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Abstract

This thesis leads to a better knowledge of the physic and of the control of acoustic ra-
diation in turbulent single and dual-stream jets. It is known that jet noise is produced
by the turbulence present in the jet that can be separated in large coherent structures
and fine structures. It is also concluded that these large-scale coherent structures are
the instability waves of the jet and can be modelled as the flow field generated by the
evolution of instability waves in a given turbulent jet. The growth rate and the stream-
wise wavenumber of a disturbance with a fixed frequency and azimuthal wavenumber are
obtained by solving the non-local approach called Parabolized Stability Equations (PSE).
Typically the Kelvin-Helmholtz instability owes its origin into the shear layer of the flow
and, moreover, the inflection points of the mean velocity profile has a crucial importance
in the instability of such a flow. The problem is more complex in case of imperfectly
expanded jet where shock-cells manifest inside the jet and strongly interaction with the
instability waves has been observed. Several configurations are tested in this thesis, from
a subsonic incompressible case to the dual-stream underexpanded supersonic jet obtained
by solving Large Eddy Simulations LES (CERFACS). The acoustic far-field is determined
by the Ffowcs-Williams-Hawkings acoustic analogy. Then a sensitivity analysis of the jet
with respect to external forcing acting in a localized region of the flow are investigated by
solving the adjoint PSE equations. High sensitivity appeared in the shear-layer of the flow
showing, also, a high dependency in the streamwise and radial direction. In the case of
dual-stream jet the propagation of the instability in the inner and outer shear layer should
be taken into account. This configuration leads to two different distinct Klevin-Helmholtz
modes that are computed separately. The highest sensitivity is determined in the exit
of the nozzle outside of the potential core of the jet. In addition, comparison between
sensitivity computed by adjoint equations and Uncertainty Quantification (UQ) methods
has been done, in the case of a single-stream jet, showing a link between these two meth-
ods for small variations of the input parameters. This result leads to the application of a
lower cost tool for mathematical analysis of complex problem of industrial interest. This
work and in particular the sensitivity theory investigated in this thesis contribute to a
development of a new noise control strategy for aircraft jet.
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Résumé

La thèse est relative à la compréhension de la physique et au contrle des émissions acous-
tiques dans les jets tubulents simples et double-flux. La génération du bruit est associé à
des structures turbulentes de grandes tailles caractéristiques et à la turbulence de petites
échelles. i Il est maintenant admis que les structures de grandes échelles sont des insta-
bilités se propageant dans un champ moyen turbulent. Ici elle sont analysées sur la base
de la théorie linéaire non locale appelées PSE pour Parabolized Stability Equations. Ces
instabilités inflexionnelles associées à la présence de couche de cisaillement sont des modes
de Kelvin-Helmhotz. Dans le cas du jet sous détentu des cellules de choc apparaissent et
influencent très fortement les taux damplification et fréquences des modes propres. Divers
écoulements sont investigués, de faible nombre de Mach au jet double-flux supersonique
dont le champ moyen provient de simulation LES (Cerfacs). Le champ acoustique lointain
est déterminé par lanalogie de Ffowcs-Williams-Hawkings. Ensuite une étude de sensi-
bilité originales des instabilités et du bruits par rapport à divers forage locaux est produite
sur la base des équations de stabilité PSE adjointes. Les fortes sensibilités apparaissent
dans les couches de cisaillements et aussi dans une moindre mesure autour des cellules de
chocs. Les sensibilités sont plus complexes pour le jet double flux et dépendent du mode
instable étudié lié soit au jet primaire soit au jet secondaire. Les sensibilités maximales
se trouvent au voisinage de la sortie de la tuyère et à la limite ou à l’extérieur du cne
potentiel. En complément une étude sur le jet simple flux permet de mettre en rapport
les approches de quantification dincertitude et la sensibilité calculée par des équations ad-
jointes. Les résultats de sensibilité vont permettre de contribuer à proposer des stratégies
de contrle aéroacoustique dans les jets de turboréacteurs.
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Introduction

Recent rise in aviation transport and environmental concern has caused a growing inter-
est in environmentally friendly aircrafts. Pollutant emissions have raised over the past
years. The concentration of carbon dioxide (CO2) in the atmosphere has increased by
more than 30% after the industrial revolution. Greenhouse gases contribute to climate
change and global warming, in addition to other environmental impacts, such as sulphuric
acid formation in the atmosphere, and health problems like respiratory diseases. From
an aerodynamic point of view, gas emissions from aircrafts can be related to the gas
consumption caused by the drag. Furthermore, there is another issue which concerns
aircrafts and causes environmental and health problems: the noise. Continuous exposure
to high levels of noise, for example in the vicinity of an airport, may induce temporal
or permanent health problems. Some of them are increase in stress, blood pressure and
heart rate. Cardiovascular effects are associated with long-term exposure to values in the
range of 65 to 70 dB or more, for both air- and road-traffic noise. A mechanical damage
of the ear can occur with very high instantaneous Sound Pressure Levels (around 140dB
for adults and 120dB for children). Aircraft noise has three main sources, namely me-
chanical, aerodynamic and from aircraft systems. Mechanical noise is mainly produced
by the engines. The aerodynamic noise is created by the unsteady flow around airframes.
Aircraft systems contribute to the interior cabin noise. During landing, aerodynamic
noise is as important as mechanical noise, thus the interest to reduce it. Nowadays the
understanding of these problems are motivating the research on environmentally friendly
aircrafts, that is to say aircrafts which are more affordable, safer, cleaner and quieter.

AeroTraNet 2 project

This PhD thesis is part of an European Project named AEROnautical TRAining NET-
work 2. he AeroTraNet project concerns the investigation of modelling shock cell noise
in a wide-body aircraft engine configuration from private sector partner Airbus France,
by shock-tolerant numerical modelling for under-expanded jets (ULEIC), large eddy sim-
ulations for turbulent jets with weak shocks (Cerfacs), advanced flow-noise correlations
(UNIROMA TRE), jet and near-field noise experiments (VKI), reduced-order modelling
and flow control (IMFT-INP), and advanced laser-based measurement techniques (IN-
SEAN).
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Introduction

Overview of the thesis

The objective of this thesis is to propose a mathematical model to analyse sensitivity
in jets. Several cases are investigated in this work. The analysis is permormed from
an incompressible semi-empirical case to the interaction between shock cell and Kelvin-
Helmholtz instabilities for an under-expanded dual stream jet case. In order to model
the flow instability the Parabolized Stability Equations (PSE) are solved. This approach
takes into account of the streamwise variation of the base flow and in presence of shock-cell
the interaction between instabilities and shock-cells.

A sensitivity analysis is performed to determine the most sensitive region of the flow
to external forcing. The adjoint code developed at IMFT is used to solve the sensitivity
functions. The code shows a good flexibility to analyze different cases with increasing
complexity. In particular, four cases are taken in exam:

1. Incompressible single stream jet (calculated by semi-empirical law).

2. Supersonic perfectly expanded single stream jet (calculated by semi-empirical law).

3. Supersonic under-expanded single stream jet (calculated by Large Eddy Simulation).

4. Supersonic under-expanded dual stream jet (calculated by Large Eddy Simulation).

Necessarily, a ”complex” numerical chain to connect PSE and adjoint PSE solver has
been developed and implemented with blocks written in FORTRAN 90 and MATLAB.
The different blocks exchange data between each others through shell BASH scripts.

A general overview of the bibliography in jet noise is given in chapter I. Theoretical,
numerical and experimental approaches are discussed highlighting the previous works that
provide the base of this thesis.

Chapter II describes the numerical method used to implement the direct simulation
algorithm (PSE solver). The PSE solver has been developed by the ONERA’s team[63].
First, the code is validated by comparing with known results, then the direct algorithm
is used to investigate the interaction between shock-cell and instabilities.

In chapter III the mathematical formulation of the adjoint methods is given, as well
as its numerical implementation. The validation of the adjoint algorithm is described
for different cases. Finally, the sensitivity analysis of dual stream under-expanded jet is
performed and some physical conclusions are drawn.

Chapter IV investigates the relationship between adjoint-based sensitivity and Uncer-
tainty Quantification analyses. The theory is developed, firstly, for a toy model and then
applied to the PSE approach.

The last Chapter associates the PSE solution to an acoustic simulation, based on
Ffowcs Williams and Hawkings theory (FW-H) and analyzes wave propagation in the
near and far field for a simple test case.

Three appendix describing details about PSE, adjoint PSE and advanced Ffowcs
Williams and Hawkings theory are also written.
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Chapter 1

Introduction aeroacoustics and
sensitivity

Aviation has fundamentally transformed society over the past 40 years. The economic
and social benefits throughout the world have been immense in ’shrinking the planet’
with the efficient and fast transportation of people and goods. The growth of air traffic
over the past 20 years has been spectacular, and will continue in the future. As expected,
the important progresses in aviation directly exposed to the higher noise levels associated
with aircraft operations. Initial attempts to reduce the community noise exposure have
included changes in takeoff and approach procedures, development of acoustically treated
inlets and mounting jet noise suppressor on the exhaust nozzle. The Federal noise aviation
regulations have established noise limits for new airplanes that are significantly lower than
previous jet operation levels. More over, the Advisory Council for Aviation Research
and Innovation in Europe has estimated then 65% of aircraft noise has to be reduced
before 2050. This continuous restrictions on aircraft noise have resulted in considerable
acoustics related research and development activities. These activities are focused many
investigator toward the identification of the noise generation mechanism of aircraft engines
and then to the reduction of the noise at its source trough design innovations, suppression
devices or passive/active external controls. In order to obtain a global noise reduction in
aircraft noise it is absolutely necessary to study and analyzed the noise produced by jets,
since they are one of the most important source of noise component in a modern aircraft.
The following of this chapter is based to a collection of different articles and books, to give
to the reader a general overview of the mechanism of jet noise and sensitivity analysis.

1.1 Jet noise

Research into the jet noise generation and radiation process culminated in the birth of a
new field, Aeroacoustics, with Sir James Lighthill, Lighthill (1952) [66], widely consider
as the mentor of this branch. In the years many progress have been done in term of
reduction of noise, the most common way to reduce jet noise in aircraft is to increase
the bypass ratio of turbofan engines and very good results have been obtained using
this procedure. This bypass ratio has steadily increased over the past 30 years. On the
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Chapter 1 : Introduction aeroacoustics and sensitivity

most recent large engines the bypass ratio exceeds 10:1. However, this trend can not
be continued indefinitely due to practical limitations, such as the size and weight of the
engine nacelle and this poses new challenges for noise reduction. Other approaches to
noise reduction have been pursued like introducing acoustically absorbent material on the
interior surfaces, or like using the passive or active manipulation of the boundary layer
near the nozzle lip e.g. serrated nozzles or tabs technologies. As explained in Colonius and
Lele (2004) [26] the complexity of the nozzle design in modern aircraft engine required a
strong sophistication of the theoretical and computational approaches in order to correctly
predict noise and to propose new noise controls strategies. Furthermore, the flows that
generate the undesired noise are usually nonlinear, unsteady and turbulent. Typically
the unsteady flow region contains significant vortex that are eddying motions which also
have associated near field pressure disturbances. To conclude, the radiated noise is far
smaller than these near field pressure fluctuations. Due to all these considerations and the
limitation in terms of power computation of Direct Numerical Simulations of realistic jets a
strong theoretical background of this phenomena can be found in literature. The first issue
for these researchers was the identification of the source mechanisms that are responsible
to noise generation. Since 1960, with the work of Mollö-Christensen and Narashima
[83] large scale structures are identified as one of the most important mechanism in the
production of noise.

One of the first evidence of instability as source of jet noise can be found in the work
of Tam (1971) [121] where a theory based on the concept of instability of the shear layer
is developed. his theory prediction shows as the directional sound waves radiated from
the shear layer of a supersonic jet are the direct result of instability of the shear layer. In
figure 1.1 can be observed the strong directional waves emitted from the shear layer close
to the exit of the nozzle [70]. This results are in according to those found in our work
when computing sensitivity analysis as explained in chapter 3.

In parallel Crow and Champagne (1971)[27] report the observation of large scale co-
herent structures in turbulent jet and free shear layers. Since those works, there has been
an abundance of papers in the literature devoted to the measurement [79, 78, 57, 43], and
to the numerical simulations[121, 122, 133, 134, 98, 102] focused on large scale structures
of the turbulence as a dominant noise generation mechanism for jet flows.

Figure 1.2 is a pulsed laser picture where are clearly observed the large turbulence
structures in the mixing layer of a supersonic jet with Mach 1.3, Thurow et al. (2003)
[126]. This picture is typical of most optical observations of large turbulence structures
in a turbulent jet flow and put in evidence the complexity of such a flow. It is shown the
evolution of the shear layer along the axial direction.

The turbulence present in the jet, figure 1.2, can be separated in large structures and
fine structures. It is now generally accepted that jet noise is created by both fine and
large scale turbulence structures. A consistent part of subsonic jet noise is produced
by fine scale turbulence, whereas large turbulence structures are dominant noise sources
of supersonic and high temperature jets. Figure 1.3 illustrate pressure measurements
taken along an arc in the farfield of a jet with an upstream Mach number M∞ = 1.5.
These measurements have been Fourier transformed in time t and azimuthal angle θ; the
figure 1.3 shows axisymmetric fluctuations (azimuthal wavenumber m = 0) of frequency

4



1.1 Jet noise

Figure 1.1: Shadowgraphs of a cold supersonic helium jet. Strong directional waves are
emitted from the shear layer close to the exit of the nozzle.

St = 0.25. The Sound Pressure Levels (SPL) are function of the directivity φ, the
radiation peaks is reached at low values of the angles φ where it is highly directive and as
explained above the instability is radiating noise. At higher angles the curve flattens out,
a testament to the isotropic nature of radiation in the fine scale of the turbulence. Note
that the peak fluctuations in this particular case are almost 25dB or 270 times greater in
power than those near the sidelines. This directivity is further exaggerated at still higher
Mach numbers and diminished at lower values of it.

Moreover, for supersonic jets, just one operative condition exists for which the jet is
perfectly expanded and the fluid inside the nozzle reaches the external pressure at the
nozzle exit section. In all the other conditions, the jet is incorrectly expanded, figure
1.4(a) and 1.4(b). Tam (1995)[119] gave an exhaustive description of the phenomenon,
that in the case of incorrectly expanded jet is characterized by three main components:
the turbulent mixing noise, the broadband shock associated noise and the screech tones.
In figure 1.5 a typical jet noise spectrum is reported, from which the three contributions
are clearly visible. The highest peak is the screech tone, while the weaker noise peak
to the left and right of the screech tone are respectively the turbulent mixing noise and
the broadband shock associated noise. These three components are generated by different
mechanisms and have different relative intensity according to the direction of observation.

The turbulent mixing noise component is generated by both the fine and large scales of
turbulence in the flow. It is mainly directed downstream at an angle between 45◦ and 60◦
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Chapter 1 : Introduction aeroacoustics and sensitivity

p′

Figure 1.2: Pulsed laser picture of the large turbulence structures in the mixing layer of
a Mach 1.3 jet (Thurow et al. 2003). Copyright 2003, American Institute of Physics.

from the jet axis. The upstream weaker contribution is given by the fine scale turbulence,
while the dominant component in the downstream direction is emitted by the larger scale,
Tam (1995)[119].

The broadband shock associated noise component is predominant in the upstream
direction. The peak Strouhal number depends on the radiation direction and several
weaker peaks are usually observed, Tam (1995)[119], to the right of the screech tone.

The third component is an intense tonal noise contribution, first observed by Powell
[99] in 1953. The main emission is in the upstream direction and usually several har-
monics of the screech tone are observed with different directivity patterns. An important
characteristic of a jet flow undergoing screech noise emission is the oscillation of the jet,
which can be both axial symmetric with toroidal modes and helical with flapping modes
[119].

Figure 1.4(a) shows a schematic representation of an over expanded jet with the flow
at the nozzle exit experiencing a pressure lower than the ambient value. The velocity
difference between the airflow at the nozzle exit plane and the surrounding quiescent air
creates a streamwise growing shear layer forming at the nozzle lip. The over expanded air
flow from the nozzle exit plane re-compresses due to the higher ambient pressure through
a shock cone. The oblique shocks from the nozzle lip first converge on the nozzle axis,
where they re-compress the flow, then reflect as expansion waves at the shear layer, re-
expanding the jet. This process repeats as a sequence of compressions and expansions.
The inflected velocity profile of the shear layer is receptive to disturbances that amplify,
developing into large scale instabilities. The resulting shear layer motion makes the shock
cell structure inside it unsteady. Shock shear layer interaction results in screech noise
being emitted in the surroundings.

Figure 1.4(b) shows the other case of incorrectly expanded jets. This time the un-
der expanded flow from the nozzle exit plane first expands through a fan of expansion
waves generated by the surrounding lower ambient pressure, then undergoes a compres-
sion through the shock cone created by the refraction of the expansion waves onto the
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1.1 Jet noise

Figure 1.3: Acoustic power measurements of a heated M∞ = 1.5 jet. Azimuthal mode
m = 0 and frequency St = 0.25. Data obtained from measurements of Suzuki and
Colonius (2006)[117].

shear layer. Afterwards the process is similar to the one described for over expanded jets,
with the flow experiencing a sequence of compressions and expansions.

Summarizing, the problem becomes more complex in case of imperfectly expanded
supersonic jet where the noise associated with the presence of shocks has to be taken into
account. In this configuration the jet is characterized by a train of shock waves. In the
presence of the shock cells, the jets emits two additional components of noise. They are
referred to as screech tones and broadband shock associated noise.

Indeed, for those jets sound is generated not only by the interactions between instabil-
ities and the coherent structures in the shear turbulent flows, but also by the weakly non
linear interaction between instabilities and shock cell structure, producing shock associ-
ated noise Panda et al. (1998)[92]. In the work of Ray and Lele (2007) [103], source terms
representing the instability wave/shock cell interaction are assembled and the radiating
components have been isolated, providing very good approximation to the full problem.
Inspired to this previous work a non local stability approach, presented in chapter 2, is
implemented to study these interactions.
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(a) Over-Expanded (b) Under-Expanded

Figure 1.4: Noise radiation in a turbulent jet flow.

Figure 1.5: Typical far field jet noise spectrum, Tam (1995)[118].
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1.2 Acoustic analogy

1.2 Acoustic analogy

In principle, all the noise properties are included in the flow equations. However, aeroa-
coustic simulations are often a complex and delicate process to be undertaken, given the
number of factors and difficulties to be considered. A comprehensive overview of the nu-
merical requirements for a successful aeroacoustic simulation is given by Tam (1995)[118].
The most important difference between standard aerodynamics problems and aeroacous-
tic applications lays in the time dependent nature of the noise generation phenomenon,
which requires time dependent simulations as well as the storing of a time history of the
flow predictions.

The large spectral bandwidth of the disturbances is an important difference between
an aerodynamic and an aeroacoustic simulation, which dictates the spatial resolution re-
quirements of the jet. In particular the shortest wavelength (highest frequency) of the
sound waves determines this constraint. Besides this, the amplitude of the velocity fluctu-
ations associated with the sound radiation represents another issue. This is usually several
orders of magnitude smaller than the amplitude of the turbulent velocity fluctuations from
the mean flow, which makes the disturbances far harder to be detected.

The domain size and accuracy requirements are also more stringent compared to aero-
dynamics and this increases further the computational cost of an aeroacoustic simulation.
The sound waves propagate to a long distance compared to aerodynamic disturbances and
the computed solution needs to be accurate throughout the entire domain. The dispersive
and dissipative characteristics are then critical.

The presence of non linearities in the flow, such as shocks, complicates the scenario
further. Tailored boundary conditions are finally needed to prevent the generation of
reflection and refraction phenomena at the boundary of the computational domain, which
could contaminate the noise estimation with spurious components.

Despite all these reasons, with the increase of computational capacities in the last
decades, it became possible to perform unsteady flow simulations (DNS, LES or even
unsteady RANS) to reproduce and investigate noise generation. The simulation domain
must be sufficiently large to include all the sound sources of interest and at least part of the
acoustic near field. Extension to the acoustic far field can then be achieved only by low cost
computational methods, such as the linearised Euler equations or wave equation (acoustic
analogy). For engineering purposes, the acoustic analogy methods, essentially, consists of
separating the acoustic predictions into a source-definition part and a propagation part.

1.2.1 General overview

The mathematician Lighthill can be considered the pioneer of the aeroacoustic science,
the branch of aerodynamics dealing with the generation of noise by fluid in motion. From
his seminal work, Lighthill (1952)[66], many acoustic analogy formulations have been
developed. Lighthill’s approach is referred to as acoustic analogy, because he established
a parallel between sound propagation in a real turbulent flow and an ideal uniform medium
at rest. In the latter case, acoustics provides a law which can be simply applied to estimate
the radiated sound in real cases. On the other hand, the propagation in a turbulent flow is
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Chapter 1 : Introduction aeroacoustics and sensitivity

a complex phenomenon, which was first addressed by Lighthill. Just a part of the energy
content of the flow actually propagates as sound undergoing the conversion between kinetic
and acoustic energy and such energy is radiated through pressure waves. For modest speed
Lighthill [66] estimated through dimensional analysis the intensity of the radiated sound
being proportional to the 8th power of a typical velocity in the flow. The sound produced
by a turbulent flow interacts with the complex flow structures of different scales and
frequencies, giving rise to sound convection and propagation with a variable speed[66], as
well as refraction and reflection phenomena. Taking into account all these complexities is
not trivial and Lighthill developed a simple concept to tackle them. By rearranging the
Navier-Stokes equations he obtained a convenient formulation in the form of a linear wave
equation for a uniform medium at rest. Adopting this approach, sound can be considered
as if generated in a uniform medium at rest and the noise estimation is reduced to the
evaluation of a quadrupole type source term, which appears on the right-hand side of the
rearranged equation:

Tij = ρuiuj + Pij − c20ρδij, Pij = pδij + τij (1.1)

Lighthill assumed that this term, representing applied fluctuating stresses acting upon
a uniform medium at rest, is known or can be modelled from the flow field prediction.
In Figure 1.6, a turbulent jet flow is compared with the uniform medium at rest in the
acoustic analogy approach. The schematic representation of the under expanded jet in
figure 1.6(b) shows both the aerodynamic feature of the flow and the noise radiation with
downstream and upstream components. In Figure 1.6(a) the same phenomenon of noise
radiation is modelled with a volume distribution of quadrupole source terms in the jet
shear layer, which reproduces the same acoustic effect of the real flow.

(a) Noise radiation in a real turbulent jet flow (b) Noise radiation model in an acoustic analogy ap-
proach

Figure 1.6: Schematic representation of the acoustic analogy approach.

In this acoustic analogy flow the noise propagates in a uniform medium at rest fol-
lowing the linear wave equation of acoustics. All the effects of the turbulence of the

10



1.2 Acoustic analogy

flow are included in the volume distribution, which takes also into account the non linear
characteristics of the flow. Lighthill (1954)[67] addressed directly the turbulence as a
source of sound by applying his theory to a subsonic cold jet obtaining results in good
agreement with previous experiments. He analysed just low speed effects without devel-
oping an extended theory for the effect of source convection. Ffowcs Williams (1963)[34]
extended these concepts to account for high speed steady convection of sources. Lowson
(1965)[69] investigated the effect of arbitrary convection of multiple noise sources, proving
that moving boundaries can be modelled with a surface distribution of dipole sources.

Ffowcs Williams and Hawkings(1965)[35], FW-H, tried to develop a general expression
for sources in arbitrary motion convected in a turbulent flow. A considerable complexity
neglected by Lighthill is indeed represented by the possible presence of solid boundaries,
which definitely occurs in a jet noise test case when we try to model the nozzle lip. Curle
(1955)[28] split the influence of rigid bodies to noise radiation into two parts. Firstly, a
solid boundary in a turbulent flow produces reflection and diffraction phenomena of the
sound generated by the flow itself and modelled by Lighthill with a volume distribution of
quadrupole source terms. Secondly, a vibrating surface interacts with the flow by directly
applying an external forcing to it. Curle (1995)[28] modelled these two effects with a
surface distribution of dipole like sources on the boundaries, which represents the limit
of the volume source distribution of quadrupole terms. He developed a formulation to
include these effects, by adding to the integral solution proposed by Lighthill a second
term in which a surface integration is carried out. This term accounts for the fluctuating
forces applied by the vibrating surface upon the flow. In order to include the reflection
and diffraction phenomena, he also proposed a modified volume integral term, modelling
the effect of the impact on the solid surface of sound waves from the quadrupole distri-
bution. The assumption that Lighthill’s stress tensor expressed in equation 1.1 is known
from the flow field prediction is true in many simple cases and Lighthill’s theory can be
used to estimate the radiated sound. Nevertheless, in many applications this estimation
is not trivial bringing doubts on Lighthill’s analogy feasibility. Several researchers tried
to undertake a different approach in order to get more accurate predictions of the radi-
ated noise for flows of interest in aerodynamic engineering applications. An important
development was to derive an inhomogeneous moving media wave equation for the sound
generation process, instead of considering a uniform medium at rest. With this approach,
results were obtained by Phillips (1960)[96] and Lilley (1974)[68]. The complexity of the
formulation increases in this development, but the analytical cost is compensated by not
requiring the estimation of the Lighthill source field term (eq. 1.1) to be estimates, as it
was in his first acoustic analogy theory. Keeping in mind that in many real cases this esti-
mation is hard or not feasible, the results of using an inhomogeneous moving media wave
equation tended to be more accurate. Following the approach stated by Lilley (1974)[68]
and developing it, Goldstein (2002)[41] tried to find a more general formulation, pursuing
a more sensitive method, able to relate even small modifications in the flow to their effect
in the sound generation and propagation. One year later, Goldstein (2003)[40] formu-
lated a generalized acoustic analogy theory, which takes into account the importance of
the fluctuating component of the velocity field in the mechanism of noise radiation. The
result is a general set of Linearised Inhomogeneous Euler equations (LIE).
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1.2.2 Computational Aeroacoustics (CAA) simulation

The origin of Computational Aeroacoustics (CAA) can be dated back to the middle of
the 1980s, with a publication of Hardin and Lamkin (1984)[46]. Few years later the same
authors introduced the abbreviation CAA. The term was initially used for a low Mach
number approach (Expansion of the acoustic perturbation field about an incompressible
flow). Later in the beginning 1990s the growing CAA community picked up the term
and extensively used it for any kind of numerical method describing the noise radiation
from an aeroacoustic source or the propagation of sound waves in an inhomogeneous flow
field. Mankbadi et al. (1994)[75] discussed the application of direct CAA simulation
to supersonic jet aeroacoustics compared to a Lighthill’s analogy approach. He found
the direct CAA simulation more computational expensive in order to get the sound field
predictions. He also pointed out the difficulties of the Lighthill acoustic analogy in dealing
with acoustically non compact sources. Di Francescantonio[36] and Lyrintzis[73] also
argued the direct CAA computation not to be an appropriate method for the standard
distance between source region and observer positions in most of the real applications.
However, when the geometry of the problem does not allow the direct estimation of
the pressure fluctuations on the observer positions, an integral method is required to
project the solution onto the acoustic far field. Furthermore, the separation between the
aerodynamics and aeroacoustics simulation usually offers the possibility of a better insight
of the problem and the use of different physical models describing the flow in regions where
the flow does follow different laws.

1.2.3 The FW-H acoustic analogy

Ffowcs Williams and Hawkings (1965)[35] developed an acoustic analogy formulation
modelling the noise radiation with three kinds of different sound sources, i.e., monopoles,
dipoles and quadrupoles, in order to take into account the different aspects of a sig-
nificantly heterogeneous phenomenon. The FW-H equation and integral solutions are
reported in Chapter 4. Ffowcs Williams and Hawkings [35] obtained a generalized in-
homogeneous wave equation (eq.1.2) by introducing the use of the generalized function
theory, which represented an important turning point in the acoustic analogy historical
development.

�
2
{

(ρ− ρ0)c
2
0H(g)

}

=
∂2 {TijH(g)}

∂xi∂xj

−
∂ {Liδ(g)}

∂xi

+
∂ {Qδ(g)}

∂t
, (1.2)

where H(g) is the Heaviside function, in the first source term on the right-hand side
Tij is the Lighthill stress tensor and δ is the Dirac delta function.

All details are given in chapter 4. The FW-H equation introduced the new concept of
an unbounded fluid, which is defined everywhere in space. The unbounded fluid follows
the real motion (modelled by the Navier-Stokes equations) on and outside a fictitious
surface that can be taken as coincident with a solid boundary. Inside the surface the
conservation laws are assumed not to apply and the flow state can be defined arbitrarily,
so generating a discontinuity at the surface itself. In order to maintain this discontinuity
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1.2 Acoustic analogy

mass and momentum sources are distributed on the integration surface and they act as
sound generators. The strength of this mass and momentum source distribution is given
by the difference between the flux requirements in the two regions in which the FW-H
surface splits the flow. This acoustic analogy, that is a generalization of Lighthill’s one,
gave birth to a more applicable and reproducible model, which still appears in many recent
formulations. The generalized function theory has been widely used in the aeroacoustic
field after Ffowcs Williams and Hawkings and it is developed with a rigorous mathematical
approach by Farassat (1994)[31]. Farassat (1975)[30] applied the FW-H acoustic analogy
to helicopter rotors showing the power of the theory in predicting aerodynamic sound
in the presence of moving surfaces in an unsteady turbulent flow even for non compact
source problems. The embedding procedure, which converts the standard fluid dynamic
problem to an unbounded fluid case through the use of the generalised function theory, is
detailed.

In computational simulations, the FW-H acoustic analogy’s main disadvantage is the
need to perform a volume integration that is far more expensive than a two dimensional
numerical integration. However, the quadrupole source term is usually some order of
magnitude smaller than the surface source distribution and in many applications it is
neglected, as in Di Francescantonio (1997) [36]. In the case this assumption is not valid,
an increase in the computational cost inevitably occurs. Thanks to the increasing compu-
tational power, numerical applications including a volume integration have recently been
developed by Brentner (1997)[17].

1.2.4 The porous FW-H formulation

Di Francescantonio (1997) [36] proposed the use of a FW-H acoustic analogy with a
permeable surface, trying to combine the advantages of Kirchhoff’s method and the FW-H
acoustic analogy. He therefore referred to the new equation as Kirchhoff FW-H (KFWH),
pointing out that the main advantage was that no derivatives of CFD quantities were
required as in the standard Kirchhoff’s formula. The KFWH equation was used by Di
Francescantonio[36] neglecting the volume source distribution. By considering a surface
placed in a linear region, the Kirchhoff method speed up is recovered. However, the
general form of the KFWH equation included a volume integration to take into account
possible non negligible quadrupole sources outside the permeable surface.

1.2.5 Advanced time vs retarded time

A retarded time equation of the type of equation 1.3 is usually solved for the estimation
of the retarded time.

τret = t−
|x− y(τret)|

c0
(1.3)

Equation 1.3 expresses that a disturbance emitted from the source position y at time τret
will reach the observer x at time t, due to the time of flight of the noise propagating at

13



Chapter 1 : Introduction aeroacoustics and sensitivity

the speed of sound c0. Two different approaches can be adopted to take into account this
propagation of the disturbances. In the retarded time approach the simulation runs in the
observer time, meaning that the simulation time axis is representative of the reception
phenomenon. In this case an implicit retarded time equation needs to be solved. Different
disturbances reaching the observer at the same time can be emitted at different retarded
times. A different approach was proposed by Casalino (2003)[19]. In this case the simu-
lation runs in the emission time and, for each different disturbance, an advanced time is
calculated for a specific observer. This represents the time of flight for the disturbance to
travel from the emission to the reception point. Casalino used the definition of advanced
time analysing the differences between the two approaches. He pointed out the advantages
of the advanced time formulation in the possibility to run the aeroacoustic prediction si-
multaneously with the CFD simulation. Furthermore he showed that the advanced time
can be explicitly estimated by an algebraic equation with no iterative method required.

1.2.6 A convective FW-H acoustic analogy

Most of the FW-H acoustic analogy formulations assume the propagation of sound waves
in a medium at rest as in Lighthill’s original assumption. A usual way to take into
account a moving medium relative to a fixed observer is to circumnavigate the problem,
considering a case in which the observer moves in a medium at rest[32]. In 2011 Najafi-
Yazdi et al. [90] developed an interesting convective formulation of the FW-H acoustic
analogy explicitly taking into account the presence of a mean flow. In such a formulation
the standard wave operator is modified to obtain a convective wave operator. A uniform
convective velocity is considered directly in the equations originating additional terms
compared to the standard FW-H equation. A convective Green’s function suggested by
Blokhintsev is also adopted to take into account the mean flow, rather than the free space
Green’s function for a medium at rest (1994)[31]. A Lagrangian derivative appears in
the thickness noise, which is slightly different from the FW-H integral solution. A clear
Doppler effect caused by the mean flow is showed in the results from elementary source
applications.

1.2.7 Alternative aeroacoustic techniques

a- The Kirchhoff formulation

The Kirchhoff formula was first published in 1883[60]. Later on, Lyrintzis (1994)[72]
published a review of the application of this theory in the aeroacoustics field, referring
to the methodology as a surface integral method[73]. The basic concept of the method
is the use of a control surface on which pressure and its normal and time derivatives
are estimated by numerical method. The acoustic pressure in the far field can then be
obtained from an integration on this control surface of the above mentioned quantities.
The control surface is required to enclose all the non linearities of the flow and the noise
sources. The position of the control surface is critical, because the noise propagation
on the surroundings is assumed to follow the linear wave equation. Consequently, the
surface needs to be placed in a region of the flow where the linear wave equation is valid
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and this method does not allow the presence of non linearities on and outside the control
surface. On the other hand, the volume integration carried out in the acoustic analogy
method to take into account non linearities gathered in the quadrupole source term is
not necessary. This translates to an improvement of the computational speed. The first
formulation, Kirchhoff (1983)[60], was limited to stationary control surface integration.
Morgans (1930)[87] extended the use of the method to moving control surfaces intro-
ducing the use of the Green’s functions in this integral method. Ffowcs Williams and
Hawkings[35] derived a general formulation to deal with the effect of arbitrarily moving
surfaces on the generation of sound. Despite the generalization obtained, their modifica-
tion to the original theory presented some numerical complication for the time and space
derivatives being taken in the observer reference frame. Hawkings (1979)[47] applied the
Kirchhoff formula to a transonic open rotor introducing the idea of using a surface sur-
rounding the rotating blades, which follows the helicopter moving at the flight forward
speed. Farassat and Myers (1988)[33] found a formulation, which prevents the numerical
issue of evaluating space and time partial derivatives in the observer reference system, by
bringing these derivatives in the source frame and their development is more feasible from
a computational viewpoint. They showed [33] that their development represented a more
general formula applicable to deformable and rigid piecewise smooth moving surfaces and
including the original formula [60] for stationary surfaces as a special case. An extended
Kirchhoff method is proposed by many authors by including additional non linearities in
the region outside the control surface, where a volume integration is required [73]. An
example is given by Pilon and Lyrintzis (1998)[97], who applied the methodology to su-
personic jets. Mitchell et al. (1999)[82] applied a Kirchhoff surface integral method with a
stationary surface in a jet noise problem. Application of the moving surface with uniform
velocity can be found in Morris et al. (1998)[89] and Lyrintzis and Mankbadi (1996)[74].
Di Francescantonio (1997)[36] proposed the use of the FW-H acoustic analogy with a
permeable surface (porous FW-H) not coinciding with a physical surface and compared
it with the Kirchhoff surface integral method. Brentner and Farassat (1998)[16] followed
this approach by comparing the use of the Kirchhoff formula for moving surfaces to the
porous FW-H acoustic analogy, showing that the latter is more conveniently applicable
to aeroacoustic problems and that it embeds the Kirchhoff formulation as a special case.
In the Kirchhoff formulation all the non linearities of the flow are included in the surface
integration on a fictitious surface, so called the Kirchhoff surface. This feature avoids a
volume integration which is usually far more expensive from a computational viewpoint
than a two dimensional one. This advantage is also available in the FW-H acoustic anal-
ogy, if the FW-H surface is thought as penetrable or permeable[16]. On the other hand,
the FW-H acoustic analogy has the advantage of better representing the physics of the
problem and the various terms in the formulation can be easily interpreted. Further-
more, it offers a more robust approach and it is easier to be interfaced to CFD codes[16].
Lyrintzis (2003)[73] also argued that the porous FW-H equation method is equivalent to
Kirchhoff’s method, representing a preferable alternative given the current state of the art
of numerical development. Even though the porous FW-H requires larger memory usage,
it is less limiting in the control surface choice and it does not require normal derivative
estimation.
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b- Theory of vortex sound

Powell (1964)[100] first proposed the theory of vortex sound, which follows a different con-
ception from the acoustic analogy and represents an alternative approach in aeroacoustics,
to which many authors have contributed. Powell argued that both the hydrodynamics
and the acoustics of the flow are governed by vorticity fluctuations in low Mach number
turbulent flows and the acoustic sources are associated with limited regions of flow in
which the vorticity vector is non vanishing, rather than the whole hydrodynamic field
as in Lighthill’s theory[66]. Howe (1975)[54] tried to develop a revised formulation of
Lighthill’s acoustic analogy able to deal with problems characterized by extended region
of non uniform flow, in which Lighthill’s propagation in a uniform medium at rest assump-
tion would not be applicable. He proposed the stagnation enthalpy as acoustic variable,
individuating the source terms of such acoustic variable as confined in regions of non
vanishing vorticity and entropy gradient[54], so developing a revised version of the vortex
sound, Howe (2003)[55] gives a complete and exhaustive explanation of the vortex sound
theory, defining it as the branch of fluid mechanics dealing with the conversion between
rotational kinetic energy in a turbulent flow and longitudinal disturbances corresponding
to sound waves. He argued that Lighthill’s equation can be rearranged by showing the
importance of the vorticity in the sound production[55]. To do so, the total enthalpy
is chosen as the fundamental acoustic variable instead of the Lighthill acoustic density
fluctuation. This new acoustic variable can be introduced by using Crocco’s form of the
momentum equation, differently from Lighthill’s derivation. The justification in the use
of total enthalpy as acoustic variable comes from the consideration that, in steady ir-
rotational flows, such a variable is constant. Consequently, at large distances from the
acoustic sources, a perturbation in total enthalpy represents an acoustic wave[55].

1.3 Instability models of large scale coherent struc-

tures

A natural consequence of the presence of coherent structures is to modeled them as
instability waves. First stability analysis of steady solutions of the conservative equation
of motion (N-S equations) date backs to the early 1892, Rayleigh[104]. Rayleigh focused
his attention in the previous work of Reynolds where experiments[105] did in a pipe flow
showed the presence of laminar, regular patterns. Rayleigh investigated the instability
of the flow in a pipe, referring to the non viscous Euler equations. Later work included
viscosity in an attempt to determine the critical Reynolds number for laminar turbulent
transition, and the field of hydrodynamic stability has greatly developed.

The model essentially consist on a decomposition of the total flow vector Q(x, t),
function of the time, t, and the spatial coordinates, x, into a base flow q̄(x) and a
small perturbation q′(x, t). The base flow is supposed to be steady and the temporal
fluctuations are described by the perturbation q′(x, t):

Q(x, t) = q̄(x) + q′(x, t) (1.4)
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1.3 Instability models of large scale coherent structures

Those fluctuations, following the methods of normal modes, are composed of an ex-
ponential like wave term and a shape function. In the particular case of an axisymmetric
jet, with cylindrical coordinates x = (x, r, θ), the perturbation q′ propagating in the
x-direction can be written as:

q′ = q(x, r) exp (iΘ(x, θ, t)) (1.5)

In the above equation i stands for the square root of −1, q(x, r) is the amplitude function,
or shape function, and Θ a general phase function. Typically in the Kelvin-Helmholtz
(K-H) instability owes its origin to the inertia of the fluids, viscosity does not play an
important role, otherwise the inflection points of the mean velocity profile has a crucial im-
portance in the instability of such a flow. More details about hydrodynamics instabilities
could be found in Godrèche et al [39].

As explained in the thesis of Cavalieri (2012)[20], the validity of the linearisation of the
Navier-Stokes (or Euler) equations can only be shown a posteriori, based on the eventual
agreement with an experiment. This has been the case for a number of works in the
literature; an example is the linear behaviour of the evolution of coherent structures over
a region extending several jet diameters, as observed by Crow and Champagne’s (1971)[27]
and by Moore’s (1977)[86] and shown in figure 1.7. In what follows, we review some of the
computations that have been done on instability theory for jets and some experimental
measurement that confirmed the validity of such approach for turbulent flows.

x/D

u0.3

Uj

(dB)

x/D

Figure 1.7: Linear and nonlinear behaviour of forced jets in (a) Crow and Champagne’s
[27] and (b) Moore’s[86] experiment. Forcing Strouhal numbers are 0.3 for Crow and
Champagne and ≃ 0.48 for Moore. The lines from bottom to top refer respectively to
increasing forcing amplitudes at the nozzle exit. The triangles in Crow and Champagne’s
experiment refer to the unforced jet

1.3.1 Linear stability theory (LST)

a- Theoretical introduction

This spatial theory is based to the local parallel assumption of the flow which yields:
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q′ = q(r)e(i(αx+mθ − ωt) (1.6)

where α and m are the wavenumbers in the streamwise and azimuthal direction, re-
spectively; ω represents the frequency of the perturbation. The complex amplitude of the
perturbation q(r) depends only on the radial coordinates. In the frame of spatial theory
α is a complex value while m is en integer number and ω is real. Substituting 1.6 into
the Linear Euler Equation, LEE, the system could be rewritten as a classical Ordinary
Differential Equation, ODE, function of the pressure shape function p(r), known as the
non viscous axysimmetric Pridmore-Brown equation:

d2p

dr2
+

(

1

r
−

1

ρ̄

dρ̄

dr
−

2α

αūx − ω

)

dp

dr
+

(

ρ̄M2(αūx − ω)2 −
m2

r2
− α2

)

p = 0 (1.7)

that written in a compact way gives:

L(p) = 0 (1.8)

Associated to homogeneous boundary conditions, Tam and Burton (1984)[123] , this sys-
tem corresponds to an eigenvalue problem with streamwise wavenumber α as the eigen-
value and q(r) as the associated eigenfunction. The eigenvalue problem must to be solve
by satisfying the dispersion relation:

D(α,m, ω) = 0 (1.9)

The growth rate of the disturbance, σ, is given by:

σ = −αi (1.10)

where subscript i refers to the imaginary part of the quantities. A disturbance is stable,
neutral or unstable if its growth rate is less, equal or greater then zero, respectively.

b- Some results (for parallel base flows)

Preliminary studies of LST apply to the jet and free shear layer are based to work of
Crow and Champagne (1971)[27] when it was discovered the presence of large turbulence
structures in jets and as well their main role as jet noise sources. Morris (1976)[88]
studied the spatial linear stability of axisymmetric (m = 0) and helical (m = 1) jets. The
flows are assumed to be incompressible and viscous, analyzed from the exit of the nozzle
to the fully developed turbulent region. An accurate numerical method is proposed to
solve the eigenvalue problem and are computed for three different mean velocity profiles.
The results show as the axial position where the instability is maximum increase if the
frequency decrease. It was also observed that only the helical mode, m = 1, will continue
to amplify in the developed jet flow. In the work of [81] a LST was performed for a
round supersonic jet. In a axisymmetric inviscid jet the influence of the spatial growth
rate and disturbance phase velocity is studied. The base flow is considered as a parallel
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flow which is infinite upstream and downstream, with radial velocity equal to zero. The
author found that flow becomes more stable if the free stream Mach number increase.
The good agreement if compared with experimental results[27] confirmed that instability
of turbulent jet approximately follow the spatial linearised theory.

The first original description of these coherent structures as statistical instability waves
was proposed by Tam and Chen (1979) [124]. This work is based to the fact that large tur-
bulence structures are somewhat more deterministic than the fine scale turbulent motions,
moreover comparison with experimental results is made and very favorable agreement is
found. In particular, this work point out several difficulties of the comparisons between
theoretical and experimental results due to the high influence of the initial condition and
to some upstream disturbances that could influence the not fully developed mixing layer.
The most important assumption of this model is that the turbulent jet flow spreads out
very slowly in the streamwise direction, consequently the flow variables change very slowly
as well. This means that, i.e., the turbulence statistics are nearly constants locally. In-
deed the flow is stochastically stationary in time and in the axial flow direction. For a
system in (quasi) dynamical equilibrium, statistical mechanics theory can be represented
mathematically by a superposition of its normal modes. In the case of high speed jets, the
large scale fluctuations are the statistical mechanism while the dominant normal modes
are the instability wave modes of the mean flow, computed using LST.

Very few works can be found in literature regarding LST for dual stream jets. Perrault-
Joncas et Maslowe (2008)[95] applied the LST to a subsonic compressible coaxial jet. The
computation have been done with two different mean flow, one with ”cold” temperature
profile is taken from Papamoschou’s experiments[93] and one with ”hot” temperature
profile is taken from the mean data of a typical turbofan engine. They work has not
comparison with experimental results, but their parametric studies show the influence of
the diameter ratio, compressibility, azimuthal wavenumber and the ratio between of the
two mean velocities in the stability of the jet.

Concluding, large scale structures are an important source of noise and linear insta-
bility is the first step in their formation.

1.3.2 Parabolized Stability Equations

All the cited works were based on the parallel flow hypothesis. An improvement on the
approximations of spatial stability can be done with the assumption of a base flow evolving
slowly in the streamwise direction. Herbert (1993)[49] developed the Parabolized Stability
Equations (PSE) theory to consider the non parallel effect of the flow in the instability
waves in the boundary layer region, inspired by the multiple scale methods.

The fundamental assumption of the PSE theory is that the disturbances consist of a
fast oscillatory part and an amplitude that varies slowly in the streamwise direction. The
decomposition into fast and slow variations aims at a set of equations that is ”almost”
parabolic in the streamwise coordinates direction and is suitable to a numerical marching
procedure. In this work starting with the Euler equations which are not parabolic in space,
appropriate approximations are called for to ensure the removal of elliptic components.
Once these approximations are carried out, the Parabolized Stability Equations, PSE,
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can be solved as a fraction of the computational costs of Direct Numerical Simulation,
Large Eddy Simulation etc, but still conserving a good accuracy in the results. Finally,
thanks to the contribution of many investigators [61, 42, 106, 107] it’s now known that
Parabolized Stability Equations are a powerful tool for the prediction of subsonic and
supersonic jet noise.

a- Theoretical introduction

PSE approach is now well known and applied in various stability problems. Several
advantages can be shed on light. Indeed, contrary to the Linear Stability Theory (LST)
where local parallel flow is assumed, they take into account of the small streamwise
variations of the base flow and of the disturbances directly in the formulation. Since PSE
are mathematically PDE, it is simple to solve them by adding various boundary conditions
and source terms. This leads to use them for receptivity and sensitivity analysis [7], in
optimal flow control approaches [5] and for weakly nonlinear stability studies[50].

In the following, all the variables are made non-dimensional. The characteristic length
is based on the nozzle diameter and the characteristic flow properties are chosen to be
those of the flow on the axis at the nozzle exit [98].

The small perturbation q′ is assumed to have a wave like exponential term exp (iΘ)
rapidly varying in the x-direction and an amplitude function q(x, r) that varies slowly as:

q′ = q(x, r)eiΘ, with Θ =

ˆ x

x0

α(ξ)dξ +mθ − ωt, (1.11)

where α(x) is the complex axial wavenumber (spatial theory), m is the fixed integer
azimuthal wavenumber, ω is the fixed angular frequency of the disturbance, x0 is the inlet
of the computational domain and t is the time. The imaginary part, αi(x), can be defined
as a growth rate and 2π/αr(x) corresponds to a spatial wavelength.

The decomposition is introduced into the linearised Euler Equations (LEE) and the
PSE are derived using the assumption of small streamwise variations of α, of q and of the
based flow quantities:

LPSE q = 0, (1.12)

with

LPSE = iαA1 + imA2 − iωA3 +B + A1
∂

∂x
+ A0

∂

∂r
,

where A0, A1, A2, A3, B are matrix operators defined by the mean-flow properties
and they are described by Ansaldi and Airiau (2015) [11]. From equation (3.13) it can be
noticed that the streamwise change of the disturbance can be described by the product of
the amplitude function and of the exponential term. This ambiguity must be resolved by
the introduction of an additional equation, called normalization or closure relationship,
which imposes that the growth of the disturbance is absorbed by the wave function part of
the decomposition, making sure that the shape function q(x, r) stays with a slow variation
in x [50]. We set:
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N (q, x) =

ˆ

∞

0

qh∂q

∂x
r dr = 0, (1.13)

where the superscript h denotes the transpose conjugate. The system with the un-
known (q, α) is only quasi parabolic because a residual ellipticity due to the normaliza-
tion condition and a streamwise pressure gradient term remains, see Airiau and Casalis
(1993)[6], and Andersson et al. (1998)[8].

b- Some results

PSE used to calculate the instability waves were introduced by Herbert and Bertolotti[51,
48, 49], they were focused on the study of instability in boundary layers. Tam and Burton
(1984) presented a theory based to PSE approach and Yen and Messersmith (1998)[133]
applied the PSE approach to the prediction of instabilities in a incompressible, isothermal,
round jet. Results show as PSE is capable to well capture the physical evolution of the
instabilities over the streamwise domain until the end of the potential core; outside of
the potential core, where the shear layer is fully developed, the PSE are less capable of
supporting the like wave model. In the same period, PSE have been used for prediction
of instabilities and noise in supersonic jets[14, 134] by coupling PSE equations with a
solution of the wave equations in the far field; good agreements were found between the
computed and the measured Sound Pressure Levels (SPL), see figure 1.8.

a) b)

Figure 1.8: Comparison between SPL obtained by Balakumar (a) computing the wave
equation for fixed Strouhal number, St, and azimuthal wavenumber m with experimental
results (b) measured by Troutt and McLaughlin[129].

One more important consideration, in according to the experimental observations, is
that the majority supersonic jet noise is produced in the first few diameters to the exit
of the nozzle. Piot et al (2006)[98] have compared the results obtained by solving PSE
and by solving Large Eddy Simulation (LES) for two different jet with Mach number 0.7
and 2 respectively. The results show that PSE predicts very well the spatial growth of
the disturbances. However, at least for this work, PSE does not predict correctly the
noise radiation as LES approach for the subsonic case, maybe in this configuration K-H
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instability waves has not an important role in the production of noise. The agreement is
very good when compare the supersonic case, showing the crucial role of K-H instabilities
in supersonic jets. Also in this work to compute the acoustic pressure from the PSE
results, the wave equation have been solved and again the noise sources is concentrated
near the jet exit.

More recent works have focused attention of the non linear effect of the instability
waves. A natural approach to investigate the non linear effect is to compute the Nonlin-
ear PSE equations (NPSE). A very good analysis of the non linear effects of the insta-
bility waves in terms of noise radiation have been successfully made by Cheung and Lele
(2009)[24]. Three jet configurations are tested, one supersonic and two subsonic; actually
non linear approach may capture the sound generation process more accurately then the
linear instability theory.

Ray and Lele (2007)[103] take into account the weakly nonlinear interaction between
linear instability and shock cell structure in under expanded supersonic jet. Figure 1.9
shows the results obtained by Linear Euler Equation (LEE) computation in the far field
and PSE shock cell interaction model.

Figure 1.9: Shock noise test case, Mj = 1.22, m = 0. The curves represent the far field
pressure amplitude, pff , computed by LEE solutions at different Strouhal number and
symbols represent PSE/shock cell model solutions, Ray and Lele (2007)[103].

The evolution of instability for coaxial jet using PSE approach has been taken into
account in the work of Léon and Brazier (2011)[64]. The hydrodynamics unstable modes
are computed using the non local approach and is coupled with Kirchhoff surface technique
to predict noise in the far field. Low frequencies instabilities waves for both mixing layer
are taken into account focusing to the first two azimuthal modes, m = 0 and 1. The
instability waves grown in the external shear layer appears as the most unstable one and
dominate the hydrodynamic region of the jet. Then because of the lack of the PSE in the
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prediction of noise in the far field, the model is coupled with a acoustic wave propagation.
Results are compared with experiment and with LES computation obtaining encouraging
results. Recently, PSE approach applied to LES computation of a subsonic dual stream
jet illustrate very well the propagation of the instability in the inner and outer shear layer.
A parametric study of different Strouhal and azimuthal wave number for the two unstable
modes (one in the primary and one in the secondary shear layer) has been performed,
Sinha et al. (2016)[111]. In this work is well presented the problem of PSE for dual
stream jet, in fact PSE can not well distinguish between the two unstable modes if their
complex wavenumbers are to similar, or if one stabilize during the streamwise marching,
but the other stay unstable.

Finally, with the work of Sinha et al (2014) [112] that demonstrate the validity of
linear instability to predict the average wavepacket evolution in supersonic jet inside the
potential core, leads to the conclusion that large scale structure manifest in the subsonic
and supersonic jets and its evolution is well predicted inside of the potential core of the
jet.

c- Non linear PSE

Also if in this thesis we only treated linear PSE problem a briefly introduction of non
linear PSE approach is done in this section. In the linear PSE approach described above,
the disturbance amplitude is assumed to be infinitesimally small so that the non linear
interaction of waves with different frequencies and azimuthal wave numbers is neglected.
When finite amplitude waves are present in the flow, the linear approach is no longer valid.
For non linear studies, we assume that the total disturbance is again periodic in time and
in the azimuthal direction, thus, the total disturbance function q′ can be expressed by
the following Fourier series[29, 63].

q′ =
N
∑

n=−N

M
∑

m=−M

qm,n(x, r)e
i

(
ˆ x

x0

αm,n(ξ)dξ +mθ − nωt

)

(1.14)

where αm,n and qm,n are the Fourier components of the streamwise wave number and
shape function corresponding to the Fourier mode (nω,m), while, M and N are the total
number of modes kept in the truncated Fourier series. Notice that the frequency ω and the
wave number m are set as the smallest values, respectively. Because of the characteristic
symmetry of a jet flow only a quarter of modes (m ranging from 0 to M and n ranging
from 0 to N) are computed in the marching process. Finally, similar to the Linear PSE
approach, an additional closing equation is imposed for each mode (nω,m). These last
equations ensure the hypothesis of small variations of each shape function qm,n in the
streamwise direction.

Nm,n =

ˆ

∞

0

qh
m,n

∂qm,n

∂x
dr = 0 (1.15)
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1.3.3 Convective and absolute instability

The distinction between convective and absolute instability has to be done. We are looking
to a simple criterion that allows us to determine, based to an unstable flow, whether it is
convectively or absolutely unstable. If the localized disturbance generated by the impulse
spreads both upstream and downstream of the location where it originated, the flow is
considered absolutely unstable. In case the disturbance is swept downstream or upstream
of the source, the flow is convectively unstable. This characterisation for parallel base
flows can be made based on the impulse response of the flow, as reviewed by Huerre and
Monkewitz (1990)[56]. Cold (unheated) jets, such as the ones studied in this thesis, are
convectively unstable, but sufficiently heated jets may present absolute instabilities. This
was shown theoretically by Monkewitz and Sohn (1990)[85], and subsequent experiments
by Monkewitz et al. (1990)[84] confirmed the theoretical predictions. The flow is stable in
figures 1.10 a) convectively unstable in figures 1.10 b) and absolutely unstable in figures
1.10 c). As expected, convectively unstable flows give rise to wave packets that move away
from the source and ultimately leave the medium in its undisturbed state. Absolutely
unstable flows, by contrast, are gradually contaminated everywhere by a point source
input.

x x x

t t ta) b) c)

0 0 0

Figure 1.10: Case a) the flow is stable. Case b) the perturbation is convected away from
x = 0 the flow is convectively unstable. Case c) the perturbation expands around x = 0
the flow is absolutely unstable.

It is now possible to treat linear stability problems in a framework where no assumption
is made regarding the order of magnitude of the perturbation wavelength by discretizing
all the non-homogeneous directions. Such approaches are referred to as global, in con-
trast with the local analyses described above. This distinction does not correspond to a
difference in the methodology or mathematical concepts involved, but to the investiga-
tion of different situations. Using a two or three dimensional discretization, the temporal
eigenmodes, optimal perturbations and optimal forcing (receptivity) can be analyzed by
using exactly the same formalism as in the local approach. The modal analysis of the
linearised flow equations gives access to the growth or decay rate, to the frequency and to
the spatial structures of the eigenmodes. For a jet we can assume a ”biglobal” behaviour
of the disturbance by imposing that the base flow varies in two out of the three spatial di-
rections and is independent of the azimuthal coordinate, q̄ = (x, r), the analysis proceeds
by following:
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1.4 Sensitivity analysis

q′(x, r, θ, t) = q̄(x, r) + q(x, r)ei[mθ − ωt]. (1.16)

This amounts to considering the disturbance as harmonic dependence along the time
and azimuth direction. The flow variables are expanded as two dimensional eigenfunctions
in (x, r) with a exp[i(ωt − mθ)] dependence, with integer m and complex ω. Unstable
global modes have negative imaginary parts of ω, and, inversely, for stable modes Im(ω) >
0. Such calculations are nowadays feasible, but much more numerically intensive than
the application of methods based on parallel or slowly diverging base flows. A review
of applications of global instability is made by Theofilis (2003)[125]. Since cold jets
are convectively unstable, they present only globally stable modes, but combinations of
such decaying modes, which are not orthogonal, may lead to amplitude growth during
transients (see discussion by Schmid (2007)[110]). An example was recently shown by
Nichols and Lele (2011)[91], who determined, for a supersonic jet, optimal combinations
of global modes for transient growth of the fluctuation energy. Such transient growth
causes emission of bursts of acoustic energy to the far field. The use of global linear theory
is only justified when local modal analysis suggests that the flow will contain regions of
local absolute instability. In that case, global linear theory can provide definitive answers
which are free from the assumptions of local theory. However, when the instability in
question is convective, convective instability analysis tools not only are adequate from
a physical point of view but also orders of magnitude more efficient than global linear
theory.

1.4 Sensitivity analysis

1.4.1 Introduction

Sensitivity analysis (SA) is the study of how the variation to different sources in the
input of a mathematical model will modified, qualitatively or quantitatively, the output
of the model. Or also, it is a technique for systematically changing parameters in a model
to determine the effects of such changes. Such analysis is common in different fields of
fluid dynamics since it is closely ’related’ to optimisation problems and optimal control.
’Related’ here means that these different fields of study (sensitivity, optimisation and
control) can be outlined such that the sensitivity calculation becomes crucial.

The interest of sensitivity optimization and control in complex physical phenomena
have grown in the years as economic, but also environmental needs. The field of aerody-
namics is no exception. For example, large amounts of money could be saved if one could
lower the fuel consumption of an airplane by just a fraction. To achieve this goal, control
the flow around the aircraft might be one way.

In this thesis the idea is to use sensitivity analysis to identify the most sensitive region
of the flow with respect to external forcing in order to propose some new noise control
strategy.

During the last decade, new approaches to solve SA problems have emerged. By
formulating the flow SA as the first step of optimization problems where one wants to
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minimize or maximize some flow characteristic quantity, one obtains a problem similar
to what is studied in optimal control theory. The early publications regarding optimal
flow control problems, such as Abergel and Temam (1990)[1], Glowinski (1991) [38], Gun-
zburger et al. (1989)[44], Sritharan (1991a)[115], and Gunzburger et al. (1992) [45]
are mostly concerned with theoretical aspects of the optimal control problem. Once the
theoretical foundation was built, subsequent publications present results from numerical
simulations where the optimal control for different flow configurations is computed. One
such publication is Joslin et al. (1997)[58] where the optimal control of spatially growing
two-dimensional disturbances in a boundary layer over a flat plate is computed.

When the number of parameters to analyse are small, direct search methods can be
used, but when having many degrees of freedom, gradient based optimization algorithms
are usually much more efficient. The gradient information can be computed in many
different ways. In this thesis we compute it by solving the adjoint equations associated
with the equations modeling the physics. The adjoint formulation is useful when one is
seeking to obtain one or a few outputs of a system for a wide range of possible inputs.
As said above, there are several such cases in fluid mechanics (and other disciplines), in
particular in stability theory as concerning here, but the greatest advantage is obtained
in optimization. In fact, the typical optimization problem has a single objective func-
tion (possibly combining multiple objectives through suitable weights) that has to be
minimized or maximized with respect to a large number, or even a continuum, of input
variables. From the solution of the adjoint equations, we obtain information about where
the process is most sensitive to small modifications in the control or in the parameters.
That information can also be used to compute the gradient in a procedure that is inde-
pendent of the dimensionality of the optimization problem. The advantage of the adjoint
approach, in fact, is that the sensitivity of a disturbance can be obtained by solving the
state and adjoint equations once. This means that the adjoint method can provide the
sensitivity to external forcing with an extremely low computational cost, if compared to
direct search methods.

The first documented use of adjoint equations refers to Lord Lagrange (1763), but the
use of adjoint equations in flow instability dates back to the 1990s, Hill (1992,1995)[52, 53],
Chomaz (1993) [25] and Airiau (2000,2001) [3, 131], but did not become widespread
until the late 2000s, Giannetti and Luchini (2007)[37], Marquet et al. (2008)[76]. We
recommended the review articles Luchini and Bottaro (2014)[71] and Airiau (2004)[4]
where the concepts of SA are spell out in details.

1.4.2 Sensitivity Analysis theoretical background

From a mathematically point of view sensitivity analysis leads to the determination of a
gradient function. This gradient can be performed by finite difference or by complex-step
derivatives but this is computationally expensive and prone to numerical error. A more
efficient and more accurate method is to use adjoint equations.

It’s a common notation call E (q) cost functional and q state vector. Generally q must
verified a constrained equation called state equation. In the following sections we assume
that n is the dimensions of q and E(q) is a scalar number.
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Sensitivity of a function E with respect to a component of the vector q, qi, is simply
defined as the directional gradient of E with respect to qi, ∇Eqi .

The (scalar) directional derivative d(q,p) of a continuous quantity E(q) is defined by:

d(q,p) =
∂E(q)

∂q
· p = lim

ε→0+

1

ε
[E(q + εp)− E(q)] (1.17)

which is the amount E(q) changes when q is updated in the direction p, scaled by
the size of the update, in the limit that the size of the update approaches zero. Note
that the computation of E(q) itself may involve large numerical simulations such as the
marching of an ODE. The (vector) directional gradient g(q) of some continuous function
E(q) is given in each component i by the directional derivative in the direction of the
corresponding Cartesian unit vector ei as:

gi(q) = d(q, ei) =
∂E(q)

∂q
· ei =⇒ g(q) = ∇E(q) (1.18)

a- Finite-difference approximation (FD)

One simple way to compute the directional derivate is to consider a Taylor series expansion
from which the first order finite difference (FD) formula for the directional derivative is
easily obtained:

d(q,p) =
E(q + εp)− E(q)

ε
+O(ε) (1.19)

A second order version, using central differences, of the same approach can be written

d(q,p) =
E(q + εp)− E(q − εp)

2ε
+O(ε2) (1.20)

A drawback with the FD approach when using a computer with finite precision arith-
metic is the difficulty to find a suitable value for the step size ε. If it is large then the
Taylor series truncation is not valid and when it is small then the subtractive cancellation
errors might dominate. For small ε the error of FD formulas is O(1/ε) due to subtractive
cancellation errors. This means that when comparing two numbers which are almost the
same using finite precision arithmetic, the relative round off error is proportional to the
inverse of the difference between the two numbers; thus, if the difference between the
two numbers is decreased by an order of magnitude, the relative error with which this
difference may be calculated using finite precision arithmetic is increased by an order of
magnitude. Note that to evaluate ∂E(q)

∂q
as given by equations 1.19 and 1.20 requires n+1

and 2n computations, respectively. This can certainly be computationally expensive if
each evaluation of E requires the solution of an ODE.

b- Complex step derivative (CSD)

The Complex Step Derivative (CSD) approximation makes use of complex variables in
order to compute the directional derivative in a more robust fashion than the FD. If the
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complex extension E(z) of a real valued function E(q) is analytic, it can be expanded
with a complex Taylor series. The expansion of E(q + ip) can be written

E(q + iεp) = E(q) + iε
∂E(q)

∂q
· p+O(ε2) (1.21)

and the directional derivative can be found by rearranging the expansion as

d(q,p) =
∂E(q)

∂q
· p =

1

ε
Im[E(q + iεp)] +O(ε2) (1.22)

Note that the error scales with ε2 and there are no cancellation errors in this ap-
proximation. that is, to leading order, the unperturbed part is represented in the real
components, and the perturbed part is represented in the imaginary components of the
variables. In this approach ε can be chosen several orders of magnitude smaller than the
other numerical values appearing in the problem since we do not have cancellation error
all the way to numerical round off error of the finite precision arithmetic. This approach
requires n computations, which is similar to the first order finite difference method shown
previously. Remember, however, that it is more robust with respect to the choice of the
value of ε.

c- Adjoint based approach

The approach introduced in this section is based on the so called adjoint equations and is
shown to be very efficient in cases where the value of m ≪ n. Before demonstrating this
we start by showing a couple of examples. In the first the function E depends linearly on
the solution x of a linear system:

E(x) = ctx (1.23)

Ax = b (1.24)

where A is a know matrix A ∈ R
n,n , c and b are the know vectors c ∈ R, b ∈ R,

respectively. Let us now find the derivative of E with respect to the vector b, ∂E
∂b
. This

can be obtained very efficiently by solving an additional linear system

Aty = c (1.25)

The relation between the new linear system 1.25 and the function E is found by some
simple linear algebra:

E = ctx = (Aty)tx = ytAx = ytb (1.26)

it can be noted that with the new linear system 1.25, E depends explicitly on the vector
b. After this substitution it is straight forward to compute the derivative as

∂E(b)

∂b
= yt (1.27)

In this case the computational cost is 1 since only one solution of equation (9) is needed
to evaluate 1.27. In many optimization and control problems it is common to have a cost
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function with depends on the square of the linear system. An example of this is given
below.

E(x) =
1

2
xtx (1.28)

Ax = b (1.29)

In this case we start by linearising the system, which actually involves only the function
E. For this purpose we decompose x and b into mean and a perturbation as x = x̄+ εx′

and b = b̄ + εb′. Introducing the decomposition into equations 2.1-2.2 and dropping
higher order ε-terms we obtain a system of equations for x′ and b′. This is written

δE = x̄tx′ (1.30)

Ax′ = b′. (1.31)

The additional linear system is now given as

Aty = x̄ (1.32)

and the function δE can be evaluated as

δE = x̄tx′ = (Aty)tx′ = ytAx′ = ytb′ (1.33)

The gradient is then evaluated easily as

∂E(b)

∂b
= yt (1.34)

Note that in this case the right hand side of the new linear system 1.32 is a function
of the solution of the original linear equation 1.31. This means that the computational
cost in this case is 2; first we need to solve 1.31, and successively equation 1.32. Further,
this must be done for each dimension of E, as in the case of the FD and CSD, that is 1
in this example.

d- Comparison of computational effort

We can now compare the computational effort of computing the gradient ∇E(q) using the
three methods that were outline above. In table 4.1 the number of function evaluations
is given as a function of a given method. Here, n and m denote the dimensions of q
and E(q), respectively. Values for both first order (FD1) and second order (FD2) finite
difference method are shown. It is evident that using adjoint equations is computationally
efficient. The computational efficiency of the CSD is comparable to the FD1. However, the
CSD is more robust since it does not involve any difference operations which means that
numerical cancellation errors are avoided. In many applications the number of function
values m is much smaller than the parameter or variable that one perturb which has
dimension n. For example, considering the case of the variation of the total energy of a
flow (m = 1) is estimated as a function of an external source acting in a localized region
of the flow. In this case n are the number of discrete points where the forcing could be
placed, typically of the order of 102 − 103.
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Approach E(x) = c · x E(x) = x · x
FD1
FD2
CSD
ADJ

(n+ 1) (n+ 1)
2 · n 2 · n
n n
1 2

Table 1.1: Number of function evaluations to compute the gradient using Finite Difference
approximation (FD), Complex step derivative (CSD) and adjoint equations (ADJ). First
and second order FD approach are denoted FD1 and FD2.

1.4.3 Some Results

The idea of an adjoint equation assembles together a number of mathematical concepts,
physical theories, and computational methods. Historically, it has evolved from a device
to lower the order of an ordinary differential equation, more recently, adjoint equations
have been identify as a powerful tool in the study of the sensitivity of some global quan-
tity (an objective) with respect to some input data of a complicated problem (e.g., the
numerical discretization of an ordinary or partial differential equation). Sensitivity can be
simultaneously computed by an adjoint algorithm having approximately the same compu-
tation time as a single run of the original simulation. This is much faster than a classical
linearisation approach in which one would have to numerically solve a separate linearised
problem for the increment in each input variable.

Adjoint based sensitivity analysis is exploited in many different engineering fields not
only in fluid dynamics, including nuclear reactor physics, electromagnetism, seismic to-
mography, dynamic meteorology, illumination computations in computer graphics, inverse
design problems, heat conduction, etc.

In this work the main goal is to identify the regions of the flow more sensitive to
external perturbations in the momentum forcing and mass or heat injection.

Sensitivity coefficients can be therefore explained as how the response of any variation
in the output of a system expressed as a mathematical functional can be apportioned
to different sources of variation in the input of the model. Such analysis is common in
different fields of engineering and in the field of fluid dynamics since it is closely related to
optimization problems and optimal control (Walther et al.[131] and Airiau [3]). In the last
45 years receptivity of boundary layers flows was investigated in different theoretical and
computational manners. Recently, [7] has demonstrated that receptivity coefficients and
the approach based on adjoint equations [3] can be associated to an optimization problem
and therefore they were strongly closed to sensitivity coefficients. Later it was used
by [131, 5] to perform optimal control in the laminar boundary layer flow. Sensitivity
analysis based on the adjoint of compressible Navier-Stokes were also recently derived
[101, 114, 132] and have led to some optimal control studies of the two dimensional shear
layer in the aeroacoustic framework. Some other examples of sensitivity can be found in
the mesh optimization and in the optimization of structures.

A first sensitivity analysis of jet instabilities associated to compressible jet at low
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Mach number has been performed and validated recently by coupling the Parabolized
Stability Equations (PSE) and the Adjoint-PSE method[11, 131]. In 2014 Kim et al. [59]
used the adjoint solutions of the Euler equations to provide a definitive direction in which
adjust a model control actuation in order to reduce turbulent jet noise. In parallel, Tissot
et al[127] has proposed, using some PSE-4D-Var approach to investigate the role of the
critical layer in jet in presence of non linear wave interactions. Following this previous
works, an extension of the compressible laminar flow to turbulent and supersonic flow is
made.

In this thesis sensitivity for a subsonic and supersonic flow [134] are implemented as
test case for the validation of the model. Finally single and double jet flow has been
computed from Large-Eddy-Simulation [12]. In particular the most sensitive zones to
some local forcing in the conservation stability equations are identified.

From our knowledge, the sensitivity analysis in the framework of adjoint of PSE sta-
bility equations for supersonic jets in relation with aeroacoustic has never been done yet.
Investigate flow sensitivities to any external source hopefully will lead to define some new
noise control strategies.
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Chapter 2

Non local jet stability

In this chapter the Parabolized Stability Equations based to the linearised Euler Equa-
tions are treated. The PSE were initially proposed by Herbert and Bertolotti (1987)[51]
and some other authors during the same period [6] to study the linear and non linear
development of Tollmien-Schlichting waves in boundary layers. Later 2000, works from
[23, 22, 103] have extended PSE to jet flow. The main advantages of the choice of PSE
instead of Local Stability Theory (LST) are at least three:

• the small streamwise variations of the base flow and of the disturbances are directly
taken into account in the formulation (contrarily to LST where local parallel flow
is assumed).

• the eigenvalue problem no longer exists and the PSE is set of Partial Differential
Equations (PDE) mostly parabolic in the streamwise direction

• since PSE are PDE, it is simpler to solve it by adding various boundary conditions
and source terms. That means that they are used for receptivity and sensitivity
analysis, in optimal flow control approaches and for weakly non linear stability
analysis

The equations 2.17-2.19 are developing in cylindrical coordinates, as shown in figure
2.1: x is the streamwise coordinates, ,r is the redial coordinates and θ the azimuthal
direction.
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x
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φ

M(x, θ, φ)

r

Figure 2.1: The coordinate system used in this thesis

The PSE theory is explained in details as far as the numerical method implemented to
solve the PSE system. Finally, validations for subsonic and supersonic cases is reported
and results for LES computations is discussed for single and for dual stream jet.

2.1 Non local stability theory: PSE approach

2.1.1 The conservation equations

Assuming that the evolution of the perturbation in the baseflow are inviscid we start
this theory considering the Euler equations written for compressible flow. Cylindrical
coordinates system is used, (r, θ, x), denotes radial, azimuthal and streamwise directions
respectively. t is the time. The physics quantities that characterize the state of the flow
are the density ̺, the velocity vector U , the pressure P and the entropy S. The three
equations written below are the conservation of the mass flow, of the momentum and the
of the energy, respectively.

∂̺

∂t
+∇̺ ·U + ̺∇ ·U = 0, (2.1)

∂U

∂t
+∇U ·U = −

1

̺
∇P, (2.2)

∂S

∂t
+∇S ·U = 0. (2.3)

Using the perfect gas assumption the entropy S is given by

S = Cv ln

(

P

̺γ

)

, (2.4)

where the specific heat capacity at constant volume Cv and the specific heat ratio γ
being constant.
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2.1.2 Non dimensional equations

Before considering any kind of theoretical approach is important to normalize the variables
of the system by a dimensional analysis. This techniques allows us to determine important
non dimensional parameters of the flow and to compare different flows with respect to
those parameters. The subscript ”j” refers to the conditions at the exit of the nozzle
measured in the axis position. The lengths are non dimensionalized by the diameter Dj,
the velocity by the streamwise exit velocity Uj, the density by ρj, the pressure by ρjU

2
j ,

the time by Dj/Uj and other variables by the corresponding jet exit conditions. The
Mach, Reynolds and Prandtl numbers are defined as follow:

Mj =
Uj

aj
(2.5)

Red =
UjρjDj

µj

(2.6)

Pr =
µjCp

λj

(2.7)

where aj is the sound velocity, µj the dynamic viscosity and λj is the thermal conduc-
tivity coefficient of the flow. Generally, the sound velocity is defines as:

a =

√

γ
P

̺
=

√

γ
R

M
T, (2.8)

where R (approximately 8.314, 5 J/(mol ·K)) is the molar gas constant and M is the
molar mass of the gas (the mean molar mass for dry air is about 0.028, 964, 5 kg/mol).
Under these conditions the non dimensional term of the pressure P can be written as:

Pj

ρjU2
j

=
1

γM2
j

(2.9)

To be clear, the dimensionless Euler equations are written with the same notation as
in equation 2.1-2.3.

2.1.3 Linearisation

A common approach in the analysis of nonlinear systems is linearisation around a given
state, in which the full solution is split into a steady term and a small time variant
perturbation. The total flow vector Q = (U , ̺, P )t is decomposed as follow:

Q = q̄ + εq′(x, t) (2.10)

where q̄ and q respectively denote the time invariant and the (low energy) fluctuating
states. The constant ε is supposed to be small enough to neglet the non linear terms.
Under the normalization introduced in section 2.1.2 the decomposition in equation 2.10
becomes
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Ux = ūx + u′

x, (2.11)

Ur = ūr + u′

r, (2.12)

Uθ = u′

θ (no mean swirl; ūθ = 0), (2.13)

S = s̄+ s′, (2.14)

̺ = ρ̄+ ρ′, (2.15)

P =
1

γM2
j

+ p′ (2.16)

We proceed by substituting this decomposition into equations 2.1 to 2.3 and subtract-
ing the mean:

∂ρ′

∂t
+ ρ̄(∇ · u′) + ρ′(∇ · ū) + (ū ·∇ρ′) + (u′ ·∇ρ̄) = 0 (2.17)

ρ̄

(

∂u′

∂t
+ (∇u′ · ū) + (∇ū · u′)

)

+∇p′ = 0 (2.18)

∂s′

∂t
+ (∇s′ · ū) + (∇s̄ · u′) = 0 (2.19)

Here we have neglected all nonlinear fluctuating terms (e.g., uru/r). In this work we
restrict our attention to linear disturbances and so do not discuss non linear instabilities
components further.

Defining a = (ax, ar, aθ)
t and b = (bx, br, bθ)

t as two general vectors and c a constant,
the mathematics operators used above have the following form:

∇ · a =
∂ax
∂x

+
1

r

∂(rar)

∂r
+

1

r

∂aθ
∂θ

(2.20)

∇c =

(

∂c

∂x
,
∂c

∂r
,
1

r

∂c

∂θ

)t

(2.21)

∇a · b =













bx
∂ax
∂x

+ br
∂ax
∂r

+
bθ
r

∂ax
∂θ

bx
∂ar
∂x

+ br
∂ar
∂r

+
bθ
r

∂ar
∂θ

−
bθaθ
r

bx
∂aθ
∂x

+ br
∂aθ
∂r

+
bθ
r

∂aθ
∂θ

+
bθar
r













(2.22)

Substituting these news definitions into equations 2.17-2.19 and considering the perfect
gas assumption 2.4 we obtain

36



2.1 Non local stability theory: PSE approach

Dρ′

Dt
+ ρ̄

(

∂u′

x

∂x
+

1

r

∂(ru′

r)

∂r
+

1

r

∂u′

θ

∂θ

)

+

ρ′
(

∂ūx

∂x
+

1

r

∂(rūr)

∂r

)

+

(

u′

x

∂p̄

∂x
+ u′

r

∂ρ̄

∂r

)

= 0

ρ̄

(

Dur

Dt
+ u′

x

∂ūr

∂x
+ u′

r

∂ūr

∂r

)

+
∂p′

∂r
= 0

ρ̄

(

Duθ

Dt
+

u′

θūr

r

)

+
1

r

∂p′

∂θ
= 0

ρ̄

(

Dux

Dt
+ u′

x

∂ūx

∂x
+ u′

r

∂ūx

∂r

)

+
∂p′

∂x
= 0

ρ̄M2
j

Dp′

Dt
−

Dρ′

Dt
− u′

x

∂ρ̄

∂x
− u′

r

∂ρ̄

∂r
= 0

where the derivative D/Dt is defined with respect to the base flow as

D

Dt
=

∂

∂t
+ ūx

∂

∂x
+ ūr

∂

∂r
(2.23)

This system of 5 equations and 5 unknowns, (u′

x, u
′

r, u
′

θ, ρ
′, p′) is the final system which

is finally based the linear PSE analysis.

2.1.4 Considerations about the baseflow

The results of stability analysis are sensitive to the choice of mean flow. Typically aircraft
jets are highly turbulent and the effects of this on the mean flow must be accounted for. To
this end, one could compute the mean flow from experimental measurements of such flows
or by time and azimuthal average of computation results (as DNS, LES, RANS etc..). This
is particularly attractive as nonlinear effects are then partially included via their effect on
the time invariant state. However, Bagheri et al (2009)[13] computed the base flow with
respect to the nonlinear Navier-Stokes equations using the selective frequency damping
method. With this method an equilibrium state of the jet flow, that it is different to the
average to the azimuthal and temporal average of the flow, is identified. This method
can not be apply at our analysis because of the high values of the Reynolds numbers in
the different cases investigated. Inspired to the work of the many others researcher, just
to cite one of them[98, 64, 43], The time average from LES or from RANS computation
have been adopted in this work.

Questions regarding the evolution of small perturbations into the equilibrium state
may then be addressed via the solution q′ of the linearised Euler Equations (LEE). If the
linear solution is unstable then the nonlinear solution is also unstable. Linear stability
does not necessarily imply nonlinear stability, however, as nonlinear bifurcations to other
states may occur.
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Chapter 2 : Non local jet stability

2.1.5 Linear non local theory

PSE approach is based to new hypothesis of the nature of the perturbations that leads to a
simplifier system of equations. However, using this approach instead of the classical Linear
Stability Theory allow us to take into account the growth of the shear layer. Here we
restrict ourselves to the quasi three dimensional flows (base flows which are axisymmetric,
independent of the θ coordinate). Derivation of the non local stability equations can be
done by introducing the two following assumption:

1. The first assumption is to divide the perturbation q′ into an amplitude and an
oscillating part:

q′ = q(x, r)eiΘ. (2.24)

with

Θ =

ˆ x

x0

α(ξ)dξ +mθ − ωt, (2.25)

where q is the vector with components q = (ux, ur, uθ, ρ, p)
t and x0 is the minimum

streamwise coordinate in the computational domain. Here, as in a spatial theory, α
is a complex number. Note that in the non local theory both the amplitude, q and
the phase function, Θ, are allowed to varying in the streamwise direction.

2. As a second assumption, a scale separation ε = O(Re−1) is introduced between the
weak variation in the x-direction and the strong variation in the r-direction, follow-
ing the approach developing by Herbert (1997)[50]. Here Re is the local Reynold

number computed at the initial of the computational domain, Re =
√

Ujx0

ν
.

For the disturbances q′(x, r, θ, t) we would like to impose the shape function slowly
varying in the x-direction, so that all the waviness and growth of the disturbance are
absorbed into the exponential term containing the streamwise wavenumber, α. This new
perturbation is written as

q′(r, θ, t) = q(r, θ, t)e
i

(
ˆ x

x0

α(ξ)dξ +mθ − ωt

)

where the spatial and temporal partial derivatives are written as

∂q′

∂x
=

(

∂q

∂x
+ iα(x)q

)

eiΘ

∂q′

∂r
=

∂q

∂r
eiΘ

∂q′

∂θ
) = imqeiΘ
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2.1 Non local stability theory: PSE approach

∂q′

∂t
= −iωqeiΘ

Substituting equation 2.24 into equation 2.17-2.19 we obtain the PSE equations.

LPSEq = 0, with LPSE = iαA1 + imA2 − iωA3 +B + A1
∂

∂x
+ A0

∂

∂r
(2.26)

A0, A1, A2, A3 and B are matrices function of the base flow quantities and are detailed
in the appendix. Following [98, 63] some specific boundary conditions are set on the axis.
To avoid the singularity in the axial position, at r = 0, the boundary conditions used to
the shape function, q, are:

ur(0, x) = 0 form = 0

ur(0, x) + imuθ(0, x) = 0, p(0, x) = 0 form ≥ 1

They are completed by the non singular terms in the PSE equations, expressed at
r = 0. In the far field r → ∞ assumption of flow at rest are made by considering
ūx = ūr = ūθ = 0. Because we are in the far field all the derivatives in the streamwise
direction are neglected and equation 2.26 reduces to:

iρ̄αux +
ρ̄

r
ur +

imρ̄

r
uθ − iωρ+ ρ̄

∂ur

∂r
= 0

−iωρ̄ur +
∂p

∂r
= 0

−iωρ̄uθ +
im

r
p = 0

−iωρ̄ux + iαp = 0

iωρ− iωρ̄M2
j p = 0

(2.27)

and after some mathematical steps

∂2p

∂r2
+

1

r

∂p

∂r
+

(

ρ̄ω2M2
j −

m2

r2
− α2

)

p = 0 (2.28)

The solution of equation 2.28 are a linear combination of the Hankel functions of the
first kind and second kind

p = H1
m

(√

α2 − ρ̄ω2M2
j r
)

(2.29)

where H1
m is the m-th order Hankel function of the first kind. Finally by taking into

account the asymptotic behaviour of the Hankel function when r → ∞, we obtain:

∂p

∂r
+

(

√

α2 − ρ̄ω2M2
j +

1

2r

)

p = 0 (2.30)
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Chapter 2 : Non local jet stability

2.1.6 Normalization equation

By observing the decomposition of equation 2.24 it can be noticed that the streamwise
change of the disturbance q̂(x, r) can be described by the product of the shape function

q(x, r) and of the exponential term χ(x), where χ(x) = exp
(

´ x

x0
α(ξ)dξ

)

. This ambiguity

must be resolved by the introduction of an additional equation, called normalization or
closure relation which imposes that the exponential growth of the disturbance is absorbed
by the wave function part of the decomposition χ(x), making sure that the shape function
q(x, r) stays slowly varying in x. The definition of the normalization is based on the
definition of the complex wave number respectively in the local and non local approach
and with any component of the perturbation q′k:

− i
∂ ln(q′k)

∂x
= αlocal and − i

∂ ln(q′k)

∂x
= αPSE − i

1

qk

∂qk
∂x

(2.31)

Naturally in the local stability theory the wave number is independent of radial direc-
tion r contrarily to the PSE theory case if the previous definition is kept. To remove this
apparent dependency in r we introduce a weighting in the definition of the complex wave
number as following:

− i

ˆ

∞

0

|qk|
2∂ ln(q

′

k)

∂x
mr dr = α(x)

[
ˆ

∞

0

|qk|
2 mr dr

]

− i

ˆ

∞

0

qhk
∂qk
∂x

mr dr. (2.32)

Where mr, generally, is a metric equal to 1 or r. Imposing the following condition is
just a way to retrieve for α(x) the same definition as in the local stability theory:

ˆ

∞

0

q̄k
∂qk
∂x

mr dr = 0 and more generally N (q) =

ˆ

∞

0

(Nq)h
∂Nq

∂x
mr dr = 0

(2.33)
The matrix N can let choose which components of the state vector are used in the

closure relation. The choice of another specific normalization would not change the value
of the physical disturbance, as soon as this normalization removes the waviness and growth
of the disturbance from the shape function to include it in the exponential term as [6,
50, 98] have shown. Concerning the PSE solver used in this thesis a deep analysis of the
different normalizations is investigated in [63]. This analysis show how the perturbation
value q′ is non dependent of the normalization if the problem is well pose. All results
presented in the following refer to the normalization of the whole components of q by
imposing N = I and mr = r

2.1.7 Numerical method for the resolution of the linear PSE
system

A compressible PSE solver designed by Léon and Brazier[63] has been used to get per-
turbation growth rate, wave number and shape function of the perturbation field. The
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2.1 Non local stability theory: PSE approach

system of equations 2.26 and 2.33 are solved using a streamwise marching solution start-
ing from the nozzle exit at x = x0 . The system is initialized by the solution of the
local approach (LST). The radial direction is discretized using a multidomain spectral
collocation approach, or using a sixth order compact difference scheme with sectral-like
resolution, see Lele (1992)[62]. The mesh in the radial direction is discretized on a non
uniform grid. The first and second derivative of the metric are continuous in order to
provide a good accuracy when the radial derivatives of the parameters are computed:

∂q

∂r
= Eq (2.34)

where the matrix E is different if using spectral collocation method or finite-difference
compact schemes.

The discretized problem is solved iteratively in the streamwise direction for the shape
function q at each axial location. The wavenumber α is updated at each iteration using
the classical scheme:

1. Advance x-position one step

2. Update the solution for q(x) equation 2.26 by solving a linear system.

3. Update α(x), α
(p+1)
j = α

(p)
j + ∆α(p+1), where j refer to the position xj in the

discretized streamwise direction and p is the number of iteration

4. Check for convergence on α(x),

∣

∣

∣

∣

∆α
(p)
j

α
(p)
j

∣

∣

∣

∣

< ε. If not verified go to 2). Otherwise go

to 1)

An efficient method to compute ∆α
(p)
j can be obtained following the previous work of

Herbert (1993)[49] and Airiau (1994)[2]. The update value of α
(p+1)
j at the position xj is

given by

α
(p+1)
j = α

(p)
j − i

N(q
(p)
j , q

(p)
j−1)

A2(q
(p)
j )

, (2.35)

with

N(q
(p)
j , q

(p)
j−1) =

ˆ

∞

0

(q
(p)
j )h ·

q
(p)
j − q

(p)
j−1

∆xj

r dr (2.36)

A2(q
(p)
j ) =

ˆ

∞

0

(q
(p)
j )h · (q(p)

j )r dr (2.37)

In this thesis ε is fixed as, ε = 10−8 and needs around 6 − 8 iterations when computing
close to the exit nozzle and decay until 2− 3 after some diameters far to the nozzle.

The PSE system written in the discretized form leads to:

(α(x)A1 +mA2 + ωA3 +B) qj + A1

[

(qj − qj−1)

∆xj

]

+ A0 [Eq] (2.38)
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Chapter 2 : Non local jet stability

finally, the shape function qj is computed by solving the following system:

(

α(x)A1 +mA2 + ωA3 +B +
A1

∆x j
+ A0E

)

qj =
A1

∆xj

qj−1 (2.39)

Notice that the streamwise derivative, ∂q

∂x
, is approximated by the backward finite differ-

ence form (qj − qj1)/∆xj. Figure 2.2, extracted by Léon (2012)[63] and Airiau (1994)[2],
schematically represent the computational approach used to solve the PSE system:

  

Figure 2.2: Simple scheme of the PSE solver.

2.1.8 Stability of the PSE system

Are Parabolic Stability Equations parabolic? The answer is no. There exists a residual
ellipticity mainly of acoustic nature which means this system is only partially parabolic,
Chang et al. (1991)[21]. Numerically instability would occur in attempting to use a too
small marching stepsize in x, similar to that observed in applications of the Parabolized
Navier-Stokes equation formulation, PNS, Rubin and Tannehill (1992)[108]. Li and Mailik
(1996)[65] used Fourier analysis to prove the existence of numerical instability and quantify

42



2.1 Non local stability theory: PSE approach

the bounds. It is demonstrated that the minimum step size, ∆xmin for numerical stability
is, approximately, the inverse of the real part of the streamwise wavenumber:

∆xmin =
1

αr

=
λ

2π
. (2.40)

This implies that a maximum of 2π steps per disturbance wavelength λ are allowed
for the marching. To reduce this step size we have at least two ways:

• drop out the ∂p

∂x
term. Li and Mailik (1996)[65] point out that since most of the

pressure gradient has been absorbed into the iαp̄ term the ∂p

∂x
term is small in

comparison. They also demonstrate that the step-size restriction is reduced by at
least an order of magnitude.

• Introduce a stabilization term, Andersson et al. (1998)[8], that removes the ellip-
ticity and leads to a well posed parabolic set of stability equations

Both approaches are good with minimal impact on the result. The weak ellipticity
of the PSE was in addition analysed trough the Fourier and the characteristic theory by
Airiau 1991[2]. If small steps of ∆x are required, as in presence of shock-cell in the base
flow, simply neglect the term ∂p

∂x
may not be enough. Following Andersson et al. [8] we

added a stabilizing term which is of the same order as the numerical errors. Since terms
of this order were neglected in the original approximation of PSE, the addition of this
artificial term does not introduce any extra error at this order of approximation and we
can introduce the new set of equations:

A1
∂q

∂x
+ (iαA1 + imA2 − iωA3 +B + A0

∂

∂r
)q =

−s(iαA1 + imA2 − iωA3 +B + A0
∂

∂r
)
∂q

∂x

(2.41)

With this new configuration the critical step size is now defined as:

∆xmin >
1

|αr|
− 2s (2.42)

Equation 2.42 implies that the s value giving marginal stability approaches 0.5/ |αr|
when ∆xmin → 0. Consequently, we can stably march PSEs downstream for any arbi-
trarily small step size by using a suitable s. In our PSE code s has been setted as:

s = k

1

|αr|
−∆x

2
(2.43)

k is a constant value who must be grater then 1, in our computations its value is fixed
to k = 3

4
. The stabilization procedure has been validated performing the stability analysis

to an incompressible test case, Mj = 0.01, developed by Yen and Messersmith (1998)[133].
In figure 2.3 the computation were performed for two different step sizes ∆x = 0.02, 0.05.
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Chapter 2 : Non local jet stability

The results for the original PSEs dropping out the term ∂p

∂x
are presented in red, the

results for the stabilized PSE are presented in black. Considering the minimum step
size of reference, ∆xmin is around 0.2, as can be seen there, the solution in red become
unstable for values of ∆xmin ten times smaller. Otherwise using the stabilizing procedure
the solution converge for any value of ∆xmin. We can conclude that numerical instability
was absent when using the stabilized PSE approach.

4.5
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5.5
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7.5

0 1 2 3 4 5

x

αr

PSE dx = 0.02
stab PSE dx = 0.02

PSE dx = 0.05
stab PSE dx = 0.05

Figure 2.3: Effect of streamwise step size on the growth rates of an incompressible
flow[133], Mj = 0.01. In full lines the PSE are computed with the stabilization pro-
cedure, in dash-lines the PSE are computed dropping out the term ∂p

∂x
.

2.2 Applications

2.2.1 Case I: incompressible semi-empirical single jet

The subsonic base flow is determined from the analytical expression given firstly by Crow
and Champagne[27] and found as well in Piot et al. [98] and Yen and Messersmith [133].
The mean flow is given by:

ūx =
1

2

{

1 + tanh

[

1

8Θ

(

1

2r
− 2r

)]}

with Θ = 0.03x+ 0.02

where Θ is the local momentum thickness.
The non-dimensional mean pressure and density are assumed uniform in the computa-

tion domain and respectively equal to p̄ = 1/(γM2) and ρ̄ = 1. The mean radial velocity
ūr(x, r) is computed from the continuity equation.
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2.2 Applications

Figure 2.4 shows the computed axial velocity. The edge of the potential core and of
the shear layer are identified by the two dash-dot lines. The computational domain, (Ω),
is 10 diameters in the streamwise direction and 8 in the radial direction.

x

r

ūx

Figure 2.4: Spatial distribution of the mean axial velocity, Mj = 0.01. In dash-dot lines
the boundary of potential core and the boundary of the shear layer.

The computations were performed for the axisymmetric instability mode, m = 0 and
a Strouhal number of St = 0.6. In figure 2.5 the Local Stability Analysis is computed at
the initial position, x = x0. An unstable Kelvin-Helmholtz mode is clearly identified with
α = 4.7− 4.0i. This value of α is used to initialize the PSE computation.
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Figure 2.5: Stability spectrum for the incompressible subsonic jet, Mj = 0.01 at the axial
position x = x0 for Strouhal number St = 0.6 and for azimuthal wavenumber m = 0. In
full circle the unstable modes related to Kelvin-Helmholtz instability.

Results of this configurations are shown in figure 2.6 where a comparison with the
pioneer work of [133] is plotted. Figure 2.6 shows the axial evolution of the real and
imaginary part of the streamwise wavenumber α. The full line displays the results from
our computations and black circles come from Yen and Messersmith [133]. The discrep-
ancy between the computations close to the exit of the nozzle vanishes rapidly after few
computational steps. This difference is due to different initial conditions. Indeed, in this
work the PSE are initialized using LST. The imaginary part of α becomes positive around
the value x = 2.7.
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x

Re(α)

Im(α)

b)

a)

Figure 2.6: Comparison between present PSE and Yen et Messersmith PSE(•), 1998. a)
Real part of α, b) Imaginary part of α for a subsonic flow with ω = 1.2π and m = 0. See
also [133].

Figure 2.7 shows the spatial distribution of the modulus of the pressure perturbation
p′, |p′|. The perturbation increases in the unstable regions of the flow (Im(α(x)) < 0)
until x = 2.7 and damp down when the flow becomes stable.

Figure 2.7: Spatial distribution of the modulus of the perturbation |p′| for the Strouhal
number St = 0.6, and azimuthal wavenumber m = 0 the pressure growth in the unstable
regions of the jet and fall-down for high values of the streamwise coordinates where the
flow is stable.
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2.2.2 Case II: Supersonic semi-empirical single jet

r
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2 40

Figure 2.8: The jet has been divided into three regions I, II and III. They are called
respectively the core, the transition and the developed regions.

For the supersonic case the based flow refers to a semi-empirical supersonic experimenta-
tion introduced by Tam et Burton (1984)[123] and often used in literature [134, 14, 64] for
stability studies. The base flow is based to the measurements of Troutt and McLaughlin
(1982)[129]. The computational domain, Ω, is 20 diameters in the streamwise direction
and 20 in the radial direction.

The computations of this base flow are performed for a perfectly expanded jet at Mach
number Mj = 2.1. As depicted by Tam and Burton[123], the flow is divided into three
regions as following:

1. Region I (or core region): 0 < x < xt

ūx =











1 r < h

exp

[

− ln 2

(

r − h(x)

b(x)

)2
]

r ≥ h
(2.44)
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2. Region II (or transitional region): xt ≤ x < xd

ūx =











uc(x) r < h

uc(x) exp

[

− ln 2

(

r − h(x)

b(x)

)2
]

r ≥ h
(2.45)

3. Region III (or fully developed region): x ≥ xd

ūx = uc(x) exp

[

− ln(2)

(

r

b(x)

)2
]

(2.46)

h(x) is the radius of the uniform core and b(x) is the distance from the half velocity
location to the edge of the core. uc is the centerline velocity. The function b(x) is
determined by a cubic spline from the experimental results of McLaughlin (1980) [80], see
figure 2.9.
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Figure 2.9: Axial distribution of mean velocity profile parameters b(x).

From McLaughlin (1980)[80] work it is also found that the core region extends up to
five diameters, xt = 5 and the fully developed region starts at 8 diameters to the end of
the nozzle xd = 8. The value of h in the core region and uc in the fully developed region
are obtained imposing the conservation of axial momentum flow:

ˆ

∞

0

ρ̄ū2
x r dr = constant at all axial stations (2.47)
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In region II h and b are determined by a cubic interpolation. The coefficients of the cubic
polynomial are chosen such that h and uc and their first derivatives in x are continuous.
The density distribution ρ̄ is obtained by solving Crocco-Busemann law:

ρ̄ =
[

−C1ū
2
x + C3ūx + C2

]

C1 =
γ − 1

2
M2

j , C2 =
Ta

Tt

(1 +
γ − 1

2
M2

j )

C3 = C1 − C2 + 1.

(2.48)

Where Mj is the Mach jet number (Mj = 2.1), Tt the total temperature and Ta the
ambient temperature. The total temperature is set identical to the temperature of the
ambient air (Tt = Ta).

The radial velocity ūr is obtained by solving continuity equation with integral ap-
proach:

ūr = −
1

ρ̄r

ˆ r

0

∂ρ̄ūx

∂x
rdr (2.49)

The corresponding distribution of centreline velocity uc, or ūx(x, 0), of the three empirical
velocity profiles eqs. 2.44-2.46, determined by the principle of conservation of momentum
flux, is shown in figure 2.10. As can be seen, the calculated value of uc, agrees favourably
with the measurements of Troutt (1978)[128] for this particular configuration.
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Figure 2.10: Axial distribution of mean centerline velocity uc(x).
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In figure 2.11 illustrates the computed results for the parameters b(x), h(x) and uc(x).
This results are validated by comparison with the previous works of Yen and Messersmith
(1999)[134] and Léon (2012)[63].
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Figure 2.11: Validation of the parameters uc, b, h by comparison with Yen and Messer-
smith (1999)[134] results.

Figure 2.12 shows the computed axial velocity. The edge of the potential core and of
the shear layer can be clearly identified by the two dash-dot lines.

x

r

ūx

Figure 2.12: Spatial distribution of the mean axial velocity, ūx, at Mj = 2.1. In dash-dot
lines the boundary of the potential core and the boundary of the shear layer.
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The computed distribution of the mean radial velocity profile at several axial locations,
x = 0, 5, 15, 20 is shown in figure 2.13. The streamwise variation of the mean radial
velocities denotes the spreading of the shear layer. The small amplitude of the radial
velocity (less then 3% of the jet exit velocity) is typical for unidirectional flows.
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Figure 2.13: The streamwise variations of radial profiles of mean radial velocities, ūr.

After the mean flow profiles are obtained, the evolution of the disturbances inside
the jet is computed using the PSE approach. The instability wave examined include the
axisymmetric and first helical modes, which are excited at frequencies St = 0.2 and 0.4.
The system is initialized by computing the LST at the beginning of the computational
domain, in x = x0. Stability spectrum for Strouhal number, St = 0.2, is shown in
figure 2.14, because of the convention sign used in this thesis the modes related to Kelvin-
Helmholtz instability is identified in the second quarter of the Cartesian plane by observing
the stability spectrum. The only physical unstable modes at this frequency is α = (1.50−
0.45i).
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Figure 2.14: Stability spectrum of the semi-empirical supersonic jet, Mj = 2.1 at the axial
position x = x0 for Strouhal number St = 0.2 and for azimuthal wavenumber m = 0. In
full circle the unstable modes related to Kelvin-Helmholtz instability.

Figure 2.15 shows the amplitude of the axisymmetric pressure distribution in the axial
direction inside the shear layer at the radial location r/D = 0.5 for Strouhal number St =
0.2 and St = 0.4. The perturbation p′ has been scaled in such a way that |p′|max = 0.01 at
x = x0. The results shown a reasonable agreement with respect to our results. Differences
could be explained considering that Yen and Messersmith[134] used the linearized Navier-
Stokes equations to analyse the behaviour of the disturbances q′ instead of the Linearized
Euler Equations (LEE). We observe the pressure peaks at about x/D = 7 and decrease
further downstream.

Figure 2.16 show the global evolution of the real part of the pressure wave with St = 0.2
and 0.4 for the axisymmetric mode, m = 0. The shorter wavelength can be seen when
comparing PSE computation at St = 0.4, figures 2.16(c)-2.16(d) with respect to the lower
frequency St = 0.2, figures 2.16(a)-2.16(b). Computation have been done by considering
the term ∂p

∂x
, thanks to the stabilization procedure, Figures 2.16(a)-2.16(c), and by drop-

ping out the mean pressure streamwise derivative, Figures 2.16(a)-2.16(c). As expected
results are quite close each others. The oscillatory behavior of the perturbation pressure
waves is clearly shown in both the streamwise and radial directions. The RMS values of
the perturbation pressures in figure 2.16 are shown in figure 2.17. In the experiment of
Troutt and McLaughlin (1982)[129] three dominant instability wave modes are excited
simultaneously, m = 0 and m = ±1. Indeed, to compare with our results additional
computation to the first helical modes is required (fig. 2.18). The directivity is estimated
from the RMS pressure contours. If the term ∂p

∂x
is not neglected the solution seems to
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xx

|p′||p′|

a) b)

Figure 2.15: Absolute pressure values at r/D = 0.5 obtained by PSE computations (full
lines) are compared with Yen and Messersmith [134] results (△). Comparisons have been
done for azimuthal wavenumber m = 0 and for (a) St = 0.2 and (b) St = 0.4.

∂p

∂x
= 0 m = 0; ∂p

∂x
6= 0 m = 0; ∂p

∂x
= 0 m = 1; ∂p

∂x
6= 0 m = 1; ∂p

∂x
= 0 Exp. [129]

St = 0.2
St = 0.4

31◦ 32◦ 32◦ 35◦ 30◦

30◦ 41◦ 30◦ 42◦ 36◦

Table 2.1: Directivity of the pressure instability waves.

have a higher directivity, also if compared with the experimental results, Tab. 2.1. Tab.
2.1 also show that PSE prediction agrees quite well to the experimental results.

Higher accuracy of the predicted directivity can be found by coupling PSE with an
acoustic analogy as shown in Chapter 3.
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Figure 2.16: Contour lines of the pressure waves for azimuthal wavenumber, m = 0. Same
scale for each plots.
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Figure 2.17: The RMS values of the pressure waves for azimuthal wavenumber, m = 0.
Same scale for each plots.
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Figure 2.18: The RMS values of the pressure waves for azimuthal wavenumber, m = 1.

2.2.3 Large Eddy Simulations

This section shows how stability analysis is applied to a turbulent supersonic under-
expanded single and dual-stream jet. The main characteristic of under-expanded jets
is the formation of a system of shock-cells at the exit of the nozzle that allows the jet
to progressively expand to ambient conditions. This system is formed by a series of
expansion and compression waves that bounce inside the potential core of the jet. The
LES simulations have been carried out with the Finite Volume multi-block structured
solver elsA (Onera’s software [18]) and performed by the Early Stage Researcher (ESR3)
Carlos Pérez in collaboration with CERFACS team.
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a- Case III: Turbulent single jet (TSJ)

The jet is under-expanded and at Mach number M = 1.15. Its Reynolds number is
Re = 106. This configuration has been tested experimentally by André [9]. The shock-
cells manifested in the core of the flow, as seen in figure 2.19, interact with the instabilities
around the potential core producing an intense noise as explained in Ray (2007)[103].

x

r

ūx

Figure 2.19: Spatial distribution of the mean axial velocity computed by LES. The shock-
cells are distributed along the streamwise direction in the core of the jet.

Pressure perturbations are propagated to the far-field by means of the FWH analogy
using the data on a topological surface located at r/D = 3. The results are shown in
figure 2.20 (a) at different angles and compared with the experimental data of André [9].

(a) (b)

Figure 2.20: Acoustic spectrum in the far-field (50 diameters) for a Mj = 1.15 under-
expanded jet. θ is measured with respect to the jet axis, (a) SPL, (b) OASPL. From
Arroyo (2016)[94]

The SPL is in good agreement up to the mesh cut-off Strouhal. The Overall Sound
Pressure Level (OASPL) is computed and compared with the experimental data in figure
2.20 (b). The simulation, being able to capture the main noise contributions of an under-
expanded single jet, is a perfect base-flow to compute the stability and sensibility analysis.

58



2.2 Applications

From the LES data, temporal and azimuthal means have been done by C.E.R.F.A.C.S.
laboratory in order to produce the steady base-flow (fig. 2.19) on which the analysis is
performed. A fit procedure was required as well to smooth the small variation of the
parameters obtained when means of the LES results is done. This fit procedure has been
developed using a Gaussian procedure implemented in the MATLAB function ”fit” to
avoid strong oscillations in the first derivative of the parameters, but at the same time,
the physic and the behaviour of the base-flow stay unchanged.

The stability results presented here refer to axysimmetric instabilities with m = 0.
The PSE computation has been initialized at the streamwise position x = x0 and for a
Strouhal number of St = 0.890 using Linear Stability Equations.

Figure 2.21 shows the spatial distribution of the pressure perturbation p′ at the nondi-
mensional time t = n/St, where n is an integer number. The perturbation increases in
the unstable regions of the flow (Im(α(x)) < 0) and damp down when the flow becomes
stable. The spatial wavelength λ = 2π/Re(α) can also be guessed in the figure.

x

r

p′

Figure 2.21: Spatial distribution of the real part of the perturbation p′, Re(p′) for the
Strouhal number St = 0.89, the pressure growth in the unstable regions of the jet and
fall-down for high values of the streamwise coordinates where the flow is stable.

The influence of the frequency or Strouhal variations has to be studied since the
André’s experimental spectrum (fig. 2.20) exhibits two screech noise frequencies [9]. The
real and imaginary part of α are plotted on figure 2.22. The frequency dependence on the
real wave number is obvious, and the shock cells locations are visible in the range of x = 2
to x = 8. It is natural since the stability properties are very sensitive to any mean flow
variations. The variation of the frequency on the growth rate Im(α) are quite important
close to the nozzle exit. Then, it seems that the growth rate is governed by the shock
cells and not by the frequency. Downstream, when shock cells are weak, the growth rate
tends to frequency independent (in the range of the study).
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x

Re(α)

Im(α)

Figure 2.22: Axial distribution of the streamwise wave-number α for different values of
the Strouhal number, respectively 1.10, 1.30, 0.89, 0.67

b- Case IV: Turbulent dual-stream jet (TDSJ)

The test case proposed is related to an application of interest within the current aeroa-
coustic research on jet noise reduction from civil aircraft. In figures 2.23 and 2.24 the
flow conditions and the geometry of the nozzle are respectively specified. The geometry
is the one of a dual stream axial symmetric jet with coaxial nozzles for the primary and
secondary flow. Both the primary and secondary stream flow through conical plain con-
vergent nozzles and the exit sections are staggered, with the external and the internal
cowl deflecting respectively by a 12◦ and 14◦ angle towards the jet axis. The bypass flow
exits the nozzle 0.021 m upstream the primary nozzle exit section and the secondary jet
diameter is more than double the internal one. The design does not include the use of
any plug and the nozzle is conceived with a fixed geometry in mind. As the numerical
predictions would be compared with experiments performed at the Von Karman Institute
for Fluid Dynamics, the total mass flow rate is dictated by the facility performance of
the experiment, giving a value of 1.09 kg/s at target test point. The secondary flow is
sonic at the nozzle exit section of the convergent duct, therefore experiencing a consid-
erable degree of under-expansion, causing the jet to be characterised by the of a shock
cell system similar to the observed for the single under-expanded test case 2.2.3. The
primary flow is also affected by a train of shock cell structures, figure 2.25(a), which
prevents the perfectly expanded condition to be reached. Very few examples of stability
analysis of dual stream jet can be found in literature. A parameter study was published
by Viswanathan (2004)[130] and an investigation on the shock cell system in a dual flux
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jet has been performed by Tam et al. (2008)[120]. This test case is of great interest in
the current aerodynamic and aeroacoustic research.

Figure 2.23: Under-expanded supersonic dual-stream jet est case. Flow conditions

Figure 2.24: Under-expanded supersonic dual-stream jet test case. Nozzle geometry.
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(a)

(b)

Figure 2.25: Under-expanded supersonic dual-stream jet test case. Time and azimuthal
average mean axial velocity ūx.

The flow conditions of the co-axial jet are: the primary flow is cold and subsonic with
an exit Mach number of Mp = 0.89 (CN P R = 1.675), the secondary stream is operated
at supersonic under-expanded conditions with a perfectly exit Mach number of Ms = 1.20
(F N P R = 2.45). Here, CN P R and F N P R stand for Core and Fan Nozzle to Pressure
Ratio respectively. The jets are established from two concentric convergent nozzles with
primary and secondary diameters of Dp = 23.4mm and Ds = 55.0mm respectively. The
thicknesses of the nozzles at the exit are of 0.5mm. The Reynolds numbers based on the
jet exit diameters are Rep = 0.57 × 106 and Res = 1.66 × 106. The ambient conditions
used for this test case are a pressure Pamb = 101325 Pa and a temperature Tamb = 283 K.
The stagnation pressure or total pressure Ptp = 1.6972 × 105 Pa for the primary stream
and Pts = 2.4825× 105 Pa for the secondary stream. The total temperature Tt has been
kept equal to the ambient temperature Tamb for both streams.
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The lengths are non-dimensionalized by the primary diameter Dp. As in the single
stream jet case 2.2.3, the steady base flow is obtained by temporal and azimuthal integral
average in the whole computational domain (Ω) figure 2.26(a). The same fit procedure of
the data implemented for the TSJ case was used. The computational domain (Ω) is 30
diameters in the streamwise direction and 6 in the radial direction.

x

r

ūx

(a)

x

r

ūx

(b)

Figure 2.26: Test case under-expanded supersonic dual-stream jet. Time and azimuthal
average mean axial velocity ūx.

The PSE computation is initialized by a LST analysis. The choice of the initial
station x = x0 have been done, firstly, at the exit of the primary nozzle (test 1). Here,
as example, we show the results of the eigenvalues problem obtained in the configuration
of St = 1.0; two very distinct unstable modes are observed in the stability spectrum (fig.
2.27-a). These two modes are the hydrodynamic Kelvin-Helmholtz modes (referred to
as ”KH modes”) of the two mixing layers, KH1 and KH2 referring respectively to the
inner and outer mixing regions. However, the strong shock that appears just at the end
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of the primary nozzle produce, necessarily, a strong variation of the parameters in the
streamwise direction (fig. 2.25(b)). This shock-wave destabilize the PSE computation
and, moreover, clearly not satisfy the hypothesis of slow variation of the base flow in the
streamwise direction. The second choice (test 2), then, dropped out the strong shock
cell by imposing a parallel flow from the exit of the nozzle to 1Dp in the axial direction,
as shown in figure 2.26(b). In figure 2.27-b is plotted the stability spectrum for this
new configuration. Both KH modes are much less unstable and with the imaginary part
almost at the same value. The influence of the Stouhal number to those values is analysed
in table 2.2

−3

−2

−1

0

1

2

3

−1 0 1 2 3 4 5 6

Im(α)

Re(α)

KH2

KH1

a)

−3

−2

−1

0

1

2

3

−1 0 1 2 3 4 5 6

Im(α)

Re(α)

KH1 KH2

b)

Figure 2.27: Stability spectrum of the turbulent dual-stream jet at the axial position
x = x0 for Strouhal number St = 1.0 and for azimuthal wavenumber m = 0. In dark
point the 2 unstable modes related to Kelvin-Helmholtz instability in the primary KH1

and secondary KH2 jet. case a) refers to the local stability at the position x = 0Dp (test
1) and case b) refers to the local stability at x = 1Dp (test 2).

Results of the growth rate with respect to the two different base flows are shown in
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figure 2.28. The instability behaviour of the flow and the point where the flow becomes
stable, αi > 0 are not changing (x = 15Dp). Indeed, the solutions quickly converge to
same values after around 3Dp in the streamwise direction, showing that the choice of
overpass the shock wave will not affect the physics of the instability waves.
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x

Overpassing 1st shock-cell
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x*0

Figure 2.28: Growth rate computed for the two different baseflow. The two solutions
quickly converge to the same values.

By considering this new base flow configuration a parametric analysis of the pertur-
bation waves with respect to different values of the Strouhal number, St, in the case of
axisymmetric instabilities m = 0 has been done in the following. First conclusion can be
pointed out observing Tab. 2.2, where the LST analysis is computed at the beginning of
the computational domain, x = x0. The values of the streamwise wavenumber α function
of the Strouhal number, St, show that the local growth of the KH2 mode is larger than its
related to KH1 mode, which suggest a local dominance of the instability wave developing
in the secondary jet. As expected, the real part αr, inversely proportional to the wave-
length, decreases with the Strouhal number in the primary and in the secondary jet. The
local growth rate αi in the primary jet decrease with the Strouhal number and opposite
behaviour is observed for the unstable modes related to the secondary shear layer, KH2.
This first results suggest a crucial role of the secondary jet, moreover, for small values of
the Strouhal number.
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∂p

∂x
= 0 KH1 KH2

St = 1.0
St = 0.8
St = 0.6
St = 0.4

3.46− 0.26i 4.18− 0.23i
2.78− 0.22i 3.52− 0.33i
2.10− 0.18i 2.79− 0.50i
1.39− 0.12i 1.74− 0.63i

Table 2.2: Values of the initializing unstable Kelvin-Helmoltz modes in the inner and in
the outer shear-layer for different Strouhal numbers.

Clearly, this first trend, is not fully representative of the disturbances and a PSE anal-
ysis is necessary to analyze the axial evolution of them. The frequency dependence of the
real and imaginary part of the streamwise wavenumber α(x) are plotted in figures 2.29
and 2.30, respectively. As observed for the single stream case, the shock cells structures,
clearly, influence the values of the wavenumber in particular the growth rate. The wave
length αr seems to be more affected by variations of the Strouhal number, St, if com-
pared to the growth rate. The position where the flow becomes stable, however, change
noticeably varying the Strouhal number.
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Figure 2.29: Real part of the wavenumber α(x) for different Strouhal values.
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Figure 2.30: Imaginary part of the wavenumber α(x) for different Strouhal values.
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Figure 2.31: Comparison of the real part of α(x) is made for several Strouhal numbers.
Computation are obtained by initialising the PSE with the primary unstable mode, KH1,
full lines and with the secondary unstable modes, KH2, dot-lines. .
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As explained in Léon (2012)[63] whereas the outcome is unambiguous when a single
unstable modes is present, the result is confused if the base flow supports multiple in-
stabilities. It almost impossible to separate the two distinct unstable modes KH1 and
KH2 computing the PSE without any kind of interaction between them. In particular
the modes related to the primary jet, KH1, probably due to his less unstable values,
seems to quickly interact with the secondary jet. As observed in Sinha et al. (2016)[111]
the instability waves referred to the two modes collapse downstream in the same wave.
To elucidate this point, figure 2.31 shows the wavenumber αr(x) of the outer and inner
PSE solutions for different Strouhal number in both cases, KH1 and KH2. The solutions
converge into a same values when moving downstream in the streamwise direction.

Qualitatively this mechanism can be observed in figure 2.33 and 2.34. When computing
the PSE with respect to the secondary modes, KH2 the pressure perturbation p′ stay in
the secondary jet (r/Dp = 1.0 at the exit of the nozzle) at least, until this distinction can
be done (x = 10− 11Dp). The pressure perturbation p′ referred to the primary jet start
to grow up in the inner shear layer, but then ”jump” to the more unstable outer shear
layer. This behaviour is exaggerate for St = 0.4, see figure 2.34, where the secondary
shear layer is much more unstable comparing to the primary one, 2.2.

These evidences demonstrates the coalescence of the outer and inner modes. Also if
they start out as distinct instabilities near the nozzle, PSE cannot track them separately.
These observations are representative of the range of frequencies studied (St = 0.4, 0.6,
0.8, 1.0). The intrinsic interaction between the two modes, KH1 andKH2, put in evidence
three observations: (1) the primary and secondary shear layer merge downstream of the
nozzle and at least this zone cannot support multiple unstable Kelvin-Helmholtz modes;
(2) the more unstable secondary shear layer interact with the unstable modes even if this
perturbation is generated in the primary shear layer; (3) it seems that in the interval
[6.5, 8] there is a natural exchange of stability. These Observations can be confirmed by
a loacal stability analysis.

On figure 2.32 are plotted the most unstable eigen values obtained via the local stability
theory from x = 1 to x = 8. Inside blue circles are emphasized the first KH mode (KH1)
at x = 6 and x = 8, and in red, the second KH modes, KH2, are plotted at the same
positions. It is clearly demonstrated that the KH1 becomes less amplified than the KH2

at x = 8, contrarily to the case x = 6. The αi axis ends on the figure at −0.01 to avoid
the numerous modes with neutral amplification. More deep conclusions will be pointed
out when computing the sensitivity analysis in Chapter 3.
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Im(a)

Re(a)

Figure 2.32: LST: part of the spectrum for different x. St = 1. The vertical axis ends at
−0.01.
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Figure 2.33: Spatial distribution of the absolute value of the pressure disturbance, |p′|
for St = 1.0. (a) PSE is initialised with the secondary unstable modes, KH2. (b) is
initialised with the primary unstable modes..
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Figure 2.34: Spatial distribution of the absolute value of the pressure disturbance, |p′|
for St = 0.4. (a) PSE is initialised with the secondary unstable modes, KH2. (b) is
initialised with the primary unstable modes.

2.2.4 Conclusion

In this chapter we presented the PSE approach. This approach is used in this thesis to
analyse the convective instability that grow in the shear layer of the jet. This instability
are well known as Kelvin-Helmholtz instability. The code used to investigate this unstable
waves has been developed at ONERA by Léon [63]. In this thesis we present four different
cases, an analytical subsonic and incompressible flow, a semi-empirical supersonic flow
and an under expanded single and dual stream jet obtained by LES computation. We
implemented the stabilization of the PSE code, this up-grate aims to the computation of
the PSE equations with a smaller discretization in the streamwise direction. Because of
the complexity of an under expanded supersonic jet a good discretization in the radial,
but as well in the streamwise direction is required. The stabilization procedure, developed
by Andersson et al. (1998)[8], has been validated for a supersonic semi-empirical test case.
The PSE computation for a specific under expanded dual stream jet configuration has
been done. This configuration has an important industrial interest as confirmed by the
partnership of Airbus and Alstom at this project. A parametric study of the Strouhal
number pointed out as the shock cell play an important role in the growth rate of the
instability if compare to the frequency. Finally as observed in previous works, Léon and
Brazier[64] and Sinha et al. [111] it is not possible to completely separate the two unstable
Kelvin-Helmholtz modes referring to the primary and secondary shear layer.
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Sensitivity analysis

Adjoint methods are based on the use of the adjoint operator of a given system of equa-
tions. The adjoint equations have a form similar to the direct equations, and so the nu-
merical method required for its implementation is of the same complexity as the method
used for the direct algorithm. However, some subtle differences exist which must be con-
sidered, and are highlighted in this chapter. The aim of the present work is to derive
the adjoint of the Parabolized Stability Equations for a compressible jets in a consistent
way, to validate it by performing some test cases as in the previous chapter and to apply
sensitivity to the complex case of dual-stream under-expanded jet. At the beginning of
this chapter the principles of the adjoint methods are given. After that, the mathematical
formulation of the adjoint of the Parabolized Stability Equations is detailed. Then the
new code developed is validated and, finally, its numerical implementation is presented.
Adjoint methods present a wide range of applications of interest in fluid dynamic prob-
lems: sensitivity and receptivity analysis, computation of the optimal perturbation and
optimal control, and other optimization problems such as shape and grid optimizations,
error minimization and optimal modification of the mean flow. In this thesis the adjoint
methods is used to perform sensitivity analysis for compressible jets. Receptivity analysis
has not been done in this thesis, but it is closely related to sensitivity analysis and so a
brief description is included. The literature search reveals that the adjoint of the PSE
for compressible flow have never been applied to investigate external forcing perturbing
the system[10, 12]. We decided to perform this study because in our opinion sensitivity
analysis (SA) is one of the most successful ways to understand how external disturbances
evolve and create unstable waves into a jet.

3.1 Deeper knowledge of adjoint approach

This section is inspired by the review of Lucchini and Bottaro (2014)[71]. Adjoint equa-
tions can be obtained, basically, in two ways that are intrinsically different:

• the adjoint equations are extracted by the direct equations in the continuous space
and then both are discretized to be solved. This method is known as continuous
adjoint
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• the direct equations are discretized and the adjoint method is applied to this new
system of equations to obtain the discretized adjoint.

The continuous equations are easier to implement because of the similarity with the
direct equations and easier to read and to interpret. On the other hand the discretized
approach aims the adjoint solution to be non dependent to the discretization. In our
works we always approach the first methodology that it is also, traditionally, the choice
of IMFT’s works.

In this chapter the inner product in the axial direction, radial direction and in the
whole computational domain are defined as follows:

〈u,v〉r =

ˆ

∞

0

uhv rdr, 〈u,v〉x =

ˆ xf

x0

uhv dx and 〈u,v〉Ω =

ˆ

Ω

uhv dΩ (3.1)

Where u and v stand for generals complex vectors and dΩ = rdrdx.

3.2 Pedagogical example of adjoint procedure

We considered the same problem illustrated by Airiau (2004)[4], we show the procedure
to evaluate the adjoint equation based on the Lagrange multipliers.

Consider x and y the space variables and Ω the rectangular domain of our problem,
(x, y) ∈ Ω, Ω = [x0, xf ]× [0,∞[.

We define the cost functional as:

E =
1

2

(

ε0 〈q0, q0〉y + εf 〈qf , qf〉y + ε 〈q, q〉Ω

)

(3.2)

where 〈q0, q0〉y , 〈qf , qf〉y and 〈q, q〉Ω are respectively
´

∞

0
q20dy,

´

∞

0
q2fdy and

´

Ω
q2dΩ.

The cost function is weighted combination of the three terms and we can control it chang-
ing the values of ε0, εf and ε.

The state equation is the well known Linear Burger’s equation:

∂q

∂x
+ U (y)

∂q

∂y
−

∂2q

∂y2
= f (x, y) (3.3)

where U and f are known functions. In symbolic form the 3.3 reads:

Lq = f (3.4)

with:

L =

{

∂

∂x
+ U (y)

∂

∂y
−

∂2

∂y2

}

(3.5)

The initial condition and boundary conditions are respectively:

q (x0, y) = q0 (y) , (3.6)
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q (x, 0) = qw (x) , (3.7)

lim
y→∞

q (x, y) = 0 (3.8)

Arbitrary we calculate the sensitivity of E with respect to f :

Sf = ∇fE (3.9)

Writing the Lagrangian functional, the problem becomes unconstrained:

L = E − 〈q∗, Lq − f〉Ω (3.10)

where q∗ is the Lagrangian multiplier.
The gradient ∇Lu of the functional with respect to a general variable u is defined as:

L(u+ δu)− L(u) = 〈∇uL, δu〉Ω (3.11)

All the theory of this approach is concentrated in the next two remarks:

1. because equation 3.4 is always verified L = E.

2. by definition the variation of the functional δL is equal to the sum of any directional
derivatives:

δL = 〈∇qL, δq〉Ω + 〈∇fL, δf〉Ω + 〈∇q∗L, δq
∗〉Ω + 〈∇q0L, δq0〉y + 〈∇qwL, δqw〉x

.

Imposing to zero all the variations of the functional excepted δL = 〈∇fL, δf〉, consid-
ering remark 1 and remark 2 and using integrations by parts rule we find:

L∗q∗ = εq
q∗ (xf , y) = εfqf

q∗ (x, 0) = 0, lim
y→∞

q∗ (x, y) = 0

and the sensitivity Sf simply is:

Sf = q∗

To evaluate Sf we only need to solve ones the adjoint equations.

3.3 Adjoint PSE theory

This section has the purpose of illustrating a general adjoint based theory for the PSE
approach presented in the previous chapter that can be a powerful tool not only for the
study of external forcing, but for any other parameter involved on the PSE computation.
All the results presented here will refer to axisymmetric perturbations, m = 0 in a jet.
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Chapter 3 : Sensitivity analysis

3.3.1 The cost functional

By definition [101] sensitivity is equivalent to a gradient of any functional for instance
described by a quadratic integral. This functional called E could be a physical energy
associated to the perturbed velocity, temperature and pressure. Mathematically it can be
written as a quadratic function of the full disturbance vector. In addition the energy can
be defined globally, in the full computational domain or at a given x streamwise location.

So let define the local energy as :

Ex(x) =

ˆ

∞

0

q′hMq′mrdr.

mr is a metric and M is a diagonal positive matrix which weights the component of
the disturbance vector and it allows some various energy definitions.

The global energy is defined from the local energy as:

E =
1

2

ˆ xf

x0

Ex(x)dx

Inspired by the previous work of Walther et al. (2001)[131] the objective function is
set as a quadratic function associated to the full disturbance vector. This function can
be defined locally in a given streamwise location:

Ex(x) =

ˆ

∞

0

q̂hq̂ r dr where, q̂ = χq

with

χ(x) = exp

[

i

ˆ x

x0

α(ξ)dξ

]

,

The new unknown term q̂(x, r) can be read as the spatial distribution of the disturbance
q′(x, r, t). In addition it can be defined globally, in the full computational domain:

E =
1

2

ˆ xf

x0

Ex(x)dx

The Adjoint PSE theory is developed for the following general non dimensional cost
functional:

E = ℓ

ˆ xf

x0

Ex dx+ ℓfEf + ℓ0E0 (3.12)

Where Ef = Ex(xf ) and E0 = Ex(x0).

3.3.2 State equation (PSE)

Any perturbation q′ is assumed to have a wave-like exponential term χ(x) exp(i(mθ−ωt))
and an amplitude function q(x, r) that varies slowly with x as:
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3.3 Adjoint PSE theory

q′ = q(x, r)χ(x)ei (mθ − ωt), (3.13)

The idea is to explore flow response to external harmonic forcing f ′ directly acting in
the Linearized Euler Equations (LEE):

∂ρ′

∂t
+ ρ̄(∇ · u′) + ρ′(∇ · ū) + (ū ·∇ρ′) + (u′ ·∇ρ̄) = f ′

1 (3.14)

ρ̄

(

∂u′

∂t
+ (∇u′ · ū) + (∇ū · u′)

)

+∇p′ = f ′

m (3.15)

∂s′

∂t
+ (∇s′ · ū) + (∇s̄ · u′) = f ′

5 (3.16)

where the source term f ′ = [f ′

1,f
′

m, f ′

5] is applied in the LEE, while f ′

m is the momen-
tum forcing with components: f ′

m = [f ′

2, f
′

3, f
′

4]
Following the PSE approach modal decomposition of the perturbation q′ and of the

source term f ′ is applied.

q′ = q χ ei(mθ − ωt) and f ′ = f ei(mθ − ωt) (3.17)

Substituting equation 3.17 into equation 3.14-3.16 and using PSE assumption we get
the forced Parabolized Stability Equations for jet. In symbolic form reads:

χLPSEq = f (3.18)

LPSE is the same operator shown in equation 2.26.
Normalization equation and the boundary conditions are the same of the unforced

PSE equations (Chapter 2).
As the problem is ”quasi” parabolic (see previous chapter) we initialize the problem

with a known initial condition (i.e. from the local stability eigenvalue problem).

q(x0, r) = q0 and α(x0) = α0. (3.19)

3.3.3 Sensitivity analysis

a- Definitions

The sensitivity Svk is defined as the gradient of E with respect to any component of a
vector v, vk or any scalar variable b, Sb. Formally it can be written as:

Svk = ∇vkE(vk = vk0) =

[

∂E

∂vk

]

vk=vk0

or

Sb = ∇bE(b = b0) =

[

∂E

∂b

]

b

(3.20)
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Chapter 3 : Sensitivity analysis

As shown in the previous example, in section 3.2, the technique adopted here to
solve the computational gradient is based on the Lagrange multipliers method. The
unconstrained Lagrangian functional, L, which operates on the real range, take directly
into account of the PSE equations, the normalization equation, the boundary conditions
and the variables of the sensitivity. Here the theory is developed for external sources,
f(x, r), for variations of the frequency ω and for variations of the initial condition q0(r).
It is easy to demonstrate that an extension of any other variables is possible with few
modifications of the adjoint equations. Under the hypothesis of small variations, all
arguments of this new functional are assumed independent of each others. We have

L = E − 〈q̂∗, χLPSEq − f〉Ω −

ˆ xf

x0

n∗h〈q,
∂q

∂x
〉r dx− 〈p̂∗

0, q(x0, r)− q0〉r + c.c. (3.21)

where q̂∗, n∗ and p̂∗

0 are the complex Lagrangian multipliers.
The variation of the functional schematically reads:

δL =
∂L

∂q̂
δq̂+

∂L

∂α
δα+

∂L

∂q̂∗
δq̂∗+

∂L

∂n∗
δn∗+

∂L

∂q̂0

δq̂0+
∂L

∂p̂∗
0

δp̂∗

0+
∂L

∂f
δf+

∂L

∂ω
δω+c.c. (3.22)

Where the two last terms refers to the sensitivity with respect to forcing, f(x, r) and
to the frequency, ω. Because of the identity in equation 3.21, the Lagrangian L is the cost
function E by definition. Imposing all the different directional derivatives must vanish
with the exception of the gradient we are looking for, i.e. ∂L

∂fk
δfk:

δL =
∂L

∂fk
δfk =

∂E

∂fk
δfk (3.23)

In order to make the equations more readable is more convenient to write the La-
grangian multipliers q̂∗ and p̂∗

0 in a way similar to the direct variables by the introduction
of a wave-like part[3]:

q̂∗ = χ∗q∗ and p̂∗

0 = χ∗p∗

0 (3.24)

where χ∗ is such that χχ∗h = χ(xf ) = χf . After integrations by parts and several
mathematical steps detailed in the appendix we obtain the adjoint equation with the
related closing equation and the sensitivity.

a- Gradients resolution

1. Imposing equal to zero the gradient with respect to the state vector lead to the
so-called adjoint PSE equations where the adjoint state q is solution of:

∂L

∂q
= 0 : χh

f

[

(

Ah +Bh
)

q∗ −
∂Ah

1q∗

∂x
−

1

r

∂Ah
0q

∗

∂r

]

=
∂ (n∗q)

∂x
− n∗h∂q

∂x
+ ℓχχhq

(3.25)

with boundary conditions:
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3.4 Validation of the adjoint PSE theory

δq(x0) : ℓ0q(x0) + Ch
0 q

∗(x0) + n∗(x0)q(x0)− χfp
∗

0 = 0 (3.26)

δq(xf ) : ℓfχfχ
h
fq(xf )− Ch

f q
∗(xf )− n∗(xf )q(xf ) = 0 (3.27)

2. Imposing equal to zero the gradient with respect to the streamwise wavenumber,
α(x), leads to the closing equation of the adjoint PSE where n is solution of:

∂L

∂α
= 0 : ℓEx + χf

∂ 〈q∗, A0q〉r
∂x

= 0 (3.28)

with boundary conditions:

ˆ xf

x0

δα dξ : ℓfEf − χf

〈

q∗

f , A0fqf

〉

r
= 0 (3.29)

3. The gradient with respect to the external forcing, f(x, r), to the frequency, ω, and
to the initial condition, q0(x), are the sensitivity themselves and respectively reads:

∂L

∂fk
δfk = 〈q̂∗k, δfk〉Ω + c.c. (3.30)

∂L

∂ω
δω = iχf 〈q

∗, A2qδω〉Ω + c.c. (3.31)

∂L

∂q̂0k
δq̂0k = 〈p̂∗0k, δq̂0k〉r + c.c. (3.32)

b- The discretization numerical procedure

A sixth order compact difference scheme [62] is used in the radial direction. The stream-

wise derivative,
∂q∗

∂x

∣

∣

∣

∣

j

, is approximated by the backward finite-difference form (q∗

j+1 −

q∗

j )/∆x with integration from xf to x0. The equation 3.25 and 3.28 are solved with a
Newton-Raphson algorithm and convergence is fast, less than 10 iterations with n∗ for
each streamwise location x. The iteration is repeated until a relative error smaller than
10−8.

3.4 Validation of the adjoint PSE theory

3.4.1 Sensitivity coefficients for cases I 2.2.1 and II 2.2.2

a- Case I 2.2.1

Figure 3.1 shows The variations of the total energy E with respect to forcing acting
in the continuity, momentum and energy equation for the incompressible case I 2.2.1.
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Chapter 3 : Sensitivity analysis

The normalized sensitivity coefficients that the shape of the sensitivity functions and the
location of their maximum are strongly related to the radial and the streamwise variation
of the base flow. In particular the maximum of sensitivity is located along the border of
the potential cone. In addition the sensitivity increases when the streamwise coordinate
decreases. That makes sense since it is natural to act as soon as possible on the noise
generation mechanism if reduce noise emission is targeted. Another important point is
that sensitivity to axial momentum forcing is much higher than to radial momentum
forcing.

rr

Sf1 Sf2

Sf4 Sf5

Figure 3.1: Sensitivity of the analytical incompressible jet. From the top to the bottom
we have respectively, the gradient of E with respect to the forcing acting in the continuity,
r-momentum, x-momentum and energy equation at different fixed position in the stream-
wise direction (x = 5.0, 2.5, 2.0, 1.5, 1.0)
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3.4 Validation of the adjoint PSE theory

b- Case II 2.2.2

rr

Sf1

E

Sf2

E

Sf4

E

Sf5

E

Figure 3.2: Sensitivity of the semi-analytical supersonic jet. From top to the bottom we
have respectively, the gradient of E with respect to the forcing acting in the continuity,
r-momentum, x-momentum and energy equation at different fixed position in the stream-
wise direction (x = 4.0, 2.0, 1.0, 0.5). The Strouhal number is St = 0.4

The normalized sensitivity coefficients with respect to conservation equation forcing are
shown in Fig. 3.2, for Strouhal number, St = 0.4. They are strongly dependent on the
spatial coordinates x and r. As expected, the sensitivity coefficients grow at the positions
in the streamwise direction closer to the exit nozzle at x0. The maximum is reached close
to the potential core in the shear layer of the jet in the range x ∈ [0.45, 0.55] approximately.
These conclusions are very similar to the ones found in the laminar subsonic jet, figure
3.1.
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Sf5/E

Sf5
/E

x

x

r

r

b)

a)

Figure 3.3: The normalized sensitivity with respect to the forcing acting in the energy
equation, Sf5/E, as a function of the spatial coordinates. The results refer to the super-
sonic semi-empirical baseflow 2.2.2 with a) St = 0.2 and b) St = 0.4. Below the isoline
ūx = 0.99 · ūx(0, r) we can assume to be in the potential core otherwise the shear layer is
delimited by the isoline ūx = 0.99 · ūx(0, r) and by the isoline ūx = 0.01 · ūx(0, r). The
dashed line is the inflection point of the baseflow
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3.4 Validation of the adjoint PSE theory

In figure 3.3 can be observed the spatial distribution of the normalized sensitivity with
respect to forcing acting in the energy equation (for the other sensitivities conclusions are
the same). Two different Strouhal number are taking into account: a) St = 0.2 and b)

St = 0.4. The figure clearly shows the crucial role of the inflection point (
∂2ūx

∂r2
=0) in

the evolution of the sensitivity. Moreover The maximum of the sensitivity max (|Sf/E|)
is located along this line.

These results are well correlated with the location of the sound generation mechanism
as seen in previous works [123, 64].

All these conclusions should be taken into account during the development of some
noise reduction strategies. However it is also important to observe that the maximum
of sensitivity, for each fixed position in x, is located near to a region where sensitivity is
almost zero. Therefore the location of any control system must be very accurate to get
some good efficiency.

3.4.2 Validation procedure

The APSE computations have been validated for cases 2.2.1 and 2.2.2 by following the
steps outlined below:

• PSE code have been modified in order to solve:

χLPSEq = fk (3.33)

where fk is the vector with fk in the k-th components and zero otherwise.

• The variation of the quadratic function δE is computed as a difference between
equation 3.33 and equation 2.26, after two PSE runs:

δE = E(δfk)− E(0) (3.34)

The small forcing δfk is chosen as:

δfk =
ε

K
F (x− x̃, r − r̃), with

F (x− x̃,r − r̃) = exp(−σx(x− x̃)2 − σr(r − r̃)2)
(3.35)

where (x̃, r̃) is the central location of the forcing and K is a constant which nor-

malizes δfk such that

ˆ

Ω

δfkdΩ = ε. This Gaussian function, equation 3.35 is set

in the k-th line of the equation 2.26 and it acts in a restricted region of the domain
(fig. 3.4). Several tests have been done and the range of the different coefficients to
define fk are given in Tab. 3.1.

• The variation of the quadratic function δE is computed following APSE theory:

δE =

ˆ

Ω

χ̄(xf )

χ̄(x)
q∗k(x, r)δfk(x, r) dΩ + c.c. =

ˆ

Ω

q̂∗k(x, r)δfk(x, r) dΩ + c.c. (3.36)
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shear layer

potential cone

x

r

Figure 3.4: Spatial distribution of the gradient of E with respect to a forcing acting in
the x-momentum, Sf4 . Below the isolines ūx = 0.99 · ūx(0, r) and ūx = 0.01 · ūx(0, r)
delimited the potential core and the shear layer regions of the jet. The isolines full line
and dashed line indicate respectively positive and negative values of the sensitivity. With
• are plotted the (x̃, r̃) used to validate the A-PSE.

Forcing smaller and more localized in the position nearest from the exit of the nozzle
is required in order to avoid modifications of the initial condition q(0, r). The locations
of the forcing have been chosen, for both cases, just out of the potential core where the
sensitivity is high, see figure 3.4 and, because the arbitrary of the locations tested, they
are simply placed along a straight line.

The state perturbation q(x) and the complex wave number α are required and have
to be saved when running the PSE problem in the first step .

Results of equation 3.36 shown a very good agreement compared to the direct approach
equation 3.34 for the subsonic and supersonic configuration, as displayed in Fig. 3.5a and
3.5b. The results are obtained by forcing continuity and x-momentum equations, similar
results have been found forcing the energy and r-momentum equations.
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3.5 Supersonic under-expanded single-stream jet

x̃ r̃ σx σr ε
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.49 50 50 10−2

0.48 30 30 10−2

0.47 30 30 10−2

0.46 30 30 10−2

0.45 30 30 10−2

0.44 30 30 10−2

0.43 30 30 10−2

Table 3.1: Values of the parameters used for the validation at different spatial position

xx

δEδE

a) b)

Figure 3.5: Comparison between results from equation 3.34 (lines) and equation 3.36
(symbols) is made for semi-empirical flows (a and b refer respectively to the subsonic and
supersonic case.).

3.5 Supersonic under-expanded single-stream jet

Figure 3.6 provides the nondimensional sensitivity functions by forcing successively to
every conservation equation and is expressed as a function of the adjoint state. It is
equivalent to a local (Dirac) forcing. The maximum amplitude are weaker compared to
the previous supersonic test case. The location of this maximum is strongly dependent
on the streamwise coordinates and the highest sensitivity is closed to the nozzle exit.

The density and energy forcing are quite equivalent, similarly to the other subsonic
and supersonic cases. For all the four different forcing the sensitivity is localized inside
the shear layer and quickly fall down along the streamwise direction. This results suggest
that a flow control mechanism should be applied close to the exit nozzle, definitely before
the end of the potential core, and in the shear layer region in order to obtain the highest
response of the flow.
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rr

Sf1
E

Sf2
E

Sf4
E

Sf5
E

Figure 3.6: From top the bottom we have respectively, the sensitivity Sf computed for the
under-expanded supersonic single jet with respect to the forcing acting in the continuity,
r-momentum, x-momentum and energy equation at different fixed position in the stream-
wise direction (x = 4.0, 2.0, 1.0, 0.5)

3.5.1 Supersonic under-expanded dual-stream jet

Results for sensitivity analysis of the dual-stream jet configuration are shown in figures
3.7 and 3.8. The sensitivity is solved for the both unstable modes, KH1 and KH2 (see fig.
2.27) and for the Strouhal number St = 1.0. For both cases the sensitivity is spread along
the two shear layers and goes to zero for greater values of r. The first important result
is that the sensitivity is greater in the shear layer related to the unstable modes which
initializes the PSE, but the secondary flow has the highest value for any forcing acting
in the system. This result emphasizes the role of the secondary jet in this configuration.
In figure 3.7 two distinct peaks are located into the primary and secondary shear layer,
around r = 0.5 and r ≃ 1.0, respectively. The same mechanism, but much less prominent,
is observed in figure 3.8. These remarks are an additional evidence of the difficulty to
clearly separate the two unstable modes, as observed in the previous chapter for the PSE
computation. The primary unstable modes KH1 is more susceptible to be influenced to
the secondary shear layer. This mechanism is probably due to the more unstable nature
of the external shear layer. In this configuration, as observed for the single stream jet,
the density and energy sensitivity seems to exhibit a similar response along r. The total
quantity E is affected ”qualitatively” in the same way for controls acting in the continuity
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3.5 Supersonic under-expanded single-stream jet

or in the energy equations for all jet configurations studied in this thesis; this result is true
at least for axisymmetric instabilities. In both figures we still have a strong dependency
in the r-direction and the local peak of these sensitivities are located at the primary and
secondary shear layer radius. The maximum of amplitude are higher compared to the
single jet case, suggesting a stronger response to the flow to external forcing.

rr

Sf1
E

Sf2
E

Sf4
E

Sf5
E

Figure 3.7: The results refer to the unstable mode KH1. From top the bottom we have re-
spectively, the sensitivity Sf computed for the under-expanded supersonic dual-stream jet
with respect to the forcing acting in the continuity, r-momentum, x-momentum and en-
ergy equation at different fixed position in the stream-wise direction (x = 4.0, 2.0, 1.0, 0.5)

To conclude, instabilities growing in the secondary jet, KH2, are more unstable, less
affected to the instability located in the primary shear-layer and with higher values of
sensitivities. Focusing to these external disturbances we computed the adjoint PSE for
Strouhal number St = 1.0 and St = 0.6. For both cases the maximum of the sensitivity is
reached in the secondary shear layer, denoting a high response of this region to external
forcing. The region where the sensitivity is high is not affected from the value of the
Strouhal number, see figures 3.9-a and 3.9-b. On the other hand sensitivity decay faster
for the St = 0.6. After few diameters, Dp, in the axial direction the flow is not more
sensible to external forcing, see figure 3.9-a. When St = 1.0 a not negligible sensitivity
is found also for high values of the streamwise position ( fig. 3.9-b), allowing the control
to act as well in regions of the flow farther to the exit of the nozzle. This result should
be taken into account if the aim of the actuator is to reduce a given frequency of the
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rr

Sf1
E

Sf2
E

Sf4
E

Sf5
E

Figure 3.8: The results refer to the unstable mode KH2. From top the bottom we have re-
spectively, the sensitivity Sf computed for the under-expanded supersonic dual-stream jet
with respect to the forcing acting in the continuity, r-momentum, x-momentum and en-
ergy equation at different fixed position in the stream-wise direction (x = 4.0, 2.0, 1.0, 0.5)

spectral noise. Concluding all these remarks suggest that to implement a new noise
control strategy a very careful analysis of the interaction flow/actuator.

3.5.2 Conclusion

The sensitivity analysis based on adjoint PSE of subsonic and supersonic single-stream
jet flow has been validated. The validated approach has been used for a jet configuration
of industrial interest. The sensitivity with respect to under-expanded supersonic single
and dual-stream jets has been considered. First configuration outlines a localized region
where the response of the flow to external forcing is higher. This region has been identify
close to the exit nozzle into the shear-layer in the external boundary of the potential core
of the jet. The second configuration present two unstable Kelvin-Helmholtz modes one
for each shear-layer. The PSE and Adjoint-PSE computations show the central role of
the secondary shear-layer, where the flow is more unstable and the sensitivity is higher.
The local peaks of the sensitivity are located at the primary and secondary shear-layer
radius highlighting the results of the single- stream jet case. The location of the highest
sensitivity seems to be independent of the Strouhal number. However, to implement a
new noise control strategy, for both cases, the strong dependence of the sensitivity to
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3.5 Supersonic under-expanded single-stream jet

the spatial coordinates of the system suggest a very careful analysis of the interaction
flow/actuator. This results have been obtained for both stability and sensitivity analysis,
thanks to accurate LES computations from CERFACS. Focus our attention on the physical
explanation of the highest sensitivity location we found that the inflection point and the
shock-cell positions are crucial in the determination of such a zone.
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Sf5/E

Sf5
/E
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Figure 3.9: The normalized sensitivity with respect to the forcing acting in the energy
equation, Sf5/E, as a function of the spatial coordinates. The results refer to the under
expanded dual stream baseflow 2.2.3 with a) St = 0.6 and b) St = 1.0. Solid lines are
the isoline of the mean axial velocity, ūx. The dashed line delimits the inflection point of
the baseflow.
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Chapter 4

Uncertainty Quantifications and
adjoint PSE

The first objective of this chapter is to validate and compare adjoint-based sensitivity
and other sensitivity methods and their possible relation to Uncertainty Quantification
(UQ) analysis. Inspired by a simple toy models we have shown how can be a lower cost
tool for mathematical analysis of complex problems of industrial interests. The second
objective is to propose an Uncertainty Quantification of the incompressible single stream
jet stability subjected to frequency variation. The governing equations are the low cost
PSE model. This objective is strongly related to the noise sensitivity and control studies
since it has been demonstrated that noise is originated from K-H instability in such a
flow. Later, the adjoint PSE approach will be used, to make the link between sensitivity
and UQ analysis as this quantification for Large Eddy Simulations or Reynolds Average
Navier-Stokes simulations can be considerably expensive. Envelope curves of the standard
deviation are determined and compared with good agreement for small variations of the
input parameters in the first toy model. For the jet stability, it has been found that the
growth rate is almost insensitive to small frequency variations and, on the other hand, the
phases of the amplitude functions of the disturbance are extremely sensitive to frequency.

This work have been done in collaboration with the University of Greenwich.

4.1 Introduction

The generation of noise has been demonstrated to originate from Kelvin-Helmholtz insta-
bilities amplifying in the jet stream. Some noise reduction can not be achieved before a
deep analysis of the sensitivity of this instability to any flow perturbations or variations.
This work is based on the Linearized Parabolized Stability Equations (LPSE) and their
adjoint. Results are linked to uncertainty analysis. The base flow under consideration is
the incompressible semi-empirical single jet 2.2.1. An Uncertainty Quantification of the
jet flow stability subjected to frequency variation is proposed since noise emission are re-
lated to frequency. The remaining question is how sensitivity studies can be related to an
Uncertainty Quantification? To answer we first propose a toy model on which both sensi-
tivity and UQ analysis are carried out. UQ analysis is about determining the ”reliability”
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of the outputs of a problem under investigation when the inputs are not precise (input
can varying or are uncertain). Such output uncertainties are represented by the standard
deviation. For cases where the determination of uncertainties is of a high interest it is rec-
ommended to also look into the probabilistic or cumulate distribution functions. On the
other hand, sensitivity analysis is about apportioning the uncertainty in the output with
the different input uncertainties (gradients). In the following the gradients are calculated
by four ways:

1. exactly calculating the sensitivity coefficients of the governing equations with the
adjoint based approach

2. by integrating the standard deviation ratio from many direct computation

3. by a sensitivity indices

4. by a variance based sensitivity analysis.

The approach ii) and iii) can be qualified as One-factor-At-a-Time (OAT), just on com-
ponent of the parameter vector is modified when the others are kept constant. In addition
we present a way to perform local sensitivity using gradient of the direct equations.

A toy model is proposed as a test where the input uncertainties are set arbitrarily.
This simple example wants to manifest the relation between adjoint-based sensitivity and
other sensitivity methods that can also include an uncertainty analysis. The next section
is an application on the stability of compressible single jet flow.

4.2 A model toy problem

4.2.1 ODE direct equations

The toy model is a set of two coupled ODE formulated as a classical optimization problem.
Given the state vector y = [y1, y2]

t ∈ C
2 and the control or design parameter λ =

[λ1, λ2]
t ∈ C

2 , where the exponent t always stands for transpose. The goal is to get,
quantitatively or qualitatively, the variation of the cost function E(y, λ) with respect to
the variation of the control parameter λ. Moreover the state vector y and the control
parameter λ are directly related by the constrained state equation F (y, λ) = 0. The state
equation of the toy model, 4.1, includes its initial condition and is given by:

F (y, λ) = ẏ(t, λ)− A(λ)y(t, λ)− b(λ)u(t) = 0, y(0) = y0 =

[

0
1

]

(4.1)

with

A =

[

−2i λ1

λ2λ
2
1 −5

]

, b =

[

1 + λ2

λ1λ
2
2

]

where i stands for the square root of −1 and u(t) can be any forcing or control fixed
in this simple model as a cosine function, u(t) = cos(3t).

90



4.2 A model toy problem

The quadratic cost function (eq. 4.2) is defined as:

E(λ) =
1

2
〈y(t, λ),y(t, λ)〉t . (4.2)

Given v and u as two arbitrary complex vectors the brackets 〈v,u〉t indicates an
integral inner product in the complex plane defined by over the time domain [0, T ]:

〈v,u〉t =

ˆ T

0

vhu dt,

where the superscript h denotes transpose conjugate.
The solution can be integrated numerically or analytically and the stability will strongly

depend on the values of λ and the eigenvalues of A.
In order to perform an UQ or variance based sensitivity analysis a variation of the

control parameter λ has to be done. We decompose each component of the vector λ into
a reference value λi0 and a small perturbation ∆λi(η):

λi = λi0 +∆λi(η), with i = 1, 2 (4.3)

where the parameter η is defined in the range [−1 1]. The small perturbation ∆λi is
defined by:

∆λi = εif(η) (4.4)

where the amplitude εi is a constant and f(η) is set as a sine or a Gaussian function.
In equation (4.3), and in the following η in λ1 and η in λ2 are considered as independent

variables.

4.2.2 b - Sensitivity Analysis

A possible way to quantify uncertainties is to refer to the standard deviation of a variable
under interest. The ratio between the variance of the cost function when varying one
component λi of the parameter λ, and the standard deviation of such parameter can be
written as

σ2
Eλi

σ2
λi

=

ˆ 1

−1

[E(λi)− Ēλi
]2dη

ˆ 1

−1

[λi − λ̄i]
2dη

. (4.5)

The idea of using such ratio is to see whether a relation with local sensitivity exists.
The over bar denotes the mean value of the function or of the parameter. In the previous
equation, E(λi) is the cost function where the component λi may vary whilst the other
components are kept constant. Ēλi

is the mean value and σEλi
is the variance when

considering λi as the varying parameter.
As a first step, the integrals over η are numerically computed over a constant mesh

grid for η = (ηk)k=1,N . To evaluate the integral of the numerator of equation (4.5), N
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computations of the ODE system (eq. (4.1)) and N evaluations of E are required. The
ODE is solved with a fourth order Runge-Kutta scheme.

As a second step, the sensitivity is now performed in order to get the gradients of the
cost function E(λ) with respect to λi,

∂E
∂λi

. The sensitivity ∂E
∂λi

is calculated by solving the
adjoint of the state model, see [7, 11]. The gradients are determined with a Lagrangian
functional L where

L = E − 〈y∗, F (y, λ)〉t

As a result, the gradients and therefore the sensitivity function are the adjoint states:

∂E

∂λi

= 〈y∗, z〉t , with z =
∂A

∂λi

y(t, λ) +
∂b

∂λi

u(t) (4.6)

where y∗ is the adjoint state solution of:

ẏ∗(t, λ) = −A(λ)hy∗(t, λ)− y(t, λ), y∗(T, λ) = 0 (4.7)

The adjoint equations are solved in reverse time, and a terminal condition at t = T
has to be set.

Only two computations of equations (4.1) and (4.7) are required to solve the sensitivity
functions with the adjoint approach.

Finally, the numerical results σE/σλi
of equation (4.5) and the gradients ∂E

∂λi
from (4.6)

are compared and a very good agreement has been found as shown in table 1. It shows
that for small uncertainties in the inputs, an adjoint-based sensitivity analysis provides
the same numerical results than equation (4.5), which is computationally much more
expensive and less exact. These results can be explained by the linearity that the response
may have in such a small range. To explore such property, two more sensitivity analysis
have been developed: a One-factor-At-a-Time (OAT) with sensitivity indices SI, this
computation has been done at University of Greenwich, and a Variance-Based Sensitivity
Analysis. Sensitivity indices provide a relatively good measure of the sensitivity of an
output with respect to the variation in the inputs in the cases that the model is linear
additive and the parameters are independent each other. This method also represents an
inefficient sampling of the random space, as only the initial and last values of the interval
are computed. The sensitivity indices can be obtained by:

SIi =
E(λimax

)− E(λimin
)

λimax
− λimin

(4.8)

In the literature, this coefficient SIi is often normalized by the mean quantities: λ̄i/Ē.
In Table 4.1 it can be seen that they are relatively close to the ones calculated by the
previous two methods. This is a sign about the linear property our model is experiencing
in the small range of uncertainties.

In addition to the previous methods, a Variance Based Sensitivity Analysis has been
carried out in order to have a global understanding of the contributions of the input uncer-
tainties. To develop such analysis, a decomposition of the variance is shown in equation
(4.9), and sensitivity coefficients, defined differently from the previous approaches, are
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4.2 A model toy problem

Method
∂E

∂λ1

∂E

∂λ2

Adjoint approach 0.27262 1.7992
OAT σ-ratio 0.27084 1.8006

OAT SI 0.20670 1.3772

Table 4.1: Comparison among sensitivity methods.

λ1 λ2

√

S2/S1

S1 = 0.0224 S2 = 0.9776 6.606
ST1 = 0.0228 ST2 = 0.9772 6.547

Table 4.2: Results from Variance Based Sensitivity Analysis.

computed in equation (4.10) from its proportion with respect to the total variance. Si

and STi
, in equation (4.11), are the first order and total sensitivities index respectively.

In the following equations the multiple subscripts refer to second, third or higher order
interactions, depending on the number of subscripts, see Saltelli et al. (2010)[109].

The results of such analysis are shown in table 2. Note thatm represents the dimension
of the stochastic space.

σ2
E =

m
∑

i=1

σ2
Eλi

+
m
∑

i=1,j>i

σ2
Eλij

+
m
∑

i=1,k>j>i

σ2
Eλijk

+ ... (4.9)

1 =
m
∑

i=1

Si +
m
∑

i=1,j>i

Sij +
m
∑

i=1,k>j>i

Sijk + ...+ Sijk,...,m (4.10)

STi
= Si + Sij + Sijk + ...+ Sijk,...,m (4.11)

The value of σ2
E has been calculated by Latin Hypercube Sampling with a total of

5000 samples, as shown in Fig. 4.1, and it has been found that, by comparing with the
data from equation (4.5) and with the third columns of table 1 and 2, we get

σ2
E ≈

2
∑

i=1

σ2
Eλi

or

√

S2

S1

≈
∂E

∂λ2

/
∂E

∂λ1

This is reflects the weak interaction of the higher order sensitivities, again due to the
linearised behaviour of the model.
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Figure 4.1: Latin Hypercube Sampling with 5000 samples.

4.2.3 c - Local sensitivity or gradient

Sensitivity based on global (integral of time or space) value is referred as a global sensi-
tivity and in this section, local sensitivity means variation of a local (at a given time t)
quantity.

Regarding the representation of the variation of the output, the uncertainty quantifi-
cation can be localized at each time t. It is usual to plot the stochastic response with its
mean and its standard deviation to display envelope curves in cases where the probabilistic
or cumulate distribution functions are not of a high interest.

To perform this new study, from a sensitivity point of view, we are looking for the

variation of y with respect to λi, that is
∂y

∂λi

= wλi
. In this case, we have two vectors

of dimension two. The local sensitivities can be determined with the same ideas of the
adjoint equation, by deriving equation (4.1) with respect to any λi:

ẇλi
(t) = A(λ)wλi

(t) + z, wλi
(0) = 0 (4.12)

where z is the same as found in equation (4.6). The initial condition is null since
the initial condition of the state y does not depend on λ. This equation can be called
”gradient” equation and it is not the same as the adjoint or state equations. It is then
easy to write the standard deviation ratio:

σ
(n)
yλi

(t)

σλi

= w
(n)
λi

(t), (4.13)

where the exponent n indicates the component of the vector (n=1 or 2 here).
The stochastic mean and standard deviation envelopes are plotted in figure 4.2. It is

an example, where λ1 is fixed and λ2 is the varying parameter calculated by ranging η
from −1 to +1 in equal step size (see equation (4.3)). The graph are representing the
real part, the imaginary part and the modulus of the first component (n = 1) of the state
vector y solution of the ODEs (eq. 4.1) for a given value of λ2. The black full lines and
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4.2 A model toy problem

Figure 4.2: Mean and standard deviation envelopes of y1 and |y|2/2 with respect to a
number of different values λ2 function of time. Dash line: from gradients (sensitivity
analysis), green full line: direct computations of equation (1).

the dash lines are respectively the real part, the imaginary part and the modulus of ȳ
(1)
λ2

and ȳ
(1)
λ2

±σ
(1)
yλ2

. Similar results are found with the second components of y and for y when
λ1 varies.

In conclusion two types of sensitivity or variance sensitivity can be determined:

1. Sensitivity of global function (E) or global variance sensitivity Eλ. One state and one
adjoint equation computation are required from one hand. For UQ (and also for the
presented Variance Based Sensitivity) at minimum N state equation computations
are necessary, when N is normally large and depends on the integration method
(Monte Carlo, quadrature, finite difference, etc).

2. Local sensitivity or local variance sensitivity w
(n)
λi

(t). Denote m as the dimension of
the parameter λ, one state and m gradient equation computations are required on
one hand. For UQ (and Variance Based Sensitivity), a minimum of N computations
of the state equation are necessary.

”Gradient” and ”adjoint” approaches can be some low computational techniques to
analyse sensitivity or uncertainties of a given problem subjected to varying parameters
with a given distribution. These cheap approaches remain interesting as soon as the
variations of the inputs remain small. For this reason, the aim of future work is to explore
the possibility of using a costless model based on adjoint sensitivity theory, to apply UQ
sampling techniques. This would represent a very efficient tool.
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4.3 PSE and UQ in jet stability analysis

In this section, an UQ study is performed by University of Greenwich by considering PSE
as a black box with uncertain input and outputs.

The input uncertainty associated to the frequency ω has been modelled by an Uniform
Probabilistic Distribution and then the Stochastic Collocation Method (SCM) with a
Clenshaw- Curtis (C-C) Sparse Grid [113] has been implemented. SCM was developed by
Mathelin and Hussaini [77] to improve the high costs of the Galerkin Polynomial Chaos
method with non linear equations. For each collocation point, the CFD problem is solved
deterministically, and the solution can be constructed as an expansion:

Φ(x, β) ≈
N
∑

i=1

Φi(x) ℓi(β) (4.14)

where Φi(x) with x = (x, r) stands for the deterministic solutions and ℓi are the
Lagrange interpolant polynomials. Statistical moments can be obtained by applying
quadrature rules and SCM represents a very efficient option for lower dimension prob-
lems in comparison with sampling techniques such as Monte-Carlo. For higher dimension
problems, sampling techniques use to be more suitable.

In this paper, the collocation points of the sparse grid have been determined according
to the C-C quadrature nested rule. Special attention must be paid in the Probabilistic
Density Function of the random variable, ξ ∈ Ξ, as we have to perform a mathematical
transformation from the physical random variable space to an artificial stochastic space,
called α-domain but here referred to as β-domain ( β = Sξ(ξ)), as α is used for the
wavenumber. This transformation is an important difference with respect to other UQ
methods.

Regarding the source of uncertainty, it has been based on a 10% of variation of the
frequency, whose deterministic base value is imposed to ω̄ = 1.2π, the mean value. An
uniform distribution ω ∼ U(−0.1ω̄, 0.1ω̄) is set.

In Figure 4.3, the mean and standard deviation of the real and imaginary parts of
α = αr+i αi, the complex axial wavenumber, is plotted for 33 Clenshaw-Curtis quadrature
nodes. It can be observed that the imaginary part is not very sensitive with respect to the
uncertain frequency in long distances, whilst the real one is very slowly changing along
the x/D axis of the jet. In conclusion a small uncertainty on the frequency wave will
modify the wavelength of the sound wave but the instability (growth rate) of the flow will
remain almost unchanged.

In Figure 4.4, the mean value and envelopes of the real part of the amplitude function
of the streamwise and radial velocity are displayed for r/Dj = 0.51. The uncertainty on
the frequency generates strong variation on the phases of the amplitude functions, so that
the real or imaginary parts are very sensitive to frequency variations. This results have
been confirmed by the sensitivity analysis based on adjoint PSE.
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Figure 4.3: Mean and standard deviation envelopes of the wavenumber αr (a) and of the
growth rate αi (b).

Figure 4.4: Mean and standard deviation envelopes of the real part of the amplitude
functions ur (a) and ux (b), r/Dj = 0.51.

4.4 Conclusions

The relationship between a Uncertainty Quantification (standard deviation ratio) and a
adjoint-based sensitivity analyses have been demonstrated, first on a toy ODE model and
after on a PDE stability problem. The use of adjoint equations required few computations
comparing to some general usual UQ method, since if m is the number of parameters with
uncertainties, only m + 1 computations are necessary to get the standard deviation and
the envelope curves. It has also been noticed that an uncertainty frequency wave modify
the wavelength of the sound wave but the growth rate will remain insensitive.

The next step will be to perform a propagation of instability by taking into account
uncertainties of the mean flow into the stability of single and double-stream jet and to
propagate the uncertainties to the far field noise emission. Also, as here has been demon-
strated that the sensitivity coefficients can be quickly obtained by the adjoint approach,
the next step is to explore the possibility of quantify uncertainties by using a costless
surrogate model based on the exactly calculated adjoint-based sensitivity coefficients.
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Chapter 5

Acoustic field analysis

5.1 Introduction

As explained in Section I, the acoustic analogy can be considered as a hybrid approach
(Casalino (2003)[19]). In the current section the FW-H equation and integral solution
are reported (see appendix for details). The FW-H acoustic analogy represents a gener-
alization of Lighthill’s acoustic analogy for flows including bodies in arbitrary motion. In
this generalization the fluid is unbounded but partitioned into regions by an integration
surface, as schematically shown in fig 5.1 . This surface does not need to coincide with a
physical body and can be permeable [16, 32]. The surface requirements are discussed in
details by Brentner and Farassat (1998)[16].

Figure 5.1: Radiation in an unbounded flow.
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Let g(x, t) = 0 be the equation describing the moving control surface, whose points
move at velocity v(x, t)[19]. g is defined to satisfy the property ∇g = n̂ on the surface,
where n̂ is the outward pointing unit normal vector. Following this procedure, the flow
is partitioned into three regions according to the value of g. A point enclosed by the
integration surface satisfies g < 0 and this flow field portion can be replaced by a quiescent
fluid. Mass and momentum sources are then distributed on the surface g(x, t) = 0,
which allows the conservation laws across g(x, t) = 0 to be satisfied. This process is
carried out from the time-resolved estimates of pressure, density and velocity on the
FW-H integration surface, obtained independently by CFD. The mass and momentum
conservation equations are recast to obtain the FW-H equation. A more compact form of
this equation is given by Casalino (2003)[19] and reported here:

�
{

(ρ− ρ0)c
2
0H(g)

}

=
∂2 {TijH(g)}

∂xi∂xj

−
∂ {Liδ(g)}

∂xi

+
∂ {Qiδ(g)}

∂t
, (5.1)

where H(g) is the Heaviside function and in the first source term on the right hand side
Tij is the Lighthill stress tensor [66]. The second and third contributions are, respectively,
the surface source distributions of momentum (dipole) and mass (monopole). Expressions
for these source terms are reported here:

Tij = ρuiuj + (p′ − c20ρ
′)δij − τij, (5.2)

Li = Pijn̂j + ρui(un − vn), Pij = (p− p0)δij − τij, (5.3)

Q = ρ0Uin̂i, (5.4)

with

Ui =

(

1−
ρ

ρ0

)

vi +
ρui

ρ0
, (5.5)

where un and vn are the flow and surface velocity in the outward normal direction n̂.
The three source terms in equation 5.1 are referred to respectively as quadrupole, dipole
and monopole sources. The monopole and dipole contributions are often referred to as
respectively thickness and loading noise for analogy with helicopter rotor applications.
While the quadrupole term represents a volume distribution and is computationally the
most expensive to estimate, the loading and thickness noise are surface distributions as
indicated by the presence of the Dirac delta function multiplying these contributions,
which shifts the value of the variables on the FW-H integration surface. The volume
source distribution accounts for all the non-linearities in the flow. The effects of convection
with variable speed, non linear wave propagation and steepening, variable speed of sound,
generation of noise by shocks, vorticity and turbulence in the flow field are all included in
this source term[16]. When the integration surface is taken coincident with a solid body, a
physical interpretation of loading and thickness noise is available. The loading noise takes
into account the effect of the interaction of the flow with vibrating surfaces, reproducing
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the net unsteady forcing acting on the fluid as a result of the presence of the body. The
thickness noise is originated by the motion of the surface in the normal direction[31] and
it represents a displacement effect [35]. It is determined completely by the geometry and
kinematics of the body[16]. The FW-H integral solution [35] is given by the following
integral:

4πc20(ρ(x, t)− ρ0) =

ˆ

V

∇x · ∇x ·

[

TJ

r|1−Mr|

]

ret

dη−

ˆ

g=0

∇x ·

[

P · n̂A

r|1−Mr|

]

ret

dS(η)+

ˆ

g=0

∂

∂t

[

ρu · n̂

r|1−Mr|

]

ret

dS(η).

(5.6)

Expressions for the terms in equation 5.6 are given in equations 5.7-5.10.

y = η +

ˆ τe

∞

c0M (η, τ ′)dτ ′, n̂ =
∇xf

|∇xf |
, (5.7)

J = exp

(
ˆ τe

∞

∇ · c0M (η, τ ′)dτ ′
)

, A =
∇yf

|∇ηf |
, (5.8)

P = pI − τ, Mr = M · r (5.9)

τe = t−
r

c0
(5.10)

WhereM is a vector with components the mach number in the three spatial directions.

5.1.1 Advanced time formulation AFW-H

Casalino [19] reports the integral solution of the FW-H equation in the advanced time
formulation, which is here referred to as AFW-H. In this solution, the acoustic pressure
fluctuation p′ = p− p0 perceived by an observer located at the vector position x at time
t is given by:

p′(x, t) = p′Q(x, t) + p′L(x, t) + p′T (x, t), (5.11)

where subscripts Q, L, and T are, respectively, the quadrupole, loading, and thickness
noise contributions to p′ from the source field located at y generated at retarded time
τret = t − c−1

0 |x − y(τret)|. τret accounts for the time of flight of the noise propagating
from y to x at the constant speed of sound c0. Expressions for these contributions are
given in Casalino[19] and are reported in the appendix.

101



Chapter 5 : Acoustic field analysis

5.1.2 Implementation of AFW-H analogy

A discretized form of equation 5.11 is implemented in a code developed at the University of
Leicester. The quadrupole source term is neglected. It is often possible in CAA to neglect
the volume source distribution of Tij, primarily due to the quadrupole term representing
the smallest contribution to noise radiation at low Mach numbers. One further advantage
of this approach is the considerable decrease in the computational cost of the simulation,
by reducing a three dimensional numerical integration to a two dimensional one. The FW-
H algorithm is structured in the following way: at each discrete acoustic time τn, a loop
over the observer positions xi is performed; for each xi, the contribution from the FW-H
surface is estimated, by looping over the Sjs; finally, for each Sj, a loop is performed over
the surface elements dSk of Sj , on which the discretized form of the L and T terms is
evaluated. The advanced time relative to the dSks is also estimated from the retarded
time equation [19] in order to save the p′ contribution at the correct observer time. This
process is then repeated at different discrete acoustic times τn. Advancing in time, a
pressure fluctuation history is reconstructed and the final output of the tool is a matrix
storing, for each observer position, the pressure fluctuation p′(xi, t) as a discretised time
array. For each discrete acoustic time τn, the acoustic analogy post processor reads the
CFD solution and retains the flow field data relative to the previous iteration τn1. This
enables the estimation of the source time derivatives using the backward finite difference
approximation

ż =
∂z

∂τ
≈

zn − zn−1

∆τ
(5.12)

where z is a source term variable. Considering the different characteristic time and
length scales between the hydrodynamic and the acoustic fields, the acoustic simulation
usually requires a lower resolution in time. For this reason, the new tool is designed such
that it can perform the numerical integration every m CFD time steps. For the jet test
case from Bogey and Bailly (2006)[15], the following relationship between the acoustic
and the CFD time steps is adopted:

∆τ = 10τCFD (5.13)

This choice allows the CAA simulation to use less computer time and memory.

5.2 PSE coupled with AFW-H analogy

as observed by Cheung et al. (2007)[22] PSE are accurately computed inside the jet,
but fail to capture the acoustic radiation outside the mixing layer region. Acknowledging
this limitation, several ways are possible to reconstruct the acoustic radiation outside the
jet, i.e: techniques based to Kirchhoff surface strategy[64, 14, 123], by solving the Linear
Euler Equation or by using an acoustic analogy. In the present study, the latter approach
is employed, an AFW-H solver is used in this thesis. The solver has been developed
at the University of Leicester and tested on noise source fields of increasing complexity
(monopole, dipole and supersonic single stream jet). For the supersonic single stream

102



5.3 Validation

jet case the predictions are compared with the ones from the elsA CFD solver by Onera,
DiStefano et al. [116] (2015). The elsA CFD solver contains the same acoustic analogy
formulation (AFW-H) of the code used in this theses, which provides an opportunity for
verifying the implementation of the advanced time algorithm on the same CFD data set.

In this chapter we compute the noise radiated from the jet in two steps:

1. the evolution of the instability waves inside the jet is computed using the PSE
method

2. the noise radiated from these waves is calculated by solving the wave equation using
the AFW-H solver (University of Leicester).

This methodology has been, first, validated by a test case which the result is compared
with those found in the literature and then applied to the dual stream jet (case IV 2.2.3).

5.3 Validation

5.3.1 Supersonic single stream jet

The numerical results presented here refers to the semi-empirical supersonic single stream
jet (case II 2.2.2). Once the PSE is computed the integration surface is set, inspired by
the work of Léon and Brazier (2011)[64], in an almost uniform region where the mean
axial velocity is less than 0.5% of ū(0, 0). The surface start at 1.9D in the axial position
x = 0 with an angle of 4◦. We present the results for the Strouhal number St = 0.4 and
for helical mode m = 1 which is the instability wave mode used to excited the jet in the
experiment of Troutt and McLaughlin (1982)[129].

In order to compare our results to those found in the experiment we reconstruct a
’greed’ of observers outside the integration surface, (see fig. 5.2).
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x/D

r/D

Figure 5.2: A schematically representation of the inner and outer solution. The PSE
computation (in colour) is projected in the integration surface (dot line). The outer
solution is arranged in the gray zone made up by a greed of observers (dark circles).

In the figure are put in evidence the inner solution obtained by solving the PSE
(delimited by the integration surface) equations and the outer solution computed in the
greed of observers by solving the AFW-H acoustic analogy.

In figure 5.3-a is shown the SPL contours levels filtered around the fundamental ex-
citation frequency. This results confirm as the noise from coherent structures tends to
propagate in the downstream direction. In fact, in the experiment the noise is radiated
at an angle of 36◦. Figures 5.3-b shows the sound pressure levels (in dB) radiated from
the instability waves with the frequency St = 0.4 and m = 1 to the far field. The result
is obtained with the AFW-H solver (developed at the University of Leicester). We see
that the noise is radiated in a confined region and an intense noise is radiated in a fixed
direction which is inclined at 35◦. On comparing the preferred radiation of the noise and
as well, simply, the two figures we observe an excellent agreement between the experiment
and the computation results. The agreement between the calculated and the measured
150 dB and 148 dB contours is almost perfect. The lobed nature of the contours, the
direction of the lobe and the spacings of the contours are correctly predicted.

Notice that since the PSE results have an unknown multiplicative constant (see eq.
2.10), the absolute pressure level can not be predicted. The magnitude of the constant is
chosen such that the computed SPL at the point marked by a black bullet in figure 5.3-a
is 148 dB.

104



5.3 Validation

x/D

x/D

r/D

r/D

a)

b)

36◦

35◦

•

Figure 5.3: Sound Pressure Level contours for jet excited at St = 0.4 and m = 1: a)
measured Troutt and McLaughlin (1982)[129]; b) calculated (IMFT).

5.3.2 Turbulent under-expanded dual-stream jet

In this section the noise emitted from the axisymmetric instabilities, m = 0, in the dual
stream jet (case IV 2.2.3) is investigated. The results obtained from the PSE/FW-H
computations are compared to those found by directly coupling the LES with the FW-H
acoustic analogy.

Four different Strouhal numbers are taken into account, St = 0.4, 0.6, 0.8, 1.0. All the
computations were initialized with the secondary mode (KH2) which is the most unstable
mode. The cone integration surface intersect the initial streamwise coordinate, x = x0,
at the radial value r = 1.22Dp and the angle with respect to the axial axis is equal to
7.69◦. This choice allow the solution to propagate in an almost uniform region where the
mean axial velocity is less than 0.5% of ū(0, 0). In figure 5.4 the spatial distribution of
the sound pressure level, SPL, is obtained by running the acoustic analogy in the domain
[0, 30] × [6, 20]. The SPL is higher for small values of the Strouhal number. The sound

105



Chapter 5 : Acoustic field analysis

propagate mainly in two distinct directions for Strouhal St = 1.0, 0.8 while one of them
vanish for Strouhal numbers St = 0.6, 0.4.

xx

r

r

r

r

c)d)

a) b)

Figure 5.4: Spatial distribution of the Sound Pressure Level. Turning clockwise from the
top left the Strouhal number is 0.4, 0.6, 0.8, 1.0, respectively.

In the work of Perez et al. (2016)[94] the noise emitted by case 2.2.3 is investigated.
The FW-H analogy is computed along three points P1 = (13.4, 6.05),P2 = (18.0, 6.70)
and P3 = (23.0, 7.42), see figure 5.4-d. The component of the sound associated to the
axisymmetric instability is computed by a modal decomposition of the signal. The inten-
sity of the sound can not be directly extracted by the PSE approach, in fact in equation
2.10 the unknown value ε has to be defined. The parameter ε has been set by imposing
the SPL value for Strouhal St = 0.8 in the P1 position, the green point in figure 5.5-a.
The remaining positions are computed by imposing such value of ε. The SPL computed
coupling the LES to the FW-H analogy (Perez et al. (2016)[94]) in the three positions P1,
P2 and P3 are plotted in red full line in figure 5.5-a, -b and -c respectively. The results
of the PSE/FW-H are in black circles. The dot lines refers to the linear regression of
the data. For the position P1 the dependence of the SPL to the Strouhal number is over
estimated if compared to the LES/FW-H results. For the positions farther to the exit of
the nozzle the match is almost perfect.

More calculations should shown that the PSE results will however be approximately
aligned while the LES results exhibit some oscillations not captured by the stability
analysis. This discrepancies could be attributed to the nonlinearities and small-scale
instationnarities present in the flow and not solved by the mean flow operator associated
to a linear stability analysis. However one can be satistied to get the good trend with
this latter low-cost model.

Concluding, the physics of propagation of the sound is very well captured by our model
showing the consistence of this approach.
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Figure 5.5: The SPL is computed for the three different positions P1, P2 and P3 in figure
a), b) and c) respectively. The red line refers to the SPL obtained by coupling the FW-H
acoustic analogy with the LES computation (see Perez et al. (2016)[94]). The dark bullet
are the SPL estimated by our appraoch (developed in collaboration with the University
of Leicester). The dot lines refers to the linear regression of the two computations.
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5.4 Conclusion

In this chapter has been presented a low cost computational model able to predict the
noise emitted by the evolution of a small disturbance with a single frequency and a fixed
azimuthal wavenumber. The solution is the results of a coupling between the PSE solver
and the acoustic analogy solver; this development has been done in collaboration with
the University of Leicester. The model allows to a low cost study of the noise emission in
turbulent jet and can be applied in future for many cases of industrial interest. The total
computations is very efficient and take about 20 minutes running in a normal laptop. The
application shown in this chapter a very good agreement is found between the computed
and the measured Sound Pressure Level. The model predict very accurately the noise
emission also for jets with high complexity, like the turbulent under-expanded dual stream
jet studied in this thesis work. This methodology leave open the possibility to investigate
noise in jet with high complexity efficiently.
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Conclusions

Summary of main results

In this thesis many configurations are investigated. For PSE and the corresponding sen-
sitivity of the jet flow to noise the main objective was to investigate the complex configu-
ration of a dual stream under-expanded jet of industrial interest, obtained thanks to the
accurate LES computation from CERFACS[94].

In the first part of this work (chapter I and more in details in chapter II) the PSE
approach is presented. The PSE solver, developed by the ONERA’s team[63] was upgrade
by a stabilization procedure in order to investigate more complex flows. A parametric
study with respect to the Strouhal number pointed out that the shock cell play a crucial
role in the growth rate of the instability, otherwise variations in the frequency of the
instability seems to have a less effect in the growth rate. This study emphasize the role
of the two unstable Kelvin-Helmholtz modes. The K-H modes related to the secondary
shear-layer is the most unstable mode. The instabilities that grow in the secondary shear
layer present a weakly interaction to the primary shear layer. On the other hand the
instabilities that grow in the primary jet highly interact with the secondary jet, confirming
that for PSE is very difficult to distinguish between the two unstable modes. This result
is in agreement with those found in the previous works of Léon and Brazier(2011) [64]
and Sinha et al. (2016)[111].

Then, a sensitivity analysis of the instabilities is made in chapter III. Validation of the
sensitivity analysis based on adjoint PSE for subsonic and supersonic single-stream jet
flow has been carried out. Especially, the sensitivity obtained by adjoint-based approach
and by Finite-Difference method are compared. The most sensitive region with respect
to external forcing has been identified close to the exit nozzle into the shear-layer in
the external boundary of the potential core of the jet. For the dual stream jet case a
new application about the interaction betweens the Kelvin-Helmholtz instabilities and
the shock-cells has been presented. During the identification of the highest sensitivity
location a crucial role of the inflection point has been pointed out. Furthermore, the
results show a strong dependence of the sensitivity to the spatial coordinates. These
remarks should be taken into account before proposing a new noise control strategy by a
very deep analysis of the interaction flow/actuator.

In chapter IV the relationship between sensitivity and Uncertainty Quantification
(UQ) has been investigated, firstly, by a toy model and then directly applied on the PSE
stability problem in collaboration with the University of Greenwich. Make a link between
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sensitivity and UQ could be an objective of industrial interest because, generally, the
sensitivity solver are much less expensive in term of computational cost if compared with
the classical UQ approach. The UQ applied to the PSE model shows that the uncertainty
in the value of the instability frequency wave modifies the wavelength of the sound wave,
but finally and astonishingly the growth rate will remain quite insensitive.

An important step of this work is to couple the stability and sensitivity solvers to
a far-field sound propagation approach, Chapter V. Validation of this methodology for
cases II 2.2.2 and IV 2.2.3 have been performed, in collaboration with the University of
Leicester, showing encouraging results for the prevision of the noise emission in jets.

Perspectives

A low computational cost model of the shear-layer instability modes in the co-axial jet,
which takes into account the shock-cell system in the bypass stream, based on the Parab-
olized Stability Equations has been developed. In addition, a far field acoustic simulation
coupled with PSE results has been validated for cases II 2.2.2 and IV 2.2.3 and can be use
to deeper investigate the noise in the dual stream jet configuration. The next step will
be to develop a global sensitivity study for the full model (PSE + APSE + sound prop-
agation) in the near and far field. Moreover, we should be able to provide in the base of
adjoint equations an extension to sensitivity of the noise to various possible perturbations
or forcing, related to aeroacoustic control. This numerically low-cost tool can be used for
predicting shock-cell noise. As discussed in [131, 23, 64] many questions remains relative
to the location and the quality of the coupling between the PSE pressure disturbance and
the far-field zone.

In parallel, the propagation of instability should be taken into account uncertainties of
the mean flow variations. These uncertainties of the mean flow, probably, are propagated
into the far field noise emission. Finally, the implementation of the ’gradient’ PSE solver
(see eq. 4.12) could be a good alternative to investigate parameters dependences that
adjoint PSE are not able to solve efficiently (i.e. ∂α

∂ω
). Because the sensitivity coefficients

can be quickly obtained by the adjoint approach, a future step is to explore the possi-
bility of quantify uncertainties by using a costless surrogate model based on the exactly
calculated adjoint-based sensitivity coefficients, as done for the toy model in chapter IV.

110



List of Tables

1.1 Number of function evaluations to compute the gradient using Finite Dif-
ference approximation (FD), Complex step derivative (CSD) and adjoint
equations (ADJ). First and second order FD approach are denoted FD1
and FD2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Directivity of the pressure instability waves. . . . . . . . . . . . . . . . . . 54
2.2 Values of the initializing unstable Kelvin-Helmoltz modes in the inner and

in the outer shear-layer for different Strouhal numbers. . . . . . . . . . . . 66

3.1 Values of the parameters used for the validation at different spatial position 83

4.1 Comparison among sensitivity methods. . . . . . . . . . . . . . . . . . . . 93
4.2 Results from Variance Based Sensitivity Analysis. . . . . . . . . . . . . . . 93

111



LIST OF TABLES

112



List of Figures

1.1 Shadowgraphs of a cold supersonic helium jet. Strong directional waves
are emitted from the shear layer close to the exit of the nozzle. . . . . . . . 5

1.2 Pulsed laser picture of the large turbulence structures in the mixing layer of
a Mach 1.3 jet (Thurow et al. 2003). Copyright 2003, American Institute
of Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Acoustic power measurements of a heated M∞ = 1.5 jet. Azimuthal mode
m = 0 and frequency St = 0.25. Data obtained from measurements of
Suzuki and Colonius (2006)[117]. . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Noise radiation in a turbulent jet flow. . . . . . . . . . . . . . . . . . . . . 8

1.5 Typical far field jet noise spectrum, Tam (1995)[118]. . . . . . . . . . . . . 8

1.6 Schematic representation of the acoustic analogy approach. . . . . . . . . . 10

1.7 Linear and nonlinear behaviour of forced jets in (a) Crow and Champagne’s
[27] and (b) Moore’s[86] experiment. Forcing Strouhal numbers are 0.3 for
Crow and Champagne and ≃ 0.48 for Moore. The lines from bottom to
top refer respectively to increasing forcing amplitudes at the nozzle exit.
The triangles in Crow and Champagne’s experiment refer to the unforced jet 17

1.8 Comparison between SPL obtained by Balakumar (a) computing the wave
equation for fixed Strouhal number, St, and azimuthal wavenumber m with
experimental results (b) measured by Troutt and McLaughlin[129]. . . . . 21

1.9 Shock noise test case, Mj = 1.22, m = 0. The curves represent the far field
pressure amplitude, pff , computed by LEE solutions at different Strouhal
number and symbols represent PSE/shock cell model solutions, Ray and
Lele (2007)[103]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.10 Case a) the flow is stable. Case b) the perturbation is convected away from
x = 0 the flow is convectively unstable. Case c) the perturbation expands
around x = 0 the flow is absolutely unstable. . . . . . . . . . . . . . . . . . 24

2.1 The coordinate system used in this thesis . . . . . . . . . . . . . . . . . . . 34

2.2 Simple scheme of the PSE solver. . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Effect of streamwise step size on the growth rates of an incompressible
flow[133], Mj = 0.01. In full lines the PSE are computed with the stabi-
lization procedure, in dash-lines the PSE are computed dropping out the
term ∂p

∂x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

113



LIST OF FIGURES

2.4 Spatial distribution of the mean axial velocity, Mj = 0.01. In dash-dot
lines the boundary of potential core and the boundary of the shear layer. . 45

2.5 Stability spectrum for the incompressible subsonic jet, Mj = 0.01 at the
axial position x = x0 for Strouhal number St = 0.6 and for azimuthal
wavenumber m = 0. In full circle the unstable modes related to Kelvin-
Helmholtz instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Comparison between present PSE and Yen et Messersmith PSE(•), 1998.
a) Real part of α, b) Imaginary part of α for a subsonic flow with ω = 1.2π
and m = 0. See also [133]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Spatial distribution of the modulus of the perturbation |p′| for the Strouhal
number St = 0.6, and azimuthal wavenumberm = 0 the pressure growth in
the unstable regions of the jet and fall-down for high values of the stream-
wise coordinates where the flow is stable. . . . . . . . . . . . . . . . . . . . 47

2.8 The jet has been divided into three regions I, II and III. They are called
respectively the core, the transition and the developed regions. . . . . . . . 48

2.9 Axial distribution of mean velocity profile parameters b(x). . . . . . . . . . 49

2.10 Axial distribution of mean centerline velocity uc(x). . . . . . . . . . . . . . 50

2.11 Validation of the parameters uc, b, h by comparison with Yen and Messer-
smith (1999)[134] results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.12 Spatial distribution of the mean axial velocity, ūx, at Mj = 2.1. In dash-
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[83] Mollö-Cristensen, E., and Narashima, R. Sound emission from jets at high
subsonic velocities. J. Fluid Mech. 8(01) (1960), 49:60.

[84] Monkewitz, P. A., Bechert, D. W., Barsikow, B., and Lehmann, B.

Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213 (1)
(1990), 611–639.

[85] Monkewitz, P. A., and Sohn, K. D. Absolute instability in hot jets. AIAA
Journal 26 (1988), 911–916.

[86] Moore, C. J. The role of shear-layer instability waves in jet exhaust noise. J.
Fluid Mech. 80 (2) (1977), 321–367.

124



BIBLIOGRAPHY

[87] Morgans, W. XIV. The Kirchhoff formula extended to a moving surface,. vol. 9 of
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
pp. 141–161 1930.

[88] Morris, P. J. The spatial viscous instability of axisymmetric jets. J. Fluid Mech.
77 (1976), 511–529.

[89] Morris, P. J., Long, L. N., Scheidegger, T. E., Wang, Q., and Pilon,

A. R. High speed jet noise simulations. No. AIAA 98-2290.

[90] Najafi-Yazdi, A., Brés, G. A., and Mongeau, L. An acoustic analogy for-
mulation for moving sources in uniformly moving media. vol. 467 of Proceedings of
the Royal Society of London, pp. 144–165.

[91] Nichols, J., and Lele, S. Global modes and transient response of a cold super-
sonic jet. Annu. Rev. Fluid Mech. 669 (1) (2011), 225–241.

[92] Panda, J. Shock oscillation in underexpanded screeching jets. J. Fluid Mech. 363
(1998), 173–198.

[93] Papamoschou, D. A new method for jet noise suppression in turbofan engines.
No. 03-1053 in AIAA-paper.
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Any field Φ(x, r, θ, t) is decomposed into a base flow φ̄(x, r) and a disturbance φ′(x, r, θ, t).

A - PSE MATRICES

All the values contained to the matrices are referred to the baseflow:

A0 =

































0 ρ̄ 0 ūr 0
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B - APSE EQUATION

B-1 Procedure

All the different directional derivatives vanish with exception of
∂L

∂f
δf . It yields

∂L

∂q
δq = χf
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Ah +Bh −
∂Ah

1

∂x
−

∂Ah
0

∂r
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1
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1fq
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fqf , δqf

〉

r

+ χf

ˆ xf

x0

[

(At
0q̄

∗)tδq r
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f , A1fqf

〉

r
δαf + c.c. = 0

with A = iαA1 + imA2 − iωA3 and χf = χ(xf ) = χ̄∗(x)χ(x).

Imposing:

∂L

∂q∗
δq∗ = 0 and

∂L

∂n∗
δn∗ = 0
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we obtain respectively Eq. 2.26 and Eq. 2.33.

B-2 Adjoint Parabolized Stability Equations

Since all variations are arbitrary, except at boundaries where the conditions are fixed

(such as, for example, at x = x0).

• the different integrals vanish if the following Euler-Lagrange equations are satisfied:

L∗

PSEq
∗ = g(q, n∗)

with

L∗

PSE = −
1

r
A0

h + Ah +Bh −
∂Ah

1

∂x
−

∂Ah
0

∂r
− Ah

1

∂

∂x
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0

∂

∂r

and

g(q, n∗) =
1

χ̄f

[

(n∗ − n̄∗)
∂q

∂x
+

(

∂n∗

∂x
+ χχ̄

)

q

]

• closing relation:

〈χq, χq〉r +

ˆ

∞

0

(

χf

∂
(

q∗hA1q
)

∂x

)

r dr + c.c. = 0

It is equation 3.28.

• terminal conditions:

χf

ˆ

∞

0

q∗h
f A0fqf r dr + c.c. = 0 and χ̄fA

h
1fq

∗

f + n∗

fqf + c.c. = 0
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• boundary condition:

[

χ̄frA
h
0q

∗
]

r=0
+ c.c. = 0 and

[

χ̄frA
h
0q

∗
]

r=∞
+ c.c. = 0

C - AFW-H

Thickness noise

4πp′Q(x, t) =
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)

r(1−Mr)2





ret

dS

ˆ
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ρ0Un
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)
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ret

dS

(14)

with

Un = Uin̂i, Uṅ = Ui
˙̂
in, U̇n = U̇in̂i, (15)

Mr = Mir̂i, Ṁr = Ṁir̂i (16)

Loading noise

4πp′L(x, t) =
1

c0

ˆ
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[
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]
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ˆ
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rṀr + c0(Mr −M2)
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dS

(17)

with

Lr = Lir̂i, L̇r = L̇ir̂i, LM = LiMi. (18)

Quadrupole noise

4πp′t(x, t) =

ˆ

g>0

[

K1

c20r
+

K2

c0r2
+

K3

r3

]

ret

dV, (19)
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with

K1 =
T̈rr

(1−Mr)2
+

M̈rTrr + 3ṀrṪrr

(1−Mr)4
+

3ṁ2
rTrr

(1−Mr)5
(20)

K2 =
Ṫii

(1−Mr)2
−

4ṪMr
+ 2TṀr

+ ṀrṪii

(1−Mr)3
+

3[(1−M2)Ṫrr − 2ṀrTMr
−MiṀrTrr]

(1−Mr)4
+

6Ṁr(1−M2)Trr

(1−Mr)5

(21)

K3 =
2Tmm − (1−M2)Tii

(1−Mr)3
−

6(1−M2)TMr

(1−Mr)4
+

3(1−M2)Trr

(1−Mr)5
(22)

TMM = TijMiMj
, Tmr = TijMir̂j, TṀr

= TijṀir̂j (23)

ṪMr
= ṪijMir̂j, Ṫrr = Ṫij r̂ir̂j, T̈rr = r̂ir̂j (24)

In equations 14, 17, 19, the convention [. . .]ret is adopted to indicate that the quantities
inside the square brackets are evaluated at the retarded time

tret = t−
|x− y(τret)|

c0
(25)

Equation 25 expresses that a disturbance emitted from the source position y at time
τret will reach the observer x at time t, due to the time of flight of the noise propagating
at the speed of sound c0. Equations 14, 17, 19 are a consequence of applying the free
space Green’s function

G(x,y, t, τ) =
δ(t− τ −

|x− y|

c0
)

r
(26)

to the wave operator in the FW-H equation, eq. 5.1.
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