
HAL Id: tel-04251390
https://theses.hal.science/tel-04251390

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Derivation and Analysis of Cryptographic Protocol
Implementation

Aina Toky Rasoamanana

To cite this version:
Aina Toky Rasoamanana. Derivation and Analysis of Cryptographic Protocol Implementation. Com-
puter science. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAS005�. �tel-04251390�

https://theses.hal.science/tel-04251390
https://hal.archives-ouvertes.fr

626

N
N
T

:
20

23
IP

P
A
S0

05 Derivation and Analysis of
Cryptographic Protocol

Implementations
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom SudParis

École doctorale n◦626 Ecole doctorale de l’Institut Polytechnique de
Paris (ED IP Paris)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 08 juin 2023, par

Aina Toky RASOAMANANA

Composition du Jury :

Marine MINIER
Professeure, Université de Lorraine (LORIA) Présidente

Karthikeyan BHARGAVAN
Directeur de recherche, INRIA Paris (Equipe projet
PROSECCO) Rapporteur

Barbara FILA
Maître de conférences, INSA Rennes, IRISA Rapporteuse

Aurélien FRANCILLON
Professeur, EURECOM (Software and System
Security (S3) Group) Examinateur

Arnaud FONTAINE
Responsable d’un laboratoire, Agence Nationale de la
Sécurité des Systèmes d’Information (ANSSI)
(Laboratoire sécurité du logiciel)

Examinateur

Hervé DEBAR
Professeur, Télécom SudParis (SAMOVAR) Directeur de thèse

Olivier LEVILLAIN
Maître de conférences, Télécom SudParis
(SAMOVAR) Co-encadrant de thèse

Derivation and Analysis of Cryptographic
Protocol Implementations

Abstract

TLS and SSH are two well-known and thoroughly studied security protocols. In
this thesis, we focus on a specific class of vulnerabilities affecting both proto-
cols implementations, state machine errors. These vulnerabilities are caused by
differences in interpreting the standard and correspond to deviations from the
specifications, e.g., accepting invalid messages, or accepting valid messages out of
sequence.

We develop a generalized and systematic methodology to infer the protocol
state machines such as the major TLS and SSH stacks from stimuli and observa-
tions, and to study their evolution across revisions. We use the L? algorithm to
compute state machines corresponding to different execution scenarios.

We reproduce several known vulnerabilities (denial of service, authentication
bypasses), and uncover new ones. We also show that state machine inference is
efficient and practical enough in many cases for integration within a continuous in-
tegration pipeline, to help find new vulnerabilities or deviations introduced during
development.

With our systematic black-box approach, we study over 600 different versions of
server and client implementations in various scenarios (protocol versions, options).
Using the resulting state machines, we propose a robust algorithm to fingerprint
TLS and SSH stacks. To the best of our knowledge, this is the first application
of this approach on such a broad perimeter, in terms of number of TLS and SSH
stacks, revisions, or execution scenarios studied.

3

Remerciements

Tout d’abord, je remercie profondement mes encadrants, Olivier Levillain et Hervé
Debar, pour leurs précieux conseils, leurs relectures et encadrement tout au long
de ces années de thèse. Votre expertise et votre bienveillance ont été très pré-
cieuses pour m’aider à avancer dans mes recherches et à surmonter les difficultés
rencontrées au fil des années.

Je souhaite également remercier Barbara Fila et Karthik Bhargavan qui m’ont
fait l’honneur de rapporter cette thèse, ainsi que l’ensemble des membres du jury.

Au fil des ans, j’ai également eu la chance d’interagir avec de nombreuses per-
sonnes, que ce soit pour rédiger des articles ou au travers de relectures internes.
Parmi ces personnes, je tiens particulièrement à remercier Angelot, Sarobidy, Gré-
gory et Christophe.

J’aimerais exprimer ma gratitude envers mes collègues, à savoir Arthur, Adam
et Nathanaël, pour toutes les discussions enrichissantes que nous avons eues, que ce
soit en lien avec la thèse ou non. Je tiens également à vous exprimer mes meilleurs
vœux pour la suite de votre thèse.

Je tiens également à remercier Sandra et Rania. Elles ont fait en sorte que
chaque journée se déroule sans encombre.

Je souhaite remercier aussi tous mes collègues et amis. Parmis eux, je tiens
particulièrement à remercier Nickson, Lamine, Amin, Lyes, Houda, Romain, Yan-
nick, Chuan, Shurok et Penda. Je souhaite mes meilleurs vœux pour la suite de
votre thèse.

Je n’oublie pas aussi de remercier particulièrement Dominique et Alice qui
m’ont acceuilli à bras ouvert et m’ont beaucoup aidé sur tous les aspects.

Enfin, je remercie profondement mes parents, Faniry, Tafita, Israeline, Toavina
et le petit Isaac pour tous vos soutiens et encouragements. Je vous aime d’un
amour inconditionnel. Je peux enfin dire: vitaaaa !

5

Synthèse

TLS (Transport Layer Protocol) et SSH (Secure SHell) sont des protocoles cryp-
tographiques utilisés pour assurer une communication sécurisée entre un client et
un serveur. Ils ont des cas d’utilisation et des fonctionnalités différentes, mais
ils partagent le même objectif : sécuriser la transmission de données entre deux
dispositifs en réseau.

Au fil des années, TLS et SSH ont été confrontés à plusieurs types d’attaques, y
compris les attaques liées à la machine à états des implémentations [SL+16,Lev20].
Comme la spécification ne spécifie pas un automate de référence, les developeurs
doivent dériver par eux même leur machine à états à partir des descriptions et
séquences informelles des messages du protocole. La tâche est si complexe que les
erreurs sont courantes.

Les vulnérabilités peuvent être déclenchées par un attaquant envoyant des mes-
sages dans un ordre inapproprié (par exemple, EarlyCCS [Kik14]) ou en sautant
des messages (par exemple, SkipVerify [BBD+15], qui contourne l’authentification
du serveur en sautant les messages correspondants). Dans de rares cas, de telles
vulnérabilités peuvent également être déclenchées par un attaquant envoyant des
messages inattendus (par exemple, CVE-2018-10933 et CVE-2018-1000805), ce qui
entraîne un accès non autorisé. Dans des cas plus complexes, interférer avec la ma-
chine à états permet de nouvelles attaques cryptographiques (FREAK [BBD+15],
Factoring RSA Export Keys).

Toutes les piles majeures de TLS et SSH ont été vulnérables à au moins une
faille de ce type au cours de la dernière décennie, ce qui prouve que ce sujet mérite
d’être étudié plus avant. Nous proposons une méthodologie générique basé sur un
algorithme appelé L? à la fois pour analyser et identifier les implémentations de
ces deux protocoles.

Dans cette synthèse, nous allons voir dans la Section 1 la description du pro-
tocole TLS et SSH. Dans la Section 2.2, nous décrivons rapidement un algorithm
appelé L?, puis nous donnons plusieurs défis à relever pour son utilisation pour
l’analyse des implémentations des protocoles. Dans la Section 3, nous proposons
plusieurs méthodes pour améliorer la performance de l’inférence et dans la Sec-
tion 4, nous décrivons les listes des vulnérabilités que nous avons détectées pendant

7

8

notre analyse des machines à états. Pour terminer, nous proposons une nouvelle
méthode basée sur la machine à états pour identifier la pile/version d’une implé-
mentation de TLS et SSH.

1 Description des protocoles TLS et SSH

1.1 Protocole TLS

Afin de permettre l’établissement d’un canal de communication chiffré et intègre
entre un client et serveur TLS, les deux parties doivent s’entendre sur les algo-
rithmes et les clés à utiliser. Dans cette étape de négociation, plusieurs messages
sont échangés. Un exemple complet est donné à la figure 1 pour la version 1.3.

Avec les versions précédentes de TLS, le client initie la connexion avec le mes-
sage ClientHello dans lequel il annonce les algorithmes et les fonctionnalités
qu’il supporte. Le serveur choisit les paramètres qu’il retient pour la session, puis
présente son certificat. Un second aller-retour sert ensuite à l’échange de clés.
C’est seulement après que les données peuvent être échangées.

Avec TLS 1.3, l’échange de clés est réalisé avec les extensions ClientKeyShare
et ServerKeyShare, des extentions incluses respectivement dans les messages
ClientHello et ServerHello, ce qui permet de réaliser la négociation des
paramètres, l’échange de clés et l’authentification du serveur avec un seul aller-
retour.

Contrairement aux versions précédentes de TLS, tous les messages TLS 1.3
après le message ServerHello sont chiffrés. Pour que le client puisse authen-
tifier le serveur explicitement, ce dernier envoie son certificat (dans le message
Certificate) ainsi que la signature de tous les messages précédents (dans le mes-
sage CertificateVerify). Le message Finished sert de confirmation que les
deux parties utilisent la même clé.

La connexion peut échouer prématurément, soit lorsque le client et le serveur
ne sont pas d’accord sur une suite cryptographique commune, soit lorsque le client
ne fait pas confiance au certificat présenté par le serveur.

1.2 Protocole SSH

Le protocole Secure SHell (SSH) repose sur le protocole TCP et contient trois
couches : couche Transport, couche Authentification et couche Connexion. La
figure 2 décrit les messages échangés entre un client et un serveur SSH.

La couche transport sert à échanger la version SSH à utiliser, à faire des
échanges de clés et aussi à authentifier le serveur. En outre, elle sert à établir un

9

Client Server
ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application data

Cleartext
Ciphertext (HS)

Ciphertext

Figure 1: Exemple de négociation TLS 1.3.

SSHVersion

KEXINIT

DH_INIT

DH_REPLY

NEWKEYS

NEWKEYS

SERVICE REQUEST

SERVICE ACCEPT

USERAUTH REQUEST

USERAUTH SUCCESS

CHANNEL OPEN

CHANNEL OPEN CONFIRMATION

. . .

Client Server

Transport
Layer

Authentication
Layer

Connection
Layer

cleartext

encrypted

Figure 2: Exemple de négociation SSH.

10

canal sécurisé entre le client et le serveur, elle fournit la confidentialité, l’intégrité
en utilisant le MAC et l’authentification du serveur.

Les clés sont dérivées en utilisant les messages KEXINIT, DH_INIT et DH_REPLY.
Le serveur s’authentifie auprès du client en utilisant le message DH_REPLY. Tous
les messages sont chiffrés après le message NEWKEYS.

La couche authentification sert à authentifier le client. Le client s’authentifie
auprès du client en utilisant le message USERAUTH_REQUEST. Plusieurs options sont
possible pour la methode d’authentification: par mot de passe ou clé publique par
exemple. Le serveur utilise le message USERAUTH_SUCCESS en réponse à la requête
d’authentification du client (s’il accepte la requête du client).

La couche connexion fournit des mécanismes pour gérer les canaux telles que
l’exécution des commandes, transfert des fichiers, redirection de port, etc. Le
client peut ouvrir autant de canaux qu’il veut, en théorie jusqu’à 232, en utilisant
le message CHANNEL_OPEN.

2 L’algorithme L?

En 1987, Dana Angluin a proposé un algorithme [Ang87], appelé L?, qui infère
un automate fini déterministe (DFA). L’algorithme nécessite la présence d’un Ap-
prenti et d’un Sut (ou encore “System Under Test”) tels que le Sut a une con-
naissance modélisée sous forme de DFA et l’Apprenti souhaite apprendre la con-
naissance du Sut en utilisant deux types de requêtes : requêtes d’appartenance
et requêtes d’équivalence.

La requête d’appartenance permet à l’Apprenti de mettre à jour sa base de
connaissance vis à vis du Sut et la requête d’équivalence lui permet de comparer
ses connaissances par rapport aux connaissances réelles du Sut. Lors de la requête
d’équivalence, l’Apprenti construit une hypothèse sous forme de DFA et fait une
requête auprès du Sut si son hypothèse est équivalent à celui du Sut. Si elles
sont équivalentes, le Sut retourne “vrai”, sinon il retourne un contre-exemple et
l’Apprenti remet à jour ses connaissances en faisant à nouveau des requêtes
d’appartenance et ainsi de suite.

Dans son papier, Dana Angluin montrait que pour inférer un DFA avec n états
et un contre-exemple de taille inférieure ou égale à m , alors O(mn2) de requêtes
d’appartenance et au plus n− 1 requêtes d’équivalences sont nécessaires.

2.1 Utilisation de L? en pratique

En pratique, un composant supplémentaire, appelé Mapper, est nécessaire et
qui sert principalement d’intermédiaire entre l’Apprenti et le Sut. La Fig-
ure 3 représente les composants nécessaire dans le cadre de l’apprentissage actif.

11

Figure 3: Configuration d’utilisation de L? en pratique.

L’Apprenti implémente l’algorithme L?. Le Mapper sert à concretiser les mes-
sages de l’Apprenti vers le Sut et aussi d’abstraire, en une chaîne de caractère,
les réponses du Sut vers l’Apprenti.

En 2009, Shabaz et Goz ont adapté L? pour inférer une machine de Mealy
(au lieu d’un DFA) [SG09]. Pour tout ce qui suit, nous choisissons d’utiliser cette
variante de L?, qui est appropriée à l’étude de piles protocolaires.

2.2 Défis à relever pour l’utilisation de L?

Pour utiliser L?, nous devons relever plusieurs défis aussi bien théorique que pra-
tique :

• Indépendance des connexions : pour éviter des inférences des connexions et
pour obtenir des réponses déterministes.

• Méthode d’équivalence appropriée : en pratique, nous n’avons pas une re-
quête d’équivalence parfaite telle que décrite ci-dessus. Nous utilisons des
approximations basées sur la requête d’appartenance. Plusieurs méthodes ex-
istent déjà telles que: RandomWalk [Lá93], W(p)-method [Cho78,FvBK+91],
Distinguishing Bounds [RLM+18].

• Efficacité et convergence : le nombre de requêtes dépend de la taille du
vocabulaire d’entrée de L?. Plusieurs chercheurs ont proposées des optimi-
sations que ce soit pour optimiser le nombre de requêtes ou pour accéler la
vitesse de l’inférences [RS89,SG09, IHS14,VGRW22,HTJV15].

• Mapper : ce composant joue un rôle important pour l’inférence. Il doit être
capable de concretiser n’importe quel message dans n’importe quel ordre. Il
doit donc être flexible et robuste.

• Non déterminisme : comme nous souhaitons inférer une machine à états
deterministe, tout comportement non deterministe n’est donc pas toléré.
Cependant, nous avons constaté que plusieurs implémentations de SSH (par
exemple OpenSSH, AsyncSSH et paramiko) se comportent de manière non-
deterministe.

12

3 Amélioration de la performance

3.1 Optimisation du processus d’inférence

Notre premier résultat sur l’inférence de machine à états consiste en l’amélioration
de la performance. Pour diminuer le nombre de requêtes d’appartenance, il est
inutile de continuer d’envoyer des messages auprès de la cible une fois que la
connexion est fermée. De plus, il est possible d’utiliser les informations que nous
avons au fur et à mesure de l’inférence. Cela nous permet, non seulement, de
détecter les timeouts ou encore de savoir à quoi s’attendre de la cible, mais aussi
de détecter à quel moment nous devons arrêter d’envoyer des messages à la cible
(quand nous savons, par exemple, que nous aurons des EOF); et donc nous pouvons
améliorer considérablement la vitesse de l’inférence.

Nous avons évalué nos méthodes d’optimisation du processus d’inférence avec
une implémentation d’un serveur TLS 1.2 d’OpenSSL 1.1.1k qui a six états en
utilisant un vocabulaire d’entrée de taille douze et un timeout de 1 seconde.

Il apparaît que les deux optimisations améliorent les performances globales,
avec une amélioration drastique (jusqu’à 20 fois plus rapide) par rapport à l’anticipation
complète du délai d’attente. Nous avons réalisé des expériences similaires avec
statelearner (même délai et même vocabulaire), sur le même matériel, et le
temps nécessaire pour produire la machine à états était de 2, 945 secondes.

Pour une série de 1, 400 expériences concernant TLS (qui a duré environ 2
heures et demie au total, avec 30 inférences en parallèle), le temps moyen d’inférence
était d’environ 3 minutes, la médiane était de 81 secondes et les percentiles 10 et
90 étaient respectivement de 27 secondes et d’environ 8 minutes.

3.2 Optimisation de la méthode d’equivalence Distinguish-
ing Bounds

Nous proposons une amélioration d’une méthode d’équivalence appelé Distinguish-
ing Bounds. Nous proposons au lecteur intéressé par cette amélioration de lire
l’algorithme original décrit dans [RLM+18]. En quelque mots, cette méthode re-
pose sur l’hypothèse d’une borne de distinction connue, alors que l’automate d’état
résultant dépend de sa valeur. Si cette borne, qui caractérise la machine à états
réelle, est estimée correctement, la méthode garantit l’obtention d’un résultat cor-
rect.

Au cours de la deuxième étape de l’algorithme Distinguishing Bounds, il vérifie
si chaque paire d’états peut être distinguée à l’aide d’au moins une séquence d’une
longueur inférieure ou égale à la borne de distinction BDist. Chaque état est
vérifié de manière redondante à l’aide de séquences de longueur inférieure ou égale
à BDist − 1.

13

Nous souhaitons avoir la même garantie que la méthode Distinguishing Bounds
tout en proposons des améliorations de ce dernier que ce soit en nombre de requête
ou temps nécessaire pour trouver un contre-exemple s’il existe.

Nous proposons trois méthodes pour améliorer la méthode Distinguishing Bounds:

1. Toujours utiliser des suffixes de longueur BDist pour tester chaque paire
d’états.

2. Arrêter la vérification d’un état après la réception du message relatif à un
fin de connexion.

3. Décomposer la vérification des boucles.

Nous avons mené plusieurs tests pour évaluer l’impact de ces trois méthodes en
inférant plusieurs implémentations SSH et nous avons constaté que nous pouvous
diminuer le nombre des requêtes d’appartenance lors de l’inférence par deux par
rapport à la méthode originale dans les cas les plus favorables.

4 Analyses des machine à états TLS et SSH

4.1 Liste des scénarios

Pour analyser la machine à états des implémentations d’un protocole, nous consid-
érons plusieurs scénarios. Un scénario est défini en fonction du protocole étudié.

Chacun de ses scénarios nous permet de détecter une ou plusieurs attaques liées
à la machine à états comme le contournement de l’authentification, la présence de
l’oracle de Bleichenbacher, etc.

Un autre domaine d’intérêt est la présence de boucles qui pourraient être util-
isées par un attaquant pour bloquer un client, permettant des attaques cryp-
tographiques complexes, telles que l’attaque LogJam [ABD+15]. Pour le côté
serveur, la présence de boucles dans les machines d’état pourraient forcer le serveur
à maintenir une connexion ouverte indéfiniment. Pour ces attaques par déni de
service, nous nous concentrons uniquement sur les événements qui se produisent
avant l’activation du chiffrement; de cette façon, l’attaquant n’a besoin que de très
peu de ressources pour maintenir le canal ouvert.

a) Scénarios pour TLS

Pour TLS, nous définissons un scénario comme un tuple (rôle, version TLS, con-
texte) où le rôle peut être client ou serveur ; les versions du TLS que nous sup-
portons sont les versions de TLS 1.0 à 1.3 ; et le contexte est representé par les
vocabulaires d’entrées à utiliser pendant l’inférence.

14

b) Scénarios pour SSH

Pour SSH, nous définissons un scénario comme un tuple (rôle, pré-requis, vocab-
ulaire d’entrée). Le rôle peut être client ou serveur. Le pré-requis represente
l’ensemble des couches à éxecuter avant chaque requête d’appartenance. Le vo-
cabulaire d’entrée est formé par la combinaison des messages de chaque couche.

En utilisant cette formaulation de scénario, nous pouvons donc inférer la ma-
chine à états des implémentations du client et serveur SSH couche par couche.

4.2 Méthodes pour détecter automatiquement des vulnéra-
bilités

Une fois que nous avons inféré la machine à états d’une implémentations des pro-
tocoles, nous devons trouver une méthode pour les analyser. Nous classons en trois
catégories les méthodes que nous pouvons utiliser pour les analyses des machines
à états:

• Model checking et ses variantes : durant l’analyse de la machine à états,
des propriétés requises par le protocole sont définies et vérifiées pour chaque
machine à états examinée.

• Happy path et des heuristiques : cette méthode consiste à définir les séquences
correctes voire attendues vis-à-vis du protocole étudié, que nous appelons
happy path ; et chaque transition ou chemin qui n’est pas conforme au happy
path est considéré comme un bug.

• En comparant entre elles plusieurs machines à états d’un même protocole : les
différences entre deux ou plusieurs machines à états sont considérées comme
des bugs.

Nous avons choisi d’utiliser la méthode basée sur le happy path. Cela nous
permet de détecter et trier très facilement les vulnérabilités aux déviations à la
spécification du protocle. Par contre, cette méthode n’est pas très pratique pour
détecter automatiquement des vulnérabilités sur des grandes machines à états.

4.3 Reproduction et détéction des nouvelles vulnérabilités
dans TLS et SSH

Nous avons analysé plus de 600 piles/versions de TLS et SSH (400 pour TLS et
200 pour SSH). En considérant les scénarios, nous avons obtenu plus de 6, 000
machine à états.

Nous choisissons d’utiliser la méthode basée sur le happy path décrite dans la
Section 4.2. La figure 4 décrit la machine à état d’une implémentation TLS 1.3 d’un

15

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF

3

Cert / -

4

Fin / Fin+AppData

* / EOF Fin / Fin+AppData5

CV / -

* / EOF

AppData / -* / EOF

Fin / Fin+AppData

* / EOF

* / EOF

Figure 4: CVE-2020-24613, un contournement d’authentification d’un server TLS
1.3 de wolfSSL jusqu’à la version 4.4.

serveur wolfSSL v4.4.0. Le chemin vert correspond au happy path et les erreurs de
la machine à états sont colorés en rouge. Notons qu’à partir du moment où nous
recevons les messages Finished et AppData du client en passant par des chemins
rouges, nous avons un bug. La figure 4 décrit le CVE-2020-24613. En effet, elle
nous montre qu’en ignorant les messages Certifcate et CertifcateVerify, un
attaquant peut contourner l’authentification du client TLS 1.3 de wolfSSL v4.4.0.

Nous avons reproduit et détecté automatiquement plusieurs vulnérabilités telles
que (voir les tableaux récapitulatifs de chacune des vulnérabilité ci-dessous):

• le contournement d’authentification ;

• l’affaiblissement de l’authentification ;

• la désactivation du chiffrement (échange en clair) ;

• la fuite d’informations d’identification ;

• la présence des boucles ; et

• des oracles de Bleichenbacher.

16

En déhors de ces vulnérabilités, nous avons aussi détecté deux types de violation
de la spécification intéressantes comme l’existence de la machine à états infinie et
problème lié au rafraîchissement de clés. Une machine à états infinie n’est pas
en soit une vulnérabilité, néanmoins nous pensons qu’une implémentation propre
doit toujours avoir une machine à états finie. Lors de notre analyse, plusieurs
implémentations SSH, comme OpenSSH, libssh, AsyncSSH et sshd-lite, ont des
machines à états infinies.

a) Contournement d’authentification

CVE # Piles Versions Commentaires
2014-0224 OpenSSL ≤ 0.9.8za

≤ 1.0.0l
≤ 1.0.1h

EarlyCCS (CCS inattendu)

2015-0204 OpenSSL ≤ 0.9.8zc
≤ 1.0.0o
≤ 1.0.1j

FREAK (EXPORT RSA downgrade
côté client et serveur)

2020-24613 wolfSSL ≤ 4.4.0 contournement d’auth. serveur TLS 1.3
2021-3336 wolfSSL ≤ 4.6.0 contournement d’auth. serveur TLS 1.3
2022-25638 wolfSSL ≤ 5.1.0 contournement d’auth. serveur TLS 1.3
2022-25640 wolfSSL ≤ 5.1.0 contournement d’auth. client TLS 1.3
2018-10933 libssh ≤ 0.8.3 contournement d’auth. serveur SSH
2018-7750 Paramiko ≤ 2.4.0 contournement d’auth. serveur SSH

2018-1000805 Paramiko ≤ 2.4.1 contournement d’auth. serveur SSH
2018-7749 AsyncSSH ≤ 1.12.0 contournement d’auth. serveur SSH
en attente wolfSSH all contournement d’auth. serveur SSH

b) Affaiblissement de l’authentification

CVE # Piles Versions Commentaires
en attente AsyncSSH all serveur SSH
en attente wolfSSH all serveur SSH

c) Ignorance du Chiffrement

CVE # Piles Versions Commentaires
en attente AsyncSSH all serveur SSH
en attente AsyncSSH all client SSH
en attente wolfSSH all serveur SSH
en attente wolfSSH all client SSH

d) Fuite d’informations d’identification

CVE # Piles Versions Commentaires
en attente wolfSSH all client SSH

17

e) À la recherche des boucles

CVE # Piles Versions Description
2020-12457 wolfSSL ≤ 4.4.0 DoS attaque contre le serveur TLS 1.2

- erlang 24.0 La configuration par défaut autorise l’attaque
DoS contre le serveur TLS

2022-25639 matrixSSL 4.0 - 4.3 DoS attaque contre le serveur TLS
- fizz 2021 snapshots Boucles inattendues côté client

en attente NSS 3.15 - 3.78 DoS attaque contre le serveur TLS 1.0 à 1.2
en attente wolfSSH all DoS attaque contre le serveur SSH

f) Oracle de Bleichenbacher

CVE # Piles Versions Commentaires
2016-6883 matrixSSL ≤ 3.8.2
2017-13099 wolfSSL ≤ 3.12.2 attaque ROBOT [BSY18]
2017-1000385 Erlang 20.0 attaque ROBOT [BSY18]

5 Identification des implémentations TLS et SSH
Nous constatons que les machines à états produites sont en réalité plus riches et
spécifiques à chaque implémentations donnée.

Les différences viennent généralement dans les variations entre les implémen-
tations sur la gestion des erreurs : différents messages d’alerte peuvent être émis.
Il arrive parfois que plusieurs machines à états acceptent des messages inattendus
et les ignorent silencieusement.

En utilisant une méthode décrite par Shu et Lee [SL11], nous pouvons calculer,
pour un scénario donné, un ensemble de séquences de messages d’entrée qui per-
mettent de distinguer les différentes piles que nous avons identifiées. Ensuite, nous
pouvons calculer les empreintes de la pile en fonction de la réponse de chaque pile
aux séquences distinctives.

Au-delà de révéler des différences intéressantes dans les mécanismes internes des
piles, le fingerprinting des piles peut aider un attaquant à identifier, avec quelques
séquences de messages, une version donnée (ou un ensemble de versions) d’une
implémentation afin de sélectionner une vulnérabilité contre la pile identifiée.

Pour illustrer notre résultat sur le fingerprinting, nous présentons dans le
tableau 1 les classes des piles/versions du serveur TLS 1.3 que nous arrivons à
détecter en utilisant notre méthode.

18

Piles Versions N
CVEs avec un score de sévérité elevé

affetctant les serveurs
erlang 24.0.3 - 24.2.1 9 Aucun CVE de haute sévérité

GnuTLS 3.6.16 - 3.7.2 4 2021-20231 2021-20232

matrixssl 4.0.0 - 4.1.0 4 2019-10914 2019-13470

4.2.1 - 4.3.0 6 Aucun CVE de haute sévérité

NSS 3.39 - 3.40 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

3.41 - 3.78 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

OpenSSL 1.1.1a - 1.1.1n 4 2020-1967 2020-1971 2021-3449 2021-3711 2022-0778 2022-1292

3.0.0 - 3.0.2 4 2022-0778 2022-1473 2022-1292

wolfSSL

3.15.5 - 4.0.0 7 2019-11873 et tous ceux de la ligne suivante

4.1.0 - 4.6.0 7 2019-15651 2019-16748 2019-18840 2021-38597 2022-25640

4.7.0 - 4.8.1 7 2021-38597 2022-25640

5.0.0 - 5.1.1 7 2022-23408 2022-25640

5.2.0 6 Aucun CVE de haute sévérité

Table 1: Piles de serveurs TLS 1.3 regroupées par machines à états. N est
le nombre d’états. Les CVEs en italique n’affectent que partiellement la classe
d’équivalence.

Contents

Abstract 3

Synthèse 7
1 Description des protocoles TLS et SSH 8

1.1 Protocole TLS . 8
1.2 Protocole SSH . 8

2 L’algorithme L? . 10
2.1 Utilisation de L? en pratique 10
2.2 Défis à relever pour l’utilisation de L? 11

3 Amélioration de la performance . 12
3.1 Optimisation du processus d’inférence 12
3.2 Optimisation de la méthode d’equivalence Distinguishing Bounds 12

4 Analyses des machine à états TLS et SSH 13
4.1 Liste des scénarios . 13
4.2 Méthodes pour détecter automatiquement des vulnérabilités 14
4.3 Reproduction et détéction des nouvelles vulnérabilités dans

TLS et SSH . 14
5 Identification des implémentations TLS et SSH 17

Introduction 29

1 TLS and SSH State Machines 31
1.1 Communication Protocols . 31

1.1.1 Transport Layer Security Protocol 31
1.1.2 Secure SHell Protocol . 34

1.2 State Machine Attacks against TLS and SSH Implementations . . . 38
1.2.1 Padding Oracle Attack . 38
1.2.2 CVE-2014-0224: EarlyCCS 40
1.2.3 CVE-2014-6593: EarlyFinished (server impersonation) . . 41
1.2.4 CVE-2015-0204: FREAK (Factoring RSA Export Keys) 41
1.2.5 SkipVerify (client impersonation) 43

19

CONTENTS 20

1.2.6 CVE-2014-6321: Winshock 43
1.2.7 CVE-2018-10933 and CVE-2018-1000805: Server Unautho-

rized Access . 44
1.3 Previous Known Methods to Analyze TLS and SSH Implementations 44

1.3.1 Related Work on TLS State Machine Analysis 44
1.3.2 Related Work on SSH State Machine Analysis 45

1.4 Looking for a Method to Analyze Protocol State Machines 46

2 Model Learning – Theory and Application 49
2.1 Passive vs Active Learning . 49

2.1.1 Passive Learning . 50
2.1.2 Active Learning . 50

2.2 The L? Algorithm . 52
2.2.1 How to Update the Observation Table? 52
2.2.2 The L? Learner . 54
2.2.3 Building an Automaton from the Observation Table 54

2.3 Active Learning in Practice . 55
2.3.1 How to Use Active Learning? 56
2.3.2 Overview of Active Learning Algorithms 56
2.3.3 Available Tools and Libraries 58

2.4 Model Learning and Application . 58
2.4.1 Verification and Validation 59
2.4.2 Learning-based Testing . 60
2.4.3 Learning-based Fuzzing . 61
2.4.4 Stack Fingerprinting . 62

3 Methodology 65
3.1 Practical Challenges in Active Learning 65

3.1.1 Connection Independence 65
3.1.2 Equivalence Query . 66
3.1.3 Efficiency and Convergence 66
3.1.4 Robust and Flexible Mapper 67
3.1.5 Non-determinism . 67

3.2 Challenges in State Machines of Communication Protocols Imple-
mentations . 68
3.2.1 Undesired Flows . 68
3.2.2 Undesired States . 69
3.2.3 Infinite Executions in the State Machine 71

3.3 Analysis of Communication Protocols Implementations in Black-box 72
3.3.1 Useful (and Minimum) Knowledge on the Studied Protocol . 72
3.3.2 Finding Bugs from the Learned State Machines 75

CONTENTS 21

3.4 Mapper . 77
3.4.1 Flexible Mapper . 77
3.4.2 When and How to Update the Internal State? 77

4 Benchmark of Equivalence Query 83
4.1 Equivalence Query Methods . 83
4.2 Avalaible Equivalence Query Algorithms 84

4.2.1 RandomWord and RandomWalk 84
4.2.2 W(p)-method . 85
4.2.3 Distinguishing Bounds . 86

4.3 Our New Method: DBBased method 86
4.4 Benchmark and Discussion . 90

4.4.1 Experimental Setup . 90
4.4.2 Experimental Results . 92
4.4.3 Discussion . 95

5 Results – TLS and SSH State Machines 99
5.1 Mapper Implementation . 100

5.1.1 TLS Mapper . 100
5.1.2 SSH Mapper . 101

5.2 Experimental Setup and Experiments 104
5.2.1 Architecture of our Platform 104
5.2.2 Implementations Tested and Analyzed 107
5.2.3 Learning Alphabet . 107
5.2.4 Configuration and Adaptation of our Platform 111

5.3 Vulnerability Detection and Confirmation 114
5.3.1 Vulnerability Detection . 114
5.3.2 Vulnerability Confirmation 115

5.4 Optimization of the Learning Process 116
5.4.1 EOF is Final . 116
5.4.2 Exploiting the Determinism 116
5.4.3 Optimizations’ Evaluation on TLS stacks 116
5.4.4 Discussion . 117

5.5 Analysis of the Resulting State Machines 118
5.5.1 Authentication Bypasses . 118
5.5.2 Weakened Authentication in SSH 122
5.5.3 Loops in the Automata . 124
5.5.4 Unsolicited Client Authentication 126
5.5.5 Skip Encryption in SSH . 126
5.5.6 Credential Leakage in SSH 127
5.5.7 Detection of Bleichenbacher Oracles in TLS 127

CONTENTS 22

5.6 Discussion . 130
5.6.1 Infinite State Machine in SSH 131
5.6.2 Missing Key Refreshment in SSH 131
5.6.3 New and Reproduced Vulnerabilities 132
5.6.4 Limitations of Our Approach 134

6 Stack Fingerprinting 135
6.1 Message- and Feature-Based Fingerprinting 136

6.1.1 TLS Fingerprinting . 136
6.1.2 SSH Fingerprinting . 137

6.2 State-Machine-Based Fingerprinting 139
6.2.1 Distinguishing Sequences . 139
6.2.2 TLS and SSH Stack Fingerprinting 140

6.3 Advantages and Limitations of the Approach 143

Conclusion 145

List of Publications 150

Appendices 169

A Results of the Benchmarks for the Equivalence Query 171

B Authentication Bypasses 177

List of Figures

1 Exemple de négociation TLS 1.3. 9
2 Exemple de négociation SSH. 9
3 Configuration d’utilisation de L? en pratique. 11
4 CVE-2020-24613, un contournement d’authentification d’un server

TLS 1.3 de wolfSSL jusqu’à la version 4.4. 15

1.1 A typical TLS 1.3 connection. 32
1.2 SSH protocol layers. 36
1.3 A typical SSH connection. 36
1.4 A valid PKCS#1 v1.5 encrypted message: the padding must contain

at least 8 random non-null bytes. 39
1.5 EarlyCCS attack cinematics. ms stands formaster secret and SNX−Y

corresponds to the number of sent record between X and Y for the
current epoch (it is reset with each ChangeCipherSpec message).
The attacker needs in practice to keep track of four such numbers:
between the client and the attacker and between the attacker and
the server (with a counter for each direction) [Lev16]. 42

1.6 Description of the FREAK attack [Lev16]. 43

2.1 PTA({(aa, 1), (aba, 1), (bba, 1), (ab, 0), (abab, 0)}) 51
2.2 Principle of L? algorithm. 53
2.3 The Mealy machine derived from the observation table given in Ta-

ble 2.1 . 53
2.4 Principle of active learning. 56
2.5 Principle of model learning combining with model checking. 60
2.6 Principle of model learning combining with fuzzing. 62

3.1 Examples of Undesired Flow. 69
3.2 CVE-2022-25638, a server authentication bypass in wolfSSL TLS 1.3

clients, present up to version 5.2.0. 70
3.3 SChannel vulnerability present in Windows 8 and 10 (TLS 1.2) [YS19]. 70
3.4 Example of an exchange causing infinite state machine. 71

23

LIST OF FIGURES 24

3.5 Diffie-Hellman key exchange scheme 73
3.6 Useful knowledge on the studied protocol and description of how to

use them for active learning state machine inference. 75
3.7 Abstract model of a Mapper. 78
3.8 Example protocol and its server expected state machine. 79
3.9 State machines of the same implementation of the protocol de-

scribed in 3.8a but with three different strategies of updating the
internal state. 80

4.1 Equivalence Testing Process. 84
4.2 Comparison of the test cases, of length equal to BDist, associated to

the figure on the left and generated using both methods. 88

5.1 A typical TLS 1.3 connection and the corresponding expected client
state machine. 100

5.2 Design of the SSH Mapper. 103
5.3 SSH message format before encryption is activated. 103
5.4 SSH message format with encryption is activated. 103
5.5 TLS client inference workflow. 106
5.6 SSH server inference workflow. 106
5.7 ModelCheckerNuSMV, a NuSMV-based tool for exhaustive bug finding

using state machine. 115
5.8 OpenSSH server non-deterministic problem detected when enabling

the skip timeout on empty responses optimization. 118
5.9 Attacks against wolfSSL TLS 1.3 clients. 120
5.10 CVE-2022-25640. In versions, up to 5.1.0, client authentication can

be bypassed in wolfSSL TLS 1.3 servers, using the same idea as in
CVE-2020-24613. 121

5.11 Attack against Paramiko server. 123
5.12 A server authentication bypass in wolfSSH in all versions at the time.123
5.13 Weakened authentication in AsyncSSH server in all versions at the

time. 124
5.14 Skip the NEWKEYS message of the server. 128
5.15 Skip the NEWKEYS message of the client. We denote MA the message

built by the attacker. Since the SERVICE_REQUEST and USERAUTH_REQUEST
are encrypted, the attacker can not decrypt them, then to succeed,
the attacker has to build himself these two message in cleartext. . . 128

5.16 wolfSSH client leaks creadential by responding AUTH_PW to AUTH_FAILURE
before the server authentication. 129

5.17 The erlang OTP-20.0 server exhibits a Bleichenbacher oracle: CVE-
2017-1000385. 130

LIST OF FIGURES 25

6.1 Two different implementations of the protocol described in Figure 3.8a.139

B.1 CVE-2018-7749, a server authentication bypass in AsyncSSH version
before 1.12.1. 178

B.2 CVE-2018-10933, a server authentication bypass in libssh before
versions 0.7.6 and 0.8.4. 179

List of Tables

1 Piles de serveurs TLS 1.3 regroupées par machines à états. N est le
nombre d’états. Les CVEs en italique n’affectent que partiellement
la classe d’équivalence. 18

2.1 Example of a closed and consistent observation table (S,E, T) . . . 53

4.1 Suffixes required to test each state using Distinguishing Bounds vs
DBBased with BDist = 2. ΣI = {A,B} is the input vocabulary. . . . 87

4.2 SSH stacks and scenarios to evaluate equivalence query methods. . . 91
4.3 Overview of the self loops by experiments. The number in paren-

thesis represents the percentage of states containing self loops ≥
2. 91

4.4 Evaluation of the queries required for validating an hypothesis. The
number in parenthesis represents the percentage of required queries
compared to the Distinguishing Bounds. Msloop is the mean self
loops by state. 93

4.5 Evaluation of the ability of the three methods in finding counter-
examples. 94

4.6 Repartition of the queries while searching counter-example, validat-
ing and building hypothesis. 95

4.7 Repartition of the time while searching counter-example, validating
and building hypothesis. 96

5.1 List of TLS Stacks included in our TLS Platform (the number in
parentheses is the number of stacks). 108

5.2 List of SSH Stacks included in our SSH Platform (the number in
parentheses is the number of stacks). 108

5.3 SSH input vocabulary by layer. Messages in the server inference are
client-side messages and vice versa. 112

5.4 Average time required to infer TLS 1.2 server state machine for
OpenSSL 1.1.1k. Percentages are the fraction of the unoptimized
time. 117

27

LIST OF TABLES 28

5.5 Description of confirmed loops in TLS stacks. 125
5.6 List of SSH stack having an infinite state machine. 131

6.1 Server fingerprint corresponding to each SSH stack present in our
platform. 137

6.2 TLS 1.3 server stacks grouped by state machines. N is the number
of states. CVEs in italic only affect part of the equivalence class. . . 141

6.3 SSH server stacks grouped by state machine. N is the number of
states. CVEs in italic only affect part of the equivalence class. . . . 142

A.1 Net::SSH client v7.1.0 (transport and authentication), size of the
vocabulary = 8. Duration is in seconde. 172

A.2 wolfSSH server v1.4.12 (transport), size of the vocabulary = 5. Du-
ration is in seconde. 173

A.3 wolfSSH server v1.4.12 (transport and authentication), size of the
vocabulary = 10. Duration is in seconde. 174

A.4 ssh2 client v1.11.0 (transport and authentication), size of the vo-
cabulary = 8. Duration is in seconde. 175

Introduction

Transport Layer Security (TLS) and Secure SHell (SSH) are cryptographic proto-
cols used to provide secure communication between a client and a server. Both
protocols are maintained by IETF (Internet Engineering Task Force) since 2001
for TLS and 2006 for SSH. Both are widely used. They have different use cases
and functionalities, but they share the same objective: securing data transmission
between two networked devices.

TLS is a fundamental block of internet security. It encrypts and authenticates
data transmitted between a web server and a client browser. The most recent
version of the standard is TLS 1.3 [Res18]. It fixes many vulnerabilities uncovered
in the last decade.

SSH is a protocol used to establish a secure remote channel between two net-
worked devices. It is commonly used to provide secure access to remote servers
and devices. SSH has two major versions, SSH v1 and SSH v2. Nowadays, SSH
v1 has been abandoned in favor of SSH v2, which is the version standardized by
IETF in 2006 [Ylo06b].

Over the years, TLS and SSH have faced several types of attacks [SL+16,Lev20].
Automata implementation errors represent one category of such implementation
attacks. The RFC does not specify a reference automaton. Hence, implementers
need to derive their state machine from the informal protocol message descriptions
and sequences. The task is so complex that errors are easy.

Vulnerabilities can be triggered by an attacker sending messages in an in-
appropriate order (e.g., EarlyCCS [Kik14]) or skipping messages (e.g., SkipVer-
ify [BBD+15], which bypasses server authentication by skipping the correspond-
ing messages). In rare cases, such vulnerabilities can also be triggered by an
attacker sending specific messages of the other-side-only (e.g., CVE-2018-10933
and CVE-2018-1000805), which leads to an unauthorized access. In more com-
plex cases, interfering with the state machine enables new cryptographic attacks
(e.g., FREAK [BBD+15], Factoring RSA Export Keys).

All major TLS and SSH stacks have been vulnerable to at least one such flaw
in the last decade, proving that this subject deserves further study.

This thesis focuses on black-box testing using an active learning algorithm, L?,

29

INTRODUCTION 30

initially described by Angluin [Ang87], and later adapted to Mealy machines [SG09],
to infer the actual state machine through interactions with implementations.

In chapter 1, we study the state of the art related to TLS and SSH state
machines. We also study in chapter 2 the background in using model learning for
analyzing protocol implementations. Model learning has two categories, passive
and active learning, which we discuss both categories and their applications.

This thesis proposes in chapter 3 a generalized methodology to analyze protocol
implementation using active learning. Several research papers used active learning
to analyze several protocol implementations. None of them proposed a systematic
and automatic approach for security bug detection when analyzing protocol im-
plementations. Actually using active learning to infer the state machines of the
protocol implementations is not an easy task [HS18], but it allows to automatically
extract state machines from protocol implementations.

In chapter 4, we propose an improvement of a component of the active learning
called equivalence query. We also discuss the benchmarks of several equivalence
query methods which allows us to select the most appropriate method for our
use-case.

Chapter 5 allows to better understand how TLS and SSH implementations
react to messages that diverge from an ideal message sequence. We extract state
machine using L? algorithm. We then compare these state machines with the
expected behavior of an ideal stack. Despite the absence of a formal specification
of such an ideal stack, a simple approximation of said ideal stack is to use so-called
happy paths, which correspond to the expected message sequences for successful
connections. A fully compliant stack should only contain happy paths and error
transitions, leading to the end of the connection. Every other transition is deemed
suspicious. We describe two use-cases of the methodology proposed in chapter 3
and we discuss two platforms, TLS-inferer and SSH-inferer, to systematically
and automatically analyze TLS and SSH implementations.

Finally, beyond detecting bugs and vulnerabilities, we present in chapter 6
another application of our method, stack fingerprinting. We proved that it is
possible to fingerprint stacks by using our method. Actually, this can be seen as a
consequence of the absence of a reference automaton in the RFC.

Chapter 1

State of the Art on TLS and SSH
State Machines

TLS and SSH protocols are both widely used. Both protocols provide confiden-
tiality, integrity and authentication. These two protocols are known for having
complex state machines. Moreover, several research papers have focused on the
analysis of the TLS and SSH implementation to improve their security.

The organization of this chapter is the following: sec. 1.1 details how TLS and
SSH work and describes the differences between TLS versions (from TLS 1.0 to
TLS 1.3). Sec.1.2 summarizes and describes many known state machine attacks
related to TLS and SSH. Finally, we describe the goal of this thesis followed by
the related work on TLS and SSH state machine in sec.1.4.

1.1 Communication Protocols

In this section, we present in details two protocols: SSL/TLS and SSH. SSL/TLS
is widely used to secure HTTP communications, whereas SSH allows secure remote
access and server management.

1.1.1 Transport Layer Security Protocol

SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are security pro-
tocols whose main security goal is to provide confidentiality, integrity and authen-
tication between a client and a server. SSL/TLS relies on a reliable transport
protocol (usually TCP), and acts itself as a transport protocol for the upper-layer
application protocol, e.g., HTTP.

The primary use of SSL/TLS is to secure web sites such as online-shopping
and banking. Nowadays, it is used to secure widely a variety of internet protocols,

31

CHAPTER 1. TLS AND SSH STATE MACHINES 32

including HTTP, SMTP, IMAP, and FTP.

a) The SSL/TLS Handshake

A typical TLS 1.3 connection is shown in Figure 1.1: the client sends a ClientHello
message to advertise the ciphersuites, i.e., a set of cryptographic algorithms, it sup-
ports and to propose a key share using one of the algorithms it supports. If the
client and the server agree on capabilities, the server selects a suitable ciphersuite,
and sends its own key share in a ServerHello message.

Once the client and server have agreed on algorithms and a common session key,
messages are protected using authenticated encryption. The server carries on with
several messages, including its certificate chain (Certificate) and a signature over
the exchanged messages proving its identity (CertificateVerify). The Finished
messages confirm keys in both directions. Then, session keys are updated, and
application data can be exchanged.

Client Server
ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Application data

Cleartext
Ciphertext (HS)

Ciphertext

Figure 1.1: A typical TLS 1.3 connection.

Key Exchange TLS 1.3 uses a key exchange mechanism called DHE or ECDHE
(Diffie-Hellman Ephemeral), which provides forward secrecy. The Client and the
server exchange keys using the KeyShare extension. Both sides use their own
private key and the other party’s public key to compute a shared secret which is
used to derive the Pre Master Secret.

CHAPTER 1. TLS AND SSH STATE MACHINES 33

Server Authentication Server authentication is a critical part of the handshake
protocol. The server authentication is done using two messages Certificate and
CertificateVerify. The server presents its certificate using the Certificate
message and it adds a signature corresponding to the previous handshake messages
to prove its identity via the CertificateVerify message.

Additionally, the client has to proceed in the same way in case of mutual-
authentication i.e., it uses the Certificate and CertificateVerify messages to
authenticate itself to the server.

Key Agreement The Finished message is part of the final stage of the hand-
shake protocol. It is used by both sides to confirm keys. It contains the hash
corresponding to the handshake protocol transcript.

This step is very important because it ensures that the handshake protocol has
been completed without interception. This prevents man-in-the-middle (MiTM)
attacks.

b) A History of Versions

The protocol SSL (Secure Sockets Layer) was created by Netscape in 1994 with
the aim of securing HTTP connections using the new https:// scheme. Initially,
the first published version was SSLv2 [HE95]. It had significant conceptual issues
that were fixed in the subsequent version SSLv3 [FKK11]. It is worth noting that
SSLv2 and SSLv3 use distinct message formats, despite having a compatibility
mode.

In 1999, the IETF took over the maintenance of the SSL protocol and re-
named it to Transport Layer Protocol (TLS). Until today, the IETF has developed
four version of TLS: TLS 1.0 [DA99], TLS 1.1 [DR06], TLS 1.2 [DR08] and TLS
1.3 [Res18].

In this thesis, we are not addressing SSLv2 and SSLv3.

TLS 1.0 The changes made to the SSL protocol when it was standardized as
TLS 1.0 by the IETF in 1999 were minor ones.

The first modification is to change the pseudo random function to use an
HMAC-based construction instead of an ad-hoc construction. The second modifi-
cation is the use of a standard CBC padding to make TLS 1.0 less vulnerable to
padding oracle.

One additional change is the addition of an implementation note about the
Bleichenbacher attack on PKCS#1 v1.5 encryption scheme. Different new cipher-
suites are also included in TLS 1.0 with respect to SSLv3.

CHAPTER 1. TLS AND SSH STATE MACHINES 34

TLS 1.1 The TLS 1.1 protocol is a minor update of TLS 1.0, it enhances the
ability to counter known attacks on CBC mode. TLS initially used an implicit
IV (the last block of the previous record) for the CBC mode. TLS 1.1 changes
this behaviour to use an explicit IV for every block. An implementation note was
included to minimize the potential of the padding oracle attacks.

TLS 1.2 This version brings significant changes. In addition to editorial changes
and clarifications, such as merging TLS extensions and ciphersuite definitions, the
first set of updates aimed to increase the customizability of parameters such as
ciphersuites and extensions.

The first modification was the use of pseudo-random function (PRF) depending
on the ciphersuite (by default, it uses SHA-256) instead of on a combination of
MD5 and SHA-1.

Previously, TLS signatures in the ServerKeyExchange message depended on
a combination of MD5 and SHA-1 to hash the data. However, with TLS 1.2, a
single hash is negotiated with an extension to replace this approach.

Actually, the major improvement in TLS 1.2 is the addition of support for
AEAD ciphersuites to protect the record payload, alongside the previously avail-
able CBC mode and stream ciphers.

Finally, TLS 1.2 defined the first ciphersuites using HMAC SHA-256, and rec-
ommended the ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA as the mandatory-
to-implement one.

TLS 1.3 This latest verion of TLS brings significant changes compared to its
older versions. TLS 1.3 includes a new handshake protocol that reduces the number
of roundtrips required to establish a connection. It is therefore fast and reduces
latency.

TLS 1.3 removes support for all CBC mode and only supports AEAD ciphers,
which are considered more secure. Moreover, TLS 1.3 also removes all insecure
ciphersuites, including the RSA key exchange mechanism, to block attacks related
to the Bleichenbacher attacks.

1.1.2 Secure SHell Protocol

The Secure SHell (SSH) Protocol is a protocol for secure remote login and other
secure network services over an insecure network [Ylo06b]. It is mostly used to
remotely access and manage servers, transfer files, and execute commands.

SSH has two major versions: SSH v1 and SSH v2. In 1995, Tatu Ylönen pro-
posed the first version of SSH, SSH v1. The goal of SSH v1 was to replace the

CHAPTER 1. TLS AND SSH STATE MACHINES 35

rlogin, TELNET, FTP and rsh protocols, which did not provide strong authenti-
cation and nor confidentiality guarantee. SSH v1 was widely adopted in the late
1990s and early 2000s.

SSH v1 had several security flaws that were later discovered [SA98]. Thus, in
response to these flaws, a new version, SSH v2, was developed and released in 2006
by the IETF [Ylo06b]. In this work, we only focus in SSH v2.

As described in Figure 1.2, the SSH protocol relies on the TCP protocol and is
composed of three layers: the Transport layer, the Authentication layer, and the
Connection layer.

Briefly, the Transport layer is used to exchange the SSH version and keys and to
establish an encrypted and authenticated channel. It is also used to authenticate
the server and to query a service such as connection, authentication (for the client-
side).

The Authentication Layer provides mechanisms to authenticate the client to
the server. The SSH protocol supports various authentication methods such as
password, public key, host-based authentication, etc.

The Connection layer provides a mechanism for executing commands, transfer-
ring files, and forwarding TCP/IP connections between the client and server. It is
used to manage channels between the client and the server which allow the client
and server to communicate and forward data between them. Finally, the Con-
nection layer supports various types of channels such as session, x11, direct-tcpip,
etc.

Together, these three layers provide a comprehensive mechanism for remote
access, file transfer, and communication over an insecure network. The overall SSH
protocol is described in four specifications [Ylo06b,YL,Ylo06c,Ylo06a]. Figure 1.3
describes a typical exchange between a SSH client and server.

a) Transport Layer Protocol

The SSH Transport Layer is the first layer of the SSH protocol. It is described
in RFC 4253 [Ylo06c]. The first stage of Figure 1.3 describes the Transport layer
protocol.

After exchanging SSHVersion messages (which contain the SSH version sup-
ported and an identification string), both sides exchange supported algorithms
using the KEXINIT message. Different types of algorithms are exchanged for key
exchange, encryption, MAC and compression.

Once algorithms are exchanged, both sides select appropriate algorithms and
perform key exchange using Diffie-Hellman on saved groups with DH_INIT and
DH_REPLY messages. We notice that key exchange can also be performed using an
arbitrary group in four steps using:

CHAPTER 1. TLS AND SSH STATE MACHINES 36

Authentication Layer Connection Layer

Transport Layer

TCP

Figure 1.2: SSH protocol layers.

SSHVersion

KEXINIT

DH_INIT

DH_REPLY

NEWKEYS

NEWKEYS

SERVICE REQUEST

SERVICE ACCEPT

USERAUTH REQUEST

USERAUTH SUCCESS

CHANNEL OPEN

CHANNEL OPEN CONFIRMATION

. . .

Client Server

Transport
Layer

Authentication
Layer

Connection
Layer

cleartext

encrypted

Figure 1.3: A typical SSH connection.

CHAPTER 1. TLS AND SSH STATE MACHINES 37

• GEX_REQUEST: sent by the client to the server to request the Diffie-Hellman
parameters such as group and generator;
• GEX_GROUP: sent by the server to the client, contains Diffie-Hellman param-

eters;
• GEX_INIT which is the same as the DH_INIT message (sent by the client to

the server); and
• GEX_REPLY which is the same as the DH_REPLY message (sent by the server

to the client).

The NEWKEYS message marks the end of the key exchange and the begining of
the encryption using the fresh keys derived from the key exchange.

Key Derivation Once the key exchange process is finished, then both sides
derive the exchanged hash H, which is the hash of the parameters of the KEXINIT,
DH_INIT and DH_REPLY messages.

The session identification, session_id, is the first value of the exchanged
hash H. It is a unique identifier to distinguish a SSH session from another one. The
value of the session_id remains static during the connection lifetime. In contrast
to the session_id, the exchanged hash H changes when keys are re-exchanged.

The session keys are derived from the session_id, the exchanged hash H and
the shared Diffie-Hellman secret obtained during the key exchange.

Server Authentication Server authentication is performed during the Trans-
port layer. It is done using the message DH_REPLY or GEX_REPLY. These two mes-
sages contain both the server host keys and a signature over the exchange hash H.

Key Re-Exchange SSH offers the possibility to refresh keys. This process is
done using the KEINIT, DH_INIT, DH_REPLY and NEWKEYS messages. It allows
to refresh the session keys. The session_id remains unchanged even after a key
refresh.

The Transport layer establishes a secure channel. It provides the following
properties: confidentiality by using encryption, integrity by using MAC and server
authentication (with the message DH_REPLY or GEX_REPLY). It also optionally pro-
vides compression of the data transmitted between the client and the server, re-
ducing the amount of data transmitted and thus improving performance.

b) Authentication Layer Protocol

The SSH Authentication layer is the second layer of the SSH protocol and is
described in the RFC 4252 [YL]. It is used to manage client authentication. The

CHAPTER 1. TLS AND SSH STATE MACHINES 38

messages exchanged between the client and the server are described in the second
stage of Figure 1.3.

The client performs the authentication request using the USERAUTH_REQUEST
message. The authentication method provides several options: password, public
key , host based, etc. The server sends USERAUTH_SUCCESS if it accepts the client’s
authentication request message.

In case the public key method is used, the USERAUTH_REQUEST message contains
the client’s public key, the signature corresponding to the client’s user name and
the session_id.

If the client authentication is not required, the client can use the none method
for the authentication request message.

c) Connection Layer Protocol

The SSH Connection layer is the third layer of the SSH protocol and is described
in the RFC 4254 [Ylo06a]. It provides a mechanism for managing channels: com-
mands executions, files transferring, TCP/IP forwarding, etc.

The client can open up to 232 channels by using CHANNEL_OPEN message. The
type of the channel can be a session, x11, forwarded-tcpip and direct-tcpip. The
server sends the OPEN_CONFIRMATION message as a confirmation of the channel
opening.

Once a channel is opened, the client can request a pseudo terminal (pty) or a
shell and it also can execute commands, exchange data and close channels.

1.2 State Machine Attacks against TLS and SSH
Implementations

In 2020, Levillain presented some lessons learned related to the implementation
flaws in TLS stacks by describing several known attacks, including state machines
attacks, related to TLS stacks [Lev20]. For SSH, we only identify few attacks
related to the state machines attacks.

1.2.1 Padding Oracle Attack

A padding oracle attack is a type of cryptographic attack that exploits a vul-
nerability in the padding scheme. For this attack, an attacker can send crafted
ciphertext to a server that decrypts the message and checks the validity of the
padding corresponding to the decrypted message.

By analyzing the server’s response, the attacker can determine if the padding
is valid. It means that the existence of such an oracle can be discovered using state

CHAPTER 1. TLS AND SSH STATE MACHINES 39

machine representation. Basically, it is a cryptographic attack, but it can also be
considered as a state machine problem because of the existence of the oracle.

Merget et al. summarized all TLS padding oracle attacks and they also scan
and automatically classify them [MSA+19]. They identified five padding oracle
attacks: Vaudenay’s padding oracle [Vau02], BEAST attack [RD11], POODLE
(more details about this attack are given in [MDK14]), Lucky 13 and its vari-
ants [AFP13,AP16, RPS18] and Bleichenbacher’s attack and its variants [Ble98,
BSY18,MSW+14].

Most of the padding oracle attacks apply to TLS. Only a few of them affect
SSH. Moreover, we identify only one research paper which describes a padding
oracle attack related to the CBC mode, affecting SSH stacks [APW09].

We give more details about how padding oracle attack works using the Ble-
ichenbacher’s attack example. We study this particular attack during a part of
this thesis. We discuss our results in chapter 5.

Bleichenbacher’s Attack

Let us first look at the way PKCS#1 v1.5 encryption scheme handles messages.
A valid PKCS#1 v1.5 message is produced by formatting the plaintext and then
encrypting it using the raw RSA operation. The expected format for a ready-to-
be-encrypted message is presented in Figure 1.4: a null character, followed by a
block type byte (here, 2), then at least 8 padding random non-null bytes, a null
character and finally the message to encrypt.

Figure 1.4: A valid PKCS#1 v1.5 encrypted message: the padding must contain
at least 8 random non-null bytes.

It thus means that every correctly padded plaintext starts with 00 02, which
corresponds to a big integer between 2n−16 and 3n−16 (with an n-bit modulus). If
an attacker wishes to recover the plaintext P associated to a given ciphertext C,
she can multiply C by Xe and submit the new ciphertext to a decryption oracle:
the padding will be correct as soon as P ×X is between the expected bounds. By
iterating such attempts, it is possible to aggregate information about the original
plaintext P and recover it, as was shown by Bleichenbacher in 1998 [Ble98] in
his so-called Million Message Attack. It was later improved to require less mes-
sages [KPR03, BFK+12, Kel22]. The attack is in particular applicable to RSA
encryption key exchange in TLS.

CHAPTER 1. TLS AND SSH STATE MACHINES 40

Even if the Million Message Attack has been known since 1998, it is still a
problem that periodically reemerges in TLS implementations.

The Bleichenbacher attack made the news in 2014 in the JSSE (Java Se-
cure Socket Extension) SSL/TLS implementation [MSW+14]: by reusing standard
cryptographic libraries, the JSSE implementation has to rely on them to handle
padding errors, which could generate a specific error message or a timing differ-
ence due to the use of exception. This example shows a dilemma between code
reuse and security: it is impossible to safely reuse standard RSA libraries that
throw exceptions. It is worth noting that the researchers also found new oracles
in OpenSSL and Cavium hardware accelerators, with less efficient attacks.

Moreover, researchers have shown that PKCS#1 v1.5 padding oracles could
even impact safe implementations, as soon as the same key was used by a vul-
nerable implementations. DROWN (CVE-2016-0800) shows that SSLv2 stacks
including countermeasures against the Million Message Attack actually offers an-
other form of padding oracle, by construction; this oracle could then be used to
decrypt a TLS ClientKeyExchange message, using the vulnerable SSLv2 stack as
an oracle [ASS+16], as soon as both sessions (SSLv2 and TLS) share the same
RSA key.

The same paper, as well as an article presented in 2015 [JSS15], used this de-
cryption padding oracle to forge a valid signature, as initially described by Manger
et al. in 2001 [Man01]. This attack is not realistic in the standard TLS context,
where the signature would have to be forged during the connection; however, some
extensions discussed during TLS 1.3 standardization and early versions of Google-
QUIC were vulnerable.

As a proof that this attack is still current today, we can cite two more publica-
tions targetting TLS: ROBOT (Return Of Bleichenbacher’s Oracle Threats) [BSY18],
relying on new signals from vulnerable state machines, and CAT (Cache-like AT-
tacks) [RGG+19].

It is thus clear that PKCS#1 v1.5 is inherently flawed, and, that developers
will get it wrong, time and again, until this obsolete algorithm is removed from
standards. In the mean time, it is crucial to avoid reusing the same RSA key
in different contexts (decryption and signature, PKCS#1 v1.5 and PSS), since a
vulnerability in one context may indirectly be used to attack the other one.

1.2.2 CVE-2014-0224: EarlyCCS

In 2014, Masashi Kikuchi presented an attack affecting OpenSSL which enables
a MiTM attack between an OpenSSL client and server. Figure 1.5 describes the
cinematics of the attack [Kik14]. The goal of this attack is to force both sides to
use weak keys by sending the ChangeCipherSpec earlier than expected.

CHAPTER 1. TLS AND SSH STATE MACHINES 41

The basic idea of this attack is to exploit the OpenSSL state machine error
which accepts an early ChangeCipherSpec message, while it should discard it or
end connection. If a TLS server or client accepts the ChangeCipherSpec message
earlier than expected as described in Figure 1.5, then session keys are derived from
a null secret and public random values because no shared secret is defined yet.

Once the weak keys is derived, the attacker follows the handshake by en-
crypting correctly the following messages. However, the attacker has to correctly
build the Finished message (for the client and server) which contains the hash
of the handshake transcript including the shared secret exchanged during the
ClientKeyExchange and ServerKeyExchange between the client and server, to
succeed the MiTM attack.

It is worth noting that the ChangeCipherSpec is not a part of the handshake
message, thus adding or removing it cannot be detected by cryptographic means1.

1.2.3 CVE-2014-6593: EarlyFinished (server impersonation)

When exchanging with the vulnerable client, the attacker only has to avoid sending
all the handshake messages except ServerHello, Certificate and Finished.
The Certificate contains the identity of the server to impersonate (which is
public). Finally, after the Finished message, the ApplicationData is exchanged
in cleartext. JSSE and CyaSSL were vulnerable to this attacks.

1.2.4 CVE-2015-0204: FREAK (Factoring RSA Export Keys)

Even after they were phased out, many servers kept accepting weak RSA_EXPORT
ciphers for encryption and decryption process, which force the use of tiny RSA
keys for “export” reasons. Using such weak ciphersuites increases the risk of an
attack.

The basic idea of the FREAK attack is to force the client to use the RSA_EXPORT
key exchange. As decribed in Figure 1.6, when a legimate client connects to a server
accepting RSA_EXPORT ciphersuite, the attacker intercepts the client’s ClientHello
message, modifies the ciphersuite proposed by the client to add the RSA_EXPORT
ciphersuite, and sends the crafted ClientHello message to the server.

Next, the server sends its ServerKeyExchange message using a shorter RSA
key, at most 512 bits. It is worth noting that the ServerKeyExchange contains a
signature using a strong RSA key, but the current key exchange is done using the
weak RSA key. However the attacker has to factor the weak public RSA key used
for the key exchange for the attack to succeed.

1Because it is ignored when building the Finished message.

CHAPTER 1. TLS AND SSH STATE MACHINES 42

Figure 1.5: EarlyCCS attack cinematics. ms stands for master secret and SNX−Y
corresponds to the number of sent record betweenX and Y for the current epoch (it
is reset with each ChangeCipherSpec message). The attacker needs in practice to
keep track of four such numbers: between the client and the attacker and between
the attacker and the server (with a counter for each direction) [Lev16].

Beyond the OpenSSL client, many TLS stacks were also vulnerable to the
FREAK attack, such as BoringSSL, LibreSSL, Apple SecureTransport, Microsoft
SChannel, the Mono TLS stack and Oracle JSSE.

CHAPTER 1. TLS AND SSH STATE MACHINES 43

Figure 1.6: Description of the FREAK attack [Lev16].

1.2.5 SkipVerify (client impersonation)

When mutual authentication is required, the client must present a Certificate
and its associated CertificateVerify messages which contains a signature over
the entire handshake using the private key corresponding to the public key in the
Certificate message.

The Mono server implementation considered the attacker authenticated with-
out presenting its CertificateVerify. With CyaSSL, in addition to skipping the
CertificateVerify, the attacker also has to skip the client ChangeCipherSpec
message. This attack also works with OpenSSL, but only if the client’s Certificate
contains a Diffie-Hellman public key.

1.2.6 CVE-2014-6321: Winshock

This attack relies on a simple buffer overflow in the code handling client authen-
tication using ECDSA certificates, which leads to a remote code execution.

When SChannel receives a ECDSA Certificate message, it sets the coor-
dinate size based on the public key from the Certificate. Next, it parses the
CertificateVerify message which contains the coordinates of a point on the
curve, then reads the data from the signature without checking the consistency

CHAPTER 1. TLS AND SSH STATE MACHINES 44

between both lengths. Hence, it allows a buffer overflow using long coordinates
within a crafted signature in the CertificateVerify message.

In the normal case, this attack is possible if the server request a client Certificate.
However, this attack is possible even if the SChannel server does not request the
client’s Certificate because the SChannel server accepts and parses unsolicited
Certificate and CertificateVerify.

1.2.7 CVE-2018-10933 and CVE-2018-1000805: Server Unau-
thorized Access

The attacker, as a client, sends the USERAUTH_SUCCESS message instead of the ex-
pected USERAUTH_REQUEST to have access to the SSH Connection layer and benefit
from all its services. The USERAUTH_SUCCESS is normally a server-only message
which is used to accept the client’s authentication.

Unfortunately, this attack affected at least two SSH server implementations
(libssh and Paramiko) which do not process separately some specific messages
from client and server such as USERAUTH_SUCCESS.

1.3 Previous Known Methods to Analyze TLS and
SSH Implementations

1.3.1 Related Work on TLS State Machine Analysis

Several methods have been used to analyze TLS implementations. In 2014, Kikuchi
discovered the EarlyCCS vulnerability trying to prove state-machine-level proper-
ties using a proof assistant [Kik14]. This approach does not scale well, considering
the huge work required to properly model the protocol.

Juraj Somorovsky presented TLS-Attacker [Som16], a framework for evaluating
the security of TLS implementations. TLS-Attacker allows to forge customized
TLS message sequence. It was successfully used to uncover several vulnerabilities
in TLS libraries such as OpenSSL, Botan and matrixssl.

On its own, TLS-Attacker does not do state machine learning. It was never-
theless used in conjonction with statelearner by van Thoor et al. [vTdRP18] to
infer TLS 1.3 state machines in 2018. Their study has several limitations: it only
covers an internet draft of TLS 1.3, was only run on a few OpenSSL and wolfSSL
servers, and included a reduced vocabulary2.

Beurdouche et al. [BBD+15], developed a tool, FlexTLS, and proposed a method
to test the behavior of mainstream TLS stacks against deviant traces consisting

2Vocabulary belongs to the input of the active learning algorithms.

CHAPTER 1. TLS AND SSH STATE MACHINES 45

in removing or adding messages from valid traces. They uncovered many bugs in
different TLS stacks, including the EarlyCCS vulnerability discussed above and
the infamous FREAK attack (Factoring RSA_EXPORT Keys). Tarun et al. [YS19]
also used FlexTLS on Microsft SChannel, and they found bugs and vulnerabilities,
including loops as those described in sec. 5.5.3. However, their approach is not
generic and was not updated to be compatible with TLS 1.3.

De Ruiter and Poll used L? in 2015 to infer TLS state machines for different
TLS servers [dRP15]. They discovered various anomalies and security issues. Their
study only covered server state machines and predates TLS 1.3.

Active learning methods have also been applied to other protocols and prob-
lems. In his thesis, Bossert developed pylstar and used it to reverse-engineer
communication protocols between a malware and its server [Bos14]. He also stud-
ied the behavior of HTTP/2 clients to allow for robust fingerprinting [Bos16].
Fiterau-Brostean et al. applied model learning to SSH implementations [FLP+17]
in 2017 and DTLS implementations [FJM+20] in 2020. In 2019, de Rasool et
al. used learnlib (the library used by statelearner) to study Google’s QUIC
protocol [RAdR19].

1.3.2 Related Work on SSH State Machine Analysis

In 2007, Poll et al. proposed a method based on formal program verification to
analyze SSH stacks, applied their method to MIDP-SSH (a Java implementation
of SSH) and found a security flaw related to the Transport layer during their
analysis [PS07]. They proposed another method in 2011, to manually review code
of OpenSSH [PS11].

During his bachelor thesis, Erik Boss used model-based testing to analyze
OpenSSH server [BP12]. He manually built SSH model from RFC 4253, and
then generated test cases from it.

These three methods only studied the SSH Transport layer and not the other
SSH protocol layers.

In 2017, Fiterau-Brostean et al. used active learning to analyze three SSH
implementations and model checking to verify SSH properties described in the
SSH specifications [FLP+17]. They did not found security flaws. However, they
found that none of the three analyzed SSH stacks complied with the specifications.
However, their work suffers from several limitations. They did not formalize the
Mapper thus, model checking results cannot be fully transferred to the actual
implementations. Moreover, it is not clear which messages were used to infer each
SSH stacks, as they mentioned that for some SSH stacks, they only used “restricted
alphabet to reduce the learning time”.

CHAPTER 1. TLS AND SSH STATE MACHINES 46

1.4 Looking for a Method to Analyze Protocol State
Machines

Combining software development, network protocols and cryptography is a com-
plex subject. TLS and SSH are examples of such combinaison. Both protocols
have complex state machines, and the previous section shows that attacks related
to the state machine are very recurrent and still relevant.

On the other hand, the IETF insists on letting the developers making their
implementation choices, which leads them to make avoidable mistakes. Sometimes,
specifications are not crystal clear, then the developers decide on their own on how
to desambiguate the situation, which can lead to state machine attacks.

Several methods have been used to analyze communication protocol implemen-
tations. In this thesis we are looking for an efficient method which allows us to
automatically and systematically analyze different protocol implementations. We
believe that such a method is very useful for the community to improve protocol
implementations.

From the related work discussed in sec. 1.3, active learning appears to be the
most relevant technique. It seems relevant for analyzing the state machine of a
protocol implementations. Most of the research papers using this method are not
up to date with respect to studied protocol or they did not cover all features related
the studied protocol.

Our research questions are therefore discussed below.

Generalized methodology based on active learning This first research sub-
ject allows us to:

• identify and classify bugs related to the state machine of a protocol imple-
mentations; and check if active learning is the relevant method to detect all
the identified classes of possible state machine bugs;

• identify theoretical difficulties to overcome using the active learning method;
and

• identify different method to automate bug detection from the state machine.

Limitations and optimization of the active learning method One legi-
mate question is the performance of the active learning method. Fiterau-Brostean
et al. discussed the performance of active learning when learning the SSH state
machines of three SSH stacks. They mentioned that their inference took several
days. Thus, this research question forces to propose different possible optimization
for the learning process. It also allows to point to a new research direction on the
possible improvement of the active learning method.

CHAPTER 1. TLS AND SSH STATE MACHINES 47

Application of the generic methodology to TLS and SSH Our research
implements the theoretical results of the first research subject; and confirms the
power of the methodology in reproducing known vulnerabilities and in detecting
new ones.

It also allows us to evaluate the difficulties in using such a method in practice,
especially with protocols with complex state machines as TLS and SSH.

Beyond detecting bugs and vulnerabilities automatically and systematically,
this research subject also allows to uncover the problem in letting the developers
making their implementation choices of the protocol. Even if a protocol imple-
mentation does not have a bug, we strongly believe that it remains possible to
fingerprint protocol implementations by analyzing the error message related to an
unexpected message.

Chapter 2

Model Learning – Theory and
Application

As in this thesis, we propose a method based on L? algorithm, a model learning
algorithm. Thus, we give more details about model learning in this chapter.

We organize this chapter as follow: we present in sec. 2.1 two categories of
model learning: passive and active learning. Then in sec. 2.2 we give more details
about L? the first algorithm of the active learning. Next, in sec. 2.3 we discuss how
to use active learning in practice followed by an overview of other deterministic
and non-deterministic active learning algorithm. Finally, in sec. 2.4, we summarize
the application of this method in the field of network and software security.

2.1 Passive vs Active Learning

Model learning aims to build a software state diagram model from an implemen-
tation by observing the output corresponding to a given input. The state diagram
model represents the observed behavior of the analyzed software against the given
inputs.

This method is used to understand the behavior of a given component or a
system without requiring access to the source code. It is also useful to generate test-
suites for software testing [MS13]. Combined with fuzzing, it can be used to extract
the state diagram model and then guide the protocol fuzzing process [PLJZ22].
It is also used for adaptive model checking [GPY02,PVY99]; the basic idea is to
learn the state diagram model and then use model checking [Cla97] to verify if the
learned model satisfies some properties.

To extract the state diagram model of a component or system, different ap-
proaches have been developed: analyzing code, mining system logs or performing
tests. Methods for inference model may be classified as black-box or white-box. In

49

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 50

this thesis, we are only interested in the black-box methods. These approachs are
relatively easy to use and can be used even if we do not have access to the source
code.

Several possible representations can be used according to the use-case for the
state model diagram, for example, Deterministic Finite Automaton (DFA), Non-
deterministic Finite Automaton (NFA), Mealy/Moore Machine, Timed Automata,
etc.

For the inference model approach, we present two techniques: passive (see
sec. 2.1.1) and active learning (see sec. 2.1.2).

2.1.1 Passive Learning

Passive learning was first initiated by Gold in 1978 [Gol78]. Labeled data is pro-
vided to the Learner, who is supposed to find a model representing this data.
The data are usually a set of logs from the System Under Test (Sut) and are
labeled as accepted (positive samples S+) or rejected (negative samples S−) such
that S+ ∩ S− = ∅.

Thus, the model learned using passive learning is only accurate with respect
to the logs provided. One of the drawbacks of using this method is the difficulty
of finding negative samples in practice. These samples are often the result of
fuzzing techniques applied on the implementation of the studied protocol [Bos14].
Hence, in 2019, Avellaneda and Petrenko proposed a method based only on positive
samples (i.e., without negative samples) [AP19].

Most of the passive learning algorithm are based on the so-called Prefixe Tree
Acceptor (PTA) [LMD05, HSL08, CWKK09, DlH10], which is a tree-like Deter-
ministic Finite Automaton (DFA). For a given sample S = 〈S+, S−〉 such that
S+ = {aa, aba, bba} and S− = {ab, abab}, the corresponding PTA is given in
Figure 2.1, where leaves are either an accepting or rejecting state. After the
PTA is built, a DFA minimization is used to transform the PTA into an equiv-
alent but smaller DFA which recognizes the same samples S = 〈S+, S−〉. This
step is the key for most algorithms that deal with learning automata using sam-
ples [HSL08,Lan99,Xie03,AS94,LOW22] such as GOLD, RPNI, etc.

2.1.2 Active Learning

In active learning, querying actively the Sut, is required, the Learner is autho-
rized to query the Sut whenever it is needed. The Learner derives the model
from these observations.

Basically, the Sut should be a Minimally Adequate Teacher (Mat). It means
that the Sut should be able to respond to two types of query: membership queries

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 51

q0

qa

qb

qaa

qab

qbb

qaba

qbba

qabab

a

b

a

b

b

a

a

b

Accepting state

Rejecting state

Figure 2.1: PTA({(aa, 1), (aba, 1), (bba, 1), (ab, 0), (abab, 0)})

(MQ) and equivalence queries (EQ). In other words, a Mat contains two different
oracles: a membership oracle and a equivalence oracle.

A membership query consists in querying if a word w is in Mat’s language L
(i.e., is w ∈ L true?). An equivalence query consists in quering if an hypothesis
H(L) is equivalent to L (i.e., is H(L) ≡ L true?). If H(L) is equivalent to L, then
the answer is true. In the opposite case, a counter-example is returned. MQ are
used to update the Learner’s knowledge of the Sut and EQ are used to check
if the Learner’s automaton is equivalent to the Sut’s automaton.

In practice, the EQ does not exist, thus an approximation usingMQ is required
(see sec. 3.1.2 for more details). Hence, David Lee et al. [LY96] first proposed a
method called conformance testing to tackle this problem by using a finite num-
ber of sequences of messages. Note that the role of the Learner is to build a
hypothesis and the role of the conformance testing tool is to check the validity of
the built hypothesis.

Some interesting questions have been addressed over the years: how to test
efficiently and quickly the hypothesis using few sequences of messages? Several
methods have been developped to solve the problem of the EQ method, e.g.,
RandomWord, RandomWalk, W(p)-method (see sec. 4.1 for more details).

Therefore, the learned model is only an approximation with respect to the input
vocabulary. Using a different input vocabulary may lead to a different model. The
quality of the learned model is also related to the EQ method used, which will be
discussed in chapter 4.

Actually, in contrast to the active learning, all the passive learning approaches
suffer from a scalability issue when applied on large automata due to the NP-
completeness of such algorithms [Bos14]. Hence, we focused our work by using
active learning for analyzing communications protocols implementations.

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 52

2.2 The L? Algorithm
In 1987, Angluin proposed L?, an algorithm that infers a deterministic finite au-
tomaton using membership and equivalence queries [Ang87]. This technique can
be extended to extract the state machine of a protocol implementation using a
Mealy machine representation [SG09], which can be seen as an automaton where
transitions are labeled by both the messages sent and received.

L? is an automated black-box technique driven by a Learner. Figure 2.2
describes the experimental process. Lets assume the Learner wants to learn
the Sut’s language L over an input vocabulary ΣI . To understand how the L?
algorithm works, we define the observation table and two interesting properties
about the observation table: closure and consistency.

Observation Table During the learning process, the Learner uses a table
called the observation table to update its knowledge about the Sut. Table 2.1
describes an example of an observation table. Concretly, the observation table
classifies sequences as members or non-members of the Sut’s language L.

It contains three elements (S,E, T) where S ⊂ (ΣI)
∗ is a non-empty finite

prefix-closed1 set of strings, E ⊂ (ΣI)
∗ is a non-empty finite suffix-closed2 set of

strings and T is a finite function: ((S ∪ S.ΣI)
.E) −→ ΣO, with ΣO is the output

vocabulary.
The observation table can be seen as a two-dimensional array with row labeled

by the elements of S ∪S.ΣI and columns labeled by the elements of E. We denote
row(s) =

∏
e∈E

T (s.e) for all s ∈ S ∪ S.ΣI .

Definition 2.2.1 (Closure). An observation table is said to be closed if for all
t ∈ S.ΣI there exists s ∈ S such that row(t) = row(s).

Definition 2.2.2 (Consistency). An observation table is said to be consistent if
for all (s1, s2) ∈ S×S such that row(s1) = row(s2) then for all a ∈ ΣI , row(s1.a) =
row(s2.a).

Intuitively, rows represent states, closure means that all states are defined
and consistency means that multiple representatives for a row lead to the same
transitions.

2.2.1 How to Update the Observation Table?

During the learning process, the Learner checks if the observation table is closed
and consistent. If one of these two properties is not met, then the observation

1A set is prefix-closed iff all the prefixes of every element of the set are also elements of the set.
2A set is suffix-closed iff all the suffixed of every element of the set are also elements of the set.

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 53

Initialization

Observation Table

Hypothesis H

L = language of the MAT

Membership Oracle

Equivalence Oracle

LEARNER MAT

MQ

EQ

close and consistent

return hypothesis H

0

1

2
b

a b a
a

b

1

2

3

4

Figure 2.2: Principle of L? algorithm.

E
a b

S
ε x x
a y x

S.ΣI

b x x
a.a y x
a.b x x

Table 2.1: Example of a closed and consistent observation table (S,E, T)

xx yx

b/x

a/x

a/y

b/x

Figure 2.3: The Mealy machine derived from the observation table given in Ta-
ble 2.1

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 54

table is updated:

• if the observation table is not closed, it means that there exists t ∈ S.ΣI such
that for all s ∈ S, row(t) 6= row(s), then add t to S (i.e., S ← S ∪ {t}) and
fill in the table using MQ ;

• if the observation table is not consistent, it means that there exists (s1, s2) ∈
S × S and a ∈ ΣI such that row(s1) = row(s2) and row(s1.a) 6= row(s2.a),
then add a to E (i.e., E ← E ∪ {a}) and fill in the table using MQ.

However, we also update the observation table if the EQ oracle returns a
counter-example C (meaning that the hypothesis and the Sut disagree with the
sequence C). Thus we update the observation table by adding C and all its prefixes
to S (i.e., S ← S ∪ prefixes(C)) and then by filling the table using MQ.

2.2.2 The L? Learner

Figure 2.2 describes the principle of the L? algorithm. The first step of the al-
gorithm is the initialization of the observation table (1), and the second step is
filling the table by querying the Sut using MQ (2). When the observation table
is closed and consistent (3), the Learner builds an hypothesis H (4) and queries
the Sut to check the validity of the built hypothesis by using an EQ (5). If the
Sut (the EQ oracle) returns a counter-example, then the Learner updates the
observation table (2); otherwise, the Learner consider the hypothesis H as the
Sut’s language with respect to the input vocabulary.

2.2.3 Building an Automaton from the Observation Table

As discussed in sec. 2.1, there are several possible representations for the state
model diagram according to the use-case. For network protocols, the Mealy ma-
chine is the most appropriate representation, selected by almost all researchers
working in this field.

a) Mealy Machine

A Mealy machineM is a tuple (Q, q0,ΣI ,ΣO, δ, Out) where:

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• ΣI is a finite set of inputs,

• ΣO is a finite set of outputs,

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 55

• δ is a transition function, δ : Q× ΣI → Q, and

• Out is an output function, Out : Q× ΣI → ΣO.

The transition function defines the modification of the current state q ∈ Q
given an input symbol a ∈ ΣI . The output function can be extended to Out : Q×
(ΣI)

∗ → (ΣO)∗. This extension allows to get the sequence of outputs corresponding
to the sequence of inputs σ ∈ (ΣI)

∗ from a given state q ∈ Q. Formally, for all
q ∈ Q, i ∈ ΣI and σ ∈ (ΣI)

∗:

• Out(q, ε) = ε

• Out(q, i.σ) = Out(q, i).Out(δ(q, i), σ)

For all (q, q′) ∈ Q × Q, i ∈ ΣI and o ∈ ΣO, we write q
i/o−→ q′ to denote

δ(q, i) = q′ and Out(q, i) = o. A Mealy machineM is complete if for all q ∈ Q
and i ∈ ΣI , there exists q′ ∈ Q and o ∈ ΣO such that q

i/o−→ q′.

b) From an Observation Table to the Mealy Machine

It is possible to build an automaton from the observation table if and only if it is
closed and consistent. Given a closed and consistent observation table (S,E, T),
the construction of the Mealy machineM = (Q, q0,ΣI ,ΣO, δ, Out) from (S,E, T)
is the following:

• Q = {row(s) : s ∈ S}
• q0 = row(ε)

• δ(row(s), i) = row(s.i),∀(s, i) ∈ S × ΣI

• Out(row(s), i) = T (s, i),∀(s, i) ∈ S × ΣI

For all (q, i) ∈ Q × ΣI , δ(q, i) ∈ Q because the table is closed i.e., for all s ∈
S∪S.ΣI , row(s) has its representative in S. We notice that δ and T do not depend
on the representative of row(s) because of the consistency of the observation table.

Figure 2.3 illustrate the Mealy machine associated to the Observation Table in
Table 2.1. We have: Q = {xx, yx}, q0 = xx, ΣI = {a, b} and ΣO = {x, y}.

2.3 Active Learning in Practice
In the previous section, we have seen a quick overview of active learning and
the original algorithm proposed in this area. In this section, we will discuss the
practical use of active learning followed by a list of some interesting active learning
algorithms.

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 56

2.3.1 How to Use Active Learning?

In active learning, three components are required: Learner, Mapper and Sut
(see Figure 2.4). The Learner implements the model learning algorithm, but
most model learning algorithms take as input a list of abstract messages. It com-
municates with the Sut by selecting a sequence of messages built from the input
vocabulary. The messages present in the selected sequence are sent one by one to
the Sut.

However, since these messages are only an abstraction, a component is required
to concretize these messages; we call this component Mapper. The Mapper is
not only responsible for the concretization of abstract messages from the Learner
to the Sut, but it is also responsible for the abstraction of concrete messages from
the Sut to the Learner. It means that, interactions between the Learner and
the Sut are mediated through the Mapper. Figure 2.4 resumes the role of the
Mapper.

Figure 2.4: Principle of active learning.

There exist several algorithms of active learning; most of them were developped
either as L? optimization or to learn non-deterministic automata. In the following
section, we are going to see two categories of active learning: deterministic and
non-deterministic active learning.

2.3.2 Overview of Active Learning Algorithms

Various active learning algorithms exist. Learning deterministic and non-deterministic
automata is possible. The first and well-known active learning algorithm is L? (see
sec. 2.2 for more details). From the original L? algorithm were derived different
active learning algorithms, some of them offer performance improvement.

a) Deterministic Active Automata Learning

In addition to L?, there exists several deterministic active learning algorithms. A
performance improvement was first proposed by Rivest and Schapire in 1989 [RS89].

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 57

When a counter-example C is returned, instead of adding all prefixes of C to the
observation table, they only add a well-chosen suffix to the column E. LM+ works
in a similar way [SG09]. It divides C into its appropriate prefix and suffix such
that the suffix contains the distinguishing sequence 3.

In 2014, Isberner Malte et al. proposed TTT, an algorithm which is an L?-
like algorithm [IHS14]. In contrast to the traditional observation table, they used
three tree-like data structures: a spanning tree, a discrimination tree and a dis-
criminator tree. The spanning tree defines the access sequences of states, the
discrimination tree is used to distinguish states and the discriminator tree is used
to store the suffix-closed set of discriminators. In the worst case, TTT requires
O(kn2 + n log(m)) membership queries where n is the size of the abstract model,
k the size of the input vocabulary and m the longest counterexample returned by
the Learner [Vaa17].

Recently, in 2022, two additional algorithms were proposed: L# by Frits Vaan-
drager and Bharat Garhewal [VGRW22] and Lλ by Howar Falk and Steffen Bern-
hard [HS22].

b) Non-deterministic Active Automata Learning

Inferring non-deterministic automata is also possible using active automata learn-
ing. Researchers motivate the necessity of this kind of algorithm by two main
problems of the deterministic active automata learning: (1) learning automata
becomes infeasible for system with a large input and output alphabet [PA20], and
(2) some systems behave non-deterministically (e.g., MQTT with the PINGREQ and
PINGRESP messages [Sta14] and TFTP [KT14]).

The first algorithm to infer non-deterministic automata, called NL?,
was proposed by Benedikt et al. in 2009 using membership and equivalence
queries [BHKL09]. Instead of learning Deterministic Finite-state Automata (DFA)
as the original L? algorithm, a Residual Finite-State Automata (RFSA) [DLT02]
is learned.

In 2013, Pacharoen et al. proposed L?NM [PABS13] advancing NL? in perfor-
mance. In 2014, Ali Khalili and Armando Tacchella proposed N?, an algorithm to
infer non-deterministic automata in the form of Mealy Machines [KT14].

In 2020, Pferscher et al. proposed a new algorithm more complete than the
past algorithm [PA20].

The basic idea of all non-deterministic active automata learning is to acquire
all possible output of each input query. Multiple queries are required for a single
sequence causing a decrease in performance in practice.

3A sequence allowing to distinguish at least two seemingly equivalent states of the conjecture
and the real state machine.

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 58

2.3.3 Available Tools and Libraries

Many open-source tools implement the L? algorithm. The following is a brief
overview of the most well-known tools:

• LearnLib4: a free and open-source Java library for active/passive learn-
ing [RSB05,IHS15]. It supports a large number of active learning algorithms
such as L?, NL?, TTT, etc. and passive learning algorithms such as RPNI
and OSTIA. It has been used for several model learning research publica-
tions [dRP15,FBJV16,FLP+17,FJM+20].

• pylstar5: a free and open source Python implementation of the L? algorithm.
It focuses only on Mealy Machines and does not support other modeling for-
malisms such as non-deterministic automata. It has succesfully been used
to infer automata for various protocols such as TLS [RLD22], Botnet proto-
cols [Bos14] and Web Servers [Bos16].

• AALpy6: a lightweight active learning library written in Python [MAP+22].
It implements several active and passive learning algorithms and modeling
formalisms such as deterministic, non-deterministic and stochastic automata.
This tool was successfully used to analyze several Bluethooth Low-Energy
implementations [PA21,AKM+22], and also to learn Input-Output behavior
of Recurrent Neural Networks (RNN) [XWQH21].

• DroidStar7: a free active learning tool written in Java. It implements the
L? algorithm only. It proposes and implements a new EQ method called
Distinguishing Bounds [RLM+18]. It is specially written for synthesizing
behavioral specifications, in Android application programming, for event-
driven framework classes that explain how and when their callbacks oc-
cur [RLM+18].

2.4 Model Learning and Application
The applications of model learning have been multiple over the past year. Ap-
plications are found in black-box contexts as well as in grey-box and white-box
scenarios (e.g., [MSTV+22]). This field is becoming one of the well-established
tools in the toolbox of the software engineer trained in security and formal meth-
ods. In this section, we describe the broad range of uses of model learning into
different categories.

4https://github.com/LearnLib/learnlib.git
5https://github.com/gbossert/pylstar.git
6https://github.com/DES-Lab/AALpy.git
7https://github.com/cuplv/droidstar.git

https://github.com/LearnLib/learnlib.git
https://github.com/gbossert/pylstar.git
https://github.com/DES-Lab/AALpy.git
https://github.com/cuplv/droidstar.git

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 59

2.4.1 Verification and Validation

a) Security

The state machine resulting from model learning can be used to identify vulner-
abilities if they exist. Model learning is often used to automate state exploration
of the Sut in a structured way. Several vulnerabilities were found in this manner
over the past years.

In 2011, Chia Yuan Cho et al. proposed an approach based on active learn-
ing for concolic exploration of protocol behavior for discovering the so-called deep
states in the SMB and RFB protocols behavior [CBP+11]. They applied their tech-
niques to four different implementation of Remote FrameBuffer (RFB) [RL11] and
Server Message Block (SMB) [Win] protocols. They found many vulnerabilities in
different applications (Samba 3.3.4, Vino 2.26.1 and RealVNC 4.1.2).

In 2014, Georg Chalupar et al. proposed a method based on active learning
and a LEGO robot to reverse engineer hand-held smartcard readers for Internet
banking by interacting physically with the smart cards [CPPDR14]. A critical
vulnerability, allowing a Man-in-the-Browser attack, was detected in a hand-held
smartcard reader (e.edentifier2).

In 2015, Joeri de Ruiter and Erik Poll used L? to infer TLS state machines
for different TLS servers [dRP15]. They discovered various anomalies and security
issues in several well-known TLS implementations.

In 2018, the same method was used, first, by McMahon Stone et al. to analyze
the IEEE 802.11 4-Way Handshake protocol [MSCR18] and also by Wesley van
der Lee et al. for detecting vulnerabilities in mobile applications [vdLV18]. Both
papers detected many critical vulnerabilities.

In 2019, Jiaxing Guo et al. automatically detected vulnerabilities in the im-
plementation of the IPsec protocol [GGCW19]. They combined model learning
and model checking to completly automate the search of their vulnerabilities and
RFCs violation properties.

In 2020, Fiterau-Brostean et al. proposed the first comprehensive analysis of
DTLS implementations using active learning [FJM+20]. They uncovered several
non-conformance bugs and security vulnerabilities in different DTLS implementa-
tions. Some of these vulnerabilities affect also the TLS part of these implementa-
tions.

b) Safety and Correctness

Analyzing complex state machines requires a rigorous method such as model check-
ing. As described in Figure 2.5, the basic idea of combining model learning and
model checking is to use model learning techniques to learn a system model and

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 60

then use model checking to verify if the learned model satisfies the properties
described in the protocol specification.

If the properties do not hold, a counter-example trace is provided by the model
checker. This counter-example trace is a sequence of messages violating one of
the given properties. On the other hand, if the model checker terminates without
returning any trace, then we conclude that all the given properties are satisfied by
the Sut.

Model Leaning Model Checking

Properties

Abstract
Model

Figure 2.5: Principle of model learning combining with model checking.

This method was first applied to analyze different TCP implementations [FBJV16],
then to SSH [FLP+17] and IPsec [GGCW19]. For the model checker tools, in the
three studies, they used NuSMV8 a reimplementation and extension of Symbolic
Model Checking [CMCHG96]. Several RFC property violations were detected in
an automatic way.

In 2021, Qinying Wang et al. [WJT+21] proposed a novel approach to system-
atically and automatically evaluate IoT protocols implementations using active
learning and formal verification such as Tamarin Prover [MSCB13]. Their ap-
proach detected 252 property violations.

2.4.2 Learning-based Testing

Model-based testing is a structured testing technique in which models are used
to guide the testing process [Mei18]. Test suites are generated using the model
and conformance testing technique is used to test if the generated test suites are
verified by the Sut.

Unlike model-based testing, learning-based testing allows to test systems with-
out pre-existing models. It was applied for example toWeb-based systems [RMSM09].
Models are extracted using model learning and then test suites are generated using
the extracted model.

This line of application has been used for different types of systems such as
Event-B [DIMS12,DIS12] and embedded components [SG14]. Hagerer et al. pro-
posed the earlier application of model learning (active learning) for testing telecom-

8https://nusmv.fbk.eu/

https://nusmv.fbk.eu/

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 61

munication systems [HMN+01,HHNS02]. Aichernig et al. discussed the relation
between testing and learning [AMM+18].

Shahbaz and Groz used model learning for integration testing. They infer
model and use them for test case generation [SG14]. Choi et al. use model learning
for testing graphical user interfaces of smartphones and tablet application [CNS13].
Meinken et al. propose LBTest tool for test case generation, test execution and
test verdict construction [MS13]. Their tool is based on model learning, model
checking and random testing.

2.4.3 Learning-based Fuzzing

Recently, several researchers have proposed a novel network protocol fuzzing ap-
proach based on model learning. The main objective of black-box fuzzing is the
assurance of sufficient test coverage. This novel approach is proved having a higher
code coverage and vulnerability discovery than other well-known fuzzing tools such
as AFLnwe, AFLnet and STATEfuzz [PLJZ22]. The approach, as described in
Figure 2.6, is based on two steps: (1) learning the abstract model and (2) fuzzing.

Model learning is used to infer the state machine of the Sut which is used to
guide the fuzzing process. At the fuzzing stage, test cases are generated using the
state machine, the Mapper and the Fuzzing Technique components. The Fuzzing
Technique component implements the mutation strategies like bitflip, shuffling,
erasing, splicing, swapping and inserting. The results of each generated test case
are checked by using the CHECKER component.

Aichernig et al. proposed a black-box learning-based fuzzing technique based
on active learning and applied their method to test MQTT brokers implementa-
tion [AMP21]. They only learned one generic state machine for all MQTT brokers
to fuzz every MQTT brokers implementations.

Unlike Aichernig et al., Andrea Pferscher et al. and Zhan Shu et al. proposed
a fuzzing method based on individual learned state machines for every specific
protocol studied. They successfully applied their method to different Bluetooth
devices and Telnet implementations [PA22,SY22].

In contrast to the previous methods, Yan Pan et al. proposed a grey-box
learning-based fuzzing method [PLJZ22]. The first step of their approach is done
using black-box approach, while the second step uses grey-box approach. The
grey-box is needed when checking the results of each generated test case. The
CHECKER requires two additional components: Address Sanitizer for memory
bugs and Differention Checker for semantic bugs.

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 62

Active Learning State Machine

Fuzzing Technique

Extract pathsAbstract Inputs/Outputs

Concrete
Inputs/Outputs

Model Learning Fuzzing

1 2

3

4
5

6

Figure 2.6: Principle of model learning combining with fuzzing.

2.4.4 Stack Fingerprinting

Another recent application of model learning is stack fingerprinting [DS22]. They
used model learning to infer the Sut’s state machine and then they applied dif-
ferent method such as the method proposed by Guoqiang Shu et al in 2011 which
introduced a formal methodology for network protocol fingerprinting [SL11].

Guoqiang Shu et al. proposed different method to compute protocol network
fingerprint based on Finite State Machine (FSM) or an extension of the FSM
formalism, Parameterized Extended Finite State Machine (PEFSM), for modeling
network protocol. From these models, they computed the so-called distinguishing
sequences to distinguish one implementation from another.

Combining this method and model learning, during his master thesis, Jansen
Erwin successfully compute the fingerprint associated to many TLS server im-
plementations [JVdRP21]. This method requires computing the state machine of
different TLS server implementations using model learning, and then applied the
method proposed in [SL11] to compute the fingerprint of each studied implemen-

CHAPTER 2. MODEL LEARNING – THEORY AND APPLICATION 63

tation.
Andrea Pferscher et al. proposed a similar method to fingerprint Bluetooth

Low Energy devices using active learning [PA21]. Unlike [JVdRP21], they only
studied five BLE devices and manually computed the fingerprint associated to
each BLE devices studied.

Chapter 3

Methodology – Automatic
Validation and Black-box Analysis
of Protocol Implementations

In this chapter, we propose a genereralized methodology based on active learning
to analyze the state machine of a given protocol implementation. We begin this
chapter with the practical challenges in using active learning, sec. 3.1; followed by
the categories of state machine bugs that can affect every protocol implementa-
tions, sec 3.2. Then, in sec. 3.3, we discuss the minimum necessary knowledge of
the studied protocol for the inference process and we also discuss three methods
to detect bugs automatically. Finally, in sec. 3.4, we propose a generic method in
writing the Mapper component.

3.1 Practical Challenges in Active Learning

We identified the challenges for the practical application of active learning. Active
automata learning is characterized by its proactive way of querying the Sut. It
requires some way to achieve this query-based interaction. Therefore, using model
learning in practice is challenging.

3.1.1 Connection Independence

Active learning requires interactions with the Sut. The independence of the es-
tablished connections means that the previous connection must not have influence
(or an impact) on the current connection.

For this purpose, reseting the Sut after each membership query may be re-
quired to bring the Sut to its initial state. In other words, opening and closing

65

CHAPTER 3. METHODOLOGY 66

the Sut after each membership query would be a solution; it is naturally the case
when learning the client-side state machine (see sec. 5.2.1).

For the server-side and for the learning performance, it is better to avoid open-
ing and closing the Sut after each membership query because it slows down the
learning process. Thus, the Learner often assumes that there is no dependence
between connections in practice. However, reseting the Sut after each member-
ship query becomes mandatory if the server crashes and/or is unable to ensure its
availability.

3.1.2 Equivalence Query

The equivalence query plays an important role for the accuracy of the resulting
state machine. Since the Sut’s state machine is not known, equivalence queries
do not really exist in practice, so we must approximate them by using membership
queries. Conformance testing has been used to simulate equivalence queries [LY96].

A competition, called ZULU, was launched in 2010 attempting to intensify
research on this field [CHJ09]. They justify such a competition by the need for
an equivalence query method which garantees the correctness of the learned state
machine. Sometimes state machines are huge, up to 20, 000 states the largest
learned state machines to the best of our knowledge [RMSM09]. The winning
solution for the ZULU competition is discussed in [HSM10]. Currently, we have
not studied their winning solution because of the lack of details and accessible
implementations.

If the state machines are not big, there exists several equivalence query methods
that can deal with them, e.g., RandomWalk, W(p)-method and Distinguishing
Bounds. Thus, we use these equivalence query methods because we do not have
gig state machines (our biggest state machine is around 500 states and is related
to AsyncSSH server).

3.1.3 Efficiency and Convergence

The number of queries sent during the learning process is correlated with the size
of the input vocabulary. Several research papers describe methods to improve the
number of queries and speed up the learning process.

In practice, each membership query of a given sequence S may require t× |S|
seconds if t is the timeout value in second. In such a case, minimizing the number
of required membership queries and avoiding useless waiting (timeout) is the key
to performance.

Several researchers proposed optimized algorithms to save membership queries
(more details are discussed in sec. 2.1.2) [RS89,SG09,IHS14,VGRW22]. Practical
tricks are discussed in [RLD22,HTJV15] to optimize the learning process.

CHAPTER 3. METHODOLOGY 67

The main goal of active learning algorithms is to infer a finite automaton. It
is impossible to learn infinite automaton. It is worth noting that the Learner
should make sure of the convergence of the learning process. For example, when
learning SSH implementation state machines, we found state machines that could
not be represented by a finite automaton (see sec 5.6.1).

3.1.4 Robust and Flexible Mapper

The Mapper plays an important role in the learning process: concretization and
abstraction of messages between the Learner and the Sut. The Mapper should
not only be able to execute the protocol in the normal context, but also concretize
messages in any order under any circumstances. Thus we seek a robust and flexible
Mapper. It means, from its knowledge at a given moment, it should be able to
build a message complying with the protocol specification, in terms of message
format and content, while using all the present knowledge.

The final results and its interpretation depends on how the Mapper is writ-
ten/built. Message concretization is important as its abstraction. When the Map-
per is not robust, non-deterministic behavior can occur not because the Sut does
not behave deterministically but because of the Mapper. For example, when
working on TLS state machine inference, the TLS Mapper can misinterpret an
encrypted message. Thus it produces an unexpected response with a low probabil-
ity. We found that when scapy could not properly decrypt a TLS packet, it tagged
the packet either as Unknown or ApplicationData or FatalAlert, etc. depending
on the random value of the packet type field it detected after the decryption.

3.1.5 Non-determinism

The most important requirement for deterministic active learning is that the Sut
behavior must be deterministic, relative to the selected input vocabulary. For a
given stack and a given set of parameters, a given input abstract message sequence
should always produce the exact same abstract output sequence.

We identified three sources of non-determinism: non-deterministic Sut, time-
out value and lack of robustness from the Mapper.

The first case can be due to several root cases: interferences between connec-
tions, unavailability of the Sut, slowing down of the Sut to assure its task, or
simply because the Sut is non-deterministic. We encountered such problems with
OpenSSH, AsyncSSH and paramiko.

If the Mapper is not robust enough, it can misinterpret the responses from the
Sut which can lead to non-determinism behavior. An example of such problem
has already been discussed above (see 3.1.4).

CHAPTER 3. METHODOLOGY 68

The most frequent cause of non-determinism comes from an insufficient time-
out value in the socket while getting responses from the Sut. In this case, the
Learner can miss additional responses from the Sut.

Thus, to analyze communication protocol implementations using active learn-
ing, we must overcome each of the five challenges listed above. These challenges
concern only the Learner-side, but there exists also many challenges in state
machines for the Sut’s side. In the following section, we discuss three categories
of the state machine attacks that can affect all protocol implementations.

3.2 Challenges in State Machines of Communica-
tion Protocols Implementations

In state machines, undesired transitions are indications of bugs which may lead to
critical vulnerabilities in the system. These vulnerabilities can be further exploited
by the attacker to degrade the security of the communication (e.g., availability,
confidentiality, integrity, etc.) [YR15,BDD+19]. In the usual cases of communica-
tion protocols, the following types of bugs can exist in a state machines model:

• undesired flows,

• undesired states and

• infinite executions in the state machines.

These kinds of bugs are an indication of a defective implementation where each
state of the implementation is not checked against every possible input messages.
Such an implementation first processes the messages and then checks if conditions
are verified instead of processing the messages if and only if conditions are verified.

3.2.1 Undesired Flows

Undesired flows are transitions from a valid state to another valid state using in-
valid transitions (see Figure 3.1). Such path may lead to critical vulnerability when
it allows to reach an important state by bypassing necessary transitions and thus
violating protocol specifications e.g., CVE-2020-24613 described in Figure 3.1a.

Particularly, if the sink state is the end state of such flow, then undesired
flows are synonyms of undesired responses to an invalid input (see Figure 3.1b).
Such replies do not necessarily affect the security of the system, but they might
introduce abnormal behavior violating protocol specifications. In some cases, such
a bug may lead to critical vulnerability, when it allows an attacker to access an
observable oracle e.g., CVE-2017-1000385 [Ble98,RD10,PY04,ASS+16,BSY18].

CHAPTER 3. METHODOLOGY 69

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF

3

Cert / -

4

Fin / Fin+AppData

* / EOF Fin / Fin+AppData5

CV / -

* / EOF

AppData / -* / EOF

Fin / Fin+AppData

* / EOF

* / EOF

(a) CVE-2020-24613, a server authentica-
tion bypass in wolfSSL TLS 1.3 clients, up
to version 4.4.

0 NoReneg / -

1

CH_RSA / SH+Cert+SHD

3

* / EOF

NoReneg / -

2

CKE_OK
 CKE_invalid_msg_len / -

CKE_wrong_prefix
 CKE_no_msg / DecryptError
CKE_small_padding

* / EOFNoReneg / -

CCS / - * / EOF

* / EOF

(b) CVE-2017-1000385, the erlang OTP-20.0
server exhibits a Bleichenbacher oracle

Figure 3.1: Examples of Undesired Flow.

3.2.2 Undesired States

States are called undesired if they are only reachable using unexpected sequence
of messages from the initial state. It means that no expected sequence (described
in the specification) allows to reach an undesired state. Hence, such a state is
necessarily a vulnerability or a deviation from the specification.

For each state machine, we expect to have a unique sink state, which is related
to the termination of connection. Hence, if there exists multiple sink states, only
one of them is the desired sink state and all the others represent a specification
violation.

For all the undesired sink states, the connection is always on and no message
seems to be able to terminate the connection. If the server does not implement a
protection for these unclosed connection (e.g., set up a timeout), it thus allows an
attacker to carry out a denial of service attack.

Figures 3.2 and 3.3 illustrate two categories of undesired states. The state
4 in Figure 3.2 is an undesired state which allows an attacker to bypass server
authentication. The state 3 of Figure 3.3 allows an attacker to lead a denial of
service attack.

CHAPTER 3. METHODOLOGY 70

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF 3

Cert / -

4

EmptyCert / -

* / EOF

5

CV / -

* / EOF

CV_invalid / -

* / EOF

Fin / Fin+AppData* / EOF

AppData / EOF* / EOF

Figure 3.2: CVE-2022-25638, a server authentication bypass in wolfSSL TLS 1.3
clients, present up to version 5.2.0.

Figure 3.3: SChannel vulnerability present in Windows 8 and 10 (TLS 1.2) [YS19].

CHAPTER 3. METHODOLOGY 71

3.2.3 Infinite Executions in the State Machine

Infinity in the state machine are transitions or sequence of messages which can be
reapeted indefinitely and never lead to connection termination.

In some cases, it may be considered as an expected behavior (behavior autho-
rized by the specification) but if it is not authorized, it may lead to a denial of
service attack e.g., CVE-2020-12457.

Infinity can also manifest itself in another way: the inference process may
never converge for a given implementation, which means its state machine can
not be represented using a finite state machine model. In our opinion, a clean
specification (and the corresponding implementations) should always lead to a
finite representation. It is the case for most of the studied implementations. We
leave it as an open discussion for the community to enforce this constraint.

An implementation of a given protocol may have an infinite state machine
for different reasons. One common reason we have encountered is described in
situations such as the one depicted in the Figure 3.4. If the message A is sent n
times followed by the message B, then the Sut responds first by the message X
followed by n times the message Y .

LEARNER SUT

Figure 3.4: Example of an exchange causing infinite state machine.

We detected this kind of problem when learning the state machines of sev-
eral SSH implementations such as OpenSSH, AsyncSSH, wolfSSH and sshd-lite.
For example, when initiating a key refresh (re-key) in the connection layer with
OpenSSH version 8.9.p1 server, we can highlight this problem with the follow-
ing sequence input/output messages: KEXINIT/KEXINIT, CH_OPEN/NoRSP n times,

CHAPTER 3. METHODOLOGY 72

DH_INIT/DH_REPLY+NEWKEYS+(OPEN_CONFIRMATION n times)1.

After describing all the practical challenges concerning the Learner and the
Sut, we are going to discuss in the following section the knowledge required to
analyze protocol implementation using active active learning.

3.3 Analysis of Communication Protocols Imple-
mentations in Black-box

Analyzing the implementation of a communication protocol in a black-box ap-
proach requires a lot of knowledge about the studied protocol depending on the
chosen method. Using Active learning requires building a Mapper. Building a
Mapper implies knowledge about the studied protocol. In this section, we de-
scribe such knowledge. We discuss also different possible methods to identify bugs
in the resulting state machine.

3.3.1 Useful (and Minimum) Knowledge on the Studied Pro-
tocol

Active learning is a powerful method to learn state machines of a given protocol
implementations (see sec. 2.1.2 for more details). A legitimate question about this
method is: What knowledge of the target protocol do we need to use this method?
In this section, we try to highlight the useful and minimun knowledge to learn the
state machines of a given protocol implementations.

Since communications with the Sut are required, we thus need to be able to
build valid messages in valid contexts. And, because abstractions of the Sut’s re-
sponse are also required, interpretations of the Sut’s response are also mandatory
(see sec. 2).

In the active learning context only the following knowledge is required:

i) the structure of all messages exchanged between client and server,

ii) the information needed to handle communication correctly (from message
sent and received), and

iii) the application logic.

1We give more details about these SSH messages in sec. 5.2.3.

CHAPTER 3. METHODOLOGY 73

a) Message Structure

The Learner should know all possible messages that can be used during the
learning process and be able to build valid messages for a given context of the
communication. These are fundamental for this approach.

First, the Learner should select a list of messages of interest, then learn the
packet format of each selected message.

Knowing the message structure is very important to build a valid message and
ensure messages will be parsed by the Sut. The Learner should collect every
useful parameter of a given message and fill them according to the specification.

For this purpose, parser generators would be a good solution that we investi-
gated during a part of this thesis by building a platform to compare several existing
parser generator tools [LNR21].

b) Find and Record Information

The first step is necessary but not sufficient. During the communication, past
information may be needed to build the current packet. Thus, we need to find
and record these over the execution lifetime for network protocols. Therefore, the
Learner should be able to answer the following questions: (a) Which informa-
tion should be recorded for every packet sent and received to handle communication
correctly? and (b) When and how to use them?

Figure 3.5 illustrate well the importance of the knowledge described in this
section. It represents the basic Diffie-Hellman protocol to exchange secret key and
is the first key exchange published publicly in 1976 [Dif76].

Figure 3.5: Diffie-Hellman key exchange scheme

To keep it simple, g is public; the protocol states that Alice generates an integer
a, computes ga and sends it to Bob. When Bob receives the message from Alice,
he repeats similar actions as Alice, i.e., he generates an integer b, computes gb and
sends it to Alice. Then, both parties share a secret K = gab. The next messages
rely on the computed shared secret K.

CHAPTER 3. METHODOLOGY 74

From Alice’s point of view, there are three important bits of information to
record g, a and gb (g, b and ga for Bob) over the execution lifetime of the protocol.
Two problems occur without considering these useful informations:

• whithout memorizing g, Alice and Bob cannot execute the protocol correctly
because they are both unable to generate their message;

• whithout memorizing (a or gb) for Alice’s context, she can never compute
the shared secret K = (gb)a, then she will never be able to build a valid
message after exchanging the public Diffie-Hellman value.

We store these useful information in an “internal state”. So everytime the
Learner has to build a message, it will find useful information in the internal
state if present. If absent, the Learner uses default values.

c) Protocol Logic

Protocol logic operations are necessary for the transformation of the messages
before or after receiving and/or sending a message. They might be also required
for updating the internal state.

These operations must be performed to execute the communication correctly.
For security protocols, key derivation, encryption, signature, MAC value, etc. are
required. TCP is another good example to illustrate this where incrementation
of the sequence number is required for each packet sent after the first SYN mes-
sage [Joh81].

This knowledge is necessary for the Learner to know how and when to use
information recorded in the internal state. These operations can take place when
building a message (such as incrementation, encryption, signature, etc.), receiving
messages from the Sut (e.g., decryption of the received packet) and updating the
internal state.

d) Discussion

To summarize the useful knowledge when using active learning, Figure 3.6 sums
up the information to consider and how to use it.

When building a message, the Learner should first learn the message struc-
ture, define all parameters corresponding to the current message and fill in them
little by little starting from deriving the associated value from the internal state
corresponding to a given parameter; then fill in the remaining parameters while
remaining compliant with the specification. All these steps must be done while
applying the protocol logic whenever applicable. Information that is useful for the
execution of the communication should be stored in the internal state.

CHAPTER 3. METHODOLOGY 75

MESSAGE STRUCTURE

BUILD

INTERNAL STATE

Add manually according to the
specification

Protocol logic

Define all parameters

Fill parameters

Derive value from internal state

PARSE

Read packet type

find and extract useful
parameter(s) to build next

message

a a

b b

12 updateupdate ?

(SEND) (RECEIVE)

MANAGE

Figure 3.6: Useful knowledge on the studied protocol and description of how to
use them for active learning state machine inference.

When receiving a message from the Sut, the Learner should first apply
protocol logic if needed, then read packet type and, finally, find and store in the
so called internal state all useful informations present in the current packet.

3.3.2 Finding Bugs from the Learned State Machines

Model learning is used to infer state machines for protocol implementations. How-
ever, finding bugs from the resulting state machines requires additional processing.
Sometimes, the Learner has to deal with complex state machines, then robust
and efficient method should be adopted, such as model checking which was used
to analyze SSH state machines [FLP+17].

Analyzing the resulting state machines may require further knowledge of the
studied protocol. It is also possible to analyze state machines without contextual
information. In the following, we detail three strategies to analyze state machines
successfully.

a) Model Checking

Model checking (see sec. 2.4.1) requires additional knowledge of the studied pro-
tocol because the user should define the properties that must be verified by the
associated abstract model of the Sut (the resulting state machine).

CHAPTER 3. METHODOLOGY 76

These properties are manually derived from the specification of the protocol.
An in-depth knowledge of the protocol is required to confirm bugs in the state
machine, in contrast with other methods. The user must be aware of how the
Mapper was written when defining properties.

This method was successfully used to find specification violations in several
protocols [FLP+17,FBJV16,GGCW19]. Because model checking always stop after
finding the first counter-example, these applications can not achieve exhaustivity
in finding bugs in the learned protocol implementations.

b) Happy Path

Most vulnerabilities/bugs research on state machines are based (directly or indi-
rectly) on this method. This method is straight forward and only partial knowledge
is required, compared to model checking. It only requires the knowledge of the
correct or expected behavior (the legal state transitions) of the protocol for a given
scenario (a.k.a. happy path).

All transitions/paths different from the happy path are considered vulnerabil-
ities or specification violations.

The limitation of using this method is the lack of precision in the analysis
of the error messages if required. Moreover, if the state machine is complex, it
then becomes difficult to find vulnerabilities or bugs by just visualizing the state
machine.

c) Without Considering Any Information

It is also possible to analyze state machines without considering any information
about the studied protocol, but the results of the analysis can be less accurate.
We distinguish two methods for this category:

(i) considering a reference implementation (if there exists one), and

(ii) comparing different state machine of the implementation of the same proto-
col.

In (i), the first step should be the choice of the reference implementation and the
inference of its state machine. Then, all state machine are compared to this state
machine and all discrepencies from the reference implementation state machine
are considered as vulnerabilities or bugs.

In (ii), finding vulnerabilities and bugs is achieved by comparing several dif-
ferent state machines of the implementing the same protocol (of course, using the
same input vocabulary).

CHAPTER 3. METHODOLOGY 77

By construction, except for model checking, these methods require manual
inspection to characterize the nature of the detected deviations.

Before closing this chapter, we would like to discuss, in the following section,
one of the most important component of the active learning approach, the Map-
per.

3.4 Mapper

In this section we discuss our proposition to solve the challenge related to theMap-
per discussed in sec. 3.1.4. We identify two challenges when writting a Mapper,
the first challenge is how to build a robust and flexible Mapper, and the second
challenge is how and when to update its internal state.

3.4.1 Flexible Mapper

Using active learning requires a robust and flexible Mapper. The Mapper im-
plements the protocol while remaining modular and robust. Figure 3.7 gives more
details on how a Mapper should be written.

To find the accurate class/method for the abstract or concrete messages, the
Mapper refers to its first component. Then, in case of concretization, the Map-
per considers the useful knowledge related to the message and builds the concrete
message by interacting with the internal state.

In case of the abstraction of a concrete message, the Mapper should parse
the packet first and then extract the useful knowledge if there exists and finally
update the internal state. The update of the internal state is done according to
sec. 3.4.2.

Each message is implemented in a class2 wich implements at least build, parse
and update functions. This structure allow us to (i) concretize the abstract mes-
sage using the maximum amount of information from the internal state, and (ii)
be flexible enough to send arbitrary messages at any state of execution of the
protocol.

3.4.2 When and How to Update the Internal State?

The internal state has an important role when building a Mapper. The choice of
how we deal with it affects the final results of the learning process. If we do not
manage it correctly, erronous results will be produced because of miscaculations
or forgotten updates. If the Learner updates it incorrectly, then it will add
some weird additional states to the final state machine, which may complicate the

2We refer to a class of a programming language.

CHAPTER 3. METHODOLOGY 78

abstract message

Find accurate method/class

Internal State

concrete message

concrete message abstract message

Find useful knowledge

Build concrete message Extract useful knowledge

Parse concrete message

BUILD PARSE

always update

get and update if needed

MAPPER

Figure 3.7: Abstract model of a Mapper.

interpretation of the final result. The interpretation of the final state machine
must depend on how the Mapper is written.

Suppose we have to deal with the protocol described in Figure 3.8a. A legimate
question is how and when we should update the internal state of the Mapper?
To tackle this problem, we consider three solutions:

Strategy 1: update the internal state every time we build and parse messages;

Strategy 2: add additional vocabulary for updating internal state; and

Strategy 3: consider additional knowledge on the studied protocol and add them
to the Mapper.

To illustrate each strategy identified above, we consider a buggy implementa-
tion of the protocol described in Figure 3.8a. We suppose that the implementation
indefinitely accepts the message M1.

a) Strategy 1: Always update

The internal state is always updated after each call to the build and parse func-
tions. This first method is very simple to implement but it may cause additional

CHAPTER 3. METHODOLOGY 79

M1

R1

M2 := f(M1,R1)

R2

C S

(a) Simple protocol to illustrate the prob-
lem of internal state update. It is a simple
client-server protocol whereM1 and R1 are
non-static (they contain random value) and
messageM2 depends onM1 and R1.

0

1

M1 / R1

sink

M2 / EOF

2

M2 / R2

M1 / EOF

M1|M2 / EOF

M1|M2 / EOF

(b) Clean and expected server-side
state machines to the protocol de-
scribed in Figure 3.8a.

Figure 3.8: Example protocol and its server expected state machine.

states to appear in the state machine such as the state 3 in the Figure 3.9a for
example.

Analyzing the state machine is quite easy if the state machine is relatively
simple and quite difficult otherwise because of the additional states due to the
way the internal state is updated.

In Figure 3.9a, in state 3, the Sut indefinitely accepts the message M1 and
the messageM2 is rejected. It means that sending the messageM1 in state 1 has
changed the state of the internal state of the Mapper, henceM2 is accepted in
state 1 and rejected in state 3.

b) Strategy 2: Including additional and dummy messages

In contrast to the first proposed strategy, the update of the internal state is explicit
and is done using additional and dummy message(s). In case of Figure 3.9b, the
internal state of the Mapper is done each time the dummy message UPDATE is
sent.

Especially for this strategy, an intermediate variable which is used to store the
last useful parameter of the messageM1, is required. And when the dummy mes-

CHAPTER 3. METHODOLOGY 80

0

1

M1 / R1

sink

M2 / EOF

2

M2 / R2

3

M1 / -

M1|M2 / EOF

M1 / -

M2 / EOF

M1|M2 / EOF

(a) State machines using
strategy 1.

0 UPDATE / -

1

M1 / R1

sink

M2 / EOF

2

UPDATE / -

3

M1 / -

M2 / EOF

UPDATE / -

4

M1 / -

5

M2 / R2

M1|UPDATE / -

M2 / EOF

UPDATE / -

M1 / -

M2 / R2

UPDATE / -

M1|M2 / EOF

M1|M2|UPDATE / EOF

(b) State machines using strategy 2.

0

1

M1 / R1

sink

M2 / EOF

M1 / -

2

M2 / R2

M1|M2 / EOF

M1|M2 / EOF

(c) State machines using
strategy 3.

Figure 3.9: State machines of the same implementation of the protocol described
in 3.8a but with three different strategies of updating the internal state.

sage UPDATE is sent, the internal state is updated using the intermediate variable.
The resulting state machine is complex but the interpretation of the state

machine is simple and explicit. In Figure 3.9b, in state 1, the message M2 is
rejected because the internal state is not yet updated after sending and receiving
M1 and R1 respectively and the Mapper is unable to correctly build the message
M2. However, it is accepted in state 2, because, in this state, the internal state
was already updated, then the messageM1 is built correctly.

c) Strategy 3: Adding intelligence to the Mapper

This approach require more knowledge of the studied protocol and is thus more
difficult to implement. The internal state is updated if some conditions are veri-
fied. It means, that it requires the injection of some additional information to the
Mapper to handle perfectly the update of the internal state.

The resulting state machine is simpliflied with respect to the strategy 1 and 2
making easier the interpretation of the state machine compared to other methods.

Considering this strategy for our toy protocol with a flawed implementation
(see Figure 3.8a), the internal state is updated in the client context if and only if
after sendingM1, it receives R1. It means that, sending messageM1 in state 1
does not trigger the update of the internal state (the internal state of the Mapper
remains unchanged).

CHAPTER 3. METHODOLOGY 81

Actually, almost all the research papers adopted the strategy 1 for the update of
the internal state. For example, it is the case of statelearner3 and DTLS-Fuzzer4,
tools developed for analyzing TLS and DTLS implementations [dRP15,FJM+20].

In the next chapter, before giving details on our use-case of the methodology
described in this chapter, we will discuss the equivalence query method which
plays an important role in the precision of the resulting state machines. This
chapter allows us to choose an appropriate equivalence query method to use in our
use-case.

3https://github.com/jderuiter/statelearner.git
4https://github.com/assist-project/dtls-fuzzer.git

https://github.com/jderuiter/statelearner.git
https://github.com/assist-project/dtls-fuzzer.git

Chapter 4

Comparative Study of Equivalence
Query Methods

Equivalence query methods represent one of the biggest challenges of model learn-
ing. Since the resulting state machine is only an approximation, the equivalence
query method is fundamental for the accuracy of the final results of the learning
process (see sec. 3.1 for more details).

In this chapter, we discuss several known equivalence query methods and we
also propose a new method. Sec. 4.1 describes the principle of an equivalence query
method. In sec. 4.2, we discuss three equivalence query methods: RandomWalk,
W(p)-method and Distinguishing Bounds. Then, in sec. 4.3, we propose a new
method based on Distinguishing Bounds method. Finally, in sec. 4.4, we discuss
our benchmark results while comparing three equivalence query methods.

4.1 Equivalence Query Methods
Equivalence queries do not really exist in practice, so we must approximate them.
Several methods have been developed, such as the W-method [Cho78], the Wp-
method [FvBK+91], Random Walk [Lá93] and Distinguishing Bounds [RLM+18].

The equivalence query method generates test cases, which are executed both on
the Sut using membership queries and on the hypothesis. In case the executions
produce different results, the corresponding message sequence is a counter-example
invalidating the hypothesis.

To test the equivalence between the built hypothesis and the Sut’s state ma-
chine, we need three components: the actual hypothesis (built by the Learner),
a Test Generator and Analyzer, and the Mapper. As described in Figure 4.1, the
testing process follows the steps:

1. choose the equivalence method to use (with its requirements). Each equiv-

83

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 84

alence query method comes with its guarantees and takes an hypothesis to
generate test cases (see sec. 4.2 for more details);

2. generate abstract tests from the Hypothesis according to the selected equiv-
alence method;

3. concretize and execute the abstract messages generated; and then

4. analyze the Sut’s responses; if it is the same as the expected response then
regenerate a new test sequence and start again from step (2); otherwise, it
returns the current test sequence as a counter-example.

Test Generator

Analyzer

Figure 4.1: Equivalence Testing Process.

The first and the second step of the equivalence testing are detailed in the
following sections. Each equivalence method comes with its requirements if they
exist. The fourth step is simple, it consists of checking if the result corresponding
to the actual test case is equal to the expected results from the hypothesis.

4.2 Avalaible Equivalence Query Algorithms

4.2.1 RandomWord and RandomWalk

The RandomWord method consists in generating random sequences of abstract
messages from a given input vocabulary for a given length. Thus it requires the
input vocabulary, the minimal and maximal length of sequences to generate and
the number of test cases to generate in order to validate the hypothesis. It is the
simplest method for equivalence testing.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 85

RandomWalk [Lá93] is an equivalence method very similar to RandomWord.
Instead of generating random test cases using input sequences only, it generates
test cases by randomly walking to the hypothesis. A random walk starts with a
fixed probability, called restart probability, which is the probability of restarting
the random walk on the hypothesis. A random walk always starts from the initial
state of the hypothesis.

Both methods provide no guarantee on the resulting state machines. Their
complexity are related to the parameters defined by the user.

4.2.2 W(p)-method

The W-method [Cho78] and Wp-method [FvBK+91] are based on the calculation
of the so-called transition cover set P , state cover set Q and characterization set
W (for definitions and a method of constructing such sets, see [FvBK+91,Gil62]).

We recall the definition of these three sets as following:

i) The transition cover set P represents the set of sequences of input vocabulary
which allow to reach a given state and test each possible transition from the
actual state.

ii) The state cover set Q represents the set of input sequences which allow to
visit each state in the automaton.

iii) The characterization set W represents the set of input sequences allowing to
distinguish one state from another.

The characterization set is computed using the set of state identification Wi

for each state si in the hypothesis (i.e., W =
⋃
si
Wi). As described in [FvBK+91],

a set of input sequences Wi is an identification set of state si if and only if for each
state sj in the hypothesis (i 6= j) there exists an input sequence p of Wi such that
Out(si, p) 6= Out(sj, p) and no subset of Wi has this property.

The W-method and Wp-method assume a known upper-bound on the size of
the exact Sut’s state machine (which represents one of the drawbacks of using
these methods).

Let us suppose that m is the state bound and n the exact size of the current
hypothesis; and ΣI the input vocabulary.

The W-method provides a set of test sequences formed by P.Z (the concate-
nation of P and Z), where Z = ({ε} ∪ ΣI ∪ Σ2

I ∪ · · · ∪ Σm−n
I).W = ΣI [m− n].W .

The Wp-method improves upon W-method by requiring fewer test cases while
providing the same guarantees. To this aim, Wp-method splits the counter-
example search into two phases: the first step is used to ckeck that all states

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 86

in the hypothesis are identifiable in the Sut, and the second step is done uses test
cases from a modified characterization set W .

Given an upper-bound m, the W-method and Wp-method prove the equiva-
lence between hypothesis and a Sut of size up to m. However, the number of test
cases generated by both methods is exponential in the bound m, thus it usually
does not scale to large systems.

4.2.3 Distinguishing Bounds

The basic idea of Distinguishing Bounds is based on the so-called distinguisher
bound value BDist. BDist is a property of the Mealy machine which guarantees that
each pair (q, q′) of states in the target Mealy machine can be distinguished by an in-
put sequence σ ∈ (ΣI)

∗ of length k ≤ BDist i.e., Out(q, σ) 6= Out(q′, σ) [RLM+18].
It guarantees that the obtained state machine will be accurate as soon as two

states in the real state machine can be distinguished in at most BDist steps. The
Distinguishing Bounds method consists of two phases:

1. for each q ∈ Q, compute the representative R(q) which is the shortest path
to reach q from q0; and

2. check the “fidelity” of the transition up to the distinguisher bound. It means
for each q ∈ Q and i ∈ ΣI such that δ(q, i) = q′, check if R(q).i and R(q′)
can be distinguished using a suffix σ ∈ (ΣI)

∗ of length k ≤ BDist.

This method assumes a known distinguisher bound while the resulting state
machine depends on its value. If its value is smaller than the actual bound, the
resulting state machine is certainly inaccurate. For a distinguisher bound BDist

and a state machine of size n, this method requires O(n.|ΣI |BDist) membership
queries to find a counter-example.

4.3 Our New Method: DBBased method

During the second step of the Distinguishing Bounds algorithm, it checks if each
pair of states are distinguishable using at least a sequence of length less than or
equal to the distinguisher bound BDist. Each state is redundantly checked using
sequences of length less than or equal to BDist − 1.

In this section we propose, DBBased method, an improvement of the Distin-
guishing Bounds method.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 87

DBBased method Algorithm

Our proposed improvement is based on three principles:

Optimization (i) always use suffixes of length BDist to test each pair of states;

Optimization (ii) stop checking state after receiving ConnectionClosed; and

Optimization (iii) decompose loops during the verification of each state.

Optimization (i): Always Use a Suffix of Length BDist

The Distinguishing Bounds method consists in testing each state by using suffixes
of increasing length, starting with 1 and continuing up to BDist. Instead, the
DBBased method tests each pair of states with suffixes of length BDist.

As described in Table 4.1, with BDist = 2 and input vocabulary ΣI = {A,B},
the Distinguishing Bounds method uses suffixes of length 1 and 2 to check each
state and the DBBased method uses suffixes exactly of length 2 to check each
state. Thus, the DBBased method only require 4 suffixes instead of 6 suffixes to
test each state.

Distinguishing
Bounds A, B, A.A, A.B, B.A, B.B
DBBased A.A, A.B, B.A, B.B

Table 4.1: Suffixes required to test each state using Distinguishing Bounds vs
DBBased with BDist = 2. ΣI = {A,B} is the input vocabulary.

This first modification allows us to considerably reduce the number of the
required queries for searching for a counter-example, up to n×∑Bdist−1

k=1 |ΣI |k if n
is the size of the current hypothesis.

Optimization (ii): ConnectionClosed is Final

Finally, for each q ∈ Q and i ∈ ΣI such that δ(q, i) = q′, if R(q).i and R(q′) lead
to a ConnectionClosed, then we stop checking R(q).i and R(q′). This allows us to
reduce the number of queries up to |ΣI |BDist for each state and each letter verifying
such property.

Optimization (iii): Decompose Self Loops

We call self loop an edge in the Mealy machine that connects a state with itself.
Our second modification is related to this type of loops.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 88

If several self loops occur for the same state, we test each of them independently
of the other self loops in the same state. In particular, we assume that each state
is distinguishable if and only if for all i ∈ ΣI , if i triggers a self loop for a state
q ∈ Q, then for all 1 ≤ k ≤ Bdist, R(q).(ik) and R(q) can be distinguished using a
suffix σ ∈ (ΣI)

∗ of length less than BDist − k + 1.

q

A/−

B/−

(a) Self loop example.

Distinguishing
Bounds DBBased

A.A.ΣI

A.B.ΣI A.A.ΣI

B.A.ΣI B.B.ΣI

B.B.ΣI

(b) Test cases using Distinguishing Bounds vs
DBBased with BDist = 3. ΣI is the input vo-
cabulary.

Figure 4.2: Comparison of the test cases, of length equal to BDist, associated to
the figure on the left and generated using both methods.

To illustrate this, let us consider the self loops depicted in Figure 4.2a. With
BDist = 3, Table 4.2b describes all test cases required for both method, Distinguish-
ing Bounds and DBBased, to check the state depicted in Figure 4.2a. We notice
that we only consider suffixes of length BDist in the table given in Figure 4.2b.

If Bdist > 2, this change allows us to reduce the number of queries for finding
a counter-example by up to 2|ΣI |((nsloop)Bdist−1 − nsloop) for each state containing
nsloop self loops. It means that if each state of the hypothesis contains less than
one self loop, this change does not bring any performance improvement. However,
the gain is up to O(|ΣI |(nsloop)Bdist−1) for each state containing nsloop self loops.

Algorithm

Algorithm 1 is an equivalence oracle for Mealy machines using the membership
oracle for a given distinguisher bound BDist. This algorithm implements the three
optimizations described above.

In Algorithm 1, the ANALYZE_SUFFIX function is used to sort the suffixes in-
teresting counter-example search. Actually, DBBased method does not provide
the same guarantee as Distinguishing Bounds method, but it stores the missing
sequences in the validation_suffix variable of the Algorithm 1.

Thus, in case the user wants to have the same guarantee as the Distinguishing
Bounds method, it should first proceed the counter-example searching using the

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 89

Algorithm 1 DBBased method Algorithm
Require: Mealy machineM = (Q, q0,ΣI ,ΣO, δ, Out), Distinguisher bound BDist

and Membership oracle MOracle
Ensure: True ifM'MSUT and counter-example cex ∈ (ΣI)

∗ otherwise
1: for q ∈ Q do
2: R[q]← wq where δ(q0, wq) = q s.t. |wq| is minimal
3: validation_suffix[q]← {}
4: for q ∈ Q do
5: for i ∈ ΣI do
6: wi ← R[q].i
7: if Out(q, i) 6= last symbol of Out(MOracle(wi)) then
8: return R[q].i

9: q′ ← δ(q, i); w′i ← R[q′]
10: if Out(q, i) = ConnectionClosed then
11: if last symbol of Out(MOracle(w

′
i)) 6= ConnectionClosed then

12: return R[q′]

13: go to 5
14: for suffix ∈ (ΣI)

Bdist−1 and l ∈ ΣI do
15: analyze_later = ANALYZE_SUFFIX(suffix, q)
16: if analyze_later = true then
17: validation_suffix[q]← validation_suffix[q]

⋃{suffix}
18: go to 14
19: out0 ← Out(MOracle(wi.suffix.l))
20: out1 ← Out(MOracle(w′i.suffix.l))
21: if out0 6= out1 then
22: if out0 6= Out(q′, wi.suffix.l) then
23: return wi.suffix.l
24: else
25: return w′i.suffix.l
26: return True
27: procedure analyze_suffix(suffix, q)
28: start_state← q
29: start_letter ← suffix[0]
30: i← 1
31: while i < |suffix| do
32: end_state← δ(start_state, start_letter)
33: if end_state = start_state then
34: tmp_end_state← δ(end_state, suffix[i])
35: if tmp_end_state = end_state and start_letter 6= suffix[i] then
36: return true
37: start_state← end_state
38: start_letter ← suffix[i]
39: i← i+ 1

40: return false

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 90

DBBased method and if no counter-example is found, then checks the remaining
tests sequences present in the validation_suffix.

In the worst case, Distinguishing Bounds, DBBased and DBBased with valida-
tion require O(n.|ΣI |BDist) membership queries to find a counter-example. Actu-
ally, this is only a theoretical complexity, because in practice, DBBased and DB-
Based with validation require less membership queries than Distinguishing Bounds
to find a counter-example.

In the following section, we evaluate the efficiency of finding counter-example
and the performance of our new method against the Distinguishing Bounds method.

4.4 Benchmark and Discussion
Aichernig et al. proposed a comparaison of four active learning algorithms against
different equivalence query methods [ATW20] (excluding the Distinguishing Bounds
method). Their goal was to identify which equivalence query method works well
with which active learning algorithm. They demonstrated that pure random test-
ing, such as RandomWord and RandomWalk, does not scale, and Wp-method
performed well with all types of their compared active learning algorithms.

In this section, in contrast to their works, we focused on comparing three
equivalence query methods using L? algorithm. We also discuss an interesting
open problem about the performance of the learning process.

4.4.1 Experimental Setup

We evaluate three different methods for the equivalence query: Distinguishing
Bounds (DB), DBBased method and DBBased method with validation (see Ta-
ble 4.2). We evaluate these three methods by inferring three different SSH stacks
(Net::SSH, wolfSSH and ssh2) using different scenarios (cf sec. 5.2.3).

We selected these three stacks according to the following conditions: they all
required multiple hypotheses in the learning process; but they contain various
amount of self loops (few, moderate, many as described in Table 4.3). We only
apply our benchmark to SSH stacks because most of TLS stacks only have 1 or 2
hypotheses and contain very few self loops.

We have not included RandomWalk and W(p)-method for the benchmarking
because they do not share the same parameters as Distinguishing Bounds and
DBBased methods. However, we believe that it is an interesting direction for a
future work.

Appendix A summarizes the results of the inferences using DB (for Distinguish-
ing Bounds), DBBased with validation (for DBBased method with validation) and

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 91

DBBased (for DBBased method) methods. For each result, we have used a Bdist

equal to 3.
We denote counter-example by “cex”. We split the results of searching for a

counter example into two: “Searching cex” (when a counter-example is found) and
“Hypothesis Validation” (when no counter-example is found). Hence, the exact
results of searching for a counter example are earned by aggregating these two
results (Searching cex and Hypothesis Validation).

Stacks Sut Size of the
vocabulary

Size of the
Automaton

Nb loops
by state

Nb
hypothesis

Net::SSH
v7.1.0 client 8 48 1.17 7

wolfSSH
v1.4.12 server 5 18 1.76 4

10 74 3.45 5
ssh2
v1.11.0 client 8 26 0.92 7

Table 4.2: SSH stacks and scenarios to evaluate equivalence query methods.

Size of the
Automaton

Nb states with
loops = 1

state with loops ≥ 2

Nb of states Nb loops
by state

exp-1 48 4 13 (27.08%) 3.92
exp-2 18 4 12 (66.67%) 2.16
exp-3 74 0 72 (97.30%) 3.50
exp-4 26 1 9 (34.62%) 2.44

Table 4.3: Overview of the self loops by experiments. The number in parenthesis
represents the percentage of states containing self loops ≥ 2.

To simplify, we denote:

• exp-1 : the experiment related to Net::SSH v7.1.0 client using the transport
and authentication vocabulary;

• exp-2 : the experiment related to wolfSSH v1.4.12 server using the transport
vocabulary;

• exp-3 : the experiment related to wolfSSH v1.4.12 server using the transport
and authentication vocabulary; and

• exp-4 : the experiment related to ssh2 v1.11.0 client using the transport and
authentication vocabulary.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 92

4.4.2 Experimental Results

Before starting our analysis, we confirm that the three methods have found the
same state machines for the four inferred SSH stacks after the same number of
hypotheses.

When analyzing our results, we focus on the following three aspects:

• the number of membership queries required for each equivalence query method;

• the time required to find counter-example if there exists one; and

• the distribution of the time and queries during the learning process.

a) Number of Membership Query

The results of our benchmarking confirm that DBBased method and DBBased
method with validation require a smaller number of membership queries than the
Distinguishing Bounds method to validate an hypothesis.

Table 4.4 shows that around 50% of the queries of the Distinguishing Bounds
method are useless to find a counter-example compared to the DBBased method
with validation; whereas these two methods provide the same guarantee.

Actually, the length of the queries are almost the same for the three meth-
ods. However, as expected, DBBased method has slightly longer queries than the
Distinguishing Bounds method.

b) Finding a Counter-Example

Table 4.5 shows the ability of DBBased method (with and without validation) to
quickly find a counter-example compared to the Distinguishing Bounds method if
one exists. We merge the results of DBBased method and DBBased method with
validation in the Table 4.5, they are the same for all of our four experiments.

Only very few queries are necessary to find a counter-example, up to 89% less
than Distinguishing Bounds method (for exp-4), using DBBased method. On
average, both DBBased methods use only 34% queries of Distinguishing Bounds
method to find a counter-example. Both DBBased method use quite long letters
per query to find counter-example.

Finally, considering the 4 experiments, DBBased method find counter-example
up to 2 times faster than the Distinguishing Bounds method. Table 4.5 presents
the detailed results.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 93

DB DBBased
with validation DBBased

exp-1
(Msloop = 1.17)

Nb query 394 000
(100%)

180 769
(45.88%)

152 033
(38.59%)

Mean query length
(in messages) 7.63 8.75 8.92

exp-2
(Msloop = 1.76)

Nb query 22 720
(100%)

13 609
(59.90%)

12 469
(55.88%)

Mean query length
(in messages) 5.57 6.11 6.06

exp-3
(Msloop = 3.45)

Nb query 972 000
(100%)

725 388
(74.63%)

616 380
(63.41%)

Mean query length
(in messages) 6.89 7.27 7.21

exp-4
(Msloop = 0.92)

Nb query 213 952
(100%)

42 334
(19.78%)

40 478
(18.92%)

Mean query length
(in messages) 6.97 8.97 8.98

Average percentage
of the Nb query 100% 50.05% 44.20 %

Table 4.4: Evaluation of the queries required for validating an hypothesis. The
number in parenthesis represents the percentage of required queries compared to
the Distinguishing Bounds. Msloop is the mean self loops by state.

c) Repartition of the Time and Queries

Tables 4.7 and 4.6 summarize the distribution of the time spent while searching
for a counter-example, validating and building hypothesis.

The DBBased method with validation loses a lot of time to validate an hypoth-
esis (up to 60% of the time with exp-1 and 83% with exp-3) compared to the two
other methods (38% of the time with exp-1 for Distinguishing Bounds method and
36% with exp-1 for DBBased method). In addition to the queries specific to DB-
Based method, DBBased method with validation also checks all the combinations
of self loops that were skipped in the last occurence of DBBased method.

During the learning process, the three methods spent almost 90% of the time on
searching for counter-eaxmple and validating hypothesis. Only 10% of the time is
used to build hypothesis. The larger the state machine, the longer the equivalnece
query methods take for searching for a counter-example and validating hypothesis.

However, for our four experiments, we notice that DBBased method with and

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 94

DB
DBBased

with and without
validation

exp-1

Duration
(in secondes)

31 274
(100%)

17 290
(55.28%)

Nb query 609 440
(100%)

207 521
(34.05%)

Mean query length
(in messages) 5.89 6.72

exp-2

Duration
(in secondes)

3 124
(100%)

2 681
(85.24%)

Nb query 24 754
(100%)

13 056
(52.74%)

Mean query length
(in messages) 5.23 5.64

exp-3

Duration
(in secondes)

67 715
(100%)

36 067
(53.27%)

Nb query 361 106
(100%)

139 634
(38.67%)

Mean query length
(in messages) 6.94 7.23

exp-4

Duration
(in secondes)

2 704
(100%)

2 321
(85.84%)

Nb query 263 657
(100%)

27 419
(10.40%)

Mean query length
(in messages) 4.89 7.19

Table 4.5: Evaluation of the ability of the three methods in finding counter-
examples.

without validation brings a small improvement compared to the Distinguishing
Bounds method either on the proportion of the time or the queries while searching
for a counter-example and validating hypothesis (see Tables 4.6 and 4.7). But,
more benchmarks should be done to confirm this affirmation.

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 95

DB DBBased
with validation DBBased

exp-1

Searching
cex 60.16% 52.15% 56.21%

Hypothesis
Validation 38.89% 45.43% 41.18%

Building
Hypothesis 0.95% 2.42% 2.61%

exp-2

Searching
cex 50.96% 46.86% 48.86%

Hypothesis
Validation 46.77% 48.85% 46.67%

Building
Hypothesis 2.27% 4.29% 4.47%

exp-3

Searching
cex 26.87% 22.41% 25.32%

Hypothesis
Validation 72.32% 76.40% 73.34%

Building
Hypothesis 0.81% 1.19% 1.34%

exp-4

Searching
cex 54.60% 36.47% 37.40%

Hypothesis
Validation 44.31% 56.31% 55.21%

Building
Hypothesis 1.09% 7.22% 7.39%

Table 4.6: Repartition of the queries while searching counter-example, validating
and building hypothesis.

4.4.3 Discussion

The DBBased method is at least two times faster than the Distinguishing Bounds
method for discovering a counter-example. It only requires a very few queries, up
to 20% less queries than the Distinguishing Bounds method with exp-1. It also im-
proves the overall learning process, up to two times faster than the Distinguishing
Bounds method.

The DBBased method is the most efficient in terms of speed in finding a
counter-example but it does not provide the same guarantee as the DBBased
method with validation and Distinguishing Bounds method. It offers the same

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 96

DB DBBased
with validation DBBased

exp-1

Searching
cex 54.73% 33.14% 52.76%

Hypothesis
Validation 38.62% 60.16% 36.13%

Building
Hypothesis 6.65% 6.70% 11.11%

exp-2

Searching
cex 57.56% 49.08% 54.83%

Hypothesis
Validation 33.60% 41.12% 34.27%

Building
Hypothesis 8.84% 9.80% 10.90%

exp-3

Searching
cex 19.02% 14.15% 17.54%

Hypothesis
Validation 78.84% 83.59% 79.67%

Building
Hypothesis 2.14% 2.26% 2.79%

exp-4

Searching
cex 25.57% 22.09% 25.25%

Hypothesis
Validation 59.99% 62.11% 56.65%

Building
Hypothesis 14.44% 15.80% 18.10%

Table 4.7: Repartition of the time while searching counter-example, validating and
building hypothesis.

quarantee as the two other methods, under the assumption that two states do not
need complex paths with different self loops to be distinguished.

Based on our four experiments, the DBBased method works in practice. It
finds the same state machines as the two other methods because the validation
step does not provide a new counter-example in our experiments.

The DBBased method with and without validation share the same complexity
when finding a counter-example, but in contrast to DBBased method, DBBased
method with validation, loses a lot of time to validate an hypothesis. However, the
DBBased method with validation remains more efficient than the Distinguishing
Bounds method either in finding counter-example or in the overall learning process;

CHAPTER 4. BENCHMARK OF EQUIVALENCE QUERY 97

whereas both methods provide the same guarantee.
Actually, our results about the distribution of the time spent and the number of

queries while searching for a counter-example, validating and building hypothesis
show the necessity of having an efficient equivalence query method which allows
to decrease the number of queries.

Chapter 5

Black-box Analysis of TLS and SSH
Implementations

This chapter details our results on TLS and SSH state machine inference using the
generalized methodology proposed in chapter 3.

We use the Mealy machine representation for the state machines of TLS and
SSH. A detailed example is given in Figure 5.1.

Figure 5.1, describes a typical TLS 1.3 connection and the corresponding ex-
pected client state machine. On the right, transitions are labeled with the messages
sent to / received from the client. The path in green is the expected flow, also
called happy path, described on the left, ending with a request (the AppData re-
ceived from the client between states 4 and 5) and the answer (the AppData sent
between states 5 and 6). A transition with * aggregates the behaviors for the
remaining input messages.

The happy path in Figure 5.1 does not take session resumption or the so-
called 0-RTT mode into account. It also ignores common error cases, such as the
impossibility for the client and the server to agree on a common ciphersuite.

From this description, we represent the expected behavior of a TLS 1.3 client
with the state machine on the right side of Figure 5.1. The happy path, in green,
starts with the client outputting a ClientHello, and leads to the Finished mes-
sages and the exchange of Application data. Outside of this happy path, all other
messages (denoted by *) lead to the sink state with a fatal alert. This figure is
identical to the state machine inferred on OpenSSL 3.0.1 using our methodology.

This chapter is organized as follows: sec. 5.1 gives more details about how we
built our Mapper. Then, in sec. 5.2, we describe our TLS and SSH platform
followed by several TLS and SSH scenarios considered for the inference and the
list of our studied stacks. sec.5.3 presents how we detect bugs from TLS and SSH
state machines and how we confirm them. In sec. 5.4, we discuss and evaluate our
optimization proposal for the learning process. In sec. 5.5, we provide more details

99

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 100

Client Server
ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished
Application data

Application data

0

1

2

3

4

5

6

States from
the happy path

Cleartext
Ciphertext (HS)

Ciphertext

0

 - / ClientHello

6

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

 * / Alert 5

Finished
 / Finished+AppData

AppData / EOF * / Alert

Figure 5.1: A typical TLS 1.3 connection and the corresponding expected client
state machine.

about reproduced and new vulnerabilities we have detected. Finally, in sec. 5.6,
we summarize the list of reproduced and new vulnerabilities we have detected; and
we also discuss about the limitation of our method.

5.1 Mapper Implementation

As discussed in chapter 3, one major challenge with the L? approach is that the
Mapper used to concretize the abstract messages has to be flexible enough to
send arbitrary messages at any state of execution of the protocol (even ones that
would clearly be invalid). In this section, we describe our implementation of the
Mapper for TLS and SSH.

5.1.1 TLS Mapper

For the TLS platform, we use scapy, a Python-based network tool, to forge and
decode packets [Bio05]. scapy implements all SSL/TLS versions (from SSLv2 to
TLS v1.3) and allows us to easily build customized packets (e.g., a Certificate-
Verify with a wrong signature).

Apart from small patches1, scapy proved to be up to the task. We added two
patches to scapy: variable initialization and fix bug related to Diffie-Hellman.

1Our patches can be seen at https://github.com/pictyeye/scapy/tree/pylstar

https://github.com/pictyeye/scapy/tree/pylstar

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 101

Variable initialization Initializing variables is required to build TLS messages
in an arbitrary order. During the concretization, if a variable is required but its
value is none, the default value (initial value) is used when building the message.

Fix bug: Diffie-Hellman When using scapy as a TLS Mapper, we detected
a bug related to the Pre Master Secret (PMS) derivation for Diffie-Hellman key
exchange in TLS (only the Finite Field DHE, not the ECDHE variant). Indeed,
the RFC states that the leading zero bytes must be stripped when storing the
PMS. This is bad practice, since it leads to exploitable timing attacks such as
the Raccoon Attack2, which is CVE-2020-1968 for OpenSSL, but required to be
compatible with other stacks.

In contrast to TLS, we built from zero our SSH Mapper which we describe in
the next section.

5.1.2 SSH Mapper

In this section, we describe the design of our SSH Mapper following the solution
introduced in chapter 3.

a) Message Structure

Because the Mapper concretizes and abstracts messages, we need to know the
structure of the SSH messages. We identified two different SSH messages struc-
tures: without and with encryption [Ylo06c].

Without encryption, each SSH message has the structure described in Fig-
ure 5.3, where the packet length is the length of the packet in bytes (not in-
cluding the packet length field itself); the padding length is the length the
padding (random bytes) and the SSH payload covers the SSH message type and
the payload (the payload depends on the SSH message type).

The SSH message structure changes when encryption is enabled (see Fig-
ure 5.4). First, a counter is incremented for each message sent and received.
Second, SSH messages are built using the message structure without encryption.
Then, the output of the second operation is encrypted and the MAC value corre-
sponding to the counter concatenated with the output of the second operation is
computed. Finaly, the encrypted SSH packet is the concatenation of the encrypted
packet and the MAC value. This corresponds to the encrypt and MAC paradigm,
used by default in SSH (but it can change with some algorithms).

We implemented in ssh_generic_packet and parse_generic_ssh_msg, two
functions that handle the SSH message structure either with or without encryption.

2 https://blog.min.io/raccoonattack/.

https://blog.min.io/raccoonattack/

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 102

As described in Figure 5.2, we also implemented in each SSH message class two
functions, build and parse, for the SSH payload structure which is specific to
each SSH message type.

b) Internal state

We recall that the SSH protocol has three layers: Transport layer, Authentication
layer and Connection layer. To handle the Internal state, we create SSHConnState,
a class which contains three “sub-internal state”: TransportState, CryptoState
and ConnectionLayerState. The authentication layer does not change the state
of the Internal state of the Mapper.

The TransportState is used to store all parameters related to the KEXINIT
(from both side) and the DH_INIT and DH_REPLY messages. These parameters are
useful for the derivation of the session identification (session_id) and the session
keys.

The CryptoState is used to store all parameters related to the cryptography
such as the session_id (which is static during the SSH connection), the symmet-
ric cryptographic material (local_sym_crypto and remote_sym_crypto) which
is used to store the selected encryption algorithm, the session keys from client to
server and server to client, the material required for the computation of the MAC
value (macstate) such as the current sequence number (i.e., the counter described
in Figure 5.4) and the selected MAC algorithm (from the Learner to the Sut).

Finally, the ConnectionLayerState is used to correctly handle the channels
in the connection layer. We use open_channels, a dictionary which allows us
to handle the association of each recipient and sender channel. Especially when
analyzing the SSH server, we offer the possibility to limit the number of channels
to open. It allows us to easily handle the channel association.

For the update of the Internal state, we choose the strategy 3 described in
sec. 3.4.2. Since SSH state machines are big, this strategy allows us to get a
simplified state machines (in terms of number of states).

c) Protocol Logic

To correctly implement the SSH Mapper, we need the following operations: (i)
derivation of the exchanged hash H and the session_id, (ii) derivation of the
session keys, (iii) encryption, (iv) decryption, (v) signature and (vi) computation
of the MAC value. These six operations are implemented in different functions of
the CryptoState.

The exchanged hash H is the hash of V (C)||V (S)||I(C)||I(S)||KS||e||f ||K where
C is the client, S is the server, V (x) is the identification string of x (which is present
in the SSHVersion message), I(x) is the payload of the KEXINIT message of x, KS

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 103

updateupdate

Always update
Update with condition

Figure 5.2: Design of the SSH Mapper.

Figure 5.3: SSH message format before encryption is activated.

Figure 5.4: SSH message format with encryption is activated.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 104

is the public host key of the server, e (resp. f) is the public Diffie-Hellman value
of the client (resp. the server) and K is the shared secret (between the client
and server) from the execution of the Diffie-Hellman protocol. The value of H is
updated during each key re-exchange.

The session_id (which is a unique identifier for this connection) is the first
value of H from the first key exchange. Session keys are then derived from the
session_id and the exchanged hash H.

To complete the implementation of the Mapper, we implement different func-
tions for the encryption, the decryption, the computation of the signature (for the
server and client authentication) and the MAC value (see Figure 5.4).

In the following section, we discuss our TLS and SSH platform; we also discuss
about different scenarios used to systematically analyze TLS and SSH stacks.

5.2 Experimental Setup and Experiments

The learning setup comprises the Learner, the Mapper and the Sut. The Sut
and the Learner are configured following the scenario detailled in sec. 5.2.3. In
this section, we discuss three things: architecture of our platform, the implemen-
tations tested and the learning alphabet.

5.2.1 Architecture of our Platform

Our two platforms: TLS-inferer and SSH-inferer, are based on pylstar as an
implementation of the L?.

a) TLS Platform

In our platform, a TLS stack is defined as a container running at least one of the
following scripts: run_server, which launches a TLS server, ready to be sollicited;
run_client, which starts a so-called trigger server, a service listening to signals
from the inference tool, so a TLS client can be spawned each time we want to test
a message sequence. Table 5.1 lists the TLS stacks currently included.

Figure 5.5 describes a typical workflow of our platform to infer a client state
machine.3 First, we start a client container running the trigger script (step 1).
Then, we start our inference tool containing the L? engine (the Learner) and the
TLS Mapper (step 2).

3Inferring a server works in a similar, but simpler, way. Indeed, we can simply start the server
and have the inference tool open a connection for each sequence to test.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 105

Each time the algorithm needs to learn information from the Sut (the TLS
client) using a sequence of messages, it first resets the client (step 3), which
spawns a fresh TLS client in the client container (step 4). This client estab-
lishes a TCP connection to the TLS server within the harness (step 5) and sends
its ClientHello. From now on, the L? engine drives the Mapper by transmitting
abstract messages to send to the client (step 6). The harness concretizes those
messages and sends them to the client (step 7). In return, the concrete answer
from the client (step 8) are abstracted by the harness (step 9).

Steps 3 to 9 are repeated until the L? engine is able to produce a valid hypothesis
regarding the client state machine, that is to generate an automaton accurately
describing the client behavior (step 10).

b) SSH Platform

We built a very similar platform as TLS for the analysis of the SSH server. Client
inference works exactly as TLS client inference.

We observed that several SSH servers crashed after a few membership queries
and when inferring the Connection layer, a few SSH stacks do not properly en-
sure its functionality (they behave non-deterministically) after several membership
queries.

For these reasons, we added a proxy to the SSH server container which is used
to open and close the server. This allows the Learner to restart the server if
necessary.

Figure 5.6 describes a typical run of our platform to infer a SSH server state
machine. First, we start a server container running the trigger script and the
proxy (step 1). Then, we start our inference tool containing the L? engine (the
Learner) and the SSH Mapper (step 2).

At the begining, the Learner establishes a TCP connection to the proxy and
sends the message OPEN to the proxy (step 3). Then, the proxy resets the server
(step 4) which spawns a fresh SSH server in the server container (step 5). After the
SSH server is opened, the proxy sends a signal OK to the Learner (step 6), which
notifies the Learner that the server is ready. Hence, the Mapper establishes a
TCP connection to the SSH server and sends its SSHVersion and gets the Sut’s
SSHVersion (step 7). From now on, we proceed exactly as with the TLS platform.

However, after a membership query, the Learner has the possibility to close
and re-open the server by sending the message CLOSE and OPEN to the proxy. When
the proxy receives the message CLOSE, it closes the server and sends the signal OK
to the Learner. And again, if the Learner wants to re-open the server, then it
sends OPEN to the proxy and so on.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 106

Client Container Inference Tool

Trigger Script

1 2

6

Learner
(L* engine)

Reset3

SUT
(TLS Client)

Mapper
(TLS Server)

Listening Endpoint

Network Communications

TLS Connection Initiation
(Client Hello)

Processus Creation

4

5

Concrete Messages
7

8

9

Inferred state machine

10

Result Production

Abstract Messages

Figure 5.5: TLS client inference workflow.

Trigger Script

SUT
(SSH Server)

MAPPER
(SSH Client)

Learner
(L* engine)

SSH Connection Initiation

Concrete Messages

Inferred state machine
Network Communication
Abstract Messages
Processus creation

Result Production

SSH Server Container SSH Inference Tool1 2

3

6

4

5

7

8
11

9

10

12

Proxy

Figure 5.6: SSH server inference workflow.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 107

5.2.2 Implementations Tested and Analyzed

We create containers for more than 600 stacks (400 TLS stacks and 200 SSH
stacks). Table 5.1 details the TLS stacks currently included in our TLS platform
and Table 5.2 for SSH platform.

For each stack, we reuse the tools or the example code available within the
project to build and run a TLS or SSH client and/or a TLS or SSH server4. Such
pieces of code are representative of the way the libraries are used in practice.

Each TLS container is customized to select the protocol version and the ci-
phersuites, and to include the required cryptographic material (certificate, keys,
trusted certification authority), which allows us to study different scenarios.

In addition to the “example” client, we create for each TLS stack a second
container, using curl dynamically linked with each TLS stack. These curl-based
images provide a unified interface across stacks, removing small differences in the
example provided by the projects, e.g., missing certificate checks. All server-side
examples include a functional and sufficiently customizable example for our needs.

In contrast to the TLS container, each SSH container is customized to select
the cryptographic algorithm (from client to server and vice versa), include the
required cryptographic material (keys and authorized client keys) and the SSH
configuration file. We notice that we have only analyzed SSH v2.0.

5.2.3 Learning Alphabet

Our goal is to systematically analyze TLS and SSH stacks. To this aim, we try
to consider different scenarios allowing to further analyze stacks in terms of state
machine by trying to cover the maximum security perimeter as possible.

a) TLS Learning Alphabet

To analyze TLS implementations, we define different scenarios. A scenario is
defined by the following three parameters:

(i) the role (client/server) and the configuration (protocol version, ciphersuites,
etc.) of the Sut;

(ii) the input vocabulary (the list of abstract messages) used during the inference;
and

(iii) a set of security properties to test on the resulting graph.

4e.g., openssl s_server for the OPenSSL project.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 108

Stack Name Versions Client Server Comments
OpenSSL 0.9.8m - 1.0.0t (41) X X Only TLS 1.0

1.0.1a - 1.1.0l (53) X X Only TLS 1.0 and 1.2
1.1.1a - 1.1.1n (14) X X
3.0.0 - 3.0.2 (3) X X

curl+OpenSSL 1.0.0a - 1.0.0t (20) X Only TLS 1.0
1.0.1a - 1.1.0l (53) X Only TLS 1.0 and 1.2
1.1.1a - 1.1.1n (14) X
3.0.0 - 3.0.2 (3) X

GnuTLS 3.6.16 - 3.7.2 (4) X X

curl+GnuTLS 3.6.16 - 3.7.2 (4) X

mbedtls 1.3.10 - 1.4 (17) X X Only TLS 1.0
2.0.0 - 3.0.0p1 (96) X X Only TLS 1.0 and 1.2

wolfssl 3.12.0 - 3.14.4 (10) X X Only TLS 1.0 and 1.2
3.15.5 - 5.2.0 (20) X X

curl+wolfssl 3.12.0 - 3.14.4 (10) X Only TLS 1.0 and 1.2
3.15.5 - 5.1.1 (20) X

matrixssl 3.7.2 (1) X Only TLS 1.0
4.0.0 - 4.3.0 (7) X

NSS 3.15 - 3.38 X X Only TLS 1.0 and 1.2
3.39 - 3.78 X X

erlang 20.0 (1) X Only TLS 1.0
24.0.3 - 24.2.1 (2) X

fizz 2021.02 - 2021.06 X Only TLS 1.3
Weekly snapshots

Table 5.1: List of TLS Stacks included in our TLS Platform (the number in paren-
theses is the number of stacks).

Stack Name Versions Client Server
OpenSSH 6.5.P1 - 9.2.P1 (30) X X
dropbear 2014.64 - 2022.83 (20) X X
libssh 0.7.6 - 0.10.4 (23) X X
paramiko 2.4.0 - 3.1.0 (30) X X
AsyncSSH 1.12.0 - 2.13.1 (38) X X
wolfSSH 0.1 - 1.4.12 (21) X X
SSH2 1.0.0 - 1.11.0 (12) X X
sshd-lite 1.3.1 - 1.2.0 (6) 7 X
Net::SSH 4.0.0 - 7.1.0 (34) X 7

Table 5.2: List of SSH Stacks included in our SSH Platform (the number in paren-
theses is the number of stacks).

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 109

Client Scenarios In these scenarios, the Sut is a client, running a given version
of TLS. The client is configured with a trusted certification authority and is ex-
pected to check the certificate presented by the server. The inference tool acts as a
server, with the following input vocabulary: ServerHello, Certificate messages
(valid, empty, invalid — trusted but for the wrong domain —, and untrusted),
other server-side Handshake messages, ApplicationData and CloseNotify.

In these scenarios, we ensure that the client only sends application data to a
correctly authenticated server. We look for paths leading to ApplicationData
messages and check for proper authentication.

Another area of interest is the presence of loops that could be used by an
attacker to stall a client, enabling complex cryptographic attacks, such as the
LogJam attack [ABD+15]. Since the goal of such attacks is to delay the completion
of the TLS Handshake, we only focus on loops happening early in the connection.

Server Scenarios In these scenarios, the Sut is a server, running a given ver-
sion of TLS. The server can be configured to require mutual authentication (with
respect to a given certification authority). The inference tool acts as a client, and
uses the following vocabulary: different ClientHellos, various Certificate mes-
sages (empty, trusted, untrusted), other client-side Handshake messages,
ApplicationData and CloseNotify. We also include alerts and unexpected mes-
sages such as server-side messages.

When client authentication is required, we want to ensure that the server prop-
erly authenticates the client. Only paths with a valid certificate and the corre-
sponding signature should be accepted.

We are also interested in the presence of loops in server state machines, which
could force the server to maintain a connection open indefinitely. For such denial
of service attacks, we only focus on occurrences happening before encryption is
activated; this way, the attacker only needs to spend very few resources to keep
the channel open.

Moreover, keeping the server in an early stage of the connection reduces the
chances of something being logged. Note that these loops are different from
the ones created through TCP segmentation or TLS ClientHello fragmentation,
which would be limited by the length of the data to send.

b) SSH Learning Alphabet

To analyze SSH implementations, we consider seven scenarios. A scenario is de-
fined by the following four parameters:

(i) the role (client/server) and the configuration (list of algorithms, etc.) of the
Sut;

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 110

(ii) the input vocabulary (the list of abstract messages) used during the inference;

(iii) the layer supposed to be completed (so it is executed before the inference);
and

(iv) a set of security properties to test on the resulting graph.

It means that these scenarios offer us the possibility of inferring the SSH stacks
state machine layer by layer. Table 5.3 gives an overview of the input vocabulary
we considered during the SSH inference.

Transport Scenario In this scenario, the input vocabulary is the vocabulary
concerning only the transport layer and the Learner is only interested in the
transport layer.

By considering this scenario, we quickly ensure that the server or client properly
implements the key exchange, the server authentication if the Sut is the client and
if it accepts skipping the NEWKEYS which is used to enable encryption. If this first
layer is not properly implemented, it opens a potential MiTM attacks.

Authentication Scenario In this scenario, we suppose that the transport layer
is completed. We only use authentication layer vocabulary (including invalid au-
thentication request messages when the Sut is the server) as an input vocabulary
of the L? algorithm.

This scenario allows us to quickly check whether the authentication layer is
well-written and whether it also allows to check if the authentication message is
correctly checked when it comes in an appropriate time, in case the Sut is the
server. If the server does not correctly check the client’s authentication, then it
allows a MiTM attack.

However, this scenario can not help a lot when learning the client’s state ma-
chine apart from checking if the client implements the protocol as expected.

Connection Scenario In this scenario, the first SSH two layers are supposed to
be completed and the input vocabulary is the connection layer vocabulary. Actu-
ally, especially in case the Sut is the server, the input vocabulary is parameterized
by the number of channel the Learner want to test.

In case the Sut is the server, this scenario allows us to check if the server
correctly handles the channel as described in the specification which is a complex
task. This scenario allows for both sides (client and server) to check if a DoS
attack is possible in the connection layer.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 111

Transport and Authentication Scenario In this scenario, the first two layers
of SSH are simultaneously infered using the transport layer and the authentication
layer vocabulary.

In addition to the Transport scenario, this scenario allows us to automatically
detect if replay attack is possible (see sec. 5.5.2) in case the Sut is the server;
and it allows to check if the client does not leak credentials to a non-authenticated
server in case the Sut is the client.

Authentication and Connection Scenario In this scenario, the transport layer
is supposed to be completed (i.e., out of interest) and the input vocabulary is the
union of the authentication layer vocabulary and the connection layer vocabulary.

In addition to the Connection scenario, this scenario allows us to ensure that
only an authenticated server has access to the connection layer and benefits from
its services. Only paths with valid authentication messages should be accepted.

Transport and Connection Scenario In this scenario, the transport layer and
the authentication layer are supposed to be completed and the input vocabulary is
the union of the transport layer vocabulary and the connection layer vocabulary.

It allows us to check if the key re-exchange is implemented correctly in the con-
nection layer. By considering this scenario, we are also interested in the presence
of paths described in sec. 3.2.3 which might allow an honest but curious client or
server to lead a DoS attack.

Transport, Authentication and Connection Scenario We combine all the
SSH message given in table 5.3 to analyze the Sut. This scenario allows us to
check simultaneously all the security properties described above. However, com-
pared to the scenario introduced above, this scenario is very costly in terms of the
performance of the learning process, which is expected because of the size of the
input vocabulary.

5.2.4 Configuration and Adaptation of our Platform

Before discussing our method to automatically detect bugs in state machines, we
present different solutions that we have implemented in our platform to avoid
non-determinism and infinite state machines.

a) Non-determinism

Since we use L? algorithm, we have to avoid all non-deterministic behavior of the
Sut (see sec. 3.1.5). TLS and SSH stacks behave deterministically, with a few
exceptions.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 112

Server
Inference

Client
Inference Comment

Transport

KEXINIT_DH KEXINIT
SRV_REQ and SRV_ACCPT are
parameterized by {auth,
connection, none}.

DH_INIT DH_REPLY
NEWKEYS NEWKEYS
SRV_REQ SRV_ACCPT
DISCONNECT DISCONNECT

Authentica-
tion

AUTH_none AUTH_SUCCESS
AUTH_PW_NOK and
AUTH_RSA_NOK contain a valid
username and an arbitrary
password and signature.

AUTH_PW AUTH_FAILURE
AUTH_PW_NOK AUTH_PK_OK
AUTH_RSA
AUTH_RSA_NOK

Connection

CH_OPEN OPEN_CONFIRM
CH_EXEC contains the command
line for creating a file test.txt
using linux command line
touch.

CH_DATA OPEN_FAILURE
CH_EOF CH_SUCCESS
CH_CLOSE CH_FAILURE
CH_SHELL CH_DATA
CH_pty CH_EOF
CH_EXEC CH_CLOSE

Table 5.3: SSH input vocabulary by layer. Messages in the server inference are
client-side messages and vice versa.

When a Sut takes too long to answer a stimulus, we can misinterpret its silence
as the absence of messages, whereas output messages were actually expected. This
requires to get the timeout parameter right. During each step of the membership
query, we must ensure that we have received all the messages the Sut has sent. The
usual solution is to wait for a long period of time before inferring "no response",
which makes the inference slow. To improve the performance of our tools, we
introduce heuristics to reduce the timeouts when possible.

In rare cases, an encrypted message can be misinterpreted and produces an
unexpected response. To avoid this, we always tag reception of encrypted packets
that cannot be properly decrypted with a dedicated letter UnknownPacket.

For SSH, we also detected two specific additional sources of non-determinism.
For the same query, we sometimes get the Sut’s responses in a different order. For
example as a response to the messageM, sometimes we get A+ B and sometimes
we get B +A 5. From the L? point of view, these two sequences of messages are

5When the Learner sends a CH_EXEC message to an OpenSSH server after a CH_OPEN,
we observed the following responses WINDOW_ADJUST+CH_SUCCESS+CH_DATA+CH_EOF+CH_EXIT
+CH_CLOSE and WINDOW_ADJUST+CH_SUCCESS+CH_DATA+CH_EXIT+CH_EOF+CH_CLOSE.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 113

different.
To avoid this problem, for each step of the membership query, we store the out-

puts from the Sut in setOfOutput6 variable. And if the set of the Sut’s responses
is already present in setOfOutput, we consider this element as the corresponding
response.

A few SSH stacks behave non-deterministically when processing the message
CH_DATA. In rare cases, data are encapsulated in one CH_DATA message and some-
times the Sut splits the same data into multiple CH_DATA message. Hence we
always consider only one CH_DATA message even if we receive multiple consecutive
CH_DATA to avoid this non-determinism problem.

However, this modification slows down the performance of the learning process
because we have to disable our optimization (discussed in sec. 5.4) when a CH_DATA
message is present in the Sut’s response. If a CH_DATA message is present in the
Sut’s response, we have to ensure that we have received all CH_DATA the Sut has
sent.

b) Infinite State Machines

As discussed in sec. 3.1.3, L? cannot infer infinite state machines. Several SSH
stacks do not have a finite state machine (e.g., OpenSSH, AsyncSSH and sshd-
lite). They all suffer from the same problem discussed in sec. 3.2.3.

To quickly recall the common reasons related to infinite state machines, the
latter can occur when the Sut accepts a message M0 indefinitely and it does
not directly respond to the Learner until it receives message M1. Then the
Learner receives multiple times the response corresponding to M0 in addition
to the response corresponding toM1 itself.

To avoid this problem, which amounts to counting parenthesis, when we receive
a messageM more than twice in the Sut’s responses, we aggregate the messages
to "M+M.M*"7. Thus, during the analysis of the state machine, we must
be aware of the meaning of "M+M.M*" which means that the Learner has
received the messageM at least twice.

Hence, by using this compression, we can infer the state machine of an imple-
mentation which would otherwise be infinite. However, we loose the exact infor-
mation about the Sut because no distinction is made between a message received
twice and three or more times.

6The variable setOfOutput contains a set of string.
7This does not apply to the CH_DATA message.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 114

c) Discussion

As described above, for some cases, we modify the Sut’s response to avoid either
non-determinism or infinite state machines. These modifications are not neutral for
the performance of the learning process, as they prevent us from taking advantage
of the optimization discussed in sec. 5.4.

Consequently, to be able to take advantage of our optimization, we create a
variable real_knowledge_tree8 to store the exact knowledge of the Learner
from the Sut even if we modify the exact responses from the Sut as discussed
below. It is worth noting that pylstar use the knowledge_tree variable to store
its knowledge of the Learner.

To illustrate this, if for example we get M+M+M+M as response to
A from the Sut, then we store this sequence, A/M+M+M+M, to the
real_knowledge_tree. And following the modification to avoid infinite state
machines, we modify M+M+M+M into M+M.M* and store it to the
default variable knowledge_tree of pylstar.

5.3 Vulnerability Detection and Confirmation

The learned state machine is not easy to analyze, as it requires a rigorous method
to automatically find bugs. In this section, we discuss our method to analyze state
machines by considering the different methods introduced in chapter 3.

5.3.1 Vulnerability Detection

To identify bugs using the learned TLS model, we first identify RFC violations
and then we analyze whether these violations represent bugs with the following
steps:

(i) color in green the happy paths representing successful connections;

(ii) color in gray error transitions leading to the sink state, which are expected;

(iii) color all remaining transitions in red since they are RFC violations, and may
correspond to vulnerabilities.

For SSH, instead of coloring all the remaing transitions in red (after step ii),
we color them in three different colors according to the input vocabulary and the
corresponding layer. Thus we chose three different colors for the three SSH layers.
This allows us to check easily if there exists a shortcut between two layers.

8real_knowledge_tree is a tree-like representation of the Learner’s knowledge.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 115

When the state machine is big (about 100 states), it becomes difficult to ex-
haustively find a bug from the state machine using this technique. It does remain
efficient to find a shorcut between two layers.

Hence, we created a tool based on NuSMV which is a reimplementation and
extension of Symbolic Model Checking [CMCHG96]. In contrast to the classical
model checking method, as described in Figure 5.7, we extract paths from the state
machine and check if the path verifies the property. This simple modification allows
us to exhaustively and automatically find a bug from the learned state machine.

extract

path

Properties

Figure 5.7: ModelCheckerNuSMV, a NuSMV-based tool for exhaustive bug finding
using state machine.

However, we do not yet defined all the required properties for the SSH Con-
nection layer, which we leave out for a future work.

5.3.2 Vulnerability Confirmation

These scenarios identify potential implementation issues which need to be inde-
pendently confirmed as security flaws. L? is an algorithm that produces a state
machine which represents the behavior of the Sut. However, the produced state
machine is only an approximation due to the (limited) set of abstract messages
selected in the scenario and the equivalence query method used. We thus use
tools to independently check whether a potential security issue, discovered by the
inference, actually translates into a real security flaw.

For authentication bypass issues, we extract the potentially dangerous paths
and replay them to the Sut, in a context where we do not have access to the
authentication secret. If we can trigger the tested stack to emit for example an
ApplicationData in case of TLS, the flaw is confirmed.

For SSH, we extract the potentially dangerous paths followed by CH_OPEN (ac-
cording to the vulnerability) and replay them to the Sut, if we trigger the tested
stack to emit an OPEN_CONFIRM, we confirm the vulnerability.

For loops, we send precomputed packets to the Sut at a given pace (typically
one message per minute), and for a given duration (e.g., several hours). If we can
maintain the connection open, we have a proof that the loop can be weaponized.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 116

Before dicussing our results on the TLS and SSH state machine inference, we
present in the following section different methods to optimize the learning process.

5.4 Optimization of the Learning Process

Before discussing our optimizations in pylstar, we can already improve the perfor-
mance by running in parallel several inferences. Since we use containers, running
multiple instances of Suts and inference tools is essentially free, so we can benefit
from a multi-core architecture.

5.4.1 EOF is Final

When we receive a network error, which indicates that the Sut has shut down the
communication channel, we can conclude that all subsequent messages will trigger
the same signal (EOF), so it is not necessary to build and emit the corresponding
messages.

In [dRP15], de Ruiter and Poll actually proposed a similar improvement in the
equivalence method implemented in statelearner, which resulted in measurable
performance gains. By also applying the idea to the first phase of the algorithm
(the membership queries), we further improve the performance.

5.4.2 Exploiting the Determinism

As discussed earlier, L? relies on the fact that the Sut is deterministic. So we
propose another optimization, which is a direct consequence of this assumption.
During its execution, L? often sends sequences that are extensions of already sent
sequences.

Let us assume that we have already observed that sending A to the Sut triggers
two messages, x and y. When evaluating the input sequence A B, we can send A,
read x and y without waiting after the reception of y, then send B and observe the
answer using the timeout.

A restricted version of this optimization consists in skipping the timeout only
when we know sending a message will not trigger any message back.

5.4.3 Optimizations’ Evaluation on TLS stacks

Table 5.4 describes the time required for a typical inference with different opti-
mizations. We infer the TLS 1.2 server state machine for OpenSSL 1.1.1k (which
contains 6 states) with 12 input messages and a 1-second timeout. The machine

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 117

No EOF optim. EOF optimization
No anticipation 1,885 s (100%) 1,598 s (85%)
Skip timeouts on
empty responses 1,081 s (57%) 862 s (46%)

Skip timeouts on
all known responses 128 s (7%) 77 s (4%)

Table 5.4: Average time required to infer TLS 1.2 server state machine for OpenSSL
1.1.1k. Percentages are the fraction of the unoptimized time.

hosting the experiment is an 16-core AMD EPYC 7302P at 3GHz, with 128 GB
of RAM and all the storage on SSDs.

It appears that both optimizations improve the overall performance, with a
drastic improvement from the fully-fledged timeout anticipation. We ran similar
experiments with statelearner (same timeout and vocabulary), on the same
hardware, and the time required to produce the state machine was 2,945 seconds.

Obviously, the time required for our inferences can vary, depending on the
complexity of the Sut state machine (which can count as much as 30 states in
some cases), the size of the input vocabulary (the scenario), and the speed of the
Sut. The default timeout used is 1 second, but to get a stable inference, we must
raise this value to 3 seconds for several stacks.

For a 1400-experiment run (which took around 2 and a half hours overall,
with 30 inferences in parallel), the average inference time was around 3 minutes,
the median was 81 seconds, and the 10th and 90th percentiles were respectively
27 seconds and around 8 minutes.

5.4.4 Discussion

We did not evaluate the impact of our optimization for SSH. Using our opti-
mization, several SSH inferences take days to obtain the final state machine. It is
therefore out of scope to make benchmarks for lack of time and for priority reasons.

However, we disable the skip timeout on empty responses optimization
for few SSH stacks (especially when learning the Connection layer) because we
detected a non-deterministic behavior of some SSH stacks (including OpenSSH)
due to this specific optimization. We still apply all the other optimization tricks
to speed up the learning process.

As described in Figure 5.8, OpenSSH server has two types of behavior de-
pending on the skip timeout on empty responses optimization (enable and
disable). It responds by CH_EXIT when the message CH_CLOSE is sent 1 second af-
ter the CH_EXEC, whereas it responds by CH_EXIT_SIGNAL if CH_CLOSE is directly

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 118

Figure 5.8: OpenSSH server non-deterministic problem detected when enabling
the skip timeout on empty responses optimization.

sent after CH_EXEC without waiting 1 second.

We have discussed all the components required for the learning process, Learner,
Mapper and the Sut. We also discussed how we proceed to detect bugs automat-
ically (and how we confirm them) from the learned state machine and just above,
we have indroduced our method to speed up the learning process. Thus, we are
now up to analyze the resulting state machine following all the processes discussed
previously.

5.5 Analysis of the Resulting State Machines

Our inference tool use the Distinguishing Bounds equivalence method (for TLS)
and DBBased method (for SSH) to find counterexamples. As explained in chap-
ter 4, these two methods offer the same guarantee and for the performance reason,
since the SSH state machine is big, we use DBBased method for the SSH infer-
ence. To get relevant results, we must thus assume that the chosen Bdist value is
sufficient.

We analyze over 600 different versions of different TLS and SSH stacks us-
ing different client and server scenarios and get over 3,000 automata. Sec. 5.6.3
summarizes the vulnerabilities reproduced and discovered during our study.

5.5.1 Authentication Bypasses

a) Server authentication bypasses in wolfSSL

Around 2015, authentication bypasses in state machines seemed to be pervasive
in TLS stacks [BBD+15, dRP15]. In 2020, CVE-2020-24613, an authentication

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 119

bypass affecting wolfSSL TLS 1.3 client, caught our eye, and we decided to try
and reproduce it using L?.

To this aim, we infer the state machines for wolfSSL TLS 1.3 clients, for differ-
ent versions, with standard Handshake messages. Figure 5.9a represents the state
machine corresponding to wolfSSL 4.4, which is vulnerable to CVE-2020-24613. By
skipping the CertificateVerify message, an attacker can bypass server authen-
tication, and thus impersonate any server to a vulnerable client. The vulnerability
was fixed in version 4.5, as can be seen on Figure 5.9b, which corresponds to the
inferred state machine for the patched version, using the same vocabulary.

However, in other scenarios, we also use a broader input vocabulary including
an empty Certificate message, that should never be sent by the server. We
could thus discover another vulnerability in wolfSSL, present in all versions at
the time. As shown in Figure 5.9c, instead of skipping the CertificateVerify
message, the attacker can send an empty Certificate message, followed by a
CertificateVerify message signed by an arbitrary RSA key.9 This new bug was
confirmed, reported as CVE-2021-3336, and fixed.

By adding new messages to the input vocabulary, we also discover another al-
ternate path to reintroduce the initial bug. Figure 5.9d shows that an attacker can
send an empty Certificate message, followed by an invalid CertificateVerify
message, containing an unknown signature algorithm and an arbitrary payload to
bypass server authentication. This bug, identified as CVE-2022-25638, has been
fixed in version 5.2.0.

All these attacks were reproduced by sending the identified transcript to the
vulnerable Suts. The program replaying the attack was not given access to the
server private key, and we checked both wolfSSL and curl+wolfSSL stacks to make
sure the authentication bypasses were real.

b) Other bypasses in TLS

In OpenSSL, several paths are incorrectly identified as invalid bypasses: the client
seems to be accepting any certificate from the server. However, when we analyze a
real TLS client using OpenSSL (the curl+OpenSSL stack), these dangerous paths
disappear. Indeed, in our OpenSSL containers, TLS clients use the s_client
application, which does not enforce any checks regarding the certificate.10

We use the same approach to assess the quality of TLS servers authenticating
clients. We get an issue in wolfSSL TLS 1.3 servers, as shown in Figure 5.10,

9In our inference tool, sending a Certificate message selects the corresponding RSA key to
be used in the subsequent CertificateVerify. For EmptyCertificate, the selected RSA key
is a fresh key generated for the experiment.

10It is possible to add options such as -verifyCAfile to the command line, but they do not
end an unauthenticated handshake and merely produce a warning message.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 120

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF

3

Cert / -

4

Fin / Fin+AppData

* / EOF Fin / Fin+AppData5

CV / -

* / EOF

AppData / -* / EOF

Fin / Fin+AppData

* / EOF

* / EOF

(a) CVE-2020-24613, a server authentica-
tion bypass in wolfSSL TLS 1.3 clients, up
to version 4.4. An attacker can impersonate
any server to a vulnerable client by skipping
the CertificateVerify message.

0

1

SH / -

6

* / EOF

2

EE / -

* / EOF3

Cert / -

* / EOF

4

CV / -

* / EOF

Fin / Fin+AppData * / EOF

AppData / EOF* / EOF

(b) CVE-2020-24613 fixed in version 4.5.
With the same vocabulary used in Fig-
ure 5.9a, the dangerous transitions have in-
deed disappeared.

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF4

Cert / - EmptyCert / -

* / EOF

5

CV / -

* / EOF

Fin / Fin+AppData * / EOF

AppData / EOF* / EOF

(c) CVE-2021-3336. By sending an empty
Certificate message, followed by an ar-
bitrary CertificateVerify, server imper-
sonation is also possible.

0

1

SH / -

7

* / EOF

2

EE / -

* / EOF 3

Cert / -

4

EmptyCert / -

* / EOF

5

CV / -

* / EOF

CV_invalid / -

* / EOF

Fin / Fin+AppData* / EOF

AppData / EOF* / EOF

(d) CVE-2022-25638. Adding a completely
invalid CertificateVerify message rein-
troduces a dangerous transition.

SH : ServerHello EE : Encrypted Extensions
Cert : Certificate CV : CertificateVerify
Fin : Finished AppData : ApplicationData
EOF : End of the connection

Figure 5.9: Attacks against wolfSSL TLS 1.3 clients.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 121

which is the transposition of CVE-2020-24613 to the server. By skipping the
CertificateVerify message (and optionally the Certificate message), an at-
tacker can bypass the authentication and impersonate any legitimate client. It
is worth noting that the server correctly rejects untrusted certificates and empty
Certificate messages (since client authentication is required in this scenario).
This bug, CVE-2022-25640, has been fixed in version 5.2.0.

0

1

CH / SH+EE+CR+Cert+CV+Fin

6

* / EOF

2

Cert / -

3

Fin / -

Untrusted Cert / EOF
EmptyCert / EOF* / EOF Fin / -4

CV / -

* / EOF

AppData / AppData+EOF * / EOF

Fin / -

* / EOF

* / EOF

Figure 5.10: CVE-2022-25640. In versions, up to 5.1.0, client authentication can be
bypassed in wolfSSL TLS 1.3 servers, using the same idea as in CVE-2020-24613.

c) Server authentication bypasses in SSH stacks

In 2018, at least 3 different SSH stacks, libssh, AsyncSSH and Paramiko, suffered
from authentication bypasses in state machines. Using L?, we are able to re-
produce these vulnerabilities (CVE-2018-10933, CVE-2018-7749, CVE-2018-7750
and CVE-2018-1000805). To this aim, we infer the state Machines for libssh,
AsyncSSH and Paramiko server using only the authentication and connection layer
messages.

We reproduce CVE-2018-7750 and CVE-2018-1000805 against the Paramiko
server in Figure 5.11. As described in Figure 5.11a, CVE-2018-7750 consists in
skipping the authentication request messages (AUTH_Passwd or AUTH_RSA), thus
an attacker can bypass the Paramiko server authentication and directly performs
the connection layer operations. This vulnerability affects all Paramiko servers
versions up to 2.4.1.

In the same year, another vulnerability against Paramiko server was discovered,
CVE-2018-1000805. The server authentication bypass attack consists in sending

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 122

the AUTH_SUCCESS11, which is normally only sent by the server, instead of the
authentication request message. The attacker can then benefit from all services
offered by the Connection layer. This vulnerability affects all Paramiko server
version up to 2.4.2.

CVE-2018-10933 is similar to CVE-2018-1000805, but unlike CVE-2018-1000805,
the attacker can only open channels and send data using CH_DATA message. We
provide the state machine related to this attack in Appendix B.

CVE-2018-7749 is similar to CVE-2018-7750. As in CVE-2018-7750, the AsyncSSH
server performs operations related to the Connection layer before authentication
has completed, but an attacker can not have access to the corresponding responses
until the authentication is completed. It is worth noting that we are not able to
completly reproduce the bug because of the black-box approach.

However, we also analyzed wolfSSH using authentication_connection sce-
nario and thus we discovered a new vulnerability affecting all wolfSSH versions at
the time. As shown in Figure 5.12, an attacker can successfully open a channel
without authenticating to the server. However, to benefit from the connection layer
services, the attacker should present, before or after the CH_OPEN_SESS message,
an arbitrary authentication request message (AUTH_PW_NOK and AUTH_RSA_NOK)
containing a valid username.

When the attacker presents an AUTH_PW_NOK or AUTH_RSA_NOK, the server re-
jects its authentication request message by sending AUTH_FAILURE meaning that
the server seems to correctly reject an invalid authentication request message.
However, if the attacker ignores the error message, and sends an CH_OPEN, then
the server accepts to open a session channel and considers that the client is au-
thenticated.

5.5.2 Weakened Authentication in SSH

As discussed in sec. 1.1, for the SSH protocol, authentication must take place after
the execution of the transport layer, otherwise, attacks are possible. If a server
accepts and processes a pubkey authentication message before the cryptographic
material is defined, this makes replay attacks possible.

As shown in Figure 5.13, if the pubkey authentication message is sent before
sending DH_INIT message, the session_id is not yet defined. It follows that:

• the signature presents in the authentication message is static (i.e., it remains
unchanged during the key lifetime); and

• the pubkey authentication message is sent in cleartext.

11We added the AUTH_SUCCESS message to the Learner’s input vocabulary.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 123

0

 Transport Layer

* / * AUTH_PW_NOK / AUTH_FAILURE
AUTH_RSA_NOK / AUTH_FAILURE

6

CH_OPEN / OPEN_CONFIRM

2

DISCONNECT / EOF

1

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS

* / * CH_EXEC / CH_SUCCESS
CH_pty / CH_SUCCESS

7

 CH_SUCCESS
CH_SHELL / +CH_DATA
 +CH_EOF+CH_CLOSE

3

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS

DISCONNECT / EOF

* / *
CH_SHELL / CH_SUCCESS
CH_EXEC / CH_SUCCESS

CH_pty / CH_SUCCESS

4

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS

DISCONNECT / EOF * / *
CH_SHELL / CH_SUCCESS
CH_EXEC / CH_SUCCESS

CH_pty / CH_SUCCESS

DISCONNECT / EOF

 CH_SUCCESS
CH_SHELL / +CH_DATA
 +CH_EOF+CH_CLOSE

* / * CH_EXEC / CH_SUCCESS
CH_pty / CH_SUCCESS

DISCONNECT / EOF

* / EOF

CH_OPEN / OPEN_CONFIRM

DISCONNECT / EOF

* / *

(a) CVE-2018-7750. An attacker can im-
personate any Paramiko server version up
to 2.4.1 by skipping the authentication re-
quest message.

0

 Transport Layer

* / *
 AUTH_PW_NOK / AUTH_FAILURE
AUTH_RSA_NOK / AUTH_FAILURE
 CH_OPEN / OPEN_FAILURE

2

DISCONNECT / EOF

1

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS AUTH_SUCCESS / NoRSP

* / EOF

DISCONNECT / EOF

* / *

3

CH_OPEN / OPEN_CONFIRM

DISCONNECT / EOF

* / * CH_EXEC / CH_SUCCESS
CH_pty / CH_SUCCESS

4

CH_SHELL / CH_SUCCESS
CH_EXEC / CH_SUCCESS

CH_pty / CH_SUCCESS

DISCONNECT / EOF

* / *
 CH_SHELL
 CH_EXEC / CH_SUCCESS
 CH_pty

(b) CVE-2018-1000805. An attacker can
impersonate any Paramiko server version
up to 2.4.2 by sending AUTH_SUCCESS mes-
sage instead of the authentication request
message.

Figure 5.11: Attack against Paramiko server.

0

 Transport Layer

CH_REQ / SELECT_ERR

2

CH_OPEN_SESS / OPEN_CONFIRM
 +AUTH_SUCCESS 6

AUTH_PW_NOK / AUTH_FAILURE
AUTH_RSA_NOK / AUTH_FAILURE

1

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS

* / * CH_pty / CH_SUCCESS

4

CH_CLOSE / CH_CLOSE+EOF CH_SHELL / CH_SUCCESS+EOF
CH_EXEC / CH_SUCCESS+EOF 3

AUTH_PW / -
AUTH_RSA / -

AUTH_PW_NOK / AUTH_FAILURE
AUTH_RSA_NOK / AUTH_FAILURE

* / EOF

CH_CLOSE / CH_CLOSE+EOF

* / * CH_pty / CH_SUCCESS

5

CH_SHELL / CH_SUCCESS+CH_DATA
CH_EXEC / CH_SUCCESS+CH_DATA

* / * CH_REQ / CH_SUCCESS

7

CH_CLOSE / CH_CLOSE CH_OPEN_SESS / OPEN_CONFIRM

* / *

CH_OPEN_SESS / OPEN_CONFIRM
 +AUTH_SUCCESS

* / *

AUTH_PW / AUTH_SUCCESS
AUTH_RSA / AUTH_SUCCESS

CH_OPEN_SESS / OPEN_CONFIRM

* / *

Figure 5.12: A server authentication bypass in wolfSSH in all versions at the time.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 124

Finding a valid signature for such an attack is not easy but still possible. An
attacker having such capabilities once can then bypass the server authentication
any time later.

This attack has a similarity to EarlyCCS [Kik14] in the sense that the attacker
tries to convince the other side to use a weak key (pre master secret for TLS and
session_id for SSH). In the TLS context, both sides have to be vulnerable to
such an attack for the MiTM attack to succeed.

When analyzing AsyncSSH and wolfSSH, we discover that they are also vulner-
able to this kind of replay attack.

We also suspect libssh server version up to 0.8.4 to be vulnerable to such
an attack. The libssh example server does not implement the pubkey authen-
tication, it only implements the password authentication. The libssh server,
ssh_server_fork, accepts the AUTH_PASSWORD message before the first key ex-
change process, that’s why we suspect that it is also the case for the pubkey au-
thentication message. It is however only a suspicion because we have not built a
libssh server accepting the pubkey authentication.

. . .

Client Server

Figure 5.13: Weakened authentication in AsyncSSH server in all versions at the
time.

5.5.3 Loops in the Automata

As discussed in Sec. 5.2.3, exploiting loops in TLS and SSH state machines can
be used to mount sophisticated cryptographic attacks [ABD+15]. Loops have also

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 125

been considered as a potential vector for denial of service attacks (e.g., CVE-2020-
12457). We thus identify such loops in our state machines, and we focus on those
occuring before messages are protected.

Analysis of a False Positive

The inferred state machine for wolfSSL TLS 1.2 server (all versions) seems to
exhibit a loop on the initial state, tagged with the NoRenegotiation warning.
However, when we repeatedly send such warnings to the Sut, the server actually
closes the connection after 4 warnings. This situation exhibits the fact that L?
is only an approximation, which can not always capture behavior happening very
deep in the state machine. This justifies our approach, to always confirm potential
vulnerabilities identified on the generated state machine.

For SSH, four stacks contain loops before messages are protected: OpenSSH,
dropbear, AsyncSSH and wolfSSH. However, three of them have timeout protec-
tion, OpenSSH, dropbear and AsyncSSH. When timeout is expired, they terminate
the connection. OpenSSL and AsyncSSH terminate connections after 120 secon-
des, and dropbear after 300 secondes.

Real bugs

After careful verification, we confirm the presence of several loops in different TLS
and SSH stacks, which are summarized in Table 5.5.

Stack Scenario Messages Max. Time
Between Msgs

erlang 24 1.0/1.2 Server NoRenegotiation Alert
> 1 hour?or ApplicationData

fizz 22.01.24 1.3 Client ChangeCipherSpec > 1 hour
matrixssl 4.0 - 4.3 1.0/1.2 Server NoRenegotiation Alert ≈ 40 seconds
NSS 3.15 - 3.78 1.0/1.2 Server NoRenegotiation Alert > 1 hour
OpenSSL < 1.1.0 1.0/1.2 Server Empty ApplicationData > 1 hour

wolfSSH ≤ 1.4.12 server SERVICE_REQUEST
DISCONNECT > 1 hour

? Erlang has a Timeout parameter that can thwart the attack. It was added to the official tutorial.

Table 5.5: Description of confirmed loops in TLS stacks.

For servers, loops can lead to Denial of Service attacks against TLS and SSH
services, while requiring very few resources from the attacker. Indeed, the attacker
can easily establish TCP connections and regularly send the right payload.

Beyond the payload and the Sut identification (IP address and port), the
attacker needs to store, for each connection, the source port and the associated
sequence numbers only. With stacks keeping a connection alive for several minutes

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 126

between packets (most probably because they do not enforce any kind of timeout),
this represents a tiny amount of CPU, memory and network resources for the
attacker. Moreover, distributing this attack is trivial. Finally, with vulnerable
stacks, the attack can be run indefinitely and does not usually generate logs.

Beyond adding reasonable timeouts (both per-message and per-handshake)
within the affected stacks, firewalls or other network devices should be used to
detect and block such extreme behavior. For the affected stacks, the issues have
been reported and fixed when deemed relevant.

5.5.4 Unsolicited Client Authentication

TLS client authentication is an optional feature. The client can only present its
certificate after the server sends a CertificateRequest. Servers may however
be accommodating, and accept Certificate and CertificateVerify messages
from the client, even when they were not solicited.

Such behavior may expose parts of the code that are not normally used. In
2014, a critical security flaw was found in Microsoft SChannel: a buffer overflow
in the ECDSA signature check, triggered by client authentication, led to remote
code execution. Accepting unsolicited client authentication messages made this
obscure bug actually reachable in most deployments.

In our corpus, several versions of wolfSSL exhibit a similar behavior. Even if
these paths do not necessarily lead to security issues, they should be removed, and
considered bad practice, as they are a deviation from the specification.

5.5.5 Skip Encryption in SSH

Protocols such as TLS and SSH are designed to ensure confidentiality, integrity and
authentication. By skipping encryption, it is thus possible to break the integrity
guaranteed by these protocols.

We discover two sources of vulnerabilities in SSH stacks allowing to skip encryp-
tion either on the client or server side. Skipping the SSH NEWKEYS message allows
server/client impersonation attack possible. We noticed that skipping encryption
allows server/client impersonation attacks if the attacker is able to perform an
additional step that we discuss below.

a) Skip Server Encryption

As described in Figure 5.14, skipping the server NEWKEYS message allows server
blind impersonation attack because server authentication is already done in the
DH_REPLY message. In such an attack, the client’s messages are encrypted. It
means that, for the server blind impersonation attack to succeeed, the attacker

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 127

has to guess two things: the client’s username and the requested recipient channel
(which is the channel number given in the CHANNEL OPEN message).

The messages coming after the first CHANNEL OPEN message are hard to guess,
which limits the attacker’s capabilities. However, if an attacker is able to guess
the commands executed by the client, then it can mislead the client by sending
fake responses. In practice, this assumption may make sense for a client executing
a script known to the attacker when connecting to an SSH server.

b) Skip Client Encryption

Performing a similar attack against an SSH server is much more difficult than
against an SSH client because it requires either building a valid signature (which
is cryptographycally hard) or injecting faults to force the client stack to skip the
NEWKEYS message.

For the second option, if an attacker is able to force a legitimate client to skip
the NEWKEYS message, it can benefit from all priviledges of the user. Although the
attacker cannot decrypt the server’s responses, it can execute commands or push
data to the SSH server.

During our analysis of the state machine, we discovered that AsyncSSH and
wolfSSH client- and server-sides (all versions at the time) are vulnerable to both
attacks (skip server/client encryption).

5.5.6 Credential Leakage in SSH

We identified a new vulnerability affecting all wolfSSH version at the time which
allows an attacker to obtain the client’s credential. Hence, the attacker can use
the leaked credential to impersonate the client to the real server.

Using the Transport and Authentication scenario to the wolfSSH client, we
found that the client leaks the client’s password before the server’s authentication
(i.e., before the DH_REPLY message). As described in Figure 5.16, the attacker only
have to send the SSHVersion message followed by an AUTH_FAILURE message to
obtain the client’s credential12. Concretly, the wolfSSH client always responds with
AUTH_PW to an AUTH_FAILURE message at any state of execution of the protocol.

5.5.7 Detection of Bleichenbacher Oracles in TLS

In this use case, our goal was to automatically identify Bleichenbacher oracles in
TLS stacks, by finding states in the state machine where we could distinguish

12We noticed that we failed to configure the wolfSSH client to accept the DH_REPLY message.
Thus, the state machine given in Figure 5.16 is "incomplete".

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 128

. . .

Client ServerAttacker

Figure 5.14: Skip the NEWKEYS message of the server.

. . .

Client Attacker Server

Figure 5.15: Skip the NEWKEYS message of the client. We denote MA the message
built by the attacker. Since the SERVICE_REQUEST and USERAUTH_REQUEST are
encrypted, the attacker can not decrypt them, then to succeed, the attacker has
to build himself these two message in cleartext.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 129

0

SSHVersion / SSHVersion

6

AUTH_FAILURE / KEXINIT+AUTH_PW

2

NEWKEYS / KEXINIT

3

* / EOF 1

KEXINIT_DH / KEXINIT+DH_INIT

AUTH_FAILURE / AUTH_PW

NEWKEYS / NoRSP

* / EOF

KEXINIT_DH / DH_INITAUTH_FAILURE / AUTH_PW

* / EOF

KEXINIT_DH / KEXINIT+DH_INIT

* / EOF

DH_REPLY / EOF NEWKEYS / SRV_REQ

KEXINIT_DH / NoRSP AUTH_FAILURE / AUTH_PW

5

AUTH_SUCCESS / NoRSP

4

SRV_ACCPT / NoRSP

DH_REPLY / EOF NEWKEYS / SRV_REQ+AUTH_NONE+CH_OPEN

KEXINIT_DH / NoRSP

AUTH_SUCCESS / NoRSPAUTH_FAILURE / AUTH_PW

SRV_ACCPT / NoRSP

DH_REPLY / EOF NEWKEYS / SRV_REQ+AUTH_NONE

KEXINIT_DH / NoRSP

AUTH_SUCCESS / NoRSP

SRV_ACCPT / NoRSP AUTH_FAILURE / AUTH_PW

Figure 5.16: wolfSSH client leaks creadential by responding AUTH_PW to
AUTH_FAILURE before the server authentication.

well-padded from wrongly-padded messages.
Our approach was to develop a scenario including forged ClientKeyExchange

messages with various properties, and then to use our platform to run this scenario
against TLS stacks, including ones known to be vulnerable to the Bleichenbacher
attack. We were confident we would reproduce existing flaws (i.e., identify known
oracles), but we hoped to also find new oracles, that may not be visible at first
sight, but that might be found in strange corners of the state machines (e.g., when
a specific message was sent after the ClientKeyExchange).

We indeed found oracles that were already documented: erlang OTP-20.0,
matrixssl 3.7.2 and wolfSSL v3.12.*. Figure 5.17 shows the inferred state machine

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 130

0 NoReneg / -

1

CH_RSA / SH+Cert+SHD

3

* / EOF

NoReneg / -

2

CKE_OK
 CKE_invalid_msg_len / -

CKE_wrong_prefix
 CKE_no_msg / DecryptError
CKE_small_padding

* / EOFNoReneg / -

CCS / - * / EOF

* / EOF

Figure 5.17: The erlang OTP-20.0 server exhibits a Bleichenbacher oracle: CVE-
2017-1000385.

for the erlang stack, where it is possible to distinguish between correctly and
incorrectly padded ClientKeyExchange messages. In this case, the distinction
corresponds to an explicit alert instead of the expected silence from the server.

Depending on the kind of messages that are distinguishable, Bardou et al.
defined a classification [BFK+12]. Thus, the obtained state machines allow us to
evaluate the quality of the identified oracle, that is to approximate the number of
messages required to recover a plaintext message.

Our efforts did not raise any new oracle, neither in terms of affected stacks nor
in terms of message sequences to observe, but we confirm that all existing oracles
were detected by our approach.

5.6 Discussion

There exists other bugs which are not vulnerabilities but correspond to unexpected
behavior. Maehren et al. had investigated a lot for detecting bugs and unexpected
behavior in TLS stacks [MNH+22]. They detected several specification violations
and bugs. In contrast to them, we did not focus on the specification violations
but on detecting vulnerabilities. However, we detect additional bugs which are

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 131

not necessarly vulnerabilities and that are worth mentionning such as the infinite
state machine and the missing key refreshement.

In this section, we discuss these two bugs identified during our analysis of the
resulting state machine. We also discuss the limitations of our approach.

5.6.1 Infinite State Machine in SSH

During our analysis, we discover that several SSH stacks had an infinite state
machine. We summarize our findings in Table 5.6.

Stack Versions Comments
OpenSSH < 8.8.p1 SSH server
OpenSSH all SSH client
libssh < 0.8.4 SSH server

AsyncSSH all SSH server
AsyncSSH all SSH client
sshd-lite all SSH server

Table 5.6: List of SSH stack having an infinite state machine.

For example, after opening a session channel with a sshd-lite server, if the
Learner sends multiple times the message CH_DATA, the server accepts the mes-
sage and it does not answer the Learner until it receives a CH_SHELL message.
Thus the Learner receives CH_SUCCESS (meaning that the sshd-lite server ac-
cept to open a shell) followed by WINDOW_ADJUST (which allows to extend the size
of data the Learner can send) and multiple CH_DATA depending on the amount
of data sent by the Learner earlier.

In the Connection layer, if the server starts a key refreshement by sending
KEINIT to an OpenSSH client, it gets KEINIT+DH_INIT. However, if the server sends
multiple CH_OPEN after the KEINIT instead of a single DH_REPLY message, the
OpenSSH client accepts them but it does not answer until the server sends DH_REPLY
which answer the server by sending NEWKEYS followed by multiple times the message
OPEN_FAILURE.

5.6.2 Missing Key Refreshment in SSH

Especially for SSH, during the key exchange, the message NEWKEYS is used to enable
the sender’s encryption; and during key re-exchange, it is used to confirm the key
refreshment (intuitively, a re-key is meant to renew keys in both directions).

Actually, missing NEWKEYS during key re-exchange is not a violation of the RFC
because the RFC does not explicitly disallow this behavior [Ylo06c]. However, it
defeats the purpose of the rekey procedure.

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 132

Using the Transport and Connection scenario, we reproduce the missing
NEWKEYS bug affecting OpenSSH server discussed in [FJST23]. We also discover
new ones affecting AsyncSSH and OpenSSH client.

5.6.3 New and Reproduced Vulnerabilities

In this section, we summarize the list of new and reproduced vulnerabilities we de-
tected during our analyzis of TLS and SSH implementations. New vulnerabilities
uncovered during our study are tagged “New”. Previously known vulnerabilities
are tagged with one of the following status. “Not Reproduced” means we could not
reproduce the issue, either because we did not include the vulnerable stack or be-
cause of a limitation in our approach (e.g., the absence of a given abstract mesage);
“Detected” means the infered state machine shows an unexpected transition related
to the vulnerability; “Reproduced” means that the infered state machines provides
evidence that the vulnerability is present and can be exploited, should the state
machine be accurate.

For TLS, we only focus on TLS 1.0 to 1.3 versions, we do not investigate
several vulnerabilities such as DROWN [ASS+16], a cryptographic attack using
flaws (including state machine bugs) in SSLv2 servers to recover TLS-encrypted
plaintext.

a) Unexpected Loops

CVE # Stack Versions Description Status
2020-12457 wolfSSL ≤ 4.4.0 Reproduced TLS 1.2 server DoS

- erlang 24.0 New Default configuration al-
low for TLS server DoS

2022-25639 matrixSSL 4.0 - 4.3 New TLS server DoS
- fizz 2021 snapshots New Unexpected client loops

pending NSS 3.15 - 3.78 New TLS 1.0 to 1.2 server DoS
pending wolfSSH all New SSH server DoS

b) Credential Leakage

CVE # Stack Versions Status Comments
pending wolfSSH all New SSH client

c) Weakened Authentication

CVE # Stack Versions Status Comments
pending AsyncSSH all New SSH server
pending wolfSSH all New SSH server

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 133

d) Authentication Bypasses

CVE # Stack Versions Status Comments
2014-0224 OpenSSL ≤ 0.9.8za

≤ 1.0.0l
≤ 1.0.1h

Detected EarlyCCS (unexpected
CCS transitions)

2015-0204 OpenSSL ≤ 0.9.8zc
≤ 1.0.0o
≤ 1.0.1j

Detected FREAK (client- and server-
side EXPORT RSA down-
grade)

2015-0205 OpenSSL ≤ 1.0.0p
≤ 1.0.1j

Not Reproduced Client auth. bypass. Re-
quires DH certificate sup-
port

2020-24613 wolfSSL ≤ 4.4.0 Reproduced TLS 1.3 server auth. by-
pass

2021-3336 wolfSSL ≤ 4.6.0 New TLS 1.3 server auth. by-
pass

2022-25638 wolfSSL ≤ 5.1.0 New TLS 1.3 server auth. by-
pass

2022-25640 wolfSSL ≤ 5.1.0 New TLS 1.3 client auth. bypass
2018-10933 libssh ≤ 0.8.3 Reproduced SSH server auth. bypass
2018-7750 Paramiko ≤ 2.4.0 Reproduced SSH server auth. bypass

2018-1000805 Paramiko ≤ 2.4.1 Reproduced SSH server auth. bypass
2018-7749 AsyncSSH ≤ 1.12.0 Detected SSH server auth. bypass
pending wolfSSH all New SSH server auth. bypass

e) Skip Encryption

CVE # Stack Versions Status Comments
pending AsyncSSH all New SSH server
pending AsyncSSH all New SSH client
pending wolfSSH all New SSH server
pending wolfSSH all New SSH client

f) Bleichenbacher Padding Oracles

The vulnerabilities described here affect TLS servers offering RSA key exchange
(which was removed in TLS 1.3).

CVE # Stack Versions Status Comments
2016-0800 OpenSSL ≤ 1.0.1t

≤ 1.0.2f
Not Reproduced Requires SSLv2 messages

2016-6883 matrixSSL ≤ 3.8.2 Reproduced
2017-13099 wolfSSL ≤ 3.12.2 Reproduced ROBOT attack [BSY18]
2017-1000385 Erlang 20.0 Reproduced ROBOT attack [BSY18]

CHAPTER 5. RESULTS – TLS AND SSH STATE MACHINES 134

5.6.4 Limitations of Our Approach

Our systematic black box approach is very efficient to find bugs and vulnerabil-
ities related to the state machines. We are able not only to reproduce known
vulnerabilities but also to generalize the search for a class of bugs and to find new
ones.

However, we are not able to totaly reproduce some known vulnerabilities such
as EarlyCCS, FREAK, DROWN, CVE-2015-0205 related to OpenSSL and CVE-2018-
7749 related to AsyncSSH, for different reasons.

For most of them, the limitation is related to the way theMapper is built (it is
the case for EarlyCCS, FREAK, CVE-2016-0800 and CVE-2018-7749). For example,
we can not reproduce CVE-2015-0205, because it requires a DH certificate which
is not supported by our Mapper.

Moreover, to fully reproduce EarlyCCS and FREAK, we should re-write and
adapt our Mapper for these specific use-cases. There already exists a better,
dedicated, tool suitable for detecting these bugs.

Finally, for any black box approach, it is impossible to fully reproduce the CVE-
2018-7749 related to AsyncSSH. Checking if a command line is silently executed in
the server-side is required to reproduce this vulnerability which goes beyond the
black blox context.

Chapter 6

Stack Fingerprinting with
Application to TLS and SSH

As described by Smart et al., fingerprinting is similar to identifying an unknown
person by taking his or her unique fingerprints and finding a match in a database
of known fingerprints [SMJ00].

In this chapter, we discuss our results on stack fingerprinting. The applications
of stack fingerprinting are multiple. For example, this is the first step an attacker
might use before running an attack. This step quickly allows an attacker to iden-
tify the target. It is also used to identify the sources of an attack. This enables
administrators to determine the legitimate actors to connect to administrated sys-
tems/networks.

Several tools have been developed for stack fingerprinting such as Nmap1. Nmap
is a powerful network exploration and security auditing tool. In 1998, Fyodor
proposed a method to fingerprint Operating Systems (OS) and implemented his
method in Nmap [Lyo98]. Fyodor proved that it is possible to identify OS through
TCP/IP stack fingerprinting. The idea is to analyze the target’s behavior against
malformed or exotic TCP/IP packets. Several researchers followed this line of
research to fingerprint TLS [JVdRP21], SSH [GGD19], Bluetooth Low Energy
(BLE) [PA21], etc.

There exists several methods to fingerprint protocol implementations. We iden-
tify and discuss three classes of these methods:

• message-based fingerprinting: the stack fingerprint is computed by analyzing
protocol messages;

• feature-based fingerprinting: the stack fingerprint is computed by analyzing
several features related to the implementations of the studied protocols; and

1https://nmap.org/

135

https://nmap.org/

CHAPTER 6. STACK FINGERPRINTING 136

• state-machine-based fingerprinting: the stack fingerprint is computed by an-
alyzing state machines of the studied protocol.

The organization of this chapter is as follows: sec. 6.1 presents the method
based on the message structure and its content and on the features of the imple-
mentations of protocols for fingerprinting stacks. Then, we present in sec. 6.2 our
results related to the state-machine-based fingerprinting. Finally, we present the
limitations of our approach in sec.6.3.

6.1 Message- and Feature-Based Fingerprinting

For these methods, fingerprints are mostly computed from the messages structure
and content. This is completely unrelated to the results of our work on TLS and
SSH state machines.

6.1.1 TLS Fingerprinting

To identify a TLS client, Husák et al. [HCJC16] use the list of ciphersuites proposed
by the client to fingerprint TLS stacks. The idea has been generalized by Kotzias
et al. and by Frolov and Wustrow [KRA+18, FW19] to include other fields of
the ClientHello to fingerprint the client. The method was applied successfully
to detect malware, censorship circumvention tools and web browsers. Salesforce
proposed two formats to capture the idea: JA3 for passive fingerprinting and
JARM for active fingerprinting.2

Durumeric et al. [DMS+17] presented the impact of HTTPS interception on
security. They identified the nature of the client by identifying a mismatch between
the HTTPS User-Agent header and TLS client behavior (supported ciphersuites,
declared extensions).

In 2022, Sosnowski et al. proposed an optimization of JARM and a methodol-
ogy for acquiring and leveraging TLS metadata with the help of large scale active
measurement [SZS+22]. In 2023, they proposed DissecTLS, an active TLS scanner
to reconstruct the configuration and capabilities of the TLS stack [SZSC23]. They
compared their method to four active TLS scanners and fingerprinting tools such
as JARM, ATSF, SSLyze3 and testssl.sh4.

2https://github.com/salesforce/ja3 and https://github.com/salesforce/jarm.
3SSLyze is tool written in Python for SSL/TLS scanning (https://github.com/

nabla-c0d3/sslyze.git)
4testssl.sh is a tool for testing SSL/TLS encryption (https://testssl.sh).

https://github.com/salesforce/ja3
https://github.com/salesforce/jarm
https://github.com/nabla-c0d3/sslyze.git
https://github.com/nabla-c0d3/sslyze.git
https://testssl.sh

CHAPTER 6. STACK FINGERPRINTING 137

6.1.2 SSH Fingerprinting

Ghiëtte et al. proposed a method to identify SSH client stack by dissecting cipher
suites and SSH version strings to generate unique fingerprints for bruteforcing tools
used by an attacker [GGD19].

Two research papers claimed identifying SSH stack by using only the SSH ver-
sion string [CWB+19,KW22]. However, we notice that the identification of the SSH
stack is not their main contribution, but these two papers focused their discussion
and conclusion arround that. Relying on the banner sent by an implementation
usually lacks robustness, since it is often easily customizable.

When working on SSH state machines, we sent multiple invalid messages and
we discovered that we were able to separate almost all SSH server stacks (dropbear
and sshd-lite are not separable using these messages) by using invalid messages
such as NEWKEYS_NOK, Empty_msg, SRV_REQ_NOK and DH_INIT messages containing
a public Diffie-Hellman equal to 1 and g (which is the group generator). Table 6.1
gives more details about our results.

In Table 6.1, NEWKEYS_NOK is a NEWKEYS message containing additional unex-
pected data before the SSH padding; and SRV_REQ_NOK is a service request message
where the service name is left empty.

Server dh = 1 dh = g NEWKEYS_NOK Empty_msg SRV_REQ_NOK
OpenSSH 7 7 7 7 7

dropbear 7 X X 7 7

libssh 7 X X X X
Paramiko X X X 7 7

AsyncSSH X X 7 7 7

wolfSSH 7 X X 7 X
SSH2 7 X X X 7

sshd-lite 7 X X 7 7

Table 6.1: Server fingerprint corresponding to each SSH stack present in our plat-
form.

Beyond the fingerprinting results discussed previously, we also detected differ-
ent aspects which might help for the identication of SSH stacks.

a) Deprecated SHA-1

Most SSH implementations still use the SHA-1 hash algorithm, although [LP20]
and [BL16] strongly recommend to remove SHA-1 support in any security protocol
including SSH.

CHAPTER 6. STACK FINGERPRINTING 138

Following these recommandations, OpenSSH removed algorithms related to SHA-1
from version 8 and upwards. Such a modification is a source of fingerprint because
by looking at the algorithms proposed by the target, it is possible to identify the
class of version of OpenSSH used by the target [GGD19].

b) Diffie-Hellman Group Exchange

Several SSH stacks, such as OpenSSH, libssh, AsyncSSH and wolfSSH still support
the diffie-hellman-group-exchange key exchange method.

AsyncSSH does not implement diffie-hellman-group15 but still accept Diffie-
Hellman based on a group of size 1024 bits when negotiating group using the
diffie-hellman-group-exchange key exchange algorithm. Accepting a group of
size 1024 bits is problematic for security because of the LOGJAM attack [ABD+15]
and also the specification is explicitly against it [VB17].

wolfSSH always uses a group exchange of size 2048 bits, even if the client
negotiates a size greater than 2048 bits.

Finally, AsyncSSH and wolfSSH do not add an additional check on the pa-
rameters (the generator g and the group P) received from the server. Paramiko
does not check the validity of the parameter g, thus a confinement attack is pos-
sible [VAS+17].

c) Generation and Verification of Diffie-Hellman Value

Except for OpenSSH, all the SSH stacks installed in our platform do not check the
public Diffie-Hellman value (they thus accept a weak Diffie-Hellman value). They
blindly trust the other side (client or server) that they have correctly generated
their secret Diffie-Hellman value. OpenSSH seems to be the only one SSH stack
implementing an additional verification on the public Diffie-Hellman value of the
other side.

The security of Diffie-Hellman key exchange depends not only on the public
parameters such as the group P and the generator g, but also on the choice of
the secret Diffie-Hellman value [FPS06,VOW96]. For example, AsyncSSH does not
generate the secret Diffie-Hellman value correctly6.

As stated in Section 6.2 of [FPS06] on the generation of the private Diffie-
Hellman exponents:

“To increase the speed of the key exchange, both client and server may
reduce the size of their private exponents. It should be at least twice as

long as the key material that is generated from the shared secret.”
5diffie-hellman-group1, which allows to negotiate Diffie-Hellman based on a group of size

1024 bits, is deprecated, thus it is removed from almost all SSH stacks
6AsyncSSH generates its secret Diffie-Hellman value using range(1, q).

CHAPTER 6. STACK FINGERPRINTING 139

6.2 State-Machine-Based Fingerprinting
Before discussing our results related to this stack fingerprinting method, we first
introduce an algorithm which is useful for the calculation of the fingerprint.

6.2.1 Distinguishing Sequences

In 2011, Shu and Lee [SL11] proposed a method to actively fingerprint network
protocols using finite state machines. The goal of their algorithm is to compute
the distinguishing sequences which is a set of sequences allowing to distinguish all
candidate state machines for the fingerprinting.

Formally, given a set of Mealy machines C = {M1,M2, . . . ,Mn}, which each
Mealy machine Mi having the same input vocabulary ΣI , a sequence seq ∈ (ΣI)

∗

allows to separateMi andMj (i 6= j) if and only if OutMi
(q0, seq) 6= OutMj

(q0, seq)
where OutM is the output function of the Mealy machine M introduced in sec.2.2.

0

1

M1 / R1

sink

M2 / EOF

2

M2 / R2

M1 / Unexpected

M1 / EOF M2 / EOF

M1|M2 / EOF

(a) Implementation example 1

0

1

M1 / R1

sink

M2 / EOF

2

M2 / R2

M1 / EOF

M1 / EOF M2 / EOF

M1|M2 / EOF

(b) Implementation example 2

Figure 6.1: Two different implementations of the protocol described in Figure 3.8a.

Figure 6.1 gives an example of such a sequence allowing to distinguish the
two state machines described in Figures 6.1a and 6.1b. In this case, the sequence
seq = M1, M1 allows to distinguish the two implementations because we get R1,
Unexpected from implementation 1 and R1, EOF from implementation 2.

The basic idea of their algorithm is to find a sequence seq such that
OutMi

(q0, seq) 6= OutMj
(q0, seq) and then put in the same set all candidates having

CHAPTER 6. STACK FINGERPRINTING 140

the same output (i.e., OutMki
(q0, seq) = OutMkj

(q0, seq)). It means that they
create a partition where each element (a set of state machines) have the same
output to the sequence seq. They repeat this process for each element of the
partition until the size of the partition is equal to the number of candidates in the
group.

In the worst case, for n candidate state machines, this method requires O(n2)
distinguishing sequences.

6.2.2 TLS and SSH Stack Fingerprinting

The differences usually lie in variations among implementations about error han-
dling: different alert messages can be emitted. Several state machines accept
unexpected messages and silently ignore them.

Using the method described in sec. 6.2.1, we can compute, for a given scenario, a
set of input message sequences separating the different stacks we inferred. Then, we
can compute the stack fingerprints as the answer on each stack to the distinguishing
sequences.

In addition to the algorithm discussed in sec. 6.2.1, when searching for a se-
quence separating different state machines, we use a breadth-first search algorithm
to browse the state machines.

If possible, we try to find the minimal number of distinguishing sequences by
removing sequence that are prefixes of another sequence in the distinguishing se-
quences. If A,B and A,B,C are both in the distinguishing sequences, then we only
consider A,B,C (i.e., we remove A,B from the distinguishing sequences).

a) TLS Stack Fingerprinting

We expect the state machines to be rather simple, as shown in Figure 1.1, with less
than 10 states, a restricted number of happy paths and the rest of the transitions
representing fatal errors pointing towards the sink state. Yet, as surprising as it
may seem, we observe that the produced state machines are actually richer, with
up to 31 states, and that each of them is specific to a given TLS stack7.

Beyond revealing interesting differences in TLS stack internals, fingerprinting
TLS stacks can help an attacker pinpoint, with a few message sequences, a set
of versions of a TLS implementation to select an effective exploit against this
particular target. This may also help identify the underlying TLS stack in network
appliances.

Fingerprinting also allows to detect the presence of interception middleboxes
that can be used for censorship. Indeed, such middleboxes may produce unique

7Of course, within a given project, successive versions may share the same automaton.

CHAPTER 6. STACK FINGERPRINTING 141

fingerprints, either at the message-level or at the state machine-level. It is also
possible to look for discrepancies between the TLS stack and the application-layer
stack to detect middleboxes, as described by Durumeric et al. [DMS+17].

Application to TLS 1.3 Servers

To illustrate our state-machine-based fingerprinting, Table 6.2 presents the classes
we identify for the simple TLS 1.3 scenario with no client authentication.

Stack Versions N High-severity CVEs affecting the servers
erlang 24.0.3 - 24.2.1 9 No high-severity CVE referenced

GnuTLS 3.6.16 - 3.7.2 4 2021-20231 2021-20232

matrixssl 4.0.0 - 4.1.0 4 2019-10914 2019-13470

4.2.1 - 4.3.0 6 No high-severity CVE referenced

NSS 3.39 - 3.40 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

3.41 - 3.78 4 2019-17006 2019-17007 2020-12403 2020-25648 2021-43527

OpenSSL 1.1.1a - 1.1.1n 4 2020-1967 2020-1971 2021-3449 2021-3711 2022-0778 2022-1292

3.0.0 - 3.0.2 4 2022-0778 2022-1473 2022-1292

wolfSSL

3.15.5 - 4.0.0 7 2019-11873 and all the ones in the next row

4.1.0 - 4.6.0 7 2019-15651 2019-16748 2019-18840 2021-38597 2022-25640

4.7.0 - 4.8.1 7 2021-38597 2022-25640

5.0.0 - 5.1.1 7 2022-23408 2022-25640

5.2.0 6 No high-severity CVE referenced

Table 6.2: TLS 1.3 server stacks grouped by state machines. N is the number of
states. CVEs in italic only affect part of the equivalence class.

Separating these 13 classes requires sending the following 7 distinguishing se-
quences only:

CloseNotify
ClientHello, Certificate
ClientHello, ClientHello
ClientHello, CloseNotify
ClientHello, Finished, CloseNotify
ClientHello, EmptyCertificate, CertificateVerify
ClientHello, EmptyCertificate, InvalidCertificateVerify

Janssen et al. [JVdRP21] proposed an approach similar to ours to fingerprint
TLS servers, with a tool called tlsprint,8 based on state machines inferred with
statelearner. However, the studied stacks are limited to OpenSSL and mbedTLS

8https://github.com/tlsprint/tlsprint

https://github.com/tlsprint/tlsprint

CHAPTER 6. STACK FINGERPRINTING 142

servers, without TLS 1.3 support. Furthermore, we observed that tlsprint has a
non-deterministic behavior against several OpensSSL stacks from our testbed.

b) SSH Stack Fingerprinting

To fingerprint an SSH server stack, we apply the method described in sec. 6.2.1
to the SSH Transport layer state machines only, thus an unauthenticated attacker
can identify an SSH server stack. To the best of our knowledge, this is the first
method using such approach to fingerprint SSH stacks.

To illustrate our state-machine-based fingerprinting, Table 6.3 presents the
classes we identify for the SSH server using the Transport scenario. In the Trans-
port layer, client authentication is not yet required.

Stack Versions N High-severity CVEs affecting the servers
sshd-lite 1.2.0 - 1.3.1 8 No high-severity CVE referenced

SSH2 1.0.0 - 1.11.0 8 2020-26301

wolfSSH 0.1 - 1.4.12 18 2022-32073

Paramiko 2.4.0 - 3.1.0 5 2018-7750 2018-1000805

dropbear 2014.64 - 2022.83 6
2021-36369 2020-36254 2017-9078 2017-2659

2016-7408 2016-7407 2016-7406

OpenSSH

6.5.p1 - 6.7.p1 4
2021-41617 2016-6515 2016-10708 2016-10012

2016-10010 2016-10009 2016-0778 2015-8325

6.8.p1 - 7.1.p1 9
2021-41617 2016-6515 2016-10708 2016-10012

2016-10010 2016-10009 2016-0778 2015-8325

7.2.p1 - 7.3.p1 10
2021-41617 2016-6515 2016-10708 2016-10012

2016-10010 2016-10009 2015-8325

7.4.p1 6 2021-41617

7.5.p1 - 9.2.p1 6 2021-41617 2019-16905

libssh

0.7.6 - 0.7.7 6 2019-14889

0.8.0 - 0.8.3 6 2019-14889 2018-10933

0.8.4 - 0.8.9 6 2019-14889

0.9.0 - 0.10.4 6 2019-14889

AsyncSSH
1.12.0 - 1.16.1 15 2018-7749

1.17.0 - 1.17.1 15 No high-severity CVE referenced

1.18.0 - 2.13.1 13 No high-severity CVE referenced

Table 6.3: SSH server stacks grouped by state machine. N is the number of states.
CVEs in italic only affect part of the equivalence class.

CHAPTER 6. STACK FINGERPRINTING 143

Separating these 17 classes requires sending the following 7 distinguishing se-
quences only:

DH_INIT
NEWKEYS
SERVICE_REQUEST
KEXINIT_DH, KEXINIT_DH
KEXINIT_DH, DH_INIT, KEXINIT_DH
KEXINIT_DH, DH_INIT, NEWKEYS, DH_INIT
KEXINIT_DH, DH_INIT, SERVICE_REQUEST, SERVICE_REQUEST

6.3 Advantages and Limitations of the Approach
We believe that feature-based fingerprinting methods are more robust than the
method discussed in sec. 6.1 because they are not customizable and are specific for
the implementation; but they require further study. Our current results on SSH
have been found manually.

We also believe that state machine-based fingerprinting methods are rather
robust, since they rely on the way TLS and SSH stacks handle messages at their
core, and not on easily customizable parameters such as the list of supported
ciphersuites.

However, for TLS, there exist configuration parameters that can impact the
structure of the state machine. We already handle several of them, such as server-
requested client certificate authentication or TLS 1.3 middlebox compatibility
(which consists of sending useless ChangeCipherSpec messages). Other features
might affect the accuracy of our tool, such as the renegotiation mechanisms, which
we leave out for future work.

Conclusion and Perspectives

In this thesis, we propose a methodology to systematically and automatically ana-
lyze protocol state machines. We implemented and successfully applied our method
to analyze several TLS and SSH stacks. We analyzed over 600 stacks (400 TLS
stacks and 200 SSH stacks), representing several versions of open source projects.

Using our platform and our methodology, we reproduced known bugs on TLS
and SSH stacks, uncovered new implementation errors, including security vulnera-
bilities such as authentication bypasses, possible denial-of-service vectors, creden-
tial leakage, weakened authentication and encryption disabling.

We also found the existence of infinite state machines in several SSH stacks
such as OpenSSH, AsyncSSH and sshd-lite.This has not been detected before. In
our opinion, a clean implementation should always lead to a finite representation.
However, we leave it as an open discussion for the community to enforce this
property.

Moreover, since the state machine we infer are sufficiently precise to spot
differences between implementation families, this supports the concept of state-
machine-based fingerprinting, an alternative to the more classical approach based
on ciphersuite-based fingerprinting, and offers a more robust characterization.

To the best of our knowledge, our work is the most extensive and systematic
application of model learning to an important corpus of TLS and SSH implemen-
tations.

Overall, we believe that these deviations from the specification, even when
they do not lead to exploitable security vulnerabilities, are detrimental to the
overall quality of the implementation. They represent an unnecessary complexity
that has been known to facilitate the introduction of security issues in the future
when features are added. To reduce these deviations (and to limit fingerprinting
opportunities), standards should produce more formal definitions of the expected
state machines in future specifications.

Since our tools have been published as open-source software, we hope our work
can help build a common test-bed for the community where we can compare and
improve different approaches and tools.

Finally, we also studied and proposed an equivalence query method of the

145

CONCLUSION AND PERSPECTIVES 146

active learning. Our benchmark results showed a significant improvement of an
interesting equivalence query method. We are aware of the need of an efficient
equivalent query method because it takes almost 90% of the number of queries
and execution time of the overall learning process.

Application of our Methodology to Other Protocols

The natural next step for our work is the extension of the use-case to other protocol
to benefit from our methodology. In particular, lowering the time required to infer
a state machine allow us to explore more complex protocols with a rich input
vocabulary, such as the recently standardized QUIC protocol [IT21] or the widely
used IoT protocols, such as MQTT [Sta19] and CoAP [BLT+18], or industrial
protocols: OPC-UA [EM11].

Rigorous Analysis of Large State Machines

Several SSH state machines are big, containing tens or hundreds of states, that is
the case when simultaneously inferring the three layers, thus we can not use the
same method as TLS to analyze the resulting state machine.

For this reason we have started developping ModelCheckerNuSMV, a tool de-
scribed in sec. 5.3.1, but we have to define all properties related to the Connec-
tion layer. Fiterau-Brostean et al. defined many properties of the Connection
layer in [FLP+17], but their model is incomplete and they defined properties are
restricted to only one channel. Actually, defining SSH properties when several
channels are opened is a difficult task, but we strongly believe that it is very useful
to check if there are no interference between channels.

In 2023, Fiterau-Brostean et al. [FJST23] proposed an interesting method to
automatically detect bugs in state machines. To this aim, they defined two things:
the list of bugs they are interested in and the list of expected behavior with re-
spect to the sudied protocol, then they transform these two things to a DFA. Bug
detection is performed by computing the intersection of the DFA to the Mealy ma-
chine9. Using this approach, they are able to automatically detect vulnerabilities
and specification violations. However, among the specification violations, they are
not able to specify which property has not been verified.

Generic Mapper

Since we propose a generalized methodology for analyzing a protocol implemen-
tation, it is also interesting to propose a generic Mapper. Combining both ap-

9Of course, they transform the Mealy machine into a DFA before computing the intersection.

CONCLUSION AND PERSPECTIVES 147

proaches are very interesting because it would pave the way for a fully automated
methodology for new protocols. This work propose the specification of how such a
Mapper should be written, which is already an interesting start to write a generic
Mapper.

Building a generic Mapper is similar to building a parser generator, which is
a topic that was discussed during this thesis [LNR21]. To this aim, we should be
aware of how to build a generic internal state and a generic protocol logic. This is
actually difficult but remains possible.

Beyond the Client-Server Context

Most of the research papers use model learning to analyze a protocol with client-
server context. But one legimate question is:

“Is it possible to use model learning to analyze protocol beyond the
client-server context? ”

We are thinking in particular of the Security Assertion Markup Language
(SAML) protocol [CMPM05]. For the SAML protocol, three parties participate
in the communication: a user, an application or service and an identity provider.
Briefly, when a client wants to connect to an application or a service, it initiates
a connection to the application/service by querying a service and then gets token
from the identity provider which is required to succeed the authentication to the
application. Later, the application verifies itself the validity of the user’s message
based on the token (provided by the identity provider) by communicating to the
identity provider.

It seems to be difficult for an active learning approach to analyze such a proto-
col. However, to succeed in inferring such protocol, we think about two solutions:

• infer one by one the state machines of each parties then analyze each state
machine and try to find attacks by combining each bug from each state
machine; or

• infer two parties simultaneously, but it seems to be difficult because we have
first to find the most appropriate representation of the state machine of both
parties, and we also have to find a better solution of how the inference should
be done.

Thus, extending active model learning to multi-party protocols represents an
interesting challenge, and would probably require new models and tools.

149

CONCLUSION AND PERSPECTIVES 150

List of Publications

Conference and Workshop

• Aina Toky Rasoamanana, Olivier Levillain, and Hervé Debar. Towards
a Systematic and Automatic Use of State Machine Inference to Uncover
Security Flaws and Fingerprint TLS Stacks. In European Symposium on
Research in Computer Security, pages 637–657. Springer, 2022

• Olivier Levillain, Sébastien Naud, and Aina Toky Rasoamanana. Work-
in-Progress: Towards a Platform to Compare Binary Parser Generators.
In 35. IEEE Security and Privacy Workshops, SPW (LangSec) 2021, San
Jose, CA, USA, May 2021

• Olivier Levillain and Aina Toky Rasoamanana. Wombat : one more Ble-
ichenbacher Toolkit. In Symposium sur la Sécurité des Technologies de
l’Information et de la Communication, SSTIC 2020, Rennes, France, June
2020

• Angelot Behajaina, Roghayeh Maleki, Aina Toky Rasoamanana, and An-
driaherimanana Sarobidy Razafimahatratra. 3-setwise Intersecting Fami-
lies of the Symmetric Group. Discret. Math., 344(8):112467, 2021

Software

• Wombat (https://gitlab.com/pictyeye/wombat)

• langsec-pf (https://gitlab.com/pictyeye/langsec-pf)

• TLS-inferer (https://gitlab.com/gaspians/pylstar-tls)

Bibliography

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pier-
rick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin et Paul Zimmermann : Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 5–17, 2015.

[AFP13] Nadhem J Al Fardan et Kenneth G Paterson : Lucky thirteen:
Breaking the TLS and DTLS record protocols. In 2013 IEEE sym-
posium on security and privacy, pages 526–540. IEEE, 2013.

[AKM+22] Bernhard K Aichernig, Sandra König, Cristinel Mateis, Andrea
Pferscher, Dominik Schmidt et Martin Tappler : Constrained
Training of Recurrent Neural Networks for Automata Learning. In
International Conference on Software Engineering and Formal Meth-
ods, pages 155–172. Springer, 2022.

[AMM+18] Bernhard K Aichernig, Wojciech Mostowski, Mohammad Reza
Mousavi, Martin Tappler et Masoumeh Taromirad : Model
learning and model-based testing. In Machine Learning for Dynamic
Software Analysis: Potentials and Limits, pages 74–100. Springer,
2018.

[AMP21] Bernhard K Aichernig, Edi Muškardin et Andrea Pferscher
: Learning-based Fuzzing of IoT Message Brokers. In 2021 14th
IEEE Conference on Software Testing, Verification and Validation
(ICST), pages 47–58. IEEE, 2021.

[Ang87] Dana Angluin : Learning Regular Sets from Queries and Coun-
terexamples. Inf. Comput., 75(2):87–106, 1987.

151

BIBLIOGRAPHY 152

[AP16] Martin R Albrecht et Kenneth G Paterson : Lucky microsec-
onds: A timing attack on amazon’s s2n implementation of TLS. In
Advances in Cryptology–EUROCRYPT 2016: 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I
35, pages 622–643. Springer, 2016.

[AP19] Florent Avellaneda et Alexandre Petrenko : Inferring DFA
without Negative Examples. In International Conference on Gram-
matical Inference, pages 17–29. PMLR, 2019.

[APW09] Martin R Albrecht, Kenneth G Paterson et Gaven J Watson
: Plaintext Recovery Attacks Against SSH. In 2009 30th IEEE
Symposium on Security and Privacy, pages 16–26. IEEE, 2009.

[AS94] R Alquezar et A Sanfeliu : Incremental Grammatical Inference
from Positive and Negative Data Using Unbiased Finite State Au-
tomata. In In Proceedings of the ACL’02 Workshop on Unsupervised
Lexical Acquisition. Citeseer, 1994.

[ASS+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David
Adrian, J Alex Halderman, Viktor Dukhovni et al. : DROWN:
Breaking TLS Using SSLv2. In 25th USENIX Security Symposium
(USENIX Security 16), pages 689–706, 2016.

[ATW20] Bernhard K Aichernig, Martin Tappler et Felix Wallner :
Benchmarking Combinations of Learning and Testing Algorithms for
Active Automata Learning. In Tests and Proofs: 14th International
Conference, TAP 2020, Held as Part of STAF 2020, Bergen, Nor-
way, June 22–23, 2020, Proceedings 14, pages 3–22. Springer, 2020.

[BBD+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, Pierre-Yves Strub et Jean Karim Zinzindohoue :
A Messy State of the Union: Taming the Composite State Machines
of TLS. In IEEE Symposium on Security and Privacy, SP, pages
535–552, 2015.

[BDD+19] Pooneh Nikkhah Bahrami, Ali Dehghantanha, Tooska Dar-
gahi, Reza M Parizi, Kim-Kwang Raymond Choo et Hamid HS
Javadi : Cyber kill chain-based taxonomy of advanced persistent

BIBLIOGRAPHY 153

threat actors: Analogy of tactics, techniques, and procedures. Jour-
nal of information processing systems, 15(4):865–889, 2019.

[BFK+12] Romain Bardou, Riccardo Focardi, YusukeKawamoto, Lorenzo
Simionato, Graham Steel et Joe-Kai Tsay : Efficient Padding
Oracle Attacks on Cryptographic Hardware. In Advances in
Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages
608–625. Springer, 2012.

[BHKL09] Benedikt Bollig, Peter Habermehl, Carsten Kern et Martin
Leucker : Angluin-Style Learning of NFA. In IJCAI, volume 9,
pages 1004–1009, 2009.

[Bio05] Philippe Biondi : Packet generation and network based attacks
with Scapy. In CanSecWest Applied Security Conference, 2005.

[BL16] Karthikeyan Bhargavan et Gaëtan Leurent : Transcript Colli-
sion Attacks: Breaking Authentication in TLS, IKE and SSH. In
23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[Ble98] Daniel Bleichenbacher : Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS# 1. In Annual
International Cryptology Conference, pages 1–12. Springer, 1998.

[BLT+18] Carsten Bormann, Simon Lemay, Hannes Tschofenig, Klaus
Hartke, Bilhanan Silverajan et Brian Raymor : CoAP (Con-
strained Application Protocol) over TCP, TLS, and WebSockets.
RFC, 8323:1–54, 2018.

[Bos14] Georges Bossert : Exploiting Semantic for the Automatic Reverse
Engineering of Communication Protocols. Thèse de doctorat, MA-
TISSE, 2014.

[Bos16] Georges Bossert : Comparison and attacks against HTTP2. In
Symposium sur la Sécurité des Technologies de l’Information et de
la Communication, 2016.

[BP12] Erik Boss et Erik Poll : Evaluating implementations of SSH by
means of model-based testing. Bachelor’s esis. Radboud University,
2012.

BIBLIOGRAPHY 154

[BSY18] Hanno Böck, Juraj Somorovsky et Craig Young : Return Of
Bleichenbacher’s Oracle Threat ROBOT. In 27th USENIX Security
Symposium (USENIX Security 18), pages 817–849, 2018.

[CBP+11] Chia YuanCho, Domagoj Babić, Pongsin Poosankam, Kevin Zhi-
jie Chen, Edward XueJun Wu et Dawn Song : MACE: Model-
inference-Assisted Concolic Exploration for Protocol and Vulnera-
bility Discovery. In 20th USENIX Security Symposium (USENIX
Security 11), 2011.

[CHJ09] David Combe, Colin de la Higuera et Jean-Christophe Janodet
: Zulu: An interactive learning competition. In International
Workshop on Finite-State Methods and Natural Language Process-
ing, pages 139–146. Springer, 2009.

[Cho78] Tsun S. Chow : Testing Software Design Modeled by Finite-State
Machines. IEEE Trans. Software Eng., 4(3):178–187, 1978.

[Cla97] Edmund M Clarke : Model checking. In International Conference
on Foundations of Software Technology and Theoretical Computer
Science, pages 54–56. Springer, 1997.

[CMCHG96] Edmund Clarke, K McMillan, Sérgio Campos et Vasiliki
Hartonas-Garmhausen : Symbolic model checking. In Inter-
national conference on computer aided verification, pages 419–422.
Springer, 1996.

[CMPM05] Scott Cantor, Jahan Moreh, Rob Philpott et Eve Maler :
Metadata for the OASIS security assertion markup language (SAML)
V2. 0, 2005.

[CNS13] Wontae Choi, George Necula et Koushik Sen : Guided gui test-
ing of android apps with minimal restart and approximate learning.
ACM SIGPLAN Notices, 48(10):623–640, 2013.

[CPPDR14] Georg Chalupar, Stefan Peherstorfer, Erik Poll et Joeri
De Ruiter : Automated Reverse Engineering using Lego R©. In 8th
USENIX Workshop on Offensive Technologies (WOOT 14), 2014.

[CWB+19] Phuong Cao, Yuming Wu, Subho S. Banerjee, Justin Azoff,
Alexander Withers, Zbigniew T. Kalbarczyk et Ravishankar K.
Iyer : CAUDIT: Continuous Auditing of SSH Servers To Mitigate
Brute-Force Attacks. In Jay R. Lorch et Minlan Yu, éditeurs :

BIBLIOGRAPHY 155

16th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2019, Boston, MA, February 26-28, 2019, pages
667–682. USENIX Association, 2019.

[CWKK09] Paolo Milani Comparetti, Gilbert Wondracek, Christopher
Kruegel et Engin Kirda : Prospex: Protocol Specification Ex-
traction. In 2009 30th IEEE Symposium on Security and Privacy,
pages 110–125. IEEE, 2009.

[DA99] Tim Dierks et Christopher Allen : The TLS protocol version 1.0
(RFC 2246). IETF Request For Comments, 1999.

[Dif76] Whitfield Diffie : New direction in cryptography. IEEE Trans.
Inform. Theory, 22:472–492, 1976.

[DIMS12] Ionut Dinca, Florentin Ipate, Laurentiu Mierla et Alin Ste-
fanescu : Learn and test for Event-B–a Rodin plugin. In In-
ternational Conference on Abstract State Machines, Alloy, B, VDM,
and Z, pages 361–364. Springer, 2012.

[DIS12] Ionut Dinca, Florentin Ipate et Alin Stefanescu : Model learn-
ing and test generation for Event-B decomposition. In International
Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation, pages 539–553. Springer, 2012.

[DlH10] Colin De la Higuera : Grammatical inference: learning automata
and grammars. Cambridge University Press, 2010.

[DLT02] François Denis, Aurélien Lemay et Alain Terlutte : Residual fi-
nite state automata. Fundamenta Informaticae, 51(4):339–368, 2002.

[DMS+17] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes,
Nick Sullivan, Elie Bursztein, Michael Bailey, J. Alex Hal-
derman et Vern Paxson : The Security Impact of HTTPS Inter-
ception. In 24th Annual Network and Distributed System Security
Symposium, NDSS, 2017.

[DR06] T Dierks et E Rescorla : RFC 4346: The Transport Layer
Security (TLS) protocol, version 1.1 (2006), 2006.

[DR08] TimDierks et Eric Rescorla : The transport layer security (TLS)
protocol version 1.2. Rapport technique, 2008.

BIBLIOGRAPHY 156

[dRP15] Joeri de Ruiter et Erik Poll : Protocol State Fuzzing of TLS
Implementations. In 24th USENIX Security Symposium, pages 193–
206, 2015.

[DS22] Carlos Diego N Damasceno et Daniel Strüber : Family-Based
Fingerprint Analysis: A Position Paper. In A Journey from Pro-
cess Algebra via Timed Automata to Model Learning, pages 137–150.
Springer, 2022.

[EM11] Udo Enste et Wolfgang Mahnke : OPC Unified Architecture.
Autom., 59(7):397–405, 2011.

[FBJV16] Paul Fiterău-Broştean, Ramon Janssen et Frits Vaandrager
: Combining model learning and model checking to analyze TCP
implementations. In International Conference on Computer Aided
Verification, pages 454–471. Springer, 2016.

[FJM+20] Paul Fiterau-Brostean, Bengt Jonsson, RobertMerget, Joeri
de Ruiter, Konstantinos Sagonas et Juraj Somorovsky : Anal-
ysis of DTLS Implementations Using Protocol State Fuzzing. In 29th
USENIX Security Symposium, pages 2523–2540, 2020.

[FJST23] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sago-
nas et Fredrik Tåquist : Automata-Based Automated Detection
of State Machine Bugs in Protocol Implementations. In 30th Annual
Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3, 2023. The In-
ternet Society, 2023.

[FKK11] Alan Freier, Philip Karlton et Paul Kocher : RFC 6101: The
secure sockets layer (SSL) protocol version 3.0, 2011.

[FLP+17] Paul Fiterau-Brostean, Toon Lenaerts, Erik Poll, Joeri
de Ruiter, Frits W. Vaandrager et Patrick Verleg : Model
learning and model checking of SSH implementations. In Proceed-
ings of the 24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, pages 142–151, 2017.

[FPS06] Markus Friedl, Niels Provos et William Allen Simpson : Diffie-
Hellman Group Exchange for the Secure Shell (SSH) Transport Layer
Protocol. RFC, 4419:1–10, 2006.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek,
Mokhtar Amalou et Abderrazak Ghedamsi : Test Selection Based

BIBLIOGRAPHY 157

on Finite State Models. IEEE Trans. Software Eng., 17(6):591–603,
1991.

[FW19] Sergey Frolov et Eric Wustrow : The use of TLS in Censorship
Circumvention. In 26th Annual Network and Distributed System
Security Symposium, NDSS, 2019.

[GGCW19] Jiaxing Guo, Chunxiang Gu, Xi Chen et Fushan Wei : Model
learning and model checking of IPSec implementations for internet
of things. IEEE Access, 7:171322–171332, 2019.

[GGD19] Vincent Ghiëtte, Harm Griffioen et Christian Doerr : Finger-
printing Tooling used for SSH Compromisation Attempts. In 22nd
International Symposium on Research in Attacks, Intrusions and De-
fenses, RAID 2019, Chaoyang District, Beijing, China, September
23-25, 2019, pages 61–71. USENIX Association, 2019.

[Gil62] Arthur Gill : Introduction to the theory of finite-state machines.
1962.

[Gol78] E Mark Gold : Complexity of Automaton Identification from Given
Data. Information and control, 37(3):302–320, 1978.

[GPY02] Alex Groce, Doron Peled et Mihalis Yannakakis : Adaptive
model checking. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 357–370.
Springer, 2002.

[HCJC16] Martin Husák, Milan Cermák, Tomás Jirsík et Pavel Celeda
: HTTPS traffic analysis and client identification using passive
SSL/TLS fingerprinting. EURASIP J. Inf. Secur., 2016:6, 2016.

[HE95] Kipp Hickman et Taher Elgamal : The SSL Protocol. 1995.

[HHNS02] Andreas Hagerer, Hardi Hungar, Oliver Niese et Bernhard
Steffen : Model generation by moderated regular extrapolation.
In International Conference on Fundamental Approaches to Software
Engineering, pages 80–95. Springer, 2002.

[HMN+01] Andreas Hagerer, Tiziana Margaria, Oliver Niese, Bernhard
Steffen, Georg Brune et Hans-Dieter Ide : Efficient regression
testing of CTI-systems: Testing a complex call-center solution. An-
nual review of communication, 55:1033–1040, 2001.

BIBLIOGRAPHY 158

[HS18] Falk Howar et Bernhard Steffen : Active automata learning in
practice: an annotated bibliography of the years 2011 to 2016. In Ma-
chine Learning for Dynamic Software Analysis: Potentials and Lim-
its: International Dagstuhl Seminar 16172, Dagstuhl Castle, Ger-
many, April 24-27, 2016, Revised Papers, pages 123–148. Springer,
2018.

[HS22] Falk Howar et Bernhard Steffen : Active Automata Learning
as Black-Box Search and Lazy Partition Refinement. In A Journey
from Process Algebra via Timed Automata to Model Learning, pages
321–338. Springer, 2022.

[HSL08] Yating Hsu, Guoqiang Shu et David Lee : A Model-Based Ap-
proach to Security Flaw Detection of Network Protocol Implementa-
tions. In 2008 IEEE International Conference on Network Protocols,
pages 114–123. IEEE, 2008.

[HSM10] Falk Howar, Bernhard Steffen et Maik Merten : From ZULU
to RERS. In International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation, pages 687–704.
Springer, 2010.

[HTJV15] Marco Henrix, J Tretmans, D Jansen et F Vaandrager : Per-
formance improvement in automata learning. Thèse de doctorat,
Master thesis, Radboud University, Nijmegen, 2015.

[IHS14] Malte Isberner, Falk Howar et Bernhard Steffen : The TTT
algorithm: a redundancy-free approach to active automata learning.
In International Conference on Runtime Verification, pages 307–322.
Springer, 2014.

[IHS15] Malte Isberner, Falk Howar et Bernhard Steffen : The open-
source LearnLib. In International Conference on Computer Aided
Verification, pages 487–495. Springer, 2015.

[IT21] Jana Iyengar et Martin Thomson : QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC, 9000:1–151, 2021.

[Joh81] Postel John : Transmission Control Protocol. RFC 793, 1981.

[JSS15] Tibor Jager, Jörg Schwenk et Juraj Somorovsky : On the
security of TLS 1.3 and QUIC against weaknesses in PKCS# 1 v1.
5 encryption. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 1185–1196, 2015.

BIBLIOGRAPHY 159

[JVdRP21] Erwin Janssen, Frits Vaandrager, Joeri de Ruiter et Erik Poll
: Fingerprinting TLS Implementations Using Model Learning. 2021.

[Kel22] Evgnosia-Alexandra Kelesidis : An Optimization of Bleichen-
bacher’s Oracle Padding Attack. In Innovative Security Solutions for
Information Technology and Communications: 14th International
Conference, SecITC 2021, Virtual Event, November 25–26, 2021,
Revised Selected Papers, pages 145–155. Springer, 2022.

[Kik14] Masashi Kikuchi : How I discovered CCS Injection Vulnera-
bility (CVE-2014-0224). http://ccsinjection.lepidum.co.jp/
blog/2014-06-05/CCS-Injection-en/index.html, 2014.

[KPR03] Vlastimil Klíma, Ondrej Pokornỳ et Tomáš Rosa : Attack-
ing RSA-based sessions in SSL/TLS. In Cryptographic Hardware
and Embedded Systems-CHES 2003: 5th International Workshop,
Cologne, Germany, September 8–10, 2003. Proceedings 5, pages 426–
440. Springer, 2003.

[KRA+18] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Ken-
neth G. Paterson, Narseo Vallina-Rodriguez et Juan Ca-
ballero : Coming of Age: A Longitudinal Study of TLS De-
ployment. In Proceedings of the Internet Measurement Conference,
IMC, pages 415–428, 2018.

[KT14] Ali Khalili et Armando Tacchella : Learning nondeterminis-
tic mealy machines. In International Conference on Grammatical
Inference, pages 109–123. PMLR, 2014.

[KW22] Mandy Knöchel et Sandro Wefel : Analysing Attackers and
Intrusions on a High-Interaction Honeypot System. In 2022 27th
Asia Pacific Conference on Communications (APCC), pages 433–
438. IEEE, 2022.

[Lan99] Kevin J Lang : Faster Algorithms for Finding Minimal Consistent
DFAs. NEC Research Institute, Tech. Rep, 1999.

[Lev16] Olivier Levillain : A study of the TLS ecosystem. Thèse de doc-
torat, École doctorale informatique, télécommunications et électron-
ique (EDITE) de Paris, septembre 2016.

[Lev20] Olivier Levillain : Implementation Flaws in TLS Stacks: Lessons
Learned and Study of TLS 1.3 Benefits. In 15th International

http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html

BIBLIOGRAPHY 160

Conference on Risks and Security of Internet and Systems (LNCS
12528), CRiSIS 2020, Paris, France, pages 87–104, novembre 2020.

[LMD05] Corrado Leita, Ken Mermoud et Marc Dacier : Scriptgen: an
Automated Script Generation Tool for Honeyd. In 21st Annual Com-
puter Security Applications Conference (ACSAC’05), pages 12–pp.
IEEE, 2005.

[LNR21] Olivier Levillain, Sébastien Naud et Aina Toky Rasoamanana
: Work-in-Progress: Towards a Platform to Compare Binary Parser
Generators. In 35. IEEE Security and Privacy Workshops, SPW
(LangSec) 2021, San Jose, CA, USA, mai 2021.

[LOW22] Jonas Lingg, Mateus de Oliveira Oliveira et PetraWolf : Learn-
ing from Positive and Negative Examples: New Proof for Binary
Alphabets. arXiv preprint arXiv:2206.10025, 2022.

[LP20] Gaëtan Leurent et Thomas Peyrin : SHA-1 is a Shambles: First
Chosen-Prefix Collision on SHA-1 and Application to the PGP Web
of Trust. In Srdjan Capkun et Franziska Roesner, éditeurs : 29th
USENIX Security Symposium, USENIX Security 2020, August 12-
14, 2020, pages 1839–1856. USENIX Association, 2020.

[LY96] David Lee et Mihalis Yannakakis : Principles and methods of
testing finite state machines-a survey. Proceedings of the IEEE,
84(8):1090–1123, 1996.

[Lyo98] Gordon Fyodor Lyon : Remote OS detection via TCP/IP stack
fingerprinting. Phrack Magazine, 8(54), 1998.

[Lá93] Lovász László : Random Walks on Graphs: A Survey, Combina-
torics, Paul Erdos is Eighty. Bolyai Soc. Math. Stud., 2, 1993.

[Man01] JamesManger : A chosen ciphertext attack on RSA optimal asym-
metric encryption padding (OAEP) as standardized in PKCS# 1
v2.0. In Advances in Cryptology—CRYPTO 2001: 21st Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA,
August 19–23, 2001 Proceedings 21, pages 230–238. Springer, 2001.

[MAP+22] Edi Muškardin, Bernhard Aichernig, Ingo Pill, Andrea Pfer-
scher et Martin Tappler : AALpy: an active automata learning
library. Innovations in Systems and Software Engineering, 18:1–10,
03 2022.

BIBLIOGRAPHY 161

[MDK14] Bodo Möller, Thai Duong et Krzysztof Kotowicz : This POO-
DLE bites: exploiting the SSL 3.0 fallback. Security Advisory, 21:34–
58, 2014.

[Mei18] Karl Meinke : Learning-based testing: recent progress and future
prospects. Machine Learning for Dynamic Software Analysis: Po-
tentials and Limits, pages 53–73, 2018.

[MNH+22] Marcel Maehren, Philipp Nieting, Sven Hebrok, Robert Mer-
get, Juraj Somorovsky et Jörg Schwenk : TLS-Anvil: Adapting
Combinatorial Testing for TLS Libraries. In 31st USENIX Security
Symposium (USENIX Security 22), pages 215–232, 2022.

[MS13] Karl Meinke et Muddassar A Sindhu : LBTest: a learning-based
testing tool for reactive systems. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages
447–454. IEEE, 2013.

[MSA+19] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig
Young, Janis Fliegenschmidt, Jörg Schwenk et Yuval Shavitt
: Scalable Scanning and Automatic Classification of TLS Padding
Oracle Vulnerabilities. In Nadia Heninger et Patrick Traynor,
éditeurs : 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1029–1046.
USENIX Association, 2019.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers et David Basin :
The TAMARIN prover for the symbolic analysis of security protocols.
In International conference on computer aided verification, pages
696–701. Springer, 2013.

[MSCR18] Chris McMahon Stone, Tom Chothia et Joeri de Ruiter : Ex-
tending Automated Protocol State Learning for the 802.11 4-way
Handshake. In European Symposium on Research in Computer Se-
curity, pages 325–345. Springer, 2018.

[MSTV+22] ChrisMcMahon Stone, Sam LThomas, MathyVanhoef, James
Henderson, Nicolas Bailluet et Tom Chothia : The Closer
You Look, The More You Learn: A Grey-box Approach to Protocol
State Machine Learning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 2265–
2278, 2022.

BIBLIOGRAPHY 162

[MSW+14] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg
Schwenk, Sebastian Schinzel et ErikTews : Revisiting SSL/TLS
implementations: New bleichenbacher side channels and attacks. In
23rd USENIX Security Symposium (USENIX Security 14), pages
733–748, 2014.

[PA20] Andrea Pferscher et Bernhard K Aichernig : Learning ab-
stracted non-deterministic finite state machines. In IFIP Interna-
tional Conference on Testing Software and Systems, pages 52–69.
Springer, 2020.

[PA21] Andrea Pferscher et Bernhard K Aichernig : Fingerprinting
Bluetooth Low Energy Devices via Active Automata Learning. In In-
ternational Symposium on Formal Methods, pages 524–542. Springer,
2021.

[PA22] Andrea Pferscher et Bernhard K Aichernig : Stateful Black-
Box Fuzzing of Bluetooth Devices Using Automata Learning. In
NASA Formal Methods Symposium, pages 373–392. Springer, 2022.

[PABS13] Warawoot Pacharoen, Toshiaki Aoki, Pattarasinee Bhat-
tarakosol et Athasit Surarerks : Active learning of nonde-
terministic finite state machines. Mathematical Problems in Engi-
neering, 2013, 2013.

[PLJZ22] Yan Pan, Wei Lin, Liang Jiao et Yuefei Zhu : Model-Based Grey-
Box Fuzzing of Network Protocols. Security and Communication
Networks, 2022, 2022.

[PS07] Erik Poll et Aleksy Schubert : Verifying an implementation of
SSH. 2007.

[PS11] Erik Poll et AA Schubert : Rigorous specifications of the SSH
Transport Layer. 2011.

[PVY99] Doron Peled, Moshe Y Vardi et Mihalis Yannakakis : Black
box checking. In Formal Methods for Protocol Engineering and Dis-
tributed Systems, pages 225–240. Springer, 1999.

[PY04] Kenneth G Paterson et Arnold Yau : Padding oracle attacks on
the ISO CBC mode encryption standard. In Cryptographers’ Track
at the RSA Conference, pages 305–323. Springer, 2004.

BIBLIOGRAPHY 163

[RAdR19] Abdullah Rasool, Greg Alpár et Joeri de Ruiter : State machine
inference of QUIC. CoRR, abs/1903.04384, 2019.

[RD10] Juliano Rizzo et Thai Duong : Practical padding oracle attacks.
In 4th USENIX Workshop on Offensive Technologies (WOOT 10),
2010.

[RD11] Juliano Rizzo et Thai Duong : Here come the XOR ninjas. Un-
published manuscript, 2011.

[Res18] Eric Rescorla : The transport layer security (TLS) protocol ver-
sion 1.3. Rapport technique, 2018.

[RGG+19] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir,
David Wong et Yuval Yarom : The 9 lives of Bleichenbacher’s
CAT: new cache attacks on TLS implementations. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 435–452. IEEE,
2019.

[RL11] Tristan Richardson et John Levine : The remote framebuffer
protocol. RFC 6143, 2011.

[RLD22] Aina Toky Rasoamanana, Olivier Levillain et Hervé Debar :
Towards a Systematic and Automatic Use of State Machine Inference
to Uncover Security Flaws and Fingerprint TLS Stacks. In Euro-
pean Symposium on Research in Computer Security, pages 637–657.
Springer, 2022.

[RLM+18] Arjun Radhakrishna, Nicholas V. Lewchenko, Shawn Meier,
Sergio Mover, Krishna Chaitanya Sripada, Damien Zufferey,
Bor-Yuh Evan Chang et Pavol Cerný : DroidStar: callback type-
states for Android classes. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Swe-
den, May 27 - June 03, 2018, pages 1160–1170, 2018.

[RMSM09] Harald Raffelt, Maik Merten, Bernhard Steffen et Tiziana
Margaria : Dynamic testing via automata learning. Interna-
tional journal on software tools for technology transfer, 11(4):307–
324, 2009.

[RPS18] Eyal Ronen, Kenneth G Paterson et Adi Shamir : Pseudo con-
stant time implementations of TLS are only pseudo secure. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1397–1414, 2018.

BIBLIOGRAPHY 164

[RS89] Ronald L Rivest et Robert E Schapire : Inference of finite au-
tomata using homing sequences. In Proceedings of the twenty-first
annual ACM symposium on Theory of computing, pages 411–420,
1989.

[RSB05] Harald Raffelt, Bernhard Steffen et Therese Berg : Learnlib:
A Library for Automata Learning and Experimentation. In Pro-
ceedings of the 10th international workshop on Formal methods for
industrial critical systems, pages 62–71, 2005.

[SA98] CORE SDI SA : An Attack on CRC-32 Integrity Checks of En-
crypted Channels using CBC and CFB Modes. 1998.

[SG09] Muzammil Shahbaz et Roland Groz : Inferring Mealy Machines.
In FM 2009: Formal Methods, Second World Congress, Eindhoven,
The Netherlands, November 2-6, 2009. Proceedings, volume 5850 de
Lecture Notes in Computer Science, pages 207–222, 2009.

[SG14] Muzammil Shahbaz et Roland Groz : Analysis and testing
of black-box component-based systems by inferring partial models.
Software Testing, Verification and Reliability, 24(4):253–288, 2014.

[SL11] Guoqiang Shu et David Lee : A Formal Methodology for Net-
work Protocol Fingerprinting. IEEE Transactions on Parallel and
Distributed Systems, 22(11):1813–1825, 2011.

[SL+16] Ashutosh Satapathy, Jenila Livingston et al. : A Comprehensive
Survey on SSL/TLS and their Vulnerabilities. International Journal
of Computer Applications, 153(5):31–38, 2016.

[SMJ00] Matthew Smart, G. Robert Malan et Farnam Jahanian : De-
feating TCP/IP Stack Fingerprinting. In Steven M. Bellovin et
Greg Rose, éditeurs : 9th USENIX Security Symposium, Denver,
Colorado, USA, August 14-17, 2000. USENIX Association, 2000.

[Som16] Juraj Somorovsky : Systematic Fuzzing and Testing of TLS Li-
braries. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1492–1504, 2016.

[Sta14] OASIS Standard : MQTT version 3.1.1. URL http://docs.oasis-
open.org/mqtt/mqtt/v3, 1:29, 2014.

[Sta19] OASIS Standard : MQTT Version 5.0. URL https://docs.oasis-
open.org/mqtt/mqtt/v5.0, 22:2020, 2019.

BIBLIOGRAPHY 165

[SY22] Zhan Shu et Guanhua Yan : IoTInfer: Automated Blackbox Fuzz
Testing of IoT Network Protocols Guided by Finite State Machine In-
ference. IEEE Internet of Things Journal, 9(22):22737–22751, 2022.

[SZS+22] Markus Sosnowski, Johannes Zirngibl, Patrick Sattler, Georg
Carle, Claas Grohnfeldt, Michele Russo et Daniele Sgan-
durra : Active TLS Stack Fingerprinting: Characterizing TLS
Server Deployments at Scale. arXiv preprint arXiv:2206.13230, 2022.

[SZSC23] Markus Sosnowski, Johannes Zirngibl, Patrick Sattler et
Georg Carle : DissecTLS: A Scalable Active Scanner for TLS
Server Configurations, Capabilities, and TLS Fingerprinting. In Pas-
sive and Active Measurement: 24th International Conference, PAM
2023, Virtual Event, March 21–23, 2023, Proceedings, pages 110–
126. Springer, 2023.

[Vaa17] Frits Vaandrager : Model learning. Communications of the ACM,
60(2):86–95, 2017.

[VAS+17] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney,
Joshua Fried, Marcella Hastings, J. Alex Halderman et Na-
dia Heninger : Measuring small subgroup attacks against Diffie-
Hellman. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26
- March 1, 2017. The Internet Society, 2017.

[Vau02] Serge Vaudenay : Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In Advances
in Cryptology—EUROCRYPT 2002: International Conference on
the Theory and Applications of Cryptographic Techniques Amster-
dam, The Netherlands, April 28–May 2, 2002 Proceedings 21, pages
534–545. Springer, 2002.

[VB17] L Velvindron et M Baushke : RFC 8270: Increase the Secure
Shell Minimum Recommended Diffie-Hellman Modulus Size to 2048
Bits, 2017.

[vdLV18] Wesley van der Lee et Sicco Verwer : Vulnerability Detection
on Mobile Applications Using State Machine Inference. In 2018
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 1–10. IEEE, 2018.

[VGRW22] Frits Vaandrager, Bharat Garhewal, Jurriaan Rot et Thorsten
Wißmann : A new approach for active automata learning based on

BIBLIOGRAPHY 166

apartness. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 223–243. Springer,
2022.

[VOW96] Paul C Van Oorschot et Michael J Wiener : On Diffie-
Hellman key agreement with short exponents. In Advances in Cryp-
tology—EUROCRYPT’96: International Conference on the Theory
and Application of Cryptographic Techniques Saragossa, Spain, May
12–16, 1996 Proceedings 15, pages 332–343. Springer, 1996.

[vTdRP18] Jules van Thoor, Joeri de Ruiter et Erik Poll : Learning state
machines of TLS 1.3 implementations. Bachelor thesis. Radboud Uni-
versity, 2018.

[Win] Microsoft Windows : Server Message Block (SMB) Protocol.

[WJT+21] Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang, Bin-
bin Zhao, Yuhong Kan, Zhaowei Lin, Changting Lin, Shuiguang
Deng, Alex X Liu et al. : MPInspector: A Systematic and Auto-
matic Approach for Evaluating the Security of IoT Messaging Proto-
cols. In 30th USENIX Security Symposium (USENIX Security 21),
pages 4205–4222, 2021.

[Xie03] Tao Xie : Software Component Protocol Inference. Univ. of Wash-
ington Dep. of Comp. Sc. and Eng., Seattle, WA, General Examina-
tion Report, 2003.

[XWQH21] Zhiwu Xu, Cheng Wen, Shengchao Qin et Mengda He : Extract-
ing Automata from Neural Networks using Active Learning. PeerJ
Computer Science, 7:e436, 2021.

[YL] Ed T Ylonen et C Lonvick : RFC 4252: The secure shell (SSH)
Authentication Protocol.

[Ylo06a] T Ylonen : RFC 4254: The secure shell (SSH) connection protocol,
2006.

[Ylo06b] Tatu Ylonen : RFC 4251: The Secure Shell (SSH) Protocol Archi-
tecture, 2006.

[Ylo06c] Tatu Ylonen : RFC 4253: The secure shell (SSH) transport layer
protocol, 2006.

BIBLIOGRAPHY 167

[YR15] Tarun Yadav et Arvind Mallari Rao : Technical aspects of cyber
kill chain. In International symposium on security in computing and
communication, pages 438–452. Springer, 2015.

[YS19] Tarun Yadav et Koustav Sadhukhan : Identification of bugs and
vulnerabilities in TLS implementation for windows operating system
using state machine learning. In International Symposium on Se-
curity in Computing and Communication, pages 348–362. Springer,
2019.

Appendices

169

Appendix A

Results of the Benchmarks for the
Equivalence Query

171

APPENDIX A. RESULTS OF THE BENCHMARKS FOR THE
EQUIVALENCE QUERY 172

DB DBBased
with validation DBBased

Learning
Total Duration 57 139 56 164 32 767

Nb states 48 48 48
Nb hypotheses 7 7 7

Searching
cex

Duration 31 274 18 616 17 290
Nb query 609 440 207 521 207 521

Nb submited query 116 007 50 852 50 852
Nb letter 3 587 985 1 394 904 1 394 904

Nb submited letter 1 017 682 465 256 465 256

Hypotheses
Validation

Duration 22 068 33 788 11 839
Nb query 394 000 180 769 152 033

Nb submited query 74 527 49 648 34 867
Nb letter 3 005 200 1 582 145 1 356 737

Nb submited letter 776 372 499 488 371 035

Building
hypotheses

Duration 3 797 3 760 3 638
Nb query 9 600 9 599 9 599

Nb submited query 7 011 7 646 7 646
Nb letter 82 550 82 849 82 849

Nb submited letter 63 469 67 795 67 795

Table A.1: Net::SSH client v7.1.0 (transport and authentication), size of the vo-
cabulary = 8. Duration is in seconde.

APPENDIX A. RESULTS OF THE BENCHMARKS FOR THE
EQUIVALENCE QUERY 173

DB DBBased
with validation DBBased

Learning
Total Duration 5464 5462 4922

Nb states 18 18 18
Nb hypotheses 4 4 4

Searching
cex

Duration 3145 2681 2699
Nb query 24754 13056 13056

Nb submited query 7396 4680 4680
Nb letter 129492 73592 73592

Nb submited letter 46166 30547 30547

hypotheses
Validation

Duration 1836 2246 1687
Nb query 22720 13609 12469

Nb submited query 3388 3125 2538
Nb letter 126630 83194 75654

Nb submited letter 22348 21247 17084

Building
hypotheses

Duration 483 535 536
Nb query 1102 1193 1193

Nb submited query 731 789 789
Nb letter 6016 6866 6866

Nb submited letter 4146 4722 4722

Table A.2: wolfSSH server v1.4.12 (transport), size of the vocabulary = 5. Dura-
tion is in seconde.

APPENDIX A. RESULTS OF THE BENCHMARKS FOR THE
EQUIVALENCE QUERY 174

DB DBBased
with validation DBBased

Learning
Total Duration 355989 354233 285519

Nb states 74 74 74
Nb hypotheses 5 5 5

Searching
cex

Duration 67715 50145 50085
Nb query 361106 212778 212778

Nb submited query 123924 82752 82752
Nb letter 2507839 1538319 1538319

Nb submited letter 1007894 665915 665915

hypotheses
Validation

Duration 280652 296123 227485
Nb query 972000 725388 616380

Nb submited query 355808 319366 262602
Nb letter 6698907 5276742 4444494

Nb submited letter 2644334 2426576 1969022

Building
hypotheses

Duration 7622 7965 7949
Nb query 10851 11234 11234

Nb submited query 8678 8949 8949
Nb letter 67746 71298 71298

Nb submited letter 55127 57961 57961

Table A.3: wolfSSH server v1.4.12 (transport and authentication), size of the
vocabulary = 10. Duration is in seconde.

APPENDIX A. RESULTS OF THE BENCHMARKS FOR THE
EQUIVALENCE QUERY 175

DB DBBased
with validation DBBased

Learning
Total Duration 10574 10508 9216

Nb states 26 26 26
Nb hypotheses 7 7 7

Searching
cex

Duration 2704 2321 2327
Nb query 263657 27419 27419

Nb submited query 28782 6736 6736
Nb letter 1290118 197068 197068

Nb submited letter 184985 55257 55257

hypotheses
Validation

Duration 6344 6527 5221
Nb query 213952 42334 40478

Nb submited query 75013 18764 17829
Nb letter 1490392 379782 363382

Nb submited letter 759610 184289 175540

Building
hypotheses

Duration 1526 1660 1668
Nb query 5279 5418 5418

Nb submited query 3855 4271 4271
Nb letter 45129 47026 47026

Nb submited letter 34446 37655 37655

Table A.4: ssh2 client v1.11.0 (transport and authentication), size of the vocabu-
lary = 8. Duration is in seconde.

Appendix B

Authentication Bypasses

177

APPENDIX B. AUTHENTICATION BYPASSES 178

0
* /

 S
EL

EC
T_

ER
R

5

CH
_O

PE
N_

SE
SS

 / N
oR

SP

1

AU
TH

_{
PW

,R
SA

} /
 A

UT
H_

SU
CC

ES
S

CH
_R

EQ
 / S

EL
EC

T_
ER

R

6

CH
_O

PE
N_

SE
SS

 / N
oR

SP

3AU
TH

_{
PW

,R
SA

} /
 A

UT
H_

SU
CC

ES
S+

OP
EN

_C
ON

FI
RM

CH
_O

PE
N_

SE
SS

 / N
oR

SP
CH

_R
EQ

 / S
EL

EC
T_

ER
R

7

AU
TH

_{
PW

,R
SA

} /
 A

UT
H_

SU
CC

ES
S+

OP
EN

_C
ON

FI
RM

+O
PE

N_
CO

NF
IR

M
{>

0}

* /
 *

CH
_p

ty
/ C

H_
SU

CC
ES

S

9

CH
_C

LO
SE

 / C
H_

CL
OS

E
8

CH
_E

OF
 / N

oR
SP

2

CH
_{

SH
EL

L,
EX

EC
} /

 C
H_

SU
CC

ES
S+

EO
F

* /
 *

CH
_p

ty
/ C

H_
SU

CC
ES

S

10

CH
_C

LO
SE

 / C
H_

CL
OS

E
11

CH
_E

OF
 / N

oR
SP

CH
_{

SH
EL

L,
EX

EC
} /

 C
H_

SU
CC

ES
S+

EO
F

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IR

M

AU
TH

_{
PW

,R
SA

} /
 N

oR
SP * /

 E
OF

CH
_C

LO
SE

 / C
H_

CL
OS

E

* /
 *

CH
_p

ty
/ C

H_
SU

CC
ES

S

CH
_{

DA
TA

,E
OF

} /
 E

OF
CH

_{
SH

EL
L,

EX
EC

} /
 C

H_
SU

CC
ES

S+
EO

F

CH
_C

LO
SE

 / C
H_

CL
OS

E

* /
 *

CH
_p

ty
/ C

H_
SU

CC
ES

S

CH
_{

DA
TA

,E
OF

} /
 E

OF
CH

_{
SH

EL
L,

EX
EC

} /
 C

H_
SU

CC
ES

S+
EO

F
* /

 *
CH

_p
ty

/ C
H_

SU
CC

ES
S

4

CH
_E

OF
 / N

oR
SP

CH
_{

SH
EL

L,
EX

EC
} /

 C
H_

SU
CC

ES
S+

EO
F

CH
_C

LO
SE

 / C
H_

CL
OS

E
* /

 *
CH

_p
ty

/ C
H_

SU
CC

ES
S

CH
_{

SH
EL

L,
EX

EC
} /

 E
OF

CH
_{

SH
EL

L,
EX

EC
} /

 C
H_

SU
CC

ES
S+

EO
F

CH
_C

LO
SE

 / C
H_

CL
OS

E

* /
 E

OF

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IR

M

AU
TH

_{
PW

,R
SA

} /
 N

oR
SP

* /
 S

EL
EC

T_
ER

R

Figure B.1: CVE-2018-7749, a server authentication bypass in AsyncSSH version
before 1.12.1.

APPENDIX B. AUTHENTICATION BYPASSES 179

0
AU

TH
_P

W_
NO

K
/ A

UT
H_

FA
ILU

RE
CH

_O
PE

N_
SE

SS
 / N

oR
SP

CH
_R

EQ
 / S

EL
EC

T_
ER

R

2

DI
SC

ON
NE

CT
 / E

OF

15AU
TH

_S
UC

CE
SS

 / N
oR

SP

1

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S

* /
 EO

F

DI
SC

ON
NE

CT
 / E

OF

AU
TH

_P
W_

NO
K

/ A
UT

H_
FA

ILU
RE

AU
TH

_S
UC

CE
SS

 / N
oR

SP
CH

_R
EQ

 / S
EL

EC
T_

ER
R

16

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

17

CH
_C

LO
SE

 / N
oR

SP

19

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

3AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

18

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

11

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S+
CH

_E
OF

+C
H_

CL
OS

E

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

12

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S+
CH

_E
OF

+C
H_

CL
OS

E

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_pt

y /
 CH

_S
UC

CE
SS

8

CH
_E

XE
C /

 CH
_S

UC
CE

SS

9

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_E

XE
C /

 CH
_F

AI
LU

RE
CH

_pt
y /

 CH
_S

UC
CE

SS

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

10

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

DI
SC

ON
NE

CT
 / E

OF

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

* /
 *

CH
_pt

y /
 CH

_S
UC

CE
SS

13

CH
_E

XE
C /

 CH
_S

UC
CE

SS

DI
SC

ON
NE

CT
 / E

OF

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

14

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S
AU

TH
_P

W_
NO

K
/ A

UT
H_

FA
ILU

RE
AU

TH
_S

UC
CE

SS
 / N

oR
SP

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST
CH

_C
LO

SE
 / N

oR
SP

CH
_E

XE
C /

 CH
_F

AI
LU

RE
CH

_pt
y /

 CH
_S

UC
CE

SS

DI
SC

ON
NE

CT
 / E

OF
CH

_D
AT

A
/ E

OF

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

* /
 *

CH
_E

XE
C /

 CH
_F

AI
LU

RE
CH

_pt
y /

 CH
_S

UC
CE

SS
DI

SC
ON

NE
CT

 / E
OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

20

CH
_C

LO
SE

 / N
oR

SP

4

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_{E

XE
C,p

ty}
 / C

H_
FA

ILU
RE

6

AU
TH

_P
W

/ A
UT

H_
SU

CC
ES

S

DI
SC

ON
NE

CT
 / E

OF

CH
_E

XE
C /

 CH
_S

UC
CE

SS
+C

H_
EX

IT+
CH

_E
OF

+C
H_

CL
OS

E

* /
 *

CH
_pt

y /
 CH

_S
UC

CE
SS

DI
SC

ON
NE

CT
 / E

OF

CH
_C

LO
SE

 / N
oR

SP

* /
 *

CH
_pt

y /
 CH

_S
UC

CE
SS

7

CH
_E

XE
C /

 CH
_S

UC
CE

SS
+C

H_
DA

TA
+C

H_
EX

IT+
CH

_E
OF

+C
H_

CL
OS

E

DI
SC

ON
NE

CT
 / E

OF

* /
 *

CH
_E

XE
C /

 CH
_F

AI
LU

RE
CH

_pt
y /

 CH
_S

UC
CE

SS

DI
SC

ON
NE

CT
 / E

OF

CH
_C

LO
SE

 / C
H_

EO
F+

CH
_C

LO
SE

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

* /
 *

CH
_pt

y /
 CH

_S
UC

CE
SS

5

CH
_E

XE
C /

 CH
_S

UC
CE

SS
+C

H_
DA

TA
+C

H_
EX

IT+
CH

_E
OF

+C
H_

CL
OS

E

DI
SC

ON
NE

CT
 / E

OF

CH
_D

AT
A

/ W
IN

DO
W_

AD
JU

ST

* /
 *

CH
_E

XE
C /

 CH
_F

AI
LU

RE
CH

_pt
y /

 CH
_S

UC
CE

SS

DI
SC

ON
NE

CT
 / E

OF

CH
_O

PE
N_

SE
SS

 / O
PE

N_
CO

NF
IRM

* /
 *

Tra
nsp

ort
 La

yer

Figure B.2: CVE-2018-10933, a server authentication bypass in libssh before
versions 0.7.6 and 0.8.4.

Titre : Dérivation et Analyse des Implémentations de Protocoles Cryptographiques

Mots clés : TLS, SSH, Sécurité Logicielle, Sécurité des Communications, Inférence d’Automates, L?

Résumé : TLS et SSH sont deux protocoles de
sécurité très répandu et étudiés par la communauté
de la recherche. Dans cette thèse, nous nous concen-
trons sur une classe spécifique de vulnérabilités af-
fectant les implémentations TLS et SSH, tels que
les problèmes de machine à états. Ces vulnérabilités
sont dues par des différences d’interprétation de la
norme et correspondent à des écarts par rapport
aux spécifications, par exemple l’acceptation de mes-
sages non valides ou l’acceptation de messages va-
lides hors séquence.
Nous développons une méthodologie généralisée et
systématique pour déduire les machines d’état des
protocoles tels que TLS et SSH à partir de stimuli
et d’observations, et pour étudier leur évolution au fil
des révisions. Nous utilisons l’algorithme L? pour cal-
culer les machines d’état correspondant à différents
scénarios d’exécution.
Nous reproduisons plusieurs vulnérabilités connues

(déni de service, contournement d’authentification)
et en découvrons de nouvelles. Nous montrons
également que l’inférence des machines à états
est suffisamment efficace et pratique dans de nom-
breux cas pour être intégrée dans un pipeline
d’intégration continue, afin d’aider à trouver de nou-
velles vulnérabilités ou déviations introduites au cours
du développement.
Grâce à notre approche systématique en boı̂te
noire, nous étudions plus de 600 versions différentes
d’implémentations de serveurs et de clients dans di-
vers scénarios (versions de protocoles, options). En
utilisant les machines d’état résultantes, nous propo-
sons un algorithme robuste pour identifier les piles
TLS et SSH. Il s’agit de la première application
de cette approche sur un périmètre aussi large, en
termes de nombre de piles TLS et SSH, de révisions
ou de scénarios étudiés.

Title : Derivation and Analysis of Cryptographic Protocol Implementations

Keywords : TLS, SSH, Software Security, Network Security, State Machine Inference, L?

Abstract : TLS and SSH are two well-known and tho-
roughly studied security protocols. In this thesis, we
focus on a specific class of vulnerabilities affecting
both protocols implementations, state machine errors.
These vulnerabilities are caused by differences in in-
terpreting the standard and correspond to deviations
from the specifications, e.g., accepting invalid mes-
sages, or accepting valid messages out of sequence.
We develop a generalized and systematic methodo-
logy to infer the protocol state machines such as the
major TLS and SSH stacks from stimuli and obser-
vations, and to study their evolution across revisions.
We use the L? algorithm to compute state machines
corresponding to different execution scenarios.
We reproduce several known vulnerabilities (denial of

service, authentication bypasses), and uncover new
ones. We also show that state machine inference is
efficient and practical enough in many cases for in-
tegration within a continuous integration pipeline, to
help find new vulnerabilities or deviations introduced
during development.
With our systematic black-box approach, we study
over 600 different versions of server and client im-
plementations in various scenarios (protocol versions,
options). Using the resulting state machines, we pro-
pose a robust algorithm to fingerprint TLS and SSH
stacks. To the best of our knowledge, this is the first
application of this approach on such a broad perime-
ter, in terms of number of TLS and SSH stacks, revi-
sions, or execution scenarios studied.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Synthèse
	Description des protocoles TLS et SSH
	Protocole TLS
	Protocole SSH

	L'algorithme L
	Utilisation de L en pratique
	Défis à relever pour l'utilisation de L

	Amélioration de la performance
	Optimisation du processus d'inférence
	Optimisation de la méthode d'equivalence Distinguishing Bounds

	Analyses des machine à états TLS et SSH
	Liste des scénarios
	Méthodes pour détecter automatiquement des vulnérabilités
	Reproduction et détéction des nouvelles vulnérabilités dans TLS et SSH

	Identification des implémentations TLS et SSH

	Introduction
	TLS and SSH State Machines
	Communication Protocols
	Transport Layer Security Protocol
	Secure SHell Protocol

	State Machine Attacks against TLS and SSH Implementations
	Padding Oracle Attack
	CVE-2014-0224: EarlyCCS
	CVE-2014-6593: EarlyFinished (server impersonation)
	CVE-2015-0204: FREAK (Factoring RSA Export Keys)
	SkipVerify (client impersonation)
	CVE-2014-6321: Winshock
	CVE-2018-10933 and CVE-2018-1000805: Server Unauthorized Access

	Previous Known Methods to Analyze TLS and SSH Implementations
	Related Work on TLS State Machine Analysis
	Related Work on SSH State Machine Analysis

	Looking for a Method to Analyze Protocol State Machines

	Model Learning – Theory and Application
	Passive vs Active Learning
	Passive Learning
	Active Learning

	The L Algorithm
	How to Update the Observation Table?
	The L Learner
	Building an Automaton from the Observation Table

	Active Learning in Practice
	How to Use Active Learning?
	Overview of Active Learning Algorithms
	Available Tools and Libraries

	Model Learning and Application
	Verification and Validation
	Learning-based Testing
	Learning-based Fuzzing
	Stack Fingerprinting

	Methodology
	Practical Challenges in Active Learning
	Connection Independence
	Equivalence Query
	Efficiency and Convergence
	Robust and Flexible Mapper
	Non-determinism

	Challenges in State Machines of Communication Protocols Implementations
	Undesired Flows
	Undesired States
	Infinite Executions in the State Machine

	Analysis of Communication Protocols Implementations in Black-box
	Useful (and Minimum) Knowledge on the Studied Protocol
	Finding Bugs from the Learned State Machines

	Mapper
	Flexible Mapper
	When and How to Update the Internal State?

	Benchmark of Equivalence Query
	Equivalence Query Methods
	Avalaible Equivalence Query Algorithms
	RandomWord and RandomWalk
	W(p)-method
	Distinguishing Bounds

	Our New Method: DBBased method
	Benchmark and Discussion
	Experimental Setup
	Experimental Results
	Discussion

	Results – TLS and SSH State Machines
	Mapper Implementation
	TLS Mapper
	SSH Mapper

	Experimental Setup and Experiments
	Architecture of our Platform
	Implementations Tested and Analyzed
	Learning Alphabet
	Configuration and Adaptation of our Platform

	Vulnerability Detection and Confirmation
	Vulnerability Detection
	Vulnerability Confirmation

	Optimization of the Learning Process
	EOF is Final
	Exploiting the Determinism
	Optimizations' Evaluation on TLS stacks
	Discussion

	Analysis of the Resulting State Machines
	Authentication Bypasses
	Weakened Authentication in SSH
	Loops in the Automata
	Unsolicited Client Authentication
	Skip Encryption in SSH
	Credential Leakage in SSH
	Detection of Bleichenbacher Oracles in TLS

	Discussion
	Infinite State Machine in SSH
	Missing Key Refreshment in SSH
	New and Reproduced Vulnerabilities
	Limitations of Our Approach

	Stack Fingerprinting
	Message- and Feature-Based Fingerprinting
	TLS Fingerprinting
	SSH Fingerprinting

	State-Machine-Based Fingerprinting
	Distinguishing Sequences
	TLS and SSH Stack Fingerprinting

	Advantages and Limitations of the Approach

	Conclusion
	List of Publications
	Appendices
	Results of the Benchmarks for the Equivalence Query
	Authentication Bypasses

