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Enfin, ces remerciements ne sauraient être complets sans un grand merci à ma moitié - aka mon
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Résumé

La caractérisation de texture est centrale dans de nombreuses applications liées au traitement d’images.

L’analyse de textures peut être envisagée dans le cadre mathématique de l’analyse multifractale qui

permet d’étudier les fluctuations de la régularité ponctuelle de l’amplitude d’une image et fournit les

outils pratiques pour leur évaluation grâce aux coefficients d’ondelettes ou aux coefficients dominants.

Bien que mise à profit dans de nombreuses applications, l’analyse multifractale souffre à présent de

deux limitations majeures. Premièrement, l’estimation des paramètres multifractaux reste délicate,

notamment pour les images de petites tailles. Deuxièmement, l’analyse multifractale a été jusqu’à

présent uniquement considérée pour l’analyse univariée d’images, alors que les données à étudier sont

de plus en plus multivariées. L’objectif principal de cette thèse est la mise au point de contributions

pratiques permettant de pallier ces limitations. La première limitation est abordée en introduisant

un modèle statistique générique pour le logarithme des coefficients dominants, paramétrisé par les

paramètres multifractaux d’intérêt. Ce modèle statistique permet de contrebalancer la variabilité

résultant de l’analyse d’images de petite taille et de formuler l’estimation dans un cadre bayésien.

Cette approche aboutit à des procédures d’estimation robustes et efficaces, que ce soit pour des im-

ages de petites ou grandes tailles. Ensuite, l’analyse multifractale d’images multivariées est traitée en

généralisant ce cadre bayésien à des modèles hiérarchiques capables de prendre en compte l’hypothèse

d’une évolution lente des propriétés multifractales d’images multi-temporelles ou multi-bandes. Ceci

est réalisé en définissant des lois a priori reliant les propriétés dynamiques des paramètres multi-

fractaux des différents éléments composant le jeu de données. Différents types de lois a priori sont

étudiés dans cette thèse au travers de simulations numériques conduites sur des images multifractales

multivariées synthétiques. Ce travail est complété par une étude du potentiel apport de l’analyse
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multifractale et de la méthodologie bayésienne proposée pour la télédétection à travers l’exemple de

l’imagerie hyperspectrale.
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Abstract

Texture characterization is a central element in many image processing applications. Texture analysis

can be embedded in the mathematical framework of multifractal analysis, enabling the study of the

fluctuations in regularity of image intensity and providing practical tools for their assessment, the

wavelet coefficients or wavelet leaders. Although successfully applied in various contexts, multifractal

analysis suffers at present from two major limitations. First, the accurate estimation of multifractal

parameters for image texture remains a challenge, notably for small image sizes. Second, multifractal

analysis has so far been limited to the analysis of a single image, while the data available in applica-

tions are increasingly multivariate. The main goal of this thesis is to develop practical contributions

to overcome these limitations. The first limitation is tackled by introducing a generic statistical

model for the logarithm of wavelet leaders, parametrized by multifractal parameters of interest. This

statistical model enables us to counterbalance the variability induced by small sample sizes and to

embed the estimation in a Bayesian framework. This yields robust and accurate estimation proce-

dures, effective both for small and large images. The multifractal analysis of multivariate images

is then addressed by generalizing this Bayesian framework to hierarchical models able to account

for the assumption that multifractal properties evolve smoothly in the dataset. This is achieved via

the design of suitable priors relating the dynamical properties of the multifractal parameters of the

different components composing the dataset. Different priors are investigated and compared in this

thesis by means of numerical simulations conducted on synthetic multivariate multifractal images.

This work is further completed by the investigation of the potential benefits of multifractal analysis

and the proposed Bayesian methodology for remote sensing via the example of hyperspectral imaging.
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Abreviations and notation

Abrevations

1D One dimensional

2D Two dimensional

CMC Canonical Mandelbrot cascade

CPC Compound Poisson cascade

DFT Discrete Fourier transform

DGA Direction générale de l’armement

DSTL Defence science and technology laboratory

DWT Discrete wavelet transform

fBm Fractional Brownian motion

fMRI Functional magnetic resonance imaging

GMM Generalized method of moments

GMRF Gamma Markov random field

GS Gibbs sampler

IG Inverse-gamma

LF Linear fit

LFw Weighted linear fit

LFnw Non weighted linear fit

LN Log-normal
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LP Log-Poisson

MAP Maximum a posteriori

MCMC Markov chain Monte Carlo

MFA Multifractal analysis

MwG Metropolis-within-Gibbs

ML Maximum likelihood

MLE Maximum likelihood estimator

MMC Multifractal multiplicative cascade

MMSE Miminum mean-square error

MRW Multifractal random walk

QQ Quantile-quantile

RMSE Root mean-square error

SAR Simultaneous autoregression

STD Standard deviation

TSG Two-stage Gibbs

Main notation

Matrix notation

·∗ Complex conjugation

·T Transpose operator

·H Hermitian transpose operator

rank(A) Rank of matrix A

det(A) Determinant of matrix A

Tr(A) Trace of matrix A

||a|| Standard L2-norm ||a|| =
√

aTa

b·c Integer truncating operator

[a]n n-th element of the vector a
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[A]n1,n2 Element of the matrix A in the n1-th row and n2-th column

||a||M aHMa

Jn1, n2K Set of integers ranging from n1 to n2

1A(·) Indicator function of the set A

1N N × 1 one vector

diag(a1, . . . , aN ) N ×N diagonal matrix with (diagonal) entries specified by a1, . . . , aN

Random variable notation

x ∼ ”The variable x is distributed according to”

p(x) ∝ ”The distribution of x is proportional to”

N (m,σ2) Gaussian distribution with mean m and variance σ2

CN (m,σ2) Circularly-symmetric complex Gaussian distribution with mean m and variance σ2

IG(α, β) Inverse-gamma distribution with shape parameter α and scale parameter β

G(α, β) Gamma distribution with shape parameter α and rate parameter β

Cump[·], Ĉump[·] p-th order cumulant and sample cumulant

E[·], Ê[·] Mean and sample mean

Var[·], V̂ar[·] Variance and sample variance

Cov[·], Ĉov[·] Covariance and sample covariance

Main notation of Chapter 1

X(u) Locally bounded 2D function

u = (x1, x2) Spatial location

h(u) Hölder exponent at position u

dimH Hausdorff dimension

D(h) Multifractal spectrum

hm and hM Minimum and maximum Hölder exponents

X(k) Square discretized version of the function X
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k = (k1, k2) Discret spatial location, ki = 1, . . . , N

H0 and G0 Low-pass and high-pass filters of a 1D DWT

ψ Mother wavelet

Nψ Vanishing moments

G(0) Low-pass filter of a 2D DWT

G(m), m = 1, . . . , 3 High-pass filters of a 2D DWT

D
(0)
X (j,k) Approximation coefficient at position k and scale 2j

D
(m)
X (j,k), m = 1, . . . , 3 Wavelet coefficient at position k and scale 2j

d
(m)
X (j,k), m = 1, . . . , 3 L1-normalized wavelet coefficient

λj,k Dyadic cube of side length 2j centered at k2j

L(j,k) Wavelet leader at position k and scale j

S(j, q) q-th order structure function of the wavelet leaders at scale 2j

ζ(q) Scaling exponents

L(h) Legendre spectrum

cp p-th order log-cumulant

H Hurst index of fBm

{wj}j2j=j1 Linear regression weights

nj Number of wavelet leaders at scale j

Main notation of Chapter 2

l(j,k) Logarithm of wavelet leaders (log-leaders) at scale j

`j Vectorized log-leaders at scale j

` Vectorized log-leaders for j = j1, . . . , j2

mj Square root of the number of wavelet leaders at scale j, mj =
√
nj

w Mean parameter w = [c1, c
0
1]T

θ Covariance parameter θ = [c2, c
0
2]T (before reparametrization)

v Covariance parameter v = ψ(θ) (after reparametrization)

λ Unknown parameters {θ,w} or {v,w}
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µj,w Parametric mean model

%j,θ Parametric covariance model

Σj,θ Covariance matrix induced by parametric covariance model %j,θ

φj,θ, φj,v Parametric spectral densities

y`j Discret Fourier coefficient of log-leaders at scale j

ωm Frequency ωm = 2πm/mj

Jj Half of the total frequency grid

y`j Vectorized (non-zero frequencies) discret Fourier coefficients at scale j

y
�0

Vectorized (non-zero frequencies) discret Fourier coefficients for j = j1, . . . , j2

y0 Vectorized discret (zero frequency) Fourier coefficients for j = j1, . . . , j2

y Vectorized discret (all frequencies) Fourier coefficients for j = j1, . . . , j2

N
�0

Length of vector y
�0

N0 Length of vector y0

µ Latent variable vector associated with the augmented likelihood

η Bandwidth parameter in the Whittle approximation

Nmc Length of Markov chains in an MCMC algorithm

Nbi Length of the burn-in period in an MCMC algorithm

Main notation of Chapter 3

X Dataset under analysis

{Xk}k Decomposition of the dataset X indexed by k

kt, kλ Temporal and spectral indexation kt, kλ ∈ Ω1 = J1,MtK

k Spatial indexation k ∈ Ω2 = J1,MxK× J1,MyK

k = (kt,k) or (kλ,k) Spatio-temporal/spectral indexation

`k Log-leaders associated with the element Xk

yk = [yT
�0,k
,yT0,k] Fourier coefficients associated with the element Xk

µk = [µT
�0,k
,µT0,k] Latent variables associated with the element Xk
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wk = [w1,k, w2,k]T Mean parameters associated with the element Xk

vk = [v1,k, v2,k]T Covariance parameters associated with the element Xk

λk = {vk,wk} Unknow parameters associated with the element Xk

wi Vector containing all wi,k organized in the lexicographic ordering

vi Vector containing all vi,k organized in the lexicographic ordering

L = {`k}k Collection of the log-leaders

Y = {yk}k Collection of the Fourier coefficients

M = {µk}k Collection of the latent variables

W = {w1,w2} Collection of the mean parameters

V = {v1,v2} Collection of the covariance parameters

Λ = {V ,W} Collection of the unknown parameters

zi = {z(1)
i , z

(2)
i } GMRF latent variables

ai = [a
(1)
i , a

(2)
i ] GMRF hyperparameters

ΦI ,ΦG ,Φ GMRF potentials

C(ai) GMRF normalizing constant

Z = (z1, z2) Collection of the GMRF latent variables

D(1),D(2) Laplacian operators associated with a SAR prior

ε = {ε1, ε2}, ε̃ = {ε̃1, ε̃2} SAR hyperparameters

τ(·) Lexicographic ordering operator
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1.3.2 Hölder exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Multifractal spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Wavelet leader multifractal formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Wavelet leaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Wavelet leader multifractal formalism . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.3 Negative regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Two-dimensional scaling processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xv



1.5.1 Fractional Brownian motion and self-similar processes . . . . . . . . . . . . . . 21

1.5.2 Multifractal multiplicative cascade based processes . . . . . . . . . . . . . . . . 21

1.6 Estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.2 Alternative estimation procedures . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8 Conclusion (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Statistical model and univariate Bayesian estimation 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Introduction (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Statistical model for log-leaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Second-order statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Approximation of the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Bayesian models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Whittle approximation based Bayesian model . . . . . . . . . . . . . . . . . . . 48

2.4.2 Augmented likelihood based Bayesian model . . . . . . . . . . . . . . . . . . . 49

2.5 Estimation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1 Metropolis-within-Gibbs algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.2 Two-stage Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.1 General setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.2 Adjusting the frequency range in the Whittle approximation . . . . . . . . . . 59

2.6.3 Numerical assessment of equivalence between Bayesian models . . . . . . . . . 60

2.6.4 Estimation performance for c1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.5 Estimation performance for c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.6 Convergence and computational cost . . . . . . . . . . . . . . . . . . . . . . . . 69

2.7 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xvi



2.8 Conclusions et perspectives (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Bayesian multifractal analysis of multivariate images 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Introduction (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Problem formulation: Multivariate image scenarios . . . . . . . . . . . . . . . . . . . . 80

3.4 Regularization of vi via gamma Markov random field priors . . . . . . . . . . . . . . . 83

3.4.1 Bayesian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.4 Preliminary conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Regularization of vi via simultaneous autoregressive priors . . . . . . . . . . . . . . . . 101

3.5.1 Bayesian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5.2 Estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.4 Preliminary conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.6 Regularization of wi via simultaneous autoregressive priors . . . . . . . . . . . . . . . 112

3.6.1 Prior and hyperprior specification . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.2 Sampling of W and ε̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.6.4 Preliminary conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.7 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.8 Conclusions et perspectives (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Application to real-word data: Illustration for hyperspectral images 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Introduction (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Multifractal analysis and hyperspectral imaging . . . . . . . . . . . . . . . . . . . . . . 125

4.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xvii



4.3.2 Goals and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4.1 Analyzed hyperspectral image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4.2 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.3 Spectral evolution of multifractal features for hyperspectral images . . . . . . . 129

4.4.4 Spatio-spectral evolution of multifractal features for hyperspectral images . . . 131

4.5 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6 Conclusions et perspectives (in French) . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Conclusions and future work 141

Appendices 153

A Model fit for synthetic data 153

B Marginalization of the latent variables 157

C Appendix of Chapter 3 159

C.1 Derivates of the potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 Sampling of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.2.1 Conditional prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.2.2 Conditional posterior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 161

D Whittle approximation for time series 163

E Expectation-maximization 167

Bibliography 189

xviii



List of Figures

1.1 Definition of wavelet leaders of images . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Realizations of 2D fBm with different values of H . . . . . . . . . . . . . . . . . . . . . 22

1.3 Realizations of 2D CMC-LN with different values of c2 . . . . . . . . . . . . . . . . . . 23

1.4 Realizations of 2D CMC-LP with different values of c2 . . . . . . . . . . . . . . . . . . 24

1.5 Realizations of 2D MRW with different values of c2 . . . . . . . . . . . . . . . . . . . . 25

1.6 Realizations of 2D CPC-LN with different values of c2 . . . . . . . . . . . . . . . . . . 26

1.7 Realizations of 2D CPC-LP with different values of c2 . . . . . . . . . . . . . . . . . . 27

2.1 Quantile-quantile plots of the empirical distributions of multifractal processes and

associated wavelet coefficients and log-leaders . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Fitting between the sample covariance and the proposed covariance model (2D CMC-LN) 39

2.3 Frequency grid and set Jj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Fitting between the periodogram and the proposed parametric spectral density (2D

CMC-LN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Functions f1,j and f2,j for different image sizes N . . . . . . . . . . . . . . . . . . . . . 47

2.6 Influence of the bandwidth parameter η . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Marginal posterior distribution of c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Estimation performance for c1 for 2D MRW . . . . . . . . . . . . . . . . . . . . . . . . 64

2.9 Estimation performance for c2 for 2D MRW . . . . . . . . . . . . . . . . . . . . . . . . 65

2.10 Estimation performance for c2 for different 2D MMC processes . . . . . . . . . . . . . 66

2.11 Estimation performance for c2 for 2D MRW (small image sizes) . . . . . . . . . . . . . 67

xix



2.12 Computational time versus image size . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.13 Convergence diagnosis of MCMC algorithms . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Multivariate images scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Proposed bipartite conditional independence graphs . . . . . . . . . . . . . . . . . . . 88

3.3 Heterogeneous multifractal synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Illustration of the influence of the GMRF hyperparameters on the estimation of c2 . . 95

3.5 Estimation results for a temporal sequence of heterogeneous 2D MRWs . . . . . . . . 97

3.6 Estimation performance for c2 with GMRF prior on temporal sequences of heteroge-

neous 2D MRWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Estimation performance for c2 with GMRF prior on temporal sequences heterogeneous

2D MRWs (lines) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8 Estimation performance for c2 with SAR prior on sequences of multi-temporal images 111

3.9 Estimation performance for c2 and c1 on sequences of multi-temporal images . . . . . 121

4.1 Real hyperspectral data acquired by the Hyspex hyperspectral scanner. . . . . . . . . 127

4.2 Fitting between data and proposed statistical model (forested area, large patch) . . . 128

4.3 Fitting between data and proposed statistical model (forested area, small patch) . . . 129

4.4 Multifractal features of hyperspectral images . . . . . . . . . . . . . . . . . . . . . . . 131
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Introduction

Context and objectives of the thesis

Over the last decades, multifractal analysis (MFA) has matured into a powerful signal and image

processing tool and enables the study of the scale invariance and pointwise regularity properties of

data. To be more specific, MFA describes data through the collections of its pointwise regularity

exponents, which quantify the degree of smoothness at each point. Their geometric properties are

then summarized in the so-called multifractal spectrum, which provides a global description of the

fluctuations of the pointwise regularity of data magnitude along time or space [Jaf04, JAW15]. The

estimation of the multifractal spectrum constitutes the primary goal of MFA. This is in practice

achieved via a so-called multifractal formalism, which essentially establishes a link between the mul-

tifractal spectrum and the scale invariance properties of the statistics of multiresolution coefficients

derived from the data under analysis.

MFA has been successfully used in a large range of signal processing applications from a wide

array of applicative domains, e.g., biomedical applications (body rhythms [HPP+96], infra slow brain

activity [CVA+12]), geophysics [FGK14], finance [MS98] or Internet traffic [ABF+02], to name but

a few, and more recently its use has been also reported in an increasing number of image processing

applications from various fields including, for instance, texture classification [XYLJ10, WAJ+09],

biomedical imaging [BPL+01, KLSJA01, LB09], physics [PBA+06, RAD00], biology [SS01], climate

research [LS13], art investigation [CERW08, AJW13, JMS+14] and cloud image analysis [RAD00].

Despite these past successes, MFA suffers at present from two major limitations. First, the current
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benchmark estimation procedures fail at providing accurate estimates of parameters characterizing

multifractal properties, notably for small sample sizes, which prevents the relevant use of MFA in

applications where sample size is limited (e.g., for the characterization of biomedical time series or for

a patch-based analysis of images). Second, these estimation procedures are intrinsically univariate

and can only be used to process one single data at a time. However, in an increasing number

of applications, the acquired data are multivariate (e.g., multi-temporal, multi-band, multi-modal

. . . ). The diversity of such data constitutes a rich ressource for information about the underlying

data generation mechanisms. Extracting this information requires the whole dataset to be processed

jointly instead of each component individually.

Therefore, the main goal of this work is to develop practical contributions to overcome these two

fundamental limitations. The strategy adopted in this thesis consists of embedding the estimation of

the multifractal parameters in a Bayesian framework. To this end, we introduce in Chapter 2 a novel

second-order statistical model for the logarithm of wavelet leaders, which are the multiresolution

coefficients yielding the current benchmark multifractal formalism. This model is parametrized by

multifractal parameters of interest, allowing hence their estimation to be formulated in a Bayesian

framework. Then, the multifractal analysis of multivariate data is addressed in Chapter 3 by gen-

eralizing this Bayesian framework to hierarchical models able to account for the assumption that

multifractal properties evolve smoothly in the dataset under analysis. This is achieved via the design

of suitable priors relating the dynamical properties of the multifractal parameters of the different

components composing the dataset.

Furthermore, this thesis studies the potential benefits of MFA in general and of the proposed

Bayesian methodology in particular for remote sensing via the example of hyperspectral imaging.

This study is motivated by the increasing spatial resolution of hyperspectral remote sensors, which

requires the development of new processing methods capable of combining both spectral and spatial

information. In Chapter 4, we investigate the use of multifractal parameters to extract spatial

information in terms of the fluctuations of the point-wise regularity of image amplitudes.

Finally, note that, in view of the targeted application, all developments are stated for images in

this manuscript. However, the proposed methodology carries over to other data straightforwardly
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(e.g., time series, as detailed in Appendix D).

The work presented in this thesis has been carried out in the Institut de Recherche en Informatique

de Toulouse (France), within the Signal and Communication group, and the School of Engineering

and Physical Sciences of Heriot-Watt University (Scotland). This thesis has been funded by the

Direction Générale de l’Armement (DGA), French ministry, within the UK-France PhD program

which is a PhD funding programm started in 2012 that is jointly managed by Defence Science and

Technology Laboratory (DSTL) and DGA.

Structure of the manuscript

Chapter 1 recalls the key theoretical and practical concepts of MFA. The current benchmark mul-

tifractal formalism, constructed on wavelet leaders, is notably defined. This formalism yields a poly-

nomial expansion of the multifractal spectrum in terms of the coefficients cp termed log-cumulants.

The leading order log-cumulants provide an efficient way to summarize the multifractal properties

and can hence be used in applications instead of the multifractal spectrum. The present thesis fo-

cuses on the estimation of the two first log-cumulants c1 and c2, respectively quantifying the average

pointwise regularity and the degree of fluctuation of the pointwise regularity across space.

Chapter 2 introduces a Bayesian approach for the estimation of c1 and c2 for a single image. The

proposed strategy relies on the construction of a parametric model for the multivariate statistics of

the logarithm of wavelet leaders (termed log-leaders for short). This model consists of multivariate

Gaussian distributions whose mean and variance-covariance structures are respectively controlled

by the log-cumulants c1 and c2. To bypass the practically infeasible computation of the associated

Gaussian likelihood, a Whittle approximation is devised that enables its efficient evaluation in the

spectral domain. We introduce Bayesian models building on this approximation and incorporat-

ing prior distributions for the log-cumulants. The associated Bayesian estimators are computed via

Markov Chain Monte Carlo (MCMC) algorithms. The benefits of the Bayesian approach are illus-

trated via the investigation of estimation performance, assessed using a large number of synthetic
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2D multifractal processes for several image sizes. Results presented in this chapter show that the

proposed estimation procedures provide excellent estimation performance for c2 both for small and

large image sizes. On the opposite, they indicate no significant improvement for the estimation of c1

when non-informative priors are designed.

Chapter 3 introduces an operational approach for the multifractal analysis of multivariate data.

To do so, we formulate a hierarchical Bayesian model elaborating on the statistical model formulated

in Chapter 2 for a single image and incorporating multivariate priors to encode beliefs on the dy-

namics of multifractal properties. We focus in this chapter on the prior assumption that multifractal

properties evolve slowly between neighboring components of the multivariate image. We investigate

different smoothing priors for the collections of the first and second log-cumulants of the compo-

nents composing the dataset. More precisely, we introduce two probabilistic models to describe the

collection of the second log-cumulants c2: gamma Markov random fields (GMRF) and simultaneous

autoregressions (SAR). For the collection of the first log-cumulants c1, we consider the use of a SAR

prior. MCMC algorithms allowing to build Bayesian estimators are then presented. The performance

of the smoothing priors is assessed and validated by means of numerical experiments conducted on

multivariate images composed of synthetic multifractal processes with prescribed multifractal prop-

erties. Reported results clearly show a significant improvement in parameter estimation performance

when compared to univariate formulations.

Chapter 4 investigates the potential use and benefits of MFA (and of the multivariate Bayesian

multifractal methodology introduced in Chatper 3) for the extraction of spatial information in hyper-

spectral imaging. We present experiments conducted on a real-world hyperspectral image. Results

presented in this chapter suggest that multifractal parameters are relevant spatial/textural attributes

which can in turn potentially be employed in tasks such as classification or segmentation. They more-

over demonstrate that the proposed multivariate Bayesian methodology is an operational MFA tool

applicable to the analysis of real-world multivariate images.
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Chapter 5 concludes the present thesis and provides a guideline for future work.

Main contributions

Chapter 2. The main contribution of this chapter lies, on one hand, in the formulation of a novel

parametric statistical model that is central for embedding the estimation of multifractal parameters

for images in a Bayesian framework. On the other hand, this chapter contains two contributions

enabling efficient estimation procedures to be devised. The first key contribution resides in the

formulation and use of a Whittle approximation in which the numerically problematic Gaussian

likelihood associated with the model is evaluated in the spectral domain. The second contribution

is the reformulation of this approximation as the marginal likelihood of an augmented model. This

data augmentation scheme yields an augmented likelihood whose convenient form enables the design

of conjugate priors, allowing hence the parameter inference to be achieved efficiently by means of

straightforward sampling. The devised procedure constitutes the first operational Bayesian estimator

for the log-cumulants c1 and c2 for images that is effective both for small and large image sizes.

Chapter 3. The overarching methodological contribution of this chapter resides in the proposition

of procedures for performing the joint MFA of multivariate images in a Bayesian framework via hi-

erarchical models. The large numbers of unknowns induced by the analysis of multivariate images

requires a special care in the specification of the priors and in the design of inference algorithms.

To that end, we develop several contributions. First, the combination of a GMRF prior for c2 and

the augmented likelihood introduced in Chapter 2 enables the exploitation of conjugacy and yields

an efficient estimation procedure tailored for the handling of large numbers of unknowns. Second, a

SAR prior for c2, which is not conjugate with the proposed statistical model, requires the design of

appropriate MCMC algorithms but enables a straightforward estimation of the regularization hyper-

parameters. We introduce a Hamiltonian Monte Carlo (HMC) scheme providing good convergence

properties for high-dimensional variable spaces. This constitutes another contribution of this chapter.

Finally, a SAR prior for c1 is here proposed since it is conjugate with the model and hence yields

an efficient inference algorithm. Overall, these contributions lead to the first operational MFA tool
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applicable to the joint analysis of multivariate images.

Chapter 4. This chapter contains two original contributions. First, it illustrates that the Bayesian

methodology developed in this thesis provides an operational MFA tool that can be applied on real-

world multivariate images. Second, it investigates for the first time the use of multifractal parameters

for the extraction of spatial/textural information in a context of hyperspectral imaging.
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Contexte et objectifs de la thèse (in French)

Au cours de ces dernières décennies, l’analyse multifractale est devenue un outil puissant de traite-

ment du signal et des images, permettant l’étude des propriétés d’invariance d’échelle et de la

régularité locale des données. Plus précisément, l’analyse multifractale décrit un signal ou une image

à travers la description du comportement de ses exposants de régularité ponctuelle. Leurs pro-

priétés géométriques sont résumées dans le ainsi nommé spectre multifractal, qui décrit de manière

globale les fluctuations de la régularité locale [Jaf04, JAW15]. L’estimation du spectre multifractal

est au cœur de l’analyse multifractale. Elle est en pratique réalisée via un formalisme multifrac-

tal, qui, en substance, établit un lien mathématique entre le spectre multifractal et les propriétés

d’invariance d’échelle des statistiques des coefficients multirésolutions calculés à partir du signal ou

de l’image en cours d’analyse. L’analyse multifractale a été mise à profit dans un large spectre

d’applications de traitement du signal liées à des domaines variés, comme par exemple des appli-

cations biomédicales (concernant le rythme corporel [HPP+96] ou l’activité cérébrale [CVA+12]), la

géophysique [FGK14], la finance [MS98], le contrôle du traffic Internet [ABF+02]. Plus récemment son

utilisation a été rapportée dans un nombre croissant d’applications de traitement des images, incluant

la classification de textures [XYLJ10, WAJ+09], l’imagerie biomédicale [BPL+01, KLSJA01, LB09],

la physique [PBA+06, RAD00], la biologie [SS01], la climatologie [LS13], l’étude d’oeuvres d’art

[CERW08, AJW13, JMS+14] ou encore l’analyse d’images de nuages [RAD00].

Malgré cette profusion d’exemples de son utilisation fructueuse, l’analyse multifractale souffre à

présent de deux limitations majeures. Premièrement, les procédures d’estimation de référence ne per-

mettent pas une estimation précise des paramètres caractérisant les propriétés multifractales, notam-

ment pour les petites tailles d’échantillon, empêchant notamment l’utilisation pertinente de l’analyse

multifractale à des applications oú les données sont de petite taille (comme par exemple l’étude

de série temporelles biomédicales, ou une analyse d’images à partir de patches). Deuxièmement,

ces procédures d’estimation sont intrinséquement univariées et ne peuvent être appliquées que pour

l’analyse d’un signal ou d’une image à la fois. Cependant, dans un nombre croissant d’applications les

données recueillies sont multivariées (par exemple multi-temporelles, multi-bandes ou multi-modales).
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La diversité de telles données constitue une source importante d’information sur le mécanisme à

l’origine des données. Avoir accès à cette information nécessite de conduire une analyse conjointe du

jeu de données dans son ensemble plutôt qu’une analyse image par image.

Ainsi, l’objectif principal de cette thèse est la mise en place de contributions permettant de

pallier ces deux limitations fondamentales. La stratégie adoptée dans cette thèse consiste à formuler

l’estimation des paramètres multifractaux dans un cadre bayésien. A cet effet, nous introduisons

dans le Chapitre 2 un nouveau modèle statistique de second-ordre pour le logarithme des coefficients

dominants, qui sont les coefficients multirésolutions soutenant le formalisme multifractal de référence.

Ce modèle est paramétrisé par les paramètres multifractaux d’intérêt, permettant ainsi d’effectuer

leur estimation dans un cadre bayésien. Ensuite, l’analyse multifractale d’images multivariées est

abordée dans le Chapitre 3 via la généralisation de ce cadre bayésien à des modèles hiérarchiques

capables de prendre en compte l’hypothèse d’une évolution lente des propriétés multifractales dans

le jeu de données. Ceci est réalisé en définissant des lois a priori adaptées reliant les propriétés

dynamiques des paramètres multifractaux des différents éléments composant le jeu de données.

De plus, cette thèse étudie le potentiel apport de l’analyse multifractale en général et de la

méthode bayésienne proposée en particulier pour la télédétection à travers l’exemple de l’imagerie

hyperspectrale. Cette étude est motivée par la constante amélioration de la résolution spatiale des

actuels capteurs hyperspectraux, nécessitant dès lors le développement de nouvelles méthodes de

traitement capables de combiner à la fois l’information spatiale et spectrale. Dans le Chapitre 4,

nous étudions l’utilisation des paramètres multifractaux pour l’extraction de l’information spatiale

en terme de fluctuations de la régularité locale de l’amplitude des images.

Le travail présenté dans cette thèse a été conduit à l’Institut de Recherche en Informatique

de Toulouse (France), au sein de l’équipe Signal et Communication, et le département ingénierie et

physique de l’université de Heriot-Watt (Ecosse). Cette thèse a été financée par la Direction Générale

de l’Armement (DGA), ministère de l’armement, dans le cadre du programme franco-britannique de

financement de thèses, lancé en 2012 et conjointement dirigé par le Defence Science and Technology

Laboratory (DSTL) et la DGA.
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12 Chapter 1 - Multifractal analysis

1.1 Introduction

Multifractal analysis is a widely used signal and image processing tool that aims to characterize data

via the fluctuations of their local regularity along time or space. Nowadays, MFA is a theoretically

well-grounded tool that has been successfully used in a large number of applications, including texture

classification [XYLJ10, WAJ+09], biomedical applications [BPL+01, KLSJA01], physics [PBA+06,

RAD00] and art investigation [JSM06, CERW08, AJW13, JMS+14], to name but a few.

This chapter aims at providing a brief summary of MFA (for an exhaustive presentation, the

reader is referred to [Jaf97a, Jaf97b, DOT03]). In Section 1.3 we define the main theoretical notions

underlying MFA. Practical aspects are developed in Section 1.4. In Section 1.5, we introduce a

representative selection of scaling processes that will be used throughout this thesis to validate our

estimation procedures (cf. Chapters 2 and 3). Finally, we present in Section 1.6 existing procedures

for the estimation of parameters characterizing the multifractal properties of data and we highlight

their limitations.

Note that, while the theoretical concepts and practical tools for MFA can, in principle, be given

for arbitrary dimension, cf., [Jaf04, JLA06], the choice has been taken to focus the presentation on

2D data, i.e., on images.

1.2 Introduction (in French)

L’analyse multifractale est un outil largement utilisé dans le traitement des signaux et des images.

Cet outil permet de caractériser les données à travers les fluctuations (spatiales ou temporelles) de

leur régularité locale. De nos jours, l’analyse multifractale jouit d’une solide fondation théorique et a

été mise à profit dans de nombreuses applications, incluant par exemple la classification de textures

[XYLJ10, WAJ+09], l’imagerie médicale [BPL+01, KLSJA01], la physique [PBA+06, RAD00] ou

encore l’analyse d’oeuvres art [JSM06, CERW08, AJW13, JMS+14].

Ce chapitre vise à donner une brève introduction à l’analyse multifractale (pour une présentation

plus exhaustive, le lecteur est invité à consulter [Jaf97a, Jaf97b, DOT03]). Dans la Section 1.3 nous

définissons les principales notions sous-tendant l’analyse multifractale. Les aspects pratiques sont
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développés dans la Section 1.4. Dans la Section 1.5 nous introduisons une sélection représentative de

processus bidimensionnels à invariance d’échelle qui seront utilisés au cours de la thèse pour valider

nos procédures d’estimation (cf. Chapitre 2 et 3). Enfin, nous présentons dans la Section 1.6 les

procédures existantes pour l’estimation des attributs caractérisant les propriétés multifractales des

images et nous en soulignons les limites.

A noter que, bien que les concepts théoriques et les outils pratiques de l’analyse multifractale

puissent être en principe donnés pour toutes les dimensions, cf., [Jaf04, JLA06], le choix a été fait

d’axer la présentation sur les données bidimensionelles, ou autrement dit, sur les images.

1.3 Multifractal analysis of images

1.3.1 Motivation

Since the early origins of digital image processing, texture has been recognized as one of the central

characteristic features in images. Texture is a perceptual attribute and different paradigms have

been introduced in the literature to characterize it [Har79]. Several authors have proposed to model

texture using random fractals, scale invariance or self-similarity, see, e.g., [KCC89, PPLV02]. Indeed,

it has been reported in the literature that scale invariant processes are relevant and effective models

for textures associated with a large class of natural images, see, e.g., [Cha07, WAJ+09, XYLJ10].

The notion of scale invariance is deeply tied to the spatial fluctuations of the pointwise singular

behavior, or in other terms, of the local regularity, of the image amplitudes [LVMB92, ADKR03].

MFA provides both the theoretical and the practical framework for its study.

1.3.2 Hölder exponent

In what follows, we denote as X(u) : u ∈ R2 → X ∈ R a 2D function under analysis, where

u = (u1, u2) stands for the spatial variable. Throughout, X is assumed to be locally bounded (cf.

Section 1.4.3 for further comments on this assumption).

MFA envisages the characterization of the function X through the fluctuations along space of the
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local regularity of its amplitude. In MFA, the local regularity of the (locally bounded 2D) function X

at position u0 is most commonly measured using the so-called Hölder exponent h(u0) [Jaf04, Rie03],

which is defined as follows. The function X is said to belong to Cα(u0) at position u0 if there exist

K,α > 0 and a polynomial Pu0 of degree smaller than α such that

||X(u)− Pu0(u)|| ≤ K||u− u0||α (1.1)

where ||·|| is the Euclidian norm. The Hölder exponent at position u0 is the largest value of α such

that this inequality holds, i.e.,

h(u0) = sup{α : X ∈ Cα(u0)}. (1.2)

Qualitatively, the smaller h(u0), the rougher X at spatial location u0 and the larger h(u0), the

smoother X at u0. Note that the definition (1.2) is meaningful only for non-negative exponents,

which is guaranteed by the assumption that X is locally bounded. However, it has been reported

that real-world images often violate this assumption, see, e.g., [WAJ+09, WRJA09]. We discuss in

Section 1.4.3 a practical solution to relax this assumption.

1.3.3 Multifractal spectrum

MFA characterizes a function through a global description of the spatial fluctuations of the local

regularity h(u) [Jaf04, JAW15]. This is achieved via the so-called multifractal spectrum D(h). The

multifractal spectrum is defined as the Hausdorff dimension (denoted dimH) of the sets of points at

which the Hölder exponent takes the same value, i.e.,

D(h) = dimH (u : h(u) = h) (1.3)

where the Hausdorff dimension implies 0 ≤ D(h) ≤ 2 and, by convention, D(h) = −∞ for h /∈

[hm, hM ], where hm and hM correspond to the minimum and maximum Hölder exponents observed

in X, respectively. Broadly speaking, D(h) is a measure of the relative importance of the regularity

h in X. For more technical details on the multifractal spectrum and a precise definition of the Haus-

dorff dimension, see, e.g., [Jaf04, JAW15].
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The estimation of the multifractal spectrum D(h) is the central goal of MFA. However, the mathe-

matical definition of D(h) cannot be used for its estimation as, in practice, only a digital image is

available, i.e., in other words, a discretized version of X with finite resolution. This is instead achieved

via a so-called multifractal formalism that allows us to estimate D(h) from practically computable

quantities [Jaf04].

1.4 Wavelet leader multifractal formalism

In essence, multifractal formalisms establish a link between the multifractal spectrum and the mo-

ments of multiresolution coefficients, which are quantities that capture the content of the image

X around a given spatial location for a given frequency scale. Historical examples are the in-

crements [FP85] or the wavelet coefficients [AAD+02]. These choices of multiresolution quanti-

ties lead to multifractal formalisms with both theoretical and practical limitations studied in, e.g.,

[LJA05, WAJ07, WRJA09, Jaf04]. The multifractal formalism developed in [MBA93, ADKR03] is

based on the wavelet coefficient modulus maxima. It overcomes the most important numerical limi-

tations but at the price of an increased computational cost. In a different spirit, let us mention the

multifractal detrended fluctuation analysis which is a technique derived from the detrended fluctua-

tion analysis, originally introduced in [KZKB+02] (see [LWA+16] for recent theoretical and practical

investigations).

The multiresolution coefficients considered in the present thesis are the recently introduced wavelet

leaders [LJA05, Jaf04], which are derived from the wavelet coefficients. While wavelet coefficients

tend to take values close to 0, preventing in practice negative moments to be considered in the esti-

mation of the multifractal spectrum, wavelet leaders are spefically tailored for the robust estimation

of the entire multifractal spectrum (see [LJA05, Jaf04, WAJ07] for details). They yield the current

benchmark multifractal formalism, which is brielfy recalled in what follows.
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1.4.1 Wavelet leaders

We denote as {X(k),k = (k1, k2)} the discretized version of the locally bounded function X. For

simplicity, and without loss of generality, the (discretized) image is assumed to be square, i.e.,

ki = 1, . . . , N for i = 1, 2.

Wavelet coefficients. A two-dimensional (2D) orthonormal discrete wavelet transform (DWT)

can be obtained as the tensor product of one-dimensional (1D) DWT as follows. Let H0(k) and

G0(k) denote the low-pass and high-pass filters defining a 1D DWT. These filters are associated with

a mother wavelet ψ, characterized by its number of vanishing moments Nψ > 0 1. Four 2D filters

G(m)(k), m = 0, . . . , 3, are defined by tensor products of H0(k) and G0(k). The 2D low-pass filter

G(0)(k) = H0(k1)H0(k2) (1.4)

yields the approximation coefficients D
(0)
X (j,k), whereas the high-pass filters defined by

G(1)(k) = H0(k1)G0(k2), G(2)(k) = G0(k1)H0(k2) and G(3)(k) = G0(k1)G0(k2) (1.5)

yield the wavelet (detail) coefficients D
(m)
X (j,k), m = 1, 2, 3 as follows: at the finest scale j = 1,

the D
(m)
X (j,k), m = 0, . . . , 3 are obtained by convolving the image X with G(m), m = 0, . . . , 3, and

decimation; for the coarser scales j ≥ 2 they are obtained iteratively by convolvingG(m), m = 0, . . . , 3,

with D
(0)
X (j − 1, ·) and decimation. For scaling and MFA purposes, the approximation coefficients

D
(0)
X are discarded and it is common to normalize the wavelet coefficients according to the L1-norm

d
(m)
X (j,k) = 2−jD

(m)
X (j,k), m = 1, 2, 3 (1.6)

so that they reproduce the self-similarity exponent for self-similar processes [ADKR03]. For a formal

definition and details on (2D) wavelet transforms, the reader is referred to [Mal08, AMVA04].

Wavelet leaders. Denote as

λj,k = [k12j , (k1 + 1)2j)× [k22j , (k2 + 1)2j)

1In the rest of this thesis, all numerical results are obtained with a Daubechies mother wavelet ψ with Nψ = 2
vanishing moments.
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the dyadic cube of side length 2j centered at k2j and

3λj,k =
⋃

n1,n2∈{−1,0,1}

λj,k1+n1,k2+n2

the union of this cube with its eight neighbors. The wavelet leaders are defined as the largest wavelet

coefficient modulus within this neighborhood over all finer scales [Jaf04]

L(j,k) = L(λj,k) = sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (1.7)

The definition above is illustrated in Fig. 1.1. A key property of wavelet leaders is that they reproduce

Figure 1.1: Definition of wavelet leaders of images: at scale 2j and spatial position k, the wavelet

leaders L(j,k) (×) is taken as the largest modulus of the wavelet coefficients d
(m)
X (j,k), m = 1, 2, 3

(•, •, •) within the spatial neighborhood 3λj,k ( ).

the Hölder exponent in the limit of fine scales as follows

h(u0) = lim inf
j→−∞

logL(λj,k(u0))

log 2j
(1.8)
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where λj,k(u0) denotes the cube at scale j including the spatial location u0 [Jaf04]. It has been

shown that (1.8) is the theoretical property required for constructing a multifractal formalism, see

[Jaf04] for details. The wavelet leader multifractal formalism is described in the next section and

establishes the link between the statistics of the leaders and the multifractal spectrum D(h).

1.4.2 Wavelet leader multifractal formalism

Scaling function and Legendre spectrum. Let us define the structure functions as the spatial

averages of the q-th order of the leaders at scale 2j , i.e.,

S(j, q) =
1

nj

∑
k

L(j,k)q (1.9)

where nj ≈ bN2/22jc denotes the number of wavelet leaders at scale 2j . The scaling function is then

defined as

ζ(q) = lim inf
j→−∞

logS(j, q)

log 2j
. (1.10)

Eq. (1.10) suggests that, in the limit of fine scales, S(j, q) exhibits a power law behavior with respect

to the scale 2j

S(j, q) ≈ Kq2
jζ(q) j → −∞ (1.11)

where exponents ζ(q), termed the scaling exponents, characterize the mechanisms relating scales.

Empirical MFA can be sketched as follows: estimating the function q → ζ(q) from the image and

then computing its Legendre transform

L(h) = min
q 6=0

(2 + qh− ζ(q)). (1.12)

The interest for L(h), termed the Legendre spectrum, lies in the fact that, under the local boundness

condition for X, it provides an upper bound of the multifractal spectrum [Jaf04, JLA06]

D(h) ≤ L(h). (1.13)

In practice the Legendre spectrum L(h) is the (only) quantity that can be computed (in a robust

way) and practical MFA focuses on its estimation. For this reason, and as is common practice,
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the Legendre spectrum L(h) is not distinguished from and will be used instead of the theoretical

spectrum D(h) from now on.

Log-cumulants. In the seminal work [CGM93], it has been proposed to consider a Taylor expan-

sion of ζ(q) at q = 0, yielding the following polynomial expansion (see also [DMA01, AAD+02])

ζ(q) =
+∞∑
p=1

cp
qp

p!
(1.14)

where the so-called log-cumulants cp can be shown to be tied to the logarithm of leaders logL(·, j)

through the key relation

Cump[logL(·, j)] = c0,p + cp log 2j (1.15)

with Cump[·] denoting the p-th order cumulant. When injecting (1.14) in (1.12), it can be shown that

(calculations are reported in [Wen08] for the wavelet leader multifractal formalism) this translates

into an expansion of the multifractal spectrum of the image X in terms of cp, p ≥ 1, [WRJA09,

Wen08, JAW15]

L(h) = 2 +
c2

2!

(
h− c1

c2

)2

+
−c3

3!

(
h− c1

c2

)3

+
−c4 + 3c3

2/c2

4!

(
h− c1

c2

)4

+ . . . (1.16)

where c2 ≤ 0 due to the concavity of ζ(q). As a result, measuring the multifractal spectrum D(h),

which would theoretically require to estimate ζ(q) for a whole range of values of q in a finite interval

including q = 0 and then compute its Legendre transform, can be rephrased in estimating cp. Notably,

the leading order coefficients cp provide a relevant summary of the multifractal properties of X in

applications where it would often not be convenient to handle an entire function D(h) [CGM93,

WAJ07, WRJA09, JAW15]. The first log-cumulant c1, for instance, is the mode of D(h) and can

be read as a measure for the “average” smoothness of X. The coefficient c2, referred to as the

multifractality or intermittency parameter, is directly related to the width of D(h) and captures the

degree of (multifractal) fluctuations of the image regularity. The multifractality parameter is central

in MFA since it enables the identification of the two major classes of scale invariant model processes

used in applications: self-similar processes for which c2 = 0 and processes based on multifractal

multiplicative cascades (MMC) for which c2 is strictly negative (cf., e.g., [WJA12]). While the former
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class is deeply tied to additive constructions, the latter is based on multiplicative constructions and

is hence linked to fundamentally different physical principles [Fri95, Man74, Rie03]. Representative

examples of processes within each class are briefly described in Section 1.5.

1.4.3 Negative regularity

The wavelet leader multifractal formalism presented above is well defined for locally bounded images

only, see [WAJ07, WRJA09, AJW15] for precise definitions and for procedures for assessing this

condition in practice. However, as stated in Section 1.3, it has been reported that a large number

of real-world images do not satisfy this prerequisite [WAJ+09, WRJA09]. In these cases, a practical

solution consists of constructing the multifractal formalism using the modified wavelet coefficients

d
(m),α
X (j,k) = 2αjd

(m)
X (j,k), α > 0 (1.17)

instead of d
(m)
X in (1.7). The parameter α can be chosen sufficiently large to ensure that the multi-

fractal formalism is properly defined (see [WRJA09] for details about the theoretical and practical

consequences implied by this modification).

It was observed that α = 0.7 was a sufficiently large value for the synthetic processes considered in

Chapters 2 and 3 and for real-world data analysed in Chapter 4. Therefore, α is not further discussed

in the rest of this thesis.

1.5 Two-dimensional scaling processes

There exists in the literature a large variety of scale invariant models to account for the richness

of scaling properties observed in real-world data (see, e.g., [Rie03, CRA05, LT05] and references

therein, for an overview). The two most prominent classes are the self-similar processes and the

multifractal multiplicative cascade processes. In this section, we briefly summarize a representative

selection of such processes that will be used in Chapter 2 and 3 to validate the proposed estimation

procedures. The synthesis of the realizations of these processes was conducted using numerical

synthetis procedures implemented by ourselves.
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1.5.1 Fractional Brownian motion and self-similar processes

Self-similar processes are deeply tied to random walks and additive constructions. As opposed to

MMC processes, their multifractal properties are controlled by one single parameter. For a precise

definition of self-similar processes and details on their properties the reader is referred to [Lam62,

ST94] and references therein. Here, we will make (only) use of fractional Brownian motion (fBm),

which is the emblematic example of self-similar processes. It was originally introduced by Kolmogorov

[Kol41] in a 1D formulation and studied by Mandelbrot [Man74] in a context of hydrodynamic

turbulence. FBm is the only Gaussian self-similar process with stationary increments (see, e.g.,

[ST94]). In the present work, we use the 2D extension of fBms as defined in [Ste02]. Its multifractal

spectrum reduces to a dirac as follows

D(h) =


2 for h = H

−∞ otherwise

(1.18a)

c1 = H (1.18b)

∀p ≥ 2 cp = 0. (1.18c)

where H is called the Hurst index. Realizations of 2D fBms for different values of H are displayed

in Fig. 1.2. In this thesis, we set H = 0.7 for numerical experiments reported in Chapter 2.

1.5.2 Multifractal multiplicative cascade based processes

As opposed to self-similar processes, multiplicative cascade processes are based on multiplicative

constructions [KP76, Man74, DOT03]. MMC are processes commonly used in applications to model

richer multifractal properties than self-similar processes can account for.

a) Canonical Mandelbrot Cascade (CMC)

CMCs are the historical archetypes of multifractal measures, originally introduced in [Yag66] and

studied in [Man74, KP76]. In essence, their construction is based on an iterative split-and-multiply
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(a) H = 0.1 (b) H = 0.2 (c) H = 0.4 (d) H = 0.7

Figure 1.2: Realizations of 2D fBm of size 28 × 28 with different prescribed values of H.

random procedure on an interval involving random multipliers whose statistics determine the multi-

fractal properties of the resulting measure. In this thesis, we use CMCs with two different type of

multipliers.

Log-normal multipliers. First, canonical Mandelbrot cascades with log-normal (CMC-LN) mul-

tipliers W = 2−U , where U ∼ N (m, 2m/ log 2) is a Gaussian random variable parametrized by m.

For CMC-LN, the multifractal properties are given by

D(h) =


2− (h−m)2

4m for h ∈ [hm, hM ]

−∞ otherwise

(1.19a)

c1 = m > 0; c2 = −2m (1.19b)

∀p ≥ 3 cp = 0. (1.19c)

Thus, the value of m can be used to adjust c1 and c2. Realizations of 2D CMC-LN with different

values of c2 are displayed in Fig. 1.3.

Log-Poisson multipliers. Second, canonical Mandelbrot cascades with log-Poisson (CMC-LP)

multipliers W = 2γ exp (log(β)πλ), where πλ is a Poisson random variable with parameter λ =
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(a) c2 = −0.08 - c1 = 0.04 (b) c2 = −0.06 - c1 = 0.03 (c) c2 = −0.04 - c1 = 0.02 (d) c2 = −0.02 - c1 = 0.01

Figure 1.3: Realizations of 2D CMC-LN of size 28 × 28 with different prescribed values of cp.

−γ log 2
(β−1) . For CMC-LN, higher-order log-cumulants are non-zero and their multifractal properties are

given by

D(h) =


2 + γ

β−1 + γ+h
log β

(
log
(

(γ+h)(β−1)
γ log β

)
− 1
)

for h ∈ [hm, hM ]

−∞ otherwise

(1.20a)

c1 = γ

(
log β

β − 1
− 1

)
c2 = − γ

β − 1

(
log β

)2
(1.20b)

∀p ≥ 3 cp = − γ

β − 1

(
− log β

)p
. (1.20c)

In Chapter 2, γ = 1.05 and β is varied according to the value of c2 (with β > 1 to ensure well-defined

log-cumulants). Realizations of 2D CMC-LP with different values of c2 are illustrated in Fig. 1.4.

b) Multifractal random Walk (MRW)

MRW is another prominent member of the class of multifractal multiplicative cascade based processes.

MRW is a non Gaussian process with stationary increments, originally introduced in a 1D formulation

in [BDM01]. Details on its 2D construction can be found in [RV10], where it was introduced as

X(k) =
∑
kGH(k) exp

(
ω(k)

)
where GH(k) are the increments of a fractional Brownian motion (cf.

Section 1.5.1) with parameter H and ω is a Gaussian process that is independent of GH and has
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non trivial covariance Cov[ω(k1), ω(k2)] = β2 log
(

L
||k1−k2||+1

)
, for L > 0. Its multifractal properties

mimic those of the Mandelbrot’s log-normal cascades CMC-LN with

D(h) =


2− 1

2β2 (h−H − β2

2 )2 for h ∈ [hm, hM ]

−∞ otherwise

(1.21a)

c1 = H +
β2

2
; c2 = −β2 (1.21b)

∀p ≥ 3 cp = 0. (1.21c)

These relations show the meaning of parameters H and β, which can be used to adjust c1 and c2.

Typical realizations of 2D MRW are plotted in Fig. 1.5 for a wide range of values of c2 (and H = 0.7).

In this thesis (in particular in Chapter 3), MRW will be used for its ease of numerical synthesis.

c) Compound Poisson cascade (CPC)

CPCs were introduced to overcome certain limitations of the CMCs that are caused by their discrete

split-and-multiply construction (see, e.g., [BM02, Cha07]). In the construction of CPCs, the local-

ization of the multipliers in the space-scale volume follows a Poisson random process with specific

prescribed density. We use CPCs with two different types of multipliers.

(a) c2 = −0.08 - c1 = −0.04 (b) c2 = −0.06 - c1 = −0.03 (c) c2 = −0.04 - c1 = −0.02 (d) c2 = −0.02 - c1 = −0.01

Figure 1.4: Realizations of 2D CMC-LP of size 28×28 with different prescribed values of c2 (γ = 1.05).
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(a) c2 = −0.08 - c1 ∼ 0.7 (b) c2 = −0.06 - c1 ∼ 0.7 (c) c2 = −0.04 - c1 ∼ 0.7 (d) c2 = −0.02 - c1 ∼ 0.7

Figure 1.5: Realizations of 2D MRW of size 28×28 with different prescribed values of c2 and H = 0.7.

Log-normal multipliers. First the compound Poisson cascades with log-normal (CPC-LN) multi-

pliers W = exp(Y ), where Y ∼ N (µ, σ2) is a Gaussian random variable. The multifractal properties

of CPC-LN are given by

D(h) =


minq 6=0(2 + qh−

[(
1− exp

(
µq + q2 σ2

2

))
− q

(
1− exp

(
µ+ σ2

2

))]
) for h ∈ [hm, hM ]

−∞ otherwise

(1.22a)

c1 = µ+ 1− exp

(
µ+

σ2

2

)
; c2 = −(µ2 + σ2) (1.22b)

∀p ≥ 3 cp 6= 0. (1.22c)

In this thesis, µ = −0.1 and σ is varied according to c2. Realizations of 2D CPC-LN are illustrated

in Fig. 1.6.

Log-Poisson multipliers. Second, the compound Poisson cascades with log-Poisson (CPC-LP)

multipliers for which multipliers W are reduced to a constant w. The multifractal properties of the
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(a) c2 = −0.08 - c1 = −0.13 (b) c2 = −0.06 - c1 = −0.11 (c) c2 = −0.04 - c1 = −0.09 (d) c2 = −0.02 - c1 = −0.05

Figure 1.6: Realizations of 2D CPC-LN of size 28 × 28 with different prescribed values of c2.

resulting cascades are

D(h) =


minq 6=0(2 + qh− [1− wq + q(1− w)]) for h ∈ [hm, hM ]

−∞ otherwise

(1.23a)

c1 6= 0; c2 = −(logw)2 (1.23b)

∀p ≥ 3 cp 6= 0. (1.23c)

In this thesis, w is varied according to the value of c2
2. Illustrations of CPC-LP cascades are

displayed in 1.7.

1.6 Estimation procedures

1.6.1 Linear regression

As suggested by (1.15) the estimation of log-cumulants cp can be performed by means of linear

regressions in log 2j against the sample cumulants denoted Ĉump[logL(j, ·)], i.e.,

ĉp =
1

log 2

j2∑
j=j1

wjĈump[logL(j, ·)] (1.24)

2No closed-form of c1 is available for CPC-LP.
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(a) c2 = −0.08 (b) c2 = −0.06 (c) c2 = −0.04 (d) c2 = −0.02

Figure 1.7: Realizations of 2D CPC-LP of size 28 × 28 with different prescribed values of c2.

where Jj1, j2K is the range of scales for which scale invariance (1.15) holds. In (1.24) the linear

regression weights wj have to satisfy the usual constraints
∑j2

j=j1
jwj = 1 and

∑j2
j=j1

wj = 0. More

specifically, weights can be expressed as [VAT03, AFTV00]

wj = bj
V0j − V1

V0V2 − V 2
1

(1.25)

where

Vi =

j2∑
j=j1

jibj , i = 0, 1, 2. (1.26)

In (1.25), bj are positive numbers that can be chosen to reflect the confidence granted to each

sample cumulant Ĉump[logL(j, ·)]. In this thesis, we consider the weighted and non-weighted linear

regressions defined by bj = 1/nj and bj = 1 in (1.25) respectively (see, e.g., [VAT03, AFTV00]).

Finally the definition (1.24) directly leads to the following estimators for the first two log-cumulants

c1 and c2

ĉ1 =
1

log 2

j2∑
j=j1

wjÊ[logL(j, ·)] (1.27)

and

ĉ2 =
1

log 2

j2∑
j=j1

wjV̂ar[logL(j, ·)] (1.28)



28 Chapter 1 - Multifractal analysis

where Ê[·] and V̂ar[·] denote the sample mean and variance.

Limitations. This method is appealing for its simplicity and low computational cost. Yet (1.24)

has limited practical estimation performance. In particular, (1.24) yields modest performance for

images when compared with 1D signals of equivalent sample size [WRJA09], making it for instance

difficult to discriminate between c2 ≡ 0 and values c2 < 0 that are encountered in applications

(typically, c2 lies between −0.01 and −0.08). Moreover, because a sufficient number of scales j must

be available to perform the linear regression (1.24), its use remains in pratice restricted to images

of relatively large size (of order 2562 pixels). While a similar issue is encountered for the analysis of

1D signals, it is significantly more severe for images: indeed, modulo border effects of the wavelet

transform, the number of available scales is proportional to the logarithm of the number of samples

for 1D signals and to the logarithm of the square root of the number of pixels for an image. For

instance, for a 1D signal with 256 × 256 = 65536 samples, j2 = 13 or 14 scales can be computed,

while j2 = 4 or 5 for an image of N×N = 256×256 pixels. As a consequence, images of sizes smaller

than 256× 256 and thus image patches cannot be relevantly analyzed in practice using (1.24).

1.6.2 Alternative estimation procedures

There are a limited number of reports in the literature that attempt to overcome the limitations of

MFA for images described above. Some of them are mentionned below.

Generalized method of moments (GMM). The generalized method of moments has been

proposed and studied in, e.g., [Lux07, Lux08] and formulates parameter inference as the solution (in

the least squares sense) of an over-determined system of equations that are derived from the moments

of data (see [BKM13, BADML12, BKM08] for applications to financial time series). Yet, the method

depends strongly on fully parametric models and yields, to the best of our knowledge, only limited

benefits in practical applications.
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Maximum likelihood (ML) estimation. Although classical in parameter inference, maximum

likelihood estimation has mostly been formulated for a few specific self-similar and multifractal pro-

cesses (see, e.g., [Ber94]). The main reason for this lies in the complex statistical properties of most

of these processes, which exhibit distributions that are strongly non-Gaussian and have intricate

algebraically decaying dependence structures that remain poorly studied to date. The same remark

is true for their wavelet coefficients and wavelet leaders, see, e.g., [OW00, VWAJ10].

One exception is given by the fractional Brownian motion (in 1D) and fractional Brownian fields (in

2D), that are jointly Gaussian self-similar (i.e., c2 ≡ 0) processes with fully parametric covariance

structure appropriate for ML and Bayesian estimation. Examples of ML for 1D fBm formulated in

the spectral or wavelet domains can be found in [Ber94, CP06, MRS08]. For images, an ML estimator

has been proposed in [LOKS86] (note, however, that the estimation problem is reduced to a univari-

ate formulation for the rows/columns of the image there). As far as MMC processes are concerned,

[LR12] proposed an ML approach in the time domain for one specific process. However, the method

relies strongly on the particular construction of this process and cannot easily accommodate more

general model classes. Moreover, the method is formulated for 1D signals only.

Bayesian inference. Similarly, the complex statistical properties of multifractal processes pre-

cludes the development of Bayesian estimation procedures for MFA. A Bayesian estimation method

has been introduced in [WO92] but is relevant only for the analysis of 1D self-similar signals.

Recently, a Bayesian estimation procedure for the parameter c2 of multifractal time series has been

proposed in [WDTA13]. Unlike the ML and Bayesian methods above, it does not rely on specific

assumptions on the process or its wavelet coefficients but instead employs a generic parametric model

for the statistics of the logarithm of wavelet leaders, empirically validated for MMC processes. This

method has been reported to yield significant improvement in the estimation of c2. However, it is

designed for and can only be applied to univariate time series of small sample size.
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1.7 Conclusion

In this chapter, we have introduced the main theoretical and practical concepts of MFA. The primary

goal of MFA is the estimation of the multifractal spectrum D(h) (1.3), which is achieved in practice

via a multifractal formalism. Wavelet leaders are the multiresolution quantities that yield the current

benchmark multifractal formalism, which will be used throughout this manuscript. The multifractal

properties encoded in D(h) can be well summarized by a limited collection of parameters, namely

log-cumulants cp. The present thesis will focus on the estimation of the first two log-cumulants

c1 and c2, respectively quantifying the mode (the average regularity) and the width (the degree of

fluctuations of the local regularity in space) of the multifractal spectrum.

1.8 Conclusion (in French)

Dans ce chapitre nous avons introduit les principaux concepts théoriques et pratiques de l’analyse

multifractale. L’objectif central de l’analyse multifractale est l’estimation du spectre multifractal

D(h) défini dans (1.3), qui est effectuée en pratique via un formalisme multifractal. Les coefficients

dominants sont les coefficients multirésolutions à la base du formalisme multifractal de référence.

Les propriétés multifractales d’une image peuvent être très bien décrites via une collection limitée

de paramètres, les log-cumulants cp. Cette thèse se concentrera sur l’estimation des deux premiers

log-cumulants c1 et c2, respectivement liés au mode (la régularité moyenne) et la largeur (le degré

des fluctuations spatiales de la régularité locale) du spectre multifractal.
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2.1 Introduction

We introduce in this chapter a Bayesian approach for the estimation of the two leading log-cumulants

c1 and c2 of univariate images. The strategy adopted in this chapter follows intuitions developed in

[WDTA13], which proposed a Bayesian procedure for the estimation of the multifractal parameters

of univariate time series. This approach, relying on a parametric model for the statistics of the

log-leaders, was however fundamentally designed only for time series. This chapter alleviates this

limitation and contains several contributions that enable the Bayesian estimation of the two first

log-cumulants for images.

First, by means of numerical simulations for a large selection of 2D multifractal reference pro-

cesses, we propose in Section 2.3.1 an empirical second-order parametric statistical model for the

logarithm of wavelet leaders (referred to as log-leaders for short) of 2D multifractal multiplicative

cascades based (MMC) processes. This generic model consists of assuming that, at each scale, the

distributions of the log-leaders can be well approximated by a multivariate Gaussian distribution

whose mean and variance-covariance structure are respectively controlled by c1 and c2. The con-

struction of such a model is the starting point for embedding estimation in a Bayesian framework.

The likelihood induced by this model is however problematic due to the computation of the inverse of

large covariance matrices, which is numerically unstable and computationally too demanding, even

for small images. To overcome this issue, we resort in Section 2.3.2 to a Whittle approximation to

efficiently evaluate the scale-wise Gaussian likelihood in the spectral domain. With the specification

of prior distributions for the unknown parameters, we then build in Section 2.4 a Bayesian model

addressing the estimation of c1 and c2, wherein the exact likelihood is replaced by a Whittle approx-

imation. However, the particular form of this approximation prevents the design of conjugate priors.

In Section 2.4.2, we resort to a data augmentation scheme to express the Whittle approximation

as the marginal of an augmented likelihood whose convenient form enables the design of conjugate

priors and hence yields simplified parameter inference algorithms. Finally, the Bayesian estimators

associated with posterior distributions are approximated by means of samples generated via suit-

able Markov chain Monte Carlo algorithms described in Section 2.5. In Section 2.6, the proposed
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estimation procedure is validated and assessed on a large collection of synthetic multifractal images

and shown to provide excellent estimation performance both for small and large image sizes. In

particular, the standard deviation (STD) values for the estimator of c2 is reduced by a factor close

to 4 when compared to the classical linear regression-based estimators.

Developments and results presented in this chapter have been reported in [CWD+15, CWT+15a,

CWT+15b, CWA+16b].

2.2 Introduction (in French)

Nous introduisons dans ce chapitre une approche bayésienne pour l’estimation des deux premiers log-

cumulants c1 et c2 d’images univariées. La stratégie adoptée dans ce chapitre reprend des intuitions

développées dans [WDTA13], où une procedure bayésienne pour l’estimation des paramètres multi-

fractaux de séries temporelles univariées a été proposée. Cette approche, reposant sur un modèle

paramétrique des statistiques du logarithme des coefficients dominants, était néanmoins fondamen-

talement conçue uniquement pour des séries temporelles. Ce chapitre pallie cette limitation et con-

tient plusieurs contributions permettant une estimation bayésienne des deux premiers log-cumulants

des images.

Premièrement, grâce à des simulations numériques conduites sur une large sélection de processus

multifractaux de référence, nous proposons dans la Section 2.3.1 un modèle empirique et paramétrique

de deuxième ordre pour le logarithme des coefficients dominants associés à des processus multifrac-

taux bidimensionnels construits sur des cascades multiplicatives. Ce modèle générique consiste à

supposer que, à chaque échelle, les distributions du logarithme des coefficients dominants peuvent

être bien approximées par des lois gaussiennes multivariées, dont la moyenne et la structure de

variance-covariance sont respectivement contrôlées par c1 et c2. La construction d’un tel modèle est

la pierre angulaire pour formuler l’estimation dans un cadre bayésien. La vraisemblance associée

à ce modèle est cependant problématique à cause du calcul de l’inverse de matrices de covariance

de grandes dimensions, ce qui est numériquement instable et requiert une trop grande puissance de

calcul (et ce, même pour des petites images). Afin de remédier à ce problème, nous faisons appel
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dans la Section 2.3.2 à une approximation de Whittle pour évaluer efficacement la vraisemblance

gaussienne à chaque échelle dans le domaine spectral. Ensuite, via la spécification de lois a pri-

ori sur les paramètres inconnus, nous construisons dans la Section 2.4 un modèle bayésien pour

l’estimation de c1 et c2, où la vraisemblance exacte est remplacée par une approximation de Whit-

tle. Cependant, la forme particulière de cette approximation empêche l’utilisation de lois a priori

conjuguées. Dans la Section 2.4.2, nous utilisons une technique d’augmentation des données pour

exprimer l’approximation de Whittle comme la marginale d’une vraisemblance augmentée, dont la

forme autorise cette fois l’utilisation de lois a priori conjuguées. Cette technique permet d’aboutir à

des algorithmes d’estimation efficaces. Enfin, les estimateurs bayésiens associés aux lois a posteriori

sont approximés grâce à des méthodes de Monte Carlo par chaines de Markov, qui sont détaillées

dans la Section 2.5. Dans la Section 2.6, cette procédure d’estimation est évaluée et validée pour

une large collection de processus multifractaux de référence. Il est notamment montré que notre

procédure offre d’excellentes performances d’estimation pour les petites et grandes images, avec des

écarts types pour l’estimateur de c2 divisés par un facteur proche de 4 par rapport à l’estimateur

classique construit sur une régression linéaire.

Les développements et les résultats présentés dans ce chapitre ont fait l’objet de plusieurs publi-

cations [CWD+15, CWT+15a, CWT+15b, CWA+16b].

2.3 Statistical model for log-leaders

In this section, we introduce a novel empirical second-order statistical model for the log-leaders of

2D multifractal multiplicative cascade (MMC) based processes (cf. Section 1.5). More precisely, at

each scale, the collection of log-leaders is assumed to be a stationary Gaussian random field for which

we design a mean and variance-covariance structure, respectively parametrized by c1 and c2. The

validity and relevance of this model is assessed numerically for a selection of MMC processes. We

moreover propose to resort to a Whittle approximation to enable the otherwise infeasible evaluation

of the likelihood associated with the model.
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2.3.1 Second-order statistical model

a) Marginal distribution

We first numerically investigate the marginal distribution of log-leaders

l(j,k) = logL(j,k) (2.1)

associated with 2D MMC processes. To this end, the selection of MMC processes introduced

in Chapter 1, namely CMC-LN, CMC-LP, CPC-LN, CPC-LP and MRW, have been analyzed (see

Section 1.5 for details on the parameters used), as well as fBm, a member of self-similar processes

by means of quantile-quantile (QQ)-plots. In short, QQ-plots enable a visual assessment of the fit

between two distributions by ploting their quantiles against each other. Fig. 2.1 displays QQ-plots

of the quantiles of the empirical distributions of log-leaders associated with the different processes

(c2 = −0.04 for MMC processes and H = 0.7 for fBm) of size 29 × 29 against the quantiles of the

standard normal distribution. It also reports the QQ-plots of the processes themselves and of the

logarithm of the absolute value of wavelet coefficients.

These QQ-plots indicate that the normal distribution provides, within ±3 standard deviations,

a reasonable approximation for the marginal distribution of log-leaders of images for all members of

the MMC class. It is also the case for the fBm, a Gaussian self-similar process that is not a member

of MMC. Note that the fact that the marginal distributions of the log-leaders are approximately

Gaussian for scale invariant processes confirms the intuitions formulated by Mandelbrot in [Man90].

However, it is not a trivial finding: There is no a priori reason for this property to hold even if

the analyzed stochastic process has log-normal multipliers (as is the case for CMC-LN, for instance).

Indeed, it is not the case for the logarithm of the absolute value of wavelet coefficients whose marginal

distributions are found to be significantly more complicated and strongly depart from Gaussian, cf.

Fig. 2.1 (center column). Finally, complementary results for a wide range of process parameters (c2

and H) and sample sizes N were found to be consistent with those reported here and yield similar

conclusions. Such results can be found in Fig. A.1 (see Appendix A).
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Figure 2.1: Quantile-quantile plots of the empirical distributions (+) of the process X(k), the

log-wavelet coefficients log |d(3)(2,k)| and the log-leaders l(j,k), j = 2, 3, 4 against standard normal

distribution ( ) for a selection of MMC processes (c2 = −0.04) (a) and self-similar processes (H =

0.7) (b) of size 29×29. The closer to the red dashed line, the better the fit to the normal distribution.
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b) Parametric statistical model

We furthermore complete the statistical model by assuming that, at each scale j, the collection of

log-leaders {l(j, ·)} is a stationary Gaussian random field for which we specify the mean and the

covariance structure.

Mean. For the first-order statistics, we only use (1.15), which yields for the mean a linear evolution

across scales with a slope controlled by c1

E[l(j,k)] = µj,w = c0
1 + jc1 log 2 (2.2a)

w = [w1, w2]T = [c1, c
0
1]T . (2.2b)

Variance-covariance structure. For the second-order statistics, we build our model using the

power law scaling across scales (1.15) for the variance but include in addition a parametric model for

the covariance structure. It is motivated by the asymptotic covariance of the logarithm of multiscale

quantities generically associated with multiplicative construction (cf. [Man74]), studied in detail for

wavelet coefficients of 1D random wavelet cascades in [ABM98], and also by recent numerical results

obtained for the covariance of the logarithm of 1D wavelet leaders for MMC processes [WDTA13].

These results suggest a linear decay of the covariance of log-leaders for MMC processes at fixed scale

j, denoted as Cov[l(j, k), l(j, k+∆k)], in log coordinates log ∆k, with slope given by the parameter c2.

Numerical simulations with 2D MMC processes for a wide range of process parameters (detailed in

Section 1.5) indicate that the intra-scale covariance, denoted as Cov[l(j,k), l(j,k + ∆k)] = Cj(∆k),

can be well approximated by a radially symmetric function parametrized by the parameter vector

θ = [θ1, θ2]T = [c2, c
0
2]T (2.3)

and defined as follows

Cj(∆k) = %j,θ(r) =


%Sj,θ(r) 0 ≤ r < 3

%Lj,θ(r) 3 ≤ r
(2.4)
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where %Sj,θ and %Lj,θ respectively model the short and long-term covariance and r = ||∆k||. First, the

long-term covariance %Lj,θ consists of a decaying function as c2 log r (since c2 < 0) given by

%Lj,θ(r) = max
(
0,∆%+ c2(log r + log 2j)

)
, for r ≥ 3 (2.5)

where the restriction to positive values is here considered for numerical reasons (conditioning of the

covariance matrix). The parameter ∆% is a constant found to be well approximated by using the

heuristic condition

%Lj,θ(rj) = 0 with rj = bmj/4c (2.6a)

mj =
√
nj (2.6b)

where the operator b c truncates to integer values and nj is defined in Chapter 1 as the total number

of wavelet leaders at scale j. The short-term covariance model is then defined as a line connecting

the variance Var[l(j,k)] = c0
2 + c2 log 2j prescribed by (1.15) at r = 0 and %Lj,θ(r) at r = 3 as follows

%Sj,θ(r) =
log(r + 1)

log 4

(
%Lj,θ(3)− (c0

2 + c2 log 2j)
)

+ c0
2 + c2 log 2j . (2.7)

The sample covariance Ĉj(∆k), computed over 100 realizations of CMC-LN processes with N =

29 and [c1, c2] = [0.02,−0.04], is illustrated and compared to the proposed covariance model %j,θ

in Fig. 2.2. The radial symmetry obviously appears as a good approximation for the covariance

structure. Moreover, Fig. 2.2 (c), (d) and (e) indicate that the covariance model %j,θ provides overall

good fits. Similar results have been obtained for a wide range of c2 values and for other MMC

processes. Additional results for MRW and CPC-LN are reported in Appendix A.

c) Likelihood

Let `j denote the vector gathering the collection of log-leaders {l(j, ·)} at scale j, organized in

lexicographic order. With the above notation and statistical model, the likehood of `j with respect

to

λ = {θ,w} (2.8)
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(a) Sample covariance (b) Covariance model %j,θ
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Figure 2.2: Fitting between the sample covariance (a), averaged over 100 realizations of 2D CMC-LN

(N = 29 and [c1, c2] = [0.02,−0.04]), and the parametric covariance (b) at scale j = 2; (c), (d) and

(e) compare the model (blue) and the sample covariance (red) for different directions at two scales

j = 2, 3.

is given by

p(`j |λ) ∝ (det Σj,θ)−
1
2 exp

(
−1

2
(`j − µj,w)TΣ−1

j,θ(`j − µj,w)

)
(2.9)

where Σj,θ corresponds to the nj × nj covariance matrix whose entries are induced by the 2D para-

metric covariance function model (2.4), i.e., [Σj,θ]u,v = %j,θ(||ku − kv||) and µj,w = µj,w1nj . In

this thesis, independence between log-leaders at different scales j is assumed 1, which leads to the

1Taking into account the inter-scale dependence could however yield a more realistic model. This point is further
discussed in the perspectives (cf. Chapter 5).
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following likelihood for the vector ` = [`Tj1 , ..., `
T
j2 ]T of log-leaders at scale j = j1, . . . , j2

p(`|λ) =

j2∏
j=j1

p(`j |λ)

∝
j2∏
j=j1

(det Σj,θ)−
1
2 exp

(
−1

2
(`j − µj,w)TΣ−1

j,θ(`j − µj,w)

)
. (2.10)

To ensure that (2.10) is a valid likelihood, the covariance matrices Σj,θ must be positive definite for

j = j1, . . . , j2. This condition implicitly enforces constraints on the parameter vector θ that can be

assessed only numerically. We denote by

A = {θ ∈ R−? × R+
? |∀j ∈ Jj1, j2K,Σj,θ is positive definite} (2.11)

the admissible set for θ associated with the likelihood (2.10), where Jn1, n2K denotes the set of

integers ranging from n1 to n2.

2.3.2 Approximation of the likelihood

The numerical evaluation of the scale-wise Gaussian likelihood (2.9) (and hence of the joint likeli-

hood (2.10)) is problematic since it requires the inversion of a large covariance matrice Σj,θ. This

inversion is computationally prohibitive for images, even for very modest sizes (for instance, a 64×64

image would require the inversion of a dense matrix of size ∼ 1000 × 1000 for the scale j = 1). In

addition, it is numerically unstable for larger images (due to growing condition number). In order to

bypass this difficulty, we propose in this section to evaluate the scale-wise Gaussian likelihood (2.9)

in the spectral domain by using an asymptotic approximation due to Whittle, see [Whi53, Whi54].

a) Whittle approximation

Whittle approximation. With the assumptions of Section 2.3.1, the collection of log-leaders

{l(j, ·)} is a realization of a non-zero mean stationary Gaussian random field on a regular lattice. Up

to a multiplicative constant, the Whittle approximation for the scale-wise Gaussian likelihood (2.9)
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was studied in [Whi54, Fue07, Ber94, Whi53, AL95, Cha97], and leads to the following result

pW (`j |λ) =
∏

m∈Jj

(
φj,θ(ωm)

)−1
exp

(
−
y∗`j (ωm)y`j (ωm)

φj,θ(ωm)

)

×
(
φj,θ(ω0)

)− 1
2 exp

(
(y`j (ω0)−mjµj,w)2

2φj,θ(ω0)

)
(2.12)

where y`j (ωm) is the 2D discrete Fourier transform (DFT) coefficient of {l(j, ·)} defined with the

following normalization

y`j (ωm) =
1

mj

∑
k∈J0,mjK2

l(j,k) exp(−ikTωm) (2.13)

with ωm = 2πm/mj such that

I`j (ωm) = y∗`j (ωm)y`j (ωm) (2.14)

corresponds to the periodogram of {`(j,k)}. The operator (·)∗ stands for complex conjugation and

φj,θ(ω) is the spectral density associated with the covariance function %j,θ(r) (its computation is

discussed in Section 2.3.2 b) below). The product is taken over half of the total frequency grid

Jj = Jb−mj − 1

2
c,−1K× J1, bmj

2
cK ∪ J0, bmj

2
cK

2
\{(0, 0)} (2.15)

where the zero frequency is removed since it is included separately as the second term in (2.12). An

illustration of the set Jj is given in Fig. 2.3 for mj = 8.

Note that in (2.12), the contribution of the mean of the Gaussian field reduces to the zero frequency

term [Cha97, Jes12]. If only θ is of interest, it is therefore possible to make the Whittle approximation

mean invariant by discarding the zero frequency term as it is commonly reported in [Whi54, Fue07,

Ber94, Whi53, AL95].

Finally, in the rest of this thesis, we denote by pW (`|λ) the approximation of the joint likelihood

p(`|θ) obtained by replacing p(`j |λ) with pW (`j |λ) in (2.10)

pW (`|λ) ∝
j2∏
j=j1

pW (`j |λ) (2.16)
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which is associated with the following admissible set for θ

AW = {θ ∈ R−? × R+
? |∀j ∈ Jj1, j2K, ∀m ∈ Jj , φj,θ(ωm) > 0} (2.17)

to ensure valid parametric spectral densities.

0

0

⌊
mj

2
⌋⌊

−mj−1

2
⌋

⌊
mj

2
⌋

⌊
−mj−1

2
⌋ mj = 8

Figure 2.3: Frequency grid and set Jj (•) for mj = 8.

b) Computation of the parametric spectral density

The virtue of the Whittle approximation is to replace the inversion of the covariance matrix Σj,θ

with the computation of the parametric spectral density induced by the covariance model. Here we

propose two different ways to compute φj,θ(ω), both of which make use of the rewriting of %j,θ as

%j,θ(r) = c2%1,j(r) + c0
2%2,j(r) (2.18)

where

%1,j(r) =

(
log( 3

rj2j
)

log 4
log(1 + r) + j log 2

)
× 1[0,3](r) + log(

r

rj
)× 1[3,rj ](r) (2.19)
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%2,j(r) =

(
1− log(1 + r)

log 4

)
× 1[0,3](r) (2.20)

with rj defined in (2.6). This yields a decomposition of φj,θ(ωm) into

φj,θ(ωm) = c2f1,j(ωm) + c0
2f2,j(ωm) (2.21)

where the functions fi,j , i = 1, 2 do not depend on the parameters c2 and c0
2 and can be pre-calculated.

Analytical expression. To begin with, the continuous spectral density associated with the co-

variance model %j,θ(r) is given by Bochner’s theorem [GDGF10]

φ̄j,θ(ω) =

∫
R2

%j,θ(||u||) exp (−iuTω) du. (2.22)

Second, since %j,θ(||u||) is a radial symmetric function, its Fourier transform φ̄j,θ(ω) is also radial

symmetric. It can therefore be expressed as a Hankel transform [Pou99], given by

φ̄j,θ(ω) = φ̄j,θ(||ω||) = 2π

∫ ∞
0

r%j,θ(r)J0(r||ω||) dr (2.23)

where Jn(·) is the n-th order Bessel function. By injecting (2.18) in (2.23), we obtain

φ̄j,θ(||ω||) = c2 f̄1,j(||ω||) + c0
2 f̄2,j(||ω||) (2.24)

where

f̄i,j(||ω||) = 2π

∫ ∞
0

r%i,j(r)J0(r||ω||) dr. (2.25)

To evaluate the integral in (2.25), we make use of the identities

(i)
∫ R

0 rJ0(rρ)dr = RJ1(Rρ)
ρ

(ii)
∫ R

0 r log( rR)J0(rρ)dr = − (1−J0(Rρ))
ρ2

that are valid for R > 0, ρ > 0, cf. [Pou99, Tab. 17.1]. Straightforward calculations lead to

f̄1,j(||ω||) = 2π

(
J0(rj ||ω||)− J0(3||ω||)

||ω||2
+

log( 3
rj2j

)

log 4

(3J1(3||ω||)
||ω||

+ I(||ω||)
))

(2.26)

f̄2,j(||ω||) = 2π

(
3J1(3||ω||)
||ω||

− I(||ω||)
log 4

)
(2.27)
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with I(||ω||) =
∫ 3

0 r log(1 + r)J0(r||ω||) dr. With these expressions, we obtain an analytic expression

for (2.21) by discretizing (2.24) using spectral aliasing as in [GF14]

φHj,θ(ωm) =
∑
p∈Z2

c2f̄1,j(ωm,p) + c0
2f̄2,j(ωm,p) (2.28)

where ωm,p = ωm+2πp. At last, the infinite summation in (2.28) is truncated to J−K,KK2, yielding

the approximation

φHj,θ(ωm) ≈ c2f
H
1,j(||ωm||) + c0

2f
H
2,j(||ωm||) (2.29)

with

fHi,j(||ωm||) =
∑

p∈J−K,KK2
f̄i,j(||ωm,p||), i = 1, 2. (2.30)

The two partial sums can be pre-calculated and stored for the discrete set of frequencies ωm, using

a quadrature rule, such as the trapezoid or Simpson’s rules, for the computation of the integral I.

Discrete Fourier transform. It is also possible to obtain a numerical approximation of the

spectral density by using a discrete Fourier transform

φDj,θ(ωm) =
∑

k∈J−mj ,mjK2
%j,θ(||k||) exp(−ikTωm) (2.31)

which straightforwardly leads to

φDj,θ(ωm) = c2f
DFT
1,j (ωm) + c0

2f
DFT
2,j (ωm) (2.32)

where

fDFTi,j (ωm) =
∑

k∈J−mj ,mjK2
%i,j(k) exp(−ikTωm), i = 1, 2. (2.33)

In Fig. 2.4, we illustrate the parametric spectral density φj,θ(ωm) computed by using (2.28) (with

K = 3) and (2.31). Both methods are found to yield results numerically very close, suggesting that

none is preferable to the other. As a result, in the rest of this thesis, we generically denote the

spectral density as φj,θ(ωm) without specifying which method is used for its computation.
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(a) Log-periodogram I`j (b) Log-spectral density φDj,θ (c) Log-spectral density φHj,θ
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(e) Slice ω1 = 0
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(f) Radial evolution ω1 = ω2

Figure 2.4: Fitting between the periodogram (a), averaged over 100 realizations of 2D CMC-LN

(N = 29 and [c1, c2] = [0.02,−0.04]), and the spectral density models φDj,θ (b), obtained from a DFT

of %j,θ(r), and φHj,θ, obtained analytically, at scale j = 2; (d), (e) and (f) compare the models (blue

and black) and the periodogram (red) for different directions.

c) Reparametrization

In the light of the decomposition (2.21) of the parametric spectral density φj,θ(ωm), the admissible

set (2.17) associated with the Whittle approximation pW (`|λ) can be reexpressed as

AW = {θ ∈ R−? × R+
? |∀j ∈ Jj1, j2K,∀m ∈ Jj , c2f1,j(ωm) + c0

2f2,j(ωm) > 0}. (2.34)

We note that while f1,j can be either positive or negative, f2,j is always positive for any reasonable

image size, as illustrated in Fig. 2.5, which displays functions fi,j , i = 1, 2, for different image sizes.

This property can be exploited to define a reparametrization that enables the efficient handling of the
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constraints on covariance parameters θ by transforming them into independent positivity constraints.

More precisely, we consider the mapping defined by

ψ : θ 7→ v = [v1, v2]T = (−c2, c
0
2/γ + c2), γ = sup

j,m

f1,j(ωm)

f2,j(ωm)
. (2.35)

It can been seen that, by construction, ψ is a one-to-one transformation from the admissible set AW

to R+
?

2
and hence maps the joint constraints into independent positivity constraints. Finally, the

Whittle approximation (2.16), expressed with the new set of parameters 2

λ = {v,w} (2.36)

directly reads

pW (`|λ) =

j2∏
j=j1

pW (`j |λ) (2.37)

where

pW (`j |λ) =
∏

m∈Jj

(
φj,v(ωm)

)−1
exp

(
−
y∗`j (ωm)y`j (ωm)

φj,v(ωm)

)

×
(
φj,v(ω0)

)− 1
2 exp

(
−

(y`j (ω0)−mjµj,w)2

2φj,v(ω0)

)
. (2.38)

In (2.38), the reparametrized spectral density is defined by

φj,v(ωm) = v1f̃1,j(ωm) + v2f̃2,j(ωm) (2.39)

with  f̃1,j(ωm) = −f1,j(ωm) + γf2,j(ωm)

f̃2,j(ωm) = γf2,j(ωm)
(2.40)

where, by construction, it can be shown that f̃i,j(ωm) > 0 for ∀ωm.

2Here, by an abuse of notation, we keep the same symbol for the original and new set of parameters.
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Figure 2.5: Functions f1,j and f2,j for different image sizes N .

2.4 Bayesian models

Using the novel statistical model developed in Section 2.3, we are now ready to specify a Bayesian

model addressing the estimation of log-cumulants c1 and c2 via the specification of priors on w and

v as in [WDTA13]. In contrast to the model for time series in [WDTA13], the exact likelihood (2.10)

is here yet replaced with the Whittle approximation (2.37) in order to obtain stable and efficient

Bayesian estimation algorithms that can actually be applied to images.

In this section, we propose two different exploitations of the Whittle approximation that translate

into two Bayesian models. The first model directly uses the Whittle approximation (2.37) as such for

inference. However, due to the particular form of (2.37), conjugate priors can be designed only for

w within this model. The second model interpretes (2.37) as a likelihood for the Fourier coefficients

of the log-leaders, which is then, after augmentation of the model, expressed as the marginal of an

augmented likelihood. Its convenient form enables to jointly design conjugate priors for w and v.

For both models, inference is achieved by resorting to suitable Markov chain Monte Carlo (MCMC)

algorithms, which are detailed in the next section.
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2.4.1 Whittle approximation based Bayesian model

a) Likelihood

As mentioned in the introduction, since the exact likelihood (2.10) cannot be numerically evaluated,

it is here replaced with the Whittle approximation (2.37).

b) Prior distribution

In this thesis, we assume a priori independence between v and w, which implies

π(λ) = π(v)π(w) (2.41)

where π(v) and π(w) are independent priors specified below.

Mean parameter w. Due to the quadratic form in (2.38), and hence (2.37), Gaussian distributions

naturally arise as conjugate priors for w. We therefore assign to w the following prior

π(w) = (2π det Σ0)−
1
2 exp

(
− 1

2
(w0 −w)TΣ−1

0 (w0 −w)
)

(2.42)

where w0 and Σ0 are hyperparameters respectively controlling the mean and the covariance matrix

of the Gaussian prior. These hyperparameters can be tuned by the practitioner to either inject

prior information, or, on the opposite, to specify a non-informative prior to reflect the absence of

knowledge.

Covariance parameter v. The scale-wise Whittle approximation (2.38), and hence joint Whittle

approximation (2.37), is not separable in v1 and v2, so that, unfortunately, the identification of

conjugate priors for v is very challenging. Due to the reparametrization, the constraints associated

with the problem are satisfied when priors with support R+
?

2
are assigned to v. We moreover assume

a priori independence between v1 and v2, which yields

p(v) = p(v1)p(v2) (2.43)

with p(vi) generically referring to a prior with support on R+
? (such as, for instance, improper uniform

priors on R+
? , chi-square distributions or inverse-gamma distributions).
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c) Posterior distribution and Bayesian estimators

The joint posterior distribution of the unknown parameters given the data ` is obtained from the

Bayes rule where the exact likelihood is replaced by the Whittle approximation (2.37), i.e.,

p(λ|`) ∝ pW (`|λ)p(λ)

∝ pW (`|λ)p(v1)p(v2) exp
(
− 1

2
(w0 −w)TΣ−1

0 (w0 −w)
)
. (2.44)

The posterior (2.44) can then be used to define Bayesian pointwise estimators. We consider here two

Bayesian estimators: the maximum a posteriori (MAP) and minimum mean squared error (MMSE)

estimators, respectively defined by

λMMSE = E[λ|`] (2.45)

and

λMAP = argmax
λ

p(λ|`). (2.46)

Unfortunately, it is difficult to obtain closed-form expressions for (2.45) and (2.46). To compute (2.45)

and (2.46), we resort in Section 2.5 to MCMC methods to generate a large collection of samples that

are distributed according to the posterior of interest. These samples are used in turn to approximate

the Bayesian estimators.

2.4.2 Augmented likelihood based Bayesian model

With the Bayesian model above, MCMC methods achieving inference on the posterior distribu-

tion (2.44) involve acceptance/reject steps, such as Metroplis-Hasting moves, to handle sampling

according to non-standard conditional distributions (see Section 2.5). In order to bypass these ac-

ceptance/reject procedures, we resort here to a data augmentation technique (see [TW87, DM01]

for more details) and express the Whittle approximation (2.37) as the marginal likelihood of an

augmented likelihood that lends itself well for the exploitation of conjugacy.

a) Augmented likelihood

Statistical interpretation of the Whittle approximation. The first step of the development

consists of a statistical interpretation of the Whittle approximation (2.38) as a generative model for
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the Fourier coefficients of the log-leaders. To that end, we rewrite (2.38) as

pW (`j |λ) = (det Γj,v)−1 exp
(
−yH`jΓ

−1
j,vy`j

)
×
(
φj,v(ω0)

)− 1
2 exp

(
−

(y`j (ω0)−mjµj,w)2

2φj,v(ω0)

)
(2.47)

with y`j = FJj (`j), where the operator FJj (·) computes and vectorizes the Fourier coefficients

contained in the plane Jj defined in (2.15), (·)H is the conjugate transpose operator and Γj,v is the

diagonal matrix defined by

Γj,v = v1F̃1,j + v2F̃2,j with F̃i,j = diag
(
f̃i,j

)
and f̃i,j =

(
f̃i,j(ωm)

)
m∈Jj

. (2.48)

By inspection of (2.47), the use of the Whittle approximation pW (`j |λ) to numerically evaluate (2.9)

amounts to jointly modeling y`j = FJj (`j) by a random vector with a non-degenerate centered

circularly-symmetric complex-valued Gaussian distribution CN (0,Γj,v) (see, e.g., [Goo63, RC96])

and y`j (ω0) by a random variable with a normal distribution N (mjµj,w, φj,v(ω0)), respectively 3.

Details on the interpretation of the Whittle approximation as a spectral likelihood can be found in

[BR12, Cha97], where the asymptotic normality of Fourier coefficients is discussed. It follows that,

when introducing

y
�0

= [yT`j1
, ...,yT`j2

]T (2.49a)

y0 = [y`j1 (ω0), . . . , y`j2 (ω0)]T (2.49b)

we can develop (2.16) into

pW (`|λ) ∝ (det Γv)−1 exp
(
−yH

�0
Γ−1
v y

�0

)
× (det Γv,0)−

1
2 exp

(
−1

2
(y0 −Xw)TΓ−1

v,0(y0 −Xw)

)
(2.50)

which indicates that the approximation of the joint likelihood (2.37) is equivalent to the following

generative statistical model for the Fourier coefficients y
�0
|λ ∼ CN (0,Γv)

y0|λ ∼ N (Xw,Γv,0)
(2.51)

3Note that the frequency coefficient y`j (ω0) is by definition real-valued, since y`j (ω0) =
∑
k l(j,k)/mj , while the

other coefficients are complex-valued.
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where Γv is the N
�0
×N

�0
diagonal covariance matrix, N

�0
= card(y

�0
), defined as

Γv = v1F̃1 + v2F̃2 with F̃i = diag
(
f̃i

)
and f̃i = [f̃Ti,j1 , ..., f̃

T
i,j2 ]T , (2.52)

Γv,0 is the N0 ×N0 diagonal covariance matrix, N0 = card(y0), defined as

Γv,0 = v1F̃0,1 + v2F̃0,2 with F̃0,i = diag
(
f̃0,i

)
and f̃0,i = [f̃i,j1(ω0), . . . , f̃i,j2(ω0)]T (2.53)

and X is a N0 × 2 matrix defined as

X =


j1mj1 log 2 mj1

...
...

j2mj2 log 2 mj2

 . (2.54)

To sum up, the statistical model (2.51) for the spectral observations y = [yT
�0
,yT0 ] associated with

the likelihood

p(y|λ) = (det Γv)−1 exp
(
−yH

�0
Γ−1
v y

�0

)
× (det Γv,0)−

1
2 exp

(
−1

2
(y0 −Xw)TΓ−1

v,0(y0 −Xw)

)
(2.55)

is equivalent to the model (2.37) for the log-leaders `. We finally note that, due to definitions (2.52)

and (2.53), diagonal matrices viF̃i and viF̃0,i contain only strictly positive terms for v ∈ R+
?

2
(since

f̃i,j(ωm) > 0 for ∀ωm ) and are hence positive definite. This key property is leveraged in the next

paragraph for constructing an augmented model where these matrices individually act as covariance

matrices of Gaussian distributions.

Data augmentation. By using the positive definiteness of viF̃i for i = 1, 2, we can define the

following augmented model y,µ|λ (see [TW87, DM01] for more details)

y,µ|λ

 y
�0
|λ,µ

�0
∼ CN (µ

�0
, v1F̃1), µ

�0
|λ ∼ CN (0, v2F̃2)

y0|λ,µ0 ∼ N (µ0, v1F̃0,1), µ0|λ ∼ N (Xw, v2F̃0,2)
(2.56)

where µ = [µT
�0
,µT0 ] is a latent variable vector introduced such that the likelihood (2.55) is by

construction the marginal likelihood of the augmented model (see Appendix B for details), i.e.,

p(y|λ) =

∫
p(y,µ|λ)dµ (2.57)



52 Chapter 2 - Statistical model and univariate Bayesian estimation

where p(y,µ|λ) is the augmented likelihood given by

p(y,µ|λ) ∝ v1
−N

�0 exp
(
− 1

v1
(y

�0
− µ

�0
)HF̃−1

1 (y
�0
− µ

�0
)
)
v2
−N

�0 exp
(
− 1

v2
µH
�0

F̃−1
2 µ

�0

)
× v1

−N0
2 exp

(
− 1

2v1
(y0 − µ0)T F̃−1

0,1(y0 − µ0)
)

× v2
−N0

2 exp
(
− 1

2v2
(µ0 −Xw)T F̃−1

0,2(µ0 −Xw)
)
. (2.58)

Moreover, and most importantly, it can be seen that the particular form of the augmented likeli-

hood (2.58) allows inverse-gamma and Gaussian distributions to be jointly used as conjugate priors

for vi and w, respectively. As a result, inference on the resulting Bayesian model can be efficiently

achieved without acceptance-reject moves, which is the main motivation behind this data augmen-

tation scheme.

b) Prior distributions

Mean parameter w. The conjugate prior for w is still the Gaussian distribution and we therefore

assign to w the prior (2.42).

Covariance parameter v. As stated previously, due to the form of the augmented likelihood (2.55),

it makes sense to assign inverse-gamma priors IG(αi, βi) to vi, i.e.,

p(vi) ∝ vi−(αi+1) exp

(
−βi
vi

)
1R+

?
(vi) (2.59)

since they are conjugate, where αi and βi are hyperparameters that are respectively linked to the

scale and the shape of the inverse gamma distribution (2.59).
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c) Posterior distribution and Bayesian estimators

The posterior distribution building on the augmented likelihood (2.58) is directly given by

p(λ,µ|y) ∝ v1
−N

�0 exp
(
− 1

v1
(y

�0
− µ

�0
)HF̃−1

1 (y
�0
− µ

�0
)
)
v2
−N

�0 exp
(
− 1

v2
µH
�0

F̃−1
2 µ

�0

)
× v1

−N0
2 exp

(
− 1

2v1
(y0 − µ0)T F̃−1

0,1(y0 − µ0)
)

× v2
−N0

2 exp
(
− 1

2v2
(µ0 −Xw)T F̃−1

0,2(µ0 −Xw)
)

× v1
−(α+1) exp

(
− β
v1

)
1R+

?
(v1)× v2

−(α+1) exp

(
− β
v2

)
1R+

?
(v2)

× exp
(
− 1

2
(w0 −w)TΣ−1

0 (w0 −w)
)
. (2.60)

Finally, since the vector of latent variables µ is not interesting for multifractal analysis purposes and

is here artificially introduced for computational convenience, we consider the marginal MMSE and

MAP estimators respectively defined by

λMMSE = E[λ|y] (2.61)

and

λMAP = argmax
λ

p(λ|y) (2.62)

where the expectation and maximization are taken with respect to the marginal posterior distribution

p(λ|y) =

∫
p(λ,µ|y)dµ = p(y|λ)p(λ). (2.63)

Their computation is achieved in the next section with an MCMC algorithm specifically tailored for

inference on augmented models.

2.5 Estimation algorithms

In this section, we introduce two MCMC algorithms addressing the generation of a large collection

of samples distributed according the posterior distributions (2.44) and (2.60). These samples will be

then used to approximate the associated Bayesian estimators.
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2.5.1 Metropolis-within-Gibbs algorithm

The Metropolis-within-Gibbs algorithm is an MCMC algorithm using the principle of the Gibbs

sampler and Metropolis-Hasting moves. More precisely, the Gibbs sampler consists of sequential

sampling according to the conditional distributions associated with the posterior of interest (2.44) as

explained in [GG84, RC05]. When some or all conditional distributions are not standard distributions

and cannot be directly sampled, we can resort to Metropolis-Hasting moves to sample according to

them [RC05].

a) Sampling of w

From (2.44), it can be shown that the conditional distribution of w is a Gaussian distribution defined

by

w|θ, ` ∼ N
(
(XTΓ−1

θ,0X + Σ−1
0 )−1(Σ−1

0 w0 +XTΓ−1
θ,0y0), (XTΓ−1

θ,0X + Σ−1
0 )−1

)
(2.64)

which is easy to sample. As a result, this step does not require Metropolis-Hasting moves.

b) Sampling of v

Starting from (2.44) and using definitions (2.52) and (2.53), straightforward computations lead to

the following conditional distribution for vi given vi′ 6=i,w and `

p(vi|vi′ 6=i,w, `) ∝ (det viF̃i + vi′ 6=iF̃i′ 6=i)
−1 exp

(
−yH

�0
(viF̃i + vi′ 6=iF̃i′ 6=i)

−1y
�0

)
× (det viF̃0,i′ 6=i + vi′ 6=iF̃0,i′ 6=i)

− 1
2 exp

(
−1

2
(y0 −Xw)T (viF̃0,i + vi′ 6=iF̃0,i′ 6=i)

−1(y0 −Xw)

)
× p(vi) (2.65)

where we recall that p(vi) generically refers to a prior with support on R+
? . Regardless the definition

of p(vi), sampling from (2.65) is not straighforward but can be handled using a Metropolis-Hasting

move. More specifically, we use here a random walk to generate a candidate v◦i which is then

accepted or reject with a probability rvi derived from (2.65) and detailed in Algo. 1. The instrumental

distributions for the random walks are Gaussian distributions whose variances σ2
vi are adjusted to
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ensure acceptance rates between 0.4 and 0.6 (to ensure good mixing properties) as advised in [RC05,

RC98] for this kind of low dimensional problems.

Algorithm 1 Metropolis-within-Gibbs algorithm MwG to sample according to (2.44)

1: Initialization

2: Draw v
(0)
i ∼ IG(αi, βi) for i = 1, 2 and draw w(0) ∼ N (w0,Σ0)

3: MCMC iterations

4: for p = 1 : Nmc

5: Sample w

6: Draw w(p) according to the Gaussian law (2.64)

7: Sample v

8: Set v◦ = [v◦1, v
◦
2]T = v(k−1)

9: for i = 1 : 2

10: Draw v?i ∼ N (v◦i , σ
2
vi) and u ∼ U[0,1]

11: Compute rvi = min(1,
p(v?i |v◦i′ 6=i,w,`)
p(v◦i |v◦i′ 6=i,w,`)

) using (2.65)

12: Set v◦i = v
(?)
i if u < rvi , otherwise v◦i = v◦i

13: end for

14: Set v(p) = [v◦1, v
◦
2]T

15: end for

16: Return {v(p),w(p)}Nmcp=1

c) Approximation of the Bayesian estimators

After a burn-in period defined by p = 1, . . . , Nbi, the proposed Gibbs sampler generates samples

{λ(p)}Nmc
p=Nbi+1 that are distributed according to the posterior distribution (2.44). These samples are

then used to approximate the MAP and MMSE estimators as follows

λ̂
MMSE

=
1

Nmc −Nbi

Nmc∑
p=Nbi+1

λ(p) (2.66)

λ̂
MAP

= argmax
λ(p), p>Nbi

p(λ(p)|`). (2.67)



56 Chapter 2 - Statistical model and univariate Bayesian estimation

2.5.2 Two-stage Gibbs sampler

The reformulation of the spectral likelihood (2.55) as the marginal likelihood of an augmented model

in Section 2.4.2 leads to a two-stage Gibbs sampler as in [TW87, DM01] comprising two steps: First

sampling the latent variables µ given the parameters λ and the observations y; Second, sampling

the parameters λ given the complete data, namely the observations y and the latent variables µ.

a) Step 1: Sampling the latent variables µ

Sampling µ
�0
. Simple manipulations on (2.60) yield the following conditional distribution

p(µ
�0
|λ,y,µ0) ∝ exp(−(µ

�0
− x̃v)HΣ̃

−1
v (µ

�0
− x̃v)) (2.68)

where

x̃v = Σ̃v(F̃1v1)−1y
�0

(2.69)

Σ̃v =
((

F̃1v1)−1 + (F̃2v2)−1
)−1

(2.70)

i.e., the conditional distribution µ
�0
|λ, ` is the following complex-valued Gaussian distribution

µ
�0
|λ,y,µ0 ∼ CN

(
x̃v, Σ̃v

)
. (2.71)

Sampling of µ0. Similarly, it can be shown that the conditional distribution µ0|λ,y,µ�0 is a (real-

valued) Gaussian distribution given by

µ0|λ,y,µ�0 ∼ N
(
x̃0,v,w, Σ̃0,v

)
(2.72)

with

x̃0,v,w = Σ̃0,v

(
(F̃0,1v1)−1y0 + (F̃0,2v2)−1Xw

)
(2.73)

Σ̃0,v =
((

F̃0,1v1)−1 + (F̃0,2v2)−1
)−1

. (2.74)
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b) Step 2: Sampling of the parameters λ

Sampling of w. From (2.60), it can easily be shown that the conditional distribution of w|v,y,µ

is the following Gaussian distribution

w|v,y,µ ∼ N

(XT F̃−1
0,2X

v2
+ Σ−1

0

)−1(
Σ−1

0 w0 +
XT F̃−1

0,2µ0

v2

)
,

(
XT F̃−1

0,2X

v2
+ Σ−1

0

)−1
 .

(2.75)

Sampling of v. The conditional distributions of covariance parameters vi are easy to sample.

Indeed, by inspection of the augmented posterior distribution (2.60), it is straightforward to see that

vi|vi′ 6=i,w,y,µ have inverse-gamma distributions defined by

v1|v2,w,y,µ ∼ IG
(
N
�0

+
N0

2
+ α1, ||y�0 − µ�0||F̃−1

1
+

1

2
||y0 − µ0||F̃−1

0,1
+ β1

)
(2.76)

and

v2|v1,w,y,µ ∼ IG
(
N
�0

+
N0

2
+ α2, ||µ�0||F̃−1

2
+

1

2
||µ0 −Xw||F̃−1

0,2
+ β2

)
(2.77)

where we introduce the notation ||x||M = xHMx.

c) Approximation of Bayesian estimators

The sampling scheme above provides a Markov chain {λ(p),µ(p)}Nmcp=1 whose limiting distribution is

the augmented posterior distribution p(λ,µ|y) [TW87, DM01]. The marginalization of the latent

variable µ is then numerically achieved by averaging the samples as follows

λ̂
MMSE

=
1

Nmc −Nbi

Nmc∑
p=Nbi+1

λ(p) (2.78)

for the computation of the MMSE estimor (2.61). Finally, the MAP estimator (2.62) is simply

computed as follows

λ̂
MAP

= argmax
λ(p), p>Nbi

p(λ(p)|y). (2.79)
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Algorithm 2 Two-stage Gibbs sampler TSG to sample according (2.60)

1: Initialization

2: Draw v
(0)
i ∼ IG(αi, βi) for i = 1, 2 and draw w(0) ∼ N (w0,Σ0)

3: MCMC iterations

4: for p = 1 : Nmc

5: Step 1: Sample latent variables µ

6: Draw µ
(p)

�0
according to the complex-valued Gaussian law (2.71)

7: Draw µ
(p)
0 according to the real-valued Gaussian law (2.72)

8: Step 2: Sample parameters λ

9: Sample w

10: Draw w(p) according to the Gaussian law (2.75)

11: Sample v

12: Draw v
(p)
1 according to the inverse-gamma law (2.76)

13: Draw v
(p)
2 according to the inverse-gamma law (2.77)

14: end for

15: Return {v(p),w(p)}Nmcp=1

2.6 Numerical experiments

We have introduced in the previous sections a Bayesian approach for the estimation of the two leading

log-cumulants c1 and c2 relying on a parametric statistical model for the log-leaders of images. In

this section, we numerically investigate the performance of this approach. To do so, we apply MCMC

algorithms to several types of scale invariant and multifractal 2D stochastic processes for different

image sizes and a large range of values for c1 and c2, and compare them to the current standard

and benchmark estimators (defined in Chapter 1, cf., (1.27) and (1.28)) relying on linear regressions.

Those are generically referred to as LF estimators in what follows.

2.6.1 General setup

Wavelet transform. A Daubechies’ mother wavelet with Nψ = 2 vanishing moments is used, and

α = 0.7 in (1.17).
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Analysis scales. The coarsest scale j2 used for estimation is set such that nj2 ≥ 100 (i.e., the

coarsest potentially available scale, for which nj2 < 100, is discarded), yielding j2 = {2, 3, 4, 5, 6, 7},

respectively, for the considered image sizes N ∈ {26, 27, 28, 29, 210, 211}. Unless specified otherwise,

the finest scale j1 is set to j1 = 2 in order to avoid pollution from improper initialization of the

wavelet transform (see, e.g., [VTA00]).

Prior specification. For these simulations, in order to account for the absence of prior information

about the mean parameter w, we specify a non-informative prior (2.42) by setting w0 = [0, 0]T

and Σ0 = diag(σ2, σ2), with σ2 � 1. Similarly, the hyperparameters of the inverse-gamma priors

IG(αi, βi) (2.59) are set to (αi, βi) = (10−3, 10−3), which ensures that they are close to a non-

informative Jeffreys’ prior.

Performance assessment. We apply the LF estimators and the proposed Bayesian estimators to

a large number (R = 100) of independent realizations of 2D multifractal processes. Performance is

then evaluated using the sample mean or bias, the sample standard deviation (STD) and the root

mean squared error (RMSE) of the estimates averaged across realizations

mc1 = Ê[ĉ1], bc1 = mc1 − c1, sc1 =

√
V̂ar[ĉ1], rc1 =

√
b2
c1 + s2

c1 (2.80a)

mc2 = Ê[ĉ2], bc2 = mc2 − c2, sc2 =

√
V̂ar[ĉ2], rc2 =

√
b2
c2 + s2

c2 . (2.80b)

2.6.2 Adjusting the frequency range in the Whittle approximation

Before studying the performance of the proposed Bayesian approach, we investigate here a degree

of freedom of the Whittle approximation, which lies in the selection of the range of frequency used

in (2.12). The use of only a part of the available frequencies is commonly reported in the literature,

especially for the periodogram-based estimation of the memory coefficient of long-range dependent

time series for which only the low frequencies are used, see, e.g., [Ber94, VR00, Rob95]. Fig. 2.4
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compares the parametric spectral density model φj,θ(ω) to the periodogram of l(j,k), denoted as

I`j (ωm) and defined in Eq. (2.14), averaged over 100 realizations of CMC-LN (N = 29 and [c1, c2] =

[0.02,−0.04]). This figure indicates that the proposed model yields an excellent fit at low frequencies

that degrades at higher frequencies. As a result, we propose here to only use the low frequencies

in (2.81), i.e.,

pW (`j |λ) =
∏

m∈J†j (η)

(
φj,θ(ωm)

)−1
exp

(
−
y∗`j (ωm)y`j (ωm)

φj,θ(ωm)

)

×
(
φj,θ(ω0)

)− 1
2 exp

(
(y`j (ω0)−mjµj,w)2

2φj,θ(ω0)

)
(2.81)

with

J†j (η) =
{

m ∈ Jj |m ≤
√
ηbmj

2
c
}

(2.82)

and we discuss below the influence of the bandwidth parameter η controlling the fraction of the

spectral grid that is actually used 4. Fig. 2.6 reports estimation performance of the MMSE estimator

(computed with the TSG Algo. 2) for c2 as a function of η for 2D CMC-LN processes (N = 28 top,

N = 29 bottom) with two different values of c2 (0.02 in red, 0.08 in blue). As expected, η is found

to tune a classical bias-variance tradeoff: a large value of η leads to a large bias and small standard

deviation and vice versa. The choice η = 0.25 yields a robust practical compromise and is therefore

used in the rest of this thesis.

2.6.3 Numerical assessment of equivalence between Bayesian models

In Section 2.4, we have formulated two Bayesian models building either on the Whittle approxima-

tion (2.37) itself or the augmented spectral likelihood (2.58). In this section, we show by means

of numerical experiments that these two Bayesian models are equivalent when they incorporate the

same prior information on w and v. To do so, we use for both Bayesian models the non-informative

Gaussian and inverse-gamma distributions as defined in the general setup (see Subsection 2.6.1) as

4It is important to note that the use of low frequencies only in (2.81) is not a restriction to a limited frequency content
of the image (indeed, scales j ∈ [j1, j2] are used) but only concerns the numerical evaluation of the likelihood (2.38) in
the spectral domain.
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Figure 2.6: Influence of the bandwidth parameter η on estimation performance for two different sizes

of 2D CMC-LN and two different values of c2 values (−0.02 in red and −0.08 in blue).

priors and run the MCMC algorithms MwG and TSG, respectively designed for the Whittle approx-

imation based Bayesian model (associated with the posterior (2.44)) and the augmented likelihood

based one (associated with the posterior (2.60)).

We first display in Fig. 2.7, the estimated marginal posterior distributions of c1 and c2 = −v1

obtained by running the MCMC algorithms on a single realization of 2D MRW (N = 28 and

[c1, c2] = [0.7,−0.02]) and computing the normalized histograms. A visual inspection of Fig. 2.7

clearly indicates that the marginal posterior distributions induced by the two posterior distributions

(2.44) and (2.60) are very similar.

We moreover report in Tab. 2.1 estimation performance of the Bayesian estimators assessed on

100 realizations of 2D MRW. It is observed that MCMC algorithms yield estimators (MAP and

MMSE) with numerically very close performance. This confirms that, when the same prior distri-

butions are used, both approaches (either directly working with the Whittle approximation (2.37)

or the augmented spectral likelihood (2.58)) lead to posterior distributions and associated Bayesian

estimators that are numerically equivalent.
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(a) Marginal posterior distribution of c2
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100100

(b) Marginal posterior distribution of c1

Figure 2.7: Marginal posterior distribution of (a) c2 and (b) c1 associated with the posterior distri-

bution (2.44) (red) and (2.60) (blue) obtained by running MCMC algorithms on a single realization

of 2D MRW (N = 28 and [c1, c2] = [0.7,−0.02]).

Table 2.1: Estimation performance of Bayesian estimators associated with posterior distribu-

tions (2.44) (computed with MwG) and (2.60) (computed with TSG) assessed on 100 realizations of

2D MRW (N = 28 and [c1, c2] = [0.7,−0.02])

(2.44) - MwG (2.60) - TSG

c1 c2 c1 c2

M
E

A
N MMSE 0.715 −0.024 0.720 −0.024

MAP 0.713 −0.023 0.713 −0.023

S
T

D MMSE 0.046 0.005 0.046 0.005

MAP 0.045 0.005 0.046 0.005

In the rest of this thesis, the use of either the augmented model (2.58) or the Whittle approx-

imation (2.38) will depend on the nature of the prior on v. When inverse-gamma type priors are

assigned to v (cf. Section 3.4 in the next chapter), the augmented model (2.58) yields an efficient

sampling scheme whose advantages in terms of computational cost and convergence properties are

illustrated in Subsection 2.6.6. In other cases (cf. Section 3.5 in Chapter 3), the augmented spectral
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likelihood loses much of its attraction and we hence prefer to work directly with the Whittle approx-

imation (2.37) to reduce the number of variables to be sampled.

2.6.4 Estimation performance for c1

In this first set of experiments, we consider realizations of 2D MRW processes (N = 28) for which

we set c1 = 0.7 and make c2 vary from strong (−0.1) to weak (−0.01) multifractality. We report

in Fig. 2.8 estimation performance for Bayesian estimators of c1 (computed with TGS) and non-

weighted and weighted linear regression based estimators, respectively denoted as LFnw and LFw.

Bayesian estimators are found to offer overall estimation performance very alike that of the linear

regression approach (in particular LFnw), both in terms of the bias and the standard deviation.

Similar results have been observed for different members of MMC processes, different image sizes

and different values of c1. This finding is not surprising since the proposed statistical model assumes

essentially as much as the linear regression for the mean of the log-leaders, namely a linear evolution

with a slope controlled by c1 (cf. (1.15)).

This experiment leads us to the conclusion that the Bayesian approach does not yield improve-

ments for the estimation of c1 when it incorporates a non-informative prior on w (and hence on

c1). As a result, in the rest of this thesis, when a non-informative prior is assigned to w, estimation

performance for c1 is not discussed. Estimation of c1 will be discussed again in Section 3.6 of Chap-

ter 3, where we consider an informative smoothing prior for the collection of w of multivariate images..

2.6.5 Estimation performance for c2

In this last set of experiments, we investigate in more detail the performance of the proposed Bayesian

approach for the estimation of c2 and compare it to the linear regression based approach. Note that

in this section, only performance of the weighted linear regression based estimator LFw are reported

for simplicity, since it has been found to yield better performance as observed in [WAJ07].
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Figure 2.8: Estimation performance for c1 assessed on 100 realizations of 2D MRW (N = 28, c1 = 0.7

and varying c2): bias, STD and RMSE from left to right.

a) Estimation performance

Fig. 2.9 summarizes the estimation performance of LF and Bayesian estimators (computed with

TSG) for 2D MRW for medium to large image sizes N = {28, 29, 210, 211} whereas Fig. 2.10 displays

estimation performance for various 2D MMC processes (CMC-LN,CMC-LP, CPC-LN and CPC-LP)

for N = 28.

First, it is observed that the Bayesian approach tends to slightly outperform LF in terms of bias

for almost all considered multifractal processes and image sizes. Second, and most strikingly, the

proposed Bayesian estimators systematically yield significantly reduced standard deviations, with a

reduction of up to a factor of 3 as compared to linear regressions. The standard deviation reduction

is more important for small values of |c2| yet remains above a factor of 1.5 for large values of |c2|.

These performance gains are directly reflected in the overall RMSE values, which remain up to a

factor of 2.5 below those of linear fits. Finally, note that the estimation performance for CMCs and

CPCs with log-Poisson multipliers reported in Fig. 2.10 are found to be slightly inferior to those with

log-normal multipliers. This may be due to an arguably slightly stronger departure from Gaussian

for the former, cf. Fig. 2.1.

b) Performance for small image size

For the analysis of small images, N ≤ 27, the limited number of available scales forces the choice

j1 = 1. Results for image sizes N = {26, 27} (for which j2 = 2, 3 respectively) are reported in Fig. 2.11
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Figure 2.9: Estimation performance for c2 for 2D MRW for different image sizes N ∈ {28, 29, 210, 211}.
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Figure 2.10: Estimation performance for c2 for image size N = 28 for different 2D MMC processes.
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for 2D MRW. They indicate that the performance gains of the proposed Bayesian estimators with

respect to LF estimators are even more pronounced for small images, both in terms of bias and

standard deviations, yielding a reduction of RMSE values of up to a factor of 4. In particular, LF is

found to yield standard deviations that are prohibitively large to be useful in real-world applications,

cf. [WRJA09]. Notably, values c2 = 0 cannot be reliably detected with LF. In contrast, the proposed

Bayesian procedure yields sufficiently small bias and standard deviations to enable, for the first time,

the relevant estimation of the multifractality parameter c2 even for very small images (or image

patches) of size 64× 64.
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Figure 2.11: Estimation performance for c2 for 2D MRW for small image sizes N ∈ {26, 27} with

j1 = 1.
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c) Performance for fractional Brownian motion

Self-similar fBms do not belong to the class of MMC processes for which the proposed estimation

procedure was designed. The correlation structure of the wavelet coefficients of fBms has been

studied in, e.g., [Fla92]. This correlation is weak, i.e., it goes to zero fast with the distance between

wavelet coefficients in the time-scale plane. However, we apply here the proposed approach to test its

robustness and summarize the corresponding results in Tab. 2.2. They indicate that the performance

of the LF estimator is comparable to MMC for c2 = −0.01 for the corresponding image size. In

contrast, the proposed Bayesian estimators are strikingly practically unbiased and have standard

deviation (resp. RMSE) values that significantly outperform those of LF by up to a factor 20 (resp.

10). Therefore, the Bayesian approach is found to be actually much more likely to be able to identify

a model for which c2 = 0 than the classical linear regression approach.

Table 2.2: 2D FBm estimation performance for image sizes N = {26, 27, 28, 29, 210} and j1 =

{1, 1, 2, 2, 2}, j2 = {2, 3, 4, 5, 6}. The lower the better and best results are marked in bold.

N 26 27 28 29 210

M
E

A
N LF −0.0254 −0.0127 0.0043 0.0052 0.0044

MMSE −0.0040 −0.0013 −0.0011 −0.0006 −0.0005

MAP -0.0015 -0.0008 -0.0008 -0.0004 -0.0003

S
T

D

LF 0.0184 0.0061 0.0070 0.0028 0.0016

MMSE 0.0022 0.0006 0.0005 0.0002 0.0001

MAP 0.0017 0.0003 0.0003 0.0001 0.0001

R
M

S
E

LF 0.0313 0.0140 0.0082 0.0059 0.0047

MMSE 0.0046 0.0014 0.0012 0.0006 0.0005

MAP 0.0022 0.0009 0.0009 0.0004 0.0003

The set of the three experiments above provides strong evidence for the benefits of the Bayesian

approach over the linear regression for the estimation of the second log-cumulant c2. These benefits

mainly lie in a significant reduction of the standard deviation values, which has been observed

regardless the considered scale invariant model, the image size or the value of c2.



2.6 - Numerical experiments 69

2.6.6 Convergence and computational cost

In this last set of experiments, we finally discuss the convergence of MCMC methods and the com-

putational cost of the proposed methods.

a) Convergence of MCMC algorithms

We first investigate the convergence properties of the proposed MCMC algorithms. To do so, we

display in Fig. 2.13 (a) the evolution of the draws c
(p)
2 provided by the MwG and TSG algorithms

(with identical random initializations) averaged over 100 realizations of 2D MRW (N = 28 and

[c1, c2] = [0.7,−0.01]). Clearly, the augmented model used in TSG leads to Markov chains (MCs) that

converge almost immediately to the stationary distribution (whose mean is displayed in black), while

MwG requires a much longer burn-in period. Indeed, the accept-reject procedure of MwG requires

tuning of the (adaptive) step size of the random walk propositions, which is precisely bypassed by

the data augmentation approach.

An analysis of the mixing properties of the MCMC algorithms is given in Fig. 2.13 (b), which plots,

as a function of the lag ∆p, the correlation between two draws that are distant of ∆p iterations.

These figures show that the TSG algorithm succeeds in generating samples with low correlation,

indicating hence good mixing properties [CC96, RC98]. In contrast, the samples c
(p)
2 provided by

MwG remain correlated for a significant range of values of lags ∆p.

The results above suggest that the number of samples can be significantly reduced for TSG as

compared to MwG. Complementary simulations for a wide range of multifractal parameters have

shown that MCs of length Nmc = 3000 were required to ensure convergence for all image sizes under

study with MwG, but only Nmc = 1000 with TGS (Nbi = Nmc − 700 for both). This reduction is

directly reflected in the computational cost of TSG, which is reported in Fig. 2.12 and discussed

below.

b) Computational cost

Fig. 2.12 investigates the computational time T for estimation procedures LF, MwG and TSG for

different image sizes N . The computational time includes the 2D DWT for all methods. The
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Figure 2.12: Computational time T (in seconds) versus image size N with j1 = {1, 1, 2, 2, 2} and

j2 = log2N − 4 for all methods

(a) Autocorrelation of c
(p)
2 samples (b) Average evolution c

(p)
2 samples

Figure 2.13: Convergence diagnosis of MCMC algorithms assessed on 100 realizations of 2D MRW

(N = 28 and [c1, c2] = [0.7,−0.01]): (a) autocorrelation of c
(p)
2 samples; (b) average evolution of c

(p)
2

samples with in black the mean of the stationary distribution.

estimator LF unsurprisingly exhibits the lowest computational cost. Among the MCMC methods,

TSG yields a significant reduction of the computational time as compared to MwG, by a factor

ranging from 4 (small images) to 2 (large images). As a result, while the computational time for

MwG is up to 25 times greater than that of LF, TSG is only between 5 (small N) and 2 (large N)

times slower than the linear regression based estimation LF, which clearly demonstrates the efficiency

of the proposed extended Fourier domain model and associated algorithm.
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Overall, these results illustrate that the Bayesian approach using the TSG algorithm is an oper-

ational alternative to linear regression for the analysis of univariate images, significantly improving

estimation performance at only ∼ 2-5 times the computational cost.

2.7 Conclusions and perspectives

Conclusions. We presented in this chapter a Bayesian estimation procedure for the two leading

log-cumulants c1 and c2 of univariate images. The procedure relied on the formulation of a simple

yet generic parametric statistical model for the log-leaders of images. This model was empirically

shown to be generically valid for MMC processes. Building on the proposed statistical model and

its numerical approximation via the Whittle approximation, this chapter introduced two alternative

Bayesian models. The associated Bayesian estimators were approximated by means of samples gen-

erated by appropriate Markov chain Monte algorithms. The benefits of the Bayesian approach were

numerically assessed via the investigation of estimation performance, assessed using a large number

of multifractal processes for several image sizes. While no improvement was observed for the esti-

mation of c1, this procedure was found to yield for the estimation of c2 significant improvements in

RMSE of up to a factor of 4 for MMC processes, and up to a factor of 10 for fBms when compared

to the current benchmark estimator.

The proposed procedure constitutes, to the best of our knowledge, the first operational Bayesian

estimator enabling the reliable estimation of the multifractality parameter for images, even for images

(or image patches) of size equal to 64× 64 pixels.

Finally, we mention that the evaluation of a Gaussian likelihood via a Whittle approximation is not

limited to images and can be exploited for time series as well. Details on the Whittle approximation

for time series can be found in Appendix D. Consequently, all developments formulated in this

chapter (reparametrization, data augmentation and estimation procedures) can be transposed for

time series along with multivariate extensions proposed in Chapter 3. This has been partly reported

in [CWA+15] for univariate time series (yielding a faster estimation procedure than the one initially

proposed in [WDTA13]) and in [CWT+16b, CWA+16a] for multivariate time series.
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Perspectives. The Bayesian methodology enables the estimation of confidence intervals, which

can be used to summarize the posterior distribution of a parameter. A direct application of the work

presented in this chapter would be the development of routines for the construction of credibility

intervals and hypothesis tests for c1 and c2 (see, e.g., [EC03, CS99]). More challenging, the incorpo-

ration of higher order log-cumulants cp, p ≥ 3, would constitute an important continuation of this

work. Leads to explore for this purpose are further discussed in the perspectives concluding this

thesis in Chapter 5. Finally, it would be of great practical interest to develop suitable algorithms

enabling parameter inference to be achieved at even lower computational cost. This will also be

discussed in more details in the concluding Chapter 5.

2.8 Conclusions et perspectives (in French)

Conclusions. Nous avons présenté dans ce chapitre une procédure bayésienne pour l’estimation

des deux premiers log-cumulants c1 et c2 d’images univariées. Cette procédure reposait sur la formu-

lation d’un modèle paramétrique simple et générique pour le logarithme des coefficients dominants

des images. Il a été montré empiriquement que ce modèle était valide pour les processus multifrac-

taux construits sur des cascades multiplicatives. A partir de ce modèle, et de son approximation

numérique découlant de l’approximation de Whittle, nous avons introduit dans ce chapitre deux

modèles bayésiens alternatifs. Les estimateurs bayésiens associés ont été approximés grâce à des

méthodes de Monte Carlo par chaines de Markov appropriées. Les performances d’estimation de

notre approche bayésienne ont été évaluées numériquement grâce à des simulations conduites sur

plusieurs processus multifractaux de référence. Bien qu’aucune amélioration n’ait été notée pour

l’estimation du premier log-cumulant c1, il a été montré que notre procédure améliorait significative-

ment l’estimation du deuxième log-cumulant c2. Il a notamment été observé que la racine de l’erreur

quadratique moyenne de notre estimateur était diminuée d’un facteur 4 pour les processus multi-

fractaux construits sur des cascades multiplicatives et d’un facteur 10 pour le mouvement brownien

fractionnaire par rapport à l’estimateur de référence.

La procédure d’estimation proposée dans ce chapitre constitue, à notre connaissance, la première
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procédure d’estimation bayésienne opérationnelle permettant l’estimation pertinente du second log-

cumulant c2 pour les images, applicables à des petites tailles images allant jusqu’à 64× 64 pixels.

Enfin, nous soulignons ici que l’évaluation de la vraisemblance gaussienne via une approximation

de Whittle n’est pas spécifique aux images et peut être également exploitée pour les séries tem-

porelles. Des détails concernant l’approximation de Whittle pour les séries temporelles sont données

en Appendice D. Par conséquent, les développements formulés dans ce chapitre (la reparamétrisation,

l’augmentation des données et les procédures d’estimation), ainsi que ceux formulés dans le Chapitre 3,

peuvent directement être transposés pour l’étude des séries temporelles. Ce point a fait l’objet de

plusieurs publications dans [CWA+15] pour les series temporelles univariées et dans [CWT+16b,

CWA+16a] pour les séries temporelles multivariées.

Perspectives. La méthodologie bayésienne permet l’estimation d’intervalles de confiance, qui peu-

vent être utilisés pour quantifier la loi a posteriori d’un paramètre. Une application directe du tra-

vail présenté dans ce chapitre serait le développement de procédures de construction d’intervalles de

crédibilité et de tests d’hypothèse pour c1 et c2 (voir, e.g., [EC03, CS99]). Plus difficile, l’incorporation

des log-cumulants d’ordre supérieur cp, p ≥ 3, constituerait une suite majeure de ce travail. Des pistes

à explorer à cet effet sont discutées plus en détail dans les perspectives concluant cette thèse dans le

Chapitre 5. Enfin, il serait d’un grand intérêt pratique de développer des algorithmes d’estimation

ayant un coût calculatoire encore plus faible. Ce point est également discuté dans les conclusions du

Chapitre 5.
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3.1 Introduction

As mentioned in the general introduction of this thesis, MFA has been successfully used in various

fields of image processing. Yet, its application remains so far conceptually limited to the independent

analysis of one single image with homogeneous scale invariance properties at a time. The main reason

for this resides in the definition of the multifractal spectrum (1.3) introduced in Chapter 1, which

is intrinsically univariate. Although definitions of a multivariate multifractal spectrum have been

studied, cf., e.g., [HJK+86, SSLB96, MSKF90], these attempts remain essentially limited to pairs of

time series and are of little relevance for M -uplets of data for M � 2. This limitation has become

increasingly urgent in view of the number of recent applications in which the acquired images are mul-

tivariate, i.e., they consist of a set or sequences of images (multitemporal, multispectral, multimodal,

. . . ) or spatially organized collections of image patches. Such data can provide a rich resource for

information, on condition that they are analyzed jointly rather than individually [PMdJF11]. This

chapter aims at introducing an operational approach for the multifractal analysis of multivariate

images that alleviates this practical limitation. Instead of characterizing the data through a joint

multifractal spectrum, yet to be defined and studied theoretically, we propose here to perform a joint

estimation of the collection of multifractal parameters associated with the multifractal spectra of each

individual data component. More specifically, starting from the univariate statistical model proposed

in Chapter 2, we build multivariate Bayesian models jointly describing the collection of multifractal

parameters via the design of suitable multivariate prior distributions. The formulation of the joint

estimation of multifractal parameters in a Bayesian framework has never been considered before and

constitutes an important contribution of this thesis. It provides flexibility for the incorporation of

prior information while enabling us to resort to efficient estimation procedures. To illustrate our ap-

proach, we consider in this chapter priors encoding the assumption that the multifractal properties

evolve slowly across the collection of images (cf. Chapter 5 for a discussion on other assumptions).

The remainder of this chapter is organized as follows. In Section 3.3, we define the multivariate

image scenarios considered in this manuscript and the notation used throughout this chapter.
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In Section 3.4, we introduce gamma Markov random fields (GMRF), see, e.g., [DC10]) as proba-

bilistic models to describe the collections of parameters v (related to c2 via (2.35)). This type of prior

induces positive correlation between parameters of different data or image components and hence

promotes smoothness. It relies on the use of inverse-gamma distributions for v which are precisely

conjugate when the augmented likelihood (2.58) is used. Therefore, the combination of GMRF priors

and (2.58) results in an efficient Bayesian inference algorithm, without acceptance-reject procedure,

that is perfectly tailored for the handling of large numbers of unknowns. Within this model, the

amount of induced smoothness depends, however, on hyperparameters whose estimation cannot be

embedded in a fully Bayesian approach. Those are manually tuned in this chapter, see Chapter 5 for

a discussion on methods for their estimation.

As an alternative, we propose in Section 3.5, to model the collections of parameters v by simul-

taneous autoregressions (SAR), see, e.g., [Cre15]. In essence, this type of prior promotes a smooth

evolution of the multifractal properties by penalizing the magnitude of the second order difference of

the evolution of v. Contrary to GMRF models, the estimation of the associated hyperparameters can

be embedded in a fully Bayesian approach, which enables their automatic adjustement. However,

since SAR priors do not build on inverse-gamma distributions, the resulting posterior distribution

involves non-standard conditional distributions. Thus, parameter inference requires to design ap-

propriate acceptance-reject based MCMC algorithms. We consider in this chapter a Hamiltonian

Monte Carlo (HMC) scheme which provides good convergence properties for the high-dimensional

variable spaces induced by the analysis of multivariate data. The resulting algorithm has nevertheless

a significantly larger computational cost than the one obtained when using GMRF.

Finally, in Section 3.6, we propose to encode the assumption of smoothness for parameters w

(related to c1 via (2.2)) via the design of SAR priors. The motivations are twofold: First, SAR

priors allow the estimation of hyperparameters via a hierachical Bayesian model; Second, and more

importantly, they rely on Gaussian distributions, which are precisely the natural conjugate priors for

w, as stated in Chapter 2. Consequently, the use of SAR priors for the collections of parameters w

leads to an efficient algorithm with no additional acceptance-reject procedure.

The benefits of each of the above multivariate priors are assessed and validated by means of
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numerical experiments conducted on multivariate datasets composed of 2D synthetic multifractal

processes with prescribed multifractal properties. To the best of our knowledge, the method intro-

duced in this chapter constitutes the first operational MFA tool applicable to the joint analysis of

multivariate collections of images, able to jointly or separatly perform regularization on c1 and c2.

The work presented in this chapter has been reported in [CWT+16a, CWA+16c] and a journal

paper is in preparation [CWA+16d].

3.2 Introduction (in French)

Comme précisé dans l’introduction générale de cette thèse, l’analyse multifractale a été mise à profit

dans de nombreux domaines du traitement des images. Cependant, son utilisation reste jusqu’à

présent limitée conceptuellement à l’analyse individuelle d’images avec des propriétés d’invariance

d’échelle homogènes. La principale raison de cette limitation vient de la définition même du spec-

tre multifractal (1.3) introduit dans le Chapitre 1, qui est intrinsèquement univariée. Bien que des

définitions de spectre multifractal multivarié aient été étudiées, cf., e.g., [HJK+86, SSLB96, MSKF90],

ces tentatives restent essentiellement limitées à des paires de séries temporelles et présentent peu

d’intérêt pour l’analyse de M -uplet de données, avec M � 2. Il devient de plus en plus nécessaire

de pallier cette limitation au vu du nombre croissant d’applications pour lesquelles les données

récoltées sont multivariées, i.e., elles consistent en un set ou une séquence d’images (multitem-

porelles, multispectrales, multimodales, . . . ) ou à une collection de patches spatialement organisés.

De telles données sont une riche source d’information, à condition que l’ensemble des données soit

traité conjointement plutôt que séparément [PMdJF11]. Ce chapitre vise à introduire une approche

opérationnelle pour l’analyse multifractale d’images multivariées. Au lieu de caractériser les données

via un spectre multifractal multivarié, qui reste à définir et à étudier théoriquement, nous proposons

ici d’effectuer une estimation conjointe de l’ensemble des paramètres multifractaux décrivant les

spectres multifractaux de chaque composant du jeu de données. Plus précisément, élaborant sur le

modèle statistique univarié introduit dans le Chapitre 2, nous construisons des modèles bayésiens

multivariées décrivant l’ensemble des paramètres multifractaux grâce à la définition de lois a priori
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adéquates. La formulation d’une estimation conjointe des paramètres multifractaux dans un cadre

bayésien n’a jamais été considérée auparavant et constitue une importante contribution de cette

thèse. Elle autorise une certaine flexibilité dans le choix de l’information a priori via la définition des

lois a priori tout en permettant d’avoir recourt à des procédures d’estimation efficaces. Pour illus-

trer notre approche, nous considérons dans ce chapitre l’hypothèse que les propriétés des paramètres

multifractaux évoluent lentement dans le jeu de données (cf. les perspectives dans le Chapitre 5 pour

une discussion sur d’autres hypothèses).

Le reste de chapitre est organisé de la façon suivante. Dans la Section 3.3, nous définissons les

scénarios des images multivariées considérés dans ce manuscript et nous introduisons les utilisées

tout au long de ce chapitre. Dans la Section 3.4, nous introduisons des champs gamma markoviens

(GMRF), voir, e.g., [DC10], comme modèles statistiques pour décrire la collection des paramètres

v (qui, nous le rappelons, sont liés à c2 via (2.35)). Ce type de loi a priori introduit une cor-

relation positive entre les paramètres de différents données ou images et favorisent une évolution

lisse des paramètres. Par ailleurs cette loi a priori repose sur des distributions inverse-gamma

pour v qui sont précisement conjuguées lorsque la vraisemblance augmentée (2.58) est utilisée. Par

conséquent, la combinaison des modèles GMRF et de (2.35) aboutit à un algorithme d’estimation ef-

ficace, ne nécessitant aucune procédure d’acceptation-rejet et ainsi parfaitement adapté à l’inférence

sur un grand nombre d’inconnues. Néanmoins, le degré de lissage introduit par ce modèle dépend

d’hyperparamètres dont l’estimation ne peut pas être formulée via une approche totalement bayésienne.

Ces derniers sont ajustés manuellement dans ce chapitre et nous discutons dans le Chapitre 5 de

plusieurs méthodes possibles pour leur estimation.

Une alternative est étudiée dans la Section 3.5, où nous proposons de modéliser les collections des

paramètres par des modèles d’auto-regressions simultanées (SAR). En substance, ce type de loi a pri-

ori favorise une évolution lente des propriétés multifractales en pénalisant l’amplitude des différences

du deuxième ordre de l’évolution de v. Contrairement aux modèles GMRF, l’estimation des hyper-

paramètres associés aux modèles SAR peut être formulée via une approche purement bayésienne,

ce qui permet leur réglage automatique. Cependant, les modèles SAR n’étant pas construits sur

des lois inverse-gamma, la loi a posteriori associée implique des lois conditionnelles non standard.
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Par conséquent, l’inférence requiert des méthodes d’échantillonnage reposant sur des procédures

d’acceptation-rejet. Dans ce chapitre nous considérons une schéma de Monte Carlo hamiltonien

(HMC), qui jouit d’excellent propriétés de convergence pour l’échantillonnage sur des espaces de

grandes dimensions. L’algorithme résultant est néanmoins associé à un coût calculatoire beaucoup

plus élevé que celui résultant de l’utilisation de modèles GMRF.

Enfin, dans la Section 3.6, nous proposons d’incorporer l’hypothèse d’une évolution lisse des

paramètres w (reliés à c1 via (2.2)) à travers l’utilisation de modèles SAR. Les motivations d’un tel

choix sont doubles : Premièrement, les modèles SAR permettent le réglage automatique des hyper-

paramètres associés; Deuxièmement, et avant tout, ils sont construits sur des lois gaussiennes, qui sont

précisément les lois a priori conjuguées pour w, comme précisé dans le Chapitre 2. Par conséquent,

l’utilisation de lois a priori modélisant les collections des paramètres w par des modèles SAR aboutit

à des algorithmes efficaces, ne nécessitant pas de procédures d’acceptation-rejet supplémentaires.

Les apports de chacun des modèles ci-dessus ont été évalués et validés à partir de simulations

numériques conduites sur des jeux de données d’images multivariées composées de processus multi-

fractaux synthétiques dont nous contrôlons les propriétés multifractales. A notre connaissance, la

méthodologie introduite dans ce chapitre constitue le premier outil d’analyse multifractale applicable

à des images multivariées.

Le travail présenté dans ce chapitre a fait l’objet de plusieurs publications en conférences [CWT+16a,

CWA+16c] et d’un article journal en préparation [CWA+16d].

3.3 Problem formulation: Multivariate image scenarios

In this chapter, we consider the multifractal analysis of a dataset X consisting of either a single

image or a sequence of images, and we generically denote by {Xk}k a partition of X. Depending on

the nature of X and the structure of the decomposition {Xk}k, different aspects of the evolution of

the multifractal properties can be studied, and assumptions on the evolution can be used to perform

joint estimation. In this thesis, we investigate in particular the situation where the evolution of

the multifractal properties between the elements Xk is assumed to be smooth. To illustrate our
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approach, we consider the three scenarios detailed below.

Temporal/spectral decomposition. For a dataset corresponding to a (temporal/spectral) se-

quence of images as depicted in Fig. 3.1(a), the evolution of the multifractal properties across images

can be investigated. In this case, k reduces to a single index, denoted here k = kt ∈ Ω1 = J1,MtK,

were Mt is the length of the sequence.

Spatial decomposition. When a single image is under analysis, a spatial decomposition into non-

overlapping patches, as illustrated in Fig. 3.1(b), can be considered for the assessment of the local

(patch-wise) multifractal properties. In this case, we use the indexation k = k = (kx, ky) ∈ Ω2, with

Ω2 = J1,MxK × J1,MyK where Mx and My are the sizes of the grid used for the spatial decompo-

sition. This scenario particularly makes senses for the multifractal analysis of images composed of

several zones of different textures, for which the analysis needs to be performed locally by means of

small patches. Moreover, this situation also comprises collections of images with spatial rather than

temporal/spectral organization.

Spatio-temporal/spectral decomposition. Third, given a (temporal or spectral) sequence of

images, both approaches above can be combined to yield a spatio-temporal/spectral decomposition

(cf. Fig. 3.1(c)), in which case k = (kt,k) ∈ Ω1 × Ω2. This distinction between the spatial and the

temporal/spectral component in the decomposition is meaningful because the dimensions indexed by

k and kt have different physical roles (since we deal with a sequence of images and not an isotropic

3D data cube).

Notations. We give here the notation used throughout this chapter. We denote by `k and yk =

[yT
�0,k
,yT0,k] the log-leaders and Fourier coefficients associated with the element Xk. We moreover

denote by vk = [v1,k, v2,k]T , wk = [w1,k, w2,k]T , respectively tied to c2 and c1 via (2.35) and (2.2),

and λk = {vk,wk} the unknown parameters characterizing the multifractal properties of the element

Xk. Depending on which Whittle approximation based formulation of the model (either the Whittle

approximation (2.37) or the augmented likelihood (2.58)) is being used, we denote the observations
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(a) Temporal/spectral sequence (b) Spatial patches

(c) Spatio-temporal/spectral patches

Figure 3.1: Different decompositions {Xk}k of the dataset X into a temporal/spectral sequence of

images (a), spatial patches (b) and spatio-temporal/spectral patches (c).

by L = {`k}k or Y = {yk}k. When the augmented model is considered, the latent variables

µk = [µT
�0,k
,µT0,k] associated with the element Xk are gathered in M = {µk}k. The parameters to

be estimated are stacked in Λ = {V ,W} with W = {w1,w2} and V = {v1,v2}, where the vectors

vi and wi contain vi,k and wi,k organized in the lexicographic ordering.
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3.4 Regularization of vi via gamma Markov random field priors

In this section, we introduce a joint Bayesian model for multivariate images that encodes the assump-

tion of smooth evolution of the multifractal properties via the specification of gamma Markov random

field (GMRF) priors for the parameters vi. The contribution and the originality of this section lie

in the combination of GMRF priors and the augmented likelihood introduced in Chapter 2. These

priors involve inverse-gamma distributions and are hence conjugate with respect to the augmented

likelihood. This gives rise to an efficient estimation procedure able to handle a large number of

data components. Numerical simulations conducted using sequences of synthetic multifractal images

demonstrate that the proposed approach significantly outperforms previous univariate benchmark

formulations, at competitive computational cost.

3.4.1 Bayesian model

a) Likelihood

As stated in Chapter 2, the augmented likelihood (2.58) has the advantage of allowing conjugate

inverse-gamma priors for vi,k to be used for the construction of Bayesian models. In this section, we

propose to consider a multivariate Bayesian model building on (2.58). More precisely, we assume a

priori independence between the elements Xk and we consider the following joint likelihood for the

observations Y

p(Y,M |Λ) ∝
∏
k

p(yk,µk|λk) (3.1)

with (cf. (2.58))

p(yk,µk|λk) ∝ v1,k
−N

�0 exp
(
− 1

v1,k
(y

�0,k
− µ

�0,k
)HF̃−1

1 (y
�0,k
− µ

�0,k
)
)
v2,k

−N
�0 exp

(
− 1

v2,k
µH
�0,k

F̃−1
2 µ

�0,k

)
× v1,k

−N0
2 exp

(
− 1

2v1,k
(y0,k − µ0,k)T F̃−1

0,1(y0,k − µ0,k)
)

× v2,k
−N0

2 exp
(
− 1

2v2,k
(µ0,k −Xwk)T F̃−1

0,2(µ0,k −Xwk)
)
. (3.2)
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b) Prior distributions

As in Chapter 2, we assume prior independence between parameters characterizing the first and

second log-cumulants c1 and c2.

Mean parameter W. In this section, we focus on V only and we design a prior on W assuming

no dependence between wk. More precisely, we consider the following prior distribution

p(W) =
∏
k

p(wk) (3.3)

where p(wk) is a non-informative Gaussian distribution N (w0,Σ0) as in (2.42). The regularization

of W is studied separatably in Section 3.6.

Multifractality parameter V . The augmented likelihood (3.2) enables, for each element vi,k, the

design of a conjugate inverse-gamma prior IG(αi,k, βi,k). A careful design of the hyperparameters

(αi,k, βi,k), rather than setting them a priori to constant values (as in Chapter 2), can enforce the

parameters of interest vi to vary slowly in some privileged directions. To that end, we propose here

to specify (αi,k, βi,k) such that the resulting prior for vi is a hidden gamma Markov random field

(GMRF), see [DC10] for details. The GMRF prior is a prior used in Bayesian inference to enforce a

smooth evolution of the variances of Gaussian variables with applications, e.g., in source separation

and non-negative matrix factorisation [DC10, VCG08] or hyperspectral imaging [APM15].

The underlying motivation for its use lies in the fact that it succeeds in inducing positive de-

pendence between neighboring elements of vi [DC10] while preserving an inference procedure as

simple as with independent inverse-gamma priors. More specifically, the proposed GMRF defines a

joint prior distribution on (vi, zi) where zi is a set of positive latent variables introduced such that,

conditionally on zi, the variables vi,k are independent and distributed according to inverse-gamma

distributions of the form

vi,k |zi,ai ∼ IG
(
αi,k(ai), βi,k(zi,ai)

)
(3.4a)
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while, conditionally on vi, zi,k are independent gamma variables

zi,k|vi,ai ∼ G(α̃i,k(ai), β̃i,k(vi,ai)) (3.4b)

where G(α, β) stands for the gamma distribution of shape α and rate β. As a result, combining this

prior to the likelihood (3.1) leads to standard conditional distributions (inverse-gamma for vi,k and

gamma for zi,k) and enables hence an efficient sampling scheme. In (3.4a) and (3.4b), the parameters

αi,k, βi,k, α̃i,k and β̃i,k are determined by the definition of a bipartite conditional independence graph

between vi and zi [DC10] and ai is a regularization hyperparameter vector. In this section, we

handle the temporal/spectral and spatial regularization with separate sets of latent variables z
(1)
i

and z
(2)
i , respectively. More precisely, for the three multivariate image scenarios described above,

zi is given by z
(1)
i for temporal/spectral regularization, zi is given by z

(2)
i for spatial regularization,

while zi = {z(1)
i , z

(2)
i } for spatio-temporal/spectral regularization. In a similar fashion, we consider

ai = [a
(1)
i , a

(2)
i ] where a

(1)
i and a

(2)
i adjust the amount of temporal/spectral and spatial smoothness,

respectively. The design of the vertices and edges of the bipartite graph between vi and zi for the

three different cases is sketched in Fig. 3.2 and discussed in detail in the following paragraphs.

Temporal or spectral regularization. For a decomposition of X into a (temporal or spectral)

sequence of images {Xkt}kt∈Ω1 , correlation between the parameters of consecutive images is induced

by introducing auxiliary variables z
(1)
i,kt
∈ R+

? and a bipartite conditional independence graph between

vi and z
(1)
i = {z(1)

i,kt
}kt∈Ω1 such that each vi,kt is connected to the two neighbors of z

(1)
i and vice-versa.

The proposed neighborhood structure is illustrated in Fig. 3.2(a). The density of the resulting GMRF

prior for (vi, z
(1)
i ) is given by [DC10]

p(vi, z
(1)
i |a

(1)
i ) =

1

C(a
(1)
i )

∏
kt∈Ω1

ΦI(vi,kt ; 2a
(1)
i )

∏
kt∈Ω1

ΦG(z
(1)
i,kt

; 2a
(1)
i )×

∏
kt∈Ω1

Φ(a
(1)
i

∑
k′t∈V

(1)
v (kt)

z
(1)
i,k′t
, vi,kt)

(3.5)
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where we have introduced, for convenience of notation, the three potentials

ΦI(ξ;α) = exp (−(α+ 1) log ξ) (3.6a)

ΦG(ξ;α) = exp ((α− 1) log ξ) (3.6b)

Φ(ξ, δ) = exp(−ξ/δ) (3.6c)

and where C(a
(1)
i ) is a normalizing constant. Eq. (3.5) yields the conditionals (3.4a-3.4b) with

parameters

αi,kt = 2a
(1)
i , βi,kt = a

(1)
i

∑
k′t∈V

(1)
v (kt)

z
(1)
i,k′t

(3.7a)

α̃
(1)
i,kt

= 2a
(1)
i , β̃

(1)
i,kt

=
(
a

(1)
i

∑
k′t∈V

(1)
z (kt)

v−1
i,k′t

)−1
(3.7b)

where the sums are taken over

V(1)
v (kt) = {kt, kt + 1} (3.8a)

V(1)
z (kt) = {kt − 1, kt}. (3.8b)

Note that the normalizing constant C(a
(1)
i ) in (3.5) cannot be expressed in closed-form except in

very specific cases [DC10].

Spatial regularization. Given a decomposition of a single image into non-overlapping patches

{Xk}k∈Ω2 , spatial regularization is achieved by using a set of auxiliary variables z
(2)
i = {z(2)

i,k}k∈Ω2

such that each vi,k is connected to the four variables elements {z(2)

i,k′
}
k′∈V(2)

v (k)
with

V(2)
v (k) = {(kx, ky), (kx + 1, ky), (kx, ky + 1), (kx + 1, ky + 1) (3.9a)

and vice-versa, each vi,k is connected to {z(2)
i,k}k′∈V(2)

z (k)
with

V(2)
z (k) = {(kx − 1, ky − 1), (kx, ky − 1), (kx − 1, ky), (kx, ky)}. (3.9b)

The bipartite conditional independence graph between vi and z
(2)
i = {z(2)

i,k}k∈Ω2 is shown in Fig. 3.2(b)

(in red). Following [DC10], it can be shown that the resulting joint GMRF prior for (vi, z
(2)
i ) is
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associated with the density

p(vi, z
(2)
i |a

(2)
i ) =

1

C(a
(2)
i )

∏
k∈Ω2

ΦI(vi,k; 4a
(2)
i )×

∏
k∈Ω2

ΦG(z
(2)
i,k ; 4a

(2)
i )×

∏
k∈Ω2

Φ(a
(2)
i

∑
k′∈V(2)

v (k)

z
(2)

i,k′
, vi,k) (3.10)

where C(a
(2)
i ) is a (generally intractable) normalizing constant. The parameters for the associated

conditional distributions (3.4a-3.4b) are given by

αi,k = 4a
(2)
i , βi,k = a

(2)
i

∑
k′∈V(2)

v (k)
z

(2)

i,k′
(3.11a)

α̃
(2)
i,k = 4a

(2)
i , β̃

(2)
i,k =

(
a

(2)
i

∑
k′∈V(2)

z (k)
v−1
i,k′
)−1

. (3.11b)

Spatial and temporal/spectral regularization Finally, by combining the structure of the

two GMRFs (3.5) and (3.10), a spatio-temporal/spectral regularization for the data decomposition

{Xkt,k}(kt,k)∈Ω1×Ω2
can be obtained. Specifically, we make use of the two sets of auxiliary variables

z
(2)
i = {z(2)

i,kt,k
}(kt,k)∈Ω1×Ω2

and z
(1)
i = {z(1)

i,kt,k
}(kt,k)∈Ω1×Ω2

(i.e., the proposed neighborhood is a

combination of the red and blue graphs shown in Fig. 3.2(c)). The resulting joint prior reads

p(vi, zi|ai) =
1

C(ai)

∏
kt∈Ω1

∏
k∈Ω2

ΦI(vi,kt,k; 2a
(1)
i +4a

(2)
i )

×
∏
kt∈Ω1

∏
k∈Ω2

ΦG(z
(1)
i,kt,k

; 2a
(1)
i )×

∏
kt∈Ω1

∏
k∈Ω2

ΦG(z
(2)
i,kt,k

; 4a
(2)
i )

×
∏
kt∈Ω1

∏
k∈Ω2

Φ(a
(1)
i

∑
k′t∈V

(1)
v (kt)

z
(1)
i,k′t,k

+ a
(2)
i

∑
k′∈V(2)

v (k)

z
(2)

i,kt,k
′ , vi,kt,k) (3.12)

where V(d)
v (·) and V(d)

z (·), d = 1, 2, are defined in (3.8) and (3.9). The parameters of the associated

conditionals (3.4a) and (3.4b) can be expressed as

αi,kt,k = 2a
(1)
i +4a

(2)
i , βi,kt,k = a

(1)
i

∑
k′t∈V

(1)
v (kt)

z
(1)
i,k′t,k

+ a
(2)
i

∑
k′∈V(2)

v (k)

z
(2)

i,kt,k
′ (3.13a)

α̃
(1)
i,kt,k

= 2a
(1)
i , β̃

(1)
i,kt,k

=
(
a

(1)
i

∑
k′t∈V

(1)
z (kt)

v−1
i,k′t,k

)−1
(3.13b)

α̃
(2)
i,kt,k

= 4a
(2)
i , β̃

(2)
i,kt,k

=
(
a

(2)
i

∑
k′∈V(2)

z (k)
v−1
i,kt,k

′
)−1

. (3.13c)
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Figure 3.2: Temporal/spectral (blue) and spatial (red) components of the proposed bipartite condi-

tional independence graphs between vi and z
(d)
i for the three different scenarios.
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c) Posterior distribution and Bayesian estimators

Using Bayes’ theorem and assuming prior independence between v1, v2, and W, the joint posterior

distribution associated with the proposed Bayesian model is

p(Λ,Z,M |Y,a) ∝ p(Y,M |Λ)p(W)p(V ,Z|a)

∝ p(Y,M |Λ)p(W)
2∏
i=1

p(vi, zi|ai) (3.14)

with Z = (z1, z2) and a = {a1,a2}. The posterior distribution (3.14) summarizes our knowledge

about the unknowns given the observed data and the prior information assigned to the different model

parameters. We consider here the marginal posterior mean estimator for Λ, denoted as MMSE for

minimum mean square error estimator and defined as

ΛMMSE = E[Λ|Y,a] (3.15)

where the expectation is taken with respect to the marginal posterior density p(Λ|Y,a). The direct

computation of (3.15) is obviously intractable as it requires integrating the posterior (3.14) over

all other unknown variables. However, (3.15) can be approximated by using an MCMC algorithm

[RC05]. In the next section we propose a Gibbs sampler drawing samples {Λ(p),M (p),Z(p)}Nmcp=1 that

are asymptotically distributed according to the targeted joint posterior (3.14), which are used in turn

to approximate the marginal posterior mean (3.15) analogous to (2.45).

Finally, note that in the posterior distribution (3.14), the regularization hyperparameters ai

are fixed a priori and their estimation is not addressed during the inference. Instead, throughout

this thesis, the GMRF hyperparameters will be set using a qualitative analysis of preliminary results

obtained for a range of values for ai (see Section 3.4.3 for an example). The motivation for this manual

tuning stems from the intractability of the normalizing constant C(ai) in the priors (3.7), (3.11) and

(3.13), which prevents from addressing their estimation in a fully Bayesian model. The development

of estimation procedures adapted to such situations is a research topic on its own and is not considered

in this thesis. This point is discussed in more detail in the perspectives concluding this manuscript

in Chapter 5.
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3.4.2 Estimation algorithm

As described in Chapter 2, the strategy of the Gibbs sampler consists of successively generating

samples from the conditional distributions associated with the targeted posterior distribution. In

an attempt to provide a unified presentation of an estimation algorithm valid for the three cases

considered in this thesis, we introduce the set ξ defined as follows

ξ =


{1} for a temporal/spectral decomposition

{2} for a spatial decomposition

{1, 2} for a spatio-temporal/spectral decomposition.

(3.16)

a) Sampling of M

By using (3.14), it can be shown that, conditionally on Λ,Z,Y,a, the elements µ
�0,k

and µ0,k in

M are a posteriori independent and can be sampled in a parallel manner. More precisely, as in

Chapter 2, the conditional distributions of µ
�0,k

and µ0,k are respectively a complex-valued Gaussian

distribution and a real-valued Gaussian distribution

µ
�0,k
|Λ,Z,Y,a ∼ CN

(
x̃vk , Σ̃vk

)
(3.17a)

µ0,k|Λ,Z,Y,a ∼ N
(
x̃0,vk,wk , Σ̃0,vk

)
(3.17b)

where x̃vk , Σ̃vk , x̃0,vk and Σ̃0,vk follow the notation (2.69), (2.70), (2.73) and (2.74) introduced in

Chapter 2.

b) Sampling of W

The sampling of W is also straightforward since all variables wk are conditionally independent of

each other and have the following conditional Gaussian distribution

wk|V ,Z,M ,Y,ai

∼ N

(XT F̃−1
0,2X

v2,k
+ Σ−1

0

)−1(
Σ−1

0 w0 +
XT F̃−1

0,2µ0,k

v2,k

)
,

(
XT F̃−1

0,2X

v2,k
+ Σ−1

0

)−1
 . (3.18)
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c) Sampling of Z

Since the auxiliary variables in Z are not involved in the likelihood (3.1), the sampling of z
(d)
i,k , d ∈ ξ,

from its conditional distribution amounts to sampling from (3.4b), i.e.,

z
(d)
i,k |Λ,M ,Y,a∼G

(
α̃

(d)
i,k , β̃

(d)
i,k

)
, d ∈ ξ (3.19)

where the definitions of α̃
(d)
i,k and β̃

(d)
i,k were given in Section 3.4.1 b) and ξ is described in (3.16).

d) Sampling of V

Straightforward computations on (3.14) lead to the conclusion that the elements of V are a posteriori

independent (conditionally on W,Z,M ,Y and a) and are distributed according to inverse-gamma

distributions. More precisely, all elements of V can be updated simultaneously by drawing samples

from the conditional distributions

v1,k|W,Z,M ,Y,a ∼ IG
(
N
�0

+
N0

2
+ α1,k, ||y�0,k − µ�0,k||F̃−1

1
+

1

2
||y0,k − µ0,k||F̃−1

0,1
+ β1,k

)
(3.20a)

v2,k|W,Z,M ,Y,a ∼ IG
(
N
�0

+
N0

2
+ α2,k, ||µ�0,k||F̃−1

2
+

1

2
||µ0,k −Xwk||F̃−1

0,2
+ β2,k

)
(3.20b)

with αi,k and βi,k defined in Section 3.4.1 b).

As a result, all conditional distributions in the Gibbs sampler above are standard and thus can

be sampled efficiently, without any acceptance-reject step. We emphasize here that this overall

simplicity was the underlying motivation for the design and the combination of the augmented

likelihood (2.58) and the GMRF prior. It leads to an inference procedure perfectly tailored for

the estimation of unknown parameter vectors of high dimensionality. The corresponding sampling

scheme is summarized in Algo. 3.

3.4.3 Numerical experiments

In this section, we compare the multivariate Bayesian approach described in Sections 3.4.1 and 3.4.2

(generically referred to as GMRF below) to an independent application of the univariate Bayesian
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approach introduced in Chapter 2 for individual images (denoted below as IG) and to the weighted

linear regression based method (1.28) (denoted below as LFw). The comparison is performed by ap-

plying the different estimation methods to a large number of independent realizations of sequences of

heterogeneous synthetic multifractal images. To distinguish between the different types of GMRF pri-

ors for the approach proposed in this section, we use the notation GMRF 1D, GMRF 2D and GMRF

2D+1D for the temporal, spatial and spatio-temporal/spectral priors detailed in Section 3.4.1 b),

respectively.

a) Experimental setup

Scenario. The scenario considered here is summarized in Fig. 3.3. Each realization of the synthetic

dataset consists of a sequence of 50 independent 2D multifractal random walks (MRWs) of size

3200×3200, obtained using a synthesis procedure coded by ourselves. Each 2D MRW in the sequence,

Algorithm 3 Gibbs sampler to sample according to (3.14)

1: Initialization

2: Draw v
(0)
i,k ∼ IG(αi, βi) ∀k for i = 1, 2 and draw all w

(0)
k ∼ N (w0,Σ0)

3: MCMC iterations

4: for p = 1 : Nmc

5: Sample M

6: Draw µ
(p)

�0,k
∀k according to the complex-valued normal law (3.17a)

7: Draw µ
(p)
0,k ∀k according to the real-valued normal law (3.17b)

8: Sample W

9: Draw w
(p)
k ∀k according to the normal law (3.18)

10: Sample Z

11: Draw z
(d)
i,k

(p)
∀k, d ∈ ξ, according to the gamma law (3.19)

12: Sample V

13: Draw v
(p)
1,k ∀k according to the inverse-gamma law (3.20a)

14: Draw v
(p)
2,k ∀k according to the inverse-gamma law (3.20b)

15: end for

16: Return {Λ(p),M (p),Z(p)}Nmcp=1
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indexed by kt, has two distinct multifractal regions whose geometries have been fixed for all kt

according to Fig. 3.3(c). It comprises a background with c2 = −0.02 constant throughout the

sequence, in which is included an ellipse for which c2 evolves with kt according to the piece-wise

constant profile plotted in Fig. 3.3(c). An example of a realization of such a heterogeneous 2D MRW

(corresponding to frame kt = 30) is displayed in Fig. 3.3(b). Note that the piece-wise constant

evolution of c2 (in space and along kt) is intentionally chosen here as a limit test case for the

robustness of the proposed approach (which is based on the assumption of smooth evolution of c2 in

the data). Multifractal analysis of this dataset is achieved by decomposing each frame into 50 × 50

non-overlapping patches of size 64× 64 pixels, resulting in an overall decomposition into 50× 50× 50

patches indexed by (kt,k) with kt ∈ J1, 50K and k ∈ J1, 50K2. Finally, note that although in this

scenario a GMRF prior taking into account both spatial correlations and correlation along kt (i.e.,

GMRF 2D+1D) appears most appropriate, we also include the Bayesian estimators GMRF 1D and

GMRF 2D accounting for correlation along kt and spatial correlation only in the comparison.

Estimation setting. For all methods, we used scales {j1, j2} = {1, 2} for each 64 × 64 patch.

MCMC algorithms were run with Nmc = 1000 and Nbi = 300. The hyperparameters of the inde-

pendent IG priors associated with the method IG were set to (α0,i, β0,i) = (10−3, 10−3) to mimic a

non-informative Jeffreys’ prior as in Chapter 2. The GMRF hyperparameters were set to a
(2)
i = 10

and a
(1)
i = 20 based on preliminary results discussed in the next paragraph.

b) Influence of GMRF hyperparameters

Before investigating in detail the estimation performance of the different methods, we discuss prelimi-

nary results that are used to set the GMRF hyperparameters. They consist here of visual comparisons

of estimates obtained with different values of a
(2)
i (resp. a

(1)
i ) on spatial patches (resp. sequences of

multi-temporal images).

Fig. 3.4 compares IG estimates (b) and GMRF 2D estimates (c) for different values of a
(2)
i

obtained on a single realization of a heterogeneous 2D MRW with prescribed multifractal properties

as defined for frame kt = 10 (a) and decomposed into spatial patches. As expected, a small value
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(a) Sequence of MRWs (b) Frame (kt = 30) (c) Geometry

10 20 30 40 50

-0.06

-0.04

-0.02

0

kt

c2

Background

Ellipse

(d) Temporal evolution

Figure 3.3: Synthetic dataset: (a) sequence of heterogeneous 2D MRWs (frame 30 out of 50 frames

plotted), (b) single realization of heterogeneous 2D MRW (frame kt = 30); (c) prescribed spatial

geometry and (d) evolution of c2 with kt.

of a
(2)
i results in estimates c2 close to those obtained with IG, while a large value of a

(2)
i leads to

an oversmoothed estimate. The settings a
(2)
i = 10 and a

(2)
i = 30 are found to yield the visually

most satisfactory estimates for c2. We moreover summarize in Tab. 3.1 the estimation performance

assessed on 100 independent realizations of heterogeneous MRWs. Note however that these results

are not an attempt to optimize a
(2)
i in terms of a quantitative performance criterion but only aim

at further illustrating the influence of the hyperparameters. Two conclusions can be drawn from

this table: First, the parameter a
(2)
i can unsurprisingly be interpreted as a tuning parameter for a

bias-variance tradeoff; Second, an acceptable tradeoff is achieved for a relatively large range of values

of a
(2)
i (here between 10 and 30). This suggests that GMRF priors are robust to the choice of the

hyperparameters, at least in this example, which hence can be set by means of a visual inspection of

results obtained for a coarse grid of values. Finally, similar results (not reported here) obtained on

a multi-temporal image sequence have yielded the setting a
(1)
i = 20.



3.4 - Regularization of vi via gamma Markov random field priors 95

(a) True c2 (b) c2 estimates (IG)

a
(2)
i = 1 a

(2)
i = 10 a

(2)
i = 30 a

(2)
i = 80

(c) c2 estimates (GMRF 2D)

Figure 3.4: Illustration of the influence of the GMRF hyperparameter a
(2)
i on the estimation of c2;

estimates IG (b) and GMRF 2D (c) obtained on a single realization of heterogeneous 2D MRW

reproducing the multifractal properties of the frame kt = 10 (a).

Table 3.1: Influence of the GMRF hyperparameter a
(2)
i on the estimation performance for c2:

absolute values of bias |mc2 − c2|, standard deviations sc2 and RMSE values rc2 ; results obtained for

100 independent realizations of heterogeneous 2D MRWs reproducing the multifractal properties of

frame kt = 10. The lower the better and best results are marked in bold.

GMRF 2D

IG a
(2)
i = 1 a

(2)
i = 10 a

(2)
i = 30 a

(2)
i = 80

|mc2 − c2| 0.0104 0.0076 0.0041 0.0046 0.0069

sc2 0.0130 0.0094 0.0037 0.0030 0.0014

rc2 0.0167 0.0121 0.0056 0.0055 0.0071

c) Illustration for a single realization

We first discuss the estimates for c2 obtained by the different methods for one single realization of the

scenario described in Section 3.4.3 a). These results allow us to appreciate the overall capability of

each method to capture the spatial/temporal dynamics of the multifractality parameter c2. Fig. 3.5(a)



96 Chapter 3 - Bayesian multifractal analysis of multivariate images

plots estimates ĉ2 for frame kt = 10 (first row), and for a slice along kt for ky = 25 (second row)

together with the histograms of all estimates (third row) for LFw, IG, GMRF 1D, GMRF 2D and

GMRF 2D+1D (left to right column, respectively). The prescribed values of c2 are reproduced in

(b).

Clearly, LFw exhibits strong spatial and temporal variability and fails at providing a relevant

conjecture for the evolution of the multifractality in the dataset. The Bayesian estimator IG with

non-informative prior improves the estimation accuracy with respect to LFw and enables the visual

identification (in time and space) of the zones of different multifractalities, confirming results reported

in Chapter 2. Yet, estimates obtained with IG still display strong variability. In particular, their

histogram does not permit any conclusion on the existence of three distinct zones of multifractality

in the data. In contrast, the three Bayesian estimators GMRF provide more satisfactory results with

increased spatial and temporal coherence of the estimates. In particular, the estimates obtained with

GMRF 2D and GMRF 2D+1D display strongly reduced variability, leading to histograms in which

the three different values for c2 in the data are reflected as pronounced and well separated peaks.

A more quantitative analysis of these results is proposed in Fig. 3.5(c), which shows the results

of a classification of the estimates, obtained by histogram thresholding using the k-means algorithm

with 3 classes (the classes have been attributed in order to yield lowest misclassification error). The

misclassification rates achieved by the different algorithms are 54% (LF), 45% (IG) and 35% (GMRF

1D) while they are only 8% and 3% for GMRF 2D and GMRF 2D+1D, respectively, which further

confirms the above conclusions 1.

d) Estimation performance

We now assess the estimation performance of the different methods by applying them on 100 inde-

pendent realizations of the multivariate dataset described in Section 3.4.3 a). For each patch, we

compute the average mc2 , the standard deviation (STD) sc2 and the root mean squared error (RMSE)

rc2 evaluated over the realizations, as defined in (2.80b). Fig. 3.6 illustrates estimation performance

1A supplementary 3D animation of the results is available on http://combrexelle.perso.enseeiht.fr/thesis/

c2MRW.zip.

http://combrexelle.perso.enseeiht.fr/thesis/c2MRW.zip
http://combrexelle.perso.enseeiht.fr/thesis/c2MRW.zip
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LFw IG m GMRF 1D GMRF 2D GMRF 2D+1D c2(kt, kx, ky)

m

m

m
(a) Estimates ĉ2 (b) Theoretical c2

m

m
54% 45% 35% 8% 3%.

(c) K-means classification of ĉ2 and misclassification rates (d) Classes

Figure 3.5: Estimation results for a temporal sequence of heterogeneous 2D MRWs decomposed into

50 × 50 × 50 patches of size 26 × 26: estimates ĉ2 for two different slices and global histograms (a)

versus prescribed c2 masks (b). Classification labels obtained by histogram thresholding (c) versus

true classes (d).

for the frame kt = 10 and the slice along kt for ky = 25. To simplify the visual analysis of the results,

we moreover report in Fig. 3.7 estimation performance as a function of kx for kt = 10, ky = 25 and

as a function of kt for kx = 25, ky = 25. Finally, the overall performance for the image sequence is

given in Tab. 3.2. Only estimation performance for c2 are reported here since the regularization of

c2 has been observed to have very little effect on the estimation performance for c1. This point is
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further discussed in Section 3.6.

First, a comparison of the average of estimates for the Bayesian estimators leads to the conclusion

that, despite the departure of the scenario considered here from the assumption of slow evolution

for c2, all GMRF estimators yield average profiles close to that of IG and close to the prescribed

c2. Only close to sharp transitions for the value of c2 does GMRF introduce some bias due to the

smoothing effect of the prior. Yet, this effect remains confined to ±3 neighboring patches and has

little impact on the overall bias reported in Tab. 3.2. Estimates obtained with LFw are found to have

the largest (by a factor of 3) overall bias.

Second, the Bayesian estimator IG with non-informative prior yields a significant reduction of

variability compared to LFw (STD values are divided by 4, as already reported in Chapter 2). GMRF

further and dramatically decreases STD to values that are more than one order of magnitude below

those of LFw. This is also reflected by the overall STD and RMSE values reported in Tab. 3.2, which

are more than one order of magnitude better for GMRF than for LFw. Due to the bias introduced

by GMRF close to sharp transitions of the value of c2, local RMSE values range from 25% (close to

transitions) to only 4% (in homogeneous areas) of those of IG.

Finally, note that this significant gain in performance of GMRF are achieved at very reasonable

computational cost. As an example, the analysis of a 1024 × 1024 × 50 data cube using patches of

size 64 × 64 takes about 100s for GMRF on a standard desktop computer2, which is only 4 (resp.

1.1) times more than the LFw (resp. IG) method.

Table 3.2: Absolute values of bias |mc2 − c2|, standard deviations sc2 and RMSE values rc2 for the

different estimators (results obtained for 100 independent realizations). The lower the better and

best results are marked in bold.

LFw IG GMRF 1D GMRF 2D GMRF 2D+1D

|mc2 − c2| 0.0057 0.0017 0.0022 0.0020 0.0023

sc2 0.038 0.011 0.0047 0.0027 0.0016

rc2 0.039 0.011 0.0054 0.0035 0.0029

2For all algorithms, the computational time includes the discrete wavelet transform (as in Chapter 2). Algorithms
were run using Matlab, a 3.40 Ghz Intel Core i7 processor and 8GB RAM.
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LFw IG m GMRF 1D GMRF 2D GMRF 2D+1D c2(kt, kx, ky)

m
c 2

m
(a) Mean (b) Masks
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1
0

s c
2

m
(c) Standard deviation
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g

1
0

r c
2

m
(d) Root-mean square error

Figure 3.6: Estimation performance evaluated on 100 independent sequences of heterogeneous 2D

MRWs decomposed into 50× 50× 50 patches of size 26× 26: average (a), standard deviation (c) and

root-mean square error (d) for two different slices and the prescribed c2 mask (b). The darker, the

better for (c) and (d).
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(a) Line (kt = 10, ky = 25) (b) Line (kx = 25, ky = 25)

1 True c2

1 LFw

1 IG

1 GMRF 1D

1 GMRF 2D

1 GMRF 2D+1D

Figure 3.7: Estimation performance evaluated on 100 independent sequences of heterogeneous 2D

MRWs decomposed into 50× 50× 50 patches of size 26 × 26: average (first row), standard deviation

(second row) and root-mean square error (third row) along (a) spatial direction kx (kt = 10, ky = 25)

and (b) temporal direction kt (kx = 25, ky = 25).

3.4.4 Preliminary conclusions

GMRF. This section introduced a novel Bayesian procedure for the joint estimation of the multi-

fractality parameter c2 for (patches of) multivariate images building on the combination of the sta-

tistical model (2.58) introduced in Chapter 2 and smoothing GMRF priors involving inverse-gamma

distributions. Together, these two ingredients enabled us to devise an efficient estimation algorithm

able to cope with large datasets. Numerical experiments conducted on sequences of synthetic mul-

tifractal 2D processes indicate that the proposed multivariate procedure significantly outperforms

both the standard benchmark linear regression estimator and the univariate Bayesian formulation

of Chapter 2. It notably yields improvements in root-mean-squared error of one order of magnitude

as compared to the former and of a factor 4 as compared to the latter, while having a comparable

computational cost. Within this model the degree of smoothing is controlled by hyperparameters

whose estimation cannot be formulated in a fully Bayesian approach, which constitutes the main
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limitation of this model. Here, values were set empirically via a visual inspection of results obtained

in preliminary experiments.

Further developments. Although not considered in this thesis for sake of focus, the automatic

adjustement of hyperparameters ai naturally arises as the next step of this work as it would avoid

leaving parameters to be selected by the user and might further improve the estimation performance

of the proposed procedure (cf. Chapter 5).

3.5 Regularization of vi via simultaneous autoregressive priors

In this section, we introduce an alternative prior for vi, which, unlike the GMRF model, enables

a data-driven tuning of the hyperparameters controlling the amount of smoothness. The proposed

strategy consists of modeling the parameters vi by simultaneous autoregressions (SAR), cf., e.g.,

[Cre15]. This prior enforces smoothness by assigning a Gaussian prior to the second (spatial and/or

spectral/temporal) order differences of the multifractal parameters vi,k associated with multivariate

images. Within this model, the associated hyperparameters simply act as variances of Gaussian dis-

tributions, allowing their estimation to be embedded in a fully Bayesian approach. The performance

of the resulting estimation procedure along with its computational cost are analyzed via a numerical

experiment on sequences of synthetic multifractal multi-temporal images with prescribed temporal

evolutions of its parameters.

3.5.1 Bayesian model

a) Likelihood

Unlike in the previous section, where the data augmented likelihood (2.58) was used, we consider here

a multivariate Bayesian model building on the Whittle approximation (2.37) introduced in Chapter 2.

The independence between the elements Xk is again assumed, which leads to the following likelihood

p(L|Λ) ∝
∏
k

pW (`k|λk) (3.21)
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where pW (`k|λk) is the Whittle approximation (2.37), i.e.,

pW (`k|λk) =

j2∏
j=j1

∏
m∈Jj

(
φj,vk(ωm)

)−1
exp

(
−
y∗`j,k(ωm)y`j,k(ωm)

φj,vk(ωm)

)

×
(
φj,vk(ω0)

)− 1
2 exp

(
−

(y`j,k(ω0)−mjµj,wk)2

2φj,vk(ω0)

)
. (3.22)

b) Prior distributions

As in the Bayesian model proposed in the previous section, we assume prior independence between

W and V and design two independent priors for W and V .

Mean parameter W. We assign to W the prior (3.3) as in Section 3.5, which assumes no depen-

dence between the different parameters wk (regularization of W is studied in Section 3.6).

Multifractality parameter V . In this model, we propose to enforce a smooth evolution of the

parameters {vi,k} by constraining the second order differences of these parameters to be small. To

do so, we model the parameters vi by a simultaneous autoregression (SAR), see, e.g., [Cre15] for

details. This prior model has been considered in various signal and image processing problems, e.g.,

in image deconvolution [CE07, MMK06], altimetry [HMTS16], hyperspectral unmixing ([SUS14]) or

fMRI analysis [CVF+13, MIV+08]. In essence, this prior favors smooth variations of vi and penalizes

abrupt changes by assigning a Gaussian distribution to the second order differences of vi. In the

following paragraphs, we describe the three SAR models respectively enforcing temporal, spatial or

spatio-temporal smoothness.

Temporal or spectral regularization. For a decomposition of X into a sequence of images

{Xkt}kt∈Ω1 , we promote a smooth temporal/spectral evolution of vi,kt by assigning to the vector vi

the prior

p(vi|ε(1)
i ) ∝

(
1

ε
(1)
i

) rank(D(1)TD(1))
2

exp

(
− 1

2ε
(1)
i

‖D(1)vi‖
2

)
(3.23)
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where rank(·) denotes the rank of a matrix and D(1) is the discrete Laplacian operator, i.e.,

[
D(1)vi

]
t

= 2vi,t − vi,t−1 − vi,t+1 (3.24)

with
[
·
]
n

denoting the n-th element of a vector. Note that in Eq. (3.24), ε
(1)
i corresponds to a

variance. This choice of parametrization for the Gaussian distribution enables us to avoid confusion

between the square and the dimension supercript (d), d = 1, 2, in the rest of this section.

Spatial regularization In a similar fashion, given a decomposition of a single image X into

non-overlapping patches {Xk}k∈Ω2 , we favor smooth variations in vi via the prior

p(vi|ε(2)
i ) ∝

(
1

ε
(2)
i

) rank(D(2)TD(2))
2

exp

(
− 1

2ε
(2)
i

‖D(2)vi‖
2

)
(3.25)

where D(2) is the discrete Laplacian operator, i.e.,

[
D(2)vi

]
τ(k)

= 4vi,k − vi,kx−1,ky − vi,kx+1,ky − vi,kx,ky−1 − vi,kx,ky+1 (3.26)

where τ(·) is the lexicographic ordering operator.

Spatial and spectral/temporal regularization. Finally, for a spatio-temporal/spectral de-

composition {Xk,kt}k,kt∈Ω2×Ω1 , we propose to assign a prior enabling a separate handling of tempo-

ral/spectral and spatial regularizations as it was the case with the GMRF prior (3.12) introduced in

Section 3.4. To do so, we consider the prior defined as follows

p(vi|εi) ∝
2∏
d=1

(
1

ε
(d)
i

) rank(D(d)TD(d))
2

exp

(
− 1

2ε
(d)
i

‖D(d)vi‖
2

)
with εi = [ε

(1)
i , ε

(2)
i ]T (3.27)

where D(1) and D(2) are the discrete Laplacian operators such that

[
D(1)vi

]
τ(k)

= 2vi,k − vi,kt−1,kx,ky − vi,kt+1,kx,ky (3.28a)[
D(2)vi

]
τ(k)

= 4vi,k − vi,kt,kx−1,ky − vi,kt,kx+1,ky − vi,kt,kx,ky−1 − vi,kt,kx,ky+1. (3.28b)
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c) Hyperprior distributions.

Within this model, the degree of smoothing depends on the values of the hyperparameters ε
(d)
i , i = 1, 2

and d ∈ ξ, where ξ is described in (3.16). We adopt here a fully Bayesian strategy by including the

hyperparameters in the unknown parameter vector and assigning a non-informative Jeffreys’ prior

for them

p(ε
(d)
i ) ∝ 1

ε
(d)
i

1R+(ε
(d)
i ), d ∈ ξ (3.29)

where 1R+(·) is the indicator function of the set R+.

d) Posterior distribution and Bayesian estimators

The joint posterior distribution of the unknown parameters Λ and hyperparameters ε = {ε1, ε2}

is then given by the hierarchical structure p(Λ, ε|L) ∝ p(L|Λ)p(W)p(V |ε)p(ε). Assuming prior

independence between v1 and v2 yields

p(Λ, ε|L) ∝ p(L|Λ)p(W)

2∏
i=1

p(vi|εi)p(εi) (3.30)

where

p(εi) =
∏
d∈ξ

p(ε
(d)
i ). (3.31)

As in the previous section, we are only interested in the parameters Λ for MFA purposes. We

therefore consider here the marginal posterior mean estimator associated with (3.30) defined by

ΛMMSE = E[Λ|L] (3.32)

where the expectation is taken with respect to the marginal posterior distribution p(Λ|L). Since (3.32)

involves integrating over the posterior (3.30), its direct computation is intractable. The inference is

performed by using an MCMC algorithm generating the collection of samples {Λ(p), ε(p)}Nmcp=1 that

are asymptotically distributed according to (3.30). These samples are used in turn to approximate

the marginal posterior mean estimator (3.32) analogous to (2.45).
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3.5.2 Estimation algorithm

We consider again a Gibbs sampler [RC05] and we discuss below the conditional distributions as-

sociated with the posterior distribution p(Λ, ε|L). The Gibbs sampling steps are summarized in

Algo. 4.

a) Sampling of W

By inspection of (3.30), it is straightforward to see that, conditionally on V , ε,L, all wk are a pos-

teriori independent and can be sampled in parallel according to the following Gaussian distributions

wk|V , ε,L ∼ N
(
(XTΓ−1

vk,0
X + Σ−1

0 )−1(Σ−1
0 w0 +XTΓ−1

vk,0
y0,k), (XTΓ−1

vk,0
X + Σ−1

0 )−1
)
. (3.33)

b) Constrained Hamiltonian Monte Carlo sampling of V

It can be shown that the conditional distribution p(vi|L,vi′ 6=i,W, ε) is not standard. Moreover, due

to the high dimension of vi (Mx,My,Mt � 1), implementing a Metropolis-Hasting procedure (as in

Chapter 2) would require a careful design of an appropriate multivariate proposal in order to yield a

good exploration of the target distribution [RC05]. Instead, we resort to a constrained Hamiltonian

Monte Carlo algorithm (HMC) [DKPR87, Nea10] whose strategy is recalled in the next paragraphs

and summarized in Algo. 5.

Hamiltonian system. The HMC algorithm is a sampling scheme inspired by Hamiltonian dy-

namics [DKPR87, Nea10]. The target distribution, here p(vi|L,vi′ 6=i,W, ε), is associated with a

potential energy E(q)

E(q) = − log p(q|L,vi′ 6=i,W, ε) (3.34)

with q = vi. Moreover auxiliary momentum variables p ∈ RM , with M = MxMyMt, are introduced

and associated with the following standard kinetic energy K(p)

K(p) =
pTp

2
. (3.35)

Finally, the Hamiltonian H(q,p)

H(q,p) = E(q) +K(p) (3.36)



106 Chapter 3 - Bayesian multifractal analysis of multivariate images

defines trajectories (q(τ),p(τ)), in continuous time τ , with constant total energy H(q,p) via the

Hamiltonian system of equations [DKPR87, Nea10]

dq

dτ
=
∂H

∂p
(q,p) (3.37a)

dp

dτ
= −∂H

∂q
(q,p). (3.37b)

Sampling. In an HMC sampling scheme, the proposal of a candidate is achieved through the

discrete evaluation of the Hamiltonian equations. More precisely, at the iteration p of the overall

Gibbs sampler summarized in Algo 4, given the initial state q0 = v
(p)
i and an initial momentum p0,

the system of Hamiltonian equations (3.37) is numerically integrated for a short time interval to yield

a candidate (q?,p?), which is then accepted or rejected with the following acceptance rate

α = min(1, exp[H(q0,p0)−H(q?,p?)]). (3.38)

Leap-frog method. In this thesis, we consider the leap-frog method [Nea10], which is the nu-

merical integration method classically used in the MCMC literature, to discretize and numerically

integrate (3.37) for a time interval δ · L. The standard leap-frog method consists of L iterations,

indexed by n = 1, . . . , L, each composed of the following three steps

pn−1/2 = pn−1 −
δ

2

∂E

∂qT
(qn−1) (3.39a)

qn = qn−1 + δpn−1/2 (3.39b)

pn = pn−1/2 −
δ

2

∂E

∂qT
(qn) (3.39c)

where δ is an increment that is tuned during the Nbi first iterations of the Gibbs sampler such

that α ∈ [0.5, 0.8] in (3.38) [DKPR87, Nea10]. Here, q is subject to positivity constraints, since

vi,k > 0. These constraints can be easily taken into account by considering a variation of the leap-

frop method (3.39), which is given in Algo. 5 (see, e.g., [BGJM11] for more details). The candidate

is finally given by the output of the leap-frod method, i.e., (q?,p?) = (qL,pL).

Derivatives. The sampling scheme above requires the computation of the derivatives of the

potential energy (3.34). For the model proposed in this work, the derivatives can be calculated
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analytically (see Appendix C for details) and are given by the closed-form expressions

∂E(vi)

∂vi,k
=

j2∑
j=j1

(∑
m

f̃i,j(ωm)

φj,vk(ωm)

(
1−
|y`j,k(ωm)|2

φj,vk(ωm)

)
+

f̃i,j(ω0)

2φj,vk(ω0)

(
1−

(y`j,k(ω0)−mjµj,wk)2

φj,vk(ω0)

))

+
∑
d∈ξ

[
D(d)TD(d)vi

ε
(d)
i

]
τ(k)

(3.40)

where the functions φj,vk and f̃i,j are given in Eqs. (2.39) and (2.40), respectively, and ξ is the set

defined in (3.16).

Algorithm 4 HMC-based Gibbs sampler to sample from (3.30)

1: Initialization

2: Draw Draw v
(0)
i,k ∼ IG(αi, βi) ∀k for i = 1, 2 and draw all w

(0)
k ∼ N (w0,Σ0)

3: MCMC iterations

4: for p = 1 : Nmc

5: Sample parameters Λ

6: Sample W

7: Draw all w
(p)
k according to the Gaussian law (3.33)

8: Sample V

9: Draw v
(p)
i using a constrained HMC procedure (cf. Algo 5)

10: Sample hyperparameters ε

11: Draw all ε
(d)
i

(p)
, d ∈ ξ, according to the inverse-gamma law (3.41)

12: end for

13: Return {Λ(p), ε(p)}Nmcp=1

c) Sampling of ε

Due to the design of conjugate priors for the hyperparameters ε
(d)
i , their sampling is straightforward.

More precisely, the conditional distributions of the hyperparameters ε
(d)
i are the following inverse-

gamma distributions (that are easy to sample)

ε
(d)
i |Λ,L ∼ IG

(
rank(D(d)TD(d))

2
,
‖D(d)vi‖2

2

)
, d ∈ ξ. (3.41)
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Algorithm 5 Constrained HMC procedure

1: Set q0 =v
(p)
i and draw p0∼N (0M , IM ) with M = MxMyMt

2: Constrained leap-frog method

3: for n = 1 : L

4: pn−1/2 = pn−1 − δ
2
∂E
∂qT

(qn−1)

5: qn = qn−1 + δpn−1/2

6: for k = 1 : M

7: if [qn]k < 0

8: Set [qn]k = −[qn]k and [pn−1/2]k = −[pn−1/2]k

9: end if

10: end for

11: pn = pn−1/2 − δ
2
∂E
∂qT

(qn)

12: end for

13: Set (q?,p?) = (qL,pL) and draw u ∼ U[0,1]

14: Acceptance-reject

15: Compute α = min(1, exp[H(q0,p0)−H(q?,p?)])

16: Set v
(p+1)
i =q? if u < α, otherwise v

(p+1)
i =v

(p)
i

3.5.3 Numerical experiments

We investigate in this section the performance of the proposed multivariate Bayesian approach us-

ing SAR priors (denoted below as SAR). It is compared to the two Bayesian counterparts IG and

GMRF, respectively introduced in Chapter 2 and in Section 3.4, and to the weighted linear regression

estimator LFw defined in (1.27).

a) Experimental setup

Scenario. The scenario used for this numerical experiment consists of a sequence ofMt = 100 multi-

temporal images defined as 2D homogeneous MRWs of size 27× 27 [RV10]. Four different evolutions

of c2(kt), kt = 1, . . . , 100, across the image sequences are studied, with values for c2 ranging from

−0.02 to −0.08: a slow sinusoidal profile, a fast sinusoidal profile, a chirp profile including both slow

and fast evolutions as well as, as a limit benchmark case violating the slow evolution assumption, a
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discontinuous evolution (cf. Fig. 3.8(a), top row, left to right columns, respectively). For all cases,

the parameter c1 is kept constant, c1(kt) = 0.7. Finally, only GMRF 1D is studied in this numerical

experiment.

Estimation setting. For all methods, scales (j1, j2) = (1, 3) are used in the analysis. For this

experiment, MCMC algorithms were run with (Nmc = 1000, Nbi = 300) for IG and GMRF and with

(Nmc = 1500, Nbi = 800) for SAR, where we used L = 20 steps for the leap-frog method in the HMC

scheme. The regularization parameters of GMRF 1D were fixed to a
(1)
i = 50 for all profiles based on

preliminary experiments as described in Section 3.4.3.

b) Estimation performance

Estimation performance is again quantified via the average, the standard deviation (STD) and the

root mean squared error (RMSE) defined in (2.80b). Performance results, computed for MC = 100

independent realizations, are summarized in Fig. 3.8(a) for the four different temporal evolutions of

c2 and yield the following conclusions.

SAR vs. univariate methods. Estimators LFw, IG and SAR succeed in reproducing on average

the prescribed values of c2 for the smooth evolutions (i.e., they have small bias). For the discontinuous

evolution of c2, SAR provides a smooth estimate, as expected, and hence introduces a small bias in

the vicinity of the discontinuities. More importantly, it is observed that the proposed joint Bayesian

SAR estimator consistently yields a significant reduction of STD values as compared to LFw (STD

divided by up to 8) and to the univariate Bayesian estimator IG (STD divided by up to 3). This

gain in STD is directly reflected in RMSE values which are, except at the locations of discontinuities,

70−400% smaller than those of IG and LFw for SAR. This demonstrates the benefits of the proposed

multivariate Bayesian procedure when compared to the univariate methods for the estimation of c2.

SAR vs. GMRF. Overall, SAR and GMRF estimators are found to exhibit similar estimation

performance in terms of bias and (especially) standard deviation. It is however observed that, close

to zones of fast variations of c2, SAR introduces a smaller bias than GMRF for low multifractality
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(|c2| ≈ 0). This is also reflected in the RMSE values, e.g., for the fast sinusoidal and chirp profiles.

This might result from an oversmoothing since, for this experiment, the GMRF hyperparameters

are set to be identical for all profiles, regardless of their dynamics. On the contrary, by enabling an

efficient automatic tuning of hyperparameters in a fully Bayesian approach, SAR has the advantage of

inducing an amount of smoothness corresponding the dynamics in the dataset (this point is discussed

in the next subsection).

However, SAR has one major practical drawback, which is its high computational cost. For

instance, the analysis of a sequence of 27×27 images of length Mt = 100 takes 20s with SAR, while it

takes only 1s with LFw, 4s with IG and 5s with GMRF. We emphasize that this computational cost is

not induced by the estimation of the hyperparameters (sampling according to (3.41) is straighforward)

but is a consequence of the HMC scheme. This leads us to the conclusion that the multivariate

Bayesian model relying on GMRF priors can be preferred in practice for the analysis of large datasets

(as it will be the case in Chapter 4 with hyperspectral images).

c) Estimation of hyperparameters

In order to study the effectiveness of the automatic tuning of the hyperparameters ε
(1)
i , we report in

Fig. 3.8(b) histograms of MMSE estimates

ε
(1)
i

MMSE
≈ 1

Nmc −Nbi

Nmc∑
p=Nbi+1

ε
(1)
i

(p)
(3.42)

for the four different evolutions of c2. Since ε
(1)
i corresponds to the variance in the prior (3.23), the

smaller ε
(1)
i , the smoother the evolution of estimates.

For the sinusoidal evolutions, the average value of ε
(1)
i (indicated by a vertical red line in Fig. 3.8(b))

is 10−6.2 and 10−4.6 for slow and fast evolution, respectively, thus reflecting the degree of smoothness

in the evolution. For the chirp, the average value is 10−4.9 and thus slightly below that of the fast

sinusoid (indeed, stronger smoothing would introduce bias and would hence be highly penalized).

The values of ε
(1)
i for the discontinuous case are centered at 10−5 and close to the continuous cases,

indicating that larger bias at the two discontinuities is traded off for small variability within the seg-

ments with constant c2. These results provide strong evidence that the model succeeds in adjusting
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the hyperparameter to an appropriate smoothing level for the data.
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Figure 3.8: Estimation performance for c2 (from top to bottom: mean, STD and RMSE) assessed

on 100 independent realizations of a sequence of multi-temporal images defined as 2D MRWs of size

27 × 27 for four different profiles of c2; True c2(kt) ( ), LFw ( ), IG ( ), GMRF 1D ( ) and

SAR ( ).
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3.5.4 Preliminary conclusions

SAR. We introduced in this section an alternative Bayesian procedure addressing the estimation of

the multifractality parameter c2 for multivariate datasets. The smoothness assumption was encoded

via a Gaussian prior on the (spatial and/or spectral/temporal) second order differences of the mul-

tifractal attributes vi,k. The hyperparameters controlling the amount of smoothness were embedded

in a fully Bayesian model. To bypass the difficulties resulting from non-standard high-dimensional

conditional distributions associated with the Bayesian model, a Hamiltonian Monte Carlo scheme was

proposed. Numerical experiments conducted on sequences of synthetic multifractal multi-temporal

images demonstrated that the proposed procedure yielded significantly improved estimation perfor-

mance over univariate formulations.

SAR vs GMRF. We also showed that encoding the assumption of smooth evolution of the mul-

tifractality with either GMRF, introduced in Section 3.4, or SAR priors on vi yielded comparable

estimation performance for c2. However, GMRF priors can argueably be preferred over SAR priors

for computational reasons.

Further developments. The reduction of the computational cost to achieve Bayesian inference

on the proposed model constitutes an important practical issue. One interesting lead could be to

consider Langevin Monte Carlo (LMC) methods [Nea10, GC11, WT11], which can be seen as a spe-

cial case of HMC schemes for which the number of iterations in the leap-frog method is reduced to

one.

3.6 Regularization of wi via simultaneous autoregressive priors

In the two previous sections, we focused on the regularization of the parameter vectors vi (associated

with the multifractality parameter c2 via (2.35)), for which we proposed two different priors account-

ing for the assumption that parameters vi,k of neighboring positions in time,space or frequency were

correlated. In this last section, we encode such an assumption also for the parameters wi,k, associ-

ated with c1, via (2.2). To do so we propose to assign to each wi a SAR prior. The motivation for

this is twofold: First, as illustrated in the previous section, it allows an efficient data-driven tuning
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of the hyperparameters controlling the amount of smoothness; Second, and more importantly, since

SAR models involve Gaussian distributions, they are the natural conjugate priors for wi As a result,

incorporating this prior in the Bayesian models of Sections 3.4 and 3.5 comes without noteworthy

extra computational effort and only requires few changes in the associated Gibbs samplers Algo. 3

and 4 (unlike their use for vi, investigated in Section 3.5). Those are made explicit in this section.

The performance of the resulting Bayesian estimation procedure for the parameter c1 of images is

finally assessed with Monte Carlo simulations for sequences of synthetic 2D multifractal processes.

3.6.1 Prior and hyperprior specification

We state here the general form of the hierarchical prior resulting from assigning SAR priors to wi.

a) Prior distributions

As in Section 3.5, for the temporal/spectral, spatial and spatio-temporal/spectral scenarios depicted

in Fig. 3.1, the priors for wi are, respectively,

p(wi|ε̃(1)
i ) ∝

(
1

ε̃
(1)
i

) rank(D(1)TD(1))
2

exp

(
− 1

2ε̃
(1)
i

‖D(1)wi‖
2

)
(3.43a)

p(wi|ε̃(2)
i ) ∝

(
1

ε̃
(2)
i

) rank(D(2)TD(2))
2

exp

(
− 1

2ε̃
(2)
i

‖D(2)wi‖
2

)
(3.43b)

p(wi|ε̃i) ∝
2∏
d=1

(
1

ε̃
(d)
i

) rank(D(d)TD(d))
2

exp

(
− 1

2ε̃
(d)
i

‖D(d)wi‖
2

)
with ε̃i = [ε̃

(1)
i , ε̃

(2)
i ]T (3.43c)

where matrices D(d), d = 1, 2, are the discrete Laplacian operators introduced in Section 3.5 (cf.

Eqs (3.24), (3.26) and (3.28b)) and ε̃
(d)
i , d = 1, 2, are hyperparameters controlling the amount of

smoothness. By assuming moreover prior independence between w1 and w2, the prior for W directly

reads

p(W|ε̃) ∝
2∏
i=1

p(wi|ε̃i) with ε̃ = {ε̃1, ε̃2}. (3.44)
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b) Hyperprior distributions

Similarly as in Section 3.5, we adopt a fully Bayesian strategy by including the hyperparameters in

the unknowns and assign to each ε̃
(d)
i a conjugate non-informative Jeffreys’ prior, i.e.,

p(ε̃
(d)
i ) ∝ 1

ε̃
(d)
i

1R+(ε̃
(d)
i ), d ∈ ξ. (3.45)

When assuming prior independence between hyperparameters, the hierarchical prior on (W, ε̃) is

finally given by the following structure

p(W, ε̃) ∝ p(W|ε̃)p(ε̃) (3.46)

with

p(ε̃) ∝
2∏
i=1

∏
d∈ξ

p(ε̃
(d)
i ). (3.47)

3.6.2 Sampling of W and ε̃

We detail here the modifications in the Gibbs sampler when the hierarchical prior (3.46) is injected

in the Bayesian models (3.14) and (3.30) instead of the non-informative Gaussian prior (3.3). Those

mainly concern the sampling of W.

a) Sampling of W

By manipulations of the prior (3.44) (details are given in Appendix C), it can be shown that, condi-

tionally on other elements in W and ε̃, each wk follows a Gaussian distribution given by

wk|wk′ 6=k, ε̃ ∼ N (w0,k,Σ0,k) (3.48)

where we introduce the notation

w0,k = Σ0,k

∑
d∈ξ

∑
k′ 6=k

−δ(d)

τ(k),τ(k′)
Σ(d)−1

wk′ (3.49a)

Σ0,k =

∑
d∈ξ

δ
(d)
τ(k),τ(k)Σ

(d)−1

−1

(3.49b)
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with Σ(d) = diag(ε̃
(d)
1 , ε̃

(d)
2 ) and δ

(d)
k1,k2

denotes the element in the k1-th row and k2-th column of the

matrix D(d)TD(d). As a result, when injecting (3.46) in (3.14) and (3.30), it can be seen that the

conditional posterior distribution (3.18) is replaced by

wk|wk′ 6=k,V ,Z,M , ε̃,Y,ai ∼ N
(
(
XT F̃−1

0,2X

v2,k
+Σ−1

0,k)−1
(
Σ−1

0,kw0,k+
XT F̃−1

0,2µ0,k

v2,k

)
, (
XT F̃−1

0,2X

v2,k
+Σ−1

0,k)−1
)

(3.50)

and the conditional posterior distribution (3.33) by

wk|wk′ 6=k,V , ε, ε̃,L

∼ N
(
(XTΓ−1

vk,0
X + Σ−1

0,k)−1(Σ−1
0,kw0,k +XTΓ−1

vk,0
y0,k), (XTΓ−1

vk,0
X + Σ−1

0,k)−1
)
. (3.51)

Note however that, unlike in Sections 3.4 and 3.5, the elements wk are now no longer conditionally

independent of each other due to the definition of w0,k in (3.49), which involves other elements wk′ 6=k.

Sampling W by sequentially drawing wk one by one would yield a high computational complexity

and potentially lead to a poor exploration of the posterior distribution. To circumvent this issue, we

propose to use a colouring sampling scheme. More precisely, when taking into account the sparsity

of the matrices D(d)TD(d), the sum over k′ in (3.49) reduces to only few terms. This enables us

to identify groups of elements wk that are jointly conditionally independent and that can be thus

sampled in parallel. When considering (3.43a), (3.43b) and (3.43c), 3, 9 and 27 such groups can be

identified, which yields an efficient sampling of W in 3, 9 and 27 steps, respectively.

b) Sampling of ε̃

As in Section 3.5, the conditional distributions for the hyperparameters ε̃
(d)
i , d ∈ ξ, associated with

the hierarchical model (3.46) are inverse-gamma distributions that are easy to sample

ε̃
(d)
i |• ∼ IG(

rank(D(d)TD(d)

2
),
‖D(d)wi‖2

2
), d ∈ ξ (3.52)

where • denotes either Λ,Z,M ,Y,a or Λ, ε,L.
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3.6.3 Numerical experiments

We compare here the performance of the different multivariate Bayesian approaches addressing the

joint estimation of multifractal parameters c1 and c2 of multivariate datasets. The goals of this

subsection are twofold: First, study estimation performance for c1 when SAR priors are assigned to

wi; Second assess the potential cross-coupling between c1 and c2.

For this experiment, we study the following three multivariate Bayesian approaches: GMRF/SAR

(using GMRF priors on vi and SAR priors on wi), SAR/SAR (using SAR priors both on vi and wi)

and IG/SAR (using non-informative inverse-gamma priors on vi,k and SAR priors on wi). As before,

we also report estimation performance for the univariate Bayesian approach using independent priors

for each vi,k and wi,k (denoted here IG/N) and of the weighted linear regression estimator LFw.

a) Experimental setup

Scenario. As in Section 3.5, we consider here a scenario consisting of a sequence of Mt = 100 multi-

temporal images defined as 2D homogeneous MRWs of size 27×27 [RV10] with prescribed multifractal

properties. Three different combinations of evolutions {c2(kt), c1(kt)} are studied in Fig. 3.9: (a) a

discontinuous profile c2(kt) with a smooth profile c1(kt), (b) two synchronized discontinuous profiles

c2(kt) and c1(kt) and (c) two delayed discontinuous profiles c2(kt) and c1(kt).

Estimation setting. The setting for this experiment is identical to the one described in Section 3.5,

i.e., (j1, j2) = (1, 3), (Nmc = 1000, Nbi = 300) for MCMC algorithms without HMC procedure (IG/N,

IG/SAR and GMRF/SAR) and (Nmc = 1500, Nbi = 800) for those involving an HMC procedure

(SAR/SAR, for which we use L = 20 steps in the leap-frog method). Finally, the regularization

parameter a
(1)
i is set to 50 for all scenarios, as in Section 3.5.3 a).

b) Estimation performance

Fig. 3.9 reports, for all the methods considered, the estimation performance for c1 (quantified via the

average, the standard deviation and the root-mean squared error) which is assessed on MC = 100

independent realizations of sequences of multi-temporal images. Inspection of Fig. 3.9 leads to the
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following observations.

SAR vs. univariate methods. Estimators LFw, IG/N and IG/SAR are found to have similar

bias for the continuous profile of c1(kt) in (a). For the discontinuous profiles in (b) and (c), it is

observed that IG/SAR is biased in the vicinity of the discontinuities due to the smoothing induced

by the SAR priors on parameters wi (similar to what was observed in Section 3.5 for c2(kt) with

SAR priors on vi). The major difference between the different estimators clearly lies in the standard

deviation. Indeed, IG/SAR is found to significantly and systematically outperform the univariate

approaches in terms of standard deviations, in particular LFnw and IG/N which exhibit here the

largest standard deviation values (as reported in Chapter 2). More precisely, the average STD

reduction factor is close to 2 for LFw and reaches 2.5 for LFnw and IG/N. Overall, the benefits of

using SAR priors on wi for the accurate estimation of c1 are demonstrated by the RMSE values

of IG/SAR, which are in average 2 to 2.5 lower than those of univariate approaches except at the

locations of the discontinuities, where the SAR priors induce a bias.

Note finally that these significant improvements are achieved at a very reasonable computational cost

since, for instance, IG/SAR takes only ∼ 5% longer to compute than IG/N for the considered dataset.

The same remark holds when comparing GMRF/IG and SAR/IG to GMRF/SAR and SAR/SAR.

Cross-coupling. We compare estimation performance for c1 obtained with IG/SAR (i.e., encoding

no smoothness assumption on c2) and those obtained with GMRF/SAR and SAR/SAR (i.e., encoding

a smoothness assumption on c2). These three estimators are found to provide similar performance

both with respect to the mean and the standard deviation. In particular, inspection of Fig. 3.9 (a) and

(c) does not reveal noticeable difference in the vicinities of the locations of discontinuities (kt = 38, 75)

of the c2 profile. This suggests that the specification of the prior on vi (and hence parameters c2)

has negligible impact on the estimation performance for c1. Conversely, when comparing estimation

performance for c2 obtained with IG/N and GMRF/N, it is observed that the prior on wi (and hence

parameters c1) has little impact on the estimation performance for c2.
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3.6.4 Preliminary conclusions

SAR. This section proposed the use of SAR priors for the joint estimation of c1 for collections of

images. Due to their conjugacy within the statistical models introduced in Chapter 2, SAR priors

could be easily incorporated for wi,k with no noticeable impact on the cost of the corresponding

inference procedures. It moreover enabled the automatic adjustement of the amount of induced

smoothness to be achieved in a fully Bayesian model. Results presented in this section provided

strong evidence for the practical benefits of SAR priors for the joint estimation of c1. The proposed

approach notably yielded improvements in RMSE of a factor between 2 and 2.5 when compared to

univariate procedures.

Cross-coupling. The presented results moveover suggest that there is little to no cross-coupling

between c1 and c2 in the sense that the prior (and hence, estimation performance) of the one does

not influence the estimation performance of the other, and vice versa. Overall, the implementation

of the presented estimation procedures gives rise to an operational MFA toolbox for the analysis of

multivariate images, able to encode different combinations of assumptions on c1 and c2.

3.7 Conclusions and perspectives

Conclusions. This chapter introduced a novel approach for the multifractal analysis of multivari-

ate images. The proposed strategy consisted of formulating a joint estimation of the collections

of multifractal parameters of data components in a Bayesian framework by combining the univari-

ate statistical models introduced in Chapter 2 and suitable multivariate priors that encode prior

information on the multifractal parameters.

This chapter illustrated the benefits of this approach with the example of priors assuming that

multifractal attributes c1 and c2 evolve smoothly in privileged (temporal/spectral, spatial) direc-

tions. Two priors on the parameters vi (related to c2) were investigated: GMRF and SAR priors.

Assigning GMRF priors to vi yielded an efficient inference procedure, but the automatic adjuste-

ment of the associated hyperparameters via a fully Bayesian approach is difficult (cf. Chapter 5).

Conversely, when SAR priors were assigned to vi, the associated hyperparameters could be easily
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estimated but the model leads to non-standard conditional distributions that required the use of

costly acceptance-reject based sampling in the inference procedure. Both priors were found to yield

comparable estimation performance for the joint estimation of c2. However, inference with GMRF

priors can argueably be preferred over one with SAR priors for its low computational complexity.

For the joint estimation of c1, SAR priors on wi were shown to be appropriate since they enabled

the exploitation of conjugacy with the univariate statistical models of Chapter 2.

Numerical experiments, conducted on multivariate datasets composed of synthetic multifractal

processes, demonstrated the excellent performance of the multivariate Bayesian approach, which

significantly outperformed previously existing (univariate) methods in terms of estimation accuracy,

at reasonable computational cost.

Perspectives. The work presented in this chapter leads to the formulation of different perspectives.

Two of them have been already pointed out above and consist of: Including the estimation of GMRF

hyperparameters in the estimation procedure; Reducing the computational cost of the inference

procedures. To that end, different research directions are discussed in Chapter 5. Finally, it would

be interesting to explore how the proposed methodology, namely formulating a joint estimation

via the definition of hierachical models, could be adapted to image processing tasks such as joint

estimation-segmentation or joint estimation-classification. This requires the investigation of other

multivariate priors (cf. Chapter 5).

3.8 Conclusions et perspectives (in French)

Conclusions Ce chapitre a introduit une nouvelle approche pour l’analyse multifractale d’images

multivariées. La stratégie adoptée dans ce chapitre a été de formuler une estimation conjointe des

collections des paramètres multifractaux associées à un jeu d’images multivariées dans un cadre

bayésien en combinant le modèle statistique introduit dans le Chapitre 2 et des lois a priori mul-

tivariées appropriées, permettant d’injecter de l’information a priori sur l’évolution des propriétés

multifractales.

Ce chapitre a illustré les apports de notre approche sur l’exemple de lois a priori induisant une
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évolution lisse pour les paramètres multifractaux c1 et c2 dans des directions de prédilection (tem-

porelle/spectrale, spatiale). Deux modèles de loi a priori ont été étudiés pour les paramètres vi

(reliés à c2), à savoir GMRF et SAR. L’utilisation de modèles GMRF permet d’aboutir à des algo-

rithmes d’inférence efficaces, mais le réglage automatique des hyperparamètres associés au modèle

ne peut pas être formulé via une approche totalement bayésienne (cf. Chapter 5). Inversement,

l’utilisation de modèles SAR permet une estimation simple de ces hyperparamètres, mais la loi a pos-

teriori est associée à des lois conditionnelles non standard, ce qui requiert le recourt à des méthodes

d’échantillonnage coûteuses. Il a été observé que les deux modèles de loi a priori offraient des perfor-

mances d’estimation comparables. Néanmoins, l’utilisation des modèles GMRF peut être préférée par

rapport à celle des modèles SAR pour des raisons de coût calculatoire. Pour l’estimation multivariée

de c1, il a été montré que les modèles SAR étaient appropriés car ils permettaient l’exploitation de

propriétés de conjugaison avec le modèle statistique introduit dans le Chapitre 2.

Des simulations numériques, conduites sur des jeux de données multivariées composées de pro-

cessus multifractaux synthétiques, ont démontré les excellentes performances d’estimation de notre

approche bayésienne. Notamment, il a été montré que notre approche surpassait significativement les

précédentes formulations univariées en terme de précision d’estimation, et ce, à un coût calculatoire

comparable.

Perspectives. Le travail présenté dans ce chapitre permet la formulation de plusieurs perspectives.

Deux d’entre elles ont été indiquées et consistent à : incorporer l’estimation des hyperparamètres

des modèles GMRF dans la procédure d’estimation; Réduire le coût calculatoire des algorithmes

d’estimation. A cette fin, différentes directions de recherche sont discutées dans le Chapitre 5. Enfin,

il serait intéressant d’étudier dans quelle mesure notre approche, à savoir formuler une estimation

jointe via des modèles hiérarchiques, pourrait être adaptée pour effectuer des tâches classiques du

traitement des images, comme la segmentation et la classification. Ce point requiert notamment

l’étude d’autres lois a priori multivariées (cf. Chapter 5).
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Figure 3.9: Estimation performance for c2 (left columns) and c1 (right columns), assessed on 100

independent realizations of a sequence of multi-temporal images defined as 2D MRWs of size 27× 27

for three different evolutions {c2(kt), c1(kt)}.
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4.1 Introduction

In the two previous chapters, we developed methods enabling multifractal analysis to be embed-

ded in a Bayesian framework. In this chapter, we investigate the potential use and benefits of this

Bayesian multifractal methodology for the processing of real-world data. The application considered

for this investigation is hyperspectral imaging. The motivation for the use of MFA for hyperspectral

images lies in the increasing spatial resolution of hyperspectral remote sensors, which requires the

development of new processing methods capable of, first, extracting spatial information, and, second,

combining spectral and spatial information in the processing chain. We propose here to use the mul-

tifractal parameters to extract spatial information in terms of the fluctuations of the local regularity

of image intensity. To that end, we conduct in this chapter experiments on real-world hyperspectral

data. These experiments suggest that: First, the Bayesian methodology introduced in this thesis

is an operational multifractal analysis tool applicable to the analysis of real-world multivariate sets

of images; Second, MFA can provide relevant spatial/textural attributes in the hyperspectral imag-

ing context, which could potentially be employed in tasks such as classification, segmentation or

data-mining.

Results presented in this chapter have been partly reported in publications [CWD+15, CWT+15c,

CWA+16d].

4.2 Introduction (in French)

Dans les deux chapitres précédents, nous avons développé des méthodes permettant de formuler

l’analyse multifractale dans un cadre bayésien. Dans ce chapitre, nous étudions les bénéfices po-

tentiels de l’utilisation de cette analyse multifractale bayésienne pour le traitement de données

réelles. Le domaine d’application considéré pour cette étude est l’imagerie hyperspectrale. Cette

étude est motivée par la constante amélioration de la résolution spatiale des capteurs hyperspec-

traux, nécessitant le développement de nouvelles méthodes de traitement capables tout d’abord

d’extraire de l’information spatiale, puis, de la combiner à l’information spectrale. Nous proposons
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ici d’utiliser les paramètres multifractaux pour extraire de l’information spatiale en termes de fluc-

tuations de la régularité ponctuelle de l’intensité de l’image. A cette fin, nous conduisons dans ce

chapitre des expériences numériques sur un jeu de données hyperspectrales. Ces simulations suggèrent

que : Premièrement, la méthodologie bayésienne introduite dans cette thèse fournit des procédures

d’estimation opérationnelles pour l’analyse de données réelles multivariées; Deuxièmement, l’analyse

multifractale permet d’obtenir des attributs spatiaux et texturaux pertinents qui pourraient poten-

tiellement être utilisés pour des tâches telles que la classification et la segmentation.

Les résultats présentés dans cet chapitre ont fait l’objet de plusieurs publications [CWD+15,

CWT+15c, CWA+16d].

4.3 Multifractal analysis and hyperspectral imaging

4.3.1 Context

Hyperspectral imaging is a remote sensing technique which has sparked considerable interest over

the last decades. It consists of acquiring an image of a scene in many narrow contiguous spectral

bands, typically of the order of one hundred bands (cf., e.g., [LdABD+15] for more details on hyper-

spectral imaging and related issues). This relative wealth of spectral information has motivated the

development of processing methods that focus on the spectral information on a pixel-by-pixel-level

while neglecting the spatial information contained in the image. However, with recent advances in

hyperspectral sensors, achieving sub-meter spatial resolution, efficiently extracting the spatial infor-

mation and including it into processing schemes has been recognized as an important topic (see, e.g.,

[AMB02, MLA+03]).

A number of studies suggests that the combination of both spectral and spatial information

can improve the performance in classical hyperspectral image processing tasks, such as classification

[FTB+13, RAAF10], segmentation [GRR+09] or endmember identification [MP12, ZTPP10]. Several

authors have proposed to extract spatial information by using textural characterizations, see, e.g.,

[ZTPP10, RAAF10], for which MFA can provide both a theoretical and a practical framework for
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image analysis. In the context of hyperspectral image processing, several attempts have been re-

ported for the use of fractal and multifractal concepts, see, e.g., [Don08, SXGL06, YGJ12] for recent

contributions. While these results are encouraging, most of the attempts remain limited for two

reasons: conceptually because they consider essentially fractal dimensions instead of the richness of

a full multifractal characterization; practically because the algorithms traditionally associated with

this quantity (essentially, the box-counting algorithm) have limited accuracy.

4.3.2 Goals and scope

In this chapter, we propose to study the extraction of textural information via the log-cumulants cp,

which, as stated in Chapter 1, provide an efficient summary of the main features of the multifractal

spectrum in terms of few parameters. The primary goal of this study is to illustrate the potential

benefits of applying the Bayesian methodology introduced in this thesis to the MFA of real-world

multivariate images. Meanwhile, it enables us to investigate the potential value of basing the extrac-

tion of spatial information in hyperspectral imaging on features derived from multifractal analysis.

This investigation constitutes in itself a contribution of this PhD since, to our knowledge, such an

analysis has never been reported before in the hyperspectral imaging context.

However, note that results presented in this chapter constitute only a preliminary analysis al-

lowing us to draw first conclusions and to point out where further investigations and subsequent

developments are needed. Notably, the definition of a precise methodology for the incorporation of

multifractal features in the processing of hyperspectral images is not considered in this chapter.

4.4 Numerical experiments

4.4.1 Analyzed hyperspectral image

The dataset used for our study is a real-world hyperspectral image depicted in Fig. 4.1 in artificial

color composition. This hyperspectral image corresponds to a forested area near a city and was

acquired over Villelongue (France) by the Hyspex hyperspectral scanner during the Madonna project

[SFL+11]. It contains 960×1952 pixels with a spatial resolution of 0.5 meters and 160 spectral bands
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ranging from the visible to near infrared.

Figure 4.1: Real hyperspectral data acquired by the Hyspex hyperspectral scanner.

4.4.2 Model fitting

Before applying estimation procedures, we numerically investigate the fit between the statistical

model introduced in Chapter 2 and the empirical distribution of log-leaders associated with the

hyperspectral image under analysis. To that end, we focus in particular on the homogeneous forested

area of size 256× 256 pixels indicated by a red frame in Fig. 4.1, which will be used in Section 4.4.3.

We display in Fig. 4.2 the QQ-plot of the log-leaders at subband kλ = 100 along with the empirical

covariance, averaged over 6 contiguous subbands, and the parametric covariance model (2.4) 1. The

same investigation is reproduced in Fig. 4.3 for the 64× 64 subregion of the forested area indicated

by a blue frame in Fig. 4.1, which will be used in Section 4.4.4.

Inspection of Figs. 4.2 and 4.3 leads us to the following comments. First, the QQ-plot (a) indicates

that the marginal distribution of log-leaders l(j,k) can be indeed well approximated by a Gaussian

1For this illustration, we injected in the model the parameters values estimated via the univariate Bayesian method-
ology proposed in Chapter 2, in particular [ĉ1, ĉ2] = [0.35,−0.03].
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distribution. Second, when comparing in (e) the radial evolution of the sample covariance (c) and

the proposed covariance model (d), the model is found to provide an overall safisfactory fit. These

first results hence indicate that the proposed model is relevant for certain areas of the hyperspectral

image under analysis. In what follows, we will apply the Bayesian estimation procedures to different

regions and spectral bands of the hyperspectral image without systematically assessing the fit of the

statistical model. This point would require the development of appropriate model selection statistical

procedures (see Chapter 5).

(a) Forested area of interest (b) QQ-plot of logL(2,k)

(c) Sample covariance (d) Covariance model %j,θ (e) Radial evolution

Figure 4.2: Fitting between data and proposed statistical model: Forested area of interest (256×256

pixels) (a), quantile-quantile plot (b) of the empirical distributions of associated log-leaders logL(j,k)

at scale j = 2 (subband kλ = 100); sample covariance (c), averaged over contiguous subbands

kλ ∈ J100, 105K, parametric covariance (d); (e) compares the radial evolution of the model (blue) to

the sample covariance (red) of log-leaders at scales j = 2, 3.
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(a) Forested are of interest (b) QQ-plot of logL(1,k)

(c) Sample covariance (d) Covariance model %j,θ (e) Radial evolution

Figure 4.3: Fitting between data and proposed statistical model: Forested area of interested (a)

(64 × 64 pixels), quantile-quantile plot (b) of the empirical distributions of associated log-leaders

logL(j,k) at scale j = 1 (subband kλ = 100); sample covariance (c), averaged over contiguous

subbands kλ ∈ J100, 105K, parametric covariance (d); (e) compares the radial evolution of the model

(blue) to the sample covariance (red) of log-leaders at scale j = 1.

4.4.3 Spectral evolution of multifractal features for hyperspectral images

For this experiment, we are interested in the evolution of multifractal properties across spectral

bands. For this purpose, we apply independently to each subband of the homogenous forested

area (red frame in Fig. 4.1) the weighted linear regression (denoted below as LFw) and the univariate

Bayesian estimation (as described in Chapter 2 and denoted below as IG/N). Results are summarized

in Fig. 4.4.

Fig. 4.4 (b) plots multifractal spectra, estimated by linear regression, of the image 4.4 (a) for three
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different bands kλ = {62, 100, 120}. Clearly, the spectra for different bands differ in shape and

position indicating that the mode, the width and the asymmetry of the spectra (respectively tied to

c1, c2 and c3) have their own independent spectral evolutions. For instance, bands kλ = 100 and

kλ = 120 are observed to have similar values of c1 but different c3.

We investigate in more details the spectral evolution of the log-cumulants c1 and c2, which can be

estimated by either the weighted linear regression or the Bayesian approach IG/N, allowing further

discussion. The spectral evolutions of c1 and c2 are displayed in Fig. 4.4 (c) and (d). For comparison,

the average reflectance (denoted as MEAN) of the image 4.4 (a) versus spectral bands is reproduced

in Fig. 4.4 (e) with its standard deviation (denoted as STD), computed over the patch. Visual

inspection of Fig.4.4 (c-e) leads to the following observations. First, as expected, IG/N and LFw

yield a very similar spectral evolution for c1 while they produce different evolutions for c2. Notably,

LFw yields c2 estimates with positive values, which are not coherent with multifractal theory since

necessarily c2 < 0, while IG/N estimates are consistently negative. Secondly, certains parts of the

spectral evolutions of the reflectivity and of the log-cumulants are similar (e.g., the abrupt shift

around kλ = 50). However, it is worth noticing that particular fluctuations of c1 or c2 are observed

without being identifiable on the reflectivity spectrum. For instance, the fast decay of c1 for the last

bands cannot be identified on MEAN and STD. The same remark holds for the flat evolution of c2

displayed by IG/N for the first bands. Finally, the correlation coefficient between the reflectance and

log-cumulants (both c1 and c2) is computed and found to be on average close to 0.7 both for the

average reflectance and the standard deviation. Note however that this coefficient is lower (∼ 0.6)

for c2 when using IG/N.

These preliminary results suggest that the log-cumulants c1 and c2 are spatial attributes whose

spectral evolutions differ from that of the average reflectivity and hence convey complementary

information. In that respect, they could, for instance, be incorporated in a data-mining scheme to

identify bands of interest based on characteristics of the multifractal spectrum.
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Figure 4.4: Multifractal features of hyperspectral images: Forested area from the Hyspex hyperspec-

tral data (a), multifractal spectrum for three different bands (b), spectral evolution of c2 (c), spectral

evolution of c1 (d) and average reflectance and standard deviation (e).

4.4.4 Spatio-spectral evolution of multifractal features for hyperspectral images

In a second set of experiments, we propose to conduct analysis on small patches of the hyperspectral

images in order to illustrate and study the characterization enabled by the log-cumulants throughout

space and bands. For this experiment, we make use of the multivariate Bayesian methodology

introduced in Chapter 3 and compare it to univariate approaches.

Analysis scenario. Here, we restrict ourselves to the analysis of the 80 last bands for computa-

tional reasons. In an attempt to increase the spatial resolution, each band is decomposed into 29×59
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patches of size 64×64 pixels, with 50% overlap, resulting in a decomposition into 29×59×80 patches

indexed by (kx, ky, kλ). Note that the above overlapping clearly results in a violation of the indepen-

dence assumption between patches which underlies the multivariate Bayesian models introduced in

Chapter 3. Yet, results (and complementary results that have been obtained for synthetic images)

indicate that estimation procedures are robust with respect to these violations of model assumptions.

Estimation setting. We compare in this experiment three different estimators: the weighted

linear regression based estimator LFw, the univariate Bayesian estimator IG/N and the multivariate

Bayesian estimator (relying on GMRF 2D+1D and SAR priors for vi and wi, respectively, denoted

below as GMRF/SAR). Note that results for the multivariate Bayesian method SAR/SAR (using

SAR priors both for vi and wi) are not reported here since, for that method, processing the whole

dataset requires computational capacities beyond the one available (excessively large computational

time), and SAR/SAR and GMRF/SAR have been observed to yield similar results on a subset of the

hyperspectral cube. Finally, we use for the different estimators a setting similar to the one introduced

in Section 3.4 of Chapter 3, where a spatio-temporal decomposition into patches of sizes 64× 64 was

considered, and is as follows: (j1, j2) = (1, 2), (a
(2)
i , a

(1)
i ) = (10, 20).

a) Estimation results for c1

We discuss here estimation results for c1, for which LFw and IG/N are expected to be similar due to

the use of non-informative prior for the latter (cf. Chapter 2). Fig. 4.5 reports estimates obtained

for two spectral bands (b) (the bands 87 and 114, which are plotted in (a)) as well as for a slice along

the spectral dimension (d) (the corresponding 64 × 1962 × 80 portion of the hyperspectral cube is

indicated by a red frame in (c))2.

LF vs. Bayesian estimation. Inspection of the results for the bands 87 and 114, cf. Fig. 4.5

(b), confirms that IG/N does not yield improvements in the estimation of c1 when compared to LFw.

Both approaches lead indeed to similar estimates for c1. On the opposite, the multivariate Bayesian

2A supplementary 3D animation of the results is available on http://combrexelle.perso.enseeiht.fr/thesis/

c1HS.zip.

http://combrexelle.perso.enseeiht.fr/thesis/c1HS.zip
http://combrexelle.perso.enseeiht.fr/thesis/c1HS.zip
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method GMRF/SAR is found to enable a smooth estimation of c1, with reduced spatial variability,

yet, without altering the structures observable in LFw and IG/N c1 maps. Inspection of the spectral

evolution of c1, plotted in Fig. 4.5 (d), leads to a similar conclusion. The proposed GMRF/SAR

estimator permits a reduction in the variance of estimates along the spectral dimension and yields a

visually less noisy evolution of c1 across the bands of the image, while maintaining its main features.

Discriminative power. Although no ground truth is available for this illustration, a more quanti-

tative analysis of the relative quality of the estimates of c1 obtained with LFw, IG/N and GMRF/SAR

is proposed in Fig. 4.6. Histograms (a) of the estimates of c1 obtained with the three methods for

subband kλ = 114 confirm the similarity between LFw and IG/N and the slightly reduced variance

of GMRF/SAR estimates. The Fisher linear discriminant criterion proposed in [DHS12, Ch. 3.8] is

also calculated for the different estimators, as a function of a threshold for c1 separating two classes

of textures and plotted in Fig. 4.6 (b). It indicates that the estimates ĉ1 obtained with GMRF/SAR

have slightly superior discriminative power than those obtained with LFw and IG/N. In a similar

vein, we compute for the maps of c1 in Fig. 4.5 for subband kλ = 114 the corresponding sharpness

index introduced in [BM12]. This index is a reference-free indicator which assesses image quality in

terms of blur, noise or ringing by investigating the Fourier phase spectrum of the image (see [BM12]

for details on its implementation and its relation to the global phase coherence based indicator of

[BMR08]). These sharpness indexes are close to 3 for LFw and IG/N and 3.2 for GMRF/SAR,

which is in the line with the above remarks.

Overall, quantitative improvements yielded by GMRF/SAR for c1 hence remain very modest for

this hyperspectral image.
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Figure 4.6: Discrimination power of estimation procedures for c1: histograms (a) and Fisher linear

discriminant criteria (b) for estimators of c1 obtained by LFw ( ), IG/N ( ) and GMRF/SAR

( ) for subband kλ = 114.

b) Estimation results for c2

We now investigate estimation results for c2, which are summarized in Fig. 4.7 with again a focus on

the spectral bands 87 and 114 (b) and a slice along the spectral dimension (d)3. Since for c2 linear

regression and Bayesian approaches strongly differ, reported results allow an interesting comparison

between the different approaches.

LF vs. Bayesian estimation. First, LFw is observed to provide c2 estimates with strong spatial

and spectral variability. On the opposite, the estimator IG/N yields better spatial and spectral

3A supplementary 3D animation of the results is available on http://combrexelle.perso.enseeiht.fr/thesis/

c2HS.zip.

http://combrexelle.perso.enseeiht.fr/thesis/c2HS.zip
http://combrexelle.perso.enseeiht.fr/thesis/c2HS.zip
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coherence and clearly improves over the estimates obtained with LFw, with notably no positive values

for c2. Yet, the variability within visually homogeneous zones of the dataset (e.g., the forested region)

is still important. In comparison with IG/N, and a fortiori with LFw, the proposed multivariate

Bayesian method GMRF/SAR further and dramatically reduces the variability within presumably

homogeneous zones, inducing strong spatial coherence, which reinforces the contrast between regions

of different multifractalities and visually sharpens their borders. Overall, these results indicate that,

for the estimation of c2, the regression based estimation is outperformed by the Bayesian approach,

especially GMRF/SAR, which manages to reproduce the spatial and spectral structures of the image

texture with less variability. This is further assessed in the next paragraph via a discussion on the

discriminative power of the different methods.

Discriminative power. As for c1, we compared the different methods by analysing the histograms

of the estimates c2 for subband kλ = 114 and the associated Fisher linear discriminant criterion, which

are displayed in Fig. 4.8. First, histograms (a) of the estimates of c2 clearly indicate the significantly

larger spatial variability (variance) of LFw as compared to Bayesian approaches. Second, the Fisher

linear discriminant criterion (b) [DHS12, Ch. 3.8] of the different methods indicates that the estimates

obtained with GMRF/SAR and IG/N have a significantly superior discriminative power than those

obtained with LFw. Finally, the reference-free image quality indicators [BM12] of the different

methods are 19.8 and 17.6 for GMRF/SAR and IG/N but a considerably smaller value of 10 for LF.

This significant difference strengthens the visual inspection-based conclusions of improved spatial

coherence for Bayesian estimators described above.

c) Reflectivity vs. c1, c2

Finally, we qualitatively compared the reflectivity and the maps of c1 and c2 estimates provided by

the different procedures. Undeniably certain structures are visible both on the reflectivity and the

log-cumulants, regardless of the estimation procedure. For instance, the city in the left bottom corner

yields clusters associated with strongly negative c2 in Fig. 4.7 and c1 ∼ 1.2 in Fig. 4.5. It is however

interesting to note that the maps of c1 and c2 estimates do not identically reproduce the original
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reflectivity image. This is particularly true for the Bayesian estimates, for which the reduced vari-

ability enables the identification of distinct regions in the image, notably for c2. For instance, observe

in Fig. 4.7 that the forested area in the right half of the image is homogeneous (with c2 ∼ −0.05) in

the spectral band kλ = 114, while it is composed of a background (where c2 ∼ −0.05) and scattered

clusters (where c2 ∼ −0.1) in the spectral band kλ = 87, which could arguably indicate a physical

change at this location (e.g., a lower tree density). Such a behavior is not directly noticeable when

inspecting the reflectivity maps.

This observation provides further evidence that the log-cumulants capture complementary informa-

tion with respect to the traditional moments. Viewed as a function of space, they can potentially

provide local texture features that could be combined with spectral features to perform tasks such

as classification or segmentation. In that line of thought, the multivariate Bayesian approaches

(GMRF/SAR, SAR/SAR or a different combination) are promising as they yield estimates with

improved contrast between regions of different textures.

4.5 Conclusions and perspectives

Conclusions. In this chapter, we proposed and investigated the use of the log-cumulants, in par-

ticular c1 and c2, for the extraction of spatial/textural information in hyperspectral images. The

investigation was based on experiments conducted on a real-world hyperspectral image. Results re-

ported in this chapter enabled us to illustrate that the Bayesian methodology introduced in Chapters 2

and 3 is operational and relevant for the multifractal analysis of real data. Moreover a qualitative

analysis of the results indicated that the log-cumulants c1 and c2 captured spatial information dif-

ferent from that given by the average and STD of reflectivity, suggesting that they could be used

in a complementary manner with standard spectral features to perform tasks such as data-mining,

segmentation or classification.

Perspectives. A direct continuation of this work would be the definition and the study of pro-

cedures allowing the systematic use of MFA in hyperspectral processing (cf. Chapter 5). Another
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interesting lead to explore would be the investigation of the potential benefits of the proposed method-

ology for other applications where MFA is commonly used. Notably, in biomedical applications such

as functional magnetic resonance imaging (fMRI), acquired data are multivariate and the sample size

of each component can be limited. For this kind of dataset, the multivariate Bayesian methodology

could enhance the quality of the estimation of multifractal parameters.

4.6 Conclusions et perspectives (in French)

Conclusions. Dans ce chapitre, nous avons proposé et étudié l’utilisation des log-cumulants, en

particulier c1 et c2, pour l’extraction d’information spatiale/texturale dans le contexte de l’imagerie

hyperspectrale. Cette étude a été basée sur des expériences numériques conduites sur un jeu de

données hyperspectrales réelles. Les résultats contenus dans ce chapitre nous ont permis d’illustrer

que la méthodologie bayésienne introduite dans les Chapitres 2 et 3 était applicable pour l’analyse de

données réelles. D’autre part, une analyse qualitative des résultats a indiqué que les log-cumulants

c1 et c2 capturaient de l’information spatiale différente par rapport à la réflexivité de l’image. Ces

résultats ont ainsi suggéré que ces paramètres pourraient être utilisés en complément de l’information

spectrale pour accomplir des tâches telles que l’exploration de données, la segmentation ou encore la

classification.

Perspectives. Une continuation directe du travail présenté dans ce chapitre serait la définition

et l’étude de procédures permettant l’utilisation systématique de l’analyse multifractale pour le

traitement de données hyperspectrales (voir Chapitre 5). Une autre piste intéressante à explorer

serait l’étude des potentiels apports de notre méthodologie pour d’autres domaines d’application où

l’analyse multifractale est communément utilisée. Notamment, dans les applications biomédicales

comme l’imagerie par résonance magnétique fonctionnelle, les données recueillis sont par nature mul-

tivariées et la taille des échantillons est limitée. Pour ce type de données, la méthodologie bayésienne

développée dans cette thèse pourrait améliorer la qualité de l’estimation des paramètres multifrac-

taux.
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Figure 4.7: Estimate ĉ2 of the hyperspectral image (bands 80− 160) from the Madonna project.
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( ) for subband kλ = 114.



Chapter 5

Conclusions and future work

Context

Over the last decades, MFA has matured into a standard signal and image processing tool, enabling

notably texture analysis to be envisaged via the study of the local regularity fluctuations of image

amplitudes. Although successfully used in a large range of applications, MFA remains subject to two

major practical limitations. First, current benchmark procedures for the estimation of multifractal

parameters provide poor performance, in particular for small images, for which the variance of

estimators is too large for being used in practical applications. Second, all current existing estimation

procedures are conceptually limited to the independent processing of individual images, while in a

increasing number of applications, the data to be analysed are multivariate. The primary objective

of this thesis was to introduce new methodological solutions that address these practical limitations.

To overcome these difficulties, this thesis formulated a novel Bayesian approach for multifractal

parameter estimation. Moreover, the use of MFA in general and of these novel methods in particular

in the context of hyperspectral imaging was investigated.

Conclusions

Chapter 1 summarized the key concepts of MFA and of the wavelet leader multifractal formalism.

Within this multifractal formalism, the multifractal properties of an image can be rephrased in terms

of coefficients cp, called the log-cumulants. In particular, the two first log-cumulants c1 and c2

respectively capture the average regularity and the degree of the fluctuations of the regularity, and

their estimation constitute the focus of this thesis. The current benchmark estimation procedures
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were recalled and existing alternative procedures were reviewed with a discussion on their respective

limitations. Finally, Chapter 1 briefly described a representative selection of scaling processes used

thoughout this thesis to validate the proposed estimation methods.

Chapter 2 introduced a Bayesian approach for the estimation of c1 and c2 for one single image.

The key ingredient was the design of an empirical yet generic statistical model for the log-leaders,

consisting of multivariate Gaussian distributions whose mean and covariance structure were respec-

tively parametrized by the quantities of interest c1 and c2. To bypass the numerically problematic

computation of the likelihood associated with this model, the latter was evaluated in the spectral

domain via a suitable Whittle approximation. Building on the statistical model and its approxima-

tion, a Bayesian model was introduced via the specification of prior distributions for the unknown

parameters. Using a data augmentation scheme, we proposed an alternative Bayesian model, which,

unlike the previous model, enabled the design of conjugate priors. For both Bayesian models, the

associated Bayesian estimators were computed via appropriate MCMC algorithms. Estimation per-

formance was numerically assessed using a large number of multifractal processes for several image

sizes. The proposed estimation procedure enabled us to significantly improve the estimation of c2 by

dividing the root-mean square error values by up to 4 for MMC processes, and up to 10 for fBms when

compared to the current benchmark estimator. Finally, it was observed that the proposed approach

yielded no improvement for the estimation of c1 when non-informative priors were considered.

Chapter 3 proposed to formulate the multifractal analysis of multivariate images in a Bayesian

framework via the design of hierarchical models. These hierachical models were built on the sta-

tistical model introduced in Chapter 2 and incorporated multivariate priors encoding a smoothness

assumption on the dynamics of the collections of log-cumulants c1 and c2. To describe the collection

of log-cumulants c2, we investigated two different probabilistic models, namely GMRF and SAR pri-

ors, while for the collection of log-cumulants c1, we were naturally led to consider SAR priors. For

all hierarchical models, parameter inference on the associated posterior distribution was achieved via

suitable MCMC algorithms. We assessed the performance of the different smoothing priors and of the

different combinations of priors on c1 and c2 by conducting numerical experiments on multivariate
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datasets composed of synthetic multifractal processes with prescribed evolutions of c1 and c2. Re-

sults demonstrated the benefits of the multivariate Bayesian approach with estimation performance

significantly improved compared to univariate formulations.

Chapter 4 investigated the potential use and benefits of MFA and of the proposed Bayesian

multifractal methodology in the context of hyperspectral imaging. Numerical experiments were

conducted on a real-world hyperspectral image. They indicated that the multifractal parameters

captured textural information different from mere reflectivity average or standard deviation. The

reported results suggested that MFA is a promising tool for the extraction of spatial/textural features

that could be incorporated in the processing of hyperspectral images. Moreover, they indicated

that the proposed Bayesian multifractal methodology yielded robust estimation procedures that are

operational for the analysis of real-world data. These procedure were notably shown to provide more

relevant estimates than the benchmark linear regression based estimation procedure.

Perspectives and future work

At the end of this work, perspectives can be formulated at different levels.

Model developments

The statistical model proposed in Chapter 2 assumed that log-leaders at different scales are inde-

pendent. This assumption is however not realistic as inter-scale dependence of wavelet coefficients

(and a fortiori of the associated (log)-leaders) is commonly reported in the literature (see, e.g.,

[SS02, LM01, BS99] and references therein). Directions for future work include investigations on the

inter-scale dependence of log-leaders and the design of appropriate models accommodating for it (see

[ABM98] for results obtained for 1D random wavelet cascades, a specific instance of MMC processes).

Such developments may yield further improvements in the estimation of multifractal parameters.

Another interesting lead to explore is the enhancement of the statistical model for the incorpo-

ration of additional log-cumulants cp, p ≥ 3. In particular, the log-cumulants c3 and c4, respectively

linked to the skewness and the kurtosis of the distribution of the log-leaders (cf. (1.15)), provide
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information on the assymetry and the kurtosis of the multifractal spectrum. Formulating their esti-

mation in a Bayesian framework will require the design of a statistical model for log-leaders including

higher order cumulants as parameters and, consequently, the use of non-Gaussian distributions as

generative models, such as, for instance, the skew Student-t-normal distribution and its extensions

(see, e.g., [GVB07, CBP08, NO12]).

In Chapter 3, we adressed the multifractal analysis of multivariate images via the design of

Bayesian hierarchical models incorporating multivariate priors. We focused in particular on smooth-

ing priors to enforce a smooth estimation of the multifractal parameters. Future work needs to include

extensions of the methodology with the study of priors accounting for other assumptions. For in-

stance, total variation priors (see, e.g., [SC03, BMK09]) could be considered to induce estimates with

piece-wise constant evolutions. In a different vein, it would be interesting to consider Bayesian classi-

fication or segmentation via the use of Potts models (cf., e.g., [Fig05, RVF+11, EBDT13, PDBT13]).

In this line of thought, the segmentation of a heterogeneous texture could be conducted via a

decomposition of the image into rectangular patches followed by a joint estimation of associated mul-

tifractal parameters. However, this patch-based approach would be relevant only for large images

as the number of patches would be limited for small images, preventing hence the accurate iden-

tification of the regions of different texture. One interesting development would consist of moving

from a segmentation at the patch level to a segmentation at the pixel level. In that regards, the

texture segmentation approach proposed in [Văc14] could fit here since this contribution dwells on a

texture model in the Fourier domain as in the present thesis (via the Whittle approximation). The

heterogeneous texture is therein seen as the sum of homogeneous textures each affected by a binary

mask to be estimated. This approach would bypass the use of patches but at the price of higher

computational complexity.

Computational and algorithmic developments

In Chapters 2 and 3, we performed parameter inference via MCMC algorithms. However, the large

number of iterations required to achieve good approximations of Bayesian estimators can become

computationally problematic for large datasets. An important continuation of this thesis would lie
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in the development of efficient inference algorithms with low computational cost. Since the models

introduced in Chapters 2 and 3 (with GMRF priors) involve latent variables, it would be interesting

to consider the expectation-maximization (EM) algorithm ([DLR77]) and variational Bayesian (VB)

methods ([BBB+03, Gri10]) as alternatives. Preliminary results for the EM algorithm are reported in

Appendix E. Another possibility would be to recast the parameter inference in an optimization frame-

work and then resort to more efficient optimization schemes (see, e.g., [BV04, GMW81, BPC+11]).

In Chapter 3, the intractability of the normalizing constant of GMRF priors prevented the es-

timation of the associated hyperparameters via a fully Bayesian approach. One obvious direction

for future work is the investigation of methods addressing the automatic adjustement of GMRF hy-

perparameters. There are in the literature methods that are dedicated to inference on models with

intractable normalizing constants. Among them, we mention, e.g., empirical Bayes based methods as

in [PWAT14], in which unknown hyperparameters are replaced by point estimates computed from the

observed data, approximate likelihood methods based on pseudo-likelihood ([Bes75]) and contrastive

divergence ([Hin02]), and approaches based on extrapolation from precomputed values of C(ai) for

discrete sets of ai ([RVF+11, RICV09]).

Application-oriented developments

Results reported in Chapter 4 constitute a preliminary illustration of the application of the proposed

Bayesian methodology on real-world data. Its practical use on a larger scale will demand further

investigation.

From a methodological point of view, model selection/validation procedures are needed to, for

instance, assess whether the log-leaders associated with the image under analysis are well described by

the proposed statistical model, and, in the same spirit, to determine the range of scales over which the

model holds. This line of research constitutes a challenging perspective since only limited results are

available in the literature, even for the linear regression based estimation (see, e.g., [VAT03, LTA14]

for examples of procedures addressing the scaling range selection).

Regarding more specifically the context of HS imaging, the work presented in Chapter 4 leads us to

conclude that multifractal attributes could be considered for the extraction of textural information.
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The systematic use of multifractal analysis in HS processing remains to be defined and tested on

other datasets. In that regards, different prospects need be explored, such as the investigation of

different multifractal formalisms (wavelet coefficients vs. wavelet leaders) or of different attributes

(cp, p ≥ 3), the incoportation of multifractal attributes in segmentation/unmixing algorithms and

the comparison with established methods.

Open issue

Finally, a more long-term work would consist of changing the paradigm used for the multifractal

analysis of multivariate images via the joint estimation of multifractal parameters, as it has been

achieved in Chapter 3, towards a multivariate multifractal analysis in the spirit of appropriate multi-

variate extensions of the multifractal spectrum D(h). This constitutes a largely open perspective for

which many aspects remain to be defined and studied, both from a theoretical and practical point

of view. Notably, this would imply the definition of a meaningful and practically useful multifrac-

tal spectrum for multivariate data with many components (as opposed to bi-variate definitions in

[HJK+86, SSLB96, MSKF90]). Similarly, a multivariate multifractal formalism, potentially relying

on appropriate multi-component multiresolution coefficients, needs to be defined. Moreover, this

would require the design of synthetic model processes with known multivariate multifractal spectra

(and the corresponding synthesis procedures) in order to numerically assess the practical analysis

tools.
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Contexte (in French)

Au cours de ces dernières décennies, l’analyse multifractale a mûri comme un outil standard du

traitement des signaux et des images, permettant notamment d’envisager l’analyse de textures via

l’étude des fluctuations de la régularité locale de l’amplitude des images. Bien que mise à profit dans

un grand nombre d’applications, l’analyse multifractale est soumise à deux limitations pratiques

majeures. Premièrement, les procédures d’estimation de référence pour les paramètres multifrac-

taux offrent de faibles performances d’estimation, en particulier pour les petites tailles d’image,

pour lesquelles la variance des estimateurs est très élevée. Deuxièmement, toutes les procédures

d’estimation actuelles sont conceptuellement limitées au traitement indépendant d’images, alors que

dans un nombre croissant d’applications, les données à analyser sont multivariées. L’objectif cen-

tral de cette thèse était d’introduire de nouvelles solutions méthodologiques abordant ces limitations

pratiques. Pour pallier ces limitations, cette thèse a introduit une approche bayésienne originale

pour l’estimation des paramètres multifractaux. De plus, l’utilisation de l’analyse multifractale en

générale et plus particulièrement des méthodes proposées a été étudiée dans le contexte de l’imagerie

hyperspectrale.

Conclusions (in French)

Le Chapitre 1 s’est intéressé à récapituler les concepts clés de l’analyse multifractale et du formalisme

multifractal construit sur les coefficients dominants. Dans ce formalisme, les propriétés multifrac-

tales d’une image peuvent être reformulées en termes de coefficients cp, appelés log-cumulants. En

particulier, les deux premiers log-cumulants c1 et c2 quantifient respectivement la régularité moyenne

et le degré des fluctuations de la régularité locale. Leur estimation est au cœur de cette thèse. Les

procédures d’estimation de référence ont été rappelées et les procédures alternatives ont été revues,

avec notamment une discussion sur leurs limitations respectives. Enfin, le Chapitre 1 a brièvement

décrit une sélection de processus multifractaux de référence utilisés tout au long de cette thèse pour

valider de nouvelles procédures d’estimation.

Le Chapitre 2 a introduit une approche bayésienne pour l’estimation de c1 et c2 pour une seule



148 Chapter 5 - Conclusions and future work

image. L’ingrédient clé de cette approche a été la conception d’un modèle statistique empirique mais

générique pour le logarithme des coefficients dominants. Ce modèle consiste à modéliser le logarithme

des coefficients dominants par des variables gaussiennes distribuées selon une loi normale multivariée

dont la moyenne et la covariance sont respectivement paramétrisées par les quantités d’intérêt, à

savoir c1 et c2. Pour contourner l’évaluation problématique de la vraisemblance associée à ce modèle,

cette dernière a été calculée dans le domaine spectral via une approximation de Whittle. A partir de

ce modèle statistique et de son approximation numérique, un modèle bayésien a été introduit via la

spécification de lois a priori sur les paramètres inconnus. En utilisant une méthode d’augmentation

des données, nous avons de plus introduit un modèle bayésien alternatif, pour lequel, et contrairement

au modèle précédent, il est possible de spécifier des lois a priori conjuguées. Pour ces deux modèles

bayésiens, les estimateurs bayésiens correspondants ont été calculés via des méthodes de Monte Carlo

par chaines de Markov. Les performances d’estimation ont été évaluées numériquement à partir de

simulations numériques effectuées sur un grand nombre de processus multifractaux de référence.

La procédure d’estimation proposée dans ce chapitre nous a permit d’améliorer significativement

l’estimation de c2 en divisant les valeurs de la racine carrée de l’erreur quadratique moyenne des

estimateurs par 4 pour les processus construits sur des cascades multiplicatives et par 10 pour le

mouvement brownien fractionnaire par rapport à l’estimateur de référence. Pour l’estimation de c1,

il a été constaté que la procédure d’estimation n’apporte pas d’amélioration lorsque des lois a priori

non informatives sont utilisées.

Le Chapitre 3 a proposé de formuler l’analyse multifractale d’images multivariées dans un cadre

bayésien via la conception de modèles hiérarchiques. Ces modèles hiérarchiques sont construits sur

le modèle statistique introduit dans le Chapitre 2 et incorporent en plus des lois a priori multivariées

formalisant mathématiquement l’hypothèse d’une évolution lente des propriétés multifractales au sein

du jeu de données. Pour décrire la collection des log-cumulants c2 associée à des images multivariées,

nous avons étudié deux modèles probabilistes, à savoir des champs gamma markoviens (GMRF) et des

modèles d’auto-regressions simultanées (SAR), alors que pour la collection des log-cumulants c1, nous

avons été naturellement amenés à considérer des modèles SAR. Pour tous les modèles hiérarchiques,

les estimateurs bayésiens associés ont été calculés via des méthodes de Monte Carlo par chaines
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de Markov adaptées. Nous avons évalué les performances associées aux différentes lois a priori (et

à leurs combinaisons) en effectuant des simulations numériques sur des jeux de données composés

d’images multifractales synthétiques pour lesquelles nous contrôlions l’évolution des paramètres c1 et

c2. Les résultats rapportés dans ce chapitre ont démontré les bénéfices de notre approche bayésienne

multivariée, aboutissant à des performances d’estimation significativement améliorées par rapport

aux formulations univariées.

Le Chapitre 4 a étudié les potentiels bénéfices de l’utilisation de l’analyse multifractale et de

la méthodologie bayésienne d’analyse multifractale introduite dans cette thèse dans le contexte de

l’imagerie hyperspectrale. Des expériences numériques ont été conduites sur un jeu de données hy-

perspectrales réelles. Ces expériences ont indiqué que les paramètres multifractaux permettaient de

capturer une information texturale différente de la simple réflectivité. Les résultats rapportés dans ce

chapitre ont ainsi suggéré que l’analyse multifractale constitue un outil prometteur pour l’extraction

de d’attributs spatiaux et texturaux, qui pourraient potentiellement être inclus dans le traitement

d’images hyperspectrales. De plus, ces résultats ont indiqué que la méthodologie bayésienne d’analyse

multifractale permet d’obtenir des procédures d’estimation robustes applicables à des données réelles.

Il a notamment été montré que ces procédures permettent une estimation des paramètres multifrac-

taux plus pertinente que les procédures de référence.
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Figure A.1: Quantile-quantile plots of the empirical distributions (+) of the process X(k), the

log-wavelet coefficients log |d(3)(2,k)| and the log-leaders l(j,k), j = 2, 3, 4 against standard normal

distribution ( ) for a selection of MMC processes (c2 = −0.04) (a) and self-similar processes (H =

0.7) (b) of size 28×28. The closer to the red dashed line, the better the fit to the normal distribution.



155

(a) Sample covariance (b) Covariance model %j,θ

(c) Slice ∆k2 = 0 (d) Slice ∆k1 = 0 (e) Radial evolution ∆k1 = ∆k2

Figure A.2: Fitting between the sample covariance (a), averaged on 100 realizations of 2D MRW

([N, c2] = [29,−0.04]), and the parametric covariance (b) at scale j = 2; (c), (d) and (e) compare the

model (blue) and the sample covariance (red) for different directions at two scales j = 2, 3.
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(a) Sample covariance (b) Covariance model %j,θ

(c) Slice ∆k2 = 0 (d) Slice ∆k1 = 0 (e) Radial evolution ∆k1 = ∆k2

Figure A.3: Fitting between the sample covariance (a), averaged on 100 realizations of 2D CPC-LN

([N, c2] = [29,−0.04]), and the parametric covariance (b) at scale j = 2; (c), (d) and (e) compare the

model (blue) and the sample covariance (red) for different directions at two scales j = 2, 3.



Appendix B

Marginalization of the latent variables

In this appendix, we show that the spectral likelihood (2.55)
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is the marginal likelihood of the augmented likelihood (2.58)
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when latent variables µ = {µ
�0
,µ0} are integrated out of the model (2.56), i.e., we prove that

p(y|λ) ∝
∫
p(y,µ|λ)dµ. (B.3)

To begin with, note that since p(y,µ|λ) is separable in (y
�0
,µ

�0
) and (y0,µ0), we can separately show

that

(i) the likelihood associated with the model y0|λ ∼ N (Xw, v1F̃0,1 + v2F̃0,2) is the marginal

likelihood of the augmented likelihood associated with the augmented model

y0|λ,µ0 ∼ N (µ0, v1F̃0,1), µ0|λ ∼ N (Xw, v2F̃0,2) (B.4)

(ii) the likelihood associated with the model y
�0
|λ ∼ CN (0, v1F̃1 + v2F̃2) is the marginal likelihood

of the augmented likelihood associated with the augmented model

y
�0
|λ,µ

�0
∼ CN (µ

�0
, v1F̃1), µ

�0
|λ ∼ CN (0, v2F̃2). (B.5)
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To prove (i), note that since F̃0,i is diagonal, we can work with y0 element-wise. Let y0 denote one

element of y0, say y0 = (y0)k, and, correspondingly, f0,i = (F̃0,i)k,k and x0 = (Xw)k. The likelihood

p(y0|v, x0) ∝
(
f0,1v1 + f0,2v2

)− 1
2 exp

(
− (y0 − x0)2

2(f0,1v1 + f0,2v2)

)
(B.6)

associated with the Gaussian model

y0|v, x0 ∼ N (x0, v1f0,1 + v2f0,2) (B.7)

is recovered by integrating the latent variable µ0 out of the following generative model

y|v, x0, µ0 ∼ N (µ0, v1f0,1), µ0|v, x0 ∼ N (x0, v2f0,2) (B.8)

associated with the augmented likelihood
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Indeed, by denoting ỹ0 = y0−x0 and using the change of variable µ0−x0 → µ0, we have the following
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0

1

f0,1v1

))
dµ0

∝
∫ ∞
−∞

exp
(
− f0,1v1 + f0,2v2

2f0,1v1f0,2v2

(
µ2

0 − 2ỹ0µ0
f0,2v2

f0,1v1 + f0,2v2
+ ỹ2

0

f0,2v2

f0,1v1 + f0,2v2

))
dµ0

∝ exp
( ỹ2

0

f0,1v1 + f0,2v2

) ∫ ∞
−∞

exp
(
− f0,1v1 + f0,2v2

2f0,1v1f0,2v2

(
µ0 − ỹ0

f0,2v2

f0,1v1 + f0,2v2

)2 )
dµ0

∝ exp
(
− (y0 − x0)2

2(f0,1v1 + f0,2v2)

)
∝ p(y0|v, x0)

which proves (i). To prove (ii), since F̃i is also diagonal, we can use the same argument with

manipulations on the complex Gaussian distribution.
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Appendix of Chapter 3

C.1 Derivates of the potential energy

The HMC algorithm introduced in Chapter 3 requires the computation of the derivatives of the

potential energy (3.34). We show here that these derivatives can be calculated analytically. To begin

with, when injecting (3.30) in (3.34), the potential energy directly reads

E(vi) =
∑
k

 j2∑
j=j1

(∑
m

log φj,vk(ωm) +
|y`j,k(ωm)|2

φj,vk(ωm)

)
+

log φj,vk(ω0)

2
+

(y`j,k(ω0)−mjµj,wk)2

2φj,vk(ω0)


+
∑
d∈ξ

‖D(d)vi‖2

2ε
(d)
i

where φj,vk(ωm) = v1,kf̃1,j(ωm) + v2,kf̃2,j(ωm) with functions f̃i,j defined in Eq. (2.39). Then, by

making use of the two following intermediate derivatives

(i)
∂ log φj,vk (ωm)

∂vi,k
=

f̃i,j(ωm)
φj,vk (ωm)

(ii) ∂‖D(d)vi‖2
∂vi

= 2D(d)TD(d)vi

the partial derivative of E(vi) with respect to vi,k can be expressed as

∂E(vi)

∂vi,k
=

j2∑
j=j1

(∑
m

f̃i,j(ωm)

φj,vk(ωm)

(
1−
|y`j,k(ωm)|2

φj,vk(ωm)

)
+

f̃i,j(ω0)

2φj,vk(ω0)

(
1−

(y`j,k(ω0)−mjµj,wk)2

φj,vk(ω0)

))

+
∑
d∈ξ

[
D(d)TD(d)vi

ε
(d)
i

]
τ(k)

(C.1)

where we recall that τ(k) is the lexicographic ordering operator.
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C.2 Sampling of W

In this section, we derive the conditional posterior distributions (3.50) and (3.51) that are required

for the sampling of W in Section 3.6.2. To do so, we first discuss the conditional prior distribution

of elements in W induced by the prior (3.44).

C.2.1 Conditional prior distribution

Temporal/spectral or spatial decomposition

To simplify, let us first consider the case where ξ reduces to a singleton, i.e., d = 1 or d = 2. In this

case, the prior (3.44) can be developed as follows

p(W|ε̃) ∝ exp

(
−1

2

[
1

ε̃
(d)
1

wT
1D

(d)TD(d)w1 +
1

ε̃
(d)
2

wT
2D

(d)TD(d)w2

])
. (C.2)

We now try to find the distribution of the element wk = [w1,k, w2,k]T conditionally on other elements

wk′ 6=k. By using the symetry of D(d)TD(d) and the notation δ
(d)
k1,k2

, which stands here for the element

in the k1-th row and k2-th column of the matrix D(d)TD(d), we have the following equation

wT
i D

(d)TD(d)wi = δ
(d)
τ(k),τ(k)w

2
i,k + 2

∑
k′ 6=k

δ
(d)

τ(k),τ(k′)
wi,k′wi,k + . . . (C.3)

which, when injected in (C.2), leads to

p(W|ε̃) ∝ exp

−1

2

δ(d)
τ(k),τ(k)w

T
kΣ(d)−1

wk + 2
∑
k′ 6=k

δ
(d)

τ(k),τ(k′)
wT
k′Σ

(d)−1
wk + . . .

 (C.4)

with

Σ(d) = diag(ε̃
(d)
1 , ε̃

(d)
2 ). (C.5)

Therefore, it directly reads that

wk|wk′ 6=k, ε̃ ∼ N (− 1

δ
(d)
τ(k),τ(k)

∑
k′ 6=k

δ
(d)

τ(k),τ(k′)
wk′ ,

Σ(d)

δ
(d)
τ(k),τ(k)

). (C.6)

Spatio-temporal/spectral decomposition

We now consider the prior distribution when ξ = {1, 2}, which can be seen as the product of the prior
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distribution when ξ = {1} and the one when ξ = {2}. To that end, we recall that the product of two

multivariate Gaussian distributions N (µ1,Σ1) and N (µ2,Σ2) is a multivariate Gaussian distribution

N (µ,Σ) with [PP+08]

µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2) (C.7a)

Σ = (Σ−1
1 + Σ−1

2 )−1. (C.7b)

Therefore, by identifying

µd = − 1

δ
(d)
τ(k),τ(k)

∑
k′ 6=k

δ
(d)

τ(k),τ(k′)
wk′ (C.8a)

Σd =
Σ(d)

δ
(d)
τ(k),τ(k)

(C.8b)

in Eq. (C.7) for d = 1, 2, we directly find Eqs. (3.49) and (3.48), i.e.,

wk|wk′ 6=k, ε̃ ∼ N (w0,k,Σ0,k)

with

w0,k = Σ0,k

∑
d∈ξ

∑
k′ 6=k

−δ(d)

τ(k),τ(k′)
Σ(d)−1

wk′

Σ0,k =

∑
d∈ξ

δ
(d)
τ(k),τ(k)Σ

(d)−1

−1

.

Note that the formulations above still hold for ξ = {1} and ξ = {2}.

C.2.2 Conditional posterior distribution

In a similar fashion, Eqs. (3.50) and (3.51) are derived from the property on the product of two

Gaussian distributions. In particular, Eq. (3.50) is found by identifying

µ1 = w0,k and µ2 = µ0,k

Σ1 = Σ0,k and Σ2 =

(
XT F̃−1

0,2X

v2,k

)−1
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in (C.7), while (3.51) is found by identifying

µ1 = w0,k and µ2 = y0,k

Σ1 = Σ0,k and Σ2 =
(
XTΓ−1

vk,0
X
)−1

.
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Whittle approximation for time series

In this appendix, we briefly describe the statistical model for the collection of log-leaders logL(j, k)

of time series. This model uses as its main ingredients of the model proposed in [WDTA13] and is

based on two complementary developments. First, unlike [WDTA13], the mean of the log-leaders

is included in the model, which enables the estimation of c1. Second, a Whittle approximation is

devised to enable the efficient evaluation of the associated likelihood in the spectral model. With

the resulting model replacing (2.12), all developments of Chapters 2 and 3 carry over to time series,

mutatis mutandis.

Statistical model. At each scale j, the distribution of the collection of log-leaders {logL(j, k)}njk=1

of 1D MMC processes is modeled by a multivariate Gaussian distribution with the following mean

E[logL(j, k)] = µj,w = c0
1 + jc1 log 2 (D.1)

where w is defined in (2.2), and with a variance-covariance %j,θ(∆k) defined as follows [WDTA13]

%j,θ(∆k) =


%Sj,θ(∆k) 0 ≤ |∆k| < 3

%Lj,θ(∆k) 3 ≤ |∆k|
(D.2)

with

%Lj,θ(∆k) = max
(
0,∆%+ c2(log |∆k|+ log 2j)

)
(D.3)

and

%Sj,θ(∆k) =
log(|∆k|+ 1)

log 4

(
%Lj,θ(3)− (c0

2 + c2 log 2j)
)

+ c0
2 + c2 log 2j (D.4)

where θ is defined in (2.3). The parameter ∆% in (D.3) was originally set using the heuristic condition

%Sj,θ(bnj/5c) = 0 in [WDTA13]. It is also possible to include it in the vector of unknown parameters
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in order to devise an estimation procedure for the integral scale, another parameter of interest in

multifractal models [Man74, Fri95]. This has been studied in detail in [CWA+15]. In what follows,

∆% is a constant.

By denoting again `j the vector gathering the log-leaders at scale j (organized in lexicographic

order) the likehood of `j with respect to λ = {θ,w} is given by

p(`j |λ) ∝ (det Σj,θ)−
1
2 exp

(
−1

2
(`j − µj,w)TΣ−1

j,θ(`j − µj,w)

)
(D.5)

where Σj,θ corresponds here to the nj × nj covariance matrix whose entries are induced by the 1D

parametric covariance function model (D.2) and µj,w = µj,w1nj . Finally, assuming independence

between log-leaders at different scales j, the joint likelihood for the vector ` = [`Tj1 , ..., `
T
j2 ]T gathering

the log-leaders at scales j = j1, . . . , j2 reads

p(`|λ) ∝
j2∏
j=j1

(det Σj,θ)−
1
2 exp

(
−1

2
(`j − µj,w)TΣ−1

j,θ(`j − µj,w)

)
. (D.6)

Whittle approximation. The Whittle approximation of the scale-wise Gaussian likelihood (D.5)

is given by [Whi53, Pri81]

pW (`j |λ) =

b
nj
2
c∏

m=1

(
φj,θ(ωm)

)−1
exp

(
−
y∗`j (ωm)y`j (ωm)

φj,θ(ωm)

)

×
(
φj,θ(ω0)

)− 1
2 exp

(
(y`j (ω0)− njµj,w)2

2φj,θ(ω0)

)
(D.7)

where y`j (ωm) is the discrete Fourier transform (DFT) coefficient of {logL(j, k)}njk=1 at frequency

ωm = 2πm/nj . A closed-form of the spectral density φj,θ(ω) associated with the 1D covariance

function %j,θ(∆k) in (D.7) cannot be derived. It is here computed using a discrete Fourier transform

as follows

φDj,θ(ωm) =
∑

k∈J−nj ,njK

%j,θ(∆k) exp(−ikωm). (D.8)

From (D.8), a decomposition analogous to (2.32) can be derived, which enables us to use the

reparametrization (2.35) and the data augmentation scheme (2.56). This gives rise to a fast imple-

mentation of the estimation procedure introduced in [WDTA13] (see [CWA+15] for more details).
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Moreover, this implies that the multivariate Bayesian methodology introduced in Chapter 3 directly

carries over to time series. This has been reported in [CWT+16b, CWA+16a].
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Appendix E

Expectation-maximization

The expectation-maximization (EM) algorithm is an iterative scheme that can be used for performing

maximum likelihood or maximum a posterior estimation for augmented models. The EM algorithm

generates a sequence of estimates that increases the marginal likelihood (posterior) at each iteration

and converges to a local maximum [DLR77]. In this appendix we devise an EM algorithm for the

approximation of the MAP estimator (2.79) based on the posterior (2.60) (cf. Chapter 2). Given an

initial guess λ(0), this EM algorithm iterates over two steps that are detailed below.

Expectation. The expectation step (E-step) consists in computing the expectation of the log-

augmented posterior log p(λ,µ|y) with respect to the conditional distribution of the latent variable

µ given the current estimate λ(p), which reads here

Q(λ;λ(p)) = Ep(µ|y,λ(p))[log p(λ,µ|y)]

= Ep(µ|y,λ(p))[log p(y,µ|λ)] + log p(λ). (E.1)

As in detailed in the TSG algorithm, the conditional distribution p(µ|y,λ(p)) can be shown to be

separable as

p(µ|y,λ(p)) ∝ p(µ
�0
|y,λ(p))× p(µ0|y,λ(p)) (E.2)

with p(µ
�0
|y,λ(p)) and p(µ0|y,λ(p)) respectively given by

p(µ
�0
|y,λ(p)) = p(t)(µ

�0
) ∼ CN

(
x̃v(p) , Σ̃v(p)

)
(E.3)

and

p(µ0|y,λ(p)) = p(t)(µ0) ∼ N
(
x̃0,v(p),w(p) , Σ̃0,v(p)

)
(E.4)
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where the mean vector and the covariance matrix of the Gaussian distributions above are defined

in (2.69), (2.73), (2.70) and (2.74). Moreover, since the distribution p(y,µ|λ) is from an exponential

family, the expectation in (E.1) is straightforward to evaluate and boils down to computing the

sufficient statistics of the latent variables µ
�0

and µ0 as follows

− Ep(µ|y,λ(p))[log p(y,µ|λ)] = N
�0

log v1 +
N0

2
log v1 +N

�0
log v2 +

N0

2
log v2

+
1

v1
Ep(t)(µ

�0
)[(y�0

− µ
�0
)HF̃−1

1 (y
�0
− µ

�0
)] +

1

v2
Ep(t)(µ

�0
)[µ

H

�0
F̃−1

2 µ
�0
]

+
1

2v1
Ep(t)(µ0)[(y0 − µ0)T F̃−1

0,1(y0 − µ0)] +
1

2v2
Ep(t)(µ0)[(µ0 −Xw)T F̃−1

0,2(µ0 −Xw)]. (E.5)

It comes that, up to an additive constant, −Q(v;v(p)) can be developed into

−Q(λ;λ(p)) =
(
N
�0

+
N0

2
+ α1

)
log v1 +

(
N
�0

+
N0

2
+ α2

)
log v2 +

1

2
(w0 −w)TΣ−1(w0 −w)

+
Tr(F̃−1

1 Σ̃v(p)) + ||y
�0
− x̃0,v(p) ||F̃−1

1

v1
+

Tr(F̃−1
0,1Σ̃0,v(p)) + ||y0 − x̃0,v(p) ||F̃−1

0,1

2v1

+
Tr(F̃−1

2 Σ̃v(p)) + ||x̃v(p) ||F̃−1
2

v2
+

Tr(F̃−1
0,2Σ̃0,v(p)) + ||Xw − x̃0,v(p) ||F̃−1

0,2

2v2
(E.6)

where Tr(·) is the trace operator.

Maximization. The maximization step (M-step) requires to update the parameter estimate by

maximizing the function Q(λ;λ(p)), i.e.,

λ(p+1) = argmax
λ

Q(λ;λ(p)). (E.7)

The estimate λ(p+1) is found by canceling the gradient of the function Q, which yields the following

set of equations

w(p+1) = (
XT F̃−1

0,2X

v
(p+1)
2

+ Σ−1)−1
(
Σ−1w0 +

XT F̃−1
0,2x̃0,v(p)

v
(p+1)
2

)
(E.8)

v
(p+1)
1 =

2
(

Tr(F̃−1
1 Σ̃v(p)) + ||y

�0
− x̃v(p) ||F̃−1

1
+ β1

)
+ Tr(F̃−1

0,1Σ̃0,v(p)) + ||y0 − x̃0,v(p) ||F̃−1
0,1

2(N
�0

+ α1 + 1) +N0
(E.9)

v
(p+1)
2 =

2
(

Tr(F̃−1
2 Σ̃v(p)) + ||x̃v(p) ||F̃−1

2
+ β2

)
+ Tr(F̃−1

0,2Σ̃0,v(p)) + ||Xw(p+1) − x̃0,v(p) ||F̃−1
0,2

2(N
�0

+ α2 + 1) +N0
. (E.10)



169

The expressions for w(p+1) and v
(p+1)
2 are coupled and intricate, and solving these equations is not

straightforward1. However, when a non informative Gaussian prior N
(
w0,Σ

)
with w0 = [0, 0]T ,

Σ = diag(σ2, σ2) and σ2 � 1 is assigned to w (as it is the case in the numerical experiment in

Section 2.6), one can reasonably ignore the contribution of the prior in (E.8) and update w(p+1) with

w(p+1) ≈ (XT F̃−1
0,2X)−1XT F̃−1

0,2x̃0,v(p) . (E.11)

Computational cost reduction. Preliminary experiments have shown that the proposed EM

algorithm (using the approximation (E.11)) succeeded in providing MAP estimates numerically very

close to those obtained with MCMC algorithms studied in Chapter 2. Moreover, it has been observed

that it yielded a computational cost close to the one of the linear regression based procedure, cf.

Fig. E.1.

6 7 8 9 10 11

-6

-4

-2

0

2

log2N

log2T (sec)

LF

MwG

TSG

EM

Figure E.1: Computational time T (in seconds) versus image size N with j1 = {1, 1, 2, 2, 2} and

j2 = log2N − 4 for all methods (EM included).

1When injecting (E.8) in (E.10), it can actually be shown that finding v
(p+1)
2 amounts to finding the roots of a fifth

degree polynom
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