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The photosynthetic activity of vegetation is of major interest given current environmental concerns such as climate change and water resources. In this process, chlorophyll molecules excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors complicate the interpretation of remote sensing measurements in terms of SIF and thus photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote sensing measurement. Accurate modeling of SIF emission and remote sensing measurements is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300 m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, complexity and diversity of terms to be taken into account, this modeling uses strong approximations that often lead to significant errors in the interpretation of remote sensing measurements. The model developed in this thesis deals mainly with the radiative aspect. It is based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the remotely sensed SIF signal, but has computational requirements (i.e., memory, computational time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To complement the functionality of DART-Lux, four original models have been designed and implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to
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xv (λ,ΔΩs)] onto a turbid cell, with source points M↑ and M↓, and energy {W1(λ,Ωv), W1,PS1(λ,Ωv), W1,PS2(λ,Ωv)} from M↑. Δl(Ωs) is the distance between the entry A and exit B of the incident ray. Δs(M↑,Ωv) is the distance between M↑ and the cell exit along direction Ωv. W1,α(λ,Ωv) is equal to the direct transmission of W1(λ,Ωv) outside the cell without any scattering, whereas W1,int,β(λ,Ωv) is the transmission of W1(λ,Ωv) outside the cell with scattering events. 
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xviii Photosynthesis is a biochemical process consisting in transforming carbon dioxide (CO2) molecules captured from the atmosphere and water molecules absorbed from the soil into carbohydrates and dioxygen molecules by green vegetation. This endothermic reaction uses the solar radiation as a source of energy. It is a fateful process for the human kind and for life on Earth in general. Indeed, it is the main process used by primary producer organisms to produce organic compounds necessary to provide energy to all the elements of the food chain. Moreover, it plays a crucial role in the carbon cycle on Earth as it makes green vegetation work as a carbon sink that uptakes atmospheric CO2 released by natural phenomena (e.g., respiration of living organisms, fires, etc.) and especially by anthropogenic activities (e.g., industrial activities, fossil fuels burning, etc.), then to store it as biomass. Therefore, it reduces the impact of human carbon footprint on the atmospheric CO2 concentration which continues to increase at an alarming rate since the 19 th century. The global warming and climate change, caused by greenhouse gases including CO2 that prevent the heat received by the Earth surface through the sun radiation from escaping to external space, are seriously impacting and even threatening human life. They are causing an increase in the average temperature of the planet and in the frequency of extreme weather events such as droughts [START_REF] Cogato | Extreme Weather Events in Agriculture: A Systematic Review[END_REF] and thus are becoming major concerns for contemporary human societies. Furthermore, the world population is increasing and therefore there is an increasing demand on food that needs to be satisfied. Consequently, in the recent years, the scientific community has become increasingly interested in studying the photosynthetic process at different spatial and temporal scales, both for agricultural and forest canopies, in order address these urgent and critical challenges of humanity.

Earth surfaces emit and scatter electromagnetic radiation over the entire spectrum, with differences depending on the spectral domain (e.g., optical and microwave domains). The measurement of this radiation by active and passive remote sensing can provide information on
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the characteristics of these surfaces. In particular, multispectral and hyperspectral optical sensors onboard Earth observation satellites are very useful for large scale vegetation monitoring. Indeed, they provide high spatial and temporal resolution observations in different spectral domains (e.g., visible, near-infrared, thermal infrared) used for inferring biophysical and biochemical information about vegetation (e.g., LAI, biomass, chlorophyll content, water content, etc.). However, they generally cannot provide real-time information on the photosynthetic process of vegetation, which is essential for detecting eventual stresses, and in particular water and temperature stress. For instance, retrieved information such as current pigments content (e.g., chlorophyll, carotenoid) of vegetation generally results from past bioclimatological conditions (e.g., photosynthesis inhibited by water or temperature stress) that influence vegetation optical properties sometime later, when these changes can be irreversible.

Presently, only two types of remote sensing measurements can provide real-time information on plant responses to stress. 1) Reflection of sun radiation at 0.531 µm and 0.570 µm, used to define the photochemical reflectance index (PRI), can indicate short-term changes in the xanthophyll cycle [START_REF] Gerhards | Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review[END_REF][START_REF] Suárez | Modelling PRI for water stress detection using radiative transfer models[END_REF]. 2) Thermally emitted radiation can indicate changes in temperature that can allow early stress detection [START_REF] Costa | Thermography to explore plantenvironment interactions[END_REF][START_REF] Gerhards | Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review[END_REF].

Solar-induced chlorophyll fluorescence (SIF) is a spontaneous re-emission of radiation by vegetation excited by photosynthetically active solar radiation. Together with the photochemical and heat dissipation processes, they form the three possible ways for an excited chlorophyll molecule to dispose of the excess of energy. These three processes are in competition, which makes the SIF correlated with photosynthetic activity and gross primary production. Because its response to the inhibition of photosynthesis due to stress is instantaneous, SIF is a real-time indicator of the photosynthetic process, and therefore a potentially very useful signal for monitoring the vegetation functioning state and for stress detection.

SIF represents a small fraction of the sun radiation scattered by vegetation and it is spectrally overlapping with it. Hence, except for some absorption bands (e.g., atmospheric oxygen O2A and O2B absorption bands, Fraunhofer lines of solar radiation), it is impossible to dissociate it from the total radiation outgoing from the vegetation at the top of canopy (TOC) or at the top of atmosphere (TOA) levels. Indeed, in these absorption bands, the solar incident radiation and therefore the scattered radiation are small enough such that the SIF can be detected and measured. We usually observe small peaks of the TOC reflectance spectrum at these bands. This is explained by the fact that the radiation absorbed at a given wavelength gives rise to fluorescence at other wavelengths, and therefore increases the apparent reflectance at these bands. In recent years, many techniques for retrieving the SIF signal from in-situ, airborne and spaceborne sensors within the oxygen O2A and O2B absorption bands and the Fraunhofer lines were developed. The European Space Agency (ESA) has shown a particular interest in SIF and its potential to monitor vegetation functioning from space using these techniques and has selected the Fluorescence Explorer (FLEX) satellite as its eighth Earth Explorer mission.

Nevertheless, the interpretation of SIF measurements remains challenging. Indeed, although the atmospheric oxygen allows to measure the SIF because it attenuates the incident radiation, it also attenuates the SIF signal before reaching the sensor especially for spaceborne sensors.

Therefore, accurate atmospheric corrections are needed to retrieve the TOC signal. Moreover, TOC SIF directly measured by TOC sensors or retrieved from TOA sensors is solely a part of the total SIF emitted within the canopy that escapes from it, directly or after being scattered, to the observation direction. Most of the SIF radiation escapes to other directions, or is absorbed by the canopy elements (e.g., leaves, woody elements, soil, etc.). Besides, in addition to the instantaneous photosynthetic activity, the SIF measurements are influenced by several other confounding factors, such as the photosynthetically active radiation absorption, the canopy structure, the optical properties of canopy elements, the sun-canopy-sensor configuration, etc.

For these reasons, models that simulate SIF emission and observations stand out as essential tools to help in retrieving and interpreting the SIF signals from measurements and to disentangle the effect of each influencing factor. Ideally, these models should take into account all the parameters that affect the SIF emission and observation including the local climatological conditions that affect the temperature dependent photosynthetic rate and therefore the leaf-level SIF emission, the canopy's 3D structure and optical properties and the experimental configurations that affect the radiation propagation. Hence, the full energy balance should be simulated including all the radiative and non-radiative processes with an accurate 3D representation of the canopy. Radiative energy exchanges include the absorption of solar radiation and the emission of thermal radiation, while non-radiative energy exchanges include sensible and latent heat exchanges with the atmosphere and the soil.

Currently, the canopy SIF models developed by the scientific community can be classified into two major groups: 1) 1D models that simulate the full energy balance by taking into account all the major physical processes that cause SIF emission. They include a leaf-level photosynthesis model and a 1D radiation canopy model. However, they neglect the 3D architecture of canopies.

The reference models are SCOPE and its multilayer version mSCOPE. 2) 3D radiative transfer models that accurately simulate the propagation of radiation within the canopy. They also include a leaf-level SIF model. However, they do not simulate the non-radiative processes.

Among was to include all the functionalities of the DART-FT mode. The approach is not straightforward because DART-Lux uses a modeling approach very different from that of DART-FT.

DART simulates any type of urban or natural landscapes. It can simulate vegetation canopies represented using imported realistic 3D objects, schematic 3D objects created internally by DART or canopies represented using 3D turbid medium. In this thesis, the modeling implementations, including SIF emission, are introduced and tested for the two DART modes (i.e., DART-FT and DART-Lux) and for the two vegetation representation methods (facets, turbid). The SIF introduction in DART allowed to evaluate the impact of 3D structure on a deciduous forest's SIF, using a realistic forest scene reconstructed from LiDAR data. Moreover, the thermal emission and the radiation budget are two important components of the energy budget that quantify the energy exchange of vegetation through radiation. They need to be accurately simulated before the consideration of the energy exchange via non-radiative processes. In this thesis, we also introduce the modeling of thermal emission and radiative budget in DART-Lux. The aim of this work is to provide radiative transfer building blocks towards the development of a comprehensive 3D SIF model.

This thesis is organized in five chapters:

Chapter 1 is an introductory chapter that presents general theoretical concepts about fluorescence, solar-induced fluorescence and its use for monitoring vegetation functioning with remote sensing. It also presents the DART model with a special focus on DART-Lux which will be the most considered in the following chapters.

Chapter 2 presents the SIF modeling in DART-FT for vegetation simulated as facets and as 3D turbid medium.

Chapter 3 presents the SIF modeling in DART-Lux for vegetation simulated as facets and as 3D turbid medium. A novel method was developed to introduce the SIF emission for the bidirectional path tracing. Moreover, the turbid vegetation was introduced in DART-Lux including SIF emission.

Chapter 4 shows the impact of vegetation structure on both the SIF emission and observation.

The work is a theoretical study with LiDAR reconstructed forest scenes.

Chapter 5 presents the modeling of the thermal emission and radiative budget in DART-Lux for scene elements simulated as facets and as volumes (turbid medium, fluids).

GENERAL INTRODUCTION

Introduction générale

Les surfaces terrestres émettent et diffusent du rayonnement électromagnétique sur l'ensemble du spectre, avec des différences en fonction du domaine spectral (e.g., les domaines optique et micro-ondes). La mesure de ce rayonnement par télédétection active et passive peut fournir des informations sur les caractéristiques de ces surfaces. En particulier, les capteurs optiques multispectraux et hyperspectraux à bord des satellites d'observation de la Terre sont très utiles pour le suivi de la végétation à grande échelle. En effet, ils fournissent des observations à haute résolution spatiale et temporelle dans différents domaines spectraux (e.g., visible, proche infrarouge, infrarouge thermique) utilisées pour déduire des informations biophysiques et biochimiques sur la végétation (e.g., LAI, biomasse, teneur en chlorophylle, teneur en eau, etc.).

Cependant, ils ne peuvent généralement pas fournir d'informations en temps réel sur le processus photosynthétique de la végétation, ce qui est essentiel pour détecter d'éventuels stress, et en particulier les stress hydriques et thermiques. Par exemple, les informations récupérées telles que la teneur actuelle en pigments (e.g., chlorophylle, caroténoïde) de la végétation résultent généralement de conditions bioclimatologiques passées (e.g., photosynthèse inhibée par un stress hydrique ou thermique) qui influencent les propriétés optiques de la végétation quelque temps plus tard, lorsque ces changements peuvent être irréversibles. Actuellement, seuls deux types de mesures de télédétection peuvent fournir des informations en temps réel sur les réponses des plantes au stress. 1) La réflexion du rayonnement solaire à 0,531 µm et 0,570 µm, utilisée pour définir l'indice de réflectance photochimique (PRI), peut indiquer des changements à court terme dans le cycle des xanthophylles [START_REF] Gerhards | Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review[END_REF][START_REF] Suárez | Modelling PRI for water stress detection using radiative transfer models[END_REF]. 2) Le rayonnement émis thermiquement peut indiquer des changements de température qui peuvent permettre une détection précoce du stress [START_REF] Costa | Thermography to explore plantenvironment interactions[END_REF][START_REF] Gerhards | Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review[END_REF].

La fluorescence chlorophyllienne induite par le soleil (SIF) est une réémission spontanée de rayonnement par la végétation excitée par le rayonnement solaire photosynthétiquement actif.

Avec les processus photochimique et de dissipation de chaleur, ils constituent les trois moyens possibles pour une molécule de chlorophylle excitée de se débarrasser de l'excès d'énergie. Ces trois processus sont en compétition, ce qui fait que la SIF est corrélée à l'activité photosynthétique et à la production primaire brute. Parce que sa réponse à l'inhibition de la photosynthèse due au stress est instantanée, la SIF est un indicateur en temps réel du processus photosynthétique, et donc un signal potentiellement très utile pour suivre l'état de fonctionnement de la végétation et pour la détection du stress.

La SIF représente une petite fraction du rayonnement solaire diffusé par la végétation et elle se chevauche spectralement avec celui-ci. Par conséquent, à l'exception de certaines bandes d'absorption (e.g., les bandes d'absorption O2A et O2B de l'oxygène atmosphérique, les lignes de Fraunhofer du rayonnement solaire), il est impossible de la dissocier du rayonnement total sortant de la végétation en haut de la canopée (TOC) végétale ou en haut de l'atmosphère (TOA). Néanmoins, l'interprétation des mesures de la SIF reste difficile. En effet, bien que l'oxygène atmosphérique permette de mesurer la SIF car il atténue le rayonnement incident, il atténue également le signal SIF avant d'atteindre le capteur, surtout pour les capteurs spatiaux. Par conséquent, des corrections atmosphériques précises sont nécessaires pour récupérer le signal TOC. De plus, le signal SIF en TOC directement mesuré par les capteurs TOC ou déduit à partir des capteurs TOA ne représente qu'une partie du signal SIF total émis à l'intérieur de la canopée, qui s'en échappe, directement ou après avoir été diffusé, vers la direction d'observation. La plupart du rayonnement SIF s'échappe vers d'autres directions, ou est absorbé par les éléments de la canopée (e.g., feuilles, éléments ligneux, sol, etc.). En outre, en plus de l'activité photosynthétique instantanée, les mesures de la SIF sont influencées par plusieurs autres facteurs de confusion, tels que l'absorption du rayonnement photosynthétiquement actif, la structure de la canopée, les propriétés optiques des éléments de la canopée, la configuration soleil-canopée-capteur, etc.

Pour ces raisons, les modèles qui simulent l'émission et les observations de la SIF sont des outils essentiels pour aider à récupérer et à interpréter les signaux SIF à partir des mesures et pour démêler l'effet de chaque facteur d'influence. Idéalement, ces modèles devraient prendre en compte tous les paramètres qui affectent l'émission et l'observation de la SIF, y compris les conditions climatologiques locales qui affectent le taux de photosynthèse dépendant de la température et donc l'émission de la SIF au niveau des feuilles, la structure 3D et les propriétés optiques de la canopée et les configurations expérimentales qui affectent la propagation du rayonnement. Par conséquent, le bilan énergétique complet doit être simulé, y compris tous les processus radiatifs et non radiatifs, avec une représentation 3D précise de la canopée. Les échanges d'énergie radiative comprennent l'absorption du rayonnement solaire et l'émission de rayonnement thermique, tandis que les échanges d'énergie non radiative comprennent les échanges de chaleur sensible et latente avec l'atmosphère et le sol.

Actuellement, les modèles de SIF de canopée développés par la communauté scientifique peuvent être classés en deux groupes principaux : 1) les modèles 1D qui simulent le bilan énergétique complet en prenant en compte tous les processus physiques majeurs qui causent l'émission de la SIF. Ils comprennent des modèles de photosynthèse et de SIF au niveau des feuilles. Cependant, ils négligent l'architecture 3D des canopées. Les modèles de référence sont non-radiative state transitions is faster than fluorescence emission, the latter usually occurs at wavelengths larger than the incident light and therefore having less energy. This is called the
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Stokes' Law. However, the emission can, with a low probability, be at a lower wavelength. This may seem to contradict the energy conservation principle, nevertheless, it happens because a small fraction of molecules have a vibrational level higher than 0 at normal temperature, and can emit a photon with higher energy than that of the absorbed photon (Valeur, 2012a). The electronic states and the transitions between them are usually illustrated with a Jablonski diagram [START_REF] Jabłoński | Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren[END_REF] as shown in Figure 1-1.

Solar-induced chlorophyll fluorescence (SIF)

The chlorophyll molecule has also shown to be fluorescent. The first reported observation of chlorophyll fluorescence induced by solar radiation was made by [START_REF] Brewster | XIX. On the Colours of Natural Bodies[END_REF] who noticed that the color of an alcoholic extract of chlorophyll hit by sunlight was a brilliant red. The photosynthetic process (photochemical quenching), the heat dissipation (non-photochemical quenching) and the fluorescence emission are three processes in competition over the absorbed energy by a chlorophyll molecule. Hence, the chlorophyll fluorescence emission is closely linked with photosynthetic activity. This link was first noticed by [START_REF] Müller | Beziehungen zwischen assimilation, absorption und fluoreszenz im chlorophyll des lebenden blattes[END_REF] and confirmed by [START_REF] Kautsky | Neue Versuche zur Kohlensäureassimilation[END_REF] who noted the correlation between the variation of fluorescence emission and CO2 assimilation. This correlation was further studied by [START_REF] Mcalister | Time Course of Photosynthesis and Fluorescence[END_REF], [START_REF] Kautsky | Fluoreszenzkurven von Chloroplasten-Grana[END_REF] and [START_REF] Kautsky | Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants[END_REF]. Since then, the fluorescence emission is considered as a proxy for photosynthetic activity (Baker, 2008).

Remote sensing of SIF

Being an electromagnetic radiation, the passive chlorophyll fluorescence of canopies induced by sunlight can be studied via remote sensing. Chlorophyll solar-induced fluorescence emission spectral range [640-850 nm] is spectrally overlapping with sunlight reflected by vegetation canopies. Moreover, because of its small quantum yield which is typically between 0.5 and 3% and usually does not exceed 10% in vivo (Porcar-Castell et al., 2014), it represents a small fraction of the light reflected by vegetation canopies (e.g., 2-6% at 740 nm [START_REF] Campbell | Contribution of chlorophyll fluorescence to the apparent vegetation reflectance[END_REF]). Nevertheless, the retrieval of SIF is possible in absorption bands of the incident radiation, where the SIF has a larger relative contribution to the total signal from the canopy.

CHAPTER 1: CONTEXT: SOLAR-INDUCED FLUORESCENCE AND DART MODEL

Some techniques use the atmospheric oxygen O2A and O2B absorption bands located inside the SIF spectrum around 760 nm and 687 nm respectively, to quantify the SIF observed in these bands (Fournier et al., 2012;[START_REF] Moya | A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence[END_REF]. Other techniques utilize the Fraunhofer lines of the solar spectrum to retrieve the SIF (Frankenberg et al., 2011;[START_REF] Guanter | Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[END_REF]. The development of these techniques allowed accurate retrievals of SIF from in situ [START_REF] Cogliati | Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems[END_REF]Fournier et al., 2012), airborne (Rossini et al., 2015) and even spaceborne [START_REF] Guanter | Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[END_REF] sensors. This enabled to use SIF remote sensing for monitoring the functional state of vegetation, by early stress detection (Ač et al., 2015), tracking photosynthetic activity and estimating the gross primary production (Campbell et al., 2019;Guanter et al., 2014;X. Liu et al., 2019;Z. Liu et al., 2019;P. Yang et al., 2021). This potential of SIF led the European Space Agency (ESA) to select a satellite dedicated for SIF observation Fluorescence Explorer (FLEX)

as its 8 th Earth Explorer mission (Drusch et al., 2017).

Modeling of SIF emission and observations

Although SIF emission is highly correlated with instantaneous photosynthetic activity and gross primary production, it is also highly impacted by several other confounding factors. Indeed, it is directly linked with the PAR absorption, which depends on the sun direction, the atmospheric conditions and also the 3D architecture and optical properties of the canopy. Besides, the SIF emitted within the canopy interacts with all canopy elements and can undergo wavelengthdependent phenomena such as scattering and re-absorption by the different canopy elements or the soil. Therefore, only a small fraction of the emitted SIF can escape from the canopy into the upward hemisphere and is measured by remote sensing sensors. These interactions greatly depend on the canopy 3D architecture of the canopy and on the wavelength. In addition, the SIF signal above the canopy (i.e., canopy SIF radiance) is anisotropic, which makes it more complex to extrapolate the SIF emission of the canopy from a single remote sensing observation.

Therefore, for an accurate interpretation of SIF remote sensing observations, a comprehensive and deep understanding of three consecutive processes is essential. 1) Interception and absorption of photosynthetically active radiation by leaf pigments directly or after interacting with the atmosphere and all canopy elements. 2) Emission of SIF at photosystem level based on the absorbed PAR with a certain quantum efficiency that depends on photosynthetic and
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heat dissipation efficiencies which in turn depend on local climatological conditions. 3) Propagation of SIF radiation through the canopies and its interaction with all canopy elements including leaves, soil, woody elements etc. until reaching the sensor.

Models that accurately simulate SIF emission and observations are essential tools for understanding and interpreting the SIF measurements, and extracting useful information from them. For this objective, models should consider each of the many parameters (e.g., 3D

architecture and optical properties of the canopy, illumination conditions, environmental parameters) that influence SIF emission. Second, models should accurately simulate the measured SIF signal as a function of the emitted SIF, the canopy properties and the observation configuration. Third, models should help in understanding the links between the within canopy SIF emission, the photosynthetic activity and the gross primary production of vegetation.

Finally, models should allow performing sensitivity studies difficult or even impossible to do on real canopies. They should also allow the generation of synthetic databases or look-up tables that can be used by inversion algorithms to estimate SIF related parameters (e.g., fluorescence quantum efficiency) and other vegetation functional state parameters (e.g., CO2 assimilation rate, gross primary production). In short, they should allow to link the SIF measurements to the real-time photosynthetic activity. Among these models, we can distinguish leaf-level SIF models that simulate radiative transfer within the leaf to provide leaf-level SIF emission, and canopy level models that upscale the leaf-level SIF models to the canopy level by simulating within-canopy radiative transfer.

Leaf-level modeling

Leaf-level SIF models include semi-empirical models such as FluorMODleaf (Pedrós et al., 2010) and Fluspect (Vilfan et al., 2016(Vilfan et al., , 2018) ) that are based on the PROSPECT model (Jacquemoud & Baret, 1990). They simulate leaf hemispherical spectral optical properties and leaf SIF emission using the leaf biochemical properties and photosystem level fluorescence quantum efficiency as input parameters. Leaf SIF models also include 3D radiative transfer models that use accurate [START_REF] Kallel | FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation[END_REF] or less accurate [START_REF] Sušila | A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions[END_REF] 3D descriptions of the leaf to simulate within leaf radiative (North, 1996), FLiES-SIF (Sakai et al., 2020) and FluorFLiES [START_REF] Gao | Simulation of solar-induced chlorophyll fluorescence in a heterogeneous forest using 3-D radiative transfer modelling and airborne LiDAR[END_REF] are based on the FLiES (Kobayashi & Iwabuchi, 2008) model, the FluLCVRT [START_REF] Kallel | FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation[END_REF] is based on the LCVRT model (Kallel, 2020a) and FluorWPS (Zhao et al., 2016) is based on the WPS model (Zhao et al., 2015). However, none of these Ranging). To this end, DART has four main modules: 1) "Directions" is used for subdividing the 4𝜋 space into a finite number 𝑁 of discrete directions Ω 𝑛 having solid angles ΔΩ 𝑛 and 𝑃 (𝑃 ≤ 𝑁) angular sectors. 2) "Phase" is used for computing the optical properties, temperature properties and phase functions for the user defined surfaces and volumes, and for the specified spectral bands. 3) "Maket" is used to create the mock-up from the user-defined scene elements.

A Python toolbox, called "DAO" is also provided with DART to allow the automatic creation of mock-ups directly from external data such as 3D LAI information derived from LiDAR data.

It can replace the "Maket" module that is in general used with the graphical user interface. 4) "Dart" is the module that simulates radiative transfer in the scene using geometric and optical information generated by the three pervious modules in order to generate the user-selected radiative products (e.g., 3D radiative budget and / or remote sensing signal). Each DART spectral band can have any of three radiation modes: 1) R mode: the sun is the only source of 1.5 DART MODEL radiation. 2) T mode: thermal emission of scene elements and the atmosphere is the only source of radiation. 3) R + T mode: both the solar radiation and thermal emission are considered.

Moreover, three modes (i.e., DART-FT, DART-RC and DART-Lux) are used to simulate radiative transfer in the 3D scenes. These modes are presented in the next sub-sections.

DART-FT

DART-FT is the standard mode of DART. It is called FT, as Flux Tracking, because it tracks radiation using an adaptation of the discrete ordinates method in a finite number 𝑁 of discrete directions (Ω 𝑛 , ΔΩ 𝑛 ) over the 4𝜋 space (Yin et al., 2013) in a scene made of voxels (Figure 1-3). This approach is iterative: radiation intercepted at iteration 𝑖 is scattered at iteration 𝑖 + 1.

Using the pure discrete ordinates method, each ray intercepted at a given iteration would give rise to 𝑁 scattered rays at the following iteration, which would result in an exponential growth of the number of tracked rays, and therefore a huge and unmanageable number of rays. To avoid this exponential growth, pragmatic approximation approaches such as the use of barycenters of scattering points on surfaces and in voxels are used, which greatly reduces the number of scattering points, and consequently the number of scattered rays. The DART-FT mode has two major limitations. 1) It is not efficient in terms of computation time and memory usage for image simulation. It spends computation resources to track and to store every single ray even if this ray has not a real contribution to the signal of interest.

2) The discretization of the 4𝜋 space into a finite number of discrete directions and the inevitable use of approximations to limit the number of rays is a source of inaccuracies and discretization artefacts. On the other hand, since all the radiation is tracked inside the scene, it is possible to know the amount of radiation that is intercepted, scattered or absorbed everywhere in the scene. Therefore, DART-FT is efficient for simulating the radiation budget of canopies. Moreover, because of its iterative approach, a single simulation can provide products at different scattering orders. In addition, an iterative process extrapolates the last iteration orders to the infinite scattering order.

The initial version of DART was only adapted to 3D vegetation canopies made of voxels either empty or filled with turbid medium, and to radiation in the shortwaves (Gastellu-Etchegorry et al., 1996). Other modelling processes were introduced later: use of facets to simulate surface elements in the voxelized scene (Gastellu-Etchegorry et al., 2004), radiative transfer in the atmosphere [START_REF] Gascon | Radiative transfer model for simulating high-resolution satellite images[END_REF], thermal emission for simulating the remote sensing signal and radiative budget in the thermal infrared domain [START_REF] Guillevic | Thermal infrared radiative transfer within three-dimensional vegetation covers[END_REF], and solar induced fluorescence (Gastellu-Etchegorry et al., 2017).

DART-RC

DART-RC is the DART radiative transfer mode for simulating the LiDAR signal of 3D scenes (Gastellu-Etchegorry et al., 2015) simulated by an array of voxels. It tracks radiation using a combination of the discrete ordinates method and forward Monte Carlo ray tracing. Its products include several types of LiDAR products (e.g., waveforms, point clouds, photon counting).

DART-Lux

Since 2018, DART includes a new mode called DART-Lux (Wang et al., 2022). This estimator is not biased: its expected value is the real value 𝐼 of the integral (cf. Appendix 1-1). Therefore, it converges towards the real value when the number of samples is large enough.

It
The sampling of 𝑥 𝑖 can be done using any probability distribution function (PDF) 𝑝(𝑥), apart from the uniform distribution. In this case, the Monte Carlo estimator becomes:

𝐼 𝑝 ̂= 1 𝑁 ∑ 𝑓(𝑥 𝑖 ) 𝑝(𝑥 𝑖 ) 𝑁 𝑖=1 (1.3)
Ideally, the PDF should be chosen such that it has a similar shape to 𝑓. This technique is called "Importance Sampling" and is used to reduce the variance of Monte Carlo estimators.

DART MODEL

The Monte Carlo integration method can easily be extended to estimate integrals over high dimensional integration domains. Its algorithmic complexity does not change with the dimension of the domains as it only depends on the number of sampled points. Therefore, it can be used to compute the radiance measurement 𝐿 (𝑗) of pixel 𝑗 of a simulated image given by the integral form of the Light Transport Equation:

𝐿 (𝑗) = ∫ 𝐶 (𝑗) (𝑝̅ ).𝑑𝐴(𝑝̅ ) 𝒟 (1.4)
-𝑝̅ : light transport path. 𝑝̅ 𝑘 =(𝑝 0 ,…, 𝑝 𝑘 ) is a path of length 𝑘 (i.e., 𝑘 segments and 𝑘+1 vertices

𝑝 𝑖 with 𝑖[0, 𝑘]).
-𝒟: set of all possible light paths. 𝒟= ⋃ 𝒟 𝑘

∞

𝑘=1

, with 𝒟 𝑘 the set of all paths 𝑝̅ 𝑘 of length 𝑘.

-𝑑𝐴(𝑝̅ ): area product for path 𝑝̅ ; e.g., 𝑑𝐴(𝑝̅ 𝑘 )=𝑑𝐴(𝑝 0 )…𝑑𝐴(𝑝 𝑘 ) with area 𝑑𝐴(𝑝 𝑖 ) at vertex 𝑖.

-𝐶 (𝑗) (𝑝̅ ): contribution function of path 𝑝̅ to the measurement 𝐿 (𝑗) of pixel 𝑗.

When sampling random light paths for the Monte Carlo estimator of pixel radiance using the importance sampling technique, paths with higher contribution to the pixel radiance have higher chances to be sampled. The light path sampling starts from the light source (i.e., forward direction) and from the sensor (i.e., backward direction). Forward tracing is more efficient for sampling light sources with narrow solid angle of illumination and backward tracing for sensors with narrow fields of view (FOV) (Disney et al., 2000). The bi-directional tracing combines the forward and backward tracing and allows to benefit from the advantages of the two methods.

Unlike the discrete ordinates method that spends computational resources to track all radiation over the scene even if it has a negligeable impact on the simulated observation, the bidirectional path tracing (BDPT) algorithm, by sampling with higher probability light paths that have higher contribution to the image, it allows to preferentially track rays that contribute most to the required observations which makes it more computationally efficient for images simulation. Moreover, because its algorithmic complexity does not depend on the scene complexity, it is more and more efficient for large and complex scenes. DART-Lux takes advantage of the development of rendering algorithms in computer graphics. The BDPT algorithm implementation of the physical renderer LuxCoreRender has been selected and adapted to the remote sensing field, in the comprehensive and user-friendly framework of DART. The initial goal of the DART team was to introduce most of the functionalities of DART-FT and DART-RC into DART-Lux, with improved accuracy and lower computer and memory requirements, within the framework of DART and with the ability to switch seamlessly between modes. To this end, many physical and technical improvements and adaptations had to be made. Ten major modelling developments are listed here. 1) To overcome the hard coded 3-channel RGB limit in LuxCoreRender for simulations with any number of spectral bands. 2)

To simulate radiance and reflectance remote sensing images (Wang et al., 2022;Wang & Gastellu-Etchegorry, 2021). 3) To support input and output formats of the DART framework.

(DAO, SQL databases, images, etc.). It was the subject of a publication included in this thesis in which I am the second author. My main contribution was to design and prepare DART and SCOPE/mSCOPE simulations for comparing their simulations of the SIF signal, using the 1D models as reference models, as are generally accepted in the community. The second section presents SIF modeling in vegetation simulated as turbid medium. I participated in the design of this new modelling and implemented it in DART.

Vegetation simulated as facets

Modeling approach

The implementation of SIF emission in DART-FT for vegetation simulated as facets consisted in imbedding the leaf-level SIF model Fluspect into DART-FT. Fluspect gives SIF excitationemission matrices at 1 nm spectral resolution that are resampled to the user-specified spectral 

Results

Ideally, a radiative transfer model should be compared to real field measurements to assess its consistency. However, this comparison is very challenging in general, especially for 3D models.

In order to be consistent with the very tiny and anisotropic SIF signal, a relevant comparison of a 3D SIF radiative transfer model with field measurement requires: 

Article:

1. Introduction

The potential for airborne and spaceborne monitoring of plant productivity has motivated optical remote sensing (RS) scientists since the launch of first Earth observing satellites [START_REF] Ashley | Seasonal vegetation differences from ERTS imagery[END_REF][START_REF] Blair | Detection of the Green and Brown Wave in Hardwood Canopy Covers Using Multidate, Multispectral Data from LANDSAT-11[END_REF]. The faint signal of chlorophyll a fluorescence has been the target of vegetation RS for several decades [START_REF] Rosema | FLiES-SIF version 1.0: Three-dimensional radiative transfer model for estimating solar induced fluorescence[END_REF]. Although recent technological advances in narrow-band imaging spectroscopy provide the first estimates of solar-induced chlorophyll fluorescence (SIF) from space (Frankenberg et al. 2011;[START_REF] Guanter | Estimation of solar-induced vegetation fluorescence from space measurements[END_REF][START_REF] Joiner | First observations of global and seasonal terrestrial chlorophyll fluorescence from space[END_REF], the retrieval and use of the subtle SIF signal emitted in the red and near-infrared spectral regions to assess plant productivity is fraught with natural complexity of vegetated landscapes. Hence, RS applications of SIF, including physiological principles, instruments, measurement techniques and computer models (Mohammed et al. 2019), need a further development to improve our understanding and correct interpretation of the diurnal, seasonal, and interannual variabilities in the SIF signal observed with RS instruments at local, regional and global spatial scales. In particular, SIF variability originating from multiple scattering and reabsorption within structurally complex vegetation canopies is poorly understood, as are optical interactions in topographically rough and spatially heterogeneous natural and man-made landscapes (Zhang et al. 2020).

Radiative transfer modelling is a well-established and inseparable part of modern optical RS methods [START_REF] Myneni | Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology[END_REF]. Computer simulated radiative transfer in vegetation (Widlowski et al. 2015) has been used for local and global sensitivity analyses of various RS phenomena (e.g., [START_REF] Malenovský | Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution[END_REF]Verrelst and Rivera 2017;Verrelst et al. 2010), and also for retrieval and interpretation of quantitative vegetation descriptors from remotely sensed spectral observations obtained through various inversion procedures (e.g., [START_REF] Croft | The global distribution of leaf chlorophyll content[END_REF]Malenovský et al. 2013;Verrelst et al. 2019). One of the most frequently used and wellestablished leaf-scale RTMs is PROSPECT [START_REF] Féret | PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sensing of Environment[END_REF][START_REF] Féret | PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sensing of Environment[END_REF]Jacquemoud and Baret 1990;Malenovský et al. 2006). Its first clone designed to simulate the chlorophyll-a fluorescence emission in plant leaves was FluorMODleaf (Pedrós et al. 2010), followed by computationally simpler Fluspect-B (Vilfan et al. 2016) and Fluspect-Cx (Vilfan et al. 2018).

The Fluspect models reproduce leaf optical properties between 400 and 2500 nm together with 3D matrices of forward-and backward-emitted SIF per wavelength of photosynthetically active radiation (PAR) incident on the adaxial side of a dark-adapted leaf. Besides these semiempirical models, physical 3D leaf fluorescence RTMs have been developed, e.g., the Monte Carlo (MC) Photon Transport [START_REF] Sušila | A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions[END_REF] four SIF matrices (Mxyij), where x is the photosystem PSI or PSII, y is the backward or forward direction relative to radiation incident direction, i is the 1 nm excitation band in the photosynthetically active spectral region from 400 to 750 nm (i ϵ [1 I]), and j is the 1 nm emitted SIF band (j ϵ [1 J]) in the spectral region from 640 to 850 nm. Consequently, the Fluspect SIF leaf exitance (Fxyj) at band j (1 nm bandwidth) due to irradiance (Ei) in band i is:

Fxyj = Mxyij.Ei. (1) 
In contrast to Fluspect, DART works with any number of spectral bands that can have any bandwidth, for example with U excitation bands λu and V fluorescence bands λv. Hence, in DART, a leaf irradiance (Eu) leads to the leaf exitance:

Fxyv = Mxyuv.Eu, ( 2 
)
where Mxyuv is derived from the Fluspect matrices (Mxyij) using an interpolation on spectral bands (Δλu = Σαui.Δλi, Δλv = Σβuj.Δλj) and the two-step weighted arithmetic averaging: were illuminated by the same DART-simulated BOA direct and diffuse solar irradiance, as described in the previous section 2.2. Ground of the 3D scenes was optically defined as the Lambertian loamy gravel brown dark soil with a linearly increasing reflectance ( ≈ 6% at 550 nm,  ≈ 12% at 686 nm and  ≈ 15% at 740 nm).

M xy𝑢𝑣 =

Distinction and influence of sun-and shade-adapted foliage in maize crops

As explained by [START_REF] Nobel | Photosynthetic Rates of Sun versus Shade Leaves of Hyptis emoryi Torr[END_REF] or Givnish (1988), leaves growing in a shaded environment are biochemically and anatomically different from those exposed for most of the day to direct solar irradiation. DART users can consider these differences and their influence on SIFTOC by classifying the facets of 3D vegetation leaves in several classes, for which leaf optical or biochemical properties (including fqe and eta parameters) can be defined separately. The second method uses the probability distribution of the simulated diurnal Q time series. To demonstrate changes in SIFTOC due to the distinction of sun-and shade-adapted leaves, we applied two double-threshold classifications on three maize fields (Figure 1). The first et al. 2019a). In order to prevent its confounding effect, the energy balance (leaf photosynthesis) modelling was disregarded, i.e., the fluorescence efficiency weight eta was forced to one. The remaining inputs were arbitrarily defined within plausible dynamic ranges of published laboratory measurements [START_REF] Hosgood | Leaf Optical Properties Experiment 93 (LOPEX93)[END_REF]Jacquemoud and Baret 1990). 

Canopy SIF changes due to leaf density and clumping of maize plants

Potential variability in SIFTOC due to leaf density and plant clumping (i.e., canopy closure -CC) changes were simulated for virtual maize canopies of three plant densities (LAI = 1, 2
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and 4) in a regular spatial distribution (CC ≈ 100%) and in two clumped formations (LAI = 1 and 2, CC ≈ 50%) (Figure 2). Compared to the previous exercise (Figure 1), distances between 6 (LAI = 1) or 12 (LAI = 2) of neighbouring regularly spaced plants in a row were shortened by half to create regular foliage clumps and canopy gaps of the same size. To keep consistency, the leaf and stem optical properties were those used for the turbid-like canopies (Table A1) and the sun-and shade-adaptations were not distinguished, i.e., all leaves were considered as equal. were scanned from several geolocations in dry sclerophyll forest located southeast of Hobart (Tasmania, Australia) to acquire their TLS point clouds with a point spacing of 11.3 mm at distance of 30 m. The TLS points of each tree were, after a mandatory pre-processing, semiautomatically separated in two groups: i) points of trunks and branches and ii) points representing foliage. Points classified as wood were used as attractors in an automatic procedure (Sloup 2013) to extract the external surfaces of trunks and main branches, as described in Verroust and Lazarus (1999). The foliage points were subsequently spatially collocated with the reconstructed wooden skeleton. 3D representation of leaves was created in Blender (Blender 2007) based on an average shape and size of actual leaves and then distributed automatically at the locations of foliage points according to the Erectophile LAD [START_REF] Danson | Teaching the physical principles of vegetation canopy reflectance using the SAIL model[END_REF], targeting two crown LAI values of 2 and 5. A complete description of this TLS-based 3D construction of trees, developed specifically for RTM purposes, is available in [START_REF] Janoutová | Influence of 3D Spruce Tree Representation on Accuracy of Airborne and Satellite Forest Reflectance Simulated in DART[END_REF]. Two DART canopies (scenes), were constructed with the 3D tree representations: i) a dense canopy was created by placing three trees with the individual crown LAI = 2 within a scene of 81 m 2 , while keeping CC ≈ 80% (Figure 3a), and ii) a sparse canopy was built by redistributing the same trees but with the crown LAI = 5 within a scene of 196 m 2 to achieve CC ≈ 40%.

Combinations of the tree crown LAI and scene sizes ensured that both scenes had, for the purpose of comparability, the same canopy LAI = 2.5. Additionally, an identical bark directional-hemispherical reflectance ( ≈ 20% at 550 nm,  ≈ 40% at 686 nm and  ≈ 50% at 740 nm), measured on actual bark samples collected in field, was applied in both canopies.

Besides standard forest canopies (e.g., Figure 3c), the virtual environment of the DART model also allows for simulating canopies composed of only foliage without woody components (Figure 3b). By comparing results from simulations with and without woody material, we quantified the magnitudes of shading and direct obstructing effects of woody material. Removing woody components increases the within-canopy iPAR (Q) due to the reduction in wood shadowing, which in turn increases SIF emitted by all previously shaded leaves. The obstruction impact of woody material is caused by its optical interactions with SIF photons. First, it diminishes (blocks) the within-canopy SIF at both 686 and 740 nm via bark scattering and absorption. Second, it affects, to some extent, SIF emission through reflection of SIF at 686 nm that can be reabsorbed and later reemitted by chlorophyll pigments.

Computation of canopy fAPARgreen, SIF balance, escape factors and differences

The main driver of green foliage SIF emissions (including stems of the maize plants) in DART simulations that do not contain a modulation of PSI and PSII fqe values by eta coefficients is the fraction of absorbed photosynthetically active radiation (fAPARgreen).

Therefore, a change of fAPARgreen in these simulations indicates a change in the ratio of sunlit and shaded photosynthetically active plant parts, which results in an equal relative change in SIF leaf emission of both photosystems. To be able to investigate the impact of different 3D canopy architectures on their fAPARgreen, we calculated fAPARgreen for all SIFTOC simulating scenarios from the DART radiative budget of a single broad PAR band (λ = [400 750] nm) as:

fAPAR(λ) green = APAR(λ) green PAR(λ) TOC , ( 6 
)
where APAR()green is PAR absorbed by all green plant constituents of a given DART scene and PAR()TOC is the solar incoming PAR simulated at the top of canopy. The relative difference [%] in fAPARgreen of clumped (C) compared to regularly spaced (R) maize canopies was calculated as:

ε fAPAR(λ) = 100. fAPAR(λ) green_C -fAPAR(λ) green_R fAPAR(λ) green_R . (7)
Similarly, the shading effect of woody components on eucalyptus SIF emissions was assessed through the relative difference [%] of canopy fAPARgreen obtained for simulations containing just foliage (F) and foliage with wood (FW) as follows: The proportion of SIF photons that exit the top of canopy is described by the SIFTOC escape probability factor (SIFesc). In practice, this is the ratio of SIF photons escaping from the top of canopy in any direction to all SIF photons emitted from all canopy leaves in forward or backward directions (Guanter et al. 2014). SIFesc is required for scaling of SIFTOC measurements down at the spatial level of individual leaves (van der Tol et al. 2019), and subsequently essential for correct estimation of vegetation gross primary production (GPP) from airborne and spaceborne SIF observations (e.g., [START_REF] He | Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity[END_REF]Zhang et al. 2020). Since most of RS observations capture SIFTOC from nadir, we computed the relative canopy SIF escape probability factor of a given wavelength () in the nadir direction (SIFnadir()esc) from SIF radiative budgets of the eucalyptus scenarios. First, we converted SIF emissions of PSI and PSII per m 2 of abaxial and adaxial leaf facets into SIF emissions per m 2 of the scene (F()PSI and

ε fAPAR(λ) = 100.
F()PSII) [W.m -2 .m -1
] and then calculated SIFnadir()esc as:

SIFnadir(λ) esc = 𝜋⋅(Lnadir(λ) PSI + Lnadir(λ) PSII ) F(λ) PSI + F(λ) PSII , (10) 
where Lnadir()PSI and Lnadir()PSII [W.m -2 .m -1 .sr -1 ] are DART modelled PSI and PSII SIF radiances at the wavelength (), respectively, escaping from the simulated scene in the nadir viewing direction. The 𝜋 multiplication in Eq. 10 is removing the angular dependency [sr -1 ],

resulting in relative values of SIFnadir()esc between 0 and 1. Since the escape probability factor is predominantly dependent on direct optical interactions with canopy elements that attenuate an emitted SIF signal, we quantified the obstruction (blocking) effect of eucalyptus woody components on canopy SIF in the nadir viewing direction through the relative difference [%] of SIFnadir()esc, computed from the foliage only (F) and the foliage with wood (FW) simulations as follows:

𝜀 SIF(λ)esc = 100.

SIFnadir(λ) esc_F -SIFnadir(λ) esc_FW SIFnadir(λ) esc_FW . ( 11 
)
Finally, to analyse differences in SIF fluxes escaping from individual simulated canopy layers in all directions (i.e., towards layers of the upper and lower hemispheres), we computed from DART 3D radiative budget their relative omnidirectional escape factor (SIFomni()esc) as:

SIFomni(λ) esc = (F(λ) PSI + F(λ) PSII )-(A(λ) PSI + A(λ) PSII ) F(λ) PSI + F(λ) PSII , (12) 
where A()PSI and A()PSII [W.m -2 .m -1 ] are DART modelled absorptances of PSI and PSII SIF, respectively, expressed for the wavelength () per m 2 of the scene. If SIFomni()esc ≤ 0, then the canopy layer does not contribute to the SIFTOC signal, i.e., its SIF()bal is either neutral or negative.

DART settings common to all SIF canopy simulations

DART simulations were carried out with the flux-tracking algorithm using the following settings: no elimination of low energy rays, relative accuracy on scene albedo equal to 10 -6 , 25 duplications of the initially simulated scene, the scene illumination mesh size equal to 5.10 -4 m (with a semi-random spatial distribution of illumination rays), and cell sub-sampling with 8 3 sub-cells per cell and 1 sub face per cell face. An optimal number of 20 flux-tracking iterations, which were required to obtain a 10 -2 relative accuracy of the scene reflectance, was determined through a simplified accuracy sensitivity study. Intermediate results of the last few iterations were used to extrapolate the final values of simulated radiative budget, bidirectional reflectance function and SIF products. TOC reflectance and SIF were simulated in 212 viewing directions (Yin et al. 2013), distributed systematically throughout the upward hemisphere, with an oversampling of the upward hot-spot region (25 directions in a solid angle of 0.01 sr around the hotspot direction) and 34 virtual viewing directions in the solar principle plane. Leaf facets were simulated as double-faces without the solar penumbra effect, all optical properties were assumed to be Lambertian, and the scene ground surface was horizontal.

Comparative statistical indicators

Comparative statistical indicators, specifically a root mean square error (RMSE) and an index of agreement (d), were computed to assess these similarities as well as anticipated statistical dissimilarities between different DART scenarios (i.e., turbid-like vs. maize and eucalypt canopies). As explained in [START_REF] Willmott | On the validation of models[END_REF], the dimensionless index of agreement complements the RMSE by indicating the degree of correspondence between two tested datasets in magnitude and direction, where d = 1 means full agreement and d = 0 means total disagreement. Also, the similarity of DART and SCOPE multi-angular SIFTOC was assessed through fitting a linear regression model, where the regression coefficient of determination (R 2 ) indicated how much of the variability in a reference RT model (i.e., SCOPE) results can be explained by corresponding regressed values simulated in DART.

Results

Comparison of nadir DART and SCOPE/mSCOPE canopy SIF simulations

The SCOPE and DART nadir SIFTOC signatures of turbid medium vegetation canopies were nearly identical (Figure A2). Results between 641 and 850 nm were comparable for all simulated input combinations (i.e., three LAI, three LAD and three soil types). High SIFTOC, observed for canopies of Planophile LAD, is caused by their high PAR interception efficiency.

The highest RMSE = 0.162 W.m -2 .m -1 .sr -1 and the lowest d = 0.9965 were found for the Erectophile canopy of LAI = 1, covering soil with  = 50%. Despite being the worst case, the values indicate only minor differences between DART and SCOPE results. Statistical analyses revealed that the total SIFTOC RMSE originates mainly from RMSE for PSII, which was twice the RMSE for PSI simulations for all three LADs (results not shown). Despite a significantly higher variability in RMSE than other two LADs, the Planophile LAD showed the highest index of agreement and R 2 computed between the two models. mSCOPE allowed us to introduce a biochemical/optical heterogeneity in the vertical dimension of simulated canopies. Additionally, we tested DART SIF simulation performance when using the energy balance eta coefficients produced by mSCOPE. Comparison of total nadir SIFTOC radiances produced by both models revealed almost the same results (Figure A3).

The indices of agreement were in all cases larger than 0.99, regardless exclusion or inclusion of the mSCOPE eta coefficients in conducted simulations. The highest RMSE of just 0.221 W.m - 2 .m -1 .sr -1 and the lowest d = 0.9985 was found for simulation of 2-layered canopy with LAI = 2 and with the leaf energy balance included (Figure A3b).

Multi-angular comparison of DART and SCOPE canopy SIF simulations

The similarity of DART and SCOPE SIFTOC simulations at 686 and 740 nm was also investigated for viewing directions other than the nadir view. We compared values simulated in the solar principal plane, with particular attention to the hotspot region, and computed absolute differences between 27 DART and SCOPE turbid medium scenarios in all 212 viewing directions. The smallest differences and the best agreement were found for SIFTOC at 686 nm, Erectophile LAD and LAI = 1 (Figure A4), while the worse agreement and largest differences were obtained for SIFTOC at 740 nm, Spherical LAD and LAI = 4 (Figure A5). Here, SCOPE simulated slightly smaller SIFTOC values, except for VZA > 75°, where SIFTOC dropped unexpectedly steeply down. Also, SCOPE values around the hotspot angles were about 1 W.m - vegetation hotspot algorithms. SCOPE uses a Kuusk's analytical approximation, which does not account for a bi-directional gap-fraction correlation with the canopy depth and consequently underestimates the hotspot effect (Kallel and Nilson 2013), whereas hotspot in DART simulations is physically modelled.

Analysis of multi-angular SIF differences among the three LADs stressed smaller dissimilarities at 686 nm, having the best fit for the Spherical LAD, followed by the Erectophile LAD, and then by the Planophile LAD. At 740 nm, the closest match occurred for the Planophile LAD, while the Spherical and the Erectophile LADs showed equal discrepancies (Figure A6). Nonetheless, the maximal absolute SIFTOC difference between DART and SCOPE oblique viewing directions of all scenarios was found to be < 0.8 W.m -2 .m -1 .sr -1 . 

Effect of sun-and shade-adapted maize foliage classification

Two double-threshold classifications were used to assess the impact of sun-and shadeadapted foliage differentiation on nadir PSI and PSII SIFTOC between 650-850 nm. The first one, called 'relaxed', used the far-apart high Q thresholds (50 and 100 mol.photons.m -2 .s -1 ), resulting in the sun-to-shade adapted foliage ratio ranging from 80:20% (LAI = 1) to 55:45%

(LAI = 4). Figure 4a shows that differences between SIFTOC signatures for simulations with and without the differentiation of sun-/shade-adapted leaves were all positive for PSII, with the highest value  0.1 W.m -2 .m -1 .sr -1 around 740 nm for LAI = 4 (fAPARgreen = 0.87). Surprisingly, the same differences for PSI between 700 and 725 nm were negative, demonstrating a greater PSI SIF absorption by shade-adapted leaves having a higher chlorophyll a+b content of 75 g.cm -2 . Contrary to PSII SIFTOC, where fqe was increased from 0.016 to 0.022 for shadeadapted leaves (Table 2), the constant PSI fqe of 0.002 could not compensate this increased chlorophyll absorption. The second classification, called 'strict', used the closer and lower Q thresholds (15 and 25 mol.photons.m -2 .s -1 ), resulting in canopies with a dominant portion of sun-adapted leaves. The sun-to-shade adapted foliage ratio ranged from 98:2% (LAI = 1) to 73:27% (LAI = 4). Consequently, the SIFTOC differences were proportionally smaller (Figure 4b), with the largest value of 0.035 W.m -2 .m -1 .sr -1 for PSII SIFTOC at 740 nm (LAI = 4). PSI SIFTOC differences were also reduced and remained negative between 700 and 725 nm. The interpretation of canopy architectural effects can be taken further by investigating the multi-angular differences for SIFTOC at 686 (Figure 5) and 740 nm (Figure 6), computed between the turbid-like vegetation canopy, i.e., a random distribution of many small leaf facets with the Spherical LAD, and the maize regular and clumped canopies of much larger leaves, both with LAI = 2. DART simulated multi-angular SIFTOC values of the turbid-like and regular maize canopies at 686 nm are very close (RMSE = 0.27 W.m -2 .m -1 .sr -1 , d = 0.9) (see Figure 5ac), indicating rather similar SIF absorptions within canopies and by soil. The maximum difference of just about -0.4 W.m -2 .m -1 .sr -1 appeared in very oblique viewing directions, in which maize plants scattered less SIF. Despite its slightly lower fAPARgreen (0.68 vs. 0.72), the maize canopy scattered a bit more SIF in viewing directions around nadir and hotspot, producing a positive difference. This is caused by the maize geometrically explicit non-random LAD and large-sized leaf facets, redirecting the scattered SIF prevailingly in these directions.

Influence of foliage density and clumping in maize canopies

Larger size of maize leaves is decreasing scattering of photons, and consequently the diffuse fluxes, and causing a broader base of the SIFTOC hotspot peak, observed when comparing the hotspots regions of maize and the turbid-like medium simulations. Although the multi-angular pattern for the clumped maize canopy looks also very similar (RMSE = 0.36 W.m -2 .m -1 .sr -1 , d = 0.81), the differences are all negative and significantly larger, with the maximum of about -0.75 W.m -2 .m -1 .sr -1 (Figure 5bd). It means that the 50% foliage clumping increased scattering and the subsequent within-canopy absorption of SIF at 686 nm, because SIF absorption by the loamy soil beneath the clumped canopy was 7% lower than in the regular canopy, i.e., unable to cause the SIFTOC reduction. The angular distributions of the same differences at 740 nm look different (Figure 6), as they are ruled mainly by scattering related to the canopy architecture.

The decrease in intensity of maize far-red SIFTOC is driven by the species-specific foliage distribution and geometry, significantly larger maize leaf size combined with a high leaf single scattering albedo at 740 nm and the soil absorption. SIFTOC differences in Figure 6 are negative for both regular (RMSE = 0.42 W.m -2 .m -1 .sr -1 , d = 0.92) and clumped canopy of LAI = 2, but larger for the latter one (RMSE = 1.22 W.m -2 .m -1 .sr -1 , d = 0.62). Results of DART radiative budget revealed that the introduction of clumping did not increase but lowered (by 12%) the amount of soil intercepted and absorbed SIF. Hence, it is not soil but clumping-induced within canopy SIF optical interactions that are responsible for this extra reduction of SIFTOC.

The relative contribution from different canopy parts (horizontal layers) to SIFTOC and its modulation by fAPARgreen or by SIF scattering and absorption can be investigated by plotting vertical canopy height profiles of fAPARgreen together with corresponding SIF balances of both fluorescence wavelengths. Figure 7a shows that SIF balances are positive at all heights, i.e., every layer act as a SIF source, and they follow, in general, changes in fAPARgreen. The foliage clumping decreased significantly fAPARgreen, SIF()bal and also SIFomni()esc (not shown) in the upper half of the canopy with LAI = 2, causing the overall reduction of SIFTOC, but it increased all of them in canopy parts below. It means that the lower leaves of the clumped canopy contributed to the simulated SIFTOC more than the same leaves of the regular canopy. caused by combination of higher (doubled) LAI with foliage clumping that increased internal shadowing and consequently reduced fAPARgreen. It also enhanced a number of SIF photons interacting with leaf facets, resulting in a higher fluorescence absorption, especially at 686 nm.

Scientifically interesting is the opposite behaviour between 30 and 50% of the canopy height, where it boosted fAPARgreen and consequently SIF emissions, but simultaneously diminished SIF absorption, which is evidenced by SIF()bal and SIF()bal > fAPAR(). The total energy released from these positive SIF()bal differences was, nevertheless, unable to fully compensate the negative SIF()bal differences induced by clumping in the upper canopy parts (Figure 7a). In comparison with the multi-directional SIF radiance of the turbid-like canopy, the dense eucalyptus stand without wood showed statistically significant decreases in SIFTOC at 686 nm (RMSE = 0.82 W.m -2 .m -1 .sr -1 , d = 0.55) (Figure 8ac) and even greater at 740 nm (RMSE = 1.93 W.m -2 .m -1 .sr -1 , d = 0.47) (Figure 9ac). This drop, reaching up to -1.2 W.m -2 .m -1 .sr -1 and almost -2.5 W.m -2 .m -1 .sr -1 , respectively, can be explained by the Erectophile LAD of the small-sized narrow white peppermint leaves, and by their strong and spatially irregular clumping at the branch level. Presence of woody structures did not change considerably the angular patterns of the SIFTOC differences, but caused its further suppression at 686 nm (RMSE = 1.0 W.m -2 . m -1 .sr -1 , d = 0.47) (Figure 8bd) and even larger differences at 740 nm (RMSE = 2.68 W.m -2 . m -1 .sr -1 , d = 0.35) (Figure 9bd). Interestingly, it deepened the shape the solar principal plane SIFTOC curve in back-scattering oblique viewing directions behind the hotspot region, producing the maximum difference of almost -1.4 W.m -2 . m -1 .sr -1 at 686 nm and around -3.7 W.m -2 . m -1 .sr -1 at 740 nm.

Impacts of foliage clumping and wood of white peppermint trees

The DART ability to simulate forest stands with and without woody elements opened an opportunity for quantification of their potential impacts on SIF emitted, observed and escaped in the nadir direction from white peppermint dense and sparse canopies (Table 2). We quantified the wood shading effect, causing changes in canopy fAPARgreen due to the scattering and absorption of iPAR, and the obstruction (blocking) effect of eucalyptus wood, caused by scattering and absorption of SIF photons by bark. As expected, wood shadowing lowered SIF emitted at both investigated wavelengths by the percentage equal to the fAPARgreen reduction, i.e., by 17.0% for the dense and 9.7% for the sparse canopy. Comparison of the foliage only SIFTOC with the foliage and wood SIFTOC revealed lesser impacts at 686 nm than at 740 nm.

SIF escape probability factors of the simulated eucalyptus canopies were generally low:

SIFnadir(686)esc ≤ 0.15 and SIFnadir(740)esc ≤ 0.27. Overall, the wood obstruction effect was greater on far-red than red SIF escape factors, causing a consistent decrease of 4-6% in SIFnadir(740)esc, but almost no change in SIFnadir(686)esc for the sparse and less than 2% increase for the dense canopy (Table 2). More detailed understanding of the wood-induced effects inside the dense white peppermint canopy can be obtained from analysing its DART-simulated vertical profiles of SIF balances and omnidirectional SIF escape factors. Plots of SIF()bal in Figure 10a and SIFomni()esc in Figure 10b, shown across the relative stand height, revealed two significant findings. First, every leaf-containing part of the canopy comprised of only foliage is acting as a SIF source (SIFomni()esc > 0), but the presence of woody components turned the parts emitting only a little fluorescence into SIF sinks (SIFomni()esc = 0). Second, a majority of the SIFTOC signal originates from leaves occupying top 25% percent of the eucalyptus canopy height. Although the close-up of the 0-30% canopy height section in Figure 10a shows a strong SIF absorption by trunks and lower branches that results in SIF()bal < 0 (especially at 740 nm), different SIF energy budget results were obtained for top 25% (i.e., 75-100%) of the canopy. 2) and, consequently, in a decrease of multi-angular SIFTOC (Figure 9ab). 

Discussion

Comparison of DART and SCOPE/mSCOPE models

DART outputs were nearly in a perfect agreement with the corresponding results obtained for simple, turbid medium vegetation scenes with SCOPE and mSCOPE. Better agreements were obtained for the SIFTOC local maximum at 686 nm, where the signal is attenuated by the SIF chlorophyll absorption. Since the SIFTOC values at 740 nm are controlled dominantly by canopy structural traits, the smallest discrepancies were obtained for the geometrically more uniform Planophile LAD. Here, the SIFTOC signal is dominated by the first order scattering of prevailingly horizontally oriented leaves, lowering the occurrence of fluorescence absorption.

The largest multi-angular SIFTOC differences in all tested LAD and LAI scenarios occurred in very oblique viewing angles, in which the modelled radiance is impacted by uncertainties in angular discretization of the upper hemisphere. 

SIF changes due to classification of sun-/shade-adapted leaves and canopy structure

Distinct parametrization of sun-and shade-adapted leaves did not result in major differences in SIFTOC, but other canopy structural parameters were found to be more important.

The specific distinction of leaf fqe for sun-and shade-adapted foliage appeared to have a smaller impact on DART simulated nadir SIFTOC than increasing LAI and foliage clumping reducing CC from 100% to 50% (c.f., Figure 1 and Figure 3). Yet, the impact of the leaf-light adaptation effect might increase, if a DART user applies Q double-threshold values that favour strongly the shade-over the sun-adapted class and simultaneously increases the PSI and PSII fqe inputs.

Secondly, the influence of the shade-adapted class would be more significant when tested for naturally more clumped and taller (e.g., forest) canopies. Therefore, identification of correct Q thresholds and sun/shade fqe values are, together with measurements of canopy gaps and foliage clumping, essential for further investigation of the photosynthetic light adaptations and their impacts on SIFTOC.

When evaluating impacts of maize canopy structural traits, our nadir SIFTOC results indicated a general superior role of LAI over the foliage clumping. However, doubling the foliage clumping of maize crop with LAI = 2 caused such a strong increase in absorption of red SIF photons by chlorophylls that diminished and fully equalled the previous increase in SIFTOC between 650 and 725 nm caused by doubling the number of regularly spaced plants, i.e., twice higher LAI (Figure 2). Interpretation of DART 3D radiative budget computed for the two SIF local maximums informed us that this strong red SIF reduction took place in the upper half of the canopy (specifically between 50 and 90% of the canopy height; Figure 7), because the clumping caused a slight enhancement of SIF energy fluxes in most of the lower half canopy parts and the absorption of SIF by soil background was after the clumping introduction lowered.

The fact that relative differences of red SIF balances in upper halves of the clumped and unclumped canopies are 2-fold more negative than the same differences of fAPARgreen (Figure 7b) indicates that the increase in foliage shadowing is responsible only for a half of this clumping-induced SIF reduction. The second half is caused by a more frequent recollision and consequent greater absorption of red SIF photons by leaf photosynthetic pigments. Clumping driven results for LAI = 1 showed less consistent and milder effects, which means that canopy must have a certain minimal leaf density to produce these interactions.

Clumping impacts caused by decreasing CC can be also demonstrated on the example of white peppermint stands without woody material. According to results listed in Table 2, decrease of CC from 80% to 40% triggered a reduction in fAPARgreen and, consequently, in emitted SIF by 34%, and simultaneously lowered the SIFTOC by 45% at 686 nm and by 40% at 740 nm. Thereby, if one accepts an assumption that scattering rates of red and far-red SIF photons by the canopy structures (including structures of a leaf interior without foliar pigments) are equal, then doubling the leaf density while keeping a constant canopy LAI = 2 induced an additional 5% decrease in red SIFTOC attributed to a higher red SIF absorption by chlorophylls.

It is important to mention that different quantitative impacts of LAI and foliage clumping on SIFTOC might be revealed if the classification of sun-/shade-adapted leaves is included and different (i.e., light adaptation specific) PSI and PSII fqe values are specified by a DART user.

Since the natural variability in fqe and leaf biochemistry was not accounted for in this study, a direct comparison (validation) of these results with SIF observations of real croplands or forests (e.g., [START_REF] Guan | Photosynthetic seasonality of global tropical forests constrained by hydroclimate[END_REF][START_REF] He | From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to Estimate Crop Productivity[END_REF][START_REF] He | From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to Estimate Crop Productivity[END_REF][START_REF] Wang | DART radiative transfer modelling for sloping landscapes[END_REF]) would be misleading.

Multi-angular DART simulations of SIFTOC demonstrate that the influence of leaf size, foliage angularity and its clumping (CC) is equally or even more crucial for modulating SIFTOC in oblique viewing directions. The polar plots of SIFTOC at 686 nm for maize (Figure 5b) and eucalyptus (Figure 8a) canopies with LAI = 2 revealed the largest influence in very oblique backward directions behind the hotspot and the smallest impact in forward directions opposite to the hotspot. The patterns of angular anisotropy for SIFTOC at 740 nm are rather different. A significant impact of maize canopy structure was found around the Northern and the Southern
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viewing angles (Figure 6b), whereas only the Southern viewing directions were impacted by the eucalyptus canopy architecture (Figure 9a). 

Impacts of wood structures on eucalyptus SIFTOC signal and SIF escape factors

Accounting for presence of bark-covered wood structures in our eucalyptus simulations decreased nadir 740 nm SIFTOC by about 23% for the dense canopy and by 13% for the sparse canopy (Table 2). Results suggest that approximately one quarter of the total SIF reduction is caused by direct optical interactions (obstruction) of far-red SIF photons with bark surfaces in combination with green leaves under the natural geometrical distributions, whereas three quarters of the reduction resulted from the reduction in APARgreen due to wood shadowing.

Having the bark reflectance and absorptance at 740 nm both equal to 50%, the wood structures of white peppermint trees acted, on one hand, as strong reflectors and boosted the far-red SIF emission produced in top 25% of the dense canopy (Figure 10a). On the other hand, they acted as a far-red SIF sink in the rest of the canopy, i.e., in lower 75% of the canopy relative height.

Although it is expected that tree species with a lower bark near infrared reflectance will demonstrate radiative budgets with a higher far-red SIF obstruction (absorptance), the consistently decreasing nadir obstruction effects of both modelled eucalyptus stand indicate that the wood obstruction is a regular confounding factor that must be treated as a systematic error source. Therefore, it should be accounted for, or if feasible even corrected, when interpreting far-red SIFTOC data sensed remotely over forests.

The effect of woody material on nadir SIFTOC at 686 nm was smaller, because the total pool of canopy red SIF photons originating just from PSII is naturally small and additionally reduced by absorption of photosynthetic pigments. Interestingly, the bark absorptance of 60% and reflectance of 40% at 686 nm, in combination with the specific geometry of eucalypt tree crowns (i.e., a strong branch foliage clumping with Erectophile LAD), decreased the red SIF nadir escape factor of the sparse canopy by 0.6%, whereas the same SIF escape factor in the dense canopy was increased by 1.5%. If we accept these simulations as generally applicable, we may conclude that the presence of wood affects the red SIF forest canopy balance in both negative and positive ways. However, the impact is generally small, predominantly influencing the less emitting lower 75% of the canopy height rather than larger emissions originating from top 25% of the canopy. Since we modelled and analysed only two mono-species eucalyptus stands, additional simulations for other tree species, including natural variability in speciesspecific optical, biochemical and structural properties, will be essential to draw more comprehensive and generic conclusions regarding the wood obstruction effects.

DART estimates of the relative eucalyptus canopy SIF escape factor in the nadir direction, which can be used to compute the apparent SIF efficiency (a gross primary production proxy less impacted by canopy structures; [START_REF] Wang | DART radiative transfer modelling for sloping landscapes[END_REF], were quite low, smaller than 0.15 for red and 0.27 for far-red SIF. Nonetheless, the omnidirectional escape factors of individual canopy layers were higher, reaching up to 0.65 for red and 0.9 for far-red SIF in the highly emissive top 25% of the canopy height (Figure 10b). 

Conclusions

Physical and technical implementation of discrete anisotropic radiative transfer modelling for solar-induced chlorophyll fluorescence in geometrically explicit 3D plant canopies was described and compared with complementary cases simulated in 1D models SCOPE and mSCOPE. The cross-comparison revealed that DART simulations of SIFTOC for geometrically simple and spatially homogenous canopies produced nearly the same results as both 1D models.

The largest SIFTOC differences occurred in very oblique viewing angles that are impacted by higher modelling uncertainties than the directions closer to nadir.

Further exploitation of DART ability to simulate SIF images and radiative budgets of virtual 3D maize crops showed that the distinction and adjustment of fluorescence efficiencies for sun-and shade-adapted leaves had a smaller impact on DART simulated SIFTOC than an increase in leaf density (LAI) and local foliage clumping. When analysing nadir SIFTOC impacts by foliar density traits, we found a superior role of LAI over the foliage clumping. Nonetheless, the foliage clumping was shown to be an important controlling factor of maize and eucalyptus SIFTOC simulated at 686 and 740 nm in oblique viewing directions, and also a crucial driver of the red SIF balance, i.e., SIF emission and absorption, in vertical profile of irregularly spaced maize crop with LAI = 2. These study outcomes must be, however, reproduced for other plant functional types to confirm and investigate further the influences of leaf light intensity adaptations and density traits on SIF variability inside and at the top of different canopies.

DART simulations of two white peppermint eucalyptus stands suggested that woody material has a significant impact on SIFTOC. A1ab). Leaves of 2-and 3-layer simulations were divided into sunlit and shaded (see % of sunlit leaves in each layer in Figure A1cd) and the eta parameters simulated per layer for both leaf cohorts in mSCOPE were entered in the corresponding DART simulations. Leaf optical properties were simulated with the same Fluspect version, using the input parameters listed in Table A1. In 

Modeling approach

First order scattering and SIF emission

A source radiation vector 𝑊 𝑖𝑛 (𝜆, Ω 𝑠 ) incident in a direction Ω 𝑠 that crosses a turbid cell (i.e., voxel) (Figure 2-1) is partly intercepted and partly transmitted. Its intercepted part is: The first order SIF emission at the spectral band (𝜆 𝑤 ,Δ𝜆 𝑤 ) is the sum of the contribution of all the excitation spectral bands to the emission in this band. -The first order scattered flux and SIF flux that exit the cells in the direction (Ω 𝑣 , ΔΩ v ):

𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 ) = 𝑊 𝑖𝑛 (𝜆, Ω 𝑠 ). [1 -𝑒 -𝐺(Ω 𝑠
𝑊 1,𝑠𝑐𝑎𝑡,𝛼 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = 𝑊 1,𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ). 𝑒 -𝐺(Ω 𝑠 ).𝑢 𝑙 .Δ𝑙(𝑀,Ω 𝑣 ) (2.7) 𝑊 1,𝑃𝑆𝑥,𝛼 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = 𝑊 1,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ). 𝑒 -𝐺(Ω 𝑠 ).𝑢 𝑙 .Δ𝑙(𝑀,Ω 𝑣 ) (2.8) -The associated total and SIF intercepted fluxes in the cell in all directions are:
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83 𝑊 1,𝑖𝑛𝑡,1 (𝜆, Ω 𝑠 ) = ∑ 𝑊 1,𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ). (1 -𝑒 -𝐺(Ω 𝑠 ).𝑢 𝑙 .Δ𝑙(𝑀,Ω 𝑣 ) ) 𝑣 (2.9) 𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 (𝜆 𝑤 , Ω 𝑠 ) = ∑ 𝑊 1,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ). (1 -𝑒 -𝐺(Ω 𝑠 ).𝑢 𝑙 .Δ𝑙(𝑀,Ω 𝑣 ) ) 𝑣 (2.10)

Within cell multiple scattering and SIF emission

The intercepted flux 𝑊 1,𝑖𝑛𝑡,1 (𝜆, Ω 𝑠 ) is scattered and partly transmitted, then partly intercepted, and so on. Assuming the isotropy of the within cell scattered rays, the multiple scattered flux that escapes the cell is:

𝑊 1,𝑖𝑛𝑡,𝛽 (𝜆, Ω 𝑠 ) = 𝑊 1,𝑖𝑛𝑡,1 (𝜆, 𝛺 𝑠 ). [𝜔𝑇 ̅ + 𝜔𝑇 ̅ (𝜔 -𝜔𝑇 ̅ ) + 𝜔𝑇 ̅ (𝜔 -𝜔𝑇 ̅ ) 2 + ⋯ ] (2.11) = 𝑊 1,𝑖𝑛𝑡,1 (𝜆, 𝛺 𝑠 ). 𝜔𝑇 ̅ [1 -𝜔(1 -𝑇 ̅ )]
with 𝜔 the leaf single scattering albedo and 𝑇 ̅ the mean cell transmittance along the paths Δ𝑙(𝑀, Ω 𝑣 ) from the cell center to the cell faces:

𝑇 ̅ = 1 4𝜋
∫ 𝑒 -𝐺(𝛺 𝑣 ).𝑢 𝑙 .𝛥𝑙(𝑀,𝛺 𝑣 ) . 𝑑Ω 𝑣 4𝜋

(2.12)

Similarly, for the SIF energy:

𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,𝛽 (𝜆 𝑤 , Ω 𝑠 ) = 𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 (𝜆 𝑤 , Ω 𝑠 ). 𝜔 𝑤 𝑇 ̅ [1 -𝜔 𝑤 (1 -𝑇 ̅ )]
(2.13)

The propagation of 𝑊 1,𝑖𝑛𝑡,1 (𝜆, Ω 𝑠 ) in the cell after multiple scattering gives rise to absorption:

𝑊 1,𝑎𝑏𝑠 (𝜆, Ω 𝑠 ) = 𝑊 1,𝑖𝑛𝑡,1 (𝜆, 𝛺 𝑠 ) -𝑊 1,𝑖𝑛𝑡,𝛽 (𝜆, 𝛺 𝑠 ) (2.14) = 𝑊 1,𝑖𝑛𝑡,1 (𝜆, 𝛺 𝑠 ). 1 -𝜔𝑇 ̅ [1 -𝜔(1 -𝑇 ̅ )]
Similarly, for the SIF energy:

𝑊 1,𝑃𝑆𝑥,𝑎𝑏𝑠 (𝜆, Ω 𝑠 ) = 𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 (𝜆 𝑤 , Ω 𝑠 ). 1 -𝜔 𝑤 𝑇 ̅ [1 -𝜔 𝑤 (1 -𝑇 ̅ )] (2.15)
Therefore, the propagation of 𝑊 The SIF emitted in each direction is then:

𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 (𝜆 𝑤 , Ω 𝑠 → Ω 𝑣 ) = 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 (𝜆 𝑤 , Ω 𝑠 ). 𝜉(𝑀, Ω 𝑣 ) (2.18) with 𝜉(𝑀, Ω 𝑣 ) = 𝑒 -𝐺(Ω 𝑣 )𝑢 𝑙 Δ𝑙(𝑀,Ω 𝑣 ) . ∫ ∫ |Ω 𝑠 . Ω 𝑙 | 𝑔(𝜃 𝑙 ) 2𝜋 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 )𝑑Ω 𝑙 𝑑Ω 𝑠 ΔΩ 𝑣 2𝜋 4𝜋 ∫ 𝑒 -𝐺(Ω 𝑣 )𝑢 𝑙 Δ𝑙(𝑀,Ω 𝑣 ) . ∫ ∫ |Ω 𝑠 . Ω 𝑙 | 𝑔(𝜃 𝑙 ) 2𝜋 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 )𝑑Ω 𝑙 𝑑Ω 𝑠 𝑑Ω 𝑣 2𝜋 4𝜋 4𝜋 (2.19)
The propagation of 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 in the cell can further give rise to absorption and SIF emission, which in turn can give rise to higher order SIF emissions. However, these SIF emissions are small enough to be neglected. The number of layers in the DART simulation and in the SCOPE imported 𝜂 files usually differ.

If the number of DART layers is lower, the corresponding layers of the 𝜂 profile are averaged, if it is higher, the values of the 𝜂 profiles are interpolated to provide a value for each layer.

Results

The accuracy of DART-FT modeling in turbid vegetation was tested by comparing it with DART-FT modeling in quasi-turbid vegetation, because the latter one has already been successfully tested with the SCOPE model. 

Conclusion

In this chapter, the SIF modeling approaches in DART-FT were presented for facets-based and turbid-based vegetation. Up to now, the impact for the local climatology on the SIF emission can be considered only via the coupling with SCOPE 1D energy module. The results were in good agreement with the SCOPE/mSCOPE models. However, DART-FT requires very huge computation time and memory to simulate SIF for large scale scenes, which would be very important notably to simulate images of spaceborne sensors. For example, the spatial resolution of the FLEX satellite will be 300 m. Therefore, a more efficient modeling strategy is needed to meet these needs. This highlights the interest of the new Monte Carlo modeling strategy in DART-Lux because of its much better computational efficiency in terms of simulation time and memory. However, for this objective, the SIF modeling must be introduced in DART-Lux. This introduction is presented in the next chapter.

Symbol Description Unit

𝑔(𝜃) 2𝜋

Leaf angular distribution function 𝑠𝑟 -1 the SIF radiance for light paths traced from the sensor (i.e., in the backward direction), this is not sufficient. A higher dimensional representation needed to be introduced to account for the three components and all the possible interactions. The detailed description of this methodology and its implementation is available in a submitted paper (cf. Section 3.1.3).

Results

Model-to-model comparisons were used to evaluate the implementation of SIF in DART-Lux.

Canopy SIF emission and radiance simulated by DART-Lux were compared to those simulated by DART-FT and SCOPE for different types of canopies. DART-Lux closely matched DART-FT in all configurations, with less than 2% of relative difference. It also matched SCOPE for homogeneous canopies, but not with 3D canopy (maize crop field) especially for oblique viewing directions. Computation time and memory requirements were usually lower than DART-FT. The gain in computational efficiency relative to DART-FT was systematically very large for large and complex scenes. However, this large gain decreased when the number of spectral bands increases. The theory of the new SIF modeling and results are detailed in a submitted paper (cf. Section 3.1.3).

Submitted article
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I. Introduction

Solar-induced fluorescence (SIF) of vegetation is a spontaneous radiation re-emission from 640 to 850 nm due to absorbed sunlight from 400 to 750 nm. In competition with the photochemical and heat dissipation processes, it allows an electron from a chlorophyll molecule excited by absorbing a quantum of light, to dispose of its excess energy. It provides valuable information on real-time plants photosynthetic activity (Mohammed et al., 2019) which enables early stress detection [START_REF] Song | Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[END_REF] and gross primary production (GPP) estimation (Zhang et al., 2020). Here, we consider top of canopy SIF modelling including vegetation 3D architecture. Canopy SIF models are generally canopy reflectance models with an imbedded leaf-level fluorescence model. For example, FLSAIL [START_REF] Rosema | FLiES-SIF version 1.0: Three-dimensional radiative transfer model for estimating solar induced fluorescence[END_REF]), FluorSAIL (Miller, 2005) and SCOPE (van der Tol et al., 2009) models combine leaf SIF modelling with the SAIL canopy reflectance model (Verhoef, 1984). SAIL is one-dimensional (1D), as it represents vegetation as superimposed homogeneous layers filled by a turbid medium: infinite number of infinitely small plane elements characterized by a statistical leaf angular distribution (LAD), a leaf area index (LAI), and optical properties. It simulates the radiative transfer with four streams: a source term for direct solar radiation, one stream for upward and one stream for downward fluxes, and scattered radiance is integrated along the observation direction. SCOPE is a reference model for 1D SIF modelling (Damm et al., 2015;Verrelst et al., 2019). The 1D models' major limitation is neglecting the vegetation horizontal heterogeneity. Accounting for vertical heterogeneity as in mSCOPE (Yang et al., 2017) only partly improves the situation.

Indeed, the canopy horizontal heterogeneity has usually a much greater influence on RS signals than vertical heterogeneity (Regaieg et al., 2021). Some approaches aiming to simulate SIF at the global scale account for the influence of the canopy horizontal heterogeneity using clumping
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93 indices (Braghiere et al., 2021). However, they cannot fully capture the actual canopies 3D architecture including local topography, and the presence of woody elements, that impact remotely sensed SIF signals (Malenovský et al., 2021;Regaieg et al., 2021).

3D SIF RTMs adapted to realistic vegetation canopies descriptions represented as facets or 3D

turbid medium are of great interest because of the 1D models limitation. For example, FLiES-SIF (Sakai et al., 2020) simulates SIF tree canopies having geometrically simple crowns (e.g., cone, cylinder, spheroid) whereas FluorFLIGHT (Hernández-Clemente et al., 2017), FluorWPS (Zhao et al., 2016), DART (Malenovský et al., 2021) and FluCVRT (Kallel, 2020) simulate SIF for any canopy type. FluCVRT includes 3D leaf-level SIF modelling. These models use Monte Carlo ray tracing techniques, apart from DART that uses an adapted forward discrete ordinates method, called DART-FT (Flux Tracking). DART-FT simulates the canopy SIF radiance and reflectance images, the canopy 3D SIF radiative budget (RB) per photosystem, and therefore the canopy fluorescence escape factor (Guanter et al., 2014). DART-FT SIF modelling has been validated with model comparison (Malenovský et al., 2021), and successfully used in various SIF studies such as sensitivity analysis of the SIF signal in architecturally complex forest canopies (W. Liu et al., 2019;Malenovský et al., 2021), scaling canopy-level SIF down to photosystems level (X. Liu et al., 2019), and studying the far-red SIF escape probability from forest canopies (W. Liu et al., 2020).

Compared to 1D models, 3D models use more parameters, are more computationally demanding and therefore are not well adapted to regional or global scales. Indeed, forward models like DART-FT spend much time and memory tracking fluxes that contribute little to the simulated images. Based on the Bidirectional Path Tracing (BDPT) algorithm [START_REF] Veach | Robust monte carlo methods for light transport simulation[END_REF], based on Monte Carlo modelling, the new DART mode called DART-Lux (Wang et al., 2022) highly reduces computer time and memory requirements to simulate images of large and complex landscapes. Therefore, we designed a novel SIF modelling method adapted to the BDPT algorithm for accurate and computationally efficient simulations of SIF RS images of 3D vegetation canopies. To our knowledge, no similar SIF modelling method has ever been developed for BDPT algorithms.

II. DART-Lux

DART is an accurate and comprehensive 3D RT model developed at CESBIO since 1992 and patented in 2003. It simulates RS images of VIS / NIR / TIR spectro-radiometers, LiDAR observations, and 3D RB of natural and urban landscapes [START_REF] Wang | DART radiative transfer modelling for sloping landscapes[END_REF]. Its standard mode, DART-FT, represents landscapes by 3D arrays of voxels filled with facets (e.g., vegetation, buildings), turbid medium and fluids. It iteratively tracks radiation in a user-defined number of discrete directions. DART-Lux, DART's latest mode (Wang et al., 2022), uses the BDPT algorithm with Monte Carlo integration techniques. It can largely decrease time and memory requirements for DART images simulation of large and complex landscapes. It uses the geometry instance, "depth-first" approaches [START_REF] Cormen | Introduction to Algorithms[END_REF] and the BDPT algorithm [START_REF] Pharr | Physically Based Rendering: From Theory to Implementation[END_REF] that preferentially tracks fluxes that contribute most to observations by constructing paths that start both from the sensor and light sources. It is adapted to any configuration with any light sources and landscape elements with any Bidirectional Scattering Distribution Function (BSDF). The radiance measurement 𝐿 (𝑗) of pixel 𝑗 of the simulated image is:

𝐿 (𝑗) = ∫ 𝐶 (𝑗) (𝑝̅ )𝑑𝐴(𝑝̅ ) 𝒟 (1) 
where 𝑝̅ is a light transport path, 𝐿 (𝑗) is computed as:

𝒟
𝐿 (𝑗) = ∫ ∫ 𝑊 𝑒 (𝑗) (𝑝 0 , 𝛺) • 𝐿(𝑝 1 →𝑝 0 ) • |𝑐𝑜𝑠 𝜃 𝑖 𝑝 0 | • 𝑑𝛺𝑑𝐴(𝑝 0 ) 𝛺 0 𝐴 0 (2)
where 𝐴 0 is lens area, Ω 0 is the solid angle that encloses all incident directions from the optical system to the sensor plane, 𝑊 𝑒 (𝑗) (𝑝 0 , Ω) is the importance function [START_REF] Nicodemus | Self-study manual on optical radiation measurements: Part I--Concepts[END_REF], 𝜃 𝑖 𝑝 0 is the angle between the incident direction and the sensor principal optical axis and 𝐿(𝑝

1 →𝑝 0 ) = ∑ 𝐿(𝑝̅ 𝑘 ) ∞ 𝑘=1
is the radiance at sensor's vertex 𝑝 0 from a surface's vertex 𝑝 1

with 𝐿(𝑝̅ 𝑘 ) the radiance incident on 𝑝 0 due to all paths 𝑝̅ 𝑘 of length 𝑘 ; e.g., 𝑝̅ 𝑘 = (𝑝 𝑘 , … , 𝑝 1 , 𝑝 0 ).

The radiance incident at vertex 𝑝 𝑖 of a path 𝑝̅ 𝑘 is the radiance from the vertex 𝑝 𝑖+1 that illuminates the vertex 𝑝 𝑖 . A path results of the connection of a vertex of the sensor sub-path created with 𝑡 vertices from the sensor and a vertex of the source sub-path created with 𝑠 vertices from the light source. Figure 1 In DART-Lux, the BDPT algorithm estimates 𝐿 (𝑗) at sensor 𝑝 0 from the contributions of sampled paths constructed by incremental path tracing from both the light source and the sensor.

For example, if a path 𝑝̅ 𝑘 starts from the sensor, a point 𝑝 0 is randomly sampled on the senor and a ray is traced from 𝑝 0 and in the direction defined by sensor properties, until intersecting a surface at a point 𝑝 1 . Then, the path is iteratively constructed using the two steps:

1) At each vertex 𝑝 𝑖 , starting from 𝑖=1, sample a new direction according to the BSDF, knowing the incident direction. Stop if 𝑖=𝑘.

2) Find the next vertex 𝑝 𝑖+1 by tracing a ray from 𝑝 𝑖 along the sampled direction.

A Monte Carlo integration technique estimates the pixel radiance measurement with an importance sampling technique [START_REF] Kalos | Monte Carlo methods[END_REF]. Paths that most impact the radiance reaching the sensor have a higher probability to be sampled. Multiple Importance Sampling (MIS) [START_REF] Veach | Optimally combining sampling techniques for Monte Carlo rendering[END_REF] is used to combine the different ways to sample the same path (e.g., Figure 1.b shows the five ways to sample the path in Figure 1.a) using weighting functions that give the weight 𝑤 𝑖 (𝑥) per sample 𝑥 drawn from the sampling way 𝑖. The Russian Roulette [START_REF] Veach | Optimally combining sampling techniques for Monte Carlo rendering[END_REF] is used to randomly stop the calculation at a certain path length to save computer time. A probability 𝑞 is set to stop a ray and not to evaluate the integrand for the particular sample, and a probability (1-𝑞) to evaluate the integrand and to weight it by Ripperdan farm site with vines and more than 600.000 trees (Figure 12.b) shows its potential.

It needed 16.9 GB of memory and 13 min 4 s of simulation time with an Intel Xeon W-2295 CPU @ 3.00GHz (18 cores, 36 threads). DART-FT was not run because it needed about 50 TB of memory and 1600 h of simulation time.

III. DART-Lux canopy SIF modelling

Despite its interest in accurate and fast radiance simulations of large landscapes, to our knowledge, the BDPT algorithm has never been applied to canopy SIF modelling. Its adaptation to SIF modelling in DART-Lux is presented here. It relies on the surface form of the Light Transport Equation (LTE) to compute as an integral over all scene surfaces 𝐴 the radiance reaching a vertex 𝑝 from a vertex 𝑝′ (Figure 2):

𝐿(𝑝 ′ →𝑝) = 𝐿 𝑒 (𝑝 ′ →𝑝) + ∫ 𝑓(𝑝 ′′ →𝑝 ′ →𝑝) • 𝐿(𝑝 ′′ →𝑝 ′ ) • 𝐺(𝑝 ′′ ↔𝑝 ′ ) • 𝑑𝐴(𝑝 ′′ ) 𝐴 (3) 
where 𝐿 𝑒 (𝑝 ′ → 𝑝) is the radiance emitted from 𝑝 ′ to 𝑝 , if 𝑝 ′ belongs to a light source, 

𝐿 𝑒 (𝑝 ′ → 𝑝) = 0 otherwise, 𝐺(𝑝 ′′ ↔ 𝑝′) = 𝑉(𝑝 ′′ ↔ 𝑝 ′ ) • |𝑐𝑜𝑠𝜃 0 ′′ |•|𝑐𝑜𝑠𝜃 𝑖 ′ | ||𝑝 ′ -𝑝 ′′ ||
We denote 𝑃(𝑝̅ 𝑘 ) the integrand in Eq (4), and 𝑇(𝑝̅ 𝑘 ), the "light path throughput", the term between brackets in 𝑃(𝑝̅ 𝑘 ):

𝑇(𝑝̅ 𝑘 ) = ∏ 𝑓(𝑝 𝑖+1→ 𝑝 𝑖→ 𝑝 𝑖-1 )•𝐺(𝑝 𝑖+1 ↔𝑝 𝑖 )

𝑘-1

𝑖=1

(5)

𝑃(𝑝̅ 𝑘 ) = 𝐿 𝑒 (𝑝 𝑘 → 𝑝 𝑘-1 ) • 𝑇(𝑝̅ 𝑘 ) (6) 
If 𝑝 𝑖 belongs to a bi-Lambertian surface, with normal 𝑛 ⃗ 𝑖 , reflectance 𝜌 𝑖 and transmittance 𝜏 𝑖 :

𝑓(𝑝 𝑖+1→ 𝑝 𝑖→ 𝑝 𝑖-1 ) = { 𝜌 𝑖 𝜋 , 𝑖𝑓 (𝑝 𝑖 𝑝 𝑖+1 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑛 𝑖 ⃗⃗⃗ ) • (𝑝 𝑖 𝑝 𝑖-1 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑛 𝑖 ⃗⃗⃗ ) ≥ 0 𝜏 𝑖 𝜋 , otherwise (7) 
As for DART-FT (Malenovský et al., 2021), the Fluspect model (Vilfan et al., 2018) where θ is the angle between the surface normal and the sampled direction Ω, for any incident direction.

To estimate the pixel radiance measurement, the contribution of each sampled path is evaluated by multiplying the integrand 𝑃(𝑝̅ 𝑘 ) of Eq ( 4) by the importance function and the cosine term in Eq [START_REF] Cook | NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager[END_REF].

For 𝑁 simulated spectral bands, the light source spectral radiance 𝐿 𝑒 , the bi-Lambertian surface spectral reflectance and transmittance, and also the sub-and full-path throughputs are vectors of 𝑁 elements. A path throughput is computed by successive element wise vector multiplications of the multi-spectral reflectance or transmittance value at each vertex by a geometric term 𝐺, divided by 𝜋 (Eq (5), ( 7)). This product is associative and can be computed starting from the light source or starting from the sensor. A full path being the connection of a light sub-path and a sensor sub-path, its throughput is the element wise product of the light and sensor sub-path throughputs. Its multiplication by the light radiance 𝐿 𝑒 (𝑝 𝑘→ 𝑝 𝑘-1 ) gives the integrand 𝑃(𝑝̅ 𝑘 ).

For the simplicity of the equations below, we avoid writing the scalar multiplicative terms 𝐺 Therefore, for a path 𝑝̅ 𝑘 with 𝑘+1 vertices 𝑝 𝑙 , 𝑙 ∈ {0. . 𝑘}, the integrand for the total radiance (i.e., sum of scattered radiance, PSI and PSII SIF emissions radiance) is:

𝑃 𝑡𝑜𝑡𝑎𝑙 (𝑝̅ 𝑘 ) = 𝐿 𝑒 × 𝑇 𝑡𝑜𝑡 (𝑝̅ 𝑘 ) (8) 
where 𝑇 𝑡𝑜𝑡 (𝑝̅ 𝑘 )=𝑇 tot 1 ×…×𝑇 tot 𝑘-1 is the total throughput, As the matrix product is associative, the product in Eq (8) can be cut into a light sub-path subproduct (i.e., 𝑁-element vector resulting from successive vector-matrix products), and a sensor sub-path sub-product (i.e., 𝑁×𝑁 matrix resulting from successive matrix-matrix products).

However, Eq (8) provides only the total radiance (𝑁-element vector). To have the PSI and PSII radiance separately as well, two additional 𝑁-element vectors need to be computed. For the path 𝑝̅ 𝑘 , in addition to 𝑃 𝑡𝑜𝑡𝑎𝑙 (𝑝̅ 𝑘 ), the 𝑃 𝑃𝑆𝐼 (𝑝̅ 𝑘 ) and 𝑃 𝑃𝑆𝐼𝐼 (𝑝̅ 𝑘 ) need to be computed. For a light path 𝑝̅ 3 with 3 segments (two fluorescent surfaces) (Figure 1), 𝑃 𝑃𝑆𝐼 (𝑝̅ 3 ) and 𝑃 𝑃𝑆𝐼𝐼 (𝑝̅ 3 ) are:

𝑃 𝑃𝑆𝐼 (𝑝̅ 3 ) = 𝐿 𝑒 × [𝑇 tot 1 × 𝑀 𝑃𝑆𝐼𝑦 2 + 𝑀 𝑃𝑆𝐼𝑦 1 × 𝑅 2 ] (9) 𝑃 𝑃𝑆𝐼𝐼 (𝑝̅ 3 ) = 𝐿 𝑒 × [𝑇 tot 1 × 𝑀 𝑃𝑆𝐼𝐼𝑦 2 + 𝑀 𝑃𝑆𝐼𝐼𝑦 1 × 𝑅 2 ] (10) 
The bracketed terms in Eq ( 9) and ( 10) represent the interactions between the two surfaces that generate the two SIF radiance components. Eq (9) and ( 10) cannot be written as an associative product of terms each of which depends on the properties of a single vertex. Thus, they cannot be computed starting both from the light source and from the sensor. Therefore, the block matrix 𝑀 𝐵 𝑙 is introduced:

𝑀 𝐵 𝑙 = ( 𝑇 tot 𝑙 𝑀 𝑃𝑆𝐼𝑦 𝑙 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑙 0 𝑅 𝑙 0 0 0 𝑅 𝑙 ) (11) 
The light radiance vector is also written as a block matrix: 𝐿 𝑒,𝐵 = (𝐿 

𝐿 𝐵,k-2 = (𝐿 𝑒,𝑡𝑜𝑡𝑎𝑙 ; 0; 0) × ( 𝑅 𝑘-1 + 𝑀 𝑃𝑆𝐼𝑦 𝑘-1 + 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-1 𝑀 𝑃𝑆𝐼𝑦 𝑘-1 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-1 0 𝑅 𝑘-1 0 0 0 𝑅 𝑘-1 ) (12) 
= (𝐿 𝑒,𝑡𝑜𝑡𝑎𝑙 × (𝑅 𝑘-1 + 𝑀 𝑃𝑆𝐼𝑦 𝑘-1 + 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-1 ); 𝐿 𝑒,𝑡𝑜𝑡𝑎𝑙 × 𝑀 𝑃𝑆𝐼𝑦 𝑘-1 ; 𝐿 𝑒,𝑡𝑜𝑡𝑎𝑙 × 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-1 ) = (𝐿 𝑡𝑜𝑡𝑎𝑙,𝑘-2 ; 𝐿 𝑃𝑆𝐼,𝑘-2 ; 𝐿 𝑃𝑆𝐼𝐼,𝑘-2 )

Similarly, at vertex 𝑘-3, the incident radiance vector 𝐿 𝐵,𝑘-3 =𝐿 𝐵,𝑘-2 ×𝑀 𝐵 𝑘-2 is:

𝐿 𝐵,𝑘-3 = (𝐿 𝑡𝑜𝑡𝑎𝑙,𝑘-2 ;𝐿 𝑃𝑆𝐼,𝑘-2 ;𝐿 PSI and PSII radiance images (Figure 12) of the 3 × 3 𝑘𝑚 2 Ripperdan zone illustrate the potential of DART-Lux SIF modelling for large landscapes. It needed 42.9 GB of memory and 2h 44 min in simulation time with an Intel Xeon W-2295 CPU @ 3.00GHz (18 cores, 36 threads). DART-FT was not run due to huge computational demands: more than 100 TB of memory and 15000 h of simulation time. with 451 bands (Δ𝜆 = 1 nm) for the homogeneous site and maize field, and 45 bands (Δ𝜆 = 10 nm) for the tree plot. Atmosphere (gas model: USSTD76, aerosol model: RURALV23), leaf biochemistry and structure (Table 1), and ground reflectance "loam_gravelly_brown_dark" in MARD DART-Lux/DART-FT is 0.7% for PSI and 0.53% for PSII, and MARD DART-Lux/SCOPE is 5.24% for PSI and 4.93% for PSII. Without neglect of EB, MARD DART-Lux/DART-FT is 0.08% for PSI and 0.19% for PSII, and MARD DART-Lux/SCOPE is 5.57% for PSI and 5.15% for PSII.

IV. Assessment of DART-Lux SIF modelling

IV.3 Maize field

The canopy nadir reflectance (Figure 5) and SIF PSI and PSII radiance (Figure 6, Table 2) simulated by DART-FT, DART-Lux and SCOPE for the three viewing directions and three sun directions show that:

-DART-Lux and DART-FT match: MARDreflectance < 1.3% and MARDSIF radiance < 1%.

-DART-Lux and DART-FT poorly match SCOPE: MARD reflectance up to 16% and MARDSIF radiance from 3% to 19%, depending on the solar and viewing angles, with larger MARD for large angles.

Table 3 shows the computer time and RAM needs of DART-Lux and DART-FT at 0.5 m and 0.01 m resolutions, and also the main input parameters that influence their computational needs. 𝜆 𝑐 =765 𝑛𝑚, 𝛥𝜆=1 𝑛𝑚.

IV.4 Trees plot simulation

The reflectance and SIF radiance of DART-Lux match DART-FT DART-FT (100 discrete directions, illumination step = 10 -3 m), DART-Lux (17² scene repetitions, maximal scattering order = 15, Russian Roulette starts at order 12 with cut-off probability =0.5, 200 samples per pixel) (Figure 8): MARD is 0.27% for reflectance and less than 0.15% for SIF radiance, with memory need reduced by ~13 and computer time by more than 5 times (Table 4). Figure 9 shows the root mean square deviation (RMSD) of DART-Lux and DART-FT PSI and PSII radiance with the number of samples/pixel (i.e., simulation time). Inversely, the R 2 slightly increases from 200 samples/pixel to 1000 samples/pixel. The MARDs are much higher than the spectrally averaged MARD for the total scene (0.15%, Figure 8) in
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particular because the images have many pixels. The MARDs and R 2 for PSI (not shown here) are nearly the same as for PSII.

Figure 11 shows DART-Lux images of the tree plot with 1000 samples/pixel. The SIF signal from the bare ground comes from the SIF radiation emitted by the vegetation that is scattered by the ground. 

V. Discussion

DART-FT and DART-Lux have different radiative transfer modelling strategies. DART-FT is determinist. It tracks radiation fluxes in 𝑁 discrete directions that sub-divide the 4𝜋 space with an iterative approach that scatters at iteration 𝑖 + 1 radiation intercepted in iteration 𝑖 (Gastellu-Etchegorry et al., 1996). DART-Lux is probabilistic. Indeed, it uses Monte-Carlo integration techniques to solve the LTE by sampling the possible light paths, evaluating their contributions, and giving higher importance weights to most likely paths (Wang et al., 2022).

For small scenes, DART-Lux and DART-FT SIF closely match, with relative difference always smaller than 2%. This difference is small enough to be explained by the parameters that drive the precision of DART-Lux (e.g., number of samples/pixel) and DART-FT (e.g., dimension of voxels, numbers of discrete directions, etc.). For these scenes, compared to DART-FT, DART-Lux efficiency is not as pronounced as for larger sites as Ripperdan (Figure 12).

Homogeneous vegetation: DART-Lux closely matches DART-FT and also SCOPE to a lesser extent. Its relative differences are less than 1% with DART-FT, and 5% for SCOPE.

Four major factors can explain that differences are higher for SCOPE. 1) SCOPE simulates radiative transfer with four fluxes and assumes the isotropy of downward and upward scattered radiation, which is not exact (except for the special case of exactly horizontal leaves). On the other hand, DART-FT uses many (here: 200) discrete directions, which allows an accurate representation of the anisotropy of the downward and upward scattered radiation. DART-Lux simulates this anisotropy even more accurately than DART-FT because it can track photons in any direction. 2) SCOPE discretizes the LAD with 13 leaf zenith angles, whereas DART-FT and DART-Lux randomly sample the LAD with a number of samples equal to the number of facets used to simulate the quasi-turbid medium. DART and SCOPE more closely match (results not shown here) by introducing into the code of SCOPE a more accurate LAD with 90 leaf zenith angles.

3) The quasi-turbid medium is not exactly the turbid medium of SCOPE because its facets cannot be infinitely small and infinitely numerous. 4) The application of the SCOPE 𝜂 factors in SCOPE, on the one hand, and in DART-FT and DART-Lux, on the other hand, differs. Indeed, SCOPE applies vertical profiles of 𝜂 factors to homogeneous layers and DART to facets with interpolations on the 𝜂. For this simulation, the 𝜂 factors (i.e., impact of local climatology) do not impact PSI SIF radiance and increase PSII radiance by 25%.

Maize field: the DART-FT and DART-Lux total and SIF radiance closely match and tend to be smaller than for SCOPE, especially for oblique viewing directions, with relative difference possibly larger than 25% for PSII in the NIR. This difference is explained by the canopy 3D architecture (3D maize plants, rows) with the clumping of the maize plants in DART, whereas for SCOPE, the vegetation is homogeneous which is more effective for intercepting radiation and therefore for SIF emission, and also for allowing the emitted SIF radiation to escape the canopy. The MARD DART-SCOPE exceeds 10% in most configurations and increases to reaches 18% for the oblique viewing angle 𝜃 𝑣 = 60°. Indees, in SCOPE simulations, radiation interception and therefore SIF emission occur mostly at the top layers of the canopy. When 𝜃 𝑣 increases, the SIF seen by the sensor increases because the contribution of the top layers to the signal increases. Similarly, for the 3D maize scene, the SIF seen by the sensor from the plants tends to increase when 𝜃 𝑣 increases. However, in these simulations, this increase is less important than for 1D because the viewing direction is parallel to the maize rows and therefore the soil, that does not emit SIF, keeps to be seen by the sensor when 𝜃 𝑣 increases. As with the homogeneous canopy, local bioclimatology (i.e., 𝜂 factors) greatly influences SIF emission, and therefore the canopy SIF radiance. Also, at 0.01m resolution, DART-Lux deduces by 50 the memory usage and simulation time of DART-FT.

Tree plot: the pixel-wise RMSE (Figure 9) of the DART-Lux and DART-FT SIF radiance images decreases with the number of samples/pixel in DART-Lux. This is explained by the decrease of the Monte Carlo noise in DART-Lux. For example, the pixel-wise MARD decreases from 16.89% for 200 samples/pixel down to 13.88% with 1000 samples/pixel. Here, convergence occurs for  1000 samples/pixel. The optimal number of samples/pixel depends on several factors including the expected accuracy on scene radiance, and the spatial extent and complexity of the studied landscape. The accuracy of the representation of the 3D landscape should also be considered.

Because Monte Carlo-based radiative transfer models are expected to be more accurate than discrete ordinate models, and because the BDPT algorithm is unbiased (Wang et al., 2022) CT FT/Lux 5800 for the Ripperdan site. Indeed, the simulation time of DART-FT greatly increases with the number of facets, conversely to DART-Lux if the number of samples/pixel remains constant. Also, CT FT/Lux decreases with the number of simulated spectral bands. Indeed, the DART-FT forward flux tracking simulates SIF with vector-to-matrix products which gives a number of multiplication operations proportional to 𝑁 2 , with 𝑁 the number of spectral bands.

On the other hand, because DART-Lux path tracing is bi-directional, for rays traced in the backward direction, the SIF emission is modelled by a matrix-to-matrix product which gives a number of multiplication operations proportional to 𝑁 3 . In the absence of SIF simulation, CT FT/Lux is relatively independent of the number of spectral bands.
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Because it usually needs much less RAM than DART-FT for complex scenes especially if it uses the cloning approach (Wang et al., 2022), DART-Lux is well adapted to large and complex landscapes for which DART-FT can be inoperative due to hardware constraints. Cloning can be used for elements of the simulated landscape are identical except for a geometric transformation: only a single 3D object and a specific geometric transformation (i.e., spatial shift and scaling-rotation matrix) for each clone are stored in memory. Then, the memory needed in DART-Lux increases very little with the number of scene elements, conversely to DART-FT because a geometric transformation matrix usually needs much less memory than a 3D object. Moreover, for DART-Lux, the computation time does not increase a lot when the scene complexity (i.e., total number of scene facets) increases since the algorithmic complexity of Monte Carlo methods depend only on the number of samples, conversely to DART-FT where the total number of tracked rays highly increases with scene complexity. This makes DART-Lux more computational efficiency for large landscapes, which may be impossible for DART-FT due to hardware limitations. This is illustrated by the 3 × 3 𝑘𝑚 2 SIF radiance image of Ripperdan (Figure 12). Indeed, its simulation only needed 42.9 GB of computer memory and 2 h 44 min of computation time for DART-Lux and was impossible for DART-FT. 

VI. Conclusion

We designed a new SIF radiative transfer modelling that adapts the equations governing the SIF emission to the Bidirectional Path Tracing (BDPT) algorithm [START_REF] Veach | Robust monte carlo methods for light transport simulation[END_REF] that constructs light paths from the light source and from the sensor. This is a novel SIF modelling approach.

Indeed, apart from DART-Lux, to our knowledge, all Monte Carlo RT models that simulate SIF (e.g., FLiES-SIF, FluorFLIGHT, FluorWPS, FluCVRT) use forward tracing, although the BDPT algorithm is more powerful for simulating SIF images. Adapting the BDPT algorithm to SIF modelling greatly improves the efficiency of DART for SIF images simulation, due to the efficiency of backward tracing, especially for sensors with narrow fields of view (Disney et al., 2000).

For that, we adapted the equations that allow to compute the SIF emission for the BDPT algorithms. The new equations allow to compute the radiance starting both from the light source and from the sensor, and to obtain the total signal (scattered + emitted SIF radiance) in addition to the SIF radiance components per photosystem separately. Simulations conducted with simple 3D canopies illustrated that DART-Lux and DART-FT SIF images have a good agreement. In addition, DART-Lux and 1D SCOPE gave similar total and SIF radiance values when using a very similar scene representation (i.e., homogeneous turbid medium and quasi-turbid medium).

They tend to greatly differ if the 3D architecture of the studied landscape is considered. To account for the effect of local climatological conditions (e.g., leaf temperature) on leaf-level SIF emission, DART-Lux can be coupled with the 1D energy balance module of SCOPE by importing vertical profiles of 𝜂 factors, similarly to DART-FT (Malenovský et al., 2021).

Compared to DART-FT, DART-Lux SIF modelling greatly decreases computational needs (i.e., RAM and computer time). This decrease was 50 for the maize field with a spatial resolution equal to 0.01m, and was larger than 10 3 for the 3 × 3 𝑘𝑚 
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Generalized Light Transport Equation

The surface form of the Light Transport Equation gives the radiance reaching a vertex 𝑝 from a surface 𝐴, after being scattered at a vertex 𝑝′ on a surface Σ (here, emission is omitted): 

𝐿(𝑝 ′ → 𝑝) = ∫ 𝑓(𝑝 ′′ → 𝑝 ′ → 𝑝

Monte-Carlo path tracing (Fluids analogy)

In radiative transfer theory, fluids are usually assumed to have a sufficiently high particle density to be treated statistically using the Beer law. Also, the density of particles is assumed not to be too large in order to ensure that the absorbance of the fluid is proportional to the fluid density. Because the turbid medium model is similar to the fluid model, and because the fluids are simpler to treat using their analytical phase functions in the frame of Monte-Carlo path tracing, fluids modeling is presented first, then, turbid modeling is derived from it.

Monte-Carlo path tracing aims to randomly sample light paths by ensuring that the most probable paths have higher chances to be sampled. For fluid volumes, this is done in two steps:

a) Sampling a traveling distance

A ray entering a fluid volume is partly transmitted. The Beer law gives the direct transmittance:

𝑇 𝑡 (Δ𝐿) = 𝑒 -𝜎 𝑡 .Δ𝐿 (3.3)
with Δ𝐿 the travel distance and 𝜎 𝑡 = 𝜎 𝑠 + 𝜎 𝑎 the total extinction coefficient (m 2 of interceptor / m 3 ). 𝜎 𝑡 is the sum of scattering and absorption extinction coefficients.

Here, it is assumed to be isotropic.

Complementarily, the probability that a ray is intercepted after a travel distance less or equal than Δ𝐿 is 1 -𝑇 𝑡 (Δ𝐿) . It is the Cumulative Distribution Function (CDF) 𝑃 𝜎 𝑡 (Δ𝐿) that an interception occurs at a distance 𝑙  Δ𝐿 , which is the integral of the Probability Density Function (PDF) 𝑝 𝜎 𝑡 (𝑙) that an interception occurs at a distance 𝑙 per distance unit:

𝑃 𝜎 𝑡 (Δ𝐿) = ∫ 𝑝 𝜎 𝑡 (𝑙). 𝑑𝑙 Δ𝐿 0 = 1 -𝑒 -𝜎 𝑡 .Δ𝐿 (3.4)
𝑝 𝜎 𝑡 (𝑙) = 𝑑𝑃 𝜎 𝑡 (𝑙) 𝑑𝑙 = 𝜎 𝑡 . 𝑒 -𝜎 𝑡 .𝑙 (3.5)

Sampling 𝑝 𝜎 𝑡 (𝑙) gives a sampled travel distance Δ𝑙 in the medium. The inversion method (cf.

Appendix 3-1) is used to draw a random sample 𝑢 from a given PDF 𝑝(𝑥): the inverse function of its CDF is applied to a random number 𝜉 uniformly sampled between 0 and 1. Hence, the travel distance Δ𝑙 through the medium is sampled using a random number 𝜉~𝒰([0,1]):

Δ𝑙 = 𝑃 𝜎 𝑡 -1 (𝜉) = - ln(1 -𝜉) 𝜎 𝑡 (3.6)
If Δ𝑙 < Δ𝐿, with Δ𝐿 the pathlength needed by the ray to exit the medium, the ray is scattered after the pathlength Δ𝑙. If Δ𝑙 > Δ𝐿, the ray is transmitted through the medium.

In fluids, the extinction coefficients usually vary with the wavelength. For a multiband ray, Δ𝑙 is sampled using the spectral average 𝜎 ̅ 𝑡 over all bands. Then, if a ray is intercepted (i.e., Δ𝑙 < Δ𝐿), its transmittance 𝑇𝑟 𝑟𝑎𝑦,𝑖𝑛𝑡 is null for all spectral bands, and if a ray is transmitted (Δ𝑙 ≥ Δ𝐿 ), its transmittance 𝑇𝑟 𝑟𝑎𝑦,𝑡𝑟𝑎𝑛𝑠 is 1 for all spectral bands. The expected value of the transmittance for all spectral bands can be written:

𝐸[𝑇𝑟(𝜎 ̅ 𝑡 , Δ𝐿)] = ∫ 0. Δ𝐿 0 𝑝 𝜎 ̅ 𝑡 (𝑙)𝑑𝑙 + ∫ 1. +∞ Δ𝐿 𝑝 𝜎 ̅ 𝑡 (𝑙)𝑑𝑙 = 𝑒 -𝜎 ̅ 𝑡 .Δ𝐿 (3.7)
The obtained expected transmittance is a transmittance corresponding to the averaged 𝜎 ̅ 𝑡 for all spectral bands. A transmittance correction factor 𝑓 = 𝑒 -𝜎 𝑡 .Δ𝐿 𝑒 -𝜎 ̅ 𝑡 .Δ𝐿 is applied per spectral band in order to get the correct expected transmittance for each spectral band: the Leaf Angular Distribution function.

𝐸[𝑇𝑟(𝜎 ̅ 𝑡 , 𝜎 𝑡 , Δ𝐿)] = ∫ 𝑒 -𝜎 𝑡
The PDF of interception and scattering of a ray after a travel path 𝑙 through the medium is:

𝑝(𝑙, Ω 𝑠 ) = 𝐺(Ω 𝑠 ). 𝑢 𝑙 . 𝑒 -𝐺(Ω 𝑠 ).𝑢 𝑙 .𝑙 (3.10)

The extinction coefficient 𝜎 𝑡 =G(Ω 𝑠 ).𝑢 𝑙 does not depend on wavelength. Hence, the transmittance correction factor 𝑓 applied for fluids is not needed.

Being a function of the direction Ω 𝑠 , the term 𝐺 must be computed per traced direction. Because its computation on the fly is computationally expensive, 𝐺 is precomputed for 𝑁 discrete directions. Then, since any direction can be sampled, 𝐺 is interpolated using the values for the directions that neighbor the sampled direction. If a volume contains several types of turbid/fluid medium, the sampling of distance is done using an equivalent extinction coefficient that is the sum of the extinction coefficients of all the elements in the volume.

Radiation reflected by vegetation covers has usually a sharp maximum in the retro-illumination direction. Indeed, shadows cast by the leaves in the incident direction cannot be seen in this direction because they are hidden by the leaves themselves. For directions close to the retroillumination direction, shadows can be observed, which usually translates in a decrease of reflectance. This is known as the hot spot effect. The approach of [START_REF] Kuusk | The hot-spot effect of a uniform vegetative cover[END_REF] is widely used to model the hot spot effect. In the standard DART model (i.e., DART-FT), Gastellu-Etchegorry et al. (1996) adapted the approach of [START_REF] Kuusk | The hot-spot effect of a uniform vegetative cover[END_REF] to finite dimensions turbid cells. Although some hot spot models are more accurate [START_REF] Gobron | A semidiscrete model for the scattering of light by vegetation[END_REF]Kallel & Nilson, 2013), the Kuusk model is selected for DART-Lux because of its simplicity and adaptability to the Monte Carlo method. For example, [START_REF] Antyufeev | Monte Carlo method and transport equation in plant canopies[END_REF] used it in their Monte Carlo model. DART-FT also uses it, which eases comparison with DART-Lux.

For a viewing direction Ω 𝑣 such that Ω 𝑠 . Ω 𝑣 <0 and a path length Δ𝑙, the transmittance is no longer 𝑇𝑟(Δ𝑙, Ω 𝑣 ) = 𝑒 -𝑢 𝑙 .𝐺(Ω 𝑣 ).𝛥𝑙 . It is (cf. Appendix 3-2): , 𝑑 𝑙 the leaf dimension, 𝑢 𝑙 the leaf volume density.

𝑇𝑟(Δ𝑙, Ω 𝑠 → Ω 𝑣 ) = 𝑒 -𝑢 𝑙 .𝐺(Ω 𝑣
𝜁= 𝑢. 𝐺(Ω 𝑣 ), and 𝜙(Δ𝑙)=Δ𝑙 + 𝛽 𝛼 (𝑒 -𝛼.Δ𝑙 -1), which is positive because 𝑇𝑟(Δ𝑙, Ω 𝑠 →Ω 𝑣 )≤1.

With the notation 𝑥 = 𝜙(Δ𝑙), the transmittance is written:

𝑇𝑟(𝑥, Ω 𝑠 → Ω 𝑣 ) = 𝑒 -𝜁.𝑥
(3.12)

The PDF of the random variable 𝑋 for sampling 𝑥 in 𝑇𝑟(𝑥, Ω 𝑠 → Ω 𝑣 ) is:

𝑝 𝑋 (𝑥) = 𝜁. 𝑒 -𝜁.𝑥 (3.13)
The CDF of the random variable 𝑋 is:

𝑃 𝑋 (𝑥) = 1 -𝑒 -𝜁.𝑥 (3.14)
The CDF of the random variable 𝐿, for sampling a travel distance 𝑙 in the hot spot configuration, knowing that the function 𝜙 is strictly increasing in the range of interest (cf. Appendix 3-3), is:

𝑃 𝐿 (𝑙) = 𝑝(𝐿 ≤ 𝑙) = 𝑃(𝑋 ≤ 𝜙(𝑙)) = 𝑃 𝑋 (𝜙(𝑙)) = 𝜁. 𝑒 -𝜁.𝜙(𝑙) (3.15)
The PDF of the random variable 𝐿 is then:

𝑝 𝐿 (𝑙) = 𝑑𝑃 𝐿 (𝑙) 𝑑𝑙 = - 𝑑𝜙(𝑙) 𝑑𝑙 . 𝜁 2 . 𝑒 -𝜁.𝜙(𝑙) (3.16) To sample 𝑙, with 𝜉~𝒰([0,1]) 𝑥 = 𝜙(𝑙) = - ln (1 -𝜉) 𝜁 ↔ 𝑙 = 𝜙 -1 (- ln(1 -𝜉) 𝜁 ) (3.17)
The expression of 𝜙 -1 is computed in Appendix 3-3.

b) Sampling a scattering direction

The scattering direction is sampled according to the scattering phase function 𝑝(𝜇), which is the angular distribution of scattered radiation, with 𝜇=cos 𝜃 and θ the angle between the incident and outgoing directions. The sampled direction is defined by 2 angles: the angle 𝜃 between the incident and outgoing rays, and an azimuthal angle 𝜑 in the plane perpendicular to -Henyey-Greenstein phase function

𝑝(𝜃) 2𝜋 = 1 4𝜋 . 1 -𝑔 2 [1 + 𝑔 2 -2. 𝑔. cos(𝜃)] 3 2 (3.19)
This phase function is normalized:

∫ ∫ 𝑝(𝜃) 2𝜋 . sin(𝜃) 𝑑𝜃 𝜋 0 2𝜋 0 𝑑𝜑 = 1 (3.20)
with the asymmetry parameter 𝑔]-1,1[. It is negative for backward scattering, positive for forward scattering, and null for isotropic scattering.

It can be written as a function of 𝜇=cos(𝜃):

𝑝(𝜇) = 1 2 . 1 -𝑔 2 [1 + 𝑔 2 -2. 𝑔. 𝜇] 3 2 (3.21)
Then, we have:

∫ 𝑝(𝜇)𝑑𝜇 = 1 1 -1 (3.22)
To sample 𝜇 = cos(𝜃) from 𝑝(𝜇), we compute the cumulated density function:

𝑃(𝑥) = ∫ 𝑝(𝜇)𝑑𝜇 𝑥 -1 = { 1 -𝑔 2 2𝑔 [(1 + 𝑔 2 -2𝑔𝑥) -1 2 - 1 1 + 𝑔 ] , if 𝑔 ≠ 0 𝑥 + 1 2 , 𝑖𝑓 𝑔 = 0 (3.23)
The value of 𝜇 that is sampled is: -

𝜇 = 𝑃 -1 (𝜉), 𝜉~𝒰([0,1]) 𝜇 = { 1 2𝑔 . [1 + 𝑔 2 -( 1 -𝑔 2 1 -𝑔 + 2. 𝑔. 𝜉 ) 2 ] , if 𝑔 ≠ 0 2. 𝜉 -
If 𝜉 1 < 𝑎, 𝜇 = { 1 2𝑔 1 . [1 + 𝑔 1 2 -( 1 -𝑔 1 2 1 -𝑔 1 + 2. 𝑔 1 . 𝜉 2 ) 2 ] 2. 𝜉 2 -1, if 𝑔 1 = 0 , if 𝑔 1 ≠ 0 (3.26) Else 𝜇 = { 1 2𝑔 2 . [1 + 𝑔 2 2 -( 1 -𝑔 2 2 1 -𝑔 2 + 2. 𝑔 2 . 𝜉 2 ) 2 ] , if 𝑔 2 ≠ 0 2. 𝜉 2 -1, if 𝑔 2 = 0 (3.27)

Turbid vegetation phase function

For a vegetation turbid medium, the scattering transfer function is:

𝑇 𝑠𝑐𝑎𝑡 (Ω 𝑠 → (Ω 𝑣 , ΔΩ 𝑣 )) = 1 𝐺(Ω 𝑠 ) . ∫ ∫ |Ω 𝑠 . Ω 𝑙 |. 𝑔(Ω 𝑙 ) 2𝜋 . 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑙 . 𝑑Ω 𝑣 2π ΔΩ 𝑣 (3.30)
where 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ): leaf scattering phase function.

𝑇 𝑠𝑐𝑎𝑡 (Ω 𝑠 → (Ω 𝑣 , ΔΩ 𝑣 )) scattered power 𝑊 𝑠𝑐𝑎𝑡 (Ω 𝑠 →Ω 𝑣 ) in direction (Ω 𝑣 , ΔΩ 𝑣 ), per power 𝑊 𝑖𝑛𝑡 (Δ𝑙 𝑖 , Ω 𝑠 ) intercepted in pathlength Δ𝑙 𝑖 in direction Ω 𝑠 .

To define a probability density function (PDF) equivalent to the scattering phase functions for fluids, the PDF of a given direction is assumed to be proportional to the power scattered in this direction. Then, we have: When sampling a scattering direction for a bi-Lambertian surface, the incident and outgoing directions play symmetric roles. For a turbid medium made only of bi-Lambertian surfaces, this symmetry is conserved. Hence, this PDF can be used to sample scattering directions in both direct and reverse directions (i.e., for both light and source sub-paths).

𝑝(Ω 𝑣 |Ω 𝑠 ) = 1 𝐺(Ω 𝑠
The denominator of Eq (3.32) can be simplified:

𝐷 = ∫ 1 𝐺(Ω 𝑠 ) . ∫ |Ω 𝑠 . Ω 𝑙 |. 𝑔(Ω 𝑙 ) 2𝜋 . 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑙 . 𝑑Ω 𝑣 2π 4𝜋 (3.33) = 1 𝐺(Ω 𝑠 ) . ∫ 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑣 . ∫ |Ω 𝑠 . Ω 𝑙 |. 𝑔(Ω 𝑙 ) 2𝜋 . 𝑑Ω 𝑙 . 2π 4𝜋
The leaf scattering phase function 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ) verifies:

∫ 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑣 = 𝜔 4𝜋 (3.34)
with 𝜔 is the leaf single scattering albedo. This precomputation is used to compute the discrete probability distribution for all outgoing directions, for each incident direction:

𝑝((Ω 𝑛 , ΔΩ 𝑛 )|Ω 𝑠 ) = 𝑇 ̿(𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) ω (3.39)
Then, the PDF for the direction Ω 𝑛 is given by:

𝑝(Ω 𝑛 |Ω 𝑠 ) = 𝑇 ̿(𝜆, Ω 𝑠 , Ω 𝑛 , ΔΩ 𝑛 ) ω. ΔΩ 𝑛 (3.40)
𝑝(Ω 𝑛 |Ω 𝑠 ) is computed for N ingoing and N outgoing discrete directions. However, in DART-Lux, rays can propagate in any direction. Therefore, the PDF for any direction is computed with a two-step interpolation. 1) For each neighbor direction of the incident direction, the PDF is interpolated using the values in neighboring directions of the outgoing direction. 2) Then, results of the first interpolation are interpolated for neighbor directions of the incident direction.

If the volume contains several types of turbid/fluid medium, the scattering direction is determined in two steps. 1) A scattering medium is randomly selected: the probability of selecting a medium is proportional to its scattering extinction coefficient for fluids, and to its extinction coefficient in the incident direction for the turbid medium. 2) Then, a scattering direction is sampled according to the scattering phase function of the selected medium.

SIF modeling

Once the turbid medium is introduced in DART-Lux, modeling the SIF emission in this medium is straightforward using the Monte Carlo path sampling method presented above. Similarly to the scattering phase functions, SIF transfer functions precomputed by the phase module of DART-FT for discrete directions (c.f. Eq (2.5)) are used to evaluate the SIF radiance for the sampled light paths along with the block matrix representation introduced in Section 3.1. 

Results

Fluids

Turbid medium

The accuracy of DART-Lux SIF modeling in a turbid medium is assessed by comparison with DART-FT for the case of a turbid volume (LAI = 1, spherical LAD) over a non-reflective ground and an incident sun radiation with a zenith angle equal to 30°. 

Conclusion

The theory of SIF emission modeling in DART-Lux has been introduced. It relies on major changes in DART-Lux. First, the SIF emission equations that include interdependence between spectral were adapted to the bi-directional path tracing algorithm and in particular to the subpaths traced in the backward direction. Second, the turbid vegetation has been introduced, after having introduced fluid volumes using the double Henyey-Greenstein and the Rayleigh phase functions. DART-Lux now simulates SIF emission and observation for vegetation simulated as facets and/or as turbid volumes. It usually is much smaller simulation time and computer memory that DART-FT, with a gain in computational efficiency that depends on the scene complexity and on the number of simulated spectral bands. Therefore, it allows the study of much larger and more complex landscapes than DART-FT.

The inversion method is used to draw random samples from a random variable of a given PDF, using the inverse function of its CDF and a random number uniformly sampled over [0,1].

Let a real random variable 𝑋 with a PDF 𝑝 𝑋 (𝑥) that we want to sample. The CDF of 𝑋 is:

𝑃 𝑋 (𝑥) = 𝑝(𝑋 ≤ 𝑥) = ∫ 𝑝 𝑋 (𝑡). 𝑑𝑡 𝑥 -∞
Let Ξ a random variable uniformly distributed over [0,1] and the random variable 𝑈=𝑃 𝑋 -1 (Ξ).

The PDF of Ξ is:

𝑝 Ξ (𝜉) = { 1, if 𝜉 ∈ [0,1] 0, otherwise
The CDF of Ξ is:

𝑃 Ξ (𝜉) = ∫ 𝑝 Ξ (𝑡). 𝑑𝑡 𝜉 -∞ = { 0, if 𝜉 < 0 𝜉, if 𝜉 ∈ [0,1] 1, if 𝜉 > 1
Let us compute the CDF of the random variable 𝑈:

𝑃 𝑈 (𝑢) = 𝑝(𝑈 ≤ 𝑢) = 𝑝(𝑃 𝑋 -1 (Ξ) ≤ 𝑢) = 𝑝(Ξ ≤ 𝑃 𝑋 (𝑢)) = 𝑃 Ξ (𝑃 𝑋 (𝑢)) = 𝑃 𝑋 (𝑢) (since 𝑃 𝑋 (𝑢) ∈ [0,1])
It implies that the random variable 𝑈=𝑃 𝑋 -1 (Ξ) has the PDF of 𝑋:

𝑝 𝑈 (𝑢) = 𝑑𝑃 𝑈 (𝑢) 𝑑𝑢 = 𝑑𝑃 𝑋 (𝑢) 𝑑𝑢 = 𝑝 𝑋 (𝑢)
Therefore, the random variable 𝑈 can be used to draw samples of 𝑋. The general form of the Rayleigh scattering phase function is

𝑝(𝜃) 2𝜋 = 1 4𝜋 . [𝐴. (1 + cos 2 (𝜃)) + 𝐶]
It can be written as a function of 𝜇 = cos(𝜃)

𝑝(𝜇) = 1 2 . [𝐴. (1 + 𝜇 2 ) + 𝐶] with ∫ 𝑝(𝜇). 𝑑𝜇 1 -1 = 1
The CDF of 𝑝(𝜇) is:

𝑃(𝑥) = ∫ 𝑝(𝜇). 𝑑𝜇 𝑥 -1 = 1 2 ∫ [𝐴. (1 + 𝜇 2 ) + 𝐶]. 𝑑𝜇 𝑥 -1 = 1 2 [𝐴. (𝑥 + 𝑥 3 3 + 4 3 ) + 𝐶. (𝑥 + 1)] = 𝐴 6 . 𝑥 3 + 𝑥 ( 𝐴 2 + 𝐶 2 ) + 2 3 𝐴 + 𝐶 2
To sample randomly a value 𝜇 using a random number 𝜉~𝒰([0,1]): 

Turbid versus quasi turbid modeling in DART-Lux

The study presented in section 4.2 was conducted before the introduction of turbid medium and SIF modeling with turbid medium in DART-Lux. Therefore, each turbid medium voxel was simulated as a voxel randomly filled by facets (i.e., quasi-turbid medium) with the same leaf area as the turbid voxel. The quasi-turbid representation was created using the cloning capacity of DART-Lux in order to minimize the computer memory: each quasi-turbid voxel is a linear combination of a limited number of base 3D objects made as a random distribution of facets with a specific leaf area. Now that turbid modeling is available in DART-Lux, it is useful to

Chapter 4

Impact of vegetation 3D structure on SIF assess the validity of the quasi-turbid representation. The case study is the CI1 tree plot of the SERC forest (Regaieg et al., 2021) that [START_REF] Yin | Three-dimensional estimation of deciduous forest canopy structure and leaf area using multi-directional, leaf-on and leaf-off airborne lidar data[END_REF] derived by from airborne LiDAR point cloud. Its mean LAI value is 5.517 𝑚 2 . 𝑚 -2 and its mean Wood Area Index value is 0.792 𝑚 2 . 𝑚 -2 . The comparison is done without and with SIF simulation, for 45 spectral bands over [400,850nm] and a scene repetition equal to1 (i.e., the studied scene is surrounded by 8 identical scenes). The scattering phase function of the turbid medium is pre-computed for 200 discrete directions. The Monte Carlo noise in DART-Lux images influences their pixel values. This is a constraint to be quantified. Here, it is done by running 10 times each simulation. Figure 4-2 shows the relative standard deviation images of the 10 runs averaged over all the spectral bands for the turbid and quasi-turbid representations. Each image is an average image of all spectral images of which each pixel value is the standard deviation of the 10 values from the 10 runs divided by the average of these 10 values. The relative standard deviation and therefore the Monte Carlo noise is lower for the turbid representation. This is mainly due to the fact that with, vegetation interaction is simulated using a single scattering phase function for a turbid representation, whereas for a quasi turbid medium, its simulation takes into account the discrete spatial and Figure 4-4 shows the relative standard deviation images of 10 runs averaged over all the spectral bands for tubrid-and quasi turbid simulations, for PSI and PSII SIF radiance. As for the total signal, the Monte Carlo noise for SIF is higher for the quasi-turbid represenation.

No SIF simulation

With SIF simulation

Table 4-2 shows the computation time and RAM requirements for quasi-turbid and turbid SIF simulations. The increase factor of computation time between quasi-turbid and turbid is higher if SIF is simulated. Indeed, the interpolation on the SIF transfer functions (𝑁 × 𝑁 matrices for 𝑁 spectral bands) is more computationally expensive than the interpolation of normal scattering phase functions (𝑁-element vector for 𝑁 spectral bands).

The RAM requirements is nearly the same for quasi-turbid no SIF and SIF simulations, while, it is larger for the turbid SIF compared to the turbid with no SIF because the SIF tranfer functions computed for all incident and outgoing directions, and also excitationand emission bands, for PSI and PSII, can be voluminous. However, in this case, the RAM requirement is still less than for the quasi-turbid simuation.

This work stresses that depending on configurations (i.e., number of spectral bands, dimension of the study area, etc.), the quasi turbid or the turbid representation can be prefered. 
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The use of 1D SIF models like SCOPE implies to use a less accurate representation of vegetation as horizontally homogeneous layers and to neglect the 3D structure of canopies although it highly impacts the propagation of light and SIF radiation with the canopy. It neglects other important elements of the canopy as well, that interact with radiation and influence the SIF emission and the measured signal such as the local topography and the woody elements of the trees. Hence, the use of 1D models can induce errors in SIF simulations and consequently errors in the interpretation of SIF measurements. Therefore, it is important to study the impact of 3D structure on the SIF and to quantify the simulation errors that are made when simulating the SIF with 1D models. Consequently, 3D radiative transfer models are more accurate. In addition, a 3D models like DART can simulate the SIF for any 1D and 3D representation of vegetation, which is very useful for many studies.

This study was conducted on eight realistic 3D mock-ups derived by inversion of airborne LiDAR measurements over the SERC forest [START_REF] Yin | Three-dimensional estimation of deciduous forest canopy structure and leaf area using multi-directional, leaf-on and leaf-off airborne lidar data[END_REF]. It allowed one to stress that compared to 3D representations, 1D representations can lead to very large errors on PAR absorption, SIF emission, and SIF radiance from morning to evening, depending on the landscape 3D architecture. In this work, the order of magnitude of errors was often larger than 30%. This work was published in Remote Sensing of Environment (Regaieg et al., 2021).
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Introduction

Solar-induced chlorophyll fluorescence (SIF) is a photoprotective electromagnetic radiation emitted by chlorophyll molecules in response to absorption of photosynthetically active radiation (PAR) by green vegetation. Since the energy emitted as SIF is complementary to the energy entering the photochemical processes and the excessive energy dissipated as heat (Baker, 2008;Mohammed et al., 2019), it is considered as an indicator of the functional state of plant photosynthesis (Baker, 2008). SIF measurements are complicated by the fact that SIF represents only a small fraction of absorbed PAR and spectrally overlaps with radiation reflected by Earth surface elements and the atmosphere. However, the improvement of remote sensing (RS) optical sensors and techniques for retrieving the SIF signal [START_REF] Meroni | Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications[END_REF]Mohammed et al., 2019) has opened new avenues for monitoring the functional state of vegetation. SIF can be used to track actual photosynthetic efficiency (Rossini et al., 2015;Campbell et al., 2019;Yang et al., 2021), to improve assessment of plant gross primary production (Guanter et al., 2014;Z. Liu et al., 2019), and to detect vegetation stress (Ač et al., 2015). This diverse potential of SIF for vegetation monitoring spurred the development of methods for space-borne measurements and new satellite missions, such as the FLuorescence EXplorer (FLEX) selected by the European Space Agency (ESA) as its 8 th Earth explorer scientific mission (Drusch et al., 2017).

Besides plant photosynthetic activity, SIF observations are impacted by other confounding factors, notably the structure of vegetation canopies (Fournier et al., 2012;[START_REF] Migliavacca | Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability[END_REF] and PAR availability. They are of SIF also influenced by sun-canopy-sensor angular and directional effects (Zhang, Zhang, Porcar-Castell, et al., 2020;Zhang, Zhang, Zhang, et al., 2020), and are driven by wavelength-dependent phenomena of SIF emission, scattering, and reabsorption. For instance, Fournier et al. (2012) found that the red-to-far-red fluorescence ratio could decrease by a factor of two between the leaf level and the canopy level, due to a higher absorption of red SIF by the vegetation canopy. Therefore, accurate interpretation and use of SIF RS observations require understanding of three consecutive processes: i) interception of photosynthetically active radiation (PAR; 400 -750 nm) and its absorption by foliar elements (APARgreen; W.m -2 ), due to chlorophyll pigments in leaves, ii) leaf SIF emission from photosystems I and II (PSI and PSII) in thylakoid membranes, due to APARgreen, and iii)

propagation of the SIF radiation through the canopy, including its scattering and absorption by different canopy elements, i.e., leaves, woody elements, litter, bare soil, and others (van der Tol et al., 2019).
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Radiative transfer models (RTMs) are powerful tools used for various vegetation RS applications, ranging from sensitivity analyses [START_REF] Malenovský | Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution[END_REF] to quantitative retrievals of models' biophysical inputs [START_REF] Brede | Assessment of Workflow Feature Selection on Forest LAI Prediction with Sentinel-2A MSI, Landsat 7 ETM+ and Landsat 8 OLI[END_REF]Verrelst et al., 2019). The increasing need for understanding and interpreting the SIF signal at canopy level resulted in coupling canopy RTMs with a leaf-level SIF model, most frequently with Fluspect (Vilfan et al., 2016). The pioneer in one-dimensional (1D) SIF canopy modeling is SCOPE (van der Tol et al., 2009). Based on SAIL RTM (Verhoef, 1984) and coupled with leaf-level SIF and biochemistry models, SCOPE models photosynthesis and the full energy balance (Damm et al., 2015;[START_REF] Migliavacca | Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability[END_REF][START_REF] Verrelst | Global sensitivity analysis of the SCOPE model: What drives simulated canopyleaving sun-induced fluorescence?[END_REF][START_REF] Verrelst | Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study[END_REF]. Despite its extension to vertically heterogeneous canopies (Yang et al., 2017), SCOPE's 1D formulation makes it less suitable for structurally complex and spatially heterogeneous canopies, such as forests. This explains the recent development of three-dimensional (3D) SIF RTMs, such as FluorFLIGHT (Hernández-Clemente et al., 2017), based on the 3D FLIGHT model (North, 1996), FLiES-SIF (Sakai et al., 2020) based on the FLiES model (Kobayashi & Iwabuchi, 2008) that simulate SIF for tree canopies, FluorWPS (Zhao et al., 2016) based on the WPS model (Zhao et al., 2015) designed to simulate SIF of structurally complex canopies and the FluLCVRT model (Kallel, 2020) that simulates SIF for 3D canopies including 3D leaf-level SIF modeling. The work presented in this paper was carried out with the 3D discrete anisotropic radiative transfer (DART) model (Gastellu-Etchegorry et al., 2017) coupled with Fluspect-Cx (Vilfan et al., 2018). DART simulates both the 3D SIF radiative budget (i.e., interception, absorption, emission and scattering) and the SIF signal remotely sensed at the bottom of atmosphere (BOA) and top of atmosphere (TOA) for forest or crop canopies. It upscales leaf-level SIF to canopy SIF, while considering the user-defined leaf biochemistry and fluorescence quantum yield efficiencies of PSI and PSII, and accounting for the actual 3D vegetation architecture. DART has been cross compared with the SCOPE modeling of the same 1D vegetation scenarios (Malenovský et al., 2021), and used in various studies for sensitivity analyses of the SIF signal in architecturally complex forest canopies (W. Liu et al., 2019;Malenovský et al., 2021), scaling canopy-level SIF down to the level of photosystems (X. Liu et al., 2019), and studying the escape probability of far-red SIF from discontinuous forest canopies (W. Liu et al., 2020).

The main objective of this paper is to assess the impact of temperate deciduous forest architecture on the diurnal variability in the nadir SIF RS signal and within-canopy SIF emission by green leaves. SIF canopy signals were simulated with a new Monte Carlo mode of DART, called DART-Lux, whereas the radiative budget of within canopy SIF emission was simulated using the standard flux tracking mode of DART, called DART-FT. (cf. section 2.1).

Material and methods

Discrete anisotropic radiative transfer (DART) modeling approaches

DART (https://dart.omp.eu) is a comprehensive physically based 3D RTM developed by the CESBIO Laboratory (Toulouse, France) since 1993 (Gastellu-Etchegorry et al., 1996, 2015). It is continuously improved both scientifically (e.g., light polarization and radiative coupling between the atmosphere and Earth surfaces) and technically (e.g., computational efficiency in terms of simulation time and computer memory). It simulates the radiative budget (RB) as well as TOA, BOA, and in-situ RS observations (i.e., LiDAR and imaging spectroradiometer data, either pushbroom scanner, hemispherical or frame camera) of urban and natural landscapes from the visible to the thermal infrared spectral domains, for any experimental and instrumental configuration (solar illumination, viewing direction, atmosphere condition, spatial and spectral resolutions, etc.). DART is made of three radiative transfer modeling modules:

1. DART-FT (Flux Tracking) simulates passive optical RS signals and 3D RB, including SIF, using an adaptation of the N-flux discrete ordinates' method (Yin et al., 2013[START_REF] Yin | Simulating images of passive sensors with finite field of view by coupling 3-D radiative transfer model and sensor perspective projection[END_REF].

Landscapes are simulated as the juxtaposition of planar triangular facets in 3D arrays of voxels that contain fluid and turbid medium (i.e., vegetation volume statistically characterized by a leaf angular distribution (LAD) and a leaf area index (LAI) equivalent to a volume filled with an infinite number of infinitely small planar surfaces).

2. DART-RC (Ray Carlo) combines Monte Carlo (MC) and FT methods in order to simulate LiDAR signals [START_REF] Gastellu-Etchegorry | Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing[END_REF][START_REF] Yin | Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions, photon counting, and solar noise[END_REF]. 3D landscapes are simulated in the same way as for DART-FT module.

3. DART-Lux is a new module that broadens the application domain of DART to large landscapes through the introduction of a bidirectional MC modeling approach adapted from the physically based and unbiased rendering engine called LuxCoreRender [START_REF] Georgiev | Light transport simulation with vertex connection and merging[END_REF]LuxCoreRender -Open Source Physically Based Renderer). It greatly improves the computational efficiency of simulations for large and complex landscapes. For example, the reduction of simulation time and computer memory can be over 100-times. Indeed, this DART mode only tracks radiation that impacts the signal forming the sensor observation.
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Landscapes are simulated as the juxtaposition of facets and volumes filled with fluids and turbid medium. Volumes in DART-Lux can be defined independently from the 3D arrays of voxels, unlike DART-FT and RC. Although still under intensive testing, DART-Lux already simulates most RS products of DART-FT and DART-RC, including SIF and LiDAR. Presently, TOA signals are simulated using DART-FT based atmosphere modeling (Wang & Gastellu-Etchegorry, 2021). MC-based modeling of atmosphere thermal radiative transfer, as well as radiative budget are under development.

SIF modeling was initially introduced in DART-FT for vegetation canopies represented explicitly with facets (Gastellu-Etchegorry et al., 2017) and later for canopies simulated with 3D turbid voxels [START_REF] Regaieg | Simulation of Solar-Induced Chlorophyll Fluorescence from 3D Canopies with the Dart Model[END_REF]. More recently, SIF modeling was also implemented in DART-Lux, for both facet-based as well as turbid canopies (Regaieg et al., in preparation). As indicated above, compared to the standard DART-FT mode, DART-Lux is much more efficient in terms of computation time and required memory to simulate RS images, including SIF images. However, up to now it does not simulate the landscape RB. Therefore, in this work, we simulated SIF image observations at the spatial resolution of 1m in DART-Lux, whereas the forest RB was simulated in DART-FT at a lower spectral resolution to reduce computational demand.

The leaf radiative transfer model Fluspect-Cx, which was embedded in DART and tested by (Malenovský et al., 2021), simulates additionally to leaf spectral reflectance and transmittance optical properties the forward and backward fluorescence excitation-emission matrices per photosystem (PSI and PSII). Its inputs include contents of foliar pigments, water and dry matter, a structural parameter characterizing the leaf optical thickness, and leaf fluorescence quantum efficiencies fqe (i.e., fraction of APARgreen emitted as fluorescence) of a dark-adapted leaf, that are in DART referred to as PSI and PSII fluorescence yields. Leaf physiology and local climatology influence fqe. However, unlike the SCOPE model, DART does not contain a leaf biochemical model, and therefore cannot simulate the canopy climatic weights that condition leaf fqe. Therefore, in DART, fqe is an input parameter that can be specified per individual foliage facet, per group of foliage facets, per type of turbid medium, or as a single value for all leaf facets and turbid medium types. Groups of foliage facets can correspond, for instance, to sunlit and shaded leaves (i.e., leaves irradiated by direct sun or not at a certain time), or to sun-and shade-adapted leaves (i.e., leaves that have grown under and adapted to high or low light intensity such that biochemical contents vary), knowing that a sun-adapted leaf can be momentarily a shaded leaf and vice versa. In this work, forest fqe values published in (W. Liu et al., 2019) are used. Although very likely differing from actual values of the study forest sites, these values are sufficiently representative to investigate the impact of forest architecture and different structures (e.g., wood components) on canopy SIF signal and emission. We also note that although sun-adapted and shade-adapted fqe's are considered, the actual light and temperature modulations are not. Consequently, a leaf emitted SIF is given by APAR and fqe per leaf adaptation.

Study sites

Eight deciduous forest sites in the Smithsonian Environmental Research Center (SERC, Edgewater, MD, USA) were selected as the study sites. The stands mainly consist of mixedspecies deciduous forests of Liquidambar styraciflua and Liriodendron tulipifera for the overstory, and C. tomentosa, Quercus alba, and F. grandifolia for the understory [START_REF] Article Kamoske | Leaf area density from airborne LiDAR: Comparing sensors and resolutions in a temperate broadleaf forest ecosystem[END_REF][START_REF] Parker | Structure and microclimate of forest canopies[END_REF]. Descriptions of forest stands and management characteristics can be found in (Brush et al., 1980, Parker et al., 2001, McMahon et al., 2010). Four forest stand types were selected from the combinations of both canopy development categories ["intermediate" (I) or "mature" (M)] and experimental status categories ["control" (C) or "logged" (L)], and two sites of each type (indexed 1 and 2) were used for this study (Table 1). Therefore, the eight study sites (Figure 1) have different canopy architectures, as illustrated by their height maps (Figure 2) and LAI vertical profiles. The forest plots LI2, LM1, LM2, and, to a lesser extent, LI2, have a larger horizontal heterogeneity than the other plots. These plots also have pronounced heterogeneity, with foliage density being larger (i.e., larger LAI voxel values in DART-FT) in the bottom canopy layers than in the top canopy layers. Table 2 shows the wood area density and the LAI for sun-and shade-adapted leaves (cf. Section III-1). We note that the concept of wood area density does not have an actual physical meaning linking with trunks and branches' surface areas. It is derived from leaf off G-LiHT ALS data, and used to compensate the interception contribution induced by woody part. The presence of a local topography explains why the total ground area (i.e., area based on DEM; Table 2) is larger than the scene area (i.e., 100 𝑚 × 100 𝑚). Leaf chlorophyll a+b and carotenoid contents (µg cm -2 ) were derived from top of canopy leaf samples collected at SERC in July of 2017 [START_REF] Campbell | Diurnal and seasonal dynamics in chlorophyll fluorescence, xanthophyll cycle and photosynthetic function, at leaf and canopy scales[END_REF], and measured using established protocol described in [START_REF] Campbell | Assessment of vegetation stress using reflectance or fluorescence measurements[END_REF]. Pigments were extracted in dimethyl sulfoxide, identified spectro-photometrically at 1-nm resolution
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155 using a dual-beam spectrophotometer (Perkin-Elmer; Wellesley, MA, USA) and calculated using absorption coefficients and equations described by [START_REF] Wellburn | The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution[END_REF].

Biochemical and optical properties of leaves, woody elements and soil properties used in DART are listed in Table 3. The overall LAI of 3-D reconstruction has been validated against field litter-collection measurements in 2012 for various voxel dimensions from 0.5m to 5m. 

Creation of 3D forest abstractions from airborne LiDAR acquisitions

The 3D abstractions (mock-ups) of the eight forest sites were derived from 2012 multidirectional and multi-temporal acquisitions by an airborne discrete-return LiDAR scanner (Riegl's VQ480i), which is part of the Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT)

Airborne Imager [START_REF] Cook | NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager[END_REF]. The LiDAR acquisitions were taken during two forest growth stages: i) the leaf-off stage (in March) and ii) the leaf-on stage (in June). Each constructed forest mock-up (100𝑚 × 100𝑚) corresponds to a 3D array of 1𝑚-size voxels filled with a turbid medium. The leaf angle distribution varies with height following an ellipsoidal distribution generated by mean leaf incline angle from 10° at the lower canopy to 60° at the upper canopy. In this experiment, we assumed an overall leaf incline angle of 57.3° over the whole canopy, which may induce a slight underestimation of LAI at the upper canopy and over estimation at the lower canopy in scene construction. This assumption has minor influence since the change of incline angle is correlated with sun illumination, where majority of the sunlight is intercepted by the leaves with larger incline angle. Since the objective was to investigate changes in the diurnal variation of canopy SIF radiance and leaf emissions on 15 June 2017 between 7.00 and 19.00 (local time, with a time step of 1 h), the DART simulated solar zenith angles (SZA) and solar azimuth angles (SAA) were adjusted accordingly, with for example (SZA, SAA) = (76.85°, 109.51°) at 7.00, (15.62°, 5.8°) at 13.00, and (74.33°, 252.4°) at 19.00 of the local time. 
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Preprocessing of modeled forest scenes

Leaf biochemical and anatomical properties are adapted to the leaf exposure to sun direct and scattered diffuse radiation (Givnish, 1988;[START_REF] Nobel | Photosynthetic Rates of Sun versus Shade Leaves of Hyptis emoryi Torr[END_REF]. To assess 3D distribution of sun-and shade-adapted foliage in each forest plot, we used DART-FT to compute hourly time series of 3D RB in the PAR domain from sunrise to sunset on 15 June 2012, with SZA and SAA as specified in the section 2.3. The diurnal radiation intercepted by foliar elements in each turbid voxel of the 3D plots computed by DART-FT was then used to classify the foliage turbid voxels of each forest plot into sun-and shade-adapted foliage voxel groups. Sun-and shade-adapted leaf classification methods based on thresholds on the intercepted radiation were developed for the DART model for vegetation canopies simulated as facets (Malenovský et al., 2021). Here, in the absence of information on the threshold definition, and for a vegetation canopy simulated as turbid voxels, we chose to simply define classification decision threshold in such a way that the numbers of sun-adapted voxels and shade-adapted voxels were equal. Subsequently, specific fqe input values were assigned to the sun-adapted and shade-adapted cells (W. Liu et al., 2019) Since the DART-FT mode was slow and too demanding for computer memory when simulating SIF radiance of the forest plots represented by many voxels (>10 5 ) for 372 spectral bands (Table 5), we used the DART-Lux mode instead. As DART-Lux could at that time only simulate the SIF signal of landscapes represented by geometrical facets, a "turbid-to-facet" conversion procedure was designed to transform the forest turbid mock-ups (already classified into sunadapted and shade-adapted voxels) into forest 3D abstractions with leaf and woody elements being represented with solid facets (cf. Appendix). DART-FT and DART-Lux give nearly equivalent results in terms of canopy reflectance and SIF radiance (cf. Appendix). Small differences may be observed due to the different strategies adopted by the two modes (i.e., discrete ordinates for DART-FT, Bi-directional Monte Carlo for DART-Lux), and also due to the approximation of turbid volumes by clouds of facets. These differences are supposed to be negligeable compared to the differences caused by the canopy structure.

Simulated structural complexity

Three structurally different forest abstractions were considered for this study (Figure 3):

1. 3D mock-ups: derived from airborne LiDAR data, with classified sun-and shade-adapted cells as explained in the two previous sections.

2. 1D mock-ups: horizontally homogenized 3D mock-ups having the same heights and vertical profiles of sun-and shade-adapted leaf area density and wood area density but missing the forest horizontal heterogeneity. and 40 discrete directions, in order to limit computational demands. 

Since satellite and airborne spectrometers only measure SIF radiation that exits a canopy, the 3 rd process is investigated through the so-called SIF escape factorhemi:

SIF escape factor ℎ𝑒𝑚𝑖 = SIF exitance SIF emitted [START_REF] Cook | NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager[END_REF] where SIFexitance is the total SIF radiation exiting the top of the canopy in all directions of the upper hemisphere. SIF escape factor ℎ𝑒𝑚𝑖 was computed for the chlorophyll fluorescence peaks located at 640 -700 nm and 700 -850 nm spectral regions.

SIF sensors generally measure from a unique viewing direction. Hence, the directional SIF nadir escape factor was also studied:

SIF escape factor 𝑛𝑎𝑑𝑖𝑟 = π. SIF 𝑛𝑎𝑑𝑖𝑟 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 SIF emitted (3) 
SIF escape factor 𝑛𝑎𝑑𝑖𝑟 was also computed for the chlorophyll fluorescence peaks located at 640 -700 nm and 700 -850 nm spectral regions.

Finally, the combination of the 2 nd and the 3 rd processes was in the case of a nadir observation evaluated with the SIF nadir yield (sr -1 ) (van der Tol et al., 2019):

SIF nadir yield = SIF nadir radiance APAR green [START_REF]plus de précision à l'aide de cette approche basée sur la physique. Ceci est important dans le cadre de la préparation des prochaines missions satellites avec des capteurs infrarouges thermiques à haute résolution spatiale embarqués[END_REF] where SIF nadir radiance is a SIF flux (W.m -2 .sr -1 ), that is for example recorded by an optical remote sensing sensor in the nadir viewing direction.

Canopy structure error assessment

The impact of forest architecture on diurnal SIF emission and nadir observation was assessed as the relative errors made on SIF quantities that are simulated with mock-ups (i.e., 1D, 0D)

with simplified architecture, taking the quantities simulated with the 3D mock-ups as reference. 

Using 3D plots as reference, the influence of canopy architecture was also assessed for:

-Nadir reflectance 𝜌:relative errors 𝜀 𝜌,0𝐷-3𝐷 (𝜆)and 𝜀 𝜌,1𝐷-3𝐷 (𝜆) of 0D and 1D plots, as well as 𝑀𝐴𝑅𝐸 𝜌,1𝐷-3𝐷 (𝑡) of 1D plots.

-APARgreen: relative error 𝜀 𝐴𝑃𝐴𝑅,1𝐷-3𝐷 (𝑡) of 1D plots.

-SIF emission yield: relative error 𝜀 𝑆𝐼𝐹.𝐸𝑌,1𝐷-3𝐷 (𝑡) of 1D plots.

-SIF emitted : relative error 𝜀 𝑆𝐼𝐹.𝑒𝑚,1𝐷-3𝐷 (𝑡) of 1D plots.

-SIF escape factor ℎ𝑒𝑚𝑖 and SIF escape factor 𝑛𝑎𝑑𝑖𝑟 : relative errors 𝜀 𝑆𝐼𝐹.𝐸𝐹,1𝐷-3𝐷 (𝑡) of 1D plots at 640 -700 nm and 700 -850 nm spectral regions.

-SIF nadir yield: relative errors 𝜀 𝑆𝐼𝐹.𝑁𝑌,1𝐷-3𝐷 (𝑡) of 1D plots at 640 -700 nm and 700 -850 nm.

with relative error for a given quantity 𝑄 equal to 𝜀 𝑄,1𝐷-3𝐷 (𝑡) = 100% × 𝑄 1𝐷 (𝑡)-𝑄 3𝐷 (𝑡) 𝑄 3𝐷 (𝑡)

.

Influence of canopy wood on SIF emission and measurements

Although they do not intrinsically emit fluorescence, woody elements impact the RB and SIF observations through their interaction with PAR and SIF. They give rise to two major effects.

i) Shading effect: woody elements shade foliar elements, which lowers leaf irradiance and subsequently SIF emission. ii) Blocking effect: woody elements intercept the emitted SIF radiation, preventing it from escaping the canopy. These two effects are not independent, due to sky radiation and multiple scattering and re-absorption mechanisms in the canopy. For example, the same woody element can shade a leaf element and block its SIF radiation.

DART simulations were used to quantify the influence of woody elements on SIF observation, and to separate the shading and blocking effects of woody elements for the CM1 and LM2 sites.

For that, theoretical "no wood" (NW) scenes were constructed by removing cells corresponding to woody elements from the original "with wood" 3D mock-ups (W 

Using W plots as reference, the influence of woody elements was assessed for:

-APAR green (shading effect): relative error 𝜀 𝐴𝑃𝐴𝑅,𝑁𝑊-𝑊 (𝑡) NW.

-SIF nadir escape factor SIF 𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 (blocking effect): relative error 𝜀 𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊-𝑊 (𝑡) of NW plots, where:

SIF 𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 = π . SIF nadir radiance SIF emitted (9) 
With the relative error for a given quantity 𝑄 equal to:

𝜀 𝑄,𝑁𝑊-𝑊 (𝑡) = 100% × 𝑄 𝑁𝑊 (𝑡) -𝑄 𝑊 (𝑡) 𝑄 𝑊 (𝑡) (10) 3. Results

General influence of forest abstractions on SIF nadir observations

Figure 4 shows the PSI, PSII and total SIF nadir radiance of the 8 forest plots simulated with 3D, 1D and 0D mock-ups at 12.00 (SZA = 21.050°, SAA = 47.256°). 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,0𝐷-3𝐷 (𝜆) and 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝜆) quantify the relative errors associated with the 0D and 1D forest plots. For all plots, the 1D mock-ups give the largest nadir total SIF, PSI and PSII radiance. 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 illustrates the influence of the forest horizontal heterogeneity on radiation propagation in forest, since the canopy horizontal heterogeneity is the only difference between 3D and 1D mock-ups.

These larger values of 1D SIF radiance can be explained by the fact that the top layers of 1D
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plots intercept more radiation than the top layers of 3D plots (i.e., clumping effect), which gives rise to larger SIF emission by canopy layers that tend to contribute most to the canopy SIF radiance. Also, the ground is more visible in 3D plots than 1D plots, whereas the ground has no SIF emission. The order of magnitude of the difference between the radiance of 1D and 3D mockups is similar for all investigated forest sites. 
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167 SIF radiance values of 0D and 1D forest mock-ups differ due to differences in the leaf and wood vertical distributions, which vary greatly among the sites (except for LI2 and LM2). In general, nadir SIF radiance relative differences 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,0𝐷-1𝐷 (𝜆) between 0D and 1D plots are much smaller than 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝜆) between 1D and 3D plots, except for LM1.It means that forest horizontal heterogeneity has a larger influence on SIF radiance than forest vertical heterogeneity. SIF radiance was always smaller for 0D mock-ups than for 1D mockups. This is mostly explained by the homogenized vertical distribution of both foliar and woody elements in the 0D abstractions compared to 1D abstractions. For example, in CI1, CI2, CM1 and CM2, leaf density is higher in upper canopy layers (Figure 14), foliar homogenization increases the density of foliar elements in the canopy bottom layers, which increases the canopy shading and blocking effects. For LI2, the situation is different because leaf density is highest in the lower canopy layers. Therefore, foliar homogenization increases leaf density in the canopy upper layers, which decreases the canopy shading and blocking effects. These trends are also influenced by the vertical distribution of woody elements.

The relative difference 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,0𝐷-3𝐷 (𝜆) between the radiance of 0D and 3D mock-ups is driven by horizontal and vertical heterogeneity. The inequality 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,0𝐷-3𝐷 (𝜆) < 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝜆) indicates that vertical and horizontal heterogeneities have an opposite effect on canopy SIF radiance in our simulations. While the horizontal heterogeneity tends to decrease canopy SIF nadir radiance, the vertical heterogeneity tends to increase it. LM1 is an exception. Its 0D SIF radiance is lower than its 3D SIF radiance in the NIR domain. It means that its vertical heterogeneity imposes a larger influence on SIF nadir radiance than its horizontal heterogeneity, which is consistent with the fact that LM1 is the only plot where the density of woody and foliar elements is very dense in the lower canopy layers.

Figure 5 shows the diurnal evolution of 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝑡) (i.e., relative error of total nadir SIF radiance of 1D plots compared to 3D plots) at 640 -700 nm and 700 -850 nm. This quantity is mostly influenced by the forest horizontal heterogeneity. It appears symmetrically distributed between the morning and the afternoon hours, with a dip appearing always at local noon. It is the largest around 8.00 and 18.00, reaching up to 55%, and the smallest at 13.00 (local solar noon), with values between 10% and 20%. It is usually larger at 640 -700 nm than at 700 -850 nm, where shading effects are dampened by prevailing multiple scattering events. This diurnal variation can be explained by the shadow effects associated with changing solar zenith angle and associated variability in the proportions of direct sun and diffuse atmospheric radiation. In the early morning, it starts increasing because shadow effects are increasing due to the increase of the direct sun proportion in total irradiance. Later in the morning, it starts decreasing because shadow effects decrease due to the decrease of solar zenith angle, reaching a minimum at solar noon. A symmetrical behavior starts in the second half of the day. between 1D and 3D mock-ups at 640 -700 nm and 700 -850 nm.

Figure 6 shows the canopy nadir reflectance of the 8 forest plots simulated with 3D, 1D and 0D

mock-ups at 12.00 (SZA = 21.050°, SAA = 47.256°). 𝜀 𝜌,0𝐷-3𝐷 (𝜆) and 𝜀 𝜌,1𝐷-3𝐷 (𝜆) quantify the of 0D and 1D abstractions compared to 3D abstraction. All curves have the expected local spectral peak around the O2-A absorption band at 760nm. As for the SIF radiance (Figure 4), the total reflectance of 3D plots is the smallest compared to the 1D and 0D plots, except for LM1 where the 0D plot has a slightly lower reflectance than the 3D plot above 700nm.
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Therefore, as for SIF radiance, the horizontal heterogeneity tends to decrease the nadir reflectance.

The influence of the vertical heterogeneity of the plots on their reflectance is not as clear as for SIF radiance. By contrast to the relative errors on the SIF radiance, the relative errors on the total reflectance of the 1D and 0D forest plots are similar. This stresses two points. 1) As for SIF, the forest vertical heterogeneity plays a lesser role than the forest horizontal heterogeneity.

2) The vertical heterogeneity plays a larger role for canopy SIF radiance than for canopy radiance that contains radiance due to the scattering of solar radiation. Also, these relative errors tend to higher for wavelengths under 700nm. Indeed, the 1D and 0D abstractions of the forest cover neglect the shadow effects due to direct and diffuse radiation and canopy structure.

Multiple scattering being smaller at wavelengths lower than 700nm, shadowing effects are larger in these wavelengths. The diurnal evolutions of the relative error 𝑀𝐴𝑅𝐸 𝜌,1𝐷-3𝐷 (𝑡) in nadir reflectance of 1D plots at 640 -700 nm and 700 -850 nm (Figure 7) have shapes and orders of magnitude similar to those of SIF radiance 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿,1𝐷-3𝐷 (Figure 5), except for LI2 at 

Impact of forest 3D structure on APARgreen (1 st process)

Figure 8 shows the diurnal PAR absorbed by green leaves (APARgreen) in the eight 3D and 1D forest mock-ups, and their associated relative error 𝜀 𝐴𝑃𝐴𝑅,1𝐷-3𝐷 (𝑡). The 3D mock-ups have smaller APARgreen than the 1D mock-ups. This is consistent with the larger reflectance of 1D mock-ups compared to the 3D mock-ups, due to the horizontal heterogeneity of the forest plots.

𝜀 𝐴𝑃𝐴𝑅,1𝐷-3𝐷 (𝑡) is usually smaller than 5%, with a maximum of 10% for LI2 before noon. It is smaller than the relative difference of nadir SIF radiance between 3D and 1D forest abstractions (Figure 5). This indicates that even though the APARgreen diurnal changes play an important role, they are not the only cause responsible for the relative difference in the nadir SIF radiance. 3.3. Impact of forest 3D structure on leaf SIF emission yield (2 nd process)
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Figure 9 shows the diurnal total SIF emission yield for 3D and 1D mock-ups and the associated diurnal relative error 𝜀 𝑆𝐼𝐹.𝐸𝑌,1𝐷-3𝐷 (𝑡) due to horizontal heterogeneity differences. Relative errors are similar and small for all plots. They reveal that in our simulations the impact of forest 3D architecture on SIF emission yield in our simulations is of a less importance. The almost constant diurnal response due to our modeling assumption of constant leaf SIF properties throughout the day.

Figure 9. Diurnal SIF emission yield of the 3D and 1D forest mock-ups and relative errors 𝜀 𝑆𝐼𝐹.𝐸𝑌,1𝐷-3𝐷 (𝑡) Since SIF emission yield in our simulations is hardly affected by the forest 3D architecture, the diurnal behavior of the DART-FT simulated leaf SIF emission (Figure 10) is understandably very similar to that of APARgreen (Figure 8). The relative error 𝜀 𝑆𝐼𝐹.𝑒𝑚,1𝐷-3𝐷 (𝑡) computed

ARTICLE

175 between the 3D and 1D forest abstractions (Figure 10) gathers the combined errors related to both the 1 st and the 2 nd processes, without being a simple addition of their relative errors.

Figure 11 plots the vertical profiles of LAI, and SIF emission in 3D and 1D plots. The LAI of a layer 𝑖 located between [𝑖 𝑚, (𝑖 + 1) 𝑚] is the total foliar area of this layer divided by the scene area. It shows that the overestimation of the SIF emission in 1D plots compared to 3D plots mainly occurs in the canopy top layers, i.e., SIF emitted,1D > SIF emitted,3D in these layers. Also, SIF emission is underestimated in the lower layers of 1D plots. Indeed, in 3D forest mockups, the forest horizontal heterogeneity leads to better illumination of the lower layers. and 1D plots at 640 -700 nm and 700 nm -850 nm, and their relative errors 𝜀 𝑆𝐼𝐹.𝐸𝐹,1𝐷-3𝐷 (𝑡)

and 𝜀 𝑆𝐼𝐹.𝐸𝐹𝑛𝑎𝑑𝑖𝑟,1𝐷-3𝐷 (𝑡) are larger (e.g., > 50% for LM2) than for APARgreen (Figure 8) and leaf SIF emission (Figure 10). Therefore, the 3 rd process is more affected by forest 3D structure than the first two processes. The SIF escape factor is systematically overestimated in 1D plots.

It is larger at 700 nm -850 nm than at 640 -700 nm, due to more important multiple scattering mechanisms, which results in lower relative errors at 700 nm -850 nm than at 640 -700 nm.

The SIF photons that cannot escape the canopy are absorbed by the canopy elements (i.e., leaves, woody elements, ground). The overestimation of the SIF escape factor of 1D plots compared to 3D plots is also reflected by a higher absorption of SIF photons in 3D plots (Table 6, Table 7). We can note that the ground absorption is greatly underestimated in 1D forest abstractions.

Again, this is explained by the forest horizontal heterogeneity. Figure 14 shows the vertical profiles of LAI, woody elements (defined similarly as the vertical profile of LAI), and SIF absorption in 3D and 1D plots. The vertical profiles of SIF absorption
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show that in 1D forest abstractions, absorption is overestimated in the top layers and underestimated in the bottom layers as for the leaf SIF emission profiles (Figure 11). Fraction of emitted SIF absorbed by "Ground" (3D) 0,0310 0,0290 0,0230 0,0272 0,0463 0,0704 0,0486 0,0449

Fraction of emitted SIF absorbed by "Ground" (1D) 0,0216 0,0180 0,0130 0,0160 0,0301 0,0584 0,0329 0,0274

Relative difference (%) -30, 28 -38,19 -43,40 -41,38 -35,14 -17,12 -32,44 -38,97 Fraction of emitted SIF absorbed by "Leaves + Wood" (3D) 0,7765 0,7838 0,7903 0,7912 0,7757 0,7352 0,7636 0,7843

Fraction of emitted SIF absorbed by "Leaves + Wood" (1D) 0,7512 0,7545 0,7616 0,7613 0,7461 0,7073 0,7462 0,7492

Relative difference (%) -3, 26 -3,74 -3,63 -3,78 -3,81 -3,79 -2,28 -4,47 Absorption fraction (3D) 0,8075 0,8129 0,8133 0,8184 0,8220 0,8056 0,8123 0,8291

Absorption fraction (1D) 0,7728 0,7725 0,7746 0,7772 0,7762 0,7657 0,7791 0,7766

Relative difference (%) -4,30 -4,97 -4,76 -5,03 -5,57 -4,95 -4,09 -6,34 Table 7. SIF absorption by the ground and vegetation (leaves and wood) (700-850nm) at 12pm.

Plot CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2

Fraction of emitted SIF absorbed by "Ground" (3D) 0,0905 0,0842 0,0683 0,0768 0,1249 0,1741 0,1282 0,1249

Fraction of emitted SIF absorbed by "Ground" (1D) 0,0716 0,0593 0,0440 0,0502 0,0941 0,1640 0,0952 0,0887

Relative difference (%) -20, 96 -29,52 -35,50 -34,62 -24,68 -5,78 -25,71 -28,95 Fraction of emitted SIF absorbed by "Leaves + Wood" (3D) 0,6194 0,6369 0,6543 0,6600 0,6062 0,5265 0,5897 0,6185

Fraction of emitted SIF absorbed by "Leaves + Wood" (1D) 0,6133 0,6257 0,6453 0,6482 0,5991 0,5098 0,6037 0,6057

Relative difference (%) -0,98 -1,77 -1,39 -1,79 -1,16 -3,19 2,38 -2,08 Absorption fraction (3D) 0,7099 0,7211 0,7226 0,7369 0,7311 0,7006 0,7179 0,7434

Absorption fraction (1D) 0,6849 0,6850 0,6893 0,6985 0,6932 0,6738 0,6989 0,6944

Relative difference (%) -3,53 -5,01 -4,61 -5,21 -5,18 -3,83 -2,64 -6,59 Figure 14.Vertical profiles of LAI, woody elements and SIF absorption in 3D and 1D forest abstractions, at 12.00 (local time).
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183 3.5. Impact of forest 3D structure on SIF nadir yield (2 nd and 3 rd processes)

Figure 15 shows diurnal values of SIF nadir yield for 3D and 1D forest plots and their relative error 𝜀 𝑆𝐼𝐹.𝑁𝑌,1𝐷-3𝐷 (𝑡). SIF nadir yield informs on the potential of nadir viewing remote sensing instruments to observe leaf SIF emission. The diurnal evolution of 𝜀 𝑆𝐼𝐹.𝑁𝑌,1𝐷-3𝐷 is similar to the diurnal evolution of total nadir SIF radiance relative error 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (Figure 5): larger errors occur in early morning around 8:00 and late afternoon around 18:00, with minimal errors at noon. SIF yield of 1D plots is always overestimated. Also, errors are larger at 640 nm -700 nm than at 700 -850 nm. This is due to the lower impact of multiple scattering at 640 -700 nm than at 700 -850 nm and therefore the larger impact of shadowing effects at 640 -700 nm.

Figure 15. Diurnal SIF nadir yield of 3D and 1D plots and relative errors at 640 -700 nm and 700 -850 nm.

Influence of woody elements

Figure 16 illustrates the impact of woody elements (i.e., branches and trunks) on the canopy SIF signal. It shows PSI, PSII and total SIF nadir spectral radiance at 12.00 of local time for CM1 and LM1 3D plots simulated with (W) and without (NW) woody elements, and also the
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185 associated relative errors 𝜀 𝑆𝐼𝐹,𝐿,𝑁𝑊-𝑊 (𝜆) for the total SIF nadir radiance. SIF radiance is significantly higher if wood is neglected in DART simulations, especially in the near-infrared domain. 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,𝑁𝑊-𝑊 (𝜆) is larger (25%) at wavelengths above 750nm, and smaller at wavelengths smaller than 680nm. This is explained by the fact that there is more multiple scattering at these wavelengths, which in turn increases the probability of interception of SIF radiation by woody elements. The diurnal relative error of the SIF total nadir radiance for CM1 and LM1 3D plots simulated without woody elements, compared to presence of woody elements, varies over the course of the day (Figure 17). It is lowest at solar noon for LM1 and relatively stable for CM1. The time variability for LM1 is explained by the fact that its leaf and wood densities are in the canopy upper layers, which increases the influence of horizontal heterogeneity, and consequently the occurrence of smaller errors at noon. Conversely, for CM1, the leaf and wood densities are larger at lower tree heights, which leads to smaller horizontal heterogeneity effects, including smaller shadow effects. The influence of woody elements on the remotely sensed SIF signal can be split into shading and blocking effects. These effects are not independent. The shading effect corresponds to the shading of leaves by woody elements during the direct sun and atmosphere illumination of the forest scene. It limits the absorption of PAR by chlorophylls and consequently decreases leaf SIF emission (i.e., 1 st process). The blocking effect corresponds to the interception (i.e., absorption and scattering) by woody elements of SIF radiation from its leaf emission to the exit of the forest canopy along the viewing direction of the remote sensing sensor. Figure 18 illustrates the magnitude of the shading effect. It shows the DART simulated diurnal APARgreen(t) and the associated relative error 𝜀 𝐴𝑃𝐴𝑅,𝑁𝑊-𝑊 (𝑡), for the CM1 and LM1 3D plots with and without woody elements. APARgreen is always larger for the plots without wood, as expected. The relative error associated to the shading effect greatly varies over the selected day.

It is minimal at solar midday, when trunks and branches are blocking the least amount of direct solar radiation, and largest in early morning and late afternoon when trunks and branches are blocking a larger part of direct PAR. Figure 19 illustrates the blocking effect. It shows the diurnal SIF nadir escape factor at [400nm-700nm] and [700nm-850nm] for the CM1 and LM1 3D plots simulated with (W) and without (NW) woody elements, and the associated relative error 𝜀 𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊-𝑊 (𝑡). This relative error is nearly constant over the day, conversely to the relative error on the canopy APARgreen. Indeed, as a first approximation SIF 𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 corresponds to a quantity that is relatively constant: the sum of the canopy "directdirect" and "diffusedirect" transmittance [START_REF] Vermote | Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview[END_REF] weighted by a normalized vertical distribution of leaf SIF emitted radiation. The "diffusedirect" transmittance is much smaller at [640-700nm] than at [700nm-850nm] because vegetation absorbs much more at [640-700nm] than at [700nm-850nm]. Since the blocking effect of wood is more pronounced for oblique
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directions, it has a higher impact on the "diffusedirect" than on the "directdirect" transmittance. This explains that 𝜀 𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊-𝑊 (𝑡) is smaller at [640-700nm] than at [700nm-850nm]. 6). Braghiere et al. (2021) found that the SIF modeling was improved by introducing a clumping index [START_REF] Nilson | A theoretical analysis of the frequency of gaps in plant stands[END_REF][START_REF] Pinty | Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models[END_REF] to replicate the behavior of structurally complex 3D canopies in the 1D model CliMA-Land (based on the mSCOPE model (Yang et al., 2017)). In this study, simulating the SIF signal while neglecting the forest horizontal heterogeneity can lead to very large relative errors, especially for logged "L" forest sites where they can reach 60%. For example, the error on SIF radiance 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝑡) is higher for the logged "L" forest sites (Figure 5). This is consistent with the fact that these forest sites have a higher horizontal heterogeneity, with a higher canopy height variability and a higher number of pure bare ground pixels, as shown in Table 4 and in the height maps (Figure 2). Generally, the horizontal heterogeneity tends to decrease the SIF signal that escapes the forest canopy. The vertical heterogeneity appeared to have an opposite effect in most cases. These points are further discussed below.

Effect of 3D architecture on the three processes driving SIF generation

Several sensitivity analysis studies based on radiative transfer modeling were carried out to assess the impact of some structural parameters on the SIF such as leaf density, leaf angular distribution and fractional vegetation cover [START_REF] Tong | Evaluation of the FluorWPS Model and Study of the Parameter Sensitivity for Simulating Solar-Induced Chlorophyll Fluorescence[END_REF][START_REF] Zeng | A radiative transfer model for solar induced fluorescence using spectral invariants theory[END_REF], the contribution of understory (Hornero et al., 2021), clumping and woody elements impacts (Malenovský et al., 2021). In this study, we assessed the impact of canopy heterogeneity on SIF and processes driving its generation. High relative errors in nadir SIF radiance were observed for the 8 forest plots due to neglecting the 3D forest architecture, in particular, the horizontal heterogeneity. Errors were maximal in the hours of the day with lowest PAR having the larger shading effects. They were higher than 50% in the most heterogeneous plots (LI2 and LM2) and at [640-700nm] where shading effects are higher due to the lower importance of multiple scattering in the canopy. The errors in the canopy SIF radiance where forest horizontal architecture was neglected (i.e., 1D forest plots) can be explained by two processes that drive the SIF signal generation. 1) APARgreen is overestimated if the forest horizontal architecture is neglected. It leads to an overestimation of the SIF emitted by leaves. This overestimation of SIF emission mainly occurs in the upper canopy layers. This is mainly due to the fact that in the forest 1D abstractions, the leaves of the top layers are homogeneously distributed, whereas in actual 3D forests, they can be greatly clumped at two levels: they are grouped within distinct tree 4.2 ARTICLE crowns, and also, they tend to be clumped within each tree crown. Combined, these effects result in upper layers of 1D plots that are more efficiently illuminated than in 3D plots, which explains higher SIF emission in 1D plots than in 3D plots. However, in the bottom layers, the SIF emission of 1D plots is underestimated. Indeed, the roughness of the actual canopy causes a better penetration of light to the bottom layers of the 3D plots, compared to the associated 1D plots, where the top layers of the canopy shade more efficiently the light. This is illustrated by Figure 11: the profile of SIF emission is similar to the profile of LAI with a higher SIF emitted LAI value in the top layers. This means that the SIF emission per leaf area unit is higher for the top layers because leaves in the top layers are able to capture more light than the leaves in the bottom layers.

2) The emitted SIF radiation has a higher ability to escape from the canopy in the 1D abstractions of the forest plots both for the upward nadir direction (cf. SIF yield in Figure 15), and for the upper hemisphere (cf., SIF escape factorhemi in Figure 12). It corresponds to an underestimation of the total absorption fraction of SIF in all 1D abstractions of the 8 forest plots (Table 6,Table 7). This underestimation of SIF absorption is rather large for the ground, and larger for [640-700nm] (i.e., between -17 and -43% for [640-700nm],

between -5% and -35% for [700-850nm]) and rather small for " Leaf + Wood" (i.e.,, between -1 and -3% for [700-850nm]). LM1 has a slightly different behavior: in its 1D abstraction, the absorption of "Leaf + Wood" is slightly overestimated for [700-850nm] (i.e., around 2%). Part of the underestimation of SIF absorption by the ground for 1D plots is due to the smaller area of the ground in the 1D plot compared to the 3D plot where topography is simulated (Table 2).

The vertical profiles of SIF emission (Figure 11) and absorption (Figure 14) of the 1D plots show that emission and absorption are both overestimated in the top layers and underestimated in the bottom layers. A main particularity for the absorption profile is the influence of the ground. It shows sharp peaks at 0 m height for 1D simulations. For the 3D abstractions of the forest plots, the height of the ground is variable. Therefore, ground absorption peaks appear in the bottom for the "C" plots. These peaks are not visible in "L" plots, because of important absorption of the leaves and woody elements in the bottom part of the canopies.

Influence of 3D architecture on the canopy reflectance.

As a first approximation, SIF emission can be considered as the reflection of radiation at a different wavelength from that of the incident radiation. Therefore, it makes sense to find similar errors for SIF radiance 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 (𝑡) and canopy reflectance 𝑀𝐴𝑅𝐸 𝜌,1𝐷-3𝐷 (𝑡).

However, SIF has some particularities that may differ from reflectance. Indeed, the SIF emission only comes from leaf elements. Other components of the canopy (i.e., woody elements and ground) do not emit SIF radiation, even though they contribute indirectly by scattering SIF radiation emitted by foliar elements. On the other hand, all elements of the canopy can contribute directly to the canopy radiance. Since bare ground does not directly contribute to the SIF radiance of forest plots, pure bare ground pixels have SIF radiance values close to zero. A nadir viewing sensor cannot see the bare ground in 1D plots, conversely to 3D plots. Hence, 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 tends to be larger than 𝑀𝐴𝑅𝐸 𝜌,1𝐷-3𝐷 because for canopy reflectance, pure bare ground pixels and vegetation pixels have values of the same order of magnitude. This explains that for LI2, the SIF radiance errors (Figure 5) are notably larger than the reflectance errors (Figure 7). Indeed, compared to the other sites (cf. Table 4), the LI2 site has the particularity to have the largest surface of ground without vegetation cover. Therefore, its 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,1𝐷-3𝐷 tends to be large, especially if the ground reflectance is high. Multiple scattering explains that SIF radiance errors are larger in 640 -700nm than in 700-850nm domain. Indeed, in the 700 -850nm, the shadowing effects due to the canopy structure are attenuated by the important multiple scattering in this spectral domain. It is also the case for canopy reflectance in most cases expect for LI1 (in the middle of the day) and LI2 (Figure 7). This is because we only consider the 640 -700nm spectral region and not all the 400 -700nm for the comparison with SIF. Indeed, In Figure 6, we see that for these plots, 𝜀 𝜌,1𝐷-3𝐷 (𝜆) has a local minimum around 680nm, and even a sign change for LI2.

Influence of woody elements

Although woody elements do not generate SIF emission, their interaction with the photosynthetically active light and with SIF radiation emitted by leaves can highly impact the SIF signal, as shown in (Malenovský et al., 2021). We studied their influence on the SIF signal by comparing the SIF signal of forest plots that was simulated without and with woody elements.

For that, we removed the woody elements from the 3D abstractions of the CM1 and LM1 plots.

It appeared that the plots without woody elements had a higher simulated SIF radiance,
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especially in the 700-850 nm spectral domain where multiple scattering is highly influenced by the presence of woody elements. The influence of woody elements is smaller in the 640 -700 nm spectral domain. The shading effect of woody elements on SIF emission leads to a lower APARgreen (Figure 18) and therefore triggering less SIF emission. It was shown to be more important than the blocking effect of woody elements (Figure 19), especially for oblique solar directions and at 640-700 nm.

Concluding remarks

This study investigated the potential effect of the forest 3D architecture on diurnal nadir SIF RS observations and SIF emissions inside the canopy. We studied the following three processes responsible for modulation of the canopy SIF signal: i) the attenuation of incident PAR in the canopy, ii) the leaf SIF emission efficiency, and iii) the attenuation of the SIF between its place of emission and its observation above the canopy. The potential impact of woody elements on the SIF signal of forest stands was also investigated. Eight study sites, located within the temperate deciduous forest in the Smithsonian Environmental Research Center, were modeled using the DART-FT and DART-Lux radiative transfer modes and the effects of their forest architecture were assessed by comparing SIF quantities of the sites simulated as 3D, 1D and 0D scenes.

Although several general trends common to all sites were clearly identified, some results were of the site-specific nature due to structural differences in canopy horizontal and vertical heterogeneity. Results revealed that the horizontal heterogeneity of forests had a larger influence than the canopy vertical heterogeneity. Therefore, for a correct modeling of remotely sensed SIF signals of spatially heterogeneous canopies, one must consider the full 3D architecture of forests and not only their vertical heterogeneity as being assumed in 1D RTMs.

Studying the propagation of SIF radiation within the canopy through quantitative parameters, such as the SIF escape factor and the nadir SIF yield, is essential for linking the SIF RS observation to the canopy foliage SIF emission. Three key indicators were able to explain most of the differences between the nadir SIF signal of canopies simulated as 3D and 1D landscapes. The SIF escape factor (𝜀 1D-3D up to 40%) was shown to be the most indicative parameter, followed by the attenuation of incident PAR and consequently reduction of fAPARgreen (𝜀 1D-3D less than 5%), and the SIF emission yield (𝜀 1D-3D less than 2%) induced by different fqe values assigned to the sun-and shade-adapted leaves. Our results indicated that the influence of forest architecture on SIF escape factor and nadir SIF yield values ( up to 40%) varies in time, with differences in forest stand structure and per spectral domain, with  being always greater for the wavelength range of 640 -700 nm than for the range of 700 -850 nm.

The presence of woody elements inside DART-simulated forest scenes appeared to have a relatively large influence on the canopy SIF radiance through the two effects: i) a shading of photosynthetically active foliage and ii) a blocking (obstruction) of SIF radiation. The relative error associated with the neglection of wood existence ranged between 10% and 35%, depending on analyzed spectral domain and forest site, where the relative errors for the shading effect were ranging between 10 and 20%, and for the blocking effect between 0 and 10%.

Although this work underlines the usefulness of 3D RTMs for investigating physical bases linking RS SIF observations with SIF emitted inside a forest canopy, there are several modeling aspects that should be reconsidered and improved in the follow-up work. For example, leaf SIF emission properties were assumed to be constant throughout the day, i.e., the actual modulation of SIF emission by local environmental conditions (e.g., leaf temperature, air humidity, etc.) was not considered. Remediation of this strong assumption requires inclusion of a full canopy energy balance in the DART modeling scheme, that would allow to account for crucial environmental parameters of radiative (i.e., visible, near infrared and thermal infrared radiation budgets) as well as non-radiative processes (e.g., photosynthesis). This is currently possible only by coupling DART with a 1D energy budget model like SCOPE. The development of a 3D energy balance modeling, based on DART radiation budget computations, is on the list of our future works. Three major DART-Lux modeling works, partly completed, will also be very helpful for rapid simulations of SIF over larger landscapes: SIF and thermal emission of vegetation simulated as turbid medium, and 3D radiative budget, including SIF emission. Petya K. Campbell from NASA Goddard Space Flight Center and University of Maryland for providing leaf biochemical properties measured for the selected SERC forest species and her contribution to the improvement of the manuscript. 2, 2.5, 3, 3.5, 4, and 4.5. The area of a facet in each cell object is 5.10 -5 m 2 if LAIn ≤ 2, and 10 -4 m 2 if LAIn > 2.

The algorithm of the conversion method is based on the value of LAIcell of the turbid cell to convert: * Scene LAIcell < 1: the turbid cell is replaced by two 3D cell objects at most: -1 st cell object (i.e., cell object with the larger LAI): it can be only enlarged. Its enlargement is 5% at most. If it should be 5% to get the exact LAI of the turbid cell, then a 2 nd cell is introduced.

-2 nd cell object: it can be enlarged or shrunk. * Scene LAIcell > 1: the turbid cell is replaced by three cell objects cells at most: -1 st cell object: it cannot be scaled. If precision < 10 -2 , then a 2 nd cell is used.

-2 nd cell object: it can be only enlarged, by 5% at most. A 3 rd cell is used if a larger enlargement is needed.

-3 rd cell object: it can be enlarged or shrunk.

Examples of replacement of a turbid cell (LAIcell) by up to 3 3D cell objects:

-LAIcell = 0.92 (Figure 20). Replacing it by a cell object of LAI = 1, (i.e., shrinking it by a factor 0.96) would create 2 cm wide empty spaces at the cell borders. Therefore, it was instead replaced by a cell object of LAI = 0.5 and a cell object of LAI = 0.4 enlarged by a factor 1.025. (i.e., 0.92  0.5 + 0.4 x 1.025 2 ).

-LAIcell = 0.23 ( 0.2 + 0.02 x 1. This conversion method ensures that the mock-up is represented by a finite number of 3D objects (i.e., 16x3 = 48). It also avoids the appearance of holes due to shrinking the 3D objects, and large exceeding of voxel limits due to the enlargement of 3D objects. M = 3 samples of each cell object are randomly used to introduce a random variability in the mock-ups. Also, a random rotation of 0°, 90°, 180° or 270° relative to the vertical axis ensures more randomness of the simulated cell.

Appendix 2: Equivalence between DART-FT and DART-Lux simulations

Our work combines DART-FT simulations of radiative budget and DART-Lux simulations of scene radiance / reflectance. Therefore, the consistency of these two DART modes is an essential point. Relative differences of DART-FT and DART-Lux can be as small as 10 -5 depending on their modeling parameters of each mode. For example, the number of discrete directions for DART-FT, and the number of samples per pixel for DART-Lux. Here, this similarity is illustrated 

Conclusion

In this chapter, the impact of forest structure on SIF emission and observation was studied using realistic mock-ups derived from LiDAR. Results showed that neglecting the forest structure can lead to an overestimation of SIF radiance by up to 50% notably for oblique sun directions. The impact of vegetation structure was higher on the propagation of SIF within the canopy than on the PAR absorption and SIF emission. Results also showed that SIF radiance is overestimated if woody elements are neglected. This overestimation is more due to the shadowing effect than to the blocking effects of the woody elements. As already mentioned, this study was conducted after conversion of turbid voxels to quasi turbid medium because at that time, the turbid medium was not implemented yet in DART-Lux. The comparison of the turbid and the quasi-turbid representation showed that the turbid has a longer computation time but a lower Monte Carlo noise for the same number of samples. Should the work be redone, the quasi-turbid representation of vegetation would probably be used again.

Photosynthetically active vegetation continuously exchanges matter and energy with its environment via biochemical reactions and heat transfer processes. Energy exchanges can be separated into non-radiative (e.g., sensible and latent heat exchanges) and radiative exchanges that consist in receiving energy through the absorption of incident radiation from the sun directly or after being scattered by the atmosphere and through the radiation emitted by the atmosphere and all the surrounding materials such as soil, woody elements, etc. and lose energy by emitting thermal radiation. The net absorbed radiation is therefore the difference between absorbed and emitted energy. Radiative energy exchanges are an important component of the energy balance of vegetation. Therefore, modeling the radiation budget including thermal emission is essential. The first section of this chapter presents the modeling of thermal emission and the second section presents the modeling of the radiative budget in DART-Lux.

Chapter 5

Thermal emission and radiative budget modeling in DART-Lux Thermal emission is an energy emission in the form of electromagnetic radiation from any material having a temperature 𝑇 higher that the absolute zero (i.e., 𝑇 > 0 K) due to the movement of molecules and atoms in the material.

The Planck law gives the spectral distribution of isotropic radiance emitted by a blackbody (i.e., an ideal body that absorbs all the incident electromagnetic radiation) at temperature T (K):

𝐿 𝐵 (𝜆, 𝑇) = 2. ℎ. 𝑐 2 𝜆 5 . 1 𝑒 ℎ𝑐 𝜆.𝑘.𝑇 -1 (𝑊. 𝑚 -2 . 𝑚 -1 . 𝑠𝑟 -1 ) (5.1)
where 𝜆 is the wavelength in 𝑚, ℎ = 6.626 070 15 × 10 -34 J. s is the Planck's constant, 𝑐 = 2.997 924 58 × 10 8 𝑚. 𝑠 -1 (in vacuum) is the speed of light, and 𝑘 = 1,380 649 × 10 -23 J. K -1 is the Boltzmann constant.

The exitance of a Blackbody over the whole spectrum results from the integration of the Planck's law over the whole spectrum, and over the hemisphere (× 𝜋 for an isotropic radiance).

It is given by the Stefan-Boltzmann law:

𝑀 𝐵 (𝑇) = 𝜋. ∫ 2. ℎ. 𝑐 2 𝜆 5 . (5.4)

where 𝜀 Δ𝜆 is the emissivity over the band (𝜆, Δ𝜆). (5.7)

THERMAL EMISSION MODELING

Thermal emission for facets

From the point of view of the modelling of radiative transfer, the thermal emission of facets corresponds to the consideration of the emitting facets as light sources. This functionality is already implemented in the LuxCoreRender software. However, it is limited to single face emitters, and to constant radiance per object.

In a first step, the single face emitting facet has been adapted to create a double face emitting facet. This is done by sampling the whole sphere instead of the upper hemisphere when sampling an emission direction, and by making the material emit when it is hit by a ray from the upper or the lower side.

In a second step, other methods have been introduced in order to simulate more realistic temperature distributions than constant temperature per object.
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Simulation and importation of 3D temperature distribution a) Illumination

The illumination method is used in DART-FT to simulate a more or less realistic 3D temperature distribution based on the illumination of surfaces. The idea is that the most illuminated surfaces tend to have higher temperature and vice versa. This is an approximation since the temperature of a surface depends on many other parameters such as its heat capacity and its heat exchanges through conduction and convection; its estimation requires the computation of the full energy balance. However, the illumination method is a first approximation. It requires to specify the range of temperature (𝑇 𝑚𝑒𝑎𝑛 , Δ𝑇) per type of element (e.g., wall with specific orientation). The first order irradiance (i.e., direct sun and atmosphere radiation) is used to distribute the temperature: the most illuminated surfaces are assigned the maximal temperature, the least illuminated surfaces are assigned the least temperature and intermediately illuminated surfaces are assigned intermediate temperature values.

In DART-Lux, the illumination method differs from DART-FT: rays are not sent from the source (i.e., sun and atmosphere) but from so-called emitting points in the scene elements of which the temperature must be computed. Therefore, for facets, the illumination method starts with the determination of emitting points in the scene elements. This is done by computing the intersection of each facet with a 3D regular grid. Then, scene facets are virtually segmented into sub-polygons, and the centroid of each sub-polygon (Figure 5-1) is treated as an emitting point. Any triangle that does not intersect the grid because it is too small is assigned an emitting point that is the centroid of this triangle. Then, the irradiance (Figure 5-2) of the centroid of each facet, on the two sides of the facet, is computed using direct sun irradiance and atmosphere diffuse irradiance defined by a SKYL value. This order 1 irradiance 𝐸 𝑃,1 at each centroid 𝑃 is: (5.10)

𝐸 𝑃,1 = 𝐸
The PDF for sampling a direction 𝑝(Ω 𝑖 ) verifies ∫ 𝑝(Ω 𝑖 ).𝑑Ω=1.

2𝜋

The importance sampling is used. It requires that 𝑝(Ω 𝑖 ) has a similar shape to the integrand 𝑓(Ω 𝑖 )=𝐿 (5.11)

𝐸 ̂𝑃,𝑑𝑖𝑓𝑓,1 is unbiased. Its expected value is equal to the real value 𝐸 𝑃,𝑑𝑖𝑓𝑓,1 (cf. Appendix 5-1).

Figure 5-3: Temperature distribution computed over the maize scene

Once the temperature distribution is computed, the radiative transfer simulation starts.

b) Sunlit and shaded temperatures

For some applications including SIF emission, one need to know the thermodynamic temperature of sunlit (𝑇 𝑠𝑢 ) and shaded (𝑇 𝑠ℎ ) parts for each type of element of the scene, and to use them in a radiative transfer model. This possibility was introduced in DART-Lux based on the illumination method described in the previous section.

A sunlit fraction is computed at each point, as the ratio between the order 

Thermal emission for volumes

The modeling of thermal emission of volumes filled with homogeneous fluids or turbid medium has been designed and implemented into DART-Lux.

Volumes with spatially constant temperature

Let us consider a volume homogenously filled with a fluid or turbid medium at constant thermodynamic temperature 𝑇, and a ray sent from the sensor (Figure 5-4) that enters the volume at a point 𝐴. Then, the order 1 thermal emission of the volume is computed.

For a volume filled with a fluid, the radiance emitted by an elementary layer of the volume of height 𝑑𝑧 and seen by the sensor is: 𝑑𝐿 = 𝜎 𝑡 . 𝑑𝑧. 𝐿 𝜆,Δ𝜆 ( 𝑇). 𝑒 -𝜎 𝑡 .𝑧 (5.18)

with 𝜎 𝑡 . 𝑑𝑧 the area of emitting particles in the layer 𝑑𝑧 per horizontal surface unit, 𝐿 𝜆,Δ𝜆 ( 𝑇)

the emitted particle radiance and 𝑒 -𝜎 𝑡 .𝑧 the transmittance between the layer 𝑑𝑧 and point 𝐴. with 𝐺(𝛺 𝑣 ). 𝑢 𝑙 . 𝑑𝑧 the effective area of emitting leaves in the layer 𝑑𝑧 per horizontal surface unit, 𝐿 𝜆,Δ𝜆 ( 𝑇) the emitted leaf radiance and 𝑒 -𝐺(𝛺 𝑣 ).𝑢 𝑙 .𝑧 the transmittance between the layer 𝑑𝑧 and point 𝐴.

By integrating over the segment [𝐴𝐶] (i.e., whole volume), we get the radiance 𝐿 𝑜𝑟𝑑𝑒𝑟1 emitted along this segment at order 1 and seen by the sensor. For a volume filled with a fluid, we get: [𝐷𝐹] seen at 𝐷 is computed and scattered towards 𝐵, and so on until a sampled travel distance is outside the volume, or until the specified maximal scattering order is reached.

𝐿 𝑜𝑟𝑑𝑒𝑟1 = ∫ 𝑑𝐿 Δ𝑍 = ∫ 𝜎 𝑡 . 𝐿 𝜆,𝛥𝜆 ( 

Illumination method and sunlit fraction for volumes

For a horizontally infinite homogeneous turbid medium, as for SCOPE, the sunlit and shaded fractions of leaves are computed statistically using the Beer law. For a layer at height 𝑧 inside a canopy of height Δ𝑍, we have: 5.22) This definition is extended to compute the average fraction of sunlit leaves in a turbid cell:

𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 𝑙𝑎𝑦𝑒𝑟 (𝑧) = 𝑒 -𝐺(𝛺 𝑠 ).𝑢 𝑙 . 𝛥𝑍-𝑧 𝑐𝑜𝑠 𝜃 𝑠 = 𝐸 𝑑𝑖𝑟 (𝑧) 𝐸 𝑑𝑖𝑟,𝐵𝑂𝐴 ( 
𝑓 ̅ 𝑠𝑢𝑛𝑙𝑖𝑡 𝑐𝑒𝑙𝑙 = 1 𝐸 𝐵𝑂𝐴 . 𝛥𝑍 ∫ 𝐸(𝑧). 𝑑𝑧 𝛥𝑍 0
(5.23)

The computation of the integral in Eq (5.23) would require to divide the cell into smaller layers and to compute the irradiance at each layer, which would be very computationally expensive.

Instead, an approximation is made by assuming that the cell is inside an infinite homogeneous layer of the same height as the cell. Then, 𝑓 ̅ 𝐸(𝑧 𝑒𝑞 ) is also used for assigning a temperature to the cell.

Volumes with spatially variable temperatures

The illumination method for temperature distribution for volumes gives a 3D temperature array.

A 3D temperature array can also be imported directly. However, a volume is not necessarily contained by a single cell. The same volume can then have different temperatures if it is contained in more than one cell. DART-Lux has been adapted to manage these volumes.

Let us consider a homogenous cell filled with turbid medium, of height 𝐻. It is divided into 2 layers, the bottom layer of height ℎ has a temperature 𝑇 1 and the top layer of height 𝐻 -ℎ has a temperature 𝑇 2 . For a ray coming from the sensor from at the nadir direction for example, entering the volume, a distance is randomly sampled inside the volume. The PDF 𝑝(𝑙) for sampling this distance is proportional to the Beer law and verifies the following normalization equality:

∫ 𝑝(𝑙). 𝑑𝑙 𝐻 0 = 1 (5.27) Therefore (c.f. Appendix 5-2), 𝑝(𝑙) = 𝐺(Ω). 𝑢 𝑙 . 𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 1 -𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻 (5.28)
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218 By sampling a distance 𝑙 according to this PDF, the obtained distance is between 0 and 𝐻. If 𝑙 < 𝐻 -ℎ , the observed radiance is computed assuming that the volume has a constant temperature 𝑇 2 , otherwise, the observed radiance is computed assuming that the volume has a constant temperature 𝑇 1 . In Appendix 5-2, we show that the expected value of order 1 radiance computed using this sampling technique is equal to the true value of observed order 1 radiance.

Since the multiple order emission is treated as successive order 1 emissions, this method allows one to simulate thermal emission observations for homogeneous volumes.

Results

Six scene examples are shown below to assess the accuracy of the developed modeling and to illustrate some potential uses:

Synthetic scene (Facets)

The thermal emission modeling and the temperature determination method using illumination are first assessed by comparison with DART-FT. Figure 5-5 shows the brightness temperatures images simulated using DART-FT (CT = 5 min 45 s, RAM = 1.9 GB) and DART-Lux (CT = 24 s, RAM = 1.2 GB) for the same synthetic scene made of facets only with three trees and a house whose roof has four parts. The average image radiance is 14.134 𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1

for DART-FT and 14.119 𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1 for DART-Lux. The DART-FT image has many pixels with extreme values at the level of the trees caused by discretization effects. The scene is 20 × 20 m² and the spatial resolution is 5 cm. The temperature distribution is determined using the illumination method with direct illumination only. In both DART-FT and DART-Lux images, we note that sunlit ground has a higher temperature than shaded ground.

Also, the four parts of the roof give four different signals because they receive different direct illumination, depending on their orientation relatively to the solar direction. homogeneous grassland fire conducted in Australia [START_REF] Mell | A physics-based approach to modelling grassland fires[END_REF]. The scene is simulated using the latest FDS version to date (FDS6) and provides at 25 cm spatial resolution for several time steps 3D distribution of temperature, gas molar fraction for CO2, CO, H2O and soot volume fraction. The scene is input to DART using the DAO tool to load fluids as voxels and the temperature is included using a 3D temperature file created from the FDS output scene.

The simulated fire image is for a Middle Infra-Red (MIR) camera, the agema 550, which has a narrow spectral band located at 3.9 µm. This spectral band is often used in fire monitoring. at each vertex of these light paths. Therefore, unlike DART-FT, the simulation of images by DART-Lux is not adapted to the simultaneous simulation of the radiative budget.

An alternative method was developed to overcome this limitation. It takes advantage of the efficient bi-directional radiance computation method of DART-Lux to have an estimation of the local radiative budget at a number of points distributed over the scene. Then, all the different radiative budget products (per facet, per voxel) are derived: 3D radiative budget per type of scene element, including vertical profiles and total radiative budget per type of scene element.

These radiative budget products are well adapted to the simulation of photosynthesis of 3D plants. For example, they provide information on the radiation that is absorbed chlorophylls.

This method is developed for scene elements simulated as facets and as volumes.

Scene elements simulated as facets

Eq (5.11) introduced in the illumination method for distributing temperature in the scene presented in Section 0 is used to estimate the local order 1 irradiance for a point 𝑃 of the scene.

This equation can be extended to compute the row vector spectral irradiance 𝐸 ̂𝜆,𝑃,𝑛 of order 𝑛:

𝐸 ̂𝜆,𝑃,𝑛 = 𝜋 𝑁 . ∑ 𝐿 𝜆,𝑃,𝑛 (Ω 𝑖 ) 𝑁 𝑖=1

(5.29)

with 𝐿 𝜆,𝑃,𝑛 (Ω 𝑖 ) the row vector of order 𝑛 spectral radiance incident to the point 𝑃.

Having estimated the local incident spectral radiation, the scattered 𝐸 𝜆,𝑃,𝑠𝑐𝑎𝑡 and absorbed In presence of SIF emission, it is also deduced as the product of the vector of spectral irradiance by the corresponding excitation emission fluorescence matrix:

𝐸 ̂𝜆,𝑃,SIF = { 𝐸 ̂𝜆,𝑃,𝑛 × 𝑀 𝑃𝑆𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (backward SIF) 𝐸 ̂𝜆,𝑃,𝑛 × 𝑀 𝑃𝑆𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 (forward SIF) (5.32) with (×) the ordinary matrix product operator.

The thermally emitted radiation is computed directly from the local temperature 𝑇:

𝐸 𝜆,𝑃,𝑒𝑚𝑖𝑠 = 𝜋. 𝐿 𝜆,Δ𝜆 ( 𝑇) (5.33)

Scene elements simulated as volumes

The bi-directional Monte Carlo rendering method previously presented for volumes allows one to simulate images of scenes containing these volumes. It allows one to sample light paths and to evaluate the contribution of these paths to the radiance observed by the sensor. It does not provide information about the intercepted, scattered, absorbed radiation along these paths. A method to compute these quantities for volumes was developed.

A volume acquires radiative energy from ingoing radiation from its boundaries 𝐸 𝑉,𝑖𝑛 and from emission 𝐸 𝑉,𝑒𝑚𝑖𝑠 , and loses the radiative energy that exits through its boundaries 𝐸 𝑉,𝑜𝑢𝑡 and by absorption 𝐸 𝑉,𝑎𝑏𝑠 . The energy conservation principle states:

𝐸 𝑉,𝑖𝑛 + 𝐸 𝑉,𝑒𝑚𝑖𝑠 = 𝐸 𝑉,𝑜𝑢𝑡 + 𝐸 𝑉,𝑎𝑏𝑠 (5.34)

The method used for computing facets radiative budget can also be used to compute the incident radiation of the two sides of the boundary surfaces of volumes and therefore it allows to compute the estimations of the spectral ingoing 𝐸 ̂𝜆,𝑉,𝑖𝑛 and outgoing 𝐸 ̂𝜆,𝑉,𝑜𝑢𝑡 radiation vectors.

In presence of thermal emission, the spectral emission 𝐸 𝜆,𝑉,𝑒𝑚𝑖𝑠 can be computed knowing the spectral emitted radiance 𝐿 𝜆,Δ𝜆 and the total area of leaves 𝐴 𝑙 inside the volume for turbid volumes. For each spectral band (𝜆, Δ𝜆):

𝐸 𝜆,𝑉,𝑒𝑚𝑖𝑠 = 2. 𝜋. 𝐴 𝑙 . 𝐿 𝜆,Δ𝜆 (5.35) 

Results

Scene elements simulated as facets

Discussion

The developed method takes advantage of the efficiency of DART-Lux for computing radiance images to compute the radiative budget products. It allows DART-Lux to compute most of the radiative budget components already available in DART-FT. The only case where it cannot provide results is for volumes and for spectral bands with a high single scattering albedo.

However, this method is not optimal for computing the radiative budget. Indeed, the local incident radiation at each point is computed independently from the others, leading to many repetitive computations. To reduce these repetitive computations, the same light sub-paths are stored and used for all the points. This slightly improves the performance, but it is still less efficient than the forward model DART-FT.

However, it offers some advantages: 1) it is highly flexible: the user can choose to compute the radiative budget only for regions or scene elements of interest, with consideration of all the other scene elements. Therefore, in the case where the elements of interest are much smaller than the total scene, it can be more efficient than DART-FT. For instance, if one is interested 

Conclusion

In this chapter, we introduced the thermal emission and radiative budget modeling in DART-Lux due to their importance in the energy balance modeling. The thermal emission modeling was introduced for scene elements simulated as facets or volumes, and allowed to simulate efficiently large-scale thermal infrared images. The radiative budget modeling is usually less efficient than DART-FT. However, it is flexible and can be efficient if the radiative budget of only a limited part of the scene is needed. It can probably be improved in the future, notably through the use of GPUs. We have 𝑝(𝑙) = 𝑐. 𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 and ∫ 𝑝(𝑙). 𝑑𝑙 𝐻 0 = 1.

Then, 𝑐 = 1 ∫ 𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 .𝑑𝑙 𝐻 0 = 𝐺(Ω).𝑢 𝑙 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻 Therefore, 𝑝(𝑙) = 𝐺(Ω).𝑢 𝑙 .𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻

The CDF of 𝑝(𝑙) is: 𝑃(𝑙) = ∫ 𝐺(Ω).𝑢 𝑙 .𝑒 -𝐺(Ω).𝑢 𝑙 .𝑥 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻 . 𝑑𝑥 = 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻 𝑙 0

To sample a distance 𝑙 from 𝑝(𝑙) using a random number 𝜉: 𝑃(𝑙) = 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝑙 1-𝑒 -𝐺(Ω).𝑢 𝑙 .𝐻 = 𝜉

Then, 𝑙 = -ln(1-𝜉(1-𝑒 -𝐺(𝛺).𝑢 𝑙 .𝐻 ))

𝐺(Ω).𝑢 𝑙

The order 1 radiance observed by the sensor in this configuration is: 

𝐿 𝑜𝑟𝑑𝑒𝑟1 (𝑇

Equivalent wavelength 𝜇𝑚

However, the need for simulating SIF large for landscapes (e.g., a few square kilometers) driven by the advancements in the reconstruction methods of large 3D mock-ups and also the upcoming SIF satellite mission FLEX which will have a spatial resolution of 300 m, cannot be satisfied with DART-FT. Indeed, DART-FT cannot simulate large landscapes with reasonable computational resources because it tracks all radiation all over the scene which is convenient if the radiative budget of the whole scene is required, but it is not optimal for simulating images. The introduction of SIF in DART-Lux allowed one to simulate SIF observations for large and complex scenes that were not possible to simulate using DART-FT. It was applied to eight realistic forest plots to evaluate the impact of the 3D structure on SIF observation by comparing 3D SIF simulations to their equivalent 1D simulations. For nadir radiance, we had large relative difference that could reach 50% especially for oblique sun directions. DART-FT radiative budget products obtained with low spectral resolution allowed one to analyze these differences.

They are explained by two major reasons: 1) the canopy represented in 3D absorbs less PAR and therefore emits less SIF than 1D canopies due to clumping and shadowing effects. 2) the emitted SIF within the canopy escapes more easily from 1D canopies than from 3D canopies.

Similarly, the neglect of woody elements in 3D canopies leads to an overestimation of SIF: the presence of wood elements reduces the PAR absorption by the leaves (shadowing effect) and prevents a fraction of the emitted SIF from escaping the canopy (blocking effect).

An accurate simulation of SIF requires the consideration of local meteorological parameters that influence the fluorescence quantum efficiency and therefore SIF emission. Therefore, a simulation of the full energy budget is required including all the energy exchanges of the vegetation with its environment whether they are made via radiative or non-radiative processes.

From the radiation point of view, it is essential to evaluate the energy gain of the vegetation by the incident solar radiation, and the energy loss by thermal emission. Therefore, we have introduced the modeling of the radiative budget and thermal emission in DART-Lux. Thermal emission modeling proved to be very efficient and accurate by comparison with DART-FT.

Although the radiative budget modeling using the bi-directional path tracing method is less efficient than the discrete ordinates method (i.e., DART-FT) for most scenes, its flexibility offers advantages. Indeed, it allows one to get the radiative budget for a set of sub-zones in the simulated scene, and this radiative budget can be calculated per type of scene element. Future improvements, notably the use of GPU acceleration, can make the implemented method more and more useful.

The remaining step towards the development of a comprehensive SIF model is the consideration of non-radiative energy exchange processes. These processes include photosynthesis, heat conduction, turbulence, etc. A 1D/ 3D energy model, called DART-EB (Energy Budget), is being developed by the DART team. In addition to the radiative energy exchanges (thermal emission, radiation budget) computed by DART, DART-EB simulates non-radiative processes.

Starting from an initial guess of local temperature, the energy exchanges are computed.

Obviously, the energy balance condition (i.e., energy gains equal to energy loss) is not verified.

Then, an iterative approach starts and local temperatures are adjusted at each iteration until convergence. (i.e., reaching the energy balance). DART-EB will allow to assess the 3D temperature distribution and the multiplicative factors 𝜂 that scale the dark-adapted leaf-level SIF emission to give steady state SIF as function of the leaf photosynthetic rate. In addition to SIF observations, thermal images will also be more accurately simulated using this physicallybased approach. This is important in the frame of the preparation of the upcoming satellite 

  of Solar-Induced Fluorescence, Thermal Emission and Radiative Budget of 3D Vegetation Canopies: Towards a Comprehensive 3D SIF Model "In the darkness, all the ordinary colors of our daylight world disappear. Only the intensely glowing hues of fluorescent substances touched by the ultraviolet beam shine out with striking clarity." Sterling Gleason, 1960 i At the end of my PhD journey, I realize how fruitful this experience was on all scales,
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  these models, the Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive 3D radiative transfer models. It is developed by CESBIO since 1992. It includes the Fluspect leaf SIF model and therefore simulates canopy SIF emission as well as TOC and TOA SIF observations since 2017. Its initial version, DART-FT, is based on an adapted discrete ordinates method. A more efficient Monte Carlo based mode, called DART-Lux, has been developed since 2018 for simulating remote sensing images. An initial objective

  En effet, dans ces bandes d'absorption, le rayonnement solaire incident et donc le rayonnement diffusé sont suffisamment faibles pour que la SIF puisse être détectée et mesurée. On observe généralement des petits pics du spectre de réflectance TOC dans ces bandes. Cela s'explique par le fait que le rayonnement absorbé à une longueur d'onde donnée donne lieu à une fluorescence à d'autres longueurs d'onde, et augmente donc la réflectance apparente à ces bandes. Ces dernières années, de nombreuses techniques ont été développées pour récupérer le signal SIF à partir de capteurs in situ, aéroportés et spatiaux dans les bandes d'absorption de l'oxygène O2A et O2B et dans les lignes de Fraunhofer. L'Agence Spatiale Européenne (ESA) a montré un intérêt particulier pour la SIF et son potentiel pour suivre le fonctionnement de la végétation depuis l'espace à l'aide de ces techniques et a choisi le satellite Fluorescence Explorer (FLEX) comme sa huitième mission d'observation de la Terre.
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 111 Figure 1-1: Jablonski diagram: a) Energy states, b) Possible transitions and their time lapses.[START_REF] Lichtman | Fluorescence microscopy[END_REF] 
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 1 2 shows an example of the output of the widely used leaf-level SIF model Fluspect. (Input parameters: chlorophyll content: 30 𝜇𝑔. 𝑐𝑚 -2 , carotenoid content: 10 𝜇𝑔. 𝑐𝑚 -2 , dry matter content: 0.01 𝑔. 𝑐𝑚 -2 , equivalent water thickness: 0.012 𝑐𝑚, structure coefficient: 1.8, fluorescence yields: PSI: 0.002, PSII: 0.01). These are four excitation-emission fluorescence matrices. An element 𝑓 𝑖,𝑗 of each matrix multiplied by the leaf irradiance 𝐸 𝑖 at the spectral band 𝑖, gives the emitted SIF exitance 𝐹 𝑖,𝑗 at the spectral band 𝑗 induced by 𝐸 𝑖 . The leaf SIF exitance 𝐹 𝑗 emitted at spectral band 𝑗 is the sum of the SIF exitance 𝐹 𝑖,𝑗 due to all the 𝑁 𝑒𝑥𝑐 excitation bands: 𝐹 𝑗 = ∑ 𝐸 𝑖 . 𝑓 𝑖,of spectral SIF for the 𝑁 𝑒𝑚 emission bands (𝐹 𝑗 ) 𝑗∈{1..𝑁 𝑒𝑚 } can be written as the product of the row vector spectral irradiance (𝐸 𝑖 ) 𝑖∈{1..𝑁 𝑒𝑥𝑐 } by the SIF excitation-emission matrix (𝑓 𝑖,𝑗 ) 𝑖∈{1..𝑁 𝑒𝑥𝑐 } 𝑗∈{1..𝑁 𝑒𝑚 } for the corresponding excitation and fluorescent bands. According to the Stokes' Law, if 𝑁 𝑒𝑥𝑐 = 𝑁 𝑒𝑚 , these matrices should be upper triangular (i.e., 𝑓 𝑖,𝑗 = 0, ∀ 𝑖 > 𝑗).However, they can have non-null very low values below the diagonal. This is not in contradiction with the energy conservation principle as explained in Section 1.1.
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 12 Figure 1-2: Image representations of four fluorescence excitation-emission matrices at 1 nm spectral resolution simulated by the Fluspect model. White pixels represent exact 0 values, black pixels represent positive values close to 0.

CHAPTER 1 :

 1 CONTEXT: SOLAR-INDUCED FLUORESCENCE AND DART MODEL 20 models simulate the full 3D energy balance. Hence, they cannot compute the multiplicative factors to get the steady state leaf SIF from the dark-adapted leaf SIF based on the local climatology. It is left up to the user to input directly the steady state fluorescence quantum efficiency, which is challenging to measure for all the leaves. This is also the case for the DART model. However, the latter offers the possibility to import fluorescence multiplicative factors computed by other models (e.g., the 𝜂 factors computed by SCOPE) to weight the leaf SIF emission according to the local climatology. Obviously, importing information from a 1D model (SCOPE) to a 3D model (DART) is only an approximation. For example, the 𝜂 factor can have a large horizontal variation depending on the local conditions of each individual leaf. 1.5 DART model DART (Discrete Anisotropic Radiative Transfer) is one of the most comprehensive 3D radiative transfer models in optical remote sensing domain. It is developed in CESBIO (Centre d'Etudes Spatiales de la BIOsphère) since 1992. It simulates the 3D radiative budget and remotesensing observations from ultraviolet to thermal infrared of any natural or urban 3D landscape for any experimental configuration (e.g., sun direction, atmosphere, etc.) and instrumental configuration (e.g., viewing direction, spatial resolution, etc.) for spaceborne, airborne and in situ imaging spectro-radiometers (scanners, cameras, etc.) and LiDAR (Light Detection And

  is a bidirectional Monte Carlo radiative transfer method based on the open-source rendering engine LuxCoreRender (https://luxcorerender.org). DART-Lux uses Monte Carlo integration techniques to solve the Light Transport Equation. Monte Carlo integration is an integration method that allows to estimate the integral of a given function using only random sampling of points in the definition domain of this function and the evaluation of the function in these points. The naïve Monte Carlo estimator for the integral 𝐼 = ∫ 𝑓(𝑥). 𝑑𝑥 𝑏 𝑎 of the 1D function 𝑓 is: {𝑥 1 , … , 𝑥 𝑁 } are points uniformly sampled over the interval [𝑎, 𝑏].
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 41111 Figure 1-3: a) DART-FT voxelized scene b) DART-Lux scene: voxels are no more needed

Chapter 2 SIF

 2 modeling in DART-FT bands of the DART simulation. It is important to note that the excitation spectral bands should cover all the excitation spectral interval (i.e., [400 -750 nm]) otherwise the SIF will be underestimated, and should not overlap otherwise the SIF will be overestimated. To include the SIF radiation, radiation fluxes vectors have 3 components: total flux components, and two SIF components for the photosystems PSI and PSII, respectively. Radiation fluxes with these 3 components are mechanistically tracked in the forward direction within the scene. Intercepted by a non-fluorescent or a fluorescent surface, the total, PSI and PSII radiation flux components are scattered or absorbed in the same way as the total flux. If the interacting surface is fluorescent, SIF radiation is added to the scattered PSI and PSII radiation components. This added SIF radiation is simulated by multiplying the total leaf irradiance by the relevant SIF excitation-emission matrix (PSI or PSII, backward or forward). The article of Malenovský et al. (2021) in Section 2.1.3 gives further details about SIF modeling in DART-FT for vegetation simulated as facets.

Figure 1 .

 1 Figure 1. Incident photosynthetically active radiation expressed in photosynthetic photon flux density (PPFD) for three realistic 3D maize (Zea mays L.) canopies with LAI equal to 1, 2 and 4 (a). Distinction of sun-(green) and shade-(grey) adapted foliage based on double PPFD thresholds of 50 and 100 μmol.photons.m -2 .s -1 (b). To mimic realistic maize canopies, all three maize fields (1x1.5 m in size) were created with 1 m tall semi-randomly oriented plants, having eight fully developed bifacial leaves.

'

  relaxed' classification used relatively high and far-apart thresholds of 50 and 100 μmol.photons.m -2 .s -1 , allowing for a larger portion of shade-adapted parts, whereas the second 'strict' classification used low and close thresholds of 15 and 25 μmol.photons.m -2 .s -1 , resulting in a smaller amount of strictly shade-adapted leaves and stems. The regularly spaced 1 m tall a) PPFD (07/10/2014, noon, Lat . 39.03, Lon. -76.85) [μmol photons m -2 s -1 ] developed bifacial leaves were placed in fields (1x1.5 m in size) with a random geographical orientation and distances resulting in LAI = 1, 2 and 4. Specific leaf biochemical, structural and fluorescence properties were assigned to each leaf adaptation class as listed in

Figure 2 .

 2 Figure 2. DART simulated images of top-of-canopy SIF at 740 nm for maize fields of three leaf area indices (LAI) and two canopy closures, 100% regular (top) and 50% clumped (bottom), given by the number of plants (LAI = 1 ~ 12 plants, LAI = 1 ~ 24 plants and LAI = 4 ~ 50 plants) associated with different plant distances. The graph (bottom-right) displays the corresponding modelled canopy SIF spectra between 650 and 850 nm and provides the fAPARgreen values per scenario.

Figure 3 .

 3 Figure 3. Nadir view of 3D representation of the dense white peppermint (Eucalyptus pulchella) test canopy derived from terrestrial laser scans of trees growing east of Hobart (Tasmania, Australia) (a). The virtual scene (LAI = 2) was used to simulate a near-infrared, red and green RGB false colour composite images in DART of top-of-canopy reflectance (top) as well as PSII SIF at 740 nm (bottom) of the canopy formed by: b) only foliage and c) foliage and woody material covered with bark. The white arrow points at the example of SIF reflection from an exposed tree branch surface.

  forest stand representation b) Canopy of only foliage c) Canopy with wood

  3D radiative budget of SIF allows for locating origins of remotely sensed SIF using the SIF balance (SIF()bal) [W.m -2 .m -1 ], computed by subtracting the absorbed SIF flux from the total emitted SIF flux (i.e., SIF()PSI plus SIF()PSII) of a given wavelength () per a vertical canopy layer. A positive SIF()bal means that the canopy layer acts as a SIF source, while a negative SIF()bal indicates canopy parts acting as SIF sinks. Subsequently, relative difference [%] of SIF()bal between clumped (C) and regularly spaced (R) maize canopies, maize foliage clumping causes a further reduction (SIF()bal < 0) or an enhancement (SIF()bal > 0) or no change (SIF()bal = 0) of SIF balance per a canopy layer.

Figure 4 .

 4 Figure 4. Differences in DART top-of-canopy SIF radiance due to distinction of sun-and shade-adapted leaves of regular maize canopies with LAI = 1, 2 and 4. Graphs illustrate two simulated scenarios of photosynthetic photon flux density (PPFD or Q) classification thresholds: a) a 'relaxed' scenario with high PPFD thresholds of 50 and 100 mol.photons.m -2 .s -1 , and b) a 'strict' scenario with low PPFD thresholds of 10 and 25 mol.photons.m -2 .s -1 . For details about the double-threshold leaf light adaptation classification see section 2.3.1.

Figure 2

 2 Figure2illustrates the impact of a leaf density increase (i.e., doubled LAI) and the clumping of maize plants for LAI of 1 and 2. Nadir images of maize canopy SIFTOC at 740 nm show the spatial dependence of SIFTOC radiance on the absorption of iPAR and on the distribution of plant shadows. A linear increase of LAI triggered a non-linear and wavelengthspecific increase of SIFTOC. A bit more than 2-fold increase in far-red wavelengths from LAI = 1 to LAI = 4 corresponds to a similar increase in canopy fAPARgreen, which is not the case for the red SIFTOC nadir signal (Figure2). The canopy clumping causes a decrease of SIFTOC at all

Figure 5 .

 5 Figure 5. Multi-angular differences in SIF radiance at 686 nm between a) regular, b) clumped DART 3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the regular (RMSE = 0.27 and d = 0.9) and the clumped (RMSE = 0.36 and d = 0.81) maize canopies are illustrated in c) and d), respectively. Notations: the white star shows the solar position and black dots indicate the simulated viewing directions; LAD ~ leaf angle distribution; LAI ~ leaf area index; WL ~ wavelength; SZA ~ solar zenith angle; SAA ~ solar azimuth angle; R 2 ~ coefficient of determination; RMSE ~ root mean square error [W.m -2 .m -1 .sr -1 ]; d ~ index of agreement: 0 = no agreement, 1 = full agreement.

Figure 6 .

 6 Figure 6. Multi-angular differences in SIF radiance at 740 nm between a) regular, b) clumped DART 3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the regular (RMSE = 0.42 and d = 0.92) and the clumped (RMSE = 1.22 and d = 0.62) maize canopies are illustrated in c) and d), respectively (for abbreviations and symbols see Figure 5).

Figure 7 .

 7 Figure 7. Vertical profiles of a) fAPARgreen, SIF balances (for maize canopies of LAI = 2) and b) their relative differences at 686 and 740 nm computed between regularly spaced and clumped canopies of the same LAI (for LAI = 1 and 2). Each 2.5 cm thick canopy layer is presented as a point of the relative canopy height [0-1]. For details about computations of fAPARgreen, SIF balance (SIF()bal) and their relative differences (fAPAR() and SIF()bal) see section 2.4.

Figure 7b ,

 7b Figure 7b, depicting the fAPARgreen and SIF()bal relative differences between the regular and clumped canopies, provides a further insight in this behaviour and dependencies between SIF and fAPARgreen radiative budgets. It illustrates a clumping-induced steady reduction of fAPARgreen and SIF balance differences in upper 40% of the canopy with LAI = 1, whereas the differences in lower 60% fluctuate between positive and negative values. SIF()bal for LAI = 1 follows quite closely  fAPAR(), suggesting that variability of SIF fluxes at 740 nm is ruled mainly by clumping-induced changes in distribution of shadows and sun flecks, while SIF(6)bal shows a bit more negative or positive deviations from fAPAR(), caused by a local increase or decrease in chlorophyll absorption of SIF at 686 nm. SIFTOC for LAI = 2 is formed by steady but greater negative differences in the canopy top half that are partially balanced out by nearly 2-fold larger positive differences between 30 and 50% of the canopy relative height.Comparable differences for both LAI cases between the bottom and 30% of the canopy height indicate very similar fAPARgreen and SIF radiative budgets, driven by mostly diffused lowintensity PAR. The negative fAPAR() and SIF()bal values in the upper half of the canopy are

Figure 8 .

 8 Figure8. Multi-angular differences in SIF radiance at 686 nm between a) a dense eucalyptus canopy created only by foliage, b) the same canopy containing also woody components and a DART simulated turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 0.82 and d = 0.55) and the foliage with wood (RMSE = 1.0 and d = 0.47) eucalypt canopies are illustrated in c) and d), respectively (for abbreviations and symbols see Figure5).DART 3D modelling allowed us to investigate previously unquantified impacts of foliage structure and woody material on fAPARgreen and on optical interactions of SIF photons inside white peppermint canopies. Figure3shows nadir PSII SIFTOC images at 740 nm for dense eucalyptus forest canopies without and with presence of the woody parts. A simple visual comparison of the two images reveals a lower SIFTOC in the lower right corner of the image caused by a deeper shadowing after inclusion of trunks and branches. One can also detect several large non-fluorescing branches in the SIFTOC image, visible due to a strong reflection of far-red SIF photons by peppermint bark (740 nm ≈ 50%).

Figure 9 .

 9 Figure 9. Multi-angular differences in SIF radiance at 740 nm between a) a dense eucalyptus canopy created only by foliage, b) the same canopy containing also woody components and a DART simulated turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 1.93 and d = 0.47) and the foliage with wood (RMSE = 2.68 and d = 0.35) eucalypt canopies are illustrated in c) and d), respectively (for abbreviations and symbols see Figure 5).

Figure 10 .

 10 Figure 10. Vertical profiles of a) SIF balances (SIF()bal) and b) relative omnidirectional SIF escape factors (SIFomni()esc) at 686 and 740 nm for a dense white peppermint (Eucalyptus pulchella) canopy (CC ≈ 80% and LAI = 2) created only by foliage (dashed lines) and the same canopy containing also woody components (solid lines). Each 10 cm thick canopy layer is presented as a point of the relative canopy height [0-1]. For details about computations of SIF()bal and SIFomni()esc see section 2.4.

  attempt to simulate strong SIFTOC signals, the fqe values for PSI and PSII were selected close to their potential maximums. Simulations considered three leaf densities, specified by the leaf area index (LAI) equal to 1, 2 and 4. In SCOPE simulations, we tested three leaf angle distributions (LAD): Spherical, Erectophile and Planophile[START_REF] Danson | Teaching the physical principles of vegetation canopy reflectance using the SAIL model[END_REF]), whereas we applied only the Spherical function, the most frequent naturally occurring LAD, in mSCOPE simulations. All leaves were homogenously distributed throughout the canopies, i.e. the foliage clumping index[START_REF] Chen | Defining leaf area index for non-flat leaves[END_REF] was equal to 1. The DART leaf facets were equilateral triangles with the surface area of 0.08 cm 2 . Such small leaf area ensured independency of DART simulated TOC reflectance and SIF from the solar azimuth angle. The leaf width required for SCOPE/mSCOPE computations in the hot-spot direction was set to the height of DART facets, i.e., 0.37 cm. The solar azimuth angle (SAA) was fixed to 311.89° (anticlockwise from South) and the solar zenith angle (SZA) to 37.94° (i.e., solar elevation angle of 52.06°) as for Washington D.C. (USA) area (the Beltsville Agricultural Research Center; Lat. 39.03°N, Long. 76.85°W) on 26 th August 2014 at 14.00 local time (i.e., at 13.50 solar time). Nadir SIFTOC radiance [W.m -2 .m -1 .sr-1 ] between 640 and 850 nm (1 nm bandwidth) was simulated for all combinations of the input parameters with the three RTMs. The obtained PSI, PSII and total SIFTOC values were compared statistically (as described in Section 2.6).

Figure

  Figure A1. DART representations of a) 2-and b) 3-layered turbid-like canopies designed for comparison with the mSCOPE model (numbers indicate the height of each layer). Illustration of sunlit (under direct illumination; green) and shaded (under diffuse illumination, violet) triangular leaves for both c) 2-and d) 3-layered canopies (numbers indicate % of sunlit leaves per layer for each simulated LAI).

Figure

  Figure A2. DART and SCOPE total nadir SIF of vegetation canopies with LAI=1, 2 and 4, three soils ( = 0%,  = 50%,  = loamy dark gravel soil), and with a) Spherical, b) Erectophile, and c) Planophile LAD (RMSE ~ root mean square error; d ~ index of agreement: 0 = no agreement, 1 = full agreement).

Figure

  Figure A3. DART and mSCOPE nadir SIF of vegetation canopies simulated with the Spherical LAD, three soils ( = 0%,  = 50%,  = loamy dark gravel soil) in two layers a) without and b) with energy balance, and in three layers c) without and d) with energy balance (for abbreviations see Figure A2).

Figure A4 .

 A4 Figure A4. Best agreement when comparing a) DART and b) SCOPE multi-angular SIF of a turbid medium canopy was found for the Erectophile LAD and a null soil reflectance. SIF radiance in the solar principal plane and linear regression of turbid-like DART and turbid SCOPE simulations (R 2 = 0.99, RMSE = 0.03, d = 1.0 for all simulated viewing directions, i.e., VZA<90°, and RMSE = 0.02 for VZA<75°) are shown in c) and d) graphs, respectively (for abbreviations and symbols see Figure 5).

Figure A5 .

 A5 Figure A5. Worst agreement when comparing a) DART and b) SCOPE multi-angular SIF of turbid medium canopy with the Spherical LAD and a 50% reflective soil. SIF radiance in the solar principal plane and linear regression of turbid-like DART and turbid SCOPE simulations (R 2 = 0.94, RMSE = 0.21, d = 1.0 for VZA < 90° and R 2 = 0.99, RMSE = 0.07 for VZA < 75°) are shown in c) and d) graphs, respectively (for abbreviations and symbols see Figure 5).

Figure

  Figure A6. DART-SCOPE differences in multi-angular SIF radiance at 686 and 740 nm for a canopy with LAI = 4, having Spherical, Erectophile and Planophile LADs (the white star shows the solar position and black dots indicate the simulated viewing directions; for abbreviations see Figure 5).

𝑊 1 ,

 1 𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = ∑ 𝑊 𝑃𝑆𝑥 (𝜆 𝑢 → 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) 𝑢(2.6) Transmission and interception of first order rays 𝑊 1,𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) and 𝑊 1,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) are partly transmitted through the cell along the path Δ𝑙(𝑀, Ω 𝑣 ) between the emission point M and the cell border and give:

Figure 2 - 1 :

 21 Figure 2-1: Incident source vector [W in (λ,ΔΩ s )] onto a turbid cell, with source points M ↑ and M ↓ , and energy {W 1 (λ,Ω v ), W 1,PS1 (λ,Ω v ), W 1,PS2 (λ,Ω v )} from M ↑ . Δl(Ω s ) is the distance between the entry A and exit B of the incident ray. Δs(M ↑ ,Ω v ) is the distance between M ↑ and the cell exit along direction Ω v . W 1,α (λ,Ω v ) is equal to the direct transmission of W 1 (λ,Ω v ) outside the cell without any scattering, whereas W 1,int,β (λ,Ω v ) is the transmission of W 1 (λ,Ω v ) outside the cell with scattering events.

{W 1 (

 1 𝜆, Ω 𝑣 ), W 1,𝑃𝑆1 (𝜆, Ω 𝑣 ), W 1,𝑃𝑆2 (𝜆, Ω 𝑣 )} {W 1,𝛼 (𝜆, Ω 𝑣 ), t 1,α . W 1,PS1 (𝜆, Ω 𝑣 ), t 1,α . W 1,𝑃𝑆2 (𝜆, Ω 𝑣 )} {W 1,𝑖𝑛𝑡,𝛽 (𝜆, Ω 𝑣 ), t 1,β . W 1,PS1,int (𝜆, Ω 𝑣 ), t 1,β . W 1,𝑃𝑆2,𝑖𝑛𝑡 (𝜆, Ω 𝑣 )} [W in (𝜆, ΔΩ 𝑠 )] 𝑖𝑛𝑡,𝛽 (𝜆, Ω 𝑣 ) W 1,𝑖𝑛𝑡 (𝜆, Ω 𝑣 ) {0, W 1,int,PS1,γ (𝜆, Ω 𝑣 ), W 1,int,PS2,γ (𝜆, Ω 𝑣 )}

Figure 2 -

 2 2 shows DART-FT SIF emission and nadir radiance for a homogeneous canopy simulated as turbid medium and quasi turbid medium. The agreement is very good for the two types of vegetation representation, with relative differences less than 0.1% for emitted SIF and less than 0.8% for radiance. The relative difference is lower for SIF emission than for SIF radiance because SIF radiance has an additional step from the emission to the top of canopy. The large absorption of SIF by the vegetation explains that the red peak of PSII is relatively smaller for SIF radiance than for SIF emission.

Figure 2 - 2 :

 22 Figure 2-2: DART-FT SIF emission and nadir radiance for a homogeneous canopy simulated as turbid medium and quasi turbid medium.

  is based on an adaptation of the LuxCoreRender opensource rendering software. A fundamental adaptation was to replace the RGB triple color channel hardly coded in this software, to multiband modeling to allow multispectral and hyperspectral simulations. This step was needed to simulate SIF because SIF modeling usually needs a large number of spectral bands at a fine spectral resolution over the whole SIF excitation and emission spectral domains. However, to simulate SIF emission, it is essential to have an interdependency between spectral bands as the excitation at a certain wavelength can induce fluorescence emission at other wavelengths, which is not possible using the original LuxCoreRender nor the first versions of DART-Lux. Moreover, the turbid medium is a representation of vegetation that is specific for remote sensing models and is not included in rendering software originally designed for other purposes. This chapter presents the new modeling that I designed and implemented into DART-Lux in order to solve these issues. The first section presents the SIF modeling for facets-based vegetation and all the consequent modeling adaptations that were made to allow DART-Lux to simulate SIF. An article describing the methodology and evaluating the accuracy of the SIF modeling in DART-Lux of which I am the first author has been submitted to the International Journal of Applied Earth Observation and Geoinformation. The second section presents first the turbid volume vegetation modeling in DART-Lux which was introduced by analogy to the fluids modeling. Then, the SIF modeling for turbid vegetation is introduced.The implementation of SIF emission in DART-Lux for vegetation simulated as facets also uses the fluorescence excitation-emission matrices computed by Fluspect and resampled to the userdefined DART bands. The same rule of covering all the excitation spectral interval (i.e., [400 -750 nm]) with non-overlapping bands applies. To include the SIF radiation, physical quantities in DART-Lux should have 3 components for total, PSI and PSII radiation. However, to evaluate

  The fluorescence quantum efficiency (fqe) of chlorophyll in vivo does not exceed 10%, with typical values under steady-state illumination of 0.5-3%(Porcar-Castell et al., 2014). Hence, the SIF remote sensing (RS) signal is a small fraction of sunlight scattered by a vegetation canopy. The resulting difficulty in interpreting SIF RS signal in terms of vegetation functioning traits is largely amplified by the dependence of the SIF signal on the vegetation 3D structure, combined with illumination and observation conditions(Hornero et al., 2021; Regaieg et al., 2021). This stresses the importance of physical models to link the within canopy SIF emission with RS signals. An ideal radiative model of SIF includes two major sub-models: (1) Leaf SIF emission model considering the incident spectral irradiance, leaf structure and biochemistry, and the probability of a photon absorbed by photosystems I (PSI) and II (PSII) to be re-emitted as SIF (i.e., fqe) derived from leaf physiological modelling. (2) Radiative transfer (RT) model of the radiation propagation in the canopy to simulate the SIF radiance at the bottom and/or top of the atmosphere (i.e., RS signal).

  is the set of all light transport paths. 𝒟= ⋃ 𝒟 𝑘 ∞ 𝑘=1, with 𝒟 𝑘 the set of all paths 𝑝̅ 𝑘 =(𝑝 0 ,…, 𝑝 𝑘 ) of length 𝑘 (i.e., 𝑘 segments, 𝑘+1 vertices 𝑝 𝑖 ; 𝑖[0, 𝑘], 𝑝 0 on the sensor, 𝑝 𝑘 on the light source), 𝑑𝐴(𝑝̅ ) is the area product for path 𝑝̅ ; e.g., 𝑑𝐴(𝑝̅ 𝑘 ) = 𝑑𝐴(𝑝 0 ) … 𝑑𝐴(𝑝 𝑘 ) with area 𝑑𝐴(𝑝 𝑖 ) at vertex 𝑖 and 𝐶 (𝑗) (𝑝̅ ) is the contribution function of path 𝑝̅ to the measurement 𝐿(𝑗) of pixel 𝑗.

Figure 1 .

 1 Figure 1. (a) Path 𝑝̅ 3 with four vertices 𝑝 𝑖 (i  {0..k} with k = 3). (b) The five ways to construct 𝑝̅ 3 , with s and t vertices (s+t = k+1 = 4) for the sources and sensor subpaths, respectively.

  the samples that are not evaluated. The theory of DART-Lux was presented in more details byWang et al. (2022).The DART-Lux image (5 m resolution, 100 bands in [0.4-0.85 µm]) of the 3 × 3 km 2

and 1 𝜋.

 1 They are still considered in the computations. If the SIF emission is considered, three components of the radiance need to be computed: 1) the total radiance including the scattered radiation plus SIF emission, 2) the PSI SIF radiance component, 3) the PSII SIF radiance component. For 𝑁 simulated spectral bands, a fluorescent surface 𝑆 𝑙 is characterized by four 𝑁×𝑁 EEFMs, in addition to its non-fluorescent BSDF. For photosystem 𝑥 and for direction 𝑦, element for an excitation spectral band (central wavelength: 𝜆 𝑖 , bandwidth: Δ𝜆 𝑖 ) and an emission band (𝜆 𝑗 , Δ𝜆 𝑗 ), For a path with two segments, the integrand of SIF radiance component of photosystem 𝑥 and direction 𝑦 is the matrix product of the light source spectral radiance 𝐿 𝑒 and the EEFM 𝑀 𝑥𝑦 : 𝑃 𝑥 (𝑝̅ 2 ) = 𝐿 𝑒 ×𝑀 𝑥𝑦 𝑙 = (𝑒 1 , 𝑒 2 ,…, 𝑒 𝑁 )

  is the reflectance or transmittance of the surface 𝑆 𝑙 at the band (𝜆 𝑖 , Δ𝜆 𝑖 ), 𝑅 𝑙 = ( for an excitation band (𝜆 𝑖 , Δ𝜆 𝑖 ) and an emission band (𝜆 𝑗 , Δ𝜆 𝑗 ) for PSI and PSII respectively, for direction 𝑦.

Figure 3 .

 3 Figure 3. The simulated 3D mock-ups. a) Homogeneous medium b) Maize field. c) Tree plot.

-

  No EB: the 𝜂 factors are set to one in DART-FT and DART-Lux. -EB: DART-FT and DART-Lux use the SCOPE 𝜂 factors for the default meteorological parameters.

Figure 4 .

 4 Figure 4. Homogeneous site: DART-FT, DART-Lux and SCOPE PSI and PSII nadir radiance, without (left) and with (right) computation of the canopy energy balance.

Figure 4

 4 Figure 4 shows DART-Lux, DART-FT and SCOPE PSI and PSII nadir radiance. DART-Lux closely matches DART-FT and, to a lesser extent, SCOPE. Without EB,

  Compared to DART-FT (200 discrete directions and illumination step =10 -3 m), DART-Lux (7² scene repetitions, maximal scattering order = 15, Russian Roulette starts at order 12 with cut-off probability =0.5) decreases the memory by a factor of 34 and computer time by 1.4 at 0.5 m resolution. It decreases the memory by 48 and computer time by 50 at 0.01 m resolution. Figure7shows nadir radiance images at 0.01 m resolution: DART-Lux RGB color composite, and also DART-Lux and DART-FT PSI and PSII nadir radiance images.

Figure 5 .

 5 Figure 5. Maize field: DART-FT, DART-Lux and SCOPE reflectance for 3 solar directions and 3 viewing directions with no account of bioclimatology on SIF emission.

Figure 6 :Figure 7 .

 67 Figure 6: Maize field: DART-FT, DART-Lux and SCOPE SIF PSII and PSII radiance, for 3 solar directions and 3 viewing directions with no account of bioclimatology on SIF emission.DART-FT and DART-Lux were also run using the 𝜂 factors calculated by SCOPE with its default meteorological input parameters. Although these 𝜂 factors should depend on the canopy 3D architecture, we made this approximation (i.e., application of 1D information in a 3D model) because of the unavailability of 3D energy balance model. DART-Lux and DART-FT match as for the case "No energy balance": the MARD for canopy SIF radiance and for canopy reflectance (not shown here) keep the same order of magnitude. The differences with SCOPE are also similar.

Figure 8 .Table 4 .Figure 9 .

 849 Figure 8. Tree plot: DART-Lux and DART-FT total (a) and PSI and PSII (b) nadir spectral radiance.

Figure 10

 10 Figure10shows the pixel-wise comparison of DART-FT and DART-Lux PSII images at 765 nm, for 200 samples/pixel and for 1000 samples/pixel. The pixel-wise MARD is computed by replacing the average on spectral bands by the average on the image pixels. The pixel-wise MARD for 200 samples/pixel (16.89%) is larger than for 1000 samples/pixel (13.88%).

Figure 10 .

 10 Figure 10. Pixel-wise comparison of DART-FT and DART-Lux PSII radiance images with samples/pixel = 200 (a) and 1000 (b). θ s =30°, ϕ s =225 °. 𝜆 𝑐 = 765 𝑛𝑚, 𝛥𝜆 =

  , the convergence of RMSEDART-FT-DART-Lux is probably an indication of the accuracy of DART-FT, with DART-Lux giving the exact value. Results stress that the reduction of simulation time CT FT/Lux = DART-FT computer time DART-Lux computer time of DART-Lux relative to DART-FT can be very important, especially for large and complex scenes.

Figure 12 .

 12 Figure 12. Ripperdan 3𝑘𝑚×3𝑘𝑚 agricultural site (vineyards and trees), USA (36° 55' N, 119° 58' W). a) Google image used to create the DART-Lux's 3D scene. b) DART-Lux RGB color composite. DART-Lux PSI (c) and PSII (d) radiance images (𝑊/𝑚 2 /µ𝑚/𝑠𝑟) at 760 𝑛𝑚 simulated with 100 bands in [0.4µm -0.75µm]). SIF radiance is null for the road (top right), bare earth fields (top left) and built areas (bottom center). DART-Lux images are at 5m spatial resolution.

  LuxCoreRender software can simulate the propagation of radiation in volumes filled with fluids. It uses the Schlick phase function in order to approximate the Henyey-Greenstein phase function commonly used in DART for simulating scattering by aerosols in the atmosphere. The Schlick phase function is more convenient for computer graphics because it is faster to compute, although it is less accurate. Based on this implementation, I introduced into DART-Lux (1) the double Henyey-Greenstein and the Rayleigh scattering phase functions in order to simulate radiation propagation in fluids, as in DART-FT, then (2) turbid vegetation modeling, including SIF modeling. The modeling approach is presented below, after the introduction of the Light Transport Equation generalized for scenes containing surfaces and scattering media volumes.

3. 2

 2 VEGETATION SIMULATED AS TURBID MEDIUM129 the scattered direction. If the scattering phase function is azimuthally symmetric (i.e., depends only on 𝜃), the scattering direction is sampled as:

Figure 3 -

 3 Figure 3-1 shows a test of this sampling method for the case a = 0.75, g1 = 0.3, g2 = -0.3.

Figure 3 - 1 :-Figure 3 - 2 :

 3132 Figure 3-1: Double Henyey-Greenstein phase function sampling test: histogram of 10 5 samples and its fitted function (a = 0.75, g1 = 0.3, g2 = -0.3)

2 ( 2 (

 22 𝜔 = 𝜌 + 𝜏, if the optical properties of the two faces are identical, 𝜔= 1 𝜌 𝑡𝑜𝑝 +𝜌 𝑏𝑜𝑡 )+ 1 𝜏 𝑡𝑜𝑝 +𝜏 𝑏𝑜𝑡 ), if the optical properties of the two faces of the leaf differ.

  Figure 3-3: DART-FT and DART-Lux RGB nadir images of a fluid volume with fluid phase function double Henyey-Greenstein (a) and Rayleigh (b).

  Figure 3-4 shows the scene total nadir reflectance and scene SIF PSI and PSII nadir radiance simulated by DART-FT and DART-Lux. Figure 3-5 shows the DART-FT and DART-Lux directional reflectance in the solar plane for a near infrared spectral band. The hot spot appears clearly. In both cases, DART-Lux closely agrees with DART-FT: relative difference is 1.21% for reflectance, 0.60% for PSI radiance, and 63% for PSII radiance.
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 34 Figure 3-4: Nadir total reflectance and SIF PSI and PSII radiance comparison between DART-FT and DART-Lux for a simple turbid plot

  Figure 3-6: 25 m x 25 m turbid mockup derived from LiDAR point cloud of SERC forest (USA)with pure green voxels (leaves or wood) and mixed brown voxels (leaves and wood).
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 37 Figure 3-7: Nadir total reflectance and SIF radiance simulated using DART-FT (turbid) and DART-Lux (turbid) comparison

For a turbid𝜙

  Figure 3-8: The 𝑊 0 (blue) and 𝑊 -1 (green) branches curves of the Lambert W function

𝑃

  This equation has a unique real solution: 𝜇 = (𝛽 + √𝛼 3 + 𝛽 2 𝜎 𝑡(𝑙) Cumulated density function of 𝑝 𝜎 𝑡 -border of the volume 𝑚 1D SIF models are widely used for SIF studies. They might be appropriate to use for closed and homogeneous canopies with small leaves and no distinguishable rows, but they are much less appropriate for canopies with a strongly marked 3D structure. Section 2 of this chapter presents a study of the impact of vegetation 3D structure on SIF emission and observation over eight forest sites. This was done with a quasi-turbid representation of vegetation because DAT-Lux did not yet simulate turbid SIF modeling. This work was published in the Remote Sensing of Environment journal. Section 1 compares the quasi-turbid representation of vegetation to the turbid representation of vegetation.

Figure 4 -

 4 Figure 4-1 shows the DART-Lux nadir reflectance of the CI1 tree plot simulated with the turbid and quasi-turbid representations, without SIF simulation. The quasi-turbid approximation shows a good accuracy with around 2% of relative difference.

Figure 4 - 1 :

 41 Figure 4-1: Nadir reflectance of the CI1 tree plot simulated as turbid and quasi-turbid (QT).

4. 1 Figure 4 - 2 :

 142 Figure 4-2: Relative standard deviation SDr images averaged over all the spectral bands. a) Turbid mdium (mean SDr = 0.0398). b) Quasi turbid medium (mean SDr =0.0475).

Figure 4 -

 4 Figure 4-3 shows the canopy nadir PSI and PSII radiance for the turbid and quasi-turbid representations. The order of magnitude of the relative difference between the two representations is the same as if the SIF is not simulated (Figure 4-1).

Figure 4 -

 4 Figure 4-3: PSI and PSII radiance of CI1 tree plot for the turbid and quasi-turbid representations.
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 44 Figure 4-4: Relative standard deviation images for SIF averaged over the spectral bands where it is non null. a) PSI turbid (average = 0.0327) b) PSI quasi-turbid (average = 0.0412) c) PSII turbid (average = 0.0341) d) PSII quasi-turbid (average = 0.0430).

Figure 1 .

 1 Figure 1. Locations of SERC forest study sites (Edgewater, MD, USA) and G-Liht flight paths.

Figure 2 .

 2 Figure 2. Maps and histograms of forest top-of-canopy height (m) for the eight forest study sites.

Figure 3 :

 3 Figure 3: The three types of scene abstractions: a) 3D, b) 1D, c) 0D (top: sun-adapted, bottom: shadeadapted leaves)

  O2A (~760nm) oxygen absorption bands, and under-sample the[400-640nm] band (no SIF emission) the canopy 3D architectures on 3D SIF emissions was assessed by comparing the DART-FT RB fluxes (i.e., intercepted, scattered, absorbed and emitted PAR and total SIF radiation) per voxel in the simulated 3D, 1D and 0D mock-ups. Here, the PAR absorbed by leaves (W.m -2 ) informs us on APARgreen (the 1 st process). SIFemitted (W.m -2 ) is the sum of PSI and PSII emissions by adaxial and abaxial sides of all leaves in the canopy. It depends on the directionality and intensity of the incident PAR relative to leaf orientation, and therefore on APAR green and the local leaf physiology (e.g., leaf sun and shade adaptations). SIF emission yield informs us on the 2 nd process. It is defined as:

Figure 4 .

 4 Figure 4. PSI, PSII and total SIF nadir radiance of the eight sites simulated with 3D, 1D and 0D abstractions, at 12.00 local time (SZA = 21.050°, SAA = 47.256°).

Figure 5 .

 5 Figure 5. Diurnal evolution of the total nadir SIF radiance relative error 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿,1𝐷-3𝐷 (𝑡)between 1D and 3D mock-ups at 640 -700 nm and 700 -850 nm.

Figure 6 :Figure 7 :

 67 Figure 6: Canopy nadir reflectance of the eight study sites simulated with 3D, 1D and 0D mock-ups, at 12.00 local time (SZA = 21.050°, SAA = 47.256°). 𝜀 𝜌,1𝐷-3𝐷 (𝜆)

Figure 8 .

 8 Figure 8. Diurnal PAR absorbed by green leaves (APARgreen) in 3D and 1D forest abstractions of the eight study sites, and their associated relative error 𝜀 𝐴𝑃𝐴𝑅,1𝐷-3𝐷 (𝑡) triggered by changes in horizontal heterogeneity of the forest abstractions.

Figure 10 .3. 4 .

 104 Figure 10. Diurnal leaf SIF emissions for the 3D and 1D forest abstractions and their associated relative errors 𝜀 𝑆𝐼𝐹.𝑒𝑚,1𝐷-3𝐷 (𝑡).

Figure 13 :

 13 Figure 13: Diurnal SIF escape factornadir of the 3D and 1D plots and their associated relative errors.

Figure 16 .

 16 Figure 16. PSI, PSII and total SIF nadir spectral radiance and error 𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,𝑁𝑊-𝑊 (𝜆) of 3D CM1 and LM1 plots simulated with (W) and without (NW) woody elements at 12.00 (local time)

Figure 17 .

 17 Figure 17. Diurnal relative error of total nadir SIF radiance 𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,𝑁𝑊-𝑊 (𝑡) of the CM1 and LM1 3D forest plots simulated without woody elements. 640 -700 nm and 700 -850 nm.

Figure 18 .

 18 Figure 18. Diurnal APARgreen of CM1 and LM1 3D forest plots with (Wood) and without (No Wood) woody elements and their associated relative errors 𝜀 𝐴𝑃𝐴𝑅,𝑁𝑊-𝑊 (𝑡).

Figure 19 .

 19 Figure 19. Diurnal SIF nadir escape factor over [640nm-700nm] and [700nm-850nm] of CM1 and LM1 3D plots simulated with (W) and without (NW) woody elements and associated relative error 𝜀 𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊-𝑊 (𝑡).

Figure 8 )

 8 Figure8), SIF emitted (𝜀 𝑆𝐼𝐹.𝑒𝑚,1𝐷-3𝐷 (𝑡): Figure10), SIF 𝑛𝑎𝑑𝑖𝑟 𝑦𝑖𝑒𝑙𝑑 (𝜀 𝑆𝐼𝐹.𝑁𝑌,1𝐷-3𝐷 (𝑡): Figure15), canopy SIF exitance and escape factor (𝜀 𝑆𝐼𝐹.𝐸𝐹,1𝐷-3𝐷 (𝑡): Figure12), SIF nadir yield (𝜀 𝑆𝐼𝐹.𝑁𝑌,1𝐷-3𝐷 (𝑡): Figure15) and reflectance (Figure6).Braghiere et al. (2021) found that the

Appendix 1 :

 1 Conversion of turbid voxels into triangles clouds.Each turbid cell of a forest mock-ups is converted to a linear combination of a few 3D objects (i.e., made of facets) among N cell objects whose LAI is LAIn, with n  [1 N]. Accuracy on the simulated LAI is 10 -2 with N = 16 with LAIn equal to 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5,

Figure 20 .

 20 Figure 20. Top view of a turbid cell of LAI = 0.92 simulated with N cell objects. a) N=1: cell object of LAI = 1 is shrunk by a factor 0.96, resulting in empty space along the borders of the cell. b) N=2: 3D object of LAI = 0.5 (green) + 3D object of LAI = 0.4 enlarged by a factor 1.025 (purple).

Figure 21 :

 21 Figure 21: Comparison of DART-FT (turbid voxels) and DART-Lux (turbid voxels transformed to triangles) for a 10m x 10m subscene of CI1. a) LM1 turbid mock-up. b) LM1 triangles cloud mock-up (after conversion). Green: sun-adapted leaves, Grey: shade-adapted leaves, Brown: woody elements. c) DART-FT and DART-Lux scene reflectance. d) Scene PSI and PSII radiance simulated by DART-FT and DART-Lux.
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 51 Figure 5-1: Points sampling method for a single triangle (a) and a maize scene (b)

Figure 5 - 4 :

 54 Figure 5-4: Schematic representation of the volume thermal emission

  ,𝛥𝜆( 𝑇). (1 -𝑒 -𝜎 𝑡 .𝛥𝑍 )Similarly, for a volume filled with turbid medium:𝐿 𝑜𝑟𝑑𝑒𝑟1 = 𝐿 𝜆,𝛥𝜆( 𝑇). (1 -𝑒 -𝐺(𝛺 𝑣 ).𝑢 𝑙 .𝛥𝑍 )(5.21)Multiple order emission is simulated as successive order 1 emission whenever the ray sent from the sensor is intercepted at a point 𝐵. Then, a scattering direction 𝐵𝐸 ⃗⃗⃗⃗⃗ is sampled, with 𝐸 being the interception of the scattering direction and the edge of the volume. The emission along the segment [𝐵𝐸] seen at 𝐵 is computed using Eq (5.20) or (5.21) and scattered at 𝐵 towards the sensor. Then, a travel distance is sampled over 𝐵𝐸 ⃗⃗⃗⃗⃗ . If the sampling leads to an interception in point 𝐷 within the volume, a new scattering direction 𝐷𝐹 ⃗⃗⃗⃗⃗ is sampled, and the emission along

Figure 5

 5 Figure 5-5: Nadir brightness temperature (K) images simulated by DART-FT and DART-Lux for a simple synthetic scene at 10 µm.

Figure 5 - 6 :

 56 Figure 5-6: Radiance comparison between DART-FT and DART-Lux for a simple turbid plot

Figure 5

 5 Figure 5-9: Thermal camera images (7.7 -13 µm) of a maize field (left) and corresponding DART-Lux simulations (°C)

Figure 5 -

 5 Figure 5-10 show nadir image simulated by DART-Lux, 50s after the ignition of the fire. During the experiment, only visible images were collected, so no image-to-image comparison is possible. Flames show brightness temperatures in an expected range in field scale propagating fire (>600K (Paugam et al., 2013)).

Figure 5 -5. 2

 52 Figure 5-10: Nadir brightness temperature (K) image of a fire over a vegetated scene. (Courtesy of Ronan Paugam)

  𝐸 𝜆,𝑃,𝑎𝑏𝑠 spectral radiation vectors can be deduced: 𝐸 ̂𝜆,𝑃,𝑠𝑐𝑎𝑡 = { 𝐸 ̂𝜆,𝑃,𝑛 * 𝜌 𝜆 (backward scattering) 𝐸 ̂𝜆,𝑃,𝑛 * 𝜏 𝜆 (forward scattering) (5.30) 𝐸 ̂𝜆,𝑃,𝑎𝑏𝑠 = 𝐸 ̂𝜆,𝑃,𝑠𝑐𝑎𝑡 * (1 -𝜔 𝜆 ) (5.31) with 𝜌 𝜆 and 𝜏 𝜆 the hemispherical spectral reflectance and transmittance vectors respectively at the point 𝑃 and the spectral band (𝜆, Δ𝜆), and 𝜔 𝜆 = 𝜌 𝜆 + 𝜏 𝜆 the single scattering albedo, ( * ) is the vector element-wise product operator.

Figure 5 - 2 Figure 5 -

 525 Figure 5-11 shows a radiative budget product (intercepted radiation per facet) of a maize field computed using DART-Lux and compared DART-FT. The results provided by the two modes are similar. However, computation time is longer for DART-Lux (1 min 39 s) compared to DART-FT (54 s). From, the intercepted radiation, the scattered and absorbed radiation as well as the SIF emission (only for SIF emission bands) can be derived (Figure 5-14). The emitted thermal radiation is computed independently and directly from the local temperature (Figure 5-14).

CHAPTER 5 :

 5 THERMAL EMISSION AND RADIATIVE BUDGET MODELING IN DART-LUX 230 in having the SIF emission of one of the six maize plants shown in Figure 5-12, it is possible to compute it independently of the other plants (Figure 5-16) and the computation time in this case become 16 s compared to 1 min 39 s for the total scene and 54 s for DART-FT. 2) it highly parallelizable: radiative budget of different elements of the same scene can be computed independently and parallelly on several machines. 3) It can benefit from a future use of Graphics Processing Units (GPUs) for accelerating the ray tracing.

Figure 5 -

 5 Figure 5-16: SIF emission (W.m -2 .µm -2 ) of one of the six maize plants

For

  this reason, a more efficient mode called DART-Lux is developed. It uses a Monte Carlo bi-directional path tracing algorithm implementation from the open-source rendering engine LuxCoreRender adapted for RS applications and included in the DART framework. It can greatly decrease computation time and memory usage especially for large and complex scenes. Therefore, DART-Lux is well adapted to the simulation of large scenes. This highlights the interest to introduce the modeling of SIF and thermal emission in DART-Lux. The simulation of images in DART-Lux was extended to SIF images simulation by adapting the SIF emission equation to the bi-directional path tracing algorithm. The 3D turbid medium modeling of vegetation was also introduced, including the SIF. DART-Lux SIF modeling was assessed by comparison to DART-FT: the two modes provided results in close agreement. Computational requirements are usually much less important for DART-Lux, especially for large and complex scenes. The gain in computation time decreases if the number of spectral bands increases.

  missions with high spatial resolution thermal infrared sensors on-board (i.e., TRISHNA mission of CNES / ISRO and LSTM mission of ESA).Cette thèse a été motivée par le besoin d'un modèle SIF complet afin de relier les observations SIF à l'activité photosynthétique instantanée au niveau du photosystème et de permettre une meilleure compréhension et interprétation de ces observations dans le but de suivre le processus de photosynthèse à différentes échelles spatiales et temporelles. Ceci est crucial pour répondre à certains des défis les plus impérieux tels que le changement climatique et la nécessité de fournir de la nourriture à une population mondiale croissante sous les contraintes de la rareté de l'eau et de la fréquence croissante des conditions météorologiques extrêmes.DART est l'un des modèles de transfert radiatif les plus complets pour les applications de télédétection. Depuis 2017, son mode de suivi de flux initial (DART-FT) simule la SIF en mettant à l'échelle la SIF au niveau des feuilles simulé par Fluspect pour les canopées simulées sous forme de facettes, et peut fournir un bilan radiatif de SIF et des observations de télédections en TOA et en BOA de ces couverts. Face à la difficulté d'avoir un jeu de données complet de mesures SIF pour une comparaison pertinente avec un modèle de transfert radiatif SIF, nous sommes passés par une comparaison modèle à modèle pour évaluer la précision de la modélisation DART-FT SIF. DART-FT a donné des résultats en accord avec le modèle SIF "de référence" SCOPE/mSCOPE (1D) pour des scènes homogènes horizontalement et pour différentes configurations, en rapprochant le milieu turbide utilisé dans SCOPE avec un milieu quasi turbide (i.e., un nuage de facettes réparties aléatoirement). Ensuite, DART-FT a été étendu pour simuler la SIF pour la végétation représentée sous forme de milieu turbide 3D. Cette représentation statistique de la végétation est largement utilisée dans les modèles de transfert radiatif pour la télédétection, surtout pour simuler des paysages larges. Par exemple, elle peut être utile pour réduire les besoins en ressources de calcul pour des scènes simulées avec un très grand nombre de facettes, ou si la représentation 3D explicite avec des facettes de la scène simulée n'est pas disponible (e.g., seule une distribution 3D de LAI est disponible). LaConclusions et perspectivesmodélisation de SIF de DART-FT pour le milieu quasi-turbide et pour le milieu turbide montrent une correspondance étroite. Il s'agit d'une sorte de validation pour la modélisation DART-FT SIF pour milieu turbide car la modélisation DART-FT SIF pour milieu quasi turbide a déjà été validée avec le modèle SCOPE Cependant, le besoin de simuler la SIF pour des grands paysages (e.g., quelques kilomètres carrés) porté par les progrès des méthodes de reconstruction de grandes maquettes 3D et également la prochaine mission satellite SIF FLEX qui aura une résolution spatiale de 300 m, ne peut pas être satisfait par DART-FT. En effet, DART-FT ne peut pas simuler de grands paysages avec des ressources de calcul raisonnables parce qu'il suit tous les rayons sur toute la scène, ce qui est pratique si le bilan radiatif de toute la scène est requis, mais ce n'est pas optimal pour la simulation d'images. Pour cette raison, un mode plus efficace appelé DART-Lux est développé. Il utilise une implémentation d'algorithme de traçage de chemin bidirectionnel Monte Carlo à partir du moteur de rendu open source LuxCoreRender adaptée aux applications RS et incluse dans le framework de DART. Il peut généralement réduire le temps de calcul et le besoin en mémoire, en particulier pour les scènes volumineuses et complexes. Par conséquent, DART-Lux est bien adapté à la simulation de grandes scènes. Ceci met en évidence l'intérêt d'introduire la modélisation du SIF et de l'émission thermique dans DART-Lux. La simulation d'images par DART-Lux a été étendue à la simulation d'images SIF en adaptant l'équation d'émission SIF à l'algorithme de traçage de chemin bidirectionnel. La modélisation 3D du milieu turbide de la végétation a également été introduite, y compris la SIF. DART-Lux SIF a été évalué par comparaison avec DART-FT : les deux modes ont fourni des résultats en accord étroit. Les exigences de calcul sont généralement beaucoup moins importantes pour DART-Lux, en particulier pour les scènes volumineuses et complexes. Le gain en temps de calcul diminue si le nombre de bandes spectrales augmente.L'introduction de la SIF dans DART-Lux a permis de simuler des observations SIF pour des scènes larges et complexes qu'il n'était pas possible de simuler avec DART-FT. Il a été appliqué à huit maquettes forestières réalistes pour évaluer l'impact de la structure 3D sur l'observation SIF en comparant des simulations SIF 3D à leurs simulations 1D équivalentes. Pour la luminance au nadir, nous avons eu une grande différence relative qui pouvait atteindre 50%, en particulier pour les directions solaires obliques. Les produits de bilan radiatif DART-FT obtenus avec une faible résolution spectrale ont permis d'analyser ces différences. Elles s'expliquent par deux raisons principales : 1) la canopée représentée en 3D absorbe moins de
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  1.4 MODELING OF SIF EMISSION AND OBSERVATIONStransfer and to compute leaf spectral reflectance, transmittance and fluorescence. Leaf SIF models are usually combined with canopy radiative transfer models to upscale the SIF emission from leaf to canopy level.Ideally, a canopy-level SIF model should simulate accurately all the radiative and non-radiative processes that impact the SIF signal. Considering the accurate 3D architecture of vegetation canopies, it should simulate the propagation of sunlight to quantify the absorbed PAR, and the propagation of SIF radiation to estimate the measured signal. Moreover, it needs to compute the leaf-level SIF emission based on the absorbed PAR, possibly using a leaf-level SIF model,

	1.4.2 Canopy level modeling

and considering the local parameters that influence SIF emission (e.g., leaf temperature). To this end, the full energy balance needs to be modeled with its radiative (i.e., full radiative budget from visible to thermal infrared domain), and non-radiative (e.g., photosynthesis, turbulence, heat exchanges) components. The existing SIF models that simulate the full energy balance are 1D only. They make a very limiting assumption of horizontally homogenous canopies, neglecting the actual 3D structure of vegetation canopies. They represent the canopy by homogeneous turbid layers characterized by a Leaf Area Index (LAI) and a Leaf Angular Distribution (LAD). This is the case of the SCOPE model

(van der Tol et al., 2009) 

and its multi-layered version mSCOPE (P.

Yang et al., 2017)

. They use the Fluspect model to simulate dark-adapted leaf fluorescence, and then weight the SIF emission by multiplicative factors derived from a 1D energy balance algorithm in order to consider the effect of local climatology on SIF emission. These models are, to some extent, adapted for homogeneous and closed crop canopies, but they are much less adapted for forest heterogeneous covers and crop canopies with a clear row distribution that can provoke important effects related to 3D structure both for radiation absorption and remote sensing observations. They also neglect some canopy elements such as woody elements and local topography. In recent years, several 3D canopy SIF models have been developed. They usually result from already existing 3D radiative transfer models combined with a leaf-level SIF model. For instance, FluorFLIGHT

(Hernández-Clemente et al., 2017) 

is based on the FLIGHT model

. Material and Methods 2.1 Implementation of leaf chlorophyll fluorescence in DART

  

	or the Fluorescence Leaf Canopy Vector architecture on the top-of-canopy SIF (SIFTOC) for cropland and forested environments that are
	Radiative Transfer model (Kallel 2020). The MC models are, however, computationally difficult or even infeasible to investigate directly. DART simulations in this study address three
	demanding and, therefore, less suitable for an operational use in routine applications. primary research questions. First, in absence of a suitable 3D validation measurements and to
	Models of SIF radiative transfer are developed hand-in-hand with the RS experimental verify their modelling consistency, do the DART, SCOPE and mSCOPE models provide
	work conducted at leaf as well as canopy scales (Aasen et al. 2019). Leaf RTMs are usually comparable estimates of SIFTOC for structurally homogenous vegetation in form of a turbid
	embedded in canopy-scale RTMs that can be classified according to the canopy representation medium? Second, what is the SIFTOC impact originating from biochemical leaf fluorescence
	as one-dimensional (1D) or three-dimensional (3D). Strengths and weaknesses of available efficiencies (fqe), varying for sun-and shade-adapted leaves, in comparison to increasing leaf
	canopy RTM types are reviewed in Malenovský et al. (2019). 1D models, such as SAIL density and clumping of maize (Zea mays L.) canopies? And third, what are the effects of woody
	(Verhoef 1984), were designed for a horizontally homogeneous canopy with structural, optical trunks and branches on simulated SIFTOC, SIF fluxes and escape factors from 3D forest
	and biochemical variability only in the vertical dimension (e.g., mono-species crops). The most abstractions of dense and sparse Australian white peppermint (Eucalyptus pulchella) stands?
	frequently used SIF model for 1D canopies is a SAIL's successor called SCOPE (van der Tol
	et al. 2009; van der Tol et al. 2019; Yang et al. 2020a), recently extended for multi-layered canopies as mSCOPE (Yang et al. 2017). Both SCOPE models are not modelling just radiance and SIF transfer but also soil-vegetation-atmosphere temperature and energy balances, 2We used the 3D DART model as the pilot RTM of this study. DART, being developed by
	including photosynthetic processes. SCOPE is frequently used for its simplicity and robustness, researchers from the CESBIO Laboratory in Toulouse for more than 20 years (Gastellu-
	but its 1D architecture is unsuitable for complex multi-species ecosystems with structurally Etchegorry et al. 1996), was successfully cross compared with other state-of-the-art RTMs
	heterogeneous canopy layers and rough topography (e.g., boreal forests or savannas; Liu et al. within the RAMI exercise (Widlowski et al. 2015). It produces at-sensor top-of-atmosphere
	2019a). Therefore, several 3D RTMs have been equipped with the ability to scale SIF from (TOA) and bottom-of-atmosphere (BOA) multi-angular RS images by tracking optical and
	leaves to canopies to better capture the influence of structural heterogeneity of vegetation thermal photon fluxes through any type of 3D landscape with atmosphere (Gastellu-Etchegorry
	canopies. FluorWPS is a 3D MC ray-tracing SIF model (Zhao et al. 2016) that was developed et al. 2015). Additionally, it calculates the quantitative 3D radiative budget, i.e., fluxes of
	and tested on 3D agricultural crops (Tong et al. 2021). Flux tracking of SIF simulated in the intercepted, absorbed, reflected and emitted radiation, in the optical spectral domain (400-2500
	Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al. 1996) was nm) (Gastellu-Etchegorry et al. 2004). The presence of woody material was implemented in
	used to assess its multi-angular anisotropy in 3D maize canopies (Gastellu-Etchegorry et al. DART in 2008 (Malenovský et al. 2008), and radiative transfer of Fluspect-Cx modelled SIF
	2017). The FluorFLIGHT 3D model, developed from FLIGHT (North 1996), supported emissions in 2017 (Gastellu-Etchegorry et al. 2017). The Fluspect-Cx implementation followed
	assessment of Mediterranean oak forest water stress and Phytophthora infections from airborne the approach that was previously applied to couple DART with the PROSPECT-D model (Féret
	SIF data (Hernández-Clemente et al. 2017). Finally, the FLiES MC model (Sakai et al. 2020) et al. 2017), taking advantage of both models' computational similarities and commonalities in
	was used to interpret space-borne SIF of Amazonian forests (Köhler et al. 2018). input/output handling. The DART version 5.7.3, used in this work, simulates SIF radiative
	Despite the fact that all RTMs rely on simplifications and assumptions, they are powerful transfer and budget for 3D vegetation canopies constructed from geometrically explicit
	tools to investigate the optical interactions of SIF, which is needed for scaling and interpretation triangular objects (facets). Based on user-defined input parameters (i.e., leaf chlorophyll a+b,
	of the SIF signals acquired by proximal, airborne and spaceborne instruments (Bendig et al. total carotenoid and brown pigment contents, equivalent water thickness, dry leaf mass per area,
	2020; Gamon et al. 2019; Wyber et al. 2017). The main goal of this paper is to demonstrate the leaf mesophyll structural parameter and specific fluorescence efficiencies), Fluspect generates
	ability of the DART model coupled with Fluspect-Cx to assess the influence of canopy 3D

2.2 Comparison of DART and SCOPE/mSCOPE SIF radiative transfers

  

	2.1 VEGETATION SIMULATED AS FACETS
	shaded leaf can actually be sun-adapted and vice versa, depending on its instantaneous and total
	diurnal illumination.
	The implementation of DART chlorophyll fluorescence emission Fxyv (Eq. 2) does not
	account for the microclimatic conditions influencing the actual leaf photosynthetic activity.
	However, Fxyv can be in a vertical canopy profile additionally weighted by an eta parameter,
	which adjusts the leaf SIF exitance according to actual local temperature, humidity, wind
	aerodynamics and other microclimatic environmental conditions. Similar to fqe, the eta profile
	can be inserted either for a whole canopy, per a foliage group, or per pre-defined leaf groups.
	Since DART modelling does not contain soil-vegetation-atmosphere transfer (SVAT) of
	energy, the eta parameter must be precomputed out of DART with a SVAT model (e.g.,
	SCOPE; van der Tol et al. 2009) that considers dynamic meteorological factors as active parts
	in computation of the energy balance. DART simulates the total and the per-photosystem
	SIFTOC radiance and TOC reflectance using the N-flux tracking transfer. Technical details about ∑ 𝛽 𝑢𝑗 .∆𝜆 𝑗 .M xy𝑢𝑗 𝑗 ∑ 𝛽 𝑢𝑗 .∆𝜆 𝑗 𝑗 , where (3) the SIF flux tracking in DART are available in the DART User's Manual (Chapter III.2.2.d;
	M xy𝑢𝑗 = DART 2020), while DART physical principles and mathematical descriptions are detailed in ∑ 𝛼 𝑢𝑖 .∆𝜆 𝑖 .M xy𝑖𝑗 𝑖 ∑ 𝛼 𝑢𝑖 .∆𝜆 𝑖 𝑖 . (4) the DART Handbook (DART 2019).
	DART spectral leaf SIF exitance is accurate only if the u bands cover the entire SIF excitation
	spectral interval and if they do not overlap. Similarly, it simulates the whole SIF domain only
	if the v bands cover the whole SIF emission spectral interval. In absence of a suitable empirical verification data, we compared the DART SIFTOC signal
	The Fluspect calibration optical parameters (i.e., specific absorption coefficients, refractive with comparable outcomes produced by the SCOPE model and its multi-layer extension,
	index of mesophyll cell walls and water, etc.) are stored in an external table called Optipar. We mSCOPE (both in version 1.62). SCOPE is a broadly accepted model that has been previously
	used the Optipar table released in 2015. Additionally to the standard PROSPECT leaf confronted and validated with SIFTOC measurements of agricultural crops (van der Tol et al.
	biochemical and structural inputs, Fluspect requires leaf fluorescence quantum efficiencies 2016). It simulates vegetation canopy as a turbid medium of infinitely small leaves distributed
	(fqe), in DART referred to as fluorescence yields, for PSI and PSII. The specification of fqe in 60 horizontally homogeneous vertical layers (Yang et al. 2017), all of them with the same
	values in DART is flexible. They can be entered per individual foliage facet or specified as predefined leaf biochemical and canopy structural parameters. mSCOPE allows users to divide
	general parameters that represent all leaves or a group of leaves in a given canopy. Biologically canopy into multiple horizontal layers and to assign to each one specific leaf optical properties
	meaningful foliage groups are, for instance, sunlit (i.e., leaves exposed to direct sun radiation) and LAI. The methodology and graphical outputs of the DART and SCOPE/mSCOPE SIF
	and shaded leaves (i.e., leaves in the shadow of other phytoelements), or sun-adapted (i.e., radiative transfer comparison are, due to a large extent, provided in Appendix A.
	leaves exposed most of the time to a direct sun radiation and subsequently adapting their 2.3
	pigment pools for a high photoprotective capacity) and shade-adapted leaves (i.e., leaves
	growing most of their lifespan under a low-intensity diffuse light and consequently having no
	need for a high photoprotective capacity). It is important to keep in mind that a momentarily

DART modelled influence of geometrically explicit plant canopy structures on SIF

  

	interactions as well as via foliage shading and physiological adaptations to prevailing
	photosynthetic light intensity. For this purpose, we built two realistic but structurally different
	mono-species canopies: i) an agricultural field of 1 m tall maize plants with eight leaves, created
	with the open source graphical software Blender (Blender 2007) according to a template
	produced by the plant architecture modelling L-system OpenAlea (Pradal et al. 2008), and ii) a
	16 m tall forest stand of white peppermint trees, created from terrestrial laser scans of real trees
	(Janoutová et al. 2019) growing in southern Tasmania (Australia). 3D landscapes were built as
	juxtaposed scenes located at the same Latitude of 39.03°N and Longitude of 76.85°W
	(Maryland, USA) as previous simulations, with the solar angles for 10 th July 2014 for the test
	of foliage sun and shade adaptation and for 26 th August 2014 at 14.00 of local time (without the
	daylight saving) for tests of maize canopy clumping and eucalypt wood influence. All canopies
	DART works with detailed and spatially explicit 3D representations of plant foliage and
	other canopy elements (e.g., trunks and branches), and can be, therefore, used to investigate
	how the structural components modulate the simulated SIFTOC signal through optical photon

Table 1

 1 

	(note that foliage of scenarios without distinct light adaptations was assumed to have
	the properties of sun-adapted leaves and stems). Contrary to previous SIF simulations, PSII fqe
	values of medium magnitude were assigned to each leaf class, while PSI fqe values were kept
	constant under the assumption that PSI contributes to SIF signal of both leaf types equally (Liu

Table 1 .

 1 Input parameters of the Fluspect-Cx model to simulate optical properties of sun-and shade-

	adapted leaves, as well as foliage without light adaptations and stems: content of chlorophyll a+b (Cab),
	total content of carotenoids (Car), equivalent water thickness (EWT), leaf mass per area (LMA),
	mesophyll optical thickness number (N) and fluorescence quantum efficiencies (fqe) for PSI and PSII.
	Fluspect inputs		Cab [g.cm -2 ]	Car [g.cm -2 ]	EWT [cm]	LMA [g.cm -2 ]	N	PSI fqe	PSII fqe
	Sun-adapted and without adaptation leaves and stems	50	15	0.009	0.0021	1.5	0.002	0.016
	Shade-adapted and stems	leaves	75	20	0.012	0.0028	2.0	0.002	0.022

Table 2

 2 

	DART scenario	Dense canopy (CC ≈ 80%)	Sparse canopy (CC ≈ 40%)
	DART outcome	Foliage only	Foliage & Wood	Relative impact [%]	Foliage only	Foliage & Wood	Relative impact [%]
	fAPARgreen of leaves	0.466	0.399		0.306	0.279	

. DART simulated impacts of woody material and bark on fAPARgreen of leaves, SIF leaf emissions, nadir top-of-canopy SIFTOC and nadir SIF escape probability factor at 686 and 740 nm of two white peppermint (Eucalyptus pulchella) stands with dense and sparse canopy covers (CC) and LAI = 2.5. The relative impact on canopy SIF emitted by leaves (Bold fonts), is caused either by shadows casted on photosynthetically active foliage (shading effect; Eq. 8) or by absorption and scattering of SIF photons by bark-covered wood in combination with green foliage (obstruction effect; Eq. 11); (↓) indicates a decreasing and (↑) an increasing effect.

  Despite of a generally high agreement with SCOPE/mSCOPE simulations, this model cross comparison is not a fully sufficient replacement of an independent validation of the DART model, which is expected to be performed with real canopy SIFTOC measurements in a near future. Nonetheless, this comparison provides the evidence that current integration of the Fluspect model and implementation of the 3D flux-tracking radiative transfer of SIF emitted from geometrically explicit leaves are as plausible as already validated 1D radiative transfer modelling approaches of SCOPE and mSCOPE models[START_REF] Migliavacca | Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability[END_REF][START_REF] Pacheco-Labrador | Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits[END_REF] van der Tol et al. 2016;[START_REF] Van Der Tol | The scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the models Fluspect and SCOPE[END_REF]. This conclusion provides us with a high level of confidence that the radiative transfer modelling of SIF in DART can be used to investigate the major canopy structural controls of SIFTOC in geometrically explicit 3D canopies, which structural complexity cannot be represented and tested in SCOPE or mSCOPE.

	a)	1.0				b)
						0.95
		0.9			
		0.8				0.85
	Canopy height [rel.]	0.3 0.4 0.5 0.6 0.7	0.10 0.15 0.20 0.25 0.30			Canopy height [rel.]	0.45 0.55 0.65 0.75
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			-0.010	0.000	0.010	0.020
		0.0 -0.05 0.00 SIF balance (emitted -absorbed) [W m -2 µm -1 ] 0.10 0.20 0.30 0.40 0.50	0.60	0.15 0.0	0.2 Omnidirectional SIF escape probability [rel.] 0.4 0.6 0.8	1.0
			SIF(686) with wood bal	SIF(740) with wood bal	SIFomni(686) with wood esc	SIFomni(740) with wood esc
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  Thus, far-red SIFTOC of each architecturally distinct plant formation (i.e., plant functional type) must be approached individually and the canopy specific structural confounding effects must be removed or at least reduced before any application of remotely sensed SIFTOC. This recommendation is in line with a number of recent works developing far-red SIFTOC normalization approaches to mitigate the canopy structural effects(Liu et al. 2019b;[START_REF] Yang | Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance[END_REF][START_REF] Yang | Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence[END_REF][START_REF] Zeng | A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence[END_REF]).

4.4 Development of DART SIF modelling for large canopies and landscapes

  vegetation turbid medium), and ii) a direct and reverse MC modelling calledDART-Lux (Gastellu-Etchegorry et al. 2020). The latter one is especially highly promising for simulating extensive SIFTOC images. It uses only the landscape elements contributing to the formation of a simulated image, which decreases the computer time and memory by a factor as large as 100. Once fully tested and solidified, both approaches will provide DART users with potential satellite SIF observations adapted to common ground sampling distances of hundreds of meters. Such simulations could test multiple SIF confounding optical effects, for instance, those originating from photosynthetically inactive Earth surfaces of rough terrain configurations resulting in dynamic spatiotemporal irradiation changes and shadow patterns.

	DART SIF simulations for geometrically explicit representations of terrestrial vegetation
	have computational limitations regarding a simulated scene size and a number of objects (i.e.,
	triangular facets) creating 3D mock-ups of plant canopies. Theoretically, one can create an
	extensive landscape occupied with an unlimited population of plants and other 3D objects (e.g.,
	open-water bodies, roads, buildings, etc.), but the SIF simulation, and mainly radiative budget,
	of such a scene might be practically unfeasible as the computer memory and processor

These numbers and results in Figures

9

and 10 suggest that oblique multi-directional observations of forest canopies (e.g., with towerbased instruments) should capture more SIF photons than a single nadir measurement, and, thus, provide a stronger SIFTOC signal. Once again, more simulations covering different forest types and their natural variability are required to conclude if these interpretations have a general applicability or if the white peppermint canopies represent a unique and possibly extreme case.. Despite a limited size of this study, we demonstrate that the entire 3D structural complexity, including woody material, must be taken into account when assessing quantity of SIF photons scattered and absorbed by canopy components and those escaping from a forest canopy. capabilities are not unlimited. Therefore, another two approaches, allowing more efficient simulations of large canopies and extensive landscapes, are being implemented and tested in DART: i) SIF modelling for vegetation canopies represented by 3D turbid voxels (i.e., voxels filled with a

Comparison of DART and SCOPE/mSCOPE SIF radiative transfers

  Although the absorbance and reflectance of eucalyptus bark (both about 50% at 740 nm), in combination with a multiple scattering and absorption by leaves, nearly doubled the pool of far-red SIF photons in the top 25% part of dense canopy, they reduced the overall canopy escape of far-red SIF in the nadir viewing direction by 6% and 4% in the sparse stand. Interestingly, the nadir escape factors of red SIF from dense and sparse canopies were almost unimpacted by presence of woody material, despite a relatively high 40% reflectance of bark at 686 nm. These unique results demonstrate that further development of SIF 3D radiative transfer modelling has a potential to reveal new insights in SIF observations of spectrally, spatially and topographically heterogeneous vegetated landscapes, acquired at different spatial scales by proximal, airborne and space-borne optical sensors.

	Appendix A: Since SCOPE and mSCOPE are turbid medium models, we prepared DART 3D scenes
	mimicking their 1D canopies as closely as possible. SCOPE, mSCOPE and DART were
	adjusted to use the same bottom-of-atmosphere (BOA) solar direct and diffuse irradiance,
	simulated with DART atmosphere radiative transfer module using the United States standard
	atmosphere gas model (NOAA et al. 1976) and the rural area aerosol model with a visibility of
	23 km. The scene was a 1 m height vegetation canopy above a bare soil with three Lambertian
	reflectance () properties: i) black soil ( = 0), ii) half-reflective soil ( = 0.5), and iii) loamy
	gravel brown dark soil with  linearly increasing with wavelength ( ≈ 6% at 550 nm,  ≈ 12%
	at 686 nm and  ≈ 15% at 740 nm). Every leaf facet had the same specific Lambertian

Trunks and branches cast shadows on photosynthesizing leaves, decreasing their SIF emissions by about 15% in dense and 8% in sparse canopy simulations. reflectance and transmittance, i.e., there was no division of leaf optical properties on sunlit or sun-adapted and shaded or shade-adapted leaves. For the DART-SCOPE comparison, the eta fluorescence weight parameters were forced to one. For the DART-mSCOPE comparison, we split turbid scenes into two and three almost equally high layers (see Figure

Table A1 :

 A1 

Input parameters of the Fluspect model used to simulate optical properties of SCOPE/mSCOPE turbid medium leaves and corresponding DART leaves (for explanations of input abbreviations see caption of Table

1

  ).

		0.48 m					0.32 m	
							0.33 m	
		0.52 m						
							0.35 m	
		LAI 1~86.3% LAI 2~75.0% LAI 3~57.9%					LAI 1~90.7% LAI 2~85.5% LAI 3~68.9%
							LAI 1~74.0%
							LAI 2~54.9%
		LAI 1~63.1%					LAI 3~30.6%
		LAI 2~40.1%					LAI 1~59.7%
		LAI 3~16.7%					LAI 2~35.8%
							LAI 3~13.0%
	Fluspect inputs	Cab	Car	EWT	LMA	N	PSI	PSII
		[g.cm -2 ]	[g.cm -2 ]	[cm]	[g.cm -2 ]		fqe	fqe
	(m)SCOPE layers							
	mSCOPE first layer (from top)	40	10	0.006 0.0014 1.0 0.006 0.03
	SCOPE & mSCOPE second layer	60	15	0.009 0.0021 1.5 0.006 0.03
	mSCOPE third layer (from top)	80	20	0.012 0.0028	2 0.006 0.03

2 Vegetation simulated as turbid medium

  Köhler, P.,Guanter, L., Kobayashi, H., Walther, S., & Yang, W. (2018). Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests. Remote Sensing ofEnvironment, 204, 769-785 Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., He, L., & Köhler, P. (2020). Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P.,North, P., & Moreno, J. (2019). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, Zhao, F., Dai, X.,Verhoef, W., Guo, Y., van der Tol, C., Li, Y., & Huang, Y. (2016). FluorWPS:A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy. Remote Sensing ofEnvironment, 187,[385][386][387][388][389][390][391][392][393][394][395][396][397][398][399] 2.2 VEGETATION SIMULATED AS TURBID MEDIUM DART turbid cell contains one or more types of turbid vegetation, and eventually, other scene elements made of facets. Leaves simulated as turbid medium are treated statistically using analytical equations that treat leaves as a whole and not as individual leaves. A type of turbid vegetation is characterized by a Leaf Angular Distribution (LAD) 𝑢 𝑙 (𝑚 2 /𝑚 3 ), and hemispherical spectral leaf optical properties (top side reflectance 𝜌 𝑡𝑜𝑝 and transmittance 𝜏 𝑡𝑜𝑝 , bottom side reflectance 𝜌 𝑏𝑜𝑡 and transmittance 𝜏 𝑏𝑜𝑡 ).

	Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop
	yield prediction. International Journal of Applied Earth Observation and Geoinformation,
	Leuning, R., Kelliher, F.M., De Pury, D.G.G., & Schulze, E.D. (1995). Leaf nitrogen, 90, 102126 40, 589-629
	photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., & Godin, C. (2008). OpenAlea: a Verrelst, J., & Rivera, J.P. (2017). Chapter 16 -A Global Sensitivity Analysis Toolbox to
	& Environment, 18, 1183-1200 visual programming and component-based software platform for plant modelling. Quantify Drivers of Vegetation Radiative Transfer Models. In G.P. Petropoulos, & P.K.
	Liu, W., Atherton, J., Mõttus, M., Gastellu-Etchegorry, J.-P., Malenovský, Z., Raumonen, P., Functional Plant Biology, 35, 751-760 Srivastava (Eds.), Sensitivity Analysis in Earth Observation Modelling (pp. 319-339):
	Åkerblom, M., Mäkipää, R., & Porcar-Castell, A. (2019a). Simulating solar-induced Rosema, A., Verhoef, W., Schroote, J., & Snel, J.F.H. (1991). Simulating fluorescence light-Elsevier 𝑔(𝜃 𝑙 ) 2𝜋 , a leaf area volume
	chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser canopy interaction in support of laser-induced fluorescence measurements. Remote Sensing Verrelst, J., Schaepman, M.E., Malenovský, Z., & Clevers, J.G.P.W. (2010). Effects of woody density
	scanning measurements. Remote Sensing of Environment, 232, 111274 of Environment, 37, 117-130 elements on simulated canopy reflectance: Implications for forest chlorophyll content
	retrieval. Remote Sensing of Environment, 114, 647-656
	(2020). Satellite footprint data from OCO-2 and TROPOMI reveal significant spatio-
	The temporal and inter-vegetation type variabilities of solar-induced fluorescence yield in the
	J., & Cudlín, P. (2006). A new hyperspectral index for chlorophyll estimation of a forest scattering and re-absorption of red and near-infrared chlorophyll fluorescence in the U.S. Midwest. Remote Sensing of Environment, 241, 111728
	canopy: Area under curve normalised to maximal band depth between 650-725 nm EARSeL models Fluspect and SCOPE. Remote Sensing of Environment, 232, 111292 Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., Brennan, J.,
	eProceedings, 5, 161-172 Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J.-F., Eenmäe, A., Essery, R.,

Liu, X.,
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2.

A

  ).𝑢 𝑙 .Δ𝑙(Ω 𝑠 ) ] 𝑊 1,𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = 𝑊 𝑖𝑛 (𝜆, Ω 𝑠 ). 𝑇 𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )(2.2) with 𝑇 𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) the scattering transfer function: 𝑙,𝑖𝑗 . Ω 𝑠 < 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 > 0 𝜏 𝑡𝑜𝑝 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 < 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 < 0 𝜌 𝑏𝑜𝑡 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 > 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 < 0 𝜏 𝑏𝑜𝑡 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 > 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 > 0 In presence of SIF emission, any radiation vector has 3 components: total, PSI and PSII radiation. SIF emission and radiation scattering are computed in each discrete direction. SIF excitation-emission matrices play a role for SIF emission similar to that of leaf reflectance and transmittance for scattering. SIF emission at spectral band (𝜆 𝑤 ,Δ𝜆 𝑤 ) in the discrete direction (Ω 𝑣 , ΔΩ 𝑣 ), by the photosystem 𝑥 (i.e., 1 or 2), due to the intercepted radiation 𝑊 𝑖𝑛𝑡 (𝜆 𝑢 , Ω 𝑠 ) at spectral band (𝜆 𝑢 , Δ𝜆 𝑢 ) is: 𝑊 𝑃𝑆𝑥 (𝜆 𝑢 → 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = 𝑊 𝑖𝑛 (𝜆 𝑢 , Ω 𝑠 ). 𝑇 𝑃𝑆𝑥 (𝜆 𝑢 , 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) (2.4) with 𝑇 𝑃𝑆𝑥 (𝜆 𝑢 , 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) the fluorescence transfer function: 𝑇 𝑃𝑆𝑥 (𝜆 𝑢 , 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) 𝑖𝑗 . Ω 𝑠 |. |Ω 𝑙,𝑖𝑗 . Ω 𝑣 |Δ𝜑 𝑙,𝑗 sin 𝜃 𝑙,𝑖 Δ𝜃 𝑙,𝑖

	(2.1) 𝐺(Ω 𝑠 ) (2.3) ΔΩ v |Ω 𝑙,ΔΩ v 2𝜋 ∫ |Ω 𝑙 . Ω 𝑠 |. 𝑑𝜑 𝑙 . 𝑠𝑖𝑛𝜃 𝑙 . 𝑑𝜃 𝑙 𝑔(𝜃 𝑙 ) 2𝜋 0 𝑇 𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) = ∑ with 𝐺(Ω 𝑠 )= ∫ 𝜋 2 𝑔(𝜃 𝑙,𝑖 ) 2𝜋 𝜃 𝑙,𝑖 ∑ 𝛼 𝜆 𝜋 𝜑 𝑙,𝑖 |Ω 𝑙,𝑖𝑗 . Ω 𝑠 |. |Ω 𝑙,𝑖𝑗 . Ω 𝑣 |Δ𝜑 𝑙,𝑗 sin 𝜃 𝑙,𝑖 Δ𝜃 𝑙,𝑖 𝑔(𝜃 𝑙,𝑖 ) 2𝜋 𝜃 𝑙,𝑖 ∑ 𝑀 𝑥𝑦𝑢𝑣 𝜋 𝜑 𝑙,𝑖 𝐺(Ω 𝑠 ) (2.5) { 𝑀 𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢,𝑤 𝑡𝑜𝑝 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 < 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 > 0 𝜌 𝑡𝑜𝑝 if Ω = ∑ 𝑀 𝑥𝑦𝑢𝑤 = 𝑀 𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢,𝑤
	𝛼 𝜆 =
	{

0 and Δ𝑙(Ω 𝑠 ) the path length of 𝑊 𝑖𝑛 (𝜆, Ω 𝑠 ) inside the cell. Radiation intercepted by a turbid cell is either absorbed or scattered. The first order energy scattered in the discrete direction (Ω 𝑣 , ΔΩ 𝑣 ) due to the interception of 𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 ) is: 𝑡𝑜𝑝 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 < 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 < 0 𝑀 𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢,𝑤 𝑏𝑜𝑡 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 > 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 < 0 𝑀 𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢,𝑤 𝑏𝑜𝑡 if Ω 𝑙,𝑖𝑗 . Ω 𝑠 > 0 and Ω 𝑙,𝑖𝑗 . Ω 𝑣 > 0

  1,𝑖𝑛𝑡,1 (𝜆, Ω 𝑠 ) gives also rise to new SIF emission:Part of this emitted SIF exits the cell directly, or after simple or multiple scattering: 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 (𝜆 𝑤 , Ω 𝑠 ) = 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 (𝜆 𝑤 , 𝛺 𝑠 ). [𝑇 ̅ + 𝜔𝑇 ̅ (1 -𝑇 ̅ ) + 𝜔 2 . 𝑇 ̅ (1 -𝑇 ̅ ) 2 + ⋯ ]

						(2.17)
		= 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 (𝜆 𝑤 , 𝛺 𝑠 ).	𝑇 ̅ [1 -𝜔(1 -𝑇 ̅ )]
	𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 ) = ∑ 2. 𝑢	𝑊 1,𝑎𝑏𝑠 (𝜆 𝑢 , Ω 𝑠 ) 1 -𝜔 𝑢	. 𝑀 𝑥𝑢𝑣	(2.16)
	where 𝑀 𝑥𝑢𝑣 =	𝑀 𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢𝑣 𝑡𝑜𝑝	+𝑀 𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢𝑣 𝑡𝑜𝑝	+𝑀 𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢𝑣 𝑏𝑜𝑡	+𝑀 𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢𝑣 𝑏𝑜𝑡

  𝜂 𝑠𝑢𝑛𝑙𝑖𝑡 (𝑛, 𝜃 𝑙 , 𝜑 𝑙 ) for sunlit leaves at layer 𝑛, and leaves with a leaf zenith and azimuth angles 𝜃 𝑙 and 𝜑 𝑙 , respectively. In this case, an average profile is computed for each layer: 𝜂 𝑠ℎ𝑎𝑑𝑒𝑑 (𝑛) for shaded cells at layer 𝑛. It is used as is.

	2.2 VEGETATION SIMULATED AS TURBID MEDIUM
	-𝜂̅ 𝑠𝑢𝑛𝑙𝑖𝑡 (𝑛) = ∫ ∫ 𝜂 𝑠𝑢𝑛𝑙𝑖𝑡 (𝑛, 𝜃 𝑙 , 𝜑 𝑙 ). 0 0 𝜋 2𝜋 2	𝑔(𝜃 𝑙 ) 2𝜋	. 𝑠𝑖𝑛 𝜃 𝑙 . 𝑑𝜃 𝑙 . 𝑑𝜑 𝑙	(2.20)
	≈ ∑ ∑ 𝜂 𝑠𝑢𝑛𝑙𝑖𝑡 (𝑛, 𝜃 𝑙 , 𝜑 𝑙 ). 𝜃 𝑙 𝜑 𝑙	𝑔(𝜃 𝑙 ) 2𝜋	. 𝑠𝑖𝑛 𝜃 𝑙 . 𝛥𝜃 𝑙 . 𝛥𝜑 𝑙
	-			
	85			

  𝑇 𝑃𝑆𝑥 (𝜆 𝑢 , 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) Fluorescence transfer function: excitation band 𝑢 , emission band 𝑤 , incident direction Ω 𝑠 , outgoing direction (Ω 𝑣 , ΔΩ 𝑣 ) 𝑊 𝑃𝑆𝑥 (𝜆 𝑢 → 𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) First order SIF at photosystem x and band 𝑤 due to 1,𝑃𝑆𝑥,𝑖𝑛𝑡,𝛽 (𝜆 𝑤 , Ω 𝑠 ) Part of 𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 that exits the cell after multiple

			𝑊. 𝜇𝑚 -1
		scattering	
	𝑊 1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 (𝜆 𝑤 , Ω 𝑠 )	Interception due to first order SIF radiation	𝑊. 𝜇𝑚 -1
	𝑊 1,𝑃𝑆𝑥,𝑎𝑏𝑠 (𝜆, Ω 𝑠 )	Absorbed part from first order SIF radiation	𝑊. 𝜇𝑚 -1
	𝐺(Ω 𝑠 ) 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 (𝜆 𝑤 , Ω 𝑠 )	Mean projection of leaf normal on the direction Ω 𝑠 Part of 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 that exits the cell after simple or	-𝑊. 𝜇𝑚 -1
	𝑇 ̅	Mean cell transmittance multiple scattering	-
	𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 (𝜆 𝑤 , Ω 𝑠 → Ω 𝑣 )	Part of 𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 that exits from direction Ω 𝑣	-𝑊. 𝜇𝑚 -1
	𝑢 𝑙	Leaf volume density	𝑚 2 . 𝑚 -3
	𝜌 𝑡𝑜𝑝 𝜏 𝑡𝑜𝑝 𝜌 𝑏𝑜𝑡 𝜏 𝑏𝑜𝑡	Leaf top reflectance, top transmittance, bottom	-
	𝑇 𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )	Scattering transfer function: incident direction Ω 𝑠 , reflectance, bottom transmittance respectively	-
	𝜂	outgoing direction (Ω 𝑣 , ΔΩ 𝑣 ) Fluorescence eta factor	-
	𝑊 𝑖𝑛 (𝜆, Ω 𝑠 ) 𝜉(𝑀, Ω 𝑣 )	Source vector of incident radiation in direction Ω s Fraction of radiation scattered in direction	𝑊. 𝜇𝑚 -1
	𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 )	Intercepted radiation from 𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 )	𝑊. 𝜇𝑚 -1
			𝑊. 𝜇𝑚 -1
		excitation in band 𝑢	
	𝑊 1,𝑠𝑐𝑎𝑡 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )	First order scattering due to 𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 )	𝑊. 𝜇𝑚 -1
	𝑊 1,𝑠𝑐𝑎𝑡,𝛼 (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )	Part of 𝑊 1,𝑠𝑐𝑎𝑡 that exits the cell	𝑊. 𝜇𝑚 -1
	𝑊 1,𝑖𝑛𝑡,𝛽 (𝜆, Ω 𝑠 )	Part of 𝑊 1,𝑖𝑛𝑡,1 that exits the cell after multiple	𝑊. 𝜇𝑚 -1
		scattering	
	𝑊 1,𝑖𝑛𝑡,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 )	SIF emission at photosystem 𝑥 due to the	𝑊. 𝜇𝑚 -1
		propagation of 𝑊 1,𝑖𝑛𝑡,1	
	𝑊 1,𝑖𝑛𝑡,1 (𝜆, Ω 𝑠 )	Intercepted part from first order scattered radiation	𝑊. 𝜇𝑚 -1
	𝑊 1,𝑎𝑏𝑠 (𝜆, Ω 𝑠 )	Absorbed part from first order scattered radiation	𝑊. 𝜇𝑚 -1
	𝑊 1,𝑃𝑆𝑥 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )	First order SIF due to 𝑊 𝑖𝑛𝑡 (𝜆, Ω 𝑠 )	𝑊. 𝜇𝑚 -1

𝑊 1,𝑃𝑆𝑥,𝛼 (𝜆 𝑤 , Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 )

Part of 𝑊 1,𝑃𝑆𝑥,𝛼 that exits the cell 𝑊. 𝜇𝑚 -1

Appendix 2-1: Nomenclature 𝑊

  𝑉(𝑝 ′′ ↔𝑝 ′ )=1 if 𝑝′ and 𝑝′′ are mutually visible, and 0 𝑛′ ⃗⃗⃗ and 𝑛′′ ⃗⃗⃗⃗ are the normal vectors to the surface Σ at 𝑝′ and to the surface 𝐴 at 𝑝′′, respectively.

	otherwise,		
	𝑐𝑜𝑠𝜃 0 ′′ = 𝑛 ′′ ⃗⃗⃗⃗ •	𝑝 ′′ 𝑝 ′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||𝑝 ′ -𝑝 ′′ || , and 𝑐𝑜𝑠𝜃 𝑖 ′ =	𝑝 ′ 𝑝 ′′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||𝑝 ′ -𝑝 ′′ || • 𝑛′ ⃗⃗⃗ ,
	2:			
					𝑘-1
	𝐿(𝑝̅ 𝑘 ) = ∫ ∫ … ∫ 𝐿 𝑒 (𝑝 𝑘→ 𝑝 𝑘-1 )• (∏ 𝑓(𝑝 𝑖+1→ 𝑝 𝑖→ 𝑝 𝑖-1 )•𝐺(𝑝 𝑖+1 ↔𝑝 𝑖 ) ) •𝑑𝐴(𝑝 2 )	…	𝑑𝐴(𝑝 𝑘 )
	𝐴	𝐴	𝐴	𝑖=1

2 , with index 𝑜 for outgoing and index 𝑖 for incident, 𝑓(𝑝 ′′ → 𝑝 ′ → 𝑝) is the BSDF of surface Σ, 𝐿(𝑝 ′′ → 𝑝 ′ ) is the radiance reaching 𝑝 ′ from 𝑝", 3.1 VEGETATION SIMULATED AS FACETS 97 𝑉 is the binary visibility function: Figure 2. LTE geometry: the vertex 𝑝′ scatters the ray coming from the vertex 𝑝′′ towards the vertex 𝑝 Expanding Eq (3) by iteratively replacing 𝐿(𝑝 ′′ →𝑝 ′ ) by its right-hand term gives 𝐿(𝑝̅ 𝑘 ) for 𝑘 ≥

  𝑖 ∈ {1. . 𝑁} for excitation and 𝑗 ∈ {1. . 𝑁} for emission), for the photosystem 𝑥 (PSI or PSII) and direction 𝑦 (forward or backward). The reflectance 𝜌 and EEFM backward matrices (𝑀 𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑖𝑗 ) play equivalent roles for scattering and SIF emission respectively, and so do the surface transmittance 𝜏 and EEFM forward matrices (𝑀 𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖𝑗 ). In the Fluspect model, the leaves are bi-Lambertian and SIF emitted radiance

	is isotropic. Therefore, the direction sampling method for SIF is the same as for scattering by
	bi-Lambertian surfaces with the PDF 𝑝(Ω) =	cos θ 𝜋

is used to simulate leaf-level SIF. It uses the leaf biochemical properties and fqes input parameters to compute four leaf EEFMs (Excitation-Emission Fluorescence Matrices) 𝑀 𝑥,𝑦,𝑖𝑗 for the 𝑁 user defined spectral bands (

  𝑒,𝑡𝑜𝑡𝑎𝑙 ; 𝐿 𝑒,𝑃𝑆𝐼 ; 𝐿 𝑒,𝑃𝑆𝐼𝐼 ), where 𝐿 𝑒,𝑡𝑜𝑡𝑎𝑙 , 𝐿 𝑒,𝑃𝑆𝐼 and 𝐿 𝑒,𝑃𝑆𝐼𝐼 are 𝑁-element vectors. Since light sources do not emit SIF, 𝐿 𝑒,𝑃𝑆𝐼 and 𝐿 𝑒,𝑃𝑆𝐼𝐼 are null vectors. If 𝑀 𝐵 𝑘-1 is the block matrix of the first surface hit by the light source, the incident radiance vector 𝐿 𝐵,k-2 =𝐿 𝑒,𝐵 ×𝑀 𝐵 𝑘-1 at vertex 𝑘-2 is:

  All components of the total, PSI and PSII spectral radiance terms of 𝑝 𝑙 are considered: 𝑝 𝑙 due to 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 , and PSI radiance 𝐿 𝑃𝑆𝐼,𝑙 ×𝑅 𝑙 coming from the previous vertex and scattered at 𝑝 𝑙 .-PSII radiance: sum of the emitted PSII radiance 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×𝑀 𝑃𝑆𝐼𝐼 𝑙 at 𝑝 𝑙 due to 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 , and PSII radiance 𝐿 𝑃𝑆𝐼𝐼,𝑙 × 𝑅 𝑙 coming from the previous vertex and scattered at 𝑝 𝑙 . It gives the block matrix 𝐸 𝐵 ×𝑀 𝐵 light of three 𝑁-element vectors. The sensor sub-path hits the surfaces 𝑆+𝑇

				3.1 VEGETATION SIMULATED AS FACETS
	=(𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×(𝑅 𝑙 +𝑀 𝑃𝑆𝐼𝑦 𝑙 𝑙 = ( 𝑀 𝐵 𝑅 𝑙 +𝑀 𝑃𝑆𝐼𝑦 𝑙 +𝑀 𝑃𝑆𝐼𝐼 𝑙 𝑀 𝑃𝑆𝐼 +𝑀 𝑃𝑆𝐼𝐼𝑦 𝑙 𝑙 𝑙 ); 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×𝑀 𝑃𝑆𝐼𝑦 𝑙 𝑀 𝑃𝑆𝐼𝐼 0 𝑅 0 ) because the product of matrices of this form has the +𝐿 𝑃𝑆𝐼,𝑙 ×𝑅 𝑙 ; 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×𝑀 𝑃𝑆𝐼𝐼 𝑙 +𝐿 𝑃𝑆𝐼𝐼 ×𝑅 𝑙 )
	0	0	𝑅	
	-Total radiance 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×(𝑅 𝑙 +𝑀 𝑃𝑆𝐼𝑦 𝑙 same form (cf. Appendix 1).	+𝑀 𝑃𝑆𝐼𝐼𝑦 𝑙	) of surface 𝑝 𝑙 hit by a ray of incident radiance
	𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 As DART-FT (Malenovský et al., 2021), DART-Lux can import SCOPE 𝜂 factors vertical
	-PSI radiance: sum of the emitted PSI radiance 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ×𝑀 𝑃𝑆𝐼𝑦 𝑙 is 𝑀 𝐵 light =𝑀 𝐵,1 ×𝑀 𝐵,2 ×…×𝑀 𝐵,𝑆 and of the profiles for sunlit and shaded leaves to account for the influence of local bioclimatology on sensor sub path leaf-level SIF emission. With the hypothesis that only PSII emission is affected, we have: 𝑀 𝐵,𝜂 = ( 𝑅 + 𝑀 𝑃𝑆𝐼 + 𝜂. 𝑀 𝑃𝑆𝐼𝐼 𝑀 𝑃𝑆𝐼 𝜂. 𝑀 𝑃𝑆𝐼𝐼 0 𝑅 0 at path 0 0 𝑅
	𝑅 𝑘-2 +𝑀 𝑃𝑆𝐼𝑦 𝑘-2 +𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-2 sensor =𝑀 𝐵,𝑆+1 ×𝑀 𝐵,𝑆+2 ×…×𝑀 𝐵,𝑆+𝑇 . After connecting the two sub-paths, the integrand is: 𝑀 𝑃𝑆𝐼𝑦 𝑘-2 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-2 𝑀 𝐵
		𝑃𝑆𝐼𝐼,𝑘-2 ) × ( 𝑃 𝐵 (𝑝̅ 𝐿+2 ) = 𝐿 𝑒,𝐵 × 𝑀 𝐵 light × 𝑀 𝐵 sensor 0 0	(13)	𝑅 𝑘-2 0	0 𝑅 𝑘-2	)
	= (𝐿 𝑡𝑜𝑡𝑎𝑙,𝑘-2 × (𝑅 𝑘-2 +𝑀 𝑃𝑆𝐼𝑦 𝑘-2 +𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-2 ); 𝐿 𝑡𝑜𝑡𝑎𝑙,𝑘-2 × 𝑀 𝑃𝑆𝐼𝑦 𝑘-2 + 𝐿 𝑃𝑆𝐼,𝑘-2 × 𝑅 𝑘-2 ;
	𝐿 𝑡𝑜𝑡𝑎𝑙,𝑘-2 × 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑘-2 + 𝐿 𝑃𝑆𝐼𝐼,𝑘-2 × 𝑅 𝑘-2 ) to 𝑆+1. The matrix product being not commutative, 𝐸 𝐵 ×𝑀 𝐵 light and 𝑀 𝐵 sensor are computed in
	= (𝐿 𝑇𝑜𝑡𝑎𝑙,𝑘-3 ; 𝐿 𝑃𝑆𝐼,𝑘-3 ; 𝐿 𝑃𝑆𝐼𝐼,𝑘-3 ) opposite directions.
	And so on, for each vertex 𝑝 𝑙 of the light sub path until reaching the sensor, the exiting radiance Eq (13) is computationally expensive. For 𝑁 spectral bands, a sensor sub-path throughput is
	block matrix is: a 3𝑁 × 3𝑁 matrix. For optimization, diagonal matrices are considered whenever possible when
	multiplying matrices, and only 𝑅 𝑙 +𝑀 𝑃𝑆𝐼𝑦 𝑙	𝑅 𝑙 +𝑀 𝑃𝑆𝐼𝑦 𝑙 +𝑀 𝑃𝑆𝐼𝐼 𝑙 , 𝑀 𝑃𝑆𝐼 +𝑀 𝑃𝑆𝐼𝐼𝑦 𝑙 𝑙 , 𝑀 𝑃𝑆𝐼𝐼 𝑙	𝑀 𝑃𝑆𝐼𝑦 𝑙 and 𝑅 𝑙 only are stored instead of 𝑀 𝑃𝑆𝐼𝐼𝑦 𝑙
	𝐿 𝐵,𝑙 ×𝑀 𝐵,𝑙 =(𝐿 𝑡𝑜𝑡𝑎𝑙,𝑙 ; 𝐿 𝑃𝑆𝐼,𝑙 ; 𝐿 𝑃𝑆𝐼𝐼,𝑙 ) × (	0	𝑅 𝑙	0	)
						0	0	𝑅 𝑙

These equations can be used starting from the light source and starting from the sensor because they include associative products of matrices and each matrix depends on the properties of a single vertex. For a light path with 𝐿 + 2 vertices (i.e., 𝐿 hit surfaces of matrices 𝑀 𝐵 𝑙 with 𝑙 ∈ {1. . 𝐿}), the integrand 𝑃 𝐵 (𝑝̅ 𝐿+2 ) including the total, PSI and PSII signals from this path is:

𝑃 𝐵 (𝑝̅ 𝐿+2 ) = 𝐿 𝑒,𝐵 × 𝑀 𝐵,1 × 𝑀 𝐵,2 × … × 𝑀 𝐵,𝐿

If the light path 𝑝̅ 𝐿+2 has 𝑆 vertices in the light sub-path and 𝑇 vertices in the sensor sub-path, excluding the light source and sensor vertices (𝐿+2=𝑆+𝑇), the throughput of the light sub-

The light sub-path starts from the light source, then hits the surfaces from 1 to 𝑆.

)

Increasing the number of Monte Carlo samples/pixel Nsamples in the simulated images improves accuracy and increases simulation time. The optimal average Nsamples depends on the scene properties, pixel size, and expected precision and simulation time.

Table 1 .

 1 Leaf biochemistry and structure for the three study sites.

	Parameter	Symbol	Unit	Homogeneous canopy Maize field Tree plot
	Leaf structure parameter	𝑁	-	1.8	1.5	1.8
	Chlorophyll a+b content	𝐶 𝑎𝑏	𝜇𝑔. 𝑐𝑚 -2	45	50	30
	Carotenoid content	𝐶 𝑐𝑎	𝜇𝑔. 𝑐𝑚 -2	15	15	10
	Water content	𝐶 𝑤	𝑐𝑚	0.009	0.009	0.012
	Dry matter content	𝐶 𝑑𝑚	𝑔. 𝑐𝑚 -2	0.002	0.0021	0.01
	fqe for photosystem I	𝜙 𝑃𝑆𝐼	-	0.002	0.002	0.002
	fqe for photosystem II	𝜙 𝑃𝑆𝐼𝐼	-	0.01	0.01	0.01

IV.2 Homogeneous turbid canopy

SCOPE is a reference model for simulating the SIF radiance of homogeneous vegetation. Here, DART-FT and DART-Lux SIF simulate the homogeneous turbid scene of SCOPE as a homogeneous quasi turbid medium for two cases depending if SCOPE simulates or not the energy balance (EB):

Table 3 .

 3 Maize field: input parameters and computational needs of DART-FT and DART-

				Lux.		
			DART-FT		DART-Lux	
		Viewing direction	All	Nadir	𝜃 𝑣 =30°, 𝜙 𝑣 =0°	𝜃 𝑣 =60°, 𝜙 𝑣 =0°
	5 m spatial	Computer time 1 h 31 min	1 h 7 min	1 h 9 min	1 h 2 min
	resolution, 451 spectral bands	Samples per pixel	-	100	120	180
		Memory	51 GB		1.5 GB	
	0.01 m spatial	Viewing direction	All		Nadir	
	resolution,	Computer time 8 h 13 min		10 min 10 s	
	36 spectral bands	Samples per pixel	-		20	
		Memory	105.8 GB		8.2 GB	

2

  Ripperdan agricultural site zone. This makes DART a powerful model to simulate SIF images of large and complex landscapes, with many spectral bands. It opens new horizons for RS studies of vegetation. The

	novel SIF simulation in DART-Lux is already in the released DART versions (v1152 onwards)
	(https://dart.omp.eu).

  𝑛′ ⃗⃗⃗ and 𝑛′′ ⃗⃗⃗⃗ : normal vectors to the surface Σ at 𝑝′ and to the surface 𝐴 at 𝑝′′ respectively. 𝑝 ′ → 𝑝) = ∫ 𝑓 ̂(𝑝 ′′ → 𝑝 ′ → 𝑝). 𝐿(𝑝 ′′ → 𝑝 ′ ). 𝐺 ̂(𝑝 ′′ ↔ 𝑝′). 𝑑𝐴(𝑝 ′′ ) 𝑝 ′′ → 𝑝 ′ → 𝑝), if 𝑝 ′ is a volume vertex 𝑓(𝑝 ′′ → 𝑝 ′ → 𝑝), if 𝑝 ′ 𝑖s a surface vertex 𝜎 𝑠 , and 𝜎 𝑎 : scattering and absorption extinction coefficients of the volume, 𝑝 𝑠 (𝑝 ′′ → 𝑝 ′ → 𝑝): normalized scattering phase function of the volume, 𝐺 ̂(𝑝 ′′ ↔ 𝑝′) = 𝑉(𝑝 ′′ ↔ 𝑝 ′ ). 𝑇𝑟(𝑝 ′ → 𝑝 ′′ ).

				(3.2)
		𝐴	
	with 𝑓 ̂(𝑝 ′′ → 𝑝 ′ → 𝑝) = {	𝜎 𝑠 𝜎 𝑠 +𝜎 𝑎	. 𝑝 𝑠 (𝐶(𝑝 ′ ,𝑝 ′′ ).𝐶(𝑝 ′′ ,𝑝 ′ ) ||𝑝 ′ -𝑝 ′′ || 2 ,
	𝑇𝑟(𝑝 ′ → 𝑝 ′′ ): path transmittance between 𝑝 ′ and 𝑝 ′′ ,
	𝐶(𝑝, 𝑝 ′ ) = { |𝑛 𝑝 ⃗⃗⃗⃗ .	𝑝𝑝 ′ ⃗⃗⃗⃗⃗⃗⃗ ||𝑝-𝑝 ′ || | , if 𝑝 is a surface vertex	.
			1, if 𝑝 is a volume vertex
				|𝑐𝑜𝑠𝜃 0 ′′ |.|𝑐𝑜𝑠𝜃 𝑖 ′ | ||𝑝 ′ -𝑝 ′′ || 2 ,
	𝑓(𝑝 ′′ → 𝑝 ′ → 𝑝): BSDF of surface Σ,
	𝐿(𝑝 ′′ → 𝑝 ′ ): radiance reaching 𝑝 ′′ from 𝑝′,
	𝑉: binary visibility function,
	𝑐𝑜𝑠𝜃 0 ′′ = 𝑛 ′′ ⃗⃗⃗⃗ .	𝑝 ′′ 𝑝 ′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||𝑝 ′ -𝑝 ′′ || , 𝑐𝑜𝑠𝜃 𝑖 ′ =	𝑝 ′′ 𝑝 ′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||𝑝 ′ -𝑝 ′′ || 𝑛′ ⃗⃗⃗ ,

). 𝐿(𝑝 ′′ → 𝑝 ′ ). 𝐺(𝑝 ′′ ↔ 𝑝 ′ ). 𝑑𝐴(𝑝 ′′ ) 𝐴 (3.

1) 

with 𝐺(𝑝 ′′ ↔ 𝑝′) = 𝑉(𝑝 ′′ ↔ 𝑝 ′ ).

To allow the simulation of volumes, the Light Transport Equation is generalized for scenes including scattering surfaces and volume scattering media:

3.2 VEGETATION SIMULATED AS TURBID MEDIUM

125 𝐿(

  .Δ𝐿 𝑒 -𝜎 ̅ 𝑡 .Δ𝐿 .For turbid medium, the extinction coefficient 𝜎 𝑡 (Ω 𝑠 ) depends on the incident direction. It is isotropic only if the Leaf Angular Distribution is spherical:

				𝜎 𝑡 (Ω 𝑠 ) = 𝐺(Ω 𝑠 ). 𝑢 𝑙	(3.9)
	with 𝐺(Ω 𝑠 ) = ∫ 0 𝜋 2	𝑔(𝜃 𝑙 ) 2𝜋	∫ |Ω 𝑙 . Ω 𝑠 |. 𝑑𝜙 𝑙 . 𝑠𝑖𝑛𝜃 𝑙 . 𝑑𝜃 𝑙 2π 0	,
		𝑢 𝑙 the leaf volume density and
		𝑔(𝜃 𝑙 )		
		2𝜋		
				+∞ Δ𝐿	𝑝 𝜎 ̅ 𝑡 (𝑙)𝑑𝑙 =	𝑒 -𝜎 𝑡 .Δ𝐿 𝑒 -𝜎 ̅ 𝑡 .Δ𝐿 . 𝑒 -𝜎 ̅ 𝑡 .Δ𝐿 = 𝑒 -𝜎 𝑡 .Δ𝐿	(3.8)
	If an interception occurs, the intercepted ray is scattered with a radiance multiplied by the
	albedo	𝜎 𝑠 𝜎 ̅ 𝑡		

because part of the intercepted ray is absorbed.

  , 𝜇 𝑠 =cosθ s , 𝜇 𝑣 = cos 𝜃 𝑣 ,

							).(𝛥𝑙+ 𝛽 𝛼	(𝑒 -𝛼.Δ𝑙 -1)) = 𝑒 -𝜁.𝜑(Δ𝑙)	(3.11)
	with: 𝛼=	Δ(Ω 𝑠 ,Ω 𝑣 ).|𝜇 𝑣 | 𝑆 𝑙	, 𝛽=√	𝐺(Ω 𝑠 ).|𝜇 𝑣 | 𝐺(Ω 𝑣 ).|𝜇 𝑠 |	, Δ(Ω 𝑠 , Ω 𝑣 )= √ 𝜇 𝑣 1 2 +	1 𝜇 𝑠 2 +	2.Ω 𝑠 .Ω 𝑣 |𝜇 𝑠 .𝜇 𝑣 |
	𝑠 𝑙 =	4.𝜇 𝑣 .∫ ∫ 𝜋 2 2𝜋	𝜋.𝑑 𝑙 .𝐺(Ω 𝑣 ) 𝑔(Ω 𝑙 ) 2𝜋 . sin𝜃 𝑙 .𝑑𝜃 𝑙 .𝑑𝜙 𝑙 √1+tan 2 𝜃 𝑙 .sin 2 𝜃 𝑙	

  𝑓(Ω 𝑓 , Ω 𝑠 → Ω 𝑣 ). This approach uses a sampling method per LAD function, and implies treating the turbid medium as individual leaves, and not as a whole which increases variance (cf. Section 4.1). Thus, another approach was designed by precomputing the discrete probability distribution for 𝑁 discrete direction (Ω 𝑛 , ΔΩ 𝑛 ), 𝑛 ∈ {1, . . , 𝑁}: 𝑝((Ω 𝑛 , ΔΩ 𝑛 )|Ω 𝑠 ) = ∫ 𝑝(Ω 𝑣 |Ω 𝑠 ). 𝑑Ω 𝑣 With the assumption that ΔΩ 𝑛 is small enough to consider that the PDF is constant over ΔΩ 𝑛 :

			)	. ∫ |Ω 𝑠 . Ω 𝑙 |. 2π	𝑔(Ω 𝑙 ) 2𝜋	. 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑙	(3.35)
	Computing this PDF is very expensive. It cannot be solved and sampled analytically using the
	inversion method directly. Antyufeev & Marshak 1990 used an indirect approach by sampling
	first a random leaf orientation from the LAD function	𝑔(Ω 𝑓 ) 2𝜋 , then sampling a scattering direction
	according the leaf BSDF ΔΩ 𝑛	(3.36)
	𝑝((Ω 𝑛 , ΔΩ 𝑛 )|Ω 𝑠 ) =	ΔΩ 𝑛 𝜔. 𝐺(Ω 𝑠 )	. ∫ |Ω 𝑠 . Ω 𝑙 |. 2π	𝑔(Ω 𝑙 ) 2𝜋	. 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑙	(3.37)
	In DART-FT, the Phase module precomputes the transfer function for the discrete directions:
	𝑇 ̿ (𝜆, Ω 𝑠 , Ω 𝑣 , ΔΩ 𝑣 ) =	ΔΩ 𝑣 𝐺(Ω 𝑠 )	. ∫ |Ω 𝑠 . Ω 𝑙 |. 2π	𝑔(Ω 𝑙 ) 2𝜋	. 𝑓(Ω 𝑙 , Ω 𝑠 → Ω 𝑣 ). 𝑑Ω 𝑙	(3.38)

Table 4 -

 4 

		Quasi-Turbid	Turbid
	Computation Time	15 min	36 min
	RAM	13.1 GB	5.2 GB

1: Computational needs for quasi-turbid and turbid DART-Lux simulations.

Table 4 -

 4 

		Quasi-Turbid	Turbid
	Computation Time	1 h 25 min	5 h 25 min
	RAM	13.1 GB	8.1 GB

2: Computational requirements for quasi-turbid and turbid SIF simulations

Table 1 .

 1 Study sites' nomenclature and description.

		Abbreviations	Description
	Experimental	C (Control)	No known management
	status categories	L (Logged)	Selective harvest (~ 50% of basal area)
	Canopy	M (Mature)	~125 years-old at time of harvesting
	development categories	I (Intermediate)	~70 years old at time of harvesting

Table 2 .

 2 Wood area density, LAI (per sun-/shade-adapted leaves) and DEM-derived area for each site.

	Parameter/Study site	CI1	CI2	CM1 CM2	LI1	LI2	LM1 LM2
	Wood area density (𝑚 2 . 𝑚 -2 )	0.792 0.863 0.939 0.991 0.665 0.435 0.827 0.615
	Sun-adapted (𝑚 2 . 𝑚 -2 )	LAI	2.916 3.093 3.697 3.160 1.964 0.951 1.341 1.920
	Shade-adapted (𝑚 2 . 𝑚 -2 )	LAI	2.601 2.847 2.996 3.174 3.181 2.810 3.419 3.559
	Area based on DEM (𝑚 2 )	12450.7 14475.9 16535.3 11297.9 17628.8 15395.0 17576.3 20142.0

Table 4 .

 4 Forest plot mean height and height standard deviation and number of pure bare ground pixels.

	Plot	CI1	CI2	CM1	CM2	LI1	LI2	LM1	LM2
	Mean Height (m) 28.65 28.34 34.54 34.33 23.80 15.19 13.31 21.75
	Height standard deviation (m)	4.37	5.90	4.61	7.32	10.44 14.03 10.88 13.17
	Number of pure								
	bare ground pixels	2	1	2	4	89	258	8	48
	(out of 10 000)								

Table 5 )

 5 , were simulated with DART-Lux. DART-FT was used to simulate the PAR and SIF radiative budget with a
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Table 5 .

 5 The 372 spectral bands of DART-Lux simulations. They over-sample the O2B (~687nm) and

  ). It allowed us to compare the DART-Lux top-of-canopy (TOC) nadir SIF radiance (PSI, PSII and total) of the (W) and (NW) abstractions, and to compute two types of relative error:-Per spectral band for a specific time (e.g., 12.00 local time):

	𝜀 𝑆𝐼𝐹,𝐿 𝑣 ,𝑁𝑊-𝑊 (𝜆) = 100% ×	𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑁𝑊 (𝜆) -𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊 (𝜆) 𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊 (𝜆)	(7)
	-Per hour from 7.00 to 19.00, by computing mean absolute relative errors for the 640 -700
	nm and 700 -850 nm spectral regions:
	𝑀𝐴𝑅𝐸 𝑆𝐼𝐹,𝐿 𝑣 ,𝑁𝑊-𝑊 (𝑡) =	1 ∑ Δ𝜆 𝑖 𝑖	. ∑ 𝑖	|𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑁𝑊 (𝑡, 𝜆) -𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊 (𝑡, 𝜆)| 𝑆𝐼𝐹 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊 (𝑡, 𝜆)	. Δ𝜆 𝑖

Table 6

 6 

	. SIF absorption by the ground and vegetation (leaves and wood) (640-700nm) at 12pm
	Plot	CI1	CI2 CM1 CM2 LI1	LI2 LM1 LM2

  Real bodies are not perfect emitters, the emitted radiance is scaled by their spectral emissivity:

					+∞ 0	𝑒	1 𝜆.𝑘.𝑇 -1 ℎ𝑐	𝑑𝜆	(5.2)
				= 𝜎. 𝑇 4 (𝑊. 𝑚 -2 )		
	where 𝜎 =	2.π 5 .k 4 15.h 3 .c 2 ≈ 5.670374419 × 10 -8 𝑊. 𝑚 -2 . 𝐾 -4
				𝐿(𝜆, 𝑇) = 𝜀(𝜆). 𝐿 𝐵 (𝜆, 𝑇)	(5.3)
	For a spectral band (𝜆, Δ𝜆), the emitted radiance is computed as the average of the emitted
	radiance over this band:					
	𝐿 𝜆,Δ𝜆 ( 𝑇) =	1 Δ𝜆	∫ 𝜆-𝜆+ Δ𝜆 Δ𝜆 2 2	𝜀(𝜆). 𝐿 𝐵 (𝜆, 𝑇)	𝑑𝜆 =	𝜀 Δ𝜆 Δ𝜆	∫ 𝜆-𝜆+ Δ𝜆 Δ𝜆 2 2	𝐿 𝐵 (𝜆, 𝑇)𝑑𝜆
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  The brightness temperature 𝑇 𝐵 of an observed emitting body having a thermodynamic temperature 𝑇 and an emissivity 𝜀(𝜆) is the thermodynamic temperature a black body should have in order to have the radiance 𝐿(𝜆, 𝑇) of the emitting body at the wavelength 𝜆. It is computed using the inverse function of the Planck law:According to the mean value theorem, 𝜆 𝑒𝑞 exists. It is defined as:

	𝑇 𝐵 (𝜆) = 𝐿 𝐵 -1 (𝐿(𝜆, 𝑇), 𝜆) =	𝑘. 𝜆. ln (1 +	ℎ. 𝑐 𝜆 5 . 𝜀(𝜆). 𝐿 𝐵 (𝜆, 𝑇) 2. ℎ. 𝑐 2	)	(5.5)
	If the emitting body is a blackbody, its brightness temperature is equal to its thermodynamic
	temperature for every wavelength. Otherwise, it is less than or equal to its thermodynamic
	temperature and is wavelength dependent.	
	For a spectral band (𝜆, Δ𝜆), instead of a single wavelength, the brightness temperature is:
	𝑇 𝐵 (𝜆, Δ𝜆) = 𝐿 𝐵 -1 (𝐿 𝜆,Δ𝜆 ( 𝑇), 𝜆 𝑒𝑞 )	(5.6)
	with 𝜆 𝑒𝑞 the wavelength between 𝜆-	Δ𝜆 2	and 𝜆+
	𝐿 𝐵 (𝜆 𝑒𝑞 , 𝑇) =	1 Δ𝜆	. ∫ 𝜆-𝜆+ Δ𝜆 Δ𝜆 2 2	𝐿 𝐵 (𝜆, 𝑇)𝑑𝜆

Δ𝜆 2 for which the Planck function is equal to the average of the Planck function on the spectral band (𝜆, Δ𝜆) for the temperature 𝑇.

  𝑃,𝑑𝑖𝑟,1 + 𝐸 𝑃,𝑑𝑖𝑓𝑓,1(5.8) With 𝐸 𝑃,𝑑𝑖𝑟,1 the direct order 1 irradiance computed by tracing a ray for the point 𝑃 in the sun direction. If the ray is not intercepted, 𝐸 𝑃,𝑑𝑖𝑟,1 =𝐸 𝑠𝑢𝑛 . |Ω s . 𝑛 ⃗ |, (𝐸 𝑠𝑢𝑛 is the sun irradiance for a surface perpendicular to the sun direction Ω 𝑠 and 𝑛 ⃗ is the surface normal, if Ω s . 𝑛 ⃗ > 0, the top face is illuminated, otherwise the bottom face is illuminated). If the ray is intercepted, 𝐸 𝑃,𝑑𝑖𝑟 = 0.The incident diffuse radiation at a point 𝑃 is: 𝐸 𝑃,𝑑𝑖𝑓𝑓,1 = ∫ 𝐿 𝑃,1 (Ω 𝑖 ). |Ω 𝑖 . 𝑛 ⃗ |. 𝑑Ω

	𝐸 ̂𝑃,𝑑𝑖𝑓𝑓,1 =	1 𝑁	. ∑	𝐿 𝑃,1 (Ω 𝑖 ). |Ω 𝑖 . 𝑛 ⃗ | 𝑝(Ω 𝑖 )

2𝜋

(5.9) with 𝐿 𝑃,1 (Ω 𝑖 ) the order 1 diffuse radiance incident to the point 𝑃.

𝐸 𝑃,𝑑𝑖𝑓𝑓,1 is estimated using a Monte Carlo estimator 𝐸 ̂𝑃,𝑑𝑖𝑓𝑓,1 with 𝑁 sampled directions Ω 𝑖 : 𝑁 𝑖=1

  1 local irradiance, and the local irradiance the point would receive if it was totally sunlit: 𝐿 𝜆,Δ𝜆 (𝑇 𝑠𝑢 , 𝑇 𝑠ℎ , 𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 ) = 𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 . 𝐿 𝜆,Δ𝜆 ( 𝑇 𝑠𝑢 ) + (1 -𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 ). 𝐿 𝜆,Δ𝜆 ( 𝑇 𝑠ℎ )

	𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 =	𝐸 𝑑𝑖𝑟,𝐵𝑂𝐴 cos (𝜃 𝑠 )	𝐸 𝑃 . |Ω 𝑙 . Ω 𝑠 | + 𝐸 𝑑𝑖𝑓𝑓,𝐵𝑂𝐴	(5.16)
	The emitted radiance by this point is then:	
				(5.17)
	c) Imported SCOPE temperature profiles	
	Some 1D models that compute the full energy balance such as SCOPE provide 1D temperature
	profiles for sunlit and shaded leaves. The temperature profiles provided by SCOPE are function

of the height within the canopy for shaded leaves 𝑇 𝑠ℎ (𝑧) and the leaf zenith angle, azimuth angle and height within the canopy for sunlit leaves 𝑇 𝑠𝑢 (𝑧, 𝜃 𝑙 , 𝜑 𝑙 ). DART-Lux can import these

  According to the mean value theorem, there exists a height 𝑧 𝑒𝑞 such that: Thus, the irradiance at the height 𝑧 𝑒𝑞 is approximately equal to the mean irradiance over the cell, and therefore:

						𝑠𝑢𝑛𝑙𝑖𝑡 𝑐𝑒𝑙𝑙 becomes:
		𝑓 ̅ 𝑠𝑢𝑛𝑙𝑖𝑡 𝑐𝑒𝑙𝑙 ≈	1 𝛥𝑍	0 ∫ 𝑒 𝛥𝑍	-𝐺(𝛺 𝑠 ).𝑢 𝑙 .	𝛥𝑍-𝑧 𝑐𝑜𝑠 𝜃 𝑠 . 𝑑𝑧	(5.24)
	𝑒	-𝐺(Ω 𝑠 ).𝑢 𝑙 . Δ𝑍-𝑧 𝑒𝑞 cos 𝜃 𝑠 =	1 ∆z	0 . ∫ 𝑒 ∆z	Δ𝑍-𝑧 cos 𝜃 𝑠 . 𝑑𝑧 -𝐺(Ω 𝑠 ).𝑢 𝑙 .	(5.25)
			𝑓 ̅ 𝑠𝑢𝑛𝑙𝑖𝑡 ≈	𝐸(𝑧 𝑒𝑞 ) 𝐸 𝐵𝑂𝐴	(5.26)

  1 , 𝑇 2 ) = ∫ 𝐺(𝛺). 𝑢 𝑙 . 𝐿 𝜆,𝛥𝜆 ( 𝑇(𝑧)). 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 . 𝑑𝑧 𝐸 𝑃,𝑑𝑖𝑟,1 First order direct irradiance at point 𝑃 𝑊. 𝑚 -2 . 𝜇𝑚 -1 𝐸 𝑉,𝑖𝑛 Ingoing radiation to volume 𝑉 𝑊. 𝑚 -2 . 𝜇𝑚 -1 𝐿 𝐵 (𝜆, 𝑇) Black body of temperature 𝑇 emitted radiance at wavelength 𝜆 𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1 𝐿 𝑜𝑟𝑑𝑒𝑟1 Order 1 emitted radiance of a volume 𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1 𝐿 𝜆,Δ𝜆 (𝑇) Emitted radiance of an object of temperature 𝑇 at the spectral band (𝜆, Δ𝜆) 𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1 𝐿 𝜆 (𝑇) Emitted radiance of an object of temperature 𝑇 at

	Appendix 5-1: Expected value of 𝑬 ̂𝑷,𝒅𝒊𝒇𝒇,𝟏	
	𝐸 𝑉,𝑜𝑢𝑡	Outgoing radiation from volume 𝑉	𝑊. 𝑚 -2 . 𝜇𝑚 -1
	𝐸 𝜆,𝑃,𝑒𝑚𝑖𝑠	Emitted radiation at point 𝑃	𝑊. 𝑚 -2 . 𝜇𝑚 -1
	𝐸 𝜆,𝑉,𝑒𝑚𝑖𝑠	Emitted radiation at volume 𝑉	𝑊. 𝑚 -2 . 𝜇𝑚 -1
	𝑓 𝑠𝑢𝑛𝑙𝑖𝑡	Fraction of sunlit leaves	-
	Appendix 5-2:		
			𝑊. 𝑚 -2 . 𝜇𝑚 -1 . 𝑠𝑟 -1
		wavelength 𝜆	
	𝑀 𝐵 (𝑇)	Black body object of temperature 𝑇 thermal emission	𝑊. 𝑚 -2
		exitance	
	𝑇	Thermodynamic temperature	𝐾
	𝑇 𝐵	Brightness temperature	𝐾
	𝑇 𝑃	Thermodynamic temperature at point 𝑃	𝐾
	𝜆 𝑒𝑞		
		𝐻	
		0	

La photosynthèse est un processus biochimique consistant à transformer les molécules de dioxyde de carbone (CO2) captées de l'atmosphère et les molécules d'eau absorbées du sol en hydrates de carbone et en molécules de dioxygène par la végétation verte. Cette réaction endothermique utilise le rayonnement solaire comme source d'énergie. Il s'agit d'un processus fatidique pour l'espèce humaine et pour la vie sur Terre en général. En effet, il s'agit du principal processus utilisé par les organismes producteurs primaires pour produire les composés organiques nécessaires pour fournir de l'énergie à tous les éléments de la chaîne alimentaire.En outre, il joue un rôle crucial dans le cycle du carbone sur Terre, car il permet à la végétation verte de fonctionner comme un puits de carbone qui absorbe le CO2 atmosphérique libéré par des phénomènes naturels (e.g., la respiration des organismes vivants, les incendies, etc.) et surtout par les activités anthropiques (e.g., les activités industrielles, la combustion des hydrocarbures fossiles, etc.). Il réduit donc l'impact de l'empreinte carbone humaine sur la concentration de CO2 dans l'atmosphère, qui continue d'augmenter à un rythme alarmant depuis le XIX e siècle. Le réchauffement de la planète et le changement climatique, causés par les gaz à effet de serre, dont le CO2, qui empêchent la chaleur reçue par la surface de la Terre par le biais du rayonnement solaire de s'échapper vers l'espace extérieur, ont un impact sérieux, voire menaçant sur la vie humaine. Ils provoquent une augmentation de la température moyenne de la planète et de la fréquence des événements climatiques extrêmes tels que les sécheresses[START_REF] Cogato | Extreme Weather Events in Agriculture: A Systematic Review[END_REF] et deviennent ainsi des préoccupations majeures pour les sociétés humaines contemporaines. En outre, la population mondiale augmente et il y a donc une demande croissante de produits alimentaires qui doit être satisfaite. Par conséquent, au cours des dernières années, la communauté scientifique s'intéresse de plus en plus à l'étude du processus de photosynthèse à différentes échelles spatiales et temporelles, pour les canopées agricoles et forestières, afin de répondre à ces défis urgents et critiques de l'humanité.

2.1 VEGETATION SIMULATED AS FACETS

.m -1 .sr -1 lower than the corresponding DART values. This is caused by differences in the

Table 3. Biochemical and optical properties used in DART modeling of the study sites.

Figure 11. Vertical profiles of LAI and leaf SIF emission at 12.00 (local time).

Figure 12. Diurnal SIF escape factorhemi of the 3D and 1D plots and their associated relative errors.
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Appendix 1. Block matrices product

The product of the block matrices 𝑀 1 = ( 𝐴 1 𝐵 1 𝐶 1 0 𝐷 1 0 0 0 𝐷 1

) and 𝑀 2 = ( 𝐴 2 𝐵 2 𝐶 2 0 𝐷 2 0 0 0 𝐷 2

), with 𝐷 1

and 𝐷 2 diagonal matrices, is a block matrix with same form as 𝑀 1 and 𝑀 2 :

with 𝐷 1 𝐷 2 a diagonal matrix. Once the local irradiance is computed, a temperature 𝑇 𝑃 is assigned for each irradiance value 𝐸 𝑃 (Figure 5-3), using the user-defined temperature properties (𝑇 𝑚𝑒𝑎𝑛 , Δ𝑇) and the relationship:

VEGETATION SIMULATED AS FACETS

This relationship is chosen because for a surface at the thermal equilibrium with temperature 𝑇 and receiving an energy flux 𝐸, 𝑇 (5.15)

We note from Eq (5.15) that if 𝐸 𝑚𝑎𝑥 , 𝐸 𝑚𝑖𝑛 and 𝐸 𝑃 are multiplied by a factor 𝛼, the expression of 𝑇 𝑃 remains the same. Hence, the absolute value of BOA irradiance 𝐸 𝐵𝑂𝐴 used in the illumination step is not important. Therefore, any dummy value can be used and there is no need compute the real BOA irradiance or to perform a multispectral illumination.

Some 1D models of canopy energy balance simulate 1D temperature profiles for leaves. The SCOPE model simulates a 1D temperature profile for sunlit leaves and another one for shaded leaves. The temperature profiles from SCOPE are function of the height in the canopy for shaded leaves 𝑇 𝑠ℎ (𝑧) and on the leaf zenith angle, the azimuth angle and the height in the canopy for sunlit leaves 𝑇 𝑠𝑢 (𝑧, 𝜃 𝑙 , 𝜑 𝑙 ). DART-Lux was adapted to import these temperature profiles and to simulate radiative transfer with them. To this end, the sunlit fraction 𝑓 𝑠𝑢𝑛𝑙𝑖𝑡 is computed using Eq (5.16) and the emitted radiance is computed using Eq (5.17), the temperatures 𝑇 𝑠ℎ and 𝑇 𝑠𝑢 being interpolated from the imported SCOPE temperature profiles according to the height of the centroid for 𝑇 𝑠ℎ , and according to the height of the centroid and the zenith and azimuth angles of the normal vector of the facet for 𝑇 𝑠𝑢 .

d) Importation of 3D temperature distribution

DART-Lux was adapted to import any 3D temperature distribution. The approach relies on a division of the scene into "voxels" at any 3D resolution and on the assignation of the corresponding temperature to all scene elements inside each voxel. 3D temperature distributions can be provided by other models like fire models (e.g., Y. Liu et al. 2019). In addition, 2D temperature distributions, for example derived from the inversion of remote sensing images, can also be imported.

Radiative transfer simulation

Once the temperature distribution is computed and/or imported, the radiative transfer simulation starts. The temperature distribution methods provide discrete temperature values for points distributed over the scene or for virtual voxels. This is done only for the central scene and not for the eventual repeated scenes (i.e., duplications of the scene of interest in order to simulate its neighborhood). However, in reality, any point in the scene can emit if sampled or intercepted by a ray, including points outside the central scene (i.e., scene of interest). Therefore, to compute the emitted radiance of any point 𝑀 in the scene, its corresponding point in the central scene 𝑀 𝑐 is computed first using a horizontal shift. If the temperature is defined using a temperature profile, the temperature of the voxel containing 𝑀 𝑐 is assigned to 𝑀. Otherwise, the nearest point to 𝑀 𝑐 with an assigned temperature is searched over the scene (Figure 5-3) and its temperature is assigned to 𝑀. The search operation is optimized using a Bounding Volume Hierarchy (BVH) structure implementation from LuxCoreRender. Where ÷ is the vector element-wise division operator.

THERMAL EMISSION MODELING

We note from Eq (5.38) that if for a given spectral band (𝜆 𝑖 , Δ𝜆 𝑖 ), 𝐸 𝜆 𝑖 ,𝑉,𝑎𝑏𝑠 = 0, and therefore 𝜔 𝜆 𝑖 = 1, it is impossible to compute and 𝐸 ̂𝜆𝑖 ,𝑉,𝑖𝑛𝑡 and therefore 𝐸 ̂𝜆𝑖 ,𝑉,𝑠𝑐𝑎𝑡 . In case 𝜔 𝜆 𝑖 is close to 1, 𝐸 𝜆 𝑖 ,𝑉,𝑎𝑏𝑠 is small compared to 𝐸 𝜆 𝑖 ,𝑉,𝑖𝑛 and 𝐸 𝜆 𝑖 ,𝑉,𝑜𝑢𝑡 and this causes high variance of 𝐸 ̂𝜆𝑖 ,𝑉,𝑎𝑏𝑠 , 𝐸 ̂𝜆𝑖 ,𝑉,𝑖𝑛𝑡 and 𝐸 ̂𝜆𝑖 ,𝑉,𝑠𝑐𝑎𝑡 (c.f. Appendix 5-3).

In presence of SIF emission, the spectral emission 𝐸 𝑒𝑚𝑖𝑠 can be estimated using the (5.42)

Where 𝐼 is the identity matrix and (. ) -1 is the matrix inversion operator.

= ∫ 𝐺(𝛺). 𝑢 𝑙 . 𝐿 𝜆,𝛥𝜆 ( 𝑇(𝑧)). 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 . 𝑑𝑧 ℎ 0 + ∫ 𝐺(𝛺). 𝑢 𝑙 . 𝐿 𝜆,𝛥𝜆 ( 𝑇(𝑧)). 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 . 𝑑𝑧 𝐻 ℎ = 𝐿 𝜆,𝛥𝜆 ( 𝑇 1 )(1 -𝑒 -𝐺(𝛺).𝑢 𝑙 .ℎ ) + 𝐿 𝜆,𝛥𝜆 ( 𝑇 1 )(𝑒 -𝐺(𝛺).𝑢 𝑙 .𝐻 -𝑒 -𝐺(𝛺).𝑢 𝑙 .ℎ )

The expected order 1 radiance computed using the sampling technique:

𝐻 0 𝐺(𝛺). 𝑢 𝑙 . 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 1 -𝑒 -𝐺(𝛺).𝑢 𝑙 .𝐻 . 𝑑𝑧 = 𝐿 𝜆,𝛥𝜆 ( 𝑇 1 ). ∫ 𝐺(𝛺). 𝑢 𝑙 . 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 . 𝑑𝑧 ℎ 0 + 𝐿 𝜆,𝛥𝜆 ( 𝑇 2 ). ∫ 𝐺(𝛺). 𝑢 𝑙 . 𝑒 -𝐺(𝛺).𝑢 𝑙 .𝑧 . 𝑑𝑧 𝐻 ℎ = 𝐿 𝜆,𝛥𝜆 ( 𝑇 1 )(1 -𝑒 -𝐺(𝛺).𝑢 𝑙 .ℎ ) + 𝐿 𝜆,𝛥𝜆 ( 𝑇 1 )(𝑒 -𝐺(𝛺).𝑢 𝑙 .𝐻 -𝑒 -𝐺(𝛺).𝑢 𝑙 .ℎ ) = 𝐿 𝑜𝑟𝑑𝑒𝑟1 (𝑇 1 , 𝑇 2 )

Variance of 𝐸 ̂𝑎𝑏𝑠 :

𝑣𝑎𝑟(𝐸 ̂𝜆𝑖 ,𝑉,𝑎𝑏𝑠 ) = 𝑣𝑎𝑟(𝐸 ̂𝜆𝑖 ,𝑉,𝑖𝑛 -𝐸 ̂𝜆𝑖 ,𝑉,𝑜𝑢𝑡 + 𝐸 𝜆 𝑖 ,𝑉,𝑒𝑚𝑖𝑠 )

= 𝑣𝑎𝑟(𝐸 ̂𝜆𝑖 ,𝑉,𝑖𝑛 ) + 𝑣𝑎𝑟(-𝐸 ̂𝜆𝑖 ,𝑉,𝑜𝑢𝑡 ) + 𝑣𝑎𝑟(𝐸 𝜆 𝑖 ,𝑉,𝑒𝑚𝑖𝑠 )

= 𝑣𝑎𝑟(𝐸 ̂𝜆𝑖 ,𝑉,𝑖𝑛 ) + 𝑣𝑎𝑟(𝐸 ̂𝜆𝑖 This thesis was driven by the need for a comprehensive SIF model in order to link the SIF observations to the photosystem level instantaneous photosynthetic activity and to enable a better understanding and interpretation of these observations with the purpose of monitoring the photosynthesis process at different spatial and temporal scales. This is crucial for addressing some of the most imperious challenges such as climate change and the need to provide food for the increasing world population under the constraints of water scarcity and the increasing frequency of extreme weather conditions.

DART is one of the most comprehensive radiative transfer models for RS applications. Since 2017, its initial flux tracking mode (DART-FT) simulates SIF by upscaling leaf-level SIF simulated by Fluspect for canopies simulated as facets, and can provide SIF radiation budget and TOA and BOA RS observations of these canopies. Faced with the difficulty of having a complete SIF measurements dataset for a relevant comparison with a SIF radiative transfer model, we went through model-to-model comparison to assess the accuracy of the DART-FT SIF modeling. DART-FT gave results in agreement with the "reference" SIF model SCOPE/mSCOPE (1D) for horizontally homogeneous scenes and for different configurations, by approximating the turbid medium used in SCOPE with a quasi-turbid medium (i.e., a cloud of facets randomly distributed). Then, DART-FT was extended to simulate SIF for vegetation represented as 3D turbid medium. This statistical representation of vegetation is widely used in RS radiative transfer models, especially for simulating large landscapes. For example, it can be useful for reducing the computational requirements for scenes simulated with a very large number of facets, or if the explicit 3D representation with facets of the simulated scene is not available (e.g., only a 3D array of LAI is available). DART-FT SIF modelling for quasi-turbid medium and for turbid medium appeared to closely match. This is a kind of validation for DART-FT SIF modelling for turbid medium because DART-FT SIF modelling for quasi turbid medium has already been validated with SCOPE model. 

Conclusions and perspectives