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ABSTRACT

In this thesis, we address various tasks for generating 3D skeletons of humans in motion.
The ability to predict and generate human motion has become an important topic in recent
years in many domains including self-driving vehicles, animation, and virtual reality. While
in recent years deep learning has greatly increased the performance of generative models,
the generation of human motion remains an open issue. Even the more recent methods still
struggle to generate high-quality human motion. This is due to the need to model both spatial
and temporal components and of understanding the interactions of human body parts. The
task is also challenging due to the high variability of motions both in terms of time since the
same motion can be performed at a different speed, and in terms of space, since the ampli-
tude of motion can vary greatly. Furthermore, the generated 3D motions must be accurate,
realistic, and smooth. We propose a new predictive Wasserstein generative adversarial net-
work (GAN) to predict the end of a person’s motion. Our predictive network uses the SRVF
representation to model human motion and allow the prediction of accurate motion without
discontinuities in real-time as shown in our experiments against state-of-the-art methods. We
then work on the generation of interaction motions between two persons. We present a new
method to generate a reaction motion in response to an action. Unlike the state-of-the-art
methods that focus on generating the motion of a single person, we propose Interformer, a
Transformer to predict the reaction to an action using the temporal modeling abilities of the
Transformer network as well as new skeleton adjacency and interaction distance modules to
model the interactions. We compare our results to interaction generation and motion predic-
tion methods and outperform them. We develop a new architecture to generate the motion of
two people interacting based on a class label. Our architecture leverages the capabilities of
diffusion models, Transformer architecture, and bipartite graph networks. Our results show
that our method outperforms the state-of-the-art both quantitatively and qualitatively. We
propose an application that uses our motion prediction method to allow a virtual agent to
predict and recognize a person’s motion in non-verbal interactions in a virtual environment.
For this purpose, we propose a new 3D motion database captured with a high-quality motion
capture system and a depth camera.
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RÉSUMÉ

Dans cette thèse, nous abordons diverses tâches de génération de squelettes 3D de corps hu-
main en mouvement. La capacité à prédire et générer des mouvements humains est devenue
un sujet important dans de nombreux secteurs tel que la conduite de véhicules autonomes,
l’animation et la réalité virtuelle. Bien que l’apprentissage profond ait considérablement
amélioré les performances des modèles génératifs ces dernières années, la génération de
mouvements humains reste un problème ouvert. Les méthodes les plus récentes ont toujours
du mal à générer des mouvements humains de bonne qualité. Cela résulte de la nécessité de
modéliser les composantes spatiales et temporelles simultanément et de comprendre les in-
teractions entre les différentes parties du corps. La tâche est également difficile en raison de
la grande variabilité des mouvements, à la fois en termes de temps, puisque le même mouve-
ment peut être effectué à une vitesse différente, et en termes d’espace, puisque l’amplitude du
mouvement peut varier considérablement. De plus les mouvements 3D générés doivent être
précis, réalistes et fluides. Nous proposons un nouveau réseau antagoniste génératif (GAN)
prédictif de Wasserstein pour prédire la fin du mouvement d’une personne. Notre réseau
prédictif utilise une répresentation des courbes appelée SRVF pour modéliser la trajectoires
des mouvements humains et permet une prédiction précise, en temps réel, de mouvement
sans discontinuités comme le montrent nos expériences. Dans une seconde étape de la thèse
nous nous intéressons à la génération des mouvements d’interaction entre deux personnes.
Tout d’abord, nous présentons une nouvelle méthode pour générer un mouvement de réac-
tion en réponse à un mouvement d’action. Contrairement aux méthodes de l’état de l’art
qui se focalisent sur la génération du mouvement d’une personne, nous proposons Inter-
former, un Transformer qui génère des mouvements de réaction en utilisant les capacités
de modélisation temporelles des réseaux Transformer ainsi que de nouveaux modules pour
modéliser les interactions. Nos résultats montrent que l’approche Interformer surpasse les
méthodes de l’état de l’art. Ensuite nous développons une nouvelle architecture pour générer
le mouvement d’interaction de deux personnes en fonction de la classe du mouvement. Notre
architecture exploite les capacités des modèles de diffusion, de l’architecture Transformer et
l’apprentissage de graphes bipartis. Nos résultats montrent que notre méthode surpasse l’état
de l’art quantitativement et qualitativement. Nous proposons une application qui utilise la
méthode de prédiction du mouvement afin de permettre à un agent virtuel de prédire et de
reconnaître le mouvement d’une personne dans le cadre des interactions non-verbales dans
un environnement virtuel. Pour cela nous avons proposé une nouvelle base de données de
mouvement 3D capturée avec un système de capture de mouvement de haute qualité et une
caméra de profondeur.
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1.1 Goals

The goal of this thesis is to develop novel generative models for the generation of human
motion. Human motion generation is an important scientific topic where we need to model
both spatial and temporal components of a motion to generate data of the highest quality.
There are many human motion generation tasks but we will focus on only three:

• 3D skeleton-based human motion prediction The problem of forecasting future hu-
man motion play a vital role in many applications in computer vision and robotics, such
as human-robot interaction, autonomous driving, and computer graphics. The objec-
tive of this task consists in forecasting future human poses based on a prior skeleton
pose sequence. In this thesis, we propose a predictive model for short and long-term
future 3D skeleton poses given an initial prior history.

• Human interaction motion generation aims at generating 3D human interaction mo-
tions. What makes interaction generation challenging is the non-linearity of human
motion interaction and the diversity of the interaction between humans. Several ques-
tions rise to tackle these challenges. We will focus on how to represent the interaction
between humans and how to model motion and generate diverse motion interactions.

• Application to Avatar Interaction Virtual agents or avatars are artificial intelligences
that have a human appearance. Allowing users to interact with such agents increases
their realism. By leveraging our work on 3D human motion prediction we build an
interactive virtual agent. Being able to predict the end of a motion allows the virtual
agent to react faster and more naturally.

Figure 1.1: Examples of 3D skeletons. Example from the DuetDance dataset [83] rendered
with Blender.

4
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1.2 Motivations

Being able to accurately generate 3D motions has become a hot topic in computer vision.
From motion prediction based on historical sequences and generation of motions for a par-
ticular action class to conditional motion generation that follows a trajectory or a song, many
methods are being proposed to generate 3D human motion. Researchers are trying to gener-
ate ever more realistic and ever more complex motions using state-of-the-art methods. The
interest in generative methods for human motions stems from the possible uses of these
methods in multiple areas.

(a) Some algorithms for self-driving cars try to pre-
dict the direction in which pedestrians move.

(b) Framework of human motion prediction to help a
robot interact with the user

(a) source: https://www.aau.edu/research-scholarship/featured-research-topics/
vision-smarter-safer-self-driving-vehicles
(b) source: [164]

Figure 1.2: Use cases for motion prediction.

Robotic. In robotics being able to predict the motion of the human user allows robots to
interact more quickly and more accurately with the user. For example, if the robot needs to
grab something that a human is handing to it, usually the robot needs to wait for the human
to finish his motion before moving to grab the object. If we can predict the end of the motion
of the human, the robot can start moving earlier and grab the object more quickly. With
an accurate enough prediction, it is possible to grab the object right when the human stops
moving, much like what would happen with a real person. This would lead to more realistic
interactions and a better appreciation of the robot by users.

Self-driving vehicle. By enabling self-driving vehicles to predict the motion of hu-
mans or how an interaction between several persons will unfold we can make them safer for
passengers and pedestrians alike. For example by predicting the future motion of a person
based on gait we could see if there is a high chance for a pedestrian to cross the road. If
the probability is high then the car can decelerate or take an avoiding trajectory to avoid the
accident. When looking at people interacting if we can predict the behavior of a participant
based on the motion of others we can avoid even more accidents. If a person is pushing an-
other and we are able to predict if the pushing motion is enough for the person to fall on the
road. If it is the case the car will stop automatically to avoid causing an accident. It would
make the autonomous car safer, and the driver more comfortable by avoiding slowing down
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or requesting the driver to take over when there are people on the side of the road that do not
represent a risk.

Animation. In the domain of animation, the use of motion prediction and reaction
generation will speed up the animation process for the artist. With human motion prediction,
if the artist animates a short sequence an algorithm could propose several future sequences
to complete it. To model an interaction, the artist would only need to animate an action
sequence and an algorithm would propose several possible reactions by the other character.
Or the artist could generate the entire interaction simply by inputting the kind of motion
needed. Using these methods would help animators reduce their workload as well as enable
amateurs to make their own animation with less effort on their part. Fig 1.3a shows an
automatic rigging (linking a 3D skeleton to a character mesh) method from Adobe Mixamo 1.
Coupled with motion generation methods, automatic rigging allows for a faster and simpler
animation process.

(a) Automated rigging method for animation allows
the application of a skeleton to an existing 3D char-
acter.

(b) A virtual agent is animated in real-time to interact
with a human user.

(a) source: https://www.mixamo.com/
(b) source: [147]

Figure 1.3: Use cases for motion generation.

For computer vision research. The available 3D human motion data is still relatively
limited and some of the newer architectures require a lot of data. Motion generation methods
can then be used to create synthetic datasets for several computer vision tasks such as action
recognition and human motion prediction.

Virtual agents Virtual agents are characters controlled by artificial intelligence in virtual
settings. They will interact with the user and, as virtual reality gain traction, these interac-
tions need to be more realistic than before. Motion generation methods can help with this
by providing more motions for a given action, predicting the user’s motion to react faster,
or generating the proper reaction to an action from the user. Fig 1.3b shows a method that
animates a virtual agent in real time while interacting with a human user. Like the method
presented in [147], existing methods use prerecorded motions that are then modified on the
fly to better fit the spatial and temporal context. Motion generation methods can improve the
performance of such systems by providing more diverse high-quality motions.

1https://www.mixamo.com/
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1.3 Challenges

Methods that could be used in these applications need to solve several challenges.

Human Motion Prediction seeks to predict as accurately as possible the motion of a
person based on a past sequence of motion and must face two main challenges: long-term
accuracy and smooth motion. In addition to these two challenges, we also want the model
to be able to predict in real time so it can be used in a virtual agent application. Long-term
accuracy is difficult to achieve mostly because of the accumulation of errors in the predicted
poses. Error accumulation happens when we feed to the network its own output that contains
errors, the results will be based on data that contains errors and consequently contain even
more errors. If the process is repeated recursively it can lead to strong degradation in the
results. This is, for example, the case for RNN-based methods that treat one frame at a time.
Since each frame is generated based on previously generated frames the error accumulates
very quickly and leads to a bad long-term prediction. Another reason for the low accuracy
of long-term predictions originates from the way the problem is treated: we only use motion
data as information to guide the prediction. This limits the maximum prediction length. In
the human motion prediction literature, long-term prediction corresponds to the prediction
of 1s of motion [107]. To get accurate predictions of longer sequences we would need
to consider other modalities such as the environment in which the person evolves (walls,
furniture, roads, other people...) and the intent behind his actions.

Human reaction generation takes an action motion and predicts possible reactions by
another person. This is a new domain that we explore in this thesis. The generated motions
must be smooth, and realistic as for human motion prediction but must also fit well the con-
dition e.g if the action is ’punching’, the generation reaction must be ’being punched’. This
means that we want the reaction to fit the conditioning action e.g with a punching action the
reaction must show the impact of the location that has been punched and follow the direction
from which the punch comes. Another example is when the action is a person shaking a
hand we want the hand of the reaction to be in contact with the hand of the action body. Un-
like motion prediction we do not seek perfect accuracy, the reaction must correspond to the
action but we also want diversity in the generated reaction e.g reacting more or less strongly
to being punched.

Human interaction generation is the generation of two-person interaction motions
given an input class label, e.g by inputting "shake hands" we want to generate motions of
two persons shaking hands. What we seek with interaction generation is similar to the reac-
tion generation task: smooth and realistic motion for both persons and a realistic interaction
between the two persons. In addition, we would like high diversity in the generated motion.

1.4 Contributions

In this thesis, we present a new method for human motion prediction, an architecture for
human reaction generation, a diffusion model for human interaction generation, a dataset of
gestures, and an application consisting of a virtual agent that reacts to human gestures in real
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time and in a realistic manner. Our contributions are the following.

Human Motion Prediction To predict the future motion of a single person we propose a
manifold aware Wasserstein generative adversarial network. We predict future human poses
based on a historical sequence of poses by representing the motion as a trajectory. This
allows us to simplify the motion prediction problem to generate a point on a hypersphere.
We outperform the literature for long-term prediction and are competitive for short-term
prediction.

Human Reaction Generation To generate the reaction motion based on an action se-
quence in a two-person interaction we propose a Transformer network using spatial attention
and graphs. The architecture is based on the original Transformer [146] and we add modules
to deal with the structure of the skeletons and the interaction between the two subjects. Our
method allows the generation of various reaction motions even complex ones like duet danc-
ing. We are also able to generate long motion (up to 40 seconds). As there is no other method
dealing with reaction generation, we compare our approach with methods for motion predic-
tion and interaction generation. We show that our method offers much better quantitative
and qualitative results than some state-of-the-art methods.

Human Interaction Generation To generate two-person interaction motions we pro-
pose BiGraphDiff, a novel bipartite graph diffusion method. Specifically, bipartite node sets
are constructed to model the inherent geometric constraints between skeleton nodes during
interactions. The interaction graph diffusion model is transformer-based, combining some
state-of-the-art motion methods. We compare BiGraphDiff to state-of-the-art action-based
motion generation and achieve more realistic results than the existing methods while provid-
ing higher diversity.

Gestures Dataset A new dataset of 3D gestures of 11 subjects to train our models that
are used with the virtual agent, is proposed. Each subject was asked to perform at least 10
times the motions of 6 classes. A seventh class contains random motions to use as an "Idle"
class performed by 2 subjects. Each motion is recorded by motion capture and a Kinect V2
camera resulting in 1456 data samples after the manual removal of bad samples.

Virtual Agent Application A virtual agent that reacts to gestures and a virtual environ-
ment in which it can interact with the user is proposed. We capture motion with a Kinect V2
camera, predict the end of the motion and then classify it. The application also features a
facial expression recognition module to see if the user is distressed. The application can also
be used with a virtual reality headset.

1.5 Thesis Outline

Chapter 2: In this chapter, we present our work on human motion prediction. We in-
troduce the method to obtain Square Root Velocity Function (SRVF) [137] representation
from motion data. We then show the architecture we use to generate SRVF representing the
future motion and the losses used to train it. We compare our method to others from the
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literature on Human3.6M [64] and CMU MoCap 2 and show that we outperform them on
long term prediction while remaining competitive for short term prediction. We also present
an ablation study and extrapolation capabilities with recursive generation and cross-dataset
prediction.

Chapter 3: Here we introduce a method that generates a reactive motion that responds
to an action motion, e.g from a punching motion we generate the motion of the person be-
ing punched. We present the Transformer architecture used for natural language processing
and computer vision. We show how we represent the problem of reaction motion genera-
tion conditioned on another motion and how we adapt Transformer to solve it. We present
two new modules to deal with the nature of skeleton data and to help model the interac-
tion. As there exists no other method that deals with reaction generation we compare our
work with methods for motion prediction and interaction generation [11, 5]. We evaluate our
approach on the SBU [163] and K3HI [61] datasets for simple human interactions and on
duet-dancing motions from the DuetDance dataset [83] for more complex motion. We show
that we outperform the other approach both quantitatively and qualitatively and present an
ablation study to show how our method improves the generation over a vanilla Transformer.

Chapter 4: We present a method to generate two-person interaction from a label (e.g in-
putting "Punching" to generate a character punching a character being punched) using a dif-
fusion process with a Transformer architecture and Bipartite graphs. The diffusion process
has proved to be very powerful for generative tasks, Transformer helps us model the tem-
poral and spatial (Intra-personal) correlation while the Bipartite Graph model the interactive
part of the motion. We compare our method to state-of-the-art motion generation methods
including one other diffusion-based method [165]. The comparison is done on 26 interac-
tion classes from the large NTU RGB+D 120 [94] dataset and on the DuetDance dataset [83].

Chapter 5: In this chapter, we present our new gesture dataset captured with both a mo-
tion capture system and a Kinect V2 camera. We then introduce our virtual agent interaction
application built by using the methods described in the two previous chapters and the neces-
sary modification to properly run the application in real time. We present the results of the
separate module on the new dataset and several use cases for the application.

Chapter 6: We will end this thesis with a summary of the contribution followed by a list
of the limitations of our methods and finally a description of the possible improvements and
extensions.

2http://mocap.cs.cmu.edu
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2.1 Introduction

The problem of forecasting future human motion plays a vital role in many applications
in computer vision and robotics, such as human-robot interaction [79], autonomous driv-
ing [114] and computer graphics [82]. In this work, we propose a predictive model for short
and long-term future 3D skeleton poses given an initial prior history. Addressing this issue
involves two main challenges: How to represent the temporal evolution of human motion to
ensure the smoothness of the predicted sequences? and how to take the spatial correlations
between human joints into account to avoid implausible poses?

Because of the explosion of deep learning and the availability of large-scale datasets for
human motion analysis, deep learning models have been widely exploited to address the
problem of human motion prediction and especially Recurrent Neural Networks (RNN) [47,
65, 49, 109]. Indeed, RNN-based approaches achieved good advance in term of accuracy,
however, the motions predicted with these methods present significant discontinuities due
to the frame-by-frame regression process that discourage the global smoothness of the mo-
tion. In addition, recurrent models suffer from error accumulation across time, which in-
crease error and worsen long-term forecasting performance. To remedy this, more recent
works avoid these models and explore feed-forward networks instead. Including CNN [87],
GNN [150] and fully-connected networks [20]. Thanks to their hierarchical structure, feed-
forward networks can better deal with the spatial correlations of human joints than RNNs.
However, an additional strategy is required to encode the temporal information when using
these models. To face this issue, an interesting idea was to model the human motion as tra-
jectory [108], [16].
In this work, we follow the idea of modeling motions as trajectories in time but in a different
context from the previous work. Among the benefits of our representation, is the possibility
to map these trajectories to single compact points on a manifold, which helps preserve the
continuity and the smoothness of the predicted motions. Besides, the compact representa-
tion avoids the problem of error accumulation across time and makes our approach suitable
for long-term prediction as illustrated in Figure 2.7. Nevertheless, the challenge here is that
the resulting representations are manifold-valued data that cannot be manipulated with tra-
ditional generative models in a straightforward manner. To face this challenge, we introduce
in this chapter, a manifold-aware Wasserstein Generative Adversarial Networks (WGAN)
that predict future skeleton poses given the input prior motion sequence that is encoded as
manifold-valued data. The spatial dependencies between human joints are taken into con-
sideration in our method through additional loss functions that add more constraints on the
predicted skeleton poses to ensure their plausibility. An overview of our prediction process
is illustrated in Figure 2.4.
The contribution of this work can be summarized as follows: (1) To the best of our knowl-
edge, we are the first to propose an approach that exploits compact manifold-valued rep-
resentation for human motion prediction. By doing so, we model both temporal and spa-
tial dependencies involved in human motion, resulting in smooth motions and plausible
poses in long-term horizons. (2) We propose a predictive manifold-aware WGAN for mo-
tion prediction. (3) We propose a new loss function based on the Gram matrix of the 3D
poses that avoids predicting implausible poses. (4) Experimental results on Human 3.6M
and the CMU MoCap datasets show quantitatively and visually the effectiveness of our

14



HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL

NETWORK

method for short-term and long-term prediction. We present a new metric to evaluate the
smoothness and the temporal evolution of the predicted motion. We provide a qualitative
evaluation for our ablation study to highlight the importance of the different losses of our
method. We also demonstrate in this chapter the ability of our method to predict longer se-
quences by recursive generation. The code and some videos of prediction are available at
https://github.com/CRISTAL-3DSAM/PredictiveMA-WGAN

2.2 Related Work

Human motion Representation When modeling human action and motion several modal-
ities can be considered: RGB videos [80], RGB-Depth videos [131], 2D skeletons [7], 3D
skeletons [117], 3D shape [97]... We decided to focus on the 3D skeleton representation for
human motion prediction but also for the other part of this thesis. As the name implies this
representation consists in representing the human body as a skeleton with 3D coordinates.
The skeleton is composed of joints positioned where real body joints are located (e.g knee,
shoulder...) and bones that are the connections between the joints that mimic the real bones
of the human body (e.g a bone from the elbow to the shoulder). The 3D coordinates are the
coordinates of these joints. They can be captured using a motion capture system [64], a depth
camera with software to detect the skeleton like the Kinect camera [94], or from RGB video
using software like Mediapipe’s BlazePose [145]. Due to the various sources of skeleton
data, the number of joints can vary and the position of a particular joint can change slightly
from one database to another (e.g in some case the "head joint" correspond to the middle of
the forehead in other to the top of the head) as shown in Fig.2.1. Furthermore, the coordi-
nates can be described using two different representations: the 3D cartesian coordinates or
the angle format. The angle format can also be represented in various forms: Euler angle,
quaternion, and axis-angle. A skeleton joint in 3D Cartesian coordinates is defined by three
values x, y, and z which represent its position in space according to each axis. In Euler angle,
the same joint is represented by θx, θy, and θz which is the rotation of the joint on each axis.
Angle-axis joints are represented by a unit vector u characterized by its direction coordinates
ux, uy, and uz as well as the rotation angle on that vector θ. The quaternion representation
also uses a unit vector u and an angle θ but the rotation of the joint is described by these
four values: cos( θ

2
), uxsin(

θ
2
), uysin(

θ
2
) and uz(sin

θ
2
). We can easily switch from one of the

angular forms to another and also from the angle format to 3D coordinates. However, we can
not easily convert 3D coordinates to angle format and conversion between these two formats
can cause issues i.e two different angle poses can correspond to the same 3D coordinates
pose [150]. For this reason and the fact that some datasets only provide 3D coordinates data,
we decided to use only the 3D cartesian coordinates representation in this thesis.

Human motion prediction describes the generation of future poses based on a sequence
of prior known poses. This can be helpful for many applications such as self-driving cars,
accident prevention, or 3D animation. As such it is a very popular subject and many methods
have been investigated too, solve it. Given that the task of human motion prediction is a tem-
porally dependent problem, recurrent models (RNN) were the first potential solution to be
investigated, hence several works applied RNN and their variants to tackle this task. In [47],
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Figure 2.1: Figure from [93]. Left: skeleton structure from Kinectics [75] extracted with
Openpose. Right skeleton from NTU-RGB+D [94]. We can see that the two skeletons are
very different with a different number of joints and different positions for joints representing
the same body part.

the authors proposed a model that incorporates a nonlinear encoder and decoder before and
after recurrent layers. Their approach suffers from error accumulation and discontinuity be-
tween the last frame of the prior and the first frames of the generated sequence. Moreover,
their approach only captures the temporal dependencies but ignores the spatial correlations
between articulations. To deal with this problem, [65] proposed a Structural-RNN model
relying on high-level spatio-temporal graphs. [49] take a different direction to minimize the
error accumulation effect in RNNs; they used a feed-forward network for pose filtering and
a RNN for temporal filtering. However, this strategy only minimizes the accumulated error
that still exists and deteriorates the performance of recurrent models in long-term prediction.
In [109] the authors showed that RNN methods were often beaten by a simple baseline in
terms of quantitative results. Trying to solve some of the issues of RNN, more recent works
exploit convolutional neural networks (CNNs). To model the temporal evolution with these
models, various strategies have been suggested. In [87, 20], convolution across time was
exploited to model the temporal dependencies with convolution networks, while [108] adopt
Discrete Cosine Transform to encode the motion as trajectory. [91] propose a convolutional
autoencoder with 1D convolution layers and a hierarchical structure that exploit the struc-
ture of the human body. In [95] the authors use CNN to capture the spatial and temporal
features simultaneously by using a trajectory space to model the motion. The methods based
on CNN achieved better results than the RNN methods but a particular type of CNN was
of interest for works using 3D skeletons: the Graph convolutional networks (GCN). Graph
convolutional networks were also applied for motion prediction [150, 65] as a suitable tool to
model the spatial correlations involved between the articulations. Indeed the human skeleton
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in the 3D representation can be seen as a graph where the nodes are the skeleton joints and
the edges are the bones. The simplicity of the conversion from skeleton to graph sparked
great interest in the community and works succeeded in building coherent spatial and tem-
poral graph [168, 133] leading to results that far surpassed those of RNNs and conventional
CNNs. In this thesis, we take a completely different direction and we propose to deal with
human motions by exploiting a manifold-valued representation with generative adversarial
models.

Figure 2.2: Figure from [109] showing the discontinuity problem between the last historical
frame and the first predicted frame that is very visible on the first prediction methods.

Generative adversarial network Generative adversarial networks have been introduced
in [51], its architecture consists of a generator that must generate data and a discriminator
that must compare the generated data and decide whether the data is real or not Fig.2.3. Both
are trained with opposite goals: the generator must generate data good enough to fool the
discriminator while the discriminator must be able to always differentiate between real and
generated data, hence the "adversarial" networks.

The adversarial process is ensured by the use of a specific loss that takes into account the
objectives of both the generator and the discriminator called adversarial loss:

minGmaxD V (D,G) = Ex∼pdata(x)(log(D(x))) + Ez∼pz(z)(log(1D(G(z)))), (2.1)

with x the data, pz(z) a prior on input noise variables , G the generator function and D
the discriminator function. D(x) represents the probability that x comes from the real data
rather than the generated data. D is trained to maximize the probability of assigning the
correct label (real or false) to each sample while G is trained to minimize log(1−D(G(z))).
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Figure 2.3: The GAN architecture [51]

The architecture of the generator and discriminator is very flexible and can contain any-
thing from CNN [123] to VAE [162] and transformer [66]. A GAN can also contain several
generators or several discriminators [41] and can be modified to perform conditional gener-
ation [6]. Due to this great flexibility, GANs have been used extensively in computer vision
but also to generate music [42] or in NLP [92]. In computer vision the use of GAN led
to an improvement in performance in a lot of domains like image translation [170], facial
landmark detection [156], image inpainting [161], image super-resolution [84], 3D objects
generation [152] and video generation [142].

Generative adversarial networks have also been investigated for human motion predic-
tion after showing impressive performance on image generation tasks. Many works using
GAN for human motion prediction appeared, most of them applying and enhancing method-
ology developed for RNN, CNN or autoencoder to the GAN architecture. In [52] and [9],
however, in order to model the temporal dependencies involved, they build their generator
on RNN structures. In this way, the error accumulation problem is present in their model
which may deteriorate its performance in the long term. [10] propose a GAN architecture
that learns a probability density function to generate future human poses, enabling the gen-
eration of multiple futures based on a single historical sequence. Generating several possible
future sequences may have advantages for some applications but also make it more difficult
to evaluate the method as the standard metrics for human motion prediction are based on a
comparison with the real motion sequence. [106] uses two generators to generate the mo-
tion, one for the lower body motion and one for the upper body motion. The lower body
generator is conditioned on the prior sequence while the upper body generator is conditioned
on the prior sequence and the generated lower body motion. Pursuing further the idea of
separating the human body into parts [96] split the body into five parts each treated by a
different GAN and then combined and presented to a global discriminator. [100] argue that
methods based on the skeleton structure are difficult to generalize as different datasets can
have different skeleton representations and propose a GAN that considers each skeleton joint
separately and formulate them as a basic stochastic variable modeled using the Langevin
equation. In our work, we completely discard recurrent models by adopting a compact rep-
resentation of the human motion. Motivated by the interest of manifold-valued images in
a variety of applications, [63] proposed manifold-aware WGAN. Inspired by this work, we
build a manifold-aware WGAN that predicts the future points of a pose’s trajectory given the
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previous pose sequence. However, our model is different from the one proposed in [63] in
two ways. Firstly, instead of unsupervised image generation from a vector noise, our model
addresses the problem of predicting future manifold-valued representations from a manifold-
valued input. In addition, we propose different objective functions to train our model on the
task at hand

Modeling Human Motions as Trajectories on a Riemannian Manifold: While our
present work is the first that explores the benefit of manifold-valued trajectories for human
motion prediction, representing 3D human poses and their temporal evolution as trajectories
on a manifold was adopted in many recent works for action recognition. Different manifolds
were considered in different studies [143], [15], [70]. More related to our work, in [37],
a human action is interpreted as a parametrized curve and is seen as a single point on the
sphere by computing its Square Root Velocity Function (SRVF). Accordingly, different ac-
tions were classified based on the distance between their associated points on the sphere.
All papers mentioned above show the effectiveness of motion modeling as a trajectory in
action recognition. Motivated by this fact, we show in this chapter the interest of using such
representation to address the recent challenges that are still encountered in human motion
prediction.

2.3 Representation of Pose Sequences as Trajectories in Rn

Let k be the number of joints that compose the skeleton, we represent Pt the pose of the skele-
ton at frame t by a n-dimensional tuple: Pt = [x1(t), y1(t), z1(t) . . . xk(t), yk(t), zk(t)]

T , The
pose Pt encodes the positions of k distinct joints in 3 dimensions. Consequently, an ac-
tion sequence of length T frames, can be described as a sequence {P1, P2 . . . , PT}, where
Pi ∈ Rn and n = 3× k.

This sequence represents the evolution of the action over time and can be considered as a
result of sampling a continuous curve in Rn. Based on this consideration, we model in what
follows, each pose sequence of a skeleton, as a continuous curve in Rn that describes the
continuous evolution of the sequence over time.
Let us represent the curve describing a pose sequence by a continuous parameterized function
α(t) : I = [0, 1] → Rn. In this work, we formulate the problem of human motion predic-
tion given the first consecutive frames of the action as the problem of predicting the possible
next points of the curve describing these first frames. More formally, the problem of pre-
dicting the future poses {Pτ+1, Pτ+2, . . . , PT}, given the first τ consecutive skeleton poses
{P1, P2, . . . , Pτ}, where τ < T , is formulated as the problem of predicting α(t)t=τ+1...T

given α(t)t=1...τ , such that, α(t) is the continuous function representing the curve associated
to the pose sequence {P1, P2, . . . , PT}.
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2.3.1 Representation of Human Motions as Elements in a Hypersphere
C

For the purpose of modeling and studying our curves, we adopt the square-root velocity
function (SRVF) proposed in [137]. It was successfully exploited for human action recog-
nition [37], 3D face recognition [40] and facial expression generation [112]. Conveniently
for us, this function maps each curve α(t) to one point in a hypersphere which provides a
compact representation of the human motion. Specifically, for a given curve α(t) : I → Rn,
the square-root velocity function (SRVF) q(t) : I → Rn is defined by the formula

q(t) =

{
α̇(t)√
∥α̇(t)∥

, if ∥α̇(t)∥ ≠ 0

0, if ∥α̇(t)∥ = 0
(2.2)

where, ∥ · ∥ is the Euclidean 2-norm in Rn. We can easily recover the curve (i.e, pose
sequence) α(t) from the generated SRVF (i.e, dynamic information) q(t) by,

α(t) =

∫ t

0

∥q(s)∥q(s)ds+ α(0) , (2.3)

where α(0) is the skeleton pose at the initial time step which corresponds in our case to the
final time step of the history. In order to remove the scale variability of the curves, we scale
them to be of length 1. Consequently, the SRVFs corresponding to these curves are elements
of a unit hypersphere in the Hilbert manifold L2(I,Rn) as explained in [137]. We will refer
to this hypersphere as C, such that, C = {q : I→ Rn| ∥q∥ = 1} ⊂ L2(I,Rn) . Each element
of C represents a curve in Rn associated with a human motion. As C is a hypersphere, the
geodesic length between two elements q1 and q2 is defined as:

dC(q1, q2) = cos−1(⟨q1, q2⟩) . (2.4)

2.4 Architecture and Loss Functions

Given a set of m action sequences {{P1, P2, . . . PT}i}mi=1 of T consecutive skeleton poses.
Let us consider the first τ poses (τ < T ) as the actions history represented by their corre-
sponding SRVFs {qiτ}mi=1, and the last (T − τ) skeleton configurations as the future poses
{qiT}mi=1 to be predicted.
Motivated by the success of generative adversarial networks, we aim to exploit these gener-
ative models to learn an approximation of the function Φ : C → C that predicts the (T − τ)
future poses from their associated τ prior ones. This can be achieved by learning the dis-
tribution of SRVFs data corresponding to future poses, on their underlying manifold i.e.,
hypersphere. As stated earlier, SRVFs representations are manifold-valued data that cannot
be used directly by classical GANs. This is due to the fact that the distribution of data hav-
ing values on a manifold is quite different from the distribution of those lying on Euclidean
space. [63], exploited the tangent space of the involved manifold and propose a manifold-
aware WGAN that generates random data on a manifold. Inspired by this work, we propose a
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manifold-aware WGAN for motion prediction, to which we refer as PredictiveMA-WGAN,
that can predict future poses from past ones. This is achieved by using the prior poses as
input conditions to the MA-WGAN. This condition is also represented by its SRVF; as a
result, PredictiveMA-WGAN takes manifold-valued data as input to predict its future, which
is also manifold-valued data.

2.4.1 Network Architecture

PredictiveMA-WGAN consists of two networks trained in an adversarial manner: the pre-
dictor G and the discriminator D. The first network G adjusts its parameters to learn the
distribution PqT of the future poses qT conditioned on the input prior ones qτ , while D tries
to distinguish between the real future poses qT and the predicted ones q̂T . During the training
of these networks, we iteratively map the SRVF data back and forth to the tangent space using
the exponential and the logarithm maps, defined at a particular point on the hypersphere.

The predictor network is composed of multiple upsampling and downsampling blocks. It
takes as input the prior poses qτ and outputs the predicted future poses q̂T . A fully connected
layer with 36864 output channels and five upsampling blocks with 512, 256, 128, 64, and
1 output channels, processes the input prior pose. These upsampling blocks are composed
of the nearest-neighbor upsampling followed by a 3 × 3 stride 1 convolution and a Relu
activation. The Discriminator D contains three downsampling blocks with 64, 32, and 16
output channels. Each block is a 3 × 3 stride 1 Conv layer followed by batch normalization
and Relu activation. These layers are then followed by two fully connected (FC) layers of
1024 and 1 outputs. The first FC layer uses Leaky ReLU and batch normalization.

2.4.2 Loss Functions

In general, the objective of the training consists in minimizing the Wasserstein distance be-
tween the distribution of the predicted future poses Pq̂T and that of the real ones PqT provided
by the dataset. Toward this goal we make use of the following loss functions:

Adversarial loss – We propose an adversarial loss for predicting manifold-valued data
from their history. The predictor takes a manifold-value data qτ as input rather than a ran-
dom vector as done in [63], which requires mapping these data to a tangent space using the
logarithm map before feeding them to the network. Our adversarial loss is the following:

La =EqT∼PqT

[
D
(
logµ(qT )

)]
−EG(logµ(qτ ))∼Pq̂T

[
D
(
logµ

(
expµ(G(logµ(qτ )))

))]
+λEq̃∼Pq̃

[
(∥∇q̃D(q̃)∥ − 1)2

]
,

(2.5)

where the exponential map, expµ(.): Tµ(C) 7→ C has a simple expression:

expµ(s) = cos(∥s∥)µ+ sin(∥s∥) s

∥s∥
,
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and the inverse exponential map also called logarithm map logµ(q): C 7→ Tµ(C) is given
by:

logµ(q) =
dC(q, µ)

sin(dC(q, µ))
(q − cos(dC(q, µ))µ)

where dC(., .) is the geodesic distance defined by (2.4). The last term of La represents
the gradient penalty proposed in [53]. q̃ is a random sample following the distribution Pq̃,
which is sampled uniformly along straight lines between pairs of points sampled from the
real distribution PqT and the generated distribution Pq̂T . It is given by: q̃ = (1−a) logµ(qT )+
a logµ(expµ(G(logµ(qτ )))), where∇q̃D(q̃) is the gradient with respect to q̃, and 0 ⩽ a ⩽ 1.
The reference point µ of the tangent space used in our training is set to the mean of the
training data. For a given set of training trajectories q1, . . . , qm. The mean is given by the
Karcher mean [72] in C,

µ = argmin
qi∈C

m∑
i=1

d2C(µ, qi) (2.6)

where {qi}mi=1 is m training data. We present a commonly used algorithm for finding Karcher
mean for a given set of curves [136]. This approach is presented in Algorithm 1. This
computation is based on an iterative calculation that converges to the optimal solution which
is the mean.

Algorithm 1: Karcher mean on C
Input: Given SRVFs {q1, q2 · · · qN},
ϵ = 0.9, τ : threshold which is a very small number
Output: µj : mean of {qi}i=1:N

1- µ0: initial estimate of Karcher mean, for example, one could just take µ0 = q1,
j=0

repeat
for i← 1 to N do

2- Compute vi =
θi

sin(θi)
(q∗i − cos(θi)µj), where cos(θi) = ⟨µj, q

∗
i ⟩

3- Compute the average direction v = 1
n

∑n
i=1 vi

4- Move µj in the direction of v by ϵ: µj+1 = cos(ϵ∥v∥)µj + sin(ϵ∥v∥) v
∥v∥

5- j=j+1
until ∥v∥ < τ ;

Reconstruction loss – In order to predict motions close to their ground truth, we add a re-
construction loss Lr. This loss function quantifies the similarities in the tangent space Tµ(C)
between the tangent vector logµ(qT ) of the ground truth qT and its associated reconstructed
vector logµ(expµ(G(logµ(qτ )))). It is given by,

Lr = ∥logµ(expµ(G(logµ(qτ ))))− logµ(qT )∥1 , (2.7)

where ∥.∥1 denotes the L1-norm.
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Skeleton integrity loss – We propose a new loss function Ls that minimizes the distance
between the predicted poses and their ground truth as a remedy to the generation of abnormal
skeleton poses. Indeed, the aforementioned loss functions rely only on the SRVF represen-
tations, which impose constraints only on the dynamic information. However, to capture the
spatial dependencies between joints that avoid implausible poses, we need to impose con-
straints on the predicted poses directly instead of their motions. By doing so, we predict
dynamic changes that fit the initial pose and result in long-term plausibility. The proposed
loss function is based on the Gram matrix of the joint configuration P , G = PP T , where P
can be seen as k × 3 matrix. Let Gi, Gj be two Gram matrices, obtained from joint poses
Pi, Pj ∈ Rk×3. The distance between Gi and Gj can be expressed [50, p. 328] as:

∆(Gi, Gj) = tr (Gi) + tr (Gj)− 2
3∑

i=1

σi , (2.8)

where tr(.) denotes the trace operator, and {σi}3i=1 are the singular values of P T
j Pi. The

resulting loss function is,

Ls =
1

m

1

τ

m∑
i=1

τ∑
t=1

∆(Pi,t, P̂i,t) , (2.9)

where m represents the number of training samples, τ is the length of the predicted sequence,
P is the ground truth pose and P̂ is the predicted one.

Bone length loss – To ensure the realness of the predicted poses, we impose further
restrictions on the length of the bones. This is achieved through a loss function that forces
the bone length to remain constant over time. Considering bi,j,t and b̂i,j,t the j-th bones at
time t from the ground truth and the predicted i-th skeleton, respectively, we compute the
following loss :

Lb =
1

m

1

τ

1

B

m∑
i

τ∑
t=1

B∑
j

∥bi,j,t − b̂i,j,t∥ , (2.10)

with B the number of bones in the skeleton representation.

Global loss – PredictiveMA-WGAN is trained using a weighted sum of the four loss
functions La, Lr, Ls and Lb introduced above, such that,

L = β1La + β2Lr + β3Ls + β4Lb. (2.11)

The parameters βi are the coefficients associated to different losses, they are set empirically
in our experiments.

The algorithm 2 summarizes the main steps of our approach. It is divided into two stages,
first, we outline the steps needed to train our model, then we present the prediction stage,
where the trained model is used to predict future poses of a given sequence.
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Algorithm 2: PredictiveMAWGAN algorithm

// Training

Data: {qiτ}mi=1: SRVFs of training prior poses, {qiT}mi=1: real future poses, θ0 : initial
parameters of G, η0 : initial parameters of D, ϵ: learning rate, K: batch size,
λ: balance parameter of gradient penalty, ζ: iterations number.

Result: θ: generator learned parameters.
1 for i = 1 . . . ζ do
2 Sample a mini-batch of K random prior poses {qjτ}Kj=1 ∼ Pqτ ;
3 Sample a mini-batch of K real future poses; {qjT}Kj=1 ∼ PqT ;
4 Dη ← ∆η(L),L is given by Eq. 10;
5 η ← η + ϵ.AdamOptimizer(η,Dη);

6 Sample a mini-batch of K random prior poses; {qjτ}Kj=1 ∼ Pqτ ;
7 Compute {Gθ(logµ(qjτ ))}Kj=1;
8 Gθ ← ∆θ(−Dη

(
logµ

(
expµ(Gθ(logµ(qτ ))

))
))

9 θ ← θ + ϵ.AdamOptimizer(θ,Gθ);

// Prediction

Data: θ: generator learned parameters,
{Pi}τi=1: Prior poses of a testing sequence.

Result: {P̂i}Ti=τ+1: Predicted future poses.
10 Compute qτ from {Pi}τi=1 with Eq. 1;
11 Compute q̂T = expµ(Gθ(logµ(qτ ))) using the learned parameters θ;
12 Transform q̂T into pose sequence {P̂i}Ti=τ+1 using Eq. 2, with α(0) = Pτ

2.5 Experiments

We evaluate the proposed approach with extensive experiments on two popular datasets. In
this part, we show and discuss our results.

2.5.1 Datasets and Pre-processing

Human 3.6M [64]. it is a database that contains 11 subjects performing 15 different ac-
tions (Walking, Phoning, Taking photos. . . ). It is one of the largest datasets and the most
commonly used for evaluating human motion prediction with 3D skeletons. Following the
protocol set by previous approaches [109, 34] we train our model on 6 subjects and test it on
the specific clips of the 5th subject. In the same way as [34] out of the 32 skeletal joints we
only use 17, we remove the joints that correspond to duplicate joints, hands, and feet.

For Human3.6M we take the database processed by [65] formatted in exponential map
and we use their code to convert them to Cartesian coordinates. During our preprocessing
step, we down-sample the sequence from 50 fps to 25 fps and then perform normalization
by subtracting the mean, dividing by the norm, and subtracting the coordinates of the root
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joint (hips). In the dataset proposed by [65] each class of each subject is composed of 2 long
sequences. We divide those into smaller sequences for short-term prediction (60 frames) and
long-term prediction (75 frames), following [87]. When generating these smaller sequences
we avoid overlap, e.g. when generating sequences for long-term prediction (75 frames) the
first sequence contains the frames 1 to 75, the second frames 76 to 150, and so on. This
leaves us with 3480 training samples and 812 testing samples for short-term prediction and
2769 training samples and 644 testing samples for long-term prediction.

CMU Motion Capture (CMU MoCap). CMU Mocap dataset 1 is a database that contains
5 categories of motion, each containing several actions. Following [87], we keep only 8
actions: ’basketball’, ’basketball signal’, ’directing traffic’, ’jumping’, ’running’, ’soccer’,
’walking’, and ’washing window’. We keep the same joint configuration as for Human3.6M
and preprocess the data the same way. This leads to 2871 training samples and 704 test
samples for short-term prediction and 2825 training samples and 677 test samples for long-
term prediction.

2.5.2 Implementation Details

We train our network with a batch size of 64 on 500 epochs and with a learning rate of 10−4

using the Adam optimizer [78]. We use β1 = 1, β2 = 1, β3 = 10 and β4 = 10 for the loss
coefficients. Our Implementation runs on a PC with a Nvidia Quadro RTX 6000 GPU, two
2.3Ghz processors, and 64Go of RAM using Tensorflow 2.2.

2.5.3 Evaluation Metrics and Baselines

We use state-of-the-art methods for motion prediction that were based on 3D coordinate rep-
resentation for our comparison. This includes RNN-based methods (Residual sup). [109],
CNN based method (ConvSeq2Seq) [87] and graph models; (FC-GCN) [150] and (LDRGCN) [34].

The zero velocity baseline introduced by [109] is a very simple baseline that uses the
last observed frame at t = τ as the value for all the predicted frames, we also compare
ourselves to this baseline. The results of LDRGCN are those reported by the authors for the
method trained with data in 3D coordinate space. Concerning FC-GCN, ConvSeq2Seq, and
Residual sup., the results are those reported by [150] using 3D coordinate data for training.
We report the results presented by [34] for long-term prediction (1000ms) results on Human
3.6M since they are not provided in [150]. The long-term results for Residual sup. are not
available, we did not include it in our results.

We base our quantitative evaluation on the Mean Per Joint Position Error (MPJPE) [64]
in millimeters following the state-of-the-art [34]. The metric compares the 3D coordinates
of the ground truth with the predicted motions. It is given by,

1http://mocap.cs.cmu.edu
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MPJPE =

√√√√ 1

∆t

1

k

τ+∆t∑
t=τ+1

k∑
j=1

∥pt,j − p̂t,j∥2 , (2.12)

where pt,j = [xj(t), yj(t), zj(t)] are the coordinates of joint j at time t from the ground truth
sequence, p̂t,j the coordinates from the generated sequence, k the total number of joints in the
skeleton, τ the number of frames in prior sequence and ∆t the number of predicted frames
at which the sequence is evaluated.

While MPJPE evaluates the generated samples based on joint positions, it is not enough
to assess the evolution of the motion. To complete our assessment we further compare our
method with the other approaches based on the evolution along time of the speed of the
predicted sequences, we refer to this metric as MPJS (Mean Per Joint Speed). It is computed
as follows,

MPJS(t) =
1

k

1

M

M∑
i=1

k∑
j=1

∥pi,t−1,j − pi,t,j∥ , (2.13)

with pi,t−1,j and pi,t,j the coordinates of joint j at time t-1 and t respectively, k the number of
joints in the skeleton and M the total number of samples in the test set.

2.5.4 Quantitative Comparison

Joints position-based evaluation

To be consistent with recent works, the results are reported for short-term prediction and
long-term prediction. For short-term prediction, we predict 10 future frames within 400ms
given 10 historical frames while we predict 25 in 1s based on 25 prior frames for long-term
prediction. In Table 2.1 we show the comparison of our results with recent methods that
use 3D joint coordinates representation. This representation has been proven to provide a
more reliable comparison than the angle-based representation by [150]. The results in the
table show the clear superiority of our method over methods from the state-of-the-art on both
datasets. We highlight that our approach is very competitive with the LDRGN approach for
very short-term prediction (80ms and 160ms) while outperforming it for longer prediction
(320ms, 400ms, and 1s). This demonstrates that it is robust when predicting long-term mo-
tions that stay close to the ground truth.

In Table 2.2 and 2.3 we report the results for the literature and for our method on all
action classes of Human3.6M and CMU Mocap datasets respectively. The baseline methods
adopt a protocol that consists in reporting the average error on eight randomly sampled test
sequences. We found that this random sampling can significantly affect the error and makes
it hard to present a fair comparison. To avoid this, we decided to report to run the experiment
on 8 randomly selected test sequences 100 times, we then report the average error and the
standard deviation for these 100 runs for the results of our model. With the standard devi-
ation, we can have a better measurement of the general performance of our architecture on
different test sequences.
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Human3.6M average CMU MoCap average
millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000
Zero velocity 19.6 32.5 55.1 64.4 107.9 18.4 31.4 56.2 67.7 130.5
Residual sup. 30.8 57.0 99.8 115.5 - 15.6 30.5 54.2 63.6 96.6
convSeq2Seq 19.6 37.8 68.1 80.3 140.5 12.5 22.2 40.7 49.7 84.6
FC-GCN 12.2 25.0 50.0 61.3 114.7 11.5 20.4 37.8 46.8 96.5
LDRGCN 10.7 22.5 43.1 55.8 97.8 9.4 17.6 31.6 43.1 82.9
Ours 12.6 22.5 41.9 50.8 96.4 9.4 15.9 29.2 38.3 80.6

Table 2.1: Average error over all actions of Human3.6M and CMU MoCap. The short-term
in 80, 160, 320, 400ms, and long-term in 1s.

According to Tables 2.2 and 2.3, our method performs better than the state-of-the-art,
especially when dealing with long-term prediction, these results are consistent with the av-
erage error over all actions classes. Interestingly our results also show that the simple zero
velocity baseline sometimes outperforms the state-of-the-art approach on long-term predic-
tion (e.g, “Photo”, “Sitting” and “Walking dog” for Human3.6M, “Soccer” and “Jumping”
for CMU MoCap). On the other hand on short-term prediction, it is always outperformed
by the prediction methods. This may be an indication that the MPJPE is not the best-suited
metric for the problem and a motivation to find a better more representative metric in future
works. The results show that the previous approaches’ performances decrease over time,
while ours proves more robust in long-term horizons, we are shown to perform better than
both the zero velocity baseline and the literature. We can notice that some classes present
a very large variance (e.g, jumping) while for others the variance is very low (e.g, running).
This is due to the number of samples which can be very different from one class to another
but also to the high diversity of samples for some classes. Other classes that present less
variability (e.g, walking) have a reduced variance.

Motion-based evaluation

To further assess the generated sequences, we evaluate their motion based on the MPJS
introduced before. By looking at the evolution of this metric, we can compare our generated
motion with the ground truth ones and evaluate the ability of our model to predict motion in
long-term prediction. To this end, we show in Figures 2.5 the evolution of the MPJS over
time steps on the Human3.6M dataset.
Results show that the average ground truth speed varies slightly around 9 mm/frame. The
zero velocity baseline obviously shows the worst results as no motion is being produced and
the speed is always null. Both FC-GCN and ConvSeq2Seq speeds continuously decrease
over time meaning that less motion is being produced on average for long-term horizons. On
the other hand, our method shows variations in the average produced speed, up to 1s with
even an increase during long-term prediction. The results from Tables 2.2 and 2.1 show that
the pose error is good for long-term prediction, meaning that the increase in average speed
does not correspond to a degradation in the quality of the prediction. This supports our claim
that our method is a good fit to predict long motions that keep their spatial and temporal
coherency. We report in Figure 2.6 the evolution of MPJS for the CMU dataset in the same
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HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL

NETWORK

Figure 2.5: The average speed (MPJS) evolution over 1000 ms of all action classes of the
Human3.6M dataset.

way as for Human3.6M. We do not report the results for FC-GCN as there was no pre-
trained model available and we were unable to train their model ourselves. The results are
similar to those of Human3.6M: average speed of prediction method lower than the ground
truth, constant decrease for ConvSeq2Seq, more variation for our method with a significant
increase in long-term horizons. However, we see that this time for short-term prediction
ConvSeq2Seq produces an average speed closer to the ground truth than ours. This seems to
confirm the MPJPE results for ConvSeq2Seq that show that it performs better on CMU than
on HUMAN3.6M, we still perform better for long-term prediction, showing that our method
is robust to different kinds of datasets. Interestingly however all evaluated methods have
average speeds well below the values of the ground truth. While this may be explained in
part by the presence of sudden, high amplitude and hard-to-predict motion in action classes
like Direction or Greeting, it still indicates that using losses that solely constraint the poses
during training leads to generating sequences with slower motion since fast motions are more
prone to error. This might be a hint that using losses on the speed of the motion will help
produce even better predictions.

We present in Table 2.4 the average MPJS for each class over all time steps on Hu-
man3.6M. In consistency with Figure 2.5 this table shows a significant difference between
the ground truth and generated motions with all methods. However, this difference changes
significantly between classes; some classes like Walking Dog or Greeting present a high dif-
ference (6.19 and 4.89 respectively when compared with our method) while others have a
lower difference like Eating or Smoking (1.93 and 1.70 respectively when compared with our
method). Furthermore, our method is still able to outperform ConvSeq2Seq and FC-GCN on
all classes except Walking and Walking together where FC-GCN performs better indicating
a capability to better model periodical motion. On the other hand for non-periodic motion,
our method outperforms FC-GCN by a large margin (Greeting, Sitting Down, etc.).
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Figure 2.6: The average speed (MPJS) evolution over 1000 ms of all action classes of the
CMU MoCap dataset.

Ground truth ConvSeq2Seq FC-GCN Ours
Direction 5.97 2.43 2.39 3.41

Discussion 8.42 3.03 3.28 4.7

Eating 6.24 3.35 3.77 4.31

Greeting 11.54 3.41 3.82 6.65

Phoning 7.77 3.29 3.74 4.66

Photo 7.77 2.42 2.99 3.81

Posing 10.56 3.34 3.85 4.84

Purchases 10.28 2.60 3.41 4.97

Sitting 7.37 1.85 2.04 3.34

Sitting Down 9.58 2.50 2.37 4.53

Smoking 6.33 2.90 4.01 3.95

Waiting 7.98 3.37 3.56 4.63

Walking Dog 13.29 4.59 5.33 7.1

Walking 12.76 8.11 9.9 8.78

Walking together 9.95 4.95 6.87 6.59

Average 9.05 3.48 4.09 5.08

Table 2.4: Averaged MPJS over 1000 ms for all classes of Human3.6M dataset. Closer to
the ground truth is better.

2.5.5 Qualitative Comparison

In this part, we present some examples that illustrate the smoothness of the generated motion
with our method compared to the ground truth and the baselines.
In Figure 2.7 we present the 3D pose sequences of a predicted motion using a model trained
for long-term prediction with our architecture. We also show the prediction of the same 3D
pose sequence by the baseline methods ConvSeq2Seq [87] and FC-GCN [150] using their
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publicly available code. LDRGCN [34] is not included as the code for his method is not
yet available. We observe that visually our method produces a realistic and smooth motion
and that our pose sequence follows more closely the ground truth than the other methods
event for long-term prediction. The motion produced by our method does not show any
discontinuity, this is the consequence of applying the predicted dynamic of the motion to a
starting pose, it prevents the discontinuity that can appear when predicting directly the 3D
poses as the other methods do.

2.5.6 Motion Smoothness

In Figure 2.8 we show the evolution of the y coordinate from the skeleton’s left foot over
time and in Figure 2.9 the evolution of the x-axis of the right hand. The 25 frames samples
were selected randomly from the walking and walking together action classes respectively
from the Human3.6M dataset. We see clearly in the figure that our method is able to generate
a smooth motion in both cases and that we are able to follow the real motion from the ground
truth, closely for the walking sample and with a small temporal delay for walking together
while for this later, the other methods show a completely different movement.

2.5.7 Computation Time

We show a comparison of the computing time in Table 2.5 of our method with ConvSeq2Seq
and FC-GCN. This time comparison is done for long-term prediction (i.e, predicting 25
frames) with 8 sequences for each of the 15 action classes from the Human3.6M dataset
using the code provided by the author for ConvSeq2Seq and FC-GCN. The results from
Table 2.5 show that despite the additional computations required to map the motion back and
forth to the tangent space compared to standard GAN architecture, we can predict motion
with a speed similar to the other two methods and faster than ConvSeq2Seq.

total time time per sample (25 frames)
ConvSeq2Seq 3.04s ≈ 25ms

FC-GCN 1.67s ≈ 14ms

Ours 2.42s ≈ 20ms

Table 2.5: Prediction time comparison for 8 predicted samples per action on Human3.6M.

2.5.8 Distribution Visualization

With Figure 2.10 we further assess the quality of the predicted samples using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [104]. We present a 2D visualization of
677 samples of long-term prediction from the CMU MoCap dataset. The resulting repre-
sentation clearly indicates that the motion from the ground truth and the predicted motions
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Figure 2.8: Left foot position evolution, Walking class from Human3.6M. X-axis and
y-axis correspond respectively to frame numbers and joint position on the y-axis.

Figure 2.9: Right hand position evolution. Walking together class from Human3.6M.
X-axis and y-axis correspond respectively to frame numbers and joint position on the x-axis
for the right hand joint.
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are from very close distributions. Moreover, we can see that the different generated 3D se-
quences from the same action are relatively distant from each other, meaning for the same
action class our model can predict several motions while respecting the prior motion used
for the prediction.

(a) Predicted motions

(b) Ground truth motions

Figure 2.10: 2D visualization of the predicted motions by our method and their associated
ground truth using the t-SNE algorithm based on Gram distance eq.2.8. Each color represents
an action.
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Figure 2.11: Exemple of recursive prediction on a sample of action class walking from the
CMU MoCap Dataset for a total of 4 seconds of prediction. On top, the ground truth, on the
bottom our prediction.

2.5.9 Recursive Generation

One of the main limitations of our method is its inability to generate sequences of lengths it
has not been trained on. We can however still generate longer sequences through recursive
generation by predicting subsequent motion based on previous predictions. This recursive
generation can be done without specific training simply by modifying the input during test-
ing. However, by feeding our prediction to the network to get further prediction we cause
the network to accumulate error over each recursive iteration. In fact, we can not reliably
extend the duration of the prediction more than 2 or 3 times. For all types of motion the first
and second predictions using predicted data as input are good, the third one is usually still
good for periodic motion (e.g walking) but not for non-periodic motion (e.g greeting). From
the fourth prediction onward even the periodic motion will start to deteriorate significantly.
Non-periodic motions will usually freeze into a static pose which is to be expected as our
prediction can only predict the end of the motion, not infer what other motion might follow.
For periodic motions, the deterioration comes from the accumulating error which will cause
the skeleton to deform. Still, we are able to generate motion 3 to 4 times longer than what
the network was trained on, which allows us to tackle one of the limitations of the method
in some ways. We present in Figure 2.11 an example of recursive prediction on the action
class walking from the CMU MoCap dataset. The figure shows the original prediction and
the three subsequent predictions. This shows that our model can predict motion for longer
sequences than it has been trained on as we observe significant differences only during the
third recursive prediction, the motion however still follows walking action.
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2.5.10 Cross-dataset capabilities

Due to differences in the skeleton formats used by Human3.6M and CMU MoCap, it is not
possible to perform a cross-dataset evaluation on these datasets. We have however trained our
model on the NTU RGB+D 120 dataset [94] and then predicted motion from data captured
with a Kinect camera in real-time. Qualitative results are presented in figure 2.12 (in blue
the ground truth and in red the prediction). We show the prediction of a person rubbing their
hands. We can see that our method is able to predict on data that does not come from the
dataset used for training. While there is a small difference between the ground truth and
our prediction we see that we do not reproduce the discontinuities from the Kinect and our
prediction has not been influenced by the discontinuities in the prior

2.5.11 Ablation Study

To show the efficiency of the different losses used by our network especially the effect of the
combination of the skeleton integrity loss Ls and the bone length loss Lb, we perform our ab-
lation study using models that were trained using only the mentioned losses. The ablation is
performed on the Human3.6M dataset due to the huge quantity of data from the dataset. The
ablation results are reported in Table 2.6 for short-term and long-term prediction using the
average error of all action classes at different time steps. The results show a clear improve-
ment when adding one of either the skeleton integrity loss or the bone length loss compared
to using only La and Lr. Furthermore using both Ls and Lb improve significantly the results
for long-term prediction while keeping a similar accuracy for short-term prediction with re-
gard to using only Ls or only Lb. This evidences the importance of using both losses when
doing long-term prediction, it allows the model to capture the spatial dependencies between
joints and to be able to predict plausible poses even for longer-term horizons.
We show in Figure 2.13 the effect of the losses on the visual quality of the prediction. We
notice that excluding Ls and Lb leads to important deformations in the upper body but the
produced legs motion is rather coherent. Adding Ls helps produce a motion closer to the
ground truth, we however still see noticeable bone deformations even if we are able to keep
a coherent skeleton. Using only Lb leads to a skeleton without any deformation even during
long-time prediction but also to very little motion being produced. Using both losses allows
us to keep the best skeleton coherency while producing a motion that is close to that of the
ground truth. We show in table 2.7 the MPJPE values for different input sequence lengths
for long-term prediction on Human3.6M. We report the values for sequences of 25 frames
(default value used for comparison with the state-of-the-art), 15 frames, 10 frames, and 5
frames. We see that a shorter prior leads to a decrease in performance for both short and
long-term prediction but this decrease is less important for long-term prediction (except for
the 5 frames prior) highlighting the ability of our network to generate accurate predictions
for long-term motions. We observe that we can use priors of 10 or 15 frame with a moderate
drop in performance but with only 5 frames the drop increase significantly, especially for
long-term prediction.
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Figure 2.13: Impact of the bone length loss and the skeleton integrity loss on prediction qual-
ity on a sample from action class Walking together from Human3.6M. From top to bottom:
the ground truth, neither Ls nor Lb, only Ls, only Lb and both Ls and Lb
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loss functions 80 160 320 400 1000
La + Lr 20.2 34.9 62.4 74.9 133.3

La + Lr + Ls 13.6 23.4 42.6 51.6 103.8
La + Lr + Lb 12.6 22.4 41.3 49.9 105.6

La + Lr + Ls + Lb 12.3 22.2 41.3 50.1 96.2

Table 2.6: Impact of the bone length loss and the skeleton integrity loss on the prediction
performance for short-term and long-term.

loss functions 80 160 320 400 1000
5 frames prior 14.2 25.3 47.0 56.5 104.4
10 frames prior 13.6 24.2 44.7 53.5 98.6
15 frames prior 13.3 23.6 43.7 52.4 96.8
25 frames prior 12.3 22.2 41.3 50.1 96.2

Table 2.7: Impact of the prior length on long term prediction

2.6 Conclusion and Limitations

In this chapter, we presented a new and robust method to deal with human motion predic-
tion. In our method we represent the temporal evolution of 3D human poses as trajecto-
ries, these trajectories can be mapped to points on a hypersphere. To be able to learn this
manifold-valued representation we use a manifold-aware Wasserstein GAN that can capture
both the spatial and temporal dependencies involved in human motion. Through extensive
experiments, we prove the robustness of our method for long-term motion prediction when
compared to recent literature. With our qualitative results, we confirm that we are able to
predict plausible poses and smooth motions in long-term horizons.
The two main limitations of the proposed method are the following: the fixed length of se-
quences and the inability to deal with sudden changes in motion. The fixed length in motion
is a consequence of the GAN architecture where the input and output sizes a fixed. We
demonstrate in our experiment that we can deal with this problem by using recursive genera-
tion, which shows the ability of the model to generate up to 4s motion for some classes when
trained on 1s sequences. The inability to deal with a sudden change of motion is inherent
to the way motion prediction is usually approached. Indeed, we only consider the historical
motion as a condition to predict the motion but it is not always enough to get an accurate
prediction. Things like the environment, the goal of the motion, and the motion of other
persons can influence the future. Taking some of these modalities into account would surely
allow for longer and more accurate predictions.
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Figure 3.1: Example of reaction generation. In blue the action motion is used as a condi-
tion. In other colors, the reaction is either from the ground truth or generated by the different
models. Example from the kicking class of the SBU dataset. Our model generates a more
realistic motion than the competing approaches.

3.1 Introduction

Modeling the dynamics of human motion is at the core of many applications in computer
vision and robotics. Most works on human motion generation ignore human interactions and
focus rather on the generation of actions of a single person. In addition, only a few works in-
vestigating human interaction generation [11] look at the reaction generation problem. What
makes human reaction generation a challenging problem is a nonlinearity in the temporal
evolution of human motion and the two sources that condition the motion: the action and its
corresponding reaction. The first issue arises because human motion is generally performed
at varying evolution rates. In other words, a person performing the same activity will go

46



HUMAN REACTION GENERATION WITH TRANSFORMER NETWORK

roughly through the same stages but at slightly different rates every time. In addition, as
stated by [83], unlike simple actions such as walking or running, complex human interac-
tions such as duet dancing generate highly complex pose sequences operating close to the
limit of human kinematics with very low periodicity. The second issue arises because the
same action can have a different reaction depending on the interaction context, e.g., when
reacting to a punch depending on the position, one can react more or less strongly. These
two issues make the generation and the evaluation of reaction challenging. Several questions
arise as we try to tackle this challenge. How to translate action to reaction? How to model
the long-term sequence? How to represent a complex action-reaction sequence?

Our goal is to learn the reaction from a training sequence of actions and reactions by
using Transformer architectures. The breakthroughs from Transformer networks in Natural
Language Processing (NLP) domain have sparked great interest in computer vision. Trans-
former architectures are based on a self-attention mechanism that learns the relationships
between elements of a sequence. Unlike recurrent networks that process the elements of the
sequence recursively, Transformers can attend to complete sequences and thereby are able to
learn spatial and temporal relationships making them a good candidate for modeling human
motion. In this chapter, we propose InterFormer, which with its spatial and temporal atten-
tion modules, is able not only to model the spatial and temporal dependencies in the action
and in the reaction but also in the interaction between the two humans providing a solution
to the two previously mentioned issues. Figure 3.6 (Left) shows how our InterFormer can
generate a proper reaction sequence (red skeleton) by taking as input an action sequence
(blue skeletons) and the initial position of the reaction sequence. Green circles highlight the
reaction parts of the motion: the head goes backward in reaction to the punch; the hand is
raised as the body continues to move backward to keep its balance. Figure 3.1 shows a gen-
erated reaction from the “kicking” class of the SBU dataset. Our method is able to generate
a proper motion. The code and some video examples of motions generated by our method
are available at https://github.com/CRISTAL-3DSAM/InterFormer

Our major contributions are as follows:

• We propose a novel Interaction Transformer framework for the challenging human
reaction generation task. To the best of our knowledge, this is the first work that
challenges the task of human reaction prediction given the action of the interacting
skeleton using a Transformer based architecture.

• We formulate the reaction generation problem as a translation problem, where we
translate a given action of a skeleton to its corresponding reaction such that the entire
interaction looks coherent and natural.

• We adopt a graph representation for self-attention to better exploit the skeleton struc-
ture while we ignore this representation for computing the attention between the two
interacting skeletons. In this case, instead of a graph representation, we exploit the
distance between the interacting joints assuming that closer joints involve stronger in-
teraction. By introducing this distance, we provide the prior knowledge that helps to
model the interaction.

• While the previous methods for interaction generation address limited and simple
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short-term interactions, we evaluate our method on the DuetDance dataset that pro-
vides more complex and long-term interactions.

3.2 Related Work

Human Action Generation. Human action recognition and prediction from 3D skeletons is
a popular topic [71, 109, 34, 37, 46]. Inspired by the recent advances in generative models,
several works [167, 149, 169, 90] proposed human action generation models in order to
generate a consecutive sequence of human motions. Recently there has been an increase
in motion generation based on different modalities, [159] use control signals such as the
global trajectory of the person to generate human motion in long-term horizons while [1]
and [56] generate motion based on speech audio. Meanwhile, others use only knowledge of
the past motion which allows them to work in real-time but on shorter motion [109, 34, 134].
However, these works only focus on the generation of individual actions. More recently,
interaction prediction and generation have also been addressed [11, 83]. For instance, [11]
use a multimodal variational recurrent neural networks to predict the future motion of both
participants in an interaction based on pasts sequences of motion. More recently, a lot of
focus has been devoted to human pose and motion generation from text or action labels, as
well as its reciprocal task [54, 98]. However, our approach proposes to generate and predict
human motion reactions from an action. In addition, these papers focus only on one person,
while our approach is dedicated to the generation of reactions in two-person interaction.
To complement the existing dataset with interactions [94, 163], different types of complex
interaction datasets have also emerged like [85] and their collection of conversational hand
motions or triadic interactions [68]. However the number of human interaction databases
with 3D skeletons and large enough to be used for motion generation is low. Table 3.1
shows a list of existing 3D skeleton datasets containing interaction motions. We can see
that most of these datasets contain few classes and few samples and that the most common
capture method is a depth camera. Datasets captured with depth cameras suffer a lot from
the occlusion that can happen in some interactions classes such as "hugging" up to the point
where these classes become hard to use. It should be noted that some datasets with a low
number of sequences such as UoL3DSi, Uol3DAi, G3Di, and CMU panoptic consist of
long sequences (up to 8 min for CMU panoptic) in which several motions are performed
or repeated. The 3D skeletons from DuetDance are obtained from RGB videos using LCR-
Net++[128]. Some works also look at human reactions with other modalities such as walking
trajectories [55] or conversational data [2, 157, 160]. However, there are very few works on
human reaction generation. In this thesis, we focus on this and propose InterFormer, a novel
Transformer architecture. This idea has not been investigated by any other existing work.

Graph Representation has been widely used for 3D classification and segmentation [121,
120], visual question answering [111], human interaction recognition [171, 119]. For in-
stance, [171] proposed a Dyadic Relational Graph Convolutional Network (DR-GCN) for
skeleton-based interaction recognition. When dealing with 3D skeletons, it is natural to use
a graph representation as the graph of the skeleton exists physically in the form of segments
linking joints. While most works use the graph representation of the skeleton directly as an
input, doing so when dealing with interaction leads to losing information. We propose to
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dataset classes samples persons method
CMU panoptic[67] 4 54 2-7 depth camera

NTU-RGB+D 120 [94] 26 24808 2 depth camera
SBU [163] 8 269 2 depth camera
K3HI[61] 8 312 2 depth camera

CMU MoCap1 36 55 2 motion capture
UoL3DSi[31] 8 80 2 depth camera
Uol3DAi[32] 8 20 2 depth camera

PKU MMD[30] 10 200 2 depth camera
M2I[154] 9 720 2 depth camera

LindyHop600K[74] 1 9 2 depth camera
G3Di[17] 4 24 2 depth camera

DuetDance[83] 5 416 2 from RGB

Table 3.1: List of 3D skeletons motion databases with interactions. Only the classes contain-
ing interaction are counted and only the samples from these classes are considered.

use the graph as part of the attention module to take advantage of the graph representation
without losing the information about the interaction. Experiments show the effectiveness of
the proposed InterFormer over existing methods.

Transformer is a network architecture first introduced in [146] to deal with natural lan-
guage processing (NLP) translation tasks. Its impressive results on this task and easily adapt-
able architecture led to great interest in several fields including NLP tasks such as question
answering, Natural Language Inference [38, 19] but also protein modeling [18] and many
others, among which computer vision. Transformer architecture has been extensively used
in computer vision for many tasks including object detection [22, 23], image generation
[126, 115], depth estimation [127], image classification [125], image synthesis [43], action
recognition [119]. Closer to our problem, works have used Transformer to generate human
motion: [118, 153] generate human motions based on the class labels while [3] use them
to predict future motion based on a historical sequence. Different from these methods, we
use a Transformer architecture with temporal and spatial attention for solving the reaction
generation task. Generating a reaction responding to an action can be seen as a translation
problem: translating from a language “action” to a language “reaction”. The performance
of the Transformer on natural language translation tasks and its use of temporal information
are a good fit for our task of reaction generation. By adding spatial attention and graph in-
formation, we can produce a realistic reaction to an action. To the best of our knowledge,
InterFormer is the first Transformer architecture used to solve the problem of human reaction
generation. Transformer uses an encoder-decoder architecture shown in Fig.3.2 making ex-
tensive use of the attention mechanism. Attention can be explained as a mapping of a query,
a set of key-value pairs, and an output. The output is a weighted sum of the values, where the
weights are computed by a compatibility function of the query with the corresponding key.
The goal of attention is to find correlations between two sequences. The scaled dot product
attention is calculated following:
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Figure 3.2: The Transformer model architecture [146]

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (3.1)

With Q, K, V the query, key and values matrix respectively and dk the dimension of the
keys. In Fig.3.2 we see that in the decoder (right part) there are two attention layers. These
two layers differ only by their inputs. For the first layer, all the inputs come from the decoder
while for the second layer, two inputs come from the encoder. They represent two types of
attention, self-attention, and cross-attention. Cross-attention maps the data from the encoder
to the data of the decoder. In the NLP translation task from English to French, it corresponds
to mapping French words to English words. For cross-attention K and V come from the
encoder and represent a sentence in English while Q comes from the decoder and represents
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a sentence in French. Fig.3.3 shows an example of cross-attention for NLP translation. Self-
attention on the other hand only takes data from the decoder. It tries to map the french
sentence with itself, finding correlations between the words inside the sentence. Fig.3.5
show an example of self-attention for NLP, we see that “it” is strongly related to “The” and
“animal”. Self-attention helps Transformer learn the structure of the sentence. With self-
attention Q, K, and V all come from the decoder and represent the French sentence. The
attention layer in the encoder is also self-attention but works on the English sentence instead.

Figure 3.3: Figure from[8]. Example of cross attention between a French sentence and an
English sentence. Lighter squares indicate stronger correlations.

The implementation of the attention used in [146] is presented in Fig.3.4 as well as the
multihead attention architecture. Multihead attention consists in computing attention several
times with the inputs linearly projected with different projection weights. The results of
these attention calculations are then concatenated to obtain the attention layer output. The
multihead attention can be described as:

Multihead(Q,K,V) = Concat(head1, ..., headn)W
S

with headi = Attention(QWQ
i , KWK

i , V W V
i )

(3.2)

where n is the number of heads, WQ
i , WK

i , W V
i , and W S

i are the projection weights for Q,
K, V, and the output respectively.
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Figure 3.4: Left: scaled dot product attention. Right: Multiheads attention, several attention
layers running in parallel [146]

Figure 3.5: Illustration of the attention when encoding the word "it" the darker colors show
that the attention makes the link with "The animal".

source: https://jalammar.github.io/illustrated-transformer/

The encoder starts with an embedding layer that converts the text into vectors of fixed
size. Then we use positional encoding, a method that injects information about the temporal
position of each element in the sequence. In [146] the positional encoding is defined as:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
(3.3)

with pos the position and i the dimension and dmodel the dimension of the input. Then we go
through several layers with the same architecture: multihead attention followed by residual
connection, which prevents the loss of information, and normalization then a feed-forward
network. The feed-forward network is a simple network containing several layers of neurons

52

https://jalammar.github.io/illustrated-transformer/


HUMAN REACTION GENERATION WITH TRANSFORMER NETWORK

and where information always moves in a single direction. Then there is another residual
connection and normalization. The decoder is similar to the encoder for the beginning: em-
bedding, positional encoding then several repeating layers. These layers are also composed
of multihead attention followed by residual connection and normalization then another mul-
tihead attention operation but the key K and the value V correspond to the output of the
encoder. Then this is followed by residual a connection and normalization, a feed-forward
network, and another residual and normalization. Finally, the output of these layers goes
through a linear layer, that performs a linear transformation of data. Since Fig.3.2 represents
a Transformer for NLP there is a final softmax function to obtain probabilities. They are
used to decide the next word in the sequence outputted by the network. The first multihead
attention of the decoder is different from that of the encoder in that the attention is temporally
masked. This means that when training, at time t we hide the embedding from time t + 1
onward. This is done so the network does not learn to rely on data it is not supposed to know.

3.3 The Proposed Interaction Transformer

Let us consider Pt the positions of k distinct joints at time t. Consequently, an action se-
quence P of T frames, can be described as a sequence P={P1, P2, . . . , PT}, where Pt∈Rd

and d=3×k, where Pt=[J1(t), . . . , Jk(t)], with k the number of joints in the skeleton, and
Ji(t)=[xi(t), yi(t), zi(t)] the 3D coordinates of joint i. The goal is to generate a reaction
Y={Y1, Y2, . . . , YT} a sequence of skeleton poses from X={X1, X2, . . . , XT} a sequence
representing the action motion.

Our overall architecture of InterFormer is illustrated in Figure 3.6 and consists of four
modules: a motion encoder, a motion decoder, a skeleton adjacency module, and an inter-
action distance module. The motion encoder encodes the motion of the skeleton using self
spatial skeleton attention and self temporal motion attention. Both aim to find the impor-
tant spatial and temporal relations within the input action motion to transmit them to the
decoder. The motion decoder generates the reaction motion using the encoding from the mo-
tion encoder and consists of self spatial skeleton attention, self temporal motion attention,
interaction spatial skeleton attention, and interaction temporal motion attention. Moreover,
the skeleton adjacency and interaction distance modules help the different spatial attentions
to focus on the most important parts of the skeletons and of the interaction.

3.3.1 Motion Encoder

The motion encoder takes as input an action sequence X to which we add positional en-
coding defined by [146]. This positional encoding encodes temporal information of each
frame in the sequence. Inspired by [146] we use temporal attention to capture the temporal
relationships within the motion of the skeleton. However, the motion contains both temporal
and spatial information. Thus, we add a spatial attention module to complement the temporal
attention to help find the spatial dependencies within the skeleton.

Self Spatial Skeleton Attention. For our self spatial skeleton attention module, we consider
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each frame independently and look at the relation between the position of each joint. We use
the scaled dot-product attention from [146]:

Attention(Q,K,V) = softmax

(
QKT

√
dim

)
V, (3.4)

where Q, K, and V are the query, key, and value matrices of sizes dim×|Pt| which contain
a set of queries, keys, and values (one for each joint in the skeleton for a given frame) of
sizes dim which is for spatial attention |J1(t)|. These queries qi, keys ki, and values vi are
obtained by multiplying an input ai, bi, and ci by weight matrices Wq, Wk, and Wv of size
dim×dim:

qi = aiWq, ki = biWk, vi = ciWv. (3.5)

For self-attention ai=bi=ci and for spatial attention they represent the 3D coordinates
of joint i at a given time, either directly or through the value corresponding to the coordi-
nates after going through the previous attention layers. We use the multihead version of the
attention [146] where the inputs are split into smaller parts according to the input size of
each head. Each part is treated by its own attention module and the outputs of these modules
are concatenated. For spatial attention, we fix the number of heads at |J1(t)|, one for each
dimension of the 3D coordinates.

Self Temporal Motion Attention. For the self temporal motion attention, we consider the
entire skeleton and observe the motion of its joints over time, i.e., we try to find the links
between the position of the joints from one frame to another. This is performed in the same
way as for self spatial skeleton attention by using Eq. (3.4) and Eq. (3.5). However, here
ai=bi=ci represent the entire skeleton at time t=i, dim=d and Q, K, and V are of size
dim×T . We also use the multihead version of the attention, but here the number of heads
can be set as a hyperparameter.

3.3.2 Motion Decoder

The decoder receives the encoder’s output Z as well as the reaction sequence Y . It is com-
posed of four attention modules as illustrated in Figure 3.6. The self-attention modules work
in the same way as the encoder but take Y to which we add the positional encoding as input.
Interaction Spatial Skeleton Attention. The interaction spatial skeleton attention module
looks at the relations between the joints of the interacting skeletons at a given frame. The
attention is also computed using Eq. (3.4) and Eq.(3.5) but here the query matrix Q comes
from the reaction sequence Y and the key and value matrices K and V come from the encoder
output Z.

Interaction Temporal Motion Attention. The interaction temporal motion attention mod-
ule looks at the relations between the frames from the action sequence and the frames from
the reaction sequence. Discovering these relations enable the synchrony of the generated
reaction. Likewise, the query matrix Q comes from the reaction sequence Y but the key and
value matrices K and V come from the encoder output Z.
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In both the encoder and decoder, before each attention module, the input is normalized,
and after each module, the output is also normalized and added to a residual connection
of the non-normalized module input like in [146]. The spatial and temporal attentions are
computed in parallel and are added after passing through all modules. This final output then
goes through a feed-forward layer and is added to the residual connection. The architectures
described here for the encoder and the decoder correspond to a single layer of the encoder
and one single layer of the decoder. There are N=6 of each of these layers, and the input
of layer h is the output of layer h−1. Finally, after the last decoder layer, the output goes
through a final linear layer to get the reaction sequence.

3.3.3 Skeleton Adjacency and Interaction Distance

Recently many works using skeletons also use a graph representation which was proved to
be a particularly efficient representation for action recognition [171, 119]. Building a graph
for a skeleton is particularly intuitive in that the joints of the skeletons are already linked
together by body segments. However, in our case, using a graph representation might be
ill-fitted. Indeed while graphs provide information about the skeleton structure and help us
concentrate on the most interesting parts of the skeleton, they would limit us when modeling
the interaction. The information we have about the interaction is contained in the attention
between the encoder and the decoder and the relations in the skeleton graph are very dif-
ferent from the relations between the joints of the two skeletons (all relations are possible).
However, graphs can still provide important information that we can use to improve our
generation.

Skeleton Adjacency Module. We can use the information contained in the graph represen-
tation by looking at the adjacency matrices of the joints. We use three adjacency matrices
that we combine to create a mask. The three matrices are based on the ones used by [119]:
(i) the identity matrix I used to represent the joints themselves; (ii) the matrix of inward
relations In which are the paths from the extremities (head, hands, and feet) to the root joint
(torso or pelvis), and (iii) the matrix of outward relations Out which represents the paths
from the root joint to the extremities. The three matrices of sizes |Pt|×|Pt| are then added
to get the mask matrix M=I+In+Out that we apply to the attention matrix Att of size
|Pt|×|Pt| to hide values that are not part of the graph as illustrated in the top right part of
Figure 3.6.

Atti,j =

{
Atti,j, if Mi,j ̸= 0

0, if Mi,j = 0
(3.6)

Interaction Distance Module. Interaction attention, which is also the attention between the
encoder and the decoder, can also use a graph representation [171], but this graph cannot be
fixed since the interesting links between joints vary from class to class e.g., for “punching"
we are interested in the link between the hand and the head but not for “kicking". Ultimately,
it is the spatial attention between the encoder and decoder that discovers the important links
between the two skeletons. However, as suggested by [171] we can add prior knowledge
to the attention to help us model the interaction for some classes. This information is the
distance between the joints of both skeletons, i.e., joints that are close to each other are more

56



HUMAN REACTION GENERATION WITH TRANSFORMER NETWORK

likely to interact than those that are far away:

Disti,j = −∥J i
action(t)− J j

reaction(t)∥2, (3.7)

where J i
action(t) and J j

reaction(t) are the joint i and j of the action and reaction skeletons at
time t, Dist is a matrix of size |Pt|×|Pt|. Unlike the graph for self spatial attention, we
do not use the distance matrix to create a mask because some of the relations between the
two skeletons are not defined by the distance between the joints (e.g., waving and waving
back), thus using the distance matrix as a mask would prevent such relations from being
discovered. We add softmax(Dist) to the attention matrix to keep all the information that
interests us, as illustrated in the top right part of Figure 3.6. By using the softmax function
on the distance matrix, we add values of the same order to the attention matrix while making
shorter distances more important.

3.3.4 Objective Optimization

We use two loss functions to direct our model. The first one is the sequence loss (Ls)
which compares the generated sequence with the corresponding ground truth using the Mean
Square Error (MSE) :

Ls =
1

T

1

k

T∑
t=1

k∑
i=1

(Ji(t)− Ĵi(t))
2, (3.8)

where Ji(t) is the position of the real joint i at time t and Ĵi(t) the position of the generated
joint i at time t. The second is the first frame loss (Lff ) used to add constraints on the first two
frames by ensuring that the motion between the two is realistic and limits the discontinuities
that can happen at the beginning of the sequences. This loss is necessary as otherwise the
model sometimes ignores the initial input frame and generates a sequence based on its own
inferred initial position. For this loss, we also use the MSE but on the difference between the
two first frames:

Lff =
1

k

k∑
i=1

((Ji(2)− Ji(1))− (Ĵi(2)− Ĵi(1)))
2. (3.9)

3.3.5 Implementation Details

We train our InterFormer using Torch 1.8.1 on a PC with two 2.3Ghz processors, 64G RAM,
and an Nvidia Quadro RTX 6000 GPU. We use the Adam optimizer [77] with α=0.0001,
β1=0.9, β2=0.98, and ϵ=1×10−9. The batch sizes are set to 128 for SBU and DuetDance
and 64 for K3HI. InterFormer works even if we do not provide the original position of the
reaction sequence (the first frame of the sequence) as input, but this can cause the generator
to produce a skeleton very far from its actual location, which will lead to a bad generation.
To solve this during testing, we give as input to the decoder the first frame of the sequence
which gives information about the original location of the skeleton. During testing, we
generate sequences of variable lengths depending on the length of the input action motion.
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The sequences are generated in an auto-regressive manner and the model generates an end-
of-sequence value to indicate the end of the motion generation. If the motion is generated
correctly, then this value will correspond to the end of the input action sequence.

3.4 Experiments

We conducted comprehensive experiments to evaluate our proposed approach by comparing
state-of-the-art models on three datasets. We also visualize the ability of action-reaction
generation. Finally, we perform ablation studies to evaluate the effectiveness of using spatial
attention and our skeleton adjacency and interaction distance modules.

3.4.1 Datasets

SBU Dataset [163] contains 8 classes of simple interaction motions: walking toward, walk-
ing away, kicking, pushing, shaking hands, hugging, exchanging, and punching. The data
which are too noisy, and in particular the class “hugging", have been removed from this
dataset. The “walking away" and “walking toward" classes have the same reactions (stand-
ing still), so we decided to fuse those two classes into a single “walking" class. This leaves
us with 6 classes, 195 training, and 30 test samples.

K3HI Dataset [61] contains the same 8 classes as SBU aside from the “hugging" class which
is replaced by “pointing". Also, unlike SBU, “approaching" and “departing" have reactions
that are different, so we do not fuse the two classes. We also removed the noisy samples
from the dataset but this time we normalize the data in the same way as SBU was normalized
by the authors. This leaves us with 236 training samples and 28 test samples.

DuetDance Dataset [83] contains 5 classes of dance motions: cha-cha, jive, rumba, salsa,
and samba. Given the nature of the dataset, the motions are more complex than those in SBU
and K3HI, and there are a lot of intra-class variabilities. We do not perform normalization,
but since most samples are very long sequences (up to 160s), we decided to cut each sequence
into smaller sequences of 50 frames (2s), leading to 273 training samples and 3991 test
samples.

For all three datasets, the poses are represented by their absolute 3D coordinates, fur-
thermore, training and testing splits are selected randomly for fair comparisons. Duet-Dance
was provided with neither train/test split nor subject information, we used a random split.
For the two others, the evaluation proposed by their respective authors is made using k-fold
validation so we decided to split the dataset between train and test, randomly for K3HI and
by selecting all the samples from a random subject for SBU.

3.4.2 Evaluation Metrics

We use metrics commonly used in motion generation. Metrics used for motion prediction
based on the distance between the generated sample and the ground truth are not fit for
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reaction generation as several different motions can be considered good reactions to the
same action. While this choice of metric can seem contradictory with our losses that use
direct comparison with the ground truth, it is important to understand that our evaluation
metrics do not contain direct information about the skeleton that our network is supposed to
generate and could not be efficiently used as losses.

Classification Accuracy measures how well our generated samples are classified by a mo-
tion classifier. We use the DeepGRU classifier [105]. We only train and test the classifier on
the reaction part of the interaction, so the results are not influenced by the action, which is
always the ground truth. We report the percentage of correctly classified samples for each
class and the average over the entire test set.

Fréchet Video Distance (FVD) is an adaptation of the Fréchet Inception distance (FID)
[58] for video sequences [144]. FVD computes the distance between the ground truth and
the generated data distribution.

FVD = |µgt − µgen|2 + tr
[
Cgt+Cgen−2 (Cgt ∗Cgen)

1/2
]
, (3.10)

where µgt, µgen and Cgt and Cgen are the means and covariance matrices of the deep features
from ground truth and the generated samples respectively, tr(·) is the trace. The deep features
are obtained from the classifier used for the classification accuracy

Diversity Score. Following the metric defined by [86, 166] we compute the average deep
feature distance between all the samples generated by each method and then compare it to
the average deep feature distance of the ground truth. A low diversity score means that the
generated samples have a diversity close to that of the ground truth and a high score means
that the diversity is either lower (all motions are more similar) or higher (more noise in the
generation). The average deep feature distance is calculated as follows:

div =
1

b(b− 1)

b∑
i=1

b∑
j=1

||Fi − Fj||2, (3.11)

where b is the number of samples considered, Fi and Fj are deep features of the samples i
and j, respectively. The score is obtained using divgt the diversity distance of the ground
truth and divgen the diversity of the generated samples.

score = 100× |divgt − divgen|
divgt

. (3.12)

3.4.3 Baselines

To our knowledge, there is no work that deals with the generation of the reaction to an action,
so to be able to compare our results to others from the literature, we employ a method for
human interaction generation and a method for human motion prediction to show methods
used on a range of applications.

Zero Velocity baseline (ZeroV) [109] is a simple baseline where all generated frames are
the same (in our case the initial pose), there is no motion for this baseline. Using ZeroV as a
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comparison is useful to see what the quantitative result of an obviously bad method are like
and help see if the results from the other methods are actually good. We do not show the
results for ZeroV in our qualitative evaluation as they are uninteresting since no motion is
produced. We do not use them in our user study for the same reason.

Multimodal Variational Recurrent Neural Network (VRNN) [11] deals with the predic-
tion of the future frames of a two-person interaction based on a historical sequence using
variational RNNs. The next frame of the reaction is predicted using the past frames of the
reaction and information on the past frames of the action; the action is predicted in the same
way using the information on the reaction. The past frames are the historical sequence at
the beginning and later in the sequence the generated frames. We modified the network to fit
our problem. Originally the network takes n historical frames for both action and reaction
as input and generates m frames for both action and reaction. We modify some parameters
so the network takes n+m frames for the action but only 1 for the reaction and we generate
n+m− 1 frames of reaction motion. Otherwise, we use the default settings provided by the
author for the hyper-parameters.

Mix-and-Match Perturbation (MixMatch) [5] uses a recurrent encoder-decoder network
with a conditional variational autoencoder block to predict the motion of a single person
based on a historical sequence. However, the authors present their method as a general
prediction method and the code they provide uses the first half of an image to predict the
second half. Since the specific code used for motion prediction is not available we use the one
provided by the author but with 3D skeletons data and with the values of the hyperparameters
mentioned in [5] for human motion prediction. To ensure a fair comparison we need to base
the generation of the reaction on an initial frame but directly using 3D coordinates led to
strong discontinuities between the initial position and the generation. To solve this and make
the comparison fairer we work with the speed of the motion that we then apply to the skeleton
corresponding to the initial position.

Progressively Generating Better Initial Guesses (PGBIG) [103] is an architecture that uses
Spatial Dense Graph Convolutional Networks and Temporal Dense Graph Convolutional
Networks alternatively to extract spatio-temporal feature and predict human motion. We use
the code provided by the authors unchanged and with the recommended parameters. We give
the action motion followed by the first frame as input and predict the reaction motion.

Spatio-temporal Transformer (STT) [3] is a Transformer based architecture that uses at-
tention to find temporal and spatial correlations to predict human motion. As for PGBIG, we
use the code provided by the authors without changes and with the recommended parame-
ters. As input, we use the action motion followed by the first frame and predict the reaction
motion.

3.4.4 State-of-the-Art Comparisons

All presented evaluations were obtained on a model trained on the considered dataset. This
is true for our Interformer as well as the baselines.

Quantitative Evaluation. Table 3.2 (left) shows the classification accuracy for SBU, Duet-
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Figure 3.7: Qualitative results. In blue the action motion is used as a condition. In other
colors, the reaction is either from the ground truth or generated by the different models.
Shaking hands class from the SBU dataset.

Dance, and K3HI. Our method outperforms the five others on all the datasets. For SBU,
we obtain results very close to the ground truth, and we outperform the other methods on
all classes but “exchanging” where [11] get better results and vastly outperform the simple
ZeroV baseline. InterFormer is able to generate simple motions that are realistic enough
to be correctly classified. We can see however that on “kicking” we score less than ZeroV,
this is due to the small size of the SBU dataset. A few misclassifications will cause a sharp
drop in classification accuracy, and as we can see, “Kicking” is the class that has the lowest
accuracy on the ground truth as the reaction can be similar to those of punching and pushing.
The good performance of ZeroV in some classes can be explained by the fact that the over-
all accuracy is below chance (16.7%). This means that the classifier is unable to properly
classify the motion from ZeroV as it only shows unmoving skeletons and for some classes,
the two skeletons start in a neutral position that carries no information about the action. All
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Figure 3.9: Qualitative results. In blue the action motion is used as a condition. In other
colors, the reaction is either from the ground truth or generated by the different models.
Departing class from the K3HI dataset.

these cause the classifier to fail at classifying the sample and likely classify many samples as
“kicking”, including some that are from the “kicking” class leading to the high score in this
class.

For K3HI, we can see that the results are worse than for SBU for all methods and even
for the ground truth. This is due to the very noisy nature of the K3HI dataset even after
removing the worse samples (that showed extreme deformation and no recognizable motion),
the exchanging class has a 0% recognition rate even for the ground truth. However, our
method provides better results than the two others in all classes except “approaching” which
may be due to the noisy nature of the data for this class. VRNN obtaining very high results
in this class might be a consequence of the wrong classification present in many of the
classes (a lot of samples are classified as approaching). For shaking PGBIG and STT obtain
better results but since the results are worse overall quantitatively and qualitatively this can
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Table 3.3: FVD and diversity on all datasets.

Method
FVD ↓ Diversity ↓

SBU DuetDance K3HI SBU DuetDance K3HI

ZeroV [109] 493.3 41058.1 392.1 65.1 47.2 19.3
VRNN [11] 113.61 789.23 195.47 11.5 6.1 16.8

MixMatch [5] 314.38 1460.44 406.63 45.3 0.9 32.2
STT[3] 321.04 2610.95 7579.87 47.8 3.9 27.6

PGBIG[103] 267.27 317.0 379.4 35.7 1.5 10.1
InterFormer (Ours) 48.78 31.81 125.40 0.9 0.4 13.7

be explained by the classifier putting many samples in that class as we have explained for
ZeroV.

For DuetDance, the classification accuracy for all methods and the GT is much closer
than for the other datasets. This is due to the complex motions contained in the dataset
with a lot of intra-class variabilities. Furthermore, we use sequences of 50 frames which are
short enough that some sequences from two different classes can be very similar. We can
still notice that our method provides results that are the closest to the ground truth and that,
unlike the five other methods no class has a score below chance (i.e., 20%) which means that
our results are more consistent and closer to the ground truth, despite being beaten on some
individual class e.g., STT score 37.1% on “cha-cha” but only 10.0% on “salsa” while we
score 26.7% and 28.1%, respectively.

In Table 3.3 we show the FVD and diversity score for all methods on all datasets. We out-
perform VRNN, MixMatch STT, and PGBIG on the FVD measure, often by a large margin
meaning that the features extracted by the classifier are closer to the features of the ground
truth than for [11] and [5]. For the diversity score, we also outperform the two other methods
and provide diversity that is close to that of the ground truth. We can see a significant in-
crease in K3HI. This is due to the noisy nature of the dataset, which means that the diversity
distance of the ground truth takes into account the noise of the sample, we, however, manage
to score the closest to the diversity of the ground truth when compared to the other methods,
without generating noisy samples. This can also explain why PGBIG diversity is better than
ours despite performing much worse in terms of classification and qualitative results.

User Study. To evaluate the quality of the generated videos, we also conduct a user study.
Specifically, the users are given four videos (two generated by existing methods VRNN
and MixMatch, one generated by our proposed InterFormer, and one real video) with the
corresponding class label, each participant needs to answer one question: ‘Which video is
more realistic regardless of the input label?’. 20 users have unlimited time to select their
choices. PGBIG and STT are not represented in this study due to the extremely low quality
of the results, as illustrated by our qualitative results. The results are shown in Table 3.2
(right), we can see that the users show more preference for our method than the other two
methods, which indicates the results generated by ours are more realistic.

Qualitative Evaluation. We show in Figures 3.7, 3.8, 3.9, and 3.10 visualizations of the gen-
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erated sequences on the SBU (two sequences) DuetDance and K3HI datasets respectively.
We show from top to bottom: the ground truth, results for [5], results from [11], results from
[103], results from [3] and results from our InterFormer. In blue is the action motion, which
serves as a condition and is in all cases the ground truth. In green, black, magenta, yellow,
orange, and red are the reactions for the GT and the five methods.

In Figure 3.7, we show an interaction from the “shaking hands" class of SBU. It shows
that our method is able to generate the motion better than the two other methods. For [5], the
character raises its hand to shake but never comes really close to the other character’s hand
and also shifts its entire body backward toward the end of the sequence. [11] generates a
motion that raises slightly the hand but is then stuck in this position. [103] does not generate
a shaking hand motion and fails to generate poses for the entire length of the action. STT [3]
also fails to generate a shaking hand motion. Our method generates motion that is very close
to the ground truth and contains the three main steps of the motion: raising the hand, shaking,
and going back to starting position. Figure 3.10 shows a sample from the “punching" class
from the SBU dataset. We see that we generate a better motion even if there are differences
with the ground truth. The character is pushed to the side by the punch and then comes
back to a normal position at the end of the sequence. The two other methods also generate a
reaction to the punch, [11] moves slightly backward, and [5] moves its upper body to avoid
the punch. [103] does not generate a motion that looks like a reaction to the punch and
presents noise with the vertical position of the skeleton suddenly changing from one frame
to the other. [3] generates a slight motion of being pushed back but the motion continues
without trying to go back into a neutral position. It seems, however, that the upper body
also became smaller during this motion. The two methods also stay in this avoiding pose
and do not go back to a more normal position. In Figure 3.8 we show a sample of the
“cha-cha" class from the challenging DuetDance dataset. We can see that [5] produces a
motion that resembles a dance even if different from the ground truth, however as the action
character moves backward, the generated reaction stays in place, and the distance between
both characters grows over time. With [11], the distance between the two characters does
not grow, but there is barely any motion for the entire sequence. In motion, it looks like
the reaction character is gliding toward the action character. Here [103] and [3] generate
something close to [11] with little motion, but the distance between the two skeletons does
not grow. [3] also present deformations in the arms. Our method is able to generate a motion
that stays close to the ground truth and follows the action character in space without gliding
like [11] this can be seen by the change of position of the legs across the sequence. It is only
toward the end that the motion differs from the ground truth and even then, the motion still
resembles dancing.

In Figure 3.9, we see a sample of the departing class from the K3HI dataset. It shows
both characters walking away from each other. This behavior is always reproduced in the
samples generated by the three methods, but [11] does not show much motion and simply
glides away while [5] shows more motion of the legs but keeps the noise present in the first
frame during the entire sequence. Once again [103] does not generate a proper motion, and
this time it shows deformation in the skeleton that stays for the entire duration of the motion.
Likewise, [3] is unable to generate a proper walking motion.Our method, on the other hand,
generates a realistic walking motion with both arms and legs moving to move apart from the
first character.
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Figure 3.11: Multi-modality results on SBU kicking class with noise. We show three
different motions generated by our Interformer based on the same input motion.

The very poor performances of PGBIG [103] and STT [3], our two baselines with unmod-
ified code, can be explained by the fact that they were designed for human motion prediction.
With human motion prediction, we seek to reduce as much as possible the discontinuities be-
tween the input and the output while we want to generate a different skeleton to the one used
as input which implies a very strong discontinuity. Also, methods for human motion predic-
tion are typically trained to always take the motion of the same duration as input and predict
sequences that always have the same length e.g., the input of 500ms to predict 1s of motion.
With reaction generation, the length of the sequences can vary (greatly in the case of K3HI)
and the unmodified motion prediction method might struggle with the varying lengths. This
is illustrated by the early stop in the generation of [103] in Figure 3.7 but also by the fact that
[3] is unable to stop generating until it reaches the maximum sequence length of the dataset
(not pictured in our figures).

Multi-Modality Generation. The main issue with Transformer models is that their output
is deterministic. To counter this we can add noise to the encoder input before the first feed-
forward layer. This allows us to generate diverse outputs for the same input motion. We
show in Figure 3.11 and Figure 3.12 the ability of our method to generate diverse motions
with a single input when adding noise in the encoder.

3.4.5 Ablation Study

To validate the effectiveness of each proposed component, we report the ablation studies on
SBU with classification accuracy and diversity.

Ablation Models. Our Interformer has four versions (i.e., S1, S2, S3, S4) as shown in Ta-
ble 3.4. (i) S1 means only using the original NPL Transformer network from [146] modified
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Figure 3.12: Multi-modality results on SBU Punching class with noise. We show three
different motions generated by our Interformer based on the same input motion.

Table 3.4: Ablation study of Interformer on the SBU dataset.

Setup Accuracy ↑ Diversity ↓

S1 Transformer 53.3 9.5
S2 S1 + Spatial Attention 66.7 3.9
S3 S2 + Skeleton Adjacency 73.3 1.7
S4 S3 + Interaction Distance 80.0 0.9

to take as input and generate skeletons without any of our improvements. (ii) S2 adds to the
global Transformer the spatial attention modules (self spatial attention and interaction spatial
attention). (iii) S3 adds the skeleton adjacency module to the self spatial attention. (iv) S4 is
the full model and includes both the skeleton adjacency module and the interaction distance
module.

Effect of Spatial Attention. We validate the effect of spatial attention, as shown in Table
3.4. Introducing spatial attention results in significant improvement in classification accuracy
by 13% and diversity by 5.6, which means we improve the quality of the action-reaction
sequences.

Effect of Skeleton Adjacency. Using a skeleton adjacency graph on attention improves the
classification accuracy and diversity by 7% and 2.2, respectively. This improvement means
that the model learns better relations between the different joints inside a skeleton.

Effect of Interaction Distance. By adding the interaction distance module, we increase
the results obtained by the skeleton adjacency module by 7% on classification and 0.8 on
diversity. These results show that the interaction distance module is able to help spatial
interaction attention find the most interesting relations between the two skeletons and thus
help generate better motions.
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Table 3.5: Ablation study of Interformer on the K3HI dataset

.

Setup Accuracy ↑ Diversity ↓

S1 Transformer 14.3 32.9
S2 S1 + Spatial Attention 28.6 16.7
S3 S2 + Skeleton Adjacency 42.9 9.3
S4 S3 + Interaction Distance 46.4 13.7

T multihead S multihead Accuracy ↑ Diversity ↓

- - 60.0 10.6
✓ - 70.0 2.0
- ✓ 60.0 5.1
✓ ✓ 80.0 0.9

Table 3.6: Ablation study of Interformer on the SBU dataset.

Abaltion on K3HI. Table 3.5 shows the ablation for the K3HI dataset and confirm our
finding from the SBU ablation. The only difference is a lower diversity when using the
graphs but not the interaction distance. We believe this to be due to the more noisy nature of
the K3HI dataset, which deteriorates the diversity measures.

Effect of Loss on The First Frames. If we remove the loss on the first frames that allow
us to keep a good coherency between the input initial position and the generation, we see a
decrease in the generation quality: -3.3% in classification accuracy and -5.2 in diversity score
when compared to S4. When the input initial position is not properly taken into account the
generated reaction skeleton can be far from the action skeleton. In SBU, for all action classes,
the interactions consist of two persons close to each other. Since the model is not trained with
samples where people are far from each other when we try to generate the reaction motion
of a skeleton far from the action skeleton, little to no motion is generated. This explains the
increase in performance brought by the use of the first frame loss.

Effect of Multihead attention. Our Interformer uses the multihead version of attention for
both temporal and spatial attention. These choices were made following results from the
original Transformer network [146] and our experiments which we report in Table 3.6. The
results are obtained by modifying the number of heads for the different attention modules on
the full Interformer model (S4 from the ablation study). These experiments show that using
the multihead temporal attention (T multihead) increases the classification accuracy by 10%
and diversity by 8.6. By using only the spatial multihead attention (S multihead) we increase
the diversity by 5.5. Using the multihead attention for both spatial and temporal attention
led to an increase of 20% in classification accuracy and 9.7 in diversity. This confirms our
choice to use this configuration for Interformer. Table 3.7 shows the same ablation for the
K3HI dataset and we observe the same behavior as for SBU except for the diversity where
other configurations have lower values than using both multihead attention. We believe this
to be due to the more noisy nature of the K3HI dataset, which deteriorates the diversity
measures.
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T multihead S multihead Accuracy ↑ Diversity ↓

- - 21.4 11.0
✓ - 42.6 5.3
- ✓ 35.7 5.7
✓ ✓ 46.4 13.7

Table 3.7: Ablation study of Interformer on the K3HI dataset
.

3.5 Limitations

InterFormer presents two main limitations: (i) Due to the huge variability of complex mo-
tions, it is hard to stay true to the ground truth, making it difficult to evaluate the results in
these cases; (ii) We are able to generate realistic motion for long sequences (tested up to
40 seconds) To do this we cut the action sequence into smaller sub-sequences that we use
for generation. We then generate all these sequences the same way as we do for shorter
sequences. Only for the second sub-sequence onward the first frame used to give the initial
position does not come from ground truth but instead is the last generated frame from the
previous sub-sequence. This way InterFormer is able to generate reaction sequences for long
motion. However, due to the accumulation of errors over time, the generation diverges more
and more from the ground truth up to the point where it is hard to know how much the action
is taken into account in the generation. It is even more true that very long motions are usually
complex ones, which means we also face the first limitation.

3.6 Conclusion

We present InterFormer, a novel human reaction generation Transformer. InterFormer is
the first Transformer architecture used to solve the problem of human reaction generation
challenge. InterFormer consists of four modules: a motion encoder, a motion decoder, a
skeleton adjacency module, and an interaction distance module. The ablation study on SBU
has shown the effectiveness of the four components of the InterFormer. We have both qual-
itatively and quantitatively evaluated our reaction generation framework. The results show
that InterFormer outperforms state-of-the-art approaches in terms of FVD, classification, and
diversity score on three challenging datasets SBU, K3HI, and DuetDance. The qualitative re-
sults show also the ability of InterFormer to generate realistic human reactions. Interformer
is a deterministic approach. Although we have proposed an approach to mitigate this prob-
lem, the diversity of responses generated remains limited and should be improved. It is still
difficult to generate complex human motion. Although our results on the dance dataset show
that we are able to generate dance movements, we are still not able to generate more subtle
motions present in the dataset. The lack of large interaction datasets makes it difficult to
evaluate feedback generation. Although large interaction datasets exist, such as some classes
of NTUs, they are not annotated to separate action from reaction motion. It is difficult to
evaluate the performance on long-term motion due to the lack of appropriate data.
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4.1 Introduction

Modeling dynamics of human motion interaction is at the core of many applications in com-
puter vision and computer graphics. Most works on human motion generation ignore human
interactions and focus instead on the generation of actions of a single person [165, 141].
In this paper, we explore the problem of generating 3D human motion interaction. What
makes interaction generation challenging are the non-linearity of human motion interaction
and the diversity of the interaction between humans. Several questions arise to tackle these
challenges. How to represent the interaction between humans? How to model motion and
generate diverse motion interaction? To solve the first question, we propose to represent the
skeleton interaction by using a bipartite graph [138]. The main goal of the bipartite graph is
to capture the relations between humans represented by skeletons. To solve the second ques-
tion, the motion interaction generation is formulated as a reverse diffusion process. Overall,
our contributions are summarized as follows:

• We propose the first Bipartite graph denoising diffusion model (BiGraphDiff) for hu-
man interaction generation. Our BiGraphDiff is able to generate motion interaction in
a stochastic way, naturally leading to high diversity, and is able to generate very long
motion sequences (>1000 frames).

• BiGraphDiff is a denoising diffusion process that learns not only the denoising of the
motion, but also it learns a Bipartite graph. The aim of Bipartite graph is to capture
the relations between the two persons.

• BiGraphDiff achieves state-of-the-art quantitatively and qualitatively in action inter-
action and dance tasks. A user study shows that the generated sequences are better
qualitatively than the sequences generated by state-of-the-art methods.

The code and some videos of generated interaction are available at https://github.
com/CRISTAL-3DSAM/BiGraphDiff

4.2 Related Work

We discuss the relevant literature from two perspectives, namely, previous methods of Hu-
man interaction motion synthesis and the literature on diffusion models.

Human Interaction Motion Generation. Recently there has been an increase in motion
generation based on different modalities, [159] use control signals such as the global tra-
jectory of the person to generate human motion in long-term horizons while [1] and [56]
generate motion based on speech audio. Meanwhile, others use only knowledge of the past
motion which allows them to work in real-time but on shorter motion [109, 34, 134]. More
recently, several works have been dedicated to human pose and motion generation from text
or action labels, as well as its reciprocal task [54, 98]. These papers focus only on one person,
while our approach is dedicated to the generation of two-person interactions. [12] propose
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a multimodal variational recurrent neural network to predict the future motion of both par-
ticipants in an interaction based on pasts sequences of motion. In contrast, we propose to
generate human interaction between two persons.

Generative Diffusion Models. Diffusion models [135, 59] have shown great promise in
terms of generative modeling by showing impressive results in synthesis applications rang-
ing from image generation [57], audio-drive motion synthesis [4], molecule generation [60],
to text-driven motion generation [129]. More recently, some concurrent work in the field of
text-to-motion introduces a diffusion-based method for generating text-conditioned motion.
For example, [165] propose MotionDiffuse, a diffusion model-based text-driven motion gen-
eration framework. [141] propose EDGE, a method for generating editable dances that is
able to create a realistic dance while remaining faithful to the original music. [35] intro-
duce MoFusion, a denoising-diffusion-based framework for high-quality conditional human
motion synthesis that can generate long and temporally plausible motions conditioned based
on music or text. Despite achieving impressive performance, these methods use a diffusion-
based method for generating the motion of only one person. In contrast, our proposed method
BiGraphDiff proposes to generate the interaction between two persons and propose to learn
a bipartite graph during the diffusion process. In addition, BiGraphDiff is applied for both
text-to-motion and text-to-dance, and it is able to generate a long sequence of dance motion.

Graph Neural Networks Graphs are a way to describe pairwise relations between en-
tities and are used in various domains including physics, chemistry, and computer science.
A graph can be represented as G = {V,E}, with V = {v1, ...vn} the n nodes, also called
vertices, and E = {e1, ..., em} the m edge connecting the nodes. A graph can be represented

Figure 4.1: Example of a graph with 5 nodes and 6 edges.

visually as seen in Fig.4.1 or as an adjacency matrix. For a graph G = {V,E}, the adjacency
matrix A ∈ {0, 1}n×n represents the connections between the nodes. Specifically, Aij = 1 if
vi and vj are connected and Aij = 0 otherwise. For the graph in Fig.4.1 the corresponding
adjacency matrix is:
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A =


0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 (4.1)

The degree of a graph’s node corresponds to the number of nodes it is connected to.
Using the adjacency matrix the degree of node vi is:

d(vi) =
n∑

j=1

Aij (4.2)

We define the Laplacian matrix of a graph by

L = D − A (4.3)

with D = diag(d(v1), ..., d(vn)) the diagonal degree matrix. This Laplacian matrix is useful
to create a link between the discrete graph and a continuous representation, e.g. vector
spaces.

Graphs have been widely used for computer vision tasks, such as visual question an-
swering [122] or human motion recognition [26]. Graph Neural Networks (GNN) [130]
are commonly used for these tasks. In recent years, graph convolutional networks (GCN)
[151], a version of GNN that uses graph convolution. The graph convolution is computed as
follows:

H = σ(D̂− 1
2 ÂD̂− 1

2XW ) (4.4)

where σ is an activation fonction e.g. RELU, Â = A + I with I the identity matrix, D̂ a
diagonal matrix where D̂ii =

∑n
j=1 Âij , X a matrix of feature representing the nodes, and W

the trainable weights. This equation corresponds to Laplacian smoothing [88] with specific
parameters. Laplacian smoothing considers a graph as a curve made of discrete points and
tries to smooth it. The smoothing is done following:

Xsmooth = (I − ωLrw)X (4.5)

where Lrw = D̂−1L is the normalized Laplacian and 0 ≤ ω ≤ 1 a parameter to control the
strength of the smoothing. If ω = 1 and Lrw is replaced by Lsym = D̂− 1

2LD̂− 1
2 then we

have:
Xsmooth = D̂− 1

2 ÂD̂− 1
2X (4.6)

This is the same form as we have in Equation.4.4 showing that the graph convolution is
indeed a Laplacian smoothing.

In this chapter, we use a specific type of graph to model the interactions between two
persons. The graph we use is the bipartite graph. A graph is a bipartite graph if its vertices
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can be split into two independent sets U and V . Those set are called the parts of the graph.
The edge of a bipartite graph can only connect a vertex of U to a vertex of V , but not
two vertices of the same set. In Figure.4.2 we show an example of a bipartite graph. If
every vertices of U connect to every vertices of V then we call it a complete bipartite graph.
Bipartite graphs are used in various domains from coding theory to computer science [76,
89, 140, 139]. With BiGraphDiff we use them to model the interaction between two 3D
skeletons.

Figure 4.2: Example of Bipartite graph. U and V are in different colors
source: https://fr.wikipedia.org/wiki/Graphe_biparti

4.3 Bipartite Graph Diffusion Model

4.3.1 Framework Overview

Our goal is to generate a human motion interaction x1:N given an arbitrary condition c. Let
us consider x1:N={x1, . . . , xN} an arbitrary sequence of joints that compose the two skele-
tons, xi∈Rk×3×2, where k is the number of joints. The motion generation is formulated as a
reverse diffusion process that requires sampling a random noise x1:N

t from noise distribution
to generate a motion sequence. While the forward process requires successively corrupting
the motion sequence x1:N

t by adding the noise to the motion sequence for T timesteps in
Markov fashion. We propose Transformers to learn the denoising function and a bipartite
graph to represent the relationship between the joints of the skeleton. The proposed Trans-
former learns not only the denoising function but also the bipartite graph. See Fig. 4.3 for an
overview.

4.3.2 Diffusion for Motion Generation

The diffusion model consists of two separate processes called forward diffusion and reverse
diffusion. During the forward diffusion process, we add to real data a small amount of Gaus-
sian noise repeatedly until the data becomes Gaussian noise. Formally, the forward process
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on a real sample from a real data distribution x1:N
0 ∼q(x1:N) consists in a Markov chain that

gradually adds noise following a variance schedule βt to obtain the posterior q(x1:N
1:T |x1:N

0 )
with x1:N

1 to x1:N
T the latent data:

q(x1:N
1:T |x1:N

0 ) :=
T∏
t=1

q(x1:N
t |x1:N

t−1),

q(x1:N
t |x1:N

t−1) := N (x1:N
t ;

√
1− βtx

1:N
t−1, βtI).

(4.7)

Eventually with T→+∞ the distribution will be close toN (0, I). This formulation im-
plies that the forward process is recursive but this can be avoided by using [59] formulation:

q(x1:N
t |x1:N

0 ) =
√
αtx

1:N
0 + ϵ

√
1− αt, ϵ ∼ N (0, I), (4.8)

with αt=
∏t

i=0 αi and αt=1−βt. With this formulation, we can sample a noise ϵ and directly
generate any x1:N

t . Forward diffusion does not require any training but only gradually adds
noise to real data. To generate motions, we need to be able to obtain clean data from noisy
data to reverse the forward process.

The reverse diffusion process, pθ(x1:N
0:T ), is a Markov chain that eliminates the noise from

x1:N
T recursively until we obtain x1:N

0 . With p(x1:N
T ) = N (x1:N

T ;0, I):

p(x1:N
0:T ) := p(x1:N

T )
T∏
t=1

pθ(x
1:N
t−1|x1:N

t ),

pθ(x
1:N
t−1|x1:N

t ) := N (x1:N
t−1;µθ(x

1:N
t , t, c),Σθ(x

1:N
t , t, c)).

(4.9)

During the denoising process the goal is to estimate µθ(x
1:N
t , t, c) and Σθ(x

1:N
t , t, c).

However, if we use Eq. (4.8) formulation and [59] method then we can set Σθ(x
1:N
t , t, c)=σ2

t I
with σt a constant and replace µθ(x

1:N
t , t, c) as follow:

µθ(x
1:N
t , t, c) =

1
√
αt

(x1:N
t − 1− αt√

1− αt

ϵθ(x
1:N
t , t, c)), (4.10)

this means that we only need to estimate ϵθ(x
1:N
t , t, c) to be able to denoise the latent data

since we can recover x1:N
t−1 using:

x1:N
t−1 =

1
√
αt

(x1:N
t − 1− αt√

1− αt

ϵθ(x
1:N
t , t, c)) + σtγ, (4.11)

with γ∼N (0, I). In our model we set σt= log(βt
1− αt−1

1− αt

) following [59] recommendation.

To estimate ϵθ(x
1:N
t , t, c) we will train a Bipartite Graph Interaction Transformer (defined in

Sec. 4.3.3) to minimize the loss:

L :=Et∈[1,T ],x1:N
0 ∼q(x1:N

0 ),ϵ∼N (0,I)[∥ϵ− ϵθ(x
1:N
t , t, c)∥2]

:=Et∈[1,T ],x1:N
0 ∼q(x1:N

0 ),ϵ∼N (0,I)[∥ϵ− ϵθ(
√
αtx

1:N
0

+ ϵ
√
1− αt, t, c)∥2].

(4.12)
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4.3.3 Bipartite Graph Interaction Transformer

The Bipartite Graph Interaction Transformer used by BiGraphDiff is based on the original
Transformer [146]. It is composed of a text encoder, embedding and positional encoding lay-
ers, self-attention modules, cross-attention modules, a Bipartite graph module, feed-forward
modules, and a final linear layer. We input x1:N

t and c to obtain ϵθ(xt, t, c).

Text Encoder. The text encoder is used to encode c the class label. We use a simple four
layers Transformer encoder as described in [146] that uses multi-head self-attention. To
avoid training the encoder from scratch, we initialize the weight with those of CLIP [124].

Motion Decoder. The motion decoder uses x1:N
t and the output of the text encoder to obtain

ϵθ(xt, t, c). First we split x1:N
t into x1:N

1,t and x1:N
2,t which represent the first and second skele-

ton, respectively. Each skeleton passes through an embedding layer followed by a positional
encoding layer introduced by [146] that encodes the temporal information from each frame
of the sequence.

Self-Attention and Cross-Attention Then the data goes through self-attention and cross-
attention layers. Attention is used to find correlations within the data and is defined as

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V, (4.13)

where Q, K, and V are the query, key, and value matrices that have the same size as x1:N
1,t and

d=k ∗ 3 the dimension of one frame from x1:N
1,t . Q, K, and V are defined for self-attention

for the first skeleton as

Q = x1:N
1,t Wq, K = x1:N

1,t Wk, V = x1:N
1,t Wv, (4.14)

and for cross-attention

Q = x1:N
1,t Wq, K = cembWk, V = cembWv, (4.15)

where Wq, Wk, and Wv are the weight matrices for the projection and cemb the text em-
bedding from the text encoder. This type of attention is also used in the text encoder. The
issue with using this attention is its complexity. Indeed the complexity is N2d. This means
that long sequences take a very long time to be processed on top of taking a lot of memory
space. To solve this issue and following the similar observation from [165], we use efficient
attention instead. Efficient attention was introduced by [132] to have a linear complexity on
attention by calculating a global feature map instead :

F = softmax(KT )V,

Attention = softmax(Q)F.
(4.16)

This simple modification allows us to get a complexity of d2hNh for the attention with h
the number of heads and dh the dimension of each head. dh being a fixed value and much
smaller than N , the complexity is much lower than standard attention. These heads are a
part of the multi-head attention, a concept introduced by [146] where we split the inputs into
smaller parts of size dh. Each part is fed to a head that contains its own attention module.
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The output of all the heads is then concatenated. We use 8 heads for both self-attention
and cross-attention. Each attention layer (self and cross) is followed by a stylization block.
This module, introduced by [165] allows the generative process to keep track of the current
diffusion timestep t improving the generation. The output of this module is added to the
input of the attention through a residual connection.

Bipartite Graph. Following the self-attention and cross-attention module, both skeletons,
z1:N1,t and z1:N2,t go through the bipartite graph module. The proposed bipartite graph aims to
capture the long-range cross relations between the two skeletons Sa=z1:N1,t and Sb=z1:N2,t in a
bipartite graph via GCNs. Each node in Sa is connected to all the nodes in Sb. Firstly, Sa

and Sb are separately fed into two encoders to obtain the feature Fa and Fb, respectively.

We then reduce the dimension of Fa with the function φa(Fa)∈RC×Da , where C is the
number of feature map channels, and Da is the number of nodes of Fa. Meanwhile, we
reduce the dimension of Fb with the function θb(Fb)=H⊺

b∈RDb×C , where Db is the number
of nodes of Fb. Next, we project Fa to a new feature Va in a bipartite graph using the
projection function HT

b . Thus we have:

Va = H⊺
bφa(Fa) = θb(Fb)φa(Fa), (4.17)

where both functions θb(·) and φa(·) are implemented using a 1×1 convolutional layer. This
results in a new feature Va∈RDb×Da in the bipartite graph, which represents the cross rela-
tions between the nodes of the skeleton Fb and the skeleton Fa.

After projection, we employ a fully connected bipartite graph with adjacency matrix
Aa∈RDb×Db . We then use a graph convolution to learn the long-range cross relations between
the nodes from both skeletons, which can be represented as:

Ma = (I− Aa)VaWa, (4.18)

where Wa∈RDa×Da denotes the trainable edge weights. We use Laplacian smoothing [25,
88] to propagate the node features over the bipartite graph. The identity matrix I can be
viewed as a residual sum connection to alleviate optimization difficulties. We randomly
initialize both the adjacency matrix Aa and the weights Wa and then train them by gradient
descent.

After the cross-reasoning process, the new updated feature Ma is mapped back to the
original coordinate space for further processing. Next, we add the result to the original
feature Fa to form a residual connection, as follows:

F̃a = ϕa(HbMa) + Fa, (4.19)

where we reuse the projection matrix Hb and apply a linear projection ϕa(·) to project Ma

back to the original coordinate space. Therefore, we obtain the feature F̃a, which has the
same dimension as the original one Fa.

Similarly, we can obtain the new feature F̃b. Overall, the proposed method reasons the
cross relations between feature maps of different skeletons using a bipartite graph.

Feed-Forward Network. After the bipartite graph module, the data of each skeleton goes
through a feed-forward network. It is composed of linear projections, dropout, and GELU
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Table 4.1: Classification score on NTU-26.

Method GT ACTOR [118] MotionDiffuse [165] BiGraphDiff

Classification Accuracy ↑
Punching 76.0% 1.0% 43.0% 49.0%
Kicking 86.0% 14.0% 61.0% 86.0%
Pushing 97.0% 77.0% 86.0% 74.0%

Pat on back 88.0% 4.0% 72.0% 80.0%
Point Finger 83.0% 0.0% 52.0% 76.0%

Hugging 97.0% 59.0% 90.0% 97.0%
Giving object 91.0% 34.0% 68.0% 86.0%
Touch pocket 93.0% 35.0% 81.0% 84.0%
Shaking hands 89.0% 16.0% 80.0% 90.0%
Walking toward 93.0% 72.0% 98.0% 99.0%
Walking apart 95.0% 90.0% 90.0% 90.0%
Hit with object 44.0% 8.0% 23.0% 28.0%

Wield knife 50.0% 7.0% 31.0% 41.0%
Knock over 85.0% 4.0% 61.0% 61.0%
Grab stuff 74.0% 0.0% 57.0% 62.0%

Shoot with gun 57.0% 1.0% 46.0% 44.0%
Step on foot 89.0% 5.0% 85.0% 90.0%

High five 90.0% 4.0% 75.0% 78.0%
Cheers and drink 90.0% 16.0% 69.0% 92.0%

Carry object 96.0% 98.0% 92.0% 95.0%
Take a photo 87.0% 19.0% 63.0% 80.0%

Follow 94.0% 68.0% 90.0% 81.0%
Whisper 83.0% 0.0% 72.0% 79.0%

Exchange things 88.0% 6.0% 65.0% 78.0%
Support somebody 94.0% 100.0% 94.0% 92.0%
Rock paper scissor 91.0% 6.0% 75.0% 91.0%

Average 84.6% 30.7% 70.0% 77.0%

activation functions. It is followed by a stylization block to ensure that the information about
the current timestep is not lost. The output is added to the input of the feed-forward network
thanks to a residual connection.

Linear Transformation. The Motion decoder described above contains 8 identical layers
and the input of layer m is the output of layer m−1. Following those 8 layers the data of the
two skeletons is concatenated and goes through a final linear projection to obtain ϵθ(xt, t, c)
that we can use in our loss and to retrieve x1:N

t−1.
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4.4 Experiments

4.4.1 Datasets

There are few 3D motion two-persons interaction datasets. Therefore we focus on two com-
plementary datasets. The NTU RGB+D 120 dataset [94], among its 120 classes, contains
26 classes labeled as “Mutual Actions / Two Person Interactions” which show two persons
performing simple interaction motions. We take this 26 classes subset that we call NTU-26
and split each class randomly to obtain our training and testing set. The testing set contains
2,600 samples (100 per class) and the training set is 19,787 samples. The second dataset
is DuetDance [83], which contains five classes of two persons dance motions for a total of
406 sequences. The motions are more complex than the one from NTU-26 and harder to
classify, even for a human observer. The original dataset contains motions with great vari-
ations in lengths from 100 frames to more than 4,000. The average length is 483 frames
with a median of 360 frames. While our model can generate very long motions it causes a
problem when obtaining quantitative results and lower the quality of the generation due to
the limited presence of some sequence of certain lengths. We decided to split the sequences
into subsequences of 300 frames or less. This increases the number of samples to train our
network with. This increased number of samples will also help the diffusion model since it
needs a lot of data. This leaves us with 698 training samples and 125 test samples (25 per
class randomly selected).

4.4.2 Implementation Details

We train our model on an NVIDIA A100 80Go GPU with PyTorch with a batch size of 128
for NTU and 64 for DuetDance. We train on NTU for 1,500 epochs and for 30,000 epochs
on DuetDance.

4.4.3 Baselines

We compare BiGraphDiff to two methods from the state-of-the-art, i.e., MotionDiffuse [165]
and ACTOR [118]. MotionDiffuse, a recent Diffusion and Transformer based architecture,
generates a single-person motion from the text. For our experiments, the code provided by
the author and recommended parameters are used. Due to the similarity with our method,
however, we take the same batch size and number of epochs as for our method. ACTOR, a
Transformer VAE method, generates a single-person motion. We use the code provided by
the authors and retrain it on our datasets. We use the recommended parameters to run the
model without SMPL [97] loss function. SMPL loss function is deactivated because SMPL
is not available in NTU RGB+D and DuetDance datasets.
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4.4.4 Evaluation Metrics

Classification accuracy To evaluate the generated sequence we use a classifier made of
a simple Transformer encoder followed by a MLP. The classifier is trained and tested on
the same training and testing sets as the generative methods. We look at the percentage of
correctly classified samples in each class and the average over the entire testing set.

FVD for Fréchet Video distance, adapt the Fréchet Inception distance (FID) [58] for
video sequences [144]. With FVD we compute the distance between the generated data
distribution and the ground truth using deep features.

FVD = |µgt − µgen|2 + tr
[
Cgt+Cgen−2 (Cgt ∗Cgen)

1/2
]
, (4.20)

where µgt, µgen and Cgt and Cgen are the means and covariance matrices of the deep features
from ground truth and the generated samples respectively, tr(·) is the trace. We obtain the
deep features from one of the last MLP layers from the classifier used to get the classification
accuracy.

Multimodality Multimodality is defined as the average deep features distance of the
samples generated by a method compared to the average deep features distance of the ground
truth on a specific class. Multimodality allows us to see if the samples we generate are
different from each other, it corresponds to intra-class diversity. To compute the average deep
features distance we split the set of features of each class into two equal sets and compare the
euclidean norm between the pairs formed by a member of each set and compute the average
over the size of the subsets. The average deep features distance for multimodality is defined
as follow:

dist =
1

cm

c∑
j=1

m∑
i=1

||Fji
A − Fji

B||2, (4.21)

where c is the number of classes in the dataset Fji
A and Fji

B the ith features of the subset A
and B of class j. The multimodality is then calculated as :

score = 100× |distgt − distgen|
distgt

, (4.22)

with distgt and distgen the deep features distance of the ground truth and of the considered
method respectively. The lower the multimodality the better as it means that we are close to
the multimodality of real data.

4.4.5 Quantitative Results

NTU-26. Table 4.1 shows that our method outperforms the two the-state-of-art methods in
terms of average accuracy. BiGraphDiff outperforms MotionDiffuse by 7.0% and ACTOR
by 46.3%. We are also very close to the accuracy of the classifier on the ground truth. This
shows that the sequences generated by our method are realistic and correspond to the input
class. In more detail, we can see that we outperform or equate the other methods on 22
classes out of 26. MotionDiffuse and ACTOR are both better in 2 classes. However, we
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Table 4.2: FVD and Multimodality on NTU-26.

Method FVD↓ Multimodality↓

ACTOR [118] 25298.73 34.91
MotionDiffuse [165] 1292.32 14.94

BiGraphDiff 1048.13 11.28

Table 4.3: Classification score on DuetDance.

Method GT ACTOR [118] MotionDiffuse [165] BiGraphDiff

Classification Accuracy ↑
Cha-cha 28.0% 36.0% 32.0% 32.0%

Jive 52.0% 16.0% 20.0% 16.0%
Rumba 56.0% 16.0% 48.0% 68.0%
Salsa 88.0% 0.0% 64.0% 76.0%

Samba 52.0% 80.0% 32.0% 52.0%
Average 55.2% 29.6% 39.2% 48.8%

Table 4.4: FVD and Multimodality on DuetDance.

Method FVD↓ Multimodality↓

ACTOR [118] 2641.08 67.79
MotionDiffuse [165] 1133.51 12.24

BiGraphDiff 997.92 4.33

can see that ACTOR results being actually better is debatable as some classes have very low
accuracy, down to 0%. We can also see that the classes in which we perform the worse (i.e.,
“Hit with object” 28%, “Wield knife” 41%, and “Shoot with gun” 44%) are the ones where
the results are also low for the ground truth. Those are classes where the main difference is
the object used which is something we can not see using 3D skeleton data. Table 4.2 shows
the FVD and multimodality results. In terms of FVD and Multimodality, our method also
outperforms the two other methods indicating that our method produces sequences closer to
the real data. One issue when using the NTU dataset is that it is very noisy (see the ground
truth in the qualitative results). This means that it is harder to generate noiseless sequences
but also that a method that generates samples without noise might be disadvantaged in the
quantitative results since they are compared with the ground truth and the classifier is trained
on the noisy data.

DuetDance. Table 4.3 shows the classification results on the DuetDance dataset. We can see
that, as on NTU-26, we have the best performance on average. The accuracy of our method
is 9.6% higher than on MotionDiffuse and only 6.4% lower than on the ground truth. We can
note that the accuracy for the ground truth is much lower than for NTU-26. This is due to the
nature of the motion in DuetDance. The dance motions are much harder to recognize even
for a human and also longer so it is not surprising that the results are worse. ACTOR, on the
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other only achieves results slightly higher than chance (20%) we will see in the qualitative
results that on DuetDance, ACTOR does not produce any motion, we will discuss this in
detail in the qualitative results. In the “jive” class, all methods only achieve chance level
or lower accuracy. But the results are not so low for the ground truth with means that all
methods have trouble generating motion of the “jive class”. In Table 4.4, we show that we
outperform the other methods on both metrics meaning that the results of our method are
more realistic.

4.4.6 Qualitative Results

NTU-26. Figure 4.4, 4.5, and 4.6 shows visuals of sequences generated for the “Cheers and
drinks”, “High-five", and “Kicking" classes respectively. The ‘Cheers and drinks” class of
motion is more complex than others because it is composed of two separate motions “cheers”
and “drink”. All methods generate a proper motion but ACTOR shows a low intensity for
“cheers” and does not really generate the “drink” motion. MotionDiffuse generates a good
motion with both “cheers” and “drink” but there is some noise and the arm length grows over
time. Our method generates the proper motion with the two steps and does not produce the
noise that is present in the ground truth. In our case, one character drinks while grabbing the
glass with one hand while the other uses both hands showing the diversity in the generated
motions. For “High-five" ACTOR also generate a low-intensity motion and both characters
raise their hand but do not perform a high-five. Both MotionDiffuse and our method gen-
erate a high-five but MotionDiffuse shows noise and the hands of both characters stay far
from each other. The ground truth once again contains noise that is not present in our gen-
eration. For the “Kicking" class ACTOR does not generate any motion for either character.
MotionDiffuse generates the red character as being kicked but does not generate the blue
person kicking. Our method on the other hand generates both the kicking motion and the
other character being kicked like the ground truth. In the ground truth, we can see that the
leg is never fully extended during the kick this is common for this class. The NTU-RGB+D
dataset is captured using Kinect camera and has difficulties capturing the legs due to the po-
sitioning of the camera and occlusion during interactions. this shows again the kind of noise
present in the original data. Overall we see that our motion is more realistic, temporally, and
spatially coherent and manages well to keep the interaction coherent.

DuetDance. Figure 4.7 shows examples of motion generation of the “salsa” class. The dance
motions are more complex and the sequences are longer than NTU-26 sequences. ACTOR
does not produce motion. We believe this to be due to the great variability of motions from
the same class. ACTOR converges to a mean and finds that an unmoving pair of skeletons
is the best generation for its losses. We see that MotionDiffuse produces a dance motion
without noise. This is because there is less noise in DuetDance than in NTU-26. Our method
also generates a dance motion but is better than MotionDiffuse, we reproduce the motion of
characters changing sides that is present in the ground truth and the interaction is better as
the arm of both characters does not overlap.
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Table 4.5: User study results (%).

Method
NTU-26 DuetDance

Q1 Q2 Q1 Q2

ACTOR [118] 6.1 7.8 5.6 5.9
MotionDiffuse [165] 22.4 24.3 21.8 23.7

BiGraphDiff 31.6 32.7 28.5 30.1
GT 39.9 35.2 44.1 40.3

4.4.7 User Study

The user study compared BiGraphDiff with two leading methods (i.e., ACTOR [118], Mo-
tionDiffuse [165]) and the ground truth sequence. For both datasets, we randomly select 20
samples for each class from the test data. For each comparison, 30 participants are asked
to answer two questions, i.e., ‘Q1: Which skeleton sequence is more realistic?’, and ‘Q2:
Which skeleton sequence matches the input text better?’. The numbers indicate the prefer-
ence percentage of users who favor the results of the corresponding methods or the GT skele-
ton sequence. The results highlight the quality of the sequence generated by our method.

4.4.8 Ablation Study

We report ablation results in Table 4.6 on the NTU-26 dataset. We compare a simple two-
stream Transformer (S1), a two-stream Transformer in a diffusion process (S2), a two-stream
Transformer in a diffusion process with a simple GCN (S3), and finally our method with
bipartite graphs (S4).

The results of S1 are extremely bad. It is explained by the fact the Transformer is a de-
terministic method and has a low generation diversity which explains the very high FVD.
Furthermore, the noisy data from the NTU dataset makes it even harder to provide well-
generated sequences. S2 provides much better results both in classification accuracy and
FVD, the results are similar to the results obtained by MotionDiffuse. With S3 the simple
GCN helps enhance the generation leading to better accuracy and FVD. This highlights the
ability of the GCN to model more accurately the spatio-temporal dependencies from each
skeleton. Adding a bipartite graph network in S4 provides a stronger increase in perfor-
mance. It shows that modeling the interactions between the two skeletons is more important
than trying to refine the interactions inside each skeleton like S3 did. It validates the use of
the bipartite graph network in BiGraphDiff architecture.

4.5 Very Long Generation

Long-term motion generation plays an important role in real-world applications. Our method
is able to generate longer sequences as shown in Figure 4.8. We train the network on the
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Table 4.6: Ablation study on NTU-26.

Method Classification↑ FVD↓

S1: Two Stream Transformer 3.9% 21215.21
S2: Two Stream Transformer + Diffusion 69.3% 1406.09
S3: S2 + Simple GCN 73.2% 1123.88
S4: S2 + Bipartite Graph 77.0% 1048.16

original DuetDance dataset with a maximum sequence length of 4050 frames. We use 376
samples for training and 40 (8 per class) for testing. Figure 4.8 shows an example of 1580
frames from the “rumba” class. We can see that we generate dance-like motion for the entire
duration of the sequence. However, it is very noticeable that we generate better motion for
the first few hundred frames, we see that the motion quality around 300 frames is good but
then around 600 frames we see deterioration that gradually becomes worse. This is due to
the length of the sequences in the DuetDance dataset distribution which are usually not very
long (average: 483 frames, median: 360 frames).

4.6 Conclusion, Limitations and Future Work

We introduce the first approach for 3D human motion interactions based on denoising dif-
fusion models. Both quantitative and qualitative evaluations show that BiGraphDiff out-
performs state-of-the-art methods. The proposed BiGraphDiff method generates coherent
human motion sequences that are longer and more diverse than the results of previous ap-
proaches.

The proposed BiGraphDiff suffers however from the common limitations of diffusion
models: the need for large datasets and the long training and testing duration. The method is
also still slightly sensitive to noise in the training data and can sometimes generate deformed
skeletons. This is due in part to the quality of the data used but also because we do not
set any constraint related to the input data, e.g., bone length or relative position of joint
for 3D skeletons. This means that BiGraphDiff can be used for tasks other than human
interaction generation. As long as the input data can be split into two sets and has a temporal
or positional component BiGraphDiff can be used for generation. Diffusion models are
improving very quickly and some of these improvements could be used to further improve
our results. To reduce the training time, early stop diffusion could be used [101]. To improve
the performance of graphs in our model we could leverage diffusion models specifically
designed to use graphs [48].
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Interaction with virtual agents has been studied through several modalities: expression
recognition and generation [39], action recognition and interaction with objects [36], multi-
modal input and output [39]. Some methods can even be used for both virtual agents and
robots[62]. However, the challenge of building an interactive virtual agent differs from that
of building an interactive robot. Robots deal with real persons and objects and do not need
to have a human appearance, the focus is more on the accuracy of their motion than on
their realness. Virtual agents on the other hand look very human and increasingly so, as
3D modeling software allows for more realistic virtual humans. They lack the mechanical
constraints of robots and their behavior can be more realistic than that of robots. In this
thesis, we build a virtual agent that reacts to communicative gestures using non-intrusive
data acquisition devices. We want the behavior of our virtual agent to be as realistic as
possible.

5.1 Virtual Agent Application

Virtual agents have been increasingly used for many purposes, especially with the recent
growth of virtual reality applications. We will describe some possible uses of virtual avatars
in several domains.

Healthcare. Virtual agents can have a wide range of uses in healthcare. For example,
they can be used to help patients feel more comfortable during telehealth sessions by giving
practitioners more presence. Virtual agents can be part of health surveillance applications
to ensure that people follow their treatments (Fig.5.1a). Or they can be used to help with
therapy for example by using virtual agents to "train" people with communication disorders
to have a better understanding of human communication. This could help people improve
their social skills and reduce the inconvenience that their disability can cause in everyday
life. Furthermore, virtual agents could be used as companions for long stays in hospitals. We
can also reverse the setting and use an avatar to train medical students, in this case the avatar
will play the role of a patient.

Virtual reality environment. Entertainment is another obvious use for virtual agents,
especially with virtual reality. In these virtual worlds, the quality of graphics, interactions
with the environment, and sound design has continuously increased. Virtual agents on the
other hand, despite having been part of the experience for a long time, still suffer from very
limited interactions with the users that make them feel artificial. For example, many modern
virtual agents allow communication by speech, much less by facial expressions, and even
less by bodily gestures although the latter two are also very important means of communica-
tion for humans. Having more realistic avatars that can use several channels to communicate
with users would enhance the quality of the experience in this virtual world. With the recent
rise in popularity of metaverses, keeping users interested in the virtual world, the issue of
creating realistic interaction with virtual agents will become even more important and so will
providing avatars capable of communicating through multiple modalities.

Virtual assistants. Some customer services have already been replaced by simple artifi-
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(a) Frederick, an assistant to help people with dia-
betes

(b) Vera a virtual recruiter which conduct interviews
for companies

(

(a) source: [110] https://www.youtube.com/watch?v=foQIVavHA4Y.
(b) source: https://www.jobboardfinder.com/news/robot-vera/

Figure 5.1: Examples of avatar uses

cial intelligence e.g after-sales services replaced by chatbots for simple issues. As these may
seem impersonal and people might lose patience faster than with a real person, the obvious
enhancement will be to replace the chatbot with an avatar. An avatar has the advantage of
looking like a human. If its behavior is realistic enough, the customer will consider it more
like a person and be much more patient when interacting with it and explaining problems.
In some cases, humans and less immersive artificial intelligence have already been replaced
by avatars. For example, recruitment AI is given a human appearance to make the interview
feel more natural (Fig.5.1b). However, like in virtual environments they often only use the
speech modality sometimes coupled with facial expression recognition [39].
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(a) Multimodal avatar by [39] that use many modal-
ities to communicate with the user: object detection,
facial expression recognition, skin conductance...

(b) [62] Method allow to generate motion in an inter-
action both for a virtual agent and a robot

Figure 5.2: Existing interactive avatars

5.2 Virtual Agent Application Requirements

We want to build an interactive virtual agent that reacts to a person’s gestures. It is an
application to our work on human motion prediction. We apply several additional constraints
to the virtual agent as well as the environment in which it evolves to improve the realism of
the interaction:

1. Realistic avatar appearance: we want the avatar to look like a human, this means that it
must be detailed and textured enough so that users may interact with it like they would
with another human.

2. Believable setting: the environment in which the avatar evolves must also be realistic
and the setting linking the avatar to the environment must be believable e.g we do not
want the avatar to stand still while waiting for the user to make gestures.

3. Non-intrusive data collection: we need to collect data from the user (motion, facial
expression...) but we do not want to use captors that the user needs to put on the body
(e.g skin conductance captors, motion capture marker...). We wish to only use cameras
(video, depth...) to build an environment that the user can simply enter and instantly
start to interact with the virtual agent.

4. Related and accurate reaction: the avatar must react in a way that its reaction is co-
herent with the gesture performed by the user (e.g the gesture for being cold causes
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the avatar to close a window). Furthermore, the reaction motion must be realistic and
smooth to give the avatar a more human behavior.

5. Timing of the reaction motion: to look realistic the timing at which the motion is
performed is important. In particular, the reaction must be performed quickly enough
so that the user does not feel as if the avatar did not understand the motion.

5.3 Architecture Choices

To respect the constraints we set for our virtual agent application, we must first be able to
react quickly to the user gesture. This implies that, in a short time, we must understand
the motion the user is performing and produce a reaction to this motion. In these condi-
tions, waiting for the user to complete the motion is not ideal. Therefore, we choose to start
by predicting the end of the user motion based on its start. Then we classify the predicted
motion and send the information to the avatar that will react accordingly by selecting the cor-
responding prerecorded reaction motion. The result of the classification will let the system
decide which reaction to perform. However, as we will see in Section.5.4, all the gestures
we choose indicate discomfort for the user. Depending on the degree of said discomfort, a
reaction might not be needed. To take this possibility into account, we add a facial expres-
sion recognition module to decide if the virtual agent has to react. Fig.5.3 shows the overall
architecture of the application.

Figure 5.3: Overview of the virtual agent application architecture

One last issue to solve is the need for data. While facial expression databases are plenty
and we do not need data to generate the reaction from the virtual agent, we still need data to
train networks to predict and recognize the gesture of the user.

5.4 A New Motion Database

There is currently no database containing the kind of communicative gestures that we are
looking for when interacting with the avatar (e.g “I’m cold”, “My ears hurt”...). Most motion
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Scenario Motions number of samples MoCap number of samples Kinect
I am cold rub both arms with hands 115 109
I am hot wave one or both hands near the neck/ mouth 115 115

This is too loud cover both ears with hands 113 99
This smells bad pinch nose with one hand or cover mouth and nose with both hands 115 110
It is too bright cover eyes with one or both hands 111 109

Hello wave with one or both hands 100 121
Idle random and meaningless motions 59 65
Total 728 728

Table 5.1: Content of the gesture dataset

databases contain motions that represent action performed alone (walking, kicking...) or in
interaction with other persons (exchanging an item, fighting...). In the latter, the interactions
require physical contact between the two parties, either directly or through an object. Gesture
databases are also available, however, the gestures included are gestures that do not require a
reaction from another person. Furthermore, the gesture databases that could be used to make
another person react are culturally coded, the motion performed might not have the same
meaning for a French person or even have no meaning at all. To get data that we could use
in our scenarios we build a database of communicative motions.

We show in Table 5.1 the different scenarios and motions used in our database as well
as a description and the number of samples recorded. Since different motions can be used
for each of the scenarios given to the participants, they were also instructed to avoid certain
types of motion (e.g they were not allowed to pull the collar of their shirt during the "I am
hot" scenario). We added an additional class of motions containing random idle motions to
train our networks. It is used to recognize when no motion of particular significance is being
performed. By doing that, we can avoid the misclassification of random motions as mean-
ingful ones leading to an unwanted reaction from the avatar. The scenarios were selected
from situations where people might perform a gesture to indicate their mental state but that
can also be performed to elicit a response from another person (e.g. the gesture of “coming
here” oblige observers to modify their behavior. In this case, people move toward the execu-
tor). Mental state gestures are gestures that communicate a feeling (e.g. I am cold). In all
our scenarios the motion indicates a discomfort and the avatar must react by helping the user.

The motion capture was performed at the Equipex Continuum using the facilities of the
Fédération de Recherche "Sciences et Cultures du visuel" at Tourcoing, France. We recruited
11 healthy volunteer participants among the students of the lab team (8 males, 3 females; age
between 20-60 yrs). Participants did not receive financial compensation for their participa-
tion in the study. Participants were asked to stand in front of the Kinect at a place marked by a
cross on the ground. Fig.5.6 shows the view participants had. Their initial position was then
adjusted depending on their height (to allow the capture of all markers by the motion capture
system). They were asked to perform the gestures from Table.5.1. The motions from class
“Idle” were only performed by 2 participants as they are random, meaningless, motions. The
participants performed each motion at least 10 times. Each participant spent between 30 and
45 minutes to complete the entire recording session. The motions are captured on two dif-
ferent systems. The first is a high-precision motion capture system with 6 Qualisys motion
capture cameras and nine markers on the participant’s body: one on the forehead between
the eyebrows, one at the base of the neck, and one above the navel, for each arm we have
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Figure 5.4: Examples of motion from the new database (motion capture). We show three
different classes. Visualization obtained after motion sequences were cut and resampled to
have a duration of 3s (see Sec.5.5.2)

markers on the top of the shoulder, on the elbow and on the outer side of the wrist. Fig.5.5
shows the position of the markers on a participant. The motion capture system is calibrated
to have an average positional error of less than 2 millimeters. Each sample is recorded for
exactly 5 seconds regardless of the actual duration of the motion at 100 fps.

The second capture system we use consists of a single Kinect V2 camera. We decided to
also capture the motion with a Kinect camera since the motion capture system would give us
extremely precise data that we will not be able to obtain with the system we have put in place
for our application. The Kinect allows us to capture real-world data of the motion present in
the motion capture database which will help our models become more resilient to the noise
there is in real-world data. With the Kinect, we capture joint positions of the entire body
but then only keep the nine joints corresponding to those from the Motion capture. Due to
the difficulty of setting up synchronous capture between the Kinect and the motion capture
system, the capture from the Kinect is started and stopped by an experimenter following
the instruction from the experimenter working with the motion capture system. The capture
setup is illustrated in Fig.5.6. Due to this, the duration of the Kinect capture varies between
73 and 530 frames with a median of 155 frames and a mean of 157 frames with a framerate
of 30 fps which means that on average the motion duration average is close to 5s. Samples
that were too noisy or where joint positions were lost for too long were removed. When a
joint position was lost for a short amount of time we estimate its position to be the last known
position. All recorded samples were checked by a human curator before being used in the
database. This amount to 728 motion samples for the MoCap data and 728 samples for the
Kinect data.

105



CHAPTER 5

Figure 5.5: Motion capture markers position

Figure 5.6: Motion capture and Kinect setup. Point of view of the captured subject.
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Figure 5.7: Figure from [94] showing the joints captured by the Kinect camera

(a) Kinect (b) Motion capture

Figure 5.8: Captured skeletons example

5.5 Virtual Agent Application

5.5.1 Data Capture

To avoid having to wear captors when using the application, we can capture the motion
data using depth cameras or RGB cameras. Both allow for the capture of skeletons through
different toolkits. For example, OpenPose [21] for RGB camera or the Kinect SDK for
the depth cameras. We tried a RGB camera with BlazePose[14], Kinect depth camera, and
Intel real sense depth camera with NuiTrack SDK1. The result led us to choose the Kinect
camera. Blazepose, while good for 2D joint detection, fails to correctly estimate the depth
coordinates and causes the recorded data to be noisy. The intel real sense with NuiTrack
often fails completely to detect the joint position of the arm and the recorded motion looks

1https://nuitrack.com/
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nothing like the actual motion. On the other hand, Kinect gives an accurate recording of the
motion even if it is quite sensitive to occlusion. Fig.5.9 illustrate the results of each method.

Figure 5.9: Comparison of different 3D skeleton capture methods for an arm rubing motion

For the face data, we use a RGB camera with facial landmark detection software. Out of
the many libraries that exist (OpenFace 2, dlib3...) we choose to use Mediapipe FaceMesh4

which uses a facial detector [13] coupled with a face mesh predictor [73]. We choose to use
this method due to the speed and light weight of the model but also because of its accuracy
and higher resistance to occlusion. Even if it uses a face mesh instead of proper landmarks,
the results on expression recognition are similar to other landmarks detectors. Fig.5.10 shows
the facial mesh from Mediapipe.

5.5.2 Action Prediction Module

To predict the motion of the user we simply use the Predictive Manifold aware GAN from
chapter 2. This means that we must encode the motion data as SRVF before sending it to
the prediction network and then retrieve skeleton data from the predicted SRVF which, as
shown in Chapter 2 can easily be done. We have also shown that the prediction speed is fast
enough to be used in real time which is mandatory to be used in our application. In chapter 2
we predicted the same number of frames as what we were given as input. Here, however, we
take an input of 25 frames (1s) to predict 50 frames (2s). The Predictive Network is trained
on our dataset, where we mix the Kinect and Mocap data. The motion sequences were cut
and resampled to have a duration of 3s.

2https://github.com/TadasBaltrusaitis/OpenFace
3http://dlib.net/
4https://google.github.io/mediapipe/solutions/face_mesh
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Figure 5.10: Figure from [73] showing the face mesh from MediaPipe

5.5.3 Action Recognition Module

To classify the predicted motions we use a Transformer encoder that uses spatial attention
and the skeleton adjacency module presented in Chapter.3. The Transfomer encoder is fol-
lowed by a simple multi-layer perceptron to classify the motions. Fig.5.11 shows the ar-
chitecture of the action recognition network. We then train the network on 3s of motion
composed of 1s of real data and the 2s of motion predicted by the prediction module. We
train with predicted data instead of real data because the recognition module will always
receive predicted data. This module estimates the class of the concatenation of the recorded
motion and the predicted motion. Table.5.2 shows the accuracy of the network on our dataset.
For this experiment, we split the dataset between train and test. Out of the 11 subjects we
randomly choose subject 2 and subject 7 to be the test subjects. For class ”Idle”, since the
samples are not connected to a particular subject we randomly take 11 samples from the
Kinect data and 11 samples from the Mocap data to create the test set. With this, we have
1192 training samples and 264 test samples. We compare the result of 3s of captured data,
1s of captured and 1s of captured data completed by 2s of predicted data. For each modality,
we train the network on the corresponding data. As for the prediction network we use both
the Mocap and Kinect data. We see that using 3s of data the network correctly classifies
63.6% of action. Some actions of our dataset like “Hello” and “I am hot” (see Table 5.1
for the detailed motions) are similar and often confused which can explain the relatively low
score. If we use only 1s of data we see a decrease in performance down to 47.7% accuracy.
If we use our prediction network to predict 2s of motion and combine it with the 1s of input
data to get a 3s sequence we increase the results to 60.2% close to the original 63.6%. This
highlights the advantage of using our prediction network. We can are able to classify motion
with only one-third of the data nearly as accurately. In practice this allows the avatar to react
thrice as fast since the prediction process only takes a few milliseconds.
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Table 5.2: Recognition accuracy on our dataset. Comparison between 1s of motion captured
by the Kinect, 3s of motion captured by the Kinect, and 1s of motion captured by the Kinect
concatenated to 2s of predicted motion

Capture 1s Capture 3s Capture 1s + Prediction 2s

Accuracy 47.7% 63.6% 60.2%

Figure 5.11: Architecture of our Interformer-based motion classifier

5.5.4 Facial Expression Recognition Module

To avoid reacting to random motion or communicative motion that does not require a reaction
from the avatar, we add a facial expression recognition module that estimates the valence
and arousal value of the user expression. We use a simple MLP consisting of 4 Dense layers
with dropout that we train on the AFEW-VA[81] dataset using landmark data captured with
Mediapipe. While the network might seem extremely simple, it is efficient. On the AFEW-
VA dataset, with valence and arousal values comprised between -10 and 10, we obtain an
error of only 1. State of the art method might perform even better but since our goal is only
to set a threshold for discomfort while being fast we do not need as much accuracy as the
state-of-the-art methods. We want to prevent the avatar from reacting when the user is in a
neutral or positive mood since the motion performed might not indicate discomfort in that
case. To do so we ignore motions performed while valence > 0 as it correlates with positive
feelings. To avoid reacting when the user is in a neutral mood, we decide to only consider
motion performed while valence < −3 and |arousal| > 3. We capture the face of the user
with a second camera independent from the Kinect. The Kinect must be far enough to see
the entire upper body and can not be simultaneously used to capture a detailed face.

5.5.5 Avatar Module

Our avatar module is a Unity application where our avatar evolves in a scene consisting of
a room with furniture as shown in Figure 5.12. The room contains a desk behind which
the avatar sits, the avatar can interact with several objects in the scene: cigarette, window,
curtains, HiFi system, and a keyboard. We choose a simple appearance for the avatar with
a tee shirt so that users will not focus on its appearance but rather on its reaction. When
reacting to the user gesture the avatar will stand up (except for the“This smells bad” scenario)

110



APPLICATION TO AN INTERACTIVE AGENT IN VIRTUAL REALITY

Scenario Motions
I am cold If the window is open: stand up, close the window, sit down.
I am hot If the window is closed: stand up, open the window, sit down.

This is too loud if the volume is high: stand up, turn the volume down on the hi-fi, sit down system
This smells bad if the cigarette is lit: put out cigarette
It is too bright if the curtain is open: stand up, close the curtain, sit down

Hello Stop idle motion and turn to face and look at the user
Before turning attention to the user look at the computer screen while typing on the keyboard. Sometimes turns its head to look at the notebook.

Attention state look at the user and sometimes at objects on the desk.

Table 5.3: Avatar reaction to the gestures described in Table 5.1

and perform an action behind the desk (See Table 5.3 for a complete description of each
reaction). This module can also work in virtual reality and the entire room is modelized in
unity as seen in Figure 5.13. When using the virtual reality version, since the user needs to
wear a virtual reality helmet we can not use facial expression recognition. In that case, the
output of the module is ignored.

Figure 5.12: Our avatar in its resting state.

5.5.6 Full Application

The full application combines the aforementioned modules. The motion data is captured with
a Kinect V2 camera and the face data with any RGB camera such as a webcam. From the
motion data from the Kinect, we keep only the 3D skeleton data that we send to our prediction
network every 25 frames. In the prediction network, the data will first be normalized and
transformed into a SRVF. Then we predict the 50 future frames of the motion in SRVF format
and rebuild the corresponding skeleton sequence. The predicted sequence is concatenated
with the sequence recorded by the Kinect for a total length of 75 frames. This concatenated
sequence is fed to the action recognition network which outputs a class label. Simultaneously
25 frames of the face data are sent to the facial expression recognition module where we
extract the facial landmark from the RGB data with MediaPipe’s face mesh. The landmarks
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Figure 5.13: Aerial view of the scene in the unity builder (ceiling is removed). The entire
room is modelized for virtual reality.

are treated by the network which outputs arousal and valence values. Our scenarios are
all negative ones, the user is bothered by something and wants the avatar to do something
about it. We choose valence and arousal intervals that contain expressions that users may
perform in these scenarios. If the values obtained by the network are outside these intervals
we consider that the motion performed by the user does not show a discomfort needing a
reaction or that it is unrelated to the scenarios. In these cases, we prevent the avatar from
reacting. Depending on the output of the motion recognition and of the facial expression
recognition network the application will decide if the avatar needs to react and if so start the
appropriate motion. If no reaction motion is required because the predicted class is ’Idle’
or due to the valence and arousal values, the avatar stays in its ’Attention’ state. This cycle
is repeated until the application is closed. When using virtual reality users can move the
camera with their heads and can move around in the room. However, the position of the
avatar remains unchanged and a change in user position too drastic will interfere with the
body data capture from the Kinect. Figure. 5.3 describes the full application.

112



Part VI

Conclusion

113





CHAPTER 6

CONCLUSION

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Avatar Interaction . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Human motion prediction . . . . . . . . . . . . . . . . . . 118
6.2.3 Human Motion Generation . . . . . . . . . . . . . . . . . . 119
6.2.4 Extension to Point Cloud and Surfaces . . . . . . . . . . . . 120

115



CHAPTER 6

6.1 Summary of Contributions

The goal of this thesis was to develop novel generative models for the generation of hu-
man motion. We present a new human motion prediction method in which we represent
the motion as a trajectory. Our method outperforms the state of the art on two commonly
used datasets, especially for long-term prediction. We propose a Transformer architecture
to generate a human reaction motion conditioned on an action motion. To the best of our
knowledge, this work is the first to investigate this challenge. We outperform state-of-the-
art methods for two-person interaction prediction and single-person motion prediction. We
show our ability to generate longer and more complex reactions on a dance dataset. We
propose a diffusion two stream Transformer with bipartite graphs to generate two-person in-
teraction motions. We outperform state-of-the-art methods for motion generation on simple
interaction and complex two-person dance motion. We show an application of our human
motion prediction method by developing an interactive virtual agent that reacts to user mo-
tions. To ensure that the system works in real-time, we predict the end of the user’s motion
before classifying it to select the proper reaction for the agent. To train the networks used
with our application, we build a new 3D motion database with 7 classes and 1456 samples
captured either by a motion capture system or by a Kinect camera. Taken together, the entire
work carried out in this thesis shows several methods to deal with human motion generation
and their possible uses in real-life applications. Nevertheless, the proposed approaches still
suffer from some limitations.

6.2 Future works

6.2.1 Avatar Interaction

The virtual agent in its current form, while performing adequately for the specifications set,
suffers from several limitations that reduce its realism. For example, when using a virtual
headset we can not use the facial expression recognition module. Some headsets however
contain an eye-tracking device. In future works, we could use eye tracking or gaze detection
to alleviate the lack of facial expression recognition, for example, by having the avatar reacts
only when the gaze of the user is directed toward it. Eye-tracking uses specific hardware
to follow the motion of the eyes while gaze detection uses RGB or infrared cameras to
guess what people are looking at. Some methods are specifically designed to work with
virtual reality helmets [24]. Fig.6.1 shows an example of an existing gaze detection method
designed for virtual reality headsets. We also would like to permit more varied interactions
with the virtual agent. To do this, we need a larger database with more types of motion from
interactive scenarios. Adding new scenarios also means adding more reaction motion from
the avatar which would require making new handmade reaction animations. In our virtual
agent application, the reaction motions are prerecorded. While this allows us to have very
detailed animations we have no diversity in the reaction motions. Human motion generation
can increase the diversity of the avatar’s motions and give and make the behavior of the avatar
more realistic. Using SMPL 3D model [97, 116] we could have an agent that uses generated
motion with good quality. Fig.6.2 shows an example of a body generated with SMPL. Also,
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Figure 6.1: Figure from [24]. Example of gaze detection method for virtual reality headsets.
Left: this method detects the gaze of the user with an infrared camera. Right: the method
uses the gaze to describe the planet the user is looking at.

the avatar reactions sometimes involve grabbing an object e.g putting out a cigarette. These
motions require a modelization of the fingers and of the object being manipulated. While
more recent methods allow for the generation of the hand volume [116], we would need to
generate the finger motions in addition to the rest of the skeleton.

Figure 6.2: Example of volume generated by SMPL [97] of a person sitting.

The virtual agent we use also has a limited number of facial expressions. Recent methods
are able to generate high-quality sequences of facial meshes [113]. Such methods could be
used to generate the 3D facial expression of the virtual agent during the interaction. We
could also model the user’s facial expression more accurately. For example, the method for
gaze detection shown in Figure.6.1 is also able to detect facial landmarks (green dots on the
left picture). [24] uses the landmarks to generate the facial mesh of the user’s face. Other
methods such as [69] provide more realistic textured meshes that can be used to realistically
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reproduce the user’s face and facial expression in the virtual environment (Fig.6.3). This
could be a way to further improve the experience of our virtual application. By giving the
user a personal avatar to control we would increase the feeling that the virtual environment
is real.

Figure 6.3: Figure from [69]. Example of 3D face generated from a person wearing a virtual
headset using the method from [69].

6.2.2 Human motion prediction

In this thesis, we have focused on making a single prediction based only on the historical
sequence. Recent works have explored the possibility of predicting several future motions for
a single historical sequence [9, 102]. Predicting several future motions would let us choose
the most suitable one. To predict very long motion and to manage changes in motion that are
not predetermined by the historical motion we will need to consider additional conditioning
inputs. When we move, we do so with a goal and are limited by our environment. These
are the main things that we can take into account to enhance the performance of motion
prediction methods. Some methods already tried to do this by using the trajectory of the
character[159]. To provide better predictions and work on classes where the trajectory does
not provide useful information, we need to take more information into account (furniture,
wall, object, other people... ). To provide more accurate predictions, some works have tried
to take the environment into account [33].

However, there are very few datasets that contain information like the room layout that
would help us to model the environment in which the character evolves. The existing datasets
can still be used thanks to methods like [158] that generate an environment based on the mo-
tion of one or more 3D characters. To be able to extrapolate our motion prediction model to
unseen classes we will need to build a method that looks at the local motion (body parts) and
global motion (entire body). That way we hope that on unseen classes despite not knowing
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Figure 6.4: Figure from [33]. Example of motion prediction that takes the environment into
account. (a) video from Human3.6M[64], (b) historical sequence, (c) future ground truth,
(d) prediction of a standard prediction method, (e) prediction of [33]. In green are the table
and the cup.

the global motion the model will be able to leverage its knowledge of local motion to predict
an accurate motion.

Figure 6.5: Figure from [158]. Environnement generation from human motion

6.2.3 Human Motion Generation

These improvements could also improve human reaction generation as adding information
about the environment would lead to more realistic reactions. Additionally, we need to tackle
the lack of diversity in our method. Our work on diffusion showed that including that cou-
pling Interformer with a diffusion process could solve the diversity issue. Diffusion requires
more data, and databases of annotated action-reaction couples are rare and usually small. We
will need to build a database to help with the lack of complex interaction motion datasets.
This database needs to contain both simple and complex interactions as well as long inter-
action motions less abstract than the dance motions from DuetDance. The interactions we
consider are only between two persons. The CMU Panoptic dataset [67] is a dataset that
contains interaction motion between more than two persons and could be used to generate
the reaction of several persons based on the action of one (Fig.6.6). We could also try to
generate the reaction of one person based on the action of multiple persons or the reaction of
n persons based on the action of m persons. Future works on human interaction generation
could also benefit from being able to generate interaction with more than two persons. Also,
with more extensive databases we could try to generate more complex interactions that con-
tain several short interactions like it is already done for the text-to-motion task [165]. The
current text-to-motion methods are able to generate realistic sequences of action but only for
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a single person.

Figure 6.6: Figure from [67]. Example of interaction between multiple persons from the
CMU Panoptic dataset.

6.2.4 Extension to Point Cloud and Surfaces

In this thesis, we work exclusively with 3D skeletons but there are other representations of
the human body such as 3D meshes or dense point clouds. These representations are much
more complex but contain a lot more information about body deformations. Point cloud
methods that deal with human motion use dense point clouds to classify human motion [44,
45, 148] while generative point cloud methods focus on generating the 3D shape of objects
without motion [155, 99]. There are few works on the generation of human motion through
the point cloud. Thus, exploring human motion generation through dense 3D point clouds
could be interesting but would require developing a lightweight method due to the huge
amount of data from dense point clouds.
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