin | Using buoyant mass to measure the growth of single cells[END_REF][START_REF] Aldridge | Asymmetry and Aging of Mycobacterial Cells Lead to Variable Growth and Antibiotic Susceptibility[END_REF][START_REF] Bergmiller | Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity[END_REF][START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF][START_REF] Kiviet | Stochasticity of metabolism and growth at the single-cell level[END_REF][START_REF] Walldén | The Synchronization of Replication and Division Cycles in Individual E. coli Cells[END_REF][START_REF] Gangwe Nana | Division-Based, Growth Rate Diversity in Bacteria[END_REF][START_REF] Walldén | Fluctuations in growth rates determine the generation time and size distributions of E. coli cells[END_REF][START_REF] Kennard | Individuality and universality in the growth-division laws of single E. coli cells[END_REF]. Essentially, two broad types of variability in growth rate are reported (see [START_REF] Levien | Non-genetic variability in microbial populations: survival strategy or nuisance[END_REF] for a brief comparison).

Brief review of the population models accounting for variability in growth rate

In-cycle variability in growth rate. Variability first occurs within the cell cycle.

It can be individual fluctuations around a common trend (generally exponential), in reaction to intracellular stochastic or external fluctuations [START_REF] Kiviet | Stochasticity of metabolism and growth at the single-cell level[END_REF][START_REF] Tanouchi | A noisy linear map underlies oscillations in cell size and gene expression in bacteria[END_REF][START_REF] Mora | Effect of Phenotypic Selection on Stochastic Gene Expression[END_REF][START_REF] Tănase-Nicola | Regulatory Control and the Costs and Benefits of Biochemical Noise[END_REF][START_REF] Jia | Cell size distribution of lineage data: Analytic results and parameter inference[END_REF][START_REF] Iyer-Biswas | Universality in Stochastic Exponential Growth[END_REF]. When modeled at the cell level by a Brownian motion (see Hoffmann and Marguet for a general framework [START_REF] Hoffmann | Statistical estimation in a randomly structured branching population[END_REF]), it yields a diffusion term in the PDE (see [START_REF] Zaidi | Probability density function solutions to a Bessel type pantograph equation[END_REF][START_REF] Genthon | Analytical cell size distribution: lineage-population bias and parameter inference[END_REF] and [178, Section III.B.] that also covers white noise). For the growth-fragmentation equation under equal mitosis, this would be

∂ ∂t n(t, x) + ∂ ∂x τ (t, x)n(t, x) + γ(x)n(t, x) = ∂ 2 ∂x 2 D(t, x)n(t, x) + 4γ(2x)n(t, 2x).
Apart from continuous changes, the growth rate can also vary "abruptly" during the cell cycle. Considering that there are only a finite number of distinct growth rates leads to compartmental models (system of PDEs). For example at the time-scale of the cell cycle, the growth rate vary depending on which phase of the cycle the cell is in [START_REF] Smith | Do Cells Cycle?[END_REF][START_REF] Tanaka | A 'dynamic adder model' for cell size homeostasis in Dictyostelium cells[END_REF][START_REF] Walldén | Fluctuations in growth rates determine the generation time and size distributions of E. coli cells[END_REF]. The progression through the phases (compartments) of the cell cycle is then classically modeled by a system of age-structured equations (variability in aging rate) [START_REF] Clairambault | A Mathematical Model of the Cell Cycle and Its CircadianControl[END_REF][START_REF] Basse | A mathematical model for analysis of the cell cycle in cell lines derived from human tumors[END_REF][START_REF] Billy | Synchronisation and control of proliferation in cycling cell population models with age structure[END_REF][START_REF] Clairambault | Circadian rhythm and tumour growth[END_REF].

Similarly, one could consider a continuous set of distinct growth rates. We mention Rotenberg's age-structured model [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF] that similarly accounts for the variability in aging rate. Cells are assumed to divide deterministically at age (or "degree of maturity") a = 1 but grow older at various "maturation" rate v ∈ V allowed to switch randomly during the life of each cell, as follows

       ∂ ∂t n(t, v, a) + v ∂ ∂a n(t, v, a) + n(t, v, a) V r(a; v , v) dv = V r(a; v, v )n(t, v , a) dv , vn(t, v, 0) = m V κ(v, v )v n(t, v , 1) dv ,
with r a mutation rate, and κ a kernel specifying how the growth rate is inherited at birth ( κ(v, v ) dv = 1).

Cell-to-cell variability in growth rate

In addition to in-cycle variability, there also exists cell-to-cell variability in growth rate, which could be attributed in part to cells' distinct histories.

If both types of variability are likely to coexist (as suggested by [START_REF] Kiviet | Stochasticity of metabolism and growth at the single-cell level[END_REF] for E. Coli), we only focus on the variability between individuals, whose effect on the population growth is discussed in a few articles [START_REF] Thomas | Single-cell histories in growing populations: relating physiological variability to population growth[END_REF][START_REF] Lin | From single-cell variability to population growth[END_REF][START_REF] Lin | The Effects of Stochasticity at the Single-Cell Level and Cell Size Control on the Population Growth[END_REF].

In this framework, each cell grows deterministically, according to a certain growth rate inherited at birth and conserved through life. The first step in the modeling is to define a family of growth rates (τ (v, •)) v∈V that describes the heterogeneity present in the population. Then each cell is attributed a feature (or trait) v ∈ V to which corresponds the growth rate τ (v, •) prescribing its (deterministic) growth.

Compared with the classical growth-fragmentation model (I.2), each cell is no longer fully characterized by its size x but also by its feature v which thus becomes a structuring variable of the equation. The last ingredient to specify is a kernel κ prescribing the probability distribution κ(v, dv ) of the features of the cells born from the division of a cell of feature v (in particular V κ(v, dv ) = 1). At the end, (I.2) is extended into

           ∂ ∂t n(t, v, x) + ∂ ∂x τ (v, x)n(t, v, x) + γ(v, x)n(t, v, x) = 4 V γ(v , 2x)n(t, v , 2x)κ(v , v) dv , τ (v , 0)n(t, v , 0) = 0, n(0, v, x) = n in (v, x), (I.12)
with n(t, v, x) the density of cells of size x > 0 and feature v ∈ V at time t.

Remark I.4. The division rate γ is also turned into a function of v, as a consequence of the modeling assumption γ := βτ , discussed in Chapter 1. Still, we emphasize that only growth is subjected to variability, division keeps being triggered by the only variable of size in the sense that β = β(x). We thus have γ(v, x) = β(x)τ (v, x) which makes β a division rate per unit of size (while γ is a division rate per unit of time).

The model was introduced by Doumic et al. [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] through Markov branching tree, and then used by Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF], whose article "How does variability in cells aging and growth rates influence the Malthus parameter?" is the starting point to our work. Existence of a solution to (I.12) is stated in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF]Theorem 1] in the case τ (v, x) = vx and γ = γ(x), and the longtime behavior is characterized theoretically in the conservative case (i.e. in the case of genealogical observations where the factor 4 in the right-hand side is replaced by 2). In [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF], Olivier aims to quantify the variation of the Malthus parameter, that characterizes population growth, with respect to the variability in the aging and growth rates of age-structured and size-structured populations, respectively. Theoretical results are obtained in a deterministic framework for the age-structured model while a numerical exploration of the asymptotic behavior, based on a stochastic approach, provides interesting results in the size-structured case.

We intend to extend Doumic et al.'s study of the genealogical observation case to the population case. The latter is indeed needed to investigate the impact of variability on population growth as done by Olivier for the age-structured model, often less accurate to describe cell division.

Although the model was formulated for a continuous set of individual features V we rather considered a finite set V = {v i } i∈I indexed by I := {1, . . . , M }. Not only is this assumption sufficient to model most biological systems, but it also enables a better understanding of how the mixing condition, encoded in κ (which becomes a M -square matrix), influences the asymptotic behavior. Last but not least, it provides better compactness, needed to obtain the existence of eigenelements. We recall (I.12) when V = {v i } i∈I is finite:

     ∂ ∂t n i (t, x) + ∂ ∂x τ i (x)n i (t, x) + γ i (x)n i (t, x) = 4 j∈I κ ji γ j (2x)n j (t, 2x), τ i (0)n i (t, 0) = 0, n i (0, x) = n in i (x), (I.13)
with notation u i := u(v i , •), i ∈ I. To preserve mass conservation we assume that the variability kernel κ is a stochastic matrix:

κ ij ≥ 0, ∀(i, j) ∈ I 2 , M j=1 κ ij = 1, ∀i ∈ I. (I.14)
A first part of our work, contained in Chapter 1, aims at exploring the asymptotic behavior of the growth-fragmentation equation (I.13) by studying the associated eigenproblem. In a second time, we focus on the value of the Malthus parameter associated to (I.13) (see below) with respect to the coefficients of the problem.

Qualitative results are obtained in Chapter 1. Then Chapter 2 focuses on particular cases to get more quantitative results.

Long-time asymptotic behavior

Asynchronous exponential growth. Experimentally, the size distribution in most reproducing cell populations rapidly stabilizes around a certain profile. This is observed even in clonal cultures that have been inoculated from a single cell. In fact, the shape of the steady profile appears to be independent of the initial size distribution. Whether or not a mathematical model satisfies this homeostasis property is thus a very classical problem associated to structured-population equations.

Let us recall the general growth-fragmentation equation with no variability

     ∂ ∂t n(t, x) + ∂ ∂x τ (x)n(t, x) + γ(x)n(t, x) = 2 ∞ x k(y, x)γ(y)n(t, y) dy , τ (0)n(t, 0) = 0, n(0, x) = n in (x). (I.15)
Size homeostasis is ensured providing the existence of a stationary profile N , independent of the initial condition, such that

n(t, x) ∼ t→+∞ h(t)N (x).
In particular, functions of the form (t, x) → h(t)N (x) should be themselves solutions to (I.15) with initial condition n in = h(0)N . Owing to the balance laws (I.3), we infer necessary conditions on h and N :

h(t) = h(0) e λt , λ = ∞ 0 γ(x)N (x) dx ∞ 0 N (x) dx = ∞ 0 τ (x)N (x) dx ∞ 0 xN (x) dx , (I.16)
after which (I.15) provides an equation on N : the so-called direct eigenproblem associated to (I.15) given below by (I.17). Size homeostasis is therefore associated with exponential growth at a rate λ, called the Malthus parameters or fitness:

n(t, x) ∼ t→+∞ C e λt N (x).
Biologists often refer to this behavior as asynchronous exponential growth (A.E.G).

Study of the eigenproblem: existence.

The study of the eigenproblem associated to (I.15) is thus a first, natural step that comes to play to investigate the longtime behavior. The direct eigenproblem is particularly motivated by the above considerations; as for the adjoint problem (see the equation on φ below) it will prove useful to exhibit an entropy property along with an appropriate functional space for which the relaxation to equilibrium n(t, •) e -λt → CN happens.

In [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] Doumic and Gabriel derive the existence and uniqueness of non-negative eigenelements associated to the general growth-fragmentation equation (I.15) for general coefficients (authorizing notably τ to cancel in zero).

Content of the thesis

We introduce the space of functions L p -integrable on a neighborhood of zero

L p 0 := f : ∃a > 0, f ∈ L p (0, a) , 1 ≤ p ≤ +∞,
and the set of non-negative locally bounded functions with at most polynomial growth or decay at zero and infinity, respectively:

P 0 := f ≥ 0, f ∈ L ∞ loc (0, +∞) : ∃ν 0 , ω 0 ≥ 0, x ν0 f ∈ L 1 0 , x ω 0 f ∈ L 1 0 , P ∞ :=    f ≥ 0, f ∈ L ∞ loc 0, +∞ : ∃ν, ω ≥ 0, lim sup x→+∞ x -ν f (x) < ∞ lim inf x→+∞ x ω f (x) > 0    .
Theorem I.1 [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]. Assume that the fragmentation kernel k satisfies (I.4), (I.5) (with m = 2) and assumptions [START_REF] Allsopp | Telomere length predicts replicative capacity of human fibroblasts[END_REF] and ( 11) of [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] (verified in the case k(y, x) = δ y=2x of equal mitosis). Consider that τ ∈ P 0 ∩ P ∞ with

∀K ⊂ (0, +∞) compact, ∃m K > 0 : τ ≥ m K a.e. on K.
and that γ ∈ P ∞ with supp(γ) = [b, +∞), b ≥ 0. Providing good balance between growth and division around zero and infinity:

γ τ ∈ L 1 0 , lim x→+∞ x γ(x) τ (x) = +∞,
there exists a unique solution (λ, N, φ) ∈ (0, +∞) × L 1 (R + ) × W 1,∞ loc (0, ∞), to the eigenproblem associated to (I.15):

                       d dx τ (x)N (x) + λ + γ(x) N (x) = 2 ∞ x k(y, x)γ(y)N (y) dy , τ (0)N (0) = 0, ∞ 0 N (x) dx = 1, N ≥ 0, -τ (x) d dx φ(x) + λ + γ(x) φ(x) = 2γ(x) x 0 k(x, y)φ(y) dy , ∞ 0 N (x)φ(x) dx = 1, φ(x) ≥ 0.
(I.17)

The proof of the uniqueness relies on an entropy principle, described in the next paragraph. The existence relies on two main ingredients:

• The Kreȋn-Rutman theorem [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF][START_REF] Perthame | Transport Equations in Biology[END_REF][START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications[END_REF] applied on a regularization of the problem that allows to work in C ([0, R]), R > 0. • A series of estimates on the moments of the regularized solutions. They provide compactness to pass to the limit the regularization parameters and get a solution to the original problem.

Remark I.5. The Kreȋn-Rutman theorem (1948) is a generalization to the infinite dimension of the Perron-Frobenius theorem (1907 and 1912), which ensures existence and uniqueness of a Perron eigenpair (a positive dominant eigenvalue associated to a positive eigenvector) to any positive matrix; and slightly weaker but similar results for a class of non-negative matrices. In its classical strong formulation, the Kreȋn-Rutman theorem provides a similar statement for compact strongly positive operators on regular spaces. For more details see for instance [START_REF] Perthame | Transport Equations in Biology[END_REF]Section 6.6] and [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications[END_REF].

Adapting the proof of Doumic and Gabriel to the setting with finite variability in growth rate but similar assumptions on the coefficients, we prove the existence of a solution to the eigenproblem associated to (I.13). Although we only consider equal mitosis, the general fragmentation could be treated similarly.

Theorem I.2 (Tournus and R.). Assume that for all i ∈ I the modeling assumption

γ i = βτ i , (I.18) is satisfied, with τ i = τ (v i , •) and γ i = γ(v i , •
) satisfying the assumptions of Theorem I.1 for τ and γ and their ratio. Denote

supp(β) = [b, +∞), b ≥ 0. (I.19)
Assume that κ satisfies (I.14). Then, there exists a solution (λ, N, φ) to the eigenproblem associated to (I.13):

                           ∂ ∂x τ i (x)N i (x) + λ + γ i (x) N i (x) = 4 j∈I κ ji γ j (2x)N j (2x), τ i (0)N i (0) = 0, i∈I ∞ 0 N i (x) dx = 1, N i (x) ≥ 0, -τ i (x) ∂ ∂x φ i (x) + λ + γ i (x) φ i (x) = 2γ i (x) j∈I κ ij φ j x 2 , i∈I ∞ 0 N i (x)φ i (x) dx = 1, φ i (x) ≥ 0, (I.20)
with λ > 0, and

N i ∈ L 1 (R + ), φ i ∈ W 1,∞ loc (0, +∞), i ∈ I.
In addition we have for every i ∈ I

x α τ i N i ∈ L p (R + ), ∀α ∈ R, 1 ≤ p ≤ +∞, x α τ i N i ∈ W 1,1 (R + ), ∀α ≥ 0, ∃k > 0 : φ i 1 + x k ∈ L ∞ (R + ), τ i ∂ ∂x φ i ∈ L ∞ loc (R + ),

General Relative Entropy.

If no conservation law is satisfied by the growthfragmentation equation, the dual problem associated to (I.15) [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] the GRE provides a family of functionals, quantifying the distance between any two solutions of the growthfragmentation equation (I.15) (or more general parabolic-hyperbolic equations), termed as entropies for they decrease over time.

-∂ ∂t ψ(t, x) -τ (x) ∂ ∂x ψ(t, x) + γ(x)ψ(t, x) = 2γ(x) x 0 k(x,
Theorem I.3 [START_REF] Michel | General entropy equations for structured population models and scattering[END_REF]). Let n and p be positive solutions to (I.15) and ψ a non-negative solution to the adjoint equation (I.21).

Then for any function H : R → R there holds

d dt E H ψ [n|p](t) := d dt ∞ 0 ψ(t, x)p(t, x)H n(t, x) p(t, x) dx = -D H ψ [n|p](t),
where the dissipation of the entropy • Uniqueness of the solution to (I.17). Consider a solution ( λ, N , φ) to (I.17). By duality λ N, φ = λ N, φ and thus λ = λ. Then, it suffices to apply the GRE principle to n = e λt N . For a well-chosen H, D H [n] (as defined above) cancels and (I.22) implies that Ñ = CN , with C = 1 from the normalization condition.

D H ψ [n|p](t) = ∞ 0 ∞ 0 k(y, x)γ(y)ψ(t, y)p(t, x) × H n(t, y) p(t, y) -H n(t, x) p(t, x) + H n(t, y) p(t, y) n(t, x) p(t, x) - n(t, y) p(t,
Similarly for the adjoint problem. • Long-time convergence. This time, the GRE principle is applied to h(t, x) := n(t, x) e λt -n in , φ N (x) that satisfies h(t, •)φ = 0. Then a contraction principle (direct consequence of the GRE) brings that |h(t, •)|φ decreases to some limit L. We prove that L is zero applying the GRE principle to the limit g of Indeed in this case, the quantity C in (I. [START_REF] Begnis | RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes[END_REF]) is not necessarily a constant but any function C : x → f (ln(x)) with f ln 2 -periodic (see [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]). As a result, the usual convergence does not hold. In fact, in this case the eigenproblem (I.17) admits a countable set of (complex) solutions (λ k , N k , φ k ) and we have the following result.

h k (t, x) = h(t + k, x) (obtained,
Theorem I.4 [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]. Consider the growth fragmentation equation under equal mitosis (I.2), with τ :

x → x and γ ∈ P ∞ s.t. γ(x) ≤ Cx ν 0 , C, ν 0 > 0 in a neighborhood of zero. Then for any n in ∈ E 2 := L 2 R + ; x N (x) dx , the unique solution n ∈ C (R + ; E 2 ) to (I.2) satisfies ∞ 0 n(t, x) e -t - k∈Z n in , N k E 2 e 2ikπ ln(2) t N k (x) 2 x N (x) dx -→ t→+∞ 0,
with (N, φ) the unique non-negative eigenvectors associated to (I.2) (λ = 1 and φ(x) = x).

This corresponds to a periodic asymptotic behavior, discussed with a slightly more details in Chapter 1. See Gabriel and Martin [START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF] for a recent extension of this result to the setting of measure solutions. However, as soon as either τ does not satisfy (I.23) or that we do not have equal mitosis, (I.22) holds and implies the A.E.G. in terms of convergence in L pnorms weighted by φ. First proven in a compact set by Diekmann, Heijmans and Thieme [START_REF] Diekmann | On the stability of the cell size distribution[END_REF], the A.E.G. result was then generalized in many ways (general coefficients supported on (0, +∞), general kernel, measure solutions, etc.), not only by means of entropy methods [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Dębiec | Relative Entropy Method for Measure Solutions of the Growth-Fragmentation Equation[END_REF], but also spectral theory on semigroups [START_REF] Diekmann | On the stability of the cell size distribution[END_REF][START_REF] Arino | Some Spectral Properties for the Asymptotic Behavior of Semigroups Connected to Population Dynamics[END_REF][START_REF] Greiner | Growth of cell populations via one-parameter semigroups of positive operators[END_REF][START_REF] Banasiak | Asynchronous Exponential Growth of a General Structured Population Model[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF][START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF], probabilistic approach (Doeblin's condition, coupling arguments, many-to-one or Feynman-Kac formula) or directly with explicit solution [START_REF] Brunt | On a cell division equation with a linear growth rate[END_REF].

In the case of variability in growth rate and equal mitosis, (I.22) holds if τ satisfies, for b defined by (I.19):

∀(v , v) ∈ supp(κ) : v = v =⇒ 2τ (v, x) = τ (v , 2x), a.e. x ∈ b 2 , +∞ , (I.24)
which is the (more biologically plausible) analog of the condition 2τ (x) ≡ τ (2x) chosen for the A.E.G to hold in the absence of variability; and if κ is irreducible:

∀(i, j) ∈ I 2 , ∃m ∈ N : κ (m) ij := (κ m ) ij > 0. (I.25)
This last assumption is a mixing condition on the individual features. It means that for any features (v i , v j ) ∈ V, a cell of feature v i can give birth to a cell of feature v j in a finite number of divisions with non-zero probability.

From the irreducibility condition, it is natural to expect the feature distribution in the population to rapidly, and a fortiori in the long time, be supported in V such that: N i > 0 for all i ∈ I. Actually we can even be more precise:

N i (x) > 0, for x > b
2 and all i ∈ I due to the fact that the law of inheritance of the size (exactly half the mother size) is independent from the inheritance of the feature (we do not have κ = κ(x, v; y, v ) as formulated in [START_REF] García-García | Linking lineage and population observables in biological branching processes[END_REF]). For this reason, the localization of N (and φ) in size and feature are independent, and we can use the result of [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] (see Theorem I.1) to intuit the localization of the support of N i and φ i along x.

Not only is the irreducibility condition deeply connected to the localization of the support of the eigenvectors (N, φ) but also to their uniqueness. Consider the extreme opposite case of no mixing with κ = I M . Then (I.20) turns into a set of growth-fragmentation equations coupled only through λ. Denote by ( λi , Ñi , φi ) a solution to the ith equation taken alone. Then, any ( λi 0 , N (i0) , φ (i0) ), with N i = N (i0) (v i , •) equal to Ñi 0 (and φ (i0) i to φi 0 ) if i = i 0 and zero otherwise, is a solution to (I.20). Uniqueness is not verified. However one could prove that the system converges in the long time towards ( λm , N (m) , φ (m) ) with λm := max i∈I ( λi ), i.e. converges to a steady or a periodic profile depending on τ m .

Formulating the additional assumptions (I.24) and (I.25) thus allows us to obtain a result of the type of (I.22) which implies uniqueness to (I.20) and the A.E.G.

Theorem I.5 (Tournus and R.). Assume that τ , γ and κ satisfy the assumptions of Theorem I.2. Assume in addition (I.24) and (I.25) satisfied. Take (λ, N, φ) the solution to (I.20), and assume

n ∈ C R + ; L 1 (V × R + ; φ dvdx) is a solution to (I.13) with initial condition n in verifying |n in | ≤ CN , then we have lim t→∞ i∈I ∞ 0 n i (t, x) e -λt -ρN i (x) φ i (x) dx = 0, ρ := i∈I ∞ 0 n in i (x)φ i (x) dx .
In particular, Theorem I.5 indicates that even in the case of linear growth rates and equal mitosis, characterized by an oscillatory asymptotic behavior in the absence of variability, the variability in growth rate is enough, providing sufficient mixing, to re-establish the A.E.G.

Other kernels κ, that are neither irreducible nor completely decoupled through κ = I M , are considered in Chapter 1. In particular, κ that decomposes in strongly connected components of more than one feature is treated by Proposition 1.1 on the localization of the support of (N, φ) (see the remark following its proof). Likewise, we numerically explore in Section 1.3.3 the case corresponding to ∃i ∈ I : κ ii ∈ (0, 1),

κ ji = 0, ∀j = i,
where for some i, the features v i can mutate into other features at division but can only be transmitted by cells themselves v i . Contrarily to the previous case (strongly connected components), such situations could allow to ensure uniqueness, and convergence to a steady state, providing enough variability in growth rate (basically that the dominant subpopulation is not constituted of a unique feature when its growth rate is linear).

Malthus parameter and effective fitness

Now that we have characterized the long-time behavior, namely exponential growth at rate λ and convergence of the size distribution to a steady profile, the initial biological questioning addressed by Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF]: "How does variability in [. . . ] growth rates influence the Malthus parameter?" can rigorously be stated in mathematical terms. We know that

ñ(t, x) ∼ t→+∞ e λt Ñ (x), n(t, v, x) ∼ t→+∞ e λt N (v, x),
so that the problem of comparing population growth in the presence or absence of variability comes down to comparing the Malthus parameters λ and λ associated with (I.2) and (I.13), respectively.

Monotonicity of the Malthus parameter.

The first answer given (see Chapter 1) is a control of λ by Malthus parameters associated with problems formulated equivalently in a setting with no variability.

Theorem I.6 (Tournus, R.). Denote by λ > 0 the Malthus parameter solution to (I.20) with coefficients τ , γ and κ (satisfying the assumptions of Theorem I.2). Let τ 1 and τ 2 satisfy the assumptions of Theorem I.1 for the growth rate, and be s.t.

τ 1 ≤ τ (v, •) ≤ τ 2 a.e. on (0, +∞), ∀v ∈ V.
Denote by β = β(x) the ratio γ τ and define γ i := βτ i , for i = 1, 2, and let λi > 0 be the Malthus parameter solution to the eigenproblem (I.17) with no variability and coefficients τ i and γ i (for equal mitosis). Then we have:

λ1 ≤ λ ≤ λ2 .
If in addition τ (v, •) ≡ τ 1 , τ 2 for some v ∈ V, then the inequality is strict.

In fact, Theorem I.6 also provides a sufficient condition, namely γ i := βτ i , to ensure monotonicity of the Malthus parameter with respect to monotonous variation of the growth rate in the case with no variability (τ 1 ≤ τ 2 implies λ1 ≤ λ2 ) 3 . In Section 1.2.2, this condition is relaxed with a condition in the spirit of [START_REF] Campillo | On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models[END_REF] that involves the ratios γ i τ i (more precisely a condition on the sign of

γ 2 τ 2 -γ 1 τ 1 1 2 φ i -φ i ( • 2 )
). If such a monotonicity property may feel intuitive, Calvez et al. [START_REF] Calvez | Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis[END_REF] evidenced that it is not necessarily true, and finding necessary and sufficient conditions for it to hold appears more difficult than one would expect.

Theorem I.7 [START_REF] Calvez | Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis[END_REF]. Assume that k, τ and γ satisfy the assumptions of Theorem I.1 that guaranty existence and uniqueness of a solution to (I.17). Assume that for L = 0 or L = +∞

τ (x) ∼ x→L C τ x ν , γ(x) ∼ x→L C γ x ν ,
Denote by λ α the Malthus parameter solution to (I.17) with coefficients τ α = ατ and γ, then lim

α→L λ α = lim x→L γ(x).
In particular, when for example γ is non-monotonous and cancels in zero and infinity, Theorem I.7 indicates that the Malthus parameter λ α does not vary monotonously w.r.t monotonous variations α → ατ of the growth rate.

Effective fitness. In Chapter 2, we aim at deriving more quantitative results, ideally explicit expressions of the Malthus parameter. To do so, we fix the growth and the fragmentation rates (τ and γ) as functions with separate variables satisfying (I.18) with β ≡ b constant: In other words, the effective fitness of the population is the unique v > 0 such that there is a unique solution (N, φ)

τ i (x) = v i τ (x), γ i (x) = bv i τ (x), x ≥ 0, i ∈ I := {1, . . . ,
∈ W 1,1 (0, +∞) × L ∞ loc (0, +∞) to      vτ N (x) + λN (x) = -bvτ (x)N (x) + 4bvτ (2x)N (2x), τ (0)N (0) = 0, N ≥ 0 ∞ 0 N (x) dx = 1, (I.30)      -vτ (x)φ (x) + λφ(x) = -bvτ (x)φ(x) + 2bvτ (x)φ x 2 , φ ≥ 0, ∞ 0 N (x)φ(x) dx = 1. (I.31)
Note that the effective fitness and individual features have the same homogeneity.

This allows us to reformulate the initial problem of

Comparing population growth in the presence or absence of variability through comparison of Malthus parameters, into the problem of Comparing the individual features (equivalently growth rates) of a heterogeneous population with its effective fitness.

Besides, because the Malthus parameter and the effective fitness are simply related by (I.29), identifying the Malthus parameter (or fitness) of a heterogeneous population resumes to identify its effective fitness. Thus effective fitness and Malthus parameter are used interchangeably.

Case of constant coefficients.

In such a setting we prove that the form of the adjoint vector ( φ = 1) in the absence of variability can be generalized to M > 1.

When φ is assumed constant w.r.t x, the adjoint problem with variability is reduced to finite dimension, namely: finding the Perron eigenpair (λ, φ) associated to a certain matrix. After proving that such an eigenpair exits, we get by uniqueness that the solution to the adjoint problem of (I.20) is indeed constant in the size variable. The advantages are manifold:

• For M = 2 we derive an explicit expression of (λ, φ).

• In the absence of heredity (i.e. kernels κ such that κ ij = κ j ) we find φ explicitly, up to a normalization constant, and λ as the unique positive root of an explicit polynomial, whose coefficients depend on V and κ. • We can bypass the difficulty raised by the dimension 2 to obtain an existence theory for the adjoint eigenproblem (I.32) associated to the growthfragmentation (I.12) formulated for a continuum of features.

Theorem I.8. Assume that the set of individual features is continuous and compact

V := [v min , v max ],
and that the coefficients of

-τ (v, x) ∂ ∂x φ(v, x) + λ + γ(v, x) φ(v, x) = 2γ(v, x) V κ(v, v )φ v ,
x 2 dv (I.32) satisfy the following: the growth and fragmentation rates are of the form

τ : (v, x) → v, γ : (v, x) → bv, b > 0,
and the kernel κ satisfies:

κ ∈ Lip V; L 1 (V) ∩ L ∞ (V 2 ), κ > 0, V κ(v, v ) dv = 1, v ∈ V.
Then, there exists λ ∈ (bv min , bv max ) and φ ∈ Lip(V ×R + ) non-negative non-zero solution to (I.32) that is constant with respect to x.

• The pair (λ, φ) can be approximated numerically very efficiently, even for large M , thanks to any classical solver.

The last point enables us to easily compute the effective fitness for a wide range of coefficients and individual features. Notably, we were able to test the observation made by Lin and Amir [START_REF] Lin | The Effects of Stochasticity at the Single-Cell Level and Cell Size Control on the Population Growth[END_REF] and Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] Effective fitness ) and the other one varies in [START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Amir | Cell Size Regulation in Bacteria[END_REF]. For some kernels, the effective fitness can be lower or bigger than any classical mean of the features.

(κ M ) ii = α, (κ M ) ij = 1-α M -1 , i = j α 0.
Eventually, not only the kernel κ and the variance among features influence the population growth but also the way individual features are distributed, see 

(κ M ) ii = M +1 2M , (κ M ) ij = 1 2M , i = j
v i ∼ U Vσ i.i.d.) in V σ = σV + (1 -σ)v (for V = [1, 7] and v = 4) with respect to σ ∈ (0.03, 1].
Case of linear coefficients. Generalizing the expression φ(x) = Cx when M = 1 to the setting with variability (M > 1) is not possible anymore. Still, the case M = 1 suggests that φ could have a simpler form, easier to intuit, than N . The drawback is that the adjoint dynamical problem, and thus the adjoint eigenvector, is harder to approximate numerically than the direct problem. Up to our knowledge, no numerical scheme is available.

A part of Chapter 2 is therefore dedicated to the formulation of an appropriate scheme to approach the solution φ to (I.20) (see Section 2.3.1). It relies on the convergence result of Theorem I.5 which suggests that the solution n p 0 to (I.13) with the initial condition n in,p 0 := δ p 0 , for p 0 := (v i 0 , x 0 ) ∈ V × (0, +∞), satisfies:

n p 0 i (t, x)e -λt -→ t→∞ φ i 0 (x 0 )N i (x), (i, x) ∈ {1, . . . , M } × (0, +∞), from the fact that ρ(p 0 ) := M i=1 ∞ 0 n in,p 0 i (x)φ i (x) dx = φ i 0 (x 0 ). Eventually, the normalization condition on N yields M i=1 ∞ 0 n p 0 i (t, x)e -λt dx -→ t→∞ φ i 0 (x 0 ), p 0 = (i 0 , x 0 ) ∈ {1, . . . , M } × (0, +∞),
and the value of φ at p 0 is approached using an approximation of the left-hand side, with a scheme for the direct problem.

This numerical procedure is in excellent accordance with the results obtained in the case of constant coefficients, by solving directly (I.20) with φ constant w.r.t x as described above (Figure I.4a). In the case of linear coefficients, the approximations suggest that φ i (x) ≈ c i x for x ≥ x 0 > 0 (Figure I.4b). In the case of constant coefficients, the approximation returns φ = (φ 1 , . . . , φ M ) positive, constant with respect to x with values φ i (x) = φi in excellent accordance with the approximation method obtained by directly looking for φ = φ constant, as the Perron eigenvalue of a given matrix.

     v = 1 v = 2 v = 3 v = 5
•) κ =    1/3 1/3 1/3 0.1 0.8 0.1 1/3 1/3 1/3    v = 1 v = 2 v = 4 (b) τ (x) = vx

Perspectives

Speed of convergence to equilibrium. The missing piece of our study of the longtime behavior is the classical characterization of the speed at which the A.E.G occurs. We expect it to be exponential, as proven by [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF][START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF] in slightly different settings but equal mitosis. Obtaining an explicit exponential rate, directly quantifiable in terms of the parameters of the equation, would be a plus. In doing so, one could address the following questions: is the convergence faster for populations presenting high mixing (for example s.t. κ ≥ ε > 0)? And more generally how does the rate of convergence depends on V and κ?

Continuous set of features. Another direction of work is the generalization of the existence theory to a continuum of features, as stated by Theorem I.8 for the adjoint problem with constant coefficients, or by Doumic et al. [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] in a conservative setting.

It raises the question of finding assumptions, ideally minimal, on the kernel κ sufficient to ensure uniqueness. The assumptions of Theorem I.8 (notably κ > 0) can clearly be weakened. This could be done by generalizing our irreducibility condition on matrices to transition probability functions.

A promising method would be to use a Harris-type theorem [START_REF] Hairer | Yet Another Look at Harris' Ergodic Theorem for Markov Chains[END_REF][START_REF] Bansaye | Ergodic Behavior of Non-conservative Semigroups via Generalized Doeblin's Conditions[END_REF][START_REF] Cloez | On an irreducibility type condition for the ergodicity of nonconservative semigroups[END_REF], as done in the absence of variability for example in [START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF] for different fragmentation kernels and specific classes of coefficients, in [START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF] for equal mitosis and linear growth rate or in [START_REF] Madrid | Exponential ergodicity of a degenerate age-size piecewise deterministic process[END_REF][START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF] with the incremental model also made of two continuous structuring variables. Not only does the method give a better understanding of global dynamics through individual trajectories, but it can also provide an explicit spectral gap, answering simultaneously the question of the speed of convergence. Because the laws of inheritance of the size (fragmentation process) and of the growth rate are 2. Content of the thesis independent, we have good hope that deriving a minorization condition of the type of [START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF]Lemma 5.4] is possible.

Another way, not investigated yet, would be to follow the idea of the proof of Theorem I.8. Using the estimates of Theorem I.2 for the problem with a finite number M of features, one could look for BV-estimates allowing to pass to the limit M → +∞ a well-chosen sequence of problems defined on finite sets V M .

Weaker assumptions for κ. Crucial to understand how individual behaviors relate to the overall population dynamics is the question of identifying minimal assumptions on κ for the A.E.G. to hold. A first significant step is to relax the irreducibility condition. This is initiated in Section 1.3.3 of Chapter 1 that considers a class of reducible κ in dimension M = 2. The associated asymptotic behavior is conjectured (with possible generalization to M > 2) based on numerical approximation and waits to be proven.

Non-diffusive numerical scheme.

To answer the previous point, one could therefore benefit from numerics to form his or her intuition. To do so, we believe that the definition of a better scheme for the direct problem could reveal necessary. Indeed, the scheme used in this work is diffusive for any feature v i < v M := max(V). This prevents the ith, i < M , components of the direct eigenvector N to oscillate in the long term every time theory points out oscillations. As a result, it is hard to distinguish numerically between steady or periodic asymptotic behaviors.

An idea is to use M distinct x-grids, along which each subpopulation N i is transported with CFL= 1 and upon which the fragmentation process of equal mitosis is exact (at least within each subpopulation).

Equivalent problems.

A last problem would be to find pairs (V eq , κ eq ), at either V eq or κ eq fixed, "equivalent" to (V, κ) in that they yield the same Malthus parameter. One of them could be for example: given V = {v 1 , . . . , v M }, κ , what is the κ eq corresponding to V eq , fixed as the set of M equally spaced features in [v 1 , v M ]?

In Chapter 2 we answered to the problem of κ eq = 1 fixed by introducing the effective fitness v (since then V eq = {v}). We saw that the question was intricately related to the question of the impact of the variability on population growth. In addition to the mathematical interest and probable usefulness, addressing the problem for more general ways of fixing V eq or κ eq could similarly relate to interesting biological questionings.

Lineage and population level models for cell division dynamics leading to senescence

Biological context

Replicative senescence. Consequence of the so-called end-replication problem [START_REF] Lingner | Telomerase and DNA End Replication: No Longer a Lagging Strand Problem?[END_REF][START_REF] Soudet | Elucidation of the DNA End-Replication Problem in Saccharomyces cerevisiae[END_REF][START_REF] Gilson | How telomeres are replicated[END_REF] (see Section 3.2.2.1), the last nucleotides of eukaryote chromosomes cannot be replicated. To protect DNA sequences coding for important cellular functions from progressive attrition over divisions, chromosomes are capped by highly repetitive, and thus a priori non-coding, DNA sequences [START_REF] Jain | Telomeric Strategies: Means to an End[END_REF] called telomeres.

To balance telomeres systematic shortening, the dedicated enzyme telomerase is able to synthesize new telomeric sequences [START_REF] Greider | A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis[END_REF][START_REF] Cech | Beginning to Understand the End of the Chromosome[END_REF][START_REF] Blackburn | Telomerase: An RNP Enzyme Synthesizes DNA[END_REF]. When not expressed though, as in most human somatic cells or experimentally mutated cells, the length of telomeres shortens until reaching a limit, the Hayflick limit, recognized as DNA damage which triggers an arrest in the cycle leading irreversibly to death [START_REF] Fagagna | A DNA damage checkpoint response in telomere-initiated senescence[END_REF][START_REF] Enomoto | MEC3, MEC1, and DDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae[END_REF][START_REF] Ijpma | Short Telomeres Induce a DNA Damage Response inSaccharomyces cerevisiae[END_REF]. Chapter 3 aims at modeling this telomere-induced pathway towards death, commonly referred to as replicative senescence.

In telomerase-negative cells (i.e. presenting no telomerase activity) telomeres thus act like a division counter that prevents unlimited replication, a hallmark of cancer [START_REF] Hanahan | The Hallmarks of Cancer[END_REF]. Therefore, they constitute a barrier mechanism to the emergence of cancer while being intricately linked to organismal aging.

Lineage (heterogeneous) and population observations. We rely on two complementary datasets associated with the budding yeast Saccharomyces cerevisiae experimentally mutated to repress telomerase. Both are made of measurements from telomerase inactivation to death, obtained from the observation of either senescing cell populations, daily passaged (i.e. diluted), or of individual cell lineages thanks to microfluidic techniques.

At the population level, senescence is characterized by a gradual decrease in cell proliferation (or population growth) together with an increase in cell death.

In contrast, microfluidic data reveal that senescence is triggered abruptly at the cell level: lineages undergo normal cycles until suddenly experiencing consecutive abnormally long cycles (or arrests) terminated by death -and therefore qualified as terminal or senescent. In addition, a significant number of lineages present non-terminal arrests (nta), i.e. sequences of arrests not directly followed by death but the reversion to normal cycles. Finally, senescence occurs asynchronously within the population in the sense that it is triggered at various generations and times. Besides the apparently stochastic presence of early non-terminal arrests, the major identified source of heterogeneity in the onset of senescence is the cell-to-cell variability in the length of the shortest telomere (initially present [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF] and enhanced by the stochasticity in the way telomeres shorten [START_REF] Soudet | Elucidation of the DNA End-Replication Problem in Saccharomyces cerevisiae[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF]). Indeed, numerical and experimental evidences support that senescence onset in S. cerevisiae is best described by the shortest telomere (the few shortest in higher eukaryotes) reaching a threshold length [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF][START_REF] Hemann | The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Khadaroo | The DNA damage response at eroded telomeres and tethering to the nuclear pore complex[END_REF].

Even though both terminal and non-terminal arrests are abnormally long cycles, they are thought to correspond to distinct regimes arising from distinct mechanisms [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]. Non-terminal arrests would allow the cells affected by a DNA damage (other than a telomere reaching the Hayflick limit) time to recover from it [START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Enomoto | MEC3, MEC1, and DDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae[END_REF][START_REF] Churikov | Rad59-Facilitated Acquisition of Y' Elements by Short Telomeres Delays the Onset of Senescence[END_REF][START_REF] Xie | Early Telomerase Inactivation Accelerates Aging Independently of Telomere Length[END_REF] or adapt to it, forcing mitosis until possible successful repair [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF].

We use the terminology proposed in [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF]: lineages presenting non-terminal arrest are termed as type B, the others as type A, see 

Modeling replicative senescence

Modeling senescing populations is a first step into the study of specific dynamics happening at the scale of the organs and the organism (tissue development, renewal and aging, etc.). Still, population dynamics are greatly influenced by cell-to-cell heterogeneity. Especially, the variability in cell cycle time introduces competition even in the absence of cellular interactions, as emphasized by Section 1.2 and the results of Chapters 1 and 2. It is thus crucial for our population model to account for the heterogeneity of replicative senescence, namely

• Heterogeneity in the initial distribution of telomere lengths and the way telomeres shorten. Note that the shortening itself is deterministic in our model, stochasticity only arises from the random segregation of chromosomes in daughter cells at division. • Cell-to-cell variability in cell cycle time.

• Heterogeneity of senescence pathways: lineages of type A and B, which in fact can be expressed in terms of correlations between mother-daughter cycle times.

To handle them, each cell is described by • The lengths of its telomere (there are 32 in S. cerevisiae).

• Its cell cycle duration time.

• Its phenotype among: non-arrested, distinguishing between type A and type B cells (depending on whether or not one of the ancestors has experienced a non-terminal arrest), non-terminally arrested and senescent.

We use time-discrete Markov chains, whose transition probabilities rely on:

• A model for the shortening of telomere; the model formulated in [START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF].

• Probabilistic laws to describe the onset of both terminal and non-terminal arrests (assumed to depend on the length of cells' shortest telomere), and (constant) probabilities to adapt/ recover from non-terminal arrests, or to die, either anytime "accidentally", or "naturally", at the end of a terminal arrest; see Figures I.6 and I.7b • Distributions of cell cycle duration time depending on the type, that we take from the microfluidic dataset.

The dimension of the space of cell states is clearly too high to be directly studied theoretically. Most of our work and results are therefore based on simulations (of the Monte Carlo type).

Calibration of the model

The model was calibrated so that the simulations of cell lineages would best match microfluidic data. Doing so, we were able to specify laws for the onset of both non-terminal [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] and terminal arrests [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF], so far modeled separately. Because they are not independent in our model, it was necessary to calibrate them both together.

To achieve it, we minimized the error between the distributions of the generations of arrest (distinguishing between the first nta, and the first terminal arrest of all cells, or only of type A or type B cells) under the condition that simulated and experimental proportions of type B cells are not too far apart. Figure I.6.: Scheme of the laws for single-cell dynamics: a newborn cell is attributed a phenotype that depends on the phenotype of its mother and, in most scenarios, on the length min of its shortest telomere. In population, these transitions probabilities are tested for each daughter cell, independently. The initial cell is non-senescent of type A. Each newborn cell can die accidentally with probability p accident ; otherwise it can enter senescence if not-senescent with probability p sen that depends on its type and its min . If not, it can enter/exit a non-terminal arrest with probabilities p nta ( min -dependent) and p repair , respectively. Eventually senescent cells can die naturally with probability p death .

Results

Because our model of replicative senescence is based on a (mechanistic) model of telomere shortening, we are able to investigate the influence of the initial distribution of telomere lengths on cells' fate, both at the lineage and population levels. In particular, we show that the shortest telomere is a crucial determinant not only of the onset of senescence, as already demonstrated in lineage, but also of non-terminal arrests and therefore of the proportion of type B lineages. In addition, these effects appear enhanced in population due to the competition dynamics at place, result of the cell-to-cell variability and the experimental bias of saturation and dilution (both modeled).

Capturing these competition dynamics would not be possible without taking into account the cell-to-cell variability in phenotypes and cycle time that characterize senescence. To do so, we specify a set of (telomere-dependent) individual laws describing the onset of arrests, which are then associated with long cell cycles. Notably, the calibration (with microfluidic data) of individual laws evidences that the law describing senescence entry is different for type A and type B cells (see Figure I.7b). This suggests that non-terminal arrests could permanently alter some of the mechanisms responsible for triggering senescence when a telomere becomes critically short.

In silico experiments besides proves very convenient when it comes to track particular information over time, hidden experimentally. Among others is the proportion of descendants from each initial cell in the population (Figure I.9). Another great use of the population model was to evaluate the impact of small perturbations at the individual level on the global dynamics. We perturbed the rate of accidental death, a situation often encountered by biologists but hardly characterizable.

We refer to the end of Chapter 3 for the perspectives of this work. The present chapter corresponds to the article [START_REF] Rat | Growth-fragmentation model for a population presenting heterogeneity in growth rate: Malthus parameter and long-time behavior[END_REF] written in collaboration with Magali Tournus and published in Kinetic and Related Models. Further details have been added to Section 1.3.3. We explore the long-time behavior of the growth-fragmentation equation formulated in the case of equal mitosis and variability in growth rate, under fairly general assumptions on the coefficients. The first results concern the monotonicity of the Malthus parameter with respect to the coefficients. Existence of a solution to the associated eigenproblem is then stated in the case of a finite set of growth rates thanks to the Kreȋn-Rutman theorem and a series of estimates on the moments. Providing enough mixing in the population expressed in terms of irreducibility of the transition kernel, uniqueness of the eigenelements and asynchronous exponential growth are stated through entropy methods. Notably, convergence in shape to the steady state holds in the case of individual exponential growth where, in the absence of variability, the solution is known to exhibit oscillations at large times. We eventually perform a few numerical approximations to illustrate our results and discuss our mixing condition.

Growth-fragmentation model for a population presenting heterogeneity in growth rate

Malthus parameter and long-time behavior

Introduction

Among the class of structured population models, growth-fragmentation equations have raised throughout the last decades a wide literature. Their first formulation traces back to 1967 by three independent groups of biophysicists, Bell and Anderson [START_REF] Bell | Cell Growth and Division: I. A Mathematical Model with Applications to Cell Volume Distributions in Mammalian Suspension Cultures[END_REF], Sinko and Streifer [START_REF] Sinko | A new model for age-size structure of a population[END_REF], and Fredrickson, Ramkrishna and Tsuchiya [START_REF] Fredrickson | Statistics and dynamics of procaryotic cell populations[END_REF]. Their need was to add/substitute size, or several other physiological variables [START_REF] Fredrickson | Statistics and dynamics of procaryotic cell populations[END_REF], to the age structuring variable of the already known renewal equation in order to account for and learn from the finer structure of the data made available by technical progress (notably electronic Coulter counters allowing for accurate cell 1.1. Introduction counting and sizing [START_REF] Gregg | Electrical Counting and Sizing of Mammalian Cells in Suspension[END_REF][START_REF] Anderson | Cell Growth and Division: II. Experimental Studies of Cell Volume Distributions in Mammalian Suspension Cultures[END_REF]). Yet, mathematical tools were insufficient to tackle the problem other than numerically and it was not until the 1980s and the development of semi-group theory that the first theoretical results were obtained [START_REF] Diekmann | On the stability of the cell size distribution[END_REF][START_REF] Greiner | Growth of cell populations via one-parameter semigroups of positive operators[END_REF][START_REF] Heijmans | On the stable size distribution of populations reproducing by fission into two unequal parts[END_REF]. Since then, growth-fragmentation equations have been extensively studied under weaker assumptions thanks to new tools from both deterministic and probabilistic approaches. Such interest is due to the variety of the domains of application and to the mathematical complexity and richness of the questions raised (well-posedness, long-time asymptotic behavior and coefficient estimation through inverse problem, for the most classical ones). For further information on growth-fragmentation equations we refer to the book [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF] of [START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF] or the review papers [START_REF] Arino | A survey of structured cell population dynamics[END_REF][START_REF] Gyllenberg | Mathematical aspects of physiologically structured populations: the contributions of J. A. J. Metz[END_REF] of [START_REF] Arino | A survey of structured cell population dynamics[END_REF] and [START_REF] Gyllenberg | Mathematical aspects of physiologically structured populations: the contributions of J. A. J. Metz[END_REF].

The classical growth-fragmentation model

We consider a population of cells that grow in size according to some deterministic growth rate τ and divide with a certain size-dependent probability per unit of time γ. We assume a constant environment so that coefficients τ and γ only depend on the individual variables, usually called structuring variables.

In this subsection, the only structuring variable is the size x. We call it size although x can be volume, length, dry mass, protein content, etc. as long as it is conserved through division. Finally, we assume equal mitosis considering that dividing cells split into two cells of equal size. We obtain the classical growthfragmentation equation

∂ ∂t n(t, x) + ∂ ∂x τ (x)n(t, x) + γ(x)n(t, x) = 4γ(2x)n(t, 2x), τ (0)n(t, 0) = 0, n(0, x) = n in (x), (GF t )
where n(t, x) stands for the density of cells of size x > 0 at time t ≥ 0. The 4 in factor of the right-hand term (which stands for new-born cells) is the product of two factors 2 that arise from getting two cells with birth size in (x, x + dx) out of the division of one cell with size in the interval (2x, 2x + 2dx) twice as big.

Although non-conservative, this population balance equation comes from the combination of different conservation laws: integrating (GF t ) against 1 and x respectively, one gets that

• The total number of cells is left unchanged by growth but increased by fragmentation d dt

∞ 0 n(t, x) dx = ∞ 0 γ(x)n(t, x) dx .
• Conversely, fragmentation conserves the total mass, besides increased by growth

d dt ∞ 0 xn(t, x) dx = ∞ 0 τ (x)n(t, x) dx .
A remarkable feature of many reproducing populations observed before crowding or resource limitation occurs, therefore expected to be captured by the model, is exponential growth coupled with asynchronicity -or asynchronous exponential growth (A.E.G.) [START_REF] Webb | An Operator-Theoretic Formulation of Asynchronous Exponential Growth[END_REF].

Asynchrony is the property of a system to forget the shape of its initial distribution at large times and asymptotically stabilize in the sense that the proportion of individuals in a given cohort -a sub-population sharing same traits-becomes constant as time progresses. Biologists also refer to it as the desynchronization effect [START_REF] Chiorino | Desynchronization Rate in Cell Populations: Mathematical Modeling and Experimental Data[END_REF] since no matter how synchronized the initial population is, i.e. how narrowly distributed (Dirac distribution included, in the case of clonal populations), it progressively desynchronizes as it aligns with some stable distribution.

Mathematically, the A.E.G. corresponds to the existence of a stationary profile N , independent of the initial state, and positive constants C, λ such that:

n(t, x) ∼ t→+∞ C e λt N (x),
where the only memory of the initial state is a weighted average contained in C.

The asymptotic exponential growth rate λ is called the Malthus parameter or sometimes fitness.

We refer to Mischler and Scher's article [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF] for a study and review of the long-time behavior. A good balance between the growth and fragmentation rates is required to ensure the A.E.G: if fragmentation dominates growth around size zero the density goes to a Dirac distribution at size zero [START_REF] Doumic | Time asymptotics for a critical case in fragmentation and growth-fragmentation equations[END_REF] and conversely, it dilutes to infinity if growth dominates fragmentation at large sizes, see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for some examples of such non-existence of a steady profile.

Another situation where the A.E.G fails, more surprisingly although already anticipated in 1967 by Bell and Anderson [START_REF] Bell | Cell Growth and Division: I. A Mathematical Model with Applications to Cell Volume Distributions in Mammalian Suspension Cultures[END_REF], is the case of ideal bacterial growth: equal mitosis and linear growth rate τ (x) = vx for some positive v (or any growth rate s.t. 2τ (x) = τ (2x)). In this setting indeed, because the equation lacks dissipativity, it loses its regularizing effect and keeps stronger memory of the initial state. We still have exponential growth but convergence in shape towards a time-periodic limit preserving the (otherwise vanishing) singular part of measure solution. For instance, starting from a Dirac mass in x, the distribution at any larger time t is a sum of Dirac masses supported on a subset of {x e vt 2 -n } n∈N [START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF]. An intuitive explanation is that under individual exponential growth, cells with same size, no matter when they respectively divide, give birth to cells of same size. The property of having the same size is thus passed on through generations together with the properties of the initial population [START_REF] Bell | Cell Growth and Division: I. A Mathematical Model with Applications to Cell Volume Distributions in Mammalian Suspension Cultures[END_REF][START_REF] Diekmann | On the stability of the cell size distribution[END_REF]. See [START_REF] Greiner | Growth of cell populations via one-parameter semigroups of positive operators[END_REF] for the first proof of convergence (1988), most notably improved in [START_REF] Brunt | On a cell division equation with a linear growth rate[END_REF][START_REF] Doumic | Explicit Solution and Fine Asymptotics for a Critical Growth-Fragmentation Equation[END_REF][START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF], or [START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF] for the latest results and a nice review.

In his 1995 survey [START_REF] Arino | A survey of structured cell population dynamics[END_REF], Arino lists the modifications of this limit case that have been made to re-establish the A.E.G. With no surprise, it concerns one of the two conditions -equal mitosis or τ (2x) = 2τ (x)-and somehow consists in adding variability: allowing for

• Different sizes at birth, that is asymmetric/unequal division, one daughter cell inheriting a fraction r = 1 2 of her mother's mass, the other one the remaining 1 -r, see [START_REF] Heijmans | On the stable size distribution of populations reproducing by fission into two unequal parts[END_REF] [START_REF] Heijmans | On the stable size distribution of populations reproducing by fission into two unequal parts[END_REF] for the first proof. • Different growth rates, subdividing the population into quiescent non-growing (tumor) cells and proliferating growing cells [START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF].

Or, he suggests, even both combined which has only been studied very recently by Cloez, de Saporta and Roget [START_REF] Cloez | Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process[END_REF].

The first option has been well studied, especially through the larger model of general fragmentation that accounts for stochastic mother/daughter size ratios at division [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF][START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF], but few studies have focused on other forms of variability.

In the present paper, motivated by biological evidence (see [START_REF] Kiviet | Stochasticity of metabolism and growth at the single-cell level[END_REF][START_REF] Gangwe Nana | Division-Based, Growth Rate Diversity in Bacteria[END_REF] and the numerous references therein), we investigate the second option: variability in growth rate within the size-structured setting, more suited to cell division than the age-structured one (at least for E. Coli as indicated in [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF]).

A model accounting for cell-to-cell variability in growth rate

Up to our knowledge, no theoretical study on the asymptotics of a size structured model encompassing more than the two ways of growing mentioned above is available. A model allowing a continuous set of growth rates was formulated through piecewise deterministic Markov branching tree by Doumic, Hoffmann, Krell and Robert [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] in order to estimate the division rate more accurately. The model was then used by Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] to quantify the variation of the Malthus parameter with respect to variability in the aging and growth rates of age and size-structured populations, respectively. Theoretical results are obtained in a deterministic framework for the age-structured model, but again, no theoretical study is carried out in the size-structured case, she relies on the stochastic approach of Doumic et al. to get numerical results later detailed in Section 1.2.2.2.

To account for such cell-to-cell variability one needs to describe cells, by their size still, but also by a new structuring variable: an individual feature or trait v, attributed at birth and conserved all life long, that determines cells' own growth rates τ (v, •). It remains to define a rule for the transmission of this feature over generations. Denoting by V the set of admissible features, we introduce a kernel κ, the variability kernel, supported on V × V such that κ(v, dv ) prescribes the distribution of the features transmitted by cells of feature v; in particular it must satisfy

V κ(v, dv ) = 1, ∀v ∈ V.
Within this new setting, the density n(t, v, x) of cells of feature v ∈ V and size

1.1. Introduction x > 0 at time t ≥ 0 evolves as    ∂ ∂t n(t, v, x) + ∂ ∂x τ (v, x)n(t, v, x) = F(n)(t, v, x), τ (v , 0)n(t, v , 0) = 0, n(0, v, x) = n in (v, x), (GF t,v )
with the fragmentation operator F acting on a function f through

Ff (v, x) := -γ(v, x)n(t, v, x) + 4 V γ(v , 2x)n(t, v , 2x)κ(v , v) dv .
Let us clarify why the division rate depends on v although variability is only assumed on growth. When assuming division to be only triggered by size, we actually aim at defining a division rate per unit of size, say β, function of the size only such that the probability β(x)dx, to divide before reaching size x + dx when having reached size x, is common to all cells. A straightforward dimensional analysis however indicates that the division rate γ of the equation is a rate per unit of time. In the absence of variability in growth rate, γ(x)dt is thus the probability for any cell reaching size x to divide in at most dt. Relating γ and β is then easy given cells' growth rate: any cell of size x at time t, therefore instantaneously growing at speed τ (x), will take a time dt = dx τ (x) at most to grow of dx at most, Figure 1.1. This imposes the natural relation γ(x) := τ (x)β(x), as described for example in [START_REF] Hall | Steady size distributions for cells in onedimensional plant tissues[END_REF][START_REF] Diekmann | Growth, fission and the stable size distribution[END_REF]. Returning to the model with variability, γ should depend on v as well but only through τ , as a consequence of the relation γ

:= τ β ensuring γ(v, x)dt = β(x)dx.
So one should not be mistaken: only growth is subjected to variability, division keeps being triggered by size only, in the sense that β = β(x). Note that this modeling assumption is made for the size/size-increment equation (or equivalent) in both biological [START_REF] Taheri-Araghi | Cell-Size Control and Homeostasis in Bacteria[END_REF] and mathematical [START_REF] Hall | Steady size distributions for cells in onedimensional plant tissues[END_REF][START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF][START_REF] Doumic | Estimating the division rate from indirect measurements of single cells[END_REF] papers, and mimicked by Oliver [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] for the size-structured model with variability.

It is clear that model (GF t ) can be formally obtained from model (GF t,v ) by

• Choosing an initial state composed of cells of a unique given feature v • Imposing to every new-born cell to have feature v by setting κ(v, •) = δ v for all v after which the support of the distribution of features among cells, initially reduced to v = v, will conserve through time since there is no transport in feature. This way, we have n(t, dv, x) = ñ(t, x)δ v(dv) and finding a solution ñ to model (GF t ) is equivalent to finding a solution n to this "reset" model (GF t,v ).

Studying the long-time asymptotic behavior of (GF t,v ) requires to study its eigenproblem, whose solution can bee seen as a stationary solution to the problem on n e λt (solution to (GF t,v ) rescaled by the exponential rate inherent to its unrestricted growth):

       ∂ ∂x τ N + λN = FN, τ (•, 0)N (•, 0) = 0, V ∞ 0 N = 1, N ≥ 0, -τ ∂ ∂x φ + λφ = F * φ, V ∞ 0 N φ = 1, φ ≥ 0, (GF v )
with λ the Malthus parameter previously mentioned and F * the dual operator of F:

F * h(v, x) := -γ(v, x)h(v, x) + 2γ(v, x) V κ(v, v )h v , x 2 dv . (1.1)
Note that the direct equation is defined in the weak sense: weak solutions to the direct problem of (GF v ) are functions

N ∈ L 1 (V × R + ) such that for all ϕ ∈ C ∞ c V × [0, +∞) V ∞ 0 N (v, x) -τ (v, x) ∂ ∂x ϕ(v, x) + λ + γ(v, x) ϕ(v, x) dxdv = 4 V ∞ 0 V γ(v , 2x)N (v , 2x)κ(v , v) dv ϕ(v, x) dvdx = 0.
As for the adjoint equation, it should hold a.e. for φ ∈ L 1 V; W 1,∞ loc (0, +∞) .

Malthus parameter

Characterizing the variation of the Malthus parameter λ with respect to (w.r.t.) a variation in the coefficients of the problem is a question of both biological and mathematical interest. In the context of adaptive dynamics, it arises as soon as one seeks to question the optimality of the coefficients in the Darwinian sense of maximizing the growth speed of the population -for example to explain observations [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF] or to optimize therapeutic strategy like cancer [START_REF] Clairambault | Circadian rhythm and tumour growth[END_REF][START_REF] Billy | Synchronisation and control of proliferation in cycling cell population models with age structure[END_REF] or antibiotic treatments [START_REF] Balaban | Bacterial Persistence as a Phenotypic Switch[END_REF]. Such concerns also come to mind for anyone that wishes to gain insight into the mathematical model, through a deeper understanding of the interplay between the coefficients and the eigenvalue λ [START_REF] Calvez | Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis[END_REF]. Though, relatively few mathematical studies have addressed it (see Section 1.2.2 for a brief review).

What interests us in the following, is the influence of monotonous variations of the growth or division rate. A natural question is whether or not the resulting variation of λ is monotonous. One could think for example, that increasing the division rate should increase the instantaneous number of newborn cells and in turn, the exponential growth rate λ of the overall population. No matter how intuitive this can be it is not necessarily true as proved in [START_REF] Calvez | Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis[END_REF].

In this article, Calvez, Doumic and Gabriel, multiply by a factor α the growth rate (or the division rate but the problem is proved equivalent) and study the limit of the corresponding solution λ α when α goes to zero or infinity. At the limit, the problem becomes pure fragmentation, or pure transport respectively: the mass tends to a Dirac distribution at zero (or goes to infinity resp.) so, at the end, the only quantity that matters to the asymptotic exponential growth speed of the population is the value of the division rate at infinitely small (large resp.) sizes. This formal reasoning is summarized by their Theorem 1: lim α→L λ α = lim x→L γ(x), for L equal to 0 or +∞, which especially implies the possible non-monotonicity of the Malthus parameter (e.g. when γ, non-monotonous, cancels in zero and infinity).

The question then, which still remains open, is to find necessary and sufficient conditions on the coefficients for the Malthus parameter to depend on them in a monotonous way.

Outline of the paper

Our objective is to bring insight in the effect of variability between individuals on the dynamics of the whole population: can such cell-level heterogeneity be responsible for any population-level strategy? in other words, is the population with variability growing faster? for which families of growth rates, which transmission laws? are, among others, related biological questions that we would like to answer. From a mathematical point of view, how does variability impacts the asymptotic behavior of the system? does it introduce enough mixing between individuals to recover the A.E.G. property in the case of individual exponential growth? The main results of the present paper are the following:

• Theorem 1.1 (no variability) tells us that the modeling assumption γ := τ β is sufficient to ensure monotonicity of the Malthus parameter with respect to the growth rate. • Theorem 1.2 (variability) provides bounds for the Malthus parameter λ solution to (GF v ). The lower (upper) bound is the Malthus parameter λ 1 (λ 2 resp.) associated with the problem with no variability and any growth rate

τ 1 ≤ τ (v, •) (resp. τ (v, •) ≤ τ 2 ). • Theorem 1.3 states existence of eigenelements (λ, N, φ) solution to (GF v ).
• Proposition 1.2 ensures that (GF t,v ) verifies a GRE inequality.

• From which we get uniqueness of eigenelements (Proposition 1.5) and long-time convergence of the renormalized solutions to (GF t,v ) to the steady state N in L 1 (φ)-norm (Theorem 1.4). The proofs strongly rely on the GRE principle and the localization of the support of the eigenvectors (Proposition 1.1). An interesting consequence is that providing sufficient mixing in feature, encoded in a condition of irreducibility on the variability kernel κ, convergence to a steady profile holds in the special case of linear growth rate.

The paper is organized as follows. Section 1.2 exposes our set of assumptions and main results. Proofs are given all along the section, except the longer proof of Theorem 1.3 that is postponed to Section 1.4. Section 1.3 illustrates the monotonicity and convergence results in the case of linear growth rate, through theoretical and numerical study of simple cases. Numerical approximations also allow the study of mixing conditions weaker than irreducibility.

Main results

All along the paper, we adopt the following notation:

S = V × (0, +∞),
introduce the space of functions L p -integrable on a neighborhood of zero

L p 0 := f : ∃a > 0, f ∈ L p (0, a) , 1 ≤ p ≤ +∞,
and the set of non-negative functions with at most polynomial growth or decay at infinity:

P ∞ :=    f ≥ 0, f ∈ L ∞ loc 0, +∞ : ∃ν, ω ≥ 0, lim sup x→+∞ x -ν f (x) < ∞ lim inf x→+∞ x ω f (x) > 0    1.2.

Assumptions

We formulate the following hypotheses:

(HV D ) The set of features V is finite: ∃M ∈ N * : V = {v 1 , v 2 , . . . , v M }.
To lighten notations we introduce I := {1, . . . , M } and use indifferently the notations f (v i , •) or f i , for any i in I, whether one considers f as a map on V to some functional space X or as a vector in X M . In particular we write equivalently 1 I; L 1 (0, +∞) and L 1 (S).

(Hτ ) The growth rate τ satisfies: there exist ν 0 , ω 0 ≥ 0, s.t. for all v in V,

(Hτ pos ) ∀K ⊂ (0, +∞) compact, ∃m K > 0 : τ (v, •) ≥ m K a.e. on K (Hτ 0 ) x ν 0 τ (v,•) ∈ L 1 0 and x ω 0 τ (v, •) ∈ L ∞ 0 (Hτ ∞ ) τ (v, •) ∈ P ∞ (Hγ)
The division rate per unit of time γ satisfies: for all v in V, γ(v, •) ∈ P ∞ .

(Hγ-τ ) There exists a function β, depending only on the size variable and satisfying (Hβ), such that γ(v, x) = β(x)τ (v, x), ∀v ∈ V, a.e. x ∈ (0, +∞).

(Hβ) The fragmentation/growth ratio β, or division rate per unit of size, satisfies

(Hβ supp ) β is supported on [b, +∞) for some b ≥ 0 (Hβ 0 ) β ∈ L 1 0 (Hβ ∞ ) lim x→+∞ xβ(x) = +∞ (Hκ) Under (HV D ), the variability kernel κ : V × V → R + can be seen as a square matrix of size M , in which case κ = (κ ij ) ∈ M M (R + ) satisfies
(Hκ prob ) κ is a stochastic (or probability or transition) matrix:

κ ij ≥ 0, ∀(i, j) ∈ I 2 , M j=1 κ ij = 1, ∀i ∈ I. (Hκ irr ) κ is irreducible: ∀(i, j) ∈ I 2 , ∃m ∈ N : κ (m) ij := (κ m ) ij > 0. (Hτ heterogeneity ) For all (v , v) ∈ supp(κ) v = v =⇒ 2τ (v, x) = τ (v , 2x), a.e. x ∈ b 2 , +∞ .
A few remarks on these assumptions:

• Set of features. Taking a finite set of features (HV D ) is sufficient to model most biological situations where variability manifests as clear physiological differences between distinct subpopulations (see e.g. [START_REF] Cloez | Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process[END_REF] which accounts for the difference in growth rates between the old pole and new pole cells, or [START_REF] Balaban | Bacterial Persistence as a Phenotypic Switch[END_REF] which studies persistent cells, resistant to antibiotic treatments but having reduced growth rate contrary to the rest of the population). Likewise, one can resume from the continuous vision of variability, of the type of [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF][START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] (HV C ) V is a compact interval of (0, +∞), to the discrete one, simply by partitioning V in intervals V i and considering any cell with feature in V i as a cell with feature vi , a certain average on V i . • Growth and fragmentation rates. Assumption (Hβ 0 ) together with (Hτ pos ), (Hγ) and (Hγ-τ ) implies that β is L 1 loc (R + ). Hypotheses (Hτ ), (Hγ) and (Hβ) altogether is nothing but having, for any v in V, that τ (v, •), γ(v, •) and their ratio satisfy the assumptions made by Doumic and Gabriel in [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] (to ensure existence of a solution to (GF)) with the additional requirement that γ is L ∞ (R * + ). Under (HV D ), this straightforward adaptation of their assumptions is sufficient to state existence but we prove it under the additional modeling assumption (Hγ-τ ) which brings small simplifications. The additional assumption (Hτ heterogeneity ) is crucial to characterize the functions canceling the dissipation of entropy, needed to establish uniqueness of eigenelements and convergence. It can be interpreted as follows: every time a mother of feature v gives birth to cells with same features v = v, the daughters cannot gain together the exact mass that their mother would have gained if it had not divided; or equivalently from a macroscopic point of view: the mass that would have gained by the fraction κ(v , v) of all dividing cells of feature v if they had not divided must be different from the total mass gained by their daughters born with feature v = v . • Variability kernel. For m > 0, κ (m) ij represents the probability for a cell descending from m generations of a cell with feature v i to have feature v j . Therefore (Hκ irr ) means that any cell has a non-zero probability to transmit any feature in a finite number of division (M at most). Besides, κ can be associated to the directed graph having {v 1 , . . . v M } as vertices and the pairs (v i , v j ) such that κ ij > 0 as oriented edges. Then, (Hκ irr ) is equivalent to the graph of κ being strongly connected (every vertex is reachable from every other vertex). The first assumption on κ easily translates to the continuous setting (HV C ) (this is κ being a Markov or probability kernel 1 as assumed in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF][START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF]). It is however more complicated to generalize (Hκ irr ), crucial to establish the positivity result of Proposition 1.1, to the continuous setting (see [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] for a generalization). Additionally, irreducibility alone could not be appropriate to extend our results to larger V: for countable infinite sets V, we might additionally need κ recurrent [START_REF] Norris | Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]; as for continuous sets, irreducibility could be less relevant as suggest the recent articles [START_REF] Cloez | On an irreducibility type condition for the ergodicity of nonconservative semigroups[END_REF][START_REF] Bansaye | A non-conservative Harris ergodic theorem[END_REF]. Their probabilistic approach via Harris's theorem proves particularly suited to obtain existence of a steady state and long-time convergence at exponential rate in the setting of measure solutions; see also [START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF] for a good introduction to the Harris theorem and its application to growth-fragmentation in different settings including equal mitosis.

Variation of the Malthus parameter with respect to coefficients 1.2.2.1. In the absence of variability.

When there is no variability in growth rate, the eigenproblem associated to the Cauchy problem (GF t ) writes as follows: for x > 0,

                   d dx τ (x)N (x) + λ + γ(x) N (x) = 4γ(2x)N (2x), τ (0)N (0) = 0, N = 1, N ≥ 0, -τ (x) d dx φ(x) + λ + γ(x) φ(x) = 2γ(x)φ x 2 , N φ = 1, φ ≥ 0, (GF) 1 κ(v, •) is a probability measure for every v (i.e. v → V ϕ(v )κ(v, dv ), for ϕ ∈ C (V), is Lebesgue measurable and V κ(v, dv ) = 1, v ∈ V) and v → κ(v, A) is a measurable function for all A ∈ B(V).
and the only coefficients of the problem are τ and γ. In the general fragmentation model, note that another coefficient is the fragmentation kernel (that is 1 2 (δ x=ry + δ x=(1-r)y ) in the case of general mitosis, with r = 1 2 in our case of equal mitosis). Among existing studies on the variation of λ w.r.t variations of the coefficients, Michel [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF] focuses on the influence of the asymmetry in birth size between daughters (given by the parameter r just mentioned) from two different points of view -either by differentiation of λ with respect to the asymmetry parameter r or by a min-max principle providing a handful expression of λ. Monotonicity of λ w.r.t r is proved in the case of constant growth rate and compactly supported division rate that satisfies conditions proved sufficient for the adjoint vector to be concave or convex. In particular, depending on the form of the division rate, symmetric division can be detrimental to the growth of the overall population.

A corpus of articles by Clairambault et al. investigates the influence on λ of the time periodic dependence of coefficients (division and death rates) induced by the circadian rhythm. However, they rather consider the renewal (age-structured) equation [START_REF] Gaubert | Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model[END_REF] or a system of renewal equations accounting for different phases of the cell cycle [START_REF] Clairambault | Circadian rhythm and tumour growth[END_REF][START_REF] Billy | Synchronisation and control of proliferation in cycling cell population models with age structure[END_REF].

Campillo, Champagnat and Fritsch [START_REF] Campillo | On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models[END_REF] provide sufficient conditions on τ , γ and γ/τ for the monotonicity of λ w.r.t. monotonous variations of the coefficients. The result is derived in a probabilistic framework by coupling techniques and eventually extended to the deterministic framework thanks to a relation between the survival probability of the stochastic model and the Malthus parameter solution to the deterministic problem.

With only deterministic tools and straightforward arguments, we propose another set of conditions.

Lemma 1.1. Set V := {v 1 , v 2 } and take τ , γ satisfying (Hτ ), (Hγ) such that τ (v i ,•) γ(v i ,•) satisfies (Hβ) for i ∈ {1, 2}. Denote by (λ i , N i , φ i ), λ i > 0, the weak solution to the eigenproblem (GF) with coefficients τ i := τ (v i , •) and γ i := γ(v i , •). Assume that i) τ 1 ≤ τ 2 ,
ii)

γ 2 τ 2 - γ 1 τ 1 1 2 φ i -φ i • 2 ≤ 0 i = 1 or 2,
a.e. on (0, +∞),

with notation φ • 2 : x → φ x 2
. Then we have

λ 1 ≤ λ 2 .
Proof. The proof relies on the duality relation between eigenvectors. Existence and uniqueness of positive eigenelements is guaranteed by [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]Theorem 1]. To simplify notations we introduce the bracket f, g := ∞ 0 f g. Without loss of generality, assume that ii) holds for i = 2 (otherwise we can still swap 1 and 2, and reverse the inequalities in the following). Using equation (GF) on N 1 and φ 2 successively, we have:

λ 1 N 1 , φ 2 = -d dx τ 1 N 1 -γ 1 N 1 + 4γ 1 (2•)N 1 (2•), φ 2 , = N 1 , τ 1 d dx φ 2 -γ 1 φ 2 + 2γ 1 φ 2 • 2 , = N 1 , τ 1 τ 2 λ 2 φ 2 + γ 2 φ 2 -2γ 2 φ 2 • 2 -γ 1 φ 2 + 2γ 1 φ 2 • 2 , = λ 2 N 1 , τ 1 τ 2 φ 2 + τ 1 N 1 , γ 2 τ 2 -γ 1 τ 1 φ 2 -2φ 2 • 2 ,
leading, thanks to i), to the following inequality

(λ 1 -λ 2 ) N 1 , φ 2 ≤ τ 1 N 1 , γ 2 τ 2 - γ 1 τ 1 φ 2 -2φ 2 • 2
, which makes clear that λ 1 ≤ λ 2 as soon as ii) is verified.

In particular when (Hγ-τ ) is satisfied, ii) is an equality and Lemma 1.1 directly brings monotonicity of the Malthus parameter with respect to the growth rate as stated below.

Theorem 1.1 (Monotonicity of the Malthus parameter).

Let us take notations of Lemma 1.1 and make the same assumptions on τ and γ. Assume also that (Hγ-τ ) holds, then

τ 1 ≤ τ 2 a.e. on (0, +∞) =⇒ λ 1 ≤ λ 2 .
If in addition τ 1 ≡ τ 2 , the inequality on the Malthus parameters is strict.

It should be noticed that another set of assumptions can be derived, namely:

i) γ 1 ≤ γ 2 , ii) τ 1 τ 2 - γ 1 γ 2 d dx φ 2 ≤ 0 i = 1 or 2,
a.e. on (0, +∞), since the third equality in the proof can be replaced by

λ 1 N 1 , φ 2 = λ 2 N 1 , γ 1 γ 2 φ 2 + N 1 , τ 1 τ 2 - γ 1 γ 2 τ 2 d dx φ 2 .
We make a few remarks on Lemma 1.1 before continuing on the problem with variability.

• Lemma 1.1 and Theorem 1.1 remain valid for general fragmentation kernels verifying the general assumptions of [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]. • Assumption ii) depends on the adjoint eigenvector which makes it hardly interpretable. Although not very satisfying, we kept it for several reasons. First, it needs to be satisfied for only one i, therefore in practice one can obtain monotonicity between a problem with explicit solution (λ, N, φ) and another problem, with no explicit solution but lower (or greater) growth rate and greater (lower resp.) fragmentation/growth ratio wherever φ • 2 ≤ 1 2 φ -or simply lower (or greater) growth rate when φ • 2 = 1 2 φ (which is true for most of the known solutions, see e.g. the explicit solutions given in [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF] for uniform fragmentation, or in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF] for mitosis). Second, it is interesting to see that we retrieve conditions similar to those of [START_REF] Campillo | On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models[END_REF], but through a different and much quicker approach allowing for more general coefficients. Assuming τ 1 ≤ τ 2 and γ 2 τ 2 ≤ γ 1 τ 1 as in [START_REF] Campillo | On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models[END_REF], we require φ i • 2 ≤ 1 2 φ i where they ask for γ to be monotonous not only in the v variable but also in the x variable.

• For our lemma to be interpretable in terms of coefficients only, the problem comes down to finding assumptions on the coefficients allowing to characterize the sign of d dx φ (or φ • 2 -1 2 φ, implied because of (GF)) in the spirit of [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF] that derives conditions on γ for φ to be concave or convex.

In the presence of variability.

When it comes to the question of the impact of variability on the Malthus parameter even less studies are available although attracting a lot of attention from biologists, see [START_REF] Levien | Non-genetic variability in microbial populations: survival strategy or nuisance[END_REF] for a recent review in the biological community.

Among the most notable studies, Cloez, de Saporta and Roget [START_REF] Cloez | Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process[END_REF] add to the morphological asymmetry between daughters studied by Michel [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF] a physiological asymmetry, attributing different growth rates to daughters depending on whether or not they have bigger size. In particular, in the case τ linear (and lim x→L γ(x) = L, for L = 0 or +∞) they explicitly compute the partial derivatives of λ w.r.t. the asymmetry parameters and find that in the presence of morphological asymmetry, physiological asymmetry maximizes λ if largest cell growth faster.

Rather than two different growth rates in the whole population, Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] allows for a continuous set of growth rates but equal mitosis, this is model (GF t,v ) under (HV C ). Her numerical results indicate that variability in growth rate do not favor the global growth of the population -more precisely she exhibits, under specific coefficients, monotonicity of the Malthus parameter w.r.t. the coefficient of variation (CV) of growth rates-in short, w.r.t a parameter α characterizing the level of variability in the sense that the set of features

V α = αV + (1 -α)v is more or less spread out depending on α.
Relying on the ideas used to treat the case with no variability we can compare the eigenvalue of problem (GF v ) to eigenvalues solution to the problem with no variability.

Theorem 1.2 (Monotonicity of the Malthus parameter with variability). Consider (λ, N, φ), with λ > 0, a weak solution to (GF v ) with kernel κ satisfying (Hκ prob ), and coefficient τ and γ satisfying (Hγ-τ ) s.t. their ratio β = β(x) satisfies (Hβ).

Let τ 1 and τ 2 satisfy (Hτ ) and be such that

τ 1 ≤ τ (v, •) ≤ τ 2
a.e. on (0, +∞), ∀v ∈ V, and define γ i := βτ i , for i = 1, 2. Assume that γ i satifies (Hγ) and denote by (λ i , N i , φ i ), the solution to the eigenproblem (GF) with no variability and coefficients τ i and γ i . Then we have

λ 1 ≤ λ ≤ λ 2 , with strict inequality if in addition τ (v, •) ≡ τ 1 , τ 2 for some v ∈ V.
Proof. Proceeding similarly to the case with no variability and but with duality bracket f, g = S f g, and using (Hκ prob ), we find:

λ N, φ i = λ i N, τ τ i φ i + τ N, γ i τ i - γ τ φ i -2φ i • 2 , i ∈ {1, 2}. (1.2)
From (Hγ-τ ) and the definition of the γ i , the second term of the right-hand side cancels and the inequality on λ is a direct consequence of the inequality on τ .

In particular, a population where (Hγ-τ ) holds and τ is monotonous in v ∈ [v min , v max ], asymptotically grows faster, respectively slower, than the population where all cells have feature v min or v max , respectively.

Note that Theorem 1.2, which assumes existence of a solution to (GF v ), holds true in the continuous formulation (HV C ). Besides, a finer condition of the type of Lemma 1.1 can be formulated from (1.2).

Eigenvalue problem

In the following, we elaborate on previously established results adapted to our case to prove existence of a solution to (GF v ) and GRE related results (Sections 1.2.4 and 1.2.5).

Theorem 1.3 (Existence of eigenelements).

Under assumptions (HV D ), (Hτ ), (Hγ), (Hγ-τ ), (Hβ) and (Hκ prob ), there exists a weak solution (λ > 0, N, φ) (in the sense defined before) to the eigenproblem (GF v ), and for every i ∈ I we have:

x α τ i N i ∈ L p (R + ), ∀α ∈ R, 1 ≤ p ≤ +∞, x α τ i N i ∈ W 1,1 (R + ), ∀α ≥ 0, ∃k > 0 : φ i 1 + x k ∈ L ∞ (R + ), τ i ∂ ∂x φ i ∈ L ∞ loc (R + ).
In particular, note that τ i N i and φ i are continuous on (0, +∞).

The proof is postponed to Section 1.4. It follows the proof of [79, Theorem 1] in which Doumic and Gabriel state, under similar assumptions on the coefficients,
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the existence of eigenelements to the problem with no variability but general fragmentation. As in [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF], we can also derive a priori results on the localization of the support of the eigenvectors. supp

N i = b 2 , +∞ , τ i (x)N i (x) > 0, ∀x ∈ b 2 , +∞ , φ i (x) > 0, ∀x > 0,
with b defined by (Hβ supp ). Additionally, for any j ∈ I such that 1 τ j ∈ L 1 0 we have

φ j (0) > 0.
Note that the support of the eigenvectors being of the form V × X, for V and X subsets of V and [0, +∞), respectively, is a consequence of the support of τ i and γ i being independent of i (see (Hτ pos ) and (Hγ-τ )). The support of the direct eigenvector N is quite natural considering the following remarks.

• Along the x-axis. Under equal mitosis the smallest size a new-born cell can have, regardless its feature, is b 2 since b is the smallest size at which division can occur. Besides if b > 0, any cell of feature v i and size x < b (and x > 0 otherwise it stays with size x = 0 from the boundary condition τ i (0)n i (t, 0) = 0) reaches size b in finite time (namely b x 1 τ i ) so all individuals will have at least size b 2 after some time (or keep size 0). Likewise, the probability e -x s β(y)dy to survive from size s up to size x without dividing is positive for all x so we expect arbitrarily large cells to be found in the population at large times.

• Along the v-axis. Because of the irreducibility condition (Hκ irr ) any cell can transmit any feature after a finite number of divisions, so the population should occupy the whole set of features (and stay in it) in finite time.

As for the adjoint vector, the integrability condition on some τ j for φ j (0) > 0 can be explained interpreting the equation on ψ (see (GF * t,v ) later) as a backward equation (where in a sense cells are shrinking and aggregating over time). Then, we expect to find cells of feature v j reaching size 0 at large times, meaning φ j (0) > 0, if and only if the time x 0 1 τ j dx to reach size 0 from size x > 0 (in the absence of "aggregation") is finite -that is 1

τ j ∈ L 1 0 .
Proof. We introduce for all i in I, the sets

I ← (i) := j ∈ I : κ ji > 0 , I → (i) := j ∈ I : κ ij > 0 , (1.3)
of the indices of all the features of cells that can have a daughter or a mother,
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respectively, with feature v i . Note, that for every i ∈ I, none of them is empty thanks to (Hκ irr ).

Direct eigenvector. Integrating on [0, x] the equation of (GF v ) satisfied by N ≥ 0 brings: for all i ∈ I, for all x in (0, +∞),

τ i (x)N i (x) ≤ 2 2x 0 β(s) j∈I τ j (s)N j (s)κ ji ds , ( 1.4) 
which makes clear that τ N ≥ 0 cancels on V× 0, b 2 since β cancels on [0, b] (see (Hβ supp )). It remains to prove that τ N is positive elsewhere. For some positive x 0 we define

F i (x) := τ i (x)N i (x) e Λ i (x) , Λ i (x) := x x 0 λ + γ i (s) τ i (s) ds , ∀i ∈ I, ∀x ∈ [x 0 , +∞) ,
and obtain, through equation (GF v ) again, that for all i and for all x in [x 0 , +∞)

d dx F i (x) = 4 j∈I γ j (2x)N j (2x)κ ji e Λ i (x) ≥ 0.
This tells us for all i in I, that if τ i (•)N i (•) becomes positive at some x 1 ≥ x 0 , then it stays positive on [x 1 , +∞). Let thus introduce the smallest size of individuals with feature v i at equilibrium

i := inf (0,∞) x : τ i (x)N i (x) > 0 , i ∈ I,
and prove that all the i , i ∈ I, are equal to b 2 . We already know that they are greater than b 2 so it only remains to prove that i is lower than b 2 for every i. For all i ∈ I, given that x → τ i (x)N i (x) cancels on [0, i ] and because τ i can be bounded from below by a positive constant a.e. on any compact sets of (0, +∞) from (Hτ pos ), N i cancels a.e. on (0, i ]. Integrating the direct equation of (GF v ) on (0, i ) hence brings:

∀i ∈ I 0 = j∈I i 0 γ j (2x)N j (2x)κ ji dx = 1 2 j∈I ← (i) 2 i max(b, j ) β(x)τ j (x)N j (x)κ ji , dx .
with positive integrand at the right-hand side which tells us that necessarily:

∀i ∈ I, 2 i ≤ max b, j , ∀j ∈ I ← (i). (1.5)
Now consider any i 1 , i 2 in I. Assumption (Hκ irr ) indicates that there exists m = m i 1 i 2 ≤ M such that κ m i 1 i 2 > 0, meaning that we can find a path connecting v i 1 to v i 2 in the directed graph associated to κ, namely that there is (v p 1 , . . . , v pm ) ∈ V m 53 1.2. Main results such that:

v p 1 = v i 1 , v pm = v i 2 , κ(v p i , v p i+1 ) = κ p i p i+1 > 0, i.e. p i+1 ∈ I(p i ), ∀i ∈ {1, . . . , m -1}.
Applying (1.5) iteratively to the p i , for i from 1 to m, we obtain: ∀i ∈ {1, . . . , m-1}

i 1 ≤ 1 2 max b, pi 2 i ≤ 1 2 max b, pi+1 2 i+1 ≤ 1 2 max b, i2 2 m . (1.6)
The inequality tells us that as soon as v i 1 and v i 2 communicate (v i 1 leads to v i 2 and v i 2 to v i 1 in the graph of κ), then i 1 and i 2 are both either infinite or inferior or equal to b 2 -it suffices to apply (1.6) to (i 2 , i 1 ) and (i 2 , i 1 ), distinguishing between cases i 2 ≤ 2 m b or i 2 > 2 m b, and i 1 lower or greater than 2 m i 2 i 1 b, respectively. However the irreducibility condition (Hκ irr ) implies that all the features communicate, so we deduce that all the i , i ∈ I, are either infinite -this would imply that all the N i are null-functions on R + which is immediately excluded by the normalization condition on N -or lower or equal to b 2 . Adjoint eigenvector. Following the same idea we define G i := φ i e -Λ i on (x 0 , +∞), for x 0 positive, and compute for all i ∈ I and for all x ∈ (x 0 , +∞):

d dx G i (x) = -2β(x) j∈I κ ij φ j x 2 e -Λ i (x) ≤ 0, (1.7) 
so, as soon as φ i vanishes it remains null, plus G i is constant on (0, b] for all i ∈ I.

We prove that for all i ∈ I, φ i never reaches zero. Again, we introduce:

k i := sup [0,+∞] x : φ i (x) > 0 , i ∈ I.
By definition, φ i is zero on [k i , +∞) for any i in I, therefore so are G i and d dx G i . Thus integrating (1.7) on [k i , +∞) yields after straightforward computations, similar to those done for the direct eigenvector, that:

j∈I → (i) κ ij k j max b 2 , k i 2 β(2x)φ j (x) e -Λ i (2x) dx = 0, i ∈ I,
with positive integrand which leads to:

∀i ∈ I, k j ≤ max b 2 , k i 2 , ∀j ∈ I → (i). (1.8)
Same arguments based on (1.8) and (Hκ irr ) hold and allow us to deduce that the k i , i ∈ I, are either all infinite or all inferior or equal to b 2 . The first option is contradicted by the normalization condition on φ. As for the second one, it proves impossible unless all k i are zero. Indeed if 0 < k i ≤ b 2 for some i ∈ I, we take

x 0 ∈ (0, k i ) and get G i constant on [x 0 , k i ] (constant on [x 0 , b]) equal to G i (k i ) = 0 which contradicts the definition of k i .
Assume now that 1 τ j ∈ L 1 0 for some j ∈ I. Then we can take x 0 = 0 in the definition of G i and φ j (0) = 0 would imply that φ j is zero everywhere, i.e. k i = +∞ which we said is impossible, so φ j (0) > 0.

A few remarks on the proof:

• This proof also works in the case where the graph associated to κ is not strongly connected but decomposes in strongly connected components partitioned, say in (V 1 , . . . , V p ) associated to a partition (I 1 , . . . , I p ) of I. In this case, inequality (1.6) implies that the property of i → i to be either infinite or upper bounded by b 2 is valid on each of the I i , and the normalization condition on N then yields ≤ b 2 on at least one I i , but possibly infinite elsewhere (meaning N null outside of V i × b 2 , +∞ ). • Likewise, equation (1.4) tells us that if there was a feature v i that somehow could not be transmitted over generations, this is I ← (i) = ∅, then τ i N i would be zero on R + .

General Relative Entropy

The GRE principle (see [START_REF] Perthame | Transport Equations in Biology[END_REF][START_REF] Michel | General entropy equations for structured population models and scattering[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF]) holds in the variability setting and can be stated under assumption (HV C ) of V continuous, so we first keep integral notation for the v variable. Likewise, we start with a general abstract setting which does not involve the eigenelements yet but a solution to the dual equation given, for F * defined by (1.1), as:

∂ ∂t ψ(t, v, x) + τ (v, x) ∂ ∂x ψ(t, v, x) = -F * ψ(t, v, x). (GF * t,v )
We adopt the compact notation u t (v, x) := u(t, v, x).

Definition (GRE).

We define the general relative entropy of n with respect to p by 

E H [n|p](t) := S ψ t (v, x)p t (v, x)H n t (v, x) p t (v, x)
D H [n|p](t) = -4 S ψ t (v, x) V κ(v , v)γ(v , 2x)p t (v , 2x) × H n t (v, x) p t (v, x) n t (v , 2x) p t (v , 2x) - n t (v, x) p t (v, x) -H n t (v , 2x) p t (v , 2x) -H n t (v, x) p t (v, x) dv dvdx.
In particular, for H convex and ψ ≥ 0 the general relative entropy is decreasing since D H [n|p](t) ≥ 0, and for H strictly convex and ψ positive we have

D H [n|p](t) = 0 ⇐⇒ n t (v , 2x) p t (v , 2x) = n t (v, x) p t (v, x) , (v , v, x) ∈ supp κ(v , v)γ(v , 2x) .
Proof. The standard computation, see e.g. [200, p.93], is not affected by the additional variable v, we only need to make sure quantities are well defined since p here is not necessarily positive everywhere -we rely on supp(γ) := V × [b, +∞) from (Hγ-τ ) and (Hβ supp ).

Using equation (GF t,v ) verified by both n and p we obtain

∂ ∂t n t (v, x) p t (v, x) + τ (v, x) ∂ ∂x n t (v, x) p t (v, x) = 1 p 2 t p t ∂ ∂t n t + ∂ ∂x (τ n t ) -n t ∂ ∂t p t + ∂ ∂x (τ p t ) (v, x) = 4 V p t (v , 2x) p t (v, x) κ(v , v)γ(v , 2x) n t (v , 2x) p t (v , 2x) - n t (v, x) p t (v, x)
dv .

(1.9)

Multiplying by H nt(v,x) pt(v,x) , we find

∂ ∂t H nt pt + τ ∂ ∂x H nt pt = A t (v, x) := 4 V p t (v , 2x) p t (v, x) κ(v , v)γ(v , 2x)H n t (v, x) p t (v, x) n t (v , 2x) p t (v , 2x) - n t (v, x) p t (v, x) dv . (1.10)
Besides, using the equations on ψ and p we have 

∂ ∂t ψ t p t + ∂ ∂x τ ψ t p t = ∂ ∂t ψ t + τ ∂ ∂x ψ t p t + ∂ ∂t p t + ∂ ∂x τ p t ψ t = -F * (ψ t )p t + F(p t )ψ t ,
:=I t + S ψ t p t A t dvdx
(1.11) that is well defined from the assumption on the support of ψ, p and the expression of the support of γ. The first part I t of the dissipation is handled through a change of variables in its second term in order to factorize by F(p t )(v, x)ψ t (v, x):

I t = 4 S V κ(v , v)ψ t (v, x)γ(v , 2x)p t (v , 2x) H n t (v, x) p t (v, x) -H n t (v , 2x) p t (v , 2x)
dv dvdx which, combined with (1.10) and (1.11), brings the expected formulation.

The inequality in the case H convex (strictly convex) follows from the non-negativity (positivity) of φ and p, γ and κ, and a classical inequality of convexity.

As direct consequence of Proposition 1.2 we have the following classical properties. Proposition 1.3. Assume hypothesis of Theorem 1.3 satisfied and let (λ, N, φ) be a solution to (GF v ). Assume n ∈ C R + , L 1 (S; φ dvdx) is a solution to (GF t,v ). Then, setting ñ := n e -λt we have:

∀t ≥ 0 i) (Conservation law). S ñt (v, x)φ(v, x) dvdx = S n in (v, x)φ(v, x) dvdx. ii) (Contraction principle). S ñt (v, x) φ(v, x) dvdx ≤ S n in (v, x) φ(v, x) dvdx. More precisely, s → ( S |ñ s |φ) is a decreasing function of time. iii) (Maximum Principle). |n in (v, x)| ≤ CN (v, x) =⇒ |ñ t (v, x)| ≤ CN (v, x).
Proof. From Proposition 1.1, φ is positive on S and supp(N ) = V × b 2 , +∞ . Proposition 1.2 thus applies to p t := N e λt and ψ t := φ e -λt , respective solutions to (GF t,v ) and (GF * t,v ), and for well-chosen convex entropy functions we retrieve: i) The conservation law, after taking H(u) = u and -H.

ii) The contraction principle from choosing

H(u) = |u|. iii) The maximum principle from H(u) = (|u| -C) 2 + . Indeed, |n in | ≤ CN then im- plies H( n in N ) = 0. Therefore, E H [n in |N ](0) = 0 and because the entropy de- cays (from D H [ñ|N ](t) = D H [n|N e λt ](t) ≥ 0) we have that for all times t, E H [ñ|N ](t) = S φN H ñt
N is 0, and deduce the expected result.

Before going further we establish two useful results, also derived from the GRE and later needed to establish convergence.

Proposition 1.4 (BV-regularity). Assume that the assumptions of Theorem 1.3 are satisfied such that there exists a solution (λ > 0, N, φ) to (GF v ). Assume that n ∈ C R + , L 1 (S; φ dvdx) is a weak solution to (GF t,v ) with initial data satisfying

n in ≤ CN, ∂ ∂x τ n in ∈ L 1 S; φ dvdx .
Then, for C(n in ) a general constant depending on n in , ñ := n e -λt satisfies: ∀t ≥ 0,

∞ 0 ∂ ∂t ñi (t, x) φ i (x) dx ≤ C(n in ), ∞ 0 ∂ ∂x τ i (x) ñi (t, x) φ i (x) dx ≤ C(n in ), i ∈ I.
Proof. Time derivative. The renormalization of (GF t,v ), satisfied by ñ, writes as:

∂ ∂t ñi (t, x) + ∂ ∂x τ i (x)ñ i (t, x) + λ + γ i (x) ñi (t, x) = 4 j∈I γ j (2x)ñ j (t, 2x)κ ji . (1.12)
Differentiating it in time yields to the same equation verified by q = ∂ ∂t ñ, to which we can apply the contraction principle of Proposition 1.3 and derive:

I t := i∈I ∞ 0 |q i (t, x)|φ i (x) dx ≤ i∈I ∞ 0 |q i (0, x)|φ i (x) dx .
Evaluating at t = 0 the equation verified by ñ, we have

q i (0, x) = -∂ ∂x τ i (x)n in i (x) -λ + γ i (x) n in i (x) + 4 j∈I γ j (2x)n in j (2x)κ ji ,
whose absolute value can be controlled, bounding |n in | by CN and then replacing j γ j (2x)N j (2x)κ ji by the other terms of the equation on N , to obtain:

I t ≤ i∈I ∞ 0 φ i ∂ ∂x τ i n in i + C ∂ ∂x τ i N i + 2λC + 2C i∈I ∞ 0 γ i N i φ i .
The term in n in is controlled by assumption, the other ones thanks to the estimates on (N, φ) provided by Theorem 1.3, using in particular that

i∈I ∞ 0 γ i (x)N i (x)φ i (x) dx ≤ φ 1 + x k L ∞ (S) (1 + x k )γN L 1 (S) .
Size derivative. Starting again from (1.12) we use the estimate on the time derivative just obtained, the maximum principle of Proposition 1.3 (|ñ i (t, x)| ≤ CN (x)) and the estimates on N to control the size derivative as expected.

Lemma 1.2 (GRE minimizers).

Assume n, p, ψ and H satisfy assumptions of Proposition 1.2, with ψ positive and H strictly convex. Assume (HV D ), (Hκ irr ), (Hγ-τ ), (Hτ heterogeneity ) and (Hβ supp ) satisfied. Then

D H [n|p] ≡ 0 ⇐⇒ ∃C ∈ R : n i (t, x) p i (t, x) = C, ∀t > 0, ∀i ∈ I, a.e. x ∈ b 2 , +∞ .
Proof. Before starting, we introduce I ← and I → as defined by (1.3) and formulate the "support of (v , v, x) → κ(v , v)γ(v , 2x)" with discrete index notations:

∆ := (j, i, x) ∈ I 2 × R + : κ ji γ j (2x) > 0 ,
which can be simplified, thanks to the assumption on the support of γ, into

∆ = (j, i) ∈ I 2 : j ∈ I ← (i) × b 2 , +∞ .
Also, note that because I ← (i) is not empty for every i ∈ I thanks to (Hκ irr ) we have

(i, x) : ∃j ∈ I s.t. (j, i, x) ∈ ∆ = I × b 2 , +∞ . (1.13)
Now, from Proposition 1.2 we rather prove that the second assertion is equivalent to

n i (t, x) p i (t, x) = n j (t, 2x) p j (t, 2x)
, ∀t > 0, (j, i, x) ∈ ∆.

(1.14)

We set u i := n i /p i for all i ∈ I to simplify notations. It is clear that u i (t, •) ≡ C a.e. on b 2 , +∞ for all t > 0 and i ∈ I, implies (1.14). Let us prove the converse. Recalling (1.9), we use (1.14) (which holds for any i ∈ I, a.e. x ∈ b 2 , +∞ from (1.13)) and get:

∂ ∂t u i (t, x) + τ i (x) ∂ ∂x u i (t, x) = 0, t > 0, (i, x) ∈ I × b 2 , +∞ . (1.15)
On the one hand, (1.14) gives:

for t > 0, (j, i, x) ∈ ∆ ∂ ∂t u i (t, x) + τ i (x) ∂ ∂x u i (t, x) = ∂ ∂t u j (t, 2x) + τ i (x) ∂ ∂x u j (t, 2x) , which is ∂ ∂t u i (t, x) + τ i (x) ∂ ∂x u i (t, x) = ∂ ∂t u j (t, 2x) + 2τ i (x) ∂ ∂x u j (t, 2x),
that, combined with (1.15), eventually brings

∂ ∂t u j (t, 2x) + 2τ i (x) ∂ ∂x u j (t, 2x) = 0, t > 0, (j, i, x) ∈ ∆. (1.16)
On the other hand, (1.15) being true for all i ∈ I and x ∈ b 2 , +∞ , we have a fortiori

∂ ∂t u j (t, 2x) + τ j (2x) ∂ ∂x u j (t, 2x) = 0, t > 0, (j, x) ∈ I × b 4 , +∞ . (1.17)
Taking the difference between equations (1.16) and (1.17) we find

2τ i (x) -τ j (2x) ∂ ∂x u j (t, 2x) = 0, t > 0, (j, i, x) ∈ ∆.
Assumption (Hτ heterogeneity ) ensures that the first factor does not cancel on ∆, thus

∂ ∂x u i (t, x) = 2 ∂ ∂x u j (t, 2x) = 0, t > 0, (j, i, x) ∈ ∆.
From (1.13), this means that for all i ∈ I, u i is constant w.r.t. the size variable a.e. on the set b 2 , +∞ , which, injected in (1.15), yields that it is also constant in the time variable:

∂ ∂x u i (t, x) = 0, ∂ ∂t u i (t, x) = 0, t > 0, (i, x) ∈ I × b 2 , +∞ .
Therefore u i (t, x) = C i for t > 0, and (i, x) ∈ I × b 2 , +∞ , and we get by (1.14) that:

C i = u i (t, x) = u j (t, 2x) = C j , (j, i, x) ∈ ∆,
which yields that for all i ∈ I, we have C j = C i as soon as j ∈ I ← (i). But then for all j in I ← (i), the map k → C k is constant on I ← (j), and so on, so that it is constant on sets of indices corresponding to any strongly connected component of the graph of κ. We conclude thanks to (Hκ irr ): the graph of κ is strongly connected, thus k → C k constant on I.

Another interesting consequence of the GRE principle is the uniqueness of the direct eigenvector solution to (GF v ). Uniqueness for the whole eigenproblem can also be derived, see Proposition 1.5 below whose proof is left to Section 1.4.

Proposition 1.5 (Uniqueness of eigenelements)

. Assume assumptions of Theorem 1.3 are satisfied and that, in addition, (Hτ heterogeneity ) and (Hκ irr ) holds. Then, there exists a unique solution to the eigenproblem (GF v ).

Long-time asymptotic behavior

After solving the eigenproblem, a natural wish is to characterize the asymptotic behavior of a solution to the Cauchy problem (GF t,v ) for which we expect the A.E.G.:

n(t, v, x) ∼ t→+∞ C e λt N (v, x).
The GRE principle then proves very useful to get information on the evolution of the distance between n and p = e λt N (v, x) in a well-chosen L 1 -norm (ponderated by φ by taking ψ = e -λt φ in the GRE inequality) since it indicates that the entropy of n w.r.t. p decreases in time. However we need, first to be sure that (GF t,v ) admits a weak solution in the suited space C R + , L 1 (S; φ dvdx) for any initial condition allowing us to use the maximum principle of Proposition 1.3-iii).

To state convergence we thus assume existence of a solution in C R + , L 1 (S; φ dvdx) to (GF t,v ) for some initial data satisfying |n in | ≤ CN . When V is finite (HV D ), a straightforward adaptation of [START_REF] Bernard | Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate[END_REF] however guarantees the existence of a weak solution to (GF t,v ) in C R + , L 1 (S; φ dvdx) with initial condition n in ∈ L 1 (S; φ dvdx), providing stronger assumptions on the coefficients. Introducing

P x 0 ,ω 1 := f : ∃ K 1 ≥ K 0 > 0 ω 0 ∈ (0, ω 1 ] s.t. K 0 x ω 0 1 x≥x 0 ≤ f (x) ≤ K 1 max(1, x ω 1 ), x > 0 ,
these assumptions can be stated as follows: for all v ∈ V:

• τ (v, •) : (0, +∞) → (0, +∞) is C 1 and belong to P 1,1 , • γ(v, •) : (0, +∞) → [0, +∞
) is continuous with connected support (our (Hβ supp )) and belongs to P x 0 ,ω for some positive x 0 , ω,

• Either 1 τ (v,•) or γ(v,•) τ (v,•) and x ν 0 τ (v,•)
, for ν 0 ≥ 0, in L 1 0 (this is (Hβ 0 ) and (Hτ 0 ) resp.). Existence of a weak solution to (GF t,v ) is besides derived in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF], as the expectation of the empirical measure of the underlying Markov process over smooth test functions. The result is stated for the continuous compact setting (HV C ) without the modeling assumption (Hγ-τ ) but continuous division rate γ satisfying γ(0) = 0 and ∞ x -1 γ = ∞ (the analogous of (Hβ ∞ )) and linear growth rate τ : (v, x) → vx. Theorem 1.4 (Convergence to equilibrium). Assume that (HV D ), (Hτ ), (Hγ), (Hβ), (Hγ-τ ), (Hτ heterogeneity ), and (Hκ) are satisfied. Take (λ, N, φ) the solution to (GF v ) and assume

n ∈ C R + , L 1 (S; φ dvdx) is a solution to (GF t,v ) with initial condition n in satisfying |n in | ≤ CN , then we have lim t→∞ i∈I ∞ 0 n i (t, x) e -λt -ρN i (x) φ i (x) dx = 0, ρ := i∈I ∞ 0 n in i (x)φ i (x) dx .
Proof. We follow the now classical proof given in Perthame's book [200, p.98]. Note that one can always regularize the initial data so that it satisfies the assumptions of Proposition 1.4, then contraction principle ensures that the convergence of the regularized problem implies converge of the initial problem. Therefore, it is enough to prove converge for n in satisfying the assumptions of Proposition 1.4.

First step. For all t ≥ 0, all i ∈ I and for x > 0, we set

h i (t, x) := n i (t, x) e -λt -ρN i (x)
and notice that h e λt satisfies problem (GF t,v ) (linear and satisfied by both n and N e λt ) with regularized initial data. Thus Proposition 1.4 applies and ensures

∞ 0 ∂ ∂t h i (t, x) φ i (x) dx ≤ C(n in ), ∞ 0 ∂ ∂x h i (t, x) φ i (x) dx ≤ C(n in ). (1.18)
Likewise, Proposition 1.3 applies and brings first (Maximum principle and conservation law)

|h| ≤ CN, i∈I ∞ 0 h i (t, x)φ i (x) dx = i∈I ∞ 0 n in i (x) -ρN i (x) φ i (x) dx = 0, (1.19) and second (contraction principle) that R(t) := i∈I ∞ 0 n i (t, x) e -λt -ρN i (x) φ i (x) dx
decreases towards some non-negative constant, say L, as t tend to infinity. We thus want to prove that L is zero.

Second step. Instead of considering the convergence of R as t tends to infinity, we introduce the family of functions (h (k) ) k∈N , defined for all t ≥ 0 and for x > 0 by

h (k) (t, x) := h(t + k, x), k ∈ N,
and rather consider the L 1 [0, T ] × R + ; φ i dx -convergence of the sequences (h (k) i ) k≥0 . Let us start with the (τ i h (k) i ) k≥0 , i ∈ I. Thanks to (1.18) and (Hτ pos ), we have that for every compact set K in (0, +∞), the sequences of τ i h (k) i , for i ∈ I, are bounded in BV [0, T ] × K (with weight φ i ). By a diagonal argument, we can thus extract from (τ h (k) ) k∈N a subsequence, denoted identically, such that for all compact K ⊂ (0, +∞) and every i ∈ I, (τ i h (k) i ) k∈N converges strongly in L 1 [0, T ] × K; φ i dx . Denote s the limit in

1 I; L 1 ([0, T ] × R + ) . The maximum principle (|h k | ≤ CN ) besides ensures that (h (k) i ) k≥0 is equi-integrable and bounded in L 1 ([0, T ] × R + ).
From the Dunford-Pettis theorem we can thus extract from (h (k) ) k≥0 a subsequence that converges to some g, component-wise weakly in L 1 ([0, T ] × R + ). Note that for every i ∈ I, τ i g i and s i , the weak and strong limits of (τ i h (k) i ) k≥0 , coincide on every compact sets of [0, T ] × (0, +∞). Using Fatou's lemma, (Hτ pos ) and the above results we conclude to the strong convergence of the (h

(k) i ) k≥0 , i ∈ I, on [0, T ] × R + : ∞ 0 h (k) i (t, x) -g i (t, x) dx ≤ 2C ε 0 N i (x) dx + ∞ X N i (x) dx + 1 m [ε,X] X ε τ i h (k) i (t, x) -s i (t, x) dx , t ≥ 0,
as small as possible for k, X big and ε small. In addition, the strong limit g satisfies the renormalization by e -λt of problem (GF t,v ) and verifies

|g i (t, x)| ≤ CN i (x), ∀i ∈ I.
In particular the support of g is included in the support of N , that is V × b 2 , +∞ from Proposition 1.1, so that g ≡ N ≡ 0 on V × 0, b 2 . Third step. We can now work on proving that g is zero. The GRE principle stated in Proposition 1.2 applies to n := h e λt , p := N e λt , ψ := φ e -λt and H(u

) := u 2 convex, bringing -4 i∈I ∞ 0 φ i (x) j∈I κ ji γ j (2x)N j (2x) h i (t, x) N i (x) - h j (t, 2x) N j (2x) 2 dx = d dt i∈I ∞ 0 φ i (x) N i (x) h i (t, x) 2 dx < +∞. Therefore ∞ 0 i,j∈I κ ji φ i (x)γ j (2x)N j (2x) h (k) i (t, x) N i (x) - h (k) j (t, 2x) N j (2x) 2 dx = ∞ k i,j∈I κ ji φ i (x)γ j (2x)N j (2x) h i (t, x) N i (x) - h j (t, 2x) N j (2x) 2 dx -→ k→∞ 0.
Passing to the strong limit the h (k) in the first integral we get:

∞ 0 i,j∈I κ ji φ i (x)γ j (2x)N j (2x) g i (t, x) N i (x) - g j (t, 2x) N j (2x) 2 dx = 0.
Fourth step. We can finally apply Lemma 1.2 and get that g i (t, x) = CN i (x) for all i ∈ I, and a.e. x ∈ b 2 , +∞ (and thus a.e. on R + from the last remark of step 2). To conclude we use the normalization condition on φ and the conservation law (1.19) also valid on g after passing to the limit in k: C = C i N i φ i = i g i (t)φ i = 0 and thus L = 0.

Illustration and discussion of the results

Comparison of our result with existing literature

The main message of Theorem 1.4 is that the heterogeneity in growth rate, providing enough mixing in feature, enables convergence towards a stationary profile. We provide here an example that sheds light on how our result fits in the current knowledge.

Let us consider the case where

V = {v 1 , v 2 } with v 1 < v 2 , take τ (v, x) := vx, γ : (v, x) → τ (v, x)β(x)
with β such that (Hγ) and (Hβ) are satisfied, and define the two following variability kernels -a reducible one, κ red standing for a population with absolutely no mixing in feature, and an irreducible one, κ irr for a population with mixing:

κ red :=   1 0 0 1   , κ irr :=   0 1 1 0   .
In the non-mixing case, the Cauchy problem (GF t,v ) is a system of two growthfragmentation equations that are not coupled

         ∂ ∂t n 1 (t, x) + v 1 ∂ ∂x xn 1 (t, x) + γ 1 (x)n 1 (t, x) = 4γ 1 (2x)n 1 (t, 2x), ∂ ∂t n 2 (t, x) + v 2 ∂ ∂x xn 2 (t, x) + γ 2 (x)n 2 (t, x) = 4 2 γ(2x)n 2 (t, 2x), n 1 (0, x) = n in 1 (x), n 2 (0, x) = n in 2 (x), (1.20) 
whose associated eigenproblem, on the contrary, is coupled but only through the eigenvalue λ red . Taken independently, each equation is associated with a first positive eigenvalue associated with eigenelements (λ i , N i , φ i ), see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF]. Still, neither e -λ 1 t n 1 (t, x) nor e -λ 2 t n 2 (t, x) converge towards a stationary profile as t goes to infinity. Instead, we know from [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF] that they oscillate in the long time.

Besides, since Assumptions (HV D ), (Hτ ), (Hγ), (Hγ-τ ), (Hβ), (Hκ prob ) are satisfied, Theorem 1.3 applies and guarantees the existence of eigenelements (λ red , N red , φ red ) associated to system (1.20), with

0 < λ 1 ≤ λ red ≤ λ 2 , N red i ≥ 0, φ red i ≥ 0, i ∈ {1, 2},
where the first inequalities are ensured by Theorem 1.2. However, the irreducibility condition (Hκ irr ) is not satisfied by κ red , so uniqueness is not ensured and Proposition 1.1 does not apply to guarantee that N red In the mixing case, the equations of system (GF t,v ) are coupled through their source term:

       ∂ ∂t n 1 (t, x) + v 1 ∂ ∂x xn 1 (t, x) + γ 1 (x)n 1 (t, x) = 4γ 2 (2x)n 2 (t, 2x), ∂ ∂t n 2 (t, x) + v 2 ∂ ∂x xn 2 (t, x) + γ 2 (x)n 2 (t, x) = 4γ 1 (2x)n 1 (t, 2x), n 1 (0, x) = n in 1 (x), n 2 (0, x) = n in 2 (x),
and the irreducibility condition (Hκ irr ), missing in the non-mixing case, is now satisfied. We can thus apply successively Theorem 1.3, Proposition 1.1 and Theorem 1.4 to get eigenelements (λ irr , N irr , φ irr ) such that

2 i=1 R + n i (t, x)e -λ irr t -N irr i (x) φ irr i (x) dx -→ t→∞ 0
with λ irr > 0, and for i ∈ {1, 2}, N irr i positive on b 2 , +∞ and φ irr i on (0, +∞).

These two simple cases illustrate that the existence result (Theorem 1.3) holds for every probability matrix κ, in particular reducible ones. The irreducibility condition on κ comes into play to characterize the functions canceling the dissipation of entropy (Lemma 1.2), which then proves crucial to establish uniqueness of the steady state and convergence towards it.

Numerical illustration

Similarly to the previous subsection, we focus here on the special case of linear growth rates to illustrate the convergence result of Theorem 1.4. We numerically approximate and compare the long-time asymptotics in the presence and absence of mixing in feature.

We choose M = 3 different features V = {1, 2, 3}, and approximate on the grid

S N := V × {x 0 , . . . x 2N }, x m := 2 -m-N k , m ∈ {0, . . . , 2N }, k = 200, N = 2501,
the time-evolution of the following initial data (taken identical for all features)

n in : (v, x) → Cx a e -bx 2 , a = 30, b = 60, C s.t. n in L 1 (V×(0,x 2N )) = 1,
under the law given by the Cauchy problem (GF t,v ) with coefficients

τ : (v, x) → vx, γ : (v, x) → x 2 τ (v, x)
and variability kernel κ red or κ irr , for the non-mixing and mixing case respectively:

1.3. Illustration and discussion of the results

κ red :=      1 0 0 0 1 0 0 0 1      , κ irr :=      0.7 0.2 0.1 0.5 0.4 0.1 0.3 0.3 0.4      .
Our numerical scheme, available at https://github.com/anais-rat and detailed in Appendix A, is an adaptation to the case M > 1 of the scheme developed in [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF] to capture the oscillations that appear in the case of equal mitosis, linear growth rate and no variability. For M = 1 the scheme remains identical, consisting in a splitting with upwind scheme of CFL = 1 on a geometrical grid to avoid diffusion. However, for M > 1 the CFL is 1 only for the fastest individuals, those with feature

v max = max(V). It is v i vmax < 1 for the other individuals which yields numerical diffusion in v i < v max .
We see on Figure 1.2a that in the absence of mixing the fastest subpopulation quickly dominates the others but does not stabilize and keeps oscillating instead. However, as soon as mixing is introduced (Figure 1.2b), no subpopulation is overwhelming the others anymore and all stabilize in shape to a steady distribution.

We besides approximate the Malthus parameter λ solution to the associated eigenproblem, by three different ways to control as much as possible the approximation error (numerical values in Table 1.1). They are obtained by averaging over the last times of computation different estimates of the instantaneous growth rate of the population (see Figure 1.3): As expected, we retrieve the Malthus parameter λ red ≈ λ max = v max that corresponds to a population where all cells have same feature v max in the case of no mixing; and λ irr ∈ (v min , v max ), with v min and v max the extremum values of V, in the case of mixing.

λ ≈ d dt S n t S n t := λ n (t), λ = S τ N S xN ≈ S τ n t S xn t := λ τ (t), λ = S γN ≈ S γn t S n t := λ γ (t).
(v, x) = vx, γ(v, x) = x 2 τ (v,
A deeper study of the variation of the Malthus parameter with respect to variation in κ or V would benefit to the understanding of mixing mechanisms. In agreement with Olivier's numerical results [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF], note that in the case of a uniform kernel (such that κ ij = 1 M for all i, j ∈ {1, . . . M }) and the setting described above for the other parameters, the estimated Malthus parameter (around 1.47), is lower that the average on the features ( 1

M i v i = 2)
-that is the average on the Malthus parameters of the subpopulations grown independently.

Discussion of the irreducibility condition

The previous examples actually illustrate two "extreme" cases where either the system is not coupled, or it is "fully" coupled through an irreducible κ. In the present subsection, we consider cases (in dimension M = 2 for simplicity) that are neither irreducible nor completely decoupled, with variability kernels of the form: We start by a useful result that will lead our intuition. Consider the usual setting with no variability but assume that at birth cells can either die (or definitely disappear/be removed from the population) or survive with probability p ∈ (0, 1]:

κ StF (p) :=   p 1 -p 0 1   and κ F tS (p) :=   1 0 1 -p p   , p ∈ P ⊂ (0,
     d dx τ (x)N (x) + λ p + γ(x) N (x) = 4pγ(2x)N (2x), τ (0)N (0) = 0, N = 1, N ≥ 0. (1.21)
How is the Malthus parameter λ p affected by the death rate p? When p = 1 2 we recover the conservative case: in average, only one daughter cell is kept at each division hence the total number of cell is conserved and λ1 2 is zero. When τ = τ 0 x, λ 1 is τ 0 . The following proposition provides a general expression of λ p in this case. Proposition 1.6. Assume that τ : x → τ 0 x. Then the Malthus parameter λ p solution to (1.21) is given by

λ p = τ 0 log 2 (p) + 1 , p ∈ (0, 1].
Proof. Integrating (1.21) against x α , for α ∈ R (this is legitimate from [79, Theorem 1]), brings us

-α ∞ 0 x α-1 τ (x)N (x) dx + λ p ∞ 0 x α N (x) dx = p 2 α-1 -1 ∞ 0 x α γ(x)N (x) dx .
Therefore, when τ is linear we get

λ p = τ 0 α + p 2 α-1 -1 ∞ 0 x α γ(x)N (x) dx ∞ 0 x α N (x) dx , α ∈ R,
and it suffices to chose α so that to cancel the second term of the right-hand side to obtain the expected result.

Proposition 1.6 allows us to properly define the proportion p 0 of newborn cells kept in subpopulation 2 (of fast-growing cells with trait v 2 ) that is necessary for it to grow asymptotically exactly as fast as subpopulation 1 (with trait v 1 ) when both are considered independently:

v 1 = v 2 log 2 (p 0 ) + 1 ⇐⇒ p 0 := 2 v 1 v 2 -1 . (1.22)
Numerical simulations, presented in Figures 1.4b and 1.5, suggest that the long-time asymptotic behavior depends on which species is able to mutate as follows:

• When the slowest species is able to mutate -this is κ = κ StF -then its contribution to the exponentially growing subpopulation of trait v 2 > v 1 is negligible and the system asymptotically behaves as if there was only subpopulation 2 (exponential growth at rate λ = v 2 and cyclic behavior, Figure 1.5a). • When the fastest species is the one that can mutate, the asymptotics depends on p. There exists p 0 ∈ (0.5, 1), most likely given by (1.22) (Figure 1.4b), s.t.

-Case p < p 0 . If p > 0.5, subpopulation 2 grows but more slowly than subpopulation 1 alone (that would grow alone exponentially at rate v 1 ). Otherwise this is even clearer since subpopulation 2 conserves (p = 0.5) or loses (p < 0.5) cells over time (up to extinction if p < 0.5). In both cases, the contribution of subpopulation 2 is rapidly negligible and the system asymptotically behaves as if there was only subpopulation 1 (exponential growth at rate λ = v 1 and cyclic behavior, Figure 1.4b-(left) and 1.5b).

-Case p > p 0 . Although it loses cells, subpopulation 2 grows exponentially at rate λ 2,p := v 2 log 2 (p) + 1 (1.23) superior to the rate at which would grow subpopulation 1 alone. Thus asymptotically, both grow exponentially at the rate λ 2,p and oscillate at a frequency imposed by subpopulation 2 (see Figure 1.4b-(right) and 1.5c). Density at x = 1.00 Density at x = 1.00 

P N 1 N 2 λ κ StF (p) (0, 1) 0 periodic v 2 κ F tS (p) (0, p 0 ) periodic 0 v 1 (p 0 , 1) periodic periodic λ v 2 ,p
×10 -19 v = 1 v = 2 ( 
p = p 0 -ε v = 1 v = 2
(v, x) = vx, γ(v, x) = x 2 τ (v, x).
On Figure 1.4a, the quantity plotted is the rescaled density ñt = n t (v, •) e vt in the absence of mixing (p = 1); this allows to quantify the dissipativity in v = v 1 (missed without rescaling). On Figure 1.4b, p 0 is defined by (1.22) and ε = 0.05 to show that p 0 appears as a critical value for p in the case Fastest to Slowest.

Remark 1.1. Because our scheme is dissipative for the feature v 1 (see Appendix A), it is not quite clear in the case κ = κ F tS (p), p < p 0 (see Figure 1.4b-(left) and 1.5b) whether the long-time convergence of N 1 towards a steady state observed is due to numerical dissipation or if it corresponds to the theoretical behavior. To avoid ambiguity as much as possible, we limited the diffusion by taking the refined size-grid defined by N = 25001, k = 2000. Moreover, to quantify the dissipativity, we normalized n 1 by e v 1 t in the case with no mixing in order to see how fast the oscillations of n 1 were dampen (Figure 1.4a). Since it is of the same order, and size-grid dependent, we believe that the seemingly convergence is only an artifact of our scheme. Other evidences come from the fact that when convergence is proven theoretically, it happens way faster numerically. 

(v, x) = vx, γ(v, x) = x 2 τ (v, x
) and the variability kernels κ StF (0.5), κ F tS (0.2) and κ F tS (0.8). The corresponding Malthus parameters were estimated to be (up to 10 -3 precision) v 2 = 2, v 1 = 1, and λ 2,0.8 ≈ 1.356, respectively, in accordance with the conjecture (see Table 1.2). The decrease in amplitude observed on Figure 1.5b-(middle) is a consequence of the dissipativity of the numerical scheme (see Remark 1.1).

Proofs 1.4.1. Proof of Theorem 1.3

We adapt the existence proof of [79, Theorem 1] for the setting with no variability to our case. It basically consists in obtaining uniform estimates on a truncated problem, whose existence is proved through regularization and the Kreȋn-Rutman theorem, as follows: i) We "truncate" problem (GF v ) to work with a nicer "truncated problem", (GF η,δ v ) defined on the compact set V × (0, R) and having positive boundary condition, ii) Regularize (GF η,δ v ) through convolution by a mollifier sequence (ρ ε ) ε>0 so that the Kreȋn-Rutman theorem can apply and provide existence of eigenelements (λ ε , N ε , φ ε ), iii) Derive estimates on these eigenelements to be able to pass to the limit ε → 0 and obtain eigenelements (λ η,δ , N η,δ , φ η,δ ) solution to the truncated problem, iv) Bound (λ η,δ ) η,δ>0 in (0, +∞) to get a λ > 0 limit when η, δ → 0 (and R → ∞), v) Derive estimates on the moments of τ η N η,δ , uniform in η and δ, to be able to pass to the limit the direct problem of (GF v ), δ → 0 first, and then η → 0, vi) And similarly with the adjoint problem by uniform estimates on φ η,δ .

Proof. Step i).

In order to get compactness and positivity, both required to apply the Kreȋn-Rutman theorem, we first consider the problem on a bounded domain

S R := V × [0, R], R > 0,
and second, endow the direct problem with a positive boundary condition δ and set the growth rate τ to η > 0 around x = 0:

τ η := η on V × [0, η],
τ elsewhere, to make it bounded from below on S R by the positive constant

µ = µ(η, R) := min i∈I ess inf (0,R) τ η i > 0. (1.24)
Following (Hγ-τ ), we also define on R + the functions γ η i := βτ η i , for i in I. The truncation of the adjoint problem simply follows as the adjoint eigenproblem of the truncated direct eigenproblem endowed with null boundary condition at x = R, 1.4. Proofs and finally the whole "truncated" problem states as follow: ∀i ∈ I, a.e. x ∈ (0, R),

                               ∂ ∂x τ η i (x)N η,δ i (x) + λ η,δ + γ η i (x) N η,δ i (x) = 4 j∈I γ η j (2x)N η,δ j (2x)κ ji 1 [0,R] (2x), τ η i (0)N η,δ i (0) = δ, j∈I R 0 N η,δ j (s) ds = 1, N η,δ i (x) > 0, -τ η i (x) ∂ ∂x φ η,δ i (x) + λ η,δ +γ η i (x) φ η,δ i (x) = 2γ η i (x) j∈I φ η,δ j x 2 κ ij + δφ η,δ i (0), φ η,δ i (R) = 0, j∈I R 0 N η,δ j (s)φ η,δ j (s) ds = 1, φ η,δ i (x) ≥ 0.
(GF η,δ v ) From now on, δ and η being to be brought to zero, we choose them lower than 1.

Step ii). Besides compactness and positivity, one needs to work in a space whose positive cone has non-empty interior to apply the strong form of Kreȋn-Rutman's theorem [START_REF] Perthame | Transport Equations in Biology[END_REF][START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications[END_REF]. In particular, L p spaces are not appropriate but the space of continuous functions is. Let us thus regularize (GF η,δ v ) in order to work in

C ([0, R]) M endowed with the norm in ∞ I; C ([0, R]) or equivalently in 1 I; C ([0, R]) : n ∞ := max i∈I n i ∞ , n 1 := i∈I n i ∞ , (1.25) 
where • ∞ refers to the supremum norm in C ([0, R]). We define, for (ρ ε ) ε>0 a sequence of mollifiers and * the convolution product 2 :

β ε := ρ ε * β, 1 ε [0,R] := ρ ε * 1 [0,R] τ ε i := ρ ε * τ η i , γ ε i := β ε τ ε i , ∀i ∈ I,
omitting η to lighten notations. The sequence is chosen with supp(ρ ε ) ⊂ [-ε, 0], for all positive ε, such that 1 ε [0,R] cancels on (R, +∞) (and is 1 on [0, R -ε]), which gives sense to the regularized truncated equation (GF ε v ) defined only for x ≤ R. We also mention

β ε -→ ε→0 β L 1 (0, R), τ ε i -→ ε→0 τ η i L 1 (0, R), ∀i ∈ I, (1.26) 
from the properties of the convolution with mollifiers [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], as well as the inequalities: 1.4. Proofs topology (towards τ η ) so that we can also prove L 1 -convergence for (γ ε ) ε>0 : ∀i ∈ I,

β ε L 1 (0,R) ≤ 2 β L 1 (0,R) ε small enough, µ ≤ τ ε i ≤ τ η L ∞ (S R ) , ∀i ∈ I. (1.27) In particular (τ ε ) ε>0 , bounded in L ∞ ([0, R]), converges in L ∞ ([0, R])
γ ε i -γ i L 1 (0,R) ≤ τ η L ∞ (S R ) β ε -β L 1 (0,R) + β(τ ε i -τ η i ) L 1 (0,R) -→ ε→0 0.
Conditions are now gathered to use the Kreȋn-Rutman theorem and derive the existence of a solution (λ ε , N ε , φ ε ) to the following regularized problem (written omitting η and δ, again for simplicity). The proof is left to Appendix B.1.

Theorem 1.5. Under assumptions (Hτ ) (Hγ) (Hβ) and (Hκ prob ), for δM R < µ and ε > 0, there exists a unique solution

(λ ε , N ε , φ ε ) ∈ R×C 1 ([0, R]) M ×C 1 ([0, R]) M to the regularized eigenproblem: ∀i ∈ I, ∀x ∈ [0, R),                              ∂ ∂x τ ε i (x)N ε i (x) + λ ε + γ ε i (x) N ε i (x) = 4 j∈I γ ε j (2x)N ε j (2x)κ ji 1 ε [0,R] (2x),
τ ε i N ε i (0) = δ, j∈I R 0 N ε j (s) ds = 1, N ε i (x) > 0, -τ ε i (x) ∂ ∂x φ ε i (x) + λ ε + γ ε i (x) φ ε i (x) = 2γ ε i (x) j∈I φ ε j x 2 κ ij + δφ ε i (0),
φ ε i (R) = 0, j∈I R 0 N ε j (s)φ ε j (s) ds = 1, φ ε i (x) > 0.
(GF ε v ) From now on, we arbitrarily impose on the truncation parameters to satisfy 2δM R = µ

(1.28) so that the condition δM R < µ holds. As a result, it should be noted that for η fixed and δ tending toward zero, R tend to infinity. This is not completely direct since µ = µ(η, R) does not only depend on η. To be convinced, one can notice that (Hτ ∞ ) ensures: It follows that R can be seen not as a parameter anymore but as functions of parameters η and δ, and then µ as well from (1.24): R = R(η, δ), µ = µ(η, δ).

∃ω ≥ 0, C > 0, A > η : min i∈I ess inf (A,R) τ η i ≥ C R ω , ∀R > A,
Step iii). To find a solution to problem (GF η,δ v ) it remains to bring ε to zero in the weak formulation of (GF ε v ). We rely on the following estimates, derived in Appendix B.2. Lemma 1.3. For ε, δ and η fixed positive, there exists constants λ up , N low , N up , 1.4. Proofs and φ up , depending on η and δ but independent of ε, such that: ∀i ∈ I, ∀x ∈ [0, R],

0 < λ ε ≤ λ up , 0 < N low ≤ N ε i (x) ≤ N up , 0 ≤ φ ε i (x) ≤ φ up .
Eigenvalue. From (λ ε ) ε bounded in (0, +∞) we extract a subsequence, still denoted (λ ε ) ε for simplicity, that converges to some non-negative λ η,δ .

Eigenvectors. Similarly, since for all i in I families (N ε i ) ε>0 and (φ ε i ) ε>0 are bounded in L ∞ (0, R) we can extract from (N ε ) ε>0 and (φ ε ) ε>0 (through M successive extractions) subsequences, denoted the same, that converge component-wise weakly* in L ∞ (0, R):

R 0 N ε i ϕ -→ ε→0 R 0 N i ϕ, R 0 φ ε i ϕ -→ ε→0 R 0 φ i ϕ, ∀ϕ ∈ L 1 (0, R), ∀i ∈ I. (1.29)
Let us check that (λ, N, φ) is (weak) solution to (GF η,δ v ): 1. From the bound from below on (N ε ) ε>0 and (φ ε ) ε>0 we have that N positive, bounded from below by N low , and φ non-negative. 2. We prove that N satisfies the direct equation of (GF η,δ v ). As classical solution

N ε is weak solution to (GF ε v ): ∀ϕ ∈ C ∞ c [0, R) M , i∈I R 0 N ε i (x) -τ ε i (x) ∂ ∂x ϕ i (x) + λ ε + γ ε i (x) ϕ i (x) dx -δ i∈I ϕ i (0) = 2 i∈I R 0 γ ε i (x)N ε i (x)1 ε [0,R] (x) j∈I κ ij ϕ j x 2
dx , (1.30) and we show that the limit ε → 0 exits and is nothing but the weak formulation of the direct problem of (GF η,δ v ). For the first term we have: (1.26) and (1.29), that righthand side tends towards zero as ε does. The convergence also holds for the other terms of the left-hand side of (1.30) since (λ ε ) ε>0 converges towards λ η,δ and (γ ε ) ε>0 towards γ η . As for the right-hand term, we perform the same kind 1.4. Proofs of computations relying on (Hκ prob ):

i∈I R 0 τ ε i N ε i -τ η i N i ∂ ∂x ϕ i ≤ i∈I τ ε i -τ η i L 1 (0,R) ∂ ∂x ϕ ∞ N up + i∈I R 0 τ η i N ε i -N i ∂ ∂x ϕ i , with τ η i ∂ ∂x ϕ i ∈ L 1 (0, R), making clear, with
i∈I R 0 γ ε i (x)N ε i (x)1 ε [0,R] (x) -γ η i (x)N i (x) j∈I κ ij ϕ j x 2 dx ≤ ϕ ∞ N up i∈I γ ε i -γ η i L 1 (0,R) + γ η i L 1 (R-ε,R) + i∈I R 0 (N ε i -N i ) φη i , with φη i := γ η i j κ ij ϕ j • 2 ∈ L 1 (0, R),
and again all terms tend to zero when ε does thanks to (1.26), γ η i ∈ L 1 loc (R * + ) and (1.29). 3. Similarly one can prove that φ satisfies the adjoint equation of (GF η,δ v ). 4. Plus, testing for all i, ϕ ≡ 1 against N ε i in (1.29), and summing for i in I, brings the expected normalization condition on N . As for φ, we have 1 = i N ε i φ ε i ≤ N up i φ ε i so φ is non-zero and satisfies the normalization condition up to renormalization.

Step iv). Limit as δ, η → 0 for λ η,δ . We compare λ η,δ with the positive eigenvalues λ η,δ min and λ η,δ max solution to the reformulation of (GF η,δ v ) in the absence of variability, when all cells have feature v min := min(V) or v max := max(V), respectively. The existence and positivity of such eigenvalues in ensured by the proof of [79, Theorem 1] in the mitosis case. Mimicking the proof of Theorem 1.2 (working on the truncated domain S R with a slightly different formulation in δ and η does not change computations) we get:

0 < λ η,δ min ≤ λ η,δ ≤ λ η,δ max , η, δ > 0. (1.31)
The proof of [79, Theorem 1] also provides positive λ η min , λ η max , λ min , and λ max , such that

λ η,δ min -→ δ→0 λ η min , λ η,δ max -→ δ→0 λ η max , η > 0, λ η min -→ η→0 λ min , λ η max -→ η→0 λ max .
Passing to the limit δ → 0 and η → 0 successively in (1.31) yields to the existence of subsequences (λ η,δ ) η,δ>0 and (λ η ) η>0 , denoted the same, and λ such that:

λ η,δ -→ δ→0 λ η > 0, η > 0, λ η -→ η→0 λ > 0.
Step v). Limit as δ → 0 for N η,δ . Let us fix η > 0 and recall that δ brought to zero brings R to infinity. To pass to the limit δ → 0, we bound the moments of τ η N η,δ in 1 I; W 1,1 ([0, R]) , uniformly in δ. To do so, we start bounding (x α γ η N η,δ ) δ>0 , for all α ≥ 0:

• First for α ≥ m := max(2, ω 0 + 1), with ω 0 defined by (Hτ 0 ). Multiplying the direct equation in (GF η,δ v ) by x α and integrating on S R brings with a change of

1.4. Proofs variables: i∈I R α τ η i (R)N η,δ i (R) -α i∈I R 0 x α-1 τ η i (x)N η,δ i (x) dx + λ η,δ i∈I R 0 x α N η,δ i (x) dx + i∈I R 0 x α γ η i (x)N η,δ i (x) dx = 1 2 α-1 i∈I R 0 x α γ η i (x)N η,δ i (x) dx , (1.32) hence the inequality 1 - 1 2 α-1 i∈I R 0 x α γ η i (x)N η,δ i (x) dx ≤ α i∈I R 0 x α-1 τ η i (x)N η,δ i (x) dx .
According to assumption (Hβ ∞ ) there exists A α ≥ η such that

τ η i (x) = τ i (x) ≤ x α2 α γ η i (x), x ≥ A α , ∀i ∈ I.
By definition x → x ω 0 τ i (x) is essentially bounded from above on a neighborhood of 0 and so is τ η . Combined with assumption (Hτ 0 ), we obtain that for η small enough

x ω 0 τ η i L ∞ (0,Aα) ≤ x ω 0 τ i L ∞ (0,Aα) < +∞, ∀i ∈ I.
From all these considerations, it follows that for all i in I:

R 0 x α-1 τ η i (x)N η,δ i (x) dx ≤ A α-1-ω 0 α Aα 0 x ω 0 τ η i (x)N η,δ i (x) dx + R Aα x α-1 τ η i (x)N η,δ i (x) dx ≤ A α-1-ω 0 α x ω 0 τ i L ∞ (0,Aα) Aα 0 N η,δ i (x) dx + 1 α2 α R Aα x α γ η i (x)N η,δ i (x) dx ,
We conclude using the normalization condition: for all η > 0 small and α ≥ m i∈I R 0

x α γ η i (x)N η,δ i (x) dx ≤ α 1 - 3 2 α -1 A α-1-ω 0 α x ω 0 τ 1 (I;L ∞ (0,Aα)) := B α .
(1.33) • Then for 0 ≤ α < m. To extend estimates to smaller α we make sure there is no problem around x = 0 focusing on bounding

( i τ η i N η,δ i ) δ>0 essentially around zero so the moments of i γ η i N η,δ i = β i τ η i N η,δ
i can be bounded as well around 0. Let fix ρ in (0, 1 2 ) and define x ρ > 0 (lower than R for R big) as the unique point such that

xρ 0 β(x) dx := ρ, (1.34)
which is well defined since β is non-negative integrable around zero from (Hβ 0 ).

Proofs

Integrating (GF η,δ v ) on sizes lower than any x ∈ (0, x ρ ) and traits, gives:

i∈I τ η i (x)N η,δ i (x) ≤ δM + 2 i∈I 2x 0 γ η i (s)N η,δ i (s)1 [0,R] (s) ds ≤ δM + 2 i∈I τ η i N η,δ i L ∞ (0,xρ) xρ 0 β(s) ds + 2 x m ρ i∈I R xρ s m γ η i (s)N η,δ i (s) ds .
Remembering that δ has been taken inferior to 1, it follows that

i∈I τ η i N η,δ i L ∞ (0,xρ) ≤ 1 1 -2ρ M + 2 x m ρ B m := D 0 . Now let us go back to i R 0 x α γ η i N η,δ i δ,η for 0 ≤ α < m. We have i∈I R 0 x α γ η i (x)N η,δ i (x) dx ≤ D 0 xρ 0 x α β(x) dx + x α-m ρ i∈I R xρ x m γ η i (x)N η,δ i (x) dx ≤ D 0 ρ x α ρ + x α-m ρ := B α . (1.35)
At the end, combining (1.33) and (1.35) brings

∀α ≥ 0, ∃B α : i∈I R 0 x α γ η i (x)N η,δ i (x) dx ≤ B α , δ, η > 0.
Finally, we can control x α i τ η i N η i δ , with α > -1, in L 1 (0, R). Using, from the definition of γ η and (Hβ ∞ ), the fact that there exists x > η such that:

τ η i (x) ≤ x γ η i (x), a.e. x ≥ x, ∀i ∈ I,
we have that for R > x (which is satisfied for δ small enough)

i∈I R 0 x α τ η i (x)N η,δ i (x) dx ≤ i∈I x 0 x α τ η i (x)N η,δ i (x) dx + R x x α+1 γ η i (x)N η,δ i (x) dx ≤ D 0 xα+1 α + 1 + B α+1 := C α , hence a l 1 (I; L 1 )-bound for x α τ η N η η,δ : ∀α > -1, ∃C α : i∈I R 0 x α τ η i (x)N η,δ i (x) dx ≤ C α , δ, η > 0. (1.36)
To conclude to a l 1 (I; W 1,1 ) bound we need an estimate on the derivative. Relying

1.4. Proofs on equation (GF η,δ v ) again and (1.32), we get: for all α > 0,

i∈I R 0 ∂ ∂x x α τ η i N η,δ i ≤ α i∈I R 0 x α-1 τ η i N η,δ i + x α ∂ ∂x τ η i N η,δ i ≤ α C α-1 + i∈I R 0 x α λ η,δ + γ η i N η,δ i + 1 2 α-1 i∈I R 0 x α γ η i N η,δ i ≤ α C α-1 + i∈I R 0 x α-1 τ η i N η,δ i + 1 2 α i∈I R 0 x α γ η i N η,δ i ≤ α 2C α-1 + 2 -α B α ,
and a similar control holds when α is zero according the direct equation of (GF η,δ v ), so that at the end, together with (1.36), we have:

∀α ≥ 0, x α τ η N η,δ η,δ>0 bounded in 1 I; W 1,1 (R + ) . (1.37)
We deduce that (x α τ η N η,δ ) δ>0 , for every α ≥ 0, belongs to a compact set of 1 I; L 1 (R + ) . Indeed by a diagonal argument we can extract from it (after M successive extractions) a subsequence (denoted identically) such that for every i ∈ I and all positive X (x

α τ η i N η,δ i ) δ>0 converges strongly in L 1 ([0, X]). Denote by H η ∈ 1 I; L 1 (R + ) the limit when α = 0, then i∈I ∞ 0 x α τ η i N η,δ i -x α H η i ≤ i∈I X 0 x α τ η i N η,δ i -H η i + ∞ X x α τ η i N η,δ i + H η i ≤ x α τ η N η,δ -H η i 1 (I; L 1 ([0,X])) + 2 X C α+1 ,
where ∞ X x α H η has be bounded by 1 X C α+1 thanks to Fatous's lemma. Thus, for any ε > 0 we can find X big enough such that the last term of the right-hand side is less than ε 2 . The first term will be as well for all small δ since convergence is strong in 1 I; L 1 ([0, X]) and we conclude to the strong 1 I; L 1 (R + ) -convergence.

We have now everything gathered to pass to the limit, first in δ → 0 and η > 0 fixed to get rid of the positive boundary condition. The same argument holds for (1 + x α )τ η N η,δ δ>0 : we can extract a subsequence that converges component-wise in L 1 (R + ) to some H η,α . However, for some ω ≥ 0 and all i ∈ I, x → (1 + x ω )τ η i (x) is bounded from below by a positive constant (from τ η i being equal to η > 0 on [0, η] and (Hτ pos ) and (Hτ ∞ )) and therefore we deduce

N η,δ i L 1 -→ δ→0 N η i := H η,ω i (1 + x ω )τ η i , ∀i ∈ I.
Passing to the limit (in the weak sense) in the equation (GF η,δ v ) on N η,δ we find: ∀i ∈ I, x ∈ (0, +∞),

1.4. Proofs          ∂ ∂x τ η i (x)N η i (x) + λ η + γ η i (x) N η i (x) = 4 j∈I γ η j (2x)N η j (2x)κ ji , N η i (0) = 0, j∈I R 0 N η j (s) ds = 1, N η i (x) ≥ 0. (GF η v )
Limit as η → 0 for N η . All estimates (1.32)-(1.37) remain true for delta δ = 0. If they ensure that (x α τ η i N η i ) η>0 , for all i ∈ I, belongs to a compact set of L 1 (R + ) (same arguments than for (x α τ η i N η,δ i ) δ>0 ) not necessarily (N η i ) η>0 anymore, since the limit τ i of (τ η i ) η>0 can vanish at zero. Let us focus on proving the L 1 -weak convergence of (N η i ) η>0 first, which is equivalent by the Dunford-Pettis theorem to prove that (N η i ) η>0 is equi-integrable, bounded in L 1 (R + ). cm • Around x=0. We establish L ∞ 0 -bounds for ( i x ν 0 τ η i N η i ) η , and thus (x ν 0 τ η i N η i ) η , with ν 0 ≥ 0 defined by (Hτ 0 ). Integrating (GF η v ) on (0, x ), for x ≤ x ∈ R + , and summing on i ∈ I yields:

i∈I τ η i (x )N η i (x ) ≤ 2 i∈I 2x 0 γ η i (s)N η i (s) ds ≤ 2 i∈I 2x 0 γ η i (s)N η i (s) ds ≤ 2B 0 .
We introduce

f η : x → τ η N η 1 (I;L ∞ (0,x)) . For x ∈ 0, xρ 2 (
x ρ defined by (1.34)), we find

f η (x) ≤ 2 i∈I x 0 β(s)τ η i (s)N η i (s) ds + (2x) ν 0 2x x s -ν 0 β(s)τ η i (s)N η i (s) ds ≤ 2ρf η (x) + 2 ν 0 +1 x ν 0 xρ x s -ν 0 β(s)f η (s) ds .
Therefore, for x in 0, xρ 2 and for c 0 := 2 ν 0 +1 1-2ρ > 0,

x -ν 0 f η (x) ≤ c 0 xρ x β(s)s -ν 0 f η (s) ds := c 0 F η (x),
and applying Grönwall's lemma to x → x -ν 0 f η (x) finally brings: for x ∈ 0, xρ 2 ,

x -ν 0 i∈I τ η i (x)N η i (x) ≤ c 0 F η x ρ 2 e c 0 xρ 2 x β(s)ds ≤ c 0 2 ν0+1 B 0 ρ x ν0 ρ e c 0 ρ := C.
Therefore, noticing that for all i ∈ I, and for x > 0,

x ν0 τ η i (x)
≤ max 1,

x ν0 τ i (x) := f i (x),
we find that for all i in I, N η i is controlled on 0, xρ 2 by Cf i that is L 1 0 and independent of η. We conclude that (N η i ) η>0 , i ∈ I, is equi-integrable equibounded around size 0. Note that from the bound on x -ν 0 f η , a bound on x -2ν 0 f η can similarly be obtained, and so on for any x -nν 0 f η , n ∈ N. At the end, what we

1.4. Proofs actually have is a uniform L ∞ 0 -bound on x α τ η i N η i for all α ∈ R. The continuous embedding W 1,1 (R + ) → L ∞ (R + ) besides ensures that for all α ∈ R, x α τ η i N η i is uniformly bounded in L ∞ (R + ).
• Elsewhere, on intervals [ε, +∞). The fact that (x α τ η i N η i ) η>0 , for all i ∈ I, belongs to a compact set of L 1 (R + ) combined to (Hτ pos ) and (Hτ ∞ ), ensures that up to extraction (N η i ) η>0 converges strongly in L 1 ([ε, +∞)) for any ε > 0. In particular the assumptions of the Dunford-Pettis theorem are verified.

By Dunford-Pettis theorem we deduce that (N η ) η>0 converges (after M successive extractions) to some N component-wise weakly in L 1 (R + ). However for all i ∈ I, (N η i ) η>0 converges strongly on any interval [ε, +∞), ε > 0, thus we have:

+∞ 0 N η i (x) -N i (x) dx = ε 0 N η i (x) -N i (x) dx + +∞ ε N η i (x) -N i (x) dx ≤ 2C ε 0 f i (x) dx + +∞ ε N η i (x) -N i (x) dx -→ η→0 2C ε 0 f i (x) dx ,
with the right-hand side arbitrarily small for ε, η small since f i belongs to L 1 0 . We conclude that for all i in I, (N η i ) η>0 , converges to N i strongly in L 1 (R + ), and then, passing to the limit in the weak formulation of (GF η v ), that N satisfies the direct problem of (GF v ).

Step vi). Limit as η, δ → 0 for φ η,δ . We want to derive for some positive k and all i ∈ I, a L ∞ R + , dx 1+x k -bound for (φ η,δ i ) η,δ>0 . Let fix η, δ positive such as to guarantee (1.28). We start by controlling (φ η,δ i ) η,δ>0 on any interval [0, A], A > 0: cm • Bound on [0, x ρ ], with x ρ defined by (1.34). Consider equation (GF η,δ v ) on φ η,δ i , divide by τ η i and integrate on [x, x ρ ]: for all i ∈ I, and for x ∈ [0, x ρ ],

φ η,δ i (x) ≤ φ η,δ i (x ρ ) + 2 xρ x β(s) j∈I φ η,δ j s 2 κ ij ds + δx ρ µ φ η,δ i (0) ≤ max j∈I φ η,δ j (x ρ ) + 2ρ + x ρ 2M R max j∈I φ η,δ j L ∞ (0,xρ) ,
and thus for R = R(η, δ) greater than R 0 := xρ 2M (1-2ρ) , i.e. for δ and η small enough we have: for all i ∈ I, for x ∈ [0, x ρ ],

φ η,δ i (x) ≤ C(x ρ ) φ η,δ (x ρ ) ∞ (I) , C(x ρ ) := 1 -2ρ - x ρ 2M R 0 -1 . • Bound on [x ρ , A]. The map G η,δ i : x → e - x xρ λ η,δ +γ η i τ η i φ η,δ i (x), i ∈ I, decays on R + from (GF η,δ v )
. So for any A > x ρ > η, we can find C(A) > 0 (independent from

1.4. Proofs η, δ) s.t. φ η,δ i (x) ≤ e x xρ λ η,δ +γ i (s) τ i (s) ds φ η,δ i (x ρ ) ≤ C(A) φ η,δ (x ρ ) ∞ (I) , ∀i ∈ I, x ∈ [x ρ , A].
• Uniform bound on [0, A]. To conclude we need a uniform bound for φ η,δ (x ρ ).

Using the decay of G η,δ i and the normalization condition on φ η,δ we get: ∀i ∈ I,

x ∈ [0, x ρ ], 1 ≥ i∈I xρ 0 φ η,δ i (x)N η,δ i (x) dx ≥ i∈I φ η,δ i (x ρ ) xρ 0 e - xρ x λ η,δ +γ η i (s) τ η i (s) ds N η,δ i (x) dx ≥ i∈I φ η,δ i (x ρ ) e -ρ xρ xρ 2 e - xρ x 2λ τ i (s) ds N η,δ i (x) dx ,
where the integral term converges towards a positive quantity as δ, η go to zero since x ρ > b and N i is positive on b 2 , +∞ as proved in proposition (1.1). Thus φ η,δ (x ρ ) ∞ (I) is bounded and we can conclude

∀A > 0, ∃C 0 (A) : φ η,δ ∞ (I;L ∞ (0,A)) ≤ C 0 (A) η, δ > 0. (1.38) 
It remains to bound φ η,δ uniformly by C(1 + x k ) on V × [A, +∞). One prove that the adjoint problem of (GF η,δ v ) satisfies a maximum principle of the form of [79, Lemma 4.], the proof follows the same steps. Therefore, building for some A 0 > 0 a supersolution φ of any problem (GF η,δ v ), η, δ > 0, on V × [A 0 , +∞), greater than φ η,δ on V × [0, A 0 ] and positive at x = R(η, δ), yields φ η,δ ≤ φ everywhere. We look for a supersolution of the form φi : x → x k + θ, i ∈ I, with positive k, θ to be determined. It must satisfy on [A 0 , R]

-τ η i (x) ∂ ∂x φi (x) + λ η,δ +γ η i (x) φi (x) ≥ 2γ η i (x) j∈I φj x 2 κ ij +δφ η,δ i (0), i ∈ I. (1.39) Since φ η,δ i (0) ≤ C 0 (1) for η, δ > 0 (see (1.38)) it is enough to find k and A 0 ≥ η such that -kτ i (x)x k-1 + λ η,δ +γ i (x) x k + θ ≥ 2γ i (x) θ + x k 2 k + δC 0 (1), i ∈ I, holds on [A 0 , +∞). Dividing by x k-1 τ i (x) we find that if 1 - 1 2 k-1 xβ(x) ≥ k + θγ i (x) x k-1 τ i (x) + δC 0 (1) x k-1 τ i (x) (1.40)
is satisfied on [A 0 , +∞) then (1.39) holds. Since x → xβ(x) goes to infinity as x does and both τ i , γ i belong to P ∞ (assumptions (Hβ ∞ ) and (Hτ ∞ )), there exists 1.4. Proofs k > 0 such that for any θ > 0, there is a A 0 > 0 for which (1.40) holds true on [A 0 , +∞). We can apply the maximal principle to φ := A 0 θ φ (that satisfies φ ≥ φ η,δ i on V × [0, A 0 ], (1.39) on V × [A 0 , R] and φi (R) > 0, uniformly in η, δ) to finally conclude:

∃k, C, θ > 0 : ∀η, δ > 0 small, φ η,δ i (x) ≤ Cx k + θ ∀i ∈ I, x ∈ [0, +∞).
We obtained that φ η,δ i , for all i ∈ I, is uniformly bounded in L ∞ loc (R + ), therefore

τ η i ∂ x φ η,δ i is uniformly bounded in L ∞ loc (R * + ) (from (GF η,δ v ) and γ ∈ L ∞ loc (R * + )
and so is (∂ x φ η,δ i ) δ,η thanks to (Hτ pos ). We can thus extract (again after M successive diagonal extractions) a subsequence still denoted (φ η,δ ) η,δ>0 converging in C 0 (R * + ) M towards some φ and such that for every i ∈ I,

( ∂ ∂x φ η,δ i ) η,δ converges L ∞ loc (R * + )-weakly* towards ∂ ∂x φ i ∈ L ∞ loc (R * + ) (and φ η,δ i 1+x k towards φ i 1+x k strongly in L 1 (R + )
). It remains to check that φ satisfies the adjoint equation of (GF v ) in L 1 loc (R * + ). It is clear from (Hγ) that all the terms in φ η,δ converge to the expected limit in L 1 loc (R * + ). As for the derivative term, we can use the weak* convergence to derive: for all ϕ ∈ C ∞ c (R * + ), with supp(ϕ) = K and η ≤ min(K):

K τ η ∂ ∂x φ η,δ i -τ ∂ ∂x φ i ϕ ≤ K ∂ ∂x φ η,δ i -∂ ∂x φ i φ -→ η,δ→0 0, for φ = τ sgn ∂ ∂x φ η,δ i -∂ ∂x φ i ϕ ∈ L 1 (K), so that the convergence holds in L 1 loc (R * + ) as well.
At the end, the normalization condition holds as a consequence of the L ∞ -L 1 convergence written as:

1 = i∈I ∞ 0 φ η,δ i 1 + x k (1 + x k )N η,δ i -→ η,δ→0 i∈I ∞ 0 φ i 1 + x k (1 + x k )N i = i∈I ∞ 0 φ i N i .

Proof of Proposition 1.5

Proof. Eigenvalue. Consider (λ 1 , N (1) , φ (1) ) and (λ 2 , N (2) , φ (2) ) two solutions to (GF v ). We have by duality that: (1) , φ (2) = -d dx τ N (1) + FN (1) , φ (2) = N (1) , τ d dx φ (2) + F * φ (2) = λ 2 N (1) , φ (2) , with N (1) , φ (2) positive thanks to Proposition 1.1, so that λ 1 = λ 2 := λ.

λ 1 N
Direct eigenvector. Now, we find that the entropy of n := N (1) e λt with respect to p := N (2) e λt , written for ψ := φ (1) e -λt and some strictly convex H is independent on time so that for all t > 0, D H [n|p](t) = D H [N (1) |N (2) ] = 0, and we deduce with Lemma 1.2 that N (1) = CN (2) , for some C > 0. Thanks to the normalizing condition 1.4. Proofs on N (1) and N (2) we conclude to C = 1.

Adjoint eigenvector. Let x 0 be any positive real number and define φ := C(φ (2) -φ (1) ) with C := -sgn φ (2) (x 0 ) -φ (1) (x 0 ) . By linearity, φ satisfies the adjoint equation of (GF v ). Thus for every i ∈ I, the map

x → φ i (x) e -Λ i (x) , Λ i (x) := x x 0 λ + γ i (s) τ i (s)
ds is decreasing on [x 0 , +∞) (see computations of the proof of Proposition 1.1) which brings

φ i (x) ≤ φ i (x 0 ) e Λ i (x) = -|φ i |(x 0 ) e Λ i (x) ≤ 0, ∀i ∈ I, ∀x ∈ [x 0 , +∞].
Now from the normalization condition satisfied by φ (1) and φ (2) we have that i N i φ i is zero and thus:

i∈I ∞ 0 N |φ| = i∈I x 0 0 N |φ| - ∞ x 0 N φ -→ x 0 →0 0,
which allows to conclude that φ is zero almost everywhere on supp N , i.e. φ (2) ≡ φ (1) on

V × b 2 , +∞ . If b > 0, β ≡ 0 on [0, b] thus for j = 1, 2: φ (j) i (x) = φ (j) i b 2 e - b/2 x λ τ i (s) ds , ∀i ∈ I, ∀x ∈ 0, b 2 ,
and we have φ (2) ≡ φ (1) as well on V × 0, b 2 .

Effective fitness for a heterogeneous population of cells

Chapter 2

This chapter presents the results of an ongoing work with Marie Doumic and Magali Tournus that continues the study of Chapter 1 on the growthfragmentation (GF) equation modeling equal mitosis and heterogeneous cell growth. We aim at describing the population growth -characterized asymptotically by the Malthus parameter λ associated with the equationmore quantitatively to better understand how it is impacted by the cell-to-cell variability. To do so, we focus on the specific cases of either constant or linear coefficients for which the Malthus parameter is explicit in the absence of variability: λ(v) = v or bv for growth and fragmentation rates τ = vτ , γ = bτ , with b > 0, τ (x) ≡ 1 or x, resp. This allows us to transform the problem of finding the growth rate λ of the heterogeneous population with features (v 1 , . . . v M ) (equivalently coefficients τ i = v i τ and γ i = bτ i ) to the problem of finding its "effective fitness" v defined as the feature of the homogeneous population with same growth rate (v s.t. λ(v) = λ). In the constant case, v is given explicitly in terms of the (unique) positive root of a polynomial. Since easily approximated numerically, we are able to explore how the variance between features (v 1 , . . . v M ) is detrimental or beneficial to the population growth (i.e. decreases or increases v and λ) depending on the how features are inherited. Besides, the adjoint eigenvector proves to be constant with respect to x, as when there is no variability. The adjoint eigenproblem thus reduces to dimension one which yields an existence theory in the case of a continuum of features. In the linear case, driven by the idea that the adjoint vector might be simpler to intuit than the direct vector, but just as useful to characterize λ, we develop a numerical method to approximate it, also valid for larger classes of coefficients.

Introduction

Malthus parameter and effective fitness of a heterogeneous population

What is the effective growth of a population of cells having different growth rates? To tackle this question, we rely on the growth-fragmentation equation with variability in growth rate introduced in [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] and studied in the previous chapter in the case of finite variability. We recall that this equation describes a population of cells, or more generally of particles, structured by their size x and their type i that grow in size and divide into smaller cells along time. It is assumed that the size and the type governs individual dynamics: cells of size x and of type i are assumed to grow at a rate τ i (x) and to divide at a rate γ i (x). As for the heredity laws, the division of a cell of size x gives rise to two cells of size x 2 ; and κ ij prescribes the probability that a cell of type j comes from the division of a cell of type i.

Throughout the chapter, we consider a population of cells composed of M subpopulations (M types) interacting through the division process only. The kernel κ is a stochastic irreducible matrix in M M (R), i.e.

κ ij ≥ 0, 1 ≤ i, j ≤ M, M j=1 κ ij = 1, i ∈ {1, . . . M }, (2.1) 
∀(i, j), ∃m ∈ N : κ (m) ij := (κ m ) ij > 0. (2.2)
We besides focus on specific growth and fragmentation rates, τ i and γ i respectively: for some constant b > 0 and 0 < v 1 < . . . < v M , we assume that

τ i (x) = v i τ (x), γ i (x) = bv i τ (x), x ≥ 0, i ∈ {1, . . . , M }, (2.3) 
with growth rates τ i either constant (which corresponds to linear cell growth) from

τ (x) = 1, (2.4) 
or linear (i.e. exponential individual growth) from

τ (x) = x. (2.5)
We refer to v i as the feature (or trait) of the cells of type i.

The density n i (t, x) of cells of type i ∈ {1, . . . , M } and size x ≥ 0 at time t ≥ 0 evolves as

       ∂ ∂t n i (t, x) + ∂ ∂x τ i (x)n i (t, x) = -bτ i (x)n i (t, x) + 4b M j=1 κ ji τ j (2x)n j (t, 2x), τ i (0)n i (t, 0) = 0, n i (0, x) = n in i (x).
(2.6)

These assumptions are a particular case of the assumptions stated in Chapter 1 (equivalently [START_REF] Rat | Growth-fragmentation model for a population presenting heterogeneity in growth rate: Malthus parameter and long-time behavior[END_REF]) for which we have proven that there exists λ > 0 such that the overall population grows exponentially with the rate λ > 0 and converges in shape to a steady profile in the sense that for all i ∈ {1, . . . , M }

n i (t, x)e -λt -→ t→∞ ρN i (x), L 1 R + , φ i (x)dx , ( 2.7) 
where

ρ = M j=1 ∞ 0 n j (0, x)φ j (x) dx (2.8)
and where the Malthus parameter λ and the direct and adjoint associated eigenvectors N ∈ (W 1 1 (R + )) M and φ ∈ (L ∞ loc (0, +∞)) M respectively, are the unique solutions to

           τ i N i (x) + λN i (x) = -bτ i (x)N i (x) + 4b M j=1 κ ji τ j (2x)N j (2x), τ i (0)N i (0) = 0, N i ≥ 0 M j=1 ∞ 0 N i (x) dx = 1, (2.9) 
           -τ i (x)φ i (x) + λφ i (x) = -bτ i (x)φ i (x) + 2bτ i (x) M j=1 κ ij φ j x 2 , φ i ≥ 0, M j=1 ∞ 0 N i φ i = 1.
(2.10)

In this chapter, our goal is to provide some insight on the value of the Malthus parameter λ associated with the growth-fragmentation equation (2.6). This mathematical questioning makes biological sense: we aim at characterizing quantitatively the overall growth of a population composed of M (mixing) subpopulations with distinct growth rates. We define below the effective fitness of a heterogeneous population (justified first by Lemma 2.1). Some of the results will be given in terms of effective fitness v instead of Malthus parameter λ, as it can be directly compared to the individual features v 1 , . . . , v M .

Lemma 2.1 (Well-posedness of the effective fitness). Let λ be a positive real number and τ satisfy (2.4) or (2.5). Then there exists a unique v > 0 such that there is a unique non-zero solution

(N, φ) ∈ W 1,1 (0, +∞) × L ∞ loc (0, +∞) to      vτ N (x) + λN (x) = -bvτ (x)N (x) + 4bvτ (2x)N (2x), τ (0)N (0) = 0, N ≥ 0 ∞ 0 N (x) dx = 1, (2.11)      -vτ (x)φ (x) + λφ(x) = -bvτ (x)φ(x) + 2bvτ (x)φ x 2 , φ ≥ 0, ∞ 0 N (x)φ(x) dx = 1.
(2.12)

Explicit solutions in the absence of heterogeneity

Constant growth rate

In the absence of heterogeneity (case M = 1), the eigenproblem (2.9)-(2.10) is

           vN (x) + λN (x) = -bvN (x) + 4bvN (2x), -vφ (x) + λφ(x) = -bvφ(x) + 2bvφ x 2 , N (0) = 0, N, φ ≥ 0, ∞ 0 N = 1, ∞ 0 N φ = 1.
(2.13)

The unique solution to (2.13) is (see [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]Lemma 2.1])

λ = bv, φ(x) = 1, N (x) = N +∞ n=0 (-1) n α n e -2 n+1 bvx , with α 0 := 1, α n := 2 n (2 n -1) . . . (2 1 -1)
, n ≥ 1.

In particular, the eigenvector φ is constant with respect to x (and has a simpler expression than N ). One way to prove it is to notice that λ φ = bv is the unique positive value for λ such that the second line of (2.13) λφ = -bvφ + 2bvφ admits a non-zero constant solution φ > 0. By uniqueness of the solution (λ φ , φ) to the adjoint problem, the existence and uniqueness of the solution (λ, N, φ) to (2.13) ensures that λ φ = λ is the Malthus parameter solution to (2.13).

The idea in the next sections is that it is sufficient to study either the direct or the adjoint problem of (2.13) to have information on the Malthus parameter. Our guess in the following is that the solutions to the adjoint problem (2.10) could be easier to intuit than the solution to (2.9), and thus constitute a better chance to get information on λ.

We show in the next section that this simple characterization of the Malthus parameter λ is still valid in the case M > 1: more precisely, we prove that there is a unique value for λ such that (2.10) admits a non-zero constant solution (φ 1 , . . . , φ M ) ∈ (R + ) M . This value is then necessarily the Malthus parameter.

Linear growth rate

In the case M = 1 (no heterogeneity), the eigenproblem (2.9)-(2.10) is

             v xN (x) + λN (x) = -bxvN (x) + 8bvxN (2x), -vxφ (x) + λφ(x) = -bvxφ(x) + 2bvxφ x 2 , N, φ ≥ 0, ∞ 0 N = 1, ∞ 0 N φ = 1.
(

2.14)

There exists a unique positive solution to (2.14) (see [START_REF] Jauffret | Eigenelements of a general aggregation-fragmentation model[END_REF][START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]) and it satisfies

λ = v, φ(x) = x ∞ 0 sN (s) ds -1 , N ∈ W 1,1 (R + ).
Contrarily to the constant growth rate case, the simple shape of the eigenvector φ cannot be generalized to M > 1. As a consequence, the eigenvector φ cannot be used to obtain a full characterization of the Malthus parameter λ.

Outline of the chapter.

The content of the chapter is the following: in Section 2.2, we provide results on the effective fitness in the case where the growth rate is constant, and in Section 2.3, we focus on the case where the growth rate is linear.

Estimation of the effective fitness in the case of constant growth rates

In the present section we consider the setting (2.3)-(2.4) of constant coefficients. We look for a non-zero solution φ to (2.10) that is constant with respect to x. The huge advantage of dealing with functions constant in the size variable is that (2.10) breaks down to a system of the form Gφ = λφ, with

G := b diag(v 1 , . . . , v 2 )(2κ -I M ), i.e. G = 2b (κ 11 -1 2 )v 1 κ 12 v 1 κ 1M v 1 κ 21 v 2 κ M -1M v M κ M 1 v M κ M M -1 v M (κ M M -1 2 )v M                       , ( 2.15) 
with φ ≥ 0, or equivalently to

λφ i = -bv i φ i + 2bv i M j=1 κ ij φ j , i ∈ {1, . . . , M }. (2.16)
From Proposition 1.1 (Chapter 1) on the a priori positivity of solutions to (2.10), such a φ is necessarily positive; thus at the end we look for (λ, φ) ∈ (0, +∞) × (0, +∞) M satisfying (2.16).

We start by studying the simplest case M = 2, which allows us to find an explicit formula of the effective fitness while proving that the adjoint eigenelements solution to (2.10) is indeed constant in the size variable.

Then we generalize to arbitrary M > 1 (Theorem 2.2). The solution φ to (2.10) is always constant with respect to x and the effective fitness is characterized as the unique positive root of a polynomial P whose coefficients depends on V, κ and φ, but with no explicit formula for φ. However φ and thus P can be made explicit (depending only V and κ) considering special cases. We deal with the two cases of no heredity, for which the type distribution of daughter cells does not depend on the type of the mother cell, i.e. κ is of the form:

κ ij = κ j , ∀(i, j) ∈ {1, . . . , M } 2 , ( 2.17) 
the subcase of a uniform kernel:

κ ij = 1 M , ∀(i, j) ∈ {1, . . . , M } 2 , ( 2.18) 
and the kernels with heredity but uniform for i = j:

κ ij (α) =    α, if i = j, 1-α M -1 , if i = j, , ∀(i, j) ∈ {1, . . . , M }, α ∈ [0, 1). (2.19)
When α is close to 0 or 1, the mother and daughter cells' growth rates are strongly (negatively or positively, resp.) correlated. For α = 1 M we recover the uniform kernel, there is no correlation.

Our general theorem (Theorem 2.2) enables us to obtain an existence theory for the eigenproblem (2.9)-(2.10) in the case where there is a continuum of types (as opposed to the number of types i finite and equal to M ). Since the eigenvector φ = (φ i ) 1≤i≤M only depend on i and not on x, we bypass the difficulty raised by the dimension 2. Remark 2.2. In the constant coefficient setting, integrating (2.9) for x ∈ R + and defining Ni := ∞ 0 N i (x) dx also brings a system of the form F N = λ N on 91 2.2. Estimation of the effective fitness in the case of constant growth rates

N := ( N1 , . . . , NM ) > 0 with F := b (2κ T -I M ) diag(v 1 , . . . , v 2 ), or equivalently λ Ni = -bv i Ni + 2bv i M j=1 v j κ ji Nj , i ∈ {1, . . . , M }.
Exactly like the system on φ, the system on N can serve to characterize/compute λ. Also, it can be used to properly normalize φ: the normalization condition simply becomes i φ i Ni = 1.

Effective fitness in the case of two features

We start with the simple case M = 2, which allows us to derive an explicit expression of the effective fitness. 

κ := 1 -k 1 k 1 k 2 1 -k 2 , satisfying (2.

1). Introduce the following notation:

A := κ -

1 2 I 2 = 1 2 -k 1 k 1 k 2 1 2 -k 2 = (a ij ) 1≤i,j≤2 .
Then, the adjoint vector solution to (2.10) is constant with respect to x and the associated Malthus parameter is

λ = bv = b a 11 v 1 + a 22 v 2 + (a 11 v 1 -a 22 v 2 ) 2 + 4a 12 a 21 v 1 v 2 > 0,
where v is the effective fitness associated with (2.6).

Proof. We look for a constant solution φ = (φ 1 , φ 2 ) ∈ (0, +∞) 2 to (2.10). With the notation α := φ 2 φ 1 , this resumes to find (λ, α) ∈ (0, ∞) 2 satisfying (2.15) i.e.

2b diag(v 1 , v 2 )A 1 α = λ 1 α ⇐⇒ 2bv 1 (a 11 + a 12 α) = λ, 2bv 2 (a 21 + a 22 α) = λα. (2.20)
We deduce the following equation of degree 2 on α:

a 12 v 1 α 2 + (a 11 v 1 -a 22 v 2 )α -a 21 v 2 = 0
with real solutions (since a 12 , a 21 ≥ 0)

α ± = -(a 11 v 1 -a 22 v 2 ) ± (a 11 v 1 -a 22 v 2 ) 2 + 4a 12 a 21 v 1 v 2 2a 12 v 1 , α -< 0, α + > 0.
We conclude that α = α + , and thus from (2.20)

λ = b a 11 v 1 + a 22 v 2 + (a 11 v 1 -a 22 v 2 ) 2 + 4a 12 a 21 v 1 v 2 .
If s := a 11 v 1 + a 22 v 2 ≥ 0, then λ > 0. Otherwise λ > 0 if and only if

(a 11 v 1 + a 22 v 2 ) 2 < (a 11 v 1 -a 22 v 2 ) 2 + 4a 12 a 21 v 1 v 2 ⇐⇒ a 11 a 22 v 1 v 2 < a 12 a 21 v 1 v 2 ⇐⇒ k 1 + k 2 > 1 2
which is verified for s < 0 (indeed k 1 + k 2 ≤ 1 2 implies that k 1 and k 2 are lower than 1 2 and thus that s ≥ 0). In all cases λ is positive. By uniqueness of (2.10), (λ, φ) is thus the solution to (2.10), and by uniqueness of (2.9)-(2.10) λ is necessarily the Malthus parameter associated with (2.6).

From the expression of the effective fitness it is easy to check the following corollary.

Corollary 2.1 (Constant growth rate -specific kernels -M = 2). Assume that the growth rate and the fragmentation rate satisfy (2.3) and (2.4) and that M = 2.

Then, if κ is uniform (of the form (2.18), i.e. k 1 = k 2 = 1 2 ) then the effective fitness is the geometric mean of the features:

v = v G := √ v 1 v 2 ,
and if κ = κ(α) is of the form (2.19) with α = 1 2 + 1 2M = 3 4 (i.e. k 1 = k 2 = 1 4
) the effective fitness is the arithmetic mean of the features:

v = v A := v 1 + v 2 2
.

Effective fitness in the general case

For M fixed and a corresponding set of features V = V M := {v 1 , . . . , v M } we introduce the following notations 

S 0 := 1, S k := 1≤i 1 <...<i k ≤M v i 1 v i 2 . . . v i k , k ∈ {1, . . . , M }.

The case with a general kernel

α i = M j=1 κ ij φ j M j=1 κ 1j φ j κ 1i .
Then the Malthus parameter solution to (2.9)-(2.10) is

λ = bv,
where the effective fitness v associated with (2.6) is the unique positive root of the polynomial

P (u) = M n=0 M j=1 2α j -1 S M -n -2 M j=1 α j I⊂{1,...,M }\{j} #I=M -n k∈I v k u n (2.21)
with the conventions

x∈∅ x = 1, x∈∅ x = 0. (2.22)
Proof. Looking for a non-zero solution to (2.10) that is constant with respect to x is equivalent to look for (λ, φ) ∈ (0, +∞) × (0, +∞) M solution to Gφ = λφ with G defined by (2.15). For all β > 0, we define H(β) as H(β) := 2bβI -G i.e.

H(β) = 2b β -(κ 11 -1 2 )v 1 -κ 12 v 1 -κ 1M v 1 -κ 21 v 2 -κ M v M -1 -κ M 1 v M -κ M M -1 v M β -(κ M M -1 2 )v M                      
.

First, we claim that there exists β 0 > 0 such that for all β > β 0 , the diagonal coefficients of H(β) are positive and thus H(β) is a (strict) M -matrix. Second, we claim that for all β > β 0 , the matrix H(β) is irreducible. Indeed, for β > β 0 we have H(β) ii > 0 and since κ is irreducible, for any (i, j) ∈ {1, . . . , M } 2 there exists i 1 , . . . i k , such that

i 1 = i, i k = j, κ ii 2 κ i 2 i 3 . . . κ i k-1 j = 0, which implies that H(λ) ii 2 H(λ) i 2 i 3 . . . H(λ) i k-1 j = 0.
We deduce from [6, Theorem 6.2.11] that for every β > β 0 the smallest eigenvalue of H(β), say ν(β), is real, simple and associated with a strictly positive eigenvector φ:

H(β)φ = ν(β)φ, φ > 0,
and then

Gφ = λφ, λ = 2bβ -ν(β) ∈ R, φ ∈ (0, +∞) M .
We thus have an eigenpair (λ, φ), with φ positive, that satisfies Gφ = λφ or equivalently (2.16) that can be written as

λ = bv i 2 φ i M j=1 κ ij φ j -1 , ∀i ∈ {1, . . . , M }.
Assume by contradiction that λ ≤ 0. Then, by taking i = i 0 := argmin k∈{1,...,M } {φ k } (and using j κ ij = 1 for the left inequality) we would have

2φ i 0 ≤ 2 M j=1 κ i 0 j φ j ≤ φ i 0 ,
which contradicts the positivity of φ. By uniqueness of the solution to (2.10) and of the solution to (2.9)-(2.10) we conclude that λ is the Malthus parameter solution to (2.9)-(2.10). Now let us look for an expression of the effective fitness, given by Section 2.1.2.1 as v := λ b . We define

Z i = M j=1 κ ij φ j ≥ min 1≤j≤M (φ j ) > 0, r i = v v i , i ∈ {1, . . . , M }. Then (2.16) is equivalent to v + v i 2v i φ i Z i = r i + 1 2 
φ i Z i = 1, ∀i ∈ {1, . . . , M }, ⇐⇒            φ i = (r 1 + 1)Z i (r i + 1)Z 1 φ 1 , ∀i ∈ {1, . . . , M }, φ 1 = 2 r 1 + 1 M j=1 κ 1j φ j , ⇐⇒            φ i = (r 1 + 1)Z i (r i + 1)Z 1 φ 1 , ∀i ∈ {1, . . . , M }, 1 = 2 M j=1 κ 1j Z j (r j + 1)Z 1 = 2 M j=1 κ 1j v j v + v j Z j Z 1 .
By multiplying the last equality by 1≤k≤M (v + v k ), (2.16) can be written as

P (v) = 0, φ i = (r j + 1)Z i (r i + 1)Z j φ j , ∀(i, j) ∈ {1, . . . , M } 2 , (2.23)
where P is the polynomial defined, for α i = κ 1i Z i Z 1 , by:

P (u) = 2 M j=1 α j v j M k=1 k =j (u + v k ) - M k=1 (u + v k ) = 2 M j=1 α j M k=1 (u + v k ) -2u M j=1 α j M k=1 k =j (u + v k ) - M k=1 (u + v k ) = 2 M j=1 α j -1 M k=1 (u + v k ) -2u M j=1 α j M k=1 k =j (u + v k ) = 2 M n=0 M j=1 α j - 1 2 S M -n - M j=1 α j I⊂{1,...,M }\{j} #I=M -n k∈I v k u n .
Let ṽ be a positive root of P . Then (bṽ, φ) is solution to (2.16). By uniqueness, we deduce that bṽ = λ = bv i.e. that P admits a unique positive root v. 

M j=1 α j - 1 2 S 0 - M j=1 α j k∈∅ v k = 2 M j=1 α j - 1 2 - M j=1 α j = -1 < 0,
and the constant term is

2 M j=1 α j - 1 2 S M - M j=1 α j I∈∅ k∈I v k = 2 M j=1 α j -1 S M
whose positivity is ensured by

M j=1 α j = M j=1 κ 1j Z j Z 1 > M j=1 κ 1j Z j (r j + 1)Z 1 = 1 2
. Therefore, we have P (+∞) = -∞, P (0) > 0, so that P has at least one positive root v. 

The case with no heredity

P H (u) = M n=0 S M -n -2 M j=1 κ j I⊂{1,...,M }\{j} #I=M -n k∈I v k u n
with the conventions given by (2.22). In addition, the adjoint vector φ solution to (2.10) is defined up to renormalization by

φ i : x → v i v i + 1 , i ∈ {1, . . . , M }.
Proof. We can use Theorem 2.2. When κ satisfies (2.17), i.e. κ ij = κ j we have

Z = M j=1 κ j φ j = Z i , i ∈ {1, . . . , M },

and (2.23) brings for

C = v+v 1 v 1 φ 1 φ i = C v i v + v i , α i = κ i , i ∈ {1, . . . , M }.
Therefore P H is easily deduced from the expression (2.21) of P :

P H (u) = M n=0 S M -n -2 M j=1 κ j I⊂{1,...,M }\{j} #I=M -n k∈I v k u n .
A special case of the case with no heredity is the case of a uniform kernel that yields even more simplification. 

P U (u) = M n=0 (M -2n)S M -n u n .
Proof. We apply Corollary 2.2 with κ j = 1 M for all j ∈ {1, . . . , M } and find

P H (u) = M n=0 S M -n - 2 M M j=1 I⊂{1,...,M }\{j} #I=M -n k∈I v k u n = M n=0 S M -n - 2n M S M -n u n ,
which proves, after multiplying by M , the expression of P U given in Corollary 2.3. Indeed, for all n ∈ {1, . . . , M },

M j=1 I⊂{1,...,M }\{j} #I=M -n k∈I v k
is a symmetric sum where each term is a product of M -n distinct v k ∈ V M , i.e. a term appearing in the sum S M -n . How many times does the term v 1 v 2 . . . v M -n appear? It appears once for j = M , once for j = M -1, . . . , and once for j = M -n + 1; which is n times in total. This holds true for all the other possible products of M -n distinct v k , so that at the end we count n times the sum S M -n .

Remark 2.4. In this simple case, we are able to prove that P U admits a unique positive root (we were only capable of proving the existence of a positive root in the general case, uniqueness was guaranteed by Proposition 1.5). We have

P (k) U (u) = M n=k n! (n -k)! (M -2n)S M -n u n-k , k ∈ {0, . . . , M }.
We deduce that for all k ∈ {0, . . . , M }

P (k) U (0) = k! (M -2k)S M -k        > 0, if k < M 2 , = 0, if k = M 2 , < 0, if k > M 2 , P (M ) U ≡ -M ! M < 0 =⇒ P (k) U (+∞) < 0 and besides that P (k) U (u) < 0, ∀u ∈ (0, +∞), ∀k ≥ M 2
.

Thus, for k = M 2 -1, we have

P (k) U (0) > 0, P (k) U (+∞) < 0, P (k) U (u) = P (k+1) U (u) < 0, u > 0.
Therefore P

( M 2 -1)
U is strictly decreasing on (0, +∞) and admits a unique positive zero z M 2 -1 . Similarly, for k = M 2 -2, we have

P (k) U (0) > 0, P (k) U (+∞) < 0, P (k) U (u)    > 0, u ∈ (0, z k+1 ), < 0, u ∈ (z k+1 , +∞),
and thus P

( M 2 -2)
U is strictly decreasing and admits a unique positive zero z M 2 -2 ∈ (z M 2 -1 , +∞). By direct induction, P U admits a unique zero in (0, +∞).

When M = 2, the expression of P U is particularly suited to verify that the effective fitness is the geometric mean of the individual features (see Corollary 2.1). However, this property cannot be generalized to M > 2. Indeed,

setting v G = (v 1 v 2 . . . v M ) 1 M = S 1/M M , we have P U (v G ) = M S M + M -1 n=1 (M -2n)S M -n v n G -M v M G = M -1 n=1 (M -2n)S M -n v n G .
which is non zero in general (take for instance

M = 3, v 1 = 1, v 2 = 2, v 3 = 3).
When M = 3, we can prove that P U (v G ) has the sign of v 2 -v G ; in particular it is zero when v 2 = v G . This also indicates that the effective fitness v can be as well inferior or superior to v G depending on the individual features (v 1 , v 2 , v 3 ).

The continuous setting

We use Theorem 2.2 to prove existence of eigenelements in the case where there is a continuum of features v ∈ V. This was proven in [77, Theorem 1] for the conservative version of the equation, with the direct problem. Here we consider the adjoint problem (in its non-conservative form), defined on V × (0, +∞) by

-τ (v, x) ∂ ∂x φ(v, x) + λ + γ(v, x) φ(v, x) = 2γ(v, x) V κ(v, v )φ v , x 2 dv . (2.24)
The next theorem states that in the case of coefficients constant with respect to x there exists a positive solution φ to (2.24) and it is constant with respect to x.

Theorem 2.3 (Existence of dual eigenelements). Assume that the set of individual features is continuous and compact

V := [v min , v max ],
and that the coefficients of (2.24) satisfy the following: the growth and fragmentation rates are of the form

τ : (v, x) → v, γ : (v, x) → bv, b > 0,
and the kernel κ satisfies:

κ ∈ Lip V; L 1 (V) ∩ L ∞ (V 2 ), κ > 0, V κ(v, v ) dv = 1, v ∈ V.
Then, there exists λ ∈ (bv min , bv max ) and φ ∈ Lip(V × R + ) non-negative non-zero solution to (2.24) that is constant with respect to x.

Proof. Step 1 (discretization). Fix M + 1 traits v M 1 < . . . < v M M +1 regularly spaced, such that v M 1 = v min and v M M +1 = v max .
We denote for all i ∈ {1, . . . , M }:

V M i := v M i , v M i+1 , h M := V M i = v M i+1 -v M i = |V| M .
Consider (λ M , φ M ) a solution to equation (2.10) with the constant coefficients

τ M i := v i , γ M i := bv i , κ M ij := V M j κ(v M i , v) dv , (i, j) ∈ {1, . . . , M } 2 .
The matrix κ M satisfies (2.1): it is irreducible since all its components are positive and stochastic since

κ M ij ≥ 0, M j=1 κ M ij = V κ(v M i , v) dv = 1.
The existence of (λ M , φ M ) ∈ (0, +∞)×(0, +∞) M is thus guaranteed by Theorem 2.2 and we consider the (unique) solution that satisfies the normalization condition

max 1≤i≤M φ M i = 1.
Define the following piecewise constant functions on the continuous set

V τM : v → M i=1 v M i 1 V M i (v), γM ≡ bτ M , φM : v → M i=1 φ M i 1 V M i (v),
and on

V 2 : κM : (v, v ) → 1 h M M i,j=1 κ M ij 1 V M i ×V M j (v, v ).
For every M ≥ 1, it is clear that (λ M , φM ) is a positive solution to the contin-uous problem (2.24) with the coefficients τ M , γM and κM and the condition of normalization φM ∞ = 1.

Step 2 (estimates). Denote by v M the effective fitness associated to λ M :

v M := λ M b .
From Theorem 1.2 (monotonicity of the Malthus parameter in the presence of variability), we know that v M ∈ V. Thus the family (λ M ) M ∈N converges up to extraction to some λ ∈ bV.

As for the family ( φM ) M ∈N , we have the following estimate φM ∞ = 1, which implies in particular (using κ stochastic and φ > 0) that

Z M i := M j=1 κ M ij φ M j ∈ (0, 1].
Besides, using the notation

r M i := v M v M i
we find

r M i + 1 r M i+1 + 1 = v M + v M i v M i • v M i + h M v M + v M i + h M = 1 + v M h M v M i (v M + v M i + h M ) = 1 + R M i with R M i := v M h M v M i (v M + v M i + h M ) ≤ v max 2v 2 min h M := C 1 h M , i ∈ {1, . . . , M }.
Thus, owing to the calculations done to prove Theorem 2.2 ((2.23) and above) we get

φ M i+1 -φ M i = (2.23) φ M i Z M i r M i +1 r M i+1 +1 Z M i+1 -Z M i = 2 r M i + 1 (1 + R M i )Z M i+1 -Z M i ≤ 2 r M M + 1 C 1 h M + M j=1 κ M i+1j -κ M ij ≤ C 2 C 1 |V| M + C κ v M i+1 -v M i , C 2 := 2v max v min + v max (2.25)
with C κ the Lipschitz constant associated to κ. We deduce

φM BV := M i=1 φ M i+1 -φ M i ≤ C 2 (C 1 + C κ ) |V|.
Step 3 (passing to the limit). Since BV (V) is compactly embedded in L 1 (V), there is (up to extraction) φ ∈ L 1 (V), non-negative and non-zero, such that

φM -φ L 1 (V) -→ M →∞ 0.
Besides the definition of the coefficients allows us to pass easily to the limit

τ M -τ ∞ = max 1≤i≤M sup v∈V M i v M i -v = |V| M -→ M →∞ 0,
similarly for γM and we use κ ∈ Lip(V; L 1 (V)) to pass to the limit κM in Lip(V; L 1 (V)). At the end we can easily pass to the limit M → ∞ every term in equation ( 2.24) and get that (λ, φ) satisfies the equation (2.24), with λ > 0.

We only detail the convergence of source term that has a more complicated expression. Denoting by S M the difference between the source term of the equation (2.24) when the functions involved are (γ M , κM , φM ) and when they are (γ, κ, φ) we have

S M 2b = sup v∈V M i=1 v M i 1 V M i (v) M j=1 κ M ij φ M j -v V κ(v, v )φ(v ) dv ≤ max 1≤i≤M sup v∈V M i v M i M j=1 V M j κ(v M i , v ) dv φ M j -v V κ(v, v )φ(v ) dv ≤ max 1≤i≤M sup v∈V M i M j=1 V M j v M i κ(v M i , v )φ M j -vκ(v, v )φ(v ) dv ≤ max 1≤i≤M sup v∈V M i M j=1 v M i φ M j V M j κ(v M i , v ) -κ(v, v ) dv + v M i -v φ M j V M j κ(v, v ) dv + v V M j κ(v, v ) φ M j -φ(v ) dv ≤ max 1≤i≤M sup v∈V M i v M i C κ v M i -v + v M i -v + v κ ∞ φM -φ L1(V) ≤ (v max C κ + 1) |V| M + v max κ ∞ φM -φ L1(V) -→ M →∞ 0.
As for the regularity of φ, we can use the equation (2.24) satisfied by φ to derive an equality similar to (2.23). Then, imitating (2.25) we get:

|φ(v 2 ) -φ(v 1 )| ≤ C|v 2 -v 1 |, ∀(v 1 , v 2 ) ∈ V 2 .

Numerical illustrations and results

Characterizing the effective fitness v as the unique dominant eigenvalue of a simple matrix (the matrix G defined by (2.15) divided by b) enables us to compute it very efficiently. Instead of running a numerical scheme to approximate the solution of the PDE (2.6) at large time and infer λ = bv (as we did in Section 1.3.2), we can use a classical solver to retrieve the Perron eigenpair (λ, φ) of G. To do so, we use the function linalg.eig of the Python NumPy module. The code is available at https://github.com/anais-rat.

Case of two features

Specific kernels. We first illustrate Corollary 2.1 on Figure 2.1. Other types of kernel. Testing other types of kernel (by distinguishing whether or not κ 11 and κ 22 are greater than 1 2 ) indicates that none of the classical mean (arithmetic, geometric and harmonic) is, for every kernel κ and every set of features V, a bound of the effective fitness, see Figure 2.2.

In fact the bounds v 1 ≤ v ≤ v M given by Theorem 1.2 in Chapter 1 are likely to be optimal. Formally indeed, the stochastic irreducible matrices defined by

κ (i 0 ) ii 0 = p, κ (i 0 ) ij = 1 -p M -1
, j = i 0 , p ∈ (0, 1), for i 0 = 1 or M , tend as p → 1 to the matrices corresponding to the systems where every newborn cell has feature v 1 or v M , respectively, and which therefore grow as the homogeneous populations of feature (and effective fitness) v = v 1 or v M . ) and the other one varying in [START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Amir | Cell Size Regulation in Bacteria[END_REF]. For some kernels κ, the effective fitness can be lower or bigger than any classical mean of the features.

Large number of features

We perform similar computations in the case M > 2. In particular we observe that:

• When κ is uniform, the effective fitness no longer coincides with the geometric To clarify notations we introduce the interval

mean v G = (v 1 . . . v M ) 1 M when M > 2 (Figure 2.

3). • But it seems that the effective fitness still coincides with v

A = 1 M M i=1 v i for M > 2 when κ = κ(α)
V = [v min , v max ], v = v min + v max 2
that we contract, symmetrically around v, into:

V σ = σV + (1 -σ)v, σ ∈ (0, 1].
We denote by V M = {v 1 , . . . , v M } and V M,σ the discretization of V and V σ , respectively, consisting in M points regularly spaced such that v 1 = v min and v M = v max .

In

particular v = v A,M = 1 M v∈V M v.
Varying number of features at V fixed. First, the interval V is fixed and we test the influence of M , the number of points taken to discretize V, on the value of the effective fitness. For various M , we compute an approximation of the effective fitness v M associated with (2.6) for the set of features V M , a kernel κ M and constant coefficients, see Figure 2.3. Even when the kernels (κ M ) M ≥2 are independent (identically distributed) random matrices, the effective fitness seems to converge quickly as M tends to infinity (Figure 2.3-bottom and 2.5-top). Varying σ at number of feature and arithmetic mean fixed. Then we test the influence of the variance between features by fixing M and considering the sets V σ,M of M features for varying values of σ.

(κ M ) ii = M +1 2M , (κ M ) ij = 1 2M , i = j
The objective is to test in the case τ constant the observation made by Olivier [START_REF] Olivier | How does variability in cell aging and growth rates influence the Malthus parameter?[END_REF] for τ linear, that is: in the absence of heredity and for v defined as the mean feature at birth1 , reducing the variability among individual features, by letting σ tend towards zero, enhances the overall growth of the population (i.e. increases the Malthus parameter, or equivalently the effective fitness). The same result is stated
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Obviously, as soon as v is allowed to vary independently with σ these monotonicity results are not necessarily true anymore (Figure 2.6).
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V σ = σV + (1 -σ)v, v = 4 (from v i ∼ U Vσ i.i.d.)

Estimation of the effective fitness in the case of linear growth rates

A guess for the adjoint eigenvector? Numerical method to approximate the adjoint eigenvector

In the case where the growth rate τ is constant, we made a crucial observation: the eigenvector φ is constant with respect to x. This provides us with a characterization of the Malthus parameter. In the case of τ linear, the shape of the eigenvector is φ(x) = x in the case M = 1 and is unknown (and not polynomial) in the case M > 1. We provide a method to obtain a numerical approximation of φ for M > 1.

Despite the fact that φ seems to have a simpler formulation than N , it is more difficult to estimate numerically. One could think to the classical power iteration method, which consists in approaching φ by approximating the solution ψ to the dynamical problem

-∂ ∂t ψ i (t, x) -τ i (x) ∂ ∂x ψ i (t, x) + γ i (x)ψ i (t, x) = 2γ i (x) M i=1 κ ij ψ j t, x 2
.

Still, even though ψ t e λt converges in time towards φ, up to our knowledge no scheme is available to approximate ψ t . Building a robust and convergent scheme to approximate the dynamical adjoint problem reveals to be a complicated task.

We propose an original numerical procedure based on the convergence result (2.7).

Take p 0 = (i 0 , x 0 ) ∈ {1, . . . , M } × R + and consider the Dirac initial condition

n in,p 0 = δ (v i 0 ,x 0 ) such that (2.8) is ρ(p 0 ) := M i=1 ∞ 0 n in,p 0 i (x)φ i (x) dx = φ i 0 (x 0 ).
Then (2.7) guarantees formally that

n p 0 i (t, x)e -λt -→ t→∞ φ i 0 (x 0 )N i (x), (i, x) ∈ {1, . . . , M } × (0, +∞)
which brings, thanks to the normalization condition on N , that

M i=1 ∞ 0 n p 0 i (t, x)e -λt dx -→ t→∞ φ i 0 (x 0 ), p 0 = (i 0 , x 0 ) ∈ {1, . . . , M } × (0, +∞).
Numerical method. This suggests the following procedure:

1. Fix a grid G φ = (x 1 , . . . , x R ) of R points of (0, +∞) at which approximate the φ i , for every i ∈ I := {1, . . . , M }.

2. Fix a larger and possibly finer grid G n = (x 1 , . . . , xRn ), that contains G φ , of R n points of (0, +∞) at which approximate the n p 0 i (t, •), for every i ∈ I and every p 0 ∈ I × G φ . To do so we start from {n in,p 0 i,j } (i,j)∈I×{1,...,Rn} with n in,p 0 i,j equal to 1 if (i, j) = p 0 and 0 otherwise. 3. Fix a final time T > 0 up to which approximate t → {n p 0 i (t, xj )} (i,j)∈I×{1,...,Rn} , for all p 0 ∈ I × G φ . Retrieve from the approximations computed at the intermediate time steps an approximation of λ (e.g. as proposed in Section 1.3.2).

Then take

(i,j)∈I×{1,...,Rn} e -λT n p 0 i,j (T ) as an approximation of φ i 0 (x 0 ), with n p 0 i,j (T ) the approximation of n p 0 i (t, xj ) and p 0 = (i 0 , x 0 ).

Justification of the method. Because the convergence result (2.7) is not proven for singular initial condition, we cannot prove rigorously the convergence of the numerical scheme; we refer to [START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF][START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF][START_REF] Dębiec | Relative Entropy Method for Measure Solutions of the Growth-Fragmentation Equation[END_REF][START_REF] Fournier | A Nonexpanding Transport Distance for Some Structured Equations[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] for convergence results for measure solutions. However, the approximation error of the whole procedure should be controllable, we distinguish:

• The numerical errors coming from the scheme used for the direct problem -Diffusion for v i < v M , reduced by taking a refined grid G n . An improvement, discussed in Appendix A, would be to develop a non-diffusive scheme by defining M appropriate size grid, each suited to a type i of cells.

-The truncation error, leading to a loss of mass at the boundaries. Since N vanishes exponentially fast towards 0 and infinity (Theorem 1.3) the error should be small providing that x1 x 1 and xRn x R (i.e. the initial condition is not too close from the boundaries).

• The error coming from the approximation of integrals by sums, should be small for a refined grid G n . • The approximation of N by n(T, •). As proven by Doumic et al. [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] the conservative case and a continuous set of linear growth rates, or in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Cañizo | Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem[END_REF][START_REF] Gabriel | Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation[END_REF] for equal mitosis in the absence of variability, we expect the rate of convergence to be exponential (numerically we verify easily that there exists a spectral gap in the case τ constant), such that T can be relatively small.

Note also that φ being regular enough G φ = (x 1 , . . . , x R ) can be coarse, especially because the approximation error on φ does not depend on R. This is highly recommended since the procedure is costly in time and memory.

Remark 2.5. The drawback of this method is that the behavior around x = 0 is hard to estimate (see Figure 2.8). It requires to numerically solve direct problems that start from the Dirac masses δ (v i ,x 1 ) , where v i ∈ V. To avoid loss of mass, the G n grid must therefore be very refined around zero which is costly, especially in the linear coefficient case where the grid is geometrical (see Appendix A).

However, because the {φ i (x k )} (i,k)∈I×{1,...,R} are approximated independently, we can make the calculation more efficient by defining finer G n grids when x k is close to the boundaries.

Validation of the method in the constant coefficient case. We test this numerical procedure on the case of constant coefficient for which we have good estimations of (λ, φ) from Section 2.2. Very good results were obtained, see Figure 2 φ(v,
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) is positive, constant with respect to x and the numerical values of the φ i corresponds to the values obtained with the approximation method of Section 2.2.4 (see Table 2.

2).

A few estimations in the linear case. The numerical approximations, plotted on Figure 2.8, suggest that φ i (x) ≈ c i x for x ≥ x 0 > 0. •) 
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Numerical estimation of the effective fitness

We besides perform a sensitivity analysis of the effective fitness with respect to the variability among individual features and to the correlation between mother/daughter cells' growth rates. The parameters and notations are those chosen previously, for Figure 2.4.

Interestingly, compared to the constant growth rates case, in the case of linear growth rates, variability appears detrimental unconditionally to the correlation between mother/daughter cells' growth rates encoded in the correlation parameter α. The effective fitness in this specific case even appears as independent of α (Figure 2.9).
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Lineage and population level models for cell division dynamics leading to senescence

Chapter

3
This chapter is the result of a joint work, with Marie Doumic and the biologists Teresa Teixeira and Zhou Xu, that continues the PhD work of Thibault Bourgeron, Sarah Eugène and, more recently, Hugo Martin. It should soon give rise to an article to be submitted to a biology journal. Most cells have a limited replication capacity that originates in the shortening of the extremities of their chromosomes, called telomeres, during DNA replication. With each round of division, telomeres shorten until reaching a critical length that triggers senescence, an arrest in the cycle terminated by death. We propose a population-level model of the replicative senescence in yeast, calibrated on the basis of individual cell lineage data. The replicative senescence being a highly heterogeneous and asynchronous process at the single-cell level, such approach is crucial to decipher the experimentally hidden complexity of the dynamics at play within senescent populations.

Introduction

Since the formulation in the 1850s of the simple notion that cells, the most basic unit of life, multiply by growth and division, biological studies have unraveled a fascinating and increasingly complex network of cellular mechanisms participating to the cell cycle.

A large amount of studies deal specifically with the control mechanisms of the cell cycle, crucial to the proper renewal of tissues in organisms for they participate, at a larger scale, to the control of cell proliferation and homeostasis. Growth and division need for example to be tightly coordinated to prevent cells from getting progressively larger or smaller in the course of successive divisions; DNA content accurately replicated and partitioned for cellular functions to be properly transmitted over generations; and so on, making sure all these events are triggered in the right order.

Besides regulating the onset of cell cycle events and coordinating growth and division, control mechanisms also ensure that most of the errors appearing in their execution are not conserved. Indeed, surveillance systems called checkpoints have been shown to block the progression of the cell cycle in response to perturbations (DNA damage, unfavorable external conditions. . . ), allowing time for repair or, in case of failure, possibly cell death.

However, damaged cells might eventually re-enter the cell cycle and adapt to the perturbation [START_REF] Coutelier | Adaptation in replicative senescence: a risky business[END_REF]. As organisms are getting older, repeated failures of theses checkpoints can accumulate and lead to increased genetic damage, an important factor in the formation of cancer [START_REF] Hanahan | The Hallmarks of Cancer[END_REF]. Identifying these control mechanisms and understanding how they work and how they can be subverted has thus been an ongoing major challenge. The present study focuses on the particular mechanism of replicative senescence.

A few notions on replicative senescence

Brief history

A limited replication capacity. About sixty years ago, Hayflick and collaborators discovered that the limited replication capacity of human normal somatic cells grown in vitro (i.e. the fact that they divide a finite number of times) so far attributed to culture conditions was actually intrinsic to the cells [START_REF] Hayflick | The serial cultivation of human diploid cell strains[END_REF][START_REF] Hayflick | The limited in vitro lifetime of human diploid cell strains[END_REF].

At stake was the notion of cellular senescence, for the first time formally described. At the population level, senescence corresponds to a gradual decrease in cell proliferation (or "growth") together with an increase in cell death. Hayflick besides pointed out an accumulation of non-dividing cells over time: cells can remain viable for weeks after losing their ability to divide. This ultimate arrest in the cycle, later associated with important chromosomal instability and both morphological and physiological changes, characterizes senescence at the individual level.

Two ideas immediately emerged from this discovery1 . First, that the proliferation limit of normal cells, in opposition to in vitro infinitely proliferative cancer cells, is acting like a barrier mechanism to the emergence of cancer. Second that it is linked to aging, observed in vivo as the deterioration and loss of regenerative capacity of tissues and organs.

Progressive understanding. Yet, it took about a decade for a proper biological explanation. In 1973 [START_REF] Olovnikov | A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon[END_REF], Olovnikov suggested that the origin of cells intrinsic mortality lies in what is now called the end-replication problem, detailed in Section 3.2.2.1. This phenomenon, first intuited by Olovnikov [START_REF] Olovnikov | Principle of marginotomy in the synthesis of polynucleotides at a template[END_REF] (later Watson [START_REF] Watson | Origin of Concatemeric T7DNA[END_REF],

independently), completed the initial theory of DNA replication [START_REF] Watson | The Structure of Dna[END_REF] predicting that the DNA replication machinery was unable to proceed all the way up to the end of linear chromosomes, known as telomeres [START_REF] Muller | The remaking of chromosomes[END_REF]. Protecting important coding DNA sequences from progressive attrition over divisions, telomeres would thus act as a buffer until they become too short and trigger a permanent arrest.

The end of the seventies brought the first biological confirmation of Olovnikov's theory. In 1978, Elizabeth Blackburn discovered that the telomeres -back then little understood although suspected, with the early work of McClintock [START_REF] Mcclintock | The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion[END_REF][START_REF] Mcclintock | The Stability of Broken Ends of Chromosomes in Zea Mays[END_REF], to prevent chromosomes from attaching to each other-have a very unusual and a priori non-coding structure, consisting in numerous repeats of simple DNA sequences [START_REF] Blackburn | A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena[END_REF].

Later on, Blackburn and Szostak [START_REF] Szostak | Cloning yeast telomeres on linear plasmid vectors[END_REF], demonstrated the fundamental -in that it is evolutionarily conserved among different organisms-and protective nature of telomeres, showing that telomeric DNA from one organism (Tetrahymena) can protect a linear plasmid2 from degradation in an entirely different organism (yeast).

By the mid 1980s, as data accumulated it became evident that the specific structure and characteristics of telomeres were shared by most eukaryotes. However, the length of telomeres was reported to vary greatly [START_REF] Bernards | Growth of chromosome ends in multiplying trypanosomes[END_REF][START_REF] Cooke | Variability at the Telomeres of the Human X/Y Pseudoautosomal Region[END_REF][START_REF] Shampay | Generation of telomere-length heterogeneity in Saccharomyces cerevisiae[END_REF][START_REF] De Lange | Structure and variability of human chromosome ends[END_REF]; not only between organisms3 but also often between cells of the same organism [START_REF] Cooke | Variability at the Telomeres of the Human X/Y Pseudoautosomal Region[END_REF], suggesting that telomeres are sometimes templated from DNA sequences other than a parental chromosome. For example telomeres from human germ cells appears longer than the ones from somatic cells [START_REF] Cooke | Variability at the Telomeres of the Human X/Y Pseudoautosomal Region[END_REF]. Likewise, some telomeric sequences were found to be maintained or even lengthened [START_REF] Bernards | Growth of chromosome ends in multiplying trypanosomes[END_REF][START_REF] Shampay | DNA sequences of telomeres maintained in yeast[END_REF][START_REF] Szostak | Cloning yeast telomeres on linear plasmid vectors[END_REF][START_REF] Pluta | Elaboration of telomeres in yeast: recognition and modification of termini from Oxytricha macronuclear DNA[END_REF].

Thus looking for a specific telomere maintenance mechanism Blackburn and Greider [START_REF] Greider | Identification of a specific telomere terminal transferase activity in tetrahymena extracts[END_REF][START_REF] Greider | A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis[END_REF] eventually identified in the immortal unicellular organism Tetrahymena the enzyme telomerase, able to elongate telomeres.

Around the same period, further evidence that telomeres are implicated in senescence was provided by looking at the evolution of telomere lengths, measurable through Southern blot analysis. In 1989, Lundblad and Szostak isolated a yeast mutant defective in telomere elongation, expressing therefore a senescent phenotype leading to death [START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF]. Similarly, the mean telomere length in cultured normal cells was reported to decrease during in vitro lifespan [START_REF] Harley | Telomeres shorten during ageing of human fibroblasts[END_REF], and in vivo, when comparing cells from human donors of very different age [START_REF] Allsopp | Telomere length predicts replicative capacity of human fibroblasts[END_REF].

On the other hand, biologists began to detect robust telomerase activity within the cells identified to compensate for telomere systematic shortening, confirming telomerase as the key mechanism for telomere elongation among most eukaryotes. Such activity was found notably in germ cells [START_REF] Kim | Specific Association of Human Telomerase Activity with Immortal Cells and Cancer[END_REF], cancer cells [START_REF] Morin | The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats[END_REF][START_REF] Kim | Specific Association of Human Telomerase Activity with Immortal Cells and Cancer[END_REF] (which reinforced the link between telomere regulation and the emergence of cancer), or more recently in stem cells, at lower levels (reviewed in [START_REF] Günes | The Role of Telomeres in Stem Cells and Cancer[END_REF]).

respectively, is defined by

n := ln 2 N f N i = ln 2 N f -ln 2 N i ⇐⇒ N f = N i 2 n .
For a totally homogeneous population in terms of cycle duration times, n is exactly the individual number of divisions between initial and final time, or the generation.

In a heterogeneous population however, n is not even the average generation because of competition. Indeed there are plenty of ways for a population to double, i.e. to have n = 1: if homogeneous each individual divides once and only once, otherwise only one third could also divide twice.

Therefore, biologists rapidly suspected their culture experiments to miss a lot of individual heterogeneity and asynchronicity [START_REF] Smith | Variation in The Life-span of Clones Derived From Human Diploid Cell Strains[END_REF][START_REF] Absher | Genealogies of clones of diploid fibroblasts: Cinemicrophotographic observations of cell division patterns in relation to population age[END_REF]: the populations studied could consist in cells of different ages, reaching senescent asynchronously, at various times.

The late 1960s saw the emergence of experiments based on clonal cultures (i.e. cultures derived from a single individual) to get more insight on the extent of individual variability [START_REF] Smith | Variation in The Life-span of Clones Derived From Human Diploid Cell Strains[END_REF][START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Enomoto | MEC3, MEC1, and DDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae[END_REF][START_REF] Elowitz | Stochastic Gene Expression in a Single Cell[END_REF]. Comparing clonal cultures grown from independent clones (e.g. isolated from a non-clonal population, like primary cultures), revealed inter-clonal variability. Later on, comparing clonal cultures grown from individual clones (i.e. cells sharing a same, relatively close, ancestor) isolated from the same clonal culture [START_REF] Smith | Variation in The Life-span of Clones Derived From Human Diploid Cell Strains[END_REF][START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Enomoto | MEC3, MEC1, and DDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae[END_REF][START_REF] Elowitz | Stochastic Gene Expression in a Single Cell[END_REF] also revealed a high level of variability, termed as intraclonal for it appears within clonal cultures. The individual clones used to inoculate clonal cultures could even be sister cells (i.e. arising from a single mitosis), in the wake of Smith and Whitney's 1980-"two-sister experiment" [START_REF] Smith | Intraclonal Variation in Proliferative Potential of Human Diploid Fibroblasts: Stochastic Mechanism for Cellular Aging[END_REF][START_REF] Jones | Intramitotic variation in proliferative potential: Stochastic events in cellular aging[END_REF] which proved that sister cells may exhibit variability in proliferative potential.

More recently, the development of microfluidic-based approaches brought new insights allowing for the tracking of individual cell lineages over consecutive cell divisions. By combining them with live-cell imaging, biologists can now access the cell cycle duration times along individual lineages [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF]. Microfluidic observations for example revealed that:

• Strikingly, cell cycle times do not increase gradually over generations, as suggested by population experiments, but increase abruptly, with the last divisions before death. • A significant proportion of lineages undergo consecutive abnormally long cell cycles and return to normal cycles before ultimately entering the last long cycles before death. These early transient arrests, referred to as non-terminal arrests, are thought to correspond to damaged cells, arrested in their cycle after activation of the DNA damage checkpoint, that could either recover from the damage [START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Enomoto | MEC3, MEC1, and DDC2Are Essential Components of a Telomere Checkpoint Pathway Required for Cell Cycle Arrest during Senescence in Saccharomyces cerevisiae[END_REF][START_REF] Churikov | Rad59-Facilitated Acquisition of Y' Elements by Short Telomeres Delays the Onset of Senescence[END_REF][START_REF] Xie | Early Telomerase Inactivation Accelerates Aging Independently of Telomere Length[END_REF] or adapt to it, forcing mitosis until possible successful repair [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF]. It is worth noticing that the second pathway, adaptation, increases the genomic instability observed in telomerase-negative cells and likely contributes to the emergence of cancer.

Investigating the sources of heterogeneity. Despite the large number of studies dealing with the heterogeneity associated to replicative senescence, only a few have been investigating the sources of such heterogeneity. A great tool has been mathematical modeling, allowing to test through simulation the influence of specific quantities on the variability. Among the different factors identified to influence individual variations we find:

• The initial distribution of telomere lengths (especially through the shortest telomere [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF]) and the stochasticity in the way telomeres shorten [START_REF] Soudet | Elucidation of the DNA End-Replication Problem in Saccharomyces cerevisiae[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] (see Section 3.2.2.2). • The stochasticity in the appearance of non-canonical "senescent phenotypes" (non-terminal arrest [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF][START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF], post-senescence survivors).

We refer to Xu and Teixeira's review [START_REF] Xu | The many types of heterogeneity in replicative senescence[END_REF] on the heterogeneity in replicative senescence for more details on the different types of heterogeneity and their identified sources.

Presentation of the present study

Objectives

We propose here a mathematical model of replicative senescence in yeast, at both the lineage and the population level, from telomerase inactivation to death.

We focus on the telomere-induced senescence, as observed in the absence of telomerase, and prior to any other alternative mechanism for telomere elongation (in particular we do not account for post-senescence survivors). Still, the modeling choices we made have been driven by the concern of accounting for as much sources of heterogeneity as possible (in the telomere shortening, the nature of arrests, the cell cycles. . . ).

To do so, we first determine best-fit mechanisms at the cellular level based on the detailed data obtained in microfluidic experiments. Then we use them to decipher population dynamics/characteristics, which are experimentally hidden.

The goal is to gain a better understanding of the cell division dynamics underlying senescence on the one hand, and of the link between lineage and population viewpoints, biased by competition, on the other hand.

Experiments and datasets: two complementary views

We use the published dataset of two different experiments that use complementary approaches: following either individual cell lineages, along successive generations, or a whole population of cells through time, over successive dilutions (or passages).

Both experiments work with the budding yeast Saccharomyces cerevisiae, a unicellular eukaryote which constitutively expresses telomerase. The expression or activity of telomerase in S. cerevisiae can however be experimentally repressed, making it an excellent model to study the whole process of senescence, behaving quite similarly to human cells although much simpler.

In the population experiments, the initial time is therefore right after telomerase inactivation, when cells are placed in culture. Similarly along lineages, generations are counted as the number of divisions undergone by the cell (with generation 0) that has experienced telomerase inactivation.

Lineage or microfluidic experiments

We rely on Coutelier et al.'s experiment [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF] which consists in a microfluidics-based approach coupled to live-cell imaging, well described in [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] (see also their wonderful supplementary movies of the experiment).

This experimental setting allowed them to measure the duration of cell cycles, with a 10 min time resolution, along individual yeast lineages. The dataset that we use represents a total of 187 lineages, followed from telomerase inactivation to either death or the end of the experiment, for a total of 5752 cell cycle duration times displayed in Figure 3.1. Lineages are ordered horizontally by increasing length. Each pixel corresponds to a cell cycle, in a given lineage at a certain generation, whose color indicates its duration. The lineages terminated by " " were still alive at the end of measurements, the other ones were dead.

Population experiments. We use the data obtained from the population experiments of Xu et al. [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] (see Methods and Supplementary Information), described by Figure 3.2.

The experiment starts, right after telomerase inactivation, from a population of cells concentrated at 10 5 cells/mL. As represented on Figure 3.3b the population grows exponentially fast on the first days since the huge majority of cells, with long telomeres, divides without trouble. In particular, saturation is rapidly reached and cells stop dividing, which requires to dilute (or passage, see Section 3.1.1.1) the population.

Every day, the population is therefore diluted (which basically consists in getting rid of a part of the population) down to the initial concentration of 10 5 cells/mL until most cells have died and post-senescence survivors, which escape senescence by maintaining their telomeres (see Section 3.1.1), have emerged.

Two types of daily measurements constitute the dataset:

• The concentration of cells before dilution on Figure 3.3a • The most represented length of telomeres in the population before dilution on Figure 3.4a

Note that post-senescent survivors are responsible for the increase in cell concentration and telomere lengths from day 7 onward. Remark on the measurement of telomere lengths The images of Figure 3.4b were obtained from PCR (Polymerase Chain Reaction) amplification of telomeres [START_REF] Förstemann | Telomerase-dependent repeat divergence at the 3' ends of yeast telomeres[END_REF].

Other techniques are also used, the original and now standard one being Southern blot analysis of terminal restriction fragments (TRF).

Roughly speaking, these techniques consist in: first, "extracting" telomeric DNA sequences (the so-called TRF) from the rest of the DNA, and second segregating them by size to be able to visualize how they distribute in size [START_REF] Montpetit | Telomere Length: A Review of Methods for Measurement[END_REF][START_REF] Lai | Comparison of telomere length measurement methods[END_REF][START_REF] Oexle | Telomere Length Distribution and Southern Blot Analysis[END_REF][START_REF] Kimura | Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths[END_REF].

• TRF proceeds by digesting genomic DNA into small fragments using restriction enzymes that lack recognition sites in the telomeric and subtelomeric regions. As a result, telomeres (and sub-telomeres) remain intact while the rest of the DNA is "cut" into small fragments. • A gel electrophoresis is then performed: the digested DNA is placed into small cavities and pushed by an electrical field through a gel. The smaller the DNA molecule, the further it travels through the gel. • The telomeric DNA molecules of varying lengths, thus at varying (ordered) distances from the cavities, can then be revealed, e.g. by Southern Blot analysis. • Depending on the size, the location and the intensity of the smear revealed on Figure 3.4b, one can retrieve average telomere lengths by comparison to a DNA ladder of known fragment sizes.

Although quite robust and simple, the method has the disadvantage of missing the shortest telomeres (they are in too small quantity and their signal becomes too weak for the sensitivity of the method); plus it requires a large amount of DNA.

If many ways to extract to quantitative information from PCR or Southern blot images have been developed, they face certain biases6 that prevent them from being very precise. Importantly, if articles often refers to the "average" telomere length it is not clear whether what is being measured is the average or the mode of the distribution. In this work, we assume it is the mode.

Description of the models

An overview of our models is presented in Section 3.2.1. Each law is then discussed with more detail on the basis of the existing literature, briefly reviewed, and the present work.

To model the onset of arrests happening with cellular senescence as somehow triggered by a critical telomere length, it is clear that we first need a model for the shortening of telomeres and a distribution of telomere lengths to start with. This constitutes Section 3.2.2.

In Section 3.2.3, we then define a set of laws characterizing the individual dynamics of arrest and death and the associated kinetics (laws for cell cycle duration times).

Overview of the mathematical models

To account for as many sources of heterogeneity as possible, we model the nonterminal arrests identified with the microfluidic experiments, knowing that we could benefit from the rich dataset of Coutelier et al. [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF] and from the recent work of Martin et al. [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF].

In particular, if non-terminal arrests and terminal (or senescent) arrests are both abnormally long cycles, they correspond to distinct regimes and pathways leading to senescence [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF], and are therefore treated differently by our model. In addition, we evidence that the canonical way to enter senescence is likely modified when cells undergo a non-terminal arrest. Thus normal cycles could also be of two types: those preceding any arrest and those subsequent to repair or adaptation from a non-terminal arrest. This leads us to introduce four distinct cell phenotypes:

• Non-arrested, distinguishing between A-type and B-type cells depending on whether or not one of the ancestors has experienced a non-terminal arrest. • Non-terminally arrested.

• Terminally arrested, or senescent.

In addition to the "natural" death, irreversible outcome of the senescence, we account for accidental death which is naturally present regardless of telomerase expression.

Cell state. We use time-discrete Markov chains to model and simulate the divisions over generations or time. The state of a cell is determined by • The lengths of its 32 telomeres. • Its phenotype.

• And in the case we model the evolution over time (required to model a population), its cell cycle duration time. 123

Description of the models

Initialization. We start with one or several non-arrested cells of type A (see below), whose telomere lengths are drawn independently according to the distribution f init , introduced in Section 3.2.2.3.

Transition from one time of division to the next one. At division, the telomere lengths of the two daughter cells are defined by the shortening model of Section 3.2.2.2. Daughters are coupled through their pairs of telomeres sharing the same chromosome, chromosomes being beside mutually independent.

Then, each newborn cell is attributed a phenotype depending on the phenotype of its mother and, in most cases, on the length of its shortest telomere. Transition laws are summarized in Figure 3.5, and discussed in Section 3.2.3. : Scheme of the laws for single-cell dynamics: a newborn cell is attributed a phenotype that depends on the phenotype of its mother and, in most scenarios, on the length min of its shortest telomere. In population, these transitions probabilities are tested for each daughter cell, independently. The cell at generation 0 is non-senescent of type A (see below). Each newborn cell can die accidentally with probability p accident ; otherwise it can enter senescence if not-senescent (by undergoing a terminal arrest) with probability p sen that depends on its type and its min . If not, it can enter/exit a non-terminal arrest with probabilities p nta ( min -dependent) and p repair , respectively.

Eventually senescent cells can die naturally with probability p death .

Eventually, if we model the divisions through time, each newborn cell is attributed a cell cycle duration time that depends on it phenotype.

To simulate a lineage, only one daughter is selected at each division, with equiprobability, while the two daughter cells are kept in population (branching process).

A brief mathematical formalization and study is carried out in Appendix C.3 for lineage modeling. Still, the dimension of the state space of such Markov chains make their behavior difficult to study other than numerically.

Additional ingredients to model the population experiment.

To model the population experiment described in Section 3.1.2.2 it basically remains to add to the time model a saturation rule and daily dilution.

In the population experiment, initial concentration and concentration of dilution are the same. Thus, if our simulations are initiated with N init cells, dilution consists in selecting N init cells uniformly among the population reached before dilution.

As for saturation, we consider that when the number of individuals becomes too high, all individuals stop dividing/evolving. Two ways to reach saturation were used here:

• Fix a time t sat at which the population saturates.

• Fix a population size N sat at which the population saturates. Since we cannot reasonably reach the experimental concentration in silico we rather fix the ratio r sat such that:

N sat = r sat N init .
In the experimental dataset t sat is not accessible and r sat ≈ 10 3 .

Implementation.

The implementation of the model was coded in the Python programming language (Python Software Foundation, https://www.python.org/), with 3.8 Python version. The whole project is available at https://github.com/ anais-rat.

The author is grateful to the CLEPS infrastructure from the Inria of Paris for providing resources and support. Most of the simulations were run on the CLEPS cluster.

Telomere dynamics

Now that we have described the overall process, let us turn to the very heart of the study, namely the telomere dynamics and its mathematical modeling.

The biology

The end-replication problem. To achieve DNA replication, the hydrogen bonds that tightly hold the two strands of the DNA helix together are progressively broken by helicases. This results in a growing fork structure, the replication fork (at the location of the blue arrows in Figure 3.6 ), where the two "branches" are the separated template strands, ready to be replicated although oriented in opposite directions at the replication fork 7 .

DNA polymerases, in charge of the synthesis of the new strands, however work unidirectionally, from 5' to 3', so replication is achieved differently for each strand.

Besides synthesizing 5' to 3' only, polymerases need a short fragment of RNA, called primer, or an existing DNA fragment to initiate replication -in short the 3' end of an existing nucleotide chain paired with the template DNA strand.

For the strand oriented 5'-3' within the replication fork, referred to as the leading strand, polymerases can thus replicate without interruption all the way from a primer to the end of the strand, following the progression of the replication fork. For the lagging strand though, the direction of synthesis is opposite to the direction of the growing replication fork so polymerase must work backwards from the fork which necessitates synthesis of primers, periodically with the fork's progression. These RNA primers are then extended by polymerase into short separated fragments, the Okazaki fragments, ultimately assembled into a single continuous strand by DNA ligase after primers are replaced with DNA. However, the primer at the very end of the lagging strand, which has initiated the last Okazaki fragment, cannot be replaced by DNA which leaves a gap. This is the end-replication problem [START_REF] Olovnikov | A theory of marginotomy: The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon[END_REF][START_REF] Watson | Origin of Concatemeric T7DNA[END_REF][START_REF] Lingner | Telomerase and DNA End Replication: No Longer a Lagging Strand Problem?[END_REF][START_REF] Soudet | Elucidation of the DNA End-Replication Problem in Saccharomyces cerevisiae[END_REF][START_REF] Gilson | How telomeres are replicated[END_REF] at the origin of telomeres progressive shortening and responsible for the asymmetry of telomere replication.

Additional mechanisms of the end replication problem. Most studied species exhibit a (5' to 3') single-stranded DNA overhang at the end of their telomeres, meaning that the leading strand of their telomeres is longer by a overhang (expressed in base pair or bp), than the lagging one, see Figure

It can be explained partially with the end-replication problem: the replication of the lagging strand leaves a gap which recreates the overhang of the parental telomere (black cross on Figure 3.7). However, if no other mechanism was involved, the (continuous) copy of the leading strand would be complete which would generate a symmetric telomere (i.e. having strands of same length), in contradiction with observations.

To explain that the overhang is carried on by replication on both telomeric extremities of the two daughters, biologists have found that complex maturation steps, after the replication of the leading strand, were regenerating the overhang structure on the parental leading strand [START_REF] Larrivée | The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex[END_REF][START_REF] Soudet | Elucidation of the DNA End-Replication Problem in Saccharomyces cerevisiae[END_REF][START_REF] Chai | The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres[END_REF][START_REF] Faure | Cdc13 and Telomerase Bind through Different Mechanisms at the Lagging-and Leading-Strand Telomeres[END_REF][START_REF] Wellinger | In the End, What's the Problem?[END_REF] -this is the orange cross on A few studies [START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] have besides evidenced that the asymmetry of telomere replication generates a wide distribution of cells' shortest telomere lengths within a few divisions, which participates to the variability in the onset of senescence.

Additional sources of shortening. Note that other mechanisms and external factors (like environmental stress [START_REF] Epel | Accelerated telomere shortening in response to life stress[END_REF], oxidative stress [START_REF] Arkus | A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss[END_REF][START_REF] Zglinicki | Oxidative stress shortens telomeres[END_REF], radiation [START_REF] Lafargue | Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation[END_REF],

or chemotherapy [START_REF] Demaria | Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse[END_REF]), can participate to telomere erosion but in a less significant way in normal conditions [START_REF] Romano | Environmental Stresses Disrupt Telomere Length Homeostasis[END_REF]. We thus omit them from the model. 

Model for telomere shortening

Brief review of existing models. Since the beginning of the 1990s, a variety of mathematical models have been formulated and studied, both numerically and theoretically, to describe telomere shortening and investigate its implication in senescence.

Most of these models, in particular the first ones, assume that telomere loss is only the result of the incomplete replication of the lagging-strand caused by the end-replication problem [START_REF] Arino | Mathematical modeling of the loss of telomere sequences[END_REF][START_REF] Arkus | A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss[END_REF][START_REF] Levy | Telomere end-replication problem and cell aging[END_REF][START_REF] Olofsson | Stochastic models of telomere shortening[END_REF] (as illustrated on Figure 3.6).

However, as detailed in Section 3.2.2.1, the end-replication problem alone cannot account for the overhang structure of telomeres (their two strands have different lengths). To fill this gap, additional shortening mechanisms, able to create and maintain the overhang structure, have lately been added to the initial models [START_REF] Arkus | A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF][START_REF] Huffman | Telomere Shortening Is Proportional to the Size of the G-rich Telomeric 3'-Overhang *[END_REF].

Another great axis of model complexification has been to add phenomenons or mechanisms that could better account for, and partially explain, the natural variability. All of them somehow consist in adding stochasticity. Among others:

• For models based on classical shortening, initially deterministic [START_REF] Arino | Mathematical modeling of the loss of telomere sequences[END_REF][START_REF] Levy | Telomere end-replication problem and cell aging[END_REF], allow stochasticity in shortening rate [START_REF] Arkus | A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF][START_REF] Grasman | Stochastic modeling of length-dependent telomere shortening in Corvus monedula[END_REF][START_REF] Olofsson | A branching process model of telomere shortening[END_REF][START_REF] Olofsson | Modeling growth and telomere dynamics in Saccharomyces cerevisiae[END_REF][START_REF] Portugal | A computational model for telomeredependent cell-replicative aging[END_REF]. • Account for non-classical ways to shorten as accidental abrupt shortening [START_REF] Rubelj | Stochastic Mechanism of Cellular Aging-Abrupt Telomere Shortening as a Model for Stochastic Nature of Cellular Aging[END_REF][START_REF] Špoljarić | Mathematical model and computer simulations of telomere loss[END_REF].

Mathematical model. We use the model of Eugène, Bourgeron and Xu [START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF], summarized by Figure 3.7, that ensures conservation of the overhang structure over generations by means of a coupling between the two telomeric ends of the same chromosome. This coupling consists in imposing that:

• Only one end is shortened, the other end conserves the parental length.

• It is shortened by the overhang, say h, assumed constant. • The end shortened for one daughter is unchanged for the other daughter.

Mathematically, the model for one chromosome can be written as follows. Denote by n 1 and n 2 the random variable of the lengths of the two telomeric ends (say the right and left) of a given chromosome at generation n. One and only one telomere is shortened by the overhang h with equiprobability, such that at the next generation

n+1 1 = n 1 -hb, n+1 2 = n 2 -h(1 -b), n ∈ N, (3.1) 
where b ∼ B( 12 ) is a Bernoulli random variable coupling the two telomere lengths ( n+1 2 is shortened by h nucleotides if b is 0, while n+1 2 is left unchanged, and conversely if b is 1), as illustrated on Figure 3.7. Remark 3.1. Despite that telomeres consist of two strands of different length, the "length" of telomeres can be defined thanks to the fact that the two strands always differ by an overhang. Thus, telomere lengths make sense as the lengths of a specific telomere strand, say the leading one.

The randomness encoded in b does not come from the way we model the shortening of telomeres itself, here fully deterministic, but from the random (equidistributed) segregation of chromosomes into daughter cells, see (3.2). Now consider a haploid cell of k chromosomes at generation n. Denote by

L n = (L n 1 L n 2 )
T the random (2, k)-matrix of the lengths of its 2k telomeres. A valid approximation is to assume that telomeres of different chromosomes are independent [START_REF] Shampay | Generation of telomere-length heterogeneity in Saccharomyces cerevisiae[END_REF], so the telomere lengths of its daughters, say L n+1 and Ln+1 , satisfy

L n+1 1 = L n 1 -hB, L n+1 2 = L n 2 -h(1 -B),    Ln+1 1 = L n 1 -h(1 -B), Ln+1 2 = L n 2 -hB, n ∈ N, (3.2) 
where

B = (B 1 , . . . , B k ) ∼ B(k, 1 
2 ) is a random vector of k independent Bernoulli variables.

From now on we take k = 16, the number of chromosomes in the yeast S. cerevisiae.

Initial distribution of telomere lengths.

If telomeres are coupled in pairs through their shortening we assume that initially all of them are independent, identically distributed (i.i.d.) according to the law f init :

L 0 i,j ∼ f init , i ∈ {1, 2}, j ∈ {1, . . . , 16},
where L 0 i,j is the random variable corresponding to the length of the ith telomere of the jth chromosome at generation 0.

Given that generation 0 corresponds in our dataset to the inactivation of the telomerase, f init should be the distribution of telomere lengths in a telomerasepositive population (of the same yeast strain as the dataset) at equilibrium. We rely on the distribution of telomere lengths f 0 of Bourgeron et al. [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] (Figure 3.8a) derived by adapting the numerical approach of [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF] to the yeast strain that interests us. Their distribution approaches the stationary distribution of a certain Markov chain (fitted on experimental data) that describes telomere length dynamics in the presence of telomerase. It is obtained as the limit of a uniform distribution of telomere lengths when the number of divisions goes to infinity.

Given that the left-tail of the distribution has great influence on the dynamics (Section 3.4) but is also poorly characterized experimentally (Section 3.1.2.2), we allow small modifications of f 0 , namely:

• Translations by T . • Dilatations at both sides of the mode such that without translation ( T = 0)

       inf supp(f init ) = inf + 0 sup supp(f init ) = sup + 1 mod(f init ) = mode := mod(f 0 )
to preserve the mode mode = (260 ± 16) bp [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] of the experimental distribution and bring

[ inf , mode ] on [ inf + 0 , mode ] and [ mode , sup ] on [ mode , sup + 1 ].
Finally, the transformation of f 0 can be written as

f init •; T , 0 , 1 = C ×      f 0 α 0 -inf -0 + inf -T ∈ [ inf + 0 , mode ] , f 0 α 1 ( -mode ) + mode -T ∈ [ mode , sup + 1 ] , (3.3) 
with C = C( 0 , 1 ) a normalization constant, and

α 0 := mode -inf mode -inf -0 , α 1 := sup -mode sup + 1 -mode (3.4)
Depending on the location of arrests, we classify lineages into two experimental types, as illustrated in Figure 3.9:

• Experimental type A: any lineage composed uniquely of normal cycles and experimental senescence. • Experimental type B: any lineage presenting at least one arrest followed by a normal cycle. Remark 3.2. Some experimental lineages were still alive at the end of the experiment. Thus they cannot be considered senescent; nor as type A or B if not arrested at all during the experiment. Similarly, a lineage can be experimental type B without being senescent or dead (unlike experimental type A), as soon as it shows one long cycle followed by a normal one. The lineages that have died but at the end of a normal cycle are classified as accidentally dead.

Effective classification of lineages. In the model, the classification is a bit more refined since long cycles are either non-terminal or terminal, constituting then the senescence. The resulting "effective" classification of lineages thus not only depends on the location of the arrests but also on their nature (see Figure 3.10):

• Type A: any lineage that has not been non-terminally arrested before senescence.

• Type B: any lineage that presents at least one non-terminal arrest separated from senescence by at least one normal cycle.

We supplement it with the "unclassified lineage" introduced in [172, Chap. 4] as:

• Type H or "hybrid": any cell lineage that has entered senescence right after a non-terminal arrest, before being able to adapt or repair.

Accounting for type H lineages, i.e. assuming that non-terminally arrested lineages can enter senescence before repair or adaption, is a modeling assumption that we think biologically relevant. 

Differences between classifications.

Because non-terminal and terminal arrests, as well as accidental and natural death, are not always experimentally distinguishable, the experimental classification might not coincide with the model classification. Notably,

• Type H are not experimentally distinguishable from A or B-type lineages since it is impossible in practice to tell whether a terminal sequence of long cycles is entirely made of senescent cycles or has started with long non-senescent ones. • Type B lineages could be experimentally misclassified as type A if accidentally dead during a first sequence of non-terminal arrests, wrongly identified as the senescence. • Type A lineages and their senescence should always be well classified experimentally.

Cell types. We extend the classification by types from lineage to cell, calling abusively:

• type A: any cell whose ancestors and itself were not non-terminally arrested • type H: any senescent cell belonging to a type H lineage • type B: any other cell

The main difference with the lineage classifications is that the type of a cell only depends on present and past generations whether the type of a lineage is accessible only at the onset of senescence (experimentally possibly at the death of the lineage).

Law for the onset of sequences of non-terminal arrests

Existing results. Martin et al. in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] have tested (under different values of D) several probabilistic laws modeling the onset of a first sequence of non-terminal arrest(s). Because of the stochastic nature of DNA damage events, their first guess is to assume the first non-terminal arrests randomly triggered, with a certain probability at each generation. The hypothesis of a constant probability was rejected in favor of a generation-dependent probability.

Therefore, the onset of a first sequence of non-terminal arrest(s) appears not only to be stochastic but also to increase (seemingly exponentially) over generations. Because generation and telomere length are correlated, this is consistent with their last, more mechanistic, guess: a telomere-length dependent probability in favor of first non-terminal arrests being triggered by the cell's shortest telomere reaching a threshold length. This model was supported by Bourgeron et al. [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] for a deterministic threshold to model the onset of terminal arrests. With first non-terminal arrests instead, and also due to the richer dataset used to estimate the parameters (148 senescent lineage including 64 of type A in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] instead of 24 senescent type A lineages in [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF]), the threshold should be stochastic [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF].

Law for the first sequence. In good accordance with experimental data, Martin et al. [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] proposed the following probability for the shortest telomere of length to trigger a first sequence of non-terminal arrest(s):

p nta ( ) = min 1, b nta e -anta , (P nta )
with (a nta , b nta ) ∈ (0, 1] 2 parameters to fit, "nta" standing for "non-terminal arrest".

We adopt this law for it was tested and validated by Martin et al.. However we had to fit the parameters again, as explained in Section 3.3.1.

Law for other sequences. We assume that the onset of any other sequence of non-terminal arrest(s) follows the same law as the first sequence. This choice is justified by the absence of sufficient experimental data and supported by the belief that the underlying mechanisms and cellular states associated to a first sequence of non-terminal arrest(s) or any following non-terminal sequence are identical.

Law for the onset of senescence.

Existing results. In S. cerevisiae, several simulation-based studies agree on the fact that telomere-dependent laws for the entry in senescence are best described by the shortest telomere reaching a threshold length [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]. The particular importance of the length of the shortest telomere (or the few shortest for higher eukaryotes) in the onset of senescence is also supported by experiments [START_REF] Hemann | The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Khadaroo | The DNA damage response at eroded telomeres and tethering to the nuclear pore complex[END_REF].

Although most mathematical studies make the simplest assumption of a determin-istic threshold (fitted at 19 bp in [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF]), Martin [START_REF] Martin | Étude de données et analyse de modèles intégro-différentiels en biologie cellulaire[END_REF] reports its lack of heterogeneity to predict the onset of senescence. A straightforward way to enhance heterogeneity is to turn this threshold stochastic, assuming at every new division that the shortest telomere has a certain length-dependent probability to signal senescence.

Despite strong evidence in favor of stochastic processes at play, the recent unpublished work of Teixeira's lab suggests that the entry in senescence is besides subject to a "threshold effect" according to which any cell whose shortest telomere reaches a certain critical, rather deterministic, length min enters senescence. They estimate min to be close to 30 bp.

Laws for senescence entry. We chose to account for both stochasticity and the "threshold effect", allowing cells to enter senescence in a stochastic way before reaching the ultimate threshold min . Mimicking the law of non-terminal arrests (P nta ), we chose a probability of the exponential form for every length greater than the threshold. Then the probability for a cell with shortest telomere of length to enter senescence is given by The idea expressed by this assumption is that senescence signaling pathways could be modified through non-terminal arrests. This was suggested by the fact that the normal cell cycles are experimentally slightly longer after a non-terminal arrest (see Section 3.2.3.5 and Figure 3.12 below). Another still more convincing evidence is given by observing the distributions of the number of (consecutive) senescent cycles, different between type A and type B (Figure 3.11).

(H A=B ) p sen ( ) =
Still, given the relatively few amount of data, both modeling assumptions are tested in Section 3.3.1. From now on, we refer to them as (H A=B ) and (H A =B ). As for terminal arrests, a geometrical law is statistically acceptable only for D between 200 and 350 min [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]. Besides, the same law refers to a different biological interpretation for terminal arrest: a constant probability to die from senescence once terminally arrested.

Probability to exit an arrest. In mathematical terms, this means that the probability for a sequence of arrest(s) to be made of k long cycles is:

N (k) = p(1 -p) k-1 , k ≥ 1, (P geo )
with different values of p for non-terminal and terminal sequences, p equal to p repair and p death , respectively. We chose p repair = 0.65, p death = 0.58, found in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] to optimize the p-value of χ 2 goodness-of-fit tests for the number of consecutive arrests following a geometric distribution when D is 180 bp and 240 bp, respectively. In particular, the value taken for p death is not the one fitted for the standard D = 180 bp (for which the law does not even look geometric), however the onset of death with respect to senescence is not of great importance in our model, even when it is used to describe the evolution of a whole population.

Remark 3.4. Because our model allows accidental death, and senescence entry before a critical length (contrarily to Martin et al. [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF], that have implicitly chosen a deterministic threshold at 0 bp for senescence entry), p repair cannot be consider as the probability to exit a sequence of non-terminal arrest anymore. Instead, p repair is the probability to exit a non-terminal arrest given accidental death or senescence are not triggered.

Remark 3.5. The fact that the geometrical laws fitted for non-terminal sequences and senescence have different parameters reinforce the idea that non-terminal and senescent arrests correspond to distinct regimes. At D fixed, this parameter is greater for non-terminal arrests, in accordance with the idea that senescenceinducing damage, since persistent, would take longer to be processed than the non-persistent damage of non-terminal arrests.

Cell cycle duration times

If the definition of laws for the duration of cell cycles is not required to model telomere-induced senescence along generations, it becomes crucial as soon as we want to model it through time.

Our laws are purely empirical, based on the extensive dataset of Coutelier et al. [START_REF] Coutelier | Adaptation to DNA damage checkpoint in senescent telomerasenegative cells promotes genome instability[END_REF] that is used to fit most of the parameters of Section 3.2.3. We notably observe that

• The duration of senescent cycles is similarly distributed for A and B-type cells.

• However, the duration of the normal cycles of type B cells (i.e. the normal cycles happening after a first non-terminal arrest) are distributed around slightly larger values than those of type A cells (see Figure 3.12). • Among the last cycles constituting the senescent, the last cycle of the senescence is significantly longer (a brief studied is carried out in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]). Still, we do not take this cycle into account since its impact on the dynamics is negligible (it ends with death).

Based on these considerations, we partition the dataset into four categories, represented in Figure 3.12. The cycle duration time of a cell is then drawn by choosing uniformly a cycle in the subdataset which corresponds to its phenotype, namely:

• Not arrested cells' duration cycles are chosen among the normal cycles of the dataset, distinguishing between normal cycles of type A and type B cells. • Non-terminally arrested cells among the long non-senescent cycles of the dataset. • Senescent cells, no matter if about to die or divide, among all senescent cycles but the last cycle of the senescence of the dataset. 

Tables of parameters

Let us summarize the parameters of our models. Some numerical values are indicated although inferred later in Section 3. given that accidental death (and senescence entry for non-terminal arrests) was not triggered (see Figure 3.5).

Validation and characterization of the models and the code

Parameters estimation with microfluidics data

In the present section we fit the parameters of the laws (P nta ) and (P sen ) (or (P sen A ) and (P sen B )) that characterize the onset of non-terminal and terminal arrests, respectively, enabling small transformations of the distribution f 0 of initial telomere lengths. We rely on microfluidic data and the simulation of lineages.

Description of the estimation method

Experimental data to fit. The experimental data upon which to base the estimation should highly depend, in our model, on the parameters to estimate. We thus consider the data plotted on Figure 3.13-left that represent: i) G sen the generations at which senescence occurred, in the n sen = 148 experimentally senescent8 lineages of the dataset.

ii) G senA the subset of the generations G sen of senescence made only of the n senA = 64 (dead senescent) lineages classified as experimental type A. iii) G senB similarly with the remaining n senB = 84 lineages of experimental type B. iv) G nta the generations at which occurred a first non-terminal arrest, generated from a total of n nta = 115 experimental type B lineages. v) The proportion of the experimentally senescent lineages classified as type B: Notations. In the following G sen (j) denotes the generation of senescence onset in the jth senescent lineage of the dataset (when ordering by increasing generation of senescence) and similarly with the types of arrest ("nta", "sen A " and "sen B "). Therefore the maps plotted on Figure 3.13-left correspond to G -1 , but we abusively call them G-graphs (or generation graphs). Wee keep this choice by sake of coherence with the previous articles [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF].

r B% = 100 × n senB n sen ≈ 57 %.

Simulated generation graphs .

To these G-graphs actually corresponds the theoretical graphs given by our model, say Ĝ. We approach them with Monte Carlo estimators Ĝ(k) , realized as an average on k independent simulated graphs ( Ĝ1 , . . . , Ĝk ):

Ĝ(k) i : j → 1 k k s=1 Ĝs i (j), i ∈ {sen, sen A , sen B , nta}, j ∈ {1, . . . , n i }. (3.5) 
We make sure that each of the k simulated graphs present the same characteristics as the associated experimental graph: it is made of the same number of generations, similarly ordered and with same characteristics (i.e. describing the onset of a specific type of arrest in a specific type of lineage, as perceived experimentally).

Dependencies between simulated graph and parameters. The tricky point is that most of this data depends on both the law for non-terminal arrests and senescence, and slightly on p repair , as summarized in Table 3.5.

In our model indeed, we test at each division whether or not a newborn cell enters senescence (if its mother is not senescent) or enter or exit a non-terminal arrest. In particular, to enter a first non-terminal arrest at generation g, a lineage must have reached generation g without having undergone any arrest. Thus, Ĝnta depends not only on the probability to experience a first non-terminal arrest but also on the probability to enter senescence.

Likewise, for a fixed law of senescence onset, if for example p repair is small and (P nta ) is such that the entry in senescence is much more likely than the entry in a sequence of non-terminal arrest(s), very few lineages will have time to enter and exit a non-terminal sequence of arrests before entering senescence, with great impact on the proportion of experimental type B lineages and the generation graphs.

This last bias (indicated by an asterisk in Table 3.5) is mainly due to the fact that, in order to generate the graphs of generations approaching the experimental graphs, the generations of arrest and thus the type of lineages are as they would have been perceived experimentally rather than as they are in the model. For our best-fitted parameters, around 16 % of senescent lineages are misclassified type A which is not negligible.

Theoretical graph

Law dependency f init (P nta ) (P sen ) (P sen A ) (P sen B ) p repair Ĝsen * ĜsenA ĜsenB Ĝnta * Table 3.5.: Dependencies of simulated curves on the parameters and laws of the model. The asterisk indicates that a dependence exists but only through the experimental misclassification of lineages: if the Ĝ were the effective generation curves (not those perceived experimentally) there would be not dependence.

Parameters to estimate. Even though the parameters of (P nta ) were fitted by Martin et al. [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] with the same dataset, they were fitted with a fixed law (P sen ) of senescence entry, consisting in a deterministic threshold at 0 bp. Because of the dependency of the simulated graphs on both laws, we need to estimate (P nta ) again, simultaneously with (P sen ).

Still, we do not re-estimate p repair , the probability to exit a non-terminal arrest given that senescence is not triggered (see Remark 3.4). It was fitted by Martin et al. [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] with the distribution of the number of consecutive non-terminal arrests among all the sequences of non-terminal arrests. We believe indeed that modifying their laws of arrest in a way that fits the experimental curves should not modify much the distribution of the number of consecutive long cycles (and thus p repair ).

A verification is carried out with the final laws of arrest in Section 3.3.2.

Method. We used the evolutionary algorithm CMA-ES [START_REF] Toure | Global linear convergence of evolution strategies with recombination on scaling-invariant functions[END_REF][START_REF] Hansen | The CMA Evolution Strategy: A Comparing Review[END_REF] The cost function is defined as some weighted sum of the errors, in 2 -norm, between the four experimental G-graphs 9 and their estimators Ĝ(k) (defined by (3.5)) obtained from k simulations with the parameters p ∈ D:

E ω (p) := i∈I ω i G i - Ĝ(k) i (p) 2 , I = {sen, sen A , sen B , nta}, (3.6) 
Similarly, we denote by

e B% (p) := r B% - r(k) B% (p) , r(k) B% (p) := 1 k k s=1 rs B% (p), (3.7) 
the error (in absolute value) between experimental and estimated proportions of type B lineages among n sen senescent lineages; with r(k) B% (p) the estimator of the proportion defined as the average on k independent simulations with parameters p.

The parameters of these error functions are listed in Table 3.6 and the different parameter domains D that have been explored are explicitly given in Table C.1 of Appendix C.1. We denote by D m,i the ith domain of dimension m and by D m the union of all the D m,i , i ≥ 1, introduced.

Parameter

CMA-ES

N

Population size.

The number of points -in the parameter space D-tested (i.e at which the cost function is evaluated) per iteration, or "generation". At every iteration i, the N new points of the ith generation are drawn from a normal distribution with parameters (p i , Σ i ) depending on the value of the cost function at the N points of the previous generation. Here p i ∈ D is the approximation of the solution at generation i, expected to converge to a minimizer of E while Σ i would get closer to 0 N . p 0

Starting point. The N points of the generation 0 are drawn from a normal distribution of parameters (p 0 , σ 0 D), with D is the identity translate the initial distribution of about 30 bp as well. Both allow to fit rather well all graphs except G senB (Figure 3.15), which is coherent with the proportion of type B lineages found smaller than the experimental proportion (27 ± 7 % 10 and 35 ± 8 % against 57 %, for (i) and (iii) respectively). Interestingly, the probability to enter senescence is very close to the probability to enter a non-terminal arrest, fitted at min = 29 bp by (iii)), see Figures 3.14a and 3.14c. Expectedly, the graphs that are well fitted with (i) and (iii) became much less well fitted with (ii), when forcing min to be greater than 20 bp is not compensated by a translation of f 0 . Besides, the law fitted for senescence onset is almost deterministic (Figure 3.14).

N -matrix if D = [0, 1] m ,
Different senescence laws for type A and type B cells. Under the modeling assumption (H A=B ) we saw that our model, providing that it either forgets the threshold effect or starts from a translated distribution of telomere lengths, approaches well all experimental graphs except G senB which lacks variability. Such a discrepancy reinforce the idea that the law of senescence entry could be different depending on cells type.

Allowing translations of f 0 . Following the same method, we estimated the 8 parameters of the laws (P nta ), (P sen A ) and (P sen B ), on different domains, possibly allowing to fit the transformation of f 0 as well:

(i) D 8,1 : f init = f 0 is not fitted and minA can be 0 bp, (ii) D 8,2 : same as D 8,1 except than minA is forced to be more than 20 bp, (iii) D 9 : minA is more than 27 bp but

f init = f init (•; T , 0, 0) is fitted through T .
The results are represented on Figures 3.16 and 3.17. They are very similar to those derived in Section 3.3.1.3, in the sense that accounting for the threshold effect, at least for type A cells imposing a threshold minA ≥ 20 bp, requires to translate the initial distribution of telomere lengths of about minA .

The novelty compared to Section 3.3.1.3, is that all the graphs are now perfectly fitted as illustrated by Figure 3.16. If the proportion of type B lineages was too small under (H A=B ) it is now too large compared to the experimental value (≈ (77 ± 7) % for (i) and (iii)).

For (ii) on the contrary, the simulated generation graphs are a bit less close to experimental ones but fit well the proportion of type B lineages (≈ 52 ± 7 %). Allowing dilatation of f 0 . From previous studies [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF] and Section 3.4, we know that more than the whole distribution f 0 , it is the lower part of the distribution that actually matters. Thus, what has proved useful in the previous estimations to account for the threshold effect ( min or minA ≈ 30 bp) is likely the translation of the infimum inf of the support of f 0 specifically, rather than the translation of the whole distribution f 0 .

To achieve the same goal of accounting for the threshold effect while preserving the mode of f 0 (not preserved by translations) we eventually fitted 0 and 1 together with the parameters of the laws (P nta ), (P sen A ) and (P sen B ).

The best fits retrieved from this last series of 10-parameter estimates (plotted on Figure 3.18b), are the one we decided to choose for Section 3.4. C.1b.

Brief discussion on the estimation chosen

Before continuing, let us comment on our laws of arrest. As shown on Figure 3.18b, the laws for senescence onset are simpler than expected in that they are (almost) described by less than three parameters. This makes them rather specific -(P sen A ) is nearly deterministic and (P sen B ) independent of telomere length-which results in the following:

• All the first non-terminal arrests are necessarily triggered by shortest telomeres longer than min A = 27 bp (see also Figure 3.31). • Concerning senescence, a lineage has two options to enter it:

-Either it waits a few generations of normal cycles until one telomere reaches the almost deterministic threshold min A , and the lineage is type A.

Interestingly we recover the deterministic model of Bourgeron et al. [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] which focuses exclusively on the entry in senescence of type A lineages.

laws are around 67 % and 80 %, and the extrema around 61 % and 89 %.

These two points reconcile the discrepancy between the experimental and simulated proportions of type B lineages, since rB% belong to the (empirical) 90 % confidence interval given by our laws.

Probabilities to exit arrests. To make sure that p repair , and less importantly p death , fitted in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] with slightly different laws for the onset of arrests, are valid with our laws, we compare the experimental histograms of the number of consecutive non-terminal and terminal arrests, respectively, with simulations under the final parameters. Each pixel corresponds to a cell cycle, in a given lineage at a certain generation, whose color indicates its duration. The experimental type of each lineage is indicated at its end.

Further validation from population simulations

The population simulation constitutes another way to validate our laws, calibrated with microfluidic data and lineage simulations. In Section 3.3.3.1, we first need to calibrate the parameters specific to the simulation in population.

Calibration of the parameters for population simulation

Simulation cost. Simulating the time evolution of a population whose initial concentration would approach the experimental one -in short letting evolve 10 5 reproducing cells 11 , each described by dozens of variables 12 -quickly turns out too expensive in terms of computation time and allocated memory, see Figure 3.22. The question then is whether or not simulating small populations is enough to approach bigger populations. In this section, we try to quantify the bias between the evolution of small populations and experimentally-sized ones. Since we are not able to go up to N exp = 10 5 initial cells, the goal is to identify a minimal size N equiv , hopefully reasonable, at which populations are big enough to be representative of the experimental ones.

Representativity analysis sensitivity to N init . We compare the behavior of populations originating from different initial number of cells N init . In order to accurately estimate these behaviors (i.e. to have an empirical behavior close to the statistical one) we simulated k = 25 times the evolution of a population with a certain fixed initial size N init .

Variability decreases with N init up to a certain point. The first, expected, observation is that the less cell initially present, the more variability between simulations, see for instance Figures 3.23, 3.24, 3.26, 3.28 and 3.29 and table 3.7. This supports the idea that the variability in the distribution of initial telomere lengths is a important source of heterogeneity in senescence [START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF]. The decrease in variability however seems to stabilize around N init = 200 around a value that should correspond to the variability intrinsic to the stochastic evolution.

Extreme behaviors are sensitive to N init unlike average behaviors. Starting initially with more cells, we are more likely to hit the tails of the distribution of initial telomere lengths and to have chromosome shortening mainly on the same extremity, resulting in a fast shortening telomere and a slow shortening one. Extremum quantities should thus be sensitive to N init . This can be observed for example looking at the evolution of the minimum telomere length in the population plotted on Figure 3.23. Remark 3.6. Negative telomere lengths come from the cells that have kept dividing after entering senescence. Indeed, if our model forced senescence onset when a telomere reaches length zero, it does not forces death, a scenario that could be tested. The same reasoning applies to the extinction time of the population, which is nothing else than the maximal lineage lifetime in the population: it keeps increasing with the initial number of cells. And similarly with the senescing time, see Figure 3.24. Having in mind that the length of cells' shortest telomere is a major determinant of the onset of senescence [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF], Figures 3.23 and 3.24 can be partially explained looking at the distributions f n min and f n min-max of the minimum and maximum, respectively, of cells' shortest telomere in a population of n cells (each with 32 telomeres). As shown on Figure 3.25, they get translated and narrowed for large n. To access f n min and f n min-max we compute their cumulative distribution functions, benefiting from the independence of telomere lengths at generation 0:

F n min ( ) = P min 1≤i≤n min 1≤j≤32 L i,j ≤ = 1 -P 1≤i≤n 1≤j≤32 L i,j > = 1 -1 -F init ( ) 32n ,
and

F n min-max ( ) = P max 1≤i≤n min 1≤j≤32 L i,j ≤ = P 1≤i≤n min 1≤j≤32 L i,j ≤ = F 1 min ( ) n = 1 -1 -F init ( ) 32 n 
.

From which we deduce Expectedly, less sensitive to N init than the time evolution of extrema, are the evolution of average indicators as for example:

   f n min ( ) = F n min ( ) -F n min ( -1) = 1 -F init ( -1) 32n -1 -F init ( ) 32n , f n min-max ( ) = 1 -1 -F init ( ) 32 n -1 -1 -F init ( -1) 32 n . ( 3 
• The average generation (Figure 3.26-right).

• The average of cells' average or even shortest telomere lengths (Figure 3.26-left).

These are quantities that vary less with respect to n. Saturation bias. Likewise, another time indicator, more relevant than the extinction time since less sensitive to the extreme behaviors, is the half-life time. In our case though, it is not well defined since the population is diluted every day. Let us rather focus on the time at which the population saturates, directly linked to its doubling-time. On Figure 3.27 we see that it seems to stabilize in average for N init greater than 50 and in standard deviation around N init = 200, in accordance with Table 3.7. Having a closer look, we notice that not only small populations die and senesce earlier than large ones (Figure 3.24), but they also saturate slightly later on the

Validation of the population model and double-check of the laws

After studying the bias of the code for population simulation, reducing as much as possible its bias while making it more efficient, and identifying a reasonable scaling (N init = 300), we focus on the model itself.

The population model and its laws calibrated with microfluidics data can be validated from the dataset of population experiments (described in Section 3.1.2.2). The comparison to experiments is plotted on Figure 3.30. The evolution of the number of cells is qualitatively in accordance if we exclude:

• The inconsistent measurement of day 3, whose perturbation can be attributed to the experimental conditions and the conversion from population doubling (the unit of the initial data at our disposal) to cell concentration (itself converted from optic density). The conversion requires indeed the value of the concentration at the beginning of each day, probably slightly different on day 3 than the concentration we used (10 5 cells/mL) for day 3 and every other day. • The last days that experimentally corresponds to the growth of the survivors (that have managed to escape senescence), not accounted by our model.

As for the evolution of telomere lengths, we notice that:

• On the first two days, simulated and experimental graphs are very close. The slight discrepancy comes first from the small gap at time 0, propagated on the following times, that reflects the difference between the mode of the initial distribution of telomere lengths f init at 260 bp and the modes measured (253 bp in average). And second, from the fact that telomeres shorten slightly faster on average in silico than in vitro, due maybe to shorting rate h slightly too high. • After day 2 though, telomeres shorten clearly faster on average in silico than
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in vitro but the reason why is not clear. Again the presence of survivors, which elongate their telomeres, could explain it. However this seems to contradict the fact that cell concentration drops before their proliferation.

Results

The objectives of the simulations are twofold:

• Access experimentally hidden quantities to better understand the system. • Decorrelate parameters that cannot be decorrelated in practice to understand better their mutual influence, and assess the influence of specific parameters.

Results from lineage simulation

A major limit of microfluidic experiments is the inability to access cellular molecular data. In particular it is impossible to link cellular proliferation potential to telomere length, in particular the shortest, despite evidence that the two are intimately linked. The present section aims at filling this gap.

Telomere lengths triggering senescence

As expected in Section 3.3.1.4, the distribution of the lengths triggering senescence of type A cells is mainly supported on a small left-neighborhood of min A = 27 bp meaning that the entry in senescence is almost deterministic for type A cells (Figure 3.31-top left). The fact that the support extends over a range of 7 bp can be explained by the fact that telomere lengths are defined modulo the shortening rate h = 7 bp.

For type B cells instead, lengths are very dispersed, lower bounded by min B = 0 bp. In particular, a non-negligible part of type B (that are in fact often experimental type A) enters senescence from a shortest telomere superior to min A (Table 3.8).

Our laws therefore allow a lot of type B cells to enter senescence before type A. 

Influence of initial telomere lengths

The onset of arrests is influenced by initial telomere lengths through the length of the shortest telomere. We propose here a new way to evidence that the length of the initial shortest telomere, contrary to the intial average telomere length, is strongly (positively) correlated to the onset of senescence [START_REF] Xu | The Length of the Shortest Telomere as the Major Determinant of the Onset of Replicative Senescence[END_REF][START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]. The same method ensures this result also for the onset of the first non-terminal arrest, and also for the onset of senescence when looking at only senescent type A or type B cells (not plotted here but tested).

It consists in simulating k times the evolution of a certain number n of lineages presenting certain characteristics (we take n as the maximal number of experimental lineages having these characteristics, but any n large enough would work). For every simulation we order its n lineages by increasing either minimum or average telomere length ( min and avg ) at generation 0 and store, in this order, the generations of the onset of arrests. Eventually, we average the k sets of n generations of arrest (still respecting the ordering). The result is plotted on Figure 3.32 for both type B (left) and senescent (right) lineages, focusing on the generations of the first non-terminal arrest and senescence, respectively.

Mathematically, this could be phrased formally as follows: consider G j the random vector indicating the k generations of arrest, by increasing order, of the jth simulation. Likewise, let L j (i) be some quantity of interest (e.g. the length of the shortest telomere at generation 0) in the ith lineage of the jth simulation. Then, the random vectors

Ḡk nta : i ∈ {1, . . . , n nta } → 1 k k j=1 G j nta (i), Ḡk sen : i ∈ {1, . . . , n sen } → 1 k k j=1 G j sen (i), are turned into Gk nta : i → 1 k k j=1 G j nta σ j nta (i) , Gk sen : i → 1 k k j=1 G j sen (σ j sen (i)),
with σ j nta a (random) permutation defined such that to make a j → L j nta • σ j nta increasing; and similarly with σ j sen . If no correlation at all between the quantities described by G and L (i.e. between the random variables G j (i) and L j (i)) the maps Ḡk should thus become constant, equal to the average generation of arrest, as k tends towards infinity; otherwise they should become increasing (for positive correlation) or decreasing (negative).

On Figure 3.32, the orange curves correspond to realizations of Ḡ1000 , while the purple and pink curves to realizations of G1000 for L corresponding to the average or shortest telomere length at generation 0, respectively, which brings us the result.

If the variability in the initial shortest telomere length contributes to the variability of the onset of arrest, Figure 3.32 also shows that it does not account for all the variability, otherwise the pink and orange curves would have about the same slope. The stochasticity in the shortening of telomere and in the occurrence of arrests also plays an important role. Remark 3.7. Simulation proves here very useful since such correlation could hardly be revealed experimentally: i) it would require to precisely measure initial telomere lengths lineage by lineage, and ii) this should be done for a lot of lineages.

Results

Sensitivity to the initial distribution of telomere lengths f init . To confirm that f init acts on the distribution of the generations of arrest through the small lengths mainly, the present paragraph studies the variation of generations graphs with respect to the initial distribution of telomere lengths.

We transformed f init in three different ways, acting on the parameters T , 0 and 1 of the transformation of f 0 defined by (3. It is clear that the left tail of the distribution of initial telomere lengths has a great influence on the generations of the onset of non-terminal and terminal arrests, no matter the type of the lineage. On the contrary, the contribution of the right tail is almost negligible. lengths on the proportion of lineages classified as type B. Isolating, right after telomerase inactivation, individuals from populations of telomere distribution presenting different modes, and following them through microfluidics device brought them the results reported in Table 3.9.

Starting with bigger initial lengths enhance the proportion of type

Performing the same experiment in silico gave us qualitatively the same results, as summarized in Table 3.10. Quantitatively, though, we have much more type B lineages. Two reasons can explain the discrepancy:

• Our laws yields more type B lineages than experimentally, as discussed in Section 3.3.2. • They classify as type B any lineage presenting at least two long cell cycles before the terminal successive arrests instead of one in our model, which reduces the proportion (at mode = 253 bp they count in the experimental dataset 48% of type B lineages where we count r B% = 57%).

Let us refine our observations by reasoning on cells rather than lineages: Figure 3.36 confirms that at fixed generation g, the longer the initial shortest telomere, the more likely the cell of generation g is to be type B. On the contrary, there is almost
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not that far from min A : in an average of six divisions the shortest telomere length becomes negative starting from min A .

Correlation between arrests

Following the idea of Section 3.4.1.2 to unravel a positive correlation between the initial shortest telomere length and the onset of arrests, we evidence here a correlation between arrests, see Figure 3.37.

Remark 3.7 still makes sense although the experimental data is now available. Indeed, we can hardly establish a correlation from the (too) few experimental data plotted in plain line on Figure 3.37. Note that this difficulty is reproduced in silico when averaging on few simulation (k small). 

Results from population simulation

Simulation allows us to track a variety of quantities of interest that would be hardly, if at all, accessible in practice. The objective is to shed light as much as possible on the complex dynamics underlying the evolution during the population experiment. We chose to account for the time evolution of:

• The number of cell of each type and "state" (senescent or not senescent), from which we retrieve the quantities plotted on Figure 3.38.

In addition, we look at the evolution through time of some of these cell numbers not only in the overall population but also within specific subpopulations, partitioning at each time the population into:

-Groups of individuals sharing either the same initial ancestor (Figure 3.41)

-Or the same generation (Figure 3.46).

• A few telomere-length-related data to complement the mode, see Figure 3 

Telomere length triggering senescence

Having in mind the distribution of telomere lengths of each type obtained from lineage simulations (Section 3.4.1.1), we can gain great information on the dynamics of senescence onset in the population experiment by looking at the daily evolution of the distribution. 

Influence of initial telomere lengths

Let us follow the ideas developed in Section 3.4.1.2 for lineage simulation to investigate the role of the length of the shortest telomere at generation 0. Average on k = 25 simulations, each ran from N init = 300 cells.

Influence of the death rate

In this part we wonder how mortality affects the senescence curve retrieve from the population experiment. The objective is to explain better certain experimental situations for which the curve is perturbed. Consider for example, the situation where the addition or appearance of a certain mutant in the population accelerates or delays the senescence of the population. The explanation that is usually given is that the mutation affects the telomeres. Here we show that such an explanation can be incorrect: the mutation might not be specific to the telomere but rather affects the death rate of individuals.

To do so we simulated the population experiment by varying only the rate of accidental death p accident . The results, gathered in Figure 3.45, are the following: other things being equal, higher death rate

• Delays, or even prevents, the saturation of the population: it decreases the exponential growth rate of the population on the first days, therefore the total number of cells triggering saturation is reached later. • Accelerates aging: it increases the average generation. The graph of average generations makes no doubt that individuals age faster because saturation, which interrupts their evolution, happens later and less. The side effects of aging acceleration are numerous:

-Individuals tends to turn type B or senesce earlier in time (it increases the proportion of type B and senescent cells), although the generation at which they turn type B or senescent is not necessarily modified.

-The ancestors with the longest initial shortest telomere are advantaged in short time, disadvantaged in the long time: it increases the proportion of their descendants on the first days and then decreases it. This is a consequence of the previous point and the fact that among young cells those that are descended from such ancestors are more likely to be type A (see Section 3.4.2.2). Therefore, more reproduce normally and they are more represented than type B or senescent cells (which undergo, or whose ancestors have experienced, long arrests). However the aging bias is enhanced for fast dividing cells, they die even earlier in time, which reduces their proportion on last times.

-Telomeres are in average shortening faster.

• Accelerates the senescence of the population: the total number of cells falls faster to zero. The first, rather obvious explanation comes from the fact that much more individuals are dying accidentally, rather than naturally at the end of senescence, and therefore they are living less time. But this is not sufficient to account for the previous point. Another, more subtle mechanism is at play: the mechanism according to which time is "accelerated" because saturation is delayed. 

Comparison of lineage and population viewpoints

The discrepancies between the lineage and the population viewpoints originate in the heterogeneity in cell cycle time which desynchronizes time and generation (see Figure 3.46). The biases introduced in the population experiment are twofold:

• Competition bias. Direct consequence of the cell-to-cell variability in cell cycle time, competition benefits fast dividing cell lineages in the short term (this was detailed in Section 1.2 of the introduction). In the long term however,
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it disadvantages them in the presence of death since fast reproducing lineages are likely to extinct earlier (at fixed time they have a greater generation). • Selection bias. Indirectly consequence of the cell-to-cell heterogeneity, a selection bias appears due to dilution. Indeed on the first days fast dividing lineages, overrepresented because of competition, have more chance to be selected at dilution than underrepresented slow diving ones.

These biases are enhanced in the population experiment by dilution and saturation, and therefore can be revealed in silico. This was shown in Section 3.3.3.1 by observing the statistical differences arising from simulating populations with small or large initial number of cells. One could besides use parallel computing as a tool to act on the intensity of the biases and decorrelate them. Initially developed to fasten computations, our code allows to parallelize the evolution on each day of the experiment. In order to get rid of the dilution bias, drastically reduced for large populations, one could for instance let evolve a population of kN initial cells as k independent subpopulations of initial size N , that would saturate at different times, and gather them only for dilution. We have observed that the average evolution depend on k, but a more exhaustive study remains to be carried out. To instead reduce the saturation bias and study the dilution bias alone, our code also allows to fix a time of saturation. One could then compare the average evolution of small populations with varying initial number of cells N but common saturation time.

Another way to study population bias would be to compare the time evolution of the variables of interest tracked in silico (proportion of type B and senescent cells, telomere lengths, etc.) along lineages versus in population. Our code should soon include this possibility. Figure 3.47 focuses on another quantity: the telomere lengths triggering senescence. Although single-cell laws are identical for population and lineage simulation, the population distribution is biased towards min A (see Figure 3.47 and the associated legend). Because more likely to proliferate faster on the first generations (and to be selected by dilution), type A cells are overrepresented on the first days of the population experiment. Besides, although there are mostly dead on the last days, the number of type B cells entering senescence on these last days is likely significantly less than the amount of type A cells that have entered senescence on the first days; which explains the peak at min A on the population histogram.

Conclusion and perspectives

Conclusions. In this work, we mathematically model the replicative senescence in yeast accounting for the systematic shortening of telomere over divisions and for the distinct individual dynamics of arrest (non-terminal and terminal) revealed by microfluidic data.

Doing so, we extended the work initiated by Martin et al. to describe the (shortesttelomere dependent) dynamics of the onset of non-terminal arrests [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF]. Previous models had rather focused on the terminal arrests but they did not account for non-terminal arrests [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF][START_REF] Eugène | Effects of initial telomere length distribution on senescence onset and heterogeneity[END_REF]. We filled this gap by deriving stochastic laws that describe the onset of these two types of arrests along lineages, from telomerase inactivation to death. In particular, we accumulated evidence in favor of different laws describing senescence entry of type A and type B cells. The canonical way to enter senescence of type A appears tightly controlled since best described by a deterministic law (the shortest telomere reaching a quasi-deterministic threshold). On the contrary, senescence onset appears way more erratic in type B cell, since best fitted by a "quasi" telomere-independent law (constant probability at each generation until one telomere reaches 0 bp). This suggests that non-terminal arrests could permanently alter some of the mechanisms responsible for triggering senescence when a telomere becomes critically short.

In addition, we used these individual laws, fitted on microfluidic data, to model the evolution of a population over successive passages. The population model is in good accordance with population experiments, which constitutes an additional validation of the laws.

Although a lot of information is accessible with microfluidic experiments, it is not sufficient to explain the whole population dynamics. Going from lineage to population observation is not trivial, and our model thus constitute a powerful tool to gain understanding of population dynamics. Accounting for the non-terminal arrests was therefore crucial to finely model replicative senescence at the population level, where non-arrested but proliferative (and aging) cells compete with arrested cells, and especially the non-terminally arrested ones. By attributing longer cell cycle duration times to the arrested cells, our model thus accounts for competition, which is particularly enhanced by the dilution (in small populations) and saturation, as shown by our simulations.

In silico experiments have proven very convenient when it comes to track particular information over time, hidden experimentally. The observations made from lineage simulation, reveals biased in population simulations. Another great use of the population model was to evaluate the impact of small perturbations at the individual level on the global dynamics. We perturb the rate of accidental death, a situation often encountered by biologists but hardly characterizable.

Areas of improvement. The information that the best-fitted laws provide on the biological system should be taken carefully, since other types of laws might also work. Still, most of the best-fitted laws returned by the numerous CMA-ES estimations had similar profiles, which suggests that there should not be many, significantly different, laws minimizing the distance between simulations and experimental data.

To confirm it, either a better characterization of the estimation method or a deeper exploration of the parameter space could be done. In particular, the estimation procedure could be run in a way that more strongly penalize the error on the proportion of type B lineages, which is slightly too high with our best-fit model.

Perspectives. Our calibrated model could be used to study particular dynamics happening within organs or even organisms, which are somehow large populations of cells. Among them there are for example telomere-related diseases, with accelerated degeneration. Or regeneration processes (happening e.g. after amputation), which are often followed by an increase of the average telomere length. If this could very well be explained by the recruitment of telomerase, our model could be used to prove instead that the proliferation of a few stem cells, with long telomeres, is enough to increase the average telomere length. In particular, one can test experimentally disturbed situations other than a variable death rate, like:

• Accidental event happening to telomeres like abrupt shortening.

• The absence of adaptation allowing type B cells to return to normal cycle.

• The presence of mutants exhibiting disturbed dynamics, notably: variability in shortening rate, longer cell cycle duration time, or saturating at different cell density. . . • Or incorporate the post-senescent survivors. This would however require to identify new individual laws explaining for their late emergence in telomerasenegative population of yeasts.

The model can also serve to study the contribution to the heterogeneity of different possible sources, especially those that cannot be decorrelated experimentally, by eliminating the variability of one source while letting the others unchanged. For example:

• Reproduce experiments of clonal cultures. For instance comparing the evolution (in average) of two populations of two cells each: one cell with "medium" shortest telomere length, and the other cell with either short or long initial shortest telomere (chosen as the average, shortest, and longest respectively, of a random population of 10 6 cells). • Get rid of the stochasticity in the shortening process and the asymmetry, by assuming that every telomere shorten at each division, by the average shortening rate: h 2 . In this case the distribution of the generations of arrests is explicit. • Choosing constant cell cycle duration for all cells or each type.

Eventually, some questions could be addressed by enriching the type of data kept in memory during simulations or by postreating them in a certain way, among others:

• Transform the evolution from generation to time in lineage simulation. This should be done soon, to better compare lineage and population observations. • Similarly to the results obtained by Bourgeron et al. in [START_REF] Bourgeron | The asymmetry of telomere replication contributes to replicative senescence heterogeneity[END_REF] we can test in which proportion the shortest telomere at the onset of senescence was the shortest one initially. How does it depends on the generation? on time? • How are evolving telomere lengths depending on cell type? We followed the evolution of the proportion of each type in the ten "fixed" subpopulations made of the descendants from the nth 10 % of the initial cells with shortest initial shortest telomere. We could rather consider the time-dependent subpopulations made of the nth 10 % of current cells with shortest shortest telomere.

at least for the x k inside the "computational domain" upon which approximations are returned (in fact the schemes rely on larger grids).

A.1. Constant growth rates

We take a regular grid for the size variable, defined by δx > 0 and N ∈ N * as

x k = kδx, k ∈ {0, . . . , 2N }.

In particular, criterion (2) is satisfied in the upper half part of the grid with:

x 2k = 2x k , k ∈ {0, . . . , N }.
We consider the semi-implicit scheme with splitting given by The scheme can then be reformulated as follows: for all i ∈ I, 

n k, + 1 2 i -n k, i δt + v i n k, i -v i n k-1, i δx + γ k i n k, + 1 2 i = 0, 1 ≤ k ≤ 2N,
                 n k, + 1 2 i = 1 1 + γ k i δt 1 - v i v M n k, i + v i v M n k-1, i , 1 ≤ k ≤ 2N,

A.2. Linear growth rate

Following [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF], we take a geometrical grid defined for m, N ∈ N * by

x k := (1 + δx) k-N , δx = 2 1 m -1, k ∈ {0, . . . , 2N }
such that criterion (2) is satisfied with:

x k = 2x k-m , k ∈ {m, . . . , 2N },
and consider the following semi-explicit scheme with splitting: ∀k ∈ {0, . . . , 2N } Using a ghost point x -1 = 0 at which we impose null boundary condition, for the computation of n 0, i , the scheme can be written as follows Let us verify that G ε fulfills the assumptions of the theorem.

               n k, + 1 2 i -n k, i δt + v i x k n k, i -v i x k-1 n k-1, i x k -x k-1 + γ k i n k, + 1 2 i = 0,
                 n k, + 1 2 i = 1 1 + γ k i δt 1 - v i v M n k, i + v i (1 + δx)v M n k-1, i , 0 ≤ k ≤ 2N n k, +1
i) G ε is well defined from X R into itself. We aim at proving that for any f in X R , (B.3) admits a solution in X R . Relying on the Banach-Picard fix-point theorem (that also provides uniqueness), we define for f in X R , the operator T f such that for w in X R , u = T f (w) is the (explicit) solution to: ∀i ∈ I, ∀x ∈ (0, R),

           ∂ ∂x u i (x) + α + γ ε i (x) τ ε i (x) u i (x) = 4β ε (2x) j∈I w j (2x)κ ji 1 ε [0,R] (2x) + f i (x) τ ε i (x) , u i (0) = δ j∈I R 0 w j (s) τ ε j (s)
ds , and prove that T f is a contraction from X R to X R .

Let w 1 , w 2 be two elements of X R . We define u i = T f (w i ), i ∈ {1, 2}, and w = w 2 -w 1 , u = u 2 -u 1 . Then u satisfies: ∀i ∈ I, ∀x ∈ (0, R),

           ∂ ∂x u i (x) + α + γ ε i (x) τ ε i (x) u i (x) = 4β ε (2x) j∈I w j (2x)κ ji 1 ε [0,R] (2x), u i (0) = δ j∈I R 0 w j (s) τ ε j (s)
ds , whose explicit solution is given, for all i in I, all x in [0, R], by: (B.5) We need k ε (x) to be strictly less than 1 uniformly in x. However, for later purpose we prove a bound uniform in ε as well, which requires a little finer work.

u i (x) = u i (0) e
First, let us impose δM R < µ, say 2δM R ≤ µ. Then, let us consider some small ε > 0 to be fixed, and focus on the integral part of k ε : first for x in 0, β ε L 1 (0,R) + β ε L 1 (min(2x,R)-ε, min(2x,R)) , which brings, after distinguishing whether x is smaller or larger than R 2 and using properties (1.27) of the convolution product, that for any ε small enough and x in ε 2 , R : 

I ε (x) ≤ 2 e -α τ η L ∞ ε β L 1 (0,R) + sup s∈[ε,R]
f X R ≤ 1 α f X R .
This provides |u i (x)| with a bound uniform in i and x allowing to conclude to

u X R ≤ 1 (1 -k) α f X R . (B.7)
iii) G ε is strongly positive. Let f be a non-negative function in X R , we first want to show that u = G ε (f ) is non-negative as well. It is easy to check that for any non-negative w, T f (w) is also non-negative. Therefore, recalling that u is defined as the fix-point of T f , we have u non-negative. Combined with (B.4) we thus have ds , and we deduce that if additionally f is not the null function, then u is positive on S R . iv) G ε is compact. We aim at showing that the image A by G ε of the unit ball B X R of X R is relatively compact in X R . From ii), inequality (B.7), we know that for any f in B X R , u = G ε (f ) is bounded in X R , uniformly in f , thus so is ∂ ∂x u from the equation: ∀i ∈ I ) n∈N of A i , i in I, converges in C ([0, R]). Then (u ϕ(n) ) n∈N converges in X R and we have proved that A is relatively compact in X R .

u i (x) ≥ u i (0) e
We can finally apply the Kreȋn-Rutman theorem that gives us the existence and uniqueness of a positive eigenvalue α ε and a positive eigenvector u ε in X R solution to G ε (u ε ) = α ε u ε . Denoting u ε τ ε the X R vector with components

u ε i τ ε i
, i ∈ I, we got the existence of

λ ε di := α - 1 α ε < α, N ε =   i∈I R 0 |u ε i (x)| τ ε i (x) dx   -1 u ε τ ε , (B.9)
solution in R × X R to the direct problem of (GF ε v ). The C 1 ([0, R]) continuity of the N ε i , i in I, is a direct consequence of (B.8) and the continuity of τ ε i > 0 and γ ε i . Adjoint problem. A function φ ε is solution to the adjoint equation of (GF ε v ) if and only if for all i in I, φε i : x → φ ε i (R -x) satisfies for all x in (0, R) where τ ε i : x → τ ε i (R -x) and γε i : x → γ ε i (R -x). This brings us to a problem similar to the direct problem. By the same method we obtain the existence of (λ ε ad , φε ) solution to (B.10) and thus a solution to the adjoint problem of (GF ε v ). Complete problem. We have proven the existence of (λ ε di , N ε ) and (λ ε ad , φ ε ) solution to the direct and adjoint equations of (GF ε v ). It remains to check that λ ε di = λ ε ad . This is straightforward if we integrate the direct equation against the adjoint eigenvector:

           τ ε i (x) ∂ ∂x φε i (x) + λ ε +γ ε i (x) φε i (x) = 2γ ε i (x)
G ε N ε , φ ε = N ε , G * ε φ ε , i.e. λ ε di N ε , φ ε = λ ε ad N ε , φ ε ,
with compact bracket notation f, g := i ( f i g i ). We conclude thanks to the normalization condition N ε , φ ε = 1.

B.2. Proof of Lemma 1.3 Estimates

Relying on estimate (B.7) and on the expression of λ ε given by (B.9) we derive bounds for the family (λ ε , N ε , φ ε ) ε>0 .

Proof (Lemma 1.3). Let us fix ε > 0 and take α = α 0 , which do not contradict (B.6).

Uniform upper bound for λ ε . From (B.7) applied to f = u ε > 0 we have α ε ≤ 1 (1-k)α0 . The bound then comes directly from the expression of λ ε given by (B.9):

λ ε ≤ kα 0 ≤ α 0 = λ up .
Null lower bound for λ ε . We assume by contradiction that λ ε is non-positive. Integrating for i ∈ I and x in (0, R ], the direct equation of (GF ε v ) brings with a change of variables: We can apply Grönwall's lemma to x → i∈I τ ε i (x)N ε i (x) , that is continuous together with β ε , and get: ∀x ∈ [0, R -ε], • and providing k big enough, the existence of B > A s.t.

x -k τ ε i (x) ≤ δM A k , for x ≥ B.
Together with the normalization condition of (GF ε v ), we find:

1 = i∈I R 0 N ε i (x) dx ≥ A k δM i∈I R-ε B x -k τ ε i (x)N ε i (x) dx ≥ R-ε B dx = R -ε -B,
which is contradictory as soon as R gets big enough. Thus λ ε is positive for R big enough.

Uniform bounds for N ε . We fix i arbitrarily in I, multiply the direct equation of (GF ε v ) by e -x 0 (λ ε +γ ε i )/τ ε i and integrate in size: ∀i ∈ I, ∀x ∈ [0, R], ∀ε 0 > 0 

τ ε i (x)N ε i (x) = δ e
(κ ji ) β ε L 1 ([0,ε0]) τ ε N ε ∞ (I;L ∞ ([0,ε0])) + γ ε ∞ (I;L ∞ (ε0,R)) .
Using (1.27), the fact that N ε is positive for the lower bound, and that for some positive ε 0 , β L 1 ([0,ε0]) is less than (8 max i,j (κ ji )) -1 such that on [0, ε 0 ] τ ε i N ε i is less than K := 2(δ + 2 max i,j (κ ji ) γ ε ∞ (I;L ∞ (ε0,R)) ) for the upper bound, we conclude to what expected:

N low := δ τ η L ∞ e - Rλup µ + β L 1 (0,R) > 0, N up := δ + K 2 + 2 max i,j (κ ji ) γ ε ∞ (I;L ∞ (ε0,R))
µ .

  τ (x)n(t, x) -γ(x)n(t, x) + 4γ(2x)n(t, 2x) dx , = τ (a)n(t, a) -τ (b)n(t, b) -b a γ(x)n(t, x) dx + 2 2b 2a γ(x)n(t, x) dx .The variation at time t of the number of cells of size in [a, b], represented by the left-hand side of the equation, is precisely given by:

4 )

 4 , x)γ(y)n (t, y) dy , such that m > 1 is the average number of individuals created by one division. The fragmentation kernel k indicates the rate k(y, x) ≥ 0 at which the division of cells of size y (which occurs at a rate γ(y)) produces cells of size x; and an equivalent amount of cells of size y -x < y providing that To ensure the mass conservation in the absence of growth (M ≡ 0 when τ = 0

  m = 2, with σ = 1 2 for equal mitosis. • Timer paradigm. If instead of size we assume that the age, i.e. the time spent since birth, triggers division, we obtain the McKendrick-von Foerster equation, also known as the renewal equation, originally formulated as: t, a) + ∂ ∂a n(t, a) + d(a) + γ(a) n(t, a) = 0, t > 0, a > 0, n(t, 0) = ∞ 0 γ(a)n(t, a) da , n(0, a) = n in (a),

  y) dy dx , is non-negative when H is convex. The consequences of Theorem I.3 are numerous. Most of them are obtained by comparing a solution n to (I.15) to p := e λt N through their entropy dissipation D H [n] := D H ψ [n|p], ψ := e -λt φ, with (λ, N, φ) a solution to the associated eigenproblem (I.17). Notably, we have • The solutions to (I.15) that cancels the entropy dissipation D H (i.e. minimize the corresponding entropy) are exactly those aligned along p = e λt N D H [n] ≡ 0 ⇐⇒ n(t, •) = C e λt N, t > 0. (I.22)
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 3 Figure I.3.: Variation of the effective fitness of a population defined by M = 100 features randomly distributed (fromv i ∼ U Vσ i.i.d.) in V σ = σV + (1 -σ)v (for V =[START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF][START_REF] Allsopp | Telomere length predicts replicative capacity of human fibroblasts[END_REF] and v = 4) with respect to σ ∈ (0.03, 1].
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 4 Figure I.4.: Approximation of the solution φ to the adjoint problem of (I.20) with γ(x) = bτ (x) for different τ . In the case of constant coefficients, the approximation returns φ = (φ 1 , . . . , φ M ) positive, constant with respect to x with values φ i (x) = φi in excellent accordance with the approximation method obtained by directly looking for φ = φ constant, as the Perron eigenvalue of a given matrix.
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 55 Figure I.5.: Classification of lineages by types, depending the location of arrests. Lineages presenting non-terminal arrest are called type B, the other ones are type A. It is actually a simplification of the classification made in Chapter 3 which accounts for type H lineages, that enter senescence during a sequence of non-terminal arrests.

Figure I. 8 .

 8 Figure I.8.: Graphs of the day-to-day evolution of the number/concentration of cells (left) and the average and the mode of telomere lengths (right) during the population experiment from both experiment and simulation. Average and standard deviation on k = 15 simulations (each starting with N init = 1000 cells) and 3 experiments. The discrepancy on the last days of the experiment are due to the apparition of the postsenescent survivors, are neglected in our model.

Chapter

  

1

 1 

Figure 1 . 1 .

 11 Figure 1.1.: Scheme of the growth mechanism of a cell with growth rate τ = τ (x).

Proposition 1 . 1 (

 11 Positivity). Consider (λ, N, φ) a weak solution to (GF v ) with λ > 0. Assume (HV D ), (Hτ pos ), (Hγ-τ ), (Hβ supp ) and (Hκ irr ) satisfied. Then, for all i ∈ I

1 and N red 2 1 ≡

 21 are non-zero. Adapting the proof of Proposition 1.1 to each of the strongly connected components of the graph of κ, simply reduced to {v 1 } and {v 2 }, shows that for each i ∈ {1, 2}, N red i is either zero everywhere or positive on b 2 , +∞ . The normalization condition i∈{1,2} ∞ 0 N red i (x) dx = 1 implies that at least for one i ∈ {1, 2}, N red i is non-zero. Both N red 1 and N red 2 cannot be non-zero, otherwise Lemma 1.2 would work (in equality (1.14), we need the existence of i = j such that N red i = 0 and N red j= 0) and we could use it to prove the long-time convergence of system (1.20) towards a stationary sate (fourth step of Theorem 1.4). That would contradict[START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF]. The only possibility is that N red 0 and N red 2 (x) > 0 for x ≥ b 2 or the opposite and then λ = λ 2 or λ = λ 1 respectively.
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 13 Figure 1.3.: Time evolution of the estimates of the instantaneous population growth rate obtained with coefficients τ(v, x) = vx, γ(v, x) = x 2 τ (v, x)and the two variability kernels κ red (left) and κ irr (middle). For any t > 0, λ n (t) is obtained by linear regression of the log of the total number, s → ln S n(s, v, x) dvdx (right), on the time interval t 2 , t .
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 12 Figure 1.2.: Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size x = 1 (top). Obtained with coefficients τ (v, x) = vx, γ(v, x) = x 2 τ (v, x) and the two variability kernels κ red (1.2a) and κ irr (1.2b).

  [START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF], still with τ : (v, x) → vx and γ : (v, x) → vx3 . Both κ StF and κ F tS model populations of two species (with traits v 1 < v 2 ) of which only one can mutate into the other one; the slowest species for κ StF (Slow to Fast) and the fastest for κ F tS .

  Figure 1.4.: Time evolution of the size distribution per feature at size x = 1, for different variability kernels κ F tS (p) and the coefficients τ(v, x) = vx, γ(v, x) = x 2 τ (v, x). On Figure1.4a, the quantity plotted is the rescaled density ñt = n t (v, •) e vt in the absence of mixing (p = 1); this allows to quantify the dissipativity in v = v 1 (missed without rescaling). On Figure1.4b, p 0 is defined by(1.22) and ε = 0.05 to show that p 0 appears as a critical value for p in the case Fastest to Slowest.

8 Figure 1 . 5 .

 815 Figure 1.5.: Time evolution of the size distribution per feature, either the whole distribution at a few times (bottom) or at many times but only at size x = 1 (top). Obtained with coefficients τ (v, x) = vx, γ(v, x) = x 2 τ (v, x) and the variability kernels κ StF (0.5), κ F tS (0.2) and κ F tS (0.8). The corresponding Malthus parameters were estimated to be (up to 10 -3 precision) v 2 = 2, v 1 = 1, and λ 2,0.8 ≈ 1.356, respectively, in accordance with the conjecture (see Table1.2). The decrease in amplitude observed on Figure1.5b-(middle) is a consequence of the dissipativity of the numerical scheme (see Remark 1.1).

for the weak* 2

 2 For any L 1 loc (R) function f , the convolution product * is defined for all ϕ in C c (R) (the space of continuous compactly functions on R), as f * ϕ : x → +∞ -∞ f (s)ϕ(s -x) ds. For f only defined on R + , f * ϕ makes sense as the truncation to R + of the convolution between f extended to R by zero and ϕ in C c (R + ).

  while (Hτ pos ) provides τ = τ η with a lower bound on V × [η, A], say m [η,A] . At the end, together with condition (1.28) we have 2δM R = µ > min η, m [η,A] , C R ω making things clear.

Figure 2 . 1 .

 21 Figure 2.1.: Variation of the effective fitness of a population with two features: one fixed (equal to 4) and the other varying in [1, 8]. When κ is uniform (left) the effective fitness v coincides with the geometric mean of v 1 and v 2 , when κ = κ(α) is of the form (2.19) with α = 1 2 + 1 2M (right), v coincides with the arithmetic mean of v 1 and v 2 .

Figure 2 . 3 .

 23 Figure 2.3.: Variation of the effective fitness of a population defined by the features V M (regularly spaced in V) and the kernel κ M , with respect to M . Obtained with V = [1, 7].

Figure 2 . 5 .

 25 Figure 2.5.: Variation of the effective fitness of a population defined by the features V M,σ (regularly spaced inV σ = σV + (1 -σ)v, v = 4) and the kernel κ M , with respect to σ for M = 10 and M = 100. The last four pairs of figures correspond to kernels κ = κ(α) satisfying (2.19) (with α equal, from top to bottom, to 0,8, 0,2,1 2 + 1 2M and 1 M . Variability is beneficial only when α is close to 1, i.e mother/daughter cells' growth rates are strongly positively correlated.

= 100 Figure 2 . 6 .

 10026 Figure 2.6.: Variation of the effective fitness of a population defined by M features randomly distributed inV σ = σV + (1 -σ)v, v = 4 (from v i ∼ U Vσ i.i.d.)and the kernel κ M satisfying (2.19) with α = 1 2 + 1 2M , with respect to σ; for M = 10 and 100, V = [1, 7] and σ ∈ (0.03, 1].
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 27 Figure 2.7.: Approximation of the solution φ to (2.10) obtained with our numerical method for γ(v, x) = bτ (v, x) = vb, V = {1, 2, 3, 5} and for two different kernels. In accordance with theory (see Theorem 2.2, φ = (φ 1 , . . . , φ M ) is positive, constant with respect to x and the numerical values of the φ i corresponds to the values obtained with the approximation method of Section 2.2.4 (see Table2.2).
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 28 Figure 2.8.: Approximation of the solution φ to (2.10) obtained with our numerical method for γ(x) = bτ (x) = bx, and different sets of features and kernels.
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 31 Figure 3.1.: Graphical representation of the experimental dataset of cell cycle times along 187 telomerase-negative lineages.Lineages are ordered horizontally by increasing length. Each pixel corresponds to a cell cycle, in a given lineage at a certain generation, whose color indicates its duration. The lineages terminated by " " were still alive at the end of measurements, the other ones were dead.
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 32 Figure 3.2.: Scheme of the experimental procedure of the population experiment.

  Figure 3.3.: Evolution of the concentration of cells through the population experiment.

  Figure 3.4.: Day to day evolution of telomere lengths in the population experiment.

Figure 3 . 5 .

 35 Figure 3.5.: Scheme of the laws for single-cell dynamics: a newborn cell is attributed a phenotype that depends on the phenotype of its mother and, in most scenarios, on the length min of its shortest telomere. In population, these transitions probabilities are tested for each daughter cell, independently. The cell at generation 0 is non-senescent of type A (see below). Each newborn cell can die accidentally with probability p accident ; otherwise it can enter senescence if not-senescent (by undergoing a terminal arrest) with probability p sen that depends on its type and its min . If not, it can enter/exit a non-terminal arrest with probabilities p nta ( min -dependent) and p repair , respectively.Eventually senescent cells can die naturally with probability p death .
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 36 Figure 3.6.: Scheme of DNA replication mechanisms illustrating the asymmetry in the synthesis of leading and lagging strands, at the origin of the end-replication problem.
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 3 Figure 3.7.

Figure 3

 3 Figure 3.7.: Scheme of the shortening of the two telomeres of one chromosome through replication according to the telomere-shortening model proposed in [85].

Figure 3 . 9 .

 39 Figure 3.9.: Experimental classification of lineages in types, depending the location of long cycles.

Figure 3 .

 3 Figure 3.10.: Classification of lineages by types, depending on location and the nature of arrests.

min 1 ,Remark 3 . 3 .

 133 b sen e -asen +1 min ≤ , (P sen ) parameterized by (a sen , b sen , min ) ∈ [0, 1] × (0, 1] × Z. The law (P sen ), in addition to be supported by different studies, presents the advantage of encompassing simpler laws: senescence entry with constant probability b sen (taking a sen = 0, min = 0), or at a deterministic threshold min (a sen = 0, b sen = 1), without threshold effect for min ≤ 1 asen ln(b sen ), etc.Another specificity of our model, discussed with more detail in Section 3.3.1, is that we allow the law for senescence entry to be different for type A and type B cells, looking for possibly different parameters (a senA , b senA , minA ) and (a senB , b senB , minB ) for type A and type B, respectively: (H A =B ) p senA ( ) = min 1, b senA e -asen A +1 min A ≤ , (P sen A ) p senB ( ) = min 1, b senB e -asen B +1 min B ≤ , (P sen B )

Figure 3 .

 3 Figure 3.11.: Distributions of the number of long senescent cycles in different sets of lineages of the experimental dataset. The distribution among type B cells appears to be geometrical, which is not the case of type A lineages. The discrepancy could be due to the lineages misclassified as type A, which are actually type B with shorter senescence as illustrated in Appendix C.1.

  Histogram. The bin width is 10 min for normal cycle, 40 min for long cycles Kernel density approximation for the densities of cell cycle duration times.

Figure 3 .

 3 Figure 3.12.: Experimental distributions of cell cycle duration time among four distinct categories, defined on the basis of the experimental classification of lineages, for D = 180 min. The set of terminal arrests plotted on these figures excludes the terminal arrests directly preceeding death (which are signifiicanlty longer).

Figure 3 .

 3 Figure 3.13.: Representation of the experimental generations (x-axis) at the onset of a first non-terminal (nta) or terminal (sen) arrest, among different lineages (indexed on the y-axis by increasing generation of arrest) of same characteristics (classified as A or B type and/or senescent) (left). They are obtained from the lineage dataset (see Figure 3.1) after classifying every cell cycle as either long or normal with threshold D = 180 min.Every lineage is classified depending on the location of its long cycles and we extract the generation(s) at which it got arrested. For every generation graph, renormalizing the y-axis yields the empirical cumulative distribution function of the experimental law of the associated generation of first arrest (right).

G 2

 2 have n nta = 115, n sen = 148, n senA = 64 and n senB = 84.

27 Figure 3 . 27 Figure 3 .

 273273 Figure 3.14.: Best fit of the laws (P nta ) and (P sen ) retrieved by CMA-ES estimations run on the different domains D 5,1 , D 5,2 and D 6 .

27 Figure 3 . 27 Figure 3 .

 273273 Figure 3.16.: Best fit of the laws (P nta ), (P sen A ) and (P sen B ) retrieved by CMA-ES estimations run on the different domains D 8,1 , D 8,2 and D 9 .

1 Figure 3 .

 13 Figure 3.18.: Results of the estimation of the laws (P nta ), (P sen A ) and (P sen B ) run in D 10 defined onTable C.1b.

Figures 3 .

 3 19 and 3.20 show that there are in good accordance. A few remarks can be derived:• In silico, the number of consecutive non-terminal arrests is not sensitive to the classification errors that would result from the inability to experimentally differentiate terminal arrests from the non-terminal ones directly preceding them (Figure3.19); but the number of consecutive terminal arrest is (Figure3.20). • Modeling the occurrence of any sequence of non-terminal arrest as the first sequence was sufficient to fit well the experimental distribution of the length of the sequences of non-terminal arrests after a first sequence (Figure3.20). This is visually confirmed by Figure3.21 below.

Figure 3 .

 3 Figure 3.19.: Distributions of the number of consecutive non-terminal arrests distinguishing between each sequence of non-terminal arrests. Experimental(3.19a) or simulated data -obtained by classifying lineages and cells either according to their effective type(3.19b) or as they would have been perceived experimentally(3.19c). Average and standard deviation obtained from k = 1000 simulations of n nta = 115 lineages. For clarity, the simulated graphs are truncated for numbers greater than 5.

Figure 3 .Figure 3 .

 33 Figure 3.20.: Distributions of the number of consecutive terminal arrests. Experimental (3.20a) or simulated data -obtained by classifying lineages and cells either according to their effective type (3.20b) or as they would have been perceived experimentally (3.20c). Average and standard deviation obtained from k = 1000 simulations of n nta = 115 lineages. For clarity, the simulated graphs are truncated for numbers greater than 5.

Figure 3 .

 3 Figure 3.22.: Graph of the computation time and allocated memory of a population simulation with respect to the initial number of cells. Average and standard deviation on k = 25 simulations.

Figure 3 .

 3 Figure 3.23.: Time evolution of the minimal telomere length in the population with respect to the initial number of cells N init . Average and 5 th and 95 th percentiles on k = 25 simulations. (The plateau sections correspond to saturation, during which the population stops evolving.) Although decreasing with N init , the shortesttelomere length seems to converge.

Figure 3 .

 3 Figure 3.24.: Graphs of the times of senescence (left) and extinction (right) of simulated populations with respect to the initial number of cells N init . Average and standard deviation on k = 25 simulations. Although senescence and extinction times keep increasing with N init , the log-scale indicates that the increase tends to zero.

DensityFigure 3 .

 3 Figure 3.25.: Distribution of the minimal (left) and maximal (right) shortest telomere lengths in a population of N init cells.

Figure 3 .

 3 Figure 3.26.: Time evolution of three population average quantities with respect to the initial number of cells N init : the generation (right), cells' average (top left) and shortest (bottom left) telomere length. Average (and 5 th and 95 th percentiles at the left) on k = 25 simulations.

Figure 3 .

 3 Figure 3.27.: Graph of the times of saturation (on each day of saturation) of simulated populations with respect to the initial number of cells N init . Average and standard deviation among the simulations that have reached saturation among k = 25 simulations.

Figure 3 .

 3 Figure 3.30.: Graphs of the day-to-day evolution of the number/concentration of cells (left) and the average and the mode of telomere lengths (right) during the population experiment from both experiment and simulation. Average and standard deviation on k=25 simulations and 3 experiment.

Figure 3 .

 3 Figure 3.31.: Histograms of the telomere length triggering the entry in senescence of type A cells (left), type B cells (middle) or every senescent cell (right). Obtained from k = 1000 simulations of n lineages (n = n sen A , n sen B , n sen respectively). The classification of cells by type is either as defined by our model (top) or as perceived experimentally (i.e type H cells are not recognized) (bottom).

  3)-(3.4) in Section 3.2.2.3; see Figure 3.33. Doing so, we test the effect of: • A translation of T bp (Figures 3.34 and 3.35-left). • A dilatation at the left side of the mode of the distribution that translates its infimum by 0 bp (Figures 3.34 and 3.35-middle). • A dilatation at the left side of the mode of the distribution that translates its supremum by 1 bp (Figures 3.34 and 3.35-right).

Figure 3 .Figure 3 .

 33 Figure 3.33.: Graphical representation of the different transformations applied to the distribution f 0 of initial telomere lengths: translation (left), dilatation of small (middle) or large (right) lengths.

Figure 3 .

 3 Figure 3.37.: Generations at the onset of the first non-terminal arrest and senescence (left) and the two first sequences of non-terminal arrests and senescent (right) of n nta-sen = 84 and n nta2-sen = 35 lineages, respectively, ordered by increasing generation of senescence onset. Solid lines show experimental generations; dotted lines and their associated confidence show the average and 5 th and 95 th percentiles on k = 10 5 simulations.

Figure 3 .

 3 Figure 3.38.: Time evolution of quantity derived from the total number of cells and the number of senescent cells (both of each type). Average and 5 th and 95 th percentiles on k = 15 simulations, each ran from N init = 1000 cells.

Figure 3 .

 3 Figure 3.39.: Time evolution of telomere-length-related quantities in a population through daily dilution. Average and 5 th and 95 th percentiles on k = 15 simulations, ran from N init = 1000 cells.

CountFigure 3 .

 3 Figure 3.40 indicates that • On the first day, the vast majority of the cells entering senescence are type B, since telomeres of type A cells have not approached the threshold min A = 27 bp yet. • On day 2, type A cells begin to enter senescence and from day 3 to day 5 they are significantly more type A cells entering senescence than there are type B • The last cells entering senescence from day 6 onward are mostly type B. This is in good accordance with the ratio of type B cells among senescent cells plotted on Figure 3.38-top right, as well as the evolution of telomere length through time (see Figure 3.39: min A is reached on day 2 by the cells with the shortest shortest telomere of the population, between day 3 and 5 for the cells with average shortest telomere).

Figure 3 .

 3 Figure 3.40.: Day-to-day evolution of the distribution of the telomere lengths triggering the entry in senescence. Average on k = 30 simulations, each ran from N init = 300 cells at time 0.

Figure 3 .Figure 3 .

 33 Figure 3.42.: Outputs of population simulations with respect to the initial distribution of telomere lengths, translated by different T (in bp). Average on k = 25 simulations, each ran from N init = cells.

Figure 3 .

 3 Figure 3.45.: Outputs of population simulations with respect to the rate p accident of accidental death. Average on k = 25 simulations, each ran from N init = 300 cells.

Figure 3 .

 3 Figure 3.46.: Time evolution of the average generation through the population experiment. Average on k = 15 simulations, each ran from N init = 1000 cells.

  for all i ∈ I.

  a CFL equal to 1 for the greatest feature v M , namely δt := 1 v M δx 1 + δx that ensures positivity for all i ∈ I.

  explicit expression:u i (x) = u i (0) e dy f i (s) τ ε i (s) ds , ∀i ∈ I, ∀x ∈ [0, R]. (B.4)

L

  dy β ε (2s) j∈I w j (2s)κ ji 1 ε [0,R] (2s) ds .A change of variables and rough estimates, using (1.27) to bound τ ε , bring: ∀i ∈ I, ∀x ∈ [0, R]|u i (x)| ≤ δ dy β ε (2s) j∈I |w j (2s)|κ ji 1 ε [0,R] (2s) ds ≤ ∞ β ε (s)1 ε [0,R] (s) ds :=k ε(x) w X R .

L

  ∞ β ε (s)1 ε [0,R] (s) ds ≤ ε 0 β ε (s) ds = β ε L 1 (0,ε) ≤ 2 β L 1 (0,ε)(using that β ε converges to β in L 1 (0, R)), and then for x in ε 2

β L 1 1 . 1 .κ

 111 (s-ε, s) := I(α, ε). Therefore, β being L 1 loc [0, +∞) (see Assumption (Hβ 0 )), we can fix ε = ε0 such that sup s∈[0,R]β L 1 (s, s+ε0) <This way, for any small ε, k ε is bounded by3 4 on 0, ε0 2 and to have k ε strictly less than 1 on [ ε0 2 , R] as well, it only remains to fix α = α 0 such that e Going back to (B.5), we are now able to conclude:u X R ≤ k w X R , ji I(α 0 , ε0 ) < 1,for 2δM R ≤ µ and I, α 0 , ε0 independent of ε, defined by the three previous equations. As strict contraction, T f thus admits a unique fix-point that is precisely the solution to (B.3).To ensure k < 1 we impose from now one to the end of the proof that2δM R ≤ µ, α 0 ≤ α. (B.6)ii) G ε is continuous. For any i in I, x in [0, R], taking the absolute value in (B.4) we obtain inequality (B.5) with at the right-hand side: terms in u instead of w, similarly controlled by k u X R , and an additional term in f , handled as follows:

∂

  ∂x u i (x) = -α + γ ε i (x) τ ε i (x) u i (x) + 4β ε (2x) j∈I u j (2x)κ ji 1 ε [0,R] (2x) + f i (x) Ascoli-Arzelà theorem, A i := {u i | u = G ε (f ), f ∈ B X }, i ∈ I, is relatively compact in C ([0, R])for the supremum norm. Thus from any sequence (u n ) n∈N in A we can extract, by M successive extractions, a subsequence (u ϕ(n) ) n∈N such that every sequence (u ϕ(n) i

  R] (s) ds .Then, λ ε non-positive would imply: ∀x ∈ [0, R -ε],

≥ δM e x 0 β

 0 ε (s)ds .However (Hβ ∞ ) and (Hτ ∞ ) (inherited by β ε and τ ε , resp.) successively guarantee: ∀i ∈ I• the existence for all k ∈ N of A > 0 such that β ε (s) ≥ k s for s ≥ A, which implies i∈I τ ε i (x)N ε i (x) ≥ δM e x 0 β ε (s)ds ≥ δM e

  )N ε j (2s)κ ji 1 ε [0,R] (2s) ds ≤ δ + 2 max i,j

  Then, the entropy dissipation D H [n|p] of n w.r.t. p, defined by

	dt E H [n|p](t) := -D H [n|p](t), Proposition 1.2 (GRE principle). Assume (Hγ-τ ), (Hβ d can be expressed, for any H : R → R convex, as

dvdx, with H : R → R a convex function, ψ weak solution to (GF * t,v ) and n and p such that the integral is defined. supp ) and (Hκ prob ) are satisfied and n and p are weak solutions to (GF t,v ), and ψ to (GF * t,v ), with p ≥ 0 and ψ such that supp(ψ t ) ∩ V× b 2 , +∞ ⊂ supp(p t ) and ψ t p t ∈ L 1 (S) for all positive t.

  (ψ t )p t H nt pt + ψ t p t A t .

				1.2. Main results
	and thus
		∂ ∂t ψ t p t H nt pt	+ ∂ ∂x τ ψ t p t H nt
	It then remains to integrate for (v, x) in S to get an expression of the entropy
	dissipation. The x-derivative term cancels and we obtain
	d dt	S	ψ t p t H nt pt dvdx =
				56

pt = F(p t )ψ t -F * S F(p t )ψ t -F * (ψ t )p t H nt pt dvdx

  x) and the two variability kernels κ red (left) and κ irr (middle). For any t > 0, λ n (t) is obtained by linear regression of the log of the total number, s → ln S n(s, v, x) dvdx (right), on the time interval t 2 , t .

		λ n	λ τ	λ γ
	Non-mixing 3.005 3.000 3.007	Table 1.1.: Estimations of the Malthus pa-
	Mixing	1.469 1.465 1.470	rameters through different methods.

Table 1 .

 1 2.: Conjecture of the long-time behavior when κ is κ StF (p) or κ F tS (p) depending on p ∈ P. The value of p 0 and λ v 2 ,p are conjectured to be defined by(1.22) and (1.23), resp.

  = 2, there exists pairs (κ, V) such that the effective fitness is lower than v G or greater than v A (Figures 2.3 and 2.5). • When κ = κ(α) is defined by (2.19), variability is beneficial to population growth only when mother/daughter cells' growth rates are strongly positively correlated (i.e. α close to 1), see Figures 2.4 to 2.5 and Table 2.1.

	and 2.6).	satisfies (2.19) with α = 1 2 + 1 2M (Figures 2.3, 2.5
	• Just as for M	

  and the kernel κ M satisfying (2.19) with α = 1 2 + 1 2M , with respect to σ; for M = 10 and 100, V = [1, 7] and σ ∈ (0.03, 1].

Table 2 .

 2 .7 and table 2.2. 2.: Approximation of the constant solution (φ i ) 1≤i≤M to (2.10) obtained for γ(x) = bτ (x) = b, V = {1, 2, 3, 5} and for two different kernels with two methods. Method (a) uses that φ is constant w.r.t x to approximate it directly as the dominant eigenvector of a matrix (using linalg.eig). (b) consists in resolving various independent direct problems as described above; φ is searched as a function of i and x and the values φ i returned in the table correspond to the average on the approximations φ ik of φ i (x

			Uniform kernel			Other kernel
	Approximation method φ 1	φ 2	φ 3	φ 4	φ 1	φ 2	φ 3	φ 4
	(a) Section 2.2.4	1 1.545 1.887 2.293 1 1.263 1.549 3.130
	(b) Section 2.3.1	1 1.540 1.878 2.278 1 1.257 1.540 3.108

k ), for k ∈ {1, . . . , R}. All values are normalized such that φ 1 = 1.

3.2.3.4. Law for the number of cycles per sequence of arrest Existing results.

  Looking at microfluidics data, one notices that the arrests following a normal cycle, no matter if terminal or not, are very often followed by one or several other arrests. From this simple observation, Martin et al.[START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] looked for a law describing the statistics of the number of consecutive long cycles in sequences of arrests.Martin et al.'s first outcome is that non-terminal sequences statistically differ from terminal ones. They proved that the number of consecutive non-terminal arrests obeying a geometrical law is consistent with experimental data for D between 140 and 330 min. Biologically this would correspond to a constant probability p repair to either repair or adapt after the initial damage.

Table 3 .

 3 3.1. All the experimental values correspond to the values measured in the yeast S. cerevisiae. 4.: Table of laws for the occurrence of arrests. The variable is the length of the cell's shortest telomere. One should not be mistaken: the probabilities are not probabilities to enter/exit an arrest but conditional probabilities to enter/exit an arrest

	Law	Parameters value	Source

  in its 3.2.2. python version available on GitHub at https://github.com/CMA-ES/pycma. Based on the principles of biological evolution, CMA-ES explores in a stochastic and evolutionarydriven way a certain domain D of parameters in order to estimate the point(s) of the domain that minimizes a given cost function E. For more details on the algorithm and on the CMA-ES parameters that we have adjusted see Table3.6 or directly the GitHub link.

  and some rescaled (diagonal) N -matrix otherwise. Initial standard deviation. See above. It should be small if p 0 is a priori close to the solution. Weights of the errors from the different graphs, see(3.6) ēB% Upper bound for e B% . For every candidate p ∈ D, if it is such that the error e B% (p) (defined by (3.7)) exceeds ēB% , the value of the cost function at p is set to NaN which forces CMA-ES to forget p and draw another point. At the end the optimization is run in the subset of D where e B% ≤ ēB% . This is a good way to avoid runtime errors in the simulation of generations arrest of type A or B lineages in subsets of D corresponding to laws of arrest that makes type A or B lineages very unlikely (where the proportion of type B lineages close to 1 or 0, resp.). Distance defining the error between experimental and simulated graphs:

	σ 0	
	ω	
	Error	
	functions	
	k	Number of simulations of experimental G-graph to run and average to
		approximate the corresponding theoretical graph.
	• 2	

Table 3 .

 3 6.: Table of the parameters of the optimization method, distinguishing between parameters of the optimizer (CMA-ES) and of the error functions (E and e B% ).

Table 3 .

 3 8.: Percentage of cells whose entry in senescence was triggered by a telomere length strictly greater than min A for the different types of cells of Figure 3.31 and the different types of classification.

  Figure 3.32.: Generations at the onset of the first non-terminal arrest (left) and senescent (right) retrieved from the simulation of n nta = 115 and n sen = 148, respectively, lineages ordered by increasing generation of arrest (orange), or by minimal (pink) or average (purple) telomere length at generation 0. Average on k = 1000 simulations.

						3.4. Results			
	Lineage	50 100			Lineages ordered by generation of 1 st nta	Lineage	150 50 100	Lineages ordered by generation of senescence initial min initial avg	
						initial min					
		0				initial avg		0			
		0	10	20	30	40		0	10	20	30	40	50
		Generation of the first non-terminal arrest			Generation of senescence onset

Table 3 . 9

 39 LineageFigure 3.35.: Generation of the onset of senescence with respect to different transformations of f 0 ; other things being equal. Average and 5 th and 95 th percentiles on k = 1000 simulations.

	B. In [255],

.: Experimental proportion of type B lineages with respect to the mode of the distribution of initial telomere lengths. Source:

[START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] 

[START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] 

  .[START_REF] Campillo | Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models[END_REF]. Notably, we access the shortest telomere length which is not accessible experimentally (see the last paragraph of Section 3.1.2.2).• The distribution of the telomere lengths triggering senescence, see Figure3.40.

	Number of cells	0.0 0.2 0.4 0.6 0.8 1.0	×10 6							Average type B senescent Extremum values 95% of the values	Number of senescent cells	0 1 2 3	×10 5					senescent type B type H Extremum values 95% of the values
			0	1	2	3	4	5	6	7	8			0	1	2	3	4	5	6	7	8
						Time (day)									Time (day)
		1.0											1.0	senescent	
	Proportion of cells	0.2 0.4 0.6 0.8		type A type B type H							Proportion of cells	0.2 0.4 0.6 0.8	Extremum values 95% of the values
		0.0											0.0				
			0	1	2	3	4	5	6	7	8			0	1	2	3	4	5	6	7	8
						Time (day)									Time (day)

In biology, homeostasis is a self-regulating dynamical process whereby biological systems tend to stabilize a key factor (here cell size) or more generally a set of factors around a value that is beneficial for survival, notably by adjusting to external conditions.

Within the framework of structured-population equations one could also perfectly integrate stochasticity at the population scale using stochastic differential equations but this goes being the scope of our study.

Content of the thesis

More generally Λ : v → λv is continuous and monotonous providing that τ (•, x) is for a.e.x ∈ (0, +∞), where λv is the Malthus parameter associated to (I.2) with coefficients τ v = τ (v, •) and γ v = βτ v .

This is v = V vκ(v) dv in her continuous setting, which corresponds in the finite setting to vM = M i=1 v i κ i .

If seemingly contradictory, the reviews of Hayflick[START_REF] Hayflick | A Brief History of the Mortality and Immortality of Cultured Cells[END_REF] and Campisi and d'Adda di Fagagna[START_REF] Campisi | Cellular senescence: when bad things happen to good cells[END_REF] (among others) explain how they can both be valid from an evolutionary perspective.

A plasmid is a small, extrachromosomal DNA molecule.

From approximately 300 bp in yeast to several kilobases in mammals.

In cell culture, passage or subcultivation is a process consisting in "transferring some or all cells from a previous culture to fresh growth medium"[Wikipedia]. This allows to grow cell culture, which if not subcultivated/passaged, would rapidly stop growing because of the saturation of the medium. The number of passages a line of cultured cells has undergone, or passage number, can be used as a measure of its age.

As explained in[START_REF] Xu | The many types of heterogeneity in replicative senescence[END_REF], the proliferative potential was "initially defined for primary human fibroblasts". The final time then corresponded to the first time from which the culture has not been able to undergo at least one population doubling for 2 weeks[START_REF] Smith | Intraclonal Variation in Proliferative Potential of Human Diploid Fibroblasts: Stochastic Mechanism for Cellular Aging[END_REF]. In telomerase-negative budding yeast cultures the proliferative potential is computed "from the moment telomerase is inactivated until the emergence of postsenescence survivors (see the end of the previous section)."

For example, DNA molecules do not travel at a constant speed during gel electrophoresis making the distance traveled not linearly related to the length.

The separation of the two strands is actually initiated from several locations, the replication bubbles (in red on Figure3.6), within the helix. This results in several replication forks progressing simultaneously from replication bubbles up to the two extremities of the DNA helix. For simplicity though, only one replication bubble is represented on the right side of Figure3.6.

See Section 3.2.3.1 for the definition of experimental senescence and experimental type.

See notations in the first paragraph of Section 3.3.1.1. One should not be mistaken: on the "G-graphs" plotted on Figure3.13-left the distance is not taken "horizontally" as usual, but "vertically" since the distance is actually between G -1 maps.

Here and in the rest of the present section, the value after ± corresponds to the maximum gap between the average and the extremum values.

This correspondence holds true assuming that the simulation focuses on 1 mL.

Telomere lengths, phenotype, cell cycle duration time, ancestor index. . .
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Proof. Under (2.1), (2.3), and (2.4) or (2.5) [79, Theorem 1] ensures, for any v > 0, the existence and uniqueness of the solution to (2.11)-(2.12) with growth rate x → vτ . Denote by λ v the eigenvalue solution.

We introduce the map Λ : v → λ v . Owing to the computations done in Chapter 1 to prove Lemma 1.1 (monotonicity result in the absence of heterogeneity) we get from (2.3) that:

(Note that this can also be directly inferred from equation (2.11)). In particular Λ(v) = vΛ [START_REF] Abdallah | A two-step model for senescence triggered by a single critically short telomere[END_REF]. Given any Malthus parameter λ > 0, the corresponding feature is thus uniquely defined by

.

Definition (Effective fitness of a heterogeneous population). Consider a population of cells composed of M subpopulations with features (v 1 , v 2 , . . . , v M ) transmitted at division according to a kernel satisfying (2.1), having growth and fragmentation rates of the form (2.3). We call λ its Malthus parameter. The effective fitness of the population is the unique v > 0 such that λ is the Malthus parameter of the homogeneous population of feature v. In other words, the effective fitness of the population is the unique v > 0 such that λ is the (unique) Malthus parameter solution to (2.11)-(2.12) with growth rate x → vτ (τ satisfying (2.4) or (2.5)).

The well-posedness of v is guaranteed by the fact that the growth and fragmentation rates considered in (2.11)-(2.12) satisfy (2.3). Lemma 1.1 (from Chapter 1) can allow more general coefficients but they will not interest us here.

Remark 2.1. Rather than "effective fitness", "effective feature" would have made clearer the homogeneity between the individual features and their equivalent "effective fitness". Still, "fitness" makes sense because the effective fitness is equal to the Malthus parameter, sometimes referred as the fitness of the population, up to a multiplicative constant (see the proof below). Also, it is a more classical term, already used in other fields.

by Lin and Amir [START_REF] Lin | The Effects of Stochasticity at the Single-Cell Level and Cell Size Control on the Population Growth[END_REF] in the finite-variability setting. They besides consider the case of heredity with positive correlations (reported e.g. in E. Coli) reporting that the variability in growth rate becomes beneficial to population growth when the mother and daughter cells' growth rates are strongly positively correlated.

To specifically assess the influence of the mother-daughter correlations in growth rate in how variability affects population growth, we consider kernels κ = κ(α) of the form (2.19) for different values of α. The numerical results, plotted on Figures 2.4 and 2.5 and summarized by Table 2.1, are the following:

• At σ fixed, population growth (i.e. λ α or equivalently v α ) increases with α, i.e with the mother-daughter correlations in growth rate. • Cell-to-cell variability in growth rate either decreases or increases population growth depending on whether or not α is lower or greater than a threshold α 0 This was expected for α ≈ 1 since then, as soon as M is not too small, the population corresponding to κ(α) exhibits little mixing and is thus asymptotically close to a homogeneous population of feature max(V σ ) = σv max . Owing to Corollary 2.1 in the case M = 2, we conjecture that α 0 := 1 2 + 1 2M and v α 0 = v A (the effective fitness is exactly the arithmetic mean of the features when α = α 0 ). This is supported numerically for M > 2 (Figure 2.5).

Mother-daughter correlations

Effect of variability on population growth Detrimental (V α decreasing)

Table 2.1.: Quantitative results of the effect of cell-to-cell variability in growth rate on population growth when the kernel κ = κ(α) is defined by (2.19). Obtained by approaching the effective fitness v(σ; α) (equivalently the Malthus parameter λ = bv) for different values of σ and α that quantify the variance and the mother-daughter correlations in growth rate, respectively.

Length of the interval of features Effective fitness Replicative senescence, summary and more recent findings. When senescence is the result of the shortening of telomeres we talk about replicative senescence.

Note that senescence can also be induced directly by stresses (e.g. non-telomeric permanent DNA damage, oxidative stress, mitochondrial dysfunctions [START_REF] Campisi | Cellular senescence: when bad things happen to good cells[END_REF][START_REF] Razgonova | Telomerase and telomeres in aging theory and chronographic aging theory (Review)[END_REF]) or mother cell aging in the case of budding yeast [START_REF] Denoth Lippuner | Budding yeast as a model organism to study the effects of age[END_REF].

If telomerase appears as the main pathway for telomere elongation, other mechanisms have also been identified and investigated over the past few decades. These mechanisms, consisting mainly in telomere (or sub-telomere) recombinations [START_REF] Lundblad | An alternative pathway for yeast telomere maintenance rescues est1-senescence[END_REF][START_REF] Kachouri-Lafond | Large telomerase RNA, telomere length heterogeneity and escape from senescence in Candida glabrata[END_REF][START_REF] Begnis | RNAi drives nonreciprocal translocations at eroding chromosome ends to establish telomere-free linear chromosomes[END_REF], are at the origin of specific pathways leading to senescence escape. The ALT pathway (for Alternative Lengthening of Telomeres) for example, is used by the cancer cells with no telomerase activity, or by the so-called post-senescent survivors that emerge in late-passage 4 cultures of telomerase-negative cells [START_REF] Lundblad | An alternative pathway for yeast telomere maintenance rescues est1-senescence[END_REF][START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Teng | Telomerase-Independent Lengthening of Yeast Telomeres Occurs by an Abrupt Rad50p-Dependent, Rif-Inhibited Recombinational Process[END_REF][START_REF] Xu | The many types of heterogeneity in replicative senescence[END_REF].

A focus on the question of heterogeneity

The earliest studies were mostly looking for age-related changes in senescent cultures.

To this end, biologists would compare cultures grown from cells of different in vitro age (e.g. coming from subcultures at different passages [START_REF] Merz | Viability of human diploid cells as a function of in vitro age[END_REF]) or in vivo age (e.g. human cells coming from donors of different age, healthy or suffering from degenerative disease [START_REF] Allsopp | Telomere length predicts replicative capacity of human fibroblasts[END_REF][START_REF] Goldstein | Diabetes mellitus and aging: diminished plating efficiency of cultured human fibroblasts[END_REF]). While some quantities were identified to vary monotonously with age they were also found to exhibit variability; among them for example the cell cycle duration (or fraction of cells arrested in G1 or G2 phase) [START_REF] Absher | Genealogies of clones of diploid fibroblasts: Cinemicrophotographic observations of cell division patterns in relation to population age[END_REF][START_REF] Macieira-Coelho | The division cycle and RNA-synthesis in diploid human cells at different passage levels in vitro[END_REF], the ability to synthesize DNA [START_REF] Cristofalo | Cellular senescence and DNA synthesis: Thymidine incorporation as a measure of population age in human diploid cells[END_REF][START_REF] Macieira-Coelho | The division cycle and RNA-synthesis in diploid human cells at different passage levels in vitro[END_REF] or to divide [START_REF] Hayflick | The limited in vitro lifetime of human diploid cell strains[END_REF][START_REF] Lundblad | A mutant with a defect in telomere elongation leads to senescence in yeast[END_REF][START_REF] Smith | Variation in The Life-span of Clones Derived From Human Diploid Cell Strains[END_REF] (seen as the time or number of division or passages before senescence, in terms of proliferative capacity/potential or lifespan), or later, the length of telomeres [START_REF] Harley | Telomeres shorten during ageing of human fibroblasts[END_REF][START_REF] Allsopp | Telomere length predicts replicative capacity of human fibroblasts[END_REF][START_REF] Cooke | Variability at the Telomeres of the Human X/Y Pseudoautosomal Region[END_REF]. In addition, the variability was increasing with age, suggesting that stochastic processes were at play.

Great attention has been paid to the proliferative (or doubling) potential, that interests us here. Expressed in population doubling (PD) the proliferative potential n between initial and final times 5 , at which the concentration of cells is N i and N f , In Section 3.3.1, these modifications are fitted together with the laws of arrest on microfluidics data. The distribution f init then retrieved is plotted on Figure 3.8b. 

Single-cell dynamics

Classification of lineages and cells

Let us agree on a few exhaustive, although partially arbitrary, rules of classification. We refer to [172, page 4.1.] for a more in-depth discussion on the classification, including an analysis of its robustness to the value of D (defined below).

Experimental classification of lineages. We first differentiate between normal and long cycles, or arrests, fixing a cell cycle duration threshold D beyond which a cycle is considered long, and normal otherwise. We choose D = 180 min, a value proposed in [START_REF] Xu | Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages[END_REF] as µ + 3σ of the cell cycle durations in the telomerase-positive population (with µ and σ the average and standard deviation), and proved in [START_REF] Martin | Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae[END_REF] by a sensitivity analysis to give rise to a statistically robust classification. Now that we can identify arrests in experimental lineages, we define as 

Characterization of the estimation method

CMA-ES estimation strategies and robustness. Overwhelming empirical evidence agree on CMA-ES convergence for most cost functions, still it has not been proven theoretically. To optimize the estimation strategy and reinforce CMA-ES robustness, we followed two classical recommendations:

• Several estimations were run in series: each new simulation kept track of the solutions returned by the previous estimations and started with bigger initial population sizes (defined in Table 3.6). In this case, we denote N = (N 1 , N 2 , . . . , N l ) the l successive population sizes. • Every estimation strategy was launched several times in parallel with exact same setting but different starting point p 0 (again we refer to Table 3.6) drawn independently in the parameter space. At the end, we checked that most of the solutions obtained were close to each other.

Sensitivity to the weight ω. To reinforce the robustness of our results we performed a sensitivity analysis to the weight ω defining the cost function (3.6), running independent CMA-ES optimizations for various ω. The results, gathered in Appendix C.2.1, suggest that the optimization is not very dependent on ω. In the following we thus chose ω := (0.3, 1, 1, 1) which brought the best results.

Results of the estimation

We refer to Appendix C.2 for a the explicit expression of the different domains D used in the following section.

Same senescence law for type A and type B cells.

We first estimated the best parameters of (P nta ) and (P sen ), when senescence entry is assumed statistically identical for type A and type B cells. The results are gathered in Appendix C.2.2.

Different domains were successively tested:

(i) D 5,1 : the distribution f init of initial telomere lengths is fixed (equal to f 0 , i.e. ( T , 0 , 1 ) = (0, 0, 0)) and min can be 0 bp, (ii) D 5,2 : same as D 5,1 except than min is forced to be more than 20 bp, (iii) D 6 : min is more than 27 bp but

The best laws fitted on each of these domains are plotted on Figure 3. Cases (i) and (iii) bring relatively similar results, suggesting that instead of having min around 0 bp we can equivalently choose min around 30 bp as long as we -Or it can bypass this quasi-deterministic way of entering senescence by becoming type B. Once type B indeed, cells have a constant probability to enter senescence at each division, which results in a great variability in the length of the telomere triggering senescence of type B (possibly longer than min A for "early type B", or way shorter for "late" type B). First, this confirms the existence of tight control mechanisms responsible for triggering senescence when a telomere becomes critically short in type A cells. And second, it suggests that these mechanisms could be altered in type B cells during non-terminal arrests. See Sections 3.4.1.1 and 3.4.2.1 for a study of telomere lengths triggering senescence.

We also conclude that the experimental generation graphs could be well fitted by a set of 8 instead of 10 parameters.

Further validation from lineage simulations

Now that we have obtained a good fit of the experimental generations of arrest, more suited to fit the laws describing the onset of arrest, let us confront some other information contained in the lineage dataset. Doing so, we qualitatively verify that the remaining parameters describing single-cell dynamics are valid.

Proportion of type B lineages.

Contrarily to the generations of arrest, the proportion of type B lineages is not very well fitted: rB% ≈ 74 % is slightly too high compared with the experimental value r B% ≈ 57 %. Although the discrepancy is significant, it must be qualified by the following considerations:

• The experimental value is likely biased downwards. Because of how is defined the classification of lineages, experimental type A are necessarily senescent dead lineages (n A = n senA ), contrarily to type B (n

However not all the n = 187 lineages of the dataset have reached senescence: 39 = n -n sen have not, because dead accidentally or still alive at the end of the experiment. Among them 31 (= n B -n senB ) identify as type B, while only n X = 8 are unclassified. As a result, there are proportionally more type B lineages than type A in the whole dataset than in the subdataset of senescent lineages:

with rB% be the proportion of type B lineages in the whole dataset.

• The confidence interval is sufficiently large. The 5 th and 95 th percentiles of a k-sample, for k = 1000 simulations, of the proportion rB% given by our first days of saturation and they saturate "less" on the third and fourth day than large populations (Figures 3.27 and 3.28, Table 3.7). In addition, the few small populations that have saturated on the fourth day have saturated earlier than large populations. Let us try to explain these observations. Given our model, the evolution of cells is independent from each other. Under pure growth division and death processes, any given subpopulation is therefore evolving independently from the rest of the population. However, cells become coupled through the total number of cells as soon as we add saturation at threshold N sat (all the cells stop evolving as soon as the total number of cells reaches N sat ). A population with a small pool of fast/slow dividing lineages will then reach saturation -and thus stop evolving-earlier/later than an homogeneous population, with the consequence of decreasing/increasing in the other part of the population the average generation at the next dilution. This probably explains why most of the small populations, by saturating late on the two first days, avoid saturation on the following days. Because cells have stopped evolving later, they are "closer to death" in accordance with early extinction time, and high proportion of senescent cells compared with large populations (see Figure 3.29-right). On the contrary, the few small simulations that have saturated on the 3 rd and 4 th days, the same that managed to reach day 7, are made of lineages that have undergone arrest: the proportion of type B cell on the last day (an average only among non-extincted populations!) is particularly high (Figure 3.29-left) and the average generation particularly low (Figure 3.26-right). One should be careful that at each time, these statistics are actually taken only on those of the k simulations that are not extincted at this time, which bias the graphs of small populations at large times, made as an average on very few simulations.

Dilution bias. Such a saturation bias is accentuated by dilution since a small pool of fast/slow dividing lineages will be over/under represented right before dilution. Therefore the rest of the population will have less/more chance to be selected by dilution than it had been in an homogeneous population.

The dilution bias should be significant only for the (small) populations that present a lot of variability in the saturation time. As already noticed, starting from around N init = 200 the initial population is large enough to have small fluctuations of the saturation time. no correlation with the initial average telomere length. The initial shortest telomere length is a crucial determinant of lineages' fate. We compare the subpopulations made of individuals sharing the same ancestor in the initial population. Ordering these ancestors by increasing length of shortest telomere allows us to look for results of the type of those obtained with lineage simulation, from ordering lineages by increasing initial min .

Results

Mode

The results, plotted on Figure 3.41, reveal interesting competition dynamics: the cells coming from the 10 % of the ancestors with the longest shortest telomere

• Are often late type B (Figure 3.41-bottom left)

• And thus tend to senesce later (Figure 3.41-bottom right).

• Rapidly outcompete the other subpopulations and almost take over the culture on the last days (Figure 3.41-top). Two explanations:

-Their subpopulation grows faster on the first days (Figure 3.41-top). According to the previous points, this can be attributed to the fact that these cells, contrary to the rest of the population, reproduce faster since most are still type A, and die less.

-And it lives longer in time. On the one hand because they can undergo in average more divisions before reaching critical telomere length (i.e. they live longer generations), on the other hand because the cells still alive on the last days have experienced (late) non-terminal arrests.

Remark 3.8 applies here too. A notable difference though is that modifying the right tail of f init , if still almost negligible on the first days, slightly impacts the last days of the experiment, when most of the remaining cells are descended from the cells that had initially the longest shortest telomeres. 

A. Numerical schemes

Cauchy problem. The numerical schemes used in the present thesis are available at https://github.com/anais-rat. They approximate the solution to the growthfragmentation equation in the case of finite variability in growth rate and equal mitosis that reads as

with n i (t, x) := n(t, v i , x) the density of cells of feature v i ∈ V := {v 1 , . . . , v M }, and size x ∈ (0, +∞) at time t ≥ 0.

We besides consider the modeling assumption

with and either constant or linear growth rates

and polynomial instantaneous division rate

Numerical scheme. Depending on the form of τ we developed two different numerical schemes. In both case, n k, i denotes the approximation of n i (t , x k ). Both are formulated so that to limit numerical diffusion and dissipation. This proves particularly crucial to capture any oscillation that would appear whenever the A.E.G. is not satisfied theoretically -in the absence of variability this corresponds to the case of a linear growth rate. This last degenerated case is addressed by Bernard, Doumic and Gabriel [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF] and we adapt their ideas by imposing the following criteria:

1. In the absence of mixing (κ = I M ), there should be no numerical diffusivity associated with the transport of the fastest subpopulation of feature v M . This corresponds to impose a Courant-Friedrichs-Lewy (CFL) condition equal to 1 in the discretization of ∂ ∂t n M + ∂ ∂x (τ M n M ) such that any cell of feature v M and size x k in the x-grid grows during δt up to another size of the grid. 2. The scheme is exact with respect to the division process (equal mitosis); meaning that the x-grid G = (x k ) k should satisfy:

A.3. Remarks

Dissipativity. The null boundary conditions considered above result in

• The loss of the incoming flux in x 2N , and of the mass that should have be created on [x N +1 , x 2N ] and [x 2N -m , x 2N ] (for the constant and linear cases, resp.) from the division of cells with size x > x 2N that are thus forgotten. • The loss of daughter cells born from the division of a mother with size x in (x 0 , x 1 ) and (x -1 , x m ) (for the constant and linear cases, resp.); and therefore the incoming flux of these growing cells in x 0 and x -1 , resp.

However, from the properties of the eigenvector N established in Chapter 1, we have that N vanishes exponentially fast towards 0 and infinity. Providing a reasonable choice of N (and m) with respect to the initial condition, the numerical error due to the truncation is therefore small and having null boundary condition (which prevents the scheme from being conservative) is sufficient.

Diffusivity. The CFL is equal to 1 only for the fastest subpopulation with trait v M , which yields diffusion in the discretization of

B. Appendix of Chapter 1 B.1. Proof of Theorem 1.5 Kre n-Rutman

The proof relies on the Kreȋn-Rutman theorem which generalizes Peron-Frobenius theorem for matrices to the infinite dimension. We refer to [START_REF] Perthame | Transport Equations in Biology[END_REF]Section 6.6] for a similar application, [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF] for the original paper and [64, Chapter VIII, Appendix] for a more recent proof and applications.

Proof. Let η, δ and ε be fixed positive real numbers and omit from notations the truncation parameters η and δ. We work on the Banach space

. . , M } has non-empty interior. We recall that • ∞ is defined by (1.25).

Direct problem.

In the following we consider equivalently the quantity u ε = τ ε N ε to hide the growth rate in the transport term. The objective is to apply the Kreȋn-Rutman theorem to the linear operator G ε : f → u defined on X R , for α > 0, as solution to

As for the φ ε , ε > 0, we can proceed the same way -using the adjoint equation of (GF ε v ) to derive a l ∞ I; L ∞ (0, R) -bound uniform in ε as well. The effective laws (top) are by definition geometrical. However, when classifying cells as they would have been perceived experimentally, the laws are not geometrical anymore. This can partially explain the discrepancies observed in the experimental dataset between the distributions of type A and type B lineages (see Figure 3.11). For clarity, the simulated graphs are truncated for numbers greater than 6.

C. Appendix of

C.2. Estimation of parameters

The different domains on which estimations have been run are described on Table C.1. We denote by D m,i the ith domain of dimension m and by D m the union of all the D m,i , i ≥ 1, introduced.

Domain

Parameter range 

C.2.1. Sensitivity to the weight ω

To reinforce the robustness of our results we run CMA-ES optimization strategies on the two domains D 5,1 and D 8,2 for different weights ω defining the cost function (3.6). We tested weights of the form ω i and ω i × ω , i ∈ {1, 2, 3, 4} before renormalization, see 

C.2.3. Different senescence law for type A and type B cells

Different types of modification of the initial distribution of telomere lengths were fitted in addition to the parameter of the laws (P nta ) and (P sen A ) and (P sen B ). 

Allowing

C.3. Mathematical study

In the present subsection, we are interested in the evolution of telomere lengths in a cell lineage under the stochastic model of shortening (3.2), from generation 0 (the generation undergoing telomerase inactivation) to death.

C.3.1. Notations and assumptions

If not specified we denote by f X : x → P(X = x) the law of the random discrete variable (or matrix) X and by F X : x → P(X ≤ x) its cumulative distribution function. The set of all m-by-n matrices over E is denoted by M m×n (E).

Let us recall and complete some notations and assumptions of the problem:

• We work in the general framework of an arbitrary number of chromosomes per cell k, • The set of all admissible telomere lengths L is assumed to be finite. With no loss of generality, we take

• The shortening rate h is taken constant, equal to the overhang h ∈ N * , • The random matrix of the lengths the telomeres of the cell at generation n, made of k pairs of telomeres, is denoted by: where L n i is the random vector of the length of both extremities of the kth chromosome pair at generation n. We also define the random variable of the shortest telomere length at generation n:

• At generation 0, the lengths of telomeres are all mutually independent and identically distributed (i.i.d.) L n i ∼ g n i.i.d., i ∈ {1, . . . k}, n ∈ N, (C.12)

where g n : L 2 → [0, 1], the law of the length of any pair-wise coupled telomeres at generation n, is to be determined.

C.3.2. Computation of the law of L n

Let us first determine g n . Relying on the i.i.d. property of telomeres of a same pair at generation 0 we have

Now for any generation n and any fixed chromosome i ∈ {1, . . . , k}, the shortening model brings us B ∼ B n, 1 2 , independent from L 0 1i and L 0 2i , such that for all ( 1 , 2 ) ∈ L 2 We conclude from (C.12) that for all ∈ M 2×k (L ) 

C.3.3. Computation of the law of L n min

Since L n min is defined as a minimum on random variables, we look for its cumulative distribution function first. Using (C.12) we find: ∀ ∈ L Finally, one accesses the law of L n min with the relation