In this thesis, we address various tasks for generating 3D skeletons of humans in motion. The ability to predict and generate human motion has become an important topic in recent years in many domains including self-driving vehicles, animation, and virtual reality. While in recent years deep learning has greatly increased the performance of generative models, the generation of human motion remains an open issue. Even the more recent methods still struggle to generate high-quality human motion. This is due to the need to model both spatial and temporal components and of understanding the interactions of human body parts. The task is also challenging due to the high variability of motions both in terms of time since the same motion can be performed at a different speed, and in terms of space, since the amplitude of motion can vary greatly. Furthermore, the generated 3D motions must be accurate, realistic, and smooth. We propose a new predictive Wasserstein generative adversarial network (GAN) to predict the end of a person's motion. Our predictive network uses the SRVF representation to model human motion and allow the prediction of accurate motion without discontinuities in real-time as shown in our experiments against state-of-the-art methods. We then work on the generation of interaction motions between two persons. We present a new method to generate a reaction motion in response to an action. Unlike the state-of-the-art methods that focus on generating the motion of a single person, we propose Interformer, a Transformer to predict the reaction to an action using the temporal modeling abilities of the Transformer network as well as new skeleton adjacency and interaction distance modules to model the interactions. We compare our results to interaction generation and motion prediction methods and outperform them. We develop a new architecture to generate the motion of two people interacting based on a class label. Our architecture leverages the capabilities of diffusion models, Transformer architecture, and bipartite graph networks. Our results show that our method outperforms the state-of-the-art both quantitatively and qualitatively. We propose an application that uses our motion prediction method to allow a virtual agent to predict and recognize a person's motion in non-verbal interactions in a virtual environment. For this purpose, we propose a new 3D motion database captured with a high-quality motion capture system and a depth camera.

RÉSUMÉ

Dans cette thèse, nous abordons diverses tâches de génération de squelettes 3D de corps humain en mouvement. La capacité à prédire et générer des mouvements humains est devenue un sujet important dans de nombreux secteurs tel que la conduite de véhicules autonomes, l'animation et la réalité virtuelle. Bien que l'apprentissage profond ait considérablement amélioré les performances des modèles génératifs ces dernières années, la génération de mouvements humains reste un problème ouvert. Les méthodes les plus récentes ont toujours du mal à générer des mouvements humains de bonne qualité. Cela résulte de la nécessité de modéliser les composantes spatiales et temporelles simultanément et de comprendre les interactions entre les différentes parties du corps. La tâche est également difficile en raison de la grande variabilité des mouvements, à la fois en termes de temps, puisque le même mouvement peut être effectué à une vitesse différente, et en termes d'espace, puisque l'amplitude du mouvement peut varier considérablement. De plus les mouvements 3D générés doivent être précis, réalistes et fluides. Nous proposons un nouveau réseau antagoniste génératif (GAN) prédictif de Wasserstein pour prédire la fin du mouvement d'une personne. Notre réseau prédictif utilise une répresentation des courbes appelée SRVF pour modéliser la trajectoires des mouvements humains et permet une prédiction précise, en temps réel, de mouvement sans discontinuités comme le montrent nos expériences. Dans une seconde étape de la thèse nous nous intéressons à la génération des mouvements d'interaction entre deux personnes. Tout d'abord, nous présentons une nouvelle méthode pour générer un mouvement de réaction en réponse à un mouvement d'action. Contrairement aux méthodes de l'état de l'art qui se focalisent sur la génération du mouvement d'une personne, nous proposons Interformer, un Transformer qui génère des mouvements de réaction en utilisant les capacités de modélisation temporelles des réseaux Transformer ainsi que de nouveaux modules pour modéliser les interactions. Nos résultats montrent que l'approche Interformer surpasse les méthodes de l'état de l'art. Ensuite nous développons une nouvelle architecture pour générer le mouvement d'interaction de deux personnes en fonction de la classe du mouvement. Notre architecture exploite les capacités des modèles de diffusion, de l'architecture Transformer et l'apprentissage de graphes bipartis. Nos résultats montrent que notre méthode surpasse l'état de l'art quantitativement et qualitativement. Nous proposons une application qui utilise la méthode de prédiction du mouvement afin de permettre à un agent virtuel de prédire et de reconnaître le mouvement d'une personne dans le cadre des interactions non-verbales dans un environnement virtuel. Pour cela nous avons proposé une nouvelle base de données de mouvement 3D capturée avec un système de capture de mouvement de haute qualité et une caméra de profondeur.

Goals

The goal of this thesis is to develop novel generative models for the generation of human motion. Human motion generation is an important scientific topic where we need to model both spatial and temporal components of a motion to generate data of the highest quality.

There are many human motion generation tasks but we will focus on only three:

• 3D skeleton-based human motion prediction The problem of forecasting future human motion play a vital role in many applications in computer vision and robotics, such as human-robot interaction, autonomous driving, and computer graphics. The objective of this task consists in forecasting future human poses based on a prior skeleton pose sequence. In this thesis, we propose a predictive model for short and long-term future 3D skeleton poses given an initial prior history.

• Human interaction motion generation aims at generating 3D human interaction motions. What makes interaction generation challenging is the non-linearity of human motion interaction and the diversity of the interaction between humans. Several questions rise to tackle these challenges. We will focus on how to represent the interaction between humans and how to model motion and generate diverse motion interactions.

• Application to Avatar Interaction Virtual agents or avatars are artificial intelligences that have a human appearance. Allowing users to interact with such agents increases their realism. By leveraging our work on 3D human motion prediction we build an interactive virtual agent. Being able to predict the end of a motion allows the virtual agent to react faster and more naturally.

Motivations

Being able to accurately generate 3D motions has become a hot topic in computer vision.

From motion prediction based on historical sequences and generation of motions for a particular action class to conditional motion generation that follows a trajectory or a song, many methods are being proposed to generate 3D human motion. Researchers are trying to generate ever more realistic and ever more complex motions using state-of-the-art methods. The interest in generative methods for human motions stems from the possible uses of these methods in multiple areas.

(a) Some algorithms for self-driving cars try to predict the direction in which pedestrians move.

(b) Framework of human motion prediction to help a robot interact with the user (a) source: https://www.aau.edu/research-scholarship/featured-research-topics/ vision-smarter-safer-self-driving-vehicles (b) source: [START_REF] Zhang | Recurrent neural network for motion trajectory prediction in human-robot collaborative assembly[END_REF] Figure 1.2: Use cases for motion prediction.

Robotic. In robotics being able to predict the motion of the human user allows robots to interact more quickly and more accurately with the user. For example, if the robot needs to grab something that a human is handing to it, usually the robot needs to wait for the human to finish his motion before moving to grab the object. If we can predict the end of the motion of the human, the robot can start moving earlier and grab the object more quickly. With an accurate enough prediction, it is possible to grab the object right when the human stops moving, much like what would happen with a real person. This would lead to more realistic interactions and a better appreciation of the robot by users.

Self-driving vehicle. By enabling self-driving vehicles to predict the motion of humans or how an interaction between several persons will unfold we can make them safer for passengers and pedestrians alike. For example by predicting the future motion of a person based on gait we could see if there is a high chance for a pedestrian to cross the road. If the probability is high then the car can decelerate or take an avoiding trajectory to avoid the accident. When looking at people interacting if we can predict the behavior of a participant based on the motion of others we can avoid even more accidents. If a person is pushing another and we are able to predict if the pushing motion is enough for the person to fall on the road. If it is the case the car will stop automatically to avoid causing an accident. It would make the autonomous car safer, and the driver more comfortable by avoiding slowing down CHAPTER 1 or requesting the driver to take over when there are people on the side of the road that do not represent a risk.

Animation. In the domain of animation, the use of motion prediction and reaction generation will speed up the animation process for the artist. With human motion prediction, if the artist animates a short sequence an algorithm could propose several future sequences to complete it. To model an interaction, the artist would only need to animate an action sequence and an algorithm would propose several possible reactions by the other character. Or the artist could generate the entire interaction simply by inputting the kind of motion needed. Using these methods would help animators reduce their workload as well as enable amateurs to make their own animation with less effort on their part. Fig 1.3a shows an automatic rigging (linking a 3D skeleton to a character mesh) method from Adobe Mixamo 1 . Coupled with motion generation methods, automatic rigging allows for a faster and simpler animation process.

(a) Automated rigging method for animation allows the application of a skeleton to an existing 3D character.

(b) A virtual agent is animated in real-time to interact with a human user.

(a) source: https://www.mixamo.com/ (b) source: [START_REF] Vogt | A Data-Driven Method for Real-Time Character Animation in Human-Agent Interaction[END_REF] Figure 1.3: Use cases for motion generation.

For computer vision research. The available 3D human motion data is still relatively limited and some of the newer architectures require a lot of data. Motion generation methods can then be used to create synthetic datasets for several computer vision tasks such as action recognition and human motion prediction.

Virtual agents Virtual agents are characters controlled by artificial intelligence in virtual settings. They will interact with the user and, as virtual reality gain traction, these interactions need to be more realistic than before. Motion generation methods can help with this by providing more motions for a given action, predicting the user's motion to react faster, or generating the proper reaction to an action from the user. Fig 1.3b shows a method that animates a virtual agent in real time while interacting with a human user. Like the method presented in [START_REF] Vogt | A Data-Driven Method for Real-Time Character Animation in Human-Agent Interaction[END_REF], existing methods use prerecorded motions that are then modified on the fly to better fit the spatial and temporal context. Motion generation methods can improve the performance of such systems by providing more diverse high-quality motions.

INTRODUCTION

Challenges

Methods that could be used in these applications need to solve several challenges.

Human Motion Prediction seeks to predict as accurately as possible the motion of a person based on a past sequence of motion and must face two main challenges: long-term accuracy and smooth motion. In addition to these two challenges, we also want the model to be able to predict in real time so it can be used in a virtual agent application. Long-term accuracy is difficult to achieve mostly because of the accumulation of errors in the predicted poses. Error accumulation happens when we feed to the network its own output that contains errors, the results will be based on data that contains errors and consequently contain even more errors. If the process is repeated recursively it can lead to strong degradation in the results. This is, for example, the case for RNN-based methods that treat one frame at a time. Since each frame is generated based on previously generated frames the error accumulates very quickly and leads to a bad long-term prediction. Another reason for the low accuracy of long-term predictions originates from the way the problem is treated: we only use motion data as information to guide the prediction. This limits the maximum prediction length. In the human motion prediction literature, long-term prediction corresponds to the prediction of 1s of motion [START_REF] Mao | History repeats itself: Human motion prediction via motion attention[END_REF]. To get accurate predictions of longer sequences we would need to consider other modalities such as the environment in which the person evolves (walls, furniture, roads, other people...) and the intent behind his actions.

Human reaction generation takes an action motion and predicts possible reactions by another person. This is a new domain that we explore in this thesis. The generated motions must be smooth, and realistic as for human motion prediction but must also fit well the condition e.g if the action is 'punching', the generation reaction must be 'being punched'. This means that we want the reaction to fit the conditioning action e.g with a punching action the reaction must show the impact of the location that has been punched and follow the direction from which the punch comes. Another example is when the action is a person shaking a hand we want the hand of the reaction to be in contact with the hand of the action body. Unlike motion prediction we do not seek perfect accuracy, the reaction must correspond to the action but we also want diversity in the generated reaction e.g reacting more or less strongly to being punched.

Human interaction generation is the generation of two-person interaction motions given an input class label, e.g by inputting "shake hands" we want to generate motions of two persons shaking hands. What we seek with interaction generation is similar to the reaction generation task: smooth and realistic motion for both persons and a realistic interaction between the two persons. In addition, we would like high diversity in the generated motion.

Contributions

In this thesis, we present a new method for human motion prediction, an architecture for human reaction generation, a diffusion model for human interaction generation, a dataset of gestures, and an application consisting of a virtual agent that reacts to human gestures in real CHAPTER 1 time and in a realistic manner. Our contributions are the following.

Human Motion Prediction To predict the future motion of a single person we propose a manifold aware Wasserstein generative adversarial network. We predict future human poses based on a historical sequence of poses by representing the motion as a trajectory. This allows us to simplify the motion prediction problem to generate a point on a hypersphere. We outperform the literature for long-term prediction and are competitive for short-term prediction.

Human Reaction Generation To generate the reaction motion based on an action sequence in a two-person interaction we propose a Transformer network using spatial attention and graphs. The architecture is based on the original Transformer [START_REF] Vaswani | Attention is All you Need[END_REF] and we add modules to deal with the structure of the skeletons and the interaction between the two subjects. Our method allows the generation of various reaction motions even complex ones like duet dancing. We are also able to generate long motion (up to 40 seconds). As there is no other method dealing with reaction generation, we compare our approach with methods for motion prediction and interaction generation. We show that our method offers much better quantitative and qualitative results than some state-of-the-art methods.

Human Interaction Generation To generate two-person interaction motions we propose BiGraphDiff, a novel bipartite graph diffusion method. Specifically, bipartite node sets are constructed to model the inherent geometric constraints between skeleton nodes during interactions. The interaction graph diffusion model is transformer-based, combining some state-of-the-art motion methods. We compare BiGraphDiff to state-of-the-art action-based motion generation and achieve more realistic results than the existing methods while providing higher diversity.

Gestures Dataset A new dataset of 3D gestures of 11 subjects to train our models that are used with the virtual agent, is proposed. Each subject was asked to perform at least 10 times the motions of 6 classes. A seventh class contains random motions to use as an "Idle" class performed by 2 subjects. Each motion is recorded by motion capture and a Kinect V2 camera resulting in 1456 data samples after the manual removal of bad samples.

Virtual Agent Application A virtual agent that reacts to gestures and a virtual environment in which it can interact with the user is proposed. We capture motion with a Kinect V2 camera, predict the end of the motion and then classify it. The application also features a facial expression recognition module to see if the user is distressed. The application can also be used with a virtual reality headset.

Thesis Outline

Chapter 2: In this chapter, we present our work on human motion prediction. We introduce the method to obtain Square Root Velocity Function (SRVF) [START_REF] Srivastava | Shape Analysis of Elastic Curves in Euclidean Spaces[END_REF] representation from motion data. We then show the architecture we use to generate SRVF representing the future motion and the losses used to train it. We compare our method to others from the INTRODUCTION literature on Human3.6M [START_REF] Ionescu | Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments[END_REF] and CMU MoCap2 and show that we outperform them on long term prediction while remaining competitive for short term prediction. We also present an ablation study and extrapolation capabilities with recursive generation and cross-dataset prediction.

Chapter 3: Here we introduce a method that generates a reactive motion that responds to an action motion, e.g from a punching motion we generate the motion of the person being punched. We present the Transformer architecture used for natural language processing and computer vision. We show how we represent the problem of reaction motion generation conditioned on another motion and how we adapt Transformer to solve it. We present two new modules to deal with the nature of skeleton data and to help model the interaction. As there exists no other method that deals with reaction generation we compare our work with methods for motion prediction and interaction generation [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF]5]. We evaluate our approach on the SBU [START_REF] Yun | Two-person Interaction Detection Using Body-Pose Features and Multiple Instance Learning[END_REF] and K3HI [START_REF] Hu | Two-person interaction recognition based on key poses[END_REF] datasets for simple human interactions and on duet-dancing motions from the DuetDance dataset [START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF] for more complex motion. We show that we outperform the other approach both quantitatively and qualitatively and present an ablation study to show how our method improves the generation over a vanilla Transformer.

Chapter 4: We present a method to generate two-person interaction from a label (e.g inputting "Punching" to generate a character punching a character being punched) using a diffusion process with a Transformer architecture and Bipartite graphs. The diffusion process has proved to be very powerful for generative tasks, Transformer helps us model the temporal and spatial (Intra-personal) correlation while the Bipartite Graph model the interactive part of the motion. We compare our method to state-of-the-art motion generation methods including one other diffusion-based method [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF]. The comparison is done on 26 interaction classes from the large NTU RGB+D 120 [START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF] dataset and on the DuetDance dataset [START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF].

Chapter 5: In this chapter, we present our new gesture dataset captured with both a motion capture system and a Kinect V2 camera. We then introduce our virtual agent interaction application built by using the methods described in the two previous chapters and the necessary modification to properly run the application in real time. We present the results of the separate module on the new dataset and several use cases for the application.

Chapter 6: We will end this thesis with a summary of the contribution followed by a list of the limitations of our methods and finally a description of the possible improvements and extensions.

Part II

Human motion Prediction using Wasserstein Generative Adversarial Network

CHAPTER 2

Introduction

The problem of forecasting future human motion plays a vital role in many applications in computer vision and robotics, such as human-robot interaction [START_REF] Koppula | Anticipating human activities for reactive robotic response[END_REF], autonomous driving [START_REF] Paden | A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles[END_REF] and computer graphics [START_REF] Kovar | Motion graphs[END_REF]. In this work, we propose a predictive model for short and long-term future 3D skeleton poses given an initial prior history. Addressing this issue involves two main challenges: How to represent the temporal evolution of human motion to ensure the smoothness of the predicted sequences? and how to take the spatial correlations between human joints into account to avoid implausible poses? Because of the explosion of deep learning and the availability of large-scale datasets for human motion analysis, deep learning models have been widely exploited to address the problem of human motion prediction and especially Recurrent Neural Networks (RNN) [START_REF] Fragkiadaki | Recurrent Network Models for Human Dynamics[END_REF][START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF][START_REF] Ghosh | Learning human motion models for long-term predictions[END_REF][START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF]. Indeed, RNN-based approaches achieved good advance in term of accuracy, however, the motions predicted with these methods present significant discontinuities due to the frame-by-frame regression process that discourage the global smoothness of the motion. In addition, recurrent models suffer from error accumulation across time, which increase error and worsen long-term forecasting performance. To remedy this, more recent works avoid these models and explore feed-forward networks instead. Including CNN [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF], GNN [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] and fully-connected networks [START_REF] Butepage | Deep representation learning for human motion prediction and classification[END_REF]. Thanks to their hierarchical structure, feedforward networks can better deal with the spatial correlations of human joints than RNNs. However, an additional strategy is required to encode the temporal information when using these models. To face this issue, an interesting idea was to model the human motion as trajectory [START_REF] Mao | Learning Trajectory Dependencies for Human Motion Prediction[END_REF], [START_REF] Berretti | Representation, Analysis, and Recognition of 3D Humans: A Survey[END_REF]. In this work, we follow the idea of modeling motions as trajectories in time but in a different context from the previous work. Among the benefits of our representation, is the possibility to map these trajectories to single compact points on a manifold, which helps preserve the continuity and the smoothness of the predicted motions. Besides, the compact representation avoids the problem of error accumulation across time and makes our approach suitable for long-term prediction as illustrated in Figure 2.7. Nevertheless, the challenge here is that the resulting representations are manifold-valued data that cannot be manipulated with traditional generative models in a straightforward manner. To face this challenge, we introduce in this chapter, a manifold-aware Wasserstein Generative Adversarial Networks (WGAN) that predict future skeleton poses given the input prior motion sequence that is encoded as manifold-valued data. The spatial dependencies between human joints are taken into consideration in our method through additional loss functions that add more constraints on the predicted skeleton poses to ensure their plausibility. An overview of our prediction process is illustrated in Figure 2.4. The contribution of this work can be summarized as follows: [START_REF] Ahuja | No Gestures Left Behind: Learning Relationships between Spoken Language and Freeform Gestures[END_REF] To the best of our knowledge, we are the first to propose an approach that exploits compact manifold-valued representation for human motion prediction. By doing so, we model both temporal and spatial dependencies involved in human motion, resulting in smooth motions and plausible poses in long-term horizons. (2) We propose a predictive manifold-aware WGAN for motion prediction. (3) We propose a new loss function based on the Gram matrix of the 3D poses that avoids predicting implausible poses. (4) Experimental results on Human 3.6M and the CMU MoCap datasets show quantitatively and visually the effectiveness of our HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK method for short-term and long-term prediction. We present a new metric to evaluate the smoothness and the temporal evolution of the predicted motion. We provide a qualitative evaluation for our ablation study to highlight the importance of the different losses of our method. We also demonstrate in this chapter the ability of our method to predict longer sequences by recursive generation. The code and some videos of prediction are available at https://github.com/CRISTAL-3DSAM/PredictiveMA-WGAN

Related Work

Human motion Representation When modeling human action and motion several modalities can be considered: RGB videos [START_REF] Korbar | SCSampler: Sampling Salient Clips From Video for Efficient Action Recognition[END_REF], RGB-Depth videos [START_REF] Shahroudy | Deep Multimodal Feature Analysis for Action Recognition in RGB+D Videos[END_REF], 2D skeletons [START_REF] Avola | 2-D Skeleton-Based Action Recognition via Two-Branch Stacked LSTM-RNNs[END_REF], 3D skeletons [START_REF] Petrovich | Action-Conditioned 3D Human Motion Synthesis With Transformer VAE[END_REF], 3D shape [START_REF] Loper | SMPL: A Skinned Multi-Person Linear Model[END_REF]... We decided to focus on the 3D skeleton representation for human motion prediction but also for the other part of this thesis. As the name implies this representation consists in representing the human body as a skeleton with 3D coordinates. The skeleton is composed of joints positioned where real body joints are located (e.g knee, shoulder...) and bones that are the connections between the joints that mimic the real bones of the human body (e.g a bone from the elbow to the shoulder). The 3D coordinates are the coordinates of these joints. They can be captured using a motion capture system [START_REF] Ionescu | Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments[END_REF], a depth camera with software to detect the skeleton like the Kinect camera [START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF], or from RGB video using software like Mediapipe's BlazePose [START_REF] Valentin | BlazePose: On-device real-time body pose tracking[END_REF]. Due to the various sources of skeleton data, the number of joints can vary and the position of a particular joint can change slightly from one database to another (e.g in some case the "head joint" correspond to the middle of the forehead in other to the top of the head) as shown in Fig. 2.1. Furthermore, the coordinates can be described using two different representations: the 3D cartesian coordinates or the angle format. The angle format can also be represented in various forms: Euler angle, quaternion, and axis-angle. A skeleton joint in 3D Cartesian coordinates is defined by three values x, y, and z which represent its position in space according to each axis. In Euler angle, the same joint is represented by θ x , θ y , and θ z which is the rotation of the joint on each axis. Angle-axis joints are represented by a unit vector u characterized by its direction coordinates u x , u y , and u z as well as the rotation angle on that vector θ. The quaternion representation also uses a unit vector u and an angle θ but the rotation of the joint is described by these four values: cos(θ 2), u x sin(θ 2), u y sin(θ 2) and u z (sin θ 2). We can easily switch from one of the angular forms to another and also from the angle format to 3D coordinates. However, we can not easily convert 3D coordinates to angle format and conversion between these two formats can cause issues i.e two different angle poses can correspond to the same 3D coordinates pose [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF]. For this reason and the fact that some datasets only provide 3D coordinates data, we decided to use only the 3D cartesian coordinates representation in this thesis.

Human motion prediction describes the generation of future poses based on a sequence of prior known poses. This can be helpful for many applications such as self-driving cars, accident prevention, or 3D animation. As such it is a very popular subject and many methods have been investigated too, solve it. Given that the task of human motion prediction is a temporally dependent problem, recurrent models (RNN) were the first potential solution to be investigated, hence several works applied RNN and their variants to tackle this task. In [START_REF] Fragkiadaki | Recurrent Network Models for Human Dynamics[END_REF], the authors proposed a model that incorporates a nonlinear encoder and decoder before and after recurrent layers. Their approach suffers from error accumulation and discontinuity between the last frame of the prior and the first frames of the generated sequence. Moreover, their approach only captures the temporal dependencies but ignores the spatial correlations between articulations. To deal with this problem, [START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF] proposed a Structural-RNN model relying on high-level spatio-temporal graphs. [START_REF] Ghosh | Learning human motion models for long-term predictions[END_REF] take a different direction to minimize the error accumulation effect in RNNs; they used a feed-forward network for pose filtering and a RNN for temporal filtering. However, this strategy only minimizes the accumulated error that still exists and deteriorates the performance of recurrent models in long-term prediction. In [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF] the authors showed that RNN methods were often beaten by a simple baseline in terms of quantitative results. Trying to solve some of the issues of RNN, more recent works exploit convolutional neural networks (CNNs). To model the temporal evolution with these models, various strategies have been suggested. In [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF][START_REF] Butepage | Deep representation learning for human motion prediction and classification[END_REF], convolution across time was exploited to model the temporal dependencies with convolution networks, while [START_REF] Mao | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] adopt Discrete Cosine Transform to encode the motion as trajectory. [START_REF] Li | Efficient convolutional hierarchical autoencoder for human motion prediction[END_REF] propose a convolutional autoencoder with 1D convolution layers and a hierarchical structure that exploit the structure of the human body. In [START_REF] Liu | TrajectoryCNN: A New Spatio-Temporal Feature Learning Network for Human Motion Prediction[END_REF] the authors use CNN to capture the spatial and temporal features simultaneously by using a trajectory space to model the motion. The methods based on CNN achieved better results than the RNN methods but a particular type of CNN was of interest for works using 3D skeletons: the Graph convolutional networks (GCN). Graph convolutional networks were also applied for motion prediction [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF][START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF] as a suitable tool to model the spatial correlations involved between the articulations. Indeed the human skeleton HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK in the 3D representation can be seen as a graph where the nodes are the skeleton joints and the edges are the bones. The simplicity of the conversion from skeleton to graph sparked great interest in the community and works succeeded in building coherent spatial and temporal graph [START_REF] Zhong | Spatio-Temporal Gating-Adjacency GCN for Human Motion Prediction[END_REF][START_REF] Sofianos | Space-Time-Separable Graph Convolutional Network for Pose Forecasting[END_REF] leading to results that far surpassed those of RNNs and conventional CNNs. In this thesis, we take a completely different direction and we propose to deal with human motions by exploiting a manifold-valued representation with generative adversarial models.

Figure 2.2: Figure from [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF] showing the discontinuity problem between the last historical frame and the first predicted frame that is very visible on the first prediction methods.

Generative adversarial network Generative adversarial networks have been introduced in [START_REF] Goodfellow | Generative Adversarial Networks[END_REF], its architecture consists of a generator that must generate data and a discriminator that must compare the generated data and decide whether the data is real or not Fig. 2.3. Both are trained with opposite goals: the generator must generate data good enough to fool the discriminator while the discriminator must be able to always differentiate between real and generated data, hence the "adversarial" networks.

The adversarial process is ensured by the use of a specific loss that takes into account the objectives of both the generator and the discriminator called adversarial loss:

min G max D V (D, G) = E x∼p data (x) (log(D(x))) + E z∼pz(z) (log(1D(G(z)))), (2.1)
with x the data, p z (z) a prior on input noise variables , G the generator function and D the discriminator function. D(x) represents the probability that x comes from the real data rather than the generated data. D is trained to maximize the probability of assigning the correct label (real or false) to each sample while G is trained to minimize log(1 -D(G(z))). The architecture of the generator and discriminator is very flexible and can contain anything from CNN [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF] to VAE [START_REF] Yu | VAEGAN: A Collaborative Filtering Framework based on Adversarial Variational Autoencoders[END_REF] and transformer [START_REF] Jiang | TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up[END_REF]. A GAN can also contain several generators or several discriminators [START_REF] Durugkar | Generative Multi-Adversarial Networks[END_REF] and can be modified to perform conditional generation [6]. Due to this great flexibility, GANs have been used extensively in computer vision but also to generate music [START_REF] Engel | GANSynth: Adversarial Neural Audio Synthesis[END_REF] or in NLP [START_REF] Lin | Adversarial Ranking for Language Generation[END_REF]. In computer vision the use of GAN led to an improvement in performance in a lot of domains like image translation [START_REF] Zhu | Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[END_REF], facial landmark detection [START_REF] Yang | Exposing GAN-Synthesized Faces Using Landmark Locations[END_REF], image inpainting [START_REF] Yu | Generative Image Inpainting With Contextual Attention[END_REF], image super-resolution [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF], 3D objects generation [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3d generativeadversarial modeling[END_REF] and video generation [START_REF] Tulyakov | MoCoGAN: Decomposing motion and content for video generation[END_REF].

Generative adversarial networks have also been investigated for human motion prediction after showing impressive performance on image generation tasks. Many works using GAN for human motion prediction appeared, most of them applying and enhancing methodology developed for RNN, CNN or autoencoder to the GAN architecture. In [START_REF] Gui | Adversarial Geometry-Aware Human Motion Prediction[END_REF] and [START_REF] Barsoum | HP-GAN: Probabilistic 3D human motion prediction via GAN[END_REF], however, in order to model the temporal dependencies involved, they build their generator on RNN structures. In this way, the error accumulation problem is present in their model which may deteriorate its performance in the long term. [START_REF] Barsoum | HP-GAN: Probabilistic 3D Human Motion Prediction via GAN[END_REF] propose a GAN architecture that learns a probability density function to generate future human poses, enabling the generation of multiple futures based on a single historical sequence. Generating several possible future sequences may have advantages for some applications but also make it more difficult to evaluate the method as the standard metrics for human motion prediction are based on a comparison with the real motion sequence. [START_REF] Mao | Generating Smooth Pose Sequences for Diverse Human Motion Prediction[END_REF] uses two generators to generate the motion, one for the lower body motion and one for the upper body motion. The lower body generator is conditioned on the prior sequence while the upper body generator is conditioned on the prior sequence and the generated lower body motion. Pursuing further the idea of separating the human body into parts [START_REF] Liu | Aggregated Multi-GANs for Controlled 3D Human Motion Prediction[END_REF] split the body into five parts each treated by a different GAN and then combined and presented to a global discriminator. [START_REF] Lyu | Learning Human Motion Prediction via Stochastic Differential Equations[END_REF] argue that methods based on the skeleton structure are difficult to generalize as different datasets can have different skeleton representations and propose a GAN that considers each skeleton joint separately and formulate them as a basic stochastic variable modeled using the Langevin equation. In our work, we completely discard recurrent models by adopting a compact representation of the human motion. Motivated by the interest of manifold-valued images in a variety of applications, [START_REF] Huang | Manifold-Valued Image Generation with Wasserstein Generative Adversarial Nets[END_REF] proposed manifold-aware WGAN. Inspired by this work, we build a manifold-aware WGAN that predicts the future points of a pose's trajectory given the HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK previous pose sequence. However, our model is different from the one proposed in [START_REF] Huang | Manifold-Valued Image Generation with Wasserstein Generative Adversarial Nets[END_REF] in two ways. Firstly, instead of unsupervised image generation from a vector noise, our model addresses the problem of predicting future manifold-valued representations from a manifoldvalued input. In addition, we propose different objective functions to train our model on the task at hand

Modeling Human Motions as Trajectories on a Riemannian Manifold: While our present work is the first that explores the benefit of manifold-valued trajectories for human motion prediction, representing 3D human poses and their temporal evolution as trajectories on a manifold was adopted in many recent works for action recognition. Different manifolds were considered in different studies [START_REF] Pavan | Locally time-invariant models of human activities using trajectories on the Grassmannian[END_REF], [START_REF] Ben Amor | Action recognition using rate-invariant analysis of skeletal shape trajectories[END_REF], [START_REF] Kacem | A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding[END_REF]. More related to our work, in [START_REF] Devanne | 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold[END_REF], a human action is interpreted as a parametrized curve and is seen as a single point on the sphere by computing its Square Root Velocity Function (SRVF). Accordingly, different actions were classified based on the distance between their associated points on the sphere. All papers mentioned above show the effectiveness of motion modeling as a trajectory in action recognition. Motivated by this fact, we show in this chapter the interest of using such representation to address the recent challenges that are still encountered in human motion prediction.

Representation of Pose Sequences as Trajectories in R n

Let k be the number of joints that compose the skeleton, we represent P t the pose of the skeleton at frame t by a n-dimensional tuple: P t = [x 1 (t), y 1 (t), z 1 (t) . . . x k (t), y k (t), z k (t)] T , The pose P t encodes the positions of k distinct joints in 3 dimensions. Consequently, an action sequence of length T frames, can be described as a sequence {P 1 , P 2 . . . , P T }, where P i ∈ R n and n = 3 × k.

This sequence represents the evolution of the action over time and can be considered as a result of sampling a continuous curve in R n . Based on this consideration, we model in what follows, each pose sequence of a skeleton, as a continuous curve in R n that describes the continuous evolution of the sequence over time. Let us represent the curve describing a pose sequence by a continuous parameterized function α(t) : I = [0, 1] → R n . In this work, we formulate the problem of human motion prediction given the first consecutive frames of the action as the problem of predicting the possible next points of the curve describing these first frames. More formally, the problem of predicting the future poses {P τ +1 , P τ +2 , . . . , P T }, given the first τ consecutive skeleton poses {P 1 , P 2 , . . . , P τ }, where τ < T , is formulated as the problem of predicting α(t) t=τ +1...T given α(t) t=1...τ , such that, α(t) is the continuous function representing the curve associated to the pose sequence {P 1 , P 2 , . . . , P T }. Given a pose sequence history represented as a curve, then mapped to a single point in a hypersphere. The predictor maps the input point to a tangent space, then feeds it to the network G that predicts the future motion as a vector in T µ (C).

During training, a discriminator is used to compare the mapped points from the ground truth to the generated ones. The exponential operator maps this vector to C, before transforming it to a curve representing a motion. The predicted motion is transformed into a 3D human pose sequence corresponding to the future poses of the prior ones.

HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

Representation of Human Motions as Elements in a Hypersphere C

For the purpose of modeling and studying our curves, we adopt the square-root velocity function (SRVF) proposed in [START_REF] Srivastava | Shape Analysis of Elastic Curves in Euclidean Spaces[END_REF]. It was successfully exploited for human action recognition [START_REF] Devanne | 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold[END_REF], 3D face recognition [START_REF] Drira | 3D face recognition under expressions, occlusions, and pose variations[END_REF] and facial expression generation [START_REF] Otberdout | Dynamic Facial Expression Generation on Hilbert Hypersphere with Conditional Wasserstein Generative Adversarial Nets[END_REF]. Conveniently for us, this function maps each curve α(t) to one point in a hypersphere which provides a compact representation of the human motion. Specifically, for a given curve α(t) : I → R n , the square-root velocity function (SRVF) q(t) : I → R n is defined by the formula

q(t) = α(t) √ ∥ α(t)∥ , if ∥ α(t)∥ ̸ = 0 0, if ∥ α(t)∥ = 0 (2.2)
where, ∥ • ∥ is the Euclidean 2-norm in R n . We can easily recover the curve (i.e, pose sequence) α(t) from the generated SRVF (i.e, dynamic information) q(t) by,

α(t) = t 0 ∥q(s)∥q(s)ds + α(0) , (2.3)
where α(0) is the skeleton pose at the initial time step which corresponds in our case to the final time step of the history. In order to remove the scale variability of the curves, we scale them to be of length 1. Consequently, the SRVFs corresponding to these curves are elements of a unit hypersphere in the Hilbert manifold L 2 (I, R n) as explained in [START_REF] Srivastava | Shape Analysis of Elastic Curves in Euclidean Spaces[END_REF]. We will refer to this hypersphere as C, such that, C = {q :

I → R n | ∥q∥ = 1} ⊂ L 2 (I, R n) .
Each element of C represents a curve in R n associated with a human motion. As C is a hypersphere, the geodesic length between two elements q 1 and q 2 is defined as:

d C (q 1 , q 2) = cos -1 (⟨q 1 , q 2 ⟩) .
(2.4)

Architecture and Loss Functions

Given a set of m action sequences {{P 1 , P 2 , . . . P T } i } m i=1 of T consecutive skeleton poses. Let us consider the first τ poses (τ < T) as the actions history represented by their corresponding SRVFs {q i τ } m i=1 , and the last (T -τ) skeleton configurations as the future poses {q i T } m i=1 to be predicted. Motivated by the success of generative adversarial networks, we aim to exploit these generative models to learn an approximation of the function Φ : C → C that predicts the (T -τ) future poses from their associated τ prior ones. This can be achieved by learning the distribution of SRVFs data corresponding to future poses, on their underlying manifold i.e., hypersphere. As stated earlier, SRVFs representations are manifold-valued data that cannot be used directly by classical GANs. This is due to the fact that the distribution of data having values on a manifold is quite different from the distribution of those lying on Euclidean space. [START_REF] Huang | Manifold-Valued Image Generation with Wasserstein Generative Adversarial Nets[END_REF], exploited the tangent space of the involved manifold and propose a manifoldaware WGAN that generates random data on a manifold. Inspired by this work, we propose a CHAPTER 2 manifold-aware WGAN for motion prediction, to which we refer as PredictiveMA-WGAN, that can predict future poses from past ones. This is achieved by using the prior poses as input conditions to the MA-WGAN. This condition is also represented by its SRVF; as a result, PredictiveMA-WGAN takes manifold-valued data as input to predict its future, which is also manifold-valued data.

Network Architecture

PredictiveMA-WGAN consists of two networks trained in an adversarial manner: the predictor G and the discriminator D. The first network G adjusts its parameters to learn the distribution P q T of the future poses q T conditioned on the input prior ones q τ , while D tries to distinguish between the real future poses q T and the predicted ones qT . During the training of these networks, we iteratively map the SRVF data back and forth to the tangent space using the exponential and the logarithm maps, defined at a particular point on the hypersphere.

The predictor network is composed of multiple upsampling and downsampling blocks. It takes as input the prior poses q τ and outputs the predicted future poses qT . A fully connected layer with 36864 output channels and five upsampling blocks with 512, 256, 128, 64, and 1 output channels, processes the input prior pose. These upsampling blocks are composed of the nearest-neighbor upsampling followed by a 3 × 3 stride 1 convolution and a Relu activation. The Discriminator D contains three downsampling blocks with 64, 32, and 16 output channels. Each block is a 3 × 3 stride 1 Conv layer followed by batch normalization and Relu activation. These layers are then followed by two fully connected (FC) layers of 1024 and 1 outputs. The first FC layer uses Leaky ReLU and batch normalization.

Loss Functions

In general, the objective of the training consists in minimizing the Wasserstein distance between the distribution of the predicted future poses P qT and that of the real ones P q T provided by the dataset. Toward this goal we make use of the following loss functions:

Adversarial loss -We propose an adversarial loss for predicting manifold-valued data from their history. The predictor takes a manifold-value data q τ as input rather than a random vector as done in [START_REF] Huang | Manifold-Valued Image Generation with Wasserstein Generative Adversarial Nets[END_REF], which requires mapping these data to a tangent space using the logarithm map before feeding them to the network. Our adversarial loss is the following:

L a =E q T ∼Pq T D log µ (q T) -E G(logµ(qτ))∼P qT D log µ exp µ (G(log µ (q τ))) +λE q∼P q (∥∇ q D(q)∥ -1) 2 , (2.5)
where the exponential map, exp µ (.): T µ (C) → C has a simple expression:

exp µ (s) = cos(∥s∥)µ + sin(∥s∥) s ∥s∥ ,
HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK and the inverse exponential map also called logarithm map log µ (q): C → T µ (C) is given by:

log µ (q) = d C (q, µ) sin(d C (q, µ)) (q -cos(d C (q, µ))µ)
where d C (., .) is the geodesic distance defined by (2.4). The last term of L a represents the gradient penalty proposed in [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF]. q is a random sample following the distribution P q , which is sampled uniformly along straight lines between pairs of points sampled from the real distribution P q T and the generated distribution P qT . It is given by: q = (1-a) log µ (q T)+ a log µ (exp µ (G(log µ (q τ)))), where ∇ q D(q) is the gradient with respect to q, and 0 ⩽ a ⩽ 1. The reference point µ of the tangent space used in our training is set to the mean of the training data. For a given set of training trajectories q 1 , . . . , q m . The mean is given by the Karcher mean [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] in C, µ = argmin

q i ∈C m i=1 d 2 C (µ, q i) (2.6)
where {q i } m i=1 is m training data. We present a commonly used algorithm for finding Karcher mean for a given set of curves [START_REF] Srivastava | Functional and Shape Data Analysis[END_REF]. This approach is presented in Algorithm 1. This computation is based on an iterative calculation that converges to the optimal solution which is the mean.

Algorithm 1: Karcher mean on C

Input: Given SRVFs {q 1 , q 2 • • • q N }, ϵ = 0.9, τ : threshold which is a very small number Output: µ j : mean of {q i } i=1:N 1µ 0 : initial estimate of Karcher mean, for example, one could just take µ 0 = q 1 , j=0

repeat for i ← 1 to N do 2-Compute v i = θ i sin(θ i) (q * i -cos(θ i)µ j), where cos(θ i) = ⟨µ j , q * i ⟩ 3-Compute the average direction v = 1 n n i=1 v i 4-Move µ j in the direction of v by ϵ: µ j+1 = cos(ϵ∥v∥)µ j + sin(ϵ∥v∥) v ∥v∥ 5-j=j+1 until ∥v∥ < τ ;
Reconstruction loss -In order to predict motions close to their ground truth, we add a reconstruction loss L r . This loss function quantifies the similarities in the tangent space T µ (C) between the tangent vector log µ (q T) of the ground truth q T and its associated reconstructed vector log µ (exp µ (G(log µ (q τ)))). It is given by,

L r = ∥log µ (exp µ (G(log µ (q τ)))) -log µ (q T)∥ 1 , (2.7)
where ∥.∥ 1 denotes the L 1 -norm.

CHAPTER 2

Skeleton integrity loss -We propose a new loss function L s that minimizes the distance between the predicted poses and their ground truth as a remedy to the generation of abnormal skeleton poses. Indeed, the aforementioned loss functions rely only on the SRVF representations, which impose constraints only on the dynamic information. However, to capture the spatial dependencies between joints that avoid implausible poses, we need to impose constraints on the predicted poses directly instead of their motions. By doing so, we predict dynamic changes that fit the initial pose and result in long-term plausibility. The proposed loss function is based on the Gram matrix of the joint configuration P , G = P P T , where P can be seen as k × 3 matrix. Let G i , G j be two Gram matrices, obtained from joint poses P i , P j ∈ R k×3 . The distance between G i and G j can be expressed [50, p. 328] as:

∆(G i , G j) = tr (G i) + tr (G j) -2 3 i=1 σ i , (2.8)
where tr(.) denotes the trace operator, and {σ i } 3 i=1 are the singular values of P T j P i . The resulting loss function is,

L s = 1 m 1 τ m i=1 τ t=1 ∆(P i,t , Pi,t) , (2.9)
where m represents the number of training samples, τ is the length of the predicted sequence, P is the ground truth pose and P is the predicted one.

Bone length loss -To ensure the realness of the predicted poses, we impose further restrictions on the length of the bones. This is achieved through a loss function that forces the bone length to remain constant over time. Considering b i,j,t and bi,j,t the j-th bones at time t from the ground truth and the predicted i-th skeleton, respectively, we compute the following loss :

L b = 1 m 1 τ 1 B m i τ t=1 B j ∥b i,j,t -bi,j,t ∥ , (2.10)
with B the number of bones in the skeleton representation.

Global loss -PredictiveMA-WGAN is trained using a weighted sum of the four loss functions L a , L r , L s and L b introduced above, such that,

L = β 1 L a + β 2 L r + β 3 L s + β 4 L b .
(2.11)

The parameters β i are the coefficients associated to different losses, they are set empirically in our experiments.

The algorithm 2 summarizes the main steps of our approach. It is divided into two stages, first, we outline the steps needed to train our model, then we present the prediction stage, where the trained model is used to predict future poses of a given sequence. Compute {G θ (log µ (q j τ))} K j=1 ;

8

G θ ← ∆ θ (-D η log µ exp µ (G θ (log µ (q τ)))) 9 θ ← θ + ϵ.AdamOptimizer(θ, G θ);
// Prediction Data: θ: generator learned parameters, {P i } τ i=1 : Prior poses of a testing sequence. Result: { Pi } T i=τ +1 : Predicted future poses. 10 Compute q τ from {P i } τ i=1 with Eq. 1; 11 Compute qT = exp µ (G θ (log µ (q τ))) using the learned parameters θ; 12 Transform qT into pose sequence { Pi } T i=τ +1 using Eq. 2, with α(0) = P τ

Experiments

We evaluate the proposed approach with extensive experiments on two popular datasets. In this part, we show and discuss our results.

Datasets and Pre-processing

Human 3.6M [START_REF] Ionescu | Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments[END_REF]. it is a database that contains 11 subjects performing 15 different actions (Walking, Phoning, Taking photos. . .). It is one of the largest datasets and the most commonly used for evaluating human motion prediction with 3D skeletons. Following the protocol set by previous approaches [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF][START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF] we train our model on 6 subjects and test it on the specific clips of the 5th subject. In the same way as [START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF] out of the 32 skeletal joints we only use 17, we remove the joints that correspond to duplicate joints, hands, and feet.

For Human3.6M we take the database processed by [START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF] formatted in exponential map and we use their code to convert them to Cartesian coordinates. During our preprocessing step, we down-sample the sequence from 50 fps to 25 fps and then perform normalization by subtracting the mean, dividing by the norm, and subtracting the coordinates of the root CHAPTER 2 joint (hips). In the dataset proposed by [START_REF] Jain | Structural-RNN: Deep Learning on Spatio-Temporal Graphs[END_REF] each class of each subject is composed of 2 long sequences. We divide those into smaller sequences for short-term prediction (60 frames) and long-term prediction (75 frames), following [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF]. When generating these smaller sequences we avoid overlap, e.g. when generating sequences for long-term prediction (75 frames) the first sequence contains the frames 1 to 75, the second frames 76 to 150, and so on. This leaves us with 3480 training samples and 812 testing samples for short-term prediction and 2769 training samples and 644 testing samples for long-term prediction.

CMU Motion Capture (CMU MoCap). CMU Mocap dataset1 is a database that contains 5 categories of motion, each containing several actions. Following [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF], we keep only 8 actions: 'basketball', 'basketball signal', 'directing traffic', 'jumping', 'running', 'soccer', 'walking', and 'washing window'. We keep the same joint configuration as for Human3.6M and preprocess the data the same way. This leads to 2871 training samples and 704 test samples for short-term prediction and 2825 training samples and 677 test samples for longterm prediction.

Implementation Details

We train our network with a batch size of 64 on 500 epochs and with a learning rate of 10 -4 using the Adam optimizer [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF]. We use β 1 = 1, β 2 = 1, β 3 = 10 and β 4 = 10 for the loss coefficients. Our Implementation runs on a PC with a Nvidia Quadro RTX 6000 GPU, two 2.3Ghz processors, and 64Go of RAM using Tensorflow 2.2.

Evaluation Metrics and Baselines

We use state-of-the-art methods for motion prediction that were based on 3D coordinate representation for our comparison. This includes RNN-based methods (Residual sup). [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF], CNN based method (ConvSeq2Seq) [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF] and graph models; (FC-GCN) [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] and (LDRGCN) [START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF].

The zero velocity baseline introduced by [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF] is a very simple baseline that uses the last observed frame at t = τ as the value for all the predicted frames, we also compare ourselves to this baseline. The results of LDRGCN are those reported by the authors for the method trained with data in 3D coordinate space. Concerning FC-GCN, ConvSeq2Seq, and Residual sup., the results are those reported by [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] using 3D coordinate data for training. We report the results presented by [START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF] for long-term prediction (1000ms) results on Human 3.6M since they are not provided in [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF]. The long-term results for Residual sup. are not available, we did not include it in our results.

We base our quantitative evaluation on the Mean Per Joint Position Error (MPJPE) [START_REF] Ionescu | Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments[END_REF] in millimeters following the state-of-the-art [START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF]. The metric compares the 3D coordinates of the ground truth with the predicted motions. It is given by,

HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK M P JP E = 1 ∆t 1 k τ +∆t t=τ +1 k j=1 ∥p t,j -pt,j ∥ 2 , (2.12)
where p t,j = [x j (t), y j (t), z j (t)] are the coordinates of joint j at time t from the ground truth sequence, pt,j the coordinates from the generated sequence, k the total number of joints in the skeleton, τ the number of frames in prior sequence and ∆t the number of predicted frames at which the sequence is evaluated.

While MPJPE evaluates the generated samples based on joint positions, it is not enough to assess the evolution of the motion. To complete our assessment we further compare our method with the other approaches based on the evolution along time of the speed of the predicted sequences, we refer to this metric as MPJS (Mean Per Joint Speed). It is computed as follows,

M P JS(t) = 1 k 1 M M i=1 k j=1 ∥p i,t-1,j -p i,t,j ∥ , (2.13)
with p i,t-1,j and p i,t,j the coordinates of joint j at time t-1 and t respectively, k the number of joints in the skeleton and M the total number of samples in the test set.

Quantitative Comparison Joints position-based evaluation

To be consistent with recent works, the results are reported for short-term prediction and long-term prediction. For short-term prediction, we predict 10 future frames within 400ms given 10 historical frames while we predict 25 in 1s based on 25 prior frames for long-term prediction. In Table 2.1 we show the comparison of our results with recent methods that use 3D joint coordinates representation. This representation has been proven to provide a more reliable comparison than the angle-based representation by [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF]. The results in the table show the clear superiority of our method over methods from the state-of-the-art on both datasets. We highlight that our approach is very competitive with the LDRGN approach for very short-term prediction (80ms and 160ms) while outperforming it for longer prediction (320ms, 400ms, and 1s). This demonstrates that it is robust when predicting long-term motions that stay close to the ground truth.

In Table 2.2 and 2.3 we report the results for the literature and for our method on all action classes of Human3.6M and CMU Mocap datasets respectively. The baseline methods adopt a protocol that consists in reporting the average error on eight randomly sampled test sequences. We found that this random sampling can significantly affect the error and makes it hard to present a fair comparison. To avoid this, we decided to report to run the experiment on 8 randomly selected test sequences 100 times, we then report the average error and the standard deviation for these 100 runs for the results of our model. With the standard deviation, we can have a better measurement of the general performance of our architecture on different test sequences. According to Tables 2.2 and 2.3, our method performs better than the state-of-the-art, especially when dealing with long-term prediction, these results are consistent with the average error over all actions classes. Interestingly our results also show that the simple zero velocity baseline sometimes outperforms the state-of-the-art approach on long-term prediction (e.g, "Photo", "Sitting" and "Walking dog" for Human3.6M, "Soccer" and "Jumping" for CMU MoCap). On the other hand on short-term prediction, it is always outperformed by the prediction methods. This may be an indication that the MPJPE is not the best-suited metric for the problem and a motivation to find a better more representative metric in future works. The results show that the previous approaches' performances decrease over time, while ours proves more robust in long-term horizons, we are shown to perform better than both the zero velocity baseline and the literature. We can notice that some classes present a very large variance (e.g, jumping) while for others the variance is very low (e.g, running). This is due to the number of samples which can be very different from one class to another but also to the high diversity of samples for some classes. Other classes that present less variability (e.g, walking) have a reduced variance.

Motion-based evaluation

To further assess the generated sequences, we evaluate their motion based on the MPJS introduced before. By looking at the evolution of this metric, we can compare our generated motion with the ground truth ones and evaluate the ability of our model to predict motion in long-term prediction. To this end, we show in Figures 2.5 the evolution of the MPJS over time steps on the Human3.6M dataset. Results show that the average ground truth speed varies slightly around 9 mm/frame. The zero velocity baseline obviously shows the worst results as no motion is being produced and the speed is always null. Both FC-GCN and ConvSeq2Seq speeds continuously decrease over time meaning that less motion is being produced on average for long-term horizons. On the other hand, our method shows variations in the average produced speed, up to 1s with even an increase during long-term prediction. The results from Tables 2.2 and 2.1 show that the pose error is good for long-term prediction, meaning that the increase in average speed does not correspond to a degradation in the quality of the prediction. This supports our claim that our method is a good fit to predict long motions that keep their spatial and temporal coherency. We report in Figure 2 124.9

Residual sup. Best results in bold while state-of-the-art best results that fit in our confidence interval are also written in bold.

HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK way as for Human3.6M. We do not report the results for FC-GCN as there was no pretrained model available and we were unable to train their model ourselves. The results are similar to those of Human3.6M: average speed of prediction method lower than the ground truth, constant decrease for ConvSeq2Seq, more variation for our method with a significant increase in long-term horizons. However, we see that this time for short-term prediction ConvSeq2Seq produces an average speed closer to the ground truth than ours. This seems to confirm the MPJPE results for ConvSeq2Seq that show that it performs better on CMU than on HUMAN3.6M, we still perform better for long-term prediction, showing that our method is robust to different kinds of datasets. Interestingly however all evaluated methods have average speeds well below the values of the ground truth. While this may be explained in part by the presence of sudden, high amplitude and hard-to-predict motion in action classes like Direction or Greeting, it still indicates that using losses that solely constraint the poses during training leads to generating sequences with slower motion since fast motions are more prone to error. This might be a hint that using losses on the speed of the motion will help produce even better predictions.

We present in Table 2.4 the average MPJS for each class over all time steps on Hu-man3.6M. In consistency with Figure 2.5 this table shows a significant difference between the ground truth and generated motions with all methods. However, this difference changes significantly between classes; some classes like Walking Dog or Greeting present a high difference (6.19 and 4.89 respectively when compared with our method) while others have a lower difference like Eating or Smoking (1.93 and 1.70 respectively when compared with our method). Furthermore, our method is still able to outperform ConvSeq2Seq and FC-GCN on all classes except Walking and Walking together where FC-GCN performs better indicating a capability to better model periodical motion. On the other hand for non-periodic motion, our method outperforms FC-GCN by a large margin (Greeting, Sitting Down, etc.).

Qualitative Comparison

In this part, we present some examples that illustrate the smoothness of the generated motion with our method compared to the ground truth and the baselines. In Figure 2.7 we present the 3D pose sequences of a predicted motion using a model trained for long-term prediction with our architecture. We also show the prediction of the same 3D pose sequence by the baseline methods ConvSeq2Seq [START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF] and FC-GCN [START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] using their HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK publicly available code. LDRGCN [START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF] is not included as the code for his method is not yet available. We observe that visually our method produces a realistic and smooth motion and that our pose sequence follows more closely the ground truth than the other methods event for long-term prediction. The motion produced by our method does not show any discontinuity, this is the consequence of applying the predicted dynamic of the motion to a starting pose, it prevents the discontinuity that can appear when predicting directly the 3D poses as the other methods do.

Motion Smoothness

In Figure 2.8 we show the evolution of the y coordinate from the skeleton's left foot over time and in Figure 2.9 the evolution of the x-axis of the right hand. The 25 frames samples were selected randomly from the walking and walking together action classes respectively from the Human3.6M dataset. We see clearly in the figure that our method is able to generate a smooth motion in both cases and that we are able to follow the real motion from the ground truth, closely for the walking sample and with a small temporal delay for walking together while for this later, the other methods show a completely different movement.

Computation Time

We show a comparison of the computing time in Table 2.5 of our method with ConvSeq2Seq and FC-GCN. This time comparison is done for long-term prediction (i.e, predicting 25 frames) with 8 sequences for each of the 15 action classes from the Human3.6M dataset using the code provided by the author for ConvSeq2Seq and FC-GCN. The results from Table 2.5 show that despite the additional computations required to map the motion back and forth to the tangent space compared to standard GAN architecture, we can predict motion with a speed similar to the other two methods and faster than ConvSeq2Seq.

total time time per sample (25 frames) ConvSeq2Seq

3.04s

≈ 25ms FC-GCN 1.67s ≈ 14ms Ours 2.42s ≈ 20ms
Table 2.5: Prediction time comparison for 8 predicted samples per action on Human3.6M.

Distribution Visualization

With Figure 2.10 we further assess the quality of the predicted samples using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF]. We present a 2D visualization of 677 samples of long-term prediction from the CMU MoCap dataset. The resulting representation clearly indicates that the motion from the ground truth and the predicted motions

Recursive Generation

One of the main limitations of our method is its inability to generate sequences of lengths it has not been trained on. We can however still generate longer sequences through recursive generation by predicting subsequent motion based on previous predictions. This recursive generation can be done without specific training simply by modifying the input during testing. However, by feeding our prediction to the network to get further prediction we cause the network to accumulate error over each recursive iteration. In fact, we can not reliably extend the duration of the prediction more than 2 or 3 times. For all types of motion the first and second predictions using predicted data as input are good, the third one is usually still good for periodic motion (e.g walking) but not for non-periodic motion (e.g greeting). From the fourth prediction onward even the periodic motion will start to deteriorate significantly. Non-periodic motions will usually freeze into a static pose which is to be expected as our prediction can only predict the end of the motion, not infer what other motion might follow. For periodic motions, the deterioration comes from the accumulating error which will cause the skeleton to deform. Still, we are able to generate motion 3 to 4 times longer than what the network was trained on, which allows us to tackle one of the limitations of the method in some ways. We present in Figure 2.11 an example of recursive prediction on the action class walking from the CMU MoCap dataset. The figure shows the original prediction and the three subsequent predictions. This shows that our model can predict motion for longer sequences than it has been trained on as we observe significant differences only during the third recursive prediction, the motion however still follows walking action. CHAPTER 2

Cross-dataset capabilities

Due to differences in the skeleton formats used by Human3.6M and CMU MoCap, it is not possible to perform a cross-dataset evaluation on these datasets. We have however trained our model on the NTU RGB+D 120 dataset [START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF] and then predicted motion from data captured with a Kinect camera in real-time. Qualitative results are presented in figure 2.12 (in blue the ground truth and in red the prediction). We show the prediction of a person rubbing their hands. We can see that our method is able to predict on data that does not come from the dataset used for training. While there is a small difference between the ground truth and our prediction we see that we do not reproduce the discontinuities from the Kinect and our prediction has not been influenced by the discontinuities in the prior

Ablation Study

To show the efficiency of the different losses used by our network especially the effect of the combination of the skeleton integrity loss L s and the bone length loss L b , we perform our ablation study using models that were trained using only the mentioned losses. The ablation is performed on the Human3.6M dataset due to the huge quantity of data from the dataset. The ablation results are reported in Table 2.6 for short-term and long-term prediction using the average error of all action classes at different time steps. The results show a clear improvement when adding one of either the skeleton integrity loss or the bone length loss compared to using only L a and L r . Furthermore using both L s and L b improve significantly the results for long-term prediction while keeping a similar accuracy for short-term prediction with regard to using only L s or only L b . This evidences the importance of using both losses when doing long-term prediction, it allows the model to capture the spatial dependencies between joints and to be able to predict plausible poses even for longer-term horizons. We show in Figure 2.13 the effect of the losses on the visual quality of the prediction. We notice that excluding L s and L b leads to important deformations in the upper body but the produced legs motion is rather coherent. Adding L s helps produce a motion closer to the ground truth, we however still see noticeable bone deformations even if we are able to keep a coherent skeleton. Using only L b leads to a skeleton without any deformation even during long-time prediction but also to very little motion being produced. Using both losses allows us to keep the best skeleton coherency while producing a motion that is close to that of the ground truth. We show in table 2.7 the MPJPE values for different input sequence lengths for long-term prediction on Human3.6M. We report the values for sequences of 25 frames (default value used for comparison with the state-of-the-art), 15 frames, 10 frames, and 5 frames. We see that a shorter prior leads to a decrease in performance for both short and long-term prediction but this decrease is less important for long-term prediction (except for the 5 frames prior) highlighting the ability of our network to generate accurate predictions for long-term motions. We observe that we can use priors of 10 or 15 frame with a moderate drop in performance but with only 5 frames the drop increase significantly, especially for long-term prediction.

Conclusion and Limitations

In this chapter, we presented a new and robust method to deal with human motion prediction. In our method we represent the temporal evolution of 3D human poses as trajectories, these trajectories can be mapped to points on a hypersphere. To be able to learn this manifold-valued representation we use a manifold-aware Wasserstein GAN that can capture both the spatial and temporal dependencies involved in human motion. Through extensive experiments, we prove the robustness of our method for long-term motion prediction when compared to recent literature. With our qualitative results, we confirm that we are able to predict plausible poses and smooth motions in long-term horizons. The two main limitations of the proposed method are the following: the fixed length of sequences and the inability to deal with sudden changes in motion. The fixed length in motion is a consequence of the GAN architecture where the input and output sizes a fixed. We demonstrate in our experiment that we can deal with this problem by using recursive generation, which shows the ability of the model to generate up to 4s motion for some classes when trained on 1s sequences. The inability to deal with a sudden change of motion is inherent to the way motion prediction is usually approached. Indeed, we only consider the historical motion as a condition to predict the motion but it is not always enough to get an accurate prediction. Things like the environment, the goal of the motion, and the motion of other persons can influence the future. Taking some of these modalities into account would surely allow for longer and more accurate predictions.

Part

Introduction

Modeling the dynamics of human motion is at the core of many applications in computer vision and robotics. Most works on human motion generation ignore human interactions and focus rather on the generation of actions of a single person. In addition, only a few works investigating human interaction generation [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] look at the reaction generation problem. What makes human reaction generation a challenging problem is a nonlinearity in the temporal evolution of human motion and the two sources that condition the motion: the action and its corresponding reaction. The first issue arises because human motion is generally performed at varying evolution rates. In other words, a person performing the same activity will go roughly through the same stages but at slightly different rates every time. In addition, as stated by [START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF], unlike simple actions such as walking or running, complex human interactions such as duet dancing generate highly complex pose sequences operating close to the limit of human kinematics with very low periodicity. The second issue arises because the same action can have a different reaction depending on the interaction context, e.g., when reacting to a punch depending on the position, one can react more or less strongly. These two issues make the generation and the evaluation of reaction challenging. Several questions arise as we try to tackle this challenge. How to translate action to reaction? How to model the long-term sequence? How to represent a complex action-reaction sequence?

Our goal is to learn the reaction from a training sequence of actions and reactions by using Transformer architectures. The breakthroughs from Transformer networks in Natural Language Processing (NLP) domain have sparked great interest in computer vision. Transformer architectures are based on a self-attention mechanism that learns the relationships between elements of a sequence. Unlike recurrent networks that process the elements of the sequence recursively, Transformers can attend to complete sequences and thereby are able to learn spatial and temporal relationships making them a good candidate for modeling human motion. In this chapter, we propose InterFormer, which with its spatial and temporal attention modules, is able not only to model the spatial and temporal dependencies in the action and in the reaction but also in the interaction between the two humans providing a solution to the two previously mentioned issues. Figure 3.6 (Left) shows how our InterFormer can generate a proper reaction sequence (red skeleton) by taking as input an action sequence (blue skeletons) and the initial position of the reaction sequence. Green circles highlight the reaction parts of the motion: the head goes backward in reaction to the punch; the hand is raised as the body continues to move backward to keep its balance. Figure 3.1 shows a generated reaction from the "kicking" class of the SBU dataset. Our method is able to generate a proper motion. The code and some video examples of motions generated by our method are available at https://github.com/CRISTAL-3DSAM/InterFormer Our major contributions are as follows:

• We propose a novel Interaction Transformer framework for the challenging human reaction generation task. To the best of our knowledge, this is the first work that challenges the task of human reaction prediction given the action of the interacting skeleton using a Transformer based architecture.

• We formulate the reaction generation problem as a translation problem, where we translate a given action of a skeleton to its corresponding reaction such that the entire interaction looks coherent and natural.

• We adopt a graph representation for self-attention to better exploit the skeleton structure while we ignore this representation for computing the attention between the two interacting skeletons. In this case, instead of a graph representation, we exploit the distance between the interacting joints assuming that closer joints involve stronger interaction. By introducing this distance, we provide the prior knowledge that helps to model the interaction.

• While the previous methods for interaction generation address limited and simple CHAPTER 3

short-term interactions, we evaluate our method on the DuetDance dataset that provides more complex and long-term interactions.

Related Work

Human Action Generation. Human action recognition and prediction from 3D skeletons is a popular topic [START_REF] Kacem | A Novel Geometric Framework on Gram Matrix Trajectories for Human Behavior Understanding[END_REF][START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF][START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF][START_REF] Devanne | 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold[END_REF][START_REF] Fragkiadaki | Recurrent Network Models for Human Dynamics[END_REF]. Inspired by the recent advances in generative models, several works [START_REF] Zhao | Bayesian Adversarial Human Motion Synthesis[END_REF][START_REF] Wang | Learning Diverse Stochastic Human-Action Generators by Learning Smooth Latent Transitions[END_REF][START_REF] Zhou | Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis[END_REF][START_REF] Li | AI Choreographer: Music Conditioned 3D Dance Generation with AIST++[END_REF] proposed human action generation models in order to generate a consecutive sequence of human motions. Recently there has been an increase in motion generation based on different modalities, [START_REF] Yin | Graph-based Normalizing Flow for Human Motion Generation and Reconstruction[END_REF] use control signals such as the global trajectory of the person to generate human motion in long-term horizons while [START_REF] Ahuja | No Gestures Left Behind: Learning Relationships between Spoken Language and Freeform Gestures[END_REF] and [START_REF] Habibie | Learning Speech-driven 3D Conversational Gestures from Video[END_REF] generate motion based on speech audio. Meanwhile, others use only knowledge of the past motion which allows them to work in real-time but on shorter motion [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF][START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF][START_REF] Sofianos | Space-Time-Separable Graph Convolutional Network for Pose Forecasting[END_REF]. However, these works only focus on the generation of individual actions. More recently, interaction prediction and generation have also been addressed [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF][START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF]. For instance, [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] use a multimodal variational recurrent neural networks to predict the future motion of both participants in an interaction based on pasts sequences of motion. More recently, a lot of focus has been devoted to human pose and motion generation from text or action labels, as well as its reciprocal task [START_REF] Guo | TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of 3D Human Motions and Texts[END_REF][START_REF] Lucas | PoseGPT: Quantization-based 3D Human Motion Generation and Forecasting[END_REF]. However, our approach proposes to generate and predict human motion reactions from an action. In addition, these papers focus only on one person, while our approach is dedicated to the generation of reactions in two-person interaction.

To complement the existing dataset with interactions [START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF][START_REF] Yun | Two-person Interaction Detection Using Body-Pose Features and Multiple Instance Learning[END_REF], different types of complex interaction datasets have also emerged like [START_REF] Lee | Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis[END_REF] and their collection of conversational hand motions or triadic interactions [START_REF] Joo | Towards Social Artificial Intelligence: Nonverbal Social Signal Prediction in a Triadic Interaction[END_REF]. However the number of human interaction databases with 3D skeletons and large enough to be used for motion generation is low. Table 3.1 shows a list of existing 3D skeleton datasets containing interaction motions. We can see that most of these datasets contain few classes and few samples and that the most common capture method is a depth camera. Datasets captured with depth cameras suffer a lot from the occlusion that can happen in some interactions classes such as "hugging" up to the point where these classes become hard to use. It should be noted that some datasets with a low number of sequences such as UoL3DSi, Uol3DAi, G3Di, and CMU panoptic consist of long sequences (up to 8 min for CMU panoptic) in which several motions are performed or repeated. The 3D skeletons from DuetDance are obtained from RGB videos using LCR-Net++ [START_REF] Rogez | LCR-Net++: Multiperson 2D and 3D Pose Detection in Natural Images[END_REF]. Some works also look at human reactions with other modalities such as walking trajectories [START_REF] Gupta | Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[END_REF] or conversational data [2,[START_REF] Yang | Statistics-Based Motion Synthesis for Social Conversations[END_REF][START_REF] Yoon | Speech Gesture Generation from the Trimodal Context of Text, Audio, and Speaker Identity[END_REF]. However, there are very few works on human reaction generation. In this thesis, we focus on this and propose InterFormer, a novel Transformer architecture. This idea has not been investigated by any other existing work.

Graph Representation has been widely used for 3D classification and segmentation [START_REF] Qi | 3d graph neural networks for rgbd semantic segmentation[END_REF][START_REF] Charles R Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF], visual question answering [START_REF] Norcliffe-Brown | Learning conditioned graph structures for interpretable visual question answering[END_REF], human interaction recognition [START_REF] Zhu | Dyadic relational graph convolutional networks for skeleton-based human interaction recognition[END_REF][START_REF] Plizzari | Skeleton-based action recognition via spatial and temporal transformer networks[END_REF]. For instance, [START_REF] Zhu | Dyadic relational graph convolutional networks for skeleton-based human interaction recognition[END_REF] proposed a Dyadic Relational Graph Convolutional Network (DR-GCN) for skeleton-based interaction recognition. When dealing with 3D skeletons, it is natural to use a graph representation as the graph of the skeleton exists physically in the form of segments linking joints. While most works use the graph representation of the skeleton directly as an input, doing so when dealing with interaction leads to losing information. We propose to use the graph as part of the attention module to take advantage of the graph representation without losing the information about the interaction. Experiments show the effectiveness of the proposed InterFormer over existing methods.

Transformer is a network architecture first introduced in [START_REF] Vaswani | Attention is All you Need[END_REF] to deal with natural language processing (NLP) translation tasks. Its impressive results on this task and easily adaptable architecture led to great interest in several fields including NLP tasks such as question answering, Natural Language Inference [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF][START_REF] Brown | Language Models are Few-Shot Learners[END_REF] but also protein modeling [START_REF] Brandes | ProteinBERT: a universal deep-learning model of protein sequence and function[END_REF] and many others, among which computer vision. Transformer architecture has been extensively used in computer vision for many tasks including object detection [START_REF] Carion | End-to-End Object Detection with Transformers[END_REF][START_REF] Carion | End-to-End Object Detection with Transformers[END_REF], image generation [START_REF] Ramesh | Zero-Shot Text-to-Image Generation[END_REF][START_REF] Parmar | Image Transformer[END_REF], depth estimation [START_REF] Ranftl | Vision Transformers for Dense Prediction[END_REF], image classification [START_REF] Radford | Learning Transferable Visual Models From Natural Language Supervision[END_REF], image synthesis [START_REF] Esser | Taming Transformers for High-Resolution Image Synthesis[END_REF], action recognition [START_REF] Plizzari | Skeleton-based action recognition via spatial and temporal transformer networks[END_REF]. Closer to our problem, works have used Transformer to generate human motion: [START_REF] Petrovich | Action-Conditioned 3D Human Motion Synthesis with Transformer VAE[END_REF][START_REF] Xu | ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation[END_REF] generate human motions based on the class labels while [3] use them to predict future motion based on a historical sequence. Different from these methods, we use a Transformer architecture with temporal and spatial attention for solving the reaction generation task. Generating a reaction responding to an action can be seen as a translation problem: translating from a language "action" to a language "reaction". The performance of the Transformer on natural language translation tasks and its use of temporal information are a good fit for our task of reaction generation. By adding spatial attention and graph information, we can produce a realistic reaction to an action. To the best of our knowledge, InterFormer is the first Transformer architecture used to solve the problem of human reaction generation. Transformer uses an encoder-decoder architecture shown in Fig. 3.2 making extensive use of the attention mechanism. Attention can be explained as a mapping of a query, a set of key-value pairs, and an output. The output is a weighted sum of the values, where the weights are computed by a compatibility function of the query with the corresponding key. The goal of attention is to find correlations between two sequences. The scaled dot product attention is calculated following:

Attention(Q, K, V) = softmax QK T √ d k V, (3.1)
With Q, K, V the query, key and values matrix respectively and d k the dimension of the keys. In Fig. 3.2 we see that in the decoder (right part) there are two attention layers. These two layers differ only by their inputs. For the first layer, all the inputs come from the decoder while for the second layer, two inputs come from the encoder. They represent two types of attention, self-attention, and cross-attention. Cross-attention maps the data from the encoder to the data of the decoder. In the NLP translation task from English to French, it corresponds to mapping French words to English words. For cross-attention K and V come from the encoder and represent a sentence in English while Q comes from the decoder and represents a sentence in French. Fig. 3.3 shows an example of cross-attention for NLP translation. Selfattention on the other hand only takes data from the decoder. It tries to map the french sentence with itself, finding correlations between the words inside the sentence. Fig. 3.5

show an example of self-attention for NLP, we see that "it" is strongly related to "The" and "animal". Self-attention helps Transformer learn the structure of the sentence. With selfattention Q, K, and V all come from the decoder and represent the French sentence. The attention layer in the encoder is also self-attention but works on the English sentence instead. The implementation of the attention used in [START_REF] Vaswani | Attention is All you Need[END_REF] is presented in Fig. 3.4 as well as the multihead attention architecture. Multihead attention consists in computing attention several times with the inputs linearly projected with different projection weights. The results of these attention calculations are then concatenated to obtain the attention layer output. The multihead attention can be described as:

Multihead(Q, K, V) = Concat(head 1 , ..., head n)W S with head i = Attention(QW Q i , KW K i , V W V i) (3.2)
where n is the number of heads, W Q i , W K i , W V i , and W S i are the projection weights for Q, K, V, and the output respectively. The encoder starts with an embedding layer that converts the text into vectors of fixed size. Then we use positional encoding, a method that injects information about the temporal position of each element in the sequence. In [START_REF] Vaswani | Attention is All you Need[END_REF] the positional encoding is defined as:

P E pos,2i = sin(pos/10000 2i/d model) P E pos,2i+1 = cos(pos/10000 2i/d model) (3.3)
with pos the position and i the dimension and d model the dimension of the input. Then we go through several layers with the same architecture: multihead attention followed by residual connection, which prevents the loss of information, and normalization then a feed-forward network. The feed-forward network is a simple network containing several layers of neurons and where information always moves in a single direction. Then there is another residual connection and normalization. The decoder is similar to the encoder for the beginning: embedding, positional encoding then several repeating layers. These layers are also composed of multihead attention followed by residual connection and normalization then another multihead attention operation but the key K and the value V correspond to the output of the encoder. Then this is followed by residual a connection and normalization, a feed-forward network, and another residual and normalization. Finally, the output of these layers goes through a linear layer, that performs a linear transformation of data. Since Fig. 3.2 represents a Transformer for NLP there is a final softmax function to obtain probabilities. They are used to decide the next word in the sequence outputted by the network. The first multihead attention of the decoder is different from that of the encoder in that the attention is temporally masked. This means that when training, at time t we hide the embedding from time t + 1 onward. This is done so the network does not learn to rely on data it is not supposed to know.

The Proposed Interaction Transformer

Let us consider P t the positions of k distinct joints at time t. Consequently, an action sequence P of T frames, can be described as a sequence P ={P 1 , P 2 , . . . , P T }, where P t ∈R d and d=3×k, where

P t =[J 1 (t), . . . , J k (t)],
with k the number of joints in the skeleton, and

J i (t)=[x i (t), y i (t), z i (t)] the 3D coordinates of joint i. The goal is to generate a reaction Y ={Y 1 , Y 2 , .
. . , Y T } a sequence of skeleton poses from X={X 1 , X 2 , . . . , X T } a sequence representing the action motion.

Our overall architecture of InterFormer is illustrated in Figure 3.6 and consists of four modules: a motion encoder, a motion decoder, a skeleton adjacency module, and an interaction distance module. The motion encoder encodes the motion of the skeleton using self spatial skeleton attention and self temporal motion attention. Both aim to find the important spatial and temporal relations within the input action motion to transmit them to the decoder. The motion decoder generates the reaction motion using the encoding from the motion encoder and consists of self spatial skeleton attention, self temporal motion attention, interaction spatial skeleton attention, and interaction temporal motion attention. Moreover, the skeleton adjacency and interaction distance modules help the different spatial attentions to focus on the most important parts of the skeletons and of the interaction.

Motion Encoder

The motion encoder takes as input an action sequence X to which we add positional encoding defined by [START_REF] Vaswani | Attention is All you Need[END_REF]. This positional encoding encodes temporal information of each frame in the sequence. Inspired by [START_REF] Vaswani | Attention is All you Need[END_REF] we use temporal attention to capture the temporal relationships within the motion of the skeleton. However, the motion contains both temporal and spatial information. Thus, we add a spatial attention module to complement the temporal attention to help find the spatial dependencies within the skeleton.

Self Spatial Skeleton Attention. For our self spatial skeleton attention module, we consider each frame independently and look at the relation between the position of each joint. We use the scaled dot-product attention from [START_REF] Vaswani | Attention is All you Need[END_REF]:

Attention(Q, K, V) = softmax QK T √ dim V, (3.4)
where Q, K, and V are the query, key, and value matrices of sizes dim×|P t | which contain a set of queries, keys, and values (one for each joint in the skeleton for a given frame) of sizes dim which is for spatial attention |J 1 (t)|. These queries q i , keys k i , and values v i are obtained by multiplying an input a i , b i , and c i by weight matrices W q , W k , and W v of size dim×dim:

q i = a i W q , k i = b i W k , v i = c i W v . (3.5)
For self-attention a i =b i =c i and for spatial attention they represent the 3D coordinates of joint i at a given time, either directly or through the value corresponding to the coordinates after going through the previous attention layers. We use the multihead version of the attention [START_REF] Vaswani | Attention is All you Need[END_REF] where the inputs are split into smaller parts according to the input size of each head. Each part is treated by its own attention module and the outputs of these modules are concatenated. For spatial attention, we fix the number of heads at |J 1 (t)|, one for each dimension of the 3D coordinates.

Self Temporal Motion Attention. For the self temporal motion attention, we consider the entire skeleton and observe the motion of its joints over time, i.e., we try to find the links between the position of the joints from one frame to another. This is performed in the same way as for self spatial skeleton attention by using Eq. (3.4) and Eq. (3.5). However, here a i =b i =c i represent the entire skeleton at time t=i, dim=d and Q, K, and V are of size dim×T . We also use the multihead version of the attention, but here the number of heads can be set as a hyperparameter.

Motion Decoder

The decoder receives the encoder's output Z as well as the reaction sequence Y . It is composed of four attention modules as illustrated in Figure 3.6. The self-attention modules work in the same way as the encoder but take Y to which we add the positional encoding as input. Interaction Spatial Skeleton Attention. The interaction spatial skeleton attention module looks at the relations between the joints of the interacting skeletons at a given frame. The attention is also computed using Eq. (3.4) and Eq.(3.5) but here the query matrix Q comes from the reaction sequence Y and the key and value matrices K and V come from the encoder output Z.

Interaction Temporal Motion Attention. The interaction temporal motion attention module looks at the relations between the frames from the action sequence and the frames from the reaction sequence. Discovering these relations enable the synchrony of the generated reaction. Likewise, the query matrix Q comes from the reaction sequence Y but the key and value matrices K and V come from the encoder output Z.

CHAPTER 3

In both the encoder and decoder, before each attention module, the input is normalized, and after each module, the output is also normalized and added to a residual connection of the non-normalized module input like in [START_REF] Vaswani | Attention is All you Need[END_REF]. The spatial and temporal attentions are computed in parallel and are added after passing through all modules. This final output then goes through a feed-forward layer and is added to the residual connection. The architectures described here for the encoder and the decoder correspond to a single layer of the encoder and one single layer of the decoder. There are N =6 of each of these layers, and the input of layer h is the output of layer h-1. Finally, after the last decoder layer, the output goes through a final linear layer to get the reaction sequence.

Skeleton Adjacency and Interaction Distance

Recently many works using skeletons also use a graph representation which was proved to be a particularly efficient representation for action recognition [START_REF] Zhu | Dyadic relational graph convolutional networks for skeleton-based human interaction recognition[END_REF][START_REF] Plizzari | Skeleton-based action recognition via spatial and temporal transformer networks[END_REF]. Building a graph for a skeleton is particularly intuitive in that the joints of the skeletons are already linked together by body segments. However, in our case, using a graph representation might be ill-fitted. Indeed while graphs provide information about the skeleton structure and help us concentrate on the most interesting parts of the skeleton, they would limit us when modeling the interaction. The information we have about the interaction is contained in the attention between the encoder and the decoder and the relations in the skeleton graph are very different from the relations between the joints of the two skeletons (all relations are possible). However, graphs can still provide important information that we can use to improve our generation.

Skeleton Adjacency Module. We can use the information contained in the graph representation by looking at the adjacency matrices of the joints. We use three adjacency matrices that we combine to create a mask. The three matrices are based on the ones used by [START_REF] Plizzari | Skeleton-based action recognition via spatial and temporal transformer networks[END_REF]: (i) the identity matrix I used to represent the joints themselves; (ii) the matrix of inward relations In which are the paths from the extremities (head, hands, and feet) to the root joint (torso or pelvis), and (iii) the matrix of outward relations Out which represents the paths from the root joint to the extremities. The three matrices of sizes |P t |×|P t | are then added to get the mask matrix M=I+In+Out that we apply to the attention matrix Att of size |P t |×|P t | to hide values that are not part of the graph as illustrated in the top right part of Figure 3.6.

Att i,j = Att i,j , if M i,j ̸ = 0 0, if M i,j = 0 (3.6)
Interaction Distance Module. Interaction attention, which is also the attention between the encoder and the decoder, can also use a graph representation [START_REF] Zhu | Dyadic relational graph convolutional networks for skeleton-based human interaction recognition[END_REF], but this graph cannot be fixed since the interesting links between joints vary from class to class e.g., for "punching" we are interested in the link between the hand and the head but not for "kicking". Ultimately, it is the spatial attention between the encoder and decoder that discovers the important links between the two skeletons. However, as suggested by [START_REF] Zhu | Dyadic relational graph convolutional networks for skeleton-based human interaction recognition[END_REF] we can add prior knowledge to the attention to help us model the interaction for some classes. This information is the distance between the joints of both skeletons, i.e., joints that are close to each other are more likely to interact than those that are far away:

Dist i,j = -∥J i action (t) -J j reaction (t)∥ 2 , (3.7)
where J i action (t) and J j reaction (t) are the joint i and j of the action and reaction skeletons at time t, Dist is a matrix of size |P t |×|P t |. Unlike the graph for self spatial attention, we do not use the distance matrix to create a mask because some of the relations between the two skeletons are not defined by the distance between the joints (e.g., waving and waving back), thus using the distance matrix as a mask would prevent such relations from being discovered. We add softmax(Dist) to the attention matrix to keep all the information that interests us, as illustrated in the top right part of Figure 3.6. By using the softmax function on the distance matrix, we add values of the same order to the attention matrix while making shorter distances more important.

Objective Optimization

We use two loss functions to direct our model. The first one is the sequence loss (L s) which compares the generated sequence with the corresponding ground truth using the Mean Square Error (MSE) :

L s = 1 T 1 k T t=1 k i=1 (J i (t) -Ĵi (t)) 2 , (3.8)
where J i (t) is the position of the real joint i at time t and Ĵi (t) the position of the generated joint i at time t. The second is the first frame loss (L f f) used to add constraints on the first two frames by ensuring that the motion between the two is realistic and limits the discontinuities that can happen at the beginning of the sequences. This loss is necessary as otherwise the model sometimes ignores the initial input frame and generates a sequence based on its own inferred initial position. For this loss, we also use the MSE but on the difference between the two first frames:

L f f = 1 k k i=1 ((J i (2) -J i (1)) -(Ĵi (2) -Ĵi (1))) 2 .
(3.9)

Implementation Details

We train our InterFormer using Torch 1.8.1 on a PC with two 2.3Ghz processors, 64G RAM, and an Nvidia Quadro RTX 6000 GPU. We use the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with α=0.0001, β 1 =0.9, β 2 =0.98, and ϵ=1×10 -9 . The batch sizes are set to 128 for SBU and DuetDance and 64 for K3HI. InterFormer works even if we do not provide the original position of the reaction sequence (the first frame of the sequence) as input, but this can cause the generator to produce a skeleton very far from its actual location, which will lead to a bad generation.

To solve this during testing, we give as input to the decoder the first frame of the sequence which gives information about the original location of the skeleton. During testing, we generate sequences of variable lengths depending on the length of the input action motion.

CHAPTER 3

The sequences are generated in an auto-regressive manner and the model generates an endof-sequence value to indicate the end of the motion generation. If the motion is generated correctly, then this value will correspond to the end of the input action sequence.

Experiments

We conducted comprehensive experiments to evaluate our proposed approach by comparing state-of-the-art models on three datasets. We also visualize the ability of action-reaction generation. Finally, we perform ablation studies to evaluate the effectiveness of using spatial attention and our skeleton adjacency and interaction distance modules.

Datasets

SBU Dataset [START_REF] Yun | Two-person Interaction Detection Using Body-Pose Features and Multiple Instance Learning[END_REF] contains 8 classes of simple interaction motions: walking toward, walking away, kicking, pushing, shaking hands, hugging, exchanging, and punching. The data which are too noisy, and in particular the class "hugging", have been removed from this dataset. The "walking away" and "walking toward" classes have the same reactions (standing still), so we decided to fuse those two classes into a single "walking" class. This leaves us with 6 classes, 195 training, and 30 test samples.

K3HI Dataset [START_REF] Hu | Two-person interaction recognition based on key poses[END_REF] contains the same 8 classes as SBU aside from the "hugging" class which is replaced by "pointing". Also, unlike SBU, "approaching" and "departing" have reactions that are different, so we do not fuse the two classes. We also removed the noisy samples from the dataset but this time we normalize the data in the same way as SBU was normalized by the authors. This leaves us with 236 training samples and 28 test samples.

DuetDance Dataset [START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF] contains 5 classes of dance motions: cha-cha, jive, rumba, salsa, and samba. Given the nature of the dataset, the motions are more complex than those in SBU and K3HI, and there are a lot of intra-class variabilities. We do not perform normalization, but since most samples are very long sequences (up to 160s), we decided to cut each sequence into smaller sequences of 50 frames (2s), leading to 273 training samples and 3991 test samples.

For all three datasets, the poses are represented by their absolute 3D coordinates, furthermore, training and testing splits are selected randomly for fair comparisons. Duet-Dance was provided with neither train/test split nor subject information, we used a random split. For the two others, the evaluation proposed by their respective authors is made using k-fold validation so we decided to split the dataset between train and test, randomly for K3HI and by selecting all the samples from a random subject for SBU.

Evaluation Metrics

We use metrics commonly used in motion generation. Metrics used for motion prediction based on the distance between the generated sample and the ground truth are not fit for reaction generation as several different motions can be considered good reactions to the same action. While this choice of metric can seem contradictory with our losses that use direct comparison with the ground truth, it is important to understand that our evaluation metrics do not contain direct information about the skeleton that our network is supposed to generate and could not be efficiently used as losses.

Classification Accuracy measures how well our generated samples are classified by a motion classifier. We use the DeepGRU classifier [START_REF] Maghoumi | DeepGRU: Deep Gesture Recognition Utility[END_REF]. We only train and test the classifier on the reaction part of the interaction, so the results are not influenced by the action, which is always the ground truth. We report the percentage of correctly classified samples for each class and the average over the entire test set.

Fréchet Video Distance (FVD) is an adaptation of the Fréchet Inception distance (FID) [START_REF] Heusel | GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[END_REF] for video sequences [START_REF] Unterthiner | Towards Accurate Generative Models of Video: A New Metric & Challenges[END_REF]. FVD computes the distance between the ground truth and the generated data distribution.

FVD = |µ gt -µ gen | 2 + tr C gt +C gen -2 (C gt * C gen) 1/2 , (3.10)
where µ gt , µ gen and C gt and C gen are the means and covariance matrices of the deep features from ground truth and the generated samples respectively, tr(•) is the trace. The deep features are obtained from the classifier used for the classification accuracy Diversity Score. Following the metric defined by [START_REF] Lee | Dancing to Music[END_REF][START_REF] Zhang | The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[END_REF] we compute the average deep feature distance between all the samples generated by each method and then compare it to the average deep feature distance of the ground truth. A low diversity score means that the generated samples have a diversity close to that of the ground truth and a high score means that the diversity is either lower (all motions are more similar) or higher (more noise in the generation). The average deep feature distance is calculated as follows:

div = 1 b(b -1) b i=1 b j=1 ||F i -F j || 2 , (3.11)
where b is the number of samples considered, F i and F j are deep features of the samples i and j, respectively. The score is obtained using div gt the diversity distance of the ground truth and div gen the diversity of the generated samples. score = 100 × |div gt -div gen | div gt .

(3.12)

Baselines

To our knowledge, there is no work that deals with the generation of the reaction to an action, so to be able to compare our results to others from the literature, we employ a method for human interaction generation and a method for human motion prediction to show methods used on a range of applications.

Zero Velocity baseline (ZeroV) [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF] is a simple baseline where all generated frames are the same (in our case the initial pose), there is no motion for this baseline. Using ZeroV as a CHAPTER 3

comparison is useful to see what the quantitative result of an obviously bad method are like and help see if the results from the other methods are actually good. We do not show the results for ZeroV in our qualitative evaluation as they are uninteresting since no motion is produced. We do not use them in our user study for the same reason.

Multimodal Variational Recurrent Neural Network (VRNN) [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] deals with the prediction of the future frames of a two-person interaction based on a historical sequence using variational RNNs. The next frame of the reaction is predicted using the past frames of the reaction and information on the past frames of the action; the action is predicted in the same way using the information on the reaction. The past frames are the historical sequence at the beginning and later in the sequence the generated frames. We modified the network to fit our problem. Originally the network takes n historical frames for both action and reaction as input and generates m frames for both action and reaction. We modify some parameters so the network takes n + m frames for the action but only 1 for the reaction and we generate n + m -1 frames of reaction motion. Otherwise, we use the default settings provided by the author for the hyper-parameters.

Mix-and-Match Perturbation (MixMatch) [5] uses a recurrent encoder-decoder network with a conditional variational autoencoder block to predict the motion of a single person based on a historical sequence. However, the authors present their method as a general prediction method and the code they provide uses the first half of an image to predict the second half. Since the specific code used for motion prediction is not available we use the one provided by the author but with 3D skeletons data and with the values of the hyperparameters mentioned in [5] for human motion prediction. To ensure a fair comparison we need to base the generation of the reaction on an initial frame but directly using 3D coordinates led to strong discontinuities between the initial position and the generation. To solve this and make the comparison fairer we work with the speed of the motion that we then apply to the skeleton corresponding to the initial position.

Progressively Generating Better Initial Guesses (PGBIG) [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] is an architecture that uses Spatial Dense Graph Convolutional Networks and Temporal Dense Graph Convolutional Networks alternatively to extract spatio-temporal feature and predict human motion. We use the code provided by the authors unchanged and with the recommended parameters. We give the action motion followed by the first frame as input and predict the reaction motion.

Spatio-temporal Transformer (STT) [3] is a Transformer based architecture that uses attention to find temporal and spatial correlations to predict human motion. As for PGBIG, we use the code provided by the authors without changes and with the recommended parameters. As input, we use the action motion followed by the first frame and predict the reaction motion.

State-of-the-Art Comparisons

All presented evaluations were obtained on a model trained on the considered dataset. This is true for our Interformer as well as the baselines.

Quantitative Evaluation. these cause the classifier to fail at classifying the sample and likely classify many samples as "kicking", including some that are from the "kicking" class leading to the high score in this class.

For K3HI, we can see that the results are worse than for SBU for all methods and even for the ground truth. This is due to the very noisy nature of the K3HI dataset even after removing the worse samples (that showed extreme deformation and no recognizable motion), the exchanging class has a 0% recognition rate even for the ground truth. However, our method provides better results than the two others in all classes except "approaching" which may be due to the noisy nature of the data for this class. VRNN obtaining very high results in this class might be a consequence of the wrong classification present in many of the classes (a lot of samples are classified as approaching). For shaking PGBIG and STT obtain better results but since the results are worse overall quantitatively and qualitatively this can be explained by the classifier putting many samples in that class as we have explained for ZeroV.

For DuetDance, the classification accuracy for all methods and the GT is much closer than for the other datasets. This is due to the complex motions contained in the dataset with a lot of intra-class variabilities. Furthermore, we use sequences of 50 frames which are short enough that some sequences from two different classes can be very similar. We can still notice that our method provides results that are the closest to the ground truth and that, unlike the five other methods no class has a score below chance (i.e., 20%) which means that our results are more consistent and closer to the ground truth, despite being beaten on some individual class e.g., STT score 37.1% on "cha-cha" but only 10.0% on "salsa" while we score 26.7% and 28.1%, respectively.

In Table 3.3 we show the FVD and diversity score for all methods on all datasets. We outperform VRNN, MixMatch STT, and PGBIG on the FVD measure, often by a large margin meaning that the features extracted by the classifier are closer to the features of the ground truth than for [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] and [5]. For the diversity score, we also outperform the two other methods and provide diversity that is close to that of the ground truth. We can see a significant increase in K3HI. This is due to the noisy nature of the dataset, which means that the diversity distance of the ground truth takes into account the noise of the sample, we, however, manage to score the closest to the diversity of the ground truth when compared to the other methods, without generating noisy samples. This can also explain why PGBIG diversity is better than ours despite performing much worse in terms of classification and qualitative results.

User Study. To evaluate the quality of the generated videos, we also conduct a user study. Specifically, the users are given four videos (two generated by existing methods VRNN and MixMatch, one generated by our proposed InterFormer, and one real video) with the corresponding class label, each participant needs to answer one question: 'Which video is more realistic regardless of the input label?'. 20 users have unlimited time to select their choices. PGBIG and STT are not represented in this study due to the extremely low quality of the results, as illustrated by our qualitative results. The results are shown in Table 3.2 (right), we can see that the users show more preference for our method than the other two methods, which indicates the results generated by ours are more realistic.

Qualitative Evaluation. We show in Figures 3.7 HUMAN REACTION GENERATION WITH TRANSFORMER NETWORK erated sequences on the SBU (two sequences) DuetDance and K3HI datasets respectively. We show from top to bottom: the ground truth, results for [5], results from [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF], results from [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF], results from [3] and results from our InterFormer. In blue is the action motion, which serves as a condition and is in all cases the ground truth. In green, black, magenta, yellow, orange, and red are the reactions for the GT and the five methods.

In Figure 3.7, we show an interaction from the "shaking hands" class of SBU. It shows that our method is able to generate the motion better than the two other methods. For [5], the character raises its hand to shake but never comes really close to the other character's hand and also shifts its entire body backward toward the end of the sequence. [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] generates a motion that raises slightly the hand but is then stuck in this position. [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] does not generate a shaking hand motion and fails to generate poses for the entire length of the action. STT [3] also fails to generate a shaking hand motion. Our method generates motion that is very close to the ground truth and contains the three main steps of the motion: raising the hand, shaking, and going back to starting position. Figure 3.10 shows a sample from the "punching" class from the SBU dataset. We see that we generate a better motion even if there are differences with the ground truth. The character is pushed to the side by the punch and then comes back to a normal position at the end of the sequence. The two other methods also generate a reaction to the punch, [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] moves slightly backward, and [5] moves its upper body to avoid the punch. [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] does not generate a motion that looks like a reaction to the punch and presents noise with the vertical position of the skeleton suddenly changing from one frame to the other. [3] generates a slight motion of being pushed back but the motion continues without trying to go back into a neutral position. It seems, however, that the upper body also became smaller during this motion. The two methods also stay in this avoiding pose and do not go back to a more normal position. In Figure 3.8 we show a sample of the "cha-cha" class from the challenging DuetDance dataset. We can see that [5] produces a motion that resembles a dance even if different from the ground truth, however as the action character moves backward, the generated reaction stays in place, and the distance between both characters grows over time. With [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF], the distance between the two characters does not grow, but there is barely any motion for the entire sequence. In motion, it looks like the reaction character is gliding toward the action character. Here [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] and [3] generate something close to [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] with little motion, but the distance between the two skeletons does not grow. [3] also present deformations in the arms. Our method is able to generate a motion that stays close to the ground truth and follows the action character in space without gliding like [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] this can be seen by the change of position of the legs across the sequence. It is only toward the end that the motion differs from the ground truth and even then, the motion still resembles dancing.

In Figure 3.9, we see a sample of the departing class from the K3HI dataset. It shows both characters walking away from each other. This behavior is always reproduced in the samples generated by the three methods, but [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] does not show much motion and simply glides away while [5] shows more motion of the legs but keeps the noise present in the first frame during the entire sequence. Once again [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] does not generate a proper motion, and this time it shows deformation in the skeleton that stays for the entire duration of the motion. Likewise, [3] is unable to generate a proper walking motion.Our method, on the other hand, generates a realistic walking motion with both arms and legs moving to move apart from the first character. The very poor performances of PGBIG [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] and STT [3], our two baselines with unmodified code, can be explained by the fact that they were designed for human motion prediction. With human motion prediction, we seek to reduce as much as possible the discontinuities between the input and the output while we want to generate a different skeleton to the one used as input which implies a very strong discontinuity. Also, methods for human motion prediction are typically trained to always take the motion of the same duration as input and predict sequences that always have the same length e.g., the input of 500ms to predict 1s of motion. With reaction generation, the length of the sequences can vary (greatly in the case of K3HI) and the unmodified motion prediction method might struggle with the varying lengths. This is illustrated by the early stop in the generation of [START_REF] Ma | Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction[END_REF] in Figure 3.7 but also by the fact that [3] is unable to stop generating until it reaches the maximum sequence length of the dataset (not pictured in our figures).

Multi-Modality Generation. The main issue with Transformer models is that their output is deterministic. To counter this we can add noise to the encoder input before the first feedforward layer. This allows us to generate diverse outputs for the same input motion. We show in Figure 3.11 and Figure 3.12 the ability of our method to generate diverse motions with a single input when adding noise in the encoder.

Ablation Study

To validate the effectiveness of each proposed component, we report the ablation studies on SBU with classification accuracy and diversity.

Ablation Models. Our Interformer has four versions (i.e., S1, S2, S3, S4) as shown in Table 3.4. (i) S1 means only using the original NPL Transformer network from [START_REF] Vaswani | Attention is All you Need[END_REF] modified to take as input and generate skeletons without any of our improvements. (ii) S2 adds to the global Transformer the spatial attention modules (self spatial attention and interaction spatial attention). (iii) S3 adds the skeleton adjacency module to the self spatial attention. (iv) S4 is the full model and includes both the skeleton adjacency module and the interaction distance module.

Effect of Spatial Attention. We validate the effect of spatial attention, as shown in Table 3.4. Introducing spatial attention results in significant improvement in classification accuracy by 13% and diversity by 5.6, which means we improve the quality of the action-reaction sequences.

Effect of Skeleton Adjacency. Using a skeleton adjacency graph on attention improves the classification accuracy and diversity by 7% and 2.2, respectively. This improvement means that the model learns better relations between the different joints inside a skeleton.

Effect of Interaction Distance. By adding the interaction distance module, we increase the results obtained by the skeleton adjacency module by 7% on classification and 0.8 on diversity. These results show that the interaction distance module is able to help spatial interaction attention find the most interesting relations between the two skeletons and thus help generate better motions.

CHAPTER 3 Abaltion on K3HI. Table 3.5 shows the ablation for the K3HI dataset and confirm our finding from the SBU ablation. The only difference is a lower diversity when using the graphs but not the interaction distance. We believe this to be due to the more noisy nature of the K3HI dataset, which deteriorates the diversity measures.

Effect of Loss on The First Frames. If we remove the loss on the first frames that allow us to keep a good coherency between the input initial position and the generation, we see a decrease in the generation quality: -3.3% in classification accuracy and -5.2 in diversity score when compared to S4. When the input initial position is not properly taken into account the generated reaction skeleton can be far from the action skeleton. In SBU, for all action classes, the interactions consist of two persons close to each other. Since the model is not trained with samples where people are far from each other when we try to generate the reaction motion of a skeleton far from the action skeleton, little to no motion is generated. This explains the increase in performance brought by the use of the first frame loss.

Effect of Multihead attention. Our Interformer uses the multihead version of attention for both temporal and spatial attention. These choices were made following results from the original Transformer network [START_REF] Vaswani | Attention is All you Need[END_REF] and our experiments which we report in Table 3.6. The results are obtained by modifying the number of heads for the different attention modules on the full Interformer model (S4 from the ablation study). These experiments show that using the multihead temporal attention (T multihead) increases the classification accuracy by 10% and diversity by 8.6. By using only the spatial multihead attention (S multihead) we increase the diversity by 5.5. Using the multihead attention for both spatial and temporal attention led to an increase of 20% in classification accuracy and 9.7 in diversity. This confirms our choice to use this configuration for Interformer. Table 3.7 shows the same ablation for the K3HI dataset and we observe the same behavior as for SBU except for the diversity where other configurations have lower values than using both multihead attention. We believe this to be due to the more noisy nature of the K3HI dataset, which deteriorates the diversity measures.

Limitations

InterFormer presents two main limitations: (i) Due to the huge variability of complex motions, it is hard to stay true to the ground truth, making it difficult to evaluate the results in these cases; (ii) We are able to generate realistic motion for long sequences (tested up to 40 seconds) To do this we cut the action sequence into smaller sub-sequences that we use for generation. We then generate all these sequences the same way as we do for shorter sequences. Only for the second sub-sequence onward the first frame used to give the initial position does not come from ground truth but instead is the last generated frame from the previous sub-sequence. This way InterFormer is able to generate reaction sequences for long motion. However, due to the accumulation of errors over time, the generation diverges more and more from the ground truth up to the point where it is hard to know how much the action is taken into account in the generation. It is even more true that very long motions are usually complex ones, which means we also face the first limitation.

Conclusion

We present InterFormer, a novel human reaction generation Transformer. InterFormer is the first Transformer architecture used to solve the problem of human reaction generation challenge. InterFormer consists of four modules: a motion encoder, a motion decoder, a skeleton adjacency module, and an interaction distance module. The ablation study on SBU has shown the effectiveness of the four components of the InterFormer. We have both qualitatively and quantitatively evaluated our reaction generation framework. The results show that InterFormer outperforms state-of-the-art approaches in terms of FVD, classification, and diversity score on three challenging datasets SBU, K3HI, and DuetDance. The qualitative results show also the ability of InterFormer to generate realistic human reactions. Interformer is a deterministic approach. Although we have proposed an approach to mitigate this problem, the diversity of responses generated remains limited and should be improved. It is still difficult to generate complex human motion. Although our results on the dance dataset show that we are able to generate dance movements, we are still not able to generate more subtle motions present in the dataset. The lack of large interaction datasets makes it difficult to evaluate feedback generation. Although large interaction datasets exist, such as some classes of NTUs, they are not annotated to separate action from reaction motion. It is difficult to evaluate the performance on long-term motion due to the lack of appropriate data. CHAPTER 4

Introduction

Modeling dynamics of human motion interaction is at the core of many applications in computer vision and computer graphics. Most works on human motion generation ignore human interactions and focus instead on the generation of actions of a single person [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF][START_REF] Tseng | EDGE: Editable Dance Generation From Music[END_REF].

In this paper, we explore the problem of generating 3D human motion interaction. What makes interaction generation challenging are the non-linearity of human motion interaction and the diversity of the interaction between humans. Several questions arise to tackle these challenges. How to represent the interaction between humans? How to model motion and generate diverse motion interaction? To solve the first question, we propose to represent the skeleton interaction by using a bipartite graph [START_REF] Tang | Bipartite Graph Reasoning GANs for Person Image Generation[END_REF]. The main goal of the bipartite graph is to capture the relations between humans represented by skeletons. To solve the second question, the motion interaction generation is formulated as a reverse diffusion process. Overall, our contributions are summarized as follows:

• We propose the first Bipartite graph denoising diffusion model (BiGraphDiff) for human interaction generation. Our BiGraphDiff is able to generate motion interaction in a stochastic way, naturally leading to high diversity, and is able to generate very long motion sequences (>1000 frames).

• BiGraphDiff is a denoising diffusion process that learns not only the denoising of the motion, but also it learns a Bipartite graph. The aim of Bipartite graph is to capture the relations between the two persons.

• BiGraphDiff achieves state-of-the-art quantitatively and qualitatively in action interaction and dance tasks. A user study shows that the generated sequences are better qualitatively than the sequences generated by state-of-the-art methods.

The code and some videos of generated interaction are available at https://github. com/CRISTAL-3DSAM/BiGraphDiff

Related Work

We discuss the relevant literature from two perspectives, namely, previous methods of Human interaction motion synthesis and the literature on diffusion models.

Human Interaction Motion Generation. Recently there has been an increase in motion generation based on different modalities, [START_REF] Yin | Graph-based Normalizing Flow for Human Motion Generation and Reconstruction[END_REF] use control signals such as the global trajectory of the person to generate human motion in long-term horizons while [START_REF] Ahuja | No Gestures Left Behind: Learning Relationships between Spoken Language and Freeform Gestures[END_REF] and [START_REF] Habibie | Learning Speech-driven 3D Conversational Gestures from Video[END_REF] generate motion based on speech audio. Meanwhile, others use only knowledge of the past motion which allows them to work in real-time but on shorter motion [START_REF] Martinez | On Human Motion Prediction Using Recurrent Neural Networks[END_REF][START_REF] Cui | Learning Dynamic Relationships for 3D Human Motion Prediction[END_REF][START_REF] Sofianos | Space-Time-Separable Graph Convolutional Network for Pose Forecasting[END_REF]. More recently, several works have been dedicated to human pose and motion generation from text or action labels, as well as its reciprocal task [START_REF] Guo | TM2T: Stochastic and Tokenized Modeling for the Reciprocal Generation of 3D Human Motions and Texts[END_REF][START_REF] Lucas | PoseGPT: Quantization-based 3D Human Motion Generation and Forecasting[END_REF]. These papers focus only on one person, while our approach is dedicated to the generation of two-person interactions. [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] propose a multimodal variational recurrent neural network to predict the future motion of both participants in an interaction based on pasts sequences of motion. In contrast, we propose to generate human interaction between two persons. Generative Diffusion Models. Diffusion models [START_REF] Sohl-Dickstein | Deep Unsupervised Learning using Nonequilibrium Thermodynamics[END_REF][START_REF] Ho | Denoising Diffusion Probabilistic Models[END_REF] have shown great promise in terms of generative modeling by showing impressive results in synthesis applications ranging from image generation [START_REF] Harvey | Flexible Diffusion Modeling of Long Videos[END_REF], audio-drive motion synthesis [4], molecule generation [START_REF] Hoogeboom | Equivariant Diffusion for Molecule Generation in 3D[END_REF], to text-driven motion generation [START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF]. More recently, some concurrent work in the field of text-to-motion introduces a diffusion-based method for generating text-conditioned motion. For example, [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF] propose MotionDiffuse, a diffusion model-based text-driven motion generation framework. [START_REF] Tseng | EDGE: Editable Dance Generation From Music[END_REF] propose EDGE, a method for generating editable dances that is able to create a realistic dance while remaining faithful to the original music. [START_REF] Dabral | MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis[END_REF] introduce MoFusion, a denoising-diffusion-based framework for high-quality conditional human motion synthesis that can generate long and temporally plausible motions conditioned based on music or text. Despite achieving impressive performance, these methods use a diffusionbased method for generating the motion of only one person. In contrast, our proposed method BiGraphDiff proposes to generate the interaction between two persons and propose to learn a bipartite graph during the diffusion process. In addition, BiGraphDiff is applied for both text-to-motion and text-to-dance, and it is able to generate a long sequence of dance motion.

Graph Neural Networks Graphs are a way to describe pairwise relations between entities and are used in various domains including physics, chemistry, and computer science. A graph can be represented as G = {V, E}, with V = {v 1 , ...v n } the n nodes, also called vertices, and E = {e 1 , ..., e m } the m edge connecting the nodes. A graph can be represented visually as seen in Fig. 4.1 or as an adjacency matrix. For a graph G = {V, E}, the adjacency matrix A ∈ {0, 1} n×n represents the connections between the nodes. Specifically, A ij = 1 if v i and v j are connected and A ij = 0 otherwise. For the graph in Fig. 4.1 the corresponding adjacency matrix is:

CHAPTER 4 A =       0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0       (4.1)
The degree of a graph's node corresponds to the number of nodes it is connected to. Using the adjacency matrix the degree of node v i is:

d(v i) = n j=1 A ij (4.2)
We define the Laplacian matrix of a graph by

L = D -A (4.3)
with D = diag(d(v 1), ..., d(v n)) the diagonal degree matrix. This Laplacian matrix is useful to create a link between the discrete graph and a continuous representation, e.g. vector spaces.

Graphs have been widely used for computer vision tasks, such as visual question answering [START_REF] Qian | Scene Graph Refinement Network for Visual Question Answering[END_REF] or human motion recognition [START_REF] Cheng | Skeleton-Based Action Recognition With Shift Graph Convolutional Network[END_REF]. Graph Neural Networks (GNN) [START_REF] Scarselli | The Graph Neural Network Model[END_REF] are commonly used for these tasks. In recent years, graph convolutional networks (GCN) [START_REF] Welling | Semi-supervised classification with graph convolutional networks[END_REF], a version of GNN that uses graph convolution. The graph convolution is computed as follows:

H = σ(D-1 2 Â D-1 2 XW) (4.4)
where σ is an activation fonction e.g. RELU, Â = A + I with I the identity matrix, D a diagonal matrix where Dii = n j=1 Âij , X a matrix of feature representing the nodes, and W the trainable weights. This equation corresponds to Laplacian smoothing [START_REF] Li | Deeper insights into graph convolutional networks for semi-supervised learning[END_REF] with specific parameters. Laplacian smoothing considers a graph as a curve made of discrete points and tries to smooth it. The smoothing is done following:

X smooth = (I -ωL rw)X (4.5)
where L rw = D-1 L is the normalized Laplacian and 0 ≤ ω ≤ 1 a parameter to control the strength of the smoothing. If ω = 1 and L rw is replaced by L sym = D-1 2 L D-1 2 then we have:

X smooth = D-1 2 Â D-1 2 X (4.6)
This is the same form as we have in Equation. 4.4 showing that the graph convolution is indeed a Laplacian smoothing.

In this chapter, we use a specific type of graph to model the interactions between two persons. The graph we use is the bipartite graph. A graph is a bipartite graph if its vertices can be split into two independent sets U and V . Those set are called the parts of the graph. The edge of a bipartite graph can only connect a vertex of U to a vertex of V , but not two vertices of the same set. In Figure .4.2 we show an example of a bipartite graph. If every vertices of U connect to every vertices of V then we call it a complete bipartite graph. Bipartite graphs are used in various domains from coding theory to computer science [START_REF] Kim | A Bipartite Graph Neural Network Approach for Scalable Beamforming Optimization[END_REF][START_REF] Li | Bipartite Graph Network With Adaptive Message Passing for Unbiased Scene Graph Generation[END_REF][START_REF] Tang | Bipartite Graph Reasoning GANs for Person Pose and Facial Image Synthesis[END_REF][START_REF] Tang | Bipartite Graph Reasoning GANs for Person Image Generation[END_REF]. With BiGraphDiff we use them to model the interaction between two 3D skeletons.

Framework Overview

Our goal is to generate a human motion interaction x 1:N given an arbitrary condition c. Let us consider x 1:N ={x 1 , . . . , x N } an arbitrary sequence of joints that compose the two skeletons, x i ∈R k×3×2 , where k is the number of joints. The motion generation is formulated as a reverse diffusion process that requires sampling a random noise x 1:N t from noise distribution to generate a motion sequence. While the forward process requires successively corrupting the motion sequence x 1:N t by adding the noise to the motion sequence for T timesteps in Markov fashion. We propose Transformers to learn the denoising function and a bipartite graph to represent the relationship between the joints of the skeleton. The proposed Transformer learns not only the denoising function but also the bipartite graph. See Fig. 4.3 for an overview.

Diffusion for Motion Generation

The diffusion model consists of two separate processes called forward diffusion and reverse diffusion. During the forward diffusion process, we add to real data a small amount of Gaussian noise repeatedly until the data becomes Gaussian noise. Formally, the forward process CHAPTER 4 on a real sample from a real data distribution x 1:N 0 ∼q(x 1:N) consists in a Markov chain that gradually adds noise following a variance schedule β t to obtain the posterior q(x 1:N 1:T |x 1:N 0) with x 1:N 1 to x 1:N T the latent data:

q(x 1:N 1:T |x 1:N 0) := T t=1 q(x 1:N t |x 1:N t-1), q(x 1:N t |x 1:N t-1) := N (x 1:N t ; 1 -β t x 1:N t-1 , β t I). (4.7)
Eventually with T → + ∞ the distribution will be close to N (0, I). This formulation implies that the forward process is recursive but this can be avoided by using [START_REF] Ho | Denoising Diffusion Probabilistic Models[END_REF] formulation:

q(x 1:N t |x 1:N 0) = √ α t x 1:N 0 + ϵ √ 1 -α t , ϵ ∼ N (0, I), (4.8)
with α t = t i=0 α i and α t =1-β t . With this formulation, we can sample a noise ϵ and directly generate any x 1:N t . Forward diffusion does not require any training but only gradually adds noise to real data. To generate motions, we need to be able to obtain clean data from noisy data to reverse the forward process.

The reverse diffusion process, p θ (x 1:N 0:T), is a Markov chain that eliminates the noise from x 1:N T recursively until we obtain x 1:N 0 . With p(x 1:N T) = N (x 1:N T ; 0, I):

p(x 1:N 0:T) := p(x 1:N T) T t=1 p θ (x 1:N t-1 |x 1:N t), p θ (x 1:N t-1 |x 1:N t) := N (x 1:N t-1 ; µ θ (x 1:N t , t, c), Σ θ (x 1:N t , t, c)). (4.9)
During the denoising process the goal is to estimate µ θ (x 1:N t , t, c) and Σ θ (x 1:N t , t, c). However, if we use Eq. (4.8) formulation and [START_REF] Ho | Denoising Diffusion Probabilistic Models[END_REF] method then we can set Σ θ (x 1:N t , t, c)=σ 2 t I with σ t a constant and replace µ θ (x 1:N t , t, c) as follow:

µ θ (x 1:N t , t, c) = 1 √ α t (x 1:N t - 1 -α t √ 1 -α t ϵ θ (x 1:N t , t, c)), (4.10)
this means that we only need to estimate ϵ θ (x 1:N t , t, c) to be able to denoise the latent data since we can recover x 1:N t-1 using:

x 1:N t-1 = 1 √ α t (x 1:N t - 1 -α t √ 1 -α t ϵ θ (x 1:N t , t, c)) + σ t γ, (4.11)
with γ∼N (0, I). In our model we set

σ t = log(β t 1 -α t-1 1 -α t) following [59] recommendation.
To estimate ϵ θ (x 1:N t , t, c) we will train a Bipartite Graph Interaction Transformer (defined in Sec. 4.3.3) to minimize the loss:

L :=E t∈[1,T],x 1:N 0 ∼q(x 1:N 0),ϵ∼N (0,I) [∥ϵ -ϵ θ (x 1:N t , t, c)∥ 2] :=E t∈[1,T],x 1:N 0 ∼q(x 1:N 0),ϵ∼N (0,I) [∥ϵ -ϵ θ (√ α t x 1:N 0 + ϵ √ 1 -α t , t, c)∥ 2]. (4.12)

Bipartite Graph Interaction Transformer

The Bipartite Graph Interaction Transformer used by BiGraphDiff is based on the original Transformer [START_REF] Vaswani | Attention is All you Need[END_REF]. It is composed of a text encoder, embedding and positional encoding layers, self-attention modules, cross-attention modules, a Bipartite graph module, feed-forward modules, and a final linear layer. We input x 1:N t and c to obtain ϵ θ (x t , t, c).

Text Encoder. The text encoder is used to encode c the class label. We use a simple four layers Transformer encoder as described in [START_REF] Vaswani | Attention is All you Need[END_REF] that uses multi-head self-attention. To avoid training the encoder from scratch, we initialize the weight with those of CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF].

Motion Decoder. The motion decoder uses x 1:N t and the output of the text encoder to obtain ϵ θ (x t , t, c). First we split x 1:N t into x 1:N 1,t and x 1:N 2,t which represent the first and second skeleton, respectively. Each skeleton passes through an embedding layer followed by a positional encoding layer introduced by [START_REF] Vaswani | Attention is All you Need[END_REF] that encodes the temporal information from each frame of the sequence.

Self-Attention and Cross-Attention Then the data goes through self-attention and crossattention layers. Attention is used to find correlations within the data and is defined as

Attention(Q, K, V) = softmax QK T √ d V, (4.13)
where Q, K, and V are the query, key, and value matrices that have the same size as x 1:N 1,t and d=k * 3 the dimension of one frame from x 1:N 1,t . Q, K, and V are defined for self-attention for the first skeleton as

Q = x 1:N 1,t W q , K = x 1:N 1,t W k , V = x 1:N 1,t W v , (4.14)
and for cross-attention

Q = x 1:N 1,t W q , K = c emb W k , V = c emb W v , (4.15)
where W q , W k , and W v are the weight matrices for the projection and c emb the text embedding from the text encoder. This type of attention is also used in the text encoder. The issue with using this attention is its complexity. Indeed the complexity is N 2 d. This means that long sequences take a very long time to be processed on top of taking a lot of memory space. To solve this issue and following the similar observation from [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF], we use efficient attention instead. Efficient attention was introduced by [START_REF] Shen | Efficient attention: Attention with linear complexities[END_REF] to have a linear complexity on attention by calculating a global feature map instead :

F = softmax(K T)V, Attention = softmax(Q)F. (4.16)
This simple modification allows us to get a complexity of d 2 h N h for the attention with h the number of heads and d h the dimension of each head. d h being a fixed value and much smaller than N , the complexity is much lower than standard attention. These heads are a part of the multi-head attention, a concept introduced by [START_REF] Vaswani | Attention is All you Need[END_REF] where we split the inputs into smaller parts of size d h . Each part is fed to a head that contains its own attention module.

The output of all the heads is then concatenated. We use 8 heads for both self-attention and cross-attention. Each attention layer (self and cross) is followed by a stylization block. This module, introduced by [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF] allows the generative process to keep track of the current diffusion timestep t improving the generation. The output of this module is added to the input of the attention through a residual connection.

Bipartite Graph. Following the self-attention and cross-attention module, both skeletons, z 1:N 1,t and z 1:N 2,t go through the bipartite graph module. The proposed bipartite graph aims to capture the long-range cross relations between the two skeletons S a =z 1:N 1,t and S b =z 1:N 2,t in a bipartite graph via GCNs. Each node in S a is connected to all the nodes in S b . Firstly, S a and S b are separately fed into two encoders to obtain the feature F a and F b , respectively.

We then reduce the dimension of F a with the function φ a (F a)∈R C×Da , where C is the number of feature map channels, and D a is the number of nodes of F a . Meanwhile, we reduce the dimension of F b with the function

θ b (F b)=H ⊺ b ∈R D b ×C
, where D b is the number of nodes of F b . Next, we project F a to a new feature V a in a bipartite graph using the projection function H T b . Thus we have:

V a = H ⊺ b φ a (F a) = θ b (F b)φ a (F a), (4.17)
where both functions θ b (•) and φ a (•) are implemented using a 1×1 convolutional layer. This results in a new feature V a ∈R D b ×Da in the bipartite graph, which represents the cross relations between the nodes of the skeleton F b and the skeleton F a .

After projection, we employ a fully connected bipartite graph with adjacency matrix A a ∈R D b ×D b . We then use a graph convolution to learn the long-range cross relations between the nodes from both skeletons, which can be represented as:

M a = (I -A a)V a W a , (4.18)
where W a ∈R Da×Da denotes the trainable edge weights. We use Laplacian smoothing [START_REF] Chen | Graph-based global reasoning networks[END_REF][START_REF] Li | Deeper insights into graph convolutional networks for semi-supervised learning[END_REF] to propagate the node features over the bipartite graph. The identity matrix I can be viewed as a residual sum connection to alleviate optimization difficulties. We randomly initialize both the adjacency matrix A a and the weights W a and then train them by gradient descent.

After the cross-reasoning process, the new updated feature M a is mapped back to the original coordinate space for further processing. Next, we add the result to the original feature F a to form a residual connection, as follows:

Fa = ϕ a (H b M a) + F a , (4.19)
where we reuse the projection matrix H b and apply a linear projection ϕ a (•) to project M a back to the original coordinate space. Therefore, we obtain the feature Fa , which has the same dimension as the original one F a .

Similarly, we can obtain the new feature Fb . Overall, the proposed method reasons the cross relations between feature maps of different skeletons using a bipartite graph.

Feed-Forward Network. After the bipartite graph module, the data of each skeleton goes through a feed-forward network. It is composed of linear projections, dropout, and GELU CHAPTER 4 activation functions. It is followed by a stylization block to ensure that the information about the current timestep is not lost. The output is added to the input of the feed-forward network thanks to a residual connection.

Linear Transformation. The Motion decoder described above contains 8 identical layers and the input of layer m is the output of layer m -1. Following those 8 layers the data of the two skeletons is concatenated and goes through a final linear projection to obtain ϵ θ (x t , t, c) that we can use in our loss and to retrieve x 1:N t-1 .

Experiments

Datasets

There are few 3D motion two-persons interaction datasets. Therefore we focus on two complementary datasets. The NTU RGB+D 120 dataset [START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF], among its 120 classes, contains 26 classes labeled as "Mutual Actions / Two Person Interactions" which show two persons performing simple interaction motions. We take this 26 classes subset that we call NTU-26 and split each class randomly to obtain our training and testing set. The testing set contains 2,600 samples (100 per class) and the training set is 19,787 samples. The second dataset is DuetDance [START_REF] Kundu | Cross-Conditioned Recurrent Networks for Long-Term Synthesis of Inter-Person Human Motion Interactions[END_REF], which contains five classes of two persons dance motions for a total of 406 sequences. The motions are more complex than the one from NTU-26 and harder to classify, even for a human observer. The original dataset contains motions with great variations in lengths from 100 frames to more than 4,000. The average length is 483 frames with a median of 360 frames. While our model can generate very long motions it causes a problem when obtaining quantitative results and lower the quality of the generation due to the limited presence of some sequence of certain lengths. We decided to split the sequences into subsequences of 300 frames or less. This increases the number of samples to train our network with. This increased number of samples will also help the diffusion model since it needs a lot of data. This leaves us with 698 training samples and 125 test samples (25 per class randomly selected).

Implementation Details

We train our model on an NVIDIA A100 80Go GPU with PyTorch with a batch size of 128 for NTU and 64 for DuetDance. We train on NTU for 1,500 epochs and for 30,000 epochs on DuetDance.

Baselines

We compare BiGraphDiff to two methods from the state-of-the-art, i.e., MotionDiffuse [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF] and ACTOR [START_REF] Petrovich | Action-Conditioned 3D Human Motion Synthesis with Transformer VAE[END_REF]. MotionDiffuse, a recent Diffusion and Transformer based architecture, generates a single-person motion from the text. For our experiments, the code provided by the author and recommended parameters are used. Due to the similarity with our method, however, we take the same batch size and number of epochs as for our method. ACTOR, a Transformer VAE method, generates a single-person motion. We use the code provided by the authors and retrain it on our datasets. We use the recommended parameters to run the model without SMPL [START_REF] Loper | SMPL: A Skinned Multi-Person Linear Model[END_REF]

Evaluation Metrics

Classification accuracy To evaluate the generated sequence we use a classifier made of a simple Transformer encoder followed by a MLP. The classifier is trained and tested on the same training and testing sets as the generative methods. We look at the percentage of correctly classified samples in each class and the average over the entire testing set.

FVD for Fréchet Video distance, adapt the Fréchet Inception distance (FID) [START_REF] Heusel | GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[END_REF] for video sequences [START_REF] Unterthiner | Towards Accurate Generative Models of Video: A New Metric & Challenges[END_REF]. With FVD we compute the distance between the generated data distribution and the ground truth using deep features.

FVD = |µ gt -µ gen | 2 + tr C gt +C gen -2 (C gt * C gen) 1/2 , (4.20)
where µ gt , µ gen and C gt and C gen are the means and covariance matrices of the deep features from ground truth and the generated samples respectively, tr(•) is the trace. We obtain the deep features from one of the last MLP layers from the classifier used to get the classification accuracy.

Multimodality Multimodality is defined as the average deep features distance of the samples generated by a method compared to the average deep features distance of the ground truth on a specific class. Multimodality allows us to see if the samples we generate are different from each other, it corresponds to intra-class diversity. To compute the average deep features distance we split the set of features of each class into two equal sets and compare the euclidean norm between the pairs formed by a member of each set and compute the average over the size of the subsets. The average deep features distance for multimodality is defined as follow:

dist = 1 cm c j=1 m i=1 ||F j i A -F j i B || 2 , (4.21)
where c is the number of classes in the dataset F j i A and F j i B the i th features of the subset A and B of class j. The multimodality is then calculated as :

score = 100 × |dist gt -dist gen | dist gt , (4.22)
with dist g t and dist g en the deep features distance of the ground truth and of the considered method respectively. The lower the multimodality the better as it means that we are close to the multimodality of real data.

Quantitative Results

NTU-26. Table 4.1 shows that our method outperforms the two the-state-of-art methods in terms of average accuracy. BiGraphDiff outperforms MotionDiffuse by 7.0% and ACTOR by 46.3%. We are also very close to the accuracy of the classifier on the ground truth. This shows that the sequences generated by our method are realistic and correspond to the input class. In more detail, we can see that we outperform or equate the other methods on 22 classes out of 26. MotionDiffuse and ACTOR are both better in 2 classes. However, we can see that ACTOR results being actually better is debatable as some classes have very low accuracy, down to 0%. We can also see that the classes in which we perform the worse (i.e., "Hit with object" 28%, "Wield knife" 41%, and "Shoot with gun" 44%) are the ones where the results are also low for the ground truth. Those are classes where the main difference is the object used which is something we can not see using 3D skeleton data. Table 4.2 shows the FVD and multimodality results. In terms of FVD and Multimodality, our method also outperforms the two other methods indicating that our method produces sequences closer to the real data. One issue when using the NTU dataset is that it is very noisy (see the ground truth in the qualitative results). This means that it is harder to generate noiseless sequences but also that a method that generates samples without noise might be disadvantaged in the quantitative results since they are compared with the ground truth and the classifier is trained on the noisy data.

DuetDance. Table 4.3 shows the classification results on the DuetDance dataset. We can see that, as on NTU-26, we have the best performance on average. The accuracy of our method is 9.6% higher than on MotionDiffuse and only 6.4% lower than on the ground truth. We can note that the accuracy for the ground truth is much lower than for NTU-26. This is due to the nature of the motion in DuetDance. The dance motions are much harder to recognize even for a human and also longer so it is not surprising that the results are worse. ACTOR, on the other only achieves results slightly higher than chance (20%) we will see in the qualitative results that on DuetDance, ACTOR does not produce any motion, we will discuss this in detail in the qualitative results. In the "jive" class, all methods only achieve chance level or lower accuracy. But the results are not so low for the ground truth with means that all methods have trouble generating motion of the "jive class". In Table 4.4, we show that we outperform the other methods on both metrics meaning that the results of our method are more realistic.

Qualitative Results

NTU-26. Figure 4.4, 4.5, and 4.6 shows visuals of sequences generated for the "Cheers and drinks", "High-five", and "Kicking" classes respectively. The 'Cheers and drinks" class of motion is more complex than others because it is composed of two separate motions "cheers" and "drink". All methods generate a proper motion but ACTOR shows a low intensity for "cheers" and does not really generate the "drink" motion. MotionDiffuse generates a good motion with both "cheers" and "drink" but there is some noise and the arm length grows over time. Our method generates the proper motion with the two steps and does not produce the noise that is present in the ground truth. In our case, one character drinks while grabbing the glass with one hand while the other uses both hands showing the diversity in the generated motions. For "High-five" ACTOR also generate a low-intensity motion and both characters raise their hand but do not perform a high-five. Both MotionDiffuse and our method generate a high-five but MotionDiffuse shows noise and the hands of both characters stay far from each other. The ground truth once again contains noise that is not present in our generation. For the "Kicking" class ACTOR does not generate any motion for either character.

MotionDiffuse generates the red character as being kicked but does not generate the blue person kicking. Our method on the other hand generates both the kicking motion and the other character being kicked like the ground truth. In the ground truth, we can see that the leg is never fully extended during the kick this is common for this class. The NTU-RGB+D dataset is captured using Kinect camera and has difficulties capturing the legs due to the positioning of the camera and occlusion during interactions. this shows again the kind of noise present in the original data. Overall we see that our motion is more realistic, temporally, and spatially coherent and manages well to keep the interaction coherent.

DuetDance. Figure 4.7 shows examples of motion generation of the "salsa" class. The dance motions are more complex and the sequences are longer than NTU-26 sequences. ACTOR does not produce motion. We believe this to be due to the great variability of motions from the same class. ACTOR converges to a mean and finds that an unmoving pair of skeletons is the best generation for its losses. We see that MotionDiffuse produces a dance motion without noise. This is because there is less noise in DuetDance than in NTU-26. Our method also generates a dance motion but is better than MotionDiffuse, we reproduce the motion of characters changing sides that is present in the ground truth and the interaction is better as the arm of both characters does not overlap.

User Study

The user study compared BiGraphDiff with two leading methods (i.e., ACTOR [START_REF] Petrovich | Action-Conditioned 3D Human Motion Synthesis with Transformer VAE[END_REF], Mo-tionDiffuse [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF]) and the ground truth sequence. For both datasets, we randomly select 20 samples for each class from the test data. For each comparison, 30 participants are asked to answer two questions, i.e., 'Q1: Which skeleton sequence is more realistic?', and 'Q2: Which skeleton sequence matches the input text better?'. The numbers indicate the preference percentage of users who favor the results of the corresponding methods or the GT skeleton sequence. The results highlight the quality of the sequence generated by our method.

Ablation Study

We report ablation results in Table 4.6 on the NTU-26 dataset. We compare a simple twostream Transformer (S1), a two-stream Transformer in a diffusion process (S2), a two-stream Transformer in a diffusion process with a simple GCN (S3), and finally our method with bipartite graphs (S4).

The results of S1 are extremely bad. It is explained by the fact the Transformer is a deterministic method and has a low generation diversity which explains the very high FVD. Furthermore, the noisy data from the NTU dataset makes it even harder to provide wellgenerated sequences. S2 provides much better results both in classification accuracy and FVD, the results are similar to the results obtained by MotionDiffuse. With S3 the simple GCN helps enhance the generation leading to better accuracy and FVD. This highlights the ability of the GCN to model more accurately the spatio-temporal dependencies from each skeleton. Adding a bipartite graph network in S4 provides a stronger increase in performance. It shows that modeling the interactions between the two skeletons is more important than trying to refine the interactions inside each skeleton like S3 did. It validates the use of the bipartite graph network in BiGraphDiff architecture.

Very Long Generation

Long-term motion generation plays an important role in real-world applications. Our method is able to generate longer sequences as shown in Figure 4.8. We train the network on the CHAPTER 4

Conclusion, Limitations and Future Work

We introduce the first approach for 3D human motion interactions based on denoising diffusion models. Both quantitative and qualitative evaluations show that BiGraphDiff outperforms state-of-the-art methods. The proposed BiGraphDiff method generates coherent human motion sequences that are longer and more diverse than the results of previous approaches.

The proposed BiGraphDiff suffers however from the common limitations of diffusion models: the need for large datasets and the long training and testing duration. The method is also still slightly sensitive to noise in the training data and can sometimes generate deformed skeletons. This is due in part to the quality of the data used but also because we do not set any constraint related to the input data, e.g., bone length or relative position of joint for 3D skeletons. This means that BiGraphDiff can be used for tasks other than human interaction generation. As long as the input data can be split into two sets and has a temporal or positional component BiGraphDiff can be used for generation. Diffusion models are improving very quickly and some of these improvements could be used to further improve our results. To reduce the training time, early stop diffusion could be used [START_REF] Lyu | Accelerating Diffusion Models via Early Stop of the Diffusion Process[END_REF]. To improve the performance of graphs in our model we could leverage diffusion models specifically designed to use graphs [START_REF] Gasteiger | Diffusion Improves Graph Learning[END_REF]. Interaction with virtual agents has been studied through several modalities: expression recognition and generation [START_REF] Dipaola | A multi-layer artificial intelligence and sensing based affective conversational embodied agent[END_REF], action recognition and interaction with objects [START_REF] Daoudi | A New Computational Approach to Identify Human Social Intention in Action[END_REF], multimodal input and output [START_REF] Dipaola | A multi-layer artificial intelligence and sensing based affective conversational embodied agent[END_REF]. Some methods can even be used for both virtual agents and robots [START_REF] Hua | Towards More Realistic Human-Robot Conversation: A Seq2Seqbased Body Gesture Interaction System[END_REF]. However, the challenge of building an interactive virtual agent differs from that of building an interactive robot. Robots deal with real persons and objects and do not need to have a human appearance, the focus is more on the accuracy of their motion than on their realness. Virtual agents on the other hand look very human and increasingly so, as 3D modeling software allows for more realistic virtual humans. They lack the mechanical constraints of robots and their behavior can be more realistic than that of robots. In this thesis, we build a virtual agent that reacts to communicative gestures using non-intrusive data acquisition devices. We want the behavior of our virtual agent to be as realistic as possible.

Virtual Agent Application

Virtual agents have been increasingly used for many purposes, especially with the recent growth of virtual reality applications. We will describe some possible uses of virtual avatars in several domains.

Healthcare. Virtual agents can have a wide range of uses in healthcare. For example, they can be used to help patients feel more comfortable during telehealth sessions by giving practitioners more presence. Virtual agents can be part of health surveillance applications to ensure that people follow their treatments (Fig. 5.1a). Or they can be used to help with therapy for example by using virtual agents to "train" people with communication disorders to have a better understanding of human communication. This could help people improve their social skills and reduce the inconvenience that their disability can cause in everyday life. Furthermore, virtual agents could be used as companions for long stays in hospitals. We can also reverse the setting and use an avatar to train medical students, in this case the avatar will play the role of a patient.

Virtual reality environment. Entertainment is another obvious use for virtual agents, especially with virtual reality. In these virtual worlds, the quality of graphics, interactions with the environment, and sound design has continuously increased. Virtual agents on the other hand, despite having been part of the experience for a long time, still suffer from very limited interactions with the users that make them feel artificial. For example, many modern virtual agents allow communication by speech, much less by facial expressions, and even less by bodily gestures although the latter two are also very important means of communication for humans. Having more realistic avatars that can use several channels to communicate with users would enhance the quality of the experience in this virtual world. With the recent rise in popularity of metaverses, keeping users interested in the virtual world, the issue of creating realistic interaction with virtual agents will become even more important and so will providing avatars capable of communicating through multiple modalities.

Virtual assistants. Some customer services have already been replaced by simple artifi- cial intelligence e.g after-sales services replaced by chatbots for simple issues. As these may seem impersonal and people might lose patience faster than with a real person, the obvious enhancement will be to replace the chatbot with an avatar. An avatar has the advantage of looking like a human. If its behavior is realistic enough, the customer will consider it more like a person and be much more patient when interacting with it and explaining problems. In some cases, humans and less immersive artificial intelligence have already been replaced by avatars. For example, recruitment AI is given a human appearance to make the interview feel more natural (Fig. 5.1b). However, like in virtual environments they often only use the speech modality sometimes coupled with facial expression recognition [START_REF] Dipaola | A multi-layer artificial intelligence and sensing based affective conversational embodied agent[END_REF].

Virtual Agent Application Requirements

We want to build an interactive virtual agent that reacts to a person's gestures. It is an application to our work on human motion prediction. We apply several additional constraints to the virtual agent as well as the environment in which it evolves to improve the realism of the interaction:

1. Realistic avatar appearance: we want the avatar to look like a human, this means that it must be detailed and textured enough so that users may interact with it like they would with another human.

2. Believable setting: the environment in which the avatar evolves must also be realistic and the setting linking the avatar to the environment must be believable e.g we do not want the avatar to stand still while waiting for the user to make gestures.

3. Non-intrusive data collection: we need to collect data from the user (motion, facial expression...) but we do not want to use captors that the user needs to put on the body (e.g skin conductance captors, motion capture marker...). We wish to only use cameras (video, depth...) to build an environment that the user can simply enter and instantly start to interact with the virtual agent.

4. Related and accurate reaction: the avatar must react in a way that its reaction is coherent with the gesture performed by the user (e.g the gesture for being cold causes the avatar to close a window). Furthermore, the reaction motion must be realistic and smooth to give the avatar a more human behavior.

5. Timing of the reaction motion: to look realistic the timing at which the motion is performed is important. In particular, the reaction must be performed quickly enough so that the user does not feel as if the avatar did not understand the motion.

Architecture Choices

To respect the constraints we set for our virtual agent application, we must first be able to react quickly to the user gesture. This implies that, in a short time, we must understand the motion the user is performing and produce a reaction to this motion. In these conditions, waiting for the user to complete the motion is not ideal. Therefore, we choose to start by predicting the end of the user motion based on its start. Then we classify the predicted motion and send the information to the avatar that will react accordingly by selecting the corresponding prerecorded reaction motion. The result of the classification will let the system decide which reaction to perform. However, as we will see in Section.5.4, all the gestures we choose indicate discomfort for the user. Depending on the degree of said discomfort, a reaction might not be needed. To take this possibility into account, we add a facial expression recognition module to decide if the virtual agent has to react. Fig. 5.3 shows the overall architecture of the application. One last issue to solve is the need for data. While facial expression databases are plenty and we do not need data to generate the reaction from the virtual agent, we still need data to train networks to predict and recognize the gesture of the user.

A New Motion Database

There is currently no database containing the kind of communicative gestures that we are looking for when interacting with the avatar (e.g "I'm cold", "My ears hurt"... databases contain motions that represent action performed alone (walking, kicking...) or in interaction with other persons (exchanging an item, fighting...). In the latter, the interactions require physical contact between the two parties, either directly or through an object. Gesture databases are also available, however, the gestures included are gestures that do not require a reaction from another person. Furthermore, the gesture databases that could be used to make another person react are culturally coded, the motion performed might not have the same meaning for a French person or even have no meaning at all. To get data that we could use in our scenarios we build a database of communicative motions.

We show in Table 5.1 the different scenarios and motions used in our database as well as a description and the number of samples recorded. Since different motions can be used for each of the scenarios given to the participants, they were also instructed to avoid certain types of motion (e.g they were not allowed to pull the collar of their shirt during the "I am hot" scenario). We added an additional class of motions containing random idle motions to train our networks. It is used to recognize when no motion of particular significance is being performed. By doing that, we can avoid the misclassification of random motions as meaningful ones leading to an unwanted reaction from the avatar. The scenarios were selected from situations where people might perform a gesture to indicate their mental state but that can also be performed to elicit a response from another person (e.g. the gesture of "coming here" oblige observers to modify their behavior. In this case, people move toward the executor). Mental state gestures are gestures that communicate a feeling (e.g. I am cold). In all our scenarios the motion indicates a discomfort and the avatar must react by helping the user.

The motion capture was performed at the Equipex Continuum using the facilities of the Fédération de Recherche "Sciences et Cultures du visuel" at Tourcoing, France. We recruited 11 healthy volunteer participants among the students of the lab team (8 males, 3 females; age between 20-60 yrs). Participants did not receive financial compensation for their participation in the study. Participants were asked to stand in front of the Kinect at a place marked by a cross on the ground. Fig. 5.6 shows the view participants had. Their initial position was then adjusted depending on their height (to allow the capture of all markers by the motion capture system). They were asked to perform the gestures from Table .5.1. The motions from class "Idle" were only performed by 2 participants as they are random, meaningless, motions. The participants performed each motion at least 10 times. Each participant spent between 30 and 45 minutes to complete the entire recording session. The motions are captured on two different systems. The first is a high-precision motion capture system with 6 Qualisys motion capture cameras and nine markers on the participant's body: one on the forehead between the eyebrows, one at the base of the neck, and one above the navel, for each arm we have markers on the top of the shoulder, on the elbow and on the outer side of the wrist. Fig. 5.5 shows the position of the markers on a participant. The motion capture system is calibrated to have an average positional error of less than 2 millimeters. Each sample is recorded for exactly 5 seconds regardless of the actual duration of the motion at 100 fps.

The second capture system we use consists of a single Kinect V2 camera. We decided to also capture the motion with a Kinect camera since the motion capture system would give us extremely precise data that we will not be able to obtain with the system we have put in place for our application. The Kinect allows us to capture real-world data of the motion present in the motion capture database which will help our models become more resilient to the noise there is in real-world data. With the Kinect, we capture joint positions of the entire body but then only keep the nine joints corresponding to those from the Motion capture. Due to the difficulty of setting up synchronous capture between the Kinect and the motion capture system, the capture from the Kinect is started and stopped by an experimenter following the instruction from the experimenter working with the motion capture system. The capture setup is illustrated in Fig. 5.6. Due to this, the duration of the Kinect capture varies between 73 and 530 frames with a median of 155 frames and a mean of 157 frames with a framerate of 30 fps which means that on average the motion duration average is close to 5s. Samples that were too noisy or where joint positions were lost for too long were removed. When a joint position was lost for a short amount of time we estimate its position to be the last known position. All recorded samples were checked by a human curator before being used in the database. This amount to 728 motion samples for the MoCap data and 728 samples for the Kinect data. To avoid having to wear captors when using the application, we can capture the motion data using depth cameras or RGB cameras. Both allow for the capture of skeletons through different toolkits. For example, OpenPose [START_REF] Cao | OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields[END_REF] for RGB camera or the Kinect SDK for the depth cameras. We tried a RGB camera with BlazePose [START_REF] Bazarevsky | BlazePose: On-device Real-time Body Pose tracking[END_REF], Kinect depth camera, and Intel real sense depth camera with NuiTrack SDK 1 . The result led us to choose the Kinect camera. Blazepose, while good for 2D joint detection, fails to correctly estimate the depth coordinates and causes the recorded data to be noisy. The intel real sense with NuiTrack often fails completely to detect the joint position of the arm and the recorded motion looks CHAPTER 5

nothing like the actual motion. On the other hand, Kinect gives an accurate recording of the motion even if it is quite sensitive to occlusion. Fig. 5.9 illustrate the results of each method. For the face data, we use a RGB camera with facial landmark detection software. Out of the many libraries that exist (OpenFace2 , dlib3 ...) we choose to use Mediapipe FaceMesh 4which uses a facial detector [START_REF] Bazarevsky | BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs[END_REF] coupled with a face mesh predictor [START_REF] Kartynnik | Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs[END_REF]. We choose to use this method due to the speed and light weight of the model but also because of its accuracy and higher resistance to occlusion. Even if it uses a face mesh instead of proper landmarks, the results on expression recognition are similar to other landmarks detectors. Fig. 5.10 shows the facial mesh from Mediapipe.

Action Prediction Module

To predict the motion of the user we simply use the Predictive Manifold aware GAN from chapter 2. This means that we must encode the motion data as SRVF before sending it to the prediction network and then retrieve skeleton data from the predicted SRVF which, as shown in Chapter 2 can easily be done. We have also shown that the prediction speed is fast enough to be used in real time which is mandatory to be used in our application. In chapter 2 we predicted the same number of frames as what we were given as input. Here, however, we take an input of 25 frames (1s) to predict 50 frames (2s). The Predictive Network is trained on our dataset, where we mix the Kinect and Mocap data. The motion sequences were cut and resampled to have a duration of 3s.

Facial Expression Recognition Module

To avoid reacting to random motion or communicative motion that does not require a reaction from the avatar, we add a facial expression recognition module that estimates the valence and arousal value of the user expression. We use a simple MLP consisting of 4 Dense layers with dropout that we train on the AFEW-VA [START_REF] Kossaifi | AFEW-VA Database for Valence and Arousal estimation In-The-Wild[END_REF] dataset using landmark data captured with Mediapipe. While the network might seem extremely simple, it is efficient. On the AFEW-VA dataset, with valence and arousal values comprised between -10 and 10, we obtain an error of only 1. State of the art method might perform even better but since our goal is only to set a threshold for discomfort while being fast we do not need as much accuracy as the state-of-the-art methods. We want to prevent the avatar from reacting when the user is in a neutral or positive mood since the motion performed might not indicate discomfort in that case. To do so we ignore motions performed while valence > 0 as it correlates with positive feelings. To avoid reacting when the user is in a neutral mood, we decide to only consider motion performed while valence < -3 and |arousal| > 3. We capture the face of the user with a second camera independent from the Kinect. The Kinect must be far enough to see the entire upper body and can not be simultaneously used to capture a detailed face.

Avatar Module

Our avatar module is a Unity application where our avatar evolves in a scene consisting of a room with furniture as shown in Figure 5.12. The room contains a desk behind which the avatar sits, the avatar can interact with several objects in the scene: cigarette, window, curtains, HiFi system, and a keyboard. We choose a simple appearance for the avatar with a tee shirt so that users will not focus on its appearance but rather on its reaction. When reacting to the user gesture the avatar will stand up (except for the"This smells bad" scenario) CHAPTER 5

Figure 5.13: Aerial view of the scene in the unity builder (ceiling is removed). The entire room is modelized for virtual reality. are treated by the network which outputs arousal and valence values. Our scenarios are all negative ones, the user is bothered by something and wants the avatar to do something about it. We choose valence and arousal intervals that contain expressions that users may perform in these scenarios. If the values obtained by the network are outside these intervals we consider that the motion performed by the user does not show a discomfort needing a reaction or that it is unrelated to the scenarios. In these cases, we prevent the avatar from reacting. Depending on the output of the motion recognition and of the facial expression recognition network the application will decide if the avatar needs to react and if so start the appropriate motion. If no reaction motion is required because the predicted class is 'Idle' or due to the valence and arousal values, the avatar stays in its 'Attention' state. This cycle is repeated until the application is closed. When using virtual reality users can move the camera with their heads and can move around in the room. However, the position of the avatar remains unchanged and a change in user position too drastic will interfere with the body data capture from the Kinect.

Summary of Contributions

The goal of this thesis was to develop novel generative models for the generation of human motion. We present a new human motion prediction method in which we represent the motion as a trajectory. Our method outperforms the state of the art on two commonly used datasets, especially for long-term prediction. We propose a Transformer architecture to generate a human reaction motion conditioned on an action motion. To the best of our knowledge, this work is the first to investigate this challenge. We outperform state-of-theart methods for two-person interaction prediction and single-person motion prediction. We show our ability to generate longer and more complex reactions on a dance dataset. We propose a diffusion two stream Transformer with bipartite graphs to generate two-person interaction motions. We outperform state-of-the-art methods for motion generation on simple interaction and complex two-person dance motion. We show an application of our human motion prediction method by developing an interactive virtual agent that reacts to user motions. To ensure that the system works in real-time, we predict the end of the user's motion before classifying it to select the proper reaction for the agent. To train the networks used with our application, we build a new 3D motion database with 7 classes and 1456 samples captured either by a motion capture system or by a Kinect camera. Taken together, the entire work carried out in this thesis shows several methods to deal with human motion generation and their possible uses in real-life applications. Nevertheless, the proposed approaches still suffer from some limitations.

6.2 Future works

Avatar Interaction

The virtual agent in its current form, while performing adequately for the specifications set, suffers from several limitations that reduce its realism. For example, when using a virtual headset we can not use the facial expression recognition module. Some headsets however contain an eye-tracking device. In future works, we could use eye tracking or gaze detection to alleviate the lack of facial expression recognition, for example, by having the avatar reacts only when the gaze of the user is directed toward it. Eye-tracking uses specific hardware to follow the motion of the eyes while gaze detection uses RGB or infrared cameras to guess what people are looking at. Some methods are specifically designed to work with virtual reality helmets [START_REF] Chen | 3D Face Reconstruction and Gaze Tracking in the HMD for Virtual Interaction[END_REF]. Fig. 6.1 shows an example of an existing gaze detection method designed for virtual reality headsets. We also would like to permit more varied interactions with the virtual agent. To do this, we need a larger database with more types of motion from interactive scenarios. Adding new scenarios also means adding more reaction motion from the avatar which would require making new handmade reaction animations. In our virtual agent application, the reaction motions are prerecorded. While this allows us to have very detailed animations we have no diversity in the reaction motions. Human motion generation can increase the diversity of the avatar's motions and give and make the behavior of the avatar more realistic. Using SMPL 3D model [START_REF] Loper | SMPL: A Skinned Multi-Person Linear Model[END_REF][START_REF] Pavlakos | Expressive Body Capture: 3D Hands, Face, and Body from a Single Image[END_REF] we could have an agent that uses generated motion with good quality. Fig. 6.2 shows an example of a body generated with SMPL. Also, Left: this method detects the gaze of the user with an infrared camera. Right: the method uses the gaze to describe the planet the user is looking at.

the avatar reactions sometimes involve grabbing an object e.g putting out a cigarette. These motions require a modelization of the fingers and of the object being manipulated. While more recent methods allow for the generation of the hand volume [START_REF] Pavlakos | Expressive Body Capture: 3D Hands, Face, and Body from a Single Image[END_REF], we would need to generate the finger motions in addition to the rest of the skeleton. The virtual agent we use also has a limited number of facial expressions. Recent methods are able to generate high-quality sequences of facial meshes [START_REF] Otberdout | Sparse to dense dynamic 3d facial expression generation[END_REF]. Such methods could be used to generate the 3D facial expression of the virtual agent during the interaction. We could also model the user's facial expression more accurately. For example, the method for gaze detection shown in Figure .6.1 is also able to detect facial landmarks (green dots on the left picture). [START_REF] Chen | 3D Face Reconstruction and Gaze Tracking in the HMD for Virtual Interaction[END_REF] uses the landmarks to generate the facial mesh of the user's face. Other methods such as [START_REF] Jourabloo | Robust egocentric photo-realistic facial expression transfer for virtual reality[END_REF] provide more realistic textured meshes that can be used to realistically CHAPTER 6 reproduce the user's face and facial expression in the virtual environment (Fig. 6.3). This could be a way to further improve the experience of our virtual application. By giving the user a personal avatar to control we would increase the feeling that the virtual environment is real.

Human motion prediction

In this thesis, we have focused on making a single prediction based only on the historical sequence. Recent works have explored the possibility of predicting several future motions for a single historical sequence [START_REF] Barsoum | HP-GAN: Probabilistic 3D human motion prediction via GAN[END_REF][START_REF] Ma | Multi-Objective Diverse Human Motion Prediction With Knowledge Distillation[END_REF]. Predicting several future motions would let us choose the most suitable one. To predict very long motion and to manage changes in motion that are not predetermined by the historical motion we will need to consider additional conditioning inputs. When we move, we do so with a goal and are limited by our environment. These are the main things that we can take into account to enhance the performance of motion prediction methods. Some methods already tried to do this by using the trajectory of the character [START_REF] Yin | Graph-based Normalizing Flow for Human Motion Generation and Reconstruction[END_REF]. To provide better predictions and work on classes where the trajectory does not provide useful information, we need to take more information into account (furniture, wall, object, other people...). To provide more accurate predictions, some works have tried to take the environment into account [START_REF] Corona | Context-aware human motion prediction[END_REF].

However, there are very few datasets that contain information like the room layout that would help us to model the environment in which the character evolves. The existing datasets can still be used thanks to methods like [START_REF] Ye | Scene Synthesis from Human Motion[END_REF] that generate an environment based on the motion of one or more 3D characters. To be able to extrapolate our motion prediction model to unseen classes we will need to build a method that looks at the local motion (body parts) and global motion (entire body). That way we hope that on unseen classes despite not knowing [START_REF] Corona | Context-aware human motion prediction[END_REF]. In green are the table and the cup.

the global motion the model will be able to leverage its knowledge of local motion to predict an accurate motion.

Human Motion Generation

These improvements could also improve human reaction generation as adding information about the environment would lead to more realistic reactions. Additionally, we need to tackle the lack of diversity in our method. Our work on diffusion showed that including that coupling Interformer with a diffusion process could solve the diversity issue. Diffusion requires more data, and databases of annotated action-reaction couples are rare and usually small. We will need to build a database to help with the lack of complex interaction motion datasets. This database needs to contain both simple and complex interactions as well as long interaction motions less abstract than the dance motions from DuetDance. The interactions we consider are only between two persons. The CMU Panoptic dataset [START_REF] Joo | Panoptic Studio: A Massively Multiview System for Social Interaction Capture[END_REF] is a dataset that contains interaction motion between more than two persons and could be used to generate the reaction of several persons based on the action of one (Fig. 6.6). We could also try to generate the reaction of one person based on the action of multiple persons or the reaction of n persons based on the action of m persons. Future works on human interaction generation could also benefit from being able to generate interaction with more than two persons. Also, with more extensive databases we could try to generate more complex interactions that contain several short interactions like it is already done for the text-to-motion task [START_REF] Zhang | MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model[END_REF]. The current text-to-motion methods are able to generate realistic sequences of action but only for

Extension to Point Cloud and Surfaces

In this thesis, we work exclusively with 3D skeletons but there are other representations of the human body such as 3D meshes or dense point clouds. These representations are much more complex but contain a lot more information about body deformations. Point cloud methods that deal with human motion use dense point clouds to classify human motion [START_REF] Fan | Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos[END_REF][START_REF] Fan | PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences[END_REF][START_REF] Wang | 3DV: 3D Dynamic Voxel for Action Recognition in Depth Video[END_REF] while generative point cloud methods focus on generating the 3D shape of objects without motion [START_REF] Yang | CPCGAN: A Controllable 3D Point Cloud Generative Adversarial Network with Semantic Label Generating[END_REF][START_REF] Luo | Diffusion Probabilistic Models for 3D Point Cloud Generation[END_REF]. There are few works on the generation of human motion through the point cloud. Thus, exploring human motion generation through dense 3D point clouds could be interesting but would require developing a lightweight method due to the huge amount of data from dense point clouds.

 . 1.2 Motivations . 1.3 Challenges . 1.4 Contributions . 1.5 Thesis Outline . 1.6 Publications . II Human motion Prediction using Wasserstein Generative Adver-. 1.2 Motivations . 1.3 Challenges . 1.4 Contributions . 1.5 Thesis Outline . 1.6 Publications . CHAPTER 1

Figure 1 . 1 :

 11 Figure 1.1: Examples of 3D skeletons. Example from the DuetDance dataset [83] rendered with Blender.

CHAPTER 2 Figure 2 . 1 :

 221 Figure 2.1: Figure from[START_REF] Liu | Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition[END_REF]. Left: skeleton structure from Kinectics[START_REF] Kay | The kinetics human action video dataset[END_REF] extracted with Openpose. Right skeleton from NTU-RGB+D[START_REF] Liu | NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding[END_REF]. We can see that the two skeletons are very different with a different number of joints and different positions for joints representing the same body part.

CHAPTER 2 Figure 2 . 3 :

 223 Figure 2.3: The GAN architecture[START_REF] Goodfellow | Generative Adversarial Networks[END_REF]

CHAPTER 2 Figure 2 . 4 :

 224 Figure 2.4: Overview of the human motion training and prediction processes.

 .6 the evolution of MPJS for the CMU dataset in the same HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK

Figure 2 . 5 :

 25 Figure 2.5: The average speed (MPJS) evolution over 1000 ms of all action classes of the Human3.6M dataset.

CHAPTER 2 Figure 2 . 6 :

 226 Figure 2.6: The average speed (MPJS) evolution over 1000 ms of all action classes of the CMU MoCap dataset.

CHAPTER 2 Figure 2 . 7 :

 227 Figure 2.7: Qualitative results on Human3.6M.The left frames correspond to the sequence used as a prior. From top to bottom: ground truth, the results of ConvSeq2Seq[START_REF] Li | Convolutional Sequence to Sequence Model for Human Dynamics[END_REF], FC-GCN[START_REF] Wei | Learning Trajectory Dependencies for Human Motion Prediction[END_REF] and our method. The illustrated action corresponds to 'Walking Together' from Human3.6M dataset. Short-term frames shown correspond to predicted frames 1, 9, and 10, and long-term frames to frames 11, 12, 22, 23, 24, and 25.

Figure 2 . 8 :

 28 Figure 2.8: Left foot position evolution, Walking class from Human3.6M. X-axis and y-axis correspond respectively to frame numbers and joint position on the y-axis.

Figure 2 . 9 :

 29 Figure 2.9: Right hand position evolution. Walking together class from Human3.6M. X-axis and y-axis correspond respectively to frame numbers and joint position on the x-axis for the right hand joint.

Figure 2 .

 2 Figure 2.10: 2D visualization of the predicted motions by our method and their associated ground truth using the t-SNE algorithm based on Gram distance eq.2.8. Each color represents an action.

Figure 2 . 12 : 2 Figure 2 . 13 :

 2122213 Figure 2.12: Cross database results from NTU RGB+D to Kinect real-time capture. In blue the ground truth and in red the prediction. The discontinuities from the Kinect camera are highlighted in red

CHAPTER 3 Figure 3 . 1 :

 331 Figure 3.1: Example of reaction generation. In blue the action motion is used as a condition. In other colors, the reaction is either from the ground truth or generated by the different models. Example from the kicking class of the SBU dataset. Our model generates a more realistic motion than the competing approaches.

CHAPTER 3 Figure 3 . 2 :

 332 Figure 3.2: The Transformer model architecture[START_REF] Vaswani | Attention is All you Need[END_REF]

Figure 3 . 3 :

 33 Figure 3.3: Figure from[8]. Example of cross attention between a French sentence and an English sentence. Lighter squares indicate stronger correlations.

CHAPTER 3 Figure 3 . 4 :Figure 3 . 5 :

 33435 Figure 3.4: Left: scaled dot product attention. Right: Multiheads attention, several attention layers running in parallel[START_REF] Vaswani | Attention is All you Need[END_REF]

Figure 3 . 8 : 3 Figure 3 . 9 :

 38339 Figure 3.8: Qualitative results.In blue the action motion is used as a condition. In other colors, the reaction is either from the ground truth or generated by the different models. Cha-cha class from the DuetDance dataset.

3 Figure 3 . 10 :

 3310 Figure 3.10: Qualitative results. In blue the action motion used as a condition, in other colors the reaction either from the ground truth or generated by the different models. Punching class from the SBU dataset.

CHAPTER 3 Figure 3 . 11 :

 3311 Figure 3.11: Multi-modality results on SBU kicking class with noise. We show three different motions generated by our Interformer based on the same input motion.

Figure 3 . 12 :

 312 Figure 3.12: Multi-modality results on SBU Punching class with noise. We show three different motions generated by our Interformer based on the same input motion.

Figure 4 . 1 :

 41 Figure 4.1: Example of a graph with 5 nodes and 6 edges.

Figure 4 . 2 :

 42 Figure 4.2: Example of Bipartite graph. U and V are in different colors source: https://fr.wikipedia.org/wiki/Graphe_biparti

Figure 4 . 3 :

 43 Figure 4.3: BiGraphDiff overview. Top: the forward diffusion process to add noise to the motion sequence. Middle: the proposed Bipartite Graph Interaction Transformer to learn the denoising function. Bottom reverse diffusion process to generate motion sequence from noise.

Figure 4 . 4 :

 44 Figure 4.4: Examples of diverse motion generation for a given text prompt "Cheers and Drink" action from NTU-26.

Figure 4 . 5 :

 45 Figure 4.5: Examples of diverse motion generation for a given text prompt "High-five" action from NTU-26.

Figure 4 . 6 :

 46 Figure 4.6: Examples of diverse motion generation for a given text prompt "Kicking" action from NTU-26.

Figure 4 . 7 :

 47 Figure 4.7: Examples of diverse motion generation for a given text prompt "Salsa" action from DuetDance.

Figure 4 . 8 :

 48 Figure 4.8: Example of generation of very long sequences on the "rumba" class from DuetDance. Under each skeleton the frame number.

Figure 5 . 1 :

 51 Figure 5.1: Examples of avatar uses

CHAPTER 5 (

 5 a) Multimodal avatar by[START_REF] Dipaola | A multi-layer artificial intelligence and sensing based affective conversational embodied agent[END_REF] that use many modalities to communicate with the user: object detection, facial expression recognition, skin conductance... (b)[START_REF] Hua | Towards More Realistic Human-Robot Conversation: A Seq2Seqbased Body Gesture Interaction System[END_REF] Method allow to generate motion in an interaction both for a virtual agent and a robot

Figure 5 . 2 :

 52 Figure 5.2: Existing interactive avatars

Figure 5 . 3 :

 53 Figure 5.3: Overview of the virtual agent application architecture

Figure 5 . 4 :

 54 Figure 5.4: Examples of motion from the new database (motion capture). We show three different classes. Visualization obtained after motion sequences were cut and resampled to have a duration of 3s (see Sec.5.5.2)

Figure 5 . 5 :

 55 Figure 5.5: Motion capture markers position

Figure 5 . 7 :Figure 5 . 8 :

 5758 Figure 5.7: Figure from [94] showing the joints captured by the Kinect camera

Figure 5 . 9 :

 59 Figure 5.9: Comparison of different 3D skeleton capture methods for an arm rubing motion

CHAPTER 5 Table 5 . 2 :Figure 5 . 11 :

 552511 Figure 5.11: Architecture of our Interformer-based motion classifier

Figure. 5 .

 5 3 describes the full application.

Figure 6 . 1 :

 61 Figure 6.1: Figure from[START_REF] Chen | 3D Face Reconstruction and Gaze Tracking in the HMD for Virtual Interaction[END_REF]. Example of gaze detection method for virtual reality headsets. Left: this method detects the gaze of the user with an infrared camera. Right: the method uses the gaze to describe the planet the user is looking at.

Figure 6 . 2 :

 62 Figure 6.2: Example of volume generated by SMPL [97] of a person sitting.

Figure 6 . 3 :

 63 Figure 6.3: Figure from[START_REF] Jourabloo | Robust egocentric photo-realistic facial expression transfer for virtual reality[END_REF]. Example of 3D face generated from a person wearing a virtual headset using the method from[START_REF] Jourabloo | Robust egocentric photo-realistic facial expression transfer for virtual reality[END_REF].

Figure 6 . 4 :

 64 Figure 6.4: Figure from [33]. Example of motion prediction that takes the environment into account. (a) video from Human3.6M[64], (b) historical sequence, (c) future ground truth,(d) prediction of a standard prediction method, (e) prediction of[START_REF] Corona | Context-aware human motion prediction[END_REF]. In green are the table and the cup.

Figure 6 . 5 :

 65 Figure 6.5: Figure from [158]. Environnement generation from human motion

Figure 6 . 6 :

 66 Figure 6.6: Figure from [67]. Example of interaction between multiple persons from the CMU Panoptic dataset.

Table 2 .

 2 1: Average error over all actions of Human3.6M and CMU MoCap. The short-term in 80, 160, 320, 400ms, and long-term in 1s.

	CHAPTER 2					
			Human3.6M average			CMU MoCap average
	millisecond (ms) 80	160 320	400	1000	80	160 320 400 1000
	Zero velocity	19.6 32.5 55.1 64.4 107.9 18.4 31.4 56.2 67.7 130.5
	Residual sup.	30.8 57.0 99.8 115.5	-	15.6 30.5 54.2 63.6 96.6
	convSeq2Seq	19.6 37.8 68.1 80.3 140.5 12.5 22.2 40.7 49.7 84.6
	FC-GCN	12.2 25.0 50.0 61.3 114.7 11.5 20.4 37.8 46.8 96.5
	LDRGCN	10.7 22.5 43.1 55.8	97.8	9.4 17.6 31.6 43.1 82.9
	Ours	12.6 22.5 41.9 50.8	96.4	9.4 15.9 29.2 38.3 80.6

Table 2 .

 2

	139.0 158.8 -	90.0 103.1 191.2	74.2 89.0 148.4	66.3 78.8 129.7	64.0 78.2 126.8	±13.1 ±16.1 ±16.7	Purchase	320 400 1000	61.8 72.2 126.3	104.2 109.8 -	82.2 93.0 139.3	64.4 72.2 127.2	62.8 76.2 112.6	48.3 58.1 120.8	±9.8 ±12.5 ±19.0	Waiting	320 400 1000	48.9 57.8 99.4	119.9 140.6 -	74.9 90.7 205.8	57.5 73.9 157.2	47.2 71.6 127.3	38.8 47.2 94.0	±7.6 ±9.0 ±13.7	Average	320 400 1000	55.1 64.4 107.9	99.8 115.5 -	68.1 80.3 140.5	50.0 61.3 114.7	43.1 55.8 97.8	41.9 50.8 96.4	
	74.1	46.2	30.5	27.9	35.1	±6.8		160	36.5	71.8	54.9	38.5	36.1	26.5	±4.8		160	28.2	60.5	36.5	22.0	17.6	20.3	±4.3		160	32.5	57.0	37.8	25.0	22.5	22.5	
	34.7 71.9 87.7 -37.9	25.9 52.5 63.3 74.4 24.5	18.9 39.4 47.2 57.1 14.5	15.9 37.2 41.7 53.8 9.6	15.9 29.1 35.0 65.3 19.6	±2.8 ±4.8 ±5.3 ±6.8 ±3.4	Posing	160 320 400 1000 80	34.7 61.5 73.3 136.1 22.1	54.7 131.3 160.8 -40.8	35.6 86.2 105.6 163.9 29.4	23.9 66.2 82.9 143.5 19.6	21.1 58.3 81.9 133.7 16.2	25.9 50.0 61.1 137.7 14.2	±6.3 ±11.0 ±12.7 ±12.8 ±2.5	Smoking	160 320 400 1000 80	24.6 41.7 49.3 84.0 17.0	36.6 61.8 73.9 -29.5	21.0 33.4 38.3 52.2 17.9	14.9 25.3 28.7 44.3 9.5	13.4 24.8 24.9 43.1 9.2	14.3 25.2 30.4 63.4 11.4	±2.7 ±4.5 ±5.2 ±9.7 ±3.1	Walking Together	160 320 400 1000 80	39.2 65.4 75.6 111.3 19.6	45.0 71.3 82.8 -30.8	29.9 54.3 65.8 149.8 19.6	18.4 35.3 44.3 102.4 12.2	18.1 31.2 39.4 10.7 79.2	19.7 34.5 41.8 12.6 63.4	±1.6 ±3.0 ±3.8 ±6.4
	61.3 96.0 103.5 -17.6	39.3 67.7 75.7 123.9 13.7	22.1 39.6 44.1 78.5 8.8	20.3 35.2 41.2 67.4 7.6	22.7 44.8 54.6 102.2 9.0	±3.4 ±6.5 ±7.7 ±16.5 ±1.5	Photo	160 320 400 1000 80	28.4 49.2 58.3 98.8 20.4	47.4 94.0 112.7 -27.9	27.2 53.8 66.2 151.2 16.1	15.2 38.2 49.6 125.7 9.4	13.8 29.6 44.2 116.4 8.7	16.0 32.4 40.9 98.9 13.7	±3.5 ±6.9 ±8.6 ±16.1 ±3.3	Sitting Down	160 320 400 1000 80	32.4 53.5 61.8 112.2 14.9	55.3 101.6 118.9 -19.7	34.9 66.3 77.7 177.5 11.1	27.6 56.4 67.6 163.9 7.8	21.4 46.3 59.3 144.6 8.1	28.2 52.9 64.5 125.2 7.9	±5.1 ±9.3 ±11.5 ±23.3 ±1.6	Walking	160 320 400 1000 80	49.2 86.0 100.3 149.1 23.5	40.4 62.9 70.9 -23.5	31.2 53.8 61.5 89.2 15.0	15.7 29.2 33.4 50.9 8.9	14.9 25.4 29.9 45.8 8.2	21.1 35.6 42.4 68.2 11.6	±1.7 ±2.9 ±3.8 ±5.3 ±1.1
	56.4 81.5 97.3 -31.7	37.2 59.6 73.4 118.3 18.9	24.4 48.2 58.4 89.1 9.8	23.7 44.5 50.9 78.3 9.4	20.9 38.8 47.0 83.5 11.9	±4.9 ±8.4 ±9.7 ±15.3 ±1.9	Phoning	160 320 400 1000 80	26.5 43.7 51.0 92.3 16.9	44.4 74.0 84.2 -23.6	29.7 53.4 61.3 127.5 14.0	20.2 37.9 43.2 94.3 6.8	14.3 33.1 39.7 85.8 7.1	19.4 34.9 42.3 81.8 8.8	±3.6 ±6.4 ±7.6 ±9.8 ±2.0	Sitting	160 320 400 1000 80	23.9 40.9 48.4 94.7 19.5	69.9 126.3 141.6 -28.6	42.4 77.0 88.4 132.5 17.1	24.6 50.6 62.0 119.8 11.4	23.1 47.2 57.7 106.5 9.3	17.9 33.1 40.7 97.7 15.8	±3.5 ±5.3 ±6.4 ±14.0 ±3.4	Walking Dog	160 320 400 1000 80	42.3 69.2 79.5 119.2 28.1	101.9 160.8 188.3 -23.8	74.7 116.6 138.7 210.2 17.1	58.0 102.2 122.7 185.4 8.9	56.6 87.9 99.4 143.2 8.9	34.2 65.6 77.5 117.8 12.0	±9.5 ±17.8 ±19.7 ±23.7 ±1.1
	36.5	convSeq2Seq 22.0	FC-GCN 12.6	LDRGCN 13.1	Ours 11.1	±2.7		millisecond (ms) 80	Zero velocity 15.8	Residual sup. 25.6	convSeq2Seq 17.2	FC-GCN 11.5	LDRGCN 10.4	Ours 11.7	±2.2		millisecond (ms) 80	Zero velocity 14.6	Residual sup. 34.5	convSeq2Seq 19.8	FC-GCN 10.7	LDRGCN 9.2	Ours 10.4	±2.8		millisecond (ms) 80	Zero velocity 26.9	Residual sup. 60.5	convSeq2Seq 40.6	FC-GCN 32.2	LDRGCN 25.3	Ours 19.3	±5.9

2: Motion prediction results measured with Equation 2.12 on Human3.6M dataset. Short-term results are reported within 80, 160, 320, 400ms, and long-term in 1s. Best results in bold while state-of-the-art best results that fit in our confidence interval are also written in bold.

Table 2 .

 2

3: Motion prediction results measured with Equation 2.12 on CMU dataset. Short-term results are reported within 80, 160, 320, 400ms, and long-term in 1s.

Table 2 .

 2 4: Averaged MPJS over 1000 ms for all classes of Human3.6M dataset. Closer to the ground truth is better.

		Ground truth ConvSeq2Seq FC-GCN Ours
	Direction	5.97	2.43	2.39	3.41
	Discussion	8.42	3.03	3.28	4.7
	Eating	6.24	3.35	3.77	4.31
	Greeting	11.54	3.41	3.82	6.65
	Phoning	7.77	3.29	3.74	4.66
	Photo	7.77	2.42	2.99	3.81
	Posing	10.56	3.34	3.85	4.84
	Purchases	10.28	2.60	3.41	4.97
	Sitting	7.37	1.85	2.04	3.34
	Sitting Down	9.58	2.50	2.37	4.53
	Smoking	6.33	2.90	4.01	3.95
	Waiting	7.98	3.37	3.56	4.63
	Walking Dog	13.29	4.59	5.33	7.1
	Walking	12.76	8.11	9.9	8.78
	Walking together	9.95	4.95	6.87	6.59
	Average	9.05	3.48	4.09	5.08

Table 2 . 6 :

 26 + L r 20.2 34.9 62.4 74.9 133.3 L a + L r + L s 13.6 23.4 42.6 51.6 103.8 L a + L r + L b 12.6 22.4 41.3 49.9 105.6 L a + L r + L s + L b 12.3 22.2 41.3 50.1 96.2 Impact of the bone length loss and the skeleton integrity loss on the prediction performance for short-term and long-term.

	HUMAN MOTION PREDICTION USING WASSERSTEIN GENERATIVE ADVERSARIAL
			NETWORK
	loss functions	80	160 320 400 1000
	L a loss functions	80	160 320 400 1000
	5 frames prior 14.2 25.3 47.0 56.5 104.4
	10 frames prior 13.6 24.2 44.7 53.5 98.6
	15 frames prior 13.3 23.6 43.7 52.4 96.8
	25 frames prior 12.3 22.2 41.3 50.1 96.2

Table 2 . 7 :

 27 Impact of the prior length on long term prediction

 .5 Limitations . 3.6 Conclusion .

	CHAPTER 3
	HUMAN REACTION GENERATION WITH TRANS-
	FORMER NETWORK
	III
	Human Reaction generation with
	Transformer Network

3.1 Introduction . 3.2 Related Work . 3.3 The Proposed Interaction Transformer 3.3.1 Motion Encoder . 3.3.2 Motion Decoder . 3.3.3 Skeleton Adjacency and Interaction Distance 3.3.4 Objective Optimization . 3.3.5 Implementation Details . 3.4 Experiments . 3.4.1 Datasets . 3.4.2 Evaluation Metrics . 3.4.3 Baselines . 3.4.4 State-of-the-Art Comparisons 3.4.5 Ablation Study . 3

Table 3 .

 3 1: List of 3D skeletons motion databases with interactions. Only the classes containing interaction are counted and only the samples from these classes are considered.

Table 3

 3

.2 (left) shows the classification accuracy for SBU, Duet-

Table 3 . 2 :

 32 Left:Classification accuracy for each class of the SBU, DuetDance, and K3HI datasets. Right:

	User study for each class of the

Table 3 .

 3 3: FVD and diversity on all datasets.

	Method		FVD ↓			Diversity ↓	
		SBU	DuetDance	K3HI	SBU DuetDance K3HI
	ZeroV [109]	493.3	41058.1	392.1	65.1	47.2	19.3
	VRNN [11]	113.61	789.23	195.47 11.5	6.1	16.8
	MixMatch [5]	314.38	1460.44	406.63 45.3	0.9	32.2
	STT[3]	321.04	2610.95	7579.87 47.8	3.9	27.6
	PGBIG[103]	267.27	317.0	379.4	35.7	1.5	10.1
	InterFormer (Ours) 48.78	31.81	125.40	0.9	0.4	13.7

Table 3 . 4 :

 34 Ablation study of Interformer on the SBU dataset.

	Setup	Accuracy ↑ Diversity ↓
	S1 Transformer	53.3	9.5
	S2 S1 + Spatial Attention	66.7	3.9
	S3 S2 + Skeleton Adjacency	73.3	1.7
	S4 S3 + Interaction Distance	80.0	0.9

Table 3 .

 3

		5: Ablation study of Interformer on the K3HI dataset
		Setup		Accuracy ↑ Diversity ↓
		S1 Transformer		14.3	32.9
	.	S2 S1 + Spatial Attention	28.6	16.7
		S3 S2 + Skeleton Adjacency	42.9	9.3
		S4 S3 + Interaction Distance	46.4	13.7
		T multihead S multihead Accuracy ↑ Diversity ↓
		-	-	60.0	10.6
		✓	-	70.0	2.0
		-	✓	60.0	5.1
		✓	✓	80.0	0.9

Table 3 .

 3 6: Ablation study of Interformer on the SBU dataset.

Table 3 .

 3 7: Ablation study of Interformer on the K3HI dataset .

	T multihead S multihead Accuracy ↑ Diversity ↓
	-	-	21.4	11.0
	✓	-	42.6	5.3
	-	✓	35.7	5.7
	✓	✓	46.4	13.7

Table 4 .

 4 1: Classification score on NTU-26.

	Method	GT	ACTOR [118] MotionDiffuse [165] BiGraphDiff
			Classification Accuracy ↑	
	Punching	76.0%	1.0%	43.0%	49.0%
	Kicking	86.0%	14.0%	61.0%	86.0%
	Pushing	97.0%	77.0%	86.0%	74.0%
	Pat on back	88.0%	4.0%	72.0%	80.0%
	Point Finger	83.0%	0.0%	52.0%	76.0%
	Hugging	97.0%	59.0%	90.0%	97.0%
	Giving object	91.0%	34.0%	68.0%	86.0%
	Touch pocket	93.0%	35.0%	81.0%	84.0%
	Shaking hands	89.0%	16.0%	80.0%	90.0%
	Walking toward	93.0%	72.0%	98.0%	99.0%
	Walking apart	95.0%	90.0%	90.0%	90.0%
	Hit with object	44.0%	8.0%	23.0%	28.0%
	Wield knife	50.0%	7.0%	31.0%	41.0%
	Knock over	85.0%	4.0%	61.0%	61.0%
	Grab stuff	74.0%	0.0%	57.0%	62.0%
	Shoot with gun	57.0%	1.0%	46.0%	44.0%
	Step on foot	89.0%	5.0%	85.0%	90.0%
	High five	90.0%	4.0%	75.0%	78.0%
	Cheers and drink 90.0%	16.0%	69.0%	92.0%
	Carry object	96.0%	98.0%	92.0%	95.0%
	Take a photo	87.0%	19.0%	63.0%	80.0%
	Follow	94.0%	68.0%	90.0%	81.0%
	Whisper	83.0%	0.0%	72.0%	79.0%
	Exchange things	88.0%	6.0%	65.0%	78.0%
	Support somebody 94.0%	100.0%	94.0%	92.0%
	Rock paper scissor 91.0%	6.0%	75.0%	91.0%
	Average	84.6%	30.7%	70.0%	77.0%

 loss function. SMPL loss function is deactivated because SMPL is not available in NTU RGB+D and DuetDance datasets.

	CHAPTER 4

Table 4 .

 4 2: FVD and Multimodality on NTU-26.

	Method	FVD↓	Multimodality↓
	ACTOR [118]	25298.73	34.91
	MotionDiffuse [165] 1292.32	14.94
	BiGraphDiff	1048.13	11.28

Table 4 .

 4 3: Classification score on DuetDance.

	Method	GT	ACTOR [118] MotionDiffuse [165] BiGraphDiff
			Classification Accuracy ↑	
	Cha-cha 28.0%	36.0%	32.0%	32.0%
	Jive	52.0%	16.0%	20.0%	16.0%
	Rumba 56.0%	16.0%	48.0%	68.0%
	Salsa	88.0%	0.0%	64.0%	76.0%
	Samba 52.0%	80.0%	32.0%	52.0%
	Average 55.2%	29.6%	39.2%	48.8%

Table 4 .

 4 4: FVD and Multimodality on DuetDance.

	Method	FVD↓ Multimodality↓
	ACTOR [118]	2641.08	67.79
	MotionDiffuse [165] 1133.51	12.24
	BiGraphDiff	997.92	4.33

Table 4 .

 4 5: User study results (%).

	Method	NTU-26	DuetDance
		Q1	Q2	Q1	Q2
	ACTOR [118] 6.1	7.8	5.6	5.9
	MotionDiffuse [165] 22.4 24.3 21.8 23.7
	BiGraphDiff 31.6 32.7 28.5 30.1
	GT 39.9 35.2 44.1 40.3

Table 4 .

 4 6: Ablation study on NTU-26. DuetDance dataset with a maximum sequence length of 4050 frames. We use 376 samples for training and 40 (8 per class) for testing. Figure4.8 shows an example of 1580 frames from the "rumba" class. We can see that we generate dance-like motion for the entire duration of the sequence. However, it is very noticeable that we generate better motion for the first few hundred frames, we see that the motion quality around 300 frames is good but then around 600 frames we see deterioration that gradually becomes worse. This is due to the length of the sequences in the DuetDance dataset distribution which are usually not very long (average: 483 frames, median: 360 frames).

	Method	Classification↑	FVD↓
	S1: Two Stream Transformer	3.9%	21215.21
	S2: Two Stream Transformer + Diffusion	69.3%	1406.09
	S3: S2 + Simple GCN	73.2%	1123.88
	S4: S2 + Bipartite Graph	77.0%	1048.16

original

Table 5 .

 5 1: Content of the gesture dataset

). Most motion

https://www.mixamo.com/

http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu

https://nuitrack.com/

https://github.com/TadasBaltrusaitis/OpenFace

http://dlib.net/

https://google.github.io/mediapipe/solutions/face_mesh

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to Prof. Mohamed Daoudi and Prof. Angela Bartolo for supervising this thesis and helping me in making it successful, especially when the pandemic forced us to change focus. I thank the reviewers and examiners, Dr. Antitza Dantcheva, Prof. Renaud Séguier, Prof. Pietro Pala, Prof. Catherine Pelachaud, Prof. Nicu Sebe, and Prof. Hatice Gunes for taking the time to evaluate this work. I thank Dr. Naima Otberdout and Dr. Hao Tang for the collaborations we had during this thesis.

I thank the Image group and the 3D-SAM team of the CRIStAL laboratory and the members of SCALab for the great time I had in those teams and for regularly helping me.

I would like to thank Hugo Pina Borges, Pierre Cilluffo, and Alain Tran who helped me build the virtual agent application and improve my ideas during their internships at CRIStAL. I thank people at the Equipex Continuum and especially Laurence Delbarre for letting us use their facilities and helping us with the dataset collection.

Finally, I wish to thank the CNRS for financing this thesis through the 80-prime project. i

The skeleton adjacency and interaction distance modules interact directly with spatial attention. Dance, and K3HI. Our method outperforms the five others on all the datasets. For SBU, we obtain results very close to the ground truth, and we outperform the other methods on all classes but "exchanging" where [START_REF] Baruah | A Multimodal Predictive Agent Model for Human Interaction Generation[END_REF] get better results and vastly outperform the simple ZeroV baseline. InterFormer is able to generate simple motions that are realistic enough to be correctly classified. We can see however that on "kicking" we score less than ZeroV, this is due to the small size of the SBU dataset. A few misclassifications will cause a sharp drop in classification accuracy, and as we can see, "Kicking" is the class that has the lowest accuracy on the ground truth as the reaction can be similar to those of punching and pushing.

The good performance of ZeroV in some classes can be explained by the fact that the overall accuracy is below chance (16.7%). This means that the classifier is unable to properly classify the motion from ZeroV as it only shows unmoving skeletons and for some classes, the two skeletons start in a neutral position that carries no information about the action. All

Action Recognition Module

To classify the predicted motions we use a Transformer encoder that uses spatial attention and the skeleton adjacency module presented in Chapter.3. The Transfomer encoder is followed by a simple multi-layer perceptron to classify the motions. Fig. 5.11 shows the architecture of the action recognition network. We then train the network on 3s of motion composed of 1s of real data and the 2s of motion predicted by the prediction module. We train with predicted data instead of real data because the recognition module will always receive predicted data. This module estimates the class of the concatenation of the recorded motion and the predicted motion. Table .5.2 shows the accuracy of the network on our dataset. For this experiment, we split the dataset between train and test. Out of the 11 subjects we randomly choose subject 2 and subject 7 to be the test subjects. For class "Idle", since the samples are not connected to a particular subject we randomly take 11 samples from the Kinect data and 11 samples from the Mocap data to create the test set. With this, we have 1192 training samples and 264 test samples. We compare the result of 3s of captured data, 1s of captured and 1s of captured data completed by 2s of predicted data. For each modality, we train the network on the corresponding data. As for the prediction network we use both the Mocap and Kinect data. We see that using 3s of data the network correctly classifies 63.6% of action. Some actions of our dataset like "Hello" and "I am hot" (see Table 5.1 for the detailed motions) are similar and often confused which can explain the relatively low score. If we use only 1s of data we see a decrease in performance down to 47.7% accuracy.

If we use our prediction network to predict 2s of motion and combine it with the 1s of input data to get a 3s sequence we increase the results to 60.2% close to the original 63.6%. This highlights the advantage of using our prediction network. We can are able to classify motion with only one-third of the data nearly as accurately. In practice this allows the avatar to react thrice as fast since the prediction process only takes a few milliseconds.

APPLICATION TO Stop idle motion and turn to face and look at the user Before turning attention to the user look at the computer screen while typing on the keyboard. Sometimes turns its head to look at the notebook.

Attention state look at the user and sometimes at objects on the desk.

Table 5.3: Avatar reaction to the gestures described in Table 5.1

and perform an action behind the desk (See Table 5.3 for a complete description of each reaction). This module can also work in virtual reality and the entire room is modelized in unity as seen in Figure 5.13. When using the virtual reality version, since the user needs to wear a virtual reality helmet we can not use facial expression recognition. In that case, the output of the module is ignored.

Figure 5.12: Our avatar in its resting state.

Full Application

The full application combines the aforementioned modules. The motion data is captured with a Kinect V2 camera and the face data with any RGB camera such as a webcam. From the motion data from the Kinect, we keep only the 3D skeleton data that we send to our prediction network every 25 frames. In the prediction network, the data will first be normalized and transformed into a SRVF. Then we predict the 50 future frames of the motion in SRVF format and rebuild the corresponding skeleton sequence. The predicted sequence is concatenated with the sequence recorded by the Kinect for a total length of 75 frames. This concatenated sequence is fed to the action recognition network which outputs a class label. Simultaneously 25 frames of the face data are sent to the facial expression recognition module where we extract the facial landmark from the RGB data with MediaPipe's face mesh. The landmarks