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RESUMEN EN ESPANOL

A una isla del caribe
He tenido que emigrar
Y trabajar de camarero
Lejos lejos de mi hogar

De mi hogar.

Mirnia Terra Galega, de Siniestro Total

Esta tesis se centra en preguntas que comparan nimeros faciles de definir pero no faciles
de calcular. La accién de un grupo G sobre un espacio métrico X se dice propia si para
cada r > 0, y para cada x € X, el nimero de elementos u € G que mueven x a distancia a
lo sumo r es finito. Sea GG un grupo actuando mediante isometrias y propiamente sobre
un espacio métrico X. La tasa de crecimiento exponencial relativa de la accion de un

subconjunto U C G sobre X es el nimero
i 1
w(U,X) =limsup—log{ueU : |ux—zx|<r},
r—oo T

cuyo valor es independiente del punto x € X. Si GG es el grupo fundamental de una variedad
hiperbélica cerrada M que actiia sobre el espacio recubridor universal X, entonces w(G, X)
tiene numerosas interpretaciones. Coincide con la entropia de volumen de la variedad M,
[71, 62]; el exponente critico de la serie de Poincaré de G, [67, 76]; la entropia topoldgica
del flujo geodésico en el fibrado tangente unitario de M, [60]; la dimension de Hausdorff
del conjunto limite radial de G, [28], etc. En este contexto, el nimero w(G, X) es la
piedra angular que une grupos, geometria y dinamica. La discrecion de la érbita de G y la
curvatura negativa de M juegan un papel determinante en este fenémeno.

El objetivo de esta tesis es cuantificar el crecimiento en grupos a partir de sus acciones
mediante isometrias sobre espacios métricos. El enfoque consiste en observar desde un
punto de vista muy lejano. La hazana estd en la finitud y las condiciones de curvatura
negativa o nula de acciones y espacios. Sean ¢, x, N > 0. La accién de un grupo G sobre
un espacio 0-hiperbdlico X se dice (k, N)-acilindrica, [72, 18, 66, 38], si para cada par

de puntos x,y € X que distan al menos k, el nimero de elementos u € G que mueve
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cada uno de los puntos z,y a una distancia de a lo sumo 1004 esta acotado superiormente
por N. La udltima década ha estado enfocada en el estudio de grupos que admiten una
accion acilindrica sobre un espacio hiperbdlico en el sentido de Gromov, [66]. Esta es una
familia muy amplia de grupos que incluye grupos relativamente hiperbdélicos, grupos de
cancelacion pequena clasica infinitamente presentados, grupos modulares de superficies,
grupos de automorfismos exteriores de grupos libres, grupos de Artin de angulo recto,
etc. Resulta que la mayoria de las veces los grupos que actiian acilindricamente sobre un
espacio hiperbdlico también admiten acciones propias sobre otros espacios que no son
necesariamente hiperbdlicos, pero que contienen isometrias que se comportan como las
isometrias loxodromicas de un espacio hiperbdlico: elementos constrictor, [74], bajo la
terminologia de [8]. De hecho, el reciproco siempre es cierto.

La moraleja de la tesis recoge la siguiente idea de M. Gromov: bajo un punto de
vista global curvado de forma negativa o nula, todavia es posible producir resultados
solidos para un grupo tipico, lo que a veces puede aproximar nuestra comprension de
los grupos monstruo. Estudiaremos dos problemas diferentes usando argumentos de baja
tecnologia que involucran la desigualdad triangular. El primero versara sobre el crecimiento
de subgrupos cuasi-convexos en grupos actuando propiamente con un elemento constrictor.
A mayores, hemos anadido un apéndice en donde se describen algunas caracteristicas
elementales de la propiedad de constriccion. El segundo versard sobre el crecimiento
uniforme en cocientes de cancelacion pequena sobre grupos que actian acilindricamente
sobre un espacio hiperbélico. Los Capitulos 1 y 2 corresponden respectivamente a los

siguientes articulos:

» X. Legaspi. Constricting elements and the growth of quasi-convex subgroups, 2022.
URL: https://orcid.org/0000-0002-1497-6448.

» X. Legaspi and M. Steenbock. Uniform uniform exponential growth in small cancel-
lation groups, 2023. URL: https://orcid.org/0000-0002-1497-6448.
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INTRODUCTION EN FRANCAIS

L’absurdité est surtout le divorce de '’homme et du monde.

L’étranger, d’Albert Camus

0.1 Résumé

Cette these est centrée au tour des questions qui comparent des nombres faciles a
définir mais pas faciles a calculer. L’action d’un groupe GG sur un espace métrique X est
propre si pour tout r > 0, et pour tout x € X, le nombre d’éléments u € G qui déplacent x
a distance au plus 7 est fini. Soit G un groupe agissant par isométries et proprement sur un
espace métrique X. Le taux de croissance exponentiel relatif de 'action d’un sous-ensemble
U C G sur X est le nombre

1
w(U,X) =limsup—log|{ueU : |ux—zx|<r},
r—oo T

dont la valeur est indépendante du point x € X. Si GG est le groupe fondamental d’une
variété hyperbolique fermée M agissant sur le revétement universel X, alors w(G, X) a
de nombreuses interprétations. Elle correspond a 1’entropie de volume de la variété M,
[71, 62] ; Iexposant critique de la série de Poincaré de G, [67, 76] ; I'entropie topologique
du flot géodésique dans le fibré unitaire tangent de M, [60] ; la dimension de Hausdorff de
I'ensemble radial limite de G, [28], etc. Dans ce contexte, le nombre w(G, X) est la pierre
angulaire qui unit les groupes, la géométrie et la dynamique. L’orbite discrete de G et la
courbure négative de M jouent un role déterminant dans ce phénomene.

L’objectif de cette these est de quantifier la croissance des groupes a partir de leurs
actions par isométries sur des espaces métriques. L’approche consiste a observer d’un point
de vue tres éloigné. L’exploit est dans la finitude et les conditions de courbure négative
ou nulle des actions et des espaces. Soient 9, k, N > 0. L’action d’un groupe G sur un
espace d-hyperbolique X est (k, N)-acylindrique, [72, 18, 66, 38], si pour chaque paire de
points x,y € X distants d’au moins x, le nombre d’éléments u € G qui déplacent chacun

des points x,y d’une distance d’au plus 1000 est borné supérieurement par N. La derniére
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décennie a été consacrée a I'étude des groupes qui admettent une action acylindrique sur un
espace Gromov hyperbolique, [66]. I s’agit d’une tres large famille de groupes qui comprend
des groupes relativement hyperboliques, des groupes de petite simplification a présentation
infinie, des groupes modulaires de surfaces, des groupes d’automorphismes extérieurs de
groupes libres, des groupes d’Artin a angle droit, etc. Il s’avere que la plupart du temps les
groupes qui agissent de maniere acylindrique sur un espace hyperbolique admettent aussi
des actions propres sur d’autres espaces qui ne sont pas forcément hyperboliques, mais qui
contiennent des isométries qui se comportent comme les isométries loxodromiques d’un
espace hyperbolique : éléments constricteurs , [74], sous la terminologie de [8]. En fait, la
réciproque est toujours vrai.

La morale de la these reprend l'idée suivante de M. Gromov : sous un point de vue
global courbé de fagon négative ou nulle, il est encore possible de produire des résultats
robustes pour un groupe typique, ce qui peut parfois rapprocher notre compréhension a
des groupes monstre. Nous étudierons deux problemes différents en utilisant des arguments
de basse technologie impliquant I'inégalité triangulaire. Le premier traitera de la croissance
de sous-groupes quasi-convexes dans les groupes agissant proprement avec un élément
constricteur. De plus, nous avons ajouté une annexe décrivant quelques conséquences
élémentaires de la propriété de constriction. Le second traitera de la croissance uniforme
dans les quotients a petites simplifications sur des groupes agissant de maniere acylindrique
sur un espace hyperbolique. Les Chapitres 1 et 2 correspondent respectivement aux articles

suivants :

» X. Legaspi. Constricting elements and the growth of quasi-convex subgroups, 2022.
URL: https://orcid.org/0000-0002-1497-6448.

» X. Legaspi and M. Steenbock. Uniform uniform exponential growth in small cancel-
lation groups, 2023. URL: https://orcid.org/0000-0002-1497-6448.

0.2 Croissance des sous-groupes quasi-convexes

Il existe une quantité importante d’informations codées dans la géométrie des sous-
groupes quasi-convexes d’un groupe. Par exemple, certains groupes hyperboliques bénéfi-
cient de la propriété qu'un sous-groupe est quasi-convexe si et seulement s’il est de type
fini. Cependant, dans d’autres contextes, c¢’est loin d’étre vrai. Dans le Chapitre 2 nous

explorons la croissance de sous-groupes quasi-convexes au-dela du cas hyperbolique.
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Nous donnons quelques définitions. Soit G' un groupe agissant par isométries sur un
espace métrique. Afin de définir des notions tres générales de courbure négative ou nulle
et de cocompacité convexe, nous utilisons des systemes de chemins, introduits par A. Sisto
dans [74]. Grossiérement, un systéme de chemins &2 de X est une collection appropriée
de quasi-géodésiques uniformes joignant chaque paire de points de X. Par exemple, les
groupes modulaires des surfaces sont accompagnés de chemins hiérarchiques, une famille
de quasi-géodésiques spéciales codant des informations substantielles sur la géométrie de
I'espace et plus faciles a utiliser que I'ensemble de toutes les (quasi-)géodésiques. Soit
& un systeme de chemins de X. Soit § > 0. On dit qu'un sous-ensemble Y de X est
0-constricteur s’il existe une projection a large échelle au point le plus proche de X sur A
avec la propriété que tout v € & joignant n’importe quelle paire de points x,y € X dont
les projections p et ¢ sont d-loin passe par les d-voisinages de p et q. Un élément g de G est
0-constricteur s’il est d’ordre infini et s’il existe une orbite d-constrictrice du sous-groupe
cyclique engendré par g. Soit 7 > 0. Un sous-ensemble Y de X est n-quasi-convezxe si tout
v € P avec des extrémités dans Y est contenu dans la n-voisinage de Y. Un sous-groupe

H de G est n-quasi-convexe s’il existe une orbite n-quasi-convexe de H.

ExampiLe 0.2.1. — Un espace métrique X est d-hyperbolique s’il est géodésique et si tout
segment géodésique de X est d-constricteur par rapport au systeme de chemins constitué de
tous les segments géodésiques de X, [61]. En particulier, 'axe des isométries loxodromiques
des espaces d-hyperboliques est constricteur : cette propriété est en fait équivalente a la
quasi-convexité dans les espaces d-hyperboliques, [26], mais pas en général. Par exemple,

une géodésique dans le plan euclidien.

ExampLE 0.2.2. — Voici des exemples de groupes agissant avec un élément constricteur
sur chacun de leurs graphes de Cayley localement finis, voir par exemple [8, 57] et les

références qui s’y trouvent.
(i) Groupes relativement hyperboliques.
(ii) Groupes modulaires des surfaces.
(iii) Groupes CAT(0) avec éléments Morse.
(iv) Groupes a petit simplification graphique Gr'(1/6).
Nous mentionnons maintenant deux résultats. Le premier est une généralisation de [4]

(voir aussi [47]) et étudie les taux de croissance exponentiels relatifs associés aux graphes

de Schreier.
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THeOREM 0.2.3. — Soit G un groupe agissant proprement sur un espace métrique X . Soit
& un systeme de chemins de X. Supposons que G contienne un élément constricteur par
rapport a &. Soit H un sous-groupe quasi-convexe d’indice infini de G par rapport a .
I existe xy € X avec la propriété suivante. Soit Gy un ensemble de représentants de G /H

tel que |gzo — xo| = infrey |ghzo — 20|, pour tout g € Gy. Alors w(Gy, X) = w(G, X).

Le deuxieme résultat est une généralisation de [37] (voir aussi [27]) et étudie les taux
de croissance exponentiels relatifs associés aux sous-groupes. On dit que 'action propre
des isométries d’un sous-ensemble A sur un espace métrique X est divergente lorsque la
série de Poincaré Py (s) = Yuep e "7l diverge a son exposant critique w(U, X). Ce

comportement est indépendant de x € X.

THeOREM 0.2.4. — Soit G un groupe agissant proprement sur un espace métrique X . Soit
& un systeme de chemins de X. Supposons que G contienne un élément constricteur par
rapport a . Soit H un sous-groupe quasi-convexe d’indice infini par rapport a &. Si
w(H,X) < oo et l'action de H sur X est divergente, alors w(H, X) < w(G, X).

Dans le théoréme précédent, il existe de nombreuses situations dans lesquelles I’action
de H sur X est divergente. Par exemple, si & est le systéme de chemins de X composé
de tous les segments géodésiques, alors H est quasi-convexe au sens classique. Dans cette
situation, la fonction de croissance relative de H est sous-multiplicative, et par conséquent
l'action de H sur X est divergente [39] (& condition que H soit infini). Une autre situation
dans laquelle la fonction de croissance relative est sous-multiplicative est lorsque H a la
propriété Morse ou lorsque la fonction de croissance relative est une fonction purement
exponentielle, sans autre hypothese sur &2. Cela permet d’appliquer le résultat aux groupes
modulaires des surfaces de type fini et leurs sous-groupes convexes cocompacts ou a certains
stabilisateurs de multicourbes. Ici, le role du systéeme de chemins est joué par les chemins

hiérarchiques.

0.3 Croissance exponentielle uniforme uniforme

Une question ouverte demande si chaque groupe agissant de maniere acylindrique sur
un espace hyperbolique a une croissance exponentielle uniforme. Dans le Chapitre 2, on
montre que la classe des groupes de croissance exponentielle uniforme uniforme agissant

de maniere acylindrique sur un espace hyperbolique est fermée en prenant les quotients a
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petites simplifications géométriques C”(\, €) dans le sens de [38, Définition 6.22]. Encore
une fois, nous commencons par quelques définitions.

Soit G un groupe. Soit U un sous-ensemble symétrique fini de G, notons H le sous-
groupe engendré par U, et soit Xy le graphe de Cayley correspondant. Le taux de croissance

exponentiel de U est le nombre
w(H,U) :=w(H, Xy).

Soit & > 0. On dit que G a croissance exponentielle &-uniforme s’il est de type fini et
pour tout ensemble générateur symétrique fini U de G, on a w(G,U) > £. On dit que G a
croissance exponentielle &-uniforme uniforme si chaque sous-groupe de type fini est soit

virtuellement nilpotent, soit a croissance exponentielle {-uniforme.

Exampik 0.3.1. — Voici des familles de groupes a croissance exponentielle uniforme uni-

forme agissant de maniere acylindrique sur des espaces hyperboliques :
(i) Groupes hyperboliques.

(ii) Produits libres de familles dénombrables de groupes a croissance exponentielle

&-uniforme uniforme.
(iii) Quelques groupes cubiques CAT(0).
(iv) Groupes modulaires des surfaces.

En général, le parametre de croissance uniforme dépend du groupe.

Vers une théorie géométrique des petite simplification. Soit G’ un groupe agissant
par isométries sur un espace o-hyperbolique X. Une famille de mouvement — ou ensemble

de relations — est un ensemble de la forme

2={(lgrg"), gY:) | re® geC},

ou Z C G est un ensemble d’isométries loxodromiques r — les relateurs — stabilisant leur
axe quasi-convexe Y, C X. Une piéce est une intersection de n’importe quelle paire de tels
axes. Le role des parametres A € (0,1) et ¢ > 0 dans la condition de petite simplification

géométrique C”(\, e) sur 2 est le suivant:

» La fraction de la longueur de la piéce la plus long avec la longueur de translation la

plus courte des relations r € Z est au plus \.
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» La longueur de translation la plus courte des relations r € % est au moins £0.

Soit K la cloture normale dans G des sous-groupes de relation H dans 2. La condition de
petite simplification géométrique C”(\, ) permet d’obtenir des informations substantielles
sur le quotient & C”(\, €)-petite simplification géométrique G = G/K : par exemple K
est un produit libre de sous-groupes de relation, G ressemble localement & G et toute
action acylindrique de G sur X induit une autre action acylindrique de G sur un quotient
So-espace hyperbolique X dont la constante d’hyperbolicité &y est universelle.

Le résultat principal du Chapitre 2 est le suivant:

THEOREM 0.3.2 (Theorem 2.5.5 & Theorem 2.5.6). — II existe A € (0,1) tel que pour
chaque N > 0 et ¢ > 10'°N, ce qui suit est vrai. Soient § > 0, k > § et soit G un groupe

agissant (k, N)-acylindriquement sur un espace d-hyperbolique X .

(i) Si G est a croissance exponentielle {-uniforme uniforme, alors chaque quotient a
C" (A, €)-petite simplification géométrique de G est a croissance exponentielle £'-

uniforme uniforme. La constante £’ ne dépend que de £ et N.

(ii) S’il existe un quotient a C"(\, e)-petite simplification géométrique de G qui est a
croissance exponentielle £-uniforme uniforme, alors G est a croissance exponentielle

&-uniforme uniforme. La constante &' ne dépend que de &.

Au-dela de la propriété du élément loxodromique court. La stratégie standard
pour étudier la croissance exponentielle uniforme dans les groupes hyperboliques exploite
le fait que leurs sous-ensembles générateurs ont la propriété de l’élément loxodromique
court : chaque n-iéme puissance U™ d'un sous-ensemble générateur fini contient une
isométrie loxodromique, pour un certain nombre n qui ne dépend pas de ’ensemble U.
En général, on ne sait pas si chaque groupe de type fini agissant de maniere acylindrique
sur un espace hyperbolique a une croissance exponentielle uniforme. L’action acylindrique
sur un espace hyperbolique donne une croissance exponentielle uniforme pour des sous-
ensembles générateurs finis avec une longue isométrie loxodromique. La propriété de
I’élément loxodromique court permet de prendre des grandes puissances uniformes pour
pouvoir exploiter cette autre situation. Cependant, il y a un quotient a petite simplification
combinatoire/gradué avec une action acylindrique sur un espace hyperbolique mais sans
la propriété de I’élément loxodromique court, [63]. Notre résultat principal ne fait pas
usage de la propriété de I’élément loxodromique court. La morale de notre travail est

que nous pouvons traiter ce genre de monstre tant que ce sont des quotients a petite
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simplification de groupes de croissance exponentielle uniforme uniforme agissant de maniere
acylindrique sur un espace hyperbolique. Cependant, le monstre mentionné est un quotient
du produit libre de tous les groupes hyperboliques. On ne sait pas s’il existe une borne
inférieure universelle pour le taux de croissance uniforme dans la classe de tous les groupes
hyperboliques, indépendante de la constante d’hyperbolicité, c’est une autre question
ouverte. Ca équivaut a la croissance exponentielle uniforme uniforme du produit libre de

tous les groupes hyperboliques.
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INTRODUCTION

Kill the boy, Jon Snow. Winter is almost upon us.
Kill the boy and let the man be born.

from A Dance with Dragons of George R. R. Martin,
spoken by Maester Aemon
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0.4 Abstract

The focus of this thesis is on questions that compare numbers easy to define but not
easy to compute. The action of a group G on a metric space X is called proper if for every
r > 0, and for every x € X, the number of elements © € G moving x at distance at most r
is finite. Let G be a group acting properly by isometries on a metric space X. The relative

exponential growth rate of the action of a subset U C G on X is the number
) 1
w(U, X)=limsup—log|{ueU: |ur—z| <r},
r—oo T

whose value is independent of the point x € X. If G is the fundamental group of a closed
hyperbolic manifold M acting on the universal cover X, then w(G, X) has numerous
interpretations. It coincides with the volume entropy of the manifold M, [71, 62]; the
critical exponent of the Poincaré series of G, [67, 76]; the topological entropy of the geodesic
flow on the unit tangent bundle of M, [60]; the Hausdorff dimension of the radial limit set
of G, [28], etc. In this context, the number w(G, X) is the cornerstone bringing together
groups, geometry and dynamics. The discreteness of the orbit of G and the negative

curvature of M play a major role in this phenomenon.
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The aim of this thesis is to quantify growth in groups from their actions by isometries
on metric spaces. The approach is to observe from far away. The exploit is on the finiteness
and non-positive curvature conditions of actions and spaces. Let , k, N > 0. The action
of a group G on a Jd-hyperbolic space X is called (k, N)-acylindrical, [72, 18, 66, 38], if
for every pair of points x,y € X at distance at least x, the number of elements u € G
moving each of the points z, y at distance at most 1004 is bounded above by N. In the last
decade, the focus has been put on groups that admit an acylindrical action on a Gromov
hyperbolic space, [66]. This is a vast family of groups that includes relatively hyperbolic
groups, infinitely presented classical small cancellation groups, mapping class groups of
surfaces, outer automorphism groups of free groups, right angled Artin groups, etc. It
turns out that most of the time groups acting acylindrically on a hyperbolic space admit
remarkable proper actions on other spaces that are not necessarily hyperbolic, but contain
isometries that behave as the loxodromic isometries of a hyperbolic space: constricting

elements, [74], under the terminology of [8]. In fact, the converse is always true.

The moral of the thesis draws the following idea of M. Gromov: under a non-positively
curved global viewpoint, it is still possible to produce strong results for a typical group,
which can sometimes approximate our understanding to monster groups. We are going to
study two different problems using low tech arguments involving the triangle inequality.
The first one will be about the growth of quasi-convex subgroups in groups acting properly
with a constricting element. In addition, we have added an appendix describing some
elementary consequences of the constriction property. The second will be about the uniform
growth in small cancellation quotients over groups acting acylindrically on a hyperbolic

space. Chapters 1 and 2 correspond respectively to the following articles:

» X. Legaspi. Constricting elements and the growth of quasi-convex subgroups, 2022.
URL: https://orcid.org/0000-0002-1497-6448.

» X. Legaspi and M. Steenbock. Uniform uniform exponential growth in small cancel-
lation groups, 2023. URL: https://orcid.org/0000-0002-1497-6448.

0.5 Growth of quasi-convex subgroups

Let G be a group acting properly by isometries on a metric space X. Let x € X. Let
H be a subgroup of GG. Let H;, and Hpr be respectively left and right transversals of H
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such that for every v € Hy and v € Hpg,
lur — x| = inf |uhx — x|, and |vx —z| = inf |hvx — z|.
heH heH
In Chapter 1 we study the numbers
w(H):=w(H,X), wG/H) =w(H,X), andw(H\G) :=w(Hg,X).

Consider the following general problem. When do G and H determine a solution to to the

system of equations below?

We see from the definitions that
w(H/G) =w(H\G), and 0 < max{w(H),w(G/H)} < w(G).
In the extreme case in which H has finite index in GG, one can easily prove that

w(H) = w(G),
w(G/H) = 0.

In general, it is a hard problem to obtain precise estimations of relative exponential
growth rates of infinite index subgroups. However, it is known, [37, 4, 47], that if G is
a non-virtually cyclic group acting geometrically on a hyperbolic space X and H is an

infinite index quasi-convex subgroup of GG, then

w(H) < w(@),

w(G/H) = w(G).
The arguments of [37, 4] are based on automatic structures and regular languages, with
influence of the works of J. Cannon [22, 23]. This fact also influenced other authors that

partially extended the hyperbolic case result, [27]. In Chapter 1 we go beyond the hyperbolic

case and we obtain two main results (Theorem 0.5.8 and Theorem 0.5.13) with elementary

27



TABLE OF CONTENTS

proofs that do not require the theory of regular languages and automata. We will be
interested in groups acting properly on metric spaces conditioned by a very general notion
of “non-positive curvature” introduced by A. Sisto in [74] — containing a constricting
element with respect to a path system — while the infinite index subgroups object of our
study will satisfy a very general notion of “convex cocompactness” — quasi-convezity with
respect to a path system.

The remaining of this section is structured as follows. First of all, we will mention two
applications. Later we will give an informal explanation of our general setting as the result
of a natural generalisation of these applications. We expect that this will be enough to
understand our main theorems stated right after that. We will give another application at
the end.

Groups acting properly with a strongly contracting element. Members of this
class contain elements that “behave like” a loxodromic isometry in a hyperbolic space —
in a strong sense. Let 6 > 0. A subset A of X is d-strongly contracting if the diameter of
the nearest-point projection on A of any metric ball of X not intersecting A is less than
0. An element g of G is d-strongly contracting if it has infinite order and there exists an
orbit of the cyclic subgroup generated by ¢ that is d-strongly contracting. In his seminal
paper M. Gromov introduced the concept of §-hyperbolic space, [49]. He observed that
most of the large scale features of negative curvature can be described in terms of thin
triangles. Nowadays, there are plenty of reformulations of the d-hyperbolicity. In particular,

H. Masur and Y. Minsky gave one by describing geodesics in terms of strong contraction:

ExampLE 0.5.1. — A geodesic metric space X is hyperbolic if and only if there exists § > 0
such that any geodesic segment of X is d-strongly contracting, [61, Theorem 2.3].

The following are some subclasses of groups acting properly with a strongly contracting

element:

(i) H = “G is a group acting properly with a loxodromic element on a hyperbolic space

X In H, an element is loxodromic if and only if it is strongly contracting. See [206].

(i) RH = “G is a relatively hyperbolic group acting with a hyperbolic element on
a locally finite Cayley graph X of G.” In RH, hyperbolic elements are strongly
contracting. See [65, Corollary 1.7] and [73, Theorem 2.14].

(iii) CATo = “G is a group acting properly with a rank-one element on a proper C' AT (0)

space X.” In CAT, rank-one elements are strongly contracting. See [16, Theorem 5.4]
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and [24].

(iv) Modt = “G is the mapping class group of an orientable surface of genus g and
p marked points of complexity 3g + p — 4 > 0 acting on its Teichmiiller space
endowed with the Teichmiller metric.” In Mody, pseudo-Anosov elements are

strongly contracting. See [64] and [61, Proposition 4.6].

(v) GSC = “( is an infinite graphical small cancellation group associated to a G7'(1/6)-
labeled graph with finite components labeled by a finite set S, acting on the Cayley
graph X of G with respect to S.” In GSC, loxodromic WPD elements for the action
of G on the hyperbolic coned-off Cayley graph constructed by D. Gruber and A.

Sisto in [51] are strongly contracting. See [7, Theorem 5.1].

(vi) Gar = “G is the quotient of a A-pure Garside group of finite type by its center,
acting with a Morse element on the Cayley graph X of G with respect to the
Garside generating set.” In Gar, Morse elements are strongly contracting. See [21,
Theorem 5.5].

(vii) Inj = “G is a group acting properly with a Morse element on an injective metric

space X.” In Inj, an element is Morse if and only if it is strongly contracting. See

[75].

An appropriate notion of convex cocompactness in this setting is just the usual quasi-
convexity. Let n > 0. A subset Y of X is n-quasi-convex if any geodesic of X with endpoints
in Y is contained in the n-neighbourhood of Y. A subgroup H of G is n-quasi-convex if
there exists an orbit of H that is n-quasi-convex.

Our theorem below generalises [78, Theorem 4.8] and [37, Theorems 1.1 and 1.3]:

TueoreEM 0.5.2. — If G is a non-virtually cyclic group acting properly with a strongly
contracting element on a geodesic metric space X, and H is an infinite index quasi-convex

subgroup of GG, then

w(H) < w(G),
w(G/H) = w(G).

Hierarchically hyperbolic groups. Let Mod(%,,) be the mapping class group of
an orientable surface X, , of genus g and p marked points of complexity 3g +p —4 > 0.
We would like to apply Theorem 0.5.2 to Mod(X,,) with respect to the word metric.

However, we do not know whether Mod(%, ) acts with a strongly contracting element on
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any of its locally finite Cayley graphs or not. Maybe the candidates that come to mind
are the pseudo-Anosov elements, and evidence suggests that not all of them are strongly
contracting: K. Rafi and Y. Verberne constructed a generating set U of Mod(X5) and
a pseudo-Anosov element which is not strongly contracting for the action of Mod(X )
on the Cayley graph of Mod(X5) with respect to U, [68, Theorem 1.3]. We were able to
avoid this setback by looking into the class of hierarchically hyperbolic groups, introduced
by J. Behrstock, M. Hagen and A.Sisto in [12, 13] as a generalisation of the Masur and
Minsky hierarchy machinery of mapping class groups. Below we provide some examples of
hierarchically hyperbolic groups. The reader should note that the metric space where they
act with a hierarchically hyperbolic structure is any of their locally finite Cayley graphs:

(i) Mapping class groups of finite type surfaces, [13].
(ii) Right-angled Artin groups, [12].
(iii) Right-angled Coxeter groups, [12].
(iv) Fundamental groups of 3-manifolds without NIL or SOL components, [13].

Now consider the following notion of convex cocompactness. A subset Y of X is Morse
if for every k > 1, A > 0, there exists o > 0 such that any (k, [)-quasi-geodesic of X with
endpoints in Y is contained in the o-neighbourhood of Y. A subgroup H of G is Morse
if there exists an orbit of H that is Morse. An element g of G is Morse if it has infinite
order and the cyclic subgroup generated by ¢ is Morse.

We have obtained the next result, partially generalising [27, Theorem A]:

THeOREM 0.5.3. — If GG is a non-virtually cyclic hierarchically hyperbolic group acting on
a locally finite Cayley graph X of G with a Morse element, and H is an infinite index
Morse subgroup of G, then

w(H) <w(@),
w(G/H) = w(G).

We know that pseudo-Anosov elements of mapping class groups are Morse with respect
to any word metric, [11], and that the infinite index Morse subgroups of the mapping class
group are precisely the convex cocompact subgroups in the sense of mapping class groups,

[55, Theorem A], which allows us to obtain a more concrete statement:

CoRroLLARY 0.5.4. — If G is the mapping class group of a surface of genus g and p marked

points such that 3g + p — 4 > 0 acting on a locally finite Cayley graph X of G, and H is a
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convex cocompact subgroup of G, then

w(H) <w(G),
w(G/H) = w(G).

Remark 0.5.5. — Under the hypothesis of the previous corollary, we remark that the
inequality w(H) < w(G) was also obtained independently in [27, Corollary CJ.

Main results. Now that we gave the big picture, we will give a technical definition that
encapsulates the classes discussed so far. In order to do so, we make two observations. On
the one hand, the strong contraction property can be reformulated in the following way. A
subset A of X is strongly contracting if and only if any geodesic segment of X joining any
pair of points x,y € X whose projections p and ¢ via a nearest-point projection are far
away passes next to p and ¢, [8, Proposition 2.9]. On the other hand, mapping class groups
— or more generally, hierarchically hyperbolic groups — come with hierarchy paths, a family
of special quasi-geodesics encoding substantial information about the geometry of the
space and easier to work with than the set of all (quasi-)geodesics. For these reasons, in
order to define very general notions of non-positive curvature and convex cocompactness,

we will be considering path systems, introduced by A. Sisto in [74]:

DEerINITION 0.5.6 (Path system group). — Let > 1, v > 0. A (i, v)-path system group
(G, X, Z) is a group G acting properly on a geodesic metric space X together with a
G-invariant collection & of paths of X satisfying:

(PS1) & is closed under taking subpaths.

(PS2) For every z,y € X, there exists v € & joining x to y.
(PS3) Every element of & is a (u, v)-quasi-geodesic.

We refer to &2 as (p, v)-path system.

We fix p > 1, v > 0 and a (u,v)-path system group (G, X, ) for the following
definitions. Let § > 0. We say that a subset A of X is d-constricting if there exist a
coarse nearest-point projection of X on A with the property that any v € & joining any
two pair of points z,y € X whose projections p and g are J-far away passes through the
d-neighbourhoods of p and ¢ (Definition 1.1.8). An element g of G is d-constricting if it
has infinite order and there exists a d-constricting orbit of the cyclic subgroup generated

by g. Let n > 0. A subgroup Y of X is n-quasi-convex if any v € & with endpoints in
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Y is contained in the n-neighbourhood of Y (Definition 1.1.7). A subgroup H of G is

n-quasi-convex if there exist an n-quasi-convex orbit of H.

ExampLE 0.5.7. — (i) Assume that the metric space X is geodesic. An infinite order
element of GG is strongly contracting if and only if it is constricting with respect to

the set of all the geodesic segments of X, [8, Proposition 2.9].

(ii) Assume that the group G is hierarchically hyperbolic. An infinite order element
g of GG is Morse if and only if for every x > 1, there exists 6 > 0 such that g is
d-constricting with respect to the set of all the k-hierarchy paths. See [69, Theorem E]
and [14, Lemma 1.27].

Finally, we state the main results of Chapter 1. Theorem 0.5.2 and Theorem 0.5.3
are special cases. Our first result generalises work of W. Yang, [78, Theorem 4.8|, and F.
Dahmani - D. Futer - D. Wise, [37, Theorems 1.1 and 1.3]. The Poincaré series Py (s)
based at x € X of a subset U of GG is defined as

Vs>20, Py(s)=>, e slue=al
uel
and modifies its behaviour at the relative exponential growth rate w(U, X): the series
diverges if s < w(U, X) and converges if s > w(U, X). At s = w(U, X) the series can
converge or diverge depending on the nature of U. This behaviour is independent of
the point z € X. We say that the action of U on X is divergent if &y (s) diverges at
s =w(U,X).

THEOREM 0.5.8. — Let (G, X, Z) be a path system group. Assume that G contains a
constricting element. Let H be an infinite index subgroup of GG. Assume that the following

conditions are true:
(i) w(H) < oc.
(ii) The action of H on X is divergent.
(iii) H is quasi-convex.
Then w(H) < w(G).
Remark 0.5.9. — Under the hypothesis of Theorem 0.5.8, one may ask if there is a growth

gap, i.e, if

Slépw(H) < w(G),
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where the supremum is taken among the infinite index subgroups H of G satisfying (i), (ii)
and (iii). In our context, the answer is yes: there is a growth gap when G is a hyperbolic
group with Kazhdan’s Property (T), [34, Theorem 1.2]. However, one can show that there
is no growth gap among free groups, [37, Theorem 9.4], or fundamental groups of compact
special cube complexes, [58, Theorem 1.5]. The answer to our context could be different if

one studied semigroups instead of subgroups, [78, Theorem A].

In [49, 5.3.C], M. Gromov stated that in a torsion-free hyperbolic group G, any infinite
index quasi-convex subgroup H is a free factor of a larger quasi-convex subgroup. Gromov’s
ideas were later developed by G. N. Arzhantseva in [6, Theorem 1]. More recently, J.
Russell, D. Spriano and H. C. Tran generalised her result to the context of groups with the
“Morse local-to-global property”, [70, Corollary 3.5]. Further, the problem seems connected
to the “Ppgive property” studied by C. Abbott and F. Dahmani in the context of groups
acting acylindrically on a hyperbolic space, [1]. In our context, we have obtained the
following, in which there is no torsion-free assumption. We will see that Theorem 0.5.8 is,

in part, a consequence of this result:

Tueorem 0.5.10. — Let (G, X, &) be a path system group. Assume that G contains a
constricting element gy. Let H be an infinite index quasi-convex subgroup of GG. There
exist an element g € G conjugate to a large power of go and a finite extension E of (g) such
that the intersection H N E is finite and the natural morphism H *ynp (9, H N E) — G is

injective.

According to Proposition 1.1.5 (6), the subgroup generated by a constricting element is

always Morse, and in particular quasi-convex. Hence we obtain the following alternative:

CoRroLLARY 0.5.11. — Let (G, X, &) be a path system group. Assume that G contains a
constricting element. Then, either GG is virtually cyclic or contains a free subgroup of rank

two.

Remark 0.5.12. — To the best of our knowledge, the previous corollary has not been
recorded for the class of groups acting properly with a strongly contracting element. The
Tits alternative is known for hierarchically hyperbolic groups [43, Theorem 9.15|, which is

a much stronger result.

In our second result we generalise work of Y. Antolin, [4, Theorem 3], and R. Gitik -
E. Rips, [47, Theorem 2:
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THEOREM 0.5.13. — Let (G, X, &) be a path system group. Assume that G contains a

constricting element. Let H be an infinite index quasi-convex subgroup of G. Then
w(G/H) = w(G).

Note that the study of [47, Theorem 2] concerns double cosets in the hyperbolic group
case. We remark that in [40, VIT D 39], P. de la Harpe says about the growth of double
cosets: “this theme has not received yet too much attention, but probably should” In our
context, for sake of simplicity, we decided to study single cosets instead, but one could
possibly extend our result. Further, we remark that our result is connected to the study of
I. Kapovich on the hyperbolicity and amenability of the Schreier graphs of infinite index
quasi-convex subgroups of hyperbolic groups, [53, 54].

Now we are going to record a joint corollary to Theorem 0.5.8 and Theorem 0.5.13.
In general, it is not easy to decide whether the action of a groups is divergent or not.

However, the following is a well-known consequence of Fekete’s Subadditivity Lemma:

Lemma 0.5.14 ([39, Proposition 4.1 (1)]). — Let G be a group acting properly on a
geodesic metric space X. Let x € X. Let H < G be a quasi-convex subgroup (in the

classical sense). Then

1 1
w(H):iI;fl—log]{heH: lhe —z| <n}|=lim —log|[{he H: |hx—z|<n}.
n>ln n

n—o0

In particular w(H) < oo. If in addition H is infinite, then the action of H on X is divergent.
In combination with Corollary 0.5.11, we obtain:

CoroLLAry 0.5.15. — Let (G, X, &) be a path system group. Assume that G is non-

virtually cyclic and contains a constricting element.

(i) If & is the set of all the geodesic segments of X, then for every infinite index

quasi-convex subgroup H of G, we have

w(H) <w(@),
w(G/H) = w(G).

34



TABLE OF CONTENTS

(ii) For every infinite index Morse subgroup H of G, we have

w(H) < w(G),
w(G/H) =w(G).

Remark 0.5.16. — One can prove that the class of groups acting properly with a constricting
element with respect to a path system is invariant under equivariant quasi-isometries. How-
ever, strongly contracting elements are not preserved under equivariant quasi-isometries,
[7, Theorem 4.19]. In particular, Corollary 0.5.15 applies for instance to the action on a
locally finite Cayley graph of any group acting geometrically on a C' AT(0) space with a

rank-one element.

Remark 0.5.17. — The proofs of Theorem 0.5.2 and Theorem 0.5.3 now follow from our

main results (Theorem 0.5.8 and Theorem 0.5.13) in view of Example 0.5.7.

Hierarchical quasi-convexity. In hierarchically hyperbolic groups there is a notion of
convex cocompactness more natural than Morseness. Let G be a hierarchically hyperbolic
group. A subgroup H of G is hierarchically quasi-convex if and only if for every x > 1,
there exists n > 0 such that H is n-quasi-convex with respect to the set of all the k-
hierarchy paths of G, [69, Proposition 5.7]. Finally, we deduce two more applications from

Theorem 0.5.8 and Theorem 0.5.13:

TueoreMm 0.5.18. — If G is a hierarchically hyperbolic group acting on a locally finite
Cayley graph X of G with a Morse element, and H is an infinite index subgroup of G
satisfying:

(i) The action of H on X is divergent.
(ii) H is hierarchically quasi-convex.
Then w(H) < w(G).
TueoreM 0.5.19. — If G is a hierarchically hyperbolic group acting on a locally finite

Cayley graph X of G with a Morse element, and H is an infinite index hierarchically
quasi-convex subgroup of G, then w(G/H) = w(G).
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0.6 Uniform uniform exponential growth

Let G be a group with finite symmetric generating set U. Denote by Xy the corre-
sponding Cayley graph. In Chapter 2 we study the number

w(U) = w(G, Xy).

The n-th product set U™ is the collection of elements u-...-u,, € G such that uy,--- ,u, € U.
The role of w(U) is to give us information about the exponential behaviour of |U"| as n
increases. The generating sets of virtually nilpotent groups have vanishing exponential
growth rate, since a celebrated theorem of M. Gromov shows that those are exactly the
groups of polynomial growth, [48]. Let £ > 0. The group G has £-uniform exponential
growth if for every finite symmetric generating set U of G, we have w(U) > £. A group
has &-uniform uniform exponential growth if every finitely generated subgroup is either
virtually nilpotent or has £-uniform exponential growth.

Uniform uniform exponential growth is particularly well-studied in groups of non-
positive curvature. Indeed, groups of uniform uniform exponential growth include hyperbolic
groups, [56, 9, 19], free products of countable families of groups with &-uniform uniform
exponential growth (folklore), mapping class groups, [3, 59, 2], or cocompactly special
cubulated CAT(0) groups, [44, 2]. It is unknown whether the outer automorphism group
of the free group of rank > 2 has uniform uniform exponential growth, [15]. All of the

groups in this list admit non-elementary acylindrical actions on Gromov hyperbolic spaces,
[72, 17, 38].

Geometric small cancellation quotients. The main goal of Chapter 2 is to prove
that the class of groups of uniform uniform exponential growth acting acylindrically on a
hyperbolic space is closed under taking geometric C” (), £)-small cancellation quotients
in the sense of [38, Definition 6.22]. This result is Theorem 0.6.2 below. Before stating
the theorem, we are going to give some definitions. Let 6 > 0. Let G be a group acting by
isometries on a d-hyperbolic space X.

Acylindricity. Let k, N > 0. The action of G on X is (k, N)-acylindrical if for every
pair of points z,y € X at distance at least x, the number of elements u € G moving each
of the points z, y at distance at most 1000 is bounded above by N. In practice, the number

N has two meanings for us:

(1) The largest size of the finite subgroups of virtually cyclic subgroups in G containing
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a loxodromic isometry.

(2) The fraction ﬁ of the longest intersection A(g) between the axis of any pair of
conjugates of an arbitrary loxodromic isometry g of GG, with the translation length

llgll of g, whenever this translation is larger than 1000.

Geometric small cancellation theory. A lozodromic moving family — or set of relations —

is a set of the form
2={(lgrg™"),g%,) | re® geG},

where #Z C G is a set of loxodromic isometries r — the relators — stabilizing their quasi-
convex axis Y, C X. A piece is an intersection of any pair of such axis. The role of the
parameters A € (0,1) and € > 0 in the geometric C”(\, €)-small cancellation condition on

2 is the following:

» The fraction of the length of the longest piece with the shortest translation length of
the relators r € % is at most \.

» The shortest translation length of the relators r € % is at least &4.

Let K be the normal closure in G of the relator subgroups H in 2. The geometric C"(\, €)-
small cancellation condition permits to obtain substantial information of the geometric
C"(\, g)-small cancellation quotient G = G/K: for instance K is a free product of relator
subgroups, G locally looks like G and any acylindrical action of G on X induces another
acylindrical action of G on a quotient d-hyperbolic space X whose hyperbolicity constant
§ is universal.

Main theorem. The following corollary captures the essence of the main theorem.

CoROLLARY 0.6.1. — There exists a universal constant A > 0 such that for every group G
acting acylindrically on a hyperbolic space X, there exist € > 0 depending only on the

acylindricity and hyperbolicity constants such that the following statements are equivalent.
(i) G' has uniform uniform exponential growth.

(ii) Every geometric C" (), ¢)-small cancellation quotient of G has uniform uniform

exponential growth.

(iii) There exists a geometric C"(\, €)-small cancellation quotient of G' that has uniform

uniform exponential growth.

The main theorem of Chapter 2 is the following.
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THEOREM 0.6.2 (Theorem 2.5.5 & Theorem 2.5.6). — There exists A > 0 such that for
every N > 0 the following holds. Let 6 > 0, k > §, and € > 10" max{N, x/d}. Let G be a
group acting (k, N)-acylindrically on a é-hyperbolic space X .

(i) If G has &-uniform uniform exponential growth, then every geometric C" (), €)-small
cancellation quotient of G has &'-uniform uniform exponential growth. The constant

& depends only on £ and N.

(ii) If there exist a geometric C" (A, €)-small cancellation quotient of G that has {-uniform
uniform exponential growth, then G has &'-uniform uniform exponential growth. The

constant &' depends only on &.

Remark 0.6.3. — The dependence of € on k, N and ¢ is not a strong condition. In fact,
the intersection of the axis of two loxodromic elements in a group acting acylindrically
on a hyperbolic space is controled in terms of x, N, 6 and the translation length of
the loxodromic elements. Thus to prove that a set of relators satisfies the geometric
C" (A, €)-condition, one usually considers relators of sufficient length compared to x, N

and 0 anyway.

Beyond short loxodromics. The standard strategy to study uniform exponential
growth in hyperbolic groups exploits the fact that their finite symmetric generating sets
have the short loxodromic property: every n-th power U™ of a finite symmetric generating
set contains a loxodromic isometry, for some number n that does not depend on the set
U. In general, it is unknown whether every finitely generated group acting acylindrically
on a hyperbolic space has uniform exponential growth. The acylindrical action on a
hyperbolic space yields uniform exponential growth for finite symmetric generating sets
with a long loxodromic isometry. The short loxodromic property permits to take uniform
large powers so that we can exploit this other situation. However, there is a finitely
generated (combinatorial/graded) small cancellation quotient with an acylindrical action
on a hyperbolic space but without the short loxodromic property, [63]. Our main result
does not make use of the short loxodromic property. The moral of our work is that we
can deal with this kind of monster as long as these are small cancellation quotients of
groups of uniform uniform exponential growth acting acylindrically on a hyperbolic space.
However, the aforementioned monster is a quotient of the free product of all hyperbolic
groups. It is unkown whether this free product has uniform uniform exponential growth,
owing to it is unkown whether there is a universal lower bound for the uniform growth

rate of all hyperbolic groups, independent of the hyperbolicity constant, [19, Section 14,
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Question 2]. The following example shows that the short loxodromic property plays no

role in the proof of Theorem 0.6.2.

ExaMPLE 0.6.4. — There are infinite families of geometric small cancellation quotients
that are hyperbolic groups containing arbitrarily large torsion balls. These groups act
acylindrically with uniform acylindricity parameters and have ¢-uniform uniform expo-
nential growth, for some uniform growth exponent £ > 0, see [36]. The uniform uniform
exponential growth rate of the small cancellation quotient in Theorem 0.6.2 (i) does not
depend on the cardinality of large torsion balls, nor does it depend on the hyperbolicity

constant.

Classical small cancellation groups We now discuss groups given by a presentation
that satisfies the classical C”(\)-small cancellation condition. We refer to a group admiting
such a presentation as classical C”(\)-small cancellation group. These are exacly the
geometric small cancellation quotients over free groups. In this situation, the geometric
small cancellation condition involving the parameter € becomes trivial. A classical C"(\)-
small cancellation group is always finitely presented, hence, hyperbolic. Thus it has uniform
uniform exponential growth by [49, 56]. However, in that approach the uniform uniform
exponential growth rate depends on A. The following is a consequence of Theorem 0.6.2

for the free group case.

CoroOLLARY 0.6.5. — There exist A > 0 and £ > 0 such that every classical C"(\)-small

cancellation group has &-uniform uniform exponential growth.

Note that there is a generic class of classical C”(1/6)-small cancellation groups such
that every 2-generated subgroup is free, [10]. This immediately implies Corollary 0.6.5 for

this generic class of classical C”(1/6)-small cancellation groups, [40].

Remark 0.6.6. — The classical C”(\)-small cancellation condition in Corollary 0.6.5 is
reminiscent of our proof that uses geometric small cancellation theory. To this date,
geometric small cancellation theory has not been developed under a geometric C’(), ¢)-
small cancellation condition. We expect, however, that this is possible, and thus that our

results hold for classical C’(\)-small cancellation groups - finitely and infinitely presented.

Strategy of proof. To prove Theorem 0.6.2 (i), we need to discuss the growth of

finite symmetric subsets of sufficiently large energy in groups acting acylindrically on a
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hyperbolic space X. If G acts by isometries on X, the ¢*-energy L(U) of a finite subset
U C G is defined by

L(U) = inf max |uz — z|.
zeX uelU

If U = {g}, the (> -energy coincides with the translation length of g. The following example

explains why the energy is important in the study of uniform exponential growth.

ExampLE 0.6.7. — When G is the fundamental group of a compact hyperbolic manifold,
there exists a constant > 0 — the Margulis constant — such that if U C G is a finite set
with L(U) < u, then the subgroup of G generated by U is virtually nilpotent. If T denotes
the injectivity radius of the action of G on the universal cover and is smaller than the

Margulis constant p, then the acylindricity constant x is about 1/ T, [42].

DEerINITION 0.6.8 (Definition 2.2.1). — Let o > 0. We say that a finite subset U C G is
a-reduced at p € X if UN U~ = @ and for every pair of distinct u;,us € U LU U™!, the

Gromov product satisfies

I
(1ap up)y < 5 min{furp — pl, Jusp — pl} — @ — 26

Remark 0.6.9. — Roughly speaking, if a set U C G is reduced then the orbit map from
the free group generated by U to X is a quasi-isometric embedding.

The following is a well-known theorem of [56, 9], see also [45].

THEOREM 0.6.10 (Theorem 2.3.8). — For every k, N > 0, there exist an integer ¢ > 1
with the following property. Let §, « > 0. Let G be a group acting (x, N)-acylindrically on
a d-hyperbolic space X. Let U C G be a finite symmetric subset containing the identity.

Then one of the following conditions holds:
(i) L(U) < 10*max {k, d, a}.
(ii) The subgroup (U) is virtually cyclic and contains a loxodromic element.

(iii) There exists an a-reduced subset S C U° such that
1

|S| > max{Q, |U|}
c

Moreover,
1
w(U) = ~log|U]|.
c
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Our main contribution to Theorem 2.3.8 is the dependence of the involved constants:
for our purpose it is important that the number ¢ only depends on the acylindricity

parameters x and N.

Remark 0.6.11. — If the injectivity radius of the action of G on X is large, then every
finite symmetric subset of G satisfies either (ii) or (iii). In general this is however not
the case. We will later use uniform uniform exponential growth of GG in order to apply

Theorem 2.3.8 to some power of an arbitrary symmetric subset U in G.

Theorem 2.3.8 with Fekete’s Subadditive Lemma and the fact that w(U"™) = nw(U)

implies the following corollary. It is a weak form of purely exponential growth, [25, 78].

CoOROLLARY 0.6.12. — For every x, N > 0, there exists £ > 1 with the following property.
Let 6 > 0 and k > 0. Let G be a group acting (x, N)-acylindrically on a d-hyperbolic space
X. Let U C G be a finite symmetric subset containing the identity of energy L(U) > 10*x

that does not generate a virtually cyclic subgroup. Then, for every n > 0,
enw(U) < ‘Un’ < efnw(U).

To prove Theorem 0.6.2 (i), we follow a strategy of [36] that estimates product set growth
in Burnside groups. In particular, we use the viewpoint of geometric small cancellation
theory. As previously mentioned, the Small Cancellation Theorem gives a universal
constant ¢ > 0 such that any geometric small cancellation quotient G of a group G acting
acylindrically on a d-hyperbolic space X, for appropriate choice of the small cancellation
parameters, acts acylindrically on a d-hyperbolic space X. Let U C G be a finite symmetric
generating set containing the identity that is not contained in an elliptic or virtually cyclic
subgroup. If the energy of U is larger than 10%5, then the exponential growth rate of U is
bounded below by a universal strictly positive constant (Lemma 2.1.23). Otherwise, we fix
a pre-image U of U in G of minimal energy for the action of G on X (Lemma 2.1.32). Such
a pre-image may not have large energy > 10%. Indeed, it may consist entirely of torsion-
elements and thus have small energy < 10%5. However, our pre-image U is not contained
in any elliptic subgroup. Thus some power of U contains a loxodromic element, hence, for
some exponent n, we have L(U™) > 10%5. We stress that the exponent n depends on the set
U. We now apply Theorem 0.6.10 to U™. Since U is not contained in any virtually cyclic
subgroup, we obtain a reduced subset S in U, which freely generates a free subgroup.

Next, we adapt the counting argument of [29, 36] to prove that for every r > 1, the
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proportion of elements in S” that contain a large part of a relator is small compared
to |S"| (Proposition 2.4.9). A combination of a consequence of Greendlinger’s Lemma
(Proposition 2.4.16) and Fekete’s Subadditive Lemma then implies that the exponential
growth rate of U satisfies

w(U) = B-w().

for

log 2 } 1
= sup inf<f- 2_1-63--.
b 96(01,31) { log (2¢) ¢

Finally, assume that G has £-uniform uniform exponential growth. A combination of this
fact with the previous inequality yields Theorem 0.6.2 (i). The proof of Theorem 0.6.2 (ii)

is similar and we postpone its discussion.
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NOTATION

Let X be a metric space. Given two points =,z € X, we write |z — 2’| for the distance
between them. The ball of X of center z € X and radius r > 0 is

Bx(w,r)={yeX : lr—yl<r}

The distance between a point x € X and a subset Y C X is

dz,Y)=inf{|z —y|: ye Y }.
Let n > 0. The n-neighbourhood of a subset Y C X is

Y"={zreX: dzY)<n}
The distance between two subsets Y, Z C X is

dY,Z)=inf{|ly—=z : yeY,ze Z}.
The Hausdorff distance between two subsets Y, Z C X is
diaus(Y, Z) =inf{e>0: Y CZ™and Z CY* .

A path is a continuous map «: [a,b] — X. The initial and terminal points of a are a(a)
and «(b), respectively. We denote by a~ and o™ the initial and terminal points of «,
respectively. They form the endpoints of a. We will frequently identify a path and its
image. A subpath of « is a restriction of « to a subinterval of [a, b]. The path « joins the
point € X to the point y € X if = = x and a™ = y. Note that for every z,y € « there
may be more than one subpath of « joining x to y, unless the points are given by the
parametrisation of a. If x,y € a are given by the parametrisation, we denote by [z, ],
the parametrised subpath of « joining x to y. The length of a path « is denoted by ¢(«).
If a joins a point x € X to a point y € Y of a closed subset Y C X, the entrance point of
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« in Y is the point 3/ € « satisfying

[z, y]a) = inf (([z, 2]a).

z€anNY

Unless otherwise stated a path is a rectifiable path parametrised by arc length. Let k > 1,
1> 0. A path a: [a,b] = X is a (k,1)-quasi-geodesic if for every t,t' € [a,b],

|o(t) — a(t)] < [t = 1] < Kla(t) — a(t)] + 1.

Note that that ¢(ovpe) = [t —t'|. Let L > 0. We say that a is a L-local (k, l)-quasi-geodesic
if any subpath of o whose length is at most L is a (k, [)-quasi-geodesic. A geodesic is a
(1,0)-quasi-geodesic. The metric space X is geodesic if for every pair of points z, 2" € X
there exists a geodesic of X joining z to x’. We write [z, 2'] for a geodesic joining them.

Recall that there may be multiple geodesics joining two points.
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CHAPTER 1

GROWTH OF QUASI-CONVEX
SUBGROUPS IN GROUPS WITH A
CONSTRICTING ELEMENT

THE GIANT: The first thing I will tell you is: “There’s a man in a
smiling bag”. The second thing is: “The owls are not what they seem”.
The third thing is: “Without chemicals, he points”.

COOPER: What do these things mean?

THE GIANT: This is all I am permitted to say.

from Twin Peaks, created by David Lynch and Mark Frost

Contents
1.1 Path system geometry . . . . . .. .. vt ittt vt 46
1.2 Growth estimation criteria . . . . . . ... ... .. 00000 49
1.3 Buffering sequences . . . . . .. ... .. 00 i oo e e e 52
1.4 Quasi-convexity on Intersection—Image property. . . . .. .. 55
1.5 Finding a quasi-convex element . . . .. ... ... ....... 56
1.6 Constricting elements . . . . .. .. ... ... 64
1.6.1 A G-invariant family . . . . ... ... ... ... ... ... 64
1.6.2 Finding a constricting element . . . . . .. ... 65
1.6.3 Elementary closures . . . ... ... ... ... ... ... 66
1.6.4 Forcing a geometric separation . . . . . . ... ... ... ... 68
1.7 Growth of quasi-convex subgroups . . . ... ... ... ..., 71

The results of this chapter correspond to the following article:

» X. Legaspi. Constricting elements and the growth of quasi-convex subgroups, 2022.

URL: https://orcid.org/0000-0002-1497-6448.

45


https://orcid.org/0000-0002-1497-6448

Chapter 1 — Growth of quasi-convex subgroups in groups with a constricting element

In Section 1.1 we will introduce the definitions of path system group, quasi-convex
subgroup and constricting element. We also state some standard properties (Proposi-
tion A.1.1) that will be proven in the Appendix A. In Section 1.2 we will explain the
two criteria that we will use to estimate the growth of quasi-convex subgroups. The rest
of the chapter is devoted to the development of our geometric framework so that we
can apply these criteria. In Section 1.3 we will prove a version of the Bounded Geodesic
Image Property of hyperbolic spaces, but for quasi-convex subsets insetad of geodesics. In
Section 1.4 we will introduce the notion of buffering sequence and we will give a version
of Behrstock’s inequality. In Section 1.5, given an infinite index quasi-convex subgroup
and a quasi-convex element, we will produce another quasi-convex element whose orbit is
“transversal” to the given subgroup. The proofs of both of our main results (Theorem 0.5.8
and Theorem 0.5.13) share this argument. In Section 1.6 we will study the elementary
closures of constricting elements and also some geometric separation properties. Finally, in
Section 1.7 we will prove our main results (including Theorem 0.5.10) by constructing an

appropriate buffering sequence in each situation.

1.1 Path system geometry

This section is devoted to present the notations and vocabulary of the main geometric
objects of this chapter. We formalise our notions of “convex cocompactness” and “non-

positive curvature”.

Path system spaces.

DEerinITION 1.1.1 (Path system space). — Let p > 1, v > 0. A (i, v)-path system space
(X, Z) is a metric space X together with a collection & of paths of X satisfying:

(PS1) & is closed under taking subpaths.

(PS2) For every z,y € X, there exists v € & joining x to y.
(PS3) Every element of & is a (u, v)-quasi-geodesic.

We refer to & as (u, v)-path system.

We fix p > 1, v > 0 and a (u, v)-path system space (X, P).

DerinITION 1.1.2 (Quasi-convex subset). — Let 7 > 0. A subset Y C X is n-quasi-convex
if every v € & with endpoints in Y is contained in the n-neighbourhood of Y.
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1.1. Path system geometry

DEeriniTION 1.1.3 (Constricting subset). — Let 0 > 0. A subset A C X is d-constricting
if there exists a map m4: X — A satisfying:

(CS1) Coarse retraction.
For every z € A, we have |z — ma(z)| < 9.

(CS2) Constriction.
For every z,y € X and for every v € & joining z to y, if we have |ma(x) —mwa(y)| > 6,
then v N Bx(ma(x),0) # @ and v N Bx(7ma(y),d) # <.

We refer to ma: X — A as d-constricting map.

Figure 1.1 — The constriction property.

Notation 1.1.4. — Let m4: X — A be a map between X and a subset A C X. For every
z,y € X, we denote |x — y|a = |ma(x) — ma(y)|. For every subset Y C X, we denote
diamy4 (Y) = diam(7a(Y)). For every x € X and for every pair of subsets Y, 7 C X,
we denote da(x,Y) = d(ma(x), 7a(Y)) and da(Y,Z) = d(ma(Y),74(Z)). Note that da
may not be a distance over the collection of subsets of X: it may not satisfy the triangle

inequality. We will keep this notation for the rest of the paper.
The following are some standard properties:

ProrositioN 1.1.5. — For every § > 0, there exist a constant § > 0 and a pair of maps,
o:Ro1 xRog — Ryp and (: Rog — Ry, such that any d-constricting map ma: X — A

satisfies the following properties:
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Chapter 1 — Growth of quasi-convex subgroups in groups with a constricting element

(1) Coarse nearest-point projection.
For every x € X, we have |x — ma(z)| < pd(x, A) + 6.
(2) Coarse equivariance.
Let H be a group acting by isometries on X such that A and & are H-invariant.
Then for every h € H and for every x € X, we have |ma(hx) — hma(z)| < 6.
(3) Coarse Lipschitz map.
For every x,y € X, we have |x — y|4 < pulr —y| + 0.
(4) Intersection—Image.
For every v € &, we have | diam(A*° Nv) — diam4(7)| < 6.
(5) Behrstock inequality.

Let mg: X — B be a d-constricting map. Then for every x € X, we have
min {ds(z, B),dg(x, A)} < 6.

(6) Morseness.
Let k 2 1,1 > 0. Let « be a (k,)-quasi-geodesic of X with endpoints in A. Then
o C A+O’(H,l)'

(7) Coarse invariance.

Let € > 0. Let B C X be a subset such that dy..s(A, B) < . Then B is ((¢)-

constricting.

Proof. — We give some references. For (1), (3) and (4), see [74, Lemma 2.4]. For (5), see
[74, Lemma 2.5]. For (6), see [74, Lemma 2.8 (1)]. We leave the proof of the properties (2)

and (7) as an exercise. O

Path system groups. Let G be a group acting by isometries on a metric space X. The

quasi-stabilizer Stabg(z,7) of x € X of radius r > 0 is defined as
Stabg(z,7) ={g € G: |x — gz| < r}.

The action of G on X is proper if for every x € X and for every r > 0, we have
| Stabg(x,r)| < co. Let n > 0. The action of G on X is n-cobounded if for every z, 2’ € X,
there exists g € G such that |z — ga'| <.
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DEerINITION 1.1.6 (Path system group). — Let > 1, v > 0. A (u, v)-path system group
(G, X, ) is a group G acting properly on a metric space X together with a G-invariant
collection & of paths of X such that (X, &) is a (u, v)-path system space.

We fix p > 1, v > 0 and a (p, v)-path system group (G, X, Z).

DEerINITION 1.1.7 (Quasi-convex subgroup). — A subgroup H < G is n-quasi-convex if
there exists an H-invariant n-quasi-convex subset Y C X such that the action of H on Y
is n-cobounded. We will write (H,Y’) when we need to stress the n-quasi-convex subset Y’

that H is preserving.

DerintTION 1.1.8 (Constricting element). — Let 6 > 0. An element g € G is d-constricting
if the following holds:

(CE1) ¢ has infinite order.

(CE2) There exists a (g)-invariant d-constricting subset A C X so that the action of (g) on
A is d-cobounded.

We will write (g, A) when we need to stress the d-constricting subset A that (g) is

preserving.

1.2 Growth estimation criteria

In this section, we fix a group G acting properly on a metric space X and a subgroup
H < G. The goal is to establish simple criteria so that we can check if H is a solution to
the system of equations
w(H) <w(G),
w(G/H) = w(G).
Our criterion to estimate the relative exponential growth rate is basically [39, Crite-
rion 2.4]. The statement that we actually need is more specific, so we will give a proof

for the convenience of the reader. Recall that the action of a subgroup H < G on X is

divergent if its Poincaré series &y (s) diverges at s = w(H).

ProrosiTioN 1.2.1 ([39, Criterion 2.4]). — Assume that the following conditions are true:
(i) w(H) < 0.
(ii) The action of H on X is divergent.
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(iii) There exist subgroups K < G and F' < H N K so that F' is a proper finite subgroup
of K and the natural homomorphism ¢: H xp K — G is injective.

Then w(H) < w(G).

Remark 1.2.2. — In the proof below, note that the relative exponential growth rate makes

sense for any subset of GG, as it does the notion of Poincaré series.

Proof. — Since the action of H on X is divergent, in particular H is infinite and hence
H — F is non-empty. Since F' is a proper subgroup of K, there exists k € K — F. Denote
by U the set of elements of H *p K that can be written as words that alternate elements of
H — F and k, always with an element of H — F' at the beginning and with a k£ at the end.
The inequality w(¢(U)) < w(G) can be deduced from the definition. It is enough to prove
that there exists so > 0 such that w(H) < sop < w(¢(U)). Let 0 € X. Since w(H) < oo,
the interval (w(H), 00) is non-empty. Since the action of H on X is divergent, there exists
s0 € (w(H), 00) such that Y p,cpy_pe 0"l > 1. otherwise one obtains a contradiction
with the divergence of the action of H on X.

In order to obtain the inequality sy < w(¢(U)), it suffices to show that the Poincaré
series Py (s) = X gesan e 1279 diverges at s = so. Since ¢: H xp K — G is injective,

we have
ngb(U)(s) > Z Z 6—5|o—h1kh2k~~hmko\'
m>1hy, hm€H—F
By the triangle inequality, for every m > 1 and for every hy,--- ,h,, € H — F, we have

|o — hikhok - - - hyyko| < 32, Jo — hiko|. Thus,

Z e—s\o—hlkhgkmhmkd >
hi, hm€H—-F

m
Z e—so—hko] ]

heH-F

We see that Py (sg) = oo follows from the claim. O

Our criterion to estimate the quotient exponential growth rate is the following:

DEerFINITION 1.2.3. — Let ¢: G — G. We say that G is ¢-coarsely G/ H if there exist 6 > 0
and x € X satisfying the following conditions:

(CQ1L) For every u,v € G, if ¢(u)H = ¢(v)H, then |p(u)z — ¢(v)x| < 0.

(CQ2) For every u € G, |ux — ¢(u)z| < 0.
ProposiTioN 1.2.4. — If there exist ¢: G — G such that G is ¢-coarsely G/H, then
w(G) =w(G/H).
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Proof. — The inequality w(G/H) < w(G) can be deduced from the defintion. Assume that
there exist ¢: G — G such that G is ¢-coarsely G/H for x € X and 6 > 0.

Cram 1.2.5. — There exist k£ > 1 such that for every r > 0,
| Stabg(z, )| < k|p(Stabg(z,r + 0))].

Let k = | Stabg(z,30)|. Let r > 0. Let p: G — G/H be the natural projection. Let
q¢: G — G/H the map that sends u to ¢(u) H. Note that the quasi-stabilizer Stabg(z, ) can
be decomposed as the disjoint union of the sets ¢~!(g(u)) such that q(u) € ¢(Stabg(x,)).

Hence,

| Stab(z,7)| < > la (a(w)].

g(u)€q(Stabg (x,r))
It suffices to estimate the size of ¢(Stabg(z,r)) and the size of ¢~ '(g(u)), for every u € G.
First we prove that |¢(Stabg(x,r))| < |p(Stabg(z,r + 0))|. Let u € Stabg(z, 7). By the
triangle inequality,

|z — ¢(u)z| < |v — uzx| + |uz — ¢(u)z|.

By the hypothesis (CQ2), we have |ux — ¢(u)x| < 0. Hence |z — ¢(u)z| < r + 0. Conse-
quently, ¢(Stabg(x,r)) C p(Stabg(z,r + 0)). Now we prove that for every u € G, we have
lg7'(q(u))] < k. Let u € G. Since |uStabg(z, 30)| = | Stabg(z, 30)| = &, it is enough to
prove that u='¢~*(q(u)) C Stabg(z,360). Let v € ¢~ ' (¢q(u)). By the triangle inequality,

|z — v tvr| = Jur — vr| < Juz — d(u)z] + |Pp(w)x — d(v)x| + |p(v)T — V|

Since q(u) = q(v), we have that ¢(u)H = ¢(v)H. It follows from the hypothesis (CQ1) that
|p(u)xr—o@(v)x| < 0. By the hypothesis (CQ2), we have max{|uz—¢(u)x|, vz —p(v)z|} < 0
Thus, |z — v 'vz| < 30. This proves the claim.
Consequently,
w(G) < lim sup E log |p(Stabg(z, 7 + 6))].

=00

Finally, observe that

1 1
lim sup — log Ip(Stabg(z, 7+ 0))| = lim sup 7 log |p(Stabg (z, 7 + 6))].
7—00 r—00 T r
Hence w(G) < w(G/H). O
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1.3 Buffering sequences

In this section, we fix constants p > 1, v > 0 and a (u, v)-path system space (X, ).
Despite the fact that our space X does not carry any global geometric condition, we still
can obtain some control through constricting subsets. We could ignore the “wild regions”
if, for instance, we were able to “jump” from one constricting subset to another. The
buffering sequences below encapsulate this idea. In fact, the proofs of our main results
consist essentially in building up some particular buffering sequences. W. Yang had already

introduced this concept for piece-wise geodesics in [78].

DEerINITION 1.3.1. — Let 0, ¢, L > 0. Let & be a collection of subsets of X. A finite
sequence of subsets Yy, A1, Y1, -+, Ay, Y, C X where Y and Y, are the only possible
empty sets is (0, e, L)-buffering on < if for every i € [1,n] the set A; belongs to < and
there exists a d-constricting map m4,: X — A; with the following properties whenever Y;
and Y;_; are non-empty:
(BS1) max{diamy,(A;;1),diama,,,(A;)} <eif i # n.
(BS2) max{diam,(Y;_1),diamu,(Y;)} < e.
(BS3) max{d(A;,Y;_1),d(A;,Y;)} <e.
(BS4) da,(Yi-1,Yi) > L.

What makes buffering sequences remarkable is that they satisfy a variant of Behrstock
inequality. We will find a direct application of the following inequality later in the study of

the quotient exponential growth rates:

ProrosiTiON 1.3.2. — For every 0, € > 0, there exists § > 0 with the following property.
Let A,Y,B C X be a (6,¢,0)-buffering sequence on {A, B}. Then for every x € X,

min {da(z,Y),dg(z,Y)} < 0.

Proof. — Let §, ¢ > 0. Let 0y = 0y(0) > 0 be the constant of Proposition 1.1.5. Let
0 > 0y + 1. Its exact value will be precised below. Let A, Y, B C X be a (4, ¢,0)-buffering
sequence on {A, B}. Let x € X. By symmetry, it suffices to show that if da(z,Y) > 60,
then dp(z,Y) < 0. Assume that ds(z,Y) > 6. Let a € A such that |z —a|p < dp(z, A)+1.
Let b € B. Let y € Y. By (BS3), we have max{d(A,Y),d(B,Y)} < ¢; hence there exist
p € ATTINY and ¢ € BT NY. It follows from the definition of buffering sequence that

max {|b — 75(q)|a, |¢ — pla, la — 7a(p)|B, [P — y|B} <e.
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Figure 1.2 — An example of a buffering sequence in the Poincaré
disk model. In this example, the sets A; are subpaths of length
> L of a given bi-infinite geodesic . Each set Y] is the collection
of geodesics that are orthogonal to the geodesic segment of «
that is between A; and A; . In particular, the sets Y; are quasi-
convex. For more intuition, one could interpret this picture on
a tree.
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Applying together Proposition 1.1.5 (1) Coarse nearest-point projection and (3) Coarse

Lipschitz map, we obtain

max{|mp(q) — qla, |ma(p) — pls} < p?(e + 1) + b + .

Cramm 1.3.3. — da(z, B) > 6

By the triangle inequality,
[z —bla = o —pla—[b—75(q)|a —75(q) — qla — |g — pla.

Moreover, |z — p|a = da(z,Y). Since the element b is arbitrary and we have d4(z,Y) >
0o + 1, we obtain d4(z, B) > 6. This proves the claim.
Finally, we are going to estimate dg(z,Y). By the triangle inequality,

lz —ylp < |z —alp+|a—7ap)|s + |Talp) — 2B+ P —Y|B

Since d4(x, B) > 0o, it follows from Proposition 1.1.5 (5) Behrstock inequality and the
definition of a that |xr—a|g < 6y+1. Since the element y is arbitrary, we obtain dg(x,Y) < 0
for 0 = 20y + 1 + 2e + p?(e + 1) + pby. O

The corollary below will be applied to the study of the relative exponential growth

rates:

CoRroLLARY 1.3.4. — For every 9, ¢, 0 > 0 there exists L > 0 with the following property.
Let Yy, A1, Yy, -+, Ap, Y, C X be an (6,¢, L)-buffering sequence on {A;}. Then for every
i€ [1,n],

da,(Yo,Y:) > 0.
Proof. — Let §, ¢, 0 > 0. Let 6y = 0y(6,¢) > 0 be the constant of Proposition 1.3.2. We
put L =60+ 0y + 1. Let yo € Y. Let i € [1,n].
Cramm 1.3.5. — dy, (4o, Y3) = da,(Yic1,Yi) — da, (vo, Yic1).

Let y;1 € Y;_1 and y; € Y;. By the triangle inequality,

1Yo — Yila, = |yic1 — vila, — Yo — Yi-1]a,-

Note that |y;—1 — yi|a, = da,(Yi-1,Y;). Since the elements y;_1, y; are arbitrary, this proves

the claim.
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Finally, we prove by induction on i € [1,n] that, da,(Yo,Y;) > 6. If i = 1, then
da, (Yo, Y1) > 0 follows from (BS4), since L > . Assume that i € [1,n—1] and da,(Ys, Y;) >
6. Then dy,(yo, Y;) > 6o. It follows from Proposition 1.3.2 that d,,, (v, Y;) < 6. By (BS4),
iy
element o is arbitrary, da,,, (Yo, Yit1) > 0. This concludes the inductive step. ]

(Y;,Yi41) = L. Applying the previous claim, we obtain da,,, (yo, Yi+1) > 6. Since the

1.4 Quasi-convexity on Intersection—Image property

In this section, we fix constants p > 1, v > 0 and a (u, v)-path system space (X, ).
In this section, we prove a variant of Proposition 1.1.5 (4) Intersection—Image. Basically,
we will be exchanging paths of & for quasi-convex subsets of X, further thickening the

involved sets.

ProrosiTioN 1.4.1. — For every 0, n > 0, there exist § > 0 and (: Rso X R>g = Rxo
with the following property. Let mq: X — A be a d-constricting map. Let Y be an
n-quasi-convex subset of X. Let €1 > 0, e5 > 0. Then

| diam (AT N Y Te2) — diamy (V)] < (g1, €2).

Proof. — Let §, 7 > 0. Let 6y = 05(0) > 0 be the constant of Proposition 1.1.5. We put
0=0+n+1. Let (: Rog x Ryg = R depending on ¢, n. Its exact value will be precised
below. Let m4: X — A be a J-constricting map. Let Y be an n-quasi-convex subset of X.
Let e1 20, e > 0.

First we prove that diam(Y) < diam(A*t0ter Ny *e) + ((g,ey). Let 2,y € Y. It
suffices to assume that |z — y|a > §. Let v € & joining x to y. By (CS2), there exist
p,q € 7y such that

max{|ma(z) — p|, [Taly) —ql} <6

Since the subset Y is n-quasi-convex, there exist p/, ¢’ € Y such that
max{|p — p'l,lg — ¢I} <n+ 1.
By the triangle inequality,

|z —yla <|malx) —pl+p =+ 10 = |+ 1d —q + g — ma(y)].
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Since p/, ¢ € AT+ N Y2 we have |p/ — ¢/| < diam (AT NY*22). Hence,
|z — yla < diam(ATT N YT2) 426 4 2 + 1.

Now we prove that diam(AT051 NY*+e2) < diama(Y) + ((e1,€2). Let z,y € ATV
Y*e2_ Since x,y € Y42, there exist /.4y’ € Y such that max{|z — 2|, |y — ¢/|} < &2+ 1.
By the triangle inequality,

lv —y| < |z —ma(@)| + |z =2+ 2" —y'|a+ |y —yla+ |7aly) —yl.

Since z,y € A+ it follows from Proposition 1.1.5 (1) Coarse nearest-point projection
that

max{|z — wa(@), [y = 7a(y)[} < (0 + 1) + o

It follows from Proposition 1.1.5 (3) Coarse Lipschitz Map that,
max{|z — 2’|, [y — ¢|a} < p(e2 + 1) + bo.
Since ma(2"), ma(y") € Ta(Y), we have |2' — ¢/|4 < diam(Y). Hence,
|z —y| < diamy (V) +2u(0 + €1) + 2u(eg + 1) + 46,.

Finally, we put ((e1,e2) = max{2d + 20+ 1,2u(0 + 1) + 2u(ea + 1) + 46, }. O

Applying the symmetry of Proposition 1.4.1 in combination with Proposition 1.1.5 (6)

Morseness and (7) Coarse invariance, we deduce:

CoroLLARY 1.4.2. — For every § > 0, there exists 0 > 0 with the following property. Let
ma: X - A and mg: X — B be §-constricting maps. Then:

| diamy (B) — diamp(A)| < 6.

1.5 Finding a quasi-convex element

Given a torsion-free hyperbolic group G containing a loxodromic element gy and an
infinite index quasi-convex subgroup H, one can find another loxodromic element g € G
conjugate to go so that H has trivial intersection with (g) [6, Theorem 1]. The goal of this

section is to reimplement this fact in our setting, using a “quasi-convex element” instead
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1.5. Finding a quasi-convex element

of a loxodromic element. In this section, we fix constants p > 1, v > 0 and a (u, v)-path
system group (G, X, &).

DeriniTION 1.5.1 (Quasi-convex element). — Let n > 0. An element g € G is n-quasi-
convex if the following holds:

(QE1) ¢ has infinite order.

(QE2) (g) is an n-quasi-convex subgroup of G.
We will write (g, A) when we need to stress the n-quasi-convex subset A that (g) is
preserving.

The main result of this section is the following.

ProrosiTioN 1.5.2. — Let n > 0. Assume that G contains an n-quasi-convex element
(g9, A). There exists 0 = 0(n, g, A) > 1 satisfying the following. Let (H,Y’) be an n-quasi-

convex subgroup of G. Then:
(i) For every u € G, if diam(uANY) > 6, then uA C Y.
(ii) Let H < K < G. If [K : H] > 6, then there exist k € K such that diam(kANY) < 0.

Remark 1.5.3. — Under the notation of (ii), when K = G, the element kgk~' has the
desired property that we were looking for. Note that (kgk™', kA) is quasi-convex since &

is G-invariant.
The rest of the section is devoted to the proof of Proposition 1.5.2.

DEerINITION 1.54. — Let £ > 1,1 > 0. A map ¢: (Y,dy) — (Z,dz) between two metric

spaces is a (k, [)-quasi-isometric embedding if for every y,y’ € Y,

Lv(y.y) ~ 1 < dzloly), 6(4)) < mi(y,9') + 1

We start with a variant of Milnor-Schwarz Theorem. If U is a generating set of a group

H, we denote by dy the word metric of H with respect to U.

LemMma 1.5.5. — For every i > 0, there exist § > 1 with the following property. Let (H,Y)
be an n-quasi-convex subgroup of G. For every y € Y, there exists a finite generating set U

of H such that the orbit map (H,dy) — X, h — hy is a (0, 8)-quasi-isometric embedding.
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For the proof, one can use the same kind of argument as that of Milnor-Schwarz
Theorem, but bearing in mind that ¥ might not be a length metric space, which is required
by the original statement. The only difference here is that one uses the paths of & with
endpoints in Y. They are enough for the proof since they approximate sufficiently well the

distances, at least in this situation.

Proof. — Let n > 0. Let 8 = 6(n) > 1. Its exact value will be precised below. Let (H,Y)
be an n-quasi-convex subgroup of G. Let y € Y. We put U = Stabg(y,4n + 3) N H. Note
that since the action of G on X is proper, the subset U is finite. We claim that U is a
generating set of H and that for every h € H,

1
gdU(laJl) < |y — hy| < 0dy(1g, h).

Let h € H. Let : [0,L] — X be a path of & joining y to hy. Let m = [L] + 1. We
fix a partition 0 = tp < ¢ < -+ < t,, = L of [0, L] such that |t,,—1 — t,,] < 1 and
such that if m > 2, then for every i € {0,---,m — 2}, we have |t; — t;11| = 1. Let
i €{0,---,m}. Denote z; = ~y(t;). Since (H,Y) is n-quasi-convex, there exist h; € H such
that |h;y — x;] < 21+ 1. Without loss of generality, we can take hg = 1 and h,, = h. By
the triangle inequality,

\hig1y — hiy| < |hig1y — Tiga| + |@ip — x| + |25 — Ryl

Note that |2; — z;41| < 1. Consequently, |h; *hi 1y —y| < 4n+3. Therefore h; *h;,; belongs
to U. We obtain
h=hg 'l = (hg ' ha) - (i ).

Thus h can be written as a product of elements of U. Hence, the set U generates H.
Besides, we have that dy(1g, h) < m. By construction of the partition, m < L + 1 and
since v is a (u, v)-quasi-geodesic, L < ud(y, hy) + v. Consequently,

1 v 1
ly —hyl > ~dv(lg,h) — — — —.
2 nop

Finally, let h € H and denote m = dy(1g, h). By definition, there exist uy, -+ ,u,, € U
such that h = u; - - - u,,. Applying the triangle inequality and the definition of U, we obtain

m

ly — hy| < Zly—uzy! (4n + 3)dy (16, h).
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Finally, we put § = max {u, ﬁ + i,477 + 3}. O]

LemmA 1.5.6. — Let n > 0. Let H < G be an abelian subgroup. Let Y C X be an
H-invariant subset so that the action of H on 'Y is n-cobounded. Then, for every h € H
and for every y,z € Y,

ly = hy| = |2 = he|| < 2n.

Proof. — Let h € H. Let y, z € Y. Since the action of H on Y is n-cobounded, there exists
k € H such that |z — ky| < n. By the triangle inequality,

ly — hy| < |ky — khy| < |ky — 2| + |z — hz| + |hz — khy].
Since the subgroup H is abelian, |hz — khy| = |z — ky|. Thus, |y — hy| < |z — hz| + 2n.
Finally, exchanging the roles of y and z, we obtain |y — hy| > |z — hz| — 2n. O

Next, we are going to check that we can obtain uniform quasi-isometric embeddings of
Z in X via the orbit maps of quasi-convex elements of G' that share the same constant.

For this reason, we introduce the following definition:

DerINITION 1.5.7. — Let g € G. Let x € X. The stable translation length of g is
o 1 L
llgll” = limsup — |¢g"x — x|.
m—oo 11
Note that [|g||> does not depend on the choice of the point z € X.

Remark 1.5.8. — Let g € GG. By subadditivity, for every x € X, we have

 _ inf L|gm — lim —|g"
loll™ = inf —lg"z —a| = lim —|g"z - z|.

LemMA 1.5.9. — Let n > 0. Let g € G. Let A C X be a (g)-invariant subset so that the

action of (g) on A is n-cobounded. The following statements are equivalent:

(i) There exists x € X such that the orbit map Z — X, m — ¢™x is a quasi-isometric
embedding.

(i) 1lg)> > 0.
(iii) There exists = 0(n, g, A) > 1 such that for every a € A, the orbit map Z — X,

m+— g"a is a (0, 0)-quasi-isometric embedding.
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Proof. — The implication (iii) = (i) already holds.
(i) = (it). Assume that there exists © € X such that the orbit map Z — X, m — ¢"x

is a quasi-isometric embedding. Then there exist x > 1, [ > 0 such that for every m > 1,

1 [ 1
E—%ﬁgm—gmx\ <K+ —
Therefore, [|g|™ > + > 0.

(i1) = (dii). Assume that ||g||™ > 0. Let ||g|la = infsea|a — gal. Then we can
define 6 = max{H glla + 2n, W, 1}. Let a € A. Applying the triangle inequality we
obtain that for every m € Z, |a — g™a| < |a — ga||m|. It follows from Lemma 1.5.6 that
la—gal < ||g|la—+2n. Since ||g||™ = inf,cz_ {0} |—T{L||a—g|”|a|7 we obtain that for every m € Z,
la — g™a| = ||g||”° |m|. Hence the orbit map Z — X, m — ¢g™a is a (6, 0)-quasi-isometric
embedding. O

LemMmA 1.5.10. — Let n > 0. Let (g, A) be an n-quasi-convex element of G. There exists
0 = 60(n,g,A) > 1 such that for every a € A, the orbit map Z — X, m +— ¢g™a is a

(0, 0)-quasi-isometric embedding. Moreover, ||g||™ > 0.

Proof. — We are going to apply Lemma 1.5.5 and Lemma 1.5.9. Let a € A. According
to Lemma 1.5.5, there exist a finite generating set U of (g) such that the orbit map
¢: ({9),dy) — X, h = ha is a quasi-isometric embedding. Furthermore, since ¢ has
infinite order, the map x: Z — {(g), m — ¢g™ is an isomorphism. Let V = x~'(U). In
particular x: (Z,dy) — ({g),dy) is an isometry. Morover, the map ¢: Z — (Z,dy) is a
quasi-isometric embedding. Hence, the composition ¢ oy o1 is a quasi-isometric embedding.

Now both of the statements of the lemma follow from Lemma 1.5.9. OJ

We continue by upper bounding the length of a quasi-geodesic of X by the number of
points of an orbit of a subgroup H of G that fall inside a precise neighbourhood of this

quasi-geodesic, whenever the quasi-geodesic falls also inside a neighbourhood of that orbit.

Lemma 1.5.11. — For every n > 0, k > 1, [ > 0, there exists § > 1 with the following
property. Let H < G. Let Y C X be an H-invariant subset such that the action of H on
Y is n-cobounded. Let y € Y. Let v be a (k,[)-quasi-geodesic of X such that v C Y.
Let U ={u € H: uy € v} Then

((vy) < 0|U|.

60



1.5. Finding a quasi-convex element

Proof. — Letn >0,k >1,1> 0. Let 6 = 0(n, k,1) > 1. Its exact value will be precised
below. Let H, Y, y, v: [0, L] — X and U as in the statement. Let m = FJ + 1. We fix
a partition 0 =ty < t; < --- < t, = L of [0, L] such that |¢,,—1 — t,,] < 6 and such that
if m > 2, then for every i € [[O m — 2], we have |t; — t;11| = 0. Hence {(y) = L < Om.
We prove that m < |U]. Let ¢ € [0,m — 1]. Denote z; = ~(¢;). Since the action of H on
Y is n-cobounded and v C Y, for every i € [0, m — 1], there exists h; € H such that
|z; — hyy| < 2n+ 1. In particular, h; € U. From now on we may assume that m > 2,
otherwise there is nothing to show. Let i, j € [0, m — 1] such that i # j. We claim that
h; # hj. The claim will follow when we show that |h;y—h;y| > 0. By the triangle inequality,

\hiy — hyy| 2 |z — 25| — |20 — hay| = 25 — hyyl.

Since 7 is a (k, [)-quasi-geodesic,

1 [
s — 23] = —lti =t = —.

Since 4, j € [0, m — 1], we have that |t; —t;| > 6. To sum up,

Finally, we put 0 = & (é +4n + 2) + 1. Hence, |h;y — hjy| > 0. In particular, we obtain
m < |UJ. O

The following fact is a direct consequence of the triangle inequality:

LemMma 1.5.12. — Let n > 0. Let H < G. Let Y C X be an H-invariant subset so that
the action of H on'Y is n-cobounded. Then, for every y,z € Y, there exists h € H such
that for every r > 0,

h~! Stabg(y,r)h C Stabg(z,r + 27).

Finally, we show that there is a uniform threshold that ensures the existence of a
uniformly short element in the intersection of any pair of quasi-convex subgroups of G

that share the same constant.

Lemma 1.5.13. — For every n > 0, there exists 6 > 1 with the following property. Let
(H,Y) and (K, Z) be n-quasi-convex subgroups of G. If diam(Y N Z) > 6, then there exist
yeYNZandhe HNKNStabg(y,0) — {1}
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Proof. — Let n > 0. Let 6y = 6y(n, 1, v) > 1 be the constant of Lemma 1.5.11. Let 0 € Y.
We denote W = Stabg (0,61 + 2). Let 6, = 6o|W| + 6. Note that the constant 6 is finite
since the action of G on X is proper. We put § = 20; +4n + 2. Let (H,Y) and (K, Z) be
n-quasi-convex subgroups of G. Assume that diam(Y N Z) > 6. Since diam(Y N Z) > 6,,
there exist y,z € Y N Z such that |y — z| > ;. Let § € & joining y to z. Since £(/3) > 6y,
there exist z’ € § and a subpath 7 of § joining y to 2z’ such that ¢(y) = #;. We denote
U={ue H: uy € y*1} and V = Stabg(y, 4n + 2).

The first step is to construct a map ¢: U — V. Let u € U. By definition of U, there
exists € v such that |uy — x| < 27 + 1. Since the subgroup (K, Z) is n-quasi-convex,
there exists k, € K such that |z — k,y| < 21+ 1. By the triangle inequality,

luy — kuy| < |uy — 2|+ |z — kuyl.

Consequently, |u=k,y — y| < 4n + 2. Hence, u~ 'k, € V. We define ¢: U — V to be the
map that sends every u € U to u=k, € V.

Next, we show that the map ¢: U — V is not injective. Since Y is n-quasi-convex, we
have that v C 8 C Y. Tt follows from Lemma 1.5.11 that |U| > %E(fy). By hypothesis,
U(7y) = by|W|+60y. Since the action of H on Y is n-cobounded, it follows from Lemma 1.5.12
that there exists h € H such that h~'Vh C W and hence |W| > |h"'Vh| = |V|.
Consequently, |U| > |V|. Therefore, the map ¢: U — V is not injective.

Now we claim that U C Stabg(y,0: + 27+ 1). Let w € U. By definition of U, there
exists x € 7 such that d|x — uy| < 2n + 1. By the triangle inequality,

ly —uy| < |y — x| + [z — uyl.

Moreover, |y — x| < ¢(v) = 6,. Hence |y — uy| < 6, + 21+ 1.

Finally, since the map ¢: U — V is not injective, there exist u;,us € U such that
uy # ug and uy tky, = uy ky,. In particular, upu;t € HN K — {1¢}. Further, according to
the triangle inequality,

’y — uQul_ly| < |y — ugy\ + |’LL2y — U2U1_1y|‘

It follows from the claim above that |y — uou;'y| < 6. Therefore, uou;* € H N K N
Stab(;(y, ) - {lG’} O

We are ready to prove the proposition:
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Proof of Proposition 1.5.2. — Let n > 0. Assume that G contains an n-quasi-convex
element (g, A). We are going to determine the value of ¢ = 0(n, g, A) > 1. By Lemma 1.5.10,
there exists 6y = 0y(n, g, A) > 1 such that for every a € A, the orbit map Z — X, m — ¢™a
is a (0, 0)-quasi-isometric embedding. Let 6; = 0;(n) > 1 be the constant of Lemma 1.5.13.
Let 6y = 1+ 026,. Let 0 € A. We denote U = Stabg(0,2605 + 1+ 1). Let § = max{0s, |U]|}.
Note that the constant 6 is finite since the action of G on X is proper. Let (H,Y") be an

n-quasi-convex subgroup of G.

(i) Let v € G. Assume that diam(uANY) > 6. Let a € A. We prove that ua €
Y192, Since & is G-invariant, the element (ugu~!,uA) is n-quasi-convex. Since
diam(uANY) > 6y, according to Lemma 1.5.13, there exist b € A and M € Z — {0}
such that ub € uANY and ug™u~' € H N Stabg(ub, 61). Since the action of (g) on
A is n-cobounded, there exists m € Z such that |a — ¢™b| < 7. By Euclid’s division
Lemma, there exist ¢, € Z such that m = ¢M +r and 0 < r < |M| — 1. By the

triangle inequality,
d(ua,Y) < Jua — ug™b| < |ua — ug™b| + |ug™b — ug®’b|.
Note that |ua — ug™b| = |a — g™b| < n. Moreover, it follows from Lemma 1.5.10 that
lug™b — ug™b| = |g"b — b| < Oy|r|.

Note also that |r| < |M|. Applying again Lemma 1.5.10, we obtain that |M| <
0o|g™b — b|. By Lemma 1.5.13, |¢gMb — b| = |ugMutub — ub| < 0;. Hence,

d(ua,Y) < 0y < 0.

(ii) Let H < K < G. We argue by contraposition. Assume that for every k € K, we
have diam(kA NY) > 6. We prove that [K : H] < |U|. It follows from (i) that
KA C Y*%, Then there exists y € Y such that |o — y| < 6, + 1. Since the action
of H on Y is n-cobounded, we have that Y C (Hy)™". Hence Ko C (Hy)*%*". In
particular, for every k € K, there exists hy € H such that |ko — hyy| < 02 + 1. Let
K’ be a set of representatives of the set H\K of right cosets of H. Then the set
K" ={h.'k: k € K'} is a set of representatives of H\K. We claim that K" C U.
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Let k € K'. By the triangle inequality,
|h; tko — o] = |ko — hyo| < |ko — hyy| + |hey — hyol.
Thus, |h; ko — o] < 205 + n + 1. This proves the claim. Consequently,

K : H] < |K"| < |U| <0.

1.6 Constricting elements

Hypothesis and conventions for this section. We fix:
» Constants u > 1 and v, § > 0.

» A (u,v)-path system group (G, X, &?).

» A J-constricting element (g, A).

» A J-constricting map m4: X — A.

1.6.1 A G-invariant family

The set of G-translates of A is a G-invariant family of d-constricting subsets. Indeed,
consider the stabilizer Stab(A) of A and fix a set R, of representatives of G/ Stab(A). Let
u € G and uy € Ry such that uA = upA. The map m,4: X — uA defined as

Vo e X, mua(x)=uoma(uy'z).

is then d-constricting since & is G-invariant. Moreover, the element (ugu™',uA) is 6-
constricting. To cope with the possible lack of (ugu~!)-equivariance of the map m,4: X —
uA, we make the following observation:
ProrosiTiON 1.6.1. — There exists 6 > 0 satisfying the following. Let u € G. Then:

(i) For every v € X, we have |mya(z) — uma(u=tz)| < 96.

(ii) For every Y C X, we have |diam,4(Y) — diam(uma(u™'Y))| < 6.

Proof. — Let 6y = 0(0) = 0 be the constant of Proposition 1.1.5. We put 6 = 26,. Let
u € Q.
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(i) Let x € X. Denote y = u™'z. Let ug € R, such that uA = ugA. We see that,
|mua(z) — uma(u™z)| = luomalug ‘@) — uma(u™ 2)| = [maug uy) — ug uma(y)|.

Since ug 'u € Stab(A), it follows from Proposition 1.1.5 (2) Coarse equivariance that

|Tua(x) — uma(u=ta)] < 0.

(ii) Let Y C X. Let y,9' € Y. By the triangle inequality,

<

[1mua(y) = muay) | —luma(u™"y) — uma(u™"y)|

[mua(y) — uma(u™ y)| + luma(u™y") — mua(y')].

It follows from (i) that

max {Juma(y) — umalu™ )], fumalu™y') — maa(y)]} < .

Hence, we have | diam,4(Y) — diam(uma(u=Y))| < 26.

1.6.2 Finding a constricting element

The goal of this subsection is to combine Proposition 1.5.2 and Proposition 1.4.1. We

suggest to compare (ii) below with the property (BS2) of the buffering sequences.
ProrosiTiON 1.6.2. — Let 1 > 0. There exists 6 > 1 satisfying the following. Let (H,Y)
be an n-quasi-convex subgroup of G. Then:

(i) For every u € G, if diam,4(Y) > 0, then uA C Y*°.

(ii) Let H < K < G. If [K : H] > 0, then there exists k € K such that diamy4(Y") < 6.
Proof. — Let n > 0. Let 6 = 6(n) > 1. Its exact value will be precised below. It follows
from Proposition 1.1.5 (6) Morseness and (7) Coarse invariance that there exists 6y > 0
such that the element (g, A) is fp-quasi-convex. Let 6; = max{n, 6y}. By Proposition 1.4.1,

there exist 65 > 0, ¢ > 0 depending both on #; such that for every u € GG and for every

f,-quasi-convex subset Y C X, we have

diam, 4 (Y) — ¢ < diam(uA™ NY) < diam,4(Y) + .
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According to Proposition 1.1.5 (6) Morseness and (7) Coarse invariance, there exist
03 = 03(03) > 0 such that the element (g, A*%) is #3-quasi-convex. Let 6, = max{n,03}.
Let 05 = 05(04, g, A) > 1 be the constant of Proposition 1.5.2. Finally, we put 6 = 65 + (.
Let (H,Y) be an n-quasi-convex subgroup of G.

(i) Let u € G. Assume that diam,4(Y") > 6. According to Proposition 1.4.1, we have
diam(uA*® NY) > 05 and according to Proposition 1.5.2 (i) this implies that
uAC Yt CY T

(ii) Let H < K < G. We argue by contraposition. Assume that for every k € K, we
have diamg(Y) > 6. According to Proposition 1.4.1, for every k € K, we have
diam(kAT% N'Y) > 05 and according to Proposition 1.5.2 (ii) this implies that
[K : H) <05 <6.

1.6.3 Elementary closures

The elementary closure of (g, A) could be thought as the set of elements u € G such
that uA is “parallel” to A:

DEerINITION 1.6.3. — The elementary closure of (g, A) in G is defined as
E(g,A) ={u € G: dyaus(uA, A) < co}.
Observe that E(g, A) is a subgroup of G since dyays is a pseudo-distance.

This subsection is devoted to provide a further description E(g, A). We suggest to
compare the proposition below with the property (BS1) of the buffering sequences.

ProrosITiON 1.6.4. — There exists 6 > 1 satisfying the following:

(i) For every u € G, we have
max{diam,4(A),diamy(vA)} >0 <= dygaus(ud, A) < 0.
(ii) E(g,A) ={u € G: dyaus(ud, A) < 6}.
(iii) [E(g, A) : (9)] < 6.
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Proof. — Let 6y > 0 be the constant of Proposition 1.6.1. According to Proposition 1.1.5
(6) Morseness, there exists #; > 0 such that the element (g, A) is 6;-quasi-convex. Let
0y = 02(01) > 1 be the constant of Proposition 1.6.2. We put 6 = 6y + 0.

CrLamm 1.6.5. — Let u € G. If dyaus(uA, A) < oo, then diam,4(A) = 0.

Let u € G. Assumme that dyaus(uA, A) < co and denote € = dyaus(ud, A) + 1. By
Proposition 1.4.1, there exist #3, ( > 0 such that for every u € G we have

diam, 4(A4) — ¢ < diam(uA™ N A™) < diam,a(A) + ¢

Note that uA C uA*% N A*® and diam(uA) = diam(A). Since the action of G on
X is proper and since the element ¢ has infinite order, we have that diam(A4) = oc.
Consequently, we have diam(uA*% N A*¢) = co. Finally, it follows from Proposition 1.4.1

that diam,4(A) = co. This proves the claim.

(i) Let u € G. Assume that max{diam,4(A), diam4(uA)} > 6. By Proposition 1.6.1,
diam,—14(A) > diamy (u™'ra(uA)) — bp.

Hence, diam,-14(A) > 6. It follows from Proposition 1.6.2 (i) that uA C AT and

u"'A C AT, Hence daus(ud, A) < 0. The converse follows from the claim above.
(ii) This follows from (i) and the claim above.

(iii) This follows from (i), (ii) and Proposition 1.6.2 (ii).

Finally, we obtain an algebraic description of E(g, A).

COROLLARY 1.6.6. — There exist § > 1 and M € [1,0] such that for every u € G, the

following statements are equivalent:
(i) u € E(g,A).
(i) There exists p € {—1,1} such that ugMu=! = g*M.
(iii) There exist m,n € Z — {0} such that ug™u™"' = g".
Further, let E*(g,A) = {u € G: ug™u=' = gM}. Then [E(g,A) : E*(g,A)] < 2.

Proof. — By Proposition 1.6.4 (ii), there exists 6y > 1 such that [E(g, A) : (9)] < 6.
Let 8 = 60! We construct M € [1,0]. First, we claim that there exists a subgroup

67



Chapter 1 — Growth of quasi-convex subgroups in groups with a constricting element

K < (g) such that K < E(g,A) and [E(g,A) : K] < 0. Consider the natural action of
E(g, A) by right multiplication on the set (g)\E(g, A) of right cosets of (g). This gives
an homomorphism ¢: E(g, A) — Sym({(g)\E(g,A)). Choose K = Ker(¢). Note that
(9) ={h € E(g,A): ¢(h)({(9))} = (g). Thus, K < (g). Morover, K < E(g, A). Further,
we have that |Sym({(g)\E(g,A))| = [E(g,A) : (¢9)]! and hence [E(g,A) : K] divides
[E(g, A) : {g)]! Therefore, [E(g, A) : K| < 6. This proves the claim. Now, since the element
¢ has infinite order, the subgroup F(g, A) is infinite. Hence, since [F(g, A) : K| < oo there
exists M > 1 such that K = (¢™). Finally, we remark that M is equal to the order of the
element ¢(g). Hence, M < 6.

Let u € G. The implication (i) = (éi7) already holds.

(i) = (i1). Assume that u € E(g, A). Since the subgroup (¢g™) is normal in E(g, A),

there exists p € Z such that ugu=! = ¢?M. In particular,
(g") = ulg")u™" = (ug"u™") = (™).

Hence, if p & {—1,+1}, then (g™) ¢ (¢gP*). Contradiction.

(i14) = (7). Assume that there exist m,n € Z — {0} such that ug™u~' = ¢g". Since
both (g™) and (g") have finite index in (g), there exist ¢ > 0 the actions of (ug™u™!)
on uA and of (¢") on A are both (-cobounded. Let x € uA and y € A. We obtain
dians(UA, A) < ( + |z — y|. Hence dyaus(ud, A) < .

Finally, let E(g, A) = {u € G: ugMu™ = g™}. We prove that [E(g, A) : ET(g, A)] <
2. Tt is enough to assume that F(g, A) # E* (g, A). Let u,v € E(g,A) — E*(g,A). We
show that v~'u € E*(g, A). Since ugut = vg™v=! = g™ we have v lugMutv =
v g™ My = gM and therefore v™lu € E*(g, A). Hence [E(g, A) : BT (g, A)] = 2 O

1.6.4 Forcing a geometric separation

In this subsection, we build large powers of our constricting element (g, A) to produce
a translate Y’ of a subset Y so that the distance between their projections to a preferred
G-translate of A is large. We will do it in two different ways. We will apply these results

to verify (BS4) in the construction of buffering sequences. Our main tool will be:
LemmAa 1.6.7. — There exists @ > 0 such that for every x,z’ € X and for every m € Z,
[z —g"a|a = [ml[|lg]]™ — o — 2']a — 0.
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Proof. — Let 6 = 0(6) > 0 be the constant of Proposition 1.1.5. Let z,2" € X. Let m € Z.
If m = 0, then there is nothing to do. Assume that m # 0. By the triangle inequality,

[z — g™ |4 2 |ma(x) — g"ma(2)] = o — 2'[a = [g"7a(2") = 7alg™2")].

Note that

m : 1 n o o]
7)) > inf - fra(a) — 9" ma(w)] = ol

By Proposition 1.1.5 (2) Coarse equivariance, we have |g"™ma(x’)—ma(g™z")| < 6. Therefore,

we have |z — g™a/|4 = [m [|g]|™ — |z — 2'[a — 6. -

The first way of forcing a geometric separation will be applied to the study of the

relative exponential growth rates:

ProrosITION 1.6.8. — For every ¢, § > 0, there exists M > 1 with the following property.
Let H < G be a subgroup. Let Y C X be an H-invariant subset. If diam4(Y') < €, then
for every u € (g™, HN E(g, A)) — HN E(g, A), we have da(Y,uY) > 6.

Proof. — Let €, 0 > 0. Let 6y > 0 be the constant of Proposition 1.1.5. By Lemma 1.6.7,

there exists 6; > 0 such that for every x, 2’ € X and for every m € Z,
|z — g™ [a = |m| |lg]|™ — |z — 2'|4 — 01

Combining Lemma 1.5.10 and Proposition 1.1.5 (6) Morseness, we obtain ||g||™ > 0.
According to Corollary 1.6.6, there exists My > 1 such that

E(g,A) = {uecG: Ipe (-1, +1}ug"u = g0},

Let mg > %. We put M = Mymy.

Let H < G be a subgroup. Let Y C X be an H-invariant subset. Assume that
diam4(Y) < e. Let u € (¢, HN E(g,A)) — HN E(g, A) and y,y’ € Y. It follows from
Corollary 1.6.6 that there exists n € Z multiple of M and f € HN E(g, A) such that

u = ¢g" f. By the triangle inequality,

ly—9"fY|a >y — 9"V |a—|7ma(g"y) — g"maW) = [y = fy'|a — |g"7a(fy') — malg" fV/)].
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By Lemma 1.6.7,
ly—g"y'|a = Inl g™ = |y = y'[a— 0

Note that u ¢ HNE(g, A) implies n # 0. Hence |n| > |M|. Since f € H and diama(Y) < ¢,

max{|y — v, [y — fy|a} <e.

By Proposition 1.1.5 (2) Coarse equivariance,

max{|m4(g"y") — g"ma(y)], 9" 7a(fY") — 7alg" fy)|} < bo.
Since the elements y, 3’ are arbitrary, we obtain da(Y,uY) > 6. ]

The second way of forcing a geometric separation will be applied to the study of the

quotient exponential growth rates:

PrOPOSITION 1.6.9. — For every €, 6 > 0, there exist M > 1 and f: G x X — {1¢,¢™}
with the following property. Let Y C X be subset. If diama(Y) < ¢, then for every u € G
and for every y € Y, we have dya(y, uf(u,y)Y) > 0.

Proof. — Let €, 8 > 0. Let 6y > 0 be the constant of Proposition 1.6.1. By Lemma 1.6.7,

there exists 6; > 0 such that for every z, 2’ € X and for every m € Z,
|z — g™’ |4 = [m| [lg]]™ — |z — 2|4 — 61

Combining Lemma 1.5.10 and Proposition 1.1.5 (6) Morseness, we obtain [|g||> > 0.

We put M > %. Then, for every u € G and for every x € X, there exists

flu,z) € {1g, g™} such that [u=te — f(u,x)|a > O+e+40p: if ju™te —z|4 > O+c+40), we
choose f(u,z) = 1g, otherwise we choose f(u,z) = g™. This defines f: Gx X — {1g,gM}.
Let Y C X be a subset. Assume that diam4(Y) < e. Let v € G. Let y,y' € Y. By

abuse of notation, we write f instead of f(u,y). By the triangle inequality,

ly = wfy'lua = |y — wfylua — lufy — wfy'lua,
ly = wfylua = [u™'y — fyla — Imuay) — uma(u™"y)| — |mua(ufy) — ura(fy)l,
|ufy - ufy/|uA < |7TuA<Ufy) - UfWA(Z/” + |y - y/|A + |Uf7TA(y/> - WuA(Uf?J/”'

By hypothesis, |[u™ly — fyla > 0 + & + 40y and |y — /|4 < diamy(Y) < e. By Proposi-
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tion 1.6.1,
max{|m,a(y) — uma(u™ y)|, |mua(ufy) —ura(fy)l} < o
max{|m,a(ufy) — ufra)l, [ufra(y’) — mua(ufy)l} < o
Since the element 3/ is arbitrary, we obtain dy(y, ufY’) > 0. O

1.7 Growth of quasi-convex subgroups

In this section, our first goal is to prove Theorem 0.5.8. This result can be deduced from
Proposition 1.2.1 and Proposition 1.7.1 below. Our second goal is to prove Theorem 0.5.13.
This result can be deduced from Proposition 1.2.4 and Proposition 1.7.3 below.

Hypothesis and conventions for this section. We fix:

» Constants © > 1 and v, §, n > 0.

» A (u,v)-path system group (G, X, ).

» A J-constricting element (go, Ap).

» An infinite index n-quasi-convex subgroup (H,Y") of G.

We are going to replace the axis Ay for A = FE(go, Ao)Ag. As a consequence of
Proposition 1.6.4 (ii), we have dpaus(Ao, Aj) < 0o. Up to replacing ¢ for a larger constant,
it follows from Proposition 1.1.5 (7) Coarse invariance and Corollary 1.6.6 that the
element (go, Ay) is d-constricting. By abuse of notation, we still denote Ay = Aj. In this
new setting, for every k € E(go, Ao), we have kAy = Ap.

Let 0y = 6y(0,m) > 1 be the constant of Proposition 1.6.2. Since [G : H] = oo, it follows
from Proposition 1.6.2 (ii) that there exist u € G such that diam,4,(Y) < 6p. We denote

(9. 4) = (Ugou_la uAy).

ProrosrtioN 1.7.1 (Theorem 0.5.10). — There exist M > 1 such that the natural homo-
morphism H *pnpg.a) (9, HN E(g, A)) — G is injective.

Remark 1.7.2. — It follows from Proposition 1.4.1 and Proposition 1.6.4 that the subgroup
H N E(g,A) is finite. By Proposition 1.6.4, the subgroup E(g, A) is a finite extension of
(g). Hence the proposition proves Theorem 0.5.10. Since ¢ has infinite order, the finite
subgroup H N E(g, A) is a proper subgroup of (¢, H N E(g, A)). Hence we can apply

Proposition 1.2.1 to deduce Theorem 0.5.8.
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Proof. — Let 6, = 6,(0) > 0 be the constant of Proposition 1.6.1. Let ¢ = max{fy +
201,d(A,Y)}. Let L = L(0,£,0) > 0 be the constant of Corollary 1.3.4. By Proposition 1.6.8,
there exists M > 1 such that for every u € (¢, H N E(g,A)) — HN E(g, A), we have
da(Y,uY) > L — 26,.

Let ¢: H *ynpg.a) (g™, H N E(g,A)) — G be the natural homomorphism. Let w €
H *pnpg,a) (9™, HNE(g, A)) such that w # 1. We are going to prove that ¢(w) # 1. Note
that the homomorphisms ¢ and ¢y,m prp(g,a) are injective. If w € HU(g™, HNE(g, A)),
then ¢(w) # 1. Assume that w ¢ H U (g™ H N E(g,A)). Note that if there exists
a conjugate w’ of w such that ¢(w’) # 1, then ¢(w) # 1. Up to replacing w by a
cyclic conjugate, there exist n > 1 and a sequence hy, ki, -+ ,h,, k, € G such that
w = hyky - - - hyk, and such that for every i € {1, -+ ;n} we have h; € H — H N E(g, A)
and k; € (g™, HN E(g, A)) — HN E(g, A). For every i € [1,n], we denote u; = hiky - -+ h;
and v; = h1kq - - - hyk;. We also denote vy = 14.

We are going to prove that the sequence voY,u1 A, v1Y, - u,A,v,Y is (d,¢, L)-
buffering on {u;A} and then apply Corollary 1.3.4. Let ¢ € [1,n]. Let us prove (BS1).
Assume for a moment that ¢ # n. Since we had modified the axis Ay above, for every
j € [1,n], we have k;A = A. Hence

WuiA(UiHA) = 7rviA<ui+1A)a

7TU¢+1A(uiA) = ﬂ-uiJrlA(/UiA)'
By Proposition 1.6.1,

diam,, 4 (w1 A) < diam(v;ma(h;A)) + 61,
diam,, 4 (v;A) < diam(uma(h; P A)) + 65,
diamA(h;IA) < diamhiA(A) + 0.

By Proposition 1.6.4 (i) and (ii), for every u ¢ E(g, A), we have max{diam 4(uA), diam,4(A)}
0y. Consequently,

max{diamy, 4 (ui11A), diam,,,, a(w;A)} < 0+ 260, < e.
Let us prove (BS2). Note that,

7Tu¢A<'Ui71Y> = 71-uiA(uin) )
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TuA(0;Y) = Ty a(v;Y).
By Proposition 1.6.1,

diamy, 4 (u4;Y)
diam,, 4(v;Y)

diam(u;w4(Y)) + 64,
d

NN

iam(v;ma(Y)) + 6.
Since diam4(Y') < 6, we obtain
max{diam,, 4 (v;—1Y), diam,, a(v;Y)} < 6y + 01 < <.
Let us prove (BS3). We have,
max{d(uw;A,v; 1Y), d(u; A, v;Y)} = max{d(u; A, w;Y),d(v;A,v;Y)} < d(AY) < e.
Let us prove (BS4). It follows from Proposition 1.6.1 (i) that,
du,a(Vi Y, 0Y) = da(Y, kYY) — 20,.

By the choice of M, we have d4(Y, k;Y) > L + 26,. Hence, we have d, 4(v;_1Y,v;Y") > L.
This proves that the sequence voY,u1 A, v1Y, -+ u,A,v,Y is (0,¢, L)-buffering on {u;A}.
It follows from Corollary 1.3.4 that d,, (Y, ¢(w)Y’) > 0. Hence, ¢(w) # 1.

L]

Recall that given ¢: G — G, we say that G is ¢-coarsely G/H if there exist 6 > 0,
x € X satisfying the following conditions:

(CQ1) For every u,v € G, if ¢(u)H = ¢(v)H, then |p(u)z — p(v)x| < 0.
(CQ2) For every u € G, |ux — ¢(u)x| < 0.

ProposITION 1.7.3. — There exist M > 1 and a map f: G — {1, g™} with the following
property. Let ¢: G — G, u > uf,. Then G is ¢-coarsely G/H.

We prove some preliminar lemmas.
LemMma 1.7.4. — There exists 0 > 0 such that for every m € Z, we have diam4(¢g™Y") < 0.
Proof. — Let 01 > 0 be the constant of Proposition 1.1.5. We put 6 = 6+ 20;. Let m € Z.
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Let x, 2’ € Y. By the triangle inequality,

19" — g™ |4 < |malg™x) — g ma(2)| 4 |2 — 2|4+ [g"Ta(2) — TaA(g"2")].

By Proposition 1.1.5 (2) Coarse equivariance,
max{|ma(g"z) — g"ma(@)], |g"Ta(2") — Talg™ )|} < O

Moreover, we have |x — 2'|4 < diama(Y) < 6y. Since z,2’ are arbitrary, we obtain
dlamA(ng) < 9() + 291 L]

LemMmA 1.7.5. — For every € > 0, there exists § > 0 with the following property. Let
Ay, Ay C X be d-constricting subsets such that dyga.s(Ai, As) < €. Let © € Afe and
y € A3° such that |z — y|a, < e. Then |z —y| < 6.

Proof. — Let 67 > 0 be the constant of Proposition 1.1.5. Let ¢ > 0. Let 8 > 0. Its
exact value will be precised below. Let A;, A» C X be d-constricting subsets such that
draus(A1, As) < €. Let © € AT® and y € AJ° such that |z — y|4, < . By the triangle
inequality,

lz —y| < |z —7a, ()| + |2 —yla, +[7a,(y) =yl

Since x,y € AJ**! it follows from Proposition 1.1.5 (1) Coarse nearest-point projection
that

max{ |z — 7, (2)|, |74, (y) —y|} < p(2e +1) +01.

Finally, we put 6 = ¢ + 2p(2¢ + 1) + 26;. O
We are ready to prove Proposition 1.7.3:

Proof of Proposition 1.7.3. — Let 61 > 0 be the constant of Proposition 1.6.1. Let 65 > 0
be the constant of Proposition 1.6.4. Let 3 > 0 be the constant of Lemma 1.7.4. Let
e = max{fy + 261,60, + 05,d(A,Y) + 1}. In particular, there exists y € AT NY. Let
0, = 04(d,¢) > 0 be the constant of Proposition 1.3.2. By Proposition 1.6.9, there exist
M >1and f: G — {1g, g™} such that for every u € G, we have dya(y,uf(u)Y) > 6,.
For every u € G, we denote f, = f(u) and we put ¢: G — G,u — uf,. Let 5 = 05(¢) > 0
be the constant of Lemma 1.7.5. We put 6 = max{|y — ¢™y|,05}. We are going to prove
that G is ¢-coarsely G/H with respect to y and 6.
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In order to prove (CQ1), we just need to observe that for every u € G, we have

luy —ufuyl =y — fuyl < ly — g™yl < 0.

Let us prove (CQ2). Let u,v € G. Assume that uf, H = v f,H. We claim that dpaus(uAd, vA) <
6. By Proposition 1.6.4 (i), it suffices to prove that

max{diam,-1,4(A), diam, (v 'uAd)} > 6.

We argue by contradiction. Assume instead that max{diam,-1,4(A), diama(v—'uA)} < 6s.
We are going to prove that the sequence uA, uf,Y,vA is (0,¢,0)-buffering on {uA,vA}
and then apply Proposition 1.3.2. Note that the condition (BS4) is void in this case. Let
us prove (BS1). By Proposition 1.6.1,

diam, 4 (vA) < diam(ums(u™'vA)) + 61,
diam, 4 (uA) < diam(vra(v " uA)) + 0y,
<d

diamy (u™'vA) < diam,-1,4(A) + ;.

Hence,
max{diam, 4 (vA), diam, s (uAd)} < 0 + 26, < e.

Let us prove (BS2). By Proposition 1.6.1,

diam 4 (uf,Y)

diam(uma(f,Y)) + 01,
diam, 4 (vf,Y) < d VT A

<
< (vK>) +01-

iam(
By Lemma 1.7.4, we have max{diam(f,Y"),diam(f,Y)} < 63. Hence,
max{diam,a(uf,Y),diam,a(vf,Y)} < 0y + 05 < e.
Let us prove (BS3). The hypothesis uf,H = vf,H implies uf,Y = vf,Y and therefore
max{d(uA,uf.,Y),dwA,uf,Y)} = max{d(uA,uf.Y),dvAvf,Y)} =d(AY) <e.

Hence, the sequence uA, uf,Y,vA is (d,¢e,0)-buffering on {uA,vA}. It follows from Propo-
sition 1.3.2 that

min {dUA(y7 Uqu)7 dvA(y; Uqu)} < 04.
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However, by construction,

min {dya(y, uf,Y),doa(y,uf,Y)} > 6,.

Contradiction. Therefore, dyaus(uA,vA) < 60y This proves the claim. In particular,
dfaus (WA, vA) < e. Since y € A'e, we have uf,y € uA™ and vf,y € vA™e. Since
ufuy,vfoy € uf,Y, wehave [uf,y—vfoylua < diamya(uf,Y) < e. According to Lemma 1.7.5,
lufuy — vfoy| < 6. This proves (CQ2). O
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CHAPTER 2

UNIFORM UNIFORM EXPONENTIAL
GROWTH IN SMALL CANCELLATION

GROUPS

Words are pale shadows of forgotten names. As names have power, words
have power. Words can light fires in the minds of men. Words can wring
tears from the hardest hearts. There are seven words that will make a

person love you. There are ten words that will break a strong man’s will.

But a word is nothing but a painting of a fire. A name is the fire itself.

from The Name of the Wind, of Patrick Rothfus
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The results of this chapter correspond to the following article:

— X. Legaspi and M. Steenbock. Uniform uniform exponential growth in small cancel-
lation groups, 2023. URL: https://orcid.org/0000-0002-1497-6448.

In Section 2.1 we will overview Gromov hyperbolic spaces, acylindricity and geometric
small cancellation theory. In Section 2.2 we will see that reduced subsets generate free
subgroups with the Geodesic Extension Property. This property will be relevant to the
counting argument of Section 2.4.2. In Section 2.3 we generalise work of M. Koubi [56] and
G. Arzhantseva - 1. Lysenok, [9]. The goal is to produce reduced subsets inside uniform
powers of other subsets of isometries. In Section 2.4 we study the subsets of shortening-free
words of a free subgroup generated by a reduced subset. These are infinite subsets, each
depending on a geometric small cancellation family, such that (i) their elements are not
killed when taking the geometric small cancellation quotient and (ii) their relative growth
rate does not decrease too much when taking the geometric small cancellation quotient.
We will prove (i) and (ii) in Section 2.4.2 and Section 2.4.3, respectively. Finally, Section

2.5 is devoted to the proof of our main theorem (Theorem 0.6.2).

2.1 Hyperbolic geometry

We collect some facts on hyperbolic geometry in the sense of Gromov, [49], including

its version of small cancellation theory, [50, 41]. See also [26, 46, 52, 32].

2.1.1 Hyperbolicity

Let X be a metric space. The Gromov product of three points x, y, z € X is defined by

1
(2,9). = lle =2l + ]y = 2[ = o —yl}.
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2.1. Hyperbolic geometry

DEerFINITION 2.1.1. — Let 6 > 0. The metric space X is d-hyperbolic if it is geodesic and
for every x, y, z and t € X, the four point inequality holds, that is

(@, 2)¢ 2 min {(z,y):, (y, 2):} — 0.

Convention 2.1.2. — Let 0 > 0. For the remainder of this section, we assume that the
space X is d-hyperbolic. If 6 = 0, then it can be isometrically embedded in an R-tree, [46,
Chapitre 2, Proposition 6]. Note that X is ¢’-hyperbolic for every ¢’ > 6. In this chapter

we always assume for convenience that the hyperbolicity constant 0 is positive.

We write 0X for the Gromov boundary of X. We can use the boundary defined with
sequences converging at infinity, [26, Chapitre 2, Définition 1.1]. Note that we did not
assume the space X to be proper, thus we use the boundary defined with sequences
converging at infinity, [26, Chapitre 2, Définition 1.1]. Hyperbolicity has the following

consequences.

Lemma 2.1.3 ([42, Lemmas 2.3 and 2.4]). — Let z,y,z € X. Then
(z,y). < d(z,[x,y]) < (z,y), + 49.

Lemma 2.1.4 ([9, Lemma 2]). — Let i € [1,2]. Let x;, y; € X. Then

|71 — 1| + |72 — 9| < |71 — 2| + Y1 — Y| + 2diam([z1, 11] T N 29, ya] ).

2.1.2 Quasi-convexity

Let n > 0. A subset Y C X is n-quasi-convex if every geodesic joining two points of
Y is contained in Y. For instance, geodesics are 20-quasi-convex. A subset Y C X is
strongly quasi-convex if it is 20-quasi-convex and for every y,4’ € Y, the induced path

metric |- [y on Y satisfies
ly—vIx <ly =9y <ly —y'lx +86.
Quasi-convexity in hyperbolic spaces has the following consequences.

Lemma 2.1.5 ([26, Chapitre 1, Proposition 3.1];[42, Lemma 2.4]). — Let n > 0. Let
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Y C X be an n-quasi-convex subset. Then for every x € X and for every y, y € Y,
d(z,Y) < (y,4)z + 1+ 30.
Given a point x € X and a subset Y C X, then y € Y is a projection of x on Y if
|z —y| < d(z,Y) + 0.

Lemma 2.1.6 ([26, Chapitre 2, Proposition 2.1];[30, Lemma 2.12]). — Let n > 0. Let

Y C X be an n-quasi-convex subset.

(i) Let x € X. Let y be a projection of x on Y. Then for every y' € Y, (x,y'), < n+9.
(ii) Let i € [1,2]. Let x; € X. Let y; be a projection of x; on Y. Then,
1 = y2| S max {[|zy — 2| — |z1 — y1| — |22 — 1| + 26, ¢},

where € = 2n + 30.

LemmMma 2.1.7 ([26, Chapitre 10, Proposition 1.2]; [30, Lemma 2.13]). — Let n > 0. Let
Y C X be an n-quasi-convex subset. Then for every ¢ > 1, the subset Y ¢ is 20-quasi-

convex.

Lemma 2.1.8 ([41, Lemma 2.2.2 (2)]; [30, Lemma 2.16]). — Let i € [1,2]. Let n; > 0.

Let Y; C X be an n;-quasi-convex subset. Then for every ¢ > 0,

diam(Y; N Y5) < diam(Y; ™30 0 Y, 30 4 9¢ 4 46,

2.1.3 Isometries

Let G be a group acting by isometries on X. Let x € X be a point.

Classification of isometries. Recall that an isometry g € G is either elliptic, i.e. the
orbit (g) - « is bounded, lozodromic, i.e. the map Z — X sending m to g™z is a quasi-
isometric embedding or parabolic, i.e. it is neither loxodromic or elliptic, [26, Chapitre 9,

Théoreme 2.1]. Note that these definitions do not depend on the point z.
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Translation lengths. To measure the action of an isometry g € G on X we define the

translation length and the stable translation length as

. [e.9] : 1 n
lgll = inf lgz — 2|, and lg|™ = lim —lg"z —a.

Note that the definition of ||g||> does not depend on the point . These two lengths are
related as follows, [26, Chapitre 10, Proposition 6.4].

lglI™ < llgll < llglI™ + 166. (2.1.1)

The isometry g is lozodromic if, and only if, its stable translation length is positive, [26,

Ch. 10, Prop. 6.3].

Axis. The azis of g € G is the set
Ay={zeX : |gz—1| < |lg]l+85}.

Lemma 2.1.9 ([41, Proposition 2.3.3];[30, Proposition 2.28]). — Let g € G. Then A, is

106-quasi-convex and (g)-invariant. Moreover, for every z € X,

lgll + 2d(x, Ag) — 106 < gz — 2| < [|g|| + 2d(z, Ag) + 106.

(>*-Energy. To measure the action of a finite subset of isometries U C G on X we define

the (*°-energy of U at x and the ¢*°-energy of U as

L(U,z) = m€a§<|uat —z|, and L(U)= inf L(U,x).

zeX

The point x is almost-minimizing the {>-energy of U if L(U,x) < L(U) + 0. It is easy to

see that the translation length and the ¢*°-energy are related as follows. For every g € U,

lgll < L(D). (2.1.2)

2.1.4 Group action on a -hyperbolic space
Let G be a group acting by isometries on X.
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Classification of group actions. We denote by dG the set of all accumulation points
of an orbit G - z in the boundary 0X. This set does not depend on the point x. One says
that the action of G on X is

» clliptic, if OG is empty, or equivalently if one (hence any) orbit of G is bounded;
» parabolic, if OG contains exactly one point;

» loxodromic, if OG contains exactly two points;

» non-elementary, if G contains at least 3 points, or equivalently if OG is infinite.

If the action of G is elliptic, parabolic or loxodromic, we will say that this action is
elementary. In this context, being elliptic (respectively parabolic, loxodromic, etc) refers
to the action of G on X. However, if there is no ambiguity we will simply say that G is

elliptic (respectively parabolic, loxodromic, etc).

Lemma 2.1.10 ([31, Propositon 3.6]). — If |0G| > 2, then G contains a loxodromic

isometry.

Acylindricity. For our purpose we require some properness for this action. We will use
an acylindrical action on a metric space, keeping in mind the parameters that appear in
the definition, [38, Proposition 5.31]. Recall that we assumed X to be d-hyperbolic, with
0> 0.

DEerINITION 2.1.11 (Acylindrical action). — Let x, N > 0. The group G acts (k, N)-
acylindrically on the d-hyperbolic space X if the following holds: for every x,y € X with
|z — y| > K, the number of elements u € G satisfying |ux — 2| < 1000 and |uy — y| < 100§
is bounded above by N.

DEerINITION 2.1.12 (Global injectivity radius). — The global injectivity radius of the action
of G on X is
T(G,X) =inf{|g|>™ : g€ G lozodromic },

with the convention inf & = +o0.

Lemma 2.1.13 ([18, Lemma 4.2]; c.f. [35, Lemma 3.9]). — Assume that the action of G
on X is (k, N)-acylindrical. Then

J
> —.
T(G,X) > N
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Loxodromic subgroups. Let H < G be a loxodromic subgroup with limit set 0H =
{&,n}. The H-invariant cylinder, denoted by Cp, is the open 204-neighborhood of all
1035-1ocal (1, d)-quasi-geodesics with endpoints ¢ and 7 at infinity.

LemMma 2.1.14 (Invariant cylinder; [31, Lemma 3.13]). — Let H < G be a loxodromic

subgroup. Then the subset C'y is invariant under the action of H and strongly quasiconvex.
LemmMma 2.1.15 ([30, Corollary 2.7]).— Let v: I — X be a 10*4-local (1, §)-quasi-geodesic.
Then:
(i) For every t,t',s € I such that t < s <t', we have (y(t),y(t'))y (s < 60.
(ii) For every x € X and for every y,y' € v, we have d(z,7) < (y,y') + 99.
The maximal loxodromic subgroup containing H is the stabiliser of the set 0H. For a
loxodromic element g € G, we denote by E(g) the mazimal loxodromic subgroup containing

g. We define the equivalence relation ~, on G by u ~, v if and only if u~'v € E(g), for

every u,v € G. The fellow travelling constant of a loxodromic element g € G is
A(g) = sup{ diam(uAfO‘s N UA;_ZO(S) Du,v € Gou by vt

Lemma 2.1.16 ([38, Proof of Proposition 6.29]). — Assume that the action of G on X is
(k, N)-acylindrical. Let g € G be a loxodromic element. Then

A(g) < K+ (N +2)]lg||*° + 1006.

Lemma 2.1.17 ([38, Lemma 6.5]). — Assume that the action of G on X is acylindrical.
Let g € G be a loxodromic element. Then E(g) is virtually cyclic.

The subgroup H™ < G fixing pointwise 0H is an at most index 2 subgroup of H.
The next corollary is a well-known consequence of Lemma 2.1.10, Lemma 2.1.17 and [77,

Lemma 4.1].

CoroLLARY 2.1.18. — Assume that the action of G on X is acylindrical. The set F' of all
elements of finite order of H' is a finite normal subgroup of H. Moreover there exists a
loxodromic element h € H' such that the map F' x4 (h)y — H™ that sends (f, g) to fg is
an isomorphism, where ¢: (h) — Aut(F') is the action by conjugacy of (h) on F.

For a loxodromic element g € G, we denote by F(g) the set of all elements of finite order

of ET(g). We say that g is primitive if its image in E*(g)/F(g) generates the quotient.
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The following lemma permits to produce primitive loxodromic elements uniformly. It will

be useful during section section 2.3.

Lemma 2.1.19 ([56]; [9]; [45, Lemma 2.7]). — For every k > 0 and N > 0 there exists
a positive integer ng with the following property. Let U C G be a finite symmetric
subset containing the identity. Assume that the action of G on X is (k, N)-acylindrical. If
L(U) > 506, then there exist a primitive loxodromic element g € U™ such that

o 1
ol > 5LV
DEerINITION 2.1.20 (Loxodromic wideness). — The lozodromic wideness of the action of
G on X is
(G, X) =sup{|F(g9)| : g€ G lozodromic},
with the convention sup @ = —oo.

Lemma 2.1.21 ([66, Lem. 6.8]). — Assume that the action of G on X is (k, N)-acylindrical.
Then
O(G, X) < N.

Classification of acylindrical actions. Following the proof of D. Osin [66, Theo-

rem 1.1], one gets the following classification. It already appears in [49].

LemMma 2.1.22. — Assume that the action of G on X is acylindrical. Then G satisfies
exactly one of the following three conditions.
(i) G is elliptic, or equivalently one (hence any) orbit of G is bounded.
(ii) G is loxodromic, or equivalently G is virtually cyclic and contains a loxodromic
element.

(iii) G is non-elementary, or equivalently H contains a free group Fy of rank 2 and one

(hence any) orbit of Fy is unbounded.

In particular, if the action of G on X is acylindrical, then every isometry g € G is
either elliptic or loxodromic, [18]. The following trichotomy is a direct consequence of the

previous lemma and [19, Theorem 13.1].

LemmMma 2.1.23. — Let G be a group acting acylindrically on a d-hyperbolic space X . Let
U C G be a finite symmetric subset containing the identity. Then one of the following

conditions holds:
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2.1. Hyperbolic geometry

(T’1) L(U) < 10%.
(T°2) The subgroup (U) is virtually cyclic and contains a loxodromic element.

(T73) w(U) = -5 log 3.
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2.1.5 Small cancellation theory
Let G be a group acting by isometries on X. We recall that X is a d-hyperbolic space.

Loxodromic moving family. The following definition generalises the conjugacy closure

of a symmetrised set of relations in classical small cancellation theory.

DEerINITION 2.1.24 (Loxodromic moving family). — A lozodromic moving family 2 is a
set of the form

2={(ghg " gCn)e2: geG, he L},

where .Z C G is a set of loxodromic elements and C, stands for the (h)-invariant cylinder.

Let 2 be a loxodromic moving family. The fellow travelling constant of 2 is
A(2, X) = sup{ diam (Y, 1 Y29 (Hy, Vi) # (H,Ya) € 2.
The injectivity radius of 2 is
T(2,X)=inf{||h]| : he H-{1},(H,Y) e 2}.

Note that here we require the translation length and not the stable translation length,
which was present in the definition of the global injectivity radius T(G, X'). We denote
K= (H|(HY)ec 2)and G = G/K. We denote by 7: G — G the natural projection
and write g for 7(g) for short, for every g € G. The notation U may refer to either a
subset of G or to 7(U), for some U C G.

DeriNITION 2.1.25 (Small cancellation condition). — Let A > 0 and € > 0. We say that

2 satisfies the geometric C" (), e)-small cancellation condition if:
(SC1) A(Z2,X) < \T(2,X),
(SC2) T(2,X) > ed.

In that case we say that G is a geometric C"(\, €)-small cancellation quotient.
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Cone-off space. Let p > 0. We denote by % the collection of cylinders gC} such that
g€ Gand h e Z. Let Y € &. Note that ¢C), = C

g
denoted by Z,(Y), is the quotient of Y x [0, p] by the equivalence relation that identifies all

ng-1- The cone of radius p overY,

the points of the form (y, 0). The apez of the cone Z,(Y') is the equivalence class of (y,0).
By abuse of notation, we still write (y,0) for the equivalence class of (y,0). We denote by
¥ the collection of apices of the cones over the elements of #. Let ¢: Y — Z,(Y) be the
map that sends y to (y, p). The cone-off space of radius p over X relative to 2, denoted
by Xp = X,,(Q7 X), is the space obtained by attaching for every Y € ¢/, the cone Z,(Y)
on X along Y according to ¢: Y < Z,(Y). There is a natural metric on X,(2) and an

action by isometries of G on X o

Quotient space. The quotient space of radius p over X relative to 2, denoted by
X, = X,(2,X), is the orbit space X,/K. We denote by ¢: X, - X, the natural
projection and write Z for {(x) for short. Furthermore, we denote by ¥ the image in X, of
the apices #. We consider X , as a metric space equipped with the quotient metric, that is
for every x, 2’ € Xp

= —I — . f - / -
5~ /|5 = jnf b — o'l
We note that the action of G on X , induces an action by isometries of Gon X o

Convention 2.1.26. — In what follows, we are going to assume that X is a metric graph
whose edges all have the same constant length. This is to ensure that both the cone-off
space X » and the quotient space X ,» are geodesic spaces, [20, 1.7.19]. This is not a restrictive

assumption, as explained in [38, Section 5.3].

The following lemma summarises Proposition 3.15 and Theorem 6.11 of [30]. It will be

central in the proof of Theorem 0.6.2.

Lemma 2.1.27 (Small Cancellation Theorem [30]). — There exist positive numbers dy,
8, No, po satistying the following. Let 0 < § < &y and p > po. Let G be a group acting by
isometries on a d-hyperbolic space X. Let 2 be a loxodromic moving family such that
A(Z2,X) < Ag and T(Z2, X) > 1007 sinh p. Then:

(i) X p s a §-hyperbolic space on which G acts by isometries.

(ii) Let r € (0,p/20]. If for all v € ¥, the distance |x — v| > 2r then the projection
¢: X, — X, induces an isometry from B(z,r) onto B(Z,r).
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2.1. Hyperbolic geometry

(iii) Let (H,Y) € 2. If v € ¥ stands for the apex of the cone Z,(Y'), then the natural
projection 7: G — G induces an isomorphism from Stab(Y')/H onto Stab(v). [

Remark 2.1.28. — It is important to note that in this statement the constants &y, 6, Ao,
po are independent of G, X, 2 or 4. Moreover ¢y and A (respectively py) can be chosen
arbitrarily small (respectively large). We will refer to &y, 0, Ag, po as the constants of the

Small Cancellation Theorem.

For the remainder of this subsection, we choose 9, p, G, X, and 2 satisfying the
hypothesis of the Small Cancellation Theorem (Lemma 2.1.27). The following lemmas are

consequence of the Small Cancellation Theorem.

Lemma 2.1.29 ([31, Proposition 5.16]). — Let E be an elliptic (respectively loxodromic)
subgroup of G for its action on X. Then the image of E' through the natural projection

m: G — G is elliptic (respectively elementary) for its action on X o

Lemma 2.1.30 ([31, Proposition 5.17]). — Let E be an elliptic subgroup of G for its
action on X. Then the natural projection 7: G — G induces an isomorphism from E onto

its image.
Lemma 2.1.31 ([31, Proposition 5.18]). — Let E be an elliptic subgroup of G for its
action on X o One of the following holds.

(i) There exists an elliptic subgroup E of G for its action on X such that the natural

projection w: G — G induces an isomorphism from E onto E.

(ii) There exists v € ¥ such that E C Stab(v).

Lemma 2.1.32 ([36, Proposition 9.13]).— Let U C G be a finite set such that L(U) < p/5.
If, for every v € ¥, the set U is not contained in Stab(v), then there exists a pre-image

U C G of U of energy L(U) < wsinh L(U).

Lemma 2.1.33 (Greendlinger’s Lemma). — Let v € X. Let g € G. If g € K — {1},
then there exists (H,Y) € 2 with the following property. Let yo an y; be the respective

projections of x and gx on Y. Then
lyo — 1| > T(H, X) — 2w sinh p — 234.

Remark 2.1.34. — The previous statement is obtained from [33, Theorem 3.5] after
applying [33, Proposition 1.11], [30, Proposition 2.4 (2)] and [30, Lemma 2.31]. Note that
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

in [33, Theorem 3.5] there is an extra assumption saying that the loxodromic moving
family is finite up to conjugacy. That assumption is only needed to make sure that the

action is co-compact, hence the quotient group hyperbolic. We don’t need it here.

Lemma 2.1.35 ([38, Proposition 5.33]). — If the action of G on X is acylindrical, then

so is the action of G on Xp.

2.2 Reduced subsets

Let 0 > 0. In this section, we fix a group G acting by isometries on a d-hyperbolic
space X. The set of the inverses in G of the elements of U C G is represented by UL,

DErINITION 2.2.1. — Let o > 0. We say that a finite subset U C G is a-reduced at p € X
if UNU-! = @ and for every pair of distinct u,up € U LU,

r .
(wip, usp)p < 5 min{lusp —pl, [usp — pl} — o — 26.

Remark 2.2.2. — If U C G is a-reduced at p € X, then |up—p| > 2« for every u € ULU L.

We clarify some vocabulary. Let U C G be a subset. A letter is an element of the
alphabet U LU, A word over U LU ! is any finite sequence u; - - - u,, with u; € UL U™!,
The number n is called the length of the the given word uy - - - u,. We denote by |w|y the
length of any word w over U L U~!. We admit the word of length 0, the empty word. We
write w; = w, to express letter-for-letter equality of words w; and wy over U LU L. A
word u; - - - u,, over U U1 is reduced if it does not contain a pair of adjacent letters of the
form w;u; ' or u; 'u;. The free group F(U) is the set of reduced words over U L U~ with
the group operation “concatenate and reduce”. The natural homomorphism ¢ : F(U) — G

is the evaluation of the elements of F(U) on G.

2.2.1 Broken geodesics

The next lemma is used to produce quasi-geodesics by concatenating some sequences

of points of X with geodesics.

Lemma 2.2.3 (Broken Geodesic Lemma [9, Lemma 1]). — Let n > 2. Let xq,- - , 2, be

a sequence of n + 1 points of X. Assume that

(Ti1s Tig1)ay + (i, Tign)eyyy < |2 — Tiga| — 36, (2.2.1)
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for every i € [1,n — 2]. Then the following holds.

n—1 n—1
(i) |vo — x| 2 D |5 — wiga| = 2D (i1, Tiga)ay — 2(n — 2)d.
=0 =1

(i) (20, 2a)a; < (211, Zy51)s, + 20, for every j € [1,m — 1]
(iii) The geodesic [y, x,] lies in the 50-neighbourhood of the broken geodesic v =

[zo, 1] U -+ U [xy_1,2,], while v is contained in the r-neighbourhood of [z, x,],

where
r= sup (Zi—1,Tip1)s, + 149
1<i<n—1
x4
®
X3
°
X2
.
‘m‘;‘ ]
X
m, 1
Xo m,
m,
\ /5\ /E\ /

Figure 2.1 — A sequence (z;) satisfying Equation 2.2.1. This
sequence does not correspond to a reduced word over a reduced
subset since for every ¢, the midpoint m; of the geodesic [x;_1, x;]
falls inside the overlap of two consecutive geodesics.
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Xy
N K3 X5

Xo

a5

24 2L

Figure 2.2 — Another sequence (z;) satisfying Equation 2.2.1.
This sequence could correspond to a reduced word over an a-
reduced subset since for every ¢, the midpoint m; of the geodesic
[z;_1, z;] falls at distance at least « from the the overlap of two
consecutive geodesics. The geodesic segments in red have length
2a. In particular, every geodesic [x;_1,x;] that does not fall in
any of the two extremes has length at least 2a.

We verify the condition of Lemma 2.2.3 permitting to obtain broken geodesics.

ProrosITION 2.2.4. — Let a > 0. Let U C G be an a-reduced subset at p € X. Let n > 2.

Let w = uy - - - u, be an element of F(U). Consider the sequence of n + 1 points
To =D, 1 = u1p, Tog = UrU2P, tee Tp = U+ UppP.

Then
(i) (Tim1, Tig1)a; + (Tis Ti2)asyy < |Ti — iga| — 2(a + 26), for every i € [1,n — 2].
(i) Jwp —p| = 3luip — pl + lunp — p| +2(n — 1)(a + 0) + 2.

Proof. — (i) Let i € [1,n — 2]. We have

(Ti1, Tiv1)e, = (u; 'p, Uis1D)ps  (Tis Tig2)ayy = (%111197 Uit2D)p

and |v; — z;11] = |p — wiy1p|. Since w is a reduced word over U LU U™, we have
u; ' # uq and g +11 # u;4o. Hence we can apply the fact that the subset U is

a-reduced at p, obtaining
~1 1 —1 |
(u; "p, Uz’+1p)p < §‘Ui+lp —p| —a—26, (qup, ui+2p)p < §’Ui+1p —p| —a—24
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It remains to add the two above inequalities to obtain

(@i, Tit1)a, + (@i, Tir2)ay < | — Tiga| — 2(a + 20).

(ii) Since n > 2, applying (i) and Lemma 2.2.3 (i) to the sequence xg, - - - , x,, we obtain
n—1
lwp = p| > uip —p| + > lwip — p| + [unp — pl
=2
n—1
- (ul_lp7 u2p)p - [(uz_lpa ui+1p>p + (U;}1p7 uZp)P] - (ugilpa unP)
i=2
—2(n —2)6.

Since U is a-reduced at p,

— n—1
Z upps uiap)p + (Wip, uip)y) < D luip — pl = 2(n — 2)(a + 26).
i=2 =2
and
» 1 B 1
(ur " p uzp)p < Gluap —pl —a =26, (up_yp, wnp) < glunp —p| — @ = 26.
Consequently,

1 1
lwp — p| = §Iulp —pl+ ilunp—pl +2(n —1)(a +6) + 20.

2.2.2 Quasi-isometric embedding of a free group

Recall that L(U, p) denotes the ¢*-energy of U C G at p € X (subsection 2.1.3).

ProrosITION 2.2.5. — Let o > 0. Let U C G be an a-reduced subset at p € X. Then, for
every w € F(U), we have

2a|wly < Jwp = p| < LU, p)lwly.

In particular, the natural homomorphism v¢: F(U) — G is injective.
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Proof. — Let w = uy - - - u, be an element of F(U). If n = 0, then there is nothing to do.
If n =1, then the result is a direct consequence of the fact that the subset U is a-reduced.
Assume that n > 2. It follows from the triangle inequality that |wp — p| < L(U,p)n. In
regards to the second inequality, we apply Proposition 2.2.4 (ii) to the sequence of n + 1
points

To=p, X1 =1U, T2=UUP, -+, Tp=WP=1Us"""Upp,

to obtain

1 1
Iw%ﬂﬂ>§Ww—p%%jWP—m+2w—iﬂa+®+ﬂd

According to Remark 2.2.2, we have

max {|uip — p|, [unp — p|} = 2a.

Hence,

lwp — p| = 2an.

Finally, if w € F(U) is not the empty word, then |wp — p| > 2«. By definition,
a > 0. Therefore w # 1 in G. Consequently, the natural homomorphism : F(U) — G is

injective. [

2.2.3 Geodesic extension property

This is the main result of this section. Our proof is based on [36, Lemma 3.2].

ProrosITION 2.2.6. — Let o« > 0. Let U C G be an a-reduced subset at p. Let w =

Uy Uy and W' = u)---ul, be two elements of F(U). Then U satisfies the geodesic

extension property, that is, if

1
(s w'p)up < 5ltimp = p| =0,
then w is a prefix of w'.

Remark 2.2.7. — The geodesic extension property has the following meaning: if the geodesic

[p, w'p] extends [p, wp] as a path in X, then w’ extends w as a word over U LU,

Proof. — The proof is by contrapositive. Assume that w is not a prefix of w’. Let r be

the largest integer such that u; = u}, for every i € [1,r — 1]. In particular, € [1, m]. For
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simplicity, denote

q = U ...ur_lp: ull ...u:‘_lp.
It follows from the four point inequality that
(p7 w/p)wp > mln{(p7 Q)w}H (Q7 wp,)wp} — 0. (222>

From now on, the focus will be on showing that

. 1
mln{(p, Q)wpa (Q7 wp,)wp} 2 §|ump - pl

Using the definition of Gromov product,

(P: Qup = [wp — q| — (p,wp)g, (¢, W'P)wp = [wp — q| — (wp, w'p),. (2.2.3)
We are going to estimate |wp — ¢|, (p,wp),, and (wp, w'p),.
Cramv 2.2.8. — |wp — q| = Lup — p| + §|ump — p| + 2(m — 1) (o + 0).

Proof. — Note that m —r +1 > 1. If m —r + 1 = 1, then there is nothing to do. If
m —r+ 1 > 2, then we apply Proposition 2.2.4 (ii) to the sequence of m — r + 2 points

q:ul".u’r—lp’ ul...urp’ ul...ur+1p7 ---7 11)29:’l/[/l-../ljﬂ,_n]?7

and we obtain

1 1
lwp — q| > §|u7~p —p|+ §|ump —pl+2(m —r)(a+9).

For simplicity, denote

t=wuy---u.p and ' =uj---ulp.

Cramv 2.2.9. — (p,wp), < 3|u,p — p|.

Proof. — Applying Lemma 2.2.3 (ii) and Proposition 2.2.4 (i) to the sequence of m + 1
points

b, u1p, U U2p, Ty wp = U+ Ump,
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we get

(pa wp)q < (ul c Ur—2D, t)q + 20.

Since U is a-reduced at p,

_ 1
(ul ccc Up—2P, t)q = (ur—11p7 u?”p)p < §|u7‘p _p| —a—20.

Consequently,
1
(p,wp)g < 5lurp = p| —
This proves our claim. O]

Cramm 2.2.10. — (wp, w'p)q < 3|u,p — p|.

Proof. — If r — 1 = m/, then w'p = ¢ and the claim holds. Hence we can suppose that
r—1 < m'. It follows from the choice of r that u, # u... It follows from the four point
inequality that

min{ (¢, wp),, (wp, w'p)y, (W'p,t'),} < (1), + 26.

Since U is a-reduced at p,
/ / 1 . !/
(8 8)q = (urp,up)g < 5 min{[up —pl, fuyp = pl} — @ = 20,

Consequently,

. 1 .
min{ (1, wp)y, (wp, w'p)y, (wp.¥)} < 5 min{lup—pl jip—pl} —a.  (224)

We must prove that the minimum of Equation 2.2.4 is attained by (wp,w’p),. In order to
do so, let’s see first that the minimum of Equation 2.2.4 is not achieved by (¢, wp),. Using

the definition of Gromov product,

(t,wp)q = |q —t| — (g, wp):.

By definition,
lq —t] = [urp — pl.
Recall that m —r+1> 1. If m —r+1 =1, we have
(Q7wp)t = (u;lpvp)P = 0
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If m—r+12>2 applying Lemma 2.2.3 (ii) and Proposition 2.2.4 (i) to the sequence of

m — r -+ 2 points
qg= Uy Up-1pP, t:ul"'qu7 Uy - Up41P, T wp = Uy * - Unmp,
we obtain

(g, wp)e < (g, uq - Upp1D)s + 20.

Since U is a-reduced,

_ 1
(g, u1 - upgap)e = (u, 'p, Upi1D)p < §|Urp —p| —a—26
Consequently,
1 1
(t,wp)g = 5lurp —p| > Slurp —pl — e

Thus, the minimum of Equation 2.2.4 cannot be achieved by (¢,wp),. Similarly, it cannot
be achieved by (w'p,t’),. Therefore, the only possibility is that it is achieved by (wp, w'p),.

This proves our claim. O

Finally, combining Equation 2.2.2 and Equation 2.2.3 with our three claims, we obtain

. 1
(P, W'D)wp = min{(p, @Q)up, (¢, WP)wp} — 6 > §|ump —p| —o.

2.3 Growth in groups acting on a J-hyperbolic space

In this section, we review and adapt some of the techniques of M. Koubi. [56] — further
developed by G. Arzhantseva and I. Lysenok, [9]. These techniques permit to study
exponential growth rates of finite symmetric subsets in groups acting by isometries on
hyperbolic spaces in the sense of M. Gromov. In particular, we clarify what are the involved

parameters for acylindrical actions, which permits to obtain Theorem 2.3.8.

2.3.1 Growth of maximal loxodromic subgroups.

Let G be a group acting acylindrically on a hyperbolic space X. The goal of this

subsection is to prove that the maximal loxodromic subgroups of G have some sort of
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uniform linear growth. We adapt an argument that was written for hyperbolic groups in
[5, p. 484]. Recall that ®(G, X) stands by the loxodromic wideness of the action of G on
X (Definition 2.1.20). Given a loxodromic element g € G, we denoted by ||¢||™ its stable
translation length (subsection 2.1.3) and by E(g) the maximal loxodromic subgroup of G

containing g (subsection 2.1.4).

ProrosiTioN 2.3.1. — Let G be a group acting acylindrically on a hyperbolic space X .
Let U C G be a finite symmetric subset containing the identity. Let g € G be a primitive
loxodromic element. Then, for every n > 1,

L(U)

U™ N E(g)| < 28(G, X) <W4n + 1).

First, we focus on the case of the cyclic group generated by a loxodromic isometry.

Lemma 2.3.2. — Let G be a group acting acylindrically on a hyperbolic space X. Let
U C G be a finite symmetric subset containing the identity. Let g € G be a loxodromic

element. Then, for every n > 1,

L{U)
lgl™

U™ N (g)| < 2n + 1.

Proof. — Let n > 1. We have,
U gy ={keZ: ¢"cU"}|.
Since the subset U is symmetric,
HkeZ: g*cU"} <2{keN—-{0}: ¢*cU"} +1.

Let k& > 1 such that g € U". Since the element g is loxodromic, we have ||g||* > 0.

Observe that i
I

k= .
lgl[>

Let £ € X. Then

941 < g < Ige — o] < ma b — o] = L(U", 2).

Since the point x is arbitrary, we get ||g*||*° < L(U™). By the triangle inequality, L(U™) <
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nL(U). Hence,

L
k< (7[{2)71
gl

Therefore,

L
U0 )| < <’(‘]022n+1.
g

We are ready for the proof of the proposition.

Proof of Proposition 2.3.1. — Let F(g) be the set of all elements of finite order of E*(g).
Recall that F(g) is a normal subgroup of E*(g). Since the action of G on X is acylindrical
and E(g) is a loxodromic subgroup of G, there exists a loxodromic element h € E*(g)

such that the map
F(g) xy (h) = E*(9), (f, k) — [k

is a group isomorphism, where ¢: (h) — Aut(F(g)) is the action by conjugacy of (h) on
F(g) (Corollary 2.1.18). Let n > 1. Let Ey be a set of representatives of FE(g)/(h). We
have

U"NE(g)l = > [U"nr(h).

reFEy

First we are going to estimate |Ey|. By definition, [E(g): ET(g)] < 2. Since the
homomorphism

<h> - F(Q) g <h> k= (Lk)

is a split of the exact sequence,

0 —— F(g) —— F(g) x4 (h) —— (h) 0
we have [ET(g): (h)] = |F(g9)| < ®(G, X). Consequently,
|Eo| < 20(G, X).

Since the action of G on X is acylindrical, we have ®(G, X) < co (Lemma 2.1.21).
Now we are going to estimate |U™ N r(h)| for r € Ey. We may assume that U™ N r(h)
is non-empty. Then there exist s € U™ Nr(h). In particular r(h) = s(h). Hence,

U™ O (k) [ = Um0y | =[s(s U™ ()| = [s~ U™ N (h) .
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Since U is symmetric, s~ € U™. Since U contains the identity, s~'U™ C U?". Therefore,
|sT'U" N () | < |UP N (R) |
According to Lemma 2.3.2,

L
U N (h) | < H}E‘({olzm + 1.

Consequently,

L
U™ N (h) | <W§|[|]014n+1.

Finally, since the element ¢ is primitive, we have that g € {h, h~'}. Tt follows from our

two estimations above that

U™ N E(g)] < 20(C, X) (H\Q’M n 1).

]

Given a subset U C G and a loxodromic element g € GG, we fix a set of representatives
Ul(g) of the equivalence relation induced on U by ~,. Recall that the equivalence relation
~, on G was previously defined by u ~, v if and only if u='v € E(g), for every u,v € G
(subsection 2.1.4). The reason that makes the set U(g) of interest is that the set of
conjugates of g by the elements of U(g) is a set of “independent” loxodromic elements and

has the same size as U(g). We obtain the following.

CoroLLARyY 2.3.3. — Let G be a group acting acylindrically on a hyperbolic space X . Let
U C G be a finite symmetric subset containing the identity. Let g € G be a primitive
loxodromic element. Let

ay = 20(G, X) (ﬁg(f@s + 1).

Then,
1
U()| > U]
0

Proof. — Consider the surjective map U — U(g) that sends every element of U to its class
representative in U(g). We are going to estimate its injectivity. Let u,v € U such that
u ~4 v. By definition, u='v € E(g). Since the subset U is symmetric, u~'v € U?. Therefore,
v € u(U? N E(g)). Note that |u(U? N E(g))| = |U?> N E(g)|. Consequently, each u € U(g)
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2.3. Growth in groups acting on a 6-hyperbolic space

has at most |[U? N E(g)| elements in its equivalence class. According to Proposition 2.3.1,
|U? N E(g)| < ag. Therefore,

1
\U(g)| = ;|U|‘
0

2.3.2 Producing reduced subsets

Recall that given a loxodromic element g € G, we denoted by A(g) its fellow travelling
constant (subsection 2.1.4). The goal of this subsection is to produce a reduced subset
using the conjugates of a loxodromic isometry of large stable translation length. More

precisely, we will prove the following.

ProrosITION 2.3.4. — Let 6 > 0 and a > 0. Let G be a group acting acylindrically on a
d-hyperbolic space X. Let U C G be a finite symmetric subset containing a loxodromic
element g € U such that ||g||> > 10%). Let p € X. Let

200
lglI™
Then for every b > by, the set S = {ug’u=' : u € U(g) } satisfies the following:
(i) S c U=
(i) [S] = 1U(g)l

(iii) S is a-reduced at p.

bo [A(g) + L(U,p) + d + a.

Proof. — The conclusions (i) and (ii) are immediate. We are going to prove (iii) S is
a-reduced at p (Definition 2.2.1). By construction, SNS™! = @. Let i € [1,2]. Let w; € U.

Let ¢; € {—1,1}. Assume that the elements u;¢°%u;! and uyg®2Puy ! are distinct.

e2b 1

Case u; = uq. Since the elements ulgelbufl and uyg®*’u, - are distinct, we have e; =

e1b

—&5. Denote h = u;g°%uyt. It is enough to prove that

) b

Let n~ and n* be the points of 90X fixed by (h) and v: R — X be an (h)-invariant
1036-local (1,6)-quasi-geodesic joining 5~ to n™. This choice is possible since ||g||> > 1034.
It follows from Lemma 2.1.15 applied to ~ that

(hp, h™'p), < L(U, p) + 66.
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

It is clear that b
L(U,p) +66 < 5 [lg]* —a— 25

Case uy # uy. In particular uy 944 us, which means that uy tuy does not belong to E(g).
Cramv 2.3.5. — d(p, A;) < 5 L(U,p) + 56.
Proof. — 1t follows from Lemma 2.1.9 that
1
d(p, Ag) < 5lgp — pl + 50.

Moreover, since g € U, we have |gp — p| < L(U, p). This proves our claim.

Consider the points z; = u;p and y; = u;g5°p.
Cramm 2.3.6. — diam([zy, 117 N [z, 1] 7)) < A(g) + L(U, p) + 444.
Proof. — Denote o = d(p, A,) + 105. We have,
max {d(z;, w;Ay), d(y;, uw;Ay)} < o

Recall that the axis A, is 106-quasi-convex (Lemma 2.1.9). Hence, since o > 106, the

subset u; A7 is 26-quasi-convex (Lemma 2.1.7). Consequently,
(i, yi] C UiA;H%-

Therefore,
diam([z1, 3] ™ N[22, 10) ) < diam(ug AT N up 477,
According to Lemma 2.1.8,
diam(ug AT N u AT7H) < diam (ug AT N ug A7) + 2(0 4 100) + 46.

Moreover,
diam(ug A" N ua A7) < diam(uy AT Nup AF).
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2.3. Growth in groups acting on a 6-hyperbolic space

Since uj 'uy does not belong to E(g),
diam(ulA;’%‘s N UQA;’%(S) < A(g).

Since the action of G on X is acylindrical, we have A(g) < oo (Lemma 2.1.16). Combining

the above estimations with the previous claim, we obtain
diam([z1, 91" N[22, 4] ") < Alg) + L(U, p) + 549,

This proves our claim.

Denote s; = uig‘fibui_l.

Cramm 2.3.7. — (s1p, s2p)p < A(g) + 5L(U, p) + 546.
Proof. — By definition,

(519, 520)p = 5 (Is1p = pl + 520 = p] — lsup = ).
By the triangle inequality;,

T; — Yi| + 2lup — pl,
Y1 — ya| — luip — p| — uap — pl.

Consequently,

3
(|z1 — o] + w2 — w2l — [ — v2|) + §(Iulp — p| + uap — p|).

N | —

(510, 520)p <
Combining the previous claim with Lemma 2.1.4, we obtain
21 — | + 22 — 2| = [y1 — ol <lon — 22| +2(A(g) + L(U, p) + 449).
By the triangle inequality,
|71 — @] < Jurp — pl + |uap — pl.

Moreover, since u; € U, we have |u;p — p| < L(U, p). Combining the above estimations, we
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obtain
(51, 590)p < A(g) + 5L(U, p) + 446.

This proves our claim.

O
Finally, note that
I b oo
5m1n{|slp —ply|sap—pl} —a—26 > 3 lgll”™ — a — 24.
Since b > by, we obtain
b oo
3 g™ —a—25 > A(g) + 5L(U, p) + 540.
Therefore, the previous claim implies that
r .
(81D, 52p)p < ) min {[s1p — pl, |sep — p[} — o — 26.
O

2.3.3 Growth trichotomy

We are going to combine the two previous subsections in the following result.

THEOREM 2.3.8 (Theorem 0.6.10). — For every k > 0 and N > 0, there exist an integer
¢ > 1 with the following property. Let 6 > 0 and o > 0. Let G be a group acting
(k, N)-acylindrically on a d-hyperbolic space X. Let U C G be a finite symmetric subset
containing the identity. Let p € X be a point almost-minimizing the (*-energy L(U). Then

one of the following conditions holds:
(T1) L(U) < 10*max {k, d, a}.
(T2) The subgroup (U) is virtually cyclic and contains a loxodromic element.
(T3) There exist a finite subset S C G with the following properties:
(i) S c Us,
(ii) |S| > max {2, 1|U]},
(iii) S is a-reduced at p.

Moreover, w(U) > 1log |U]|.
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2.3. Growth in groups acting on a 6-hyperbolic space

Proof. — Let k > 0 and N > 0. Let ng be the positive integer of Lemma 2.1.19 depending

on x and N. We fix auxiliar parameters
a; = 200Nng, and by =200(N + 2) + 500n, + 700.

We put

2no(by +2)1
c}max{al,no(bl—i-Z), no(by + )ogal}'

log 2
Let § > 0 and o > 0. Let G be a group acting (k, V)-acylindrically on a d-hyperbolic
space X. Let U C GG be a finite symmetric subset containing the identity. Let p € X be
a point almost-minimizing the ¢>*-energy L(U). Assume that L(U) > 10*max {x, d, a}.
Since L(U) > 500, according to Lemma 2.1.19 there exist a primitive loxodromic element
g € U™ such that
o . 1

ol > S L), (23.1)
In particular ||g]|> > 10%0. Let H = (U). Note that the loxodromic g belongs to H.
Assume in addition that the subgroup H is not virtually cyclic. We prove (T3). We are

going to apply Corollary 2.3.3 and Proposition 2.3.4 to U™ and g. Let

L(U™)
lgll>

200
W[A(g) + L(U™,p) + 0 + af.

a0:2<1>(G,X)< 8+1>, by =

By the triangle inequality,
L(U™) <noL(U), and L(U™,p) < noL(U,p).

Since the point p € X is almost-minimizing the (> °-energy L(U), we have L(U, p) < L(U)+9.
Since the action of G on X is (k,N)-acylindrical, it follows from Lemma 2.1.21 and
Lemma 2.1.16 that

®(G,X)< N, and A(g) <k+(N+2) g™ + 1006.

Using the hypothesis L(U) > 10* max {x, §, a} and Equation 2.3.1, we obtain,

LU) & o e
max 00 00 00 00 <2
g™ Ngll™ " g™ gl

Consequently, we obtain ag < a; and by < by. Let S = {ug®u™t : uwe U™(g)}.
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The points (i) and (iii) follow from Proposition 2.3.4 (i) and (iii).

We are going to prove (ii). According to Proposition 2.3.4 (ii), we have |S| = [U"™(g)|.
If [U™(g)| = 1, then u ~, g, for every u € U™. Hence U™ is contained in E(g). Since U
contains the identity, U C U™. Thus H is virtually cyclic (Lemma 2.1.17). Contradiction.
Hence |U™(g)| > 2. Further, it follows from Proposition 2.3.1 that |[U™(g)| > ail|U"°|.
Since U contains the identity, |U™| > |U|. Therefore,

1
15| > max {2,|Uy}.
3]

This implies our point (ii).

Let’s verify the last conclusion about w(U). Let n > 1. We have
1 n
Ut 2187 > || > max {2, (1),
a1

where the first inequality follows from (i); the second from (iii), which implies that the
natural homomorphism F(S) — G is injective (Proposition 2.4.16); and the third from
(ii). Consequently,

1

1
U) =li — Jog|yumetitn > {1 2.1 < U >}
w(U) lfznasogp no(by + 2)n o8| | no(br + 2) Hax s s o8 a1| |

Finally, note that
1
—|U| > |U]7 & log|U] > 2loga.
aj

If log |U| > 2log ay, we obtain

log 2
2n(by + 2) log a,

)log2> log |U|.

> -
no(b1 +2
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2.4. Shortening and shortening-free words

2.4 Shortening and shortening-free words

In the context of classical small cancellation theory, Greendlinger’s Lemma states that
if a word over the free generating set of a free group represents the identity element in
a small cancellation quotient, then it should contain a subword corresponding to a large
portion of a relator. This section is structured as follows. First, we are going to formalise
the notion of “large portion of a relator” with the definition of shortening word in the
context of actions by isometries on hyperbolic spaces. Then, we are going to find a lower
bound for the number of shortening-free words of free subgroups generated by reduced
subsets of low energy. Finally, we will see that these shortening-free words embedd in
geometric small cancellation quotients of appropriate parameters after using a suitable
version of Greendlinger’s Lemma (Lemma 2.1.33).

Global parameters and hypothesis for this section. Let dy and Ay be the constants of

the Small Cancellation Theorem (Lemma 2.1.27). We fix once for all during this section
Lo>0, and 7y =106y + Lo + Ag).

Let
0<d< 50, oz 20050, and 72> 79.

Let G be a group acting by isometries on a d-hyperbolic space X. Let U C G be an
a-reduced subset at p € X (Definition 2.2.1). Let 2 be a loxodromic moving family
(Definition 2.1.24). We assume that

0< L(U,p) < Ly, and A(Z2,X) <A,

2.4.1 Shortening words

Here we study shortening words. Part of this subsection is based on [36, Section 3.1].

DEerINITION 2.4.1 (Shortening word). — Let w = - --u, be an element of F(U). Let
(H,Y) € 2. We say that w is a 7-shortening word over (H,Y) if it satisfies the following.
Consider the points zqg = p and x,, = wp. Let yo and v, be respective projections of x
and x, on Y. Then,

(S1) |yo — yn| > 7.
(S2) |@o — yo| < 3lurp — p| — 1006, and |z, — Y| < 3|unp — p| — 1000.
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A minimal T-shortening word over (H,Y) is a T-shortening word over (H,Y') none of

whose proper prefixes are 7-shortening words over (H,Y).

Remark 2.4.2. — Applying the triangle inequality, we observe that the choice 7 > 7

implies that 7-shortening words over (H,Y") are distinct form the identity:
|{L'() - ‘Tn| Z |?/0 - yn| - |x0 - y0| - |xn - yn| > 0.

ProrosITION 2.4.3. — Let w = u; - - - u,, be a T-shortening word over (H,Y') € 2. Consider

the sequence of n + 1 points
To =D, 1 = u1p, Tog = UrU2DP, tee Tp = U+ UppP.

Let y; be a projection of x; on'Y, for every i € [0,n]. Then,

L.
[z — i < B} min{|u;p — p|, [uir1p — p|} — 1006,

for every i € [1,n — 1].

Proof. — Let i € [1,n — 1]. Let z; be a projection of x; on [yg, y,]. Since Y is 10d-quasi-
convex (Lemma 2.1.14), there exist 2} € Y such that |z; — z{| < 110. By definition,

i — yil < (@i, Y) +06 < | — 2] + 0.
By the triangle inequality,
/
|

|l — 2] < |y — 2| + |z — 21

By definition, |x; — z;| < d(z4, [Yo, yn]) + 0. According to Lemma 2.1.3,

We claim that (Yo, Yn)z; < (20, Zn)s, + 20. It follows from the four point inequality that

min{(:no, yO)xia (y07 yn)xla (yna xn)xl} g (33'0, xn)xl + 20.

One can argue using the Broken Geodesic Lemma (Lemma 2.2.3) and the fact that w is a

T-shortening to prove that the minimum must be attained by (yo, yn)z,- Now applying the
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2.4. Shortening and shortening-free words

Broken Geodesic Lemma (Lemma 2.2.3 (ii)),
(20, Tn)a; < (Ti1, Tit1)a; + 20.

Moreover, (x; 1, Tis1)s, = (u; 'p, uiy1p),. Since the subset U is a-reduced and a > 2000,

_ 1 .
(Ui 117, Uz’+1p)p < ) mln{\uip - P’y ’%‘Hp —P‘} — 1180.

Combining all the estimations, we obtain

1 .
|z, — yi] < B min{|u;p — p|, |ui41p — p|} — 1006.
L]

ProposITION 2.4.4. — Let w = uy - - - u, be a T-shortening word over (H,Y') € 2. The
following holds.
(i) We have
T — 500
L(U,p)

lwly >
(ii) If w is a minimal T-shortening word over (H,Y), then
T
a
Proof. — Consider the sequence of n + 1 points

To=pP, T1=Up, T2 =UiU2p, -, Tp = UL """ UppP-

Let y; be a projection of z; on Y, for every i € [0, n].

(i) Since L(U,p) > 0 and w is distinct from the identity (Remark 2.4.2), it follows from

the triangle inequality that,
|20 — @y

LU.p)
According to (S1), we have |yo—y,| > 7. Since Y is 10-quasi-convex (Lemma 2.1.14)

lw|y >

and 7 > 230, the strong contraction property of Y (Lemma 2.1.6) implies

|70 — x| = |20 = Yol + [yo — ynl + |yn — 20| — 460.
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Consequently, |xg — z,,| > 7 — 50J. Therefore,

(ii) Assume that w is a minimal 7-shortening word over (H,Y'). Let w' = wu; -+ - u,_1. By
definition,

lw|y = |w' |y + 1.

In view of Proposition 2.2.4 (ii), we deduce

!/ 1 1 /

jw'p —p| > §|U1p —pl+ §|Un—1p —pl+a([w]y —1).

By the triangle inequality,

[w'p = pl < |zp-1 = Yn-1] + [Yn—1 — Yol + [y0 — 0.
Since w is a T-shortening word over (H,Y’), the property (S2) implies

1
[Z0 — yo| < §|U1p — p| — 1000.
According to Proposition 2.4.3,
1
|Tp—1 — Yn_1] < §|un,1p — p| — 1006.

Therefore, since w' is not a 7-shortening over (H,Y'), we have |y,_1 — yo| < 7.

Consequently, |w'|y < T + 1. Thus, |w|y < = 4+ 2.
]

ProrosITION 2.4.5. — Let (Hy,Y1), (H2,Y2) € £. Let w € F(U). If w is a T-shortening
word over both (Hi,Y1) and (Hs,Y3), then (Hy,Y1) = (Ha, Ys).

Proof. — Assume that w is a 7-shortening word over (Hy, Y7 ) and (Hs, Y>3). In order to prove
that (Hy,Yy) = (Ha,Ya), it is enough to show that diam (Y% NY,%) > A(2, X). Since
the subsets Y7 and Y5 are 100-quasi-convex (Lemma 2.1.14), it follows from Lemma 2.1.8
that

diam(}/l+205 N }/‘2+205) 2 diam(}/l+135 N 1/’2+135) 2 diam(YerLO N }/’2+2L0) o 4L0 . 460
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Let ¢ € [[1,2]. Let x; and z; be respective projections of p and wp on Y;. We claim that
z1, 2 € Yo N Y0 Since w is a shortening word over (H;,Y;), it follows from (S2)
that

max{|p — z;|, jwp — 2|} < Ly.

According to the triangle inequality,
|21 — @ <oy —pl+ [p— 22|, [21 — 22| <20 —pl+ |p— 22|.

Consequently,

max{ |z, — xa|, |21 — 22|} < 2Lo.

Therefore, 1,z € Yy 2. This proves the claim. Thus,
diam(Y;"250 N Y,H20) > |2y — 2.

Since w is a shortening over (Hy,Y)), it follows from (S1) that |z; — 21| > 7. Finally, since
T > 79, we obtain that diam(Y;72% N Y;™%) > A(2, X). n

u-;? \L\"ll? ol w
P )\ U/
A s
o “ ¥
e HFnn £ 21, Lt
¢
2, 2 2

Figure 2.3 — Scheme for the proof of Proposition 2.4.5.

ProPOSITION 2.4.6. — For every (H,Y) € 2, there exist at most two minimal T-shortening
words over (H,Y).
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Proof. — Let (H,Y) € 2. Let n~ and n" be the points of 90X fixed by H and v: R — X
be an 1034-local (1,4)-quasi-geodesic joining = to n*. Let ¢ be a projection of p on
7. Without loss of generality, we may assume that ¢ = v(0). Let #(5,y) denote the set
of elements in F(U) that are 7-shortening words over (H,Y). Assume that .#uy) is
non-empty, otherwise the statement is true. We decompose .y in two sets as follows:
an element w € #(5,y) belongs to ZB,Y) (respectively, .} 1) if there is a projection
7(t) of wp on y with ¢ > 0 (respectively, ¢ < 0). Observe that a priori the sets . -, and
Zj{[,y) are not disjoint, but that will not be an issue for the rest of the proof.

Let wy, wq € ‘ZJ;LY)' Let ¢; = v(t1) and go = 7y(t2) be the respective projections of wyp

and waop on . Without loss of generality, we may assume that 0 < t; < ts.
CrAam 2.4.7. — The word w; is a prefix of ws.

Proof. — We are going to apply the Geodesic Extension Property (Proposition 2.2.6). By
the triangle inequality,

(ps WaP)wp < |wi1p — @1] + (w2p, D) g, - (2.4.1)

Assume that w; = uy -+ - Uy,

(a) Let’s estimate |wip — ¢1|. By definition, the H-invariant cylinder Y is contained in

the 200-neighbourhood of . Consequently,
lwip — qi| = d(wip, ) < d(wip,Y) + 200.
Since wy is a 7-shortening word over (H,Y"), the property (S2) implies
1
d(wip,Y) < §|Ump — p| — 1004.

Therefore,

1
[wip = @1 < 5|ump = p| — 803. (2.4.2)

(b) Let’s estimate (wap, p),,. By definition,

1
(wap, p)g, = 5(‘“&1’— @l +p— ¢ — |wep — pl).
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Since wy is a T-shortening word over (H,Y’), the property (S1) implies

lga — q| > 7.

Since Y is 100-quasi-convex (Lemma 2.1.14) and 7 > 234, the strong contraction property

of Y (Lemma 2.1.6) implies
|wap — p| = [wap — o] + |g2 — gl + g — p| — 460.
Again by definition,

2 — ¢l = |2 — 1| + @1 — | — 2(q2,9) g, -

According to Lemma 2.1.15 (i),
(QQ7 Q>q1 < 65

Note that here we have used the assumption 0 < ¢; < t5. By the triangle inequality,

|wap — q1] < |wap — q2| + g2 — @1
Therefore,
|wep — p| = |wap — 1| + |¢1 — p| — 580.

Consequently,
(wap, p)g, < 290. (2.4.3)

Finally, combining Equation 2.4.1, Equation 2.4.2 and Equation 2.4.3, we obtain

1
(p’ w2p)w1p < §|ump _p| - 5

Therefore, the Geodesic Extension Property (Proposition 2.2.6) implies that w, is a prefix

of wy. This proves our claim. O

If wy is not a proper prefix of wo, then the claim above implies that w; = ws. Therefore
LV(JgLy) has at most one element satisfying the statement of the proposition. By symmetry,
5”(;[ ¥) has at most one element satisfying the statement. Therefore (4 y) has at most

two elements satisfying the statement.

[]
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s

Figure 2.4 — Scheme for the proof of Proposition 2.4.6.

2.4.2 The growth of shortening-free words

Here we count shortening-free words. The counting is based on [36, Section 3.22].

DEerINITION 2.4.8 (Shortening-free word). — Let w = wuy ---u, be an element of F(U).
Let (H,Y) € 2. We say that w contains a T-shortening word over (H,Y') if w splits as
w = wowyws, where wy is a T-shortening word over (H,Y"). We say that w is a T-shortening-
free word if for every (H,Y) € 2, the word w does not contain any 7-shortening word
over (H,Y). We denote by F(7) C F(U) the subset of 7-shortening-free words.

Recall that the natural homomorphism F(U) — G is injective (Proposition 2.2.5).
Hence, we can safely identify the elements of F(U) with their images in G. The ball
By(n) C F(U) of radius n is the set of reduced words over the alphabet U LI U™ of length
|w|y < n, for every n > 0. Note that By(n) = (UU U U {1})" when n > 1. Recall that
we have fixed global hypothesis at the beginning of this section. The goal of this subsection

is to obtain the following estimation.

ProrosITION 2.4.9. — For every 0 € (0,1/2), there exist 1 > 7y depending on 0, &g, Lo
and Ay with the following property. If |U| > 2 and 7 > 7, then for every n > 0, we have

[F(T) N By(n+1)| = (1 -0)2[U| = D]F(r) N By(n)].
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In particular, for every n > 0
[F(T) N By(n)| 2 (1=0)"(2|U| = 1)".

We are going to divide the proof of Proposition 2.4.9 into a few lemmas. First we fix

some notations. We let
Z={weFU): w=wu,w € F(1),uc ULU*}.

For every (H,Y) € 2, we denote by Zy) C Z the set of elements w € Z that split as

w = wywe, where wy € F(7) and wy is a 7-shortening word over (H,Y).
Lemma 2.4.10. — The set Z is contained in the disjoint union of F'(7) and U g yyeo Z(m,v)-

Proof. — The sets F'(7) and Uy yyeo Z(my) are disjoint as a direct consequence of the
definitions. Let w € Z — F(7). Since w € Z, there exist wy € F(7) and u € U UU ! such
that w = wou. Since w ¢ F(7), there exist (H,Y) € 2 and a subword wy of w that is a
T-shortening word over (H,Y). It follows from the definition of F'(7) that every subword
of wy must also be in F(7). In particular, the word wy cannot be a subword of wy. Hence,

the only possibility is that ws is a suffix of w. Therefore, w € Zy y). O
Our Lemma 2.4.10 implies that for every n > 0,

[F(7) N By(n)] > |20 Bu(n)| = Y. |Zisy) 0 Bu(n)]. (2.4.4)
(H,Y)e2

The next step is to estimate each term in the right side of the above inequality. The

following lemma is a direct consequence of the definition of Z.

Lemma 2.4.11. — For every n > 0,
|Z N By(n+1)| = (2|U| = 1)|F(7) N By (n)|.

LemMmAa 2.4.12. — Let

a=2, bz[ 0 +2]+1, M:{

T — 5050
20060 '

Lo
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If |U| > 2, then for every n > 0,

> |Zwy) N Bu(n)| < aIU| = 1)°|F(r) N By(n — M)|.

(HY)e2

Proof. — Assume that |U| > 2. Let n > 0. Note that for every (H,Y) € 2, the set Zy y)
is empty whenever there is no 7-shortening word over (H,Y"). We denote by 2, the set of
(H,Y) € 2 for which there exist a 7-shortening word over (H,Y). We have,

S 1 ZwmyyNBu(n) = Y. |Zuy) N Bu(n).
He2 (H,Y)eZ,

The desired estimation is obtained from the two estimations of the claims below:
Cram 2.4.13. — |Zyyy N By(n)| < alF (1) N By(n — M)|, for every (H,Y) € 2.

Proof. — Let (H,Y) € 2. Let w € Zuy) N By(n). Since w € Zyy), there exist
wy € F(7) and a 7-shortening word wy over (H,Y') such that w = wjwy. We are going to

describe the possible choices of w; and w,. Since w is a reduced word over U LI U1,
[wilo = |w|y — |ws|v.

According to Proposition 2.4.4 (i),

— 500,
fwaly > ———= > M > 0.
0
Therefore, wy € F (1) N By(n — M). Since w € Z, the prefix consisting of all but the last
letter is a 7-shortening free word. Thus, no proper prefix of ws is a 7-shortening word. It
follows from Proposition 2.4.6 that there are most a = 2 possible choices for ws. Therefore,

there are at most a|F(7) N By(n — M)| choices for w. This proves our claim. O

Cram 2.4.14. — |2y < (2|U] — 1)°

Proof. — Let d = [207850 + 2] Since the free group F(U) has rank |U| > 2, we have

_Uleu] -1t -1

< @U] =)™ = 2u] - 1"

Consequently, it suffices to show that there exists an injective map x: 2y — By(d). Let
(H,Y) € 2. By definition, there exist a 7-shortening word w over (H,Y’). Note that since
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2.4. Shortening and shortening-free words

T > Tp, we have that w is a 1p-shortening word over (H,Y). Let w’ be the shortest prefix
of w that is a 1p-shortening word over (H,Y"). In particular, w’ is a minimal 75-shortening
word over (H,Y'). We define x(H,Y) = w'. Since a > 2006y, according to Proposition 2.4.4
(ii), |w'|y < d. According to Proposition 2.4.5, there exist at most one (H,Y) € 2 such
that w' is a mg-shortening word over (H,Y'). Hence x is well-defined and injective. This

proves our claim. O

]

LemmAa 2.4.15. — For every 6 € (0,1/2) and a, b > 1, there exist My > 0 with the
following property. Let

7

p=01-0)2U|l-1), ¢=al2U|-1)" ando= 500

If |U| > 2, then for every M > My, we have

1

<o
M

Proof. — Let 6 € (0,1/2) and a, b > 1. Let M, = max {b, j—;}, where dy, dy are constants

depending only on 6, a, b whose exact value will be precised below. Let pu, &, o as above.
Assume that |U| > 2. Let M > M. In order to prove that -5 < o, it is enough to show
n

that log(ﬁ) < 0. A first computation yields

log (0/1M> = —logo — log(,uM),

6
1 =log| ———— | —blog(2|U| — 1
ou(o) = tou 512 )~ vlost2iv - 1,
log(u) = Mlog(1 — 0) + M log(2|U| — 1).
Consequently,
log () < (b— M) log(2|U| — 1) — Mlog(1 — ) —log[ —0——

Since M > b and |U| > 2, we have

(b— M)log(2|U| —1) < (b — M)log 3.
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

Therefore,

1 0
1 — | < =Ml log(1 —6 bl —log| —+—F+— .
og( ,uM> [log 3 4 log( )] +blog 3 Og<2(1—9)a>
We put

0
d; = blog 3 + log(2a) — 10g(1—0>’ dy =log 3 + log(1 — 0).

Since a > 1, b > 1 and 0 € (0,1/2), we have min{d;,d,} > 0. Finally, since M > 3—;, we
obtain, log (ﬁ) < 0. O

We are ready to prove the proposition.

Proof of Proposition 2.4.9. — Let 6 € (0,1/2). We are going to define the constant 7;. Let

70
—2 b= |- Lol 41,
“=% {20050+ W'*

Let My > 0 be the constant of Lemma 2.4.15 depending on 6, a, b. We put
T = maX{To, Lo(Mo + 1) + 5050}

Assume that |U| > 2 and 7 > 71. We define the auxiliary parameters

p= (1= - 1), €=aiU] -1 0= ot andM{

7'—50(50
26(1-6)’ '

Lo
In particular, M > M,. For every n > 0, we let
c(n) = [F(7) 0 By(n)|.
We must prove that for every n > 1,
c(n) = pe(n —1).

The proof goes by induction on n:

Base step. We claim that ¢(1) > u. Note that By(1) = U U U U {1}. Therefore, it
is enough to show that U L U! LU {1} is contained in F(7). Let w € U LU 'U{1}. In
particular, |w|y = 1. Therefore, w € F(7) if and only if for every (H,Y') € 2, the element

w is not a 7-shortening word over (H,Y’). According to Proposition 2.4.4 (i), for every
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2.4. Shortening and shortening-free words

(H,Y) € 2 and for every 7-shortening word v over (H,Y"), we have |v|y > %. Since

T = Ty, we have 1 < %. Consequently, w € F(7). This proves our claim.
Inductive step. Let n > 1. Assume that ¢(m) > pe(m — 1), for every m € [1,n]. We

claim that ¢(n + 1) > pc(n). According to Equation 2.4.4,

(H,Y)e2

It follows from Lemma 2.4.11 and Lemma 2.4.12 that
cn+1) = 2IU| — 1e(n) —&e(n+1— M).

The induction hypothesis implies that for every k > 0, we have c¢(n — k) < u~*c(n). Note
that M — 1 > 0. Therefore, specifying the choice k = M — 1, we obtain

cn+1) > (1 _ 2|U§|M—1;jw> 2/U] — 1)e(n).

Recall that we defined p = (1 — 0)(2|U| — 1). Hence, in order to prove our claim, it is

enough to show that
w1y
21U — 1 puM

Since M > M,, it follows from Lemma 2.4.15 that

1
Finally, note that
o _i-oeul-y 6 0 _,
21U| -1 21U — 1 26(1—-6) 2
This proves our claim. O

2.4.3 The injection of shortening-free words

Let po be the constant of the Small Cancellation Theorem (Lemma 2.1.27). Let 7 > 79
be the constant of Proposition 2.4.9 depending on 6 = 1/3, dy, Lo and A. Let

p = max{po,log(2[4m + 2380 + 1)}.
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

In addition to the global hypothesis for this section, we assume that
T(£2, X) > 1007 sinh p.

Denote K = (H | (H,Y) € 2)) and G = G/K. The goal of this subsection is to prove:

ProrosITION 2.4.16. — There exists 7 > 7 depending on dy, Ly and Ay with the
following property. The restriction of the natural homomorphism F(U) — G to the subset

of my-shortening-free words is an injection.

LemMmA 2.4.17. — Let w = wuy ---u, be an element of F(U). Let (H,Y) € 2. Let yo
and y,, be respective projections of p and wp on Y. If |y — y,| > 27, then w contains a

(27 — 79)-shortening word over a conjugate of (H,Y).

Proof. — Consider the sequence of n + 1 points
To =D, 1 = u1p, To9 = UrU2D, Tt Tp = U+ UppP.

Let y; be a projection of z; on Y, for every i € [0,n]. Assume that |yy — y,| > 27. Since
Y is 100-quasi-convex (Lemma 2.1.14) and 7 > 230, the strong contraction property of YV
(Lemma 2.1.6) implies that there exist v, y!, € [p, wp] such that

max{|yo — vp|, |yn — ¥L|} < 236 < 238.

Consider the broken geodesic

Yw = U(Ul e '%‘-1)[ ,Uz‘p]-
i=1

Let y5 and y! be respective projections of y; and y/, on 7,,. Up to permuting y, and y/, we
may assume that p, y{, v, and wp are ordered in this way along 7,,. In particular, there are
i<n—1andj <n—1such that yJ € (uy---w)p, uir1p] and y, € (uy - - u;)[p, uj1p].
Since y; comes before y/! on 7, we have i < j. Let wg = u; - - - u;41 and take the word
w; such that wow; = uy - - uj;. We are going to prove that w, is a (27 — 7p)-shortening
word over (wy'Hwg,wy'Y). The property (S2) follows from the fact that U is 2005,-
reduced at p and from the Broken Geodesic Lemma (Lemma 2.2.3). Let’s prove (S1), i.e.
|Yit1 — yj| > 27 — 79. By the triangle inequality,

\yi+1 - Z/j| P ‘yo - ynl - |y0 - Z/z‘+1’ - ‘yn - yj|>
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2.4. Shortening and shortening-free words

1Yo — vis1] < |yo — ol + w0 — w6l + [Wo — isa| + [@is1 — iz |,
Yn = Y3l < |yn =yl + 1y — ynl + lyn — 250 + |25 — y5].

Since [zo, z,] is contained in the 56-neighbouhood of v, (Lemma 2.2.3 (iii)),
max{|yy — yol, [yn — Ynl} < 50 < 5o
Since y € (uy - --u;)[p, uip1p] and y) € (uy - - - u;)[p, uj41p],
max{lyy — @il [y, — 2} < LU, p) < Lo.

It follows from (S2) that,

max{|Tit1 — Yi+1|, |9Uj - yJI} < L(U,p) < L.

Combining the previous estimations, we obtain |y; 11 —y;| > 27 — 7. Note that 27 — 715 > 7.
n

Proof of Proposition 2.4.16. — We put 7, = 21 — 19. Let wy,wy € F(U) be two To-
shortening-free words such that w;wy € K. Assume for a contradiction that wjws is not
the identity as an element of G. According to Greendlinger’s Lemma (Lemma 2.1.33),
there exist (H,Y) € 2 such that if yy and y» are respective projections of p and wjwsp on
Y, then

lyo — y2| > T(H, X') — 27 sinh p — 230.

By definition, T'(H, X) > T(£2, X). By hypothesis
T(2,X) > 1007 sinh p, and § < do.

Therefore,
e’ —1

— 230y.

|Z/0 - y2| >

The choice of p now implies that

Yo — ya| > 41

Let y; be a projection of wyp on Y. Note that wy 'y, and wy 'y, are respective projections

of p and wop on wi Y. Also, (wi'Hwy,wy'Y) € 2. Since w; and w, are To-shortening-free
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

words, it follows from Lemma 2.4.17 that

max {|yo — 1|, [th — ya|} < 271

By the triangle inequality,

1Yo — ol <lyo —y1| + |y — o] <47,

Contradiction. Hence wyw, = 1.

2.5 Growth in small cancellation groups

The goal of this section is to prove Theorem 0.6.2. We start with the following lemma.

LemMma 2.5.1.— Let a > 0, b > a. Let G be a group acting acylindrically on a -hyperbolic

space X. Let U C G be a finite symmetric subset containing the identity such that L(U) < b
Let I' = (U). One of the following holds.

(i) T is elliptic.

(ii) There exist n > 1 depending on U such that

a < L(U™) < 2b.

Proof. — Assume that I' is not elliptic. Since the action of G on X is acylindrical, there
exists a loxodromic element g € I' (Lemma 2.1.22).

Cramm 2.5.2. — There exists My > 1 depending on U such that for every M > M,
L(UM) > a.

Proof. — According to Lemma 2.1.13, the global injectivity radius T(G, X) is distinct
from zero. Let m > T(%i()' Since g € I' and U is a symmetric generating set, there exists

My > 1 depending on U such that g™ € UMo. Let M > M,. Let p € X almost-minimizing
the (>°-energy L(UM0). We have,

L(UM,p) > LU, p) > |¢"p —p| = ||g™]|® = m|lg||® > a+ .

Hence L(UM) > a. This proves our claim.
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It follows from the claim above that there exist a smallest number n > 1 depending
on U such that L(U") > a. If n = 1, then we have L(U) < b by hypothesis. Therefore,
L(U) < 2b. If n > 2, then n < 2(n — 1). Since U contains the identity, U" C U*"~Y. By
the triangle inequality,

L(U™) < LU D) < 2L(U™ ) < 2a < 2.

Hypothesis for the remainder of this section. Recall that the constants of the Small
Cancellation Theorem (Lemma 2.1.27) are &y, 6, Ag, po- We can choose dy arbitrarily small

(Remark 2.1.28). For convenience, we will assume

7 sinh 1048

5o < .
0= 7104 . 200

We define the first geometric small cancellation parameter:

PP R
1007 sinh py

Let N > 0. Let ¢ > 1 be the constant of Theorem 2.3.8 depending only on the acylindricity

parameters (Jp, V). We fix an auxiliar parameter that will be used to bound the ¢*°-energy:
Lo = ¢+ (2 sinh 10%6 4 &).
Let 7 and 75 be the constants of Proposition 2.4.16 depending on &g, Lo and Ay. Let
p > max {po, log (2[4 + 23d0] +1),5 - 1045}.

Let 6 > 0 and k > 6. We define the second geometric small cancellation parameter:

1007 sinh p K

>
SZ TS, 5

Let G be a group acting (k, N)-acylindrically on a d-hyperbolic space X. Let 2 be a

loxodromic moving family satisfying the geometric C”(\, £)-small cancellation condition
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Chapter 2 — Uniform uniform exponential growth in small cancellation groups

for the action of G on X. We define a rescaling parameter

o fh A
0 = min v A2, X) |

Remark 2.5.3. — Instead of working with the action of G on X, we will work with the

action of GG on the rescaled space X.

The space X' is od-hyperbolic and the action of G on X is (ok, N)-acylindrical. Note
that
00 < ok < 0y,

where the first inequality comes from the hypothesis k > . In particular, the action of G

on X is (0, N)-acylindrical for the hyperbolicity constant 0. Besides, we have

A(2,X) < oA(2,X) < Ao,
A(2, X)

T(2,X) > 0 T(2,X) > omax {55, 3

} > 1007 sinh p.
Note that the second equation is deduced after using the geometric C”(\, €)-small cancel-
lation condition. Therefore G, X and 2 satisfy the hypothesis of the Small Cancellation
Theorem (Lemma 2.1.27). We denote K = (H | (H,Y) € 2)) and G = G/K. We denote
by A the image of any set A C G under the natural projection 7: G — G.

The following lemma is the core of the proof of our main theorem. It brings together
Theorem 2.3.8, Proposition 2.4.9 and Proposition 2.4.16.

LemMma 2.5.4. — There exist 8 € (0,1) depending only on N with the following property.
Let U C G be a finite symmetric subset containing the identity such that L(U) <
msinh 10%. Let ' = (U). If T is non-elementary for the action on X, then

w(U) = pw(U)

Proof. — We put

log 2 } 1
= sup inf@- 2_1-69;- -~
b 96(01,01) { log (2¢) ¢

Let U C G be a finite symmetric subset containing the identity such that L(U) <

msinh 10%0. Let I' = (U) and assume that I' is non-elementary for the action on X.

We are going to choose a power of U and apply Theorem 2.3.8 to that power for the
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(09, N)-acylindrical action of G' on the od-hyperbolic space X'. By assumption, we have
10* - 2008, < 7sinh 100.

Since I' is non-elementary, it follows from Lemma 2.5.1 that there exists n > 1 depending
on U such that
10* - 2000, < L(U™) < 27 sinh 10%6. (2.5.1)

Let IV = (U™). Since U is symmetric and contains the identity, U C U". Therefore
I' = IV. The fact that I" is non-elementary now implies that I is non-elementary. Let
p € X be a point almost-minimizing the ¢*-energy L(U"). It follows from Theorem 2.3.8
that there exist a subset S C G such that

(i) Scu™,
(i) [S] = ¢lun,
(iii) S is 2000¢-reduced at p.

We are going to estimate w(U). Let r > 1. Since U is symmetric and contains the
identity, (i) implies
BS(T) cu.

Let F(7) be the set of my-shortening-free words associated to U and 2. We have

U > |Bs(r)| = |F(r0) N Bs(r)].

Further,
L(S,p) <L(U™,p) < cL(U",p) < Lo,

where the first inequality is (i) and the second one is the triangle inequality. The third
one is due to the upper bound of Equation 2.5.1, together with the fact that the point
p is almost-minimizing the ¢>*-energy L(U). Hence we can apply Proposition 2.4.9 and

Proposition 2.4.16 to obtain, respectively
() N Bs(r)] = [F(m) 0 Bs(r)], and |F(m) 0 Bs(r)] > 5211 = 1)]
Applying Fekete’s Subadditive Lemma,
U™ > ™),
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Together with (ii), this implies

nw(U)'

2[S|=1>15| > —e

ol

Combining our estimations, we deduce

_ 1 T
cnr > ~(2 -1 = nw(U)
071 > max{ S @181 - D] |5e

\

We have,

1 _
w(U) = limsup — log |U“""|.

r—oo CNr

Let 6 € (0,1). Consider the positive number

_ log2c
7T gu(U)

» If n < v, we use the first bound of Equation 2.5.2 to obtain

w(T) > - tog [ (2ls] - 1)]

Since n < 7y, we have = > % Further, |S| > 2. Consequently,
— log2 1
U)=>86- 2. 2. w(U).
w(U) log2c ¢ w(U)

» If n > 7, we use the second bound of Equation 2.5.2 to obtain

w(0) 2 - () - Tlllog o)

Since n > -, we have % < % Consequently,

1
- log2¢ < Qw(U).

Therefore,

W(@) > (1—0)- 2w,

C
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Finally, combining the cases n < v and n > ~, we obtain:
w() > Bu(U).

]

THEOREM 2.5.5 (Theorem 0.6.2 (i)).— Let & > 0. If G has {-uniform uniform exponential
growth, then every geometric C"(\,€)-small cancellation quotient of G has &' -uniform

uniform exponential growth. The constant £ depends only on £ and N.

Proof. — Let & > 0. Assume that G has &-uniform uniform exponential growth. Let U € G
be a finite symmetric subset containing the identity and denote I = (U). Recall that ¥
stands by the set of apices of the cone-off space Xp(o@, X). There are two cases:

Case 1. There exist v € ¥ such that U is contained in Stab(v).

Let v € ¥ be a preimage of v. Let (H,Y) € 2 such that v is the apex of the cone
Z(Y). The natural projection 7: G — G induces an isomorphism Stab(Y)/H = Stab(v)
(Lemma 2.1.27 (iii)). Since the moving family 2 is loxodromic, H has finite index in

Stab(Y'). Hence T is finite, in particular virtually nilpotent.

Case 2. The set U is not contained in Stab(v), for every v € ¥ .

The quotient space X, is 6-hyperbolic (Lemma 2.1.27 (i)) and the action of I' on &, is
acylindrical (Lemma 2.1.35). Then T falls exactly in one of the following three situations
(Lemma 2.1.22):

(a) T is elliptic, or equivalently one (hence any) orbit of T is bounded. Since the set U
is not contained in Stab(?), for every v € ¥, there exists an elliptic subgroup E C G for
the action of G on X such that the natural projection 7: G — G induces an isomorphism
E = T (Lemma 2.1.31). Since G has &-uniform uniform exponential growth, the subgroup
E is either virtually nilpotent or has £-uniform exponential growth. In combination with
the isomorphism F = T, we deduce that I either is virtually nilpotent or has &-uniform

exponential growth.

(b) T is lozodromic, or equivalently T is virtually cyclic and contains a lozodromic

element. Then T is virtually nilpotent.
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(c) T is non-elementary, or equivalently T contains a free group Fy of rank 2 and one

(hence any) orbit of Fy is unbounded. There are two subcases:

(E1) Large energy: L(U) > 10%6.

Then w(U) > 155 log2 (Lemma 2.1.22 and Lemma 2.1.23). Note that here we do not

require any control over the parameters of the acylindrical action of I on /\?p.

(E2) Small energy: L(U) < 10%6.
Since U is not contained in Stah(v), for every v € ¥, and 10*5 < p/5, there exists a
pre-image U C G of U of energy L(U) < 7sinh 10%5 (Lemma 2.1.32). Without loss of
generality, we may assume that U is symmetric and contains the identity. Since T is
non-elementary for the action on )Ep, the subgroup I' is non-elementary for the action
on & (Lemma 2.1.29). According to Lemma 2.5.4, there exists 8 € (0, 1) depending

on N such that w(U) > Pw(U). Since G has &-uniform uniform exponential growth

and I" is non-elementary, we have w(U) > £. Therefore, w(U) > B€. This completes

the proof of our theorem.

]

THEOREM 2.5.6 (Theorem 0.6.2 (ii)). — Let £ > 0. If there exists a geometric C"(\,€)-
small cancellation quotient of G that has £-uniform uniform exponential growth, then G

has &'-uniform uniform exponential growth. The constant £ depends only on &.

Proof. — Let ¢ > 0. Assume that G has &-uniform uniform exponential growth. Let U € G
be a finite symmetric subset containing the identity and denote I' = (U). Then T falls

exactly in one of the following three situations (Lemma 2.1.22):

(a) T is elliptic, or equivalently one (hence any) orbit of I' is bounded. The projection
7: G — G induces an isomorphism I' = T (Lemma 2.1.30). Since G has &-uniform
uniform exponential growth, the subgroup T is either virtually nilpotent or has ¢é-uniform
exponential growth. In combination with the isomorphism I' = T, we deduce that T is

either virtually nilpotent or has £-uniform exponential growth.

(b) T is lozodromic, or equivalently T' is virtually cyclic and contains a loxodromic

element. Then I' is virtually nilpotent.
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(c) T is non-elementary, or equivalently I' contains a free group ¥y of rank 2 and one

(hence any) orbit of Fy is unbounded. There are two subcases:

(E1) Large energy: L(U) > 10%4.
Then w(U) > 1z log2 (Lemma 2.1.22 and Lemma 2.1.23). Note that here we do not
require any control over the parameters of the acylindrical action of I" on X.

E2) Small energy: L(U) < 10%6.
(

By definition, w(U) > w(U). Since I' is non-elementary for its action on X', we have

w(U) > 0. Since 10*5y < msinh 1014, it follows from Lemma 2.5.4 that w(U) > 0. In

particular T is not virtually nilpotent. Since G has é-uniform uniform exponential

growth, we deduce that w(U) > £. Therefore, w(U) > €.
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In this section, we fix constants p > 1, v > 0 and a (p, v)-path system space (X, ).

We will be looking closely at the geometric features of the constricting subsets of X.

A.1 Standard properties

The goal of this subsection is to bring together the essential properties of constricting

maps that can be deduced from the definition.

ProrositioN A.1.1. — For every § > 0, there exist a constant § > 0 and a pair of maps,
o:Ro1 xRog — Ryp and (: Rog — Ry, such that any d-constricting map ma: X — A
satisfies the following properties:
(1) Coarse nearest-point projection.
For every x € X, we have |x — ma(z)| < pd(x, A) + 6.
(2) Coarse gate map.
Let x € X and a € A. Let v € & joining x to a. If a’ is the entrance point of v on
A* then |a' — wa(x)| < 0.
(3) Coarse equivariance.

Let G be a group acting by isometries on A such that &7 is G-invariant. Then for
every g € G and for every x € X, we have |m4(gz) — gma(x)| < 6.
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(4) Coarse Lipschitz map.

For every x,y € X, we have |xt — y|a < plx —y|+ 6.
(5) Intersection—Image.

For every v € &, we have | diam(A*° Nv) — diam4(7)| < 6.
(6) Behrstock inequality.

Let mp: X — B be a d-constricting map. Then for every € X, we have min {d4(x, B),dg(x, A)}
6.

(7) Tight contraction.
Let x € X and r = id(m,A). Then diam(Bx(z,7)) < 0.
(8) Morseness.

Let kK > 1,1 > 0. Let a be a (k,l)-quasi-geodesic of X with endpoints in A. Then
o C A'HT(H,Z).

(9) Coarse invariance.

Let ¢ > 0. Let B C X be a subset such that dya.s(A, B) < €. Then B is ((¢)-

constricting.
(10) Coarse uniqueness.
Let € > 0. Let mg: X — B be a d-constricting map such that dyaus(A, B) < . Then

for every x € X, we have |ma(x) — mp(x)| < ((e).

Proof. — Our proves are based on the sketches of the following references. For (1), (4), (5)
and (7), see [74, Lemma 2.4]. For (2), see [74, Lemma 5.2 (3)], [74, Lemma 5.2 (3)]. For
(6), see [74, Lemma 2.5]. For (8), see [74, Lemma 2.8 (1)].

Let 6 > 0. We put 6 = max 0; and for every € > 0, we put ((¢) = Jnax Ge) =0,
where 0; > 0 and (;(¢) > 0 are constants whose exact values will be precised below, with
the exception of #g, which is the constant of Proposition A.2.1. Let m4: X — A be a
d-constricting map.

(1) Let x € X. Let a € A such that |z —a| < d(z, A) + 1. Assume first that |z — a| < 6.
By the triangle inequality,

|2 = ma(2)] < o —a +[a = 7ma(a)] + [a — 2]a.
By (CS1), we have |a — ma(a)| < d. Thus,

|z — ma(z)] < d(x,A) + 26 + 1.
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Assume now that |z — a|s > d. Let v € & joining z to a. By (CS2), there exists a
point p in vy such that |p — m4(z)| < §. By the triangle inequality,

|z = 7ma(2)| <[z —pl + [p — 7alz)].
Since 7v is a (u, v)-quasi-geodesic,
|z —p| < ple—af +v.

In conclusion,

|z — ma(@)| < pd(z, A) + p+v+0.

Finally, we put ¢; = max{2§ + 1,u+ v +0}.

Let x € X and a € A. Let v € & joining x to a. Let a’ be the entrance point of
on A*°. Assume first that |z — a/|4 < §. By the triangle inequality,

ma(@) —d'| < |z —d'la+[mald)) —a|.
It follows from (1) that |ma(a’) — a'| < pd + 6,. Consequently,
|Ta(z) —a'| <6+ pd + 6.

Assume now that |z — a’|4 > ¢. Since [z,d'], € £, it follows from (CS2) that there
exists a point p in [z, d’], such that |m4(z) — p| < 0. By definition of @/, we have

p = a’ and hence |m4(x) — d’| < 6. Finally, we put 6, = max {J + ud + 61,6}.

Let G be a group acting by isometries on A such that & is G-invariant. Let g € G
and # € X. Let v € & joining x to m(z). Let a’ be the entrance point of v on AT,
By the triangle inequality,

[ma(gz) — gma(x)| < |ma(gz) — gd'| + |ga’ — gma(z)].

Since A is G-invariant, the element ga’ is the entrance point of gy on AT, Since &

is G-invariant, the path gy belongs to Z. It follows from (2) that

max {|ma(gz) — gd', [ga" — gma(z)[} < b2,
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(4)

Consequently,

|Ta(g92) — gma(z)| < 205.

Finally, we put 63 = 26,.

Let z,y € X. It suffices to assume that |z — y|4 > 9. Let v € & joining x to y. By
(CS2), there exist p, ¢ € 7 such that

max {|ma(z) — pl, [7ay) — ql} <.
By the triangle inequality,
[z —yla < |malz) —pl+lp —ql + lg = maly)|.
Since v is a (p, v)-quasi-geodesic,
p—al < ploe—yl+v.

Consequently,

[z —yla < plo—y[+20+v.

Finally, we put 6, = 26 + v.

Let v € &. First we prove that diamy(y) < diam(A™0 N~) + 65. Let z,y € . It
suffices to assume that |z — y|4 > d. Since [z,y], € &2, there exist p,q € [z,y], such
that

max {|ma(z) = pl, [7a(y) —ql} <0

By the triangle inequality,
[z —yla <|malz) —pl+Ip —al +lg = maly)].
Since p,q € AT N+, we have |p — ¢| < diam(A*° N~). Hence,
|z — y|a < diam (AT N ~y) + 26.
Now we prove that diam(A™ N~v) < diamu(y) + 05. Let 7,y € AT N~y. By the
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triangle inequality,
[z —y| <z —7ma(@)] + |z —yla + [7aly) —yl.

By (1),
max {|7a(x) — x|, [7ay) — y|} < pd +6;.

Since ma(z), ma(y) € ma(y), we have |z — y|4 < diam (7). Hence,

|z — y| < diamy(y) + 2ud + 26;.

Finally, we put 65 = max{20,2uo + 26, }.
(6) We refer to Proposition A.2.1 for this proof.

(7) Let z € X and r = id(m, A). It suffices to prove that for every y € X if |z — y| <
r, then |z — y|a < 3§ + v. We argue by contraposition. Let y € X such that
|z —y|la > 30 + v. Let v: [0, L] — X be a path of & joining x to y. Since v is a
(i, v)-quasi-geodesic,

1 1
|z —y| > —L— —v.
T
By (CS2), there exist p, g € v such that
max {|ma(z) — pl, [7a(y) —ql} < 0.
Let s,t € [0, L] such that p = v(s) and ¢ = v(¢). We note that
L > max{s,t} > min {s,t} +|s —t|.

Thus,

1 . 1 1
|z —y| > —min{s,t} + —|s —t| — —v.
u u I

By the triangle inequality,

sz v —p|>|v—7a(z)| — |7a(®) — Pl
t=lz—q| > v —7maly)| = I7aly) —ql,
s—t = p—ql =]z —yla—|p—7mal®)] = |¢ — 7a(¥)].
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(10)

In particular,
min{s,t} > d(z,A) — 0, |s—t|>d+wv.

Therefore,

1
x—y|>—d(z,A).
| | u( )

Finally, we put 67 = 2(30 + v).
We refer to Proposition A.3.4 for this proof.

For every € > 0, we put (y(¢) = 0 +2(¢ +2). Let ¢ > 0. Let B C X be a subset such
that diaus(4, B) < . We define a map mp: X — B as follows. Since A C B™*! for
every © € X, there exists b € B such that [b — m4(z)| < e+ 2. We put wg(z) = b.
We prove that the map 7g: X — B is (y-constricting. Let x € B. By the triangle
inequality,
mp(x) — ] < [mp(x) — ma2)| + [malz) — 2.

By (CS1), we have |m4(z) — x| < §. Therefore, we obtain |rg(x) — x| < (y. This
establishes (CS1). Let y, z € X such that |y — z|g > (9. Let v € & joining y to z.
By the triangle inequality,

Yy —2la >y = 2lp = |m5(y) = ma(y)| = 75(2) — ma(2)].

Consequently, we have |y — z|4 > d. Therefore, it follows from (CS2) that there exist
p,q € v such that max {|7a(y) — p|,|7a(z) — ¢q|} < . By the triangle inequality,

me(y) —pl < |ms(y) — ma(y)] + [7a(y) — Pl
Therefore, we have |15(y) — p| < (9. By symmetry, we obtain |r5(z) — ¢| < (. This

establishes (CS2).

Let ¢ > 0. Let mp: X — B be a d-constricting map such that dy.us(A, B) < e. Let
r € X. We bound |m4(z) — mp(x)|. Let v € & joining x to ma(x). Let o’ be the

entrance point of v on AT By the triangle inequality,

ma(e) —7p(2)| < |z = d|a+[mala) — | +|a" = 7p(a’)| + |0 — 2[5.
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Since a’ € ATeH1H9 and ATEHIT0 © B2+ it follows from (1) that

max {|ra(a’) — d'|,|a" — 7p(a’)|} < 0:1(2e +2+ ) + 6.
Applying now (5) we obtain,
max {|z — d'|4, |a’ — z|p} < max {diam(A™° N [z,d],),diam(B™ N [z,d’],)} + b5.
Since A*?, B C ATe+149 and since [z, d], N ATEFH = {a'},

max {|x — d'|, |a’ — z|g} < 5.
Therefore, we have
|ma(z) — mp(x)| < 205 + 201 (26 + 2+ ) + 20;.

Finally, we put (jo(g) = 205 + 201(2e + 2+ §) + 26;.

A.2 Behrstock inequality

The goal of this subsection is to introduce a variant of Behrstock inequality, [11], in

the context of Masur-Minsky subsurface projections.

ProrosiTioN A.2.1 ([74, Lemma 2.5]). — For every ¢ > 0, there exists 0 > 0 satisfying
the following. Let my: X — A and mg: X — B be §-constricting maps. Then for every
reX,

min {da(z, B),dg(z, A)} < 0.

Remark A.2.2. — The idea is that if da(x, B) is large then A is “between” z and B.

Proof. — Let § > 0. Let 6y = 0y(d) > 0 be the constant of Proposition A.1.1. Let § > 05+ 1.
Its exact value will be precised below. Let m4: X — A and wg: X — B be d-constricting
maps. Let z € X. By symmetry, it suffices to show that if d4(z, B) > 6, then dp(z, A) < 6.
Assume that da(z, B) > 6. Let b € B and consider a path v € & joining x to b.

Cramm A2.3. — ATONy £ 2.
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By Proposition A.1.1 (5) Intersection—Image, diam(A+°N~) > diam 4 () — 6. Moreover,
diama(y) = |z — bla = da(z, B). Since da(z, B) > 6y + 1, we obtain diam(A*° N+~) > 0.

This proves the claim.

Since At N~ # @ we can consider the entrance point a’ of v on A™?.

Cramm A24.— BPN[z,d], = 2.

To argue by contradiction, assume that there exists y € B N [x, a'l,. In particular,
there exists b’ € B such that |y — b'| < § + 1. By the triangle inequality,

da(z,B) < |z =V|a <|z—yla+ |y —V]a

Since [z,d'], € £ and AP N [z,d], = {d}, it follows from Proposition A.1.1 (5)

Intersection—Image that
|z —y|a < diamy([z,d'),) < diam(A™ N[z, d],) + 6y < bp.
By Proposition A.1.1 (4) Coarse Lipschitz map,
ly —b'|a < p(0+ 1)+ .

Hence da(z, B) < 6. Contradiction. Therefore B*° N [z,d’], = @. This proves the claim.

Finally, we estimate dg(z, A). Let a € A. By the triangle inequality,
dp(z,A) < |v —ma(x)|p < |v —d|p + | — 7a(2)|B.
Since BT N [z,d], = @, it follows from Proposition A.1.1 (5) Intersection—Image that
|z — d'|p < diamp([z,d],) < diam(B™ N[z, d],) + 6y < bo.

Applying together Proposition A.1.1 (2) Coarse gate map and (4) Coarse Lipschitz
map, we have |0 — ma(z)|p < ubhy + 0p. Consequently, we obtain dp(z, A) < 6 for
(9:max{@o—i—1,/1(5+1)+260,290+,u00} ]
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A.3 Morseness

There is a large number of different notions of convexity that coincide with quasi-
convexity in hyperbolic spaces but differ in more general metric spaces. One of them is

the notion of Morseness.

DerinITION A.3.1 (Morseness). — Let 0: Ro1 XxRxg — Rog. A subset Y C X is o-Morse
if for every k > 1,1 > 0, any (k, [)-quasi-geodesic of X with endpoints in Y is contained
in the o(k,)-neighbourhood of Y.

ExampLE A.3.2. — A geodesic metric space X is hyperbolic if and only if there exists

o0: Rs1 X Rog = Ryg such that any geodesic segment of X is o-Morse [61, Lemma 7.2].

The goal of this section is to show that constricting subsets of X are Morse. We would
like to emphasize that it is possible to give a proof that does not involve the path system,
following the argument of [74, Lemma 2.8]. For this reason, we introduce the following

notion of convexity.

DeriniTION A.3.3 (Weak contraction). — Let M > 1, A > 0. A map m4: X — A from
X to asubset A C X is (M, A)-weakly contracting if it verifies the following properties.
(WC1) Coarse nearest-point projection.
For every x € X, we have |z — ma(x)| < Md(z, A) + A.
(W(C2) Contraction.
Let € X and r = 5;d(z, A) — A. Then diamu(Bx(z,7)) < A.
A subset A C X is (M, A)-weakly contracting if there exists a (M, A)-contracting map
ma: X = A

It follows from Proposition A.1.1 (1) Coarse nearest point projection and Propo-
sition A.1.1 (7) Tight contraction that J-constricting subsets of X are always weakly

contracting with constants depending on p, v, d.

ProrosiTiON A.3.4 ([74, Lemma 2.8]).— For every M > 1, A > 0, there exists 0: R>1 X
R.o — Ry such that any (M, A)-weakly contracting subset A C X is o-Morse. In

particular, constricting subsets are Morse.

Remark A.3.5. — There exist a metric space X containing a Morse subset that is not
weakly contracting, [69, Example 3.8]. In particular this Morse subset is not constricting

with respect to any path system of X.
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From now on in this subsection, we fix M > 1, A > 0. Let m4: X — A be a
(M, A)-weakly contracting map. The idea of the proof consists on finding a large enough
neighbourhood of A so that given a quasi-geodesic with endpoints in A, the subpaths that
intersect this neighbourhood only at both endpoints have uniformly bounded length. The
purpose of the following lemmas is to estimate these lengths. The neighbourhood will

depend only on the rescaling constant of the quasi-geodesic.

LemmA A.3.6. — For every k > 1,1 > 0, n > 0, there exists § > 0 with the following
property. Let « be a (k,l)-quasi-geodesic of X such that « N A™ = {a~,a"}. Then

o™ —at|s >

(o) — 0.

e

Proof. — Let k > 1,1>0,n > 0. Let 8 > 0. Its exact value will be precised below. Let o
be a (k,[)-quasi-geodesic of X such that o N A™" = {a~, a™}. By the triangle inequality,

o= —at|s = |a” —at| -

o™ —ma(a”)] = o —ma(a)].

Since « is a (k, [)-quasi-geodesic,

1
— =l

1
o = at > fla) - -

Since a~,at € A™, it follows from (WC1) that
max {|a~ — ma(a7)], ot — wa(a™)|} < Mn+ A.

Finally, we put 6 = %l + 2Mn + 2A O

LemMma A.3.7. — For every k > 0, there exists n > 0 with the following property. Let «
be a path of X such that d(«, A) > n. Then

S

la™ —at|s < ~f(a) + A+ 1.

Proof. — Let k > 0. Let n = M(A + 1)k + MA. Let a: [0,L] — X be a path such
that d(a, A) = n. We estimate |~ — at|4. Let ( = (A + 1)k. Since ¢ > 0, we can
define m = [%J + 1. We fix a partition 0 = to < t; < --- < t,, = L of [0, L] such that
|tm—1—1tm| < ¢ and such that if m > 2, then for every i € [0, m —2], we have |t; — ;1| = (.
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Denote z; = «a(t;). By the triangle inequality,

—_

m—

la” —af|a < ) o — wigala

1=

Let ¢ € [0, m — 1]. Recall that, by convention, all of our paths are parametrised by arc

length. Hence, |z; — x;11| < (. Moreover, ¢ = ﬁn — A. Consequently,

1

’xi - xi+1‘ < M

d(z;, A) — A.
Denote r; = 57d(x;, A) — A. By (WC2),
|z; — xip1|a < diama(Bx(x;, 1)) < A
Hence, |x — y|a < m(A + 1). By construction of the partition, m < ("*L + 1. Therefore,

1
|$-Z/|A<;L+A+1.

We are ready to proof the proposition:

Proof of Proposition A.3.4. — Let k > 1,1 > 0. Let « be a (k, [)-quasi-geodesic of X with
endpoints in A. Let kg > k. It follows from Lemma A.3.6 and Lemma A.3.7 that there
exist 7 = n(kg) = 0 and 0 = 6(k,[,n) = 0 such that for every subpath /5 of « satisfying
BNATT={p", 5T}, we have

((B) < (1 — 1)_1 (A+1+6).

K av)

Moreover, we can decompose « as an union of subpaths that either intersect A% only
at both endpoints or are contained in A'7. This is enough to prove that there exist
o: Ro1 X Rog = Ry such that A is o-Morse. O
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tement des taux de croissance exponentiels
au sein de la classe des groupes qui agissent
de maniére acylindrique dans un espace hy-
perbolique au sens de Gromov. Pour ce faire,
nous aborderons deux probléemes de nature
différente.

Dans le premier probleme, nous étudie-
rons les taux de croissance exponentiels des
sous-groupes quasi-convexes. Nous compare-
rons ces taux avec celui du groupe ambiant et
nous déterminerons quand il est possible d’ob-
tenir une égalité/inégalité stricte. Pour ce faire,
nous allons exploiter des actions propres sur
des espaces métriques, a priori, non hyperbo-

liques, mais dont les isométries se comportent
comme les isométries loxodromiques d’un es-
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Le deuxiéme probléme tourne autour de
la croissance exponentielle uniforme uniforme.
Nous prouverons que cette propriété est pré-
servée si nous prenons des quotients a petite
simplification de groupes qui agissent de ma-
niére acylindrique sur un espace hyperbolique.
En corollaire, nous obtiendrons qu’il existe
une borne inférieure universelle sur le taux de
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mille des quotients a petite simplification clas-
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Abstract: The aim of this thesis is to obtain a
better understanding of the behavior of expo-
nential growth rates within the class of groups
that act acylindrically in a hyperbolic space in
the sense of Gromov. To do this, we will ad-
dress two problems of a different nature.

In the first problem we will study the ex-
ponential growth rates of quasi-convex sub-
groups. We will compare these rates with
that of the ambient group and we will deter-
mine when it is possible to obtain strict equal-
ity/inequality. To do so, we will exploit proper
actions on metric spaces that, a priori, are not

hyperbolic, but that have isometries that be-
have like the loxodromic isometries of a hyper-
bolic space.

The second problem revolves around uni-
form uniform exponential growth. We will
prove that this property is preserved if we
take small cancellation quotients of groups
that act acylindrically on a hyperbolic space.
As a corollary, we will obtain that there is a uni-
versal lower bound on the uniform exponential
growth rate for the family of classical small can-
cellation quotients. This bound depends only
on one of the two acylindricity parameters.
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