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The photosynthetic activity of vegetation is of major interest given current environmental 

concerns such as climate change and water resources. In this process, chlorophyll molecules 

excited by absorption of photosynthetically active radiation (PAR), dissipate some of the energy 

not used for photosynthesis in the form of heat and fluorescence radiation (SIF) which turns out 

to be a reliable and instantaneous indicator of photosynthetic activity. However, many factors 

complicate the interpretation of remote sensing measurements in terms of SIF and thus 

photosynthetic activity. In particular, the 3D architecture of the vegetation greatly affects 

radiation propagation, and thus PAR absorption, SIF emission in the canopy, and the remote 

sensing measurement. Accurate modeling of SIF emission and remote sensing measurements 

is therefore essential to accurately interpret these measurements in terms of SIF emitted (i.e., 

photosynthetic activity) by the vegetation. Moreover, it must be adapted to complex landscapes 

of large dimensions, at least larger than the resolution of the relevant satellite sensors (e.g., 300 

m for the upcoming ESA FLEX satellite mission to measure SIF). Given the number, 

complexity and diversity of terms to be taken into account, this modeling uses strong 

approximations that often lead to significant errors in the interpretation of remote sensing 

measurements. The model developed in this thesis deals mainly with the radiative aspect. It is 

based on the DART radiative transfer model (https://dart.omp.eu). Based on the discrete 

ordinate method, DART-FT, the initial mode of DART, simulates the SIF emission and the 

remotely sensed SIF signal, but has computational requirements (i.e., memory, computational 

time) that are prohibitive for the simulation of large landscapes. The new mode of DART, called 

DART-Lux, solves this problem with a very efficient two-way Monte Carlo algorithm. To 

complement the functionality of DART-Lux, four original models have been designed and 

implemented. (1) Modeling of landscapes with turbid volumes and facets, as the "turbid" 

representation is often useful for simulating large landscapes. (2) Modeling of SIF emission and 

the SIF signal that is measured by satellite, airborne and in-situ sensors. It takes into account 

local bioclimatic conditions via a coupling with the SCOPE energy balance model. Applied to 

Abstract 



ABSTRACT 

 viii 

eight forest plots realistically reconstructed with LiDAR measurements, this modeling allowed 

one to study the impact of the 3D structure of the vegetation on the SIF emission and on the 

SIF observed by a sensor at nadir, from morning to evening. It highlighted that the relative error 

made by neglecting the 3D architecture of the canopies, as in the 1D models, is often greater 

than 30%, especially in the morning and evening when the solar direction is very oblique. (3) 

Modeling of remote sensing images corresponding to the thermal emission of the landscape. As 

DART is not an energy balance model, the 3D temperature distribution is imported or 

approximated via short-wave illumination. (4) 3D radiation balance modeling with the ability 

to simulate it by sub-scene and feature type. All of these modeling, with the exception of the 

radiation balance modeling, were found to be very accurate and efficient in terms of 

computation time and memory volume, with gains often greater than 100. The resulting new 

DART model opens very interesting perspectives for the study of land surfaces using remote 

sensing observations in the visible to thermal infrared range. This work is currently being 

pursued in order to take into account the multiple biophysical interactions within the canopies 

that condition their SIF emission and their 3D temperature. 
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L'activité photosynthétique de la végétation revêt un intérêt majeur compte tenu des 

préoccupations environnementales actuelles comme le changement climatique et les ressources 

en eau. Dans ce processus, les molécules de chlorophylle excitées par absorption de 

rayonnement photosynthétiquement actif (PAR), dissipent une part de l'énergie non utilisée 

pour la photosynthèse sous forme de chaleur et de rayonnement de fluorescence (SIF) qui ainsi 

est un indicateur fiable et instantané de l'activité photosynthétique. Cependant, de nombreux 

facteurs compliquent l'interprétation des mesures de télédétection en termes de SIF et donc 

d'activité photosynthétique. En particulier, l'architecture 3D de la végétation affecte beaucoup 

la propagation du rayonnement, et donc l'absorption du PAR, l'émission de SIF dans le couvert 

végétal, et la mesure de télédétection. Une modélisation précise de l'émission SIF et des 

mesures de télédétection est donc essentielle pour interpréter avec précision ces mesures en 

termes de SIF émis (i.e., activité photosynthétique) par la végétation. De plus, elle doit être 

adaptée aux paysages complexes de grandes dimensions, du moins plus grands que la résolution 

des capteurs satellites concernés (e.g., 300 m pour la prochaine mission satellite FLEX de l'ESA 

pour mesurer la SIF). Vu le nombre, complexité et diversité des termes à prendre en compte, 

cette modélisation utilise de fortes approximations qui induisent souvent de grandes erreurs lors 

de l'interprétation des mesures de télédétection. La modélisation développée dans cette thèse 

traite principalement de l'aspect radiatif. Elle s'appuie sur le modèle de transfert radiatif DART 

(https://dart.omp.eu). Le mode initial, DART-FT, de DART, basé sur la méthode des ordonnées 

discrètes, simule l'émission SIF et le signal SIF mesuré par télédétection, mais a des besoins 

informatiques (i.e., volume mémoire, temps de calcul) prohibitifs pour simuler de grands 

paysages. Le nouveau mode, appelé DART-Lux, résout ce problème via un algorithme 

bidirectionnel Monte Carlo très efficace. Pour compléter les fonctionnalités de DART-Lux, 

quatre modélisations originales ont été conçues et implémentées. (1) Modélisation de paysages 

avec des volumes turbides et des facettes, car la représentation "turbide" est souvent utile pour 

simuler de grands paysages. (2) Modélisation de l'émission et mesure satellite de la SIF, en 

Résumé 
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tenant compte des conditions bioclimatiques locales via le couplage avec le modèle de bilan 

d'énergie SCOPE. A partir de huit parcelles forestières reconstruites de manière réaliste avec 

des mesures LiDAR, cette modélisation a permis d'étudier l'impact de la structure 3D de la 

végétation sur la SIF émise et observée par un capteur au nadir, du matin au soir. Ainsi, l'erreur 

relative commise en négligeant l'architecture3D des couverts, comme dans les modèles 1D, est 

souvent supérieure à 30%, surtout les matins et soirs quand la direction solaire est très oblique. 

(3) Modélisation des images de télédétection correspondant à l'émission thermique du paysage. 

DART n'étant pas un modèle de bilan d'énergie, la distribution3D des températures est importée 

ou calculée de manière approchée via un éclairement dans les courtes longueurs d'onde. (4) 

Modélisation du bilan radiatif 3D avec possibilité de le simuler par sous scène et par type 

d'élément. Toutes ces modélisations, excepté la modélisation du bilan radiatif, se sont avérées 

très précises et efficaces en termes de temps de calcul et de volume mémoire, avec des gains 

souvent supérieurs à 100. La modélisation implémentée dans DART ouvre donc des 

perspectives très intéressantes pour l'étude des surfaces terrestres avec l'aide d'observations de 

télédétection visible à infrarouge thermique. Ce travail est actuellement poursuivi, pour tenir 

compte des multiples interactions biophysiques qui au sein des couverts conditionnent leur 

émission SIF et température 3D.
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 1 

Photosynthesis is a biochemical process consisting in transforming carbon dioxide (CO2) 

molecules captured from the atmosphere and water molecules absorbed from the soil into 

carbohydrates and dioxygen molecules by green vegetation. This endothermic reaction uses the 

solar radiation as a source of energy. It is a fateful process for the human kind and for life on 

Earth in general. Indeed, it is the main process used by primary producer organisms to produce 

organic compounds necessary to provide energy to all the elements of the food chain. Moreover, 

it plays a crucial role in the carbon cycle on Earth as it makes green vegetation work as a carbon 

sink that uptakes atmospheric CO2 released by natural phenomena (e.g., respiration of living 

organisms, fires, etc.) and especially by anthropogenic activities (e.g., industrial activities, 

fossil fuels burning, etc.), then to store it as biomass. Therefore, it reduces the impact of human 

carbon footprint on the atmospheric CO2 concentration which continues to increase at an 

alarming rate since the 19th century. The global warming and climate change, caused by 

greenhouse gases including CO2 that prevent the heat received by the Earth surface through the 

sun radiation from escaping to external space, are seriously impacting and even threatening 

human life. They are causing an increase in the average temperature of the planet and in the 

frequency of extreme weather events such as droughts (Cogato et al., 2019) and thus are 

becoming major concerns for contemporary human societies. Furthermore, the world 

population is increasing and therefore there is an increasing demand on food that needs to be 

satisfied. Consequently, in the recent years, the scientific community has become increasingly 

interested in studying the photosynthetic process at different spatial and temporal scales, both 

for agricultural and forest canopies, in order address these urgent and critical challenges of 

humanity. 

Earth surfaces emit and scatter electromagnetic radiation over the entire spectrum, with 

differences depending on the spectral domain (e.g., optical and microwave domains). The 

measurement of this radiation by active and passive remote sensing can provide information on 
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the characteristics of these surfaces. In particular, multispectral and hyperspectral optical 

sensors onboard Earth observation satellites are very useful for large scale vegetation 

monitoring. Indeed, they provide high spatial and temporal resolution observations in different 

spectral domains (e.g., visible, near-infrared, thermal infrared) used for inferring biophysical 

and biochemical information about vegetation (e.g., LAI, biomass, chlorophyll content, water 

content, etc.). However, they generally cannot provide real-time information on the 

photosynthetic process of vegetation, which is essential for detecting eventual stresses, and in 

particular water and temperature stress. For instance, retrieved information such as current 

pigments content (e.g., chlorophyll, carotenoid) of vegetation generally results from past 

bioclimatological conditions (e.g., photosynthesis inhibited by water or temperature stress) that 

influence vegetation optical properties sometime later, when these changes can be irreversible. 

Presently, only two types of remote sensing measurements can provide real-time information 

on plant responses to stress. 1) Reflection of sun radiation at 0.531 µm and 0.570 µm, used to 

define the photochemical reflectance index (PRI), can indicate short-term changes in the 

xanthophyll cycle (Gerhards et al., 2019; Suárez et al., 2009). 2) Thermally emitted radiation 

can indicate changes in temperature that can allow early stress detection (Costa et al., 2013; 

Gerhards et al., 2019). 

Solar-induced chlorophyll fluorescence (SIF) is a spontaneous re-emission of radiation by 

vegetation excited by photosynthetically active solar radiation. Together with the 

photochemical and heat dissipation processes, they form the three possible ways for an excited 

chlorophyll molecule to dispose of the excess of energy. These three processes are in 

competition, which makes the SIF correlated with photosynthetic activity and gross primary 

production. Because its response to the inhibition of photosynthesis due to stress is 

instantaneous, SIF is a real-time indicator of the photosynthetic process, and therefore a 

potentially very useful signal for monitoring the vegetation functioning state and for stress 

detection. 

SIF represents a small fraction of the sun radiation scattered by vegetation and it is spectrally 

overlapping with it. Hence, except for some absorption bands (e.g., atmospheric oxygen O2A 

and O2B absorption bands, Fraunhofer lines of solar radiation), it is impossible to dissociate it 

from the total radiation outgoing from the vegetation at the top of canopy (TOC) or at the top 

of atmosphere (TOA) levels. Indeed, in these absorption bands, the solar incident radiation and 

therefore the scattered radiation are small enough such that the SIF can be detected and 
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measured. We usually observe small peaks of the TOC reflectance spectrum at these bands. 

This is explained by the fact that the radiation absorbed at a given wavelength gives rise to 

fluorescence at other wavelengths, and therefore increases the apparent reflectance at these 

bands. In recent years, many techniques for retrieving the SIF signal from in-situ, airborne and 

spaceborne sensors within the oxygen O2A and O2B absorption bands and the Fraunhofer lines 

were developed. The European Space Agency (ESA) has shown a particular interest in SIF and 

its potential to monitor vegetation functioning from space using these techniques and has 

selected the Fluorescence Explorer (FLEX) satellite as its eighth Earth Explorer mission.  

Nevertheless, the interpretation of SIF measurements remains challenging. Indeed, although the 

atmospheric oxygen allows to measure the SIF because it attenuates the incident radiation, it 

also attenuates the SIF signal before reaching the sensor especially for spaceborne sensors. 

Therefore, accurate atmospheric corrections are needed to retrieve the TOC signal. Moreover, 

TOC SIF directly measured by TOC sensors or retrieved from TOA sensors is solely a part of 

the total SIF emitted within the canopy that escapes from it, directly or after being scattered, to 

the observation direction. Most of the SIF radiation escapes to other directions, or is absorbed 

by the canopy elements (e.g., leaves, woody elements, soil, etc.). Besides, in addition to the 

instantaneous photosynthetic activity, the SIF measurements are influenced by several other 

confounding factors, such as the photosynthetically active radiation absorption, the canopy 

structure, the optical properties of canopy elements, the sun-canopy-sensor configuration, etc. 

For these reasons, models that simulate SIF emission and observations stand out as essential 

tools to help in retrieving and interpreting the SIF signals from measurements and to disentangle 

the effect of each influencing factor. Ideally, these models should take into account all the 

parameters that affect the SIF emission and observation including the local climatological 

conditions that affect the temperature dependent photosynthetic rate and therefore the leaf-level 

SIF emission, the canopy’s 3D structure and optical properties and the experimental 

configurations that affect the radiation propagation. Hence, the full energy balance should be 

simulated including all the radiative and non-radiative processes with an accurate 3D 

representation of the canopy. Radiative energy exchanges include the absorption of solar 

radiation and the emission of thermal radiation, while non-radiative energy exchanges include 

sensible and latent heat exchanges with the atmosphere and the soil.  
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Currently, the canopy SIF models developed by the scientific community can be classified into 

two major groups: 1) 1D models that simulate the full energy balance by taking into account all 

the major physical processes that cause SIF emission. They include a leaf-level photosynthesis 

model and a 1D radiation canopy model. However, they neglect the 3D architecture of canopies. 

The reference models are SCOPE and its multilayer version mSCOPE. 2) 3D radiative transfer 

models that accurately simulate the propagation of radiation within the canopy. They also 

include a leaf-level SIF model. However, they do not simulate the non-radiative processes. 

Among these models, the Discrete Anisotropic Radiative Transfer (DART) model is one of the 

most comprehensive 3D radiative transfer models. It is developed by CESBIO since 1992. It 

includes the Fluspect leaf SIF model and therefore simulates canopy SIF emission as well as 

TOC and TOA SIF observations since 2017. Its initial version, DART-FT, is based on an 

adapted discrete ordinates method. A more efficient Monte Carlo based mode, called DART-

Lux, has been developed since 2018 for simulating remote sensing images. An initial objective 

was to include all the functionalities of the DART-FT mode. The approach is not 

straightforward because DART-Lux uses a modeling approach very different from that of 

DART-FT. 

DART simulates any type of urban or natural landscapes. It can simulate vegetation canopies 

represented using imported realistic 3D objects, schematic 3D objects created internally by 

DART or canopies represented using 3D turbid medium. In this thesis, the modeling 

implementations, including SIF emission, are introduced and tested for the two DART modes 

(i.e., DART-FT and DART-Lux) and for the two vegetation representation methods (facets, 

turbid). The SIF introduction in DART allowed to evaluate the impact of 3D structure on a 

deciduous forest’s SIF, using a realistic forest scene reconstructed from LiDAR data. Moreover, 

the thermal emission and the radiation budget are two important components of the energy 

budget that quantify the energy exchange of vegetation through radiation. They need to be 

accurately simulated before the consideration of the energy exchange via non-radiative 

processes. In this thesis, we also introduce the modeling of thermal emission and radiative 

budget in DART-Lux. The aim of this work is to provide radiative transfer building blocks 

towards the development of a comprehensive 3D SIF model.  

This thesis is organized in five chapters:  
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Chapter 1 is an introductory chapter that presents general theoretical concepts about 

fluorescence, solar-induced fluorescence and its use for monitoring vegetation functioning with 

remote sensing. It also presents the DART model with a special focus on DART-Lux which 

will be the most considered in the following chapters.  

Chapter 2 presents the SIF modeling in DART-FT for vegetation simulated as facets and as 3D 

turbid medium. 

Chapter 3 presents the SIF modeling in DART-Lux for vegetation simulated as facets and as 

3D turbid medium. A novel method was developed to introduce the SIF emission for the bi-

directional path tracing. Moreover, the turbid vegetation was introduced in DART-Lux 

including SIF emission. 

Chapter 4 shows the impact of vegetation structure on both the SIF emission and observation. 

The work is a theoretical study with LiDAR reconstructed forest scenes.  

Chapter 5 presents the modeling of the thermal emission and radiative budget in DART-Lux 

for scene elements simulated as facets and as volumes (turbid medium, fluids).  
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La photosynthèse est un processus biochimique consistant à transformer les molécules de 

dioxyde de carbone (CO2) captées de l’atmosphère et les molécules d’eau absorbées du sol en 

hydrates de carbone et en molécules de dioxygène par la végétation verte. Cette réaction 

endothermique utilise le rayonnement solaire comme source d’énergie. Il s’agit d’un processus 

fatidique pour l’espèce humaine et pour la vie sur Terre en général. En effet, il s’agit du 

principal processus utilisé par les organismes producteurs primaires pour produire les composés 

organiques nécessaires pour fournir de l’énergie à tous les éléments de la chaîne alimentaire. 

En outre, il joue un rôle crucial dans le cycle du carbone sur Terre, car il permet à la végétation 

verte de fonctionner comme un puits de carbone qui absorbe le CO2 atmosphérique libéré par 

des phénomènes naturels (e.g., la respiration des organismes vivants, les incendies, etc.) et 

surtout par les activités anthropiques (e.g., les activités industrielles, la combustion des 

hydrocarbures fossiles, etc.). Il réduit donc l’impact de l’empreinte carbone humaine sur la 

concentration de CO2 dans l'atmosphère, qui continue d’augmenter à un rythme alarmant depuis 

le XIXe siècle. Le réchauffement de la planète et le changement climatique, causés par les gaz 

à effet de serre, dont le CO2, qui empêchent la chaleur reçue par la surface de la Terre par le 

biais du rayonnement solaire de s’échapper vers l’espace extérieur, ont un impact sérieux, voire 

menaçant sur la vie humaine. Ils provoquent une augmentation de la température moyenne de 

la planète et de la fréquence des événements climatiques extrêmes tels que les sécheresses 

(Cogato et al., 2019) et deviennent ainsi des préoccupations majeures pour les sociétés 

humaines contemporaines. En outre, la population mondiale augmente et il y a donc une 

demande croissante de produits alimentaires qui doit être satisfaite. Par conséquent, au cours 

des dernières années, la communauté scientifique s’intéresse de plus en plus à l’étude du 

processus de photosynthèse à différentes échelles spatiales et temporelles, pour les canopées 

agricoles et forestières, afin de répondre à ces défis urgents et critiques de l’humanité. 

Introduction générale 
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Les surfaces terrestres émettent et diffusent du rayonnement électromagnétique sur l’ensemble 

du spectre, avec des différences en fonction du domaine spectral (e.g., les domaines optique et 

micro-ondes). La mesure de ce rayonnement par télédétection active et passive peut fournir des 

informations sur les caractéristiques de ces surfaces. En particulier, les capteurs optiques 

multispectraux et hyperspectraux à bord des satellites d’observation de la Terre sont très utiles 

pour le suivi de la végétation à grande échelle. En effet, ils fournissent des observations à haute 

résolution spatiale et temporelle dans différents domaines spectraux (e.g., visible, proche 

infrarouge, infrarouge thermique) utilisées pour déduire des informations biophysiques et 

biochimiques sur la végétation (e.g., LAI, biomasse, teneur en chlorophylle, teneur en eau, etc.). 

Cependant, ils ne peuvent généralement pas fournir d’informations en temps réel sur le 

processus photosynthétique de la végétation, ce qui est essentiel pour détecter d’éventuels stress, 

et en particulier les stress hydriques et thermiques. Par exemple, les informations récupérées 

telles que la teneur actuelle en pigments (e.g., chlorophylle, caroténoïde) de la végétation 

résultent généralement de conditions bioclimatologiques passées (e.g., photosynthèse inhibée 

par un stress hydrique ou thermique) qui influencent les propriétés optiques de la végétation 

quelque temps plus tard, lorsque ces changements peuvent être irréversibles. Actuellement, 

seuls deux types de mesures de télédétection peuvent fournir des informations en temps réel sur 

les réponses des plantes au stress. 1) La réflexion du rayonnement solaire à 0,531 µm et 0,570 

µm, utilisée pour définir l’indice de réflectance photochimique (PRI), peut indiquer des 

changements à court terme dans le cycle des xanthophylles (Gerhards et al., 2019; Suárez et al., 

2009). 2) Le rayonnement émis thermiquement peut indiquer des changements de température 

qui peuvent permettre une détection précoce du stress (Costa et al., 2013; Gerhards et al., 2019). 

La fluorescence chlorophyllienne induite par le soleil (SIF) est une réémission spontanée de 

rayonnement par la végétation excitée par le rayonnement solaire photosynthétiquement actif. 

Avec les processus photochimique et de dissipation de chaleur, ils constituent les trois moyens 

possibles pour une molécule de chlorophylle excitée de se débarrasser de l’excès d’énergie. Ces 

trois processus sont en compétition, ce qui fait que la SIF est corrélée à l’activité 

photosynthétique et à la production primaire brute. Parce que sa réponse à l’inhibition de la 

photosynthèse due au stress est instantanée, la SIF est un indicateur en temps réel du processus 

photosynthétique, et donc un signal potentiellement très utile pour suivre l’état de 

fonctionnement de la végétation et pour la détection du stress. 
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La SIF représente une petite fraction du rayonnement solaire diffusé par la végétation et elle se 

chevauche spectralement avec celui-ci. Par conséquent, à l’exception de certaines bandes 

d’absorption (e.g., les bandes d’absorption O2A et O2B de l’oxygène atmosphérique, les lignes 

de Fraunhofer du rayonnement solaire), il est impossible de la dissocier du rayonnement total 

sortant de la végétation en haut de la canopée (TOC) végétale ou en haut de l’atmosphère (TOA). 

En effet, dans ces bandes d’absorption, le rayonnement solaire incident et donc le rayonnement 

diffusé sont suffisamment faibles pour que la SIF puisse être détectée et mesurée. On observe 

généralement des petits pics du spectre de réflectance TOC dans ces bandes. Cela s’explique 

par le fait que le rayonnement absorbé à une longueur d’onde donnée donne lieu à une 

fluorescence à d’autres longueurs d’onde, et augmente donc la réflectance apparente à ces 

bandes. Ces dernières années, de nombreuses techniques ont été développées pour récupérer le 

signal SIF à partir de capteurs in situ, aéroportés et spatiaux dans les bandes d’absorption de 

l’oxygène O2A et O2B et dans les lignes de Fraunhofer. L’Agence Spatiale Européenne (ESA) 

a montré un intérêt particulier pour la SIF et son potentiel pour suivre le fonctionnement de la 

végétation depuis l’espace à l’aide de ces techniques et a choisi le satellite Fluorescence 

Explorer (FLEX) comme sa huitième mission d’observation de la Terre. 

Néanmoins, l’interprétation des mesures de la SIF reste difficile. En effet, bien que l’oxygène 

atmosphérique permette de mesurer la SIF car il atténue le rayonnement incident, il atténue 

également le signal SIF avant d’atteindre le capteur, surtout pour les capteurs spatiaux. Par 

conséquent, des corrections atmosphériques précises sont nécessaires pour récupérer le signal 

TOC. De plus, le signal SIF en TOC directement mesuré par les capteurs TOC ou déduit à partir 

des capteurs TOA ne représente qu’une partie du signal SIF total émis à l’intérieur de la canopée, 

qui s’en échappe, directement ou après avoir été diffusé, vers la direction d’observation. La 

plupart du rayonnement SIF s’échappe vers d’autres directions, ou est absorbé par les éléments 

de la canopée (e.g., feuilles, éléments ligneux, sol, etc.). En outre, en plus de l’activité 

photosynthétique instantanée, les mesures de la SIF sont influencées par plusieurs autres 

facteurs de confusion, tels que l’absorption du rayonnement photosynthétiquement actif, la 

structure de la canopée, les propriétés optiques des éléments de la canopée, la configuration 

soleil-canopée-capteur, etc. 

Pour ces raisons, les modèles qui simulent l’émission et les observations de la SIF sont des 

outils essentiels pour aider à récupérer et à interpréter les signaux SIF à partir des mesures et 

pour démêler l’effet de chaque facteur d’influence. Idéalement, ces modèles devraient prendre 
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en compte tous les paramètres qui affectent l’émission et l’observation de la SIF, y compris les 

conditions climatologiques locales qui affectent le taux de photosynthèse dépendant de la 

température et donc l’émission de la SIF au niveau des feuilles, la structure 3D et les propriétés 

optiques de la canopée et les configurations expérimentales qui affectent la propagation du 

rayonnement. Par conséquent, le bilan énergétique complet doit être simulé, y compris tous les 

processus radiatifs et non radiatifs, avec une représentation 3D précise de la canopée. Les 

échanges d’énergie radiative comprennent l’absorption du rayonnement solaire et l’émission de 

rayonnement thermique, tandis que les échanges d’énergie non radiative comprennent les 

échanges de chaleur sensible et latente avec l’atmosphère et le sol. 

Actuellement, les modèles de SIF de canopée développés par la communauté scientifique 

peuvent être classés en deux groupes principaux : 1) les modèles 1D qui simulent le bilan 

énergétique complet en prenant en compte tous les processus physiques majeurs qui causent 

l’émission de la SIF. Ils comprennent des modèles de photosynthèse et de SIF au niveau des 

feuilles. Cependant, ils négligent l’architecture 3D des canopées. Les modèles de référence sont 

SCOPE et sa version multicouche mSCOPE. 2) Le modèles de transfert radiatif 3D qui simulent 

avec précision la propagation du rayonnement dans la canopée. Ils comportent un modèle de 

SIF au niveau des feuilles. Cependant, ils ne simulent pas les processus non radiatifs. Parmi ces 

modèles, le modèle de Transfert Radiatif Anisotrope Discret (DART) est l’un des modèles de 

transfert radiatif 3D les plus complets. Il est développé par le CESBIO depuis 1992. Il inclut le 

modèle SIF foliaire Fluspect et simule donc l’émission SIF de la canopée ainsi que les 

observations SIF TOC et TOA depuis 2017. Sa version initiale, DART-FT, est basée sur une 

méthode adaptée des ordonnées discrètes. Un mode plus efficace basé sur la méthode Monte 

Carlo, appelé DART-Lux, a été développé depuis 2018 pour simuler les images de télédétection. 

Un objectif initial était d’inclure toutes les fonctionnalités du mode DART-FT. La démarche 

n’est pas évidente car DART-Lux utilise une approche de modélisation très différente de celle 

de DART-FT. 

DART simule tout type de paysages urbains ou naturels. Il peut simuler des couverts végétaux 

représentés par des objets 3D réalistes importés, des objets 3D schématiques créés en interne 

par DART ou des couverts représentés par un milieu turbide 3D. Dans cette thèse, les approches 

de modélisation et les implémentations de l’émission de SIF sont introduites et testées pour les 

deux modes de DART (i.e., DART-FT et DART-Lux) et pour les deux méthodes de 

représentation de la végétation (facettes, turbide). L’introduction de la SIF dans DART a permis 
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d’évaluer l’impact de la structure 3D sur la SIF d’une forêt à feuilles caduques, en utilisant une 

scène forestière réaliste reconstruite à partir de données LiDAR. De plus, l’émission thermique 

et le bilan radiatif sont deux composantes importantes du bilan d’énergie qui quantifient 

l’échange d’énergie de la végétation par le rayonnement. Ils doivent être simulés avec précision 

avant de considérer l’échange d’énergie via des processus non-radiatifs. Dans cette thèse, nous 

introduisons également la modélisation de l’émission thermique et du bilan radiatif dans 

DART-Lux. L’objectif de ce travail est de fournir des éléments de base du transfert radiatif en 

vue du développement d’un modèle SIF 3D complet. 

Cette thèse est organisée en cinq chapitres : 

Le chapitre 1 est un chapitre introductif qui présente les concepts théoriques généraux sur la 

fluorescence, la fluorescence induite par le soleil et son utilisation pour le suivi du 

fonctionnement de la végétation avec la télédétection. Il présente également le modèle DART 

avec un accent particulier sur DART-Lux qui sera le plus considéré dans les chapitres suivants.  

Le chapitre 2 présente la modélisation SIF dans DART-FT pour la végétation simulée comme 

des facettes et comme un milieu turbide 3D. 

Le chapitre 3 présente la modélisation de la SIF dans DART-Lux pour la végétation simulée en 

tant que facettes et en tant que milieu turbide 3D. Une nouvelle méthode a été développée pour 

introduire l’émission SIF pour le traçage de chemin bidirectionnel. De plus, la végétation 

turbide a été introduite dans DART-Lux en incluant l’émission SIF. 

Le chapitre 4 montre l’impact de la structure de la végétation sur l’émission et l’observation de 

la SIF. Il s’agit d’une étude théorique avec des scènes forestières reconstruites à partir du 

LiDAR.  

Le chapitre 5 présente la modélisation de l’émission thermique et du bilan radiatif dans DART-

Lux pour des éléments de scène simulés comme des facettes et comme des volumes (milieu 

turbide, fluides).
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This thesis is centered on the modeling of chlorophyll solar-induced fluorescence in the 

DART model. In addition to the presentation of DART, this chapter introduces the context and 

associated questions: what is the chemical process behind the fluorescence emission and does 

it only happen for chlorophyll molecules? When was the fluorescence and particularly the 

chlorophyll fluorescence discovered? What about the correlation between chlorophyll 

fluorescence and photosynthesis? Why is it important to have models that simulate the SIF? 

What is the state of the art of fluorescence modeling?  

1.1 Fluorescence  

Fluorescence is considered as a photoluminescence phenomenon among others like 

phosphorescence and delayed fluorescence. Photoluminescence is the type of luminescence (i.e., 

emission of photons from electronically excited chemical species) of which the excitation is 

due to the absorption of light. The first reported observation of fluorescence was as early as 

1565 when the Spanish medical practitioner Nicolás Monardes described the blue color of the 

water infusion of a type of wood known as Lignum nephriticum under certain conditions. The 

Chapter 1  

Context: Solar-Induced Fluorescence and 

DART model 
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term fluorescence was introduced by Stokes, (1852), from “fluorspar” analogously to 

“opalescence” which was also derived from the name of a mineral. He found that the emitted 

light has a longer wavelength than the absorbed light when he illuminated a solution of quinine 

sulfate with ultra-violet light and observed a blue light (Valeur, 2012b). 

a)  

b)  

Figure 1-1: Jablonski diagram: a) Energy states, b) Possible transitions and their time lapses. 

(Lichtman & Conchello, 2005) 

 

After absorbing a quantum of light, a fluorescent molecule passes to a vibrational level 

associated to a higher electronic state. The excited state is unstable and the molecule needs to 

dispose of its excess of energy. First, the excited molecule can lose energy through non-

radiative (i.e., without photon emission) state transitions (e.g., internal conversion, vibrational 

relaxation) that occur in a time lapse in the order of 10−12 s allowing the molecule to pass to 

the lowest vibrational level of an electronic state by transferring energy to other molecules and 

generating heat. Then, in a time lapse in the order of 10−9 s, it can release the remaining energy 

by emitting a photon, and this emission is called fluorescence. Because the loss of energy due 

non-radiative state transitions is faster than fluorescence emission, the latter usually occurs at 

wavelengths larger than the incident light and therefore having less energy. This is called the 
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Stokes’ Law. However, the emission can, with a low probability, be at a lower wavelength. This 

may seem to contradict the energy conservation principle, nevertheless, it happens because a 

small fraction of molecules have a vibrational level higher than 0 at normal temperature, and 

can emit a photon with higher energy than that of the absorbed photon (Valeur, 2012a). The 

electronic states and the transitions between them are usually illustrated with a Jablonski 

diagram (Jabłoński, 1935) as shown in Figure 1-1. 

1.2 Solar-induced chlorophyll fluorescence (SIF) 

The chlorophyll molecule has also shown to be fluorescent. The first reported observation of 

chlorophyll fluorescence induced by solar radiation was made by Brewster (1834) who noticed 

that the color of an alcoholic extract of chlorophyll hit by sunlight was a brilliant red. The 

photosynthetic process (photochemical quenching), the heat dissipation (non-photochemical 

quenching) and the fluorescence emission are three processes in competition over the absorbed 

energy by a chlorophyll molecule. Hence, the chlorophyll fluorescence emission is closely 

linked with photosynthetic activity. This link was first noticed by Müller (1874) and confirmed 

by Kautsky & Hirsch (1931) who noted the correlation between the variation of fluorescence 

emission and CO2 assimilation. This correlation was further studied by McAlister & Myers 

(1940), Kautsky & Zedlitz (1941) and Kautsky et al. (1960). Since then, the fluorescence 

emission is considered as a proxy for photosynthetic activity (Baker, 2008). 

1.3 Remote sensing of SIF  

Being an electromagnetic radiation, the passive chlorophyll fluorescence of canopies induced 

by sunlight can be studied via remote sensing. Chlorophyll solar-induced fluorescence emission 

spectral range [640-850 nm] is spectrally overlapping with sunlight reflected by vegetation 

canopies. Moreover, because of its small quantum yield which is typically between 0.5 and 3% 

and usually does not exceed 10% in vivo (Porcar-Castell et al., 2014), it represents a small 

fraction of the light reflected by vegetation canopies (e.g., 2-6% at 740 nm (Campbell et al., 

2008)). Nevertheless, the retrieval of SIF is possible in absorption bands of the incident 

radiation, where the SIF has a larger relative contribution to the total signal from the canopy. 
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Some techniques use the atmospheric oxygen O2A and O2B absorption bands located inside the 

SIF spectrum around 760 nm and 687 nm respectively, to quantify the SIF observed in these 

bands (Fournier et al., 2012; Moya et al., 2004). Other techniques utilize the Fraunhofer lines 

of the solar spectrum to retrieve the SIF (Frankenberg et al., 2011; Guanter et al., 2012). The 

development of these techniques allowed accurate retrievals of SIF from in situ (Cogliati et al., 

2015; Fournier et al., 2012), airborne (Rossini et al., 2015) and even spaceborne (Guanter et al., 

2012) sensors. This enabled to use SIF remote sensing for monitoring the functional state of 

vegetation, by early stress detection (Ač et al., 2015), tracking photosynthetic activity and 

estimating the gross primary production (Campbell et al., 2019; Guanter et al., 2014; X. Liu et 

al., 2019; Z. Liu et al., 2019; P. Yang et al., 2021). This potential of SIF led the European Space 

Agency (ESA) to select a satellite dedicated for SIF observation Fluorescence Explorer (FLEX) 

as its 8th Earth Explorer mission (Drusch et al., 2017). 

1.4 Modeling of SIF emission and observations 

Although SIF emission is highly correlated with instantaneous photosynthetic activity and gross 

primary production, it is also highly impacted by several other confounding factors. Indeed, it 

is directly linked with the PAR absorption, which depends on the sun direction, the atmospheric 

conditions and also the 3D architecture and optical properties of the canopy. Besides, the SIF 

emitted within the canopy interacts with all canopy elements and can undergo wavelength-

dependent phenomena such as scattering and re-absorption by the different canopy elements or 

the soil. Therefore, only a small fraction of the emitted SIF can escape from the canopy into the 

upward hemisphere and is measured by remote sensing sensors. These interactions greatly 

depend on the canopy 3D architecture of the canopy and on the wavelength. In addition, the 

SIF signal above the canopy (i.e., canopy SIF radiance) is anisotropic, which makes it more 

complex to extrapolate the SIF emission of the canopy from a single remote sensing observation. 

Therefore, for an accurate interpretation of SIF remote sensing observations, a comprehensive 

and deep understanding of three consecutive processes is essential. 1) Interception and 

absorption of photosynthetically active radiation by leaf pigments directly or after interacting 

with the atmosphere and all canopy elements. 2) Emission of SIF at photosystem level based 

on the absorbed PAR with a certain quantum efficiency that depends on photosynthetic and 
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heat dissipation efficiencies which in turn depend on local climatological conditions. 3) 

Propagation of SIF radiation through the canopies and its interaction with all canopy elements 

including leaves, soil, woody elements etc. until reaching the sensor. 

Models that accurately simulate SIF emission and observations are essential tools for 

understanding and interpreting the SIF measurements, and extracting useful information from 

them. For this objective, models should consider each of the many parameters (e.g., 3D 

architecture and optical properties of the canopy, illumination conditions, environmental 

parameters) that influence SIF emission. Second, models should accurately simulate the 

measured SIF signal as a function of the emitted SIF, the canopy properties and the observation 

configuration. Third, models should help in understanding the links between the within canopy 

SIF emission, the photosynthetic activity and the gross primary production of vegetation. 

Finally, models should allow performing sensitivity studies difficult or even impossible to do 

on real canopies. They should also allow the generation of synthetic databases or look-up tables 

that can be used by inversion algorithms to estimate SIF related parameters (e.g., fluorescence 

quantum efficiency) and other vegetation functional state parameters (e.g., CO2 assimilation 

rate, gross primary production). In short, they should allow to link the SIF measurements to the 

real-time photosynthetic activity. Among these models, we can distinguish leaf-level SIF 

models that simulate radiative transfer within the leaf to provide leaf-level SIF emission, and 

canopy level models that upscale the leaf-level SIF models to the canopy level by simulating 

within-canopy radiative transfer. 

1.4.1 Leaf-level modeling 

Leaf-level SIF models include semi-empirical models such as FluorMODleaf (Pedrós et al., 

2010) and Fluspect (Vilfan et al., 2016, 2018) that are based on the PROSPECT model 

(Jacquemoud & Baret, 1990). They simulate leaf hemispherical spectral optical properties and 

leaf SIF emission using the leaf biochemical properties and photosystem level fluorescence 

quantum efficiency as input parameters. Figure 1-2 shows an example of the output of the 

widely used leaf-level SIF model Fluspect. (Input parameters: chlorophyll content: 30 

𝜇𝑔. 𝑐𝑚−2, carotenoid content: 10 𝜇𝑔. 𝑐𝑚−2, dry matter content: 0.01 𝑔. 𝑐𝑚−2, equivalent water 

thickness: 0.012 𝑐𝑚, structure coefficient: 1.8, fluorescence yields: PSI: 0.002, PSII: 0.01). 

These are four excitation-emission fluorescence matrices. An element 𝑓𝑖,𝑗  of each matrix 

multiplied by the leaf irradiance 𝐸𝑖 at the spectral band 𝑖, gives the emitted SIF exitance 𝐹𝑖,𝑗 at 
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the spectral band 𝑗 induced by 𝐸𝑖. The leaf SIF exitance 𝐹𝑗 emitted at spectral band 𝑗 is the sum 

of the SIF exitance 𝐹𝑖,𝑗 due to all the 𝑁𝑒𝑥𝑐 excitation bands: 

𝐹𝑗 = ∑ 𝐸𝑖 . 𝑓𝑖,𝑗

𝑁𝑒𝑥𝑐

𝑖=1

 (1.1) 

The row vector of spectral SIF for the 𝑁𝑒𝑚 emission bands (𝐹𝑗)𝑗∈{1..𝑁𝑒𝑚}
 can be written as the 

product of the row vector spectral irradiance (𝐸𝑖)𝑖∈{1..𝑁𝑒𝑥𝑐}  by the SIF excitation-emission 

matrix (𝑓𝑖,𝑗)𝑖∈{1..𝑁𝑒𝑥𝑐}
𝑗∈{1..𝑁𝑒𝑚}

 for the corresponding excitation and fluorescent bands. According to the 

Stokes’ Law, if 𝑁𝑒𝑥𝑐 = 𝑁𝑒𝑚, these matrices should be upper triangular (i.e., 𝑓𝑖,𝑗 = 0, ∀ 𝑖 > 𝑗). 

However, they can have non-null very low values below the diagonal. This is not in 

contradiction with the energy conservation principle as explained in Section 1.1. 

 

Figure 1-2: Image representations of four fluorescence excitation-emission matrices at 1 nm 

spectral resolution simulated by the Fluspect model. White pixels represent exact 0 

values, black pixels represent positive values close to 0.  

Leaf SIF models also include 3D radiative transfer models that use accurate (Kallel, 2020b) or 

less accurate (Sušila & Nauš, 2007) 3D descriptions of the leaf to simulate within leaf radiative 
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transfer and to compute leaf spectral reflectance, transmittance and fluorescence. Leaf SIF 

models are usually combined with canopy radiative transfer models to upscale the SIF emission 

from leaf to canopy level. 

1.4.2 Canopy level modeling  

Ideally, a canopy-level SIF model should simulate accurately all the radiative and non-radiative 

processes that impact the SIF signal. Considering the accurate 3D architecture of vegetation 

canopies, it should simulate the propagation of sunlight to quantify the absorbed PAR, and the 

propagation of SIF radiation to estimate the measured signal. Moreover, it needs to compute 

the leaf-level SIF emission based on the absorbed PAR, possibly using a leaf-level SIF model, 

and considering the local parameters that influence SIF emission (e.g., leaf temperature). To 

this end, the full energy balance needs to be modeled with its radiative (i.e., full radiative budget 

from visible to thermal infrared domain), and non-radiative (e.g., photosynthesis, turbulence, 

heat exchanges) components. The existing SIF models that simulate the full energy balance are 

1D only. They make a very limiting assumption of horizontally homogenous canopies, 

neglecting the actual 3D structure of vegetation canopies. They represent the canopy by 

homogeneous turbid layers characterized by a Leaf Area Index (LAI) and a Leaf Angular 

Distribution (LAD). This is the case of the SCOPE model (van der Tol et al., 2009) and its 

multi-layered version mSCOPE (P. Yang et al., 2017). They use the Fluspect model to simulate 

dark-adapted leaf fluorescence, and then weight the SIF emission by multiplicative factors 

derived from a 1D energy balance algorithm in order to consider the effect of local climatology 

on SIF emission. These models are, to some extent, adapted for homogeneous and closed crop 

canopies, but they are much less adapted for forest heterogeneous covers and crop canopies 

with a clear row distribution that can provoke important effects related to 3D structure both for 

radiation absorption and remote sensing observations. They also neglect some canopy elements 

such as woody elements and local topography. In recent years, several 3D canopy SIF models 

have been developed. They usually result from already existing 3D radiative transfer models 

combined with a leaf-level SIF model. For instance, FluorFLIGHT (Hernández-Clemente et al., 

2017) is based on the FLIGHT model (North, 1996), FLiES-SIF (Sakai et al., 2020) and 

FluorFLiES (Gao et al., 2022) are based on the FLiES (Kobayashi & Iwabuchi, 2008) model, 

the FluLCVRT (Kallel, 2020b) is based on the LCVRT model (Kallel, 2020a) and FluorWPS 

(Zhao et al., 2016) is based on the WPS model (Zhao et al., 2015). However, none of these 
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models simulate the full 3D energy balance. Hence, they cannot compute the multiplicative 

factors to get the steady state leaf SIF from the dark-adapted leaf SIF based on the local 

climatology. It is left up to the user to input directly the steady state fluorescence quantum 

efficiency, which is challenging to measure for all the leaves. This is also the case for the DART 

model. However, the latter offers the possibility to import fluorescence multiplicative factors 

computed by other models (e.g., the 𝜂 factors computed by SCOPE) to weight the leaf SIF 

emission according to the local climatology. Obviously, importing information from a 1D 

model (SCOPE) to a 3D model (DART) is only an approximation. For example, the 𝜂 factor 

can have a large horizontal variation depending on the local conditions of each individual leaf. 

1.5 DART model  

DART (Discrete Anisotropic Radiative Transfer) is one of the most comprehensive 3D 

radiative transfer models in optical remote sensing domain. It is developed in CESBIO (Centre 

d’Etudes Spatiales de la BIOsphère) since 1992. It simulates the 3D radiative budget and remote 

sensing observations from ultraviolet to thermal infrared of any natural or urban 3D landscape 

for any experimental configuration (e.g., sun direction, atmosphere, etc.) and instrumental 

configuration (e.g., viewing direction, spatial resolution, etc.) for spaceborne, airborne and in 

situ imaging spectro-radiometers (scanners, cameras, etc.) and LiDAR (Light Detection And 

Ranging). To this end, DART has four main modules: 1) “Directions” is used for subdividing 

the 4𝜋 space into a finite number 𝑁 of discrete directions Ω𝑛 having solid angles ΔΩ𝑛and 𝑃 

(𝑃 ≤ 𝑁) angular sectors. 2) “Phase” is used for computing the optical properties, temperature 

properties and phase functions for the user defined surfaces and volumes, and for the specified 

spectral bands. 3) “Maket” is used to create the mock-up from the user-defined scene elements. 

A Python toolbox, called “DAO” is also provided with DART to allow the automatic creation 

of mock-ups directly from external data such as 3D LAI information derived from LiDAR data. 

It can replace the “Maket” module that is in general used with the graphical user interface. 4) 

“Dart” is the module that simulates radiative transfer in the scene using geometric and optical 

information generated by the three pervious modules in order to generate the user-selected 

radiative products (e.g., 3D radiative budget and / or remote sensing signal). Each DART 

spectral band can have any of three radiation modes: 1) R mode: the sun is the only source of 
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radiation. 2) T mode: thermal emission of scene elements and the atmosphere is the only source 

of radiation. 3) R + T mode: both the solar radiation and thermal emission are considered. 

Moreover, three modes (i.e., DART-FT, DART-RC and DART-Lux) are used to simulate 

radiative transfer in the 3D scenes. These modes are presented in the next sub-sections.  

 

1.5.1 DART-FT 

DART-FT is the standard mode of DART. It is called FT, as Flux Tracking, because it tracks 

radiation using an adaptation of the discrete ordinates method in a finite number 𝑁 of discrete 

directions (Ω𝑛, ΔΩ𝑛) over the 4𝜋 space (Yin et al., 2013) in a scene made of voxels (Figure 

1-3). This approach is iterative: radiation intercepted at iteration 𝑖 is scattered at iteration 𝑖 + 1. 

Using the pure discrete ordinates method, each ray intercepted at a given iteration would give 

rise to 𝑁 scattered rays at the following iteration, which would result in an exponential growth 

of the number of tracked rays, and therefore a huge and unmanageable number of rays. To avoid 

this exponential growth, pragmatic approximation approaches such as the use of barycenters of 

scattering points on surfaces and in voxels are used, which greatly reduces the number of 

scattering points, and consequently the number of scattered rays. The DART-FT mode has two 

major limitations. 1) It is not efficient in terms of computation time and memory usage for 

image simulation. It spends computation resources to track and to store every single ray even 

if this ray has not a real contribution to the signal of interest. 2) The discretization of the 4𝜋 

space into a finite number of discrete directions and the inevitable use of approximations to 

limit the number of rays is a source of inaccuracies and discretization artefacts. On the other 

hand, since all the radiation is tracked inside the scene, it is possible to know the amount of 

radiation that is intercepted, scattered or absorbed everywhere in the scene. Therefore, DART-

FT is efficient for simulating the radiation budget of canopies. Moreover, because of its iterative 

approach, a single simulation can provide products at different scattering orders. In addition, an 

iterative process extrapolates the last iteration orders to the infinite scattering order. 

The initial version of DART was only adapted to 3D vegetation canopies made of voxels either 

empty or filled with turbid medium, and to radiation in the shortwaves (Gastellu-Etchegorry et 

al., 1996). Other modelling processes were introduced later: use of facets to simulate surface 

elements in the voxelized scene (Gastellu-Etchegorry et al., 2004), radiative transfer in the 

atmosphere (Gascon et al., 2001), thermal emission for simulating the remote sensing signal 
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and radiative budget in the thermal infrared domain (Guillevic et al., 2003), and solar induced 

fluorescence (Gastellu-Etchegorry et al., 2017). 

1.5.2 DART-RC  

DART-RC is the DART radiative transfer mode for simulating the LiDAR signal of 3D scenes 

(Gastellu-Etchegorry et al., 2015) simulated by an array of voxels. It tracks radiation using a 

combination of the discrete ordinates method and forward Monte Carlo ray tracing. Its products 

include several types of LiDAR products (e.g., waveforms, point clouds, photon counting). 

1.5.3 DART-Lux 

Since 2018, DART includes a new mode called DART-Lux (Wang et al., 2022). It is a bi-

directional Monte Carlo radiative transfer method based on the open-source rendering engine 

LuxCoreRender (https://luxcorerender.org). DART-Lux uses Monte Carlo integration 

techniques to solve the Light Transport Equation. Monte Carlo integration is an integration 

method that allows to estimate the integral of a given function using only random sampling of 

points in the definition domain of this function and the evaluation of the function in these points. 

The naïve Monte Carlo estimator for the integral 𝐼 = ∫ 𝑓(𝑥). 𝑑𝑥
𝑏

𝑎
 of the 1D function 𝑓 is:  

𝐼 =
𝑏 − 𝑎

𝑁
∑𝑓(𝑥𝑖)

𝑁

𝑖=1

 (1.2) 

with {𝑥1, … , 𝑥𝑁} are points uniformly sampled over the interval [𝑎, 𝑏]. 

This estimator is not biased: its expected value is the real value 𝐼 of the integral (cf. Appendix 

1-1). Therefore, it converges towards the real value when the number of samples is large enough. 

The sampling of 𝑥𝑖 can be done using any probability distribution function (PDF) 𝑝(𝑥), apart 

from the uniform distribution. In this case, the Monte Carlo estimator becomes:  

𝐼𝑝̂ =
1

𝑁
∑

𝑓(𝑥𝑖)

𝑝(𝑥𝑖)

𝑁

𝑖=1

 (1.3) 

Ideally, the PDF should be chosen such that it has a similar shape to 𝑓. This technique is called 

“Importance Sampling” and is used to reduce the variance of Monte Carlo estimators. 

https://luxcorerender.org/
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The Monte Carlo integration method can easily be extended to estimate integrals over high 

dimensional integration domains. Its algorithmic complexity does not change with the 

dimension of the domains as it only depends on the number of sampled points. Therefore, it can 

be used to compute the radiance measurement 𝐿(𝑗) of pixel 𝑗 of a simulated image given by the 

integral form of the Light Transport Equation:  

𝐿(𝑗) = ∫ 𝐶(𝑗)(𝑝̅).𝑑𝐴(𝑝̅)
𝒟

 (1.4) 

- 𝑝̅: light transport path. 𝑝̅𝑘=(𝑝0,…, 𝑝𝑘) is a path of length 𝑘 (i.e., 𝑘 segments and 𝑘+1 vertices 

𝑝𝑖 with 𝑖[0, 𝑘]). 

- 𝒟: set of all possible light paths. 𝒟=⋃ 𝒟𝑘
∞

𝑘=1 , with 𝒟𝑘 the set of all paths 𝑝̅𝑘 of length 𝑘. 

- 𝑑𝐴(𝑝̅): area product for path 𝑝̅; e.g., 𝑑𝐴(𝑝̅𝑘)=𝑑𝐴(𝑝0)…𝑑𝐴(𝑝𝑘) with area 𝑑𝐴(𝑝𝑖) at vertex 𝑖. 

- 𝐶(𝑗)(𝑝̅): contribution function of path 𝑝̅ to the measurement 𝐿(𝑗) of pixel 𝑗. 

When sampling random light paths for the Monte Carlo estimator of pixel radiance using the 

importance sampling technique, paths with higher contribution to the pixel radiance have higher 

chances to be sampled. The light path sampling starts from the light source (i.e., forward 

direction) and from the sensor (i.e., backward direction). Forward tracing is more efficient for 

sampling light sources with narrow solid angle of illumination and backward tracing for sensors 

with narrow fields of view (FOV) (Disney et al., 2000). The bi-directional tracing combines the 

forward and backward tracing and allows to benefit from the advantages of the two methods. 

Unlike the discrete ordinates method that spends computational resources to track all radiation 

over the scene even if it has a negligeable impact on the simulated observation, the bi-

directional path tracing (BDPT) algorithm, by sampling with higher probability light paths that 

have higher contribution to the image, it allows to preferentially track rays that contribute most 

to the required observations which makes it more computationally efficient for images 

simulation. Moreover, because its algorithmic complexity does not depend on the scene 

complexity, it is more and more efficient for large and complex scenes. DART-Lux takes 

advantage of the development of rendering algorithms in computer graphics. The BDPT 

algorithm implementation of the physical renderer LuxCoreRender has been selected and 

adapted to the remote sensing field, in the comprehensive and user-friendly framework of 

DART. The initial goal of the DART team was to introduce most of the functionalities of 

DART-FT and DART-RC into DART-Lux, with improved accuracy and lower computer and 

memory requirements, within the framework of DART and with the ability to switch seamlessly 
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between modes. To this end, many physical and technical improvements and adaptations had 

to be made. Ten major modelling developments are listed here. 1) To overcome the hard coded 

3-channel RGB limit in LuxCoreRender for simulations with any number of spectral bands. 2) 

To simulate radiance and reflectance remote sensing images (Wang et al., 2022; Wang & 

Gastellu-Etchegorry, 2021). 3) To support input and output formats of the DART framework. 

(DAO, SQL databases, images, etc.). 4) To implement radiative transfer modelling in the 

atmosphere in order to simulate BOA and TOA images. 5) To simulate LiDAR signal (X. Yang 

et al., 2022). 6) To simulate polarization mechanisms. 7) To implement the modeling of 

radiative transfer in scenes made of volumes filled with turbid medium and fluids. 8) To model 

solar-induced fluorescence. 9) To model thermal emission by the scene elements and the 

atmosphere. 10) To model the 3D radiative budget of 3D scenes.  

Compared to DART-FT, DART-Lux greatly reduces computation time and memory needs for 

image simulation of large and complex scenes. It also usually improves accuracy and avoids 

artefacts due to discretization as it eliminates processes such as discretizing the 4π space, 

voxelizing the 3D scene (Figure 1-3) and combining rays to reduce their number. 

a)        b)
 

Figure 1-3: a) DART-FT voxelized scene b) DART-Lux scene: voxels are no more needed 

1.6 Conclusion 

This chapter presented historical and theoretical aspects about the fluorescence, and in 

particular chlorophyll solar-induced fluorescence and its great potential for monitoring real-

time vegetation functioning status. It also presented the DART model, and in particular the 

DART-Lux mode and its BDPT algorithm which will be of interest in the next chapters. 
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Appendix 1-2: Nomenclature  

Symbol Description  Unit 

𝐸𝑖 Irradiance at the spectral band 𝑖 𝑊.𝑚−2. 𝜇𝑚−1 

𝐹𝑗 SIF exitance at the spectral band 𝑗 𝑊.𝑚−2. 𝜇𝑚−1 

𝑓𝑖,𝑗 Fluorescence matrix element for excitation band 𝑖 and 

emission band 𝑗 

- 

𝐹𝑖,𝑗 SIF exitance at the spectral band 𝑗 due to the excitation 

at the spectral band 𝑖 

𝑊.𝑚−2. 𝜇𝑚−1 

Appendix 1-1: Expected values of 𝑰̂ and 𝑰𝒑̂  
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𝐼 Monte Carlo estimator of the integral 𝐼  using the 

uniform probability density function. 

- 

𝐼𝑝̂ Monte Carlo estimator of the integral 𝐼  using the 

probability density function 𝑝. 

- 

𝐿(𝑗) Radiance measurement of pixel 𝑗  𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝑁𝑒𝑚 Number of emission bands - 

𝑁𝑒𝑥𝑐 Number of excitation bands - 
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DART-FT is the initial DART mode that simulates radiative transfer based on the discrete 

ordinates method. It has two possible representations of vegetation: facets-based 3D objects 

representation and 3D voxelized turbid representation. In this chapter, the two approaches used 

for modeling the SIF emission and radiation propagation in DART-FT for the facets and turbid 

representations are presented. The first section is dedicated to the facets-based SIF simulation. 

It was the subject of a publication included in this thesis in which I am the second author. My 

main contribution was to design and prepare DART and SCOPE/mSCOPE simulations for 

comparing their simulations of the SIF signal, using the 1D models as reference models, as are 

generally accepted in the community. The second section presents SIF modeling in vegetation 

simulated as turbid medium. I participated in the design of this new modelling and implemented 

it in DART. 

2.1 Vegetation simulated as facets 

2.1.1 Modeling approach 

The implementation of SIF emission in DART-FT for vegetation simulated as facets consisted 

in imbedding the leaf-level SIF model Fluspect into DART-FT. Fluspect gives SIF excitation-

emission matrices at 1 nm spectral resolution that are resampled to the user-specified spectral 

Chapter 2  

SIF modeling in DART-FT 
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bands of the DART simulation. It is important to note that the excitation spectral bands should 

cover all the excitation spectral interval (i.e., [400 – 750 nm]) otherwise the SIF will be 

underestimated, and should not overlap otherwise the SIF will be overestimated. To include the 

SIF radiation, radiation fluxes vectors have 3 components: total flux components, and two SIF 

components for the photosystems PSI and PSII, respectively. Radiation fluxes with these 3 

components are mechanistically tracked in the forward direction within the scene. Intercepted 

by a non-fluorescent or a fluorescent surface, the total, PSI and PSII radiation flux components 

are scattered or absorbed in the same way as the total flux. If the interacting surface is 

fluorescent, SIF radiation is added to the scattered PSI and PSII radiation components. This 

added SIF radiation is simulated by multiplying the total leaf irradiance by the relevant SIF 

excitation-emission matrix (PSI or PSII, backward or forward). The article of Malenovský et 

al. (2021) in Section 2.1.3 gives further details about SIF modeling in DART-FT for vegetation 

simulated as facets. 

2.1.2 Results 

Ideally, a radiative transfer model should be compared to real field measurements to assess its 

consistency. However, this comparison is very challenging in general, especially for 3D models. 

In order to be consistent with the very tiny and anisotropic SIF signal, a relevant comparison of 

a 3D SIF radiative transfer model with field measurement requires: 1) accurate 3D scene 

reconstruction that accounts for the field geometry and the plants 3D architecture, 2) bottom of 

atmosphere spectral irradiance with a good spectral resolution (i.e., ≤1 nm), or accurate 

atmosphere parameters to simulate radiative transfer in the atmosphere, 3) steady-state 

fluorescence quantum efficiency at photosystems level or dark-adapted fluorescence quantum 

efficiency along with 𝜂 multiplicative factors computed by a 3D energy balance model, 4) scene 

elements optical properties including leaves optical properties (i.e., spectral reflectance and 

transmittance) that need to inverted to retrieve the Fluspect input parameters to compute the 

leaf level fluorescence matrices. Most of these input parameters are not straightforward to 

obtain and require long processes. For instance, the fluorescence quantum efficiency, a major 

key parameter that drives SIF emission, is highly variable in time and space and is challenging 

to measure. Hence, although several SIF measurements are available at different levels (in-situ, 

airborne, satellite), a complete dataset ready to use for comparison with 3D radiative transfer 

models was not available. Therefore, in order to assess the accuracy of DART-FT SIF modeling, 
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we performed a model-to-model comparison with a model that is considered as a reference SIF 

model in the community. The agreement of two models that use completely different 

approaches can be a first assessment of the models’ consistency provided that they are tested in 

exactly the same conditions. Unfortunately, the only reference model is 1D only. This approach 

does not replace the need of comparisons with real field SIF measurements. Bearing this in 

mind, we have compared the SIF modeling in DART-FT with SCOPE (van der Tol et al., 2009) 

and its multi-layered version mSCOPE (P. Yang et al., 2017). They are 1D models and are 

considered as a “reference” for SIF modeling. They represent vegetation as homogeneous turbid 

layers, with a possible vertical heterogeneity in mSCOPE. Turbid medium is a statistical 

representation of vegetation using a leaf area volumetric density 𝑢𝑙  (𝑚
2. 𝑚−3) and a Leaf 

Angular Distribution (LAD) 
𝑔(𝜃𝑙)

2𝜋
. It is equivalent to an infinite number of infinitely small plane 

elements distributed according to 
𝑔(𝜃𝑙)

2𝜋
 and having a total area per volume unit equal to 𝑢𝑙. To 

approximate this representation, the equivalent DART mock-up is constructed as a “quasi-

turbid” medium: a cloud of very small facets distributed according to the same LAD 
𝑔(𝜃𝑙)

2𝜋
 and 

having a total area per volume unit equal to 𝑢𝑙. The comparison of DART-FT simulation for 

quasi-turbid medium with SCOPE and mSCOPE showed a good agreement between the models, 

as presented in the article of Malenovský et al., (2021). (cf. Section 2.1.3) 

2.1.3 Article:  
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1. Introduction 1 

The potential for airborne and spaceborne monitoring of plant productivity has motivated 2 

optical remote sensing (RS) scientists since the launch of first Earth observing satellites (Ashley 3 

and Rea 1975; Blair and Baumgardner 1977). The faint signal of chlorophyll a fluorescence 4 

has been the target of vegetation RS for several decades (Rosema et al. 1991). Although recent 5 

technological advances in narrow-band imaging spectroscopy provide the first estimates of 6 

solar-induced chlorophyll fluorescence (SIF) from space (Frankenberg et al. 2011; Guanter et 7 

al. 2007; Joiner et al. 2011), the retrieval and use of the subtle SIF signal emitted in the red and 8 

near-infrared spectral regions to assess plant productivity is fraught with natural complexity of 9 

vegetated landscapes. Hence, RS applications of SIF, including physiological principles, 10 

instruments, measurement techniques and computer models (Mohammed et al. 2019), need a 11 

further development to improve our understanding and correct interpretation of the diurnal, 12 

seasonal, and interannual variabilities in the SIF signal observed with RS instruments at local, 13 

regional and global spatial scales. In particular, SIF variability originating from multiple 14 

scattering and reabsorption within structurally complex vegetation canopies is poorly 15 

understood, as are optical interactions in topographically rough and spatially heterogeneous 16 

natural and man-made landscapes (Zhang et al. 2020). 17 

Radiative transfer modelling is a well-established and inseparable part of modern optical 18 

RS methods (Myneni and Ross 2012). Computer simulated radiative transfer in vegetation 19 

(Widlowski et al. 2015) has been used for local and global sensitivity analyses of various RS 20 

phenomena (e.g., Malenovský et al. 2008; Verrelst and Rivera 2017; Verrelst et al. 2010), and 21 

also for retrieval and interpretation of quantitative vegetation descriptors from remotely sensed 22 

spectral observations obtained through various inversion procedures (e.g., Croft et al. 2020; 23 

Malenovský et al. 2013; Verrelst et al. 2019). One of the most frequently used and well-24 

established leaf-scale RTMs is PROSPECT (Féret et al. 2020; Féret et al. 2017; Jacquemoud 25 

and Baret 1990; Malenovský et al. 2006). Its first clone designed to simulate the chlorophyll-a 26 

fluorescence emission in plant leaves was FluorMODleaf (Pedrós et al. 2010), followed by 27 

computationally simpler Fluspect-B (Vilfan et al. 2016) and Fluspect-Cx (Vilfan et al. 2018). 28 

The Fluspect models reproduce leaf optical properties between 400 and 2500 nm together with 29 

3D matrices of forward- and backward-emitted SIF per wavelength of photosynthetically active 30 

radiation (PAR) incident on the adaxial side of a dark-adapted leaf. Besides these semi-31 

empirical models, physical 3D leaf fluorescence RTMs have been developed, e.g., the Monte 32 
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Carlo (MC) Photon Transport (Sušila and Nauš 2007) or the Fluorescence Leaf Canopy Vector 33 

Radiative Transfer model (Kallel 2020). The MC models are, however, computationally 34 

demanding and, therefore, less suitable for an operational use in routine applications. 35 

Models of SIF radiative transfer are developed hand-in-hand with the RS experimental 36 

work conducted at leaf as well as canopy scales (Aasen et al. 2019). Leaf RTMs are usually 37 

embedded in canopy-scale RTMs that can be classified according to the canopy representation 38 

as one-dimensional (1D) or three-dimensional (3D). Strengths and weaknesses of available 39 

canopy RTM types are reviewed in Malenovský et al. (2019). 1D models, such as SAIL 40 

(Verhoef 1984), were designed for a horizontally homogeneous canopy with structural, optical 41 

and biochemical variability only in the vertical dimension (e.g., mono-species crops). The most 42 

frequently used SIF model for 1D canopies is a SAIL’s successor called SCOPE (van der Tol 43 

et al. 2009; van der Tol et al. 2019; Yang et al. 2020a), recently extended for multi-layered 44 

canopies as mSCOPE (Yang et al. 2017). Both SCOPE models are not modelling just radiance 45 

and SIF transfer but also soil-vegetation-atmosphere temperature and energy balances, 46 

including photosynthetic processes. SCOPE is frequently used for its simplicity and robustness, 47 

but its 1D architecture is unsuitable for complex multi-species ecosystems with structurally 48 

heterogeneous canopy layers and rough topography (e.g., boreal forests or savannas; Liu et al. 49 

2019a). Therefore, several 3D RTMs have been equipped with the ability to scale SIF from 50 

leaves to canopies to better capture the influence of structural heterogeneity of vegetation 51 

canopies. FluorWPS is a 3D MC ray-tracing SIF model (Zhao et al. 2016) that was developed 52 

and tested on 3D agricultural crops (Tong et al. 2021). Flux tracking of SIF simulated in the 53 

Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al. 1996) was 54 

used to assess its multi-angular anisotropy in 3D maize canopies (Gastellu-Etchegorry et al. 55 

2017). The FluorFLIGHT 3D model, developed from FLIGHT (North 1996), supported 56 

assessment of Mediterranean oak forest water stress and Phytophthora infections from airborne 57 

SIF data (Hernández-Clemente et al. 2017). Finally, the FLiES MC model (Sakai et al. 2020) 58 

was used to interpret space-borne SIF of Amazonian forests (Köhler et al. 2018).  59 

Despite the fact that all RTMs rely on simplifications and assumptions, they are powerful 60 

tools to investigate the optical interactions of SIF, which is needed for scaling and interpretation 61 

of the SIF signals acquired by proximal, airborne and spaceborne instruments (Bendig et al. 62 

2020; Gamon et al. 2019; Wyber et al. 2017). The main goal of this paper is to demonstrate the 63 

ability of the DART model coupled with Fluspect-Cx to assess the influence of canopy 3D 64 
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architecture on the top-of-canopy SIF (SIFTOC) for cropland and forested environments that are 65 

difficult or even infeasible to investigate directly. DART simulations in this study address three 66 

primary research questions. First, in absence of a suitable 3D validation measurements and to 67 

verify their modelling consistency, do the DART, SCOPE and mSCOPE models provide 68 

comparable estimates of SIFTOC for structurally homogenous vegetation in form of a turbid 69 

medium? Second, what is the SIFTOC impact originating from biochemical leaf fluorescence 70 

efficiencies (fqe), varying for sun- and shade-adapted leaves, in comparison to increasing leaf 71 

density and clumping of maize (Zea mays L.) canopies? And third, what are the effects of woody 72 

trunks and branches on simulated SIFTOC, SIF fluxes and escape factors from 3D forest 73 

abstractions of dense and sparse Australian white peppermint (Eucalyptus pulchella) stands? 74 

2. Material and Methods 75 

2.1 Implementation of leaf chlorophyll fluorescence in DART 76 

We used the 3D DART model as the pilot RTM of this study. DART, being developed by 77 

researchers from the CESBIO Laboratory in Toulouse for more than 20 years (Gastellu-78 

Etchegorry et al. 1996), was successfully cross compared with other state-of-the-art RTMs 79 

within the RAMI exercise (Widlowski et al. 2015). It produces at-sensor top-of-atmosphere 80 

(TOA) and bottom-of-atmosphere (BOA) multi-angular RS images by tracking optical and 81 

thermal photon fluxes through any type of 3D landscape with atmosphere (Gastellu-Etchegorry 82 

et al. 2015). Additionally, it calculates the  quantitative 3D radiative budget, i.e., fluxes of 83 

intercepted, absorbed, reflected and emitted radiation, in the optical spectral domain (400-2500 84 

nm) (Gastellu-Etchegorry et al. 2004). The presence of woody material was implemented in 85 

DART in 2008 (Malenovský et al. 2008), and radiative transfer of Fluspect-Cx modelled SIF 86 

emissions in 2017 (Gastellu-Etchegorry et al. 2017). The Fluspect-Cx implementation followed 87 

the approach that was previously applied to couple DART with the PROSPECT-D model (Féret 88 

et al. 2017), taking advantage of both models’ computational similarities and commonalities in 89 

input/output handling. The DART version 5.7.3, used in this work, simulates SIF radiative 90 

transfer and budget for 3D vegetation canopies constructed from geometrically explicit 91 

triangular objects (facets). Based on user-defined input parameters (i.e., leaf chlorophyll a+b, 92 

total carotenoid and brown pigment contents, equivalent water thickness, dry leaf mass per area, 93 

leaf mesophyll structural parameter and specific fluorescence efficiencies), Fluspect generates 94 

four SIF matrices (Mxyij), where x is the photosystem PSI or PSII, y is the backward or forward 95 
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direction relative to radiation incident direction, i is the 1 nm excitation band in the 96 

photosynthetically active spectral region from 400 to 750 nm (i ϵ [1 I]), and j is the 1 nm emitted 97 

SIF band (j ϵ [1 J]) in the spectral region from 640 to 850 nm. Consequently, the Fluspect SIF 98 

leaf exitance (Fxyj) at band j (1 nm bandwidth) due to irradiance (Ei) in band i is:  99 

Fxyj = Mxyij.Ei.                                                                 (1) 100 

In contrast to Fluspect, DART works with any number of spectral bands that can have any 101 

bandwidth, for example with U excitation bands λu and V fluorescence bands λv. Hence, in 102 

DART, a leaf irradiance (Eu) leads to the leaf exitance:  103 

Fxyv = Mxyuv.Eu,                                                                (2) 104 

where Mxyuv is derived from the Fluspect matrices (Mxyij) using an interpolation on spectral 105 

bands (Δλu = Σαui.Δλi, Δλv = Σβuj.Δλj) and the two-step weighted arithmetic averaging: 106 

Mxy𝑢𝑣 = 
∑ 𝛽𝑢𝑗.∆𝜆𝑗.Mxy𝑢𝑗𝑗

∑ 𝛽𝑢𝑗.∆𝜆𝑗𝑗
 , where                                                 (3) 107 

Mxy𝑢𝑗 = 
∑ 𝛼𝑢𝑖.∆𝜆𝑖.Mxy𝑖𝑗𝑖

∑ 𝛼𝑢𝑖.∆𝜆𝑖𝑖
.                                                          (4) 108 

DART spectral leaf SIF exitance is accurate only if the u bands cover the entire SIF excitation 109 

spectral interval and if they do not overlap. Similarly, it simulates the whole SIF domain only 110 

if the v bands cover the whole SIF emission spectral interval. 111 

The Fluspect calibration optical parameters (i.e., specific absorption coefficients, refractive 112 

index of mesophyll cell walls and water, etc.) are stored in an external table called Optipar. We 113 

used the Optipar table released in 2015. Additionally to the standard PROSPECT leaf 114 

biochemical and structural inputs, Fluspect requires leaf fluorescence quantum efficiencies 115 

(fqe), in DART referred to as fluorescence yields, for PSI and PSII. The specification of fqe 116 

values in DART is flexible. They can be entered per individual foliage facet or specified as 117 

general parameters that represent all leaves or a group of leaves in a given canopy. Biologically 118 

meaningful foliage groups are, for instance, sunlit (i.e., leaves exposed to direct sun radiation) 119 

and shaded leaves (i.e., leaves in the shadow of other phytoelements), or sun-adapted (i.e., 120 

leaves exposed most of the time to a direct sun radiation and subsequently adapting their 121 

pigment pools for a high photoprotective capacity) and shade-adapted leaves (i.e., leaves 122 

growing most of their lifespan under a low-intensity diffuse light and consequently having no 123 

need for a high photoprotective capacity). It is important to keep in mind that a momentarily 124 
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shaded leaf can actually be sun-adapted and vice versa, depending on its instantaneous and total 125 

diurnal illumination. 126 

The implementation of DART chlorophyll fluorescence emission Fxyv (Eq. 2) does not 127 

account for the microclimatic conditions influencing the actual leaf photosynthetic activity. 128 

However, Fxyv can be in a vertical canopy profile additionally weighted by an eta parameter, 129 

which adjusts the leaf SIF exitance according to actual local temperature, humidity, wind 130 

aerodynamics and other microclimatic environmental conditions. Similar to fqe, the eta profile 131 

can be inserted either for a whole canopy, per a foliage group, or per pre-defined leaf groups. 132 

Since DART modelling does not contain soil-vegetation-atmosphere transfer (SVAT) of 133 

energy, the eta parameter must be precomputed out of DART with a SVAT model (e.g., 134 

SCOPE; van der Tol et al. 2009) that considers dynamic meteorological factors as active parts 135 

in computation of the energy balance. DART simulates the total and the per-photosystem 136 

SIFTOC radiance and TOC reflectance using the N-flux tracking transfer. Technical details about 137 

the SIF flux tracking in DART are available in the DART User’s Manual (Chapter III.2.2.d; 138 

DART 2020), while DART physical principles and mathematical descriptions are detailed in 139 

the DART Handbook (DART 2019). 140 

2.2 Comparison of DART and SCOPE/mSCOPE SIF radiative transfers 141 

In absence of a suitable empirical verification data, we compared the DART SIFTOC signal 142 

with comparable outcomes produced by the SCOPE model and its multi-layer extension, 143 

mSCOPE (both in version 1.62). SCOPE is a broadly accepted model that has been previously 144 

confronted and validated with SIFTOC measurements of agricultural crops (van der Tol et al. 145 

2016). It simulates vegetation canopy as a turbid medium of infinitely small leaves distributed 146 

in 60 horizontally homogeneous vertical layers (Yang et al. 2017), all of them with the same 147 

predefined leaf biochemical and canopy structural parameters. mSCOPE allows users to divide 148 

canopy into multiple horizontal layers and to assign to each one specific leaf optical properties 149 

and LAI. The methodology and graphical outputs of the DART and SCOPE/mSCOPE SIF 150 

radiative transfer comparison are, due to a large extent, provided in Appendix A. 151 

2.3 DART modelled influence of geometrically explicit plant canopy structures on SIF  152 

DART works with detailed and spatially explicit 3D representations of plant foliage and 153 

other canopy elements (e.g., trunks and branches), and can be, therefore, used to investigate 154 

how the structural components modulate the simulated SIFTOC signal through optical photon 155 
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interactions as well as via foliage shading and physiological adaptations to prevailing 156 

photosynthetic light intensity. For this purpose, we built two realistic but structurally different 157 

mono-species canopies: i) an agricultural field of 1 m tall maize plants with eight leaves, created 158 

with the open source graphical software Blender (Blender 2007) according to a template 159 

produced by the plant architecture modelling L-system OpenAlea (Pradal et al. 2008), and ii) a 160 

16 m tall forest stand of white peppermint trees, created from terrestrial laser scans of real trees 161 

(Janoutová et al. 2019) growing in southern Tasmania (Australia). 3D landscapes were built as 162 

juxtaposed scenes located at the same Latitude of 39.03°N and Longitude of 76.85°W 163 

(Maryland, USA) as previous simulations, with the solar angles for 10th July 2014 for the test 164 

of foliage sun and shade adaptation and for 26th August 2014 at 14.00 of local time (without the 165 

daylight saving) for tests of maize canopy clumping and eucalypt wood influence. All canopies 166 

were illuminated by the same DART-simulated BOA direct and diffuse solar irradiance, as 167 

described in the previous section 2.2. Ground of the 3D scenes was optically defined as the 168 

Lambertian loamy gravel brown dark soil with a linearly increasing reflectance ( ≈ 6% at 550 169 

nm,  ≈ 12% at 686 nm and  ≈ 15% at 740 nm). 170 

2.3.1 Distinction and influence of sun- and shade-adapted foliage in maize crops 171 

As explained by Nobel (1976) or Givnish (1988), leaves growing in a shaded environment 172 

are biochemically and anatomically different from those exposed for most of the day to direct 173 

solar irradiation. DART users can consider these differences and their influence on SIFTOC by 174 

classifying the facets of 3D vegetation leaves in several classes, for which leaf optical or 175 

biochemical properties (including fqe and eta parameters) can be defined separately. The final 176 

number of classes depends on the structural complexity of canopies and the availability of 177 

measurements to support the detailed foliar parameterization. A simple two-class classification 178 

would split leaf facets into just sun- and shade-adapted cohorts (DART 2020), considering a 179 

long-term cumulative leave irradiance as the main driving force. 180 

DART calculates intercepted, absorbed, reflected and emitted radiation, i.e. radiative 181 

budget, per 3D cell of the simulated scene and also for each surface facet in the scene (Gastellu-182 

Etchegorry 2008), which can be used to distinguish between the sun- and shade-adapted leaf 183 

cohorts. The intercepted radiation flux E(λ) [W.m-2] can be converted into photosynthetic 184 

photon flux density Q (PPFD) [mol.photons.m-2.s-1] by integrating the intercepted PAR 185 

(iPAR) per leaf facet as follows: 186 
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    Q = ∫ 𝐸(𝜆)⋅𝑑𝜆
 

Δ𝜆𝑖
⋅
∫ 𝐿𝐵(𝑇,𝜆)⋅

𝜆

ℎ⋅𝑐
⋅
106

𝑁𝑎
⋅𝑑𝜆

0.75µ𝑚
0.4µ𝑚

∫ 𝐿𝐵(𝑇,𝜆)⋅𝑑𝜆
0.75µ𝑚
0.4µ𝑚

,                                      (5) 187 

where 𝐿𝐵(𝑇, 𝜆) is Planck's law at temperature T (T = 5800 K) and wavelength 𝜆 [m], h is 188 

Planck’s constant [J.s], c is speed of light [m.s-1], Na is Avogadro's constant [mole-1], and ∫  
 

Δ𝜆𝑖
 189 

is the PAR spectral range from 400 to 750 nm. The Q value depends on the ratio of direct and 190 

diffuse irradiance spectrum, leaf optical properties and PAR multiple scattering. Influenced by 191 

literature findings about the potential of Q for differentiating sun- and shade-adapted leaves 192 

(Leuning et al. 1995; Niinemets et al. 2015), the following two classification algorithms were 193 

designed: i) a frequency double-threshold and ii) a probability distribution approach. Both 194 

methods are based on simulated leaf PAR irradiance values for T time steps during i days, with 195 

T being small enough to ensure an adequate angular sampling of leaf irradiance variation during 196 

the simulated days. 197 

The first double-threshold approach asks user to specify high QH and low QL classification 198 

thresholds. The facets are then categorized at each time step T into the three groups: i) H for 199 

Q > QH, ii) L for Q < QL, and iii) M for QH > Q > QL. The number of occasions when a leaf 200 

facet appeared in each of these groups during the simulated day i is counted, resulting in [N𝐻,𝑖, 201 

N𝑀,𝑖, N𝐿,𝑖] with N𝐻,𝑖 + N𝑀,𝑖 + N𝐿,𝑖 = 𝑇. Subsequently, a leaf facet is labelled as sun-adapted 202 

(i.e., 𝐶𝑓,𝑖 = 1, with 𝑓 ∈ [1, 𝐹] where 𝐹 is the total number of leaf facets) if: i) N𝐻,𝑖 >
𝑇

2
 (i.e., leaf 203 

facet is categorized as sunlit for the majority of the 𝑇 time steps), or ii) N𝑀,𝑖 >
𝑇

2
 and N𝐻,𝑖 >204 

N𝐿,𝑖 (i.e., leaf irradiance is, for the majority of 𝑇 time steps, between the two thresholds and a 205 

leaf facet is categorized as sunlit more frequently than shaded). Finally, a leaf facet is labelled 206 

as shade-adapted (i.e., 𝐶𝑓,𝑖 = 0) in all other cases, which cover the following three conditions: 207 

i) N𝐿,𝑖 >
𝑇

2
, ii) N𝑀,𝑖 >

𝑇

2
 and N𝐻,𝑖 < N𝐿,𝑖, and iii) none of the [N𝐻,𝑖, N𝑀,𝑖, N𝐿,𝑖] values dominates 208 

during the simulated times. This way, a day series (an array of i values) of sun-adapted (𝐶𝑓,𝑖 = 209 

1) and shade-adapted (𝐶𝑓,𝑖 = 0) states is generated per leaf facet 𝑓. The final class assignment 210 

is decided based on the median value of 𝐶𝑓 across the entire examined time period. 211 
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 212 

Figure 1. Incident photosynthetically active radiation expressed in photosynthetic photon flux density 213 
(PPFD) for three realistic 3D maize (Zea mays L.) canopies with LAI equal to 1, 2 and 4 (a). Distinction 214 
of sun- (green) and shade- (grey) adapted foliage based on double PPFD thresholds of 50 and 100 215 
μmol.photons.m-2.s-1 (b). To mimic realistic maize canopies, all three maize fields (1x1.5 m in size) were 216 
created with 1 m tall semi-randomly oriented plants, having eight fully developed bifacial leaves. 217 

 218 

The second method uses the probability distribution of the simulated diurnal Q time series. 219 

The range of Q values is divided into equally or unequally distributed 𝑋 intervals, and the Q 220 

values of leaf facets simulated at each time step T are categorized in a group x (𝑥 ∈ [1, 𝑋]). The 221 

probability distribution functions of 𝑖 ⋅ 𝑇 sampling points are then computed over x groups, 222 

resulting in the maximum occurrence (i.e., the highest probability density) in group 𝑥max and 223 

the median occurrence in group 𝑥median. A leaf facet is assigned as sun-adapted if 𝑥max >
𝑥

3
 224 

and 𝑥max ≤ 𝑥median, and shade-adapted in all other cases. Both methods are available in the 225 

DART toolbox directory as Python scripts, the decision which to use is solely of user discretion.  226 

To demonstrate changes in SIFTOC due to the distinction of sun- and shade-adapted leaves, 227 

we applied two double-threshold classifications on three maize fields (Figure 1). The first 228 

‘relaxed’ classification used relatively high and far-apart thresholds of 50 and 100 229 

μmol.photons.m-2.s-1, allowing for a larger portion of shade-adapted parts, whereas the second 230 

‘strict’ classification used low and close thresholds of 15 and 25 μmol.photons.m-2.s-1, resulting 231 

in a smaller amount of strictly shade-adapted leaves and stems. The regularly spaced 1 m tall 232 

a) PPFD (07/10/2014, noon, Lat . 39.03, Lon. -76.85)
[μmol photons m-2 s-1]

LAI = 1 LAI = 2 LAI = 4
0

5
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2050
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b)                                                                                 Green = sun-adapted, Grey = shade adapted
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plants with fully developed bifacial leaves were placed in fields (1x1.5 m in size) with a random 233 

geographical orientation and distances resulting in LAI = 1, 2 and 4.  Specific leaf biochemical, 234 

structural and fluorescence properties were assigned to each leaf adaptation class as listed in 235 

Table 1 (note that foliage of scenarios without distinct light adaptations was assumed to have 236 

the properties of sun-adapted leaves and stems). Contrary to previous SIF simulations, PSII fqe 237 

values of medium magnitude were assigned to each leaf class, while PSI fqe values were kept 238 

constant under the assumption that PSI contributes to SIF signal of both leaf types equally (Liu 239 

et al. 2019a). In order to prevent its confounding effect, the energy balance (leaf photosynthesis) 240 

modelling was disregarded, i.e., the fluorescence efficiency weight eta was forced to one. The 241 

remaining inputs were arbitrarily defined within plausible dynamic ranges of published 242 

laboratory measurements (Hosgood et al. 1994; Jacquemoud and Baret 1990). 243 

Table 1. Input parameters of the Fluspect-Cx model to simulate optical properties of sun- and shade- 244 
adapted leaves, as well as foliage without light adaptations and stems: content of chlorophyll a+b (Cab), 245 
total content of carotenoids (Car), equivalent water thickness (EWT), leaf mass per area (LMA), 246 
mesophyll optical thickness number (N) and fluorescence quantum efficiencies (fqe) for PSI and PSII.  247 

Fluspect inputs Cab 
[g.cm-2] 

Car 
[g.cm-2] 

EWT 

[cm] 

LMA 

[g.cm-2] 

N PSI  

fqe 

PSII  

fqe 

Sun-adapted and without 

adaptation leaves and stems 
50 15 0.009 0.0021 1.5 0.002 0.016 

Shade-adapted leaves  

and stems 
75 20 0.012 0.0028 2.0 0.002 0.022 
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 248 

Figure 2. DART simulated images of top-of-canopy SIF at 740 nm for maize fields of three leaf area 249 
indices (LAI) and two canopy closures, 100% regular (top) and 50% clumped (bottom), given by the 250 
number of plants (LAI = 1 ~ 12 plants, LAI = 1 ~ 24 plants and LAI = 4 ~ 50 plants) associated with 251 
different plant distances. The graph (bottom-right) displays the corresponding modelled canopy SIF 252 
spectra between 650 and 850 nm and provides the fAPARgreen values per scenario. 253 

2.3.2 Canopy SIF changes due to leaf density and clumping of maize plants 254 

Potential variability in SIFTOC due to leaf density and plant clumping (i.e., canopy closure 255 

– CC) changes were simulated for virtual maize canopies of three plant densities (LAI = 1, 2 256 
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and 4) in a regular spatial distribution (CC ≈ 100%) and in two clumped formations (LAI = 1 257 

and 2, CC ≈ 50%) (Figure 2). Compared to the previous exercise (Figure 1), distances between 258 

6 (LAI = 1) or 12 (LAI = 2) of neighbouring regularly spaced plants in a row were shortened 259 

by half to create regular foliage clumps and canopy gaps of the same size. To keep consistency, 260 

the leaf and stem optical properties were those used for the turbid-like canopies (Table A1) and 261 

the sun- and shade-adaptations were not distinguished, i.e., all leaves were considered as equal. 262 

 263 

Figure 3. Nadir view of 3D representation of the dense white peppermint (Eucalyptus pulchella) test 264 
canopy derived from terrestrial laser scans of trees growing east of Hobart (Tasmania, Australia) (a). 265 
The virtual scene (LAI = 2) was used to simulate a near-infrared, red and green RGB false colour 266 
composite images in DART of top-of-canopy reflectance (top) as well as PSII SIF at 740 nm (bottom) 267 
of the canopy formed by: b) only foliage and c) foliage and woody material covered with bark. The 268 
white arrow points at the example of SIF reflection from an exposed tree branch surface. 269 

2.3.3 Influence of leaf clumping, trunks and branches on SIF of white peppermint canopies 270 

DART simulations of eucalyptus forest canopies were used to investigate potential impacts 271 

of leaf clumping and woody material, i.e., trunks and branches covered by bark, on SIFTOC 272 

modelled at 686 and 740 nm. 3D representations of the eucalyptus trees were constructed based 273 

on 3D point clouds acquired with the terrestrial laser scanner (TLS) Trimble TX8 (Trimble Inc., 274 

USA). Three native white peppermint eucalypts of different age, height and general habitus 275 

PSII SIFTOC at 740 nm 
[W.m-2.um-1.sr-1] 2.4 3.01.81.20.60

10 m

fAPARgreen = 0.47                    fAPARgreen = 0.4

a) 3D forest stand representation b) Canopy of only foliage c) Canopy with wood
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were scanned from several geolocations in dry sclerophyll forest located southeast of Hobart 276 

(Tasmania, Australia) to acquire their TLS point clouds with a point spacing of 11.3 mm at 277 

distance of 30 m. The TLS points of each tree were, after a mandatory pre-processing, semi-278 

automatically separated in two groups: i) points of trunks and branches and ii) points 279 

representing foliage. Points classified as wood were used as attractors in an automatic procedure 280 

(Sloup 2013) to extract the external surfaces of trunks and main branches, as described in 281 

Verroust and Lazarus (1999). The foliage points were subsequently spatially collocated with 282 

the reconstructed wooden skeleton. 3D representation of leaves was created in Blender (Blender 283 

2007) based on an average shape and size of actual leaves and then distributed automatically at 284 

the locations of foliage points according to the Erectophile LAD (Danson 1998), targeting two 285 

crown LAI values of 2 and 5. A complete description of this TLS-based 3D construction of 286 

trees, developed specifically for RTM purposes, is available in Janoutová et al. (2019). Two 287 

DART canopies (scenes), were constructed with the 3D tree representations: i) a dense canopy 288 

was created by placing three trees with the individual crown LAI = 2 within a scene of 81 m2, 289 

while keeping CC ≈ 80% (Figure 3a), and ii) a sparse canopy was built by redistributing the 290 

same trees but with the crown LAI = 5 within a scene of 196 m2 to achieve CC ≈ 40%. 291 

Combinations of the tree crown LAI and scene sizes ensured that both scenes had, for the 292 

purpose of comparability, the same canopy LAI = 2.5. Additionally, an identical bark 293 

directional-hemispherical reflectance ( ≈ 20% at 550 nm,  ≈ 40% at 686 nm and  ≈ 50% at 294 

740 nm), measured on actual bark samples collected in field, was applied in both canopies. 295 

Besides standard forest canopies (e.g., Figure 3c), the virtual environment of the DART 296 

model also allows for simulating canopies composed of only foliage without woody 297 

components (Figure 3b). By comparing results from simulations with and without woody 298 

material, we quantified the magnitudes of shading and direct obstructing effects of woody 299 

material. Removing woody components increases the within-canopy iPAR (Q) due to the 300 

reduction in wood shadowing, which in turn increases SIF emitted by all previously shaded 301 

leaves. The obstruction impact of woody material is caused by its optical interactions with SIF 302 

photons. First, it diminishes (blocks) the within-canopy SIF at both 686 and 740 nm via bark 303 

scattering and absorption. Second, it affects, to some extent, SIF emission through reflection of 304 

SIF at 686 nm that can be reabsorbed and later reemitted by chlorophyll pigments.  305 

2.4 Computation of canopy fAPARgreen, SIF balance, escape factors and differences   306 



2.1 VEGETATION SIMULATED AS FACETS 

 43 

The main driver of green foliage SIF emissions (including stems of the maize plants) in 307 

DART simulations that do not contain a modulation of PSI and PSII fqe values by eta 308 

coefficients is the fraction of absorbed photosynthetically active radiation (fAPARgreen). 309 

Therefore, a change of fAPARgreen in these simulations indicates a change in the ratio of sunlit 310 

and shaded photosynthetically active plant parts, which results in an equal relative change in 311 

SIF leaf emission of both photosystems. To be able to investigate the impact of different 3D 312 

canopy architectures on their fAPARgreen, we calculated fAPARgreen for all SIFTOC simulating 313 

scenarios from the DART radiative budget of a single broad PAR band (λ = [400 750] nm) as: 314 

fAPAR(λ)
green

= 
APAR(λ)green

PAR(λ)TOC
,                                               (6) 315 

where APAR()green is PAR absorbed by all green plant constituents of a given DART scene 316 

and PAR()TOC is the solar incoming PAR simulated at the top of canopy. The relative 317 

difference [%] in fAPARgreen of clumped (C) compared to regularly spaced (R) maize canopies 318 

was calculated as: 319 

εfAPAR(λ) =  100.
fAPAR(λ)green_C − fAPAR(λ)green_R

fAPAR(λ)green_R
.                                  (7) 320 

Similarly, the shading effect of woody components on eucalyptus SIF emissions was assessed 321 

through the relative difference [%] of canopy fAPARgreen obtained for simulations containing 322 

just foliage (F) and foliage with wood (FW) as follows: 323 

εfAPAR(λ) =  100.
fAPAR(λ)green_F − fAPAR(λ)green_FW

fAPAR(λ)green_FW
.                                  (8) 324 

DART-simulated 3D radiative budget of SIF allows for locating origins of remotely sensed 325 

SIF using the SIF balance (SIF()bal) [W.m-2.m-1], computed by subtracting the absorbed SIF 326 

flux from the total emitted SIF flux (i.e., SIF()PSI plus SIF()PSII) of a given wavelength () 327 

per a vertical canopy layer. A positive SIF()bal means that the canopy layer acts as a SIF source, 328 

while a negative SIF()bal indicates canopy parts acting as SIF sinks. Subsequently, relative 329 

difference [%] of SIF()bal between clumped (C) and regularly spaced (R) maize canopies, 330 

computed as: 331 

εSIF(λ)bal =  100.
SIF(λ)bal_C − SIF(λ)bal_R

SIF(λ)bal_R
,                                      (9) 332 

reveals if the maize foliage clumping causes a further reduction (SIF()bal < 0) or an 333 

enhancement (SIF()bal > 0) or no change (SIF()bal = 0) of SIF balance per a canopy layer. 334 
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The proportion of SIF photons that exit the top of canopy is described by the SIFTOC escape 335 

probability factor (SIFesc). In practice, this is the ratio of SIF photons escaping from the top of 336 

canopy in any direction to all SIF photons emitted from all canopy leaves in forward or 337 

backward directions (Guanter et al. 2014). SIFesc is required for scaling of SIFTOC measurements 338 

down at the spatial level of individual leaves (van der Tol et al. 2019), and subsequently 339 

essential for correct estimation of vegetation gross primary production (GPP) from airborne and 340 

spaceborne SIF observations (e.g., He et al. 2017; Zhang et al. 2020). Since most of RS 341 

observations capture SIFTOC from nadir, we computed the relative canopy SIF escape 342 

probability factor of a given wavelength () in the nadir direction (SIFnadir()esc) from SIF 343 

radiative budgets of the eucalyptus scenarios. First, we converted SIF emissions of PSI and PSII 344 

per m2 of abaxial and adaxial leaf facets into SIF emissions per m2 of the scene (F()PSI and 345 

F()PSII) [W.m-2.m-1] and then calculated SIFnadir()esc as: 346 

SIFnadir(λ)
esc

= 
𝜋⋅(Lnadir(λ)PSI  + Lnadir(λ)PSII)

F(λ)PSI+ F(λ)PSII
,                               (10) 347 

where Lnadir()PSI and Lnadir()PSII [W.m-2.m-1.sr-1] are DART modelled PSI and PSII SIF 348 

radiances at the wavelength (), respectively, escaping from the simulated scene in the nadir 349 

viewing direction. The 𝜋 multiplication in Eq. 10 is removing the angular dependency [sr-1], 350 

resulting in relative values of SIFnadir()esc between 0 and 1. Since the escape probability factor 351 

is predominantly dependent on direct optical interactions with canopy elements that attenuate 352 

an emitted SIF signal, we quantified the obstruction (blocking) effect of eucalyptus woody 353 

components on canopy SIF in the nadir viewing direction through the relative difference [%] 354 

of SIFnadir()esc, computed from the foliage only (F) and the foliage with wood (FW) 355 

simulations as follows: 356 

𝜀SIF(λ)esc = 100.
SIFnadir(λ)esc_F − SIFnadir(λ)esc_FW

SIFnadir(λ)esc_FW
.                           (11) 357 

Finally, to analyse differences in SIF fluxes escaping from individual simulated canopy layers 358 

in all directions (i.e., towards layers of the upper and lower hemispheres), we computed from 359 

DART 3D radiative budget their relative omnidirectional escape factor (SIFomni()esc) as: 360 

SIFomni(λ)
esc

= 
(F(λ)PSI+ F(λ)PSII)−(A(λ)PSI+ A(λ)PSII)

F(λ)PSI+ F(λ)PSII
,                       (12) 361 

where A()PSI and A()PSII [W.m-2.m-1] are DART modelled absorptances of PSI and PSII SIF, 362 

respectively, expressed for the wavelength () per m2 of the scene. If SIFomni()esc ≤ 0, then 363 
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the canopy layer does not contribute to the SIFTOC signal, i.e., its SIF()bal is either neutral or 364 

negative. 365 

2.5 DART settings common to all SIF canopy simulations 366 

DART simulations were carried out with the flux-tracking algorithm using the following 367 

settings: no elimination of low energy rays, relative accuracy on scene albedo equal to 10-6, 25 368 

duplications of the initially simulated scene, the scene illumination mesh size equal to 5.10-4 m 369 

(with a semi-random spatial distribution of illumination rays), and cell sub-sampling with 83 370 

sub-cells per cell and 1 sub face per cell face. An optimal number of 20 flux-tracking iterations, 371 

which were required to obtain a 10-2 relative accuracy of the scene reflectance, was determined 372 

through a simplified accuracy sensitivity study. Intermediate results of the last few iterations 373 

were used to extrapolate the final values of simulated radiative budget, bidirectional reflectance 374 

function and SIF products. TOC reflectance and SIF were simulated in 212 viewing directions 375 

(Yin et al. 2013), distributed systematically throughout the upward hemisphere, with an 376 

oversampling of the upward hot-spot region (25 directions in a solid angle of 0.01 sr around the 377 

hotspot direction) and 34 virtual viewing directions in the solar principle plane. Leaf facets 378 

were simulated as double-faces without the solar penumbra effect, all optical properties were 379 

assumed to be Lambertian, and the scene ground surface was horizontal. 380 

2.6 Comparative statistical indicators 381 

Comparative statistical indicators, specifically a root mean square error (RMSE) and an 382 

index of agreement (d), were computed to assess these similarities as well as anticipated 383 

statistical dissimilarities between different DART scenarios (i.e., turbid-like vs. maize and 384 

eucalypt canopies). As explained in Willmott (1981), the dimensionless index of agreement 385 

complements the RMSE by indicating the degree of correspondence between two tested 386 

datasets in magnitude and direction, where d = 1 means full agreement and d = 0 means total 387 

disagreement. Also, the similarity of DART and SCOPE multi-angular SIFTOC was assessed 388 

through fitting a linear regression model, where the regression coefficient of determination (R2) 389 

indicated how much of the variability in a reference RT model (i.e., SCOPE) results can be 390 

explained by corresponding regressed values simulated in DART. 391 

3. Results 392 
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3.1 Comparison of nadir DART and SCOPE/mSCOPE canopy SIF simulations 393 

The SCOPE and DART nadir SIFTOC signatures of turbid medium vegetation canopies 394 

were nearly identical (Figure A2). Results between 641 and 850 nm were comparable for all 395 

simulated input combinations (i.e., three LAI, three LAD and three soil types). High SIFTOC, 396 

observed for canopies of Planophile LAD, is caused by their high PAR interception efficiency.  397 

The highest RMSE = 0.162 W.m-2.m-1.sr-1 and the lowest d = 0.9965 were found for the 398 

Erectophile canopy of LAI = 1, covering soil with  = 50%. Despite being the worst case, the 399 

values indicate only minor differences between DART and SCOPE results. Statistical analyses 400 

revealed that the total SIFTOC RMSE originates mainly from RMSE for PSII, which was twice 401 

the RMSE for PSI simulations for all three LADs (results not shown). Despite a significantly 402 

higher variability in RMSE than other two LADs, the Planophile LAD showed the highest index 403 

of agreement and R2 computed between the two models.  404 

mSCOPE allowed us to introduce a biochemical/optical heterogeneity in the vertical 405 

dimension of simulated canopies. Additionally, we tested DART SIF simulation performance 406 

when using the energy balance eta coefficients produced by mSCOPE. Comparison of total 407 

nadir SIFTOC radiances produced by both models revealed almost the same results (Figure A3). 408 

The indices of agreement were in all cases larger than 0.99, regardless exclusion or inclusion of 409 

the mSCOPE eta coefficients in conducted simulations. The highest RMSE of just 0.221 W.m-410 

2.m-1.sr-1 and the lowest d = 0.9985 was found for simulation of 2-layered canopy with LAI = 411 

2 and with the leaf energy balance included (Figure A3b). 412 

3.2 Multi-angular comparison of DART and SCOPE canopy SIF simulations 413 

The similarity of DART and SCOPE SIFTOC simulations at 686 and 740 nm was also 414 

investigated for viewing directions other than the nadir view. We compared values simulated 415 

in the solar principal plane, with particular attention to the hotspot region, and computed 416 

absolute differences between 27 DART and SCOPE turbid medium scenarios in all 212 viewing 417 

directions. The smallest differences and the best agreement were found for SIFTOC at 686 nm, 418 

Erectophile LAD and LAI = 1 (Figure A4), while the worse agreement and largest differences 419 

were obtained for SIFTOC at 740 nm, Spherical LAD and LAI = 4 (Figure A5). Here, SCOPE 420 

simulated slightly smaller SIFTOC values, except for VZA > 75°, where SIFTOC dropped 421 

unexpectedly steeply down. Also, SCOPE values around the hotspot angles were about 1 W.m-422 
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2.m-1.sr-1 lower than the corresponding DART values. This is caused by differences in the 423 

vegetation hotspot algorithms. SCOPE uses a Kuusk’s analytical approximation, which does 424 

not account for a bi-directional gap-fraction correlation with the canopy depth and consequently 425 

underestimates the hotspot effect (Kallel and Nilson 2013), whereas hotspot in DART 426 

simulations is physically modelled. 427 

Analysis of multi-angular SIF differences among the three LADs stressed smaller 428 

dissimilarities at 686 nm, having the best fit for the Spherical LAD, followed by the Erectophile 429 

LAD, and then by the Planophile LAD. At 740 nm, the closest match occurred for the 430 

Planophile LAD, while the Spherical and the Erectophile LADs showed equal discrepancies 431 

(Figure A6). Nonetheless, the maximal absolute SIFTOC difference between DART and SCOPE 432 

oblique viewing directions of all scenarios was found to be < 0.8 W.m-2.m-1.sr-1. 433 

 434 
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Figure 4. Differences in DART top-of-canopy SIF radiance due to distinction of sun- and shade-adapted 435 
leaves of regular maize canopies with LAI = 1, 2 and 4. Graphs illustrate two simulated scenarios of 436 
photosynthetic photon flux density (PPFD or Q) classification thresholds: a) a ‘relaxed’ scenario with 437 
high PPFD thresholds of 50 and 100 mol.photons.m-2.s-1, and b) a ‘strict’ scenario with low PPFD 438 
thresholds of 10 and 25 mol.photons.m-2.s-1. For details about the double-threshold leaf light adaptation 439 
classification see section 2.3.1. 440 

3.3 Effect of sun- and shade-adapted maize foliage classification 441 

Two double-threshold classifications were used to assess the impact of sun- and shade-442 

adapted foliage differentiation on nadir PSI and PSII SIFTOC between 650-850 nm. The first 443 

one, called ‘relaxed’, used the far-apart high Q thresholds (50 and 100 mol.photons.m-2.s-1), 444 

resulting in the sun-to-shade adapted foliage ratio ranging from 80:20% (LAI = 1) to 55:45% 445 

(LAI = 4). Figure 4a shows that differences between SIFTOC signatures for simulations with and 446 

without the differentiation of sun-/shade-adapted leaves were all positive for PSII, with the 447 

highest value  0.1 W.m-2.m-1.sr-1 around 740 nm for LAI = 4 (fAPARgreen = 0.87). Surprisingly, 448 

the same differences for PSI between 700 and 725 nm were negative, demonstrating a greater 449 

PSI SIF absorption by shade-adapted leaves having a higher chlorophyll a+b content of 75 450 

g.cm-2. Contrary to PSII SIFTOC, where fqe was increased from 0.016 to 0.022 for shade-451 

adapted leaves (Table 2), the constant PSI fqe of 0.002 could not compensate this increased 452 

chlorophyll absorption. The second classification, called ‘strict’, used the closer and lower Q 453 

thresholds (15 and 25 mol.photons.m-2.s-1), resulting in canopies with a dominant portion of 454 

sun-adapted leaves. The sun-to-shade adapted foliage ratio ranged from 98:2% (LAI = 1) to 455 

73:27% (LAI = 4). Consequently, the SIFTOC differences were proportionally smaller (Figure 456 

4b), with the largest value of 0.035 W.m-2.m-1.sr-1 for PSII SIFTOC at 740 nm (LAI = 4). PSI 457 

SIFTOC differences were also reduced and remained negative between 700 and 725 nm. 458 

3.4 Influence of foliage density and clumping in maize canopies  459 

Figure 2 illustrates the impact of a leaf density increase (i.e., doubled LAI) and the 460 

clumping of maize plants for LAI of 1 and 2. Nadir images of maize canopy SIFTOC at 740 nm 461 

show the spatial dependence of SIFTOC radiance on the absorption of iPAR and on the 462 

distribution of plant shadows. A linear increase of LAI triggered a non-linear and wavelength-463 

specific increase of SIFTOC. A bit more than 2-fold increase in far-red wavelengths from LAI = 464 

1 to LAI = 4 corresponds to a similar increase in canopy fAPARgreen, which is not the case for 465 

the red SIFTOC nadir signal (Figure 2). The canopy clumping causes a decrease of SIFTOC at all 466 
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wavelengths. The 50% decrease in CC caused SIFTOC reduction at 740 nm of about 0.4 for LAI 467 

= 1 and 1.0 W.m-2.m-1.sr-1 for LAI = 2, whereas reduction of LAI from 2 to 1 resulted in larger 468 

SIFTOC declines of about 0.75 for CC = 50% and 1.6 W.m-2.m-1.sr-1 for CC = 100%. 469 

 470 

Figure 5. Multi-angular differences in SIF radiance at 686 nm between a) regular, b) clumped DART 471 
3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy 472 
soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the 473 
regular (RMSE = 0.27 and d = 0.9) and the clumped (RMSE = 0.36 and d = 0.81) maize canopies are 474 
illustrated in c) and d), respectively. Notations: the white star shows the solar position and black dots 475 
indicate the simulated viewing directions; LAD ~ leaf angle distribution; LAI ~ leaf area index; WL ~ 476 
wavelength; SZA ~ solar zenith angle; SAA ~ solar azimuth angle; R2 ~ coefficient of determination; 477 
RMSE ~ root mean square error [W.m-2.m-1.sr-1]; d ~ index of agreement: 0 = no agreement, 1 = full 478 
agreement. 479 
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 480 

Figure 6. Multi-angular differences in SIF radiance at 740 nm between a) regular, b) clumped DART 481 
3D maize canopies and a DART simulated turbid-like canopy with LAI = 2, Spherical LAD and loamy 482 
soil as ground. SIF radiances in the solar principal plane for the turbid-like canopy together with the 483 
regular (RMSE = 0.42 and d = 0.92) and the clumped (RMSE = 1.22 and d = 0.62) maize canopies are 484 
illustrated in c) and d), respectively (for abbreviations and symbols see Figure 5). 485 

The interpretation of canopy architectural effects can be taken further by investigating the 486 

multi-angular differences for SIFTOC at 686 (Figure 5) and 740 nm (Figure 6), computed 487 

between the turbid-like vegetation canopy, i.e., a random distribution of many small leaf facets 488 

with the Spherical LAD, and the maize regular and clumped canopies of much larger leaves, 489 

both with LAI = 2. DART simulated multi-angular SIFTOC values of the turbid-like and regular 490 

maize canopies at 686 nm are very close (RMSE = 0.27 W.m-2.m-1.sr-1, d = 0.9) (see Figure 491 
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5ac), indicating rather similar SIF absorptions within canopies and by soil. The maximum 492 

difference of just about -0.4 W.m-2.m-1.sr-1 appeared in very oblique viewing directions, in 493 

which maize plants scattered less SIF. Despite its slightly lower fAPARgreen (0.68 vs. 0.72), the 494 

maize canopy scattered a bit more SIF in viewing directions around nadir and hotspot, 495 

producing a positive difference. This is caused by the maize geometrically explicit non-random 496 

LAD and large-sized leaf facets, redirecting the scattered SIF prevailingly in these directions. 497 

Larger size of maize leaves is decreasing scattering of photons, and consequently the diffuse 498 

fluxes, and causing a broader base of the SIFTOC hotspot peak, observed when comparing the 499 

hotspots regions of maize and the turbid-like medium simulations. Although the multi-angular 500 

pattern for the clumped maize canopy looks also very similar (RMSE = 0.36 W.m-2.m-1.sr-1, d 501 

= 0.81), the differences are all negative and significantly larger, with the maximum of about -502 

0.75 W.m-2.m-1.sr-1 (Figure 5bd). It means that the 50% foliage clumping increased scattering 503 

and the subsequent within-canopy absorption of SIF at 686 nm, because SIF absorption by the 504 

loamy soil beneath the clumped canopy was 7% lower than in the regular canopy, i.e., unable 505 

to cause the SIFTOC reduction. The angular distributions of the same differences at 740 nm look 506 

different (Figure 6), as they are ruled mainly by scattering related to the canopy architecture. 507 

The decrease in intensity of maize far-red SIFTOC is driven by the species-specific foliage 508 

distribution and geometry, significantly larger maize leaf size combined with a high leaf single 509 

scattering albedo at 740 nm and the soil absorption. SIFTOC differences in Figure 6 are negative 510 

for both regular (RMSE = 0.42 W.m-2.m-1.sr-1, d = 0.92) and clumped canopy of LAI = 2, but 511 

larger for the latter one (RMSE = 1.22 W.m-2.m-1.sr-1, d = 0.62). Results of DART radiative 512 

budget revealed that the introduction of clumping did not increase but lowered (by 12%) the 513 

amount of soil intercepted and absorbed SIF. Hence, it is not soil but clumping-induced within 514 

canopy SIF optical interactions that are responsible for this extra reduction of SIFTOC. 515 

The relative contribution from different canopy parts (horizontal layers) to SIFTOC and its 516 

modulation by fAPARgreen or by SIF scattering and absorption can be investigated by plotting 517 

vertical canopy height profiles of fAPARgreen together with corresponding SIF balances of both 518 

fluorescence wavelengths. Figure 7a shows that SIF balances are positive at all heights, i.e., 519 

every layer act as a SIF source, and they follow, in general, changes in fAPARgreen. The foliage 520 

clumping decreased significantly fAPARgreen, SIF()bal and also SIFomni()esc (not shown) in 521 

the upper half of the canopy with LAI = 2, causing the overall reduction of SIFTOC, but it 522 
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increased all of them in canopy parts below. It means that the lower leaves of the clumped 523 

canopy contributed to the simulated SIFTOC more than the same leaves of the regular canopy. 524 

 525 

Figure 7. Vertical profiles of a) fAPARgreen, SIF balances (for maize canopies of LAI = 2) and b) 526 
their relative differences at 686 and 740 nm computed between regularly spaced and clumped 527 
canopies of the same LAI (for LAI = 1 and 2). Each 2.5 cm thick canopy layer is presented as a 528 
point of the relative canopy height [0-1]. For details about computations of fAPARgreen, SIF 529 
balance (SIF()bal) and their relative differences (fAPAR() and SIF()bal) see section 2.4. 530 

Figure 7b, depicting the fAPARgreen and SIF()bal relative differences between the regular 531 

and clumped canopies, provides a further insight in this behaviour and dependencies between 532 

SIF and fAPARgreen radiative budgets. It illustrates a clumping-induced steady reduction of 533 

fAPARgreen and SIF balance differences in upper 40% of the canopy with LAI = 1, whereas the 534 

differences in lower 60% fluctuate between positive and negative values. SIF()bal for  535 

LAI = 1 follows quite closely  fAPAR(), suggesting that variability of SIF fluxes at 740 nm is 536 

ruled mainly by clumping-induced changes in distribution of shadows and sun flecks, while 537 

SIF(6)bal shows a bit more negative or positive deviations from fAPAR(), caused by a local 538 

increase or decrease in chlorophyll absorption of SIF at 686 nm. SIFTOC for LAI = 2 is formed 539 

by steady but greater negative differences in the canopy top half that are partially balanced out 540 

by nearly 2-fold larger positive differences between 30 and 50% of the canopy relative height. 541 

Comparable differences for both LAI cases between the bottom and 30% of the canopy height 542 

indicate very similar fAPARgreen and SIF radiative budgets, driven by mostly diffused low-543 

intensity PAR. The negative fAPAR() and SIF()bal values in the upper half of the canopy are 544 
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caused by combination of higher (doubled) LAI with foliage clumping that increased internal 545 

shadowing and consequently reduced fAPARgreen. It also enhanced a number of SIF photons 546 

interacting with leaf facets, resulting in a higher fluorescence absorption, especially at 686 nm. 547 

Scientifically interesting is the opposite behaviour between 30 and 50% of the canopy height, 548 

where it boosted fAPARgreen and consequently SIF emissions, but simultaneously diminished 549 

SIF absorption, which is evidenced by SIF()bal and SIF()bal > fAPAR(). The total energy 550 

released from these positive SIF()bal differences was, nevertheless, unable to fully compensate 551 

the negative SIF()bal differences induced by clumping in the upper canopy parts (Figure 7a). 552 

3.5 Impacts of foliage clumping and wood of white peppermint trees 553 

 554 
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Figure 8. Multi-angular differences in SIF radiance at 686 nm between a) a dense eucalyptus canopy 555 
created only by foliage, b) the same canopy containing also woody components and a DART simulated 556 
turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the 557 
solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 0.82 and d = 558 
0.55) and the foliage with wood (RMSE = 1.0 and d = 0.47) eucalypt canopies are illustrated in c) and 559 
d), respectively (for abbreviations and symbols see Figure 5). 560 

DART 3D modelling allowed us to investigate previously unquantified impacts of foliage 561 

structure and woody material on fAPARgreen and on optical interactions of SIF photons inside 562 

white peppermint canopies. Figure 3 shows nadir PSII SIFTOC images at 740 nm for dense 563 

eucalyptus forest canopies without and with presence of the woody parts. A simple visual 564 

comparison of the two images reveals a lower SIFTOC in the lower right corner of the image 565 

caused by a deeper shadowing after inclusion of trunks and branches. One can also detect 566 

several large non-fluorescing branches in the SIFTOC image, visible due to a strong reflection 567 

of far-red SIF photons by peppermint bark (740 nm ≈ 50%). 568 
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 569 

Figure 9. Multi-angular differences in SIF radiance at 740 nm between a) a dense eucalyptus canopy 570 
created only by foliage, b) the same canopy containing also woody components and a DART simulated 571 
turbid-like canopy, all with LAI = 2, Erectophile LAD and loamy soil as ground. SIF radiances in the 572 
solar principal plane for the turbid-like canopy together with the foliage-only (RMSE = 1.93 and d = 573 
0.47) and the foliage with wood (RMSE = 2.68 and d = 0.35) eucalypt canopies are illustrated in c) and 574 
d), respectively (for abbreviations and symbols see Figure 5). 575 

In comparison with the multi-directional SIF radiance of the turbid-like canopy, the dense 576 

eucalyptus stand without wood showed statistically significant decreases in SIFTOC at 686 nm 577 

(RMSE = 0.82 W.m-2.m-1.sr-1, d = 0.55) (Figure 8ac) and even greater at 740 nm (RMSE = 578 

1.93 W.m-2.m-1.sr-1, d = 0.47) (Figure 9ac). This drop, reaching up to -1.2 W.m-2.m-1.sr-1 and 579 

almost -2.5 W.m-2.m-1.sr-1, respectively, can be explained by the Erectophile LAD of the 580 

small-sized narrow white peppermint leaves, and by their strong and spatially irregular 581 
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clumping at the branch level. Presence of woody structures did not change considerably the 582 

angular patterns of the SIFTOC differences, but caused its further suppression at 686 nm (RMSE 583 

= 1.0 W.m-2. m-1.sr-1, d = 0.47) (Figure 8bd) and even larger differences at 740 nm (RMSE = 584 

2.68 W.m-2. m-1.sr-1, d = 0.35) (Figure 9bd). Interestingly, it deepened the shape the solar 585 

principal plane SIFTOC curve in back-scattering oblique viewing directions behind the hotspot 586 

region, producing the maximum difference of almost -1.4 W.m-2. m-1.sr-1 at 686 nm and 587 

around -3.7 W.m-2. m-1.sr-1 at 740 nm. 588 

The DART ability to simulate forest stands with and without woody elements opened an 589 

opportunity for quantification of their potential impacts on SIF emitted, observed and escaped 590 

in the nadir direction from white peppermint dense and sparse canopies (Table 2). We 591 

quantified the wood shading effect, causing changes in canopy fAPARgreen due to the scattering 592 

and absorption of iPAR, and the obstruction (blocking) effect of eucalyptus wood, caused by 593 

scattering and absorption of SIF photons by bark. As expected, wood shadowing lowered SIF 594 

emitted at both investigated wavelengths by the percentage equal to the fAPARgreen reduction, 595 

i.e., by 17.0% for the dense and 9.7% for the sparse canopy. Comparison of the foliage only 596 

SIFTOC with the foliage and wood SIFTOC revealed lesser impacts at 686 nm than at 740 nm. 597 

SIF escape probability factors of the simulated eucalyptus canopies were generally low: 598 

SIFnadir(686)esc ≤ 0.15 and SIFnadir(740)esc ≤ 0.27. Overall, the wood obstruction effect was 599 

greater on far-red than red SIF escape factors, causing a consistent decrease of 4-6% in 600 

SIFnadir(740)esc, but almost no change in SIFnadir(686)esc for the sparse and less than 2% 601 

increase for the dense canopy (Table 2). 602 

 603 

Table 2. DART simulated impacts of woody material and bark on fAPARgreen of leaves, SIF leaf 604 
emissions, nadir top-of-canopy SIFTOC and nadir SIF escape probability factor at 686 and 740 nm of two 605 
white peppermint (Eucalyptus pulchella) stands with dense and sparse canopy covers (CC) and LAI = 606 
2.5. The relative impact on canopy SIF emitted by leaves (Bold fonts), is caused either by shadows 607 
casted on photosynthetically active foliage (shading effect; Eq. 8) or by absorption and scattering of SIF 608 
photons by bark-covered wood in combination with green foliage (obstruction effect; Eq. 11); (↓) 609 
indicates a decreasing and (↑) an increasing effect. 610 

DART scenario Dense canopy (CC ≈ 80%)  Sparse canopy (CC ≈ 40%) 

 

 

DART outcome 

Foliage 

only 

Foliage 

& Wood 

Relative 

impact 

[%] 

Foliage 

only 

Foliage  

& Wood 

Relative 

impact 

[%] 

fAPARgreen of leaves   0.466  0.399    0.306  0.279     
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Shading effect (𝜀fAPAR(400−750))    17.0 (↓)      9.7 (↓) 

Red SIF (686 nm)        

Emitted by leaves [W.m-2.m-1] 11.626  9.939   7.618  6.945  

Nadir SIFTOC [W.m-2.m-1.sr-1]   0.554  0.481   0.303  0.275  

SIFnadir(686)esc [rel.]   0.150  0.152  0.125  0.124  

Obstruction effect (𝜀SIF(686)esc)     -1.5 (↑)      0.6 (↓) 

Far-red SIF (740 nm)       

Emitted by leaves [W.m-2.m-1] 24.461 20.914  16.029 14.613  

Nadir SIFTOC [W.m-2.m-1.sr-1]   2.093   1.693    1.260   1.108  

SIFnadir(740)esc [rel.]  0.269   0.254    0.247   0.238  

Obstruction effect (𝜀SIF(740)esc)    5.7 (↓)    3.6 (↓) 

 611 

More detailed understanding of the wood-induced effects inside the dense white 612 

peppermint canopy can be obtained from analysing its DART-simulated vertical profiles of SIF 613 

balances and omnidirectional SIF escape factors. Plots of SIF()bal in Figure 10a and 614 

SIFomni()esc in Figure 10b, shown across the relative stand height, revealed two significant 615 

findings. First, every leaf-containing part of the canopy comprised of only foliage is acting as 616 

a SIF source (SIFomni()esc > 0), but the presence of woody components turned the parts 617 

emitting only a little fluorescence into SIF sinks (SIFomni()esc = 0). Second, a majority of the 618 

SIFTOC signal originates from leaves occupying top 25% percent of the eucalyptus canopy 619 

height. Although the close-up of the 0-30% canopy height section in Figure 10a shows a strong 620 

SIF absorption by trunks and lower branches that results in SIF()bal < 0 (especially at 740 nm), 621 

different SIF energy budget results were obtained for top 25% (i.e., 75-100%) of the canopy. 622 

The wood presence in this highly emitting canopy part increased the SIF(686)bal values only 623 

negligibly, as the bark and photosynthesizing leaves were capable of absorbing nearly all extra 624 

SIF photons reflected at 686 nm by woody structures. This result is in line with a very slight 625 

increase of SIFnadir(686)esc listed in Table 2. Wood presence, however, decreased absorptance 626 

and increased more than 2-fold reflectance of SIF at 740 nm, which significantly enhanced 627 

(almost doubled) the SIF(740)bal values in this upper canopy part. Despite this limited local 628 

boost, wood obstructions suppressed values of both SIF(740)bal and SIFomni()esc in the rest 629 
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of the canopy profile, leading to an overall 5.7% reduction in canopy SIFnadir(740)esc  630 

(Table 2) and, consequently, in a decrease of multi-angular SIFTOC (Figure 9ab).  631 

 632 

Figure 10. Vertical profiles of a) SIF balances (SIF()bal) and b) relative omnidirectional SIF 633 
escape factors (SIFomni()esc) at 686 and 740 nm for a dense white peppermint (Eucalyptus 634 
pulchella) canopy (CC ≈ 80% and LAI = 2) created only by foliage (dashed lines) and the same 635 
canopy containing also woody components (solid lines). Each 10 cm thick canopy layer is 636 
presented as a point of the relative canopy height [0-1]. For details about computations of SIF()bal 637 
and SIFomni()esc see section 2.4. 638 

 639 

4. Discussion 640 

4.1 Comparison of DART and SCOPE/mSCOPE models 641 

DART outputs were nearly in a perfect agreement with the corresponding results obtained 642 

for simple, turbid medium vegetation scenes with SCOPE and mSCOPE. Better agreements 643 

were obtained for the SIFTOC local maximum at 686 nm, where the signal is attenuated by the 644 

SIF chlorophyll absorption. Since the SIFTOC values at 740 nm are controlled dominantly by 645 

canopy structural traits, the smallest discrepancies were obtained for the geometrically more 646 

uniform Planophile LAD. Here, the SIFTOC signal is dominated by the first order scattering of 647 

prevailingly horizontally oriented leaves, lowering the occurrence of fluorescence absorption. 648 

The largest multi-angular SIFTOC differences in all tested LAD and LAI scenarios occurred in 649 

very oblique viewing angles, in which the modelled radiance is impacted by uncertainties in 650 

angular discretization of the upper hemisphere.  651 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.05 0.00 0.10 0.20 0.30 0.40 0.50 0.60

C
a
n
o
p
y
 h

e
ig

h
t 
[r

e
l.
] 

SIF balance (emitted - absorbed) [W m-2µm-1]

SIF(686)    with wood SIF(740)    with wood

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-0.010 0.000 0.010 0.020

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0.0 0.2 0.4 0.6 0.8 1.0

C
a
n
o
p
y
 h

e
ig

h
t 
[r

e
l.
] 

Omnidirectional SIF escape probability [rel.]

SIFomni(686)     with wood SIFomni(740)     with wood

SIFomni(686)     foliage only SIFomni(740)     foliage only

a) b)

bal bal esc

esc

esc

escSIF(686)    foliage only SIF(740)    foliage onlybal bal



2.1 VEGETATION SIMULATED AS FACETS 

 59 

Despite of a generally high agreement with SCOPE/mSCOPE simulations, this model cross 652 

comparison is not a fully sufficient replacement of an independent validation of the DART 653 

model, which is expected to be performed with real canopy SIFTOC measurements in a near 654 

future. Nonetheless, this comparison provides the evidence that current integration of the 655 

Fluspect model and implementation of the 3D flux-tracking radiative transfer of SIF emitted 656 

from geometrically explicit leaves are as plausible as already validated 1D radiative transfer 657 

modelling approaches of SCOPE and mSCOPE models (Migliavacca et al. 2017; Pacheco-658 

Labrador et al. 2019; van der Tol et al. 2016; Vilfan et al. 2019). This conclusion provides us 659 

with a high level of confidence that the radiative transfer modelling of SIF in DART can be 660 

used to investigate the major canopy structural controls of SIFTOC in geometrically explicit 3D 661 

canopies, which structural complexity cannot be represented and tested in SCOPE or mSCOPE. 662 

4.2 SIF changes due to classification of sun-/shade-adapted leaves and canopy structure 663 

Distinct parametrization of sun- and shade-adapted leaves did not result in major 664 

differences in SIFTOC, but other canopy structural parameters were found to be more important. 665 

The specific distinction of leaf fqe for sun- and shade-adapted foliage appeared to have a smaller 666 

impact on DART simulated nadir SIFTOC than increasing LAI and foliage clumping reducing 667 

CC from 100% to 50% (c.f., Figure 1 and Figure 3). Yet, the impact of the leaf-light adaptation 668 

effect might increase, if a DART user applies Q double-threshold values that favour strongly 669 

the shade- over the sun-adapted class and simultaneously increases the PSI and PSII fqe inputs. 670 

Secondly, the influence of the shade-adapted class would be more significant when tested for 671 

naturally more clumped and taller (e.g., forest) canopies. Therefore, identification of correct Q 672 

thresholds and sun/shade fqe values are, together with measurements of canopy gaps and foliage 673 

clumping, essential for further investigation of the photosynthetic light adaptations and their 674 

impacts on SIFTOC.  675 

When evaluating impacts of maize canopy structural traits, our nadir SIFTOC results 676 

indicated a general superior role of LAI over the foliage clumping. However, doubling the 677 

foliage clumping of maize crop with LAI = 2 caused such a strong increase in absorption of red 678 

SIF photons by chlorophylls that diminished and fully equalled the previous increase in SIFTOC 679 

between 650 and 725 nm caused by doubling the number of regularly spaced plants, i.e., twice 680 

higher LAI (Figure 2). Interpretation of DART 3D radiative budget computed for the two SIF 681 

local maximums informed us that this strong red SIF reduction took place in the upper half of 682 
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the canopy (specifically between 50 and 90% of the canopy height; Figure 7), because the 683 

clumping caused a slight enhancement of SIF energy fluxes in most of the lower half canopy 684 

parts and the absorption of SIF by soil background was after the clumping introduction lowered. 685 

The fact that relative differences of red SIF balances in upper halves of the clumped and 686 

unclumped canopies are 2-fold more negative than the same differences of fAPARgreen (Figure 687 

7b) indicates that the increase in foliage shadowing is responsible only for a half of this 688 

clumping-induced SIF reduction. The second half is caused by a more frequent recollision and 689 

consequent greater absorption of red SIF photons by leaf photosynthetic pigments. Clumping 690 

driven results for LAI = 1 showed less consistent and milder effects, which means that canopy 691 

must have a certain minimal leaf density to produce these interactions. 692 

Clumping impacts caused by decreasing CC can be also demonstrated on the example of 693 

white peppermint stands without woody material. According to results listed in Table 2, 694 

decrease of CC from 80% to 40% triggered a reduction in fAPARgreen and, consequently, in 695 

emitted SIF by 34%, and simultaneously lowered the SIFTOC by 45% at 686 nm and by 40% at 696 

740 nm. Thereby, if one accepts an assumption that scattering rates of red and far-red SIF 697 

photons by the canopy structures (including structures of a leaf interior without foliar pigments) 698 

are equal, then doubling the leaf density while keeping a constant canopy LAI = 2 induced an 699 

additional 5% decrease in red SIFTOC attributed to a higher red SIF absorption by chlorophylls. 700 

It is important to mention that different quantitative impacts of LAI and foliage clumping on 701 

SIFTOC might be revealed if the classification of sun-/shade-adapted leaves is included and 702 

different (i.e., light adaptation specific) PSI and PSII fqe values are specified by a DART user. 703 

Since the natural variability in fqe and leaf biochemistry was not accounted for in this study, a 704 

direct comparison (validation) of these results with SIF observations of real croplands or forests 705 

(e.g., Guan et al. 2015; He et al. 2020; Peng et al. 2020; Wang et al. 2020) would be misleading.  706 

Multi-angular DART simulations of SIFTOC demonstrate that the influence of leaf size, 707 

foliage angularity and its clumping (CC) is equally or even more crucial for modulating SIFTOC 708 

in oblique viewing directions. The polar plots of SIFTOC at 686 nm for maize (Figure 5b) and 709 

eucalyptus (Figure 8a) canopies with LAI = 2 revealed the largest influence in very oblique 710 

backward directions behind the hotspot and the smallest impact in forward directions opposite 711 

to the hotspot. The patterns of angular anisotropy for SIFTOC at 740 nm are rather different. A 712 

significant impact of maize canopy structure was found around the Northern and the Southern 713 
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viewing angles (Figure 6b), whereas only the Southern viewing directions were impacted by 714 

the eucalyptus canopy architecture (Figure 9a). Thus, far-red SIFTOC of each architecturally 715 

distinct plant formation (i.e., plant functional type) must be approached individually and the 716 

canopy specific structural confounding effects must be removed or at least reduced before any 717 

application of remotely sensed SIFTOC. This recommendation is in line with a number of recent 718 

works developing far-red SIFTOC normalization approaches to mitigate the canopy structural 719 

effects (Liu et al. 2019b; Yang and van der Tol 2018; Yang et al. 2020b; Zeng et al. 2019).  720 

4.3 Impacts of wood structures on eucalyptus SIFTOC signal and SIF escape factors 721 

Accounting for presence of bark-covered wood structures in our eucalyptus simulations 722 

decreased nadir 740 nm SIFTOC by about 23% for the dense canopy and by 13% for the sparse 723 

canopy (Table 2). Results suggest that approximately one quarter of the total SIF reduction is 724 

caused by direct optical interactions (obstruction) of far-red SIF photons with bark surfaces in 725 

combination with green leaves under the natural geometrical distributions, whereas three 726 

quarters of the reduction resulted from the reduction in APARgreen due to wood shadowing. 727 

Having the bark reflectance and absorptance at 740 nm both equal to 50%, the wood structures 728 

of white peppermint trees acted, on one hand, as strong reflectors and boosted the far-red SIF 729 

emission produced in top 25% of the dense canopy (Figure 10a). On the other hand, they acted 730 

as a far-red SIF sink in the rest of the canopy, i.e., in lower 75% of the canopy relative height. 731 

Although it is expected that tree species with a lower bark near infrared reflectance will 732 

demonstrate radiative budgets with a higher far-red SIF obstruction (absorptance), the 733 

consistently decreasing nadir obstruction effects of both modelled eucalyptus stand indicate that 734 

the wood obstruction is a regular confounding factor that must be treated as a systematic error 735 

source. Therefore, it should be accounted for, or if feasible even corrected, when interpreting 736 

far-red SIFTOC data sensed remotely over forests.  737 

The effect of woody material on nadir SIFTOC at 686 nm was smaller, because the total pool 738 

of canopy red SIF photons originating just from PSII is naturally small and additionally reduced 739 

by absorption of photosynthetic pigments. Interestingly, the bark absorptance of 60% and 740 

reflectance of 40% at 686 nm, in combination with the specific geometry of eucalypt tree 741 

crowns (i.e., a strong branch foliage clumping with Erectophile LAD), decreased the red SIF 742 

nadir escape factor of the sparse canopy by 0.6%, whereas the same SIF escape factor in the 743 

dense canopy was increased by 1.5%. If we accept these simulations as generally applicable, 744 
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we may conclude that the presence of wood affects the red SIF forest canopy balance in both 745 

negative and positive ways. However, the impact is generally small, predominantly influencing 746 

the less emitting lower 75% of the canopy height rather than larger emissions originating from 747 

top 25% of the canopy. Since we modelled and analysed only two mono-species eucalyptus 748 

stands, additional simulations for other tree species, including natural variability in species-749 

specific optical, biochemical and structural properties, will be essential to draw more 750 

comprehensive and generic conclusions regarding the wood obstruction effects. 751 

DART estimates of the relative eucalyptus canopy SIF escape factor in the nadir direction, 752 

which can be used to compute the apparent SIF efficiency (a gross primary production proxy 753 

less impacted by canopy structures; Wang et al. 2020), were quite low, smaller than 0.15 for 754 

red and 0.27 for far-red SIF. Nonetheless, the omnidirectional escape factors of individual 755 

canopy layers were higher, reaching up to 0.65 for red and 0.9 for far-red SIF in the highly 756 

emissive top 25% of the canopy height (Figure 10b). These numbers and results in Figures 9 757 

and 10 suggest that oblique multi-directional observations of forest canopies (e.g., with tower-758 

based instruments) should capture more SIF photons than a single nadir measurement, and, 759 

thus, provide a stronger SIFTOC signal.  Once again, more simulations covering different forest 760 

types and their natural variability are required to conclude if these interpretations have a general 761 

applicability or if the white peppermint canopies represent a unique and possibly extreme case.. 762 

Despite a limited size of this study, we demonstrate that the entire 3D structural complexity, 763 

including woody material, must be taken into account when assessing quantity of SIF photons 764 

scattered and absorbed by canopy components and those escaping from a forest canopy. 765 

4.4 Development of DART SIF modelling for large canopies and landscapes 766 

DART SIF simulations for geometrically explicit representations of terrestrial vegetation 767 

have computational limitations regarding a simulated scene size and a number of objects (i.e., 768 

triangular facets) creating 3D mock-ups of plant canopies. Theoretically, one can create an 769 

extensive landscape occupied with an unlimited population of plants and other 3D objects (e.g., 770 

open-water bodies, roads, buildings, etc.), but the SIF simulation, and mainly radiative budget, 771 

of such a scene might be practically unfeasible as the computer memory and processor 772 

capabilities are not unlimited. Therefore, another two approaches, allowing more efficient 773 

simulations of large canopies and extensive landscapes, are being implemented and tested in 774 

DART: i) SIF modelling for vegetation canopies represented by 3D turbid voxels (i.e., voxels 775 
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filled with a vegetation turbid medium), and ii) a direct and reverse MC modelling called 776 

DART-Lux (Gastellu-Etchegorry et al. 2020). The latter one is especially highly promising for 777 

simulating extensive SIFTOC images. It uses only the landscape elements contributing to the 778 

formation of a simulated image, which decreases the computer time and memory by a factor as 779 

large as 100. Once fully tested and solidified, both approaches will provide DART users with 780 

potential satellite SIF observations adapted to common ground sampling distances of hundreds 781 

of meters. Such simulations could test multiple SIF confounding optical effects, for instance, 782 

those originating from photosynthetically inactive Earth surfaces of rough terrain 783 

configurations resulting in dynamic spatiotemporal irradiation changes and shadow patterns. 784 

5. Conclusions 785 

Physical and technical implementation of discrete anisotropic radiative transfer modelling 786 

for solar-induced chlorophyll fluorescence in geometrically explicit 3D plant canopies was 787 

described and compared with complementary cases simulated in 1D models SCOPE and 788 

mSCOPE. The cross-comparison revealed that DART simulations of SIFTOC for geometrically 789 

simple and spatially homogenous canopies produced nearly the same results as both 1D models. 790 

The largest SIFTOC differences occurred in very oblique viewing angles that are impacted by 791 

higher modelling uncertainties than the directions closer to nadir. 792 

Further exploitation of DART ability to simulate SIF images and radiative budgets of 793 

virtual 3D maize crops showed that the distinction and adjustment of fluorescence efficiencies 794 

for sun- and shade-adapted leaves had a smaller impact on DART simulated SIFTOC than an 795 

increase in leaf density (LAI) and local foliage clumping. When analysing nadir SIFTOC impacts 796 

by foliar density traits, we found a superior role of LAI over the foliage clumping. Nonetheless, 797 

the foliage clumping was shown to be an important controlling factor of maize and eucalyptus 798 

SIFTOC simulated at 686 and 740 nm in oblique viewing directions, and also a crucial driver of 799 

the red SIF balance, i.e., SIF emission and absorption, in vertical profile of irregularly spaced 800 

maize crop with LAI = 2. These study outcomes must be, however, reproduced for other plant 801 

functional types to confirm and investigate further the influences of leaf light intensity 802 

adaptations and density traits on SIF variability inside and at the top of different canopies.  803 

DART simulations of two white peppermint eucalyptus stands suggested that woody 804 

material has a significant impact on SIFTOC. Trunks and branches cast shadows on 805 

photosynthesizing leaves, decreasing their SIF emissions by about 15% in dense and 8% in 806 
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sparse canopy simulations. Although the absorbance and reflectance of eucalyptus bark (both 807 

about 50% at 740 nm), in combination with a multiple scattering and absorption by leaves, 808 

nearly doubled the pool of far-red SIF photons in the top 25% part of dense canopy, they 809 

reduced the overall canopy escape of far-red SIF in the nadir viewing direction by 6% and 4% 810 

in the sparse stand. Interestingly, the nadir escape factors of red SIF from dense and sparse 811 

canopies were almost unimpacted by presence of woody material, despite a relatively high 40% 812 

reflectance of bark at 686 nm. These unique results demonstrate that further development of 813 

SIF 3D radiative transfer modelling has a potential to reveal new insights in SIF observations 814 

of spectrally, spatially and topographically heterogeneous vegetated landscapes, acquired at 815 

different spatial scales by proximal, airborne and space-borne optical sensors.   816 
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Appendix A: Comparison of DART and SCOPE/mSCOPE SIF radiative transfers 832 

Since SCOPE and mSCOPE are turbid medium models, we prepared DART 3D scenes 833 

mimicking their 1D canopies as closely as possible. SCOPE, mSCOPE and DART were 834 

adjusted to use the same bottom-of-atmosphere (BOA) solar direct and diffuse irradiance, 835 

simulated with DART atmosphere radiative transfer module using the United States standard 836 

atmosphere gas model (NOAA et al. 1976) and the rural area aerosol model with a visibility of 837 

23 km. The scene was a 1 m height vegetation canopy above a bare soil with three Lambertian 838 

reflectance () properties: i) black soil ( = 0), ii) half-reflective soil ( = 0.5), and iii) loamy 839 

gravel brown dark soil with  linearly increasing with wavelength ( ≈ 6% at 550 nm,  ≈ 12% 840 

at 686 nm and  ≈ 15% at 740 nm). Every leaf facet had the same specific Lambertian 841 

reflectance and transmittance, i.e., there was no division of leaf optical properties on sunlit or 842 

sun-adapted and shaded or shade-adapted leaves. For the DART-SCOPE comparison, the eta 843 

fluorescence weight parameters were forced to one. For the DART-mSCOPE comparison, we 844 

split turbid scenes into two and three almost equally high layers (see Figure A1ab). Leaves of 845 

2- and 3-layer simulations were divided into sunlit and shaded (see % of sunlit leaves in each 846 

layer in Figure A1cd) and the eta parameters simulated per layer for both leaf cohorts in 847 

mSCOPE were entered in the corresponding DART simulations. Leaf optical properties were 848 

simulated with the same Fluspect version, using the input parameters listed in Table A1. In 849 

attempt to simulate strong SIFTOC signals, the fqe values for PSI and PSII were selected close 850 

to their potential maximums. Simulations considered three leaf densities, specified by the leaf 851 

area index (LAI) equal to 1, 2 and 4. In SCOPE simulations, we tested three leaf angle 852 

distributions (LAD):  Spherical, Erectophile and Planophile (Danson 1998), whereas we applied 853 

only the Spherical function, the most frequent naturally occurring LAD, in mSCOPE 854 

simulations. All leaves were homogenously distributed throughout the canopies, i.e. the foliage 855 

clumping index (Chen and Black 1992) was equal to 1. The DART leaf facets were equilateral 856 

triangles with the surface area of 0.08 cm2. Such small leaf area ensured independency of DART 857 

simulated TOC reflectance and SIF from the solar azimuth angle. The leaf width required for 858 

SCOPE/mSCOPE computations in the hot-spot direction was set to the height of DART facets, 859 

i.e., 0.37 cm. The solar azimuth angle (SAA) was fixed to 311.89° (anticlockwise from South) 860 

and the solar zenith angle (SZA) to 37.94° (i.e., solar elevation angle of 52.06°) as for 861 

Washington D.C. (USA) area (the Beltsville Agricultural Research Center; Lat. 39.03°N, Long. 862 

76.85°W) on 26th August 2014 at 14.00 local time (i.e., at 13.50 solar time). Nadir SIFTOC 863 
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radiance [W.m-2.m-1.sr-1] between 640 and 850 nm (1 nm bandwidth) was simulated for all 864 

combinations of the input parameters with the three RTMs. The obtained PSI, PSII and total 865 

SIFTOC values were compared statistically (as described in Section 2.6). 866 

867 
Figure A1. DART representations of a) 2- and b) 3-layered turbid-like canopies designed for comparison 868 
with the mSCOPE model (numbers indicate the height of each layer). Illustration of sunlit (under direct 869 
illumination; green) and shaded (under diffuse illumination, violet) triangular leaves for both c) 2- and 870 
d) 3-layered canopies (numbers indicate % of sunlit leaves per layer for each simulated LAI). 871 
 872 

Table A1: Input parameters of the Fluspect model used to simulate optical properties of 873 
SCOPE/mSCOPE turbid medium leaves and corresponding DART leaves (for explanations of input 874 
abbreviations see caption of Table 1). 875 

Fluspect inputs 
 

(m)SCOPE layers 

Cab 
[g.cm-2] 

Car 
[g.cm-2] 

EWT 
[cm] 

LMA 

[g.cm-2] 

N PSI 

fqe 

PSII 

fqe 

mSCOPE first layer (from top) 40 10 0.006 0.0014 1.0 0.006 0.03 

SCOPE & mSCOPE second layer 60 15 0.009 0.0021 1.5 0.006 0.03 

mSCOPE third layer (from top) 80 20 0.012 0.0028 2 0.006 0.03 

 876 

0.48 m

0.52 m

0.32 m

0.33 m

0.35 m

LAI 1~86.3%

LAI 2~75.0%
LAI 3~57.9%

LAI 1~63.1%

LAI 2~40.1%
LAI 3~16.7%

LAI 1~90.7%

LAI 2~85.5%
LAI 3~68.9%

LAI 1~74.0%
LAI 2~54.9%
LAI 3~30.6%

LAI 1~59.7%

LAI 2~35.8%
LAI 3~13.0%

a) b)

c) d)
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 877 

Figure A2. DART and SCOPE total nadir SIF of vegetation canopies with LAI=1, 2 and 4, three soils ( 878 
= 0%,   = 50%,  = loamy dark gravel soil), and with a) Spherical, b) Erectophile, and c) Planophile 879 
LAD (RMSE ~ root mean square error; d ~ index of agreement: 0 = no agreement, 1 = full agreement). 880 
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Figure A3. DART and mSCOPE nadir SIF of vegetation canopies simulated with the Spherical LAD, 882 
three soils ( = 0%,   = 50%,  = loamy dark gravel soil) in two layers a) without and b) with energy 883 
balance, and in three layers c) without and d) with energy balance (for abbreviations see Figure A2). 884 

 885 

Figure A4. Best agreement when comparing a) DART and b) SCOPE multi-angular SIF of a turbid 886 
medium canopy was found for the Erectophile LAD and a null soil reflectance. SIF radiance in the solar 887 
principal plane and linear regression of turbid-like DART and turbid SCOPE simulations (R2 = 0.99, 888 
RMSE = 0.03, d = 1.0 for all simulated viewing directions, i.e., VZA<90°, and RMSE = 0.02 for 889 
VZA<75°) are shown in c) and d) graphs, respectively (for abbreviations and symbols see Figure 5). 890 
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 891 

Figure A5. Worst agreement when comparing a) DART and b) SCOPE multi-angular SIF of turbid 892 
medium canopy with the Spherical LAD and a 50% reflective soil. SIF radiance in the solar principal 893 
plane and linear regression of turbid-like DART and turbid SCOPE simulations (R2 = 0.94, RMSE = 894 
0.21, d = 1.0 for VZA < 90° and R2 = 0.99, RMSE = 0.07 for VZA < 75°) are shown in c) and d) graphs, 895 
respectively (for abbreviations and symbols see Figure 5). 896 
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 897 

Figure A6. DART–SCOPE differences in multi-angular SIF radiance at 686 and 740 nm for a canopy 898 
with LAI = 4, having Spherical, Erectophile and Planophile LADs (the white star shows the solar 899 
position and black dots indicate the simulated viewing directions; for abbreviations see Figure 5). 900 
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2.2 Vegetation simulated as turbid medium 

A DART turbid cell contains one or more types of turbid vegetation, and eventually, other scene 

elements made of facets. Leaves simulated as turbid medium are treated statistically using 

analytical equations that treat leaves as a whole and not as individual leaves. A type of turbid 

vegetation is characterized by a Leaf Angular Distribution (LAD) 
𝑔(𝜃𝑙)

2𝜋
, a leaf area volume 

density 𝑢𝑙  (𝑚
2/𝑚3), and hemispherical spectral leaf optical properties (top side reflectance 

𝜌𝑡𝑜𝑝 and transmittance 𝜏𝑡𝑜𝑝, bottom side reflectance 𝜌𝑏𝑜𝑡 and transmittance 𝜏𝑏𝑜𝑡). 

2.2.1 Modeling approach 

First order scattering and SIF emission 

A source radiation vector 𝑊𝑖𝑛(𝜆, Ω𝑠)  incident in a direction Ω𝑠 that crosses a turbid cell (i.e., 

voxel) (Figure 2-1) is partly intercepted and partly transmitted. Its intercepted part is:  

𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) = 𝑊𝑖𝑛(𝜆, Ω𝑠). [1 − 𝑒
−𝐺(Ω𝑠).𝑢𝑙.Δ𝑙(Ω𝑠)] (2.1) 

with 𝐺(Ω𝑠)=∫
𝑔(𝜃𝑙)

2𝜋
∫ |Ω𝑙. Ω𝑠|. 𝑑𝜑𝑙. 𝑠𝑖𝑛𝜃𝑙 . 𝑑𝜃𝑙
2𝜋

0

𝜋

2
0

 and Δ𝑙(Ω𝑠) the path length of 𝑊𝑖𝑛(𝜆, Ω𝑠) 

inside the cell. 

Radiation intercepted by a turbid cell is either absorbed or scattered. The first order energy 

scattered in the discrete direction (Ω𝑣, ΔΩ𝑣) due to the interception of 𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) is:  

𝑊1,𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) = 𝑊𝑖𝑛(𝜆, Ω𝑠). 𝑇𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) (2.2) 

with 𝑇𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) the scattering transfer function:  

𝑇𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) =∑
𝑔(𝜃𝑙,𝑖)

2𝜋
𝜃𝑙,𝑖

∑
𝛼𝜆
𝜋

𝜑𝑙,𝑖

|Ω𝑙,𝑖𝑗 . Ω𝑠|. |Ω𝑙,𝑖𝑗. Ω𝑣|Δ𝜑𝑙,𝑗 sin 𝜃𝑙,𝑖 Δ𝜃𝑙,𝑖
ΔΩv
𝐺(Ω𝑠)

 
(2.3) 

𝛼𝜆 =

{
 
 

 
 𝜌𝑡𝑜𝑝 if Ω𝑙,𝑖𝑗. Ω𝑠 < 0 and Ω𝑙,𝑖𝑗. Ω𝑣 > 0

𝜏𝑡𝑜𝑝 if Ω𝑙,𝑖𝑗. Ω𝑠 < 0 and Ω𝑙,𝑖𝑗. Ω𝑣 < 0

𝜌𝑏𝑜𝑡 if Ω𝑙,𝑖𝑗. Ω𝑠 > 0 and Ω𝑙,𝑖𝑗. Ω𝑣 < 0

𝜏𝑏𝑜𝑡 if Ω𝑙,𝑖𝑗. Ω𝑠 > 0 and Ω𝑙,𝑖𝑗 . Ω𝑣 > 0
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In presence of SIF emission, any radiation vector has 3 components: total, PSI and PSII 

radiation. SIF emission and radiation scattering are computed in each discrete direction. SIF 

excitation-emission matrices play a role for SIF emission similar to that of leaf reflectance and 

transmittance for scattering. SIF emission at spectral band (𝜆𝑤,Δ𝜆𝑤) in the discrete direction 

(Ω𝑣, ΔΩ𝑣), by the photosystem 𝑥 (i.e., 1 or 2), due to the intercepted radiation 𝑊𝑖𝑛𝑡(𝜆𝑢, Ω𝑠) at 

spectral band (𝜆𝑢, Δ𝜆𝑢) is:  

𝑊𝑃𝑆𝑥(𝜆𝑢 → 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) = 𝑊𝑖𝑛(𝜆𝑢, Ω𝑠). 𝑇𝑃𝑆𝑥(𝜆𝑢, 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) (2.4) 

with 𝑇𝑃𝑆𝑥(𝜆𝑢, 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) the fluorescence transfer function: 

𝑇𝑃𝑆𝑥(𝜆𝑢, 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣)

=∑
𝑔(𝜃𝑙,𝑖)

2𝜋
𝜃𝑙,𝑖

∑
𝑀𝑥𝑦𝑢𝑣

𝜋
𝜑𝑙,𝑖

|Ω𝑙,𝑖𝑗 . Ω𝑠|. |Ω𝑙,𝑖𝑗 . Ω𝑣|Δ𝜑𝑙,𝑗 sin 𝜃𝑙,𝑖 Δ𝜃𝑙,𝑖
ΔΩv
𝐺(Ω𝑠)

 
(2.5) 

𝑀𝑥𝑦𝑢𝑤 =

{
 
 

 
 
𝑀𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢,𝑤
𝑡𝑜𝑝  if Ω𝑙,𝑖𝑗. Ω𝑠 < 0 and Ω𝑙,𝑖𝑗. Ω𝑣 > 0

𝑀𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢,𝑤
𝑡𝑜𝑝  if Ω𝑙,𝑖𝑗 . Ω𝑠 < 0 and Ω𝑙,𝑖𝑗. Ω𝑣 < 0

𝑀𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢,𝑤
𝑏𝑜𝑡  if Ω𝑙,𝑖𝑗. Ω𝑠 > 0 and Ω𝑙,𝑖𝑗. Ω𝑣 < 0

𝑀𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢,𝑤
𝑏𝑜𝑡  if Ω𝑙,𝑖𝑗 . Ω𝑠 > 0 and Ω𝑙,𝑖𝑗. Ω𝑣 > 0

 

The first order SIF emission at the spectral band (𝜆𝑤,Δ𝜆𝑤) is the sum of the contribution of all 

the excitation spectral bands to the emission in this band.  

𝑊1,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) =∑𝑊𝑃𝑆𝑥(𝜆𝑢 → 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣)

𝑢

 (2.6) 

Transmission and interception of first order rays 

𝑊1,𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣)  and 𝑊1,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣)  are partly transmitted through the cell 

along the path Δ𝑙(𝑀,Ω𝑣) between the emission point M and the cell border and give: 

- The first order scattered flux and SIF flux that exit the cells in the direction (Ω𝑣, ΔΩv):  

𝑊1,𝑠𝑐𝑎𝑡,𝛼(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) =  𝑊1,𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣). 𝑒
−𝐺(Ω𝑠).𝑢𝑙.Δ𝑙(𝑀,Ω𝑣) (2.7) 

𝑊1,𝑃𝑆𝑥,𝛼(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) =  𝑊1,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣). 𝑒
−𝐺(Ω𝑠).𝑢𝑙.Δ𝑙(𝑀,Ω𝑣) (2.8) 

- The associated total and SIF intercepted fluxes in the cell in all directions are:  
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𝑊1,𝑖𝑛𝑡,1(𝜆, Ω𝑠) =∑𝑊1,𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣). (1 − 𝑒
−𝐺(Ω𝑠).𝑢𝑙.Δ𝑙(𝑀,Ω𝑣))

𝑣

 (2.9) 

𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,1(𝜆𝑤, Ω𝑠) =∑𝑊1,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣). (1 − 𝑒
−𝐺(Ω𝑠).𝑢𝑙.Δ𝑙(𝑀,Ω𝑣))

𝑣

 
(2.10) 

Within cell multiple scattering and SIF emission 

The intercepted flux 𝑊1,𝑖𝑛𝑡,1(𝜆, Ω𝑠) is scattered and partly transmitted, then partly intercepted, 

and so on. Assuming the isotropy of the within cell scattered rays, the multiple scattered flux 

that escapes the cell is:  

𝑊1,𝑖𝑛𝑡,𝛽(𝜆, Ω𝑠) = 𝑊1,𝑖𝑛𝑡,1(𝜆, 𝛺𝑠). [𝜔𝑇̅ + 𝜔𝑇̅(𝜔 − 𝜔𝑇̅) + 𝜔𝑇̅(𝜔 − 𝜔𝑇̅)
2 +⋯] (2.11) 

 = 𝑊1,𝑖𝑛𝑡,1(𝜆, 𝛺𝑠).
𝜔𝑇̅

[1 − 𝜔(1 − 𝑇̅)]
  

with 𝜔 the leaf single scattering albedo and 𝑇̅ the mean cell transmittance along the paths 

Δ𝑙(𝑀,Ω𝑣) from the cell center to the cell faces: 

𝑇̅ =
1

4𝜋
∫ 𝑒−𝐺(𝛺𝑣).𝑢𝑙.𝛥𝑙(𝑀,𝛺𝑣). 𝑑Ω𝑣
4𝜋

 (2.12) 

Similarly, for the SIF energy: 

𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,𝛽(𝜆𝑤, Ω𝑠) = 𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,1(𝜆𝑤, Ω𝑠).
𝜔𝑤𝑇̅

[1 − 𝜔𝑤(1 − 𝑇̅)]
 (2.13) 

The propagation of 𝑊1,𝑖𝑛𝑡,1(𝜆, Ω𝑠) in the cell after multiple scattering gives rise to absorption:  

𝑊1,𝑎𝑏𝑠(𝜆, Ω𝑠) = 𝑊1,𝑖𝑛𝑡,1(𝜆, 𝛺𝑠) −𝑊1,𝑖𝑛𝑡,𝛽(𝜆, 𝛺𝑠)  (2.14) 

 
= 𝑊1,𝑖𝑛𝑡,1(𝜆, 𝛺𝑠).

1 − 𝜔𝑇̅

[1 − 𝜔(1 − 𝑇̅)]
  

Similarly, for the SIF energy:  

𝑊1,𝑃𝑆𝑥,𝑎𝑏𝑠(𝜆, Ω𝑠) = 𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,1(𝜆𝑤, Ω𝑠).
1 − 𝜔𝑤𝑇̅

[1 − 𝜔𝑤(1 − 𝑇̅)]
 (2.15) 

Therefore, the propagation of 𝑊1,𝑖𝑛𝑡,1(𝜆, Ω𝑠) gives also rise to new SIF emission:  

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠) =∑2.
𝑊1,𝑎𝑏𝑠(𝜆𝑢, Ω𝑠)

1 − 𝜔𝑢
𝑢

. 𝑀𝑥𝑢𝑣 (2.16) 

where 𝑀𝑥𝑢𝑣 =
𝑀𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢𝑣
𝑡𝑜𝑝

+𝑀𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢𝑣
𝑡𝑜𝑝

+𝑀𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑢𝑣
𝑏𝑜𝑡 +𝑀𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑢𝑣

𝑏𝑜𝑡

4
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Part of this emitted SIF exits the cell directly, or after simple or multiple scattering:  

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾(𝜆𝑤, Ω𝑠) = 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥(𝜆𝑤, 𝛺𝑠). [𝑇̅ + 𝜔𝑇̅(1 − 𝑇̅) + 𝜔
2. 𝑇̅(1 − 𝑇̅)2 +⋯] (2.17) 

 
= 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥(𝜆𝑤, 𝛺𝑠).

𝑇̅

[1 − 𝜔(1 − 𝑇̅)]
  

 

The SIF emitted in each direction is then:  

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾(𝜆𝑤, Ω𝑠 → Ω𝑣) = 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾(𝜆𝑤, Ω𝑠). 𝜉(𝑀, Ω𝑣) (2.18) 

with 

𝜉(𝑀, Ω𝑣) =
𝑒−𝐺(Ω𝑣)𝑢𝑙Δ𝑙(𝑀,Ω𝑣). ∫ ∫ |Ω𝑠. Ω𝑙|

𝑔(𝜃𝑙)
2𝜋

𝑓(Ω𝑙, Ω𝑠 → Ω𝑣)𝑑Ω𝑙𝑑Ω𝑠ΔΩ𝑣2𝜋4𝜋

∫ 𝑒−𝐺(Ω𝑣)𝑢𝑙Δ𝑙(𝑀,Ω𝑣). ∫ ∫ |Ω𝑠. Ω𝑙|
𝑔(𝜃𝑙)
2𝜋 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣)𝑑Ω𝑙𝑑Ω𝑠𝑑Ω𝑣2𝜋4𝜋4𝜋

 (2.19) 

The propagation of 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥 in the cell can further give rise to absorption and SIF emission, 

which in turn can give rise to higher order SIF emissions. However, these SIF emissions are 

small enough to be neglected.  

 

 

 

 

 

Figure 2-1: Incident source vector [W
in
(λ,ΔΩs)] onto a turbid cell, with source points M↑ and 

M↓ , and energy {W1(λ,Ωv), W1,PS1(λ,Ωv), W1,PS2(λ,Ωv)} from M↑ . Δl(Ωs) is the 

distance between the entry A and exit B of the incident ray. Δs(M↑,Ωv) is the 

distance between M↑ and the cell exit along direction Ωv. W1,α(λ,Ωv) is equal to the 

direct transmission of W1(λ,Ωv) outside the cell without any scattering, whereas 

W1,int,β(λ,Ωv) is the transmission of W1(λ,Ωv) outside the cell with scattering events. 

𝜼 factors  

As for vegetation simulated as facets, the 𝜂 factors simulated by SCOPE can be imported to 

scale the leaf-level SIF emission in order to consider the effects of local environment.  

SCOPE computes two types of 𝜂 factors:  

{W1(𝜆, Ω𝑣),W1,𝑃𝑆1(𝜆, Ω𝑣),W1,𝑃𝑆2(𝜆, Ω𝑣)}   

{W
1,𝛼
(𝜆, Ω𝑣), t1,α. W1,PS1(𝜆, Ω𝑣), t1,α.W1,𝑃𝑆2(𝜆, Ω𝑣)} 

{W1,𝑖𝑛𝑡,𝛽(𝜆, Ω𝑣), t1,β. W1,PS1,int(𝜆, Ω𝑣), t1,β.W1,𝑃𝑆2,𝑖𝑛𝑡(𝜆, Ω𝑣)} [W
in
(𝜆, ΔΩ𝑠)] 

A 

B 
Δ𝑙(Ω𝑠) 

𝑀↑ 

Δ𝑠(𝑀↑, Ω𝑣) 

𝑀↓ 

t1,α=
W1,𝛼(𝜆, Ω𝑣)

W1(𝜆, Ω𝑣)
 t1,β=

W1,𝑖𝑛𝑡,𝛽(𝜆, Ω𝑣)

W1,𝑖𝑛𝑡(𝜆, Ω𝑣)
 

{0,W1,int,PS1,γ(𝜆, Ω𝑣),W1,int,PS2,γ(𝜆, Ω𝑣)} 
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- 𝜂𝑠𝑢𝑛𝑙𝑖𝑡(𝑛, 𝜃𝑙 , 𝜑𝑙) for sunlit leaves at layer 𝑛, and leaves with a leaf zenith and azimuth angles 

𝜃𝑙 and 𝜑𝑙, respectively.  In this case, an average profile is computed for each layer:  

𝜂̅𝑠𝑢𝑛𝑙𝑖𝑡(𝑛) = ∫ ∫ 𝜂𝑠𝑢𝑛𝑙𝑖𝑡(𝑛, 𝜃𝑙 , 𝜑𝑙).
𝑔(𝜃𝑙)

2𝜋
. 𝑠𝑖𝑛 𝜃𝑙 . 𝑑𝜃𝑙 . 𝑑𝜑𝑙

𝜋
2

0

2𝜋

0

 (2.20) 

 
≈∑∑𝜂𝑠𝑢𝑛𝑙𝑖𝑡(𝑛, 𝜃𝑙 , 𝜑𝑙).

𝜃𝑙𝜑𝑙

𝑔(𝜃𝑙)

2𝜋
. 𝑠𝑖𝑛 𝜃𝑙 . 𝛥𝜃𝑙 . 𝛥𝜑𝑙  

 

- 𝜂𝑠ℎ𝑎𝑑𝑒𝑑(𝑛) for shaded cells at layer 𝑛. It is used as is. 

The number of layers in the DART simulation and in the SCOPE imported 𝜂 files usually differ. 

If the number of DART layers is lower, the corresponding layers of the 𝜂 profile are averaged, 

if it is higher, the values of the 𝜂 profiles are interpolated to provide a value for each layer. 

2.2.2 Results  

The accuracy of DART-FT modeling in turbid vegetation was tested by comparing it with 

DART-FT modeling in quasi-turbid vegetation, because the latter one has already been 

successfully tested with the SCOPE model. Figure 2-2 shows DART-FT SIF emission and nadir 

radiance for a homogeneous canopy simulated as turbid medium and quasi turbid medium. The 

agreement is very good for the two types of vegetation representation, with relative differences 

less than 0.1% for emitted SIF and less than 0.8% for radiance. The relative difference is lower 

for SIF emission than for SIF radiance because SIF radiance has an additional step from the 

emission to the top of canopy. The large absorption of SIF by the vegetation explains that the 

red peak of PSII is relatively smaller for SIF radiance than for SIF emission.  

 

Figure 2-2: DART-FT SIF emission and nadir radiance for a homogeneous canopy simulated 

as turbid medium and quasi turbid medium.  
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2.3 Conclusion 

In this chapter, the SIF modeling approaches in DART-FT were presented for facets-based and 

turbid-based vegetation. Up to now, the impact for the local climatology on the SIF emission 

can be considered only via the coupling with SCOPE 1D energy module. The results were in 

good agreement with the SCOPE/mSCOPE models. However, DART-FT requires very huge 

computation time and memory to simulate SIF for large scale scenes, which would be very 

important notably to simulate images of spaceborne sensors. For example, the spatial resolution 

of the FLEX satellite will be 300 m. Therefore, a more efficient modeling strategy is needed to 

meet these needs. This highlights the interest of the new Monte Carlo modeling strategy in 

DART-Lux because of its much better computational efficiency in terms of simulation time and 

memory. However, for this objective, the SIF modeling must be introduced in DART-Lux. This 

introduction is presented in the next chapter.  
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Symbol Description  Unit 

𝑔(𝜃)

2𝜋
 

Leaf angular distribution function 𝑠𝑟−1 

𝐺(Ω𝑠) Mean projection of leaf normal on the direction Ω𝑠 - 

𝑇̅ Mean cell transmittance - 

𝑇𝑃𝑆𝑥(𝜆𝑢, 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) Fluorescence transfer function: excitation band 𝑢 , 

emission band 𝑤 , incident direction Ω𝑠 , outgoing 

direction (Ω𝑣, ΔΩ𝑣) 

- 

𝑇𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) Scattering transfer function: incident direction Ω𝑠 , 

outgoing direction (Ω𝑣, ΔΩ𝑣) 

- 

𝑊𝑖𝑛(𝜆, Ω𝑠) Source vector of incident radiation in direction Ωs 𝑊.𝜇𝑚−1 

𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) Intercepted radiation from 𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) 𝑊.𝜇𝑚−1 

𝑊𝑃𝑆𝑥(𝜆𝑢 → 𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) First order SIF at photosystem x and band 𝑤 due to 

excitation in band 𝑢 

𝑊.𝜇𝑚−1 

𝑊1,𝑠𝑐𝑎𝑡(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) First order scattering due to 𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) 𝑊.𝜇𝑚−1 

𝑊1,𝑠𝑐𝑎𝑡,𝛼(𝜆, Ω𝑠, Ω𝑣, ΔΩ𝑣) Part of 𝑊1,𝑠𝑐𝑎𝑡 that exits the cell 𝑊.𝜇𝑚−1 

𝑊1,𝑖𝑛𝑡,𝛽(𝜆, Ω𝑠) Part of 𝑊1,𝑖𝑛𝑡,1 that exits the cell after multiple 

scattering 

𝑊.𝜇𝑚−1 

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠) SIF emission at photosystem 𝑥  due to the 

propagation of 𝑊1,𝑖𝑛𝑡,1 

𝑊.𝜇𝑚−1 

𝑊1,𝑖𝑛𝑡,1(𝜆, Ω𝑠) Intercepted part from first order scattered radiation 𝑊.𝜇𝑚−1 

𝑊1,𝑎𝑏𝑠(𝜆, Ω𝑠) Absorbed part from first order scattered radiation  𝑊.𝜇𝑚−1 

𝑊1,𝑃𝑆𝑥(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) First order SIF due to 𝑊𝑖𝑛𝑡(𝜆, Ω𝑠) 𝑊.𝜇𝑚−1 

𝑊1,𝑃𝑆𝑥,𝛼(𝜆𝑤, Ω𝑠, Ω𝑣, ΔΩ𝑣) Part of 𝑊1,𝑃𝑆𝑥,𝛼 that exits the cell 𝑊.𝜇𝑚−1 

Appendix 2-1: Nomenclature 
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𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,𝛽(𝜆𝑤, Ω𝑠) Part of 𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,1 that exits the cell after multiple 

scattering  

𝑊.𝜇𝑚−1 

𝑊1,𝑃𝑆𝑥,𝑖𝑛𝑡,1(𝜆𝑤, Ω𝑠) Interception due to first order SIF radiation 𝑊.𝜇𝑚−1 

𝑊1,𝑃𝑆𝑥,𝑎𝑏𝑠(𝜆, Ω𝑠) Absorbed part from first order SIF radiation  𝑊.𝜇𝑚−1 

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾(𝜆𝑤, Ω𝑠) Part of 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥 that exits the cell after simple or 

multiple scattering 

𝑊.𝜇𝑚−1 

𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾(𝜆𝑤, Ω𝑠 → Ω𝑣) Part of 𝑊1,𝑖𝑛𝑡,𝑃𝑆𝑥,𝛾 that exits from direction Ω𝑣 𝑊.𝜇𝑚−1 

𝑢𝑙 Leaf volume density  𝑚2. 𝑚−3 

𝜌𝑡𝑜𝑝 𝜏𝑡𝑜𝑝 𝜌𝑏𝑜𝑡 𝜏𝑏𝑜𝑡 Leaf top reflectance, top transmittance, bottom 

reflectance, bottom transmittance respectively 

- 

𝜂 Fluorescence eta factor  - 

𝜉(𝑀,Ω𝑣) Fraction of radiation scattered in direction Ω𝑣 - 

Δ𝑙(Ω𝑠) Path along Ω𝑠 𝑚 
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DART-Lux is based on an adaptation of the LuxCoreRender opensource rendering 

software. A fundamental adaptation was to replace the RGB triple color channel hardly coded 

in this software, to multiband modeling to allow multispectral and hyperspectral simulations. 

This step was needed to simulate SIF because SIF modeling usually needs a large number of 

spectral bands at a fine spectral resolution over the whole SIF excitation and emission spectral 

domains. However, to simulate SIF emission, it is essential to have an interdependency between 

spectral bands as the excitation at a certain wavelength can induce fluorescence emission at 

other wavelengths, which is not possible using the original LuxCoreRender nor the first 

versions of DART-Lux. Moreover, the turbid medium is a representation of vegetation that is 

specific for remote sensing models and is not included in rendering software originally designed 

for other purposes. This chapter presents the new modeling that I designed and implemented 

into DART-Lux in order to solve these issues. The first section presents the SIF modeling for 

facets-based vegetation and all the consequent modeling adaptations that were made to allow 

DART-Lux to simulate SIF. An article describing the methodology and evaluating the accuracy 

of the SIF modeling in DART-Lux of which I am the first author has been submitted to the 

International Journal of Applied Earth Observation and Geoinformation. The second section 

presents first the turbid volume vegetation modeling in DART-Lux which was introduced by 

analogy to the fluids modeling. Then, the SIF modeling for turbid vegetation is introduced. 

Chapter 3  

SIF modeling in DART-Lux 
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3.1 Vegetation simulated as facets 

3.1.1 Modeling approach 

The implementation of SIF emission in DART-Lux for vegetation simulated as facets also uses 

the fluorescence excitation-emission matrices computed by Fluspect and resampled to the user-

defined DART bands. The same rule of covering all the excitation spectral interval (i.e., [400 – 

750 nm]) with non-overlapping bands applies. To include the SIF radiation, physical quantities 

in DART-Lux should have 3 components for total, PSI and PSII radiation. However, to evaluate 

the SIF radiance for light paths traced from the sensor (i.e., in the backward direction), this is 

not sufficient. A higher dimensional representation needed to be introduced to account for the 

three components and all the possible interactions. The detailed description of this methodology 

and its implementation is available in a submitted paper (cf. Section 3.1.3). 

3.1.2 Results 

Model-to-model comparisons were used to evaluate the implementation of SIF in DART-Lux. 

Canopy SIF emission and radiance simulated by DART-Lux were compared to those simulated 

by DART-FT and SCOPE for different types of canopies. DART-Lux closely matched DART-

FT in all configurations, with less than 2% of relative difference. It also matched SCOPE for 

homogeneous canopies, but not with 3D canopy (maize crop field) especially for oblique 

viewing directions. Computation time and memory requirements were usually lower than 

DART-FT. The gain in computational efficiency relative to DART-FT was systematically very 

large for large and complex scenes. However, this large gain decreased when the number of 

spectral bands increases. The theory of the new SIF modeling and results are detailed in a 

submitted paper (cf. Section 3.1.3). 

3.1.3 Submitted article  
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Bi-directional Monte-Carlo modelling of solar-induced chlorophyll 1 

fluorescence images for 3D vegetation canopies in the DART model 2 

Omar Regaieg, Nicolas Lauret, Yingjie Wang, Jordan Guilleux, Eric 3 

Chavanon, Jean-Philippe Gastellu-Etchegorry 4 

CESBIO - UPS, CNES, CNRS, IRD, Université de Toulouse, 31401 Toulouse cedex 9, France. 5 

 6 

Abstract 7 

Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential 8 

for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to 9 

better interpret and extract information from SIF signals. DART is one of the most 10 

comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a 11 

discrete ordinate method but is not adapted to large landscapes due to computational constraints. 12 

DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves 13 

DART computational efficiency for simulating images. This paper presents the theory of a 14 

novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the 15 

SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux 16 

closely matches DART-FT (relative difference < 2%) with much better computational 17 

efficiency depending on the scene complexity, number of spectral bands and needed accuracy. 18 

For example, simulation time is reduced by a factor of 48, and memory usage by 50 for a 19 

maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 20 

3 × 3 km2  Ripperdan agricultural site that DART-FT could not simulate. The new SIF 21 

modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is 22 

available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/). 23 

Keywords 24 

SIF, Remote sensing, Bi-directional path tracing, 3D vegetation structure, DART 25 

I. Introduction  26 

Solar-induced fluorescence (SIF) of vegetation is a spontaneous radiation re-emission from 27 

640 to 850 nm due to absorbed sunlight from 400 to 750 nm. In competition with the 28 

photochemical and heat dissipation processes, it allows an electron from a chlorophyll 29 

molecule excited by absorbing a quantum of light, to dispose of its excess energy. It provides 30 
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valuable information on real-time plants photosynthetic activity (Mohammed et al., 2019) 31 

which enables early stress detection (Song et al., 2018) and gross primary production (GPP) 32 

estimation (Zhang et al., 2020). 33 

The fluorescence quantum efficiency (fqe) of chlorophyll in vivo does not exceed 10%, with 34 

typical values under steady-state illumination of 0.5–3% (Porcar-Castell et al., 2014). Hence, 35 

the SIF remote sensing (RS) signal is a small fraction of sunlight scattered by a vegetation 36 

canopy. The resulting difficulty in interpreting SIF RS signal in terms of vegetation functioning 37 

traits is largely amplified by the dependence of the SIF signal on the vegetation 3D structure, 38 

combined with illumination and observation conditions (Hornero et al., 2021; Regaieg et al., 39 

2021). This stresses the importance of physical models to link the within canopy SIF emission 40 

with RS signals. An ideal radiative model of SIF includes two major sub-models: (1) Leaf SIF 41 

emission model considering the incident spectral irradiance, leaf structure and biochemistry, 42 

and the probability of a photon absorbed by photosystems I (PSI) and II (PSII) to be re-emitted 43 

as SIF (i.e., fqe) derived from leaf physiological modelling. (2) Radiative transfer (RT) model 44 

of the radiation propagation in the canopy to simulate the SIF radiance at the bottom and/or top 45 

of the atmosphere (i.e., RS signal).  46 

Here, we consider top of canopy SIF modelling including vegetation 3D architecture. Canopy 47 

SIF models are generally canopy reflectance models with an imbedded leaf-level fluorescence 48 

model. For example, FLSAIL (Rosema et al., 1991), FluorSAIL (Miller, 2005) and SCOPE 49 

(van der Tol et al., 2009) models combine leaf SIF modelling with the SAIL canopy reflectance 50 

model (Verhoef, 1984). SAIL is one-dimensional (1D), as it represents vegetation as 51 

superimposed homogeneous layers filled by a turbid medium: infinite number of infinitely 52 

small plane elements characterized by a statistical leaf angular distribution (LAD), a leaf area 53 

index (LAI), and optical properties. It simulates the radiative transfer with four streams: a 54 

source term for direct solar radiation, one stream for upward and one stream for downward 55 

fluxes, and scattered radiance is integrated along the observation direction. SCOPE is a 56 

reference model for 1D SIF modelling (Damm et al., 2015; Verrelst et al., 2019). The 1D 57 

models’ major limitation is neglecting the vegetation horizontal heterogeneity. Accounting for 58 

vertical heterogeneity as in mSCOPE (Yang et al., 2017) only partly improves the situation. 59 

Indeed, the canopy horizontal heterogeneity has usually a much greater influence on RS signals 60 

than vertical heterogeneity (Regaieg et al., 2021). Some approaches aiming to simulate SIF at 61 

the global scale account for the influence of the canopy horizontal heterogeneity using clumping 62 
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indices (Braghiere et al., 2021). However, they cannot fully capture the actual canopies 3D 63 

architecture including local topography, and the presence of woody elements, that impact 64 

remotely sensed SIF signals (Malenovský et al., 2021; Regaieg et al., 2021). 65 

3D SIF RTMs adapted to realistic vegetation canopies descriptions represented as facets or 3D 66 

turbid medium are of great interest because of the 1D models limitation. For example, FLiES-67 

SIF (Sakai et al., 2020) simulates SIF tree canopies having geometrically simple crowns (e.g., 68 

cone, cylinder, spheroid) whereas FluorFLIGHT (Hernández-Clemente et al., 2017), FluorWPS 69 

(Zhao et al., 2016), DART (Malenovský et al., 2021) and FluCVRT (Kallel, 2020) simulate SIF 70 

for any canopy type. FluCVRT includes 3D leaf-level SIF modelling. These models use Monte 71 

Carlo ray tracing techniques, apart from DART that uses an adapted forward discrete ordinates 72 

method, called DART-FT (Flux Tracking). DART-FT simulates the canopy SIF radiance and 73 

reflectance images, the canopy 3D SIF radiative budget (RB) per photosystem, and therefore 74 

the canopy fluorescence escape factor (Guanter et al., 2014). DART-FT SIF modelling has been 75 

validated with model comparison (Malenovský et al., 2021), and successfully used in various 76 

SIF studies such as sensitivity analysis of the SIF signal in architecturally complex forest 77 

canopies (W. Liu et al., 2019; Malenovský et al., 2021), scaling canopy-level SIF down to 78 

photosystems level (X. Liu et al., 2019), and studying the far-red SIF escape probability from 79 

forest canopies (W. Liu et al., 2020). 80 

Compared to 1D models, 3D models use more parameters, are more computationally 81 

demanding and therefore are not well adapted to regional or global scales. Indeed, forward 82 

models like DART-FT spend much time and memory tracking fluxes that contribute little to 83 

the simulated images. Based on the Bidirectional Path Tracing (BDPT) algorithm (Veach, 84 

1998), based on Monte Carlo modelling, the new DART mode called DART-Lux (Wang et al., 85 

2022) highly reduces computer time and memory requirements to simulate images of large and 86 

complex landscapes. Therefore, we designed a novel SIF modelling method adapted to the 87 

BDPT algorithm for accurate and computationally efficient simulations of SIF RS images of 88 

3D vegetation canopies. To our knowledge, no similar SIF modelling method has ever been 89 

developed for BDPT algorithms. 90 

II. DART-Lux  91 

DART is an accurate and comprehensive 3D RT model developed at CESBIO since 1992 92 

and patented in 2003. It simulates RS images of VIS / NIR / TIR spectro-radiometers, LiDAR 93 
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observations, and 3D RB of natural and urban landscapes (Wang et al., 2020). Its standard 94 

mode, DART-FT, represents landscapes by 3D arrays of voxels filled with facets (e.g., 95 

vegetation, buildings), turbid medium and fluids. It iteratively tracks radiation in a user-defined 96 

number of discrete directions. DART-Lux, DART's latest mode (Wang et al., 2022), uses the 97 

BDPT algorithm with Monte Carlo integration techniques. It can largely decrease time and 98 

memory requirements for DART images simulation of large and complex landscapes. It uses 99 

the geometry instance, “depth-first” approaches (Cormen et al., 2009) and the BDPT algorithm 100 

(Pharr et al., 2016) that preferentially tracks fluxes that contribute most to observations by 101 

constructing paths that start both from the sensor and light sources. It is adapted to any 102 

configuration with any light sources and landscape elements with any Bidirectional Scattering 103 

Distribution Function (BSDF). The radiance measurement 𝐿(𝑗)  of pixel 𝑗  of the simulated 104 

image is:  105 

𝐿(𝑗) = ∫ 𝐶(𝑗)(𝑝̅)𝑑𝐴(𝑝̅)
𝒟

 (1) 

where 𝑝̅ is a light transport path,  106 

𝒟  is the set of all light transport paths. 𝒟=⋃ 𝒟𝑘
∞
𝑘=1 , with 𝒟𝑘  the set of all paths 107 

𝑝̅𝑘=(𝑝0,…, 𝑝𝑘) of length 𝑘 (i.e., 𝑘 segments, 𝑘+1 vertices 𝑝𝑖; 𝑖[0, 𝑘], 𝑝0 on the sensor, 𝑝𝑘 108 

on the light source), 109 

𝑑𝐴(𝑝̅) is the area product for path 𝑝̅; e.g., 𝑑𝐴(𝑝̅𝑘) = 𝑑𝐴(𝑝0)…𝑑𝐴(𝑝𝑘) with area 𝑑𝐴(𝑝𝑖) at 110 

vertex 𝑖 111 

and 𝐶(𝑗)(𝑝̅) is the contribution function of path 𝑝̅ to the measurement 𝐿(𝑗) of pixel 𝑗. 112 

𝐿(𝑗) is computed as:  113 

𝐿(𝑗) = ∫ ∫ 𝑊𝑒
(𝑗)(𝑝0, 𝛺) ∙ 𝐿(𝑝1→𝑝0) ∙ |𝑐𝑜𝑠 𝜃𝑖

𝑝0| ∙ 𝑑𝛺𝑑𝐴(𝑝0)
𝛺0𝐴0

 (2) 

where 𝐴0 is lens area, 114 

Ω0 is the solid angle that encloses all incident directions from the optical system to the sensor 115 

plane, 116 

𝑊𝑒
(𝑗)(𝑝0, Ω) is the importance function (Nicodemus, 1978), 117 

𝜃𝑖
𝑝0 is the angle between the incident direction and the sensor principal optical axis 118 
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and 𝐿(𝑝1→𝑝0) = ∑ 𝐿(𝑝̅𝑘)
∞
𝑘=1  is the radiance at sensor's vertex 𝑝0 from a surface's vertex 𝑝1 119 

with 𝐿(𝑝̅𝑘)  the radiance incident on 𝑝0  due to all paths 𝑝̅𝑘  of length 𝑘 ; e.g., 𝑝̅𝑘  = 120 

(𝑝𝑘, … , 𝑝1, 𝑝0). 121 

The radiance incident at vertex 𝑝𝑖  of a path 𝑝̅𝑘  is the radiance from the vertex 𝑝𝑖+1  that 122 

illuminates the vertex 𝑝𝑖. A path results of the connection of a vertex of the sensor sub-path 123 

created with 𝑡 vertices from the sensor and a vertex of the source sub-path created with 𝑠 124 

vertices from the light source. Figure 1 shows a case with four vertices (𝑝0, 𝑝1, 𝑝2, 𝑝3), with 𝑝0 125 

on the sensor and 𝑝3 on the source. In DART-Lux, the maximum scattering order (i.e., number 126 

of ray bounces on the scene surfaces) is a user-defined parameter. It defines the maximum 127 

length of the light transport paths. In this figure, this maximum length is three (𝑘 = 3:  4 128 

vertices and 3 segments) and the scattering order is 2.  129 

a)         b)  130 

Figure 1. (a) Path 𝑝̅3 with four vertices 𝑝𝑖 (i  {0..k} with k = 3). (b) The five ways to 131 

construct 𝑝̅3, with s and t vertices (s+t = k+1 = 4) for the sources and sensor sub-132 

paths, respectively. 133 

In DART-Lux, the BDPT algorithm estimates 𝐿(𝑗) at sensor 𝑝0  from the contributions of 134 

sampled paths constructed by incremental path tracing from both the light source and the sensor. 135 

For example, if a path 𝑝̅𝑘 starts from the sensor, a point 𝑝0 is randomly sampled on the senor 136 

and a ray is traced from 𝑝0 and in the direction defined by sensor properties, until intersecting 137 

a surface at a point 𝑝1. Then, the path is iteratively constructed using the two steps:  138 

1) At each vertex 𝑝𝑖 , starting from 𝑖=1, sample a new direction according to the BSDF, 139 

knowing the incident direction. Stop if 𝑖=𝑘. 140 

2) Find the next vertex 𝑝𝑖+1 by tracing a ray from 𝑝𝑖 along the sampled direction. 141 

A Monte Carlo integration technique estimates the pixel radiance measurement with an 142 

importance sampling technique (Kalos & Whitlock, 1986). Paths that most impact the radiance 143 
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reaching the sensor have a higher probability to be sampled. Multiple Importance Sampling 144 

(MIS) (Veach & Guibas, 1995) is used to combine the different ways to sample the same path 145 

(e.g., Figure 1.b shows the five ways to sample the path in Figure 1.a) using weighting functions 146 

that give the weight 𝑤𝑖(𝑥) per sample 𝑥 drawn from the sampling way 𝑖. The Russian Roulette 147 

(Veach & Guibas, 1995) is used to randomly stop the calculation at a certain path length to save 148 

computer time. A probability 𝑞 is set to stop a ray and not to evaluate the integrand for the 149 

particular sample, and a probability (1-𝑞) to evaluate the integrand and to weight it by 
1

1−𝑞
, to 150 

account for all the samples that are not evaluated. The theory of DART-Lux was presented in 151 

more details by Wang et al. (2022). 152 

The DART-Lux image (5 m resolution, 100 bands in [0.4-0.85 µm]) of the 3 × 3 km2  153 

Ripperdan farm site with vines and more than 600.000 trees (Figure 12.b) shows its potential. 154 

It needed 16.9 GB of memory and 13 min 4 s of simulation time with an Intel Xeon W-2295 155 

CPU @ 3.00GHz (18 cores, 36 threads). DART-FT was not run because it needed about 50 TB 156 

of memory and 1600 h of simulation time.  157 

 158 

III. DART-Lux canopy SIF modelling 159 

Despite its interest in accurate and fast radiance simulations of large landscapes, to our 160 

knowledge, the BDPT algorithm has never been applied to canopy SIF modelling. Its adaptation 161 

to SIF modelling in DART-Lux is presented here. It relies on the surface form of the Light 162 

Transport Equation (LTE) to compute as an integral over all scene surfaces 𝐴 the radiance 163 

reaching a vertex 𝑝 from a vertex 𝑝′  (Figure 2):  164 

𝐿(𝑝′→𝑝) = 𝐿𝑒(𝑝
′→𝑝) + ∫ 𝑓(𝑝′′→𝑝′→𝑝) ∙ 𝐿(𝑝′′→𝑝′) ∙ 𝐺(𝑝′′↔𝑝′) ∙ 𝑑𝐴(𝑝′′)

𝐴

 (3) 

where 𝐿𝑒(𝑝
′ → 𝑝)  is the radiance emitted from 𝑝′  to 𝑝 , if 𝑝′  belongs to a light source, 165 

𝐿𝑒(𝑝
′ → 𝑝) = 0 otherwise,  166 

𝐺(𝑝′′ ↔ 𝑝′) =  𝑉(𝑝′′ ↔ 𝑝′) ∙
|𝑐𝑜𝑠𝜃0

′′|∙|𝑐𝑜𝑠𝜃𝑖
′|

||𝑝′−𝑝′′||2
, with index 𝑜  for outgoing and index 𝑖  for 167 

incident, 168 

𝑓(𝑝′′ → 𝑝′ → 𝑝) is the BSDF of surface Σ, 169 

𝐿(𝑝′′ → 𝑝′) is the radiance reaching 𝑝′ from 𝑝", 170 
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𝑉  is the binary visibility function: 𝑉(𝑝′′↔𝑝′)=1 if 𝑝′ and 𝑝′′ are mutually visible, and 0 171 

otherwise,  172 

𝑐𝑜𝑠𝜃0
′′ = 𝑛′′⃗⃗ ⃗⃗  ∙

𝑝′′𝑝′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑝′−𝑝′′||
, and 𝑐𝑜𝑠𝜃𝑖

′ =
𝑝′𝑝′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑝′−𝑝′′||
∙ 𝑛′⃗⃗  ⃗, 173 

𝑛′⃗⃗  ⃗ and 𝑛′′⃗⃗⃗⃗  are the normal vectors to the surface Σ at 𝑝′ and to the surface 𝐴 at 𝑝′′, respectively.  174 

 175 

Figure 2. LTE geometry: the vertex 𝑝′ scatters the ray coming from the vertex 𝑝′′ towards the 176 

vertex 𝑝 177 

Expanding Eq (3) by iteratively replacing 𝐿(𝑝′′→𝑝′) by its right-hand term gives 𝐿(𝑝̅𝑘) for 𝑘 ≥178 

2:   179 

𝐿(𝑝̅𝑘) = ∫ ∫ …∫ 𝐿𝑒(𝑝𝑘→𝑝𝑘-1)∙ (∏𝑓(𝑝𝑖+1→𝑝𝑖→𝑝𝑖-1)∙𝐺(𝑝𝑖+1↔𝑝𝑖)

𝑘−1

𝑖=1

) ∙𝑑𝐴(𝑝2)
𝐴

…
𝐴

𝑑𝐴(𝑝𝑘)
𝐴

 (4) 

We denote 𝑃(𝑝̅𝑘) the integrand in Eq (4), and 𝑇(𝑝̅𝑘), the “light path throughput”, the term 180 

between brackets in 𝑃(𝑝̅𝑘):  181 

𝑇(𝑝̅𝑘) =∏𝑓(𝑝𝑖+1→𝑝𝑖→𝑝𝑖−1)∙𝐺(𝑝𝑖+1↔𝑝𝑖)

𝑘−1

𝑖=1

 (5) 

𝑃(𝑝̅𝑘) =  𝐿𝑒(𝑝𝑘 → 𝑝𝑘−1) ∙ 𝑇(𝑝̅𝑘) (6) 

If  𝑝𝑖 belongs to a bi-Lambertian surface, with normal 𝑛⃗ 𝑖, reflectance 𝜌𝑖  and transmittance 𝜏𝑖: 182 

𝑓(𝑝𝑖+1→𝑝𝑖→𝑝𝑖−1) = {
 
𝜌𝑖
𝜋
, 𝑖𝑓 (𝑝𝑖𝑝𝑖+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑛𝑖⃗⃗  ⃗) ∙ (𝑝𝑖𝑝𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑛𝑖⃗⃗  ⃗) ≥ 0

𝜏𝑖
𝜋

, otherwise 
 (7) 

As for DART-FT (Malenovský et al., 2021), the Fluspect model (Vilfan et al., 2018) is used to 183 

simulate leaf-level SIF. It uses the leaf biochemical properties and fqes input parameters to 184 

compute four leaf EEFMs (Excitation-Emission Fluorescence Matrices) 𝑀𝑥,𝑦,𝑖𝑗 for the 𝑁 user 185 
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defined spectral bands ( 𝑖 ∈ {1. . 𝑁}  for excitation and 𝑗 ∈ {1. . 𝑁}  for emission), for the 186 

photosystem 𝑥  (PSI or PSII) and direction 𝑦 (forward or backward). The reflectance 𝜌 and 187 

EEFM backward matrices (𝑀𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑖𝑗)  play equivalent roles for scattering and SIF 188 

emission respectively, and so do the surface transmittance 𝜏  and EEFM forward matrices 189 

(𝑀𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑖𝑗).  In the Fluspect model, the leaves are bi-Lambertian and SIF emitted radiance 190 

is isotropic. Therefore, the direction sampling method for SIF is the same as for scattering by 191 

bi-Lambertian surfaces with the PDF 𝑝(Ω) =
cosθ

𝜋
  where θ is the angle between the surface 192 

normal and the sampled direction Ω, for any incident direction. 193 

To estimate the pixel radiance measurement, the contribution of each sampled path is evaluated 194 

by multiplying the integrand 𝑃(𝑝̅𝑘) of Eq (4) by the importance function and the cosine term 195 

in Eq (2). 196 

For 𝑁 simulated spectral bands, the light source spectral radiance 𝐿𝑒, the bi-Lambertian surface 197 

spectral reflectance and transmittance, and also the sub- and full-path throughputs are vectors 198 

of 𝑁  elements. A path throughput is computed by successive element wise vector 199 

multiplications of the multi-spectral reflectance or transmittance value at each vertex by a 200 

geometric term 𝐺, divided by 𝜋 (Eq (5), (7)). This product is associative and can be computed 201 

starting from the light source or starting from the sensor. A full path being the connection of a 202 

light sub-path and a sensor sub-path, its throughput is the element wise product of the light and 203 

sensor sub-path throughputs. Its multiplication by the light radiance 𝐿𝑒(𝑝𝑘→𝑝𝑘−1) gives the 204 

integrand 𝑃(𝑝̅𝑘). 205 

For the simplicity of the equations below, we avoid writing the scalar multiplicative terms 𝐺 206 

and 
1

𝜋
. They are still considered in the computations. If the SIF emission is considered, three 207 

components of the radiance need to be computed: 1) the total radiance including the scattered 208 

radiation plus SIF emission, 2) the PSI SIF radiance component, 3) the PSII SIF radiance 209 

component. For 𝑁 simulated spectral bands, a fluorescent surface 𝑆𝑙 is characterized by four 210 

𝑁×𝑁 EEFMs, in addition to its non-fluorescent BSDF. For photosystem 𝑥 and for direction 𝑦, 211 

the EEFM is:  212 

𝑀𝑥𝑦
𝑙 = (

𝑓𝑥𝑦1,1
𝑙 ⋯ 𝑓𝑥𝑦1,𝑁

𝑙

⋮ ⋱ ⋮
𝑓𝑥𝑦𝑁,1
𝑙 ⋯ 𝑓𝑥𝑦𝑁,𝑁

𝑙
) 213 
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where 𝑓𝑥𝑦𝑖,𝑗
𝑙  is the EEFM element for an excitation spectral band (central wavelength: 𝜆𝑖 , 214 

bandwidth: Δ𝜆𝑖) and an emission band (𝜆𝑗, Δ𝜆𝑗),   215 

For a path with two segments, the integrand of SIF radiance component of photosystem 𝑥 and 216 

direction 𝑦 is the matrix product of the light source spectral radiance 𝐿𝑒 and the EEFM 𝑀𝑥𝑦: 217 

𝑃𝑥(𝑝̅2) = 𝐿𝑒×𝑀𝑥𝑦
𝑙 = (𝑒1, 𝑒2,…, 𝑒𝑁)×(

𝑓𝑥𝑦1,1
𝑙 ⋯ 𝑓𝑥𝑦1,𝑁

𝑙

⋮ ⋱ ⋮
𝑓𝑥𝑦𝑁,1
𝑙 ⋯ 𝑓𝑥𝑦𝑁,𝑁

𝑙
) = (∑𝑒𝑖.𝑓𝑥𝑦𝑖,1

𝑙

𝑁

𝑖=1

,…,∑𝑒𝑖.𝑓𝑥𝑦𝑖,𝑁
𝑙

𝑁

𝑖=1

) 218 

Therefore, for a path 𝑝̅𝑘 with 𝑘+1 vertices 𝑝𝑙, 𝑙 ∈ {0. . 𝑘}, the integrand for the total radiance 219 

(i.e., sum of scattered radiance, PSI and PSII SIF emissions radiance) is:  220 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑝̅𝑘) =  𝐿𝑒 × 𝑇𝑡𝑜𝑡(𝑝̅𝑘) (8) 

where 𝑇𝑡𝑜𝑡(𝑝̅𝑘)=𝑇tot
1 ×…×𝑇tot

𝑘−1 is the total throughput, 221 

𝑇tot
𝑙 = 𝑅𝑙 +𝑀𝑃𝑆𝐼𝑦

𝑙 +𝑀𝑃𝑆𝐼𝑦
𝑙 = (

𝑟1
𝑙+𝑓PSIy1,1

𝑙 +𝑓PSIIy1,1
𝑙 … 𝑓PSIy1,N

𝑙 +𝑓PSIIy1,N
𝑙

⋮ ⋮ ⋮
𝑓PSIyN,1
𝑙 +𝑓PSIIyN,1

𝑙 … 𝑟N
𝑙+𝑓PSIyN,N

𝑙 +𝑓PSIIyN,N
𝑙

),  222 

𝑟𝑖
𝑙 is the reflectance or transmittance of the surface 𝑆𝑙 at the band (𝜆𝑖, Δ𝜆𝑖), 𝑅𝑙 = (

𝑟1
𝑙 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑟𝑁

𝑙
),  223 

and 𝑓𝑃𝑆𝐼𝑦𝑖,𝑗 
𝑙 and 𝑓𝑃𝑆𝐼𝐼𝑦𝑖,𝑗 

𝑙  the EEFM elements for an excitation band (𝜆𝑖, Δ𝜆𝑖) and an emission 224 

band (𝜆𝑗, Δ𝜆𝑗) for PSI and PSII respectively, for direction 𝑦. 225 

As the matrix product is associative, the product in Eq (8) can be cut into a light sub-path sub-226 

product (i.e., 𝑁-element vector resulting from successive vector-matrix products), and a sensor 227 

sub-path sub-product (i.e., 𝑁×𝑁  matrix resulting from successive matrix-matrix products). 228 

However, Eq (8) provides only the total radiance (𝑁-element vector). To have the PSI and PSII 229 

radiance separately as well, two additional 𝑁-element vectors need to be computed. For the 230 

path 𝑝̅𝑘, in addition to 𝑃𝑡𝑜𝑡𝑎𝑙(𝑝̅𝑘), the 𝑃𝑃𝑆𝐼(𝑝̅𝑘) and 𝑃𝑃𝑆𝐼𝐼(𝑝̅𝑘) need to be computed. For a light 231 

path 𝑝̅3 with 3 segments (two fluorescent surfaces) (Figure 1), 𝑃𝑃𝑆𝐼(𝑝̅3) and 𝑃𝑃𝑆𝐼𝐼(𝑝̅3) are:  232 

𝑃𝑃𝑆𝐼(𝑝̅3)  = 𝐿𝑒 × [𝑇tot
1  × 𝑀𝑃𝑆𝐼𝑦

2 +𝑀𝑃𝑆𝐼𝑦
1 × 𝑅2] (9) 

𝑃𝑃𝑆𝐼𝐼(𝑝̅3)  = 𝐿𝑒 × [𝑇tot
1  × 𝑀𝑃𝑆𝐼𝐼𝑦

2 +𝑀𝑃𝑆𝐼𝐼𝑦
1 × 𝑅2] (10) 
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The bracketed terms in Eq (9) and (10) represent the interactions between the two surfaces that 233 

generate the two SIF radiance components. Eq (9) and (10) cannot be written as an associative 234 

product of terms each of which depends on the properties of a single vertex. Thus, they cannot 235 

be computed starting both from the light source and from the sensor. Therefore, the block matrix 236 

𝑀𝐵
𝑙  is introduced:  237 

𝑀𝐵
𝑙 = (

𝑇tot
𝑙 𝑀𝑃𝑆𝐼𝑦

𝑙 𝑀𝑃𝑆𝐼𝐼𝑦
𝑙

0 𝑅𝑙 0
0 0 𝑅𝑙

) 

(11) 

The light radiance vector is also written as a block matrix: 𝐿𝑒,𝐵 = (𝐿𝑒,𝑡𝑜𝑡𝑎𝑙; 𝐿𝑒,𝑃𝑆𝐼; 𝐿𝑒,𝑃𝑆𝐼𝐼), 238 

where 𝐿𝑒,𝑡𝑜𝑡𝑎𝑙, 𝐿𝑒,𝑃𝑆𝐼 and 𝐿𝑒,𝑃𝑆𝐼𝐼 are 𝑁-element vectors. Since light sources do not emit SIF, 239 

𝐿𝑒,𝑃𝑆𝐼 and 𝐿𝑒,𝑃𝑆𝐼𝐼 are null vectors. If 𝑀𝐵
𝑘−1 is the block matrix of the first surface hit by the light 240 

source, the incident radiance vector 𝐿𝐵,k-2=𝐿𝑒,𝐵×𝑀𝐵
𝑘−1 at vertex 𝑘-2 is: 241 

𝐿𝐵,k-2 = (𝐿𝑒,𝑡𝑜𝑡𝑎𝑙; 0; 0) × (
𝑅𝑘−1 +𝑀𝑃𝑆𝐼𝑦

𝑘−1 +𝑀𝑃𝑆𝐼𝐼𝑦
𝑘−1 𝑀𝑃𝑆𝐼𝑦

𝑘−1 𝑀𝑃𝑆𝐼𝐼𝑦
𝑘−1

0 𝑅𝑘−1 0
0 0 𝑅𝑘−1

) (12) 

= (𝐿𝑒,𝑡𝑜𝑡𝑎𝑙 × (𝑅𝑘-1 +𝑀𝑃𝑆𝐼𝑦
𝑘−1 +𝑀𝑃𝑆𝐼𝐼𝑦

𝑘−1 ); 𝐿𝑒,𝑡𝑜𝑡𝑎𝑙 ×𝑀𝑃𝑆𝐼𝑦
𝑘−1 ; 𝐿𝑒,𝑡𝑜𝑡𝑎𝑙 ×𝑀𝑃𝑆𝐼𝐼𝑦

𝑘−1 ) 242 

= (𝐿𝑡𝑜𝑡𝑎𝑙,𝑘-2; 𝐿𝑃𝑆𝐼,𝑘-2; 𝐿𝑃𝑆𝐼𝐼,𝑘-2) 243 

Similarly, at vertex 𝑘-3, the incident radiance vector 𝐿𝐵,𝑘-3=𝐿𝐵,𝑘-2×𝑀𝐵
𝑘−2 is:  244 

𝐿𝐵,𝑘-3 = (𝐿𝑡𝑜𝑡𝑎𝑙,𝑘-2;𝐿𝑃𝑆𝐼,𝑘-2;𝐿𝑃𝑆𝐼𝐼,𝑘-2) × (
𝑅𝑘-2+𝑀𝑃𝑆𝐼𝑦

𝑘−2+𝑀𝑃𝑆𝐼𝐼𝑦
𝑘−2 𝑀𝑃𝑆𝐼𝑦

𝑘−2 𝑀𝑃𝑆𝐼𝐼𝑦
𝑘−2

0 𝑅𝑘-2 0
0 0 𝑅𝑘-2

) 245 

= (𝐿𝑡𝑜𝑡𝑎𝑙,𝑘-2 × (𝑅𝑘-2+𝑀𝑃𝑆𝐼𝑦
𝑘−2+𝑀𝑃𝑆𝐼𝐼𝑦

𝑘−2 ); 𝐿𝑡𝑜𝑡𝑎𝑙,𝑘-2 ×𝑀𝑃𝑆𝐼𝑦
𝑘−2 + 𝐿𝑃𝑆𝐼,𝑘-2 × 𝑅𝑘-2; 246 

𝐿𝑡𝑜𝑡𝑎𝑙,𝑘-2 ×𝑀𝑃𝑆𝐼𝐼𝑦
𝑘−2 + 𝐿𝑃𝑆𝐼𝐼,𝑘-2 × 𝑅𝑘-2) 247 

= (𝐿𝑇𝑜𝑡𝑎𝑙,𝑘-3; 𝐿𝑃𝑆𝐼,𝑘-3; 𝐿𝑃𝑆𝐼𝐼,𝑘-3) 248 

And so on, for each vertex 𝑝𝑙 of the light sub path until reaching the sensor, the exiting radiance 249 

block matrix is:  250 

𝐿𝐵,𝑙×𝑀𝐵,𝑙=(𝐿𝑡𝑜𝑡𝑎𝑙,𝑙; 𝐿𝑃𝑆𝐼,𝑙; 𝐿𝑃𝑆𝐼𝐼,𝑙) × (
𝑅𝑙+𝑀𝑃𝑆𝐼𝑦

𝑙 +𝑀𝑃𝑆𝐼𝐼𝑦
𝑙 𝑀𝑃𝑆𝐼𝑦

𝑙 𝑀𝑃𝑆𝐼𝐼𝑦
𝑙

0 𝑅𝑙 0
0 0 𝑅𝑙

) 251 
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=(𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×(𝑅𝑙+𝑀𝑃𝑆𝐼𝑦
𝑙 +𝑀𝑃𝑆𝐼𝐼𝑦

𝑙 ); 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×𝑀𝑃𝑆𝐼𝑦
𝑙 +𝐿𝑃𝑆𝐼,𝑙×𝑅𝑙;  𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×𝑀𝑃𝑆𝐼𝐼

𝑙 +𝐿𝑃𝑆𝐼𝐼×𝑅𝑙) 252 

All components of the total, PSI and PSII spectral radiance terms of 𝑝𝑙 are considered:  253 

-Total radiance 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×(𝑅𝑙+𝑀𝑃𝑆𝐼𝑦
𝑙 +𝑀𝑃𝑆𝐼𝐼𝑦

𝑙 ) of surface 𝑝𝑙  hit by a ray of incident radiance 254 

𝐿𝑡𝑜𝑡𝑎𝑙,𝑙  255 

-PSI radiance: sum of the emitted PSI radiance 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×𝑀𝑃𝑆𝐼𝑦
𝑙  at 𝑝𝑙 due to 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙, and PSI 256 

radiance 𝐿𝑃𝑆𝐼,𝑙×𝑅𝑙 coming from the previous vertex and scattered at 𝑝𝑙.  257 

-PSII radiance: sum of the emitted PSII radiance 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙×𝑀𝑃𝑆𝐼𝐼
𝑙  at 𝑝𝑙 due to 𝐿𝑡𝑜𝑡𝑎𝑙,𝑙, and PSII 258 

radiance 𝐿𝑃𝑆𝐼𝐼,𝑙 × 𝑅𝑙 coming from the previous vertex and scattered at 𝑝𝑙.  259 

These equations can be used starting from the light source and starting from the sensor because 260 

they include associative products of matrices and each matrix depends on the properties of a 261 

single vertex. For a light path with 𝐿 + 2 vertices (i.e., 𝐿 hit surfaces of matrices 𝑀𝐵
𝑙  with   𝑙 ∈262 

{1. . 𝐿}), the integrand 𝑃𝐵(𝑝̅𝐿+2) including the total, PSI and PSII signals from this path is:  263 

𝑃𝐵(𝑝̅𝐿+2) = 𝐿𝑒,𝐵 ×𝑀𝐵,1 ×𝑀𝐵,2 × …×𝑀𝐵,𝐿 264 

If the light path 𝑝̅𝐿+2 has 𝑆 vertices in the light sub-path and 𝑇 vertices in the sensor sub-path, 265 

excluding the light source and sensor vertices (𝐿+2=𝑆+𝑇), the throughput of the light sub-266 

path is 𝑀𝐵
light

=𝑀𝐵,1×𝑀𝐵,2×…×𝑀𝐵,𝑆  and of the sensor sub path 267 

𝑀𝐵
sensor=𝑀𝐵,𝑆+1×𝑀𝐵,𝑆+2×…×𝑀𝐵,𝑆+𝑇. After connecting the two sub-paths, the integrand is:  268 

𝑃𝐵(𝑝̅𝐿+2) = 𝐿𝑒,𝐵 ×𝑀𝐵
light

×𝑀𝐵
sensor (13) 

The light sub-path starts from the light source, then hits the surfaces from 1 to 𝑆. It gives the 269 

block matrix 𝐸𝐵×𝑀𝐵
light

 of three 𝑁-element vectors. The sensor sub-path hits the surfaces 𝑆+𝑇 270 

to 𝑆+1. The matrix product being not commutative, 𝐸𝐵×𝑀𝐵
light

 and 𝑀𝐵
sensor are computed in 271 

opposite directions.  272 

Eq (13) is computationally expensive. For 𝑁 spectral bands, a sensor sub-path throughput is 273 

a 3𝑁 × 3𝑁 matrix. For optimization, diagonal matrices are considered whenever possible when 274 

multiplying matrices, and only 𝑅𝑙+𝑀𝑃𝑆𝐼𝑦
𝑙 +𝑀𝑃𝑆𝐼𝐼

𝑙 , 𝑀𝑃𝑆𝐼
𝑙 , 𝑀𝑃𝑆𝐼𝐼

𝑙  and 𝑅𝑙 only are stored instead of 275 
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𝑀𝐵
𝑙=(

𝑅𝑙+𝑀𝑃𝑆𝐼𝑦
𝑙 +𝑀𝑃𝑆𝐼𝐼

𝑙 𝑀𝑃𝑆𝐼
𝑙 𝑀𝑃𝑆𝐼𝐼

𝑙

0 𝑅 0
0 0 𝑅

) because the product of matrices of this form has the 276 

same form (cf. Appendix 1). 277 

As DART-FT (Malenovský et al., 2021), DART-Lux can import SCOPE 𝜂  factors vertical 278 

profiles for sunlit and shaded leaves to account for the influence of local bioclimatology on 279 

leaf-level SIF emission. With the hypothesis that only PSII emission is affected, we have:  280 

𝑀𝐵,𝜂 = (
𝑅 +𝑀𝑃𝑆𝐼 + 𝜂.𝑀𝑃𝑆𝐼𝐼 𝑀𝑃𝑆𝐼 𝜂.𝑀𝑃𝑆𝐼𝐼

0 𝑅 0
0 0 𝑅

) 281 

Increasing the number of Monte Carlo samples/pixel Nsamples in the simulated images improves 282 

accuracy and increases simulation time. The optimal average Nsamples depends on the scene 283 

properties, pixel size, and expected precision and simulation time. 284 

PSI and PSII radiance images (Figure 12) of the 3 × 3 𝑘𝑚2  Ripperdan zone illustrate the 285 

potential of DART-Lux SIF modelling for large landscapes. It needed 42.9 GB of memory and 286 

2h 44 min in simulation time with an Intel Xeon W-2295 CPU @ 3.00GHz (18 cores, 36 287 

threads). DART-FT was not run due to huge computational demands: more than 100 TB of 288 

memory and 15000 h of simulation time.  289 

IV. Assessment of DART-Lux SIF modelling  290 

Malenovský et al. (2021) validated DART-FT SIF modelling against the SCOPE/mSCOPE 291 

model for homogeneous canopies. Here, the accuracy and computer efficiency of DART-Lux 292 

SIF modelling are assessed for three canopies, using DART-FT SIF as a reference. DART-Lux 293 

is also compared to SCOPE for homogeneous scenes. These model cross-comparisons between 294 

models 𝑀1 and 𝑀2 for 𝑁 spectral bands and a given physical quantity 𝑞, are done with the 295 

Mean Absolute Relative Difference (MARD):   296 

MARDM1/M2
=

1

∑ Δ𝜆𝑖
𝑁
𝑖=1

∑
|𝑞𝑀1,𝑖 − 𝑞𝑀2,𝑖|

𝑞𝑀2,𝑖

𝑁

𝑖=1

. Δ𝜆𝑖 (14) 

 297 

IV.1 Study cases 298 

Three vegetation canopies (Figure 3) are studied. 1) Homogeneous turbid scene: 1 m high, 299 

LAI=1, spherical LAD, nadir observation and solar direction (θs=30°, ϕs=225°). 2) Maize crop 300 
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field: 7.5 m × 5 m scene, 600 maize plants, 40 cm spaced rows, 15 cm within row plant 301 

distance, LAI=1.9, three viewing directions (nadir; 𝜃𝑣=30°, 𝜙𝑣=0°;  𝜃𝑣=60°, 𝜙𝑣=0°),  and 302 

three solar directions (𝜃𝑠=42.78°, 𝜙𝑠=82.98°;  𝜃𝑠=31.46°, 𝜙𝑠=69.88°; 303 

𝜃𝑠=21.41°, 𝜙𝑠=48.32°) . 3) Tree plot: 10m x 10m scene, 10 randomly distributed trees 304 

"populus_tremuloides" with branch and trunk reflectance from the DART spectral database, 305 

LAI=1.9, nadir viewing direction and (θs=30°, ϕs=225°). Simulations are over [400-850 nm] 306 

with 451 bands (Δ𝜆 = 1 nm) for the homogeneous site and maize field, and 45 bands (Δ𝜆 =307 

10 nm) for the tree plot. Atmosphere (gas model: USSTD76, aerosol model: RURALV23), leaf 308 

biochemistry and structure (Table 1), and ground reflectance "loam_gravelly_brown_dark" in 309 

DART database. Spatial resolution is 0.1 m for the tree plot and the homogenous site. It is 0.5 310 

m and 0.01 m for the maize field, with 0.01 m selected to mimick the simulation of images of 311 

large scenes. It implied using fewer spectral bands in order to maintain reasonable 312 

computational needs for DART-FT: 35 excitation bands over [400-750 nm] and one emission 313 

band (𝜆𝑐 = 765 𝑛𝑚, Δ𝜆 = 1 𝑛𝑚). 314 

  315 

a)  b)  c)  316 

Figure 3. The simulated 3D mock-ups. a) Homogeneous medium b) Maize field. c) Tree plot. 317 

 318 
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Table 1. Leaf biochemistry and structure for the three study sites. 319 

Parameter Symbol Unit Homogeneous canopy Maize field Tree plot 

Leaf structure parameter 𝑁 - 1.8 1.5 1.8 

Chlorophyll a+b content 𝐶𝑎𝑏 𝜇𝑔. 𝑐𝑚−2 45 50 30 

Carotenoid content 𝐶𝑐𝑎 𝜇𝑔. 𝑐𝑚−2 15 15 10 

Water content 𝐶𝑤 𝑐𝑚 0.009 0.009 0.012 

Dry matter content 𝐶𝑑𝑚 𝑔. 𝑐𝑚−2 0.002 0.0021 0.01 

fqe for photosystem I 𝜙𝑃𝑆𝐼 - 0.002 0.002 0.002 

fqe for photosystem II 𝜙𝑃𝑆𝐼𝐼 - 0.01 0.01 0.01 

 320 

IV.2 Homogeneous turbid canopy 321 

SCOPE is a reference model for simulating the SIF radiance of homogeneous vegetation. Here, 322 

DART-FT and DART-Lux SIF simulate the homogeneous turbid scene of SCOPE as a 323 

homogeneous quasi turbid medium for two cases depending if SCOPE simulates or not the 324 

energy balance (EB):  325 

- No EB: the 𝜂 factors are set to one in DART-FT and DART-Lux.  326 

- EB: DART-FT and DART-Lux use the SCOPE 𝜂 factors for the default meteorological 327 

parameters.  328 

 329 

Figure 4. Homogeneous site: DART-FT, DART-Lux and SCOPE PSI and PSII nadir radiance, 330 

without (left) and with (right) computation of the canopy energy balance. 331 
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Figure 4 shows DART-Lux, DART-FT and SCOPE PSI and PSII nadir radiance. DART-Lux 332 

closely matches DART-FT and, to a lesser extent, SCOPE. Without EB, 333 

MARDDART-Lux/DART-FT  is 0.7% for PSI and 0.53% for PSII, and MARDDART-Lux/SCOPE  is 334 

5.24% for PSI and 4.93% for PSII. Without neglect of EB, MARDDART-Lux/DART-FTis 0.08% for 335 

PSI and 0.19% for PSII, and MARDDART-Lux/SCOPE is 5.57% for PSI and 5.15% for PSII. 336 

IV.3 Maize field  337 

The canopy nadir reflectance (Figure 5) and SIF PSI and PSII radiance (Figure 6, Table 2) 338 

simulated by DART-FT, DART-Lux and SCOPE for the three viewing directions and three sun 339 

directions show that: 340 

- DART-Lux and DART-FT match: MARDreflectance < 1.3% and MARDSIF radiance < 1%. 341 

- DART-Lux and DART-FT poorly match SCOPE: MARD reflectance up to 16% and MARDSIF 342 

radiance from 3% to 19%, depending on the solar and viewing angles, with larger MARD for 343 

large angles.  344 

Table 3 shows the computer time and RAM needs of DART-Lux and DART-FT at 0.5 m and 345 

0.01 m resolutions, and also the main input parameters that influence their computational needs. 346 

Compared to DART-FT (200 discrete directions and illumination step =10−3 m), DART-Lux 347 

(7² scene repetitions, maximal scattering order = 15, Russian Roulette starts at order 12 with 348 

cut-off probability =0.5)  decreases the memory by a factor of 34 and computer time by 1.4 349 

at 0.5 m resolution. It decreases the memory by 48 and computer time by 50 at 0.01 m 350 

resolution. Figure 7 shows nadir radiance images at 0.01 m resolution: DART-Lux RGB color 351 

composite, and also DART-Lux and DART-FT PSI and PSII nadir radiance images. 352 
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Table 2. Maize field: MARD of DART-Lux canopy SIF PSI and PSII radiance compared to 353 

DART-FT and SCOPE for 3 viewing directions and 3 sun directions.  354 

 Nadir 𝜃𝑣 = 30° 𝜙𝑣 = 0° 𝜃𝑣 = 60° 𝜙𝑣 = 0° 
𝜃
𝑠
=
4
2
.7
8
° 

𝜙
𝑠
=
8
2
.9
8
° 

MARDDART−Lux/DART−FT: 

PSI: 0.46%, 

PSII: 0.44% 

PSI: 0.56%, 

PSII: 0.42% 

PSI: 0.67%, 

PSII: 0.58% 

MARDDART−Lux/SCOPE: 

PSI: 3.19%, 

PSII: 4.24% 

PSI: 9.61%, 

PSII: 7.81% 

PSI: 18.84%, 

PSII: 14.51% 

𝜃
𝑠
=
3
1
.4
6
° 

𝜙
𝑠
=
6
9
.8
8
° 

MARDDART−Lux/DART−FT: 

PSI: 0.53%, 

PSII: 0.43% 

PSI: 0.76%, 

PSII: 0.61% 

PSI: 0.71%, 

PSII: 0.40% 

MARDDART−Lux/SCOPE: 

PSI: 4.04%, 

PSII: 4.30% 

PSI: 10.04%, 

PSII: 8.03% 

PSI: 16.78%, 

PSII: 12.87% 

𝜃
𝑠
=
2
1
.4
1
° 

𝜙
𝑠
=
4
8
.3
2
° 

MARDDART−Lux/DART−FT: 

PSI: 0.88%, 

PSII: 0.63% 

PSI: 0.92%, 

PSII: 0.67% 

PSI: 0.29%, 

PSII: 0.27% 

MARDDART−Lux/DART−FT: 

PSI: 3.20%, 

PSII: 4.06% 

PSI: 9.05%, 

PSII: 7.77% 

PSI: 15.54%, 

PSII: 11.67% 

 355 
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Table 3. Maize field: input parameters and computational needs of DART-FT and DART-356 

Lux. 357 

  DART-FT  DART-Lux  

5 m spatial 

resolution, 451 

spectral bands 

Viewing 

direction 
All Nadir 𝜃𝑣=30°,𝜙𝑣=0° 𝜃𝑣=60°,𝜙𝑣=0° 

Computer time 1 h 31 min 1 h 7 min 1 h 9 min 1 h 2 min 

Samples per 

pixel 
- 100 120 180 

Memory 51 GB 1.5 GB 

0.01 m spatial 

resolution,  

36 spectral 

bands 

Viewing 

direction 
All Nadir 

Computer time 8 h 13 min 10 min 10 s 

Samples per 

pixel 
- 20 

Memory 105.8 GB 8.2 GB 

 358 

 359 

Figure 5. Maize field: DART-FT, DART-Lux and SCOPE reflectance for 3 solar directions and 360 

3 viewing directions with no account of bioclimatology on SIF emission. 361 
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 362 

Figure 6: Maize field: DART-FT, DART-Lux and SCOPE SIF PSII and PSII radiance, for 3 363 

solar directions and 3 viewing directions with no account of bioclimatology on SIF 364 

emission. 365 

DART-FT and DART-Lux were also run using the 𝜂 factors calculated by SCOPE with its 366 

default meteorological input parameters. Although these 𝜂 factors should depend on the canopy 367 

3D architecture, we made this approximation (i.e., application of 1D information in a 3D model) 368 

because of the unavailability of 3D energy balance model. DART-Lux and DART-FT match as 369 

for the case "No energy balance": the MARD for canopy SIF radiance and for canopy 370 

reflectance (not shown here) keep the same order of magnitude. The differences with SCOPE 371 

are also similar. 372 

 373 
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a)  b)  374 

Figure 7. Maize field: nadir radiance images at 1 cm resolution (W.m-2.μm-1.sr-1). a) DART-375 

Lux RGB color composite. b) DART-FT and DART-Lux SIF (PSI and PSII). 376 

𝜆𝑐=765 𝑛𝑚, 𝛥𝜆=1 𝑛𝑚. 377 

IV.4 Trees plot simulation 378 

The reflectance and SIF radiance of DART-Lux match DART-FT DART-FT (100 discrete 379 

directions, illumination step = 10−3 m), DART-Lux (17² scene repetitions, maximal scattering 380 

order = 15, Russian Roulette starts at order 12 with cut-off probability =0.5, 200 samples per 381 

pixel) (Figure 8): MARD is 0.27% for reflectance and less than 0.15% for SIF radiance, with 382 

memory need reduced by ~13 and computer time by more than 5 times (Table 4). Figure 9 383 

shows the root mean square deviation (RMSD) of DART-Lux and DART-FT PSI and PSII 384 

radiance with the number of samples/pixel (i.e., simulation time).  385 
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a) b)
 386 

Figure 8. Tree plot: DART-Lux and DART-FT total (a) and PSI and PSII (b) nadir spectral 387 

radiance. 388 

Table 4. Computational needs of DART-FT and DART-Lux for the tree plot simulation 389 

(spatial resolution: 0.1 m, 45 spectral bands) 390 

 DART-FT  DART-Lux  

Computer time 22 min 4 min 

Memory 9.2 GB 0.715 GB 

 391 

 392 

Figure 9. RMSD of the DART-Lux and DART-FT PSI and PSII radiance images at 765 nm as 393 

a function of the number of samples/pixel in DART-Lux. 394 

Figure 10 shows the pixel-wise comparison of DART-FT and DART-Lux PSII images at 395 

765 nm, for 200 samples/pixel and for 1000 samples/pixel. The pixel-wise MARD is computed 396 

by replacing the average on spectral bands by the average on the image pixels. The pixel-wise 397 

MARD for 200 samples/pixel (16.89%) is larger than for 1000 samples/pixel (13.88%). 398 

Inversely, the R2 slightly increases from 200 samples/pixel to 1000 samples/pixel. The MARDs 399 

are much higher than the spectrally averaged MARD for the total scene (0.15%, Figure 8) in 400 
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particular because the images have many pixels. The MARDs and R2 for PSI (not shown here) 401 

are nearly the same as for PSII. 402 

Figure 11 shows DART-Lux images of the tree plot with 1000 samples/pixel. The SIF signal 403 

from the bare ground comes from the SIF radiation emitted by the vegetation that is scattered 404 

by the ground.  405 

 406 

 407 

Figure 10. Pixel-wise comparison of DART-FT and DART-Lux PSII radiance images with 408 

samples/pixel = 200 (a) and 1000 (b). θs=30°, ϕs=225 °. 𝜆𝑐 = 765 𝑛𝑚, 𝛥𝜆 =409 

10 𝑛𝑚. 410 
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 411 

Figure 11. Tree plot: DART-Lux PSI and PSII SIF nadir radiance images (W.m-2.μm-1.sr-1 ), 412 

with normal (top) and stretched (bottom) color scales. 𝜆𝑐 = 765 𝑛𝑚, 𝛥𝜆 = 10 𝑛𝑚. 413 

V.  Discussion 414 

DART-FT and DART-Lux have different radiative transfer modelling strategies. DART-FT 415 

is determinist. It tracks radiation fluxes in 𝑁 discrete directions that sub-divide the 4𝜋 space 416 

with an iterative approach that scatters at iteration 𝑖 + 1 radiation intercepted in iteration 𝑖 417 

(Gastellu-Etchegorry et al., 1996). DART-Lux is probabilistic. Indeed, it uses Monte-Carlo 418 

integration techniques to solve the LTE by sampling the possible light paths, evaluating their 419 

contributions, and giving higher importance weights to most likely paths (Wang et al., 2022).  420 

 For small scenes, DART-Lux and DART-FT SIF closely match, with relative difference 421 

always smaller than 2%. This difference is small enough to be explained by the parameters that 422 

drive the precision of DART-Lux (e.g., number of samples/pixel) and DART-FT (e.g., 423 

dimension of voxels, numbers of discrete directions, etc.). For these scenes, compared to 424 
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DART-FT, DART-Lux efficiency is not as pronounced as for larger sites as Ripperdan (Figure 425 

12). 426 

Homogeneous vegetation: DART-Lux closely matches DART-FT and also SCOPE to a 427 

lesser extent. Its relative differences are less than 1% with DART-FT, and 5% for SCOPE. 428 

Four major factors can explain that differences are higher for SCOPE. 1) SCOPE simulates 429 

radiative transfer with four fluxes and assumes the isotropy of downward and upward scattered 430 

radiation, which is not exact (except for the special case of exactly horizontal leaves). On the 431 

other hand, DART-FT uses many (here: 200) discrete directions, which allows an accurate 432 

representation of the anisotropy of the downward and upward scattered radiation. DART-Lux 433 

simulates this anisotropy even more accurately than DART-FT because it can track photons in 434 

any direction. 2) SCOPE discretizes the LAD with 13 leaf zenith angles, whereas DART-FT 435 

and DART-Lux randomly sample the LAD with a number of samples equal to the number of 436 

facets used to simulate the quasi-turbid medium. DART and SCOPE more closely match 437 

(results not shown here) by introducing into the code of SCOPE a more accurate LAD with 90 438 

leaf zenith angles. 3) The quasi-turbid medium is not exactly the turbid medium of SCOPE 439 

because its facets cannot be infinitely small and infinitely numerous. 4) The application of the 440 

SCOPE 𝜂 factors in SCOPE, on the one hand, and in DART-FT and DART-Lux, on the other 441 

hand, differs. Indeed, SCOPE applies vertical profiles of 𝜂 factors to homogeneous layers and 442 

DART to facets with interpolations on the 𝜂. For this simulation, the 𝜂 factors (i.e., impact of 443 

local climatology) do not impact PSI SIF radiance and increase PSII radiance by 25%.  444 

Maize field: the DART-FT and DART-Lux total and SIF radiance closely match and tend to 445 

be smaller than for SCOPE, especially for oblique viewing directions, with relative difference 446 

possibly larger than 25% for PSII in the NIR. This difference is explained by the canopy 3D 447 

architecture (3D maize plants, rows) with the clumping of the maize plants in DART, whereas 448 

for SCOPE, the vegetation is homogeneous which is more effective for intercepting radiation 449 

and therefore for SIF emission, and also for allowing the emitted SIF radiation to escape the 450 

canopy. The MARDDART−SCOPE exceeds 10% in most configurations and increases to reaches 451 

18% for the oblique viewing angle 𝜃𝑣 = 60° . Indees, in SCOPE simulations, radiation 452 

interception and therefore SIF emission occur mostly at the top layers of the canopy. When 𝜃𝑣 453 

increases, the SIF seen by the sensor increases because the contribution of the top layers to the 454 

signal increases. Similarly, for the 3D maize scene, the SIF seen by the sensor from the plants 455 
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tends to increase when 𝜃𝑣  increases. However, in these simulations, this increase is less 456 

important than for 1D because the viewing direction is parallel to the maize rows and therefore 457 

the soil, that does not emit SIF, keeps to be seen by the sensor when 𝜃𝑣 increases. As with the 458 

homogeneous canopy, local bioclimatology (i.e., 𝜂 factors) greatly influences SIF emission, 459 

and therefore the canopy SIF radiance. Also, at 0.01m resolution, DART-Lux deduces by 50 460 

the memory usage and simulation time of DART-FT.  461 

Tree plot: the pixel-wise RMSE (Figure 9) of the DART-Lux and DART-FT SIF radiance 462 

images decreases with the number of samples/pixel in DART-Lux. This is explained by the 463 

decrease of the Monte Carlo noise in DART-Lux. For example, the pixel-wise MARD 464 

decreases from 16.89% for 200 samples/pixel down to 13.88% with 1000 samples/pixel. Here, 465 

convergence occurs for  1000 samples/pixel. The optimal number of samples/pixel depends 466 

on several factors including the expected accuracy on scene radiance, and the spatial extent and 467 

complexity of the studied landscape. The accuracy of the representation of the 3D landscape 468 

should also be considered.   469 

Because Monte Carlo-based radiative transfer models are expected to be more accurate than 470 

discrete ordinate models, and because the BDPT algorithm is unbiased (Wang et al., 2022), the 471 

convergence of RMSEDART-FT-DART-Lux is probably an indication of the accuracy of DART-FT, 472 

with DART-Lux giving the exact value.   473 

Results stress that the reduction of simulation time CTFT/Lux=
DART-FT computer time

DART-Lux computer time
 of DART-474 

Lux relative to DART-FT can be very important, especially for large and complex scenes. 475 

CTFT/Lux5800 for the Ripperdan site. Indeed, the simulation time of DART-FT greatly increases 476 

with the number of facets, conversely to DART-Lux if the number of samples/pixel remains 477 

constant. Also, CTFT/Lux  decreases with the number of simulated spectral bands. Indeed, the 478 

DART-FT forward flux tracking simulates SIF with vector-to-matrix products which gives a 479 

number of multiplication operations proportional to 𝑁2, with 𝑁 the number of spectral bands. 480 

On the other hand, because DART-Lux path tracing is bi-directional, for rays traced in the 481 

backward direction, the SIF emission is modelled by a matrix-to-matrix product which gives a 482 

number of multiplication operations proportional to 𝑁3 . In the absence of SIF simulation, 483 

CTFT/Lux is relatively independent of the number of spectral bands. 484 
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Because it usually needs much less RAM than DART-FT for complex scenes especially if it 485 

uses the cloning approach (Wang et al., 2022), DART-Lux is well adapted to large and complex 486 

landscapes for which DART-FT can be inoperative due to hardware constraints. Cloning can 487 

be used for elements of the simulated landscape are identical except for a geometric 488 

transformation: only a single 3D object and a specific geometric transformation (i.e., spatial 489 

shift and scaling-rotation matrix) for each clone are stored in memory. Then, the memory 490 

needed in DART-Lux increases very little with the number of scene elements, conversely to 491 

DART-FT because a geometric transformation matrix usually needs much less memory than a 492 

3D object. Moreover, for DART-Lux, the computation time does not increase a lot when the 493 

scene complexity (i.e., total number of scene facets) increases since the algorithmic complexity 494 

of Monte Carlo methods depend only on the number of samples, conversely to DART-FT where 495 

the total number of tracked rays highly increases with scene complexity. This makes DART-496 

Lux more computational efficiency for large landscapes, which may be impossible for DART-497 

FT due to hardware limitations. This is illustrated by the 3 ×  3 𝑘𝑚2 SIF radiance image of 498 

Ripperdan (Figure 12). Indeed, its simulation only needed 42.9 GB of computer memory and 2 499 

h 44 min of computation time for DART-Lux and was impossible for DART-FT.  500 
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 501 

 502 

Figure 12. Ripperdan 3𝑘𝑚×3𝑘𝑚 agricultural site (vineyards and trees), USA (36° 55' N, 119° 503 

58' W). a) Google image used to create the DART-Lux's 3D scene. b) DART-Lux 504 

RGB color composite. DART-Lux PSI (c) and PSII (d) radiance images 505 

(𝑊/𝑚2/µ𝑚/𝑠𝑟) at 760 𝑛𝑚 simulated with 100 bands in [0.4µm - 0.75µm]). SIF 506 

radiance is null for the road (top right), bare earth fields (top left) and built areas 507 

(bottom center). DART-Lux images are at 5m spatial resolution.  508 

 509 

 510 

c) d) 

a) b) 
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VI. Conclusion  511 

We designed a new SIF radiative transfer modelling that adapts the equations governing the 512 

SIF emission to the Bidirectional Path Tracing (BDPT) algorithm (Veach, 1998) that constructs 513 

light paths from the light source and from the sensor. This is a novel SIF modelling approach. 514 

Indeed, apart from DART-Lux, to our knowledge, all Monte Carlo RT models that simulate 515 

SIF (e.g., FLiES-SIF, FluorFLIGHT, FluorWPS, FluCVRT) use forward tracing, although the 516 

BDPT algorithm is more powerful for simulating SIF images. Adapting the BDPT algorithm to 517 

SIF modelling greatly improves the efficiency of DART for SIF images simulation, due to the 518 

efficiency of backward tracing, especially for sensors with narrow fields of view (Disney et al., 519 

2000). 520 

For that, we adapted the equations that allow to compute the SIF emission for the BDPT 521 

algorithms. The new equations allow to compute the radiance starting both from the light source 522 

and from the sensor, and to obtain the total signal (scattered + emitted SIF radiance) in addition 523 

to the SIF radiance components per photosystem separately. Simulations conducted with simple 524 

3D canopies illustrated that DART-Lux and DART-FT SIF images have a good agreement. In 525 

addition, DART-Lux and 1D SCOPE gave similar total and SIF radiance values when using a 526 

very similar scene representation (i.e., homogeneous turbid medium and quasi-turbid medium). 527 

They tend to greatly differ if the 3D architecture of the studied landscape is considered. To 528 

account for the effect of local climatological conditions (e.g., leaf temperature)  on leaf-level 529 

SIF emission, DART-Lux can be coupled with the 1D energy balance module of SCOPE by 530 

importing vertical profiles of 𝜂 factors, similarly to DART-FT (Malenovský et al., 2021). 531 

Compared to DART-FT, DART-Lux SIF modelling greatly decreases computational needs 532 

(i.e., RAM and computer time). This decrease was 50 for the maize field with a spatial 533 

resolution equal to 0.01m, and was larger than 103 for the 3 × 3 𝑘𝑚2 Ripperdan agricultural 534 

site zone. This makes DART a powerful model to simulate SIF images of large and complex 535 

landscapes, with many spectral bands. It opens new horizons for RS studies of vegetation. The 536 

novel SIF simulation in DART-Lux is already in the released DART versions (v1152 onwards) 537 

(https://dart.omp.eu).  538 
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Appendix 1. Block matrices product  545 

The product of the block matrices 𝑀1= (
𝐴1 𝐵1 𝐶1
0 𝐷1 0
0 0 𝐷1

) and 𝑀2= (
𝐴2 𝐵2 𝐶2
0 𝐷2 0
0 0 𝐷2

), with 𝐷1 546 

and 𝐷2 diagonal matrices, is a block matrix with same form as 𝑀1 and 𝑀2:  547 

𝑀1 ×𝑀2 = (
𝐴1 𝐵1 𝐶1
0 𝐷1 0
0 0 𝐷1

) × (
𝐴2 𝐵2 𝐶2
0 𝐷2 0
0 0 𝐷2

)  = (
𝐴1. 𝐴2 𝐴1𝐵2 + 𝐵1𝐷2 𝐴1𝐶2 + 𝐶1𝐷2
0 𝐷1𝐷2 0
0 0 𝐷1𝐷2

) 548 

with 𝐷1𝐷2 a diagonal matrix.  549 

550 
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3.2 Vegetation simulated as turbid medium 

The LuxCoreRender software can simulate the propagation of radiation in volumes filled with 

fluids. It uses the Schlick phase function in order to approximate the Henyey-Greenstein phase 

function commonly used in DART for simulating scattering by aerosols in the atmosphere. The 

Schlick phase function is more convenient for computer graphics because it is faster to compute, 

although it is less accurate. Based on this implementation, I introduced into DART-Lux (1) the 

double Henyey-Greenstein and the Rayleigh scattering phase functions in order to simulate 

radiation propagation in fluids, as in DART-FT, then (2) turbid vegetation modeling, including 

SIF modeling. The modeling approach is presented below, after the introduction of the Light 

Transport Equation generalized for scenes containing surfaces and scattering media volumes. 

3.2.1 Modeling approach 

Generalized Light Transport Equation 

The surface form of the Light Transport Equation gives the radiance reaching a vertex 𝑝 from 

a surface 𝐴, after being scattered at a vertex 𝑝′ on a surface Σ (here, emission is omitted): 

𝐿(𝑝′ → 𝑝) = ∫ 𝑓(𝑝′′ → 𝑝′ → 𝑝). 𝐿(𝑝′′ → 𝑝′). 𝐺(𝑝′′ ↔ 𝑝′). 𝑑𝐴(𝑝′′)
𝐴

 (3.1) 

with 𝐺(𝑝′′ ↔ 𝑝′) =  𝑉(𝑝′′ ↔ 𝑝′).
|𝑐𝑜𝑠𝜃0

′′|.|𝑐𝑜𝑠𝜃𝑖
′|

||𝑝′−𝑝′′||2
, 

𝑓(𝑝′′ → 𝑝′ → 𝑝): BSDF of surface Σ, 

𝐿(𝑝′′ → 𝑝′): radiance reaching 𝑝′′from 𝑝′, 

𝑉: binary visibility function, 

𝑐𝑜𝑠𝜃0
′′ = 𝑛′′⃗⃗ ⃗⃗  .

𝑝′′𝑝′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑝′−𝑝′′||
, 𝑐𝑜𝑠𝜃𝑖

′ =
𝑝′′𝑝′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑝′−𝑝′′||
 𝑛′⃗⃗  ⃗, 

𝑛′⃗⃗  ⃗ and 𝑛′′⃗⃗⃗⃗ : normal vectors to the surface Σ at 𝑝′ and to the surface 𝐴 at 𝑝′′ respectively.  

To allow the simulation of volumes, the Light Transport Equation is generalized for scenes 

including scattering surfaces and volume scattering media:  
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𝐿(𝑝′ → 𝑝) = ∫ 𝑓(𝑝′′ → 𝑝′ → 𝑝). 𝐿(𝑝′′ → 𝑝′). 𝐺̂(𝑝′′ ↔ 𝑝′). 𝑑𝐴(𝑝′′)
𝐴

 (3.2) 

with 𝑓(𝑝′′ → 𝑝′ → 𝑝) = {

𝜎𝑠

𝜎𝑠+𝜎𝑎
. 𝑝𝑠(𝑝

′′ → 𝑝′ → 𝑝),   if 𝑝′is a volume vertex

𝑓(𝑝′′ → 𝑝′ → 𝑝),   if 𝑝′𝑖s a surface vertex
 

𝜎𝑠, and 𝜎𝑎: scattering and absorption extinction coefficients of the volume, 

𝑝𝑠(𝑝
′′ → 𝑝′ → 𝑝): normalized scattering phase function of the volume, 

𝐺̂(𝑝′′ ↔ 𝑝′) =  𝑉(𝑝′′ ↔ 𝑝′). 𝑇𝑟(𝑝′ → 𝑝′′).
𝐶(𝑝′,𝑝′′).𝐶(𝑝′′,𝑝′)

||𝑝′−𝑝′′||2
, 

𝑇𝑟(𝑝′ → 𝑝′′): path transmittance between 𝑝′ and 𝑝′′, 

𝐶(𝑝, 𝑝′) = {
|𝑛𝑝⃗⃗ ⃗⃗ .

𝑝𝑝′⃗⃗ ⃗⃗ ⃗⃗  ⃗

||𝑝−𝑝′||
| , if 𝑝 is a surface vertex  

1, if 𝑝 is a volume vertex 
. 

Monte-Carlo path tracing (Fluids analogy) 

In radiative transfer theory, fluids are usually assumed to have a sufficiently high particle 

density to be treated statistically using the Beer law. Also, the density of particles is assumed 

not to be too large in order to ensure that the absorbance of the fluid is proportional to the fluid 

density. Because the turbid medium model is similar to the fluid model, and because the fluids 

are simpler to treat using their analytical phase functions in the frame of Monte-Carlo path 

tracing, fluids modeling is presented first, then, turbid modeling is derived from it.  

Monte-Carlo path tracing aims to randomly sample light paths by ensuring that the most 

probable paths have higher chances to be sampled. For fluid volumes, this is done in two steps:  

a) Sampling a traveling distance 

A ray entering a fluid volume is partly transmitted. The Beer law gives the direct transmittance: 

𝑇𝑡(Δ𝐿) = 𝑒
−𝜎𝑡.Δ𝐿 (3.3) 

with  Δ𝐿 the travel distance and 𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎  the total extinction coefficient (m2 of 

interceptor / m3). 𝜎𝑡 is the sum of scattering and absorption extinction coefficients. 

Here, it is assumed to be isotropic.  

Complementarily, the probability that a ray is intercepted after a travel distance less or equal 

than Δ𝐿  is 1 − 𝑇𝑡(Δ𝐿) . It is the Cumulative Distribution Function (CDF) 𝑃𝜎𝑡(Δ𝐿)  that an 



CHAPTER 3: SIF MODELING IN DART-LUX 

 126 

interception occurs at a distance 𝑙   Δ𝐿 , which is the integral of the Probability Density 

Function (PDF) 𝑝𝜎𝑡(𝑙) that an interception occurs at a distance 𝑙 per distance unit: 

𝑃𝜎𝑡(Δ𝐿) = ∫ 𝑝𝜎𝑡(𝑙). 𝑑𝑙
Δ𝐿

0

= 1 − 𝑒−𝜎𝑡.Δ𝐿 (3.4) 

𝑝𝜎𝑡(𝑙) =
𝑑𝑃𝜎𝑡(𝑙)

𝑑𝑙
= 𝜎𝑡 . 𝑒

−𝜎𝑡.𝑙 (3.5) 

Sampling 𝑝𝜎𝑡(𝑙) gives a sampled travel distance Δ𝑙 in the medium. The inversion method (cf. 

Appendix 3-1) is used to draw a random sample 𝑢 from a given PDF 𝑝(𝑥): the inverse function 

of its CDF is applied to a random number 𝜉 uniformly sampled between 0 and 1. Hence, the 

travel distance Δ𝑙 through the medium is sampled using a random number 𝜉~𝒰([0,1]): 

Δ𝑙 = 𝑃𝜎𝑡
−1(𝜉) =  −

ln(1 − 𝜉)

𝜎𝑡
 (3.6) 

If Δ𝑙 < Δ𝐿, with Δ𝐿 the pathlength needed by the ray to exit the medium, the ray is scattered 

after the pathlength Δ𝑙. If Δ𝑙 > Δ𝐿, the ray is transmitted through the medium.  

In fluids, the extinction coefficients usually vary with the wavelength. For a multiband ray, Δ𝑙 

is sampled using the spectral average 𝜎𝑡 over all bands. Then, if a ray is intercepted (i.e., Δ𝑙 <

Δ𝐿), its transmittance 𝑇𝑟𝑟𝑎𝑦,𝑖𝑛𝑡 is null for all spectral bands, and if a ray is transmitted (Δ𝑙 ≥

Δ𝐿 ), its transmittance 𝑇𝑟𝑟𝑎𝑦,𝑡𝑟𝑎𝑛𝑠  is 1 for all spectral bands. The expected value of the 

transmittance for all spectral bands can be written: 

𝐸[𝑇𝑟(𝜎̅𝑡, Δ𝐿)] = ∫ 0.
Δ𝐿

0

𝑝𝜎̅𝑡(𝑙)𝑑𝑙 + ∫ 1.
+∞

Δ𝐿

𝑝𝜎̅𝑡(𝑙)𝑑𝑙 = 𝑒−𝜎̅𝑡.Δ𝐿 (3.7) 

The obtained expected transmittance is a transmittance corresponding to the averaged 𝜎𝑡 for all 

spectral bands. A transmittance correction factor 𝑓 =
𝑒−𝜎𝑡.Δ𝐿

𝑒−𝜎̅𝑡.Δ𝐿
 is applied per spectral band in 

order to get the correct expected transmittance for each spectral band:  

𝐸[𝑇𝑟(𝜎̅𝑡, 𝜎𝑡 , Δ𝐿)] = ∫
𝑒−𝜎𝑡.Δ𝐿

𝑒−𝜎̅𝑡.Δ𝐿
.

+∞

Δ𝐿

𝑝𝜎̅𝑡(𝑙)𝑑𝑙 =
𝑒−𝜎𝑡.Δ𝐿

𝑒−𝜎̅𝑡.Δ𝐿
. 𝑒−𝜎̅𝑡.Δ𝐿 = 𝑒−𝜎𝑡.Δ𝐿 (3.8) 

If an interception occurs, the intercepted ray is scattered with a radiance multiplied by the 

albedo 
𝜎𝑠

𝜎̅𝑡
 because part of the intercepted ray is absorbed. 
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For turbid medium, the extinction coefficient 𝜎𝑡(Ω𝑠) depends on the incident direction. It is 

isotropic only if the Leaf Angular Distribution is spherical:  

𝜎𝑡(Ω𝑠) =  𝐺(Ω𝑠). 𝑢𝑙 (3.9) 

with 𝐺(Ω𝑠) = ∫
𝑔(𝜃𝑙)

2𝜋

𝜋

2
0

∫ |Ω𝑙. Ω𝑠|. 𝑑𝜙𝑙 . 𝑠𝑖𝑛𝜃𝑙 . 𝑑𝜃𝑙
2π

0
,  

𝑢𝑙 the leaf volume density and 

𝑔(𝜃𝑙)

2𝜋
 the Leaf Angular Distribution function. 

The PDF of interception and scattering of a ray after a travel path 𝑙 through the medium is: 

𝑝(𝑙, Ω𝑠) = 𝐺(Ω𝑠). 𝑢𝑙 . 𝑒
−𝐺(Ω𝑠).𝑢𝑙.𝑙 (3.10) 

The extinction coefficient 𝜎𝑡=G(Ω𝑠).𝑢𝑙  does not depend on wavelength. Hence, the 

transmittance correction factor 𝑓 applied for fluids is not needed.  

Being a function of the direction Ω𝑠, the term 𝐺 must be computed per traced direction. Because 

its computation on the fly is computationally expensive, 𝐺  is precomputed for 𝑁  discrete 

directions. Then, since any direction can be sampled, 𝐺 is interpolated using the values for the 

directions that neighbor the sampled direction. If a volume contains several types of turbid/fluid 

medium, the sampling of distance is done using an equivalent extinction coefficient that is the 

sum of the extinction coefficients of all the elements in the volume.  

Radiation reflected by vegetation covers has usually a sharp maximum in the retro-illumination 

direction. Indeed, shadows cast by the leaves in the incident direction cannot be seen in this 

direction because they are hidden by the leaves themselves. For directions close to the retro-

illumination direction, shadows can be observed, which usually translates in a decrease of 

reflectance. This is known as the hot spot effect. The approach of Kuusk, (1985) is widely used 

to model the hot spot effect. In the standard DART model (i.e., DART-FT), Gastellu-Etchegorry 

et al. (1996) adapted the approach of Kuusk (1985) to finite dimensions turbid cells. Although 

some hot spot models are more accurate (Gobron et al., 1997; Kallel & Nilson, 2013), the Kuusk 

model is selected for DART-Lux because of its simplicity and adaptability to the Monte Carlo 

method. For example, Antyufeev & Marshak (1990) used it in their Monte Carlo model. DART-

FT also uses it, which eases comparison with DART-Lux.   

For a viewing direction Ω𝑣 such that Ω𝑠. Ω𝑣<0 and a path length Δ𝑙, the transmittance is no 

longer 𝑇𝑟(Δ𝑙, Ω𝑣) = 𝑒
−𝑢𝑙.𝐺(Ω𝑣).𝛥𝑙. It is (cf. Appendix 3-2):  



CHAPTER 3: SIF MODELING IN DART-LUX 

 128 

𝑇𝑟(Δ𝑙, Ω𝑠 → Ω𝑣) = 𝑒−𝑢𝑙.𝐺
(Ω𝑣).(𝛥𝑙+

𝛽
𝛼
(𝑒−𝛼.Δ𝑙−1)) = 𝑒−𝜁.𝜑(Δ𝑙) (3.11) 

with: 𝛼=
Δ(Ω𝑠,Ω𝑣).|𝜇𝑣|

𝑆𝑙
, 𝛽=√

𝐺(Ω𝑠).|𝜇𝑣|

𝐺(Ω𝑣).|𝜇𝑠|
, Δ(Ω𝑠, Ω𝑣)=√

1

𝜇𝑣
2 +

1

𝜇𝑠
2 +

2.Ω𝑠.Ω𝑣

|𝜇𝑠.𝜇𝑣|
, 𝜇𝑠=cosθs, 𝜇𝑣=cos 𝜃𝑣, 

𝑠𝑙=
𝜋.𝑑𝑙.𝐺(Ω𝑣)

4.𝜇𝑣.∫ ∫
𝑔(Ω𝑙 )

2𝜋
𝜋
2

.
sin𝜃𝑙.𝑑𝜃𝑙.𝑑𝜙𝑙

√1+tan2 𝜃𝑙.sin
2 𝜃𝑙

2𝜋

, 𝑑𝑙 the leaf dimension, 𝑢𝑙  the leaf volume density. 

𝜁= 𝑢. 𝐺(Ω𝑣), and 𝜙(Δ𝑙)=Δ𝑙 +
𝛽

𝛼
(𝑒−𝛼.Δ𝑙-1), which is positive because 𝑇𝑟(Δ𝑙, Ω𝑠→Ω𝑣)≤1. 

With the notation 𝑥 = 𝜙(Δ𝑙), the transmittance is written: 

𝑇𝑟(𝑥, Ω𝑠 → Ω𝑣) =  𝑒
−𝜁.𝑥 (3.12) 

The PDF of the random variable 𝑋 for sampling 𝑥 in 𝑇𝑟(𝑥, Ω𝑠 → Ω𝑣) is: 

𝑝𝑋(𝑥) = 𝜁. 𝑒
−𝜁.𝑥 (3.13) 

The CDF of the random variable 𝑋 is:  

𝑃𝑋(𝑥) = 1 − 𝑒
−𝜁.𝑥 (3.14) 

The CDF of the random variable 𝐿, for sampling a travel distance 𝑙 in the hot spot configuration, 

knowing that the function 𝜙 is strictly increasing in the range of interest (cf. Appendix 3-3), is: 

𝑃𝐿(𝑙) = 𝑝(𝐿 ≤ 𝑙) =  𝑃(𝑋 ≤ 𝜙(𝑙)) =  𝑃𝑋(𝜙(𝑙)) = 𝜁. 𝑒
−𝜁.𝜙(𝑙) (3.15) 

The PDF of the random variable 𝐿 is then: 

𝑝𝐿(𝑙) =
𝑑𝑃𝐿(𝑙)

𝑑𝑙
= −

𝑑𝜙(𝑙)

𝑑𝑙
. 𝜁2. 𝑒−𝜁.𝜙(𝑙) (3.16) 

To sample 𝑙, with 𝜉~𝒰([0,1]) 

𝑥 = 𝜙(𝑙) =  −
ln (1 − 𝜉)

𝜁
↔ 𝑙 = 𝜙−1 (−

ln(1 − 𝜉)

𝜁
) (3.17) 

The expression of 𝜙−1 is computed in Appendix 3-3. 

b) Sampling a scattering direction 

The scattering direction is sampled according to the scattering phase function 𝑝(𝜇), which is 

the angular distribution of scattered radiation, with 𝜇=cos 𝜃  and θ  the angle between the 

incident and outgoing directions. The sampled direction is defined by 2 angles: the angle 𝜃 

between the incident and outgoing rays, and an azimuthal angle 𝜑 in the plane perpendicular to 
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the scattered direction. If the scattering phase function is azimuthally symmetric (i.e., depends 

only on 𝜃), the scattering direction is sampled as:  

{
cos 𝜃 = 𝑃−1(𝜉1)

𝜑 = 2. 𝜋. 𝜉2
 (3.18) 

with 𝑃(𝑥) = ∫ 𝑝(𝜇)𝑑𝜇
𝑥

−1
 the CDF, 𝜉1~𝒰([0,1]) and 𝜉2~𝒰([0,1]). 

- Henyey-Greenstein phase function  

𝑝(𝜃)

2𝜋
=
1

4𝜋
.

1 − 𝑔2

[1 + 𝑔2 − 2. 𝑔. cos(𝜃)]
3
2

 (3.19) 

This phase function is normalized:  

∫ ∫
𝑝(𝜃)

2𝜋
. sin(𝜃) 𝑑𝜃

𝜋

0

2𝜋

0

𝑑𝜑 = 1 (3.20) 

with the asymmetry parameter  𝑔]-1,1[. It is negative for backward scattering, positive for 

forward scattering, and null for isotropic scattering.  

It can be written as a function of 𝜇=cos(𝜃): 

𝑝(𝜇) =
1

2
.

1 − 𝑔2

[1 + 𝑔2 − 2. 𝑔. 𝜇]
3
2

 (3.21) 

Then, we have:  

∫ 𝑝(𝜇)𝑑𝜇 = 1
1

−1

 (3.22) 

To sample 𝜇 = cos(𝜃) from 𝑝(𝜇), we compute the cumulated density function:  

𝑃(𝑥) = ∫ 𝑝(𝜇)𝑑𝜇
𝑥

−1

=

{
 

 
1 − 𝑔2

2𝑔
[(1 + 𝑔2 − 2𝑔𝑥)−

1
2 −

1

1 + 𝑔
] , if 𝑔 ≠ 0

𝑥 + 1

2
, 𝑖𝑓 𝑔 = 0

 (3.23) 

The value of 𝜇 that is sampled is:  

𝜇 = 𝑃−1(𝜉), 𝜉~𝒰([0,1]) 

𝜇 = {

1

2𝑔
. [1 + 𝑔2 − (

1 − 𝑔2

1 − 𝑔 + 2. 𝑔. 𝜉
)

2

] , if 𝑔 ≠ 0

2. 𝜉 − 1, if 𝑔 = 0

 
(3.24) 



CHAPTER 3: SIF MODELING IN DART-LUX 

 130 

 

- Double Henyey-Greenstein phase function 

It is a weighted sum of two Henyey-Greenstein phase functions. 

𝑝(𝜃)

2𝜋
= 𝑎.

1

4𝜋
.

1 − 𝑔1
2

[1 + 𝑔1
2 − 2. 𝑔1. 𝑐𝑜𝑠(𝜃)]

3
2

+ (1 − 𝑎).
1

4𝜋
.

1 − 𝑔2
2

[1 + 𝑔2
2 − 2. 𝑔2. 𝑐𝑜𝑠(𝜃)]

3
2

 (3.25) 

with 𝑎 ∈ [0,1]. Usually, forward scattering is larger than backward scattering, which 

corresponds to a > 0.5. It can be sampled using random numbers 𝜉1~𝒰([0,1]) and 𝜉2~𝒰([0,1]): 

If 𝜉1 < 𝑎, 

𝜇 = {

1

2𝑔1
. [1 + 𝑔1

2 − (
1 − 𝑔1

2

1 − 𝑔1 + 2. 𝑔1. 𝜉2
)

2

]

2. 𝜉2 − 1, if 𝑔1 = 0

, if 𝑔1 ≠ 0 (3.26) 

Else  

𝜇 = {

1

2𝑔2
. [1 + 𝑔2

2 − (
1 − 𝑔2

2

1 − 𝑔2 + 2. 𝑔2. 𝜉2
)

2

] , if 𝑔2 ≠ 0

2. 𝜉2 − 1, if 𝑔2 = 0

 (3.27) 

Figure 3-1 shows a test of this sampling method for the case a = 0.75, g1 = 0.3, g2 = -0.3. 

 

Figure 3-1: Double Henyey-Greenstein phase function sampling test: histogram of 105 

samples and its fitted function (a = 0.75, g1 = 0.3, g2 = -0.3) 

- Rayleigh phase function 

The general form of the Rayleigh scattering phase function is: 

𝑝(𝜃)

2𝜋
=
1

4𝜋
. [𝐴. (1 + cos2(𝜃)) + 𝐶] (3.28) 
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The sampling method for the Rayleigh phase function is (cf. Appendix 3-4):  

𝜇 = (𝛽 + √𝛼3 + 𝛽2)

1
3
−

𝛼

(𝛽 + √𝛼3 + 𝛽2)
1
3

 (3.29) 

with 𝛼 = 1 +
𝐶

𝐴
, 𝛽 = (

3

𝐴
. 𝜉 −

3𝐶

2𝐴
− 2), 𝜉~𝒰([0,1]) 

 

Figure 3-2: Rayleigh phase function sampling test: histogram of 105 samples and its fitted 

function (A = 0.7175, C = 0.0435) 

The Henyey-Greenstein and Rayleigh scattering phase functions depend only on the cosine of 

the angle 𝜃  between the incident and the outgoing directions. Therefore, the incident and 

outgoing directions play symmetric roles. It explains that these phase functions are adapted to 

bi-directional modeling with the same PDF used to sample scattering directions for the light 

and sensor sub-paths.   

- Turbid vegetation phase function 

For a vegetation turbid medium, the scattering transfer function is:  

𝑇𝑠𝑐𝑎𝑡(Ω𝑠 → (Ω𝑣, ΔΩ𝑣)) =
1

𝐺(Ω𝑠)
.∫ ∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)

2𝜋
. 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙. 𝑑Ω𝑣

2πΔΩ𝑣

 (3.30) 

where 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣): leaf scattering phase function. 

𝑇𝑠𝑐𝑎𝑡(Ω𝑠 → (Ω𝑣, ΔΩ𝑣))  scattered power 𝑊𝑠𝑐𝑎𝑡(Ω𝑠→Ω𝑣)  in direction (Ω𝑣, ΔΩ𝑣),  per power 

𝑊𝑖𝑛𝑡(Δ𝑙𝑖, Ω𝑠) intercepted in pathlength Δ𝑙𝑖 in direction Ω𝑠. 

To define a probability density function (PDF) equivalent to the scattering phase functions for 

fluids, the PDF of a given direction is assumed to be proportional to the power scattered in this 

direction. Then, we have:  
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𝑝(Ω𝑣|Ω𝑠) =

1
𝐺(Ω𝑠)

. ∫ |Ω𝑠. Ω𝑙|.
𝑔(Ω𝑙)
2𝜋 . 𝑓(Ω𝑓 , Ω𝑠 → Ω𝑣). 𝑑Ω𝑙2π

∫
1

𝐺(Ω𝑠)
. ∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)
2𝜋 . 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙 . 𝑑Ω𝑣2π4𝜋

 (3.31) 

𝑝(Ω𝑣|Ω𝑠) is normalized: ∫ 𝑝(Ω𝑣|Ω𝑠). 𝑑Ω𝑣 = 1
4𝜋

. 

Assuming that the leaves are bi-Lambertian surfaces:  

𝑝(Ω𝑣|Ω𝑠) =

1
𝐺(Ω𝑠)

. ∫ |Ω𝑠. Ω𝑙|.
𝑔(Ω𝑙)
2𝜋 . 𝛼(Ω𝑙, Ω𝑠 → Ω𝑣). |Ω𝑣. Ω𝑙|𝑑Ω𝑙2π

∫
1

𝐺(Ω𝑠)
. ∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)
2𝜋

. 𝛼(Ω𝑙, Ω𝑠 → Ω𝑣). |Ω𝑣. Ω𝑙|𝑑Ω𝑙. 𝑑Ω𝑣2π4𝜋

 (3.32) 

where: 𝛼(Ω𝑙, Ω𝑠 → Ω𝑣) =

{
 
 

 
 
𝜌𝑡𝑜𝑝

𝜋
 if Ω𝑙. Ω𝑠 < 0 and Ω𝑙 . Ω𝑣 > 0

𝜏𝑡𝑜𝑝

𝜋
 if Ω𝑙 . Ω𝑠 < 0 and Ω𝑙 . Ω𝑣 < 0

𝜌𝑏𝑜𝑡

𝜋
 if Ω𝑙. Ω𝑠 > 0 and Ω𝑙 . Ω𝑣 < 0

𝜏𝑏𝑜𝑡

𝜋
 if Ω𝑙. Ω𝑠 > 0 and Ω𝑙 . Ω𝑣 > 0

 

When sampling a scattering direction for a bi-Lambertian surface, the incident and outgoing 

directions play symmetric roles. For a turbid medium made only of bi-Lambertian surfaces, this 

symmetry is conserved. Hence, this PDF can be used to sample scattering directions in both 

direct and reverse directions (i.e., for both light and source sub-paths). 

The denominator of Eq (3.32) can be simplified: 

𝐷 = ∫
1

𝐺(Ω𝑠)
.∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)

2𝜋
. 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙. 𝑑Ω𝑣

2π4𝜋

 (3.33) 

 
=

1

𝐺(Ω𝑠)
. ∫ 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑣. ∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)

2𝜋
. 𝑑Ω𝑙.

2π4𝜋

  

The leaf scattering phase function 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣) verifies:  

∫ 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑣 = 𝜔
4𝜋

 (3.34) 

with 𝜔 is the leaf single scattering albedo. 

𝜔 = 𝜌 + 𝜏, if the optical properties of the two faces are identical, 

𝜔=
1

2
(𝜌𝑡𝑜𝑝+𝜌𝑏𝑜𝑡)+

1

2
(𝜏𝑡𝑜𝑝+𝜏𝑏𝑜𝑡), if the optical properties of the two faces of the leaf differ.  
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Then: 𝐷 =
𝜔.𝐺(Ω𝑠)

𝐺(Ω𝑠)
= 𝜔 

Finally, 

𝑝(Ω𝑣|Ω𝑠) =
1

𝜔. 𝐺(Ω𝑠)
. ∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)

2𝜋
. 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙

2π

 (3.35) 

Computing this PDF is very expensive. It cannot be solved and sampled analytically using the 

inversion method directly. Antyufeev & Marshak 1990 used an indirect approach by sampling 

first a random leaf orientation from the LAD function 
𝑔(Ω𝑓)

2𝜋
, then sampling a scattering direction 

according the leaf BSDF 𝑓(Ω𝑓 , Ω𝑠 → Ω𝑣). This approach uses a sampling method per LAD 

function, and implies treating the turbid medium as individual leaves, and not as a whole which 

increases variance (cf. Section 4.1). Thus, another approach was designed by precomputing the 

discrete probability distribution for 𝑁 discrete direction (Ω𝑛, ΔΩ𝑛), 𝑛 ∈ {1, . . , 𝑁}: 

𝑝((Ω𝑛, ΔΩ𝑛)|Ω𝑠) = ∫ 𝑝(Ω𝑣|Ω𝑠). 𝑑Ω𝑣
ΔΩ𝑛

 (3.36) 

With the assumption that ΔΩ𝑛is small enough to consider that the PDF is constant over ΔΩ𝑛: 

𝑝((Ω𝑛, ΔΩ𝑛)|Ω𝑠) =
ΔΩ𝑛

𝜔. 𝐺(Ω𝑠)
.∫ |Ω𝑠. Ω𝑙|.

𝑔(Ω𝑙)

2𝜋
. 𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙

2π

 (3.37) 

In DART-FT, the Phase module precomputes the transfer function for the discrete directions: 

𝑇̿(𝜆, Ω𝑠 , Ω𝑣 , ΔΩ𝑣) =
ΔΩ𝑣
𝐺(Ω𝑠)

.∫ |Ω𝑠. Ω𝑙|.
𝑔(Ω𝑙)
2𝜋

.𝑓(Ω𝑙, Ω𝑠 → Ω𝑣). 𝑑Ω𝑙
2π

 (3.38) 

This precomputation is used to compute the discrete probability distribution for all outgoing 

directions, for each incident direction: 

𝑝((Ω𝑛, ΔΩ𝑛)|Ω𝑠) =
𝑇̿(𝜆, Ω𝑠, Ω𝑣 , ΔΩ𝑣)

ω
 (3.39) 

Then, the PDF for the direction Ω𝑛 is given by:  

𝑝(Ω𝑛|Ω𝑠) =
𝑇̿(𝜆, Ω𝑠 , Ω𝑛 , ΔΩ𝑛)

ω. ΔΩ𝑛
  (3.40) 

𝑝(Ω𝑛|Ω𝑠) is computed for N ingoing and N outgoing discrete directions. However, in DART-

Lux, rays can propagate in any direction. Therefore, the PDF for any direction is computed with 

a two-step interpolation. 1) For each neighbor direction of the incident direction, the PDF is 
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interpolated using the values in neighboring directions of the outgoing direction. 2) Then, 

results of the first interpolation are interpolated for neighbor directions of the incident direction.  

If the volume contains several types of turbid/fluid medium, the scattering direction is 

determined in two steps. 1) A scattering medium is randomly selected: the probability of 

selecting a medium is proportional to its scattering extinction coefficient for fluids, and to its 

extinction coefficient in the incident direction for the turbid medium. 2) Then, a scattering 

direction is sampled according to the scattering phase function of the selected medium. 

SIF modeling 

Once the turbid medium is introduced in DART-Lux, modeling the SIF emission in this medium 

is straightforward using the Monte Carlo path sampling method presented above. Similarly to 

the scattering phase functions, SIF transfer functions precomputed by the phase module of 

DART-FT for discrete directions (c.f. Eq (2.5)) are used to evaluate the SIF radiance for the 

sampled light paths along with the block matrix representation introduced in Section 3.1. 

3.2.2 Results  

Fluids 

The accuracy of fluid modeling in DART-Lux is assessed by comparing DART-Lux and 

DART-FT nadir images of a parallelepiped fluid volume (0.8 × 0.8 × 1 𝑚3) over a  lambertian 

surface (1 × 1 𝑚2) of reflectrance “loam_gravelly_brown_dark”. Figure 3-3 shows RGB color 

composites at 2 cm resolution, for two fluid phase functions: a) Double Henyey-Greenstein 

( 𝑎 = 0.75 , 𝑔1 = 0.3 , 𝑔2 =-0.3, 𝜎𝑎 = 0.4 𝑚
2.𝑚−3 , 𝜎𝑠 = 0.1  𝑚

2.𝑚−3 ), and b) Rayleigh 

(optical property: “rayleigh_air”, particle density: 5.1029 𝑚−3). DART-FT and DART-Lux 

images are similar with close average reflectance values in the blue, green and red spectral 

bands (relative differences < 1%). DART-Lux images have some Monte Carlo noise.   
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a)
 

 

b)
 

Figure 3-3: DART-FT and DART-Lux RGB nadir images of a fluid volume with fluid 

phase function double Henyey-Greenstein (a) and Rayleigh (b). 

Turbid medium 

The accuracy of DART-Lux SIF modeling in a turbid medium is assessed by comparison with 

DART-FT for the case of a turbid volume (LAI = 1, spherical LAD) over a non-reflective 

ground and an incident sun radiation with a zenith angle equal to 30°. Figure 3-4 shows the 

scene total nadir reflectance and scene SIF PSI and PSII nadir radiance simulated by DART-

FT and DART-Lux. Figure 3-5 shows the DART-FT and DART-Lux directional reflectance in 

the solar plane for a near infrared spectral band. The hot spot appears clearly. In both cases, 

DART-Lux closely agrees with DART-FT: relative difference is 1.21% for reflectance, 0.60% 

for PSI radiance, and 63% for PSII radiance. 
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Figure 3-4: Nadir total reflectance and SIF PSI and PSII radiance comparison between DART-

FT and DART-Lux for a simple turbid plot 

 

 

Figure 3-5: Comparison of the directional reflectance for a NIR band in the solar plane between 

DART-FT and DART-Lux for simple turbid plot 

 

Figure 3-6 shows the mock-up of a realistic scene used to assess DART-Lux SIF modeling. It 

is a 25 m x 25 m subzone (1 m x 1 m x 1 m voxels) of the CI1 tree plot of the SERC forest that 

Yin et al. (2022) derived from airborne LiDAR measurements. Figure 3-7 compares the spectral 

nadir reflectance and also PSI and PSII radiance simulated by DART-FT and DART-Lux for 

45 spectral bands from 400 to 850 nm. DART-Lux and DART-FT closely agree: relartive 

difference is 1.15% for reflectance, 0.51% for PSI radiance and 0.40% for PSII radiance.  

This simulation took 2 h 16 min and 4.8 GB of memory for DART-FT, 2 min 38 s and 1.5 GB 

for DART-Lux. It stresses the computational efficiency of DART-Lux for large and complex 

scenes.  
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Figure 3-6: 25 m x 25 m turbid mockup derived from LiDAR point cloud of SERC forest (USA) 

with pure green voxels (leaves or wood) and mixed brown voxels (leaves and wood). 

 

Figure 3-7: Nadir total reflectance and SIF radiance simulated using DART-FT (turbid) and 

DART-Lux (turbid) comparison 

3.3 Conclusion 

The theory of SIF emission modeling in DART-Lux has been introduced. It relies on major 

changes in DART-Lux. First, the SIF emission equations that include interdependence between 

spectral were adapted to the bi-directional path tracing algorithm and in particular to the sub-

paths traced in the backward direction. Second, the turbid vegetation has been introduced, after 

having introduced fluid volumes using the double Henyey-Greenstein and the Rayleigh phase 

functions. DART-Lux now simulates SIF emission and observation for vegetation simulated as 

facets and/or as turbid volumes. It usually is much smaller simulation time and computer 

memory that DART-FT, with a gain in computational efficiency that depends on the scene 

complexity and on the number of simulated spectral bands. Therefore, it allows the study of 

much larger and more complex landscapes than DART-FT.  



 

 138 

The inversion method is used to draw random samples from a random variable of a given PDF, 

using the inverse function of its CDF and a random number uniformly sampled over [0,1]. 

Let a real random variable 𝑋 with a PDF 𝑝𝑋(𝑥) that we want to sample. The CDF of 𝑋 is:  

𝑃𝑋(𝑥) = 𝑝(𝑋 ≤ 𝑥) = ∫ 𝑝𝑋(𝑡). 𝑑𝑡
𝑥

−∞

 

Let Ξ a random variable uniformly distributed over [0,1] and the random variable 𝑈=𝑃𝑋
−1(Ξ). 

The PDF of Ξ is: 𝑝Ξ(𝜉) = {
1, if 𝜉 ∈ [0,1] 
0, otherwise 

 

The CDF of Ξ is: 𝑃Ξ(𝜉) = ∫ 𝑝Ξ(𝑡). 𝑑𝑡
𝜉

−∞
= {

0, if 𝜉 < 0
𝜉, if 𝜉 ∈ [0,1]
1, if 𝜉 > 1

 

Let us compute the CDF of the random variable 𝑈: 

𝑃𝑈(𝑢) = 𝑝(𝑈 ≤ 𝑢) 

 = 𝑝(𝑃𝑋
−1(Ξ) ≤ 𝑢) 

 = 𝑝(Ξ ≤ 𝑃𝑋(𝑢)) 

 = 𝑃Ξ(𝑃𝑋(𝑢)) = 𝑃𝑋(𝑢) (since 𝑃𝑋(𝑢) ∈ [0,1]) 

It implies that the random variable 𝑈=𝑃𝑋
−1(Ξ) has the PDF of 𝑋:  

𝑝𝑈(𝑢) =
𝑑𝑃𝑈(𝑢)

𝑑𝑢
=
𝑑𝑃𝑋(𝑢)

𝑑𝑢
= 𝑝𝑋(𝑢) 

Therefore, the random variable 𝑈 can be used to draw samples of 𝑋. 

For a turbid cell, transmittance in the hot spot configuration (Gastellu-Etchegorry et al., 1996) is:  

𝑇𝑟(Ω𝑠, Δ𝑙) = exp (−∫ 𝑎(Ω𝑠, Ω𝑣, 𝑟). 𝑑𝑟
Δ𝑙

) 

with 𝑎(Ω𝑠, Ω𝑣, 𝑟) = 𝑢𝑙 . 𝐺(Ω𝑣). (1-√
𝐺(Ω𝑠).|𝜇𝑣|

𝐺(Ω𝑣).|𝜇𝑠|
. 𝑒
−
Δ(Ω𝑠,Ω𝑣)

𝑠𝑓
.𝑟.𝜇𝑣

) = 𝑢𝑙 . 𝐺(Ω𝑣). (1-𝛽. 𝑒
−𝛼.𝑟) 

Therefore: 𝑇𝑟(Ω𝑠, Δ𝑙) = 𝑒−𝑢𝑙.𝐺
(Ω𝑣).[Δ𝑙+

𝛽

𝛼
(𝑒−𝛼.Δ𝑙−1)] 

 

Appendix 3-1: Inversion method 

Appendix 3-2: Transmittance in hot spot configuration 
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𝜙(𝑙) = 𝑙 +
𝛽

𝛼
(𝑒−𝛼.𝑙 − 1), 𝑙 ∈ ℝ 

𝜙′(𝑙) = 1 − 𝛽. 𝑒−𝛼𝑙 

𝜙′(𝑙) = 0 ↔ 𝛽. 𝑒−𝛼𝑙 = 1 ↔ 𝑙 = 𝑙0 =
ln (𝛽)

𝛼
 

𝜙′′(𝑙) = 𝛼. 𝛽. e−𝛼.𝑙 > 0  𝜙′ is strictly increasing on ℝ.  

𝜙′(𝑙0)=0 implies 𝜙′(𝑙)>0 ∀𝑙 ∈]𝑙0,+∞[ and 𝜙′(𝑙)<0 (i.e., 𝜙 strictly decreasing) ∀𝑙 ∈]-∞, 𝑙0[ 

If 𝑙0 > 0 (i.e., 𝛽 > 1), the equality 𝜙(0) = 0 implies that 𝜙 can be negative for 𝑙 > 0 

𝜙(𝑙) = 0 ↔ 𝑙 +
𝛽

𝛼
(𝑒−𝛼.𝑙 − 1) = 0 ↔ 𝑙 +

𝛽

𝛼
. 𝑒−𝛼.𝑙 −

𝛽

𝛼
= 0 

↔ 𝑙. 𝑒𝛼.𝑙 +
𝛽

𝛼
−
𝛽

𝛼
. 𝑒𝛼.𝑙 = 0 

↔ 𝑙. 𝑒𝛼.𝑙 −
𝛽

𝛼
. 𝑒𝛼.𝑙 = −

𝛽

𝛼
 

↔ 𝛼. 𝑙. 𝑒𝛼.𝑙 − 𝛽. 𝑒𝛼.𝑙 = −𝛽 

↔ (𝛼. 𝑙 − 𝛽). 𝑒𝛼.𝑙−𝛽 = −𝛽𝑒−𝛽 

↔ 𝛼. 𝑙 − 𝛽 = 𝑊(−𝛽𝑒−𝛽) 

↔ 𝛼. 𝑙 = 𝑊(−𝛽𝑒−𝛽) + 𝛽 

where 𝑊  is “the Lambert W function” (Dence, 2013) defined as: 𝑧 = 𝑥. exp(𝑥) ↔ 𝑥 =

𝑊(𝑧). In the real domain, 𝑊 has two branches: 𝑊0 and 𝑊−1 (𝑊0 ≥ 𝑊−1). The branch 𝑊0 

is used to have 𝑙 ≥ 0 

 

 

Figure 3-8: The 𝑊0 (blue) and 𝑊−1 (green) branches curves of the Lambert W function 

Appendix 3-3: Studying the function 𝝓(𝒍) 
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↔ 𝑙 = 𝑙𝑤0 =
𝑊0(−𝛽𝑒

−𝛽)+𝛽

𝛼
 or 𝑙 = 𝑙𝑤-1 =

𝑊−1(−𝛽𝑒
−𝛽)+𝛽

𝛼
,(𝑙𝑤0 > 𝑙𝑤-1) 

If 𝛽≤1 , then 𝑙0≤0  and 𝜑  strictly increasing on  [0,+∞[   𝜙 bijective from [0,+∞[  to 

𝜙([0,+∞[)=[0,+∞[. Otherwise, we can prove that 𝑙𝑤0 ≥ 𝑙0:  

Then, 𝜙′(𝑙) > 0, ∀𝑙 ∈]𝑙𝑤0, +∞[. Hence, 𝜙 is strictly increasing on ]𝑙𝑤0, +∞[.  

Then, 𝜙 is bijective from [𝑙𝑤0, +∞[ to 𝜙([𝑙𝑤0, +∞[) = [0,+∞[  

Then for a sampled 𝑥 = 𝜙(𝑙) > 0, 𝜙 is bijective and we can find 𝜙−1(𝑥). 

Because 𝑊0(−𝛽𝑒
−𝛽) ≥ −1, then: 𝑊0(−𝛽𝑒

−𝛽) + 𝛽 ≥ −1 + 𝛽 

Since −1 + 𝛽 ≥ ln (𝛽), then 𝑊0(−𝛽𝑒
−𝛽) + 𝛽 ≥ ln (𝛽) 

Hence 𝑙𝑤0 ≥ 𝑙0 =
ln (𝛽)

𝛼
 

Computation of 𝜙−1 

𝑥 =  𝑙 +
𝛽

𝛼
(𝑒−𝛼.𝑙 − 1) ↔  𝑥 =  𝑙 +

𝛽

𝛼
. 𝑒−𝛼.𝑙 −

𝛽

𝛼
 

↔  𝑥. 𝑒𝛼.𝑙 =  𝑙. 𝑒𝛼.𝑙 +
𝛽

𝛼
−
𝛽

𝛼
. 𝑒𝛼.𝑙  

↔ −
𝛽

𝛼
=  𝑙. 𝑒𝛼.𝑙 −

𝛽

𝛼
. 𝑒𝛼.𝑙 −  𝑥. 𝑒𝛼.𝑙  

↔ −
𝛽

𝛼
= ( 𝑙 −

𝛽

𝛼
−  𝑥) . 𝑒𝛼.𝑙 

↔ −𝛽 = (𝛼. 𝑙 − 𝛽 − 𝛼. 𝑥). 𝑒𝛼.𝑙 

↔ −𝛽. 𝑒−𝛼.𝑥−𝛽 = (𝛼. 𝑙 − 𝛽 − 𝛼. 𝑥). 𝑒𝛼.𝑙−𝛼.𝑥−𝛽 

↔  𝛼. 𝑙 − 𝛼. 𝑥 − 𝛽 = 𝑊(−𝛽. 𝑒−𝛼.𝑥−𝛽) 

↔  𝑙 =
𝑊(−𝛽. 𝑒−𝛼.𝑥−𝛽) + 𝛼. 𝑥 + 𝛽

𝛼
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The general form of the Rayleigh scattering phase function is 

𝑝(𝜃)

2𝜋
=
1

4𝜋
. [𝐴. (1 + cos2(𝜃)) + 𝐶] 

It can be written as a function of 𝜇 = cos(𝜃) 

𝑝(𝜇) =
1

2
. [𝐴. (1 + 𝜇2) + 𝐶]      with ∫ 𝑝(𝜇). 𝑑𝜇

1

−1
= 1 

 

The CDF of 𝑝(𝜇) is:  𝑃(𝑥) =  ∫ 𝑝(𝜇). 𝑑𝜇
𝑥

−1
 

 
=
1

2
∫ [𝐴. (1 + 𝜇2) + 𝐶]. 𝑑𝜇
𝑥

−1

 

 
=
1

2
[𝐴. (𝑥 +

𝑥3

3
+
4

3
) + 𝐶. (𝑥 + 1)] 

 
=
𝐴

6
. 𝑥3 + 𝑥 (

𝐴

2
+
𝐶

2
) +

2

3
𝐴 +

𝐶

2
 

To sample randomly a value 𝜇 using a random number 𝜉~𝒰([0,1]):  

𝑃(𝜇) = 𝜉  ↔
𝐴

6
. 𝜇3 + (

𝐴

2
+
𝐶

2
) 𝜇 +

2

3
𝐴 +

𝐶

2
− 𝜉 = 0 

↔ 𝜇3 + 3(1 +
𝐶

𝐴
) 𝜇 − 2 (

3𝜉

𝐴
+

3𝐶

2𝐴
− 2) = 0  

↔ 𝜇3 + 3𝛼𝜇 − 2𝛽 = 0 with 𝛼 = 1 +
𝐶

𝐴
, 𝛽 = (

3

𝐴
. 𝜉 −

3𝐶

2𝐴
− 2), 

This equation has a unique real solution: 𝜇 = (𝛽 + √𝛼3 + 𝛽2)
1

3 −
𝛼

(𝛽+√𝛼3+𝛽2)

1
3

Appendix 3-5: Nomenclature 

Symbol Description  Unit 

𝐿(𝑝′ → 𝑝) Radiance reaching 𝑝 from 𝑝′ 𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝑝𝜎𝑡(𝑙) Probability density function of having an 

interception at distance 𝑙 

𝑚−1 

𝑃𝜎𝑡(𝑙) Cumulated density function of  𝑝𝜎𝑡 - 

Appendix 3-4: Sampling the Rayleigh phase function 
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𝑇𝑟(Δ𝑙, Ω𝑣) Path transmittance for a distance Δ𝑙 along the 

direction Ω𝑣 

- 

𝜎𝑎 Absorption extinction coefficient 𝑚2. 𝑚−3 

𝜎𝑠 Scattering extinction coefficient 𝑚2. 𝑚−3 

𝜎𝑡 Total extinction coefficient 𝑚2. 𝑚−3 

Δ𝑙 Travel distance  𝑚 

Δ𝐿 Distance until the border of the volume 𝑚 
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1D SIF models are widely used for SIF studies. They might be appropriate to use for 

closed and homogeneous canopies with small leaves and no distinguishable rows, but they are 

much less appropriate for canopies with a strongly marked 3D structure. Section 2 of this 

chapter presents a study of the impact of vegetation 3D structure on SIF emission and 

observation over eight forest sites. This was done with a quasi-turbid representation of 

vegetation because DAT-Lux did not yet simulate turbid SIF modeling. This work was 

published in the Remote Sensing of Environment journal. Section 1 compares the quasi-turbid 

representation of vegetation to the turbid representation of vegetation.  

4.1 Turbid versus quasi turbid modeling in DART-Lux  

The study presented in section 4.2 was conducted before the introduction of turbid medium and 

SIF modeling with turbid medium in DART-Lux. Therefore, each turbid medium voxel was 

simulated as a voxel randomly filled by facets (i.e., quasi-turbid medium) with the same leaf 

area as the turbid voxel. The quasi-turbid representation was created using the cloning capacity 

of DART-Lux in order to minimize the computer memory: each quasi-turbid voxel is a linear 

combination of a limited number of base 3D objects made as a random distribution of facets 

with a specific leaf area. Now that turbid modeling is available in DART-Lux, it is useful to 

Chapter 4  

Impact of vegetation 3D structure on SIF 
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assess the validity of the quasi-turbid representation. The case study is the CI1 tree plot of the 

SERC forest (Regaieg et al., 2021) that Yin et al. (2022) derived by from airborne LiDAR point 

cloud. Its mean LAI value is 5.517 𝑚2.𝑚−2 and its mean Wood Area Index value is 0.792 

𝑚2. 𝑚−2. The comparison is done without and with SIF simulation, for 45 spectral bands over 

[400,850nm] and a scene repetition equal to1 (i.e., the studied scene is surrounded by 8 identical 

scenes). The scattering phase function of the turbid medium is pre-computed for 200 discrete 

directions.  

4.1.1 No SIF simulation  

Figure 4-1 shows the DART-Lux nadir reflectance of the CI1 tree plot simulated with the turbid 

and quasi-turbid representations, without SIF simulation. The quasi-turbid approximation 

shows a good accuracy with around 2% of relative difference.  

 

Figure 4-1: Nadir reflectance of the CI1 tree plot simulated as turbid and quasi-turbid (QT). 

 

The Monte Carlo noise in DART-Lux images influences their pixel values. This is a constraint 

to be quantified. Here, it is done by running 10 times each simulation. Figure 4-2 shows the 

relative standard deviation images of the 10 runs averaged over all the spectral bands for the 

turbid and quasi-turbid representations. Each image is an average image of all spectral images 

of which each pixel value is the standard deviation of the 10 values from the 10 runs divided 

by the average of these 10 values. The relative standard deviation and therefore the Monte Carlo 

noise is lower for the turbid representation. This is mainly due to the fact that with, vegetation 

interaction is simulated using a single scattering phase function for a turbid representation, 

whereas for a quasi turbid medium, its simulation takes into account the discrete spatial and 
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angular distribution of individual leaves. For example, in order to mimick accurately the leaf 

angle distribution of the turbid medium, a very large number of leaves must be simulated.  

Table 4-1 shows the comparison of the computation time and RAM requirements for the quasi-

turbid and turbid simulations. The turbid simulation is slower than the quasi-turbid simulaltion, 

due to the use of computationally expensive operations such as the interpolation of phase 

function precomputed for a finite number of directions. On the other hand, it needs less RAM. 

Indeed, a turbid voxel is made of 12 facets (i.e., 2 triangles per voxel face) which is much less 

than the number of facets used to simulate a quasi turbid voxel.  

a) b)
 

Figure 4-2: Relative standard deviation SDr images averaged over all the spectral bands. a) 

Turbid mdium (mean SDr = 0.0398). b) Quasi turbid medium (mean SDr =0.0475). 

 

Table 4-1: Computational needs for quasi-turbid and turbid DART-Lux simulations. 

 Quasi-Turbid Turbid 

Computation Time 15 min 36 min 

RAM 13.1 GB 5.2 GB 

 

4.1.2 With SIF simulation  

Figure 4-3 shows the canopy nadir PSI and PSII radiance for the turbid and quasi-turbid 

representations. The order of magnitude of the relative difference between the two 

representations is the same as if the SIF is not simulated (Figure 4-1).  
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Figure 4-3: PSI and PSII radiance of CI1 tree plot for the turbid and quasi-turbid representations. 

 

Figure 4-4 shows the relative standard deviation images of 10 runs averaged over all the spectral 

bands for tubrid-and quasi turbid simulations, for PSI and PSII SIF radiance. As for the total 

signal, the Monte Carlo noise for SIF is higher for the quasi-turbid represenation.  

Table 4-2 shows the computation time and RAM requirements for quasi-turbid and turbid SIF 

simulations. The increase factor of computation time between quasi-turbid and turbid is higher 

if SIF is simulated. Indeed, the interpolation on the SIF transfer functions (𝑁 ×𝑁 matrices for 

𝑁 spectral bands) is more computationally expensive than the interpolation of normal scattering 

phase functions (𝑁-element vector for 𝑁 spectral bands). 

The RAM requirements is nearly the same for quasi-turbid no SIF and SIF simulations, while, 

it is larger for the turbid SIF compared to the turbid with no SIF because the SIF tranfer 

functions computed for all incident and outgoing directions, and also excitationand emission 

bands, for PSI and PSII, can be voluminous. However, in this case, the RAM requirement is 

still less than for the quasi-turbid simuation. 

This work stresses that depending on configurations (i.e., number of spectral bands, dimension 

of the study area, etc.), the quasi turbid or the turbid representation can be prefered. 
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a) b)  

c) d)  

Figure 4-4: Relative standard deviation images for SIF averaged over the spectral bands where 

it is non null. a) PSI turbid (average = 0.0327) b) PSI quasi-turbid (average = 0.0412) 

c) PSII turbid (average = 0.0341) d) PSII quasi-turbid (average = 0.0430).  

 

Table 4-2: Computational requirements for quasi-turbid and turbid SIF simulations 

 Quasi-Turbid Turbid 

Computation Time 1 h 25 min 5 h 25 min 

RAM 13.1 GB 8.1 GB 

 

4.2 Article 

The use of 1D SIF models like SCOPE implies to use a less accurate representation of 

vegetation as horizontally homogeneous layers and to neglect the 3D structure of canopies 

although it highly impacts the propagation of light and SIF radiation with the canopy. It neglects 



CHAPTER 4: IMPACT OF VEGETATION 3D STRUCTURE ON SIF 

 148 

other important elements of the canopy as well, that interact with radiation and influence the 

SIF emission and the measured signal such as the local topography and the woody elements of 

the trees. Hence, the use of 1D models can induce errors in SIF simulations and consequently 

errors in the interpretation of SIF measurements. Therefore, it is important to study the impact 

of 3D structure on the SIF and to quantify the simulation errors that are made when simulating 

the SIF with 1D models. Consequently, 3D radiative transfer models are more accurate. In 

addition, a 3D models like DART can simulate the SIF for any 1D and 3D representation of 

vegetation, which is very useful for many studies. 

This study was conducted on eight realistic 3D mock-ups derived by inversion of airborne 

LiDAR measurements over the SERC forest (Yin et al., 2022). It allowed one to stress that 

compared to 3D representations, 1D representations can lead to very large errors on PAR 

absorption, SIF emission, and SIF radiance from morning to evening, depending on the 

landscape 3D architecture. In this work, the order of magnitude of errors was often larger than 

30%. This work was published in Remote Sensing of Environment (Regaieg et al., 2021).  
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1. Introduction 1 

Solar-induced chlorophyll fluorescence (SIF) is a photoprotective electromagnetic radiation 2 

emitted by chlorophyll molecules in response to absorption of photosynthetically active 3 

radiation (PAR) by green vegetation. Since the energy emitted as SIF is complementary to the 4 

energy entering the photochemical processes and the excessive energy dissipated as heat (Baker, 5 

2008; Mohammed et al., 2019), it is considered as an indicator of the functional state of plant 6 

photosynthesis (Baker, 2008). SIF measurements are complicated by the fact that SIF represents 7 

only a small fraction of absorbed PAR and spectrally overlaps with radiation reflected by Earth 8 

surface elements and the atmosphere. However, the improvement of remote sensing (RS) 9 

optical sensors and techniques for retrieving the SIF signal (Meroni et al., 2009; Mohammed et 10 

al., 2019) has opened new avenues for monitoring the functional state of vegetation. SIF can be 11 

used to track actual photosynthetic efficiency (Rossini et al., 2015; Campbell et al., 2019; Yang 12 

et al., 2021), to improve assessment of plant gross primary production (Guanter et al., 2014; Z. 13 

Liu et al., 2019), and to detect vegetation stress (Ač et al., 2015). This diverse potential of SIF 14 

for vegetation monitoring spurred the development of methods for space-borne measurements 15 

and new satellite missions, such as the FLuorescence EXplorer (FLEX) selected by the 16 

European Space Agency (ESA) as its 8th Earth explorer scientific mission (Drusch et al., 2017).  17 

Besides plant photosynthetic activity, SIF observations are impacted by other confounding 18 

factors, notably the structure of vegetation canopies (Fournier et al., 2012; Migliavacca et al., 19 

2017) and PAR availability. They are of SIF also influenced by sun-canopy-sensor angular and 20 

directional effects (Zhang, Zhang, Porcar-Castell, et al., 2020; Zhang, Zhang, Zhang, et al., 21 

2020), and are driven by wavelength-dependent phenomena of SIF emission, scattering, and re-22 

absorption. For instance, Fournier et al. (2012) found that the red-to-far-red fluorescence ratio 23 

could decrease by a factor of two between the leaf level and the canopy level, due to a higher 24 

absorption of red SIF by the vegetation canopy. Therefore, accurate interpretation and use of 25 

SIF RS observations require understanding of three consecutive processes: i) interception of 26 

photosynthetically active radiation (PAR; 400 - 750 nm) and its absorption by foliar elements 27 

(APARgreen; W.m-2), due to chlorophyll pigments in leaves, ii) leaf SIF emission from 28 

photosystems I and II (PSI and PSII) in thylakoid membranes, due to APARgreen, and iii) 29 

propagation of the SIF radiation through the canopy, including its scattering and absorption by 30 

different canopy elements, i.e., leaves, woody elements, litter, bare soil, and others (van der Tol 31 

et al., 2019). 32 
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Radiative transfer models (RTMs) are powerful tools used for various vegetation RS 33 

applications, ranging from sensitivity analyses (Malenovský et al., 2008) to quantitative 34 

retrievals of models’ biophysical inputs (Brede et al., 2020; Verrelst et al., 2019). The 35 

increasing need for understanding and interpreting the SIF signal at canopy level resulted in 36 

coupling canopy RTMs with a leaf-level SIF model, most frequently with Fluspect (Vilfan et 37 

al., 2016). The pioneer in one-dimensional (1D) SIF canopy modeling is SCOPE (van der Tol 38 

et al., 2009). Based on SAIL RTM (Verhoef, 1984) and coupled with leaf-level SIF and 39 

biochemistry models, SCOPE models photosynthesis and the full energy balance (Damm et al., 40 

2015; Migliavacca et al., 2017; Verrelst et al., 2015, 2016). Despite its extension to vertically 41 

heterogeneous canopies (Yang et al., 2017), SCOPE’s 1D formulation makes it less suitable for 42 

structurally complex and spatially heterogeneous canopies, such as forests. This explains the 43 

recent development of three-dimensional (3D) SIF RTMs, such as FluorFLIGHT (Hernández-44 

Clemente et al., 2017), based on the 3D FLIGHT model (North, 1996), FLiES-SIF (Sakai et al., 45 

2020) based on the FLiES model (Kobayashi & Iwabuchi, 2008) that simulate SIF for tree 46 

canopies, FluorWPS (Zhao et al., 2016) based on the WPS model (Zhao et al., 2015) designed 47 

to simulate SIF of structurally complex canopies and the FluLCVRT model (Kallel, 2020) that 48 

simulates SIF for 3D canopies including 3D leaf-level SIF modeling. The work presented in 49 

this paper was carried out with the 3D discrete anisotropic radiative transfer (DART) model 50 

(Gastellu-Etchegorry et al., 2017) coupled with Fluspect-Cx (Vilfan et al., 2018). DART 51 

simulates both the 3D SIF radiative budget (i.e., interception, absorption, emission and 52 

scattering) and the SIF signal remotely sensed at the bottom of atmosphere (BOA) and top of 53 

atmosphere (TOA) for forest or crop canopies. It upscales leaf-level SIF to canopy SIF, while 54 

considering the user-defined leaf biochemistry and fluorescence quantum yield efficiencies of 55 

PSI and PSII, and accounting for the actual 3D vegetation architecture. DART has been cross 56 

compared with the SCOPE modeling of the same 1D vegetation scenarios (Malenovský et al., 57 

2021), and used in various studies for sensitivity analyses of the SIF signal in architecturally 58 

complex forest canopies (W. Liu et al., 2019; Malenovský et al., 2021), scaling canopy-level 59 

SIF down to the level of photosystems (X. Liu et al., 2019), and studying the escape probability 60 

of far-red SIF from discontinuous forest canopies (W. Liu et al., 2020). 61 

The main objective of this paper is to assess the impact of temperate deciduous forest 62 

architecture on the diurnal variability in the nadir SIF RS signal and within-canopy SIF 63 

emission by green leaves. SIF canopy signals were simulated with a new Monte Carlo mode of 64 
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DART, called DART-Lux, whereas the radiative budget of within canopy SIF emission was 65 

simulated using the standard flux tracking mode of DART, called DART-FT. (cf. section 2.1). 66 

2. Material and methods 67 

2.1. Discrete anisotropic radiative transfer (DART) modeling approaches 68 

DART (https://dart.omp.eu) is a comprehensive physically based 3D RTM developed by the 69 

CESBIO Laboratory (Toulouse, France) since 1993 (Gastellu-Etchegorry et al., 1996, 2015). It 70 

is continuously improved both scientifically (e.g., light polarization and radiative coupling 71 

between the atmosphere and Earth surfaces) and technically (e.g., computational efficiency in 72 

terms of simulation time and computer memory). It simulates the radiative budget (RB) as well 73 

as TOA, BOA, and in-situ RS observations (i.e., LiDAR and imaging spectroradiometer data, 74 

either pushbroom scanner, hemispherical or frame camera) of urban and natural landscapes 75 

from the visible to the thermal infrared spectral domains, for any experimental and instrumental 76 

configuration (solar illumination, viewing direction, atmosphere condition, spatial and spectral 77 

resolutions, etc.). DART is made of three radiative transfer modeling modules: 78 

1. DART-FT (Flux Tracking) simulates passive optical RS signals and 3D RB, including SIF, 79 

using an adaptation of the N-flux discrete ordinates’ method (Yin et al., 2013, 2015). 80 

Landscapes are simulated as the juxtaposition of planar triangular facets in 3D arrays of 81 

voxels that contain fluid and turbid medium (i.e., vegetation volume statistically 82 

characterized by a leaf angular distribution (LAD) and a leaf area index (LAI) equivalent 83 

to a volume filled with an infinite number of infinitely small planar surfaces).  84 

2. DART-RC (Ray Carlo) combines Monte Carlo (MC) and FT methods in order to simulate 85 

LiDAR signals (Gastellu-Etchegorry et al., 2016; Yin et al., 2016). 3D landscapes are 86 

simulated in the same way as for DART-FT module.  87 

3. DART-Lux is a new module that broadens the application domain of DART to large 88 

landscapes through the introduction of a bidirectional MC modeling approach adapted from 89 

the physically based and unbiased rendering engine called LuxCoreRender (Georgiev et 90 

al., 2012; LuxCoreRender – Open Source Physically Based Renderer). It greatly improves 91 

the computational efficiency of simulations for large and complex landscapes. For example, 92 

the reduction of simulation time and computer memory can be over 100-times. Indeed, this 93 

DART mode only tracks radiation that impacts the signal forming the sensor observation. 94 
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Landscapes are simulated as the juxtaposition of facets and volumes filled with fluids and 95 

turbid medium. Volumes in DART-Lux can be defined independently from the 3D arrays 96 

of voxels, unlike DART-FT and RC. Although still under intensive testing, DART-Lux 97 

already simulates most RS products of DART-FT and DART-RC, including SIF and 98 

LiDAR. Presently, TOA signals are simulated using DART-FT based atmosphere 99 

modeling (Wang & Gastellu-Etchegorry, 2021). MC-based modeling of atmosphere 100 

thermal radiative transfer, as well as radiative budget are under development. 101 

 102 

SIF modeling was initially introduced in DART-FT for vegetation canopies represented explicitly 103 

with facets (Gastellu-Etchegorry et al., 2017) and later for canopies simulated with 3D turbid 104 

voxels (Regaieg et al., 2020). More recently, SIF modeling was also implemented in DART-Lux, 105 

for both facet-based as well as turbid canopies (Regaieg et al., in preparation). As indicated above, 106 

compared to the standard DART-FT mode, DART-Lux is much more efficient in terms of 107 

computation time and required memory to simulate RS images, including SIF images. However, 108 

up to now it does not simulate the landscape RB. Therefore, in this work, we simulated SIF image 109 

observations at the spatial resolution of 1m in DART-Lux, whereas the forest RB was simulated 110 

in DART-FT at a lower spectral resolution to reduce computational demand. 111 

The leaf radiative transfer model Fluspect-Cx, which was embedded in DART and tested by 112 

(Malenovský et al., 2021), simulates additionally to leaf spectral reflectance and transmittance 113 

optical properties the forward and backward fluorescence excitation-emission matrices per 114 

photosystem (PSI and PSII). Its inputs include contents of foliar pigments, water and dry matter, 115 

a structural parameter characterizing the leaf optical thickness, and leaf fluorescence quantum 116 

efficiencies fqe (i.e., fraction of APARgreen emitted as fluorescence) of a dark-adapted leaf, that 117 

are in DART referred to as PSI and PSII fluorescence yields. Leaf physiology and local 118 

climatology influence fqe. However, unlike the SCOPE model, DART does not contain a leaf 119 

biochemical model, and therefore cannot simulate the canopy climatic weights that condition leaf 120 

fqe. Therefore, in DART, fqe is an input parameter that can be specified per individual foliage 121 

facet, per group of foliage facets, per type of turbid medium, or as a single value for all leaf 122 

facets and turbid medium types. Groups of foliage facets can correspond, for instance, to sunlit 123 

and shaded leaves (i.e., leaves irradiated by direct sun or not at a certain time), or to sun- and 124 

shade-adapted leaves (i.e., leaves that have grown under and adapted to high or low light 125 

intensity such that biochemical contents vary), knowing that a sun-adapted leaf can be 126 
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momentarily a shaded leaf and vice versa. In this work, forest fqe values published in (W. Liu 127 

et al., 2019) are used. Although very likely differing from actual values of the study forest sites, 128 

these values are sufficiently representative to investigate the impact of forest architecture and 129 

different structures (e.g., wood components) on canopy SIF signal and emission. We also note 130 

that although sun-adapted and shade-adapted fqe's are considered, the actual light and temperature 131 

modulations are not. Consequently, a leaf emitted SIF is given by APAR and fqe per leaf 132 

adaptation. 133 

 134 

2.2. Study sites  135 

Eight deciduous forest sites in the Smithsonian Environmental Research Center (SERC, 136 

Edgewater, MD, USA) were selected as the study sites. The stands mainly consist of mixed-137 

species deciduous forests of Liquidambar styraciflua and Liriodendron tulipifera for the 138 

overstory, and C. tomentosa, Quercus alba, and F. grandifolia for the understory (Kamoske et 139 

al., 2019; Parker, 1995). Descriptions of forest stands and management characteristics can be 140 

found in (Brush et al., 1980, Parker et al., 2001, McMahon et al., 2010). Four forest stand types 141 

were selected from the combinations of both canopy development categories [“intermediate” 142 

(I) or “mature” (M)] and experimental status categories [“control” (C) or “logged” (L)], and 143 

two sites of each type (indexed 1 and 2) were used for this study (Table 1). Therefore, the eight 144 

study sites (Figure 1) have different canopy architectures, as illustrated by their height maps 145 

(Figure 2) and LAI vertical profiles. The forest plots LI2, LM1, LM2, and, to a lesser extent, 146 

LI2, have a larger horizontal heterogeneity than the other plots. These plots also have 147 

pronounced heterogeneity, with foliage density being larger (i.e., larger LAI voxel values in 148 

DART-FT) in the bottom canopy layers than in the top canopy layers. Table 2 shows the wood 149 

area density and the LAI for sun- and shade-adapted leaves (cf. Section III-1). We note that the 150 

concept of wood area density does not have an actual physical meaning linking with trunks and 151 

branches’ surface areas. It is derived from leaf off G-LiHT ALS data, and used to compensate 152 

the interception contribution induced by woody part. The presence of a local topography 153 

explains why the total ground area (i.e., area based on DEM; Table 2) is larger than the scene 154 

area (i.e., 100 𝑚 × 100 𝑚). Leaf chlorophyll a+b and carotenoid contents (µg cm-2) were 155 

derived from top of canopy leaf samples collected at SERC in July of 2017 (Campbell et al., 156 

2018), and measured using established protocol described in (Campbell et al., 2007). Pigments 157 

were extracted in dimethyl sulfoxide, identified spectro-photometrically at 1-nm resolution 158 
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using a dual-beam spectrophotometer (Perkin-Elmer; Wellesley, MA, USA) and calculated 159 

using absorption coefficients and equations described by (Wellburn, 1994). 160 

Biochemical and optical properties of leaves, woody elements and soil properties used in DART 161 

are listed in Table 3. The overall LAI of 3-D reconstruction has been validated against field 162 

litter-collection measurements in 2012 for various voxel dimensions from 0.5m to 5m. 163 

 164 

Table 1. Study sites’ nomenclature and description. 165 

 
Abbreviations Description 

Experimental 

status 

categories 

C (Control) No known management 

L (Logged) Selective harvest (~ 50% of basal area) 

Canopy 

development 

categories 

M (Mature) ~125 years-old at time of harvesting 

I 

(Intermediate) ~70 years old at time of harvesting 

 166 

Table 2. Wood area density, LAI (per sun-/shade-adapted leaves) and DEM-derived area for each site. 167 

Parameter/Study site CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2 

Wood area density 

(𝑚2. 𝑚-2) 
0.792 0.863 0.939 0.991 0.665 0.435 0.827 0.615 

Sun-adapted LAI 

(𝑚2. 𝑚-2) 
2.916 3.093 3.697 3.160 1.964 0.951 1.341 1.920 

Shade-adapted LAI 

(𝑚2. 𝑚-2) 
2.601 2.847 2.996 3.174 3.181 2.810 3.419 3.559 

Area based on DEM 

(𝑚2) 
12450.7 14475.9 16535.3 11297.9 17628.8 15395.0 17576.3 20142.0 

 168 
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Table 3. Biochemical and optical properties used in DART modeling of the study sites. 169 

Parameter/Study site CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2 

Leaf chlorophyll 

a+b content 

(𝜇𝑔. 𝑐𝑚−2) 
24.307 23.253 20.23 18.146 20.569 23.264 19.619 20.165 

Leaf total 

carotenoid content 

(𝜇𝑔. 𝑐𝑚−2) 
7.06 6.81 6.338 5.852 6.295 6.843 6.156 6.364 

Leaf dry matter 

content (𝑔. 𝑐𝑚−2) 
0.012 

Leaf equivalent 

water thickness 

(𝑐𝑚) 

0.009 

Leaf fluorescence 

quantum efficiency 
PSI: 0.0053, PSII: shade-adapted: 0.0201, sun-adapted: 0.0154 

Wood optical 

property 
Bark of Populus tremuloides 

Soil optical property 
Loam-gravelly brown dark soil  

(Alfisol from the spectra library: http://speclib.jpl.nasa.gov/) 

 170 
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 171 

Figure 1. Locations of SERC forest study sites (Edgewater, MD, USA) and G-Liht flight paths. 172 

 173 

2.3. Creation of 3D forest abstractions from airborne LiDAR acquisitions 174 

The 3D abstractions (mock-ups) of the eight forest sites were derived from 2012 multi-175 

directional and multi-temporal acquisitions by an airborne discrete-return LiDAR scanner 176 

(Riegl’s VQ480i), which is part of the Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) 177 

Airborne Imager (Cook et al., 2013). The LiDAR acquisitions were taken during two forest 178 

growth stages: i) the leaf-off stage (in March) and ii) the leaf-on stage (in June). Each 179 

constructed forest mock-up (100𝑚 × 100𝑚) corresponds to a 3D array of 1𝑚-size voxels filled 180 

with a turbid medium. The leaf angle distribution varies with height following an ellipsoidal 181 

distribution generated by mean leaf incline angle from 10° at the lower canopy to 60° at the 182 

upper canopy. In this experiment, we assumed an overall leaf incline angle of 57.3° over the 183 

whole canopy, which may induce a slight underestimation of LAI at the upper canopy and over 184 

estimation at the lower canopy in scene construction. This assumption has minor influence since 185 

the change of incline angle is correlated with sun illumination, where majority of the sunlight 186 

is intercepted by the leaves with larger incline angle.  Since the objective was to investigate 187 
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changes in the diurnal variation of canopy SIF radiance and leaf emissions on 15 June 2017 188 

between 7.00 and 19.00 (local time, with a time step of 1 h), the DART simulated solar zenith 189 

angles (SZA) and solar azimuth angles (SAA) were adjusted accordingly, with for example 190 

(SZA, SAA) = (76.85°, 109.51°) at 7.00, (15.62°, 5.8°) at 13.00, and (74.33°, 252.4°) at 19.00 191 

of the local time. 192 

 193 

Figure 2. Maps and histograms of forest top-of-canopy height (m) for the eight forest study sites. 194 

 195 
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Table 4. Forest plot mean height and height standard deviation and number of pure bare ground pixels. 196 

Plot CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2 

Mean Height (m) 28.65 28.34 34.54 34.33 23.80 15.19 13.31 21.75 

Height standard 

deviation (m) 
4.37 5.90 4.61 7.32 10.44 14.03 10.88 13.17 

Number of pure 

bare ground pixels 

(out of 10 000) 

2 1 2 4 89 258 8 48 

 197 

2.4. Preprocessing of modeled forest scenes  198 

Leaf biochemical and anatomical properties are adapted to the leaf exposure to sun direct and 199 

scattered diffuse radiation (Givnish, 1988; Nobel, 1976). To assess 3D distribution of sun- and 200 

shade-adapted foliage in each forest plot, we used DART-FT to compute hourly time series of 201 

3D RB in the PAR domain from sunrise to sunset on 15 June 2012, with SZA and SAA as 202 

specified in the section 2.3. The diurnal radiation intercepted by foliar elements in each turbid 203 

voxel of the 3D plots computed by DART-FT was then used to classify the foliage turbid voxels 204 

of each forest plot into sun- and shade-adapted foliage voxel groups. Sun- and shade-adapted leaf 205 

classification methods based on thresholds on the intercepted radiation were developed for the 206 

DART model for vegetation canopies simulated as facets (Malenovský et al., 2021). Here, in the 207 

absence of information on the threshold definition, and for a vegetation canopy simulated as 208 

turbid voxels, we chose to simply define classification decision threshold in such a way that the 209 

numbers of sun-adapted voxels and shade-adapted voxels were equal. Subsequently, specific fqe 210 

input values were assigned to the sun-adapted and shade-adapted cells (W. Liu et al., 2019)  211 

Since the DART-FT mode was slow and too demanding for computer memory when simulating 212 

SIF radiance of the forest plots represented by many voxels (>105) for 372 spectral bands (Table 213 

5), we used the DART-Lux mode instead. As DART-Lux could at that time only simulate the 214 

SIF signal of landscapes represented by geometrical facets, a “turbid-to-facet” conversion 215 

procedure was designed to transform the forest turbid mock-ups (already classified into sun-216 

adapted and shade-adapted voxels) into forest 3D abstractions with leaf and woody elements 217 

being represented with solid facets (cf. Appendix). DART-FT and DART-Lux give nearly 218 

equivalent results in terms of canopy reflectance and SIF radiance (cf. Appendix). Small 219 

differences may be observed due to the different strategies adopted by the two modes (i.e., 220 

discrete ordinates for DART-FT, Bi-directional Monte Carlo for DART-Lux), and also due to 221 
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the approximation of turbid volumes by clouds of facets. These differences are supposed to be 222 

negligeable compared to the differences caused by the canopy structure.  223 

2.5. Simulated structural complexity  224 

Three structurally different forest abstractions were considered for this study (Figure 3): 225 

1. 3D mock-ups: derived from airborne LiDAR data, with classified sun- and shade-adapted 226 

cells as explained in the two previous sections. 227 

2. 1D mock-ups: horizontally homogenized 3D mock-ups having the same heights and vertical 228 

profiles of sun- and shade-adapted leaf area density and wood area density but missing the 229 

forest horizontal heterogeneity. 230 

3. 0D mock-ups: horizontally and vertically homogenized mock-ups having the mean height 231 

of the original 3D canopies, shade-adapted leaves homogeneously distributed in the mock-232 

up bottom half, sun-adapted leaves homogeneously distributed in the mock-up top half, and 233 

woody elements homogeneously distributed within the entire scene. Compared to 3D forest 234 

mock-ups, 0D mock-ups miss the forest horizontal and vertical heterogeneity, including the 235 

simplifying assumption that all sun-adapted leaves are located at the top and all the shade-236 

adapted leaves are located at the bottom of the canopy.  237 

 238 

a)  b)   c)  239 

Figure 3: The three types of scene abstractions: a) 3D, b) 1D, c) 0D (top: sun-adapted, bottom: shade-240 
adapted leaves) 241 

 242 

2.6. Simulated SIF products  243 

SIF nadir images of a high spectral resolution, from 0.15 nm to 4 nm (Table 5), were simulated 244 

with DART-Lux. DART-FT was used to simulate the PAR and SIF radiative budget with a 245 
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lower spectral resolution ([400-640 nm] at 20 nm resolution, [640-850] at 10 nm resolution) 246 

and 40 discrete directions, in order to limit computational demands. 247 

 248 

Table 5. The 372 spectral bands of DART-Lux simulations. They over-sample the O2B (~687nm) and 249 
O2A (~760nm) oxygen absorption bands, and under-sample the [400-640nm] band (no SIF emission)  250 

Spectral 

interval (nm) 

Spectral 

resolution (nm) 

Number of 

spectral bands 

400-640 4 60 

640-641.5 1.5 1 

641.5-686.5 1 45 

686.5-694 0.15 50 

694-694.5 0.5 1 

694.5-759.5 1 65 

759.5-770 0.15 70 

770-770.5 0.5 1 

770.5-848.5 1 78 

848.5-850 1.5 1 

 251 

The influence of the canopy 3D architectures on 3D SIF emissions was assessed by comparing 252 

the DART-FT RB fluxes (i.e., intercepted, scattered, absorbed and emitted PAR and total SIF 253 

radiation) per voxel in the simulated 3D, 1D and 0D mock-ups. Here, the PAR absorbed by 254 

leaves (W.m-2) informs us on APARgreen (the 1st process). SIFemitted (W.m-2) is the sum of PSI 255 

and PSII emissions by adaxial and abaxial sides of all leaves in the canopy. It depends on the 256 

directionality and intensity of the incident PAR relative to leaf orientation, and therefore on  257 

APARgreen and the local leaf physiology (e.g., leaf sun and shade adaptations). SIF emission 258 

yield informs us on the 2nd process. It is defined as:  259 

SIF emission yield =
SIFemitted

APARgreen
. (1) 

Since satellite and airborne spectrometers only measure SIF radiation that exits a canopy, the 260 

3rd process is investigated through the so-called SIF escape factorhemi:  261 

SIF escape factorℎ𝑒𝑚𝑖 =
SIFexitance
SIFemitted

 (2) 
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where SIFexitance is the total SIF radiation exiting the top of the canopy in all directions of the 262 

upper hemisphere. SIF escape factorℎ𝑒𝑚𝑖  was computed for the chlorophyll fluorescence 263 

peaks located at 640 – 700 nm and 700 – 850 nm spectral regions.  264 

SIF sensors generally measure from a unique viewing direction. Hence, the directional SIF 265 

nadir escape factor was also studied:  266 

SIF escape factor𝑛𝑎𝑑𝑖𝑟 =
π. SIF𝑛𝑎𝑑𝑖𝑟 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

SIFemitted
 (3) 

SIF escape factor𝑛𝑎𝑑𝑖𝑟 was also computed for the chlorophyll fluorescence peaks located at 267 

640 – 700 nm and 700 – 850 nm spectral regions.  268 

Finally, the combination of the 2nd and the 3rd processes was in the case of a nadir observation 269 

evaluated with the SIF nadir yield (sr-1) (van der Tol et al., 2019):  270 

SIF nadir yield =
SIFnadir radiance
APARgreen

 (4) 

where SIFnadir radiance is a SIF flux (W.m-2.sr-1), that is for example recorded by an optical 271 

remote sensing sensor in the nadir viewing direction. 272 

 273 

2.7. Canopy structure error assessment  274 

The impact of forest architecture on diurnal SIF emission and nadir observation was assessed 275 

as the relative errors made on SIF quantities that are simulated with mock-ups (i.e., 1D, 0D) 276 

with simplified architecture, taking the quantities simulated with the 3D mock-ups as reference.  277 

The influence of forest 3D structure on SIF observation was assessed by comparing the DART-278 

Lux top-of-canopy (TOC) nadir SIF radiance 𝐿𝑣 (PSI, PSII and total), of the 3D, 1D and 0D 279 

mock-ups of the eight forest sites simulated. Two types of relative errors were computed:  280 

- Per spectral band for a specific time (e.g., 12.00 local time), by computing the relative errors 281 

𝜺𝑺𝑰𝑭,𝑳𝒗,𝒊𝑫−𝟑𝑫(𝝀) where 𝒊 ∈ {𝟎, 𝟏}: 282 

𝜀𝑆𝐼𝐹,𝐿𝑣,𝑖𝐷−3𝐷(𝜆) = 100% × 
𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑖𝐷(𝜆) − 𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,3𝐷(𝜆)

𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,3𝐷(𝜆)
 (5) 

 283 
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- Per hour from 7.00 to 19.00, by computing mean absolute relative errors (MARE) for the 284 

two 640 – 700 nm and 700 – 850 nm spectral regions:  285 

𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝑡) =  
1

∑ Δ𝜆𝑖𝑖
.∑

|𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,1𝐷(𝑡, 𝜆) − 𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,3𝐷(𝑡, 𝜆)|

𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,3𝐷(𝑡, 𝜆)
𝑖

. Δ𝜆𝑖 (6) 

 286 

Using 3D plots as reference, the influence of canopy architecture was also assessed for: 287 

- Nadir reflectance  𝜌:relative errors 𝜀𝜌,0𝐷-3𝐷(𝜆)and 𝜀𝜌,1𝐷-3𝐷(𝜆) of 0D and 1D plots, as well as 288 

𝑀𝐴𝑅𝐸𝜌,1𝐷-3𝐷(𝑡) of 1D plots. 289 

- APARgreen: relative error 𝜀𝐴𝑃𝐴𝑅,1𝐷−3𝐷(𝑡) of 1D plots. 290 

- SIF emission yield: relative error 𝜀𝑆𝐼𝐹.𝐸𝑌,1𝐷−3𝐷(𝑡) of 1D plots. 291 

- SIFemitted: relative error 𝜀𝑆𝐼𝐹.𝑒𝑚,1𝐷−3𝐷(𝑡) of 1D plots.  292 

-SIF escape factorℎ𝑒𝑚𝑖 and SIF escape factor𝑛𝑎𝑑𝑖𝑟: relative errors 𝜀𝑆𝐼𝐹.𝐸𝐹,1𝐷−3𝐷(𝑡) of 1D plots 293 

at 640 – 700 nm and 700 – 850 nm spectral regions. 294 

- SIF nadir yield: relative errors 𝜀𝑆𝐼𝐹.𝑁𝑌,1𝐷−3𝐷(𝑡) of 1D plots at 640 - 700 nm and 700 - 850 nm. 295 

with relative error for a given quantity 𝑄 equal to 𝜀𝑄,1𝐷−3𝐷(𝑡) = 100% × 
𝑄1𝐷 (𝑡)−𝑄3𝐷(𝑡)

𝑄3𝐷(𝑡)
.  296 

2.8. Influence of canopy wood on SIF emission and measurements  297 

Although they do not intrinsically emit fluorescence, woody elements impact the RB and SIF 298 

observations through their interaction with PAR and SIF. They give rise to two major effects. 299 

i) Shading effect: woody elements shade foliar elements, which lowers leaf irradiance and 300 

subsequently SIF emission. ii) Blocking effect: woody elements intercept the emitted SIF 301 

radiation, preventing it from escaping the canopy. These two effects are not independent, due 302 

to sky radiation and multiple scattering and re-absorption mechanisms in the canopy. For 303 

example, the same woody element can shade a leaf element and block its SIF radiation.  304 

 305 

DART simulations were used to quantify the influence of woody elements on SIF observation, 306 

and to separate the shading and blocking effects of woody elements for the CM1 and LM2 sites. 307 

For that, theoretical “no wood” (NW) scenes were constructed by removing cells corresponding 308 

to woody elements from the original “with wood” 3D mock-ups (W). It allowed us to compare 309 
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the DART-Lux top-of-canopy (TOC) nadir SIF radiance (PSI, PSII and total) of the (W) and 310 

(NW) abstractions, and to compute two types of relative error: 311 

- Per spectral band for a specific time (e.g., 12.00 local time): 312 

𝜀𝑆𝐼𝐹,𝐿𝑣,𝑁𝑊−𝑊(𝜆) = 100% × 
𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑁𝑊(𝜆) − 𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊(𝜆)

𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊(𝜆)
 (7) 

- Per hour from 7.00 to 19.00, by computing mean absolute relative errors for the 640 – 700 313 

nm and 700 – 850 nm spectral regions:  314 

𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,𝑁𝑊−𝑊(𝑡) =  
1

∑ Δ𝜆𝑖𝑖
.∑

|𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑁𝑊(𝑡, 𝜆) − 𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊(𝑡, 𝜆)|

𝑆𝐼𝐹𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒,𝑊(𝑡, 𝜆)
𝑖

. Δ𝜆𝑖 (8) 

Using W plots as reference, the influence of woody elements was assessed for: 315 

- APARgreen (shading effect): relative error 𝜀𝐴𝑃𝐴𝑅,𝑁𝑊−𝑊(𝑡) NW.  316 

- SIF nadir escape factor SIF𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 (blocking effect): relative error 𝜀𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊−𝑊(𝑡) of NW 317 

plots, where:  318 

SIF𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 =
π . SIFnadir radiance

SIFemitted
 (9) 

With the relative error for a given quantity 𝑄 equal to: 319 

𝜀𝑄,𝑁𝑊−𝑊(𝑡) = 100% × 
𝑄𝑁𝑊 (𝑡) − 𝑄𝑊(𝑡)

𝑄𝑊(𝑡)
 (10) 

 320 

3. Results 321 

3.1. General influence of forest abstractions on SIF nadir observations  322 

Figure 4 shows the PSI, PSII and total SIF nadir radiance of the 8 forest plots simulated with 323 

3D, 1D and 0D mock-ups at 12.00 (SZA = 21.050°, SAA = 47.256°). 𝜀𝑆𝐼𝐹,𝐿𝑣,0𝐷−3𝐷(𝜆) and 324 

𝜀𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝜆) quantify the relative errors associated with the 0D and 1D forest plots. For all 325 

plots, the 1D mock-ups give the largest nadir total SIF, PSI and PSII radiance. 𝜀𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷 326 

illustrates the influence of the forest horizontal heterogeneity on radiation propagation in forest, 327 

since the canopy horizontal heterogeneity is the only difference between 3D and 1D mock-ups. 328 

These larger values of 1D SIF radiance can be explained by the fact that the top layers of 1D 329 
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plots intercept more radiation than the top layers of 3D plots (i.e., clumping effect), which gives 330 

rise to larger SIF emission by canopy layers that tend to contribute most to the canopy SIF 331 

radiance. Also, the ground is more visible in 3D plots than 1D plots, whereas the ground has no 332 

SIF emission. The order of magnitude of the difference between the radiance of 1D and 3D 333 

mockups is similar for all investigated forest sites. 334 



CHAPTER 4: IMPACT OF VEGETATION 3D STRUCTURE ON SIF 

 166 

 335 

Figure 4. PSI, PSII and total SIF nadir radiance of the eight  sites simulated with 3D, 1D and 336 
0D abstractions, at 12.00 local time (SZA = 21.050°, SAA = 47.256°).  337 

 338 
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SIF radiance values of 0D and 1D forest mock-ups differ due to differences in the leaf and wood 339 

vertical distributions, which vary greatly among the sites (except for LI2 and LM2). In general, 340 

nadir SIF radiance relative differences 𝜀𝑆𝐼𝐹,𝐿𝑣,0𝐷−1𝐷(𝜆) between  0D and 1D plots are much 341 

smaller than 𝜀𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝜆) between 1D and 3D plots, except for LM1.It means that forest 342 

horizontal heterogeneity has a larger influence on SIF radiance than forest vertical 343 

heterogeneity. SIF radiance was always smaller for 0D mock-ups than for 1D mockups. This is 344 

mostly explained by the homogenized vertical distribution of both foliar and woody elements 345 

in the 0D abstractions compared to 1D abstractions. For example, in CI1, CI2, CM1 and CM2, 346 

leaf density is higher in upper canopy layers (Figure 14), foliar homogenization increases the 347 

density of foliar elements in the canopy bottom layers, which increases the canopy shading and 348 

blocking effects. For LI2, the situation is different because leaf density is highest in the lower 349 

canopy layers. Therefore, foliar homogenization increases leaf density in the canopy upper 350 

layers, which decreases the canopy shading and blocking effects. These trends are also 351 

influenced by the vertical distribution of woody elements.  352 

The relative difference 𝜀𝑆𝐼𝐹,𝐿𝑣,0𝐷−3𝐷(𝜆) between the radiance of 0D and 3D mock-ups is driven 353 

by horizontal and vertical heterogeneity. The inequality 𝜀𝑆𝐼𝐹,𝐿𝑣,0𝐷−3𝐷(𝜆)  < 𝜀𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝜆) 354 

indicates that vertical and horizontal heterogeneities have an opposite effect on canopy SIF 355 

radiance in our simulations. While the horizontal heterogeneity tends to decrease canopy SIF 356 

nadir radiance, the vertical heterogeneity tends to increase it. LM1 is an exception. Its 0D SIF 357 

radiance is lower than its 3D SIF radiance in the NIR domain. It means that its vertical 358 

heterogeneity imposes a larger influence on SIF nadir radiance than its horizontal heterogeneity, 359 

which is consistent with the fact that LM1 is the only plot where the density of woody and foliar 360 

elements is very dense in the lower canopy layers. 361 

 362 

Figure 5 shows the diurnal evolution of 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝑡) (i.e., relative error of total nadir 363 

SIF radiance of 1D plots compared to 3D plots) at 640 - 700 nm and 700 - 850 nm. This quantity 364 

is mostly influenced by the forest horizontal heterogeneity. It appears symmetrically distributed 365 

between the morning and the afternoon hours, with a dip appearing always at local noon. It is 366 

the largest around 8.00 and 18.00, reaching up to 55%, and the smallest at 13.00 (local solar 367 

noon), with values between 10% and 20%. It is usually larger at 640 - 700 nm than at 700 - 850 368 

nm, where shading effects are dampened by prevailing multiple scattering events. This diurnal 369 

variation can be explained by the shadow effects associated with changing solar zenith angle 370 
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and associated variability in the proportions of direct sun and diffuse atmospheric radiation. In 371 

the early morning, it starts increasing because shadow effects are increasing due to the increase 372 

of the direct sun proportion in total irradiance. Later in the morning, it starts decreasing because 373 

shadow effects decrease due to the decrease of solar zenith angle, reaching a minimum at solar 374 

noon. A symmetrical behavior starts in the second half of the day.  375 

 376 

 377 

Figure 5. Diurnal evolution of the total nadir SIF radiance relative error 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿,1𝐷−3𝐷(𝑡) 378 

between 1D and 3D mock-ups at 640 – 700 nm and 700 – 850 nm.  379 

Figure 6 shows the canopy nadir reflectance of the 8 forest plots simulated with 3D, 1D and 0D 380 

mock-ups at 12.00 (SZA = 21.050°, SAA = 47.256°). 𝜀𝜌,0𝐷−3𝐷(𝜆) and 𝜀𝜌,1𝐷−3𝐷(𝜆) quantify 381 

the of 0D and 1D abstractions compared to 3D abstraction. All curves have the expected local 382 

spectral peak around the O2-A absorption band at 760nm. As for the SIF radiance (Figure 4), 383 

the total reflectance of 3D plots is the smallest compared to the 1D and 0D plots, except for 384 

LM1 where the 0D plot has a slightly lower reflectance than the 3D plot above 700nm. 385 
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Therefore, as for SIF radiance, the horizontal heterogeneity tends to decrease the nadir 386 

reflectance.  387 

The influence of the vertical heterogeneity of the plots on their reflectance is not as clear as for 388 

SIF radiance. By contrast to the relative errors on the SIF radiance, the relative errors on the 389 

total reflectance of the 1D and 0D forest plots are similar. This stresses two points. 1) As for 390 

SIF, the forest vertical heterogeneity plays a lesser role than the forest horizontal heterogeneity. 391 

2) The vertical heterogeneity plays a larger role for canopy SIF radiance than for canopy 392 

radiance that contains radiance due to the scattering of solar radiation. Also, these relative errors 393 

tend to higher for wavelengths under 700nm. Indeed, the 1D and 0D abstractions of the forest 394 

cover neglect the shadow effects due to direct and diffuse radiation and canopy structure. 395 

Multiple scattering being smaller at wavelengths lower than 700nm, shadowing effects are 396 

larger in these wavelengths. The diurnal evolutions of the relative error 𝑀𝐴𝑅𝐸𝜌,1𝐷−3𝐷(𝑡) in 397 

nadir reflectance of 1D plots at 640 - 700 nm and 700 - 850 nm (Figure 7) have shapes and orders 398 

of magnitude similar to those of SIF radiance 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿,1𝐷−3𝐷 (Figure 5), except for LI2 at 399 

640 - 700nm, where the relative error is higher for SIF radiance.  400 

 401 
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 402 

Figure 6: Canopy nadir reflectance of the eight study sites simulated with 3D, 1D and 0D mock-ups, 403 
at 12.00 local time (SZA = 21.050°, SAA = 47.256°). 𝜀𝜌,1𝐷−3𝐷(𝜆)  404 

 405 
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 406 

 407 

Figure 7: Diurnal evolution of canopy nadir reflectance relative error 𝑀𝐴𝑅𝐸𝜌,1𝐷−3𝐷 at 640-700 nm 408 

and 700-850 nm due to differences in horizontal heterogeneity in 1D and 3D mock-ups.  409 

 410 

3.2. Impact of forest 3D structure on APARgreen (1st process) 411 

Figure 8 shows the diurnal PAR absorbed by green leaves (APARgreen) in the eight 3D and 1D 412 

forest mock-ups, and their associated relative error 𝜀𝐴𝑃𝐴𝑅,1𝐷−3𝐷(𝑡). The 3D mock-ups have 413 

smaller APARgreen than the 1D mock-ups. This is consistent with the larger reflectance of 1D 414 

mock-ups compared to the 3D mock-ups, due to the horizontal heterogeneity of the forest plots. 415 

𝜀𝐴𝑃𝐴𝑅,1𝐷−3𝐷(𝑡) is usually smaller than 5%, with a maximum of 10% for LI2 before noon. It is 416 

smaller than the relative difference of nadir SIF radiance between 3D and 1D forest abstractions 417 

(Figure 5). This indicates that even though the APARgreen diurnal changes play an important 418 

role, they are not the only cause responsible for the relative difference in the nadir SIF radiance.  419 

 420 
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 421 

Figure 8. Diurnal PAR absorbed by green leaves (APARgreen) in 3D and 1D forest abstractions of the 422 

eight study sites, and their associated relative error 𝜀𝐴𝑃𝐴𝑅,1𝐷−3𝐷(𝑡) triggered by changes in 423 

horizontal heterogeneity of the forest abstractions. 424 
 425 

3.3. Impact of forest 3D structure on leaf SIF emission yield (2nd process) 426 



4.2 ARTICLE 

 173 

Figure 9 shows the diurnal total SIF emission yield for 3D and 1D mock-ups and the associated 427 

diurnal relative error 𝜀𝑆𝐼𝐹.𝐸𝑌,1𝐷−3𝐷(𝑡)  due to horizontal heterogeneity differences. Relative 428 

errors are similar and small for all plots. They reveal that in our simulations the impact of forest 429 

3D architecture on SIF emission yield in our simulations is of a less importance. The almost 430 

constant diurnal response due to our modeling assumption of constant leaf SIF properties 431 

throughout the day. 432 

 433 
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 434 

Figure 9. Diurnal SIF emission yield of the 3D and 1D forest mock-ups and relative 435 

errors 𝜀𝑆𝐼𝐹.𝐸𝑌,1𝐷−3𝐷(𝑡) 436 

 437 
Since SIF emission yield in our simulations is hardly affected by the forest 3D architecture, the 438 

diurnal behavior of the DART-FT simulated leaf SIF emission (Figure 10) is understandably 439 

very similar to that of APARgreen (Figure 8). The relative error 𝜀𝑆𝐼𝐹.𝑒𝑚,1𝐷−3𝐷(𝑡) computed 440 



4.2 ARTICLE 

 175 

between the 3D and 1D forest abstractions (Figure 10) gathers the combined errors related to 441 

both the 1st and the 2nd processes, without being a simple addition of their relative errors. 442 

Figure 11 plots the vertical profiles of LAI, and SIF emission in 3D and 1D plots. The LAI of 443 

a layer 𝑖 located between [𝑖 𝑚, (𝑖 + 1) 𝑚] is the total foliar area of this layer divided by the 444 

scene area. It shows that the overestimation of the SIF emission in 1D plots compared to 3D 445 

plots mainly occurs in the canopy top layers, i.e., SIFemitted,1D > SIFemitted,3D in these layers. 446 

Also, SIF emission is underestimated in the lower layers of 1D plots. Indeed, in 3D forest mock-447 

ups, the forest horizontal heterogeneity leads to better illumination of the lower layers.  448 

 449 
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 450 

Figure 10. Diurnal leaf SIF emissions for the 3D and 1D forest abstractions and their associated relative 451 

errors 𝜀𝑆𝐼𝐹.𝑒𝑚,1𝐷−3𝐷(𝑡). 452 

 453 

 454 
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 455 

Figure 11. Vertical profiles of LAI and leaf SIF emission at 12.00 (local time).  456 
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3.4. Impact of forest 3D structure on SIF escape factor (3rd process) 457 

Figure 12 and Figure 13 show the diurnal SIF escape factorhemi and SIF escape factornadir of 3D 458 

and 1D plots at 640 - 700 nm and 700 nm - 850 nm, and their relative errors 𝜀𝑆𝐼𝐹.𝐸𝐹,1𝐷−3𝐷(𝑡) 459 

and 𝜀𝑆𝐼𝐹.𝐸𝐹𝑛𝑎𝑑𝑖𝑟,1𝐷−3𝐷(𝑡) are larger (e.g., > 50% for LM2) than for APARgreen (Figure 8) and 460 

leaf SIF emission (Figure 10). Therefore, the 3rd process is more affected by forest 3D structure 461 

than the first two processes. The SIF escape factor is systematically overestimated in 1D plots. 462 

It is larger at 700 nm - 850 nm than at 640 - 700 nm, due to more important multiple scattering 463 

mechanisms, which results in lower relative errors at 700 nm - 850 nm than at 640 - 700 nm.  464 

The SIF photons that cannot escape the canopy are absorbed by the canopy elements (i.e., leaves, 465 

woody elements, ground). The overestimation of the SIF escape factor of 1D plots compared 466 

to 3D plots is also reflected by a higher absorption of SIF photons in 3D plots (Table 6, Table 467 

7). We can note that the ground absorption is greatly underestimated in 1D forest abstractions. 468 

Again, this is explained by the forest horizontal heterogeneity. 469 
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 470 

Figure 12. Diurnal SIF escape factorhemi of the 3D and 1D plots and their associated relative errors. 471 
 472 
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 473 

Figure 13: Diurnal SIF escape factornadir of the 3D and 1D plots and their associated relative errors. 474 

 475 

Figure 14 shows the vertical profiles of LAI, woody elements (defined similarly as the vertical 476 

profile of LAI), and SIF absorption in 3D and 1D plots. The vertical profiles of SIF absorption 477 
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show that in 1D forest abstractions, absorption is overestimated in the top layers and 478 

underestimated in the bottom layers as for the leaf SIF emission profiles (Figure 11).  479 

 480 

Table 6. SIF absorption by the ground and vegetation (leaves and wood) (640-700nm) at 12pm 481 

Plot CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2 

Fraction of emitted SIF absorbed 

by "Ground" (3D) 
0,0310 0,0290 0,0230 0,0272 0,0463 0,0704 0,0486 0,0449 

Fraction of emitted SIF absorbed 

by "Ground" (1D) 
0,0216 0,0180 0,0130 0,0160 0,0301 0,0584 0,0329 0,0274 

Relative difference (%) -30,28 -38,19 -43,40 -41,38 -35,14 -17,12 -32,44 -38,97 

Fraction of emitted SIF absorbed 

by "Leaves + Wood" (3D) 
0,7765 0,7838 0,7903 0,7912 0,7757 0,7352 0,7636 0,7843 

Fraction of emitted SIF absorbed 

by "Leaves + Wood" (1D) 
0,7512 0,7545 0,7616 0,7613 0,7461 0,7073 0,7462 0,7492 

Relative difference (%) -3,26 -3,74 -3,63 -3,78 -3,81 -3,79 -2,28 -4,47 

Absorption fraction (3D) 0,8075 0,8129 0,8133 0,8184 0,8220 0,8056 0,8123 0,8291 

Absorption fraction (1D) 0,7728 0,7725 0,7746 0,7772 0,7762 0,7657 0,7791 0,7766 

Relative difference (%) -4,30 -4,97 -4,76 -5,03 -5,57 -4,95 -4,09 -6,34 

 482 

Table 7. SIF absorption by the ground and vegetation (leaves and wood) (700-850nm) at 12pm. 483 

Plot CI1 CI2 CM1 CM2 LI1 LI2 LM1 LM2 

Fraction of emitted SIF absorbed 

by "Ground" (3D) 
0,0905 0,0842 0,0683 0,0768 0,1249 0,1741 0,1282 0,1249 

Fraction of emitted SIF absorbed 

by "Ground" (1D) 
0,0716 0,0593 0,0440 0,0502 0,0941 0,1640 0,0952 0,0887 

Relative difference (%) -20,96 -29,52 -35,50 -34,62 -24,68 -5,78 -25,71 -28,95 

Fraction of emitted SIF absorbed 

by "Leaves + Wood" (3D) 
0,6194 0,6369 0,6543 0,6600 0,6062 0,5265 0,5897 0,6185 

Fraction of emitted SIF absorbed 

by "Leaves + Wood" (1D) 
0,6133 0,6257 0,6453 0,6482 0,5991 0,5098 0,6037 0,6057 

Relative difference (%) -0,98 -1,77 -1,39 -1,79 -1,16 -3,19 2,38 -2,08 

Absorption fraction (3D) 0,7099 0,7211 0,7226 0,7369 0,7311 0,7006 0,7179 0,7434 

Absorption fraction (1D) 0,6849 0,6850 0,6893 0,6985 0,6932 0,6738 0,6989 0,6944 

Relative difference (%) -3,53 -5,01 -4,61 -5,21 -5,18 -3,83 -2,64 -6,59 
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 484 

Figure 14.Vertical profiles of LAI, woody elements and SIF absorption in 3D and 1D forest 485 
abstractions, at 12.00 (local time). 486 
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 487 
 488 

3.5. Impact of forest 3D structure on SIF nadir yield (2nd and 3rd processes) 489 

Figure 15 shows diurnal values of SIF nadir yield for 3D and 1D forest plots and their relative 490 

error 𝜀𝑆𝐼𝐹.𝑁𝑌,1𝐷−3𝐷(𝑡). SIF nadir yield informs on the potential of nadir viewing remote sensing 491 

instruments to observe leaf SIF emission. The diurnal evolution of 𝜀𝑆𝐼𝐹.𝑁𝑌,1𝐷−3𝐷 is similar to 492 

the diurnal evolution of total nadir SIF radiance relative error 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷 (Figure 5): 493 

larger errors occur in early morning around 8:00 and late afternoon around 18:00, with minimal 494 

errors at noon. SIF yield of 1D plots is always overestimated. Also, errors are larger at 640 nm 495 

- 700 nm than at 700 - 850 nm. This is due to the lower impact of multiple scattering at 640 - 496 

700 nm than at 700 - 850 nm and therefore the larger impact of shadowing effects at  640 - 700 497 

nm.   498 
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 499 

Figure 15. Diurnal SIF nadir yield of 3D and 1D plots and relative errors at 640 - 700 nm and 700 - 850 nm. 500 

3.6. Influence of woody elements  501 

Figure 16 illustrates the impact of woody elements (i.e., branches and trunks) on the canopy 502 

SIF signal. It shows PSI, PSII and total SIF nadir spectral radiance at 12.00 of local time for 503 

CM1 and LM1 3D plots simulated with (W) and without (NW) woody elements, and also the 504 
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associated relative errors 𝜀𝑆𝐼𝐹,𝐿,𝑁𝑊−𝑊(𝜆)  for the total SIF nadir radiance. SIF radiance is 505 

significantly higher if wood is neglected in DART simulations, especially in the near-infrared 506 

domain. 𝜀𝑆𝐼𝐹,𝐿𝑣,𝑁𝑊−𝑊(𝜆)  is larger (25%) at wavelengths above 750nm, and smaller at 507 

wavelengths smaller than 680nm. This is explained by the fact that there is more multiple 508 

scattering at these wavelengths, which in turn increases the probability of interception of SIF 509 

radiation by woody elements.  510 

 511 

 512 

Figure 16. PSI, PSII and total SIF nadir spectral radiance and error 𝜀𝑆𝐼𝐹,𝐿𝑣,𝑁𝑊-𝑊(𝜆) of 3D CM1 and 513 

LM1 plots simulated with (W) and without (NW) woody elements at 12.00 (local time) 514 

The diurnal relative error of the SIF total nadir radiance for CM1 and LM1 3D plots simulated 515 

without woody elements, compared to presence of woody elements, varies over the course of 516 

the day (Figure 17). It is lowest at solar noon for LM1 and relatively stable for CM1. The time 517 

variability for LM1 is explained by the fact that its leaf and wood densities are in the canopy 518 

upper layers, which increases the influence of horizontal heterogeneity, and consequently the 519 

occurrence of smaller errors at noon. Conversely, for CM1, the leaf and wood densities are 520 

larger at lower tree heights, which leads to smaller horizontal heterogeneity effects, including 521 

smaller shadow effects.  522 

 523 
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 524 

Figure 17. Diurnal relative error of total nadir SIF radiance 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,𝑁𝑊−𝑊(𝑡) of the CM1 and 525 

LM1 3D forest plots simulated without woody elements. 640 – 700 nm and 700 – 850 nm. 526 

The influence of woody elements on the remotely sensed SIF signal can be split into shading 527 

and blocking effects. These effects are not independent. The shading effect corresponds to the 528 

shading of leaves by woody elements during the direct sun and atmosphere illumination of the 529 

forest scene. It limits the absorption of PAR by chlorophylls and consequently decreases leaf 530 

SIF emission (i.e., 1st process). The blocking effect corresponds to the interception (i.e., 531 

absorption and scattering) by woody elements of SIF radiation from its leaf emission to the exit 532 

of the forest canopy along the viewing direction of the remote sensing sensor. Figure 18 533 

illustrates the magnitude of the shading effect. It shows the DART simulated diurnal 534 

APARgreen(t) and the associated relative error 𝜀𝐴𝑃𝐴𝑅,𝑁𝑊−𝑊(𝑡), for the CM1 and LM1 3D plots 535 

with and without woody elements. APARgreen is always larger for the plots without wood, as 536 

expected. The relative error associated to the shading effect greatly varies over the selected day. 537 

It is minimal at solar midday, when trunks and branches are blocking the least amount of direct 538 

solar radiation, and largest in early morning and late afternoon when trunks and branches are 539 

blocking a larger part of direct PAR. Figure 19 illustrates the blocking effect. It shows the 540 

diurnal SIF nadir escape factor at [400nm-700nm] and [700nm-850nm] for the CM1 and LM1 541 

3D plots simulated with (W) and without (NW) woody elements, and the associated relative 542 

error 𝜀𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊−𝑊(𝑡). This relative error is nearly constant over the day, conversely to the 543 

relative error on the canopy APARgreen. Indeed, as a first approximation SIF𝑛𝑎𝑑𝑖𝑟 𝐸𝐹 544 

corresponds to a quantity that is relatively constant: the sum of the canopy "direct – direct" and 545 

"diffuse – direct" transmittance (Vermote et al., 1997) weighted by a normalized vertical 546 

distribution of leaf SIF emitted radiation. The "diffuse – direct" transmittance is much smaller 547 

at [640-700nm] than at [700nm-850nm] because vegetation absorbs much more at [640-700nm] 548 

than at [700nm-850nm]. Since the blocking effect of wood is more pronounced for oblique 549 
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directions, it has a higher impact on the "diffuse – direct" than on the "direct – direct" 550 

transmittance. This explains that 𝜀𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊−𝑊(𝑡) is smaller at [640-700nm] than at [700nm-551 

850nm]. 552 

 553 

Figure 18. Diurnal APARgreen of CM1 and LM1 3D forest plots with (Wood) and without (No Wood) 554 

woody elements and their associated relative errors 𝜀𝐴𝑃𝐴𝑅,𝑁𝑊−𝑊(𝑡).  555 

 556 

Figure 19. Diurnal SIF nadir escape factor over [640nm-700nm] and [700nm-850nm] of CM1 and LM1 557 
3D plots simulated with (W) and without (NW) woody elements and associated relative error 558 

𝜀𝑆𝐼𝐹.𝑁𝐸𝐹,𝑁𝑊−𝑊(𝑡). 559 

 560 

4. Discussion 561 

4.1. 3D structure of the forest study sites 562 

The comparison of DART simulated SIF and non SIF radiometric quantities of 1D and 3D 563 

abstractions of the studied forest plots highlights the influence of the forest architecture, and 564 

especially the forest horizontal heterogeneity, on these quantities: APARgreen (𝜀𝐴𝑃𝐴𝑅,1𝐷−3𝐷(𝑡): 565 

Figure 8), SIF emitted (𝜀𝑆𝐼𝐹.𝑒𝑚,1𝐷−3𝐷(𝑡): Figure 10), SIF𝑛𝑎𝑑𝑖𝑟 𝑦𝑖𝑒𝑙𝑑  (𝜀𝑆𝐼𝐹.𝑁𝑌,1𝐷−3𝐷(𝑡): Figure 566 

15), canopy SIF exitance and escape factor (𝜀𝑆𝐼𝐹.𝐸𝐹,1𝐷−3𝐷(𝑡): Figure 12), SIF nadir yield 567 

(𝜀𝑆𝐼𝐹.𝑁𝑌,1𝐷−3𝐷(𝑡): Figure 15) and reflectance (Figure 6). Braghiere et al. (2021) found that the 568 
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SIF modeling was improved by introducing a clumping index (Nilson, 1971; Pinty et al., 2006) 569 

to replicate the behavior of structurally complex 3D canopies in the 1D model CliMA-Land 570 

(based on the mSCOPE model (Yang et al., 2017)). In this study, simulating the SIF signal 571 

while neglecting the forest horizontal heterogeneity can lead to very large relative errors, 572 

especially for logged “L” forest sites where they can reach 60%. For example, the error on SIF 573 

radiance 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝑡)  is higher for the logged “L” forest sites (Figure 5). This is 574 

consistent with the fact that these forest sites have a higher horizontal heterogeneity, with a 575 

higher canopy height variability and a higher number of pure bare ground pixels, as shown in 576 

Table 4 and in the height maps (Figure 2). Generally, the horizontal heterogeneity tends to 577 

decrease the SIF signal that escapes the forest canopy. The vertical heterogeneity appeared to 578 

have an opposite effect in most cases. These points are further discussed below. 579 

 580 

4.2. Effect of 3D architecture on the three processes driving SIF generation 581 

Several sensitivity analysis studies based on radiative transfer modeling were carried out to 582 

assess the impact of some structural parameters on the SIF such as leaf density, leaf angular 583 

distribution and fractional vegetation cover (Tong et al., 2021; Zeng et al., 2020), the 584 

contribution of understory (Hornero et al., 2021), clumping and woody elements impacts 585 

(Malenovský et al., 2021). In this study, we assessed the impact of canopy heterogeneity on SIF 586 

and processes driving its generation. High relative errors in nadir SIF radiance were observed 587 

for the 8 forest plots due to neglecting the 3D forest architecture, in particular, the horizontal 588 

heterogeneity. Errors were maximal in the hours of the day with lowest PAR having the larger 589 

shading effects. They were higher than 50% in the most heterogeneous plots (LI2 and LM2) 590 

and at [640-700nm] where shading effects are higher due to the lower importance of multiple 591 

scattering in the canopy. The errors in the canopy SIF radiance where forest horizontal 592 

architecture was neglected (i.e., 1D forest plots) can be explained by two processes that drive 593 

the SIF signal generation.  594 

1) APARgreen is overestimated if the forest horizontal architecture is neglected. It leads to an 595 

overestimation of the SIF emitted by leaves. This overestimation of SIF emission mainly 596 

occurs in the upper canopy layers. This is mainly due to the fact that in the forest 1D 597 

abstractions, the leaves of the top layers are homogeneously distributed, whereas in actual 598 

3D forests, they can be greatly clumped at two levels: they are grouped within distinct tree 599 



4.2 ARTICLE 

 189 

crowns, and also, they tend to be clumped within each tree crown. Combined, these effects 600 

result in upper layers of 1D plots that are more efficiently illuminated than in 3D plots, 601 

which explains higher SIF emission in 1D plots than in 3D plots. However, in the bottom 602 

layers, the SIF emission of 1D plots is underestimated. Indeed, the roughness of the actual 603 

canopy causes a better penetration of light to the bottom layers of the 3D plots, compared 604 

to the associated 1D plots, where the top layers of the canopy shade more efficiently the 605 

light. This is illustrated by Figure 11: the profile of SIF emission is similar to the profile of 606 

LAI with a higher 
SIFemitted

LAI
 value in the top layers. This means that the SIF emission per leaf 607 

area unit is higher for the top layers because leaves in the top layers are able to capture 608 

more light than the leaves in the bottom layers. 609 

2) The emitted SIF radiation has a higher ability to escape from the canopy in the 1D 610 

abstractions of the forest plots both for the upward nadir direction (cf. SIF yield in Figure 611 

15), and for the upper hemisphere (cf., SIF escape factorhemi in Figure 12). It corresponds 612 

to an underestimation of the total absorption fraction of SIF in all 1D abstractions of the 8 613 

forest plots (Table 6, Table 7). This underestimation of SIF absorption is rather large for 614 

the ground, and larger for [640-700nm] (i.e., between -17 and -43% for [640-700nm], 615 

between -5% and -35% for [700-850nm]) and rather small for "Leaf + Wood" (i.e., between 616 

-2 and -4% for [640-700nm], between -1 and -3% for [700-850nm]). LM1 has a slightly 617 

different behavior: in its 1D abstraction, the absorption of "Leaf + Wood" is slightly 618 

overestimated for [700-850nm] (i.e., around 2%). Part of the underestimation of SIF 619 

absorption by the ground for 1D plots is due to the smaller area of the ground in the 1D 620 

plot compared to the 3D plot where topography is simulated (Table 2).  621 

The vertical profiles of SIF emission (Figure 11) and absorption (Figure 14) of the 1D plots 622 

show that emission and absorption are both overestimated in the top layers and underestimated 623 

in the bottom layers. A main particularity for the absorption profile is the influence of the 624 

ground. It shows sharp peaks at 0 m height for 1D simulations. For the 3D abstractions of the 625 

forest plots, the height of the ground is variable. Therefore, ground absorption peaks appear in 626 

the bottom for the “C” plots. These peaks are not visible in “L” plots, because of important 627 

absorption of the leaves and woody elements in the bottom part of the canopies. 628 

 629 

4.3. Influence of 3D architecture on the canopy reflectance.  630 
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As a first approximation, SIF emission can be considered as the reflection of radiation at a 631 

different wavelength from that of the incident radiation. Therefore, it makes sense to find 632 

similar errors for SIF radiance 𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷(𝑡) and canopy reflectance 𝑀𝐴𝑅𝐸𝜌,1𝐷−3𝐷(𝑡). 633 

However, SIF has some particularities that may differ from reflectance. Indeed, the SIF 634 

emission only comes from leaf elements. Other components of the canopy (i.e., woody elements 635 

and ground) do not emit SIF radiation, even though they contribute indirectly by scattering SIF 636 

radiation emitted by foliar elements. On the other hand, all elements of the canopy can 637 

contribute directly to the canopy radiance. Since bare ground does not directly contribute to the 638 

SIF radiance of forest plots, pure bare ground pixels have SIF radiance values close to zero. A 639 

nadir viewing sensor cannot see the bare ground in 1D plots, conversely to 3D plots. Hence, 640 

𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷 tends to be larger than 𝑀𝐴𝑅𝐸𝜌,1𝐷−3𝐷 because for canopy reflectance, pure 641 

bare ground pixels and vegetation pixels have values of the same order of magnitude. This 642 

explains that for LI2, the SIF radiance errors (Figure 5) are notably larger than the reflectance 643 

errors (Figure 7). Indeed, compared to the other sites (cf. Table 4), the LI2 site has the 644 

particularity to have the largest surface of ground without vegetation cover. Therefore, its 645 

𝑀𝐴𝑅𝐸𝑆𝐼𝐹,𝐿𝑣,1𝐷−3𝐷  tends to be large, especially if the ground reflectance is high. Multiple 646 

scattering explains that SIF radiance errors are larger in 640 – 700nm than in 700-850nm 647 

domain. Indeed, in the 700 – 850nm, the shadowing effects due to the canopy structure are 648 

attenuated by the important multiple scattering in this spectral domain. It is also the case for 649 

canopy reflectance in most cases expect for LI1 (in the middle of the day) and LI2 (Figure 7). 650 

This is because we only consider the 640 – 700nm spectral region and not all the 400 – 700nm 651 

for the comparison with SIF. Indeed, In Figure 6, we see that for these plots, 𝜀𝜌,1𝐷−3𝐷(𝜆) has a 652 

local minimum around 680nm, and even a sign change for LI2. 653 

 654 

4.4. Influence of woody elements  655 

Although woody elements do not generate SIF emission, their interaction with the 656 

photosynthetically active light and with SIF radiation emitted by leaves can highly impact the 657 

SIF signal, as shown in (Malenovský et al., 2021). We studied their influence on the SIF signal 658 

by comparing the SIF signal of forest plots that was simulated without and with woody elements. 659 

For that, we removed the woody elements from the 3D abstractions of the CM1 and LM1 plots. 660 

It appeared that the plots without woody elements had a higher simulated SIF radiance, 661 
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especially in the 700-850 nm spectral domain where multiple scattering is highly influenced by 662 

the presence of woody elements. The influence of woody elements is smaller in the 640 – 700 663 

nm spectral domain. The shading effect of woody elements on SIF emission leads to a lower 664 

APARgreen (Figure 18) and therefore triggering less SIF emission. It was shown to be more 665 

important than the blocking effect of woody elements (Figure 19), especially for oblique solar 666 

directions and at 640-700 nm.  667 

 668 

5. Concluding remarks  669 

This study investigated the potential effect of the forest 3D architecture on diurnal nadir SIF 670 

RS observations and SIF emissions inside the canopy. We studied the following three processes 671 

responsible for modulation of the canopy SIF signal: i) the attenuation of incident PAR in the 672 

canopy, ii) the leaf SIF emission efficiency, and iii) the attenuation of the SIF between its place 673 

of emission and its observation above the canopy. The potential impact of woody elements on 674 

the SIF signal of forest stands was also investigated. Eight study sites, located within the 675 

temperate deciduous forest in the Smithsonian Environmental Research Center, were modeled 676 

using the DART-FT and DART-Lux radiative transfer modes and the effects of their forest 677 

architecture were assessed by comparing SIF quantities of the sites simulated as 3D, 1D and 678 

0D scenes.  679 

 Although several general trends common to all sites were clearly identified, some results 680 

were of the site-specific nature due to structural differences in canopy horizontal and vertical 681 

heterogeneity. Results revealed that the horizontal heterogeneity of forests had a larger 682 

influence than the canopy vertical heterogeneity. Therefore, for a correct modeling of remotely 683 

sensed SIF signals of spatially heterogeneous canopies, one must consider the full 3D 684 

architecture of forests and not only their vertical heterogeneity as being assumed in 1D RTMs.  685 

 Studying the propagation of SIF radiation within the canopy through quantitative 686 

parameters, such as the SIF escape factor and the nadir SIF yield, is essential for linking the 687 

SIF RS observation to the canopy foliage SIF emission. Three key indicators were able to 688 

explain most of the differences between the nadir SIF signal of canopies simulated as 3D and 689 

1D landscapes. The SIF escape factor (𝜀1D−3D up to 40%) was shown to be the most indicative 690 

parameter, followed by the attenuation of incident PAR and consequently reduction of 691 

fAPARgreen (𝜀1D−3D less than 5%), and the SIF emission yield (𝜀1D−3D less than 2%) induced 692 

by different fqe values assigned to the sun- and shade-adapted leaves. Our results indicated that 693 
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the influence of forest architecture on SIF escape factor and nadir SIF yield values ( up to 40%) 694 

varies in time, with differences in forest stand structure and per spectral domain, with  being 695 

always greater for the wavelength range of 640 – 700 nm than for the range of 700 – 850 nm.  696 

The presence of woody elements inside DART-simulated forest scenes appeared to have 697 

a relatively large influence on the canopy SIF radiance through the two effects: i) a shading of 698 

photosynthetically active foliage and ii) a blocking (obstruction) of SIF radiation. The relative 699 

error associated with the neglection of wood existence ranged between 10% and 35%, 700 

depending on analyzed spectral domain and forest site, where the relative errors for the shading 701 

effect were ranging between 10 and 20%, and for the blocking effect between 0 and 10%.  702 

 Although this work underlines the usefulness of 3D RTMs for investigating physical 703 

bases linking RS SIF observations with SIF emitted inside a forest canopy, there are several 704 

modeling aspects that should be reconsidered and improved in the follow-up work. For example, 705 

leaf SIF emission properties were assumed to be constant throughout the day, i.e., the actual 706 

modulation of SIF emission by local environmental conditions (e.g., leaf temperature, air 707 

humidity, etc.) was not considered. Remediation of this strong assumption requires inclusion of 708 

a full canopy energy balance in the DART modeling scheme, that would allow to account for 709 

crucial environmental parameters of radiative (i.e., visible, near infrared and thermal infrared 710 

radiation budgets) as well as non-radiative processes (e.g., photosynthesis). This is currently 711 

possible only by coupling DART with a 1D energy budget model like SCOPE. The development 712 

of a 3D energy balance modeling, based on DART radiation budget computations, is on the list 713 

of our future works. Three major DART-Lux modeling works, partly completed, will also be very 714 

helpful for rapid simulations of SIF over larger landscapes: SIF and thermal emission of 715 

vegetation simulated as turbid medium, and 3D radiative budget, including SIF emission.   716 
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 729 

Appendix 1: Conversion of turbid voxels into triangles clouds. 730 

Each turbid cell of a forest mock-ups is converted to a linear combination of a few 3D objects 731 

(i.e., made of facets) among N cell objects whose LAI is LAIn, with n  [1  N]. Accuracy on the 732 

simulated LAI is 10-2 with N = 16 with LAIn equal to 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 733 

2, 2.5, 3, 3.5, 4, and 4.5. The area of a facet in each cell object is 5.10-5 m2 if LAIn ≤ 2, and 10-4 734 

m2 if LAIn > 2.  735 

 736 

The algorithm of the conversion method is based on the value of  LAIcell of the turbid cell to 737 

convert:  738 

* Scene LAIcell < 1: the turbid cell is replaced by two 3D cell objects at most:  739 

- 1st cell object (i.e., cell object with the larger LAI): it can be only enlarged. Its enlargement 740 

is 5% at most. If it should be 5% to get the exact LAI of the turbid cell, then a 2nd cell is 741 

introduced. 742 

- 2nd cell object: it can be enlarged or shrunk. 743 

* Scene LAIcell > 1: the turbid cell is replaced by three cell objects cells at most:  744 

- 1st cell object: it cannot be scaled. If precision < 10-2, then a 2nd cell is used.   745 

- 2nd cell object: it can be only enlarged, by 5% at most. A 3rd cell is used if a larger 746 

enlargement is needed. 747 

- 3rd cell object: it can be enlarged or shrunk. 748 

Examples of replacement of a turbid cell (LAIcell) by up to 3 3D cell objects:  749 

- LAIcell = 0.92 (Figure 20). Replacing it by a cell object of LAI  = 1, (i.e., shrinking it by a factor 750 

0.96) would create 2 cm wide empty spaces at the cell borders. Therefore, it was instead replaced 751 

by a cell object of LAI = 0.5 and a cell object of LAI  =  0.4 enlarged by a factor 1.025. (i.e., 0.92 752 

 0.5 + 0.4 x 1.025 2).  753 

- LAIcell = 0.23 ( 0.2 + 0.02 x 1.22472)  2 cell objects: LAIn = 0.2, LAIn = 0.02 scaled by 1.2247 754 

- LAIcell = 0.48 (0.4 + 0.1 x 0.89442)  2 cell objects: LAIn = 0.4, LAIn = 0.1 shrunk by 0.8944 755 
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- LAIcell = 0.93 (0.5 + 0.4 x 1.03682)  2 cell objects: LAIn = 0.5, LAIn = 0.4 scaled by 1.0368 756 

- LAIcell = 0.64 ( 0.5 + 0.1 + 0.05 x 0.8944)  3 cell objects: LAIn = 0.5, LAIn= 0.1, LAIn= 0.05 757 

shrunk by 0.8944. 758 

 759 

 760 

a) b)  761 

Figure 20. Top view of a turbid cell of LAI = 0.92 simulated with N cell objects. a) N=1: cell 762 

object of LAI = 1 is shrunk by a factor 0.96, resulting in empty space along the borders of the 763 

cell. b) N=2: 3D object of LAI = 0.5 (green) + 3D object of LAI = 0.4 enlarged by a factor 764 

1.025 (purple). 765 

 766 

This conversion method ensures that the mock-up is represented by a finite number of 3D objects 767 

(i.e., 16x3 = 48). It also avoids the appearance of holes due to shrinking the 3D objects, and large 768 

exceeding of voxel limits due to the enlargement of 3D objects. M = 3 samples of each cell object 769 

are randomly used to introduce a random variability in the mock-ups. Also, a random rotation of 770 

0°, 90°, 180° or 270° relative to the vertical axis ensures more randomness of the simulated cell. 771 

 772 

Appendix 2: Equivalence between DART-FT and DART-Lux simulations 773 

Our work combines DART-FT simulations of radiative budget and DART-Lux simulations of 774 

scene radiance / reflectance. Therefore, the consistency of these two DART modes is an essential 775 

point. Relative differences of DART-FT and DART-Lux can be as small as 10-5 depending on 776 

their modeling parameters of each mode. For example, the number of discrete directions for 777 

DART-FT, and the number of samples per pixel for DART-Lux. Here, this similarity is illustrated 778 
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through the comparison of the reflectance and SIF radiance of LM1, using model parameters hat 779 

were used in our work. Figure 21 indicates that MARE is equal to 1.3% for scene reflectance, 780 

2.1% for PSI radiance, and 1.72% for PSII radiance.   781 

c)      d)
 782 

Figure 21: Comparison of DART-FT (turbid voxels) and DART-Lux (turbid voxels transformed to 783 

triangles) for a 10m x 10m subscene of CI1. a) LM1 turbid mock-up. b) LM1 triangles cloud 784 

mock-up (after conversion). Green: sun-adapted leaves, Grey: shade-adapted leaves, Brown: 785 

woody elements. c) DART-FT and DART-Lux scene reflectance. d) Scene PSI and PSII 786 

radiance simulated by DART-FT and DART-Lux. 787 

  788 

a)
 

b)
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4.3 Conclusion 

In this chapter, the impact of forest structure on SIF emission and observation was studied using 

realistic mock-ups derived from LiDAR. Results showed that neglecting the forest structure can 

lead to an overestimation of SIF radiance by up to 50% notably for oblique sun directions. The 

impact of vegetation structure was higher on the propagation of SIF within the canopy than on 

the PAR absorption and SIF emission. Results also showed that SIF radiance is overestimated 

if woody elements are neglected. This overestimation is more due to the shadowing effect than 

to the blocking effects of the woody elements. As already mentioned, this study was conducted 

after conversion of turbid voxels to quasi turbid medium because at that time, the turbid medium 

was not implemented yet in DART-Lux. The comparison of the turbid and the quasi-turbid 

representation showed that the turbid has a longer computation time but a lower Monte Carlo 

noise for the same number of samples. Should the work be redone, the quasi-turbid 

representation of vegetation would probably be used again.  

 

  



 

 206 

 



 

 207 

Photosynthetically active vegetation continuously exchanges matter and energy with its 

environment via biochemical reactions and heat transfer processes. Energy exchanges can be 

separated into non-radiative (e.g., sensible and latent heat exchanges) and radiative exchanges 

that consist in receiving energy through the absorption of incident radiation from the sun 

directly or after being scattered by the atmosphere and through the radiation emitted by the 

atmosphere and all the surrounding materials such as soil, woody elements, etc. and lose energy 

by emitting thermal radiation. The net absorbed radiation is therefore the difference between 

absorbed and emitted energy. Radiative energy exchanges are an important component of the 

energy balance of vegetation. Therefore, modeling the radiation budget including thermal 

emission is essential. The first section of this chapter presents the modeling of thermal emission 

and the second section presents the modeling of the radiative budget in DART-Lux.  

Chapter 5  

Thermal emission and radiative budget 

modeling in DART-Lux 
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5.1 Thermal emission modeling 

5.1.1 Theoretical background 

Thermal emission is an energy emission in the form of electromagnetic radiation from any 

material having a temperature 𝑇  higher that the absolute zero (i.e., 𝑇  > 0 K) due to the 

movement of molecules and atoms in the material. 

The Planck law gives the spectral distribution of isotropic radiance emitted by a blackbody (i.e., 

an ideal body that absorbs all the incident electromagnetic radiation) at temperature T (K): 

𝐿𝐵(𝜆, 𝑇) =
2. ℎ. 𝑐2

𝜆5
.

1

𝑒
ℎ𝑐
𝜆.𝑘.𝑇 − 1

 (𝑊.𝑚−2.𝑚−1. 𝑠𝑟−1) (5.1) 

where 𝜆 is the wavelength in 𝑚, ℎ = 6.626 070 15 × 10−34 J. s is the Planck’s constant, 

𝑐 = 2.997 924 58 × 108 𝑚. 𝑠−1 (in vacuum) is the speed of light, and 𝑘 = 1,380 649 ×

10−23 J. K−1 is the Boltzmann constant.  

The exitance of a Blackbody over the whole spectrum results from the integration of the 

Planck’s law over the whole spectrum, and over the hemisphere (× 𝜋 for an isotropic radiance). 

It is given by the Stefan-Boltzmann law:  

𝑀𝐵(𝑇) = 𝜋.∫
2. ℎ. 𝑐2

𝜆5
.

1

𝑒
ℎ𝑐
𝜆.𝑘.𝑇 − 1

+∞

0

 𝑑𝜆 (5.2) 

 = 𝜎. 𝑇4  (𝑊.𝑚−2)  

where 𝜎 =
2.π5.k4

15.h3.c2
≈ 5.670374419 × 10−8 𝑊.𝑚−2. 𝐾−4 

Real bodies are not perfect emitters, the emitted radiance is scaled by their spectral emissivity: 

𝐿(𝜆, 𝑇) = 𝜀(𝜆). 𝐿𝐵(𝜆, 𝑇)  (5.3) 

For a spectral band (𝜆, Δ𝜆), the emitted radiance is computed as the average of the emitted 

radiance over this band:  

𝐿𝜆,Δ𝜆( 𝑇) =
1

Δ𝜆
∫ 𝜀(𝜆). 𝐿𝐵(𝜆, 𝑇)
𝜆+
Δ𝜆
2

𝜆−
Δ𝜆
2

𝑑𝜆 =
𝜀Δ𝜆
Δ𝜆

∫ 𝐿𝐵(𝜆, 𝑇)𝑑𝜆
𝜆+
Δ𝜆
2

𝜆−
Δ𝜆
2

 (5.4) 

where 𝜀Δ𝜆 is the emissivity over the band (𝜆, Δ𝜆). 
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The brightness temperature 𝑇𝐵  of an observed emitting body having a thermodynamic 

temperature 𝑇 and an emissivity 𝜀(𝜆) is the thermodynamic temperature a black body should 

have in order to have the radiance 𝐿(𝜆, 𝑇) of the emitting body at the wavelength 𝜆. It is 

computed using the inverse function of the Planck law:  

𝑇𝐵(𝜆) = 𝐿𝐵
−1(𝐿(𝜆, 𝑇), 𝜆) =

ℎ. 𝑐

𝑘. 𝜆. ln (1 +
2. ℎ. 𝑐2

𝜆5. 𝜀(𝜆). 𝐿𝐵(𝜆, 𝑇)
)
 

(5.5) 

If the emitting body is a blackbody, its brightness temperature is equal to its thermodynamic 

temperature for every wavelength. Otherwise, it is less than or equal to its thermodynamic 

temperature and is wavelength dependent. 

For a spectral band (𝜆, Δ𝜆), instead of a single wavelength, the brightness temperature is:  

𝑇𝐵(𝜆, Δ𝜆) = 𝐿𝐵
−1(𝐿𝜆,Δ𝜆( 𝑇), 𝜆𝑒𝑞) (5.6) 

with 𝜆𝑒𝑞 the wavelength between 𝜆-
Δ𝜆

2
 and 𝜆+

Δ𝜆

2
 for which the Planck function is equal to 

the average of the Planck function on the spectral band (𝜆, Δ𝜆) for the temperature 𝑇 . 

According to the mean value theorem, 𝜆𝑒𝑞 exists. It is defined as:  

𝐿𝐵(𝜆𝑒𝑞, 𝑇) =
1

Δ𝜆
.∫ 𝐿𝐵(𝜆, 𝑇)𝑑𝜆

𝜆+
Δ𝜆
2

𝜆−
Δ𝜆
2

 (5.7) 

5.1.2 Thermal emission for facets 

From the point of view of the modelling of radiative transfer, the thermal emission of facets 

corresponds to the consideration of the emitting facets as light sources. This functionality is 

already implemented in the LuxCoreRender software. However, it is limited to single face 

emitters, and to constant radiance per object.  

In a first step, the single face emitting facet has been adapted to create a double face emitting 

facet. This is done by sampling the whole sphere instead of the upper hemisphere when 

sampling an emission direction, and by making the material emit when it is hit by a ray from 

the upper or the lower side. 

In a second step, other methods have been introduced in order to simulate more realistic 

temperature distributions than constant temperature per object. 
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Simulation and importation of 3D temperature distribution 

a) Illumination 

The illumination method is used in DART-FT to simulate a more or less realistic 3D 

temperature distribution based on the illumination of surfaces. The idea is that the most 

illuminated surfaces tend to have higher temperature and vice versa. This is an approximation 

since the temperature of a surface depends on many other parameters such as its heat capacity 

and its heat exchanges through conduction and convection; its estimation requires the 

computation of the full energy balance. However, the illumination method is a first 

approximation. It requires to specify the range of temperature (𝑇𝑚𝑒𝑎𝑛, Δ𝑇) per type of element 

(e.g., wall with specific orientation). The first order irradiance (i.e., direct sun and atmosphere 

radiation) is used to distribute the temperature: the most illuminated surfaces are assigned the 

maximal temperature, the least illuminated surfaces are assigned the least temperature and 

intermediately illuminated surfaces are assigned intermediate temperature values. 

In DART-Lux, the illumination method differs from DART-FT: rays are not sent from the 

source (i.e., sun and atmosphere) but from so-called emitting points in the scene elements of 

which the temperature must be computed. Therefore, for facets, the illumination method starts 

with the determination of emitting points in the scene elements. This is done by computing the 

intersection of each facet with a 3D regular grid. Then, scene facets are virtually segmented 

into sub-polygons, and the centroid of each sub-polygon (Figure 5-1) is treated as an emitting 

point. Any triangle that does not intersect the grid because it is too small is assigned an emitting 

point that is the centroid of this triangle.  

a)  b)  

Figure 5-1: Points sampling method for a single triangle (a) and a maize scene (b) 
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Then, the irradiance (Figure 5-2) of the centroid of each facet, on the two sides of the facet, is 

computed using direct sun irradiance and atmosphere diffuse irradiance defined by a SKYL 

value. This order 1 irradiance 𝐸𝑃,1 at each centroid 𝑃 is:  

𝐸𝑃,1 = 𝐸𝑃,𝑑𝑖𝑟,1 + 𝐸𝑃,𝑑𝑖𝑓𝑓,1  (5.8) 

With 𝐸𝑃,𝑑𝑖𝑟,1 the direct order 1 irradiance computed by tracing a ray for the point 𝑃 in the 

sun direction. If the ray is not intercepted, 𝐸𝑃,𝑑𝑖𝑟,1=𝐸𝑠𝑢𝑛. |Ωs. 𝑛⃗ |, (𝐸𝑠𝑢𝑛 is the sun irradiance 

for a surface perpendicular to the sun direction Ω𝑠 and 𝑛⃗  is the surface normal, if Ωs. 𝑛⃗ > 0, 

the top face is illuminated, otherwise the bottom face is illuminated). If the ray is intercepted, 

𝐸𝑃,𝑑𝑖𝑟 = 0. 

The incident diffuse radiation at a point 𝑃 is:  

𝐸𝑃,𝑑𝑖𝑓𝑓,1 = ∫ 𝐿𝑃,1(Ω𝑖). |Ω𝑖. 𝑛⃗ |. 𝑑Ω
2𝜋

 (5.9) 

with 𝐿𝑃,1(Ω𝑖) the order 1 diffuse radiance incident to the point 𝑃. 

𝐸𝑃,𝑑𝑖𝑓𝑓,1 is estimated using a Monte Carlo estimator 𝐸̂𝑃,𝑑𝑖𝑓𝑓,1 with 𝑁 sampled directions Ω𝑖: 

𝐸̂𝑃,𝑑𝑖𝑓𝑓,1 =
1

𝑁
.∑

𝐿𝑃,1(Ω𝑖). |Ω𝑖. 𝑛⃗ |

𝑝(Ω𝑖)

𝑁

𝑖=1

  (5.10) 

The PDF for sampling a direction 𝑝(Ω𝑖) verifies ∫ 𝑝(Ω𝑖).𝑑Ω=1.2𝜋
 The importance sampling is 

used. It requires that 𝑝(Ω𝑖) has a similar shape to the integrand 𝑓(Ω𝑖)=𝐿𝑃,1(Ω𝑖).|Ω𝑖. 𝑛⃗ | 

Taking 𝑝(Ω𝑖)=𝑐.|Ω𝑖.𝑛⃗ | with 𝑐 ∈ ℝ (cosine distribution) leads to 𝑐=
1

𝜋
, and Eq (5.10) becomes:  

𝐸̂𝑃,𝑑𝑖𝑓𝑓,1 =
𝜋

𝑁
.∑𝐿𝑃,1(Ω𝑖)

𝑁

𝑖=1

  (5.11) 

𝐸̂𝑃,𝑑𝑖𝑓𝑓,1 is unbiased. Its expected value is equal to the real value 𝐸𝑃,𝑑𝑖𝑓𝑓,1 (cf. Appendix 5-1). 
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Figure 5-2: Local irradiance computed over the maize scene 

Once the local irradiance is computed, a temperature 𝑇𝑃 is assigned for each irradiance value 

𝐸𝑃 (Figure 5-3), using the user-defined temperature properties (𝑇𝑚𝑒𝑎𝑛, Δ𝑇) and the relationship:  

𝑇𝑃
4 = 𝑎. 𝐸𝑃 + 𝑏 (5.12) 

This relationship is chosen because for a surface at the thermal equilibrium with temperature 

𝑇 and receiving an energy flux 𝐸, 𝑇4 increases linearly with 𝐸.  

𝑎 and 𝑏 are compute such that 𝑇𝑚𝑎𝑥
4 = 𝑎. 𝐸𝑚𝑎𝑥 + 𝑏 and 𝑇𝑚𝑖𝑛

4 = 𝑎. 𝐸𝑚𝑖𝑛 + 𝑏: 

𝑎 =
𝑇𝑚𝑎𝑥
4 − 𝑇𝑚𝑖𝑛

4

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 (5.13) 

𝑏 = 𝑇𝑚𝑎𝑥
4 − 𝑎. 𝐸𝑚𝑎𝑥 (5.14) 

Therefore:  

𝑇𝑃 = (
𝑇𝑚𝑎𝑥
4 − 𝑇𝑚𝑖𝑛

4

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
. (𝐸𝑃 − 𝐸𝑚𝑎𝑥) + 𝑇𝑚𝑎𝑥

4 )

1
4

 (5.15) 

 

We note from Eq (5.15) that if 𝐸𝑚𝑎𝑥, 𝐸𝑚𝑖𝑛 and 𝐸𝑃 are multiplied by a factor 𝛼, the expression 

of 𝑇𝑃  remains the same. Hence, the absolute value of BOA irradiance 𝐸𝐵𝑂𝐴  used in the 

illumination step is not important. Therefore, any dummy value can be used and there is no 

need compute the real BOA irradiance or to perform a multispectral illumination.  
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Figure 5-3: Temperature distribution computed over the maize scene 

Once the temperature distribution is computed, the radiative transfer simulation starts. 

b) Sunlit and shaded temperatures 

For some applications including SIF emission, one need to know the thermodynamic 

temperature of sunlit (𝑇𝑠𝑢) and shaded (𝑇𝑠ℎ) parts for each type of element of the scene, and to 

use them in a radiative transfer model. This possibility was introduced in DART-Lux based on 

the illumination method described in the previous section.  

A sunlit fraction is computed at each point, as the ratio between the order 1 local irradiance, 

and the local irradiance the point would receive if it was totally sunlit: 

𝑓𝑠𝑢𝑛𝑙𝑖𝑡 =
𝐸𝑃

𝐸𝑑𝑖𝑟,𝐵𝑂𝐴
cos (𝜃𝑠)

. |Ω𝑙. Ω𝑠| + 𝐸𝑑𝑖𝑓𝑓,𝐵𝑂𝐴

 
(5.16) 

The emitted radiance by this point is then:  

𝐿𝜆,Δ𝜆(𝑇𝑠𝑢, 𝑇𝑠ℎ, 𝑓𝑠𝑢𝑛𝑙𝑖𝑡) = 𝑓𝑠𝑢𝑛𝑙𝑖𝑡 . 𝐿𝜆,Δ𝜆( 𝑇𝑠𝑢) + (1 − 𝑓𝑠𝑢𝑛𝑙𝑖𝑡). 𝐿𝜆,Δ𝜆( 𝑇𝑠ℎ) (5.17) 

c) Imported SCOPE temperature profiles 

Some 1D models that compute the full energy balance such as SCOPE provide 1D temperature 

profiles for sunlit and shaded leaves. The temperature profiles provided by SCOPE are function 

of the height within the canopy for shaded leaves 𝑇𝑠ℎ(𝑧) and the leaf zenith angle, azimuth 

angle and height within the canopy for sunlit leaves 𝑇𝑠𝑢(𝑧, 𝜃𝑙 , 𝜑𝑙). DART-Lux can import these 
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Some 1D models of canopy energy balance simulate 1D temperature profiles for leaves. The 

SCOPE model simulates a 1D temperature profile for sunlit leaves and another one for shaded 

leaves. The temperature profiles from SCOPE are function of the height in the canopy for 

shaded leaves 𝑇𝑠ℎ(𝑧) and on the leaf zenith angle, the azimuth angle and the height in the 

canopy for sunlit leaves 𝑇𝑠𝑢(𝑧, 𝜃𝑙 , 𝜑𝑙). DART-Lux was adapted to import these temperature 

profiles and to simulate radiative transfer with them. To this end, the sunlit fraction 𝑓𝑠𝑢𝑛𝑙𝑖𝑡 is 

computed using Eq (5.16) and the emitted radiance is computed using Eq (5.17), the 

temperatures 𝑇𝑠ℎ  and 𝑇𝑠𝑢  being interpolated from the imported SCOPE temperature profiles 

according to the height of the centroid for 𝑇𝑠ℎ, and according to the height of the centroid and 

the zenith and azimuth angles of the normal vector of the facet for 𝑇𝑠𝑢. 

d) Importation of 3D temperature distribution 

DART-Lux was adapted to import any 3D temperature distribution. The approach relies on a 

division of the scene into “voxels” at any 3D resolution and on the assignation of the 

corresponding temperature to all scene elements inside each voxel. 3D temperature 

distributions can be provided by other models like fire models (e.g., Y. Liu et al. 2019). In 

addition, 2D temperature distributions, for example derived from the inversion of remote 

sensing images, can also be imported. 

Radiative transfer simulation 

Once the temperature distribution is computed and/or imported, the radiative transfer 

simulation starts. The temperature distribution methods provide discrete temperature values for 

points distributed over the scene or for virtual voxels. This is done only for the central scene 

and not for the eventual repeated scenes (i.e., duplications of the scene of interest in order to 

simulate its neighborhood). However, in reality, any point in the scene can emit if sampled or 

intercepted by a ray, including points outside the central scene (i.e., scene of interest). Therefore, 

to compute the emitted radiance of any point 𝑀 in the scene, its corresponding point in the 

central scene 𝑀𝑐 is computed first using a horizontal shift. If the temperature is defined using a 

temperature profile, the temperature of the voxel containing 𝑀𝑐 is assigned to 𝑀. Otherwise, 

the nearest point to 𝑀𝑐 with an assigned temperature is searched over the scene (Figure 5-3) 

and its temperature is assigned to 𝑀. The search operation is optimized using a Bounding 

Volume Hierarchy (BVH) structure implementation from LuxCoreRender. 
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5.1.3 Thermal emission for volumes  

The modeling of thermal emission of volumes filled with homogeneous fluids or turbid medium 

has been designed and implemented into DART-Lux.  

Volumes with spatially constant temperature  

Let us consider a volume homogenously filled with a fluid or turbid medium at constant 

thermodynamic temperature 𝑇, and a ray sent from the sensor (Figure 5-4) that enters the 

volume at a point 𝐴. Then, the order 1 thermal emission of the volume is computed.  

For a volume filled with a fluid, the radiance emitted by an elementary layer of the volume of 

height 𝑑𝑧 and seen by the sensor is: 

𝑑𝐿 = 𝜎𝑡 . 𝑑𝑧. 𝐿𝜆,Δ𝜆( 𝑇). 𝑒
−𝜎𝑡.𝑧 (5.18) 

with 𝜎𝑡 . 𝑑𝑧 the area of emitting particles in the layer 𝑑𝑧 per horizontal surface unit, 𝐿𝜆,Δ𝜆( 𝑇) 

the emitted particle radiance and 𝑒−𝜎𝑡.𝑧 the transmittance between the layer 𝑑𝑧 and point 𝐴. 

 

Figure 5-4: Schematic representation of the volume thermal emission  

For a volume filled with turbid medium:  

𝑑𝐿 = 𝐺(𝛺𝑣). 𝑢𝑙 . 𝑑𝑧. 𝐿𝜆,Δ𝜆( 𝑇). 𝑒
−𝐺(𝛺𝑣).𝑢𝑙.𝑧 (5.19) 

with 𝐺(𝛺𝑣). 𝑢𝑙 . 𝑑𝑧 the effective area of emitting leaves in the layer 𝑑𝑧 per horizontal surface 

unit, 𝐿𝜆,Δ𝜆( 𝑇) the emitted leaf radiance and 𝑒−𝐺(𝛺𝑣).𝑢𝑙.𝑧 the transmittance between the layer 

𝑑𝑧 and point 𝐴.  
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By integrating over the segment [𝐴𝐶] (i.e., whole volume), we get the radiance 𝐿𝑜𝑟𝑑𝑒𝑟1 emitted 

along this segment at order 1 and seen by the sensor. For a volume filled with a fluid, we get: 

𝐿𝑜𝑟𝑑𝑒𝑟1 = ∫ 𝑑𝐿
Δ𝑍

 = ∫ 𝜎𝑡 . 𝐿𝜆,𝛥𝜆( 𝑇). 𝑒
−𝜎𝑡.𝑧

𝛥𝑍

0

. 𝑑𝑧 (5.20) 

= 𝐿𝜆,𝛥𝜆( 𝑇). (1 − 𝑒
−𝜎𝑡.𝛥𝑍)  

Similarly, for a volume filled with turbid medium: 

𝐿𝑜𝑟𝑑𝑒𝑟1 = 𝐿𝜆,𝛥𝜆( 𝑇). (1 − 𝑒
−𝐺(𝛺𝑣).𝑢𝑙.𝛥𝑍) (5.21) 

Multiple order emission is simulated as successive order 1 emission whenever the ray sent from 

the sensor is intercepted at a point 𝐵. Then, a scattering direction 𝐵𝐸⃗⃗⃗⃗  ⃗ is sampled, with 𝐸 being 

the interception of the scattering direction and the edge of the volume. The emission along the 

segment [𝐵𝐸] seen at 𝐵 is computed using Eq (5.20) or (5.21) and scattered at 𝐵 towards the 

sensor. Then, a travel distance is sampled over 𝐵𝐸⃗⃗⃗⃗  ⃗. If the sampling leads to an interception in 

point 𝐷 within the volume, a new scattering direction 𝐷𝐹⃗⃗⃗⃗  ⃗ is sampled, and the emission along 

[𝐷𝐹] seen at 𝐷 is computed and scattered towards 𝐵, and so on until a sampled travel distance 

is outside the volume, or until the specified maximal scattering order is reached. 

 

Illumination method and sunlit fraction for volumes 

For a horizontally infinite homogeneous turbid medium, as for SCOPE, the sunlit and shaded 

fractions of leaves are computed statistically using the Beer law. For a layer at height 𝑧 inside 

a canopy of height Δ𝑍, we have:  

𝑓𝑠𝑢𝑛𝑙𝑖𝑡
𝑙𝑎𝑦𝑒𝑟(𝑧) = 𝑒

−𝐺(𝛺𝑠).𝑢𝑙.
𝛥𝑍−𝑧
𝑐𝑜𝑠 𝜃𝑠 =

𝐸𝑑𝑖𝑟(𝑧)

𝐸𝑑𝑖𝑟,𝐵𝑂𝐴
 (5.22) 

This definition is extended to compute the average fraction of sunlit leaves in a turbid cell:  

𝑓𝑠̅𝑢𝑛𝑙𝑖𝑡
𝑐𝑒𝑙𝑙 =

1

𝐸𝐵𝑂𝐴. 𝛥𝑍
∫ 𝐸(𝑧). 𝑑𝑧
𝛥𝑍

0

 (5.23) 

The computation of the integral in Eq (5.23) would require to divide the cell into smaller layers 

and to compute the irradiance at each layer, which would be very computationally expensive. 
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Instead, an approximation is made by assuming that the cell is inside an infinite homogeneous 

layer of the same height as the cell. Then, 𝑓𝑠̅𝑢𝑛𝑙𝑖𝑡
𝑐𝑒𝑙𝑙  becomes:  

𝑓𝑠̅𝑢𝑛𝑙𝑖𝑡
𝑐𝑒𝑙𝑙 ≈

1

𝛥𝑍
∫ 𝑒

−𝐺(𝛺𝑠).𝑢𝑙.
𝛥𝑍−𝑧
𝑐𝑜𝑠 𝜃𝑠 . 𝑑𝑧

𝛥𝑍

0

 (5.24) 

According to the mean value theorem, there exists a height 𝑧𝑒𝑞 such that:  

𝑒
−𝐺(Ω𝑠).𝑢𝑙.

Δ𝑍−𝑧𝑒𝑞
cos𝜃𝑠 =

1

∆z
.∫ 𝑒

−𝐺(Ω𝑠).𝑢𝑙.
Δ𝑍−𝑧
cos𝜃𝑠 . 𝑑𝑧

∆z

0

 (5.25) 

Thus, the irradiance at the height 𝑧𝑒𝑞 is approximately equal to the mean irradiance over the 

cell, and therefore:  

𝑓𝑠̅𝑢𝑛𝑙𝑖𝑡 ≈
𝐸(𝑧𝑒𝑞)

𝐸𝐵𝑂𝐴
 (5.26) 

𝐸(𝑧𝑒𝑞) is also used for assigning a temperature to the cell. 

Volumes with spatially variable temperatures 

The illumination method for temperature distribution for volumes gives a 3D temperature array. 

A 3D temperature array can also be imported directly. However, a volume is not necessarily 

contained by a single cell. The same volume can then have different temperatures if it is 

contained in more than one cell. DART-Lux has been adapted to manage these volumes.   

Let us consider a homogenous cell filled with turbid medium, of height 𝐻. It is divided into 2 

layers, the bottom layer of height ℎ has a temperature 𝑇1 and the top layer of height 𝐻 − ℎ has 

a temperature 𝑇2. For a ray coming from the sensor from at the nadir direction for example, 

entering the volume, a distance is randomly sampled inside the volume. The PDF 𝑝(𝑙) for 

sampling this distance is proportional to the Beer law and verifies the following normalization 

equality:  

∫ 𝑝(𝑙). 𝑑𝑙
𝐻

0

= 1 (5.27) 

Therefore (c.f. Appendix 5-2), 

𝑝(𝑙) =
𝐺(Ω). 𝑢𝑙 . 𝑒

−𝐺(Ω).𝑢𝑙.𝑙

1 − 𝑒−𝐺(Ω).𝑢𝑙.𝐻
 (5.28) 
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By sampling a distance 𝑙 according to this PDF, the obtained distance is between 0 and 𝐻. If 

𝑙 < 𝐻 − ℎ , the observed radiance is computed assuming that the volume has a constant 

temperature 𝑇2, otherwise, the observed radiance is computed assuming that the volume has a 

constant temperature 𝑇1. In Appendix 5-2, we show that the expected value of order 1 radiance 

computed using this sampling technique is equal to the true value of observed order 1 radiance. 

Since the multiple order emission is treated as successive order 1 emissions, this method allows 

one to simulate thermal emission observations for homogeneous volumes.  

5.1.4 Results 

Six scene examples are shown below to assess the accuracy of the developed modeling and to 

illustrate some potential uses:  

Synthetic scene (Facets) 

The thermal emission modeling and the temperature determination method using illumination 

are first assessed by comparison with DART-FT. Figure 5-5 shows the brightness temperatures 

images simulated using DART-FT (CT = 5 min 45 s, RAM = 1.9 GB) and DART-Lux (CT = 

24 s, RAM = 1.2 GB) for the same synthetic scene made of facets only with three trees and a 

house whose roof has four parts. The average image radiance is 14.134 𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

for DART-FT and 14.119 𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1  for DART-Lux. The DART-FT image has 

many pixels with extreme values at the level of the trees caused by discretization effects. The 

scene is 20 ×  20 m² and the spatial resolution is 5 cm. The temperature distribution is 

determined using the illumination method with direct illumination only. In both DART-FT and 

DART-Lux images, we note that sunlit ground has a higher temperature than shaded ground. 

Also, the four parts of the roof give four different signals because they receive different direct 

illumination, depending on their orientation relatively to the solar direction.  
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Figure 5-5: Nadir brightness temperature (K) images simulated by DART-FT and DART-Lux 

for a simple synthetic scene at 10 µm. 

Turbid volume  

Thermal emission modeling in volumes is assessed by comparison with DART-FT for a simple 

turbid volume on top on a non-emitting and a non-reflective ground. The turbid volume has a 

LAI = 1, a spherical LAD, a thermodynamic temperature equal to 290 K, and leaf reflectance 

and transmittance both equal to 0.06 (i.e., 0.88 emissivity). Figure 5-6 shows the comparison 

of simulated radiance between DART-FT (CT = 1 min 2 s) and DART-Lux (CT = 8 s) between 

8 and 14 µm.  

 

Figure 5-6: Radiance comparison between DART-FT and DART-Lux for a simple turbid plot 
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Realistic urban scene: Brienne district (Toulouse) 

Figure 5-7 shows a brightness temperature image of the Brienne district in Toulouse, simulated 

using DART-FT (CT = 1 h 30 min, RAM = 23.25 GB) and DART-Lux (8 min 32 s, RAM = 

33.58 GB) at 10 µm wavelength. The scene is 750 × 1400 m² and the spatial resolution is 1 m. 

The temperature distribution is computed illumination (direct only) with a mesh grid resolution 

of 0.5 m in DART-Lux and an illumination step of 0.5 in DART-FT. The average image 

radiance is 10.340 𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1  for DART-FT and 10.360 𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1  for 

DART-Lux. Extreme values pixel are observed in the DART-FT image. For a more accurate 

DART-FT simulation, more discretization parameters are required which would increase 

computation time and memory requirements.  

a)  

b)  

Figure 5-7: Nadir brightness temperature (K) images at 10 µm of the Brienne district, Toulouse 

(750 × 1400 m², 1 m resolution) simulated by DART-FT (a) and DART-Lux (b) 
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Realistic forest scene: SERC forest 

Figure 5-8 shows an airborne brightness temperature image taken by the NASA’s GLiHT 

thermal infrared imager (spectral range [8 – 14 µm]) over the SERC forest (Maryland, USA), 

and its corresponding image simulated with DART-Lux. The mock-up is a 3D distibution of 

voxels derived from the GLiHT airborne LiDAR  measurements. It is 600 × 600 m² large with 

0.5 m voxel dimension. In the absence of a measurements of 3D temeprature distribution, the 

temperature was distibuted using the illumination with a priori minimal and maximal 

temperature values for vegetation and ground, and a priori emissivities. To mimic the airborne 

image, the modeling of a pushbroom camera was introduced into DART-Lux. It was used to 

simulate this image. Although only approximate input parameters were used, the simulated 

images shows some visual similarities with the real image.This simulation cannot be run with 

DART-FT due to large computational requirements.  

a)     b)  

Figure 5-8: Brightness temperature (K) image (8 – 14 µm) over the SERC forest a) GLiHT 

image b) DART-Lux simulated image  

 

Realistic maize field 

Figure 5-9 shows images of a maize field in Auzeville, France, used in the frame of the 

calibration of the future TRISHNA satellite mission. They were acquired using a thermal 

camera (7.7 – 13 µm) at different positions. Figure 5-9 also shows the corresponding DART-

Lux images. In these simulations, the mock-up was constructed respecting the real field 
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geometry and a single 3D maize plant object assumed to be representative. No LAI calibration 

was done. Leaves emissivity were measured from sample leaves from the field and temperature 

was distributed using the illumination method, with a priori temperature values because no 

temperature measurements were performed on the leaves. This is not a fully relevant 

comparison with field measurements, however, visual similarities with the simulated images 

can be observed.  

 

 

 

 

Figure 5-9: Thermal camera images (7.7 – 13 µm) of a maize field (left) and corresponding 

DART-Lux simulations (°C)  
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Fire simulation 

DART-Lux is also able to simulate fire simulation using volumes filled with fluids. As an 

example of fire application to DART-lux, we simulated an open vegetation fire scene, generated 

using the physical fire model FDS (McGrattan et al., 2013), which is part of the set of validation 

simulation of FDS (Case 064). It is based on measurements of a 1-ha experimental 

homogeneous grassland fire conducted in Australia (Mell et al., 2007). The scene is simulated 

using the latest FDS version to date (FDS6) and provides at 25 cm spatial resolution for several 

time steps 3D distribution of temperature, gas molar fraction for CO2, CO, H2O and soot 

volume fraction. The scene is input to DART using the DAO tool to load fluids as voxels and 

the temperature is included using a 3D temperature file created from the FDS output scene. 

The simulated fire image is for a Middle Infra-Red (MIR) camera, the agema 550, which has a 

narrow spectral band located at 3.9 µm. This spectral band is often used in fire monitoring. 

Figure 5-10 show nadir image simulated by DART-Lux, 50s after the ignition of the fire. During 

the experiment, only visible images were collected, so no image-to-image comparison is 

possible. Flames show brightness temperatures in an expected range in field scale propagating 

fire (>600K (Paugam et al., 2013)). 

 

Figure 5-10: Nadir brightness temperature (K) image of a fire over a vegetated scene. (Courtesy 

of Ronan Paugam) 
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5.2 Radiative budget modeling in DART-Lux 

DART-Lux uses the bi-directional path tracing algorithm to estimate sensor-level radiance 

using Monte Carlo integration techniques. It only computes end-to-end (i.e., light source to 

sensor) radiance contribution of sampled light paths. Hence, this method does not provide 

information about the amount and the fate of radiation (i.e., interception, scattering, absorption) 

at each vertex of these light paths. Therefore, unlike DART-FT, the simulation of images by 

DART-Lux is not adapted to the simultaneous simulation of the radiative budget. 

An alternative method was developed to overcome this limitation. It takes advantage of the 

efficient bi-directional radiance computation method of DART-Lux to have an estimation of 

the local radiative budget at a number of points distributed over the scene. Then, all the different 

radiative budget products (per facet, per voxel) are derived: 3D radiative budget per type of 

scene element, including vertical profiles and total radiative budget per type of scene element. 

These radiative budget products are well adapted to the simulation of photosynthesis of 3D 

plants. For example, they provide information on the radiation that is absorbed chlorophylls. 

This method is developed for scene elements simulated as facets and as volumes. 

5.2.1 Scene elements simulated as facets 

Eq (5.11) introduced in the illumination method for distributing temperature in the scene 

presented in Section 0 is used to estimate the local order 1 irradiance for a point 𝑃 of the scene. 

This equation can be extended to compute the row vector spectral irradiance 𝐸̂𝜆,𝑃,𝑛 of order 𝑛: 

𝐸̂𝜆,𝑃,𝑛 =
𝜋

𝑁
.∑𝐿𝜆,𝑃,𝑛(Ω𝑖)

𝑁

𝑖=1

  (5.29) 

with 𝐿𝜆,𝑃,𝑛(Ω𝑖) the row vector of order 𝑛 spectral radiance incident to the point 𝑃. 

Having estimated the local incident spectral radiation, the scattered 𝐸𝜆,𝑃,𝑠𝑐𝑎𝑡  and absorbed 

𝐸𝜆,𝑃,𝑎𝑏𝑠 spectral radiation vectors can be deduced: 

𝐸̂𝜆,𝑃,𝑠𝑐𝑎𝑡 = {
𝐸̂𝜆,𝑃,𝑛 ∗ 𝜌𝜆 (backward scattering) 

𝐸̂𝜆,𝑃,𝑛 ∗ 𝜏𝜆 (forward scattering)    
  (5.30) 

𝐸̂𝜆,𝑃,𝑎𝑏𝑠 = 𝐸̂𝜆,𝑃,𝑠𝑐𝑎𝑡 ∗ (1 − 𝜔𝜆) (5.31) 
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with 𝜌𝜆 and 𝜏𝜆 the hemispherical spectral reflectance and transmittance vectors respectively 

at the point 𝑃 and the spectral band (𝜆, Δ𝜆), and 𝜔𝜆 = 𝜌𝜆 + 𝜏𝜆 the single scattering albedo, 

(∗) is the vector element-wise product operator. 

In presence of SIF emission, it is also deduced as the product of the vector of spectral irradiance 

by the corresponding excitation emission fluorescence matrix:  

𝐸̂𝜆,𝑃,SIF = {
𝐸̂𝜆,𝑃,𝑛 ×𝑀𝑃𝑆𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (backward SIF) 

𝐸̂𝜆,𝑃,𝑛 ×𝑀𝑃𝑆𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 (forward SIF)      
  (5.32) 

with (×) the ordinary matrix product operator. 

The thermally emitted radiation is computed directly from the local temperature 𝑇: 

𝐸𝜆,𝑃,𝑒𝑚𝑖𝑠 = 𝜋. 𝐿𝜆,Δ𝜆( 𝑇)  (5.33) 

5.2.2 Scene elements simulated as volumes 

The bi-directional Monte Carlo rendering method previously presented for volumes allows one 

to simulate images of scenes containing these volumes. It allows one to sample light paths and 

to evaluate the contribution of these paths to the radiance observed by the sensor. It does not 

provide information about the intercepted, scattered, absorbed radiation along these paths. A 

method to compute these quantities for volumes was developed.  

A volume acquires radiative energy from ingoing radiation from its boundaries 𝐸𝑉,𝑖𝑛 and from 

emission 𝐸𝑉,𝑒𝑚𝑖𝑠, and loses the radiative energy that exits through its boundaries 𝐸𝑉,𝑜𝑢𝑡 and by 

absorption 𝐸𝑉,𝑎𝑏𝑠. The energy conservation principle states:  

𝐸𝑉,𝑖𝑛 + 𝐸𝑉,𝑒𝑚𝑖𝑠 = 𝐸𝑉,𝑜𝑢𝑡 + 𝐸𝑉,𝑎𝑏𝑠 (5.34) 

The method used for computing facets radiative budget can also be used to compute the incident 

radiation of the two sides of the boundary surfaces of volumes and therefore it allows to 

compute the estimations of the spectral ingoing 𝐸̂𝜆,𝑉,𝑖𝑛 and outgoing 𝐸̂𝜆,𝑉,𝑜𝑢𝑡 radiation vectors. 

In presence of thermal emission, the spectral emission 𝐸𝜆,𝑉,𝑒𝑚𝑖𝑠 can be computed knowing the 

spectral emitted radiance 𝐿𝜆,Δ𝜆  and the total area of leaves 𝐴𝑙  inside the volume for turbid 

volumes. For each spectral band (𝜆, Δ𝜆): 

𝐸𝜆,𝑉,𝑒𝑚𝑖𝑠 = 2. 𝜋. 𝐴𝑙 . 𝐿𝜆,Δ𝜆 (5.35) 
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For a fluid volume of total volume 𝑉: 

𝐸𝜆,𝑉,𝑒𝑚𝑖𝑠 = 4. 𝜋. 𝑉. 𝜎𝑡,Δ𝜆 ∗ 𝐿Δ𝜆 (5.36) 

Therefore, the absorbed radiation can be estimated, and consequently the estimations of 

intercepted radiation 𝐸̂𝜆,𝑉,𝑖𝑛𝑡 and the scattered radiation 𝐸̂𝜆,𝑉,𝑠𝑐𝑎𝑡 can be deduced knowing the 

spectral single scattering albedo 𝜔𝜆. 

𝐸̂𝜆,𝑉,𝑎𝑏𝑠 = 𝐸̂𝜆,𝑉,𝑖𝑛 − 𝐸̂𝜆,𝑉,𝑜𝑢𝑡 + 𝐸𝜆,𝑉,𝑒𝑚𝑖𝑠 (5.37) 

𝐸̂𝜆,𝑉,𝑖𝑛𝑡 =
𝐸̂𝜆,𝑉,𝑎𝑏𝑠
1 − 𝜔𝜆

 
(5.38) 

𝐸̂𝜆,𝑉,𝑠𝑐𝑎𝑡 = 𝐸̂𝜆,𝑉,𝑖𝑛𝑡 × 𝜔𝜆 (5.39) 

Where ÷ is the vector element-wise division operator. 

We note from Eq (5.38) that if for a given spectral band (𝜆𝑖, Δ𝜆𝑖), 𝐸𝜆𝑖,𝑉,𝑎𝑏𝑠 = 0, and therefore 

𝜔𝜆𝑖 = 1, it is impossible to compute and 𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡 and therefore 𝐸̂𝜆𝑖,𝑉,𝑠𝑐𝑎𝑡. In case 𝜔𝜆𝑖 is close to 

1, 𝐸𝜆𝑖,𝑉,𝑎𝑏𝑠 is small compared to 𝐸𝜆𝑖,𝑉,𝑖𝑛 and 𝐸𝜆𝑖,𝑉,𝑜𝑢𝑡 and this causes high variance of 𝐸̂𝜆𝑖,𝑉,𝑎𝑏𝑠, 

𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡 and 𝐸̂𝜆𝑖,𝑉,𝑠𝑐𝑎𝑡 (c.f. Appendix 5-3).  

In presence of SIF emission, the spectral emission 𝐸𝑒𝑚𝑖𝑠  can be estimated using the 

fluorescence excitation emission matrix 𝑀𝑃𝑆𝑥 = 𝑀𝑃𝑆𝑥,𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 +𝑀𝑃𝑆𝑥,𝑓𝑜𝑟𝑤𝑎𝑟𝑑:  

𝐸̂𝜆,𝑉,𝑒𝑚𝑖𝑠 = 𝐸̂𝜆,𝑉,𝑖𝑛𝑡 ×𝑀𝑃𝑆𝑥 (5.40) 

Therefore, Eq (5.34) gives: 

𝐸̂𝜆,𝑉,𝑖𝑛 − 𝐸̂𝜆,𝑉,𝑜𝑢𝑡 = 𝐸̂𝜆,𝑉,𝑖𝑛𝑡 ∗ (1 − 𝜔𝜆) + 𝐸̂𝜆,𝑉,𝑖𝑛𝑡 ×𝑀𝑃𝑆𝑥 (5.41) 

And consequently 

𝐸̂𝜆,𝑉,𝑖𝑛𝑡 = (𝐸̂𝜆,𝑉,𝑖𝑛 − 𝐸̂𝜆,𝑉,𝑜𝑢𝑡) × (𝐼 − 𝑑𝑖𝑎𝑔(𝜔𝜆) − 𝑀𝑃𝑆𝑥)
−1 (5.42) 

Where 𝐼 is the identity matrix and (. )−1 is the matrix inversion operator. 
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5.2.3 Results 

Scene elements simulated as facets 

Figure 5-11 shows a radiative budget product (intercepted radiation per facet) of a maize field 

computed using DART-Lux and compared DART-FT. The results provided by the two modes 

are similar. However, computation time is longer for DART-Lux (1 min 39 s) compared to 

DART-FT (54 s). From, the intercepted radiation, the scattered and absorbed radiation as well 

as the SIF emission (only for SIF emission bands) can be derived (Figure 5-14). The emitted 

thermal radiation is computed independently and directly from the local temperature (Figure 

5-14). 

a)  b) c)  

Figure 5-11: Intercepted radiation (W.m-2.µm-2) for a visible band in of a maize field computed 

using a) DART-FT b) DART-Lux c) vertical profile comparison 

a) b) c)  

Figure 5-12: a) Scattered radiation, b) absorbed radiation and c) SIF emission (W.m-2.µm-2) per 

facet computed by DART-Lux. 

MARD = 2,3% 
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Figure 5-13: Emitted thermal radiation (W.m-2.µm-2) computed by DART-Lux 

Scene elements simulated as turbid 

a)  

b)  

c)  

Figure 5-14: Absorbed radiation of a turbid plot computed by DART-Lux compared to 

DART-FT a) LAI = 1, b) LAI = 0.5, c) LAI = 0.2 
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Figure 5-14 shows a radiative budget product (absorbed radiation) of a turbid plot computed by 

DART-Lux and compared to DART-FT for different LAI values. As mentioned in Section 

2255.2.2, the estimation of absorbed radiation is less accurate (i.e., higher relative difference 

with DART-FT considered here as reference) for high values of single scattering albedo, i.e., 

for near infrared bands. Moreover, the smaller the LAI value is, is the small is the absorption 

and the less accurate is its estimation by DART-Lux. 

Although the absorption estimation is not accurate in the near infrared, we can get a good 

estimation of the emitted SIF as shown because it is only due to absorption in the visible domain 

 

Figure 5-15: Emitted SIF of a turbid plot computed by DART-Lux compared to DART-FT 

(LAI = 0.5) 

5.2.4 Discussion 

The developed method takes advantage of the efficiency of DART-Lux for computing radiance 

images to compute the radiative budget products. It allows DART-Lux to compute most of the 

radiative budget components already available in DART-FT. The only case where it cannot 

provide results is for volumes and for spectral bands with a high single scattering albedo. 

However, this method is not optimal for computing the radiative budget. Indeed, the local 

incident radiation at each point is computed independently from the others, leading to many 

repetitive computations. To reduce these repetitive computations, the same light sub-paths are 

stored and used for all the points. This slightly improves the performance, but it is still less 

efficient than the forward model DART-FT.  

However, it offers some advantages: 1) it is highly flexible: the user can choose to compute the 

radiative budget only for regions or scene elements of interest, with consideration of all the 

other scene elements. Therefore, in the case where the elements of interest are much smaller 

than the total scene, it can be more efficient than DART-FT. For instance, if one is interested 
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in having the SIF emission of one of the six maize plants shown in Figure 5-12, it is possible to 

compute it independently of the other plants (Figure 5-16) and the computation time in this case 

become 16 s compared to 1 min 39 s for the total scene and 54 s for DART-FT. 2) it highly 

parallelizable: radiative budget of different elements of the same scene can be computed 

independently and parallelly on several machines. 3) It can benefit from a future use of Graphics 

Processing Units (GPUs) for accelerating the ray tracing. 

 

Figure 5-16: SIF emission (W.m-2.µm-2) of one of the six maize plants 

5.3 Conclusion 

In this chapter, we introduced the thermal emission and radiative budget modeling in DART-

Lux due to their importance in the energy balance modeling. The thermal emission modeling 

was introduced for scene elements simulated as facets or volumes, and allowed to simulate 

efficiently large-scale thermal infrared images. The radiative budget modeling is usually less 

efficient than DART-FT. However, it is flexible and can be efficient if the radiative budget of 

only a limited part of the scene is needed. It can probably be improved in the future, notably 

through the use of GPUs.
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𝔼[𝐸̂𝑃,𝑑𝑖𝑓𝑓,1] =
𝜋

𝑁
.∑𝔼[𝐿𝑃,1(Ω𝑖)]

𝑁

𝑖=1

 

 

=
𝜋

𝑁
.∑∫ 𝐿𝑃,1(Ω𝑖).

2𝜋

𝑁

𝑖=1

|Ω. 𝑛⃗ |

𝜋
. 𝑑𝛺 

 

= ∫ 𝐿𝑃,1(Ω𝑖).
2𝜋

|Ω. 𝑛⃗ |

𝜋
. 𝑑𝛺 

 
= 𝐸𝑃,𝑑𝑖𝑓𝑓,1 

We have 𝑝(𝑙) = 𝑐. 𝑒−𝐺(Ω).𝑢𝑙.𝑙 and ∫ 𝑝(𝑙). 𝑑𝑙
𝐻

0
= 1. 

Then, 𝑐 =
1

∫ 𝑒−𝐺(Ω).𝑢𝑙.𝑙.𝑑𝑙
𝐻
0

=
𝐺(Ω).𝑢𝑙

1−𝑒−𝐺(Ω).𝑢𝑙.𝐻
 

Therefore, 𝑝(𝑙) =
𝐺(Ω).𝑢𝑙.𝑒

−𝐺(Ω).𝑢𝑙.𝑙

1−𝑒−𝐺(Ω).𝑢𝑙.𝐻
 

The CDF of 𝑝(𝑙) is: 𝑃(𝑙) = ∫
𝐺(Ω).𝑢𝑙.𝑒

−𝐺(Ω).𝑢𝑙.𝑥

1−𝑒−𝐺(Ω).𝑢𝑙.𝐻
. 𝑑𝑥 =

1−𝑒−𝐺(Ω).𝑢𝑙.𝑙

1−𝑒−𝐺(Ω).𝑢𝑙.𝐻
𝑙

0
 

To sample a distance 𝑙 from 𝑝(𝑙) using a random number 𝜉: 𝑃(𝑙) =
1−𝑒−𝐺(Ω).𝑢𝑙.𝑙

1−𝑒−𝐺(Ω).𝑢𝑙.𝐻
= 𝜉 

Then, 𝑙 =
− ln(1−𝜉(1−𝑒−𝐺(𝛺).𝑢𝑙.𝐻))

𝐺(Ω).𝑢𝑙
 

The order 1 radiance observed by the sensor in this configuration is: 

𝐿𝑜𝑟𝑑𝑒𝑟1(𝑇1, 𝑇2) = ∫ 𝐺(𝛺). 𝑢𝑙 . 𝐿𝜆,𝛥𝜆( 𝑇(𝑧)). 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧. 𝑑𝑧

𝐻

0

 

Appendix 5-1: Expected value of 𝑬̂𝑷,𝒅𝒊𝒇𝒇,𝟏  

Appendix 5-2: 
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= ∫ 𝐺(𝛺). 𝑢𝑙 . 𝐿𝜆,𝛥𝜆( 𝑇(𝑧)). 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧. 𝑑𝑧

ℎ

0

+∫ 𝐺(𝛺). 𝑢𝑙 . 𝐿𝜆,𝛥𝜆( 𝑇(𝑧)). 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧. 𝑑𝑧

𝐻

ℎ

 

 
= 𝐿𝜆,𝛥𝜆( 𝑇1)(1 − 𝑒

−𝐺(𝛺).𝑢𝑙.ℎ) + 𝐿𝜆,𝛥𝜆( 𝑇1)(𝑒
−𝐺(𝛺).𝑢𝑙.𝐻 − 𝑒−𝐺(𝛺).𝑢𝑙.ℎ) 

The expected order 1 radiance computed using the sampling technique:  

𝐸[𝐿̂] = ∫ 𝐿𝑜𝑟𝑑𝑒𝑟1( 𝑇(𝑧)). 𝑝(𝑧). 𝑑𝑧
𝐻

0

 

 

= ∫ 𝐿𝜆,𝛥𝜆( 𝑇(𝑧)). [1 − 𝑒
−𝐺(𝛺).𝑢𝑙.𝐻].

𝐻

0

𝐺(𝛺). 𝑢𝑙 . 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧

1 − 𝑒−𝐺(𝛺).𝑢𝑙.𝐻
. 𝑑𝑧 

 

= 𝐿𝜆,𝛥𝜆( 𝑇1).∫ 𝐺(𝛺). 𝑢𝑙 . 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧. 𝑑𝑧

ℎ

0

+ 𝐿𝜆,𝛥𝜆( 𝑇2).∫ 𝐺(𝛺). 𝑢𝑙 . 𝑒
−𝐺(𝛺).𝑢𝑙.𝑧. 𝑑𝑧

𝐻

ℎ

 

 
= 𝐿𝜆,𝛥𝜆( 𝑇1)(1 − 𝑒

−𝐺(𝛺).𝑢𝑙.ℎ) +𝐿𝜆,𝛥𝜆( 𝑇1)(𝑒
−𝐺(𝛺).𝑢𝑙.𝐻 − 𝑒−𝐺(𝛺).𝑢𝑙.ℎ) 

 
= 𝐿𝑜𝑟𝑑𝑒𝑟1(𝑇1, 𝑇2) 

Variance of 𝐸̂𝑎𝑏𝑠: 

𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑎𝑏𝑠) = 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛 − 𝐸̂𝜆𝑖,𝑉,𝑜𝑢𝑡 + 𝐸𝜆𝑖,𝑉,𝑒𝑚𝑖𝑠) 

 = 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛) + 𝑣𝑎𝑟(−𝐸̂𝜆𝑖,𝑉,𝑜𝑢𝑡) + 𝑣𝑎𝑟(𝐸𝜆𝑖,𝑉,𝑒𝑚𝑖𝑠) 

 
=  𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛) + 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑜𝑢𝑡) 

Therefore, if 𝐸𝜆𝑖,𝑉,𝑎𝑏𝑠 ≪ 𝐸𝜆𝑖,𝑉,𝑖𝑛  and 𝐸𝜆𝑖,𝑉,𝑎𝑏𝑠 ≪ 𝐸𝜆𝑖,𝑉,𝑜𝑢𝑡 , 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑎𝑏𝑠)  becomes very high 

compared to the real value 𝐸𝜆𝑖,𝑉,𝑎𝑏𝑠. 

Variance of 𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡:  

Appendix 5-3: Variance of volume radiative budget components 
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𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡) = 𝑣𝑎𝑟 (
𝐸̂𝜆𝑖,𝑉,𝑎𝑏𝑠

1 − 𝜔𝜆𝑖
) 

 =
1

(1 − 𝜔𝜆𝑖)
2 (𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛) + 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉𝑜𝑢𝑡)) 

Therefore, 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡) → +∞ if 𝜔 → 1 

Variance of 𝐸̂𝜆𝑖,𝑉,𝑠𝑐𝑎𝑡:  

𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑠𝑐𝑎𝑡) = 𝑣𝑎𝑟(𝜔𝜆𝑖 . 𝐸̂𝜆𝑖,𝑉,𝑖𝑛𝑡) 

 = (
𝜔𝜆𝑖

1 − 𝜔𝜆𝑖
)

2

. (𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑖𝑛) + 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑜𝑢𝑡)) 

Therefore, 𝑣𝑎𝑟(𝐸̂𝜆𝑖,𝑉,𝑠𝑐𝑎𝑡) → +∞ if 𝜔𝜆𝑖 → 1 

Appendix 5-4: Nomenclature 

Symbol Description  Unit 

𝐸̂𝜆,𝑃,𝑎𝑏𝑠 Estimator of absorbed radiation at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑃,𝑛 Estimator of incident radiation at point 𝑃 (order 𝑛) 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑃,𝑠𝑐𝑎𝑡 Estimator of scattered radiation at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑃,SIF Estimator of SIF emission at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑉,𝑎𝑏𝑠 Estimator of scattered radiation at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑉,𝑒𝑚𝑖𝑠 Estimator of emitted radiation in a volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑉,𝑖𝑛𝑡 Estimator of intercepted radiation in a volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸̂𝜆,𝑉,𝑠𝑐𝑎𝑡 Estimator of scattered radiation in a volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝐵𝑂𝐴 Bottom of atmosphere irradiance 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝑃,1 First order irradiance at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝑃,𝑑𝑖𝑓𝑓,1 First order diffuse irradiance at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 
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𝐸𝑃,𝑑𝑖𝑟,1 First order direct irradiance at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝑉,𝑖𝑛 Ingoing radiation to volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝑉,𝑜𝑢𝑡 Outgoing radiation from volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝜆,𝑃,𝑒𝑚𝑖𝑠 Emitted radiation at point 𝑃 𝑊.𝑚−2. 𝜇𝑚−1 

𝐸𝜆,𝑉,𝑒𝑚𝑖𝑠 Emitted radiation at volume 𝑉 𝑊.𝑚−2. 𝜇𝑚−1 

𝑓𝑠𝑢𝑛𝑙𝑖𝑡 Fraction of sunlit leaves - 

𝐿𝐵(𝜆, 𝑇) Black body of temperature 𝑇  emitted radiance at 

wavelength 𝜆 

𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝐿𝑜𝑟𝑑𝑒𝑟1 Order 1 emitted radiance of a volume  𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝐿𝜆,Δ𝜆(𝑇) Emitted radiance of an object of temperature 𝑇 at the 

spectral band (𝜆, Δ𝜆) 

𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝐿𝜆(𝑇) Emitted radiance of an object of temperature 𝑇  at 

wavelength 𝜆 

𝑊.𝑚−2. 𝜇𝑚−1. 𝑠𝑟−1 

𝑀𝐵(𝑇) Black body object of temperature 𝑇 thermal emission 

exitance 

𝑊.𝑚−2 

𝑇 Thermodynamic temperature  𝐾 

𝑇𝐵 Brightness temperature  𝐾 

𝑇𝑃 Thermodynamic temperature at point 𝑃 𝐾 

𝜆𝑒𝑞 Equivalent wavelength  𝜇𝑚  
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This thesis was driven by the need for a comprehensive SIF model in order to link the 

SIF observations to the photosystem level instantaneous photosynthetic activity and to enable 

a better understanding and interpretation of these observations with the purpose of monitoring 

the photosynthesis process at different spatial and temporal scales. This is crucial for addressing 

some of the most imperious challenges such as climate change and the need to provide food for 

the increasing world population under the constraints of water scarcity and the increasing 

frequency of extreme weather conditions. 

DART is one of the most comprehensive radiative transfer models for RS applications. Since 

2017, its initial flux tracking mode (DART-FT) simulates SIF by upscaling leaf-level SIF 

simulated by Fluspect for canopies simulated as facets, and can provide SIF radiation budget 

and TOA and BOA RS observations of these canopies. Faced with the difficulty of having a 

complete SIF measurements dataset for a relevant comparison with a SIF radiative transfer 

model, we went through model-to-model comparison to assess the accuracy of the DART-FT 

SIF modeling. DART-FT gave results in agreement with the “reference” SIF model 

SCOPE/mSCOPE (1D) for horizontally homogeneous scenes and for different configurations, 

by approximating the turbid medium used in SCOPE with a quasi-turbid medium (i.e., a cloud 

of facets randomly distributed). Then, DART-FT was extended to simulate SIF for vegetation 

represented as 3D turbid medium. This statistical representation of vegetation is widely used in 

RS radiative transfer models, especially for simulating large landscapes. For example, it can be 

useful for reducing the computational requirements for scenes simulated with a very large 

number of facets, or if the explicit 3D representation with facets of the simulated scene is not 

available (e.g., only a 3D array of LAI is available). DART-FT SIF modelling for quasi-turbid 

medium and for turbid medium appeared to closely match. This is a kind of validation for 

DART-FT SIF modelling for turbid medium because DART-FT SIF modelling for quasi turbid 

medium has already been validated with SCOPE model. 

Conclusions and perspectives 
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However, the need for simulating SIF large for landscapes (e.g., a few square kilometers) driven 

by the advancements in the reconstruction methods of large 3D mock-ups and also the 

upcoming SIF satellite mission FLEX which will have a spatial resolution of 300 m, cannot be 

satisfied with DART-FT. Indeed, DART-FT cannot simulate large landscapes with reasonable 

computational resources because it tracks all radiation all over the scene which is convenient if 

the radiative budget of the whole scene is required, but it is not optimal for simulating images. 

For this reason, a more efficient mode called DART-Lux is developed. It uses a Monte Carlo 

bi-directional path tracing algorithm implementation from the open-source rendering engine 

LuxCoreRender adapted for RS applications and included in the DART framework. It can 

greatly decrease computation time and memory usage especially for large and complex scenes. 

Therefore, DART-Lux is well adapted to the simulation of large scenes. This highlights the 

interest to introduce the modeling of SIF and thermal emission in DART-Lux. The simulation 

of images in DART-Lux was extended to SIF images simulation by adapting the SIF emission 

equation to the bi-directional path tracing algorithm. The 3D turbid medium modeling of 

vegetation was also introduced, including the SIF. DART-Lux SIF modeling was assessed by 

comparison to DART-FT: the two modes provided results in close agreement. Computational 

requirements are usually much less important for DART-Lux, especially for large and complex 

scenes. The gain in computation time decreases if the number of spectral bands increases. 

The introduction of SIF in DART-Lux allowed one to simulate SIF observations for large and 

complex scenes that were not possible to simulate using DART-FT. It was applied to eight 

realistic forest plots to evaluate the impact of the 3D structure on SIF observation by comparing 

3D SIF simulations to their equivalent 1D simulations. For nadir radiance, we had large relative 

difference that could reach 50% especially for oblique sun directions. DART-FT radiative 

budget products obtained with low spectral resolution allowed one to analyze these differences. 

They are explained by two major reasons: 1) the canopy represented in 3D absorbs less PAR 

and therefore emits less SIF than 1D canopies due to clumping and shadowing effects. 2) the 

emitted SIF within the canopy escapes more easily from 1D canopies than from 3D canopies. 

Similarly, the neglect of woody elements in 3D canopies leads to an overestimation of SIF: the 

presence of wood elements reduces the PAR absorption by the leaves (shadowing effect) and 

prevents a fraction of the emitted SIF from escaping the canopy (blocking effect).  

An accurate simulation of SIF requires the consideration of local meteorological parameters 

that influence the fluorescence quantum efficiency and therefore SIF emission. Therefore, a 



CONCLUSIONS AND PERSPECTIVES 

 

 237 

simulation of the full energy budget is required including all the energy exchanges of the 

vegetation with its environment whether they are made via radiative or non-radiative processes. 

From the radiation point of view, it is essential to evaluate the energy gain of the vegetation by 

the incident solar radiation, and the energy loss by thermal emission. Therefore, we have 

introduced the modeling of the radiative budget and thermal emission in DART-Lux. Thermal 

emission modeling proved to be very efficient and accurate by comparison with DART-FT. 

Although the radiative budget modeling using the bi-directional path tracing method is less 

efficient than the discrete ordinates method (i.e., DART-FT) for most scenes, its flexibility 

offers advantages. Indeed, it allows one to get the radiative budget for a set of sub-zones in the 

simulated scene, and this radiative budget can be calculated per type of scene element. Future 

improvements, notably the use of GPU acceleration, can make the implemented method more 

and more useful. 

The remaining step towards the development of a comprehensive SIF model is the consideration 

of non-radiative energy exchange processes. These processes include photosynthesis, heat 

conduction, turbulence, etc. A 1D/ 3D energy model, called DART-EB (Energy Budget), is 

being developed by the DART team. In addition to the radiative energy exchanges (thermal 

emission, radiation budget) computed by DART, DART-EB simulates non-radiative processes. 

Starting from an initial guess of local temperature, the energy exchanges are computed. 

Obviously, the energy balance condition (i.e., energy gains equal to energy loss) is not verified. 

Then, an iterative approach starts and local temperatures are adjusted at each iteration until 

convergence. (i.e., reaching the energy balance). DART-EB will allow to assess the 3D 

temperature distribution and the multiplicative factors 𝜂 that scale the dark-adapted leaf-level 

SIF emission to give steady state SIF as function of the leaf photosynthetic rate. In addition to 

SIF observations, thermal images will also be more accurately simulated using this physically-

based approach. This is important in the frame of the preparation of the upcoming satellite 

missions with high spatial resolution thermal infrared sensors on-board (i.e., TRISHNA mission 

of CNES / ISRO and LSTM mission of ESA).  
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Cette thèse a été motivée par le besoin d’un modèle SIF complet afin de relier les 

observations SIF à l’activité photosynthétique instantanée au niveau du photosystème et de 

permettre une meilleure compréhension et interprétation de ces observations dans le but de 

suivre le processus de photosynthèse à différentes échelles spatiales et temporelles. Ceci est 

crucial pour répondre à certains des défis les plus impérieux tels que le changement climatique 

et la nécessité de fournir de la nourriture à une population mondiale croissante sous les 

contraintes de la rareté de l’eau et de la fréquence croissante des conditions météorologiques 

extrêmes. 

DART est l’un des modèles de transfert radiatif les plus complets pour les applications de 

télédétection. Depuis 2017, son mode de suivi de flux initial (DART-FT) simule la SIF en 

mettant à l’échelle la SIF au niveau des feuilles simulé par Fluspect pour les canopées simulées 

sous forme de facettes, et peut fournir un bilan radiatif de SIF et des observations de télédections 

en TOA et en BOA de ces couverts. Face à la difficulté d’avoir un jeu de données complet de 

mesures SIF pour une comparaison pertinente avec un modèle de transfert radiatif SIF, nous 

sommes passés par une comparaison modèle à modèle pour évaluer la précision de la 

modélisation DART-FT SIF. DART-FT a donné des résultats en accord avec le modèle SIF "de 

référence" SCOPE/mSCOPE (1D) pour des scènes homogènes horizontalement et pour 

différentes configurations, en rapprochant le milieu turbide utilisé dans SCOPE avec un milieu 

quasi turbide (i.e., un nuage de facettes réparties aléatoirement). Ensuite, DART-FT a été étendu 

pour simuler la SIF pour la végétation représentée sous forme de milieu turbide 3D. Cette 

représentation statistique de la végétation est largement utilisée dans les modèles de transfert 

radiatif pour la télédétection, surtout pour simuler des paysages larges. Par exemple, elle peut 

être utile pour réduire les besoins en ressources de calcul pour des scènes simulées avec un très 

grand nombre de facettes, ou si la représentation 3D explicite avec des facettes de la scène 

simulée n’est pas disponible (e.g., seule une distribution 3D de LAI est disponible). La 

Conclusions et perspectives 
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modélisation de SIF de DART-FT pour le milieu quasi-turbide et pour le milieu turbide 

montrent une correspondance étroite. Il s'agit d'une sorte de validation pour la modélisation 

DART-FT SIF pour milieu turbide car la modélisation DART-FT SIF pour milieu quasi turbide 

a déjà été validée avec le modèle SCOPE 

Cependant, le besoin de simuler la SIF pour des grands paysages (e.g., quelques kilomètres 

carrés) porté par les progrès des méthodes de reconstruction de grandes maquettes 3D et 

également la prochaine mission satellite SIF FLEX qui aura une résolution spatiale de 300 m, 

ne peut pas être satisfait par DART-FT. En effet, DART-FT ne peut pas simuler de grands 

paysages avec des ressources de calcul raisonnables parce qu’il suit tous les rayons sur toute la 

scène, ce qui est pratique si le bilan radiatif de toute la scène est requis, mais ce n’est pas optimal 

pour la simulation d’images. Pour cette raison, un mode plus efficace appelé DART-Lux est 

développé. Il utilise une implémentation d’algorithme de traçage de chemin bidirectionnel 

Monte Carlo à partir du moteur de rendu open source LuxCoreRender adaptée aux applications 

RS et incluse dans le framework de DART. Il peut généralement réduire le temps de calcul et 

le besoin en mémoire, en particulier pour les scènes volumineuses et complexes. Par conséquent, 

DART-Lux est bien adapté à la simulation de grandes scènes. Ceci met en évidence l'intérêt 

d'introduire la modélisation du SIF et de l'émission thermique dans DART-Lux. La simulation 

d’images par DART-Lux a été étendue à la simulation d’images SIF en adaptant l’équation 

d’émission SIF à l’algorithme de traçage de chemin bidirectionnel. La modélisation 3D du 

milieu turbide de la végétation a également été introduite, y compris la SIF. DART-Lux SIF a 

été évalué par comparaison avec DART-FT : les deux modes ont fourni des résultats en accord 

étroit. Les exigences de calcul sont généralement beaucoup moins importantes pour DART-

Lux, en particulier pour les scènes volumineuses et complexes. Le gain en temps de calcul 

diminue si le nombre de bandes spectrales augmente. 

L’introduction de la SIF dans DART-Lux a permis de simuler des observations SIF pour des 

scènes larges et complexes qu’il n’était pas possible de simuler avec DART-FT. Il a été appliqué 

à huit maquettes forestières réalistes pour évaluer l’impact de la structure 3D sur l’observation 

SIF en comparant des simulations SIF 3D à leurs simulations 1D équivalentes. Pour la 

luminance au nadir, nous avons eu une grande différence relative qui pouvait atteindre 50%, en 

particulier pour les directions solaires obliques. Les produits de bilan radiatif DART-FT 

obtenus avec une faible résolution spectrale ont permis d’analyser ces différences. Elles 

s’expliquent par deux raisons principales : 1) la canopée représentée en 3D absorbe moins de 
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PAR et émet donc moins de SIF que les canopées 1D en raison des effets d’agglutination et 

d’ombrage. 2) la SIF émise dans la canopée s’échappe plus facilement des canopées 1D que 

des canopées 3D. De même, la négligence des éléments ligneux dans les canopées 3D conduit 

à une surestimation de la SIF : la présence d’éléments ligneux réduit l’absorption du PAR par 

les feuilles (effet d’ombrage) et empêche une fraction de la SIF émis de s’échapper de la 

canopée (effet de blocage). 

Une simulation précise de la SIF nécessite la prise en compte des paramètres météorologiques 

locaux qui influencent l’efficacité quantique de la fluorescence et donc l’émission de SIF. Il 

faut donc simuler le bilan énergétique complet incluant tous les échanges énergétiques de la 

végétation avec son environnement qu’ils se fassent par des processus radiatifs ou non radiatifs. 

Du point de vue du rayonnement, il est essentiel d’évaluer le gain d’énergie de la végétation 

par le rayonnement solaire incident, et la perte d’énergie par émission thermique. Par 

conséquent, nous avons introduit la modélisation du bilan radiatif et de l'émission thermique 

dans DART-Lux. La modélisation des émissions thermiques s'est avérée très efficace et précise 

par rapport à DART-FT. Bien que la modélisation du bilan radiatif utilisant la méthode de 

traçage de chemin bidirectionnel soit moins efficace que la méthode des ordonnées discrètes 

(i.e., DART-FT) pour la plupart des scènes, sa flexibilité offre des avantages. En effet, elle 

permet d'obtenir le bilan radiatif pour un ensemble de sous-zones de la scène simulée, et ce 

bilan radiatif peut être calculé par type d'élément de scène. Des améliorations futures, 

notamment l'utilisation de l'accélération GPU, peuvent rendre la méthode implémentée de plus 

en plus utile. 

L'étape restante vers le développement d'un modèle SIF complet est la prise en compte des 

processus d'échange d'énergie non radiatifs. Ces processus incluent la photosynthèse, la 

conduction thermique, la turbulence, etc. Un modèle énergétique 1D/3D, appelé DART-EB 

(Energy Budget), est en cours de développement par l'équipe DART. En plus des échanges 

d'énergie radiative (émission thermique, bilan radiatif) calculés par DART, DART-EB simule 

des processus non radiatifs. A partir d'une estimation initiale de la température locale, les 

échanges d'énergie sont calculés. De toute évidence, la condition de bilan énergétique (i.e., des 

gains d'énergie égaux à la perte d'énergie) n'est pas vérifiée. Ensuite, une approche itérative 

démarre et les températures locales sont ajustées à chaque itération jusqu'à convergence. (i.e., 

atteindre l’équilibre énergétique). DART-EB permettra d'évaluer la distribution de température 

3D et les facteurs multiplicatifs 𝜂  qui pondèrent l'émission de SIF au niveau des feuilles 
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adaptées à l'obscurité pour donner la SIF à l'état d'équilibre en fonction du taux de 

photosynthèse des feuilles. En plus des observations SIF, les images thermiques seront 

également simulées avec plus de précision à l'aide de cette approche basée sur la physique. Ceci 

est important dans le cadre de la préparation des prochaines missions satellites avec des capteurs 

infrarouges thermiques à haute résolution spatiale embarqués (i.e., la mission TRISHNA du 

CNES / ISRO et la mission LSTM de l’ESA).
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